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Abstract 
 

Background 

Coronary artery disease (CAD) is one of the most common causes of death in the world. 

Diagnosis is based on imaging of the artery, either by CT or conventional angiography. 

Conventional angiography is an invasive technique which involves the introduction of a system 

of guide-wires, catheters and radiopaque contrast agent into the patient’s coronary arteries. 

Fractional Flow Reserve (FFR) is widely considered to be the gold-standard assessment of the 

physiological significance of CAD. FFR is measured invasively by the passage of a pressure 

wire through the diseased artery. 

Hypothesis and Aims 

It is hypothesised that a computational model can be employed to characterise the 

haemodynamics of blood flow in patient-specific coronary arteries in order to compute clinical 

indices of interest, including FFR, in an effective and reliable way. The aims of this project are 

to combine a coronary artery reconstruction tool with Computational Fluid Dynamics (CFD) 

and Reduced Order Modelling (ROM) techniques to estimate the pressure drop and FFR in 

patient-specific coronary arteries in a fast and accurate way. 

Methods & Results 

This thesis comprises two parts, both associated with the effective computation of FFR from 

angiographic data: 

i. The first part addresses the problem of accurate reconstruction of coronary artery 

anatomy from multiple, single-plane coronary angiography (MSPCA), to underpin the 

creation of a computational model. A segmentation tool with a user-friendly graphical 

user interface (GUI) was developed in MATLAB to generate the surfaces meshes 

required for the CFD studies and to obtain other clinically-relevant coronary parameters. 

ii. The second part focuses on the effective and accurate computation of the pressure 

gradient and the FFR using ROMs built from CFD solutions in ANSYS-Fluent, 

exploiting the ANSYS ROMBuilder suite. The methods were applied to compute 

pressure profiles along the length of the artery, and FFR, in representations of coronary 

stenosis. The study includes the identification of an appropriate parameterisation of the 

artery shape to support the effective construction and operation of a ROM, as well as an 

evaluation of the sources of error and a comparison between results from Bernoulli 
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estimates, from 1D models, from ROM, from CFD and from clinical measurement. 

Sequential increases in complexity of the anatomical representation are made, from 

axisymmetric with idealised stenoses to realistic radius variations from a coronary artery 

dataset and finally to curved arteries. In all cases each arterial cross-section is assumed 

to be circular. The study includes analysis of the interaction between idealised serial 

stenoses, and of a dataset of 140 patient-specific arteries characterised by angiography 

 

Results and Conclusions 

It was demonstrated that ROM applied to idealised coronary geometries achieved accuracies 

comparable with CFD results, and better than other approaches, in dramatically reduced 

timescales (order 900 times reduction relative to CFD). Limitations and opportunities for 

improvement include more accurate reconstruction of the cross-sectional profiles, more 

comprehensive representation of 3D curvature in the ROM and improved automation of 

segmentation, but the ROM approach shows great promise for this application in the delivery 

of solutions of sufficient accuracy in timescales consistent with the clinical process. 
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Statement of Contribution 
 

This thesis investigates the combination of a developed segmentation algorithm, 

Computational Fluid Dynamics and Reduced Order Methods to achieve a fast, reliable and 

objective prediction of patient-specific pressure gradient and FFR. The main contributions of 

this thesis are: 

1) A segmentation tool able to reconstruct in 3D coronary arteries starting from 2D projection 

images. 

2) Reduce Order Methods applied to idealised geometries for a fast computation of the 

pressure gradient plus fluid flow interactions between multiple lesions; 

3) A shape parameterisation with an optimisation method to describe the variation of the 

radius along the length for patient-specific coronary arteries in 2D;  

4) Creation of clinical ROMs for real-time computation of the FFR clinical index, which can 

support the objectivity of the definition of the FFR on which the clinical decision is made;  

5) A centreline based parameterisation to describe the curvature of any coronary artery with 

numerical parameters and 3D ROM construction.  
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NOMENCLATURE 
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dt  Time step  s  
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L  Length  mm 
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r  Radial distance from the centreline  mm 

R  Resistance  mmHg s ml-1 

Re  Reynolds number  Dimensionless  

t  Time  s  

U  Fluid velocity vector  m s-1  

u  Fluid velocity in x-direction  m s-1 

v  Fluid velocity in y-direction  m s-1  

w  Fluid velocity in w-direction  m s-1  

x  Position in first of three orthogonal spatial dimensions  m  

y  Position in second of three orthogonal spatial dimensions  m  

z  Position in third of three orthogonal spatial dimensions  m  

𝑉  Volume  m3  

𝜋  Pi  Dimensionless  

𝜌  Fluid density  kg m-3 

𝜏 Shear stress Pa 
 

Shear stress Pa 

𝜇  Fluid Viscosity  kg m-1 s-1
 (Pa s)  

C Correlation matrix  

S Matrix of snapshots  

K Total number of snapshots  

M Total number of modes  

‖∙‖𝐿2 𝐿2 𝑛𝑜𝑟𝑚  
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1 Chapter 1           
Introduction 

 
 

The goal of this thesis is to develop and to report a process for fast and effective computation 

of an important measure of coronary physiology, namely Fractional Flow Reserve (FFR) [1].  

The underpinning methods are: 

i. Reconstruction of coronary arteries in three dimensions from coronary angiography 

images. 

ii. Computational Fluid Dynamics (CFD) analyses to compute pressure distributions in 

the coronary arteries. 

iii. Coupling between CFD analysis and simple lumped parameter models to provide 

appropriate boundary conditions for the coronary analysis. 

iv. Parameterisation of coronary anatomy to provide a representation to support a Reduced 

Order Model (ROM) protocol. 

v. Development of ROM models, with the aim to support the very rapid computation of 

FFR in clinically-viable timescales (a few minutes). 

vi. Validation of ROM against measured clinical data. 

In this first chapter the context and background material is described, together with a brief 

overview of the technologies that are deployed in this work. The chapter commences with the 

motivation of the project, followed by an introduction to the relevant cardiovascular anatomy 

and physiology. Particular attention is given firstly to coronary circulation in order to 

understand the physiology and secondly to the clinical assessment and treatment of coronary 

artery disease, including the processes of coronary angiography and the measurement or 

computation of FFR.  

1.1 Motivation 

Modelling and simulating biological processes in a virtual environment has never been an easy 

task to achieve. Thanks to in silico medicine, clinical decision making with the usage of 

computer modelling simulations to describe the biomechanics interactions in our human body  
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have been improved [2]. Nevertheless, it remains a major challenge to achieve a fast, effective 

and robust patient specific simulation in time-scales that are consistent with the clinical 

process, which often requires close to real-time operation. Dramatic reduction in the whole 

process time, including both model building from medical image data and execution of 

simulation, could improve clinical decision-making with benefits not only for patients but also 

for the health service. 
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1.2 The cardiovascular system 

The cardiovascular system is composed by three elements: the heart, the blood and the blood 

vessels; its main role is to allow the blood to circulate through our organs and body. The heart 

is the muscular pump which distributes the blood flow through the vessels [3]. The blood is the 

fluid which circulates through our body and organs supplying them with nutrients, such as 

oxygen, glucose and amino-acids, also hormones and electrolytes, whilst simultaneously 

removing waste, such as carbon dioxide and metabolic breakdown products. Finally, the blood 

vessels make up the circuit through which the blood can flow. 

1.2.1 Cardiovascular and coronary anatomy 

The cardiovascular system consists of a heart and a closed system of vessels containing the 

blood (Figure 1.1). 

 

Figure 1.1: Cardiovascular system. 
Figure adapted from Blausen Medical Communications, Inc. via Wikimedia Commons Attribution 3.0 
Unreported (CC BY 3.0 - https://creativecommons.org/licenses/by/3.0/deed.en). 

The role of the heart is to pump blood through the vessels in order to distribute it throughout 

all the tissues. The heart has four chambers, two atria and two ventricles (Figure 1.1). Since the 

heart works continuously, even in a rest state, it needs a continuous supply of oxygenated 

blood, delivered through the coronary arteries and coronary microvasculature to the 

myocardium. 

Coronary arteries are small vessels (of the order of 3-4 mm in diameter) which arise at the 

origin of the aorta; more precisely from the coronary ostia which are located just downstream 

https://creativecommons.org/licenses/by/3.0/deed.en
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of the aortic valve leaflets. There are two main coronary arteries in the human heart which are 

described in more details below; the left and the right [4] (Figure 1.2). 

● Left coronary artery: the first part of the left coronary artery is called the common trunk. 

After the first 2-4 cm the vessel divides into two branches, these are; the circumflex 

and the left anterior descending branches. The left coronary artery supplies blood to the 

left and anterior parts of the heart. 

● Right coronary artery: this supplies the right ventricle and also carries blood to the 

posterior aspect and the base of the left ventricle. 

 

Figure 1.2: Anterior view of the heart and coronary circulation. 
Figure by Coronary.pdf: Patrick J. Lynch, medical illustrator, derivative work: Fred the Oyster (talk), adaption 
and further labeling: Mikael Häggström - Coronary.pdf, CC BY-SA 3.0. 

https://commons.wikimedia.org/w/index.php?curid=9967381  

 

Due to pathology, coronary arteries may be unable to provide adequate blood flow to the heart. 

In this case the pumping action of the myocardium will be impaired and may ultimately prove 

fatal. 

Significant changes in both the function and structure of the coronary vessels are caused by 

Coronary artery disease (CAD) which is a very common pathology. Plaque formation due to 

the abnormal deposition of lipids in the vessel wall lead to a narrowing of the lumen. If the 

restriction reaches a stage where the oxygen supply to the myocardium becomes insufficient, 

this may lead to chest pain (angina). Severe ischemia can lead to infarction and death of 

myocytes. An example of coronary atherosclerosis is shown below (Figure 1.3). 

https://commons.wikimedia.org/w/index.php?curid=9967381
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Figure 1.3: Coronary atherosclerosis. 
Blausen.com staff (2014). Figure from "Medical gallery of Blausen Medical 2014". WikiJournal of 
Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN2002-4436. CC BY-SA 3.0 - 
https://commons.wikimedia.org/w/index.php?curid=9967381 

In order to investigate the presence of CAD, several imaging-based assessments are used 

clinically, these tests include invasive coronary angiography (ICA) and computed tomography 

(CT) coronary angiography (CTCA). 

 

1.2.2 Coronary circulation 

The coronary circulation provides nutrients to the heart muscle (the myocardium) [5]. The 

blood flow in the coronary arteries differs from that in the systemic arteries, because the phases 

of cardiac contraction generate myocardial extravascular compression. During systole (the 

ventricular contraction and ejection phase), blood is ejected through the aortic valve into the 

aorta and systemic arteries and pressure and flow in the main systemic circulation reach a 

maximum. In contrast, in the coronary arteries during systole, the myocardium is contracted 

and the coronary microvasculature is compressed thus impairing coronary flow. This explains 

the diastolic predominance of the coronary flow, an effect which is more pronounced in the left 

coronary system than the right due to relatively higher left ventricular pressures [6]. 

While other tissues extract about 25% of oxygen from the blood at rest, because of the high 

density of capillaries (with more or less one capillary for each cardiomyocyte) the myocardial 

tissue extracts 70% of the oxygen from the blood [7]. This high rate of extraction explains why, 

when the heart needs to increase its output, during exercise for example, the myocardium will 

need more oxygen and nutrients. The only way to achieve this is to increase coronary blood 

flow.  

https://en.wikiversity.org/wiki/WikiJournal_of_Medicine/Medical_gallery_of_Blausen_Medical_2014
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.15347/wjm/2014.010
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/2002-4436
https://commons.wikimedia.org/w/index.php?curid=9967381
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1.3 Diagnostic process for CAD 

Patients with coronary artery disease (CAD) undergo a clinical test called coronary 

angiography which is used to diagnose the extent and seriousness of the disease [8], [9].  

Coronary vessels are investigated during angiography using a catheter that is inserted into the 

aorta via the femoral or radial artery and advanced along until it reaches one of the main 

coronary arteries. Once a coronary is reached, a special ‘dye’ is released into the coronary 

bloodstream [10], [11]. This ‘dye’ is a radio-opaque contrast agent which makes the coronary 

arteries visible radiographically and a series of X-ray images are acquired (Figure 1.4). 

These images are 2D projections of the lumen of the coronary artery taken from multiple 

directions (projection angles) allowing the operator to mentally reconstruct the 3D anatomy of 

the vessel (a process that is not without difficulty even for an expert operator). 

 

Figure 1.4: An example of angiographic image. 
The black arrow shows the stenosis along the coronary vessel. (Courtesy of Dr. Julian Gunn, Northern General 
Hospital, Sheffield) 

Based on the visual representation of the stenosis a decision on its severity and the need for 

intervention can be made. It is important to highlight that this process is a purely anatomical 

measure rather than a physiological one. However, using a pressure wire passed through the 

catheter during angiography it is possible to complement the anatomical measurements with a 

physiological one, the Fractional Flow Reserve (FFR) [12]–[17].  

FFR measures the pressure difference along the coronary stenosis, and is defined as the ratio 

between the maximum coronary flow in the presence of the stenosis, 𝑄𝑆
𝑚𝑎𝑥, and the maximal 

flow in the absence of the stenosis 𝑄𝑁
𝑚𝑎𝑥. The calculation is based on a simple electrical 
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analogue, assuming that the resistance is constant and applying Ohm’s Law: details of the 

derivation are presented in section 1.3.1. 

𝐹𝐹𝑅 =
𝑄𝑆
𝑚𝑎𝑥

𝑄𝑁
𝑚𝑎𝑥 ≅

𝑃𝐷
𝑃𝐴

 (Eq.1.1) 

To obtain a measurement of the FFR, cardiologists use an invasive pressure wire to measure 

the pressure upstream and downstream of the stenosis. The result obtained is a number between 

0 to 1 and is helpful to cardiologists in their decision-making. A value higher than 0.8, is taken 

to indicate a physiologically non-significant stenosis (impairing the flow by only 20%), whilst 

a lower value indicates a significant stenosis [14], [17], [18]. The measurement of FFR is very 

important because it is an objective physiology-based parameter and thus better than the visual 

assessment of the stenosis most frequently made by clinicians in current practice. A potential 

criticism of FFR is that it measures only the capacity to reinstate a relative flow, but it says 

nothing about the absolute flow in the artery. Nevertheless it has proven to be a very reliable 

clinical measure of the likely effectiveness of intervention [17], [19]. 

Despite its proven clinical value, in the UK, clinical evaluation of FFR is used in less than 15% 

of cases [1], [9]. The main reason for this is that measurement of FFR is expensive. This is, in 

part, due to the cost of the wire (≈ £600 per patient), and in part due to the increased Cath Lab 

time required [20].  

A number of different techniques (as described in the next sections) can be used to acquire 

angiography images, the most common being multiple single plane coronary angiography 

(MSPCA). Other imaging protocols available include rotational coronary angiography (RoCA) 

and biplane angiography. MSPCA images are obtained from a series of single plane 

acquisitions whilst the biplane technique uses two independent acquisition systems to acquire 

two coronary images simultaneously. Finally, in the RoCA technique, the camera rotates 

around the patient while acquiring a series of images. 

Several authors [9], [21]–[26], have shown that it is possible to estimate FFR using 

computational fluid dynamics (CFD) starting from a description of the anatomy. The first 

challenge addressed in this thesis is to obtain a full and fast 3D reconstruction of the whole 

coronary tree starting from 2D images (at least two projection images) obtained from MSPCA 

in order to define the 3D surface of the coronary artery. A virtual Fraction Flow Reserve (vFFR) 

can then be calculated, using a computational model, to help the cardiologist in the clinical 

decision making [9]. This thesis is based on the use of MSPCA and not biplane or RoCA images 

because MSPCA is both widely used and more common than the other two techniques [27]. 
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Once the 3D surface of the coronary tree is obtained, there are several advantages in applying 

a computational FFR. For example: cost and time savings, no need to use a pressure catheter 

in patients and last but not least, multiple lesions can be included in the computational analysis. 

 

1.3.1 Derivation of the FFR index 

Fractional Flow Reserve (FFR) is defined as: “the maximal myocardial perfusion during 

hyperaemia in the presence of a stenosis in the epicardial artery, expressed as a fraction of its 

normal maximal expected value” [28]. FFR is a physiological index which describes the 

pressure drop across the stenosis giving an objective information about the severity of the 

coronary lesion. Ohm’s law can also be described with a hydraulic analogy; the pressure of the 

fluid is the analogy of voltage. A pressure difference between two points in a pipe (horizontal) 

drives the fluid flow in the same way as a voltage difference drives the current flow. Therefore, 

we have: 

𝑉 = 𝑅𝐼 (Eq.1.2) 

𝑃 = 𝑅𝑄 (Eq.1.3) 

A simple electric circuit of the coronary circulation (Figure 1.5) can be represented as:  

 

Figure 1.5: Circuit analogy for coronary circulation. 
Rs defines the resistance given by the stenosis whilst Rmc is the resistance given by the coronary 
microcirculation.    

Considering the figure above 𝑃𝑎 is the aortic pressure, 𝑃𝑑 indicates the distal pressure 

downstream of the stenosis (or multiple stenoses if present in the vessel), 𝑃𝑣 is the venous 

pressure (considered to be equal to zero for small vessels), 𝑅𝑠 is the resistance due the stenotic 

vessel and 𝑅𝑚𝑐 is the physiological resistance in the coronary microcirculation. 

The FFR index can be expressed as the ratio between the distal and the proximal blood pressure, 

noting that although it is derived from a pressure measurement, it is an index of flow: 

𝐹𝐹𝑅 =
𝑄𝑆
𝑚𝑎𝑥

𝑄𝑁
𝑚𝑎𝑥 = 

(𝑃𝐴 − 𝑃𝑉)
(𝑅𝑆 + 𝑅𝑚𝑐)

(𝑃𝐴 − 𝑃𝑉)
𝑅𝑚𝑐

=
𝑅𝑚𝑐

𝑅𝑚𝑐 + 𝑅𝑆
=
𝑃𝐷 − 𝑃𝑉
𝑄

∙
𝑄

𝑃𝐴 − 𝑃𝑉
≅
𝑃𝐷
𝑃𝐴

 (Eq.1.4) 
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Where the maximum coronary flow in the presence of the stenosis is 𝑄𝑆
𝑚𝑎𝑥, and the maximal 

flow in the absence of the stenosis is 𝑄𝑁
𝑚𝑎𝑥. During angiography, the FFR is calculated as the 

ratio between distal and proximal pressures across the stenosis based on measurements 

obtained from a pressure wire. The pressure difference is measured in both rest and hyperaemic 

conditions, but FFR is defined as the pressure ratio under hyperaemia. Vasodilation of the 

myocardial microcirculation is necessary to emulate the exercise condition (hyperaemia). 

Adenosine is administered to induce a relaxation of the vessels, a decrease of the myocardial 

resistance and thus an increase in coronary blood flow. 

As indicated previously the FFR value is always within the range [0, 1] and a value below the 

threshold of 0.8 is take to indicate myocardial ischemia. There are different theories about the 

influence of haemodynamic conditions on FFR.  

According to Pijls and De Bruyne [15], haemodynamics and FFR are independent, because of 

the linear relationship between pressure and flow (Poseuille’s law). Other scientists [29] have 

demonstrated that in stenotic conditions, the relationship between pressure and flow is not 

linear: 

∆𝑃 = 𝐾1𝑄 + 𝐾2𝑄
2 (Eq.1.5) 

The first term (𝐾1𝑄) is related to the viscous losses, often described by Poiseuille’s law. The 

second term (𝐾2𝑄
2) is related to the Bernoulli losses, or the reduction of static pressure due to 

convective acceleration through the stenosis, and a lack of pressure recovery due to viscosity, 

flow disturbances and sometime turbulence. As it can be seen, the second term in the equation 

increases with the square of the flow and the Poiseuille part often becomes negligible in 

comparison. This means that if the fluid flow in the coronary is increased the associated 

pressure gradient increases in a quadratic manner. If there is no stenosis along the coronary the 

quadratic term vanishes from the ∆𝑃 equation and the pressure loss follows a linear trend, 

considering only the pressure losses given by the Poiseuille term. 

FFR is based on the pressure drop when blood flows across a coronary stenosis. The two terms 

described above can be approximated using the standard engineering equations: 

● Bernoulli losses: 

∆𝑃 =
1

2
𝜌(𝑣2

2 − 𝑣1
2) (Eq.1.6) 

or in a second form: considering the continuity equation: 
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∆𝑃 =
1

2
𝜌𝑄2(

1

𝐴𝑠2
−

1

𝐴𝑖𝑛
2 ) (Eq.1.7) 

where for the first equation 𝑣 is the velocity, and 𝜌 is the density of the fluid under 

consideration. In the second equation 𝑄 is the flow, 𝐴𝑠 and 𝐴𝑖𝑛are the cross-sectional areas for 

the stenosis and the inlet for the geometry under consideration. 

 

● Poiseuille losses: every fluid has a viscosity, meaning that it has an internal friction 

that is a result of the electric forces between the molecules of the fluid. Moreover, to 

overcome fluid viscosity a pressure difference is required between the inlet and the 

outlet of a tube or a pipe for the fluid to flow. The Poiseuille equation (Eq. 1.8) explains 

the viscous losses, which are the pressure losses in a straight tube, associated with a 

fully developed parabolic flow (Figure 1.6). The equation holds under two conditions: 

first the fluid has to be incompressible (the volume has to remain constant) and second, 

the flow has to be laminar. 

∆𝑃 = 𝑃𝑖𝑛𝑙𝑒𝑡 − 𝑃𝑜𝑢𝑡𝑙𝑒𝑡 =
8µ𝑄𝐿

𝜋𝑅4
 (Eq.1.8) 

 

Figure 1.6: Example of blood flow on a straight tube representing the Poiseuille flow.  

It is possible to notice that, in the Poiseuille equation, pressure losses increase linearly with 

flow, viscosity and the length of the tube. Furthermore, they are critically dependent on the 

fourth power of the radius. 

Coronary blood flow is one example of application of these two equations. However, the 

Bernoulli and Poiseuille laws are very basic haemodynamic laws that do not describe the reality 

exactly but, rather, approximate the behaviour of the blood flow in the vessels. Furthermore, 

they have some constraints, for example, as already mentioned above, the Poiseuille equation 

assumes fully developed flow along a cylindrical pipe and is based on the balance between the 

pressure gradient and viscous stresses. 

On the other hand, the Bernoulli equation, whilst able to predict the pressure loss in a coronary 

stenosis (vena contracta), has no information about the degree of pressure recovery distal to 
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the lesion. Both of these equations are based on very simple geometrical approximations they 

are unable to capture complex haemodynamic behaviour associated with vessel shape and 

tortuosity. Whilst they may give important information relating to a 1D model with a single 

stenosis [30]–[33], they cannot describe the haemodynamic interactions between two or 

multiple stenosis in series. All this suggests that CFD might be required in order to describe 

adequately all the characteristics of the blood flow in coronary arteries and more generally for 

physiological simulation. This hypothesis is examined in the context of coronary geometry in 

chapter 3. 

1.3.2 Energy loss in coronary stenosis 

The blood flow through our body is driven by pressure but, in contrast to other regions of the 

circulation, coronary flow increases during the diastolic phase of the cardiac cycle and 

decreases during the systolic phase. Furthermore, the resistance to flow increases during systole 

and reduces to a baseline during diastole. It is the pressure gradient that drives the flow. Since 

it is widely accepted that coronary venous pressure is sufficiently low that it can be regarded 

as zero [1], [9]; the relative influence of the two resistances is key to understanding and 

interpreting physiological indices of coronary flow such as FFR. 

In the vena contracta or just beyond the occlusion, the flow accelerates increasing the kinetic 

energy and since total energy must remain constant, the fluid pressure must decrease. Formally 

the Bernoulli equation is derived by a reduction of the momentum equation, but it is useful to 

think about its elements in terms of potential and kinetic energies. In general, the Bernoulli 

equation gives a good estimation of the static pressure drop between the inlet and the coronary 

stenosis. Furthermore, distal to the vena contracta, the fluid flow starts to decelerate; in this 

case kinetic energy is lost which corresponds to an increase in pressure and distal to the lesion 

the Bernoulli equation predicts an increase in hydrostatic energy i.e. pressure. However, the 

conversion between kinetic energy and pressure is not efficient and, for multiple factors, the 

static pressure does not recover completely; just beyond the vena contracta the flow starts to 

rotate producing vortices, a major component of turbulent flow, furthermore it is possible to 

notice flow separation. Due to these factors pressure will never reach a full recovery. Moreover, 

there are also viscous losses due to viscous friction between laminar layers of fluid to consider, 

although these play a less important role. 
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1.3.3 Factors influencing pressure drop across a stenosis 

The most important factor influencing the pressure drop along a coronary artery is the ratio 

between the minimum radius of the stenosis and that of the undiseased vessel. As it can be seen 

from equation 1.9, the pressure gradient is inversely proportional to the fourth power of the 

radius ratio. 

∆𝑃 =
1

2
𝜌𝑣𝑖𝑛𝑙𝑒𝑡

2 ((
𝑟𝑖𝑛𝑙𝑒𝑡
𝑟𝑠𝑡𝑒𝑛

)
4

− 1 ) (Eq.1.9) 

Typically, clinically important pressure drops are associated with radius reductions of 50% or 

greater. However, as shown in eq. 1.5, the pressure-flow relationship is not linear, the shape of 

the curve depends by the stenosis resistance. 

1.4 Coronary reconstruction in 3D: different models and 

approaches 

Coronary artery disease (CAD) is the most common cause of cardiovascular death in the world 

[34]. Currently, diagnosis and assessment of CAD relies on invasive techniques such as 

angiography. Fractional Flow Reserve (FFR) is considered to be the gold-standard for 

assessment of the physiological significance of coronary artery disease [35]. Several different 

angiography techniques can be used to detect CAD; biplane, rotational or multi-single plane 

angiography. All these techniques produce a series of projection images from where it is 

possible to start a 3D coronary reconstruction. These techniques and the different models 

employed to achieve 3D coronary reconstruction are described in the next sections. 

 

1.4.1 Biplane technique 

Biplane devices have two X-ray source systems, these two systems can rotate independently 

from one another [36]. Thus, they have a frontal and a lateral view with a global coordinate 

system in common. The origin of this coordinate system is called the isocentre and is taken as 

the point of intersection between the lateral and the frontal system. Using biplane angiograms 

we can obtain two images, acquired at the same time, or better, at the same phase of the cardiac 

cycle. This could be of particular help in the reconstruction process; acquiring two images at 

the same time allows us to eliminate the influence of cardiac and respiratory movement on the 

heart. It is important to emphasise that there should be no table movement or panning during 

the acquisition. A large number of studies in 3D reconstruction have been carried out starting 

from biplane images [31, 32], [36-41]. 
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Hoffmann et al. [39] produced a tool which determines the 3D vessel tree centreline starting 

from biplane angiography images. According to them, the first problem to be resolved is the 

determination of the imaging geometry, i.e. evaluation of transformation matrices relating to 

the entire system. However, all this information is expressed in terms of Left Anterior Oblique 

(LAO), Right Anterior Oblique (RAO) and Cranial-Caudal (CC) angles and distances from the 

source to the X-ray intensifier plane. End-diastolic images were chosen, and points along the 

centreline marked manually by the user (5-10 points). These points were interpolated with a 

vessel tracking algorithm. Considering the two planes of projection, the correspondence of 

points along the two centrelines has been computed using the epipolar technique [42]–[45]. 

Every matched point from the two planes is used to calculate the 3D position of the point. This 

position in the three-dimensional space is computed as the interception point retracing the X-

ray source beams. Thus, the 3D centreline is obtained repeating the procedure for each point 

along the centreline in both planes. 

In Tu et al.[36], the workflow for the reconstruction is composed of several steps. The first step 

is the correction of the isocentre offset. In a biplane device the isocentre offset is defined as the 

spatial difference between the two isocentres (frontal and lateral). These should intercept each 

other, but due to system distortion, the isocentre is not a stable point. Correcting the offset and 

the epipolar geometry, they wanted to develop a robust tool for the coronary tree 

reconstruction. This offset leads to inaccurate 3D reconstruction, due to the uncertainty of the 

correspondence of points between the two projections planes which has to be eliminated before 

starting the reconstruction process. Their solution to resolving this offset error is to choose one 

or three pairs of points (usually bifurcations) and then approximate the total distance from the 

chosen points to the corresponding epipolar lines. The resultant error is a function of the 

isocentre. They must then minimise this error function to obtain, and eliminate, the offset 

between the two views. The second step is to mark manually the proximal and the distal point 

along the coronary vessel in one view, and then the coronary centreline is computed 

automatically. The proximal and the distal points on the second project plane are calculated 

once again from the epipolar geometry. Knowing the correct position of corresponding points 

from the two views, the 3D centreline is computed, calculating the position of each point in 3D 

as the point of intersection derived from the two X-ray sources beams. According to Tu et al 

[36], even if two images in biplane device are acquired simultaneously, reproducing an accurate 

coronary tree in three dimensions is challenging. 
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Biplane angiography has a great advantage in terms of accuracy of reconstruction because there 

is no extraneous movement, but a major disadvantage of the biplane technique is that is not 

widely used in routine cardiological procedures. 

 

1.4.2 RoCA Technique 

Rotational coronary angiography (RoCA) is characterised by a single C-arm which collects a 

series of coronary images during a single rotation. The RoCA technique covers an angle of 

approximately 120 degrees; the C-arm starts typically from 60 degrees right anterior oblique 

(RAO) and ends at 60 degrees left anterior oblique (LAO). Depending on the choice of the 

operator, the C-arm can begin its rotation with a caudal (CAU) or cranial angulation (LAO). 

The RoCa technique is very limiting in the sense that, since the heart is moving continuously, 

and 3D reconstruction has to start from same cardiac phase (usually end-diastole) there are 

very few images across a single acquisition which are useful for 3DR in any particular cardiac 

phase, even without respiratory motion. 

 

Hansis et al. [74] described a workflow for 3D reconstruction using 2D RoCA projection 

images. Their aim was to improve the consistency of the projected images with respect to the 

heart motion. The procedure for 2D motion compensation starts with an initial coronary artery 

reconstruction; the reconstructed vessel centreline is then projected back on the forward 

projections. The projected centrelines are then transformed to obtain the best possible match 

with the centrelines of the forward projections. The group in Sheffield [1, 9, 13] originally used 

RoCA images and a reconstruction supported on the Philips clinical imaging equipment, but 

this was only applicable to a small research cohort on which RoCA was performed, and one of 

the aims of this thesis was to develop a software solution usable by members of the research 

team on standard MSPCA images. 

 

1.4.3 Reconstruction starting from MSPCA images 

Andriotis et al. [48] presented a 3D reconstruction workflow of coronary arteries from 

conventional monoplane angiograms (MSPCA). Their reconstruction approach is based on the 

epipolar geometry concept. Their model was validated initially against a virtual phantom 

coronary and then against a reconstructed CT coronary artery. The reconstruction output was 

a surface grid that could be used as a further step for computational fluid dynamics. In their 
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paper the group does not mention the presence of artefacts or errors on the reconstruction given 

by heart motion or table movement during image-acquisition. 

One model that is still representative of the state of art in reconstruction from MSCPA images 

is that of Messenger et al.[49]. Their algorithm is composed of a number of steps to achieve 

the coronary reconstruction. The first step is to acquire images and register the gantry 

parameters. Gantry parameters are as always: angles (RAO/LAO, Caudal/Cranial), distance 

source-detector, distance source isocentre and distance between each X-ray source which are 

important to compute the epipolar geometry. 

The second step is the manual extraction of the centerline in one view. Knowing the spatial 

relationship between the two views, they can compute the third step which is based on matching 

centerline points from the first view to the second one. In this algorithm correspondence points 

are computed following the epipolar geometry constraints for the computation of the 3D 

centreline. The skeleton of the coronary is then computed as sequence of cross-sectional 

circular disks. The method described in chapter 2 of this thesis follows a similar approach. 

 

1.5 Computational Fluid Dynamics and Reduced Order 

Methods 

Computational fluid dynamics (CFD) is a branch of fluid mechanics and a special area of 

mathematics [50]. CFD is essential nowadays for engineering applications such as the design 

of aircraft or in the automotive industry. However, over the last few years, CFD is becoming 

increasingly important in medical applications dealing with complex flow such as in 

cardiovascular modelling because it can measure haemodynamic parameters and predict 

physiological responses which were not possible previously [51]–[54]. 

CFD is based on the computation of solutions of the continuity and momentum (Navier Stokes) 

equations which govern fluid motion. These equations are non-linear partial-differential 

equations, based upon the conservation of mass and momentum. These equations are presented 

below for an incompressible fluid (density does not change in time). In most cases it is not 

possible to derive analytical solutions, and they are solved numerically. 

𝜌
𝜕𝑢

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑢𝑈) = −

𝜕𝑝

𝜕𝑥
+
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥
𝜕𝑧

 (Eq.1.10) 

𝜌
𝜕𝑣

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑣𝑈) = −

𝜕𝑝

𝜕𝑦
+
𝜕𝜏𝑥𝑦

𝜕𝑥
+
𝜕𝜏𝑦𝑦

𝜕𝑦
+
𝜕𝜏𝑧𝑦

𝜕𝑧
 (Eq.1.11) 
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𝜌
𝜕𝑤

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑤𝑈) = −

𝜕𝑝

𝜕𝑧
+
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧

𝜕𝑦
+
𝜕𝜏𝑧𝑧
𝜕𝑧

 (Eq. 1.12) 

𝜏𝑥𝑥 = 2𝜇
𝜕𝑢

𝜕𝑥
+ 𝜆 𝑑𝑖𝑣 𝒖     𝜏𝑦𝑦 = 2𝜇

𝜕𝑣

𝜕𝑦
+ 𝜆 𝑑𝑖𝑣 𝒖    𝜏𝑧𝑧 = 2𝜇

𝜕𝑤

𝜕𝑧
+ 𝜆 𝑑𝑖𝑣 𝒖 (Eq. 1.13) 

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇 (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)     𝜏𝑥𝑧 = 𝜏𝑧𝑥 = 𝜇 (

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)   

 𝜏𝑦𝑧 = 𝜏𝑧𝑦 = 𝜇 (
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) 

(Eq. 1.14) 

𝛻 ∙ 𝑈 = 0 (Eq.1.15) 

 

where u, v and w are the three velocity components along the three directions x, y and z. 𝜌 is 

the density which characterize the fluid, p is the pressure, 𝑈 is the velocity vector and 𝜏 is the 

shear stress. Applying Newton’s second law to the principle of fluid dynamics it is possible to 

derive the momentum equations. The convective acceleration described by the term 𝑢𝑈 (for 

the x-direction) is non-linear and makes the analytical solution of the Navier-Stokes equations 

extremely challenging. The first term in each equation accounts for the acceleration in the three 

dimensions. The second term 𝛻 ∙ (𝜌𝑢𝑈) is the velocity vector accounting for convective 

acceleration in the appropriate direction. In a simple 1D model, this term can be simplified into 

the Bernoulli equation. The third term (−
𝜕𝑝

𝜕𝑥
) is the pressure gradient in the direction specified 

by the denominator, and finally the last three components (
𝜕𝜏𝑥𝑥

𝜕𝑥
+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥

𝜕𝑧
) account for 

viscous losses which in a 1D model they can be seen as the Poiseuille equation. 

In a Newtonian fluid the viscous stresses are proportional to the rates of deformation (Eq. 1.13 

and Eq. 1.14). The dynamic viscosity 𝜇 relates stresses to linear deformations, and the second 

viscosity 𝜆 relates stresses to the volumetric deformation. The effect of the second viscosity 𝜆 

is small in practice and can be thought as 𝜆 = −
2

3
𝜇.  

The first three equations account for the conservation of momentum in the x, y and z-direction, 

while the last equation accounts for the conservation of mass. 

The Navier-Stokes equations which are partial differential equations have to be transformed 

into a system of non-linear algebraic equations which can be solved iteratively. In order to have 

a full system of equations, the ROI (region of interest) has to be temporally and spatially 

discretised, furthermore boundary conditions have to be applied to any inlet, outlet and walls. 

There are several spatial discretisation methods, but the principal are: Finite Difference (FDM), 



Introduction 

 

17 

 

Finite Volume (FVM) and Finite Element method (FEM). The spatial discretisation consists in 

dividing the computational mesh in a finite number of areas for 2D or volumes in 3D where 

the equations are solved. Regarding the temporal discretisation, a time-marching scheme is 

applied and the end of the solution is achieved incrementally. ANSYS-Fluent is based on the 

FVM. 

For complex transient flows, sometimes with millions of degrees of freedom, large 

computational resources are often necessary and execution times can still be of the order of 

days or weeks. Furthermore, if we are interested in having results of the fluid equations for 

different value(s) of model parameters, we have to repeat the simulation for each value 

requiring more computational time and effort. 

The increasing interest in solving complex multidisciplinary systems has led to the 

development of model reduction strategies. ROMs gained attention and popularity in different 

engineering and scientific applications, specifically in different areas: optimisation and design, 

treatment of high dimensional space, real-time computing (especially in biomedical 

engineering) and interaction between different model reduction techniques. 

ROMs are computationally cheaper than the full order systems; however, they are capable of 

collecting the most important features of the model [111, 116]. 

The following section is a brief overview of the state of the art and of the challenges for ROMs 

applied to computational fluid dynamics problems. ROMs have been applied to different fluid 

dynamic applications such as: medical, nautical, mechanical and automotive engineering; 

furthermore, they have been applied to biology and geophysics.   

Progress in computational power and capabilities of modern computers have led to a more 

accurate numerical analyses and advances in simulation modelling. However, even with 

advancements of technology, there are still unsolved challenges [59, 90, 91, 96] summarised 

below: 

• Models defined in a high dimensional space are very difficult to handle and they 

encounter what is called “course of dimensionality”. Many parametric problems fall in 

this class; 

• Complex systems which require a fast or close to real time computation are difficult to 

solve and to control; 
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• ROMs, which include geometrical parameterisation (difficulties in dealing with large 

deformations).  A clear example is the goal of this thesis, where a fast computation of 

the haemodynamic in coronaries is required. 

Introducing idealising assumptions to the model could be a possible solution to solve these 

challenges, however this will make the model less accurate. A second solution could be using 

High Performance Computing or HPC where the great computational power can solve highly 

complex problem reducing the computational time. The drawback of using HPC is that they 

are expensive to install, they are not mobile and lack of accessibility.  

A more feasible solution is to develop ROMs which aim to maintain high accuracy with less 

computational cost, allowing researchers and engineers to solve complex problems in real-time 

or close to real-time. As already discuss, introducing parameters (for parametric problems) into 

the model increases the dimensional space. In these cases solving parametric PDEs, such as 

Navier-Stokes equations, requires the collection of multiple full CFD solutions with different 

values of the parameters [90, 91].  

In order to solve fluid flow problems robustly and efficiently, different ROMs techniques have 

been developed, such as the Proper Orthogonal Decomposition (POD) and Reduced Basis 

Methods (RB). Both methods are used in academia and for industrial engineering problems; 

however in this thesis focus will be given to the POD method and it will be described in details 

in the next section. 

In the last few years research in the medical field has moved towards a patient-specific 

characterisation of the blood flow. This has the aim of improving the diagnosis helping clinical 

decision making. In order to compute a close to real time simulation, often demanded in a 

clinical application, and an accurate result we need to rely on ROMs. By usage of the ROMs a 

huge acceleration in the computation of the variables we are interested in can be achieved, and 

at the same time reducing the CPU and memory demands (RAM).  

 

 

1.5.1 The Proper Orthogonal Decomposition and the Singular Value 

Decomposition Approach 

In any scientific field, collecting very large amounts of data by numerical simulations or 

experimental approaches is a common situation. There is a great need to have specific post-

processing techniques able to extract from these large quantities of high dimensional data, 
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synthetic information essential to understand and eventually to model the process under study. 

One of the most powerful methods of data-analysis for multivariate and non-linear phenomena 

is the Proper Orthogonal Decomposition (POD). The POD procedure is a linear procedure that 

takes a given collection of input data and creates an orthogonal basis constituted by functions 

estimated as the solutions of an eigenvalue problem. The POD can be approached as an 

application of the Singular Value Decomposition (SVD). 

The SVD provides a basis for the modal decomposition of an ensemble of functions, such as 

data obtained from experiments or numerical simulations. The beauty of the SVD method is its 

optimality in the sense that it provides the most efficient way of capturing the dominant 

components or dominant features with only a finite number of “modes” [55], [56]. In terms of 

CFD analysis, the SVD allows to capture the most significant fluid flow patterns in the dataset.  

The SVD then, provides a linear approximation of a set of functions that enable an easier 

characterization of the complex original input data as a sum of weighted modes. Furthermore, 

the mathematical fundamental idea of the SVD approach is to decompose any quantity 

distribution into a linear combination of modes coefficients and modes [57]–[59]. 

Therefore, we have: 

𝑆(𝑘) = ∑ 𝛼𝑚
(𝑘)
𝜑𝑚

𝑀

𝑚=1

 (Eq.1.16) 

Where 𝑆(𝑘) is the recomputed solution given by the linear combination, the index k defines the 

k-th recomputed solution, 𝛼𝑚
(𝑘)

 are the modes coefficients for the solution k and 𝜑𝑚 are the 

modes. In order to construct the SVD all the mesh nodes values for each simulation is reordered 

into a row and put into a matrix. For a 2D example we have: 

𝑆 =

[
 
 
 
 
𝑆1

𝑆2

𝑆3

⋮
𝑆𝐾]
 
 
 
 

=

[
 
 
 
 
𝑠𝑖=1,𝑗=1
1 𝑠𝑖=1,𝑗=2

1 … 𝑠𝑖=1,𝑗=𝐽
1 𝑠𝑖=2,𝑗=1

1 … 𝑠𝑖=𝐼,𝑗=𝐽
1

𝑠𝑖=1,𝑗=1
2 𝑠𝑖=1,𝑗=2

2 … 𝑠𝑖=1,𝑗=𝐽
2 𝑠𝑖=2,𝑗=1

2 … 𝑠𝑖=𝐼,𝑗=𝐽
2

… … … … … … …
𝑠𝑖=1,𝑗=1
𝐾 𝑠𝑖=1,𝑗=2

𝐾 … 𝑠𝑖=1,𝑗=𝐽
𝐾 𝑠𝑖=2,𝑗=1

𝐾 … 𝑠𝑖=𝐼,𝑗=𝐽
𝐾

]
 
 
 
 

 (Eq.1.17) 

where S is the matrix constructed (for a 2D mesh grid) with all the full CFD simulations for the 

quantity or quantities of interest; K is the total number of CFD simulations, called snapshots, 

considered to build the ROM and IxJ is the total number of nodes values in the considered 

geometry. The 𝑠𝑖𝑗 define the solution value at the mesh nodes. It can be deduced from the 

rectangular form of the matrix S that all the meshes which form the dataset have to be 

isotopological, which means they have to have same number of nodes and elements [60]. 
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Once all the data are saved in the S matrix, the correlation matrix is computed as: 

𝐶 =
1

𝐾
𝑆𝑆𝑇 (Eq.1.18) 

The aim of the SVD is to find a sequence of modes in order to minimise the following function: 

∑‖𝑆𝑘 − ∑ 𝛼𝑚
(𝑘)𝜑𝑚

𝑀

𝑚=1

‖2
𝐾

𝑘=1

 →  𝑚𝑖𝑛 (Eq.1.19) 

where ‖ ∙ ‖ denotes the 𝐿2 norm. K is the total number of snapshots considered to construct the 

correlation matrix, M is the number of modes considered to build the low-order model where 

M ≪ 𝐾. The 𝑆𝑘 term in eq. 1.17 is the full CFD solution and the second term represents the 

recomputed solution as linear combination of modes coefficient and modes. 

The minimisation problem is resolved by computing a singular value decomposition on the 

correlation matrix. The problem is of the form: 

𝐶 = 𝑈∑𝑉𝑇 (Eq.1.20) 

where C is the correlation matrix, U is an NxN orthogonal matrix formed by the left singular 

vectors, V is an mxm orthogonal matrix formed by the right singular vectors and ∑ is an Nxm 

matrix with all element zero except the diagonal. The non zero diagonal elements, are arranged 

in decreasing order and are called the singular values. The modes represent the extracted flow 

pattern, however they do not necessarily reflect a real flow structure that can be observed in a 

flow field. Instead, every mode represents a component of a flow field that is reconstructed by 

summing over all modes coefficients (𝛼𝑚
(𝑘)

). 

The modes coefficients are computed by projecting the original solution fields (S matrix) onto 

the computed modes (𝜑𝑚); every coefficient represents a weight, which is telling us how much 

that particular mode is contributing to a particular snapshot. However, when the full CFD 

solution is not known, the modes coefficient 𝛼𝑚
(𝑘)

 are computed by interpolation.Aim of the 

project and thesis workflow 

The primary aim of the project “Effective computational coronary heamodynamics for clinical 

application“ is to construct and validate a computational model which combines segmentation 

of coronary arteries and Reduced Order Methods to achieve a fast (close to real time), accurate 

computation of the FFR index. Achievement of this aim will underpin the development of a 

software solution to help clinicians in their decision making. The overall workflow (Figure 1.7) 

to achieve the computational model is composed of several major blocks: 
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Figure 1.7: Overall Thesis workflow with the different steps. 
The workflow starts from the acquisition of clinical images. Coronaries are then reconstructed in 3D to create 
volumetric meshes. CFD are run for every geometry and CFD solutions are collected in order to build and train 
the ROM. 

The different blocks are briefly explained: 

● Clinical Imaging: In this thesis MSPCA images acquired with a Philips Allura Xper 

Swing C-arm system (Philips Healthcare, Best, NL) are used in the segmentation tool 

for the reconstruction. Images should provide sufficient anatomical and physiological 

details, in an appropriate format (DICOM) and quality. In addition, geometries 

reconstructed with Philips 3DCA (RoCA images) segmentation tool have been used as 

well in order to extract the parameters to develop and build the clinical parameterised 

ROMs. 
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● Segmentation and 3D Reconstruction: The segmentation and the reconstruction step 

is a key point in the workflow, but also the most error prone and subjective. The 

segmentation identifies the coronary geometry from the angiography images and, 

starting from at least two projection images, a three dimensional geometry is computed. 

The 3D geometry has to be an accurate reconstruction and has to maintain the most 

important geometrical features (radii dimensions, shape, curvature etc etc.) of the 

projected coronary. Furthermore, if the reconstructed geometry is not accurate, one can 

end up with completely different value of the FFR index (true FFR vs vFFR) resulting 

in the wrong clinical decision. 

 

● Mesh creation: The output of the segmentation step is a 3D mesh surface (.stl file), 

which is necessary but not sufficient to compute a CFD analyses. For a CFD study a 

volumetric mesh is necessary. The action of creating a volumetric mesh is called spatial 

discretisation and the aim is to divide (or discretise) the geometry into little discrete 

volumetric cells (FVM). Temporal discretisation is also available, it allows to divide 

the solution into discrete time steps. However, since in this thesis steady state 

simulations will only be taken into consideration, temporal discretisation will not be 

applied. The mesh creation is the most time consuming time step in setting up the CFD 

analysis. The accuracy and the numerical stability of the solutions are influenced by 

the mesh, the spatial discretisation must be refined enough to capture the 

haemodynamic behaviour in the entire domain. However, much refinement of the 

spatio-temporal discretisation will not lead to an improvement of the solution and 

furthermore will impact on CPU memory and solution time. In order to build the ROM 

several thousands of simulations are necessary to construct the training dataset. 

 

● CFD simulations: As stated above, in order to build the Reduced Order Method, many 

CFD simulations have to be run. Every simulation is characterised by its own journal 

file, a journal file contains a sequence of Ansys Fluent commands. These commands 

could be typed in the Fluent GUI, however to automate the process these files have 

been created automatically in MATLAB and then saved as a text file (.scm). The 

purpose of a journal file is to automate a series of commands instead of entering them 

in the command line or selecting the same commands from the Fluent GUI. The journal 
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file contains all the information necessary to compute a simulation i.e. all the settings 

defining the physical parameters of the model. 

 

The journal file must include following information:  

• units of the mesh; 

• the fluid properties as density and viscosity;  

•  boundary conditions; 

•  model to use; 

•  the discretisation method; 

•  convergence criteria.  

 

Regarding boundary conditions, in order to compute a CFD analysis the user has to 

define at least one inlet, one outlet and the wall region. Boundary conditions are 

required component to solve the mathematical model. Since a clinical problem is 

considered, boundary conditions should be as close as possible to the reality (which is 

physiological) i.e. the user has to specify an initial boundary condition value as a 

pressure, a mass flow rate or a velocity. Boundary conditions are really important in 

CFD analyses, it might be common to analyse a very difficult problem with a very high 

refined mesh, but with a poor description of boundary conditions. In this case the user 

ends with a very accurate solution, however that solution does not represent the 

physiological problem taken into consideration. 

 

The Navier-Stokes equations are a non-linear system of partial differential equations. 

The CFD solutions are achieved iteratively where an algorithm leads to a reduction in 

error at each iteration until the equations are satisfied with some defined tolerance 

(convergence criteria). If the CFD analysis is a transient simulation, once the 

convergence has been achieved for the first time step, the time is incremented and the 

iteration process starts again. However, even if the solution has converged, there is still 

the possibility the solution is not accurate; the convergence criteria in fact could be 

misleading. The user should define a solution monitor in order to check the variable of 

interest in is not changing of value during the iteration process. 
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A CFD simulation could take several hours of computational time and thus CPU 

memory depending on the number of elements and on the temporal discretisation. This 

is why in this thesis a method to achieve a fast and accurate computation of the pressure 

field in coronary arteries using a ROM is presented. All the CFD simulations presented 

in this thesis have been run with a steady state laminar model, since the Reynolds 

numbers were below the turbulent threshold.  

 

● Building the ROM: Once all the designed CFD simulations have been computed, the 

following step is the collection of the data. The output data we are interested in for the 

purpose of this thesis is the pressure field for every coronary artery. It should be noted 

that the user could save and build a ROM for any/every variable. Since all the CFD 

solutions depend on a pre-defined number of parameters such as geometrical 

parameters (e.g. shape and curvature parameterisation) and fluid dynamic parameters 

(e.g mass flow), the ROM is also parameterised by these. To build a ROM two different 

steps are needed: the offline mode and the online mode. The offline mode is the step in 

which many CFD simulations have to run to build the reduction order method, and is 

therefore the most time consuming. However, the offline step has to be computed only 

once. The second step is the online mode which is based on the computation of the 

pressure profile for a completely new set of parameters. The online step is very fast, 

close to real time and has great benefits in terms of time and computational 

requirements. 

 

In the online mode, there are two major steps: the evaluation step and the validation 

step. Important in these steps is the computation of two errors: the projection error and 

the interpolation error which describe the goodness of fit of the ROM. The full process 

for building a ROM will be detailed in Chapter 3 and Chapter 4. 
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1.6 Thesis Outline 

This PhD project has been organised into four main chapters plus introduction and conclusions. 

This first chapter, Introduction, provides a contextual overview of the relevant anatomical and 

physiological concepts of the cardiovascular system, of the clinical problem and of the state-

of-the-art in 3D algorithms for coronary artery reconstructions and an introduction for Reduced 

Order Method in Computational Fluid Dynamics. 

Chapter 2, 3D Coronary Reconstruction software: towards a clinical tool, provides a 

description of the developed tool written in MATLAB to achieve a 3D reconstruction of 

coronary arteries starting from 2D multi-single plane coronary angiography projection images.  

Chapter 3, 2D ROM generation and fluid flow interactions between multiple stenosis, describes 

the right ingredients and the most important steps necessary to build a ROM. Different ROMs 

have been created in idealised coronary geometries, i.e. straight axisymmetric tubes in 2D with 

a single or multiple stenosis. Pressure gradients have been computed and compared using 

different methods. 

Chapter 4, Shape parameterisation and ROM in 2D patient-specific coronary geometries, is 

focused on shape parameterisation in order to extract geometrical parameters which describe 

the variation of the radius along the length for any patient-specific coronary geometry. 

Furthermore, multiple ROMs have been created, evaluated and tested against a clinical 

coronary dataset. 

Chapter 5, 3D CFD coronary arteries simulations: towards a Reduced Order Method for fast 

haemodynamic prediction, illustrates a comparison between multiple models to compute 

pressure gradients. It also introduces a 3D coronary centreline parameterisation in order to 

develop 3D ROMs applied to 3D coronary arteries.  

In Chapter 6, Conclusions and future work, a final overview of the limitations and conclusions 

of this project in terms of results obtained is reported. Also future work and ideas for 

improvement are presented. 
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2 Chapter 2                    
3D Coronary Reconstruction software: 

towards a clinical tool 
 

 

In this chapter, the development of a coronary segmentation tool will be presented. The chapter 

addresses the problem of accurate reconstruction of the anatomy from multiple single plane 

coronary angiography (MSPCA), which is the most readily-available, and universally used, 

standard imaging protocol [27]. The development of the segmentation tool is the first step in 

order to achieve the computation of the FFR with a CFD software and for using the ROM 

method [13], [26], [1]. The segmentation process and the segmentation tool are based on 

MATLAB. Furthermore, a GUI has been developed in order to allow the user easier use of the 

research tool. The first output of the presented tool is a 3D single coronary vessel reconstruction 

in the form of a surface mesh (.stl) which can be imported into any CFD solver to compute a 

full fluid flow simulation after creating a volumetric mesh. The computed surface meshes are 

used both to compute standard CFD analyses for the calculation of the vFFR index and to feed 

the clinical dataset used for training the ROM. A virtual Fraction Flow Reserve (vFFR) can 

then be calculated in order to help cardiologists with their clinical decision making [9], [22], 

[48], [61]. 

Furthermore, the tool can be used as an offline standalone software helping clinicians to 

visualise the coronary in 3D in a computer screen. Due to time constraints, during clinical 

operations it is not possible to reconstruct the coronary tree (unless this is done mentally based 

on experience) since the coronary arteries are projected as a series of 2D images [45], [62], 

[63]. The workflow for the 3D coronary reconstruction is presented in Figure 2.1 below.
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Figure 2.1: 3D Coronary Reconstruction Workflow with the different steps. 

2.1 3D Coronary Reconstruction: main features and goals 

In recent times, a lot of attention and research has been given to achieve predictive medicine 

([64]–[69]) . However, predictive medicine requires accurate models and accurate models 

require time ( [70]–[73]). Therefore, one of the biggest challenges is to achieve a fast, effective 

and robust patient specific simulation close to real-time for predictive medicine, which could 

improve the clinical decision making. 

The first step of the workflow to compute a virtual FFR (vFFR) is to reconstruct the coronary 

geometry in 3D to have a clear view of the diseased vessel. 

There are five catheterisation laboratories in Sheffield. Many of the images on which the 

current analysis is based were captured in a laboratory equipped with an Allura Xper Swing C-

arm system (Philips Healthcare, Best, NL). The C-arm is capable of acquiring MSPCA images, 

and includes the facility to acquire rotational coronary angiography (RoCA) images [74], [75]. 

In a RoCA system, the C-arm rotates around the patient acquiring 121 images in a 120° arc 

with a rate of 30° degrees per second; with the RoCA technique the table on which the patient 

lies is not moved during the acquisition and this strongly improves the accuracy and stability 

of the reconstruction process. However, MSPCA is the normal clinical protocol, the spatial 

correspondence between the multiple images is uncertain [27]. Here the camera angles and 
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distance are known and recorded, but arbitrary table movements are made to present the 

clinician with the best views to see the culprit arteries. In the most modern systems these 

movements might be recorded, but for the data available to the current study, and indeed still 

generally in clinical practice, they are not. Therefore, the software development described in 

the current chapter is for MSPCA image data. 
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2.2 Implementation of the workflow 

To obtain angiography images a C-arm is needed, which carries an X-ray tube plus an image 

intensifier. The C-arm has two degrees of freedom: independent rotations are made about the 

global axis X and the global axis Y (Figure 2.2) [76]–[78]. Most of the 3D reconstruction models 

taken into account in this section provide a coronary reconstruction knowing some geometrical 

parameters such as the positions of the focuses (FA in Figure 2.2), distances from the X-ray 

sources to projection planes (FA - OA in Figure 2.2), gantry angles (𝜙𝑥 and 𝜙𝑦 in Figure 2.2) 

and ECG data. Gantry angles are described in terms of left/right anterior oblique (LAO/RAO) 

and Caudal/Cranial (Caud/Cra) angle. All these parameters which are necessary to provide a 

3D reconstruction, are usually written into the header of the DICOM file that describes the 

image [79].  At least two 2D projection images are needed to compute a 3D reconstruction. 

 

 

 

Figure 2.2: Degrees of freedom for the C-arm. 
A) No rotations are applied to the system. B) Two rotations are applied; the first one along the global x-axis 
𝝓𝒙, and the second rotation along the global y-axis 𝝓𝒚. 

With the C-arm we can obtain projection images in 2D which are captured on a projection 

plane by an X-ray intensifier. Figure 2.2A shows the initial position of the C-arm. Fixing a 

coordinate system, the X-ray source is positioned at a distance equal to 𝑙𝐹𝐴 whilst the centre of 

the X-ray intensifier plane is positioned at −𝑙𝑂𝐴. The C-arm has two degrees of freedom, one 

rotation about the x-axis expressed as 𝜙𝑥 and a second rotation about the y-axis expressed as 
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𝜙𝑦. An experienced cardiologist might be able to mentally reconstruct a 3D coronary starting 

from coronary images taken from different angles and positions. However, in most cases, 

images are not easy to interpret. Image properties such as noise, low levels of contrast, 

foreshortening and overlapping make it difficult to identify the various coronary arteries in the 

image (https://rpop.iaea.org/) [79]. In normal practice, it is already a challenge to find images 

which do not contain artefacts including the ones described above. For example, foreshortened 

vessels are very difficult to reconstruct since they are not in the longitudinal alignment 

necessary for the evaluation (as an effect of the angle vision), and overlapping can obscure 

regions of interests.  

For all these reasons an accurate three-dimensional reconstruction is necessary to give a 

geometrical representation and furthermore to make a CFD analysis possible and meaningful. 

Most of the 3D recontruction models are based on biplane angiography images [39], [41] which 

differ from MSPCA in terms of both the images and the technique, but the ideas to reconstruct 

the coronary tree are very similar. The downside of the biplane and RoCA technique is that 

they are not widely used [27] in interventional cardiology. Moreover, even if those two 

techniques are used in combination with the ECG signal to obtain the same heart phase, they 

may give higher errors in correlating the two views due to table movement or panning than the 

MSPCA technique. 

2.2.1 Image Acquisition and Epipolar Lines Method 

Over time, several different models have been developed for 3D reconstruction starting from 

multiple single plane images [49], [62], [82], [83], [84]. Acquiring multiple single plane images 

(MSPCA) (Figure 2.2), uses a slightly different protocol to the biplane technique. Whilst in the 

biplane device two images are acquired at the same time and thus at same heart phase, coronary 

artery cine-images are independently acquired from different views, i.e. different projection 

angles [37]–[40], [80]. The gantry position to obtain different projections is decided by the 

cardiologist’s experience and it is possible that some images will be inadequate for analysis 

due to non-optimal angle view. With MSPCA images we must correlate the ECG data in order 

to choose images at the same point in the heart motion [81]. Respiratory motion might also be 

an issue but there is no simple way to compensate for this, and for the current wotk it is treated 

just as part of a general movement between acquisitions.  

One of the most difficult challenges of working with MSPCA images is that, during 

acquisitions, in order to have a better view of the culprit artery on the X-ray intensifier screen, 

the view might be magnified by panning the screen along the projection axis. Furthermore, 

https://rpop.iaea.org/Lectures/L08/
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often one image of the coronary tree is captured in one view, and then the table is moved before 

acquisition commences from a different angulation. Although in some modern imaging 

systems the table movements are recorded, historically this has not been the case. Table 

movements are very difficult to evaluate a posteriori, and they can lead to important 

reconstruction errors and inaccurate geometry which do not represent the real vessel.  

These table movements lead to a non-correspondence of points between planes and then to an 

inaccurate reconstruction. 

 

The workflow to compute a 3D reconstruction is composed of several steps, outlined in the 

abstract and illustrated graphically in Figure 2.1.  

The first step is the choice of the pair of images that the user would like to segment. Usually 

end-diastole is chosen as the heart phase in which to perform the segmentation. The consistent 

identification of the same phase in multiple projections is much simpler when ECG data is 

available. 

 

The acquisition process for an X-ray angiography is similar to the pinhole camera model used 

in computer vision and both of them are based on perspective projection. The main difference 

between the two systems is that using cameras the image is inverted. A single-plain digital 

angiographic system (Allura Xper FD10 System, Philips Medical Systems) was used for image 

acquisitions. A single run is composed of several image frames, in order to record different 

heart phases, and the gantry angles are selected by the individual operator. There was no 

restriction for table movement or panning during acquisitions since the software had to cope 

with images acquired from the standard clinical protocol. The information needed to compute 

the 3D reconstruction are all stored in the DICOM header. However, within the header the 

coordinates of the table movement are not stored. The data strictly needed for the 3DR are the 

following: gantry angles, distance source to detector, distance source to patient, image pixel 

scaling in terms of pixel size (e.g. 0.25 [mm/pixel]) and ECG data. The gantry angles are 

described in terms of right/left anterior oblique (Rao/Lao) and Caudal/Cranial (Caud/Cran). 

The second step of the workflow is the computation of the transformation matrices which 

describe the relationship between the two views. The relationship between global co-ordinates 

and local coordinates (xAP , yAP , zAP) are described by rotation and translation matrices, which 

can be combined into a 4x4 matrix operator (Eq.2.1). The rotation matrix in 3D is composed 

of two rotations 𝑅𝑥 and 𝑅𝑦, dictated by the degrees of freedom of the C-arm: the first rotation 
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is about the global x axis, and the second rotation is about the global y axis. The description of 

the total rotation is: 

[
𝑥′′
𝑦′′

𝑧′′

]= [Ry][Rx] [
x
y
z
] = [

cos𝜙𝑦 0 − sin 𝜙𝑦
0 1 0

sin 𝜙𝑦 0 cos𝜙𝑦

] [
1 0 0
0 cos𝜙𝑥 sin𝜙𝑥
0 −sin𝜙𝑥 cos 𝜙𝑥

] [
x
y
z
] (Eq.2.2) 

[
𝑥′′
𝑦′′

𝑧′′

]= [

cos𝜙𝑦 sin 𝜙𝑥 sin𝜙𝑦 −cos𝜙𝑥 sin𝜙𝑦
0 cos𝜙𝑥 sin 𝜙𝑥

sin𝜙𝑦 −sin𝜙𝑥 cos𝜙𝑦 cos𝜙𝑥 cos𝜙𝑦

] [
x
y
z
] (Eq.2.3) 

 

Adding the translation: 

[

𝑥′′
𝑦′′

𝑧′′
1

]= 

[
 
 
 
cos 𝜙𝑦 sin 𝜙𝑥 sin𝜙𝑦 −cos𝜙𝑥 sin𝜙𝑦 𝑇𝑥
0 cos𝜙𝑥 sin 𝜙𝑥 𝑇𝑦

sin𝜙𝑦 −sin𝜙𝑥 cos𝜙𝑦 cos𝜙𝑥 cos𝜙𝑦 𝑇𝑧
0 0 0 1 ]

 
 
 
[

x
y
z
1

] (Eq.2.4) 

 

In Figure 2.3 a point on the centreline of the coronary artery is projected to the image plane. 

The point has coordinates = [𝑥, 𝑦, 𝑧]𝑇 , while the coordinates of 𝑃𝐴 are naturally expressed in 

terms of the position in projection plane A so 𝑃𝐴 = [𝑥𝐴𝑃𝐴, 𝑦𝐴𝑃𝐴] where 𝑥𝐴𝑃𝐴 and 𝑦𝐴𝑃𝐴 describe 

the projected x-coordinate and y-coordinate of point P into plane A.  

To derive the coordinates of the point P in the projection plane the following equations are 

used: 

xAPA
=

(LOA + LF)

LOA + LF + zAP
xAP  

(Eq.2.5) 

yAPA
=

(LOA + LF)

LOA + LF + zAP
yAP  

(Eq.2.6) 

LOA defines the distance between the centre of projection plane A and the patient, LF describes 

the distance between the patient and the X-ray source. LOA and  LF are data stored within the 

Dicom file. The dimensions xAP and yAP  describe the local coordinate of point P into plane A. 

Furthermore, the dimension 𝑧𝐴𝑃 is always negative and so there is always a magnification of 

the object to consider. 
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Figure 2.3: Coronary centreline point projected onto the two planes. 
A 3D point (point P) is projected into two planes starting from two different positions of the focus (Fa and 
Fb). Pa is the projection of point P onto plane A. Pb is computed as intersection point between the projected 
coronary centreline onto plane B and epipolar plane computed from Fa, Fb, and Pa. 

As already described, the coordinates of the point which has to be projected into the projection 

planes are given in the global coordinate system and so to apply the above equations the Q 

transformation is needed first in order to transform global to local coordinates (Eq.2.6). 

[

𝑥𝐴𝑃
𝑦𝐴𝑃
𝑧𝐴𝑃
1

] = [

𝑄11 𝑄12 𝑄13
𝑄21 𝑄22 𝑄23
𝑄31 𝑄32 𝑄33

𝑄14
𝑄24
𝑄34

𝑄41 𝑄42 𝑄43 𝑄44

]

GA

[

𝑥𝑃
𝑦𝑃
𝑧𝑃
1

] (Eq.2.7) 

  

The Q matrix describes a rotation plus a translation (see Eq.2.8), the subscript GA defines that 

the operation transforms the global coordinates of a 3D point (𝑥𝑃, 𝑦𝑝, 𝑧𝑝) to local coordinates 

on plane A (𝑥𝐴𝑃 , 𝑦𝐴𝑃 , 𝑧𝐴𝑃).  

Before starting with the third step which is the table movement correction, the image coordinate 

reference in MATLAB are moved to be in the middle of the image as shown in Figure 2.4,this 

is done in order to have a consistent coordinate reference with the whole system. 
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Figure 2.4: Moving Coordinate reference in MATLAB for table correction. 
A) Initial coordinate system. B) The coordinate system moved to the centre of the image in order to reflect 
the C-arm coordinate system. 

2.2.2 Novel Click to Correct Algorithm 

Between and during acquisitions of MSPCA images, the table position is often changed based 

on the clinical operator’s clinical need. Furthermore, the movement in terms of translation is 

not known or predictable which makes the 3D reconstruction a non-trivial process. Since these 

movements may introduce large errors, they have to be eliminated before starting the 

reconstruction process. The approach for table movement correction implemented for this 

thesis is based on the application of an affine transformation between the two planes, based on 

the hypothesis that the motion of the coronary system produces a projection image that is an 

affine transformation of the image that would have been produced without motion [79]. This 

is not strictly true, but might be a good starting point for the motion correction. The accuracy 

of reconstructions under table movement using this model has been investigated separately. 

The affine transformation matrix has six parameters (𝛼𝑖𝑗), and in principle these could be 

computed if six correspondence points (features points) were selected in two images. 

[
𝑥𝑃𝐴
𝑦𝑃𝐴
1
] = [

𝛼11 𝛼12 𝛼13
𝛼21 𝛼22 𝛼23
0 0 1

] [
𝑥𝑃𝐴′
𝑦𝑃𝐴′
1
] (Eq.2.9) 

  

However, in practice the computation is unstable, for reasons that will be discussed later, and 

in this thesis a simpler transformation matrix with only 3 parameters is adopted (Eq.2.8). 

[
𝑥𝑃𝐴
𝑦𝑃𝐴
1
] = [

𝛼11 0 𝛼13
0 𝛼11 𝛼23
0 0 1

] [
𝑥𝑃𝐴′
𝑦𝑃𝐴′
1
] (Eq.2.10) 
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The three parameters describe a scaling, associated with the movement of the coronaries along 

the line from the source and orthogonal to the projection plane and a translation parallel to the 

projection plane. Since the affine transformation matrix has three unknown parameters, the 

user must choose at least three points which are visible in both views (usually feature points 

such as bifurcation are chosen or stenosis), which will be moved into correspondence in the 

correction operation. However, the user can choose as many points as required to correct table 

movement during acquisition. Corrections are not just necessary for table movements and heart 

or respiratory motion, but the gantry parameters stored in the DICOM header may not 

accurately describe by the system. The main reasons why these data are not accurately 

described are related especially to mechanical errors (manufacturing) in the device, and 

intrinsic parameters such as the skew parameter. Examples of errors and correction of the latter 

ones between the two views is shown in Figure 2.5.  
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Figure 2.5: Steps for table movement correction. 
A) Featured points (e.g. branches, stenosis) are marked onto the first view. B) Epipolar planes are projected 
on second view to form epipolar lines. C) Affine matrix is computed. D) Table movement correction applied 
to second view. 

Epipolar geometry is the term used to describe the geometry of reconstruction of the shape of 

a body from stereoscopic views. The concept of epipolar geometry is to correlate points 

between two or more different views in different projection planes [43], [44], [89]. If the 

projection of a point in 3D onto any particular imaging plane is known and the locations of the 

X-ray source are known for that and any other projection are known then the epipolar plane is 

defined as that which includes these three points (Figure 2.3). The projection of the point into 

the second projection plane lies on a line that is the intersection between the epipolar plane and 

A 

C 

B 

D 
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the second projection plane. In order to find the correspondence of points between the two 

views, epipolar lines are computed [44], [63], [85]–[88]. The epipolar lines are the lines in the 

second projection that a selected point in the first projection must lie, given the position of the 

camera for the two projections. In Figure 2.5 the point at the blue cross in image A must lie on 

the blue line in image B, and similarly for the magenta. Note that the epipolar lines for the two 

points are almost parallel to each other, and this is responsible for a lack of robustness to error 

in the identification of corresponding points since large translations parallel to the lines is 

required to compensate for small errors in distance between the points 

The general equation of a plane is c1x+ c2y+ c3z+ c4=0. The equation can be multiplied by an 

arbitrary constant. Choosing this constant as −1/ c4 (providing c4≠0) and writing ai= −ci/ c4 we 

obtain: 

𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 − 1 = 0 (Eq.2.11) 

or, in matrix algebra, 

[
𝑥
𝑦
𝑧
]

T

[

𝑎1
𝑎2
𝑎3
] − 1 = 0 (Eq.2.12) 

This equation must be satisfied at each of the known points, FA, FB and PA, in the epipolar 

plane, and so: 

[

xFA y
FA

zFA

xFB y
FB

zFB

xPA y
PA

zPA

] [

𝑎1
𝑎2
𝑎3
] = [

1
1
1
] (Eq.2.13) 

[

𝑎1
𝑎2
𝑎3
] = [

xFA y
FA

zFA

xFB y
FB

zFB

xPA y
PA

zPA

]

−1

[
1
1
1
] 

(Eq.2.14) 

Thus, the equation of the epipolar plane in any coordinate system can be determined by 

computing the co-ordinates in that coordinate system. 

To determine the equation of the epipolar line in projection plane B that is the intersection of 

this plane with the epipolar plane, it is simplest to describe the epipolar plane in co-ordinate 

system B.  Then: 

[

𝑎1B

𝑎2B

𝑎3B

] = [

xFAB
y

FAB
zFAB

xFBB
y

FBB
zFBB

xPAB
y

PAB
zPAB

]

−1

[
1
1
1
] (Eq.2.15) 

The equation of the epipolar line in projection plane B is simply the equation of the plane when 

zB=0, or: 

𝑎1B
𝑥B + 𝑎2B

𝑦B − 1 = 0 (Eq.2.16) 
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The intersection between projection plane B and the epipolar plane is the epipolar line. The 

projection of the point to be reconstructed in 3D must lie along the epipolar line. The 

intersection between the projection of the vessel centreline in plane B and the epipolar line 

yields the position of point B in projection plane B. 

An example of the epipolar concept applied to clinical coronary artery images is given in Figure 

2.6. 

  
 

Figure 2.6: Example of Epipolar lines concept applied to angiography images. 
For this example it can be noticed the near parallel nature of the epipolar lines. 

It is clear from these test images that the epipolar lines are almost parallel to the coronary 

centreline, and this introduces a complication in the correction for motion artefact. Although it 

is possible to find the parameters in the transformation matrix that bring three user-selected 

points onto the epipolar lines, the near parallel nature of the epipolar lines means that small 

errors in the selection of corresponding points can lead to unrealistically large translations. The 

actual transformation computed is:  

[
𝑥𝑃𝐴
𝑦𝑃𝐴
1
] = [

𝛼11 0 −𝑚𝛼23
0 𝛼11 𝛼23
0 0 1

] [
𝑥𝑃𝐴′
𝑦𝑃𝐴′
1
] (Eq.2.17) 

where 𝑚 is the mean slope of the epipolar lines for the selected points used for the correction. 

This change in the transformation is more stable in practice.  

  

2.2.3 Manual segmentation and the 3D Reconstruction process 

To achieve a 3D reconstruction, the next step of the workflow is the centreline segmentation 

in the first view where the 2D coronary is extracted manually from the image. In the developed 

workflow, the centreline segmentation process and table movement correction require user 
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input. Although it is possible to identify the centreline automatically, experience gained during 

the development and testing of the workflow indicated that manual identification in each view 

gives to the user more control and is less error prone. There is a balance between the interaction 

demanded of the user, which should be minimal, and the robustness of the process. It can be 

very frustrating when an automated process detects the wrong line unless correction is easy. 

For this thesis manual assistance was chosen to maximize the number of vessels that could be 

segmented by the software in normal operation. An example of coronary segmentation in the 

first view (Plane A) and the corresponding proximal and distal point in the second view using 

epipolar lines is shown in Figure 2.7. 

 
 

 
 

Figure 2.7: A) Manual segmentation in the master view (Plane A). 
B-C) The proximal and distal point have been projected into the second view (Plane B). D) Segmentation with 
table correction can start on the second view. 

A B 

C D 
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The computation of the two transformation matrices which define the relationship between the 

two views in conjunction with the epipolar constraints are employed for establishing the point 

correspondences on the vessel centrelines based on the two 2D coronary artery identified 

manually on the two views. The centreline is then discretised into equally spaced points. 

Starting from several points along the first 2D segmented centreline epipolar planes from each 

point taken from the first view are computed and then projected onto the second view. The 

position in plane B of points identified in plane A are given by the epipolar line intersections 

with the 2D centreline in the second view.  

The reconstruction operation is the computation of the 3D position of point P given the 

coordinates of its image in the two projection planes. Equations presented in section 2.1.1 are 

re-arranged to give: 

(LF + LOA)xAP
− xAPA

zAP
= (LF + LOA)xAPA

  (Eq.2.18) 

(LF + LOA)yAP
− y

APA

zAP
= (LF + LOA)yAPA

 (Eq.2.19) 

And in matrix representation: 

[
(LF + LOA) 0

0 (LF + LOA)

−xAPA
0

−y
APA

0] [

𝑥𝐴𝑃
𝑦𝐴𝑃
𝑧𝐴𝑃
1

] = [
(𝐿𝐹 + 𝐿𝑂𝐴)𝑥𝐴𝑃𝐴
(𝐿𝐹 + 𝐿𝑂𝐴)𝑦𝐴𝑃𝐴

] (Eq.2.20) 

Substituting {𝑥𝐴𝑃, 𝑦𝐴𝑃 , 𝑧𝐴𝑃, 1}
𝑇 with the Eq. 2.6 we have  

[H]A[𝑄]GA{𝑥}P = [
(𝐿𝐹 + 𝐿𝑂𝐴)𝑥𝐴𝑃𝐴
(𝐿𝐹 + 𝐿𝑂𝐴)𝑦𝐴𝑃𝐴

] (Eq.2.21) 

with: 

[H]A = [
(LF + LOA) 0

0 (LF + LOA)

−xAPA
0

−y
APA

0] (Eq.2.22) 

Similarly, from the second view: 

[H]B[𝑄]GB{𝑥}P = [
(𝐿𝐹 + 𝐿𝑂𝐵)𝑥𝐵𝑃𝐵
(𝐿𝐹 + 𝐿𝑂𝐵)𝑦𝐵𝑃𝐵

] (Eq.2.23) 

Taking the two equations together: 

[
[H]A[Q]GA

[H]B[Q]GB

] [𝑥]P =

[
 
 
 
 
(𝐿𝐹 + 𝐿𝑂𝐴)𝑥𝐴𝑃𝐴
(𝐿𝐹 + 𝐿𝑂𝐴)𝑦𝐴𝑃𝐴
(𝐿𝐹 + 𝐿𝑂𝐵)𝑥𝐵𝑃𝐵
(𝐿𝐹 + 𝐿𝑂𝐵)𝑦𝐵𝑃𝐵]

 
 
 
 

 (Eq.2.24) 
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Having four equations in three unknowns (i.e. an overdetermined system in the x, y, z global 

coordinates) the linear system can be solved using a standard linear least squares approach 

which minimises the sum of squared differences.  

The best approximation is computed using the general formula: 

[𝐴]T[𝐴]{u} = −[𝐴]T{𝑏} (Eq.2.25) 

where {u} is equal to[𝑥, 𝑦, 𝑧]𝑃
𝑇 . Once the u matrix is computed the skeleton of the segmented 

coronary is produced in terms of 3D vessel centreline. An example of 3D vessel centreline is 

shown in Figure 2.8. 

 

  

 
Figure 2.8: Top) Images of a right coronary artery from two different angiographic views. 

Bottom)3D Centreline reconstruction example from the two images. The centreline is defined with a series 
of 3D points with their coordinates x, y and z. 
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Once the 3D centreline is constructed, the next step is the computation of the vessel borders in 

order to achieve information about the vessel radius for each location along the 2D centreline. 

Since edge detection is very sensitive to noise, a prior operation of smoothing is performed in 

both views. The smoothing is performed with a convolution between the image and a Gaussian 

blur kernel, given by Eq. 2.24 in order to obtain a smooth grayscale digital image as shown in 

Figure 2.9. 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒𝑥𝑝

−(
𝑥2+𝑦2

2𝜎2
)
 (Eq.2.26) 

Following the smoothing operation, the normal along each location is computed. To compute 

the normal for every point the derivative has to be computed first. 

 

Figure 2.9: Smooth grayscale digital image. The original image is convoluted with a 2D Gaussian kernel. 

The considered derivative is the central difference:  

𝑓′(𝑥𝑖) =
(𝑦𝑖+1 − 𝑦𝑖−1)

(𝑥𝑖+1 − 𝑥𝑖−1)
  (Eq.2.27) 

Thus, starting from the centreline, the normal is computed for every point and the values of the 

pixel intensity along the normal is registered. Border locations are where the derivative reaches 

the highest and lowest values. Ideally, if we would have had a binary image (black background 

equal to 0 white vessel equal to 1) as input the derivative would have the form of Figure 2.10. 
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Figure 2.10: Example of computing borders on a greyscale coronary image. 
Top Image) Greyscale image of a coronary, along the blue line values of pixel intensity are saved. Bottom 
left) Plot of the pixels intensity values along the blue line; the two red vertical lines represent the location 
of the borders for the coronary. Bottom right) Idealised coronary edge detection for a binary image (black 
and white pixels). 

Once the radius for each centreline location is computed on the image plane, to recover the real 

dimension (since radius on the image plane is magnified) the following formula has been used: 

𝑟3𝐷 = 𝑟𝑖𝑚𝑎𝑔𝑒 ∗
𝑑𝑖𝑠𝑡𝑆𝑃

𝑑𝑖𝑠𝑡𝑆𝐷
 (Eq.2.28) 

Where 𝑟3𝐷 is the radius dimension for the 3D reconstruction, 𝑟𝑖𝑚𝑎𝑔𝑒 is the radius computed on 

the 2D projection images, 𝑑𝑖𝑠𝑡𝑆𝑃 and 𝑑𝑖𝑠𝑡𝑆𝐷 are the distance between the source (X-Ray 

source) and the patient and the distance between the source and the detector (X-Ray panel). 

The ratio  
𝑑𝑖𝑠𝑡𝑆𝑃

𝑑𝑖𝑠𝑡𝑆𝐷
 is always < 1 so 𝑟3𝐷 is always smaller than 𝑟𝑖𝑚𝑎𝑔𝑒 as it should be when working 

with projected images. Note that this is an approximation, and distSP could be replaced using 

the computed local z-co-ordinate in 3D. In practice this produces a relatively small change, but 
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it has been implemented in later versions of the software. It is important to mention that all the 

dimensions taken from the image plane have to be transformed from pixel to mm, this is 

achieved multiplying the pixel dimension for the image pixel ratio which is a parameter within 

the DICOM header. Once the 3D centreline is reconstructed starting from the two projection 

planes, the 3D lumen of the vessel has to be computed. The coronary lumen is approximated 

on the basis of a sequence of circular cross-section contours. Each circular disk along the vessel 

is centred at and perpendicular to the 3D centreline at each location (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖    𝑤𝑖𝑡ℎ 𝑖 =

1, … , 𝑛 ) in order to form the coronary skeleton. Every circle which forms the skeleton has been 

arbitrarily chosen to have 128 nodes called vertices, the conjunction between three vertices 

form a closed domain called a face. Since from the reconstruction process two different values 

of 𝑟𝑖𝑚𝑎𝑔𝑒 are obtained for every point along the centreline (one from each projection), the mean 

value for every pair of points has been chosen to compute the circle in 3D. It is a limitation of 

the reconstruction that the vessel is considered circular at every cross-section. Superficially it 

might appear that there is sufficient information from the two projections to define the two 

principal radii of an ellipse, but in fact the orientation about the axis would not be determined 

from just two projections. 

Triangular patches formed by vertices and faces have been computed to create the surface and 

to connect every pair of consecutive disks in order to have a 3D rendering of the segmented 

vessel Figure 2.11. The computed .stl file is a closed domain with inlet, outlet and wall (Figure 

2.12). 

 

Figure 2.11: A)Skeleton of a coronary artery formed by circles normal to the centreline. 
B) Zoom of coronary surface mesh (.stl) formed by triangular patches. 
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Figure 2.12: Example of the inlet surface for the surface mesh. 
The surface is created with triangular patches, the base of every triangle is formed connecting two consecutive 
points on the circle edge.  

The creation of a 3D surface mesh is the first step to computed CFD analyses on the 

reconstructed geometries. 
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2.3 Creation of a Graphical User Interface (GUI) to 

achieve the segmentation 

A MATLAB GUI (graphical user interfaces) has been created in order to allow users to use the 

3D Reconstruction tool more easily without the need to learn how to code in MATLAB. 

Furthermore, it is also possible to export into, and to use the application in another computer 

as a standalone project without the need to have MATLAB installed.  

The GUI contains several windows such as buttons and sliders to visualize the angiography 

images. An image of the developed GUI is shown in Figure 2.13. 

 

Figure 2.13: Skeleton of the developed GUI with push buttons to perform coronary segmentation. 
The left hand side is formed by push buttons and system information. Central panels (4-5) are for ECG data 
and 2D coronary images 

First Step Segmentation 

The segmentation process starts with the DICOM viewer (Figure 2.13 box n 1). The DICOM 

file name is a numeric and letter code which is not linked to the angiography run number, so it 

is impossible to recognize the run from the DICOM name. This is important for clinicians since 

they are not able to remap the DICOM code to the right angiography run. The viewer gives the 

user the opportunity to have a pre-view of the file to support the choice of the best runs for the 

segmentation. Once the choice is made the user needs to load the two views pressing the two 
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buttons on the left hand side (Load DICOM 1 and DICOM 2). Information regarding the 

position of the C-arm in terms of angles (LAO/RAO Caud/Cran) and the distance between the 

source to the detector are printed in the boxes on the left hand side (Figure 2.13 box n 2). These 

data are important for two reasons: first of all the geometrical data are important for the 

reconstruction process, if these data are not saved within the DICOM header the reconstruction 

cannot start, and secondly the angles give a spatial information to the user about the position 

of the C-arm while the acquisition was done. If the difference between the angles is less than 

30° a warning window pops up telling the user the reconstruction can be achieved although it 

might be less accurate than using a bigger angle difference between the two images. Showing 

a warning message regarding the low angle is a reasonable choice, in fact even if the coronary 

with its stenosis is displayed successfully on the screens, the stenosis severity assessment from 

the 2D views could be unreliable. Furthermore, 2D images are unable to collect the right cross 

sectional area of the stenosis (Figure 2.14). 

 

Figure 2.14: Percentage of coronary lumen view from different angulations. 
A section of a stenotic vessel is represented with a stenotic area in yellow, contrast agent in blue, indicating 
where the blood is flowing and vessel wall in red. Images of the vessel from different angulations/perspectives 
(A, B, C) can show a different stenosis severity (80%, 60%, 20/30%). 

There is the option to give a first estimation of the coronary radius on a box on the left hand 

side, usually the values of the first estimation varies between 2-3mm (Figure 2.13 box n 2). A 

process starts in background for the coronary edge detection, the radius initialization is helpful 
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especially in coronaries with branches. Close to the region of a branch the edge detection 

algorithm is likely to fail and manual corrections are needed. 

On the top part of the GUI, two sliders allow the user to move through the runs and allow for 

an accurate selection of the best frame to use for the segmentation, trying to avoid overlapping 

of the vessels (Figure 2.13 box n 6). The movement of the slider is paired with the ECG graph; 

the user needs to know the exact cardiac phase of the projected image.  

On the bottom part of the GUI ECG curves are plotted underneath the correspondent run in 

order to choose a frame in both view which are in the same cardiac phase (Figure 2.13 box n 

4). Usually the chosen cardiac phase is end-diastole since the heart is at its maximum 

expansion. On these two plots a red marker is moving accordingly with the motion of the slider.  

Once the two MSPCA images have been chosen, the two images are displayed on the two 

windows (Figure 2.13 box n 5 and Figure 2.15) and the user starts to segment manually the 

centreline in the first image, a manual segmentation gives more control to the user and is quick. 

If the user clicks accidentally a wrong point, there is the option to undo the last action clicking 

the right mouse button. 

 

Centreline Computation 

The computation of the centreline is achieved by a piecewise cubic interpolation which 

produces a cubic polynomial 𝑃(𝑥) where on each subinterval 𝑥𝑘 ≤ 𝑥 ≤ 𝑥𝑘+1 the polynomial 

is a cubic Hermite interpolating polynomial with specified derivatives at the interpolation 

points. Moreover, the centreline is discretized with equally spaced points which are saved in a 

MATLAB matrix as points coordinates (x,y) in the projection plane.  

Manual corrections are necessary regarding the edge detections, the variation of the radius 

along the length for every coronary artery is the most important factor for the FFR computation. 

For this reason, it is fundamental to maintain the coronary shape and more important to capture 

correctly the physiological radius variation along the stenosis. Using a simple Bernoulli 

calculation is easy to show that a small variation in the minimum radius (𝑟𝑠𝑡𝑒𝑛) for the stenotic 

area leads to large errors for the FFR index (eq. 1.9), and so it is critical that the user checks 

the segmentation and ensures that the radii are adequately captured especially in the region of 

the stenosis. 

 

Surface Mesh Creation 
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When the user has completed the segmentation, the 3D surface mesh can be saved in .stl format 

plus it is also possible to save the coordinates of the centreline in .vtk format (Figure 2.13 box 

n 3). The output .stl file is a concatenation of three .stl files; the 3D surface mesh is a closed 

surface connecting inlet, wall and outlet to facilitate the process of creating a volumetric mesh 

when the .stl file is exported to a meshing software.  

As it can be seen in Figure 2.15 the user is computing the table movement corrections. Three 

points (or at least) are marked on the first view; then the points are projected on the second 

plane for correction. In Figure 2.16 the user had segmented the vessel from the first view and 

borders are computed starting from each point of the centreline. The segmentation process ends 

when the vessel is segmented in both views (Figure 2.17). The created surface mesh can be 

imported and visualized within the VIRTUheart™ research tool (Figure 2.18). After creating 

the volumetric mesh, it is possible to apply CFD to the geometry and to compute the vFFR 

index (Figure 2.19,Figure 2.20). 

 

Figure 2.15: Table movement correction process. 
A) Three points are marked on the first plane. B) Epipolar lines are computed on second plane. 



3D Coronary Reconstruction software 

 

50 

 

 

Figure 2.16: The vessel has been segmented in the first view (Left). 
The start and end points of the vessel are marked by the epipolar lines on the second view (Right). 

 

Figure 2.17: The vessel is segmented on the two views. Coronary edges are computed in both images. 
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Figure 2.18: Visualisation of the coronary geometry within the VIRTUHeart tool. 
The user can create a volumetric mesh and run a full CFD analyses within the tool. 

 

Figure 2.19: The user can cut the geometry (decide location for input and ouput along the centreline) and 
apply boundary conditions. 
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Figure 2.20: Result of the full 3D simulation, where the FFR is computed as pressure ratio between inlet and 
outlet. 
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2.4 Validation of the tool 

One 3D printed geometry has been used to validate the 3D reconstruction tool. The model is a 

straight tube with a narrow part in the middle of the geometry. The phantom has been mounted 

in a rigid structure in order to not allow translations and rotations during acquisitions in the 

CathLab. Before starting the acquisitions, the model had been filled with contrast agent. 

 

2.4.1 Straight tube geometry with a stenosis 

The straight tube geometry is shown in Figure 2.21. Several projection images have been taken 

for the geometry following a protocol i.e. standard acquisitions without and with table 

movement in the three global directions, rotational angiogram, acquisitions with panning and 

finally acquisitions with different magnification factor. 

 

Figure 2.21: Straight 3D printed tube used for validation attached on LEGO frame.  

The first step to validate the MATLAB workflow for 3DR has been to check whether the 

epipolar lines were intersecting marked objects. Along the Lego scaffold, some ball bearings 

have been positioned along the frame during image acquisition, allowing the presence of 

reference points onto the 2D projection images. 
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Figure 2.22: Validation step for the epipolar lines. 
The four ball bearings are marked on the first image, the correspondent epipolar lines are not passing through 
the centre of the ball bearings on the second image.   

 

Figure 2.22 is showing the correction step, the centre point of the four ball bearings on the left 

image have been marked. The four pairs of x, y coordinates are saved in a matrix and used to 

compute four epipolar planes to be projected to the second view on the right. The four epipolar 

lines on the right image should pass exactly through the centre points of the four ball bearings. 

However, this is not the case here because although the 3D model attached to the frame is not 

moving as a real heart would do during acquisitions, there are still intrinsic errors introduced 

by the system (mechanical errors). In fact, it is possible to notice that the four epipolar lines 

are moved towards the upper part of the ball bearing centres. To correct this error, the affine 

matrix described Section 2.2.2 has been computed and applied, the result of the computation is 

shown in Figure 2.23. 
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Figure 2.23: Epipolar lines passing exactly through the centre of the ball bearings. 

As it can be seen, following the affine matrix calculation, the four epipolar lines on the right 

projection pass exactly through the marked centre of the ball bearings. 

Measurements on the mean radius have been performed on the 3DRs compared with the real 

phantom data and also with a second segmentation tool available in our laboratory, the Philips 

3DCA which works just on rotational angiography images (Figure 2.24). 

 

Figure 2.24: Coronary centreline segmented and computed edges for the straight tube. 
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The segmentation and radius detection has been performed in both planes and the 

corresponding image reconstruction from different views is shown in Figure 2.25. To validate 

the reconstruction of the straight tube with our MATLAB tool, the reconstruction is compared 

with that obtained from RoCA reconstruction of the same geometry using the Philips 3DCA 

tool. From the two 3D results in Figure 2.25 it is possible to see that the two geometries are 

overlapping, confirming the ability of the software described in this chapter to reconstruct these 

two phantom geometries. As can be seen in the radius variation along the length for the CAD 

file geometry is a straight tube of radius 2 mm plus a stenosis (Figure 2.26 left panel).  

The minimum radius of the stenosis is 0.5 mm which corresponds to 75% radius reduction. 

Figure 2.26 and Figure 2.27 show a comparison between three geometries, the original CAD 

geometry, and the two geometries reconstructed with the Philips tool and the MATLAB tool 

described in this chapter. It can be seen that the professional tool, based on RoCA images, 

better reconstructs the diameter of the normal artery, whilst the diameter of the stenosis is 

similar in the two reconstructions. Furthermore, it has to be said that at the stage when the 

validation for the straight tube had been done, manual corrections had not yet been 

implemented in the current tool: later modifications have further improved the accuracy of the 

segmentations. The average error in the radius reconstruction relative to CAD from the 

developed software was 0.27 mm. Given that each pixel in the image is approximately 0.21 

mm, the error is of the order of a pixel. A comparison of the computed errors is shown in Figure 

2.28. 

 

 
 

 

Figure 2.25: Left) Comparison of two 3D reconstruction. 
Left) Philips 3DCA tool (Blue geometry) and the MATLAB tool (Grey geometry). Right) 3D Reconstruction with 
the MATLAB tool of the straight tube. 
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Figure 2.26: Plots of the CAD geometry. 
CAD geometry radius variation along the length (Left). Comparison of the two segmentation tools (Philips and 
VIRTUHeart MATLAB tool) with the CAD 

 

Figure 2.27: Zoom onto the minimum radius for the three geometries (CAD, Philips and Med. Physics). 
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Figure 2.28: Comparison of the reconstruction errors with the Philips and the MATLAB tool. 
Left) Raw Errors. Right) Percentage Errors. 

From Figure 2.28 it is possible to notice how the Philips tool is performing better in segmenting 

the straight geometry than the VIRTUHeart segmentation tool. This is not surprising since the 

Philips tool already has some important features implemented such as manual corrections for 

a better border extraction. However, the results obtained with the VIRTUHeart segmentation 

tool are really promising. 
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2.5 Conclusions and limitations 

Segmenting coronary arteries is not a trivial task; foreshortening, overlapping, heart motion 

and table movement lead to a very complicated reconstruction process. One limitation is that 

the orientation of the coronary should remain unchanged while the C-arm is going to be 

repositioned to another angulation, however this condition is never respected due to patient, 

cardiac and respiratory motion. Even using ECG gating, patients need to hold their breath to 

avoid respiratory motion. Regarding the table movement correction, the user might find 

difficult to correct images where chosen points have different distances between their 

correspondent epipolar lines. This situation could happen especially when the user would like 

to correct a point near the catheter tip which usually is quite fixed and a point in the bottom 

part of the coronary which is really affected by cardiac and diaphragm motion. The result of 

the application of the computed affine matrix applied to the image might be a strong 

magnification or a shrinkage of the image itself. In these cases, the reconstruction process 

described in this chapter can produce significant errors, and the selection of points that might 

be subjected to strong relative deformations as opposed to pure translations is not 

recommended. The reconstruction process using epipolar lines sometimes is not possible, 

difficult situations arise where epipolar lines are parallel or nearly parallel to the vessel 

centreline. To avoid these reconstruction problems a script has been written in order to use 

more than two images to compute the 3D coronary vessel reconstruction, although the code 

has not been optimised yet. Having more than two views allows the user to segment different 

parts of the vessel and then once the segmentation is terminated merge the segmented parts in 

one total vessel. Using multiple views would also benefit the edge detection for the reason 

explained in Figure 2.14. 

In conclusion the software developed and implemented in MATLAB is able to compute a 3D 

coronary reconstruction and to obtain geometry meshes which are useful to compute CFD 

studies and to compute important coronary parameters such as the FFR. Once the 3DR has 

been computed, information can be used to help cardiologists’ clinical decision making. To 

correct for cardiac motion and table movement between acquisitions a novel click to correct 

algorithm has been introduced. The advice is to choose bifurcation points as correction points, 

however sometimes there might be no or few bifurcations visible in the two views, so the 

catheter tip and small branches with little clinical value can be used to compute the affine 

matrix. The computation of the affine transformation requires at least three pairs of feature 

points. Theoretically more pairs of points would improve the accuracy of the system. However, 
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three or four pairs of points may be sufficient to determine an accurate correction. A further 

development would be to fit elliptical cross sections instead of circles in order to define more 

accurately the artery shape, especially in the region of stenoses. 
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3 Chapter 3                    
2D ROM generation and fluid flow 

interactions between multiple stenosis 
 

Nowadays, numerical analysis is playing a very important role in every engineering field where 

complex physical phenomena are involved. These models quite often require large amount of 

time and furthermore CPU power and memory leading to a non-feasible process. Moreover, in 

a general CFD study, if we are interested in changing even only one parameter within the model 

we are required to repeat the whole full order simulation. However, in the last decade the aim 

of computer simulations applied in the medical fields is pushing towards a patient-specific 

analysis for personalised decision support. Reduced order methods (ROMs) aim to reduce the 

computational demand, to achieve an acceptable level of accuracy compared to the full order 

system and last but not least they provide a huge acceleration on the computation of the reduced 

solution demanding much less CPU power and RAM memory [59],[90]. In this chapter and in 

general in this thesis the fundamental principles and all the ingredients necessary to build a 

parameterised ROM will be presented and described. In these systems the full order equations 

which govern the model and their correspondent solutions depend on a set of parameters, i.e. a 

parametric approach. The first aim of these ROMs is to build a low order but sufficiently 

accurate model which is able to describe every solution for a completely new set of numerical 

values of these parameters. The parameterised ROM should approximate the full order model 

with sufficient level of accuracy, which will depend on the application, on sensitivity and on 

the interpretation of the model outputs. To achieve this, in order to train the model, it is required 

to compute multiple full-order solutions for different values of the parameters (off-line mode). 

In the next sections of this chapter, the most important steps to build a ROM plus some 

examples of ROMs applied on straight tubes are presented with single and multiple lesions in 

series [91]. The aims of this chapter are firstly, to highlight the basic principles of ROMs 

applied to simple models and secondly to describe the fluid flow interactions between multiple 

lesions. Furthermore, the pressure drop in different coronary geometries will be considered 

using different methods of computation: Bernoulli pressure drops vs 1D vs 2D CFD vs 2D 

ROMs pressure drops. 
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3.1 Building the ROM (the off-line mode) 

The first step to build a reduced order method is to construct a fluid flow full order 

computational model dataset. In the current application in coronary haemodyamics, this means 

using Fluent or any other CFD solver to compute the full CFD simulation on the given mesh 

with the right boundary conditions to achieve a high fidelity solution. As already mentioned in 

Chapter 1, considering a practical approach, the user needs to collect the steady state solutions 

of the full dataset, called snapshots, into one matrix (the correlation matrix), and perform a 

singular value decomposition of this matrix [55], [92]–[94]. Every snapshot is a vector stored 

as a row in the matrix. If the model can be parameterised, including the geometrical description 

and the boundary conditions (it is assumed that the rheological properties are fixed in this 

application), every full order solution depends upon the numerical values of the parameters 

[59], [95], [96].  

 

The workflow to construct a ROM consists of two steps: the off-line, and the on-line mode. 

The off-line mode is based on the design of the whole dataset; it is not possible to compute a 

full order simulation for every change in the parameter values. Thus, we need to sample the 

parameter space in a smart way. In designing the process for sampling of the parameter space 

we are interested in the full order solution over a range of parameter values, for example a 

change in the coronary shape and/or a change in the mass flow rate. However, when creating 

the design of experiments (DOE), the variation range for every parameter has to reflect the 

physiological model. It is possible to sample a larger parameter space, however this is 

inefficient since some regions of the space will not correspond to practically-occurring 

variations of coronary artery geometry or boundary conditions. The off-line process is the step 

within the ROM, which takes most of the time (weeks), although it needs to be completed only 

once, assuming that the space is adequately sampled. 

The on-line mode consists on the evaluation and validation of the built ROM. At this stage the 

user can change one or all the parameters within the applicable domain of the ROM to have a 

quasi-real time solution. 

3.1.1 2D Mesh Generation 

For the work described in this chapter and the next, the ROM is constructed using the 

ROMBuilder tool developed and supplied by the research team at ANSYS in France, with their 

industrial collaborators. The ROMBuilder tool is an add-on package which can be loaded 
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within the Fluent environment. As already mentioned with the ROMBuilder tool it is possible 

to store all the CFD simulations taken into consideration in a binary format. Once all the CFD 

simulations have been computed it is possible to start the process of building the reduced order 

model. 

The use of the ROMBuilder tool requires all of the meshes in the training and validation dataset 

to be isotopological [57], [58] and to contain the same number of nodes and elements. It has 

been found difficult to create isotopological meshes using ANSYS products, for this reason, a 

2D mesher was written in MATLAB (https://uk.mathworks.com/), saving the text file 

describing every mesh as a .msh and then importing the mesh into Fluent for the 2D CFD 

analyses. In order to create all the .msh files, the ANSYS mesh file format documentation has 

been followed. Furthermore, the MATLAB environment has been exploited to launch 

simulations in parallel exploiting the parallel toolbox. 

 

Figure 3.1: Example of computed 2D axisymmetric mesh developed in MATLAB. 

3.1.2 Generation of a 2D phantom training dataset 

To use the ROMBuilder tool, first of all a design of experiments (DOE) of the Fluent cases has 

to be designed. A DOE is a structured set of tests for a system or process. Since thousands of 

simulations have to run for the training dataset in the off-line mode, sampling the parameters 

space become important. The challenge is to explore the multi-dimensional space in an 

effective and computationally efficient way. The first sampling method which has been 

employed in this thesis was to randomly sample the space, however this proved sub-optimal 

case since one could end with some regions of the space which are barely sampled or not 

sampled at all. 

To improve on the random sampling, a Latin hypercube sampling (LHS) was implemented. 

The LHS design is a strategy for generating random sample points ensuring that all portions of 

the parameter space is represented [97] [98], [99].  

Furthermore, the size of the training dataset is also very important. The essential process of the 

ROM can be summarised into four main steps: 

1. In order to characterise the solution space, to perform sufficiently many CFD simulations 

of points in the space; 

https://uk.mathworks.com/
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2. Computing the modes, the aim is to identify a more concise representation of the solution 

space; 

3. Reconstruct the low order solution using the modes computed at step 2; 

4. Interpolation is used to compute the modes coefficients for intermediate values of the input 

parameters which were not included in order to characterise the solution space at step 1. 

It might be expected that the number of points needed in the training set might depend on the 

number of parameters in the input and on the form (nonlinearity or flat regions of the space) of 

the relationship between the input parameters and the outputs. However, it is still not clear 

exactly how many points in the training dataset are needed so it is a matter for experimentation 

to establish the minimum size of the training set for any particular problem. It might be 

expected that too few points in the training set might manifest itself by high errors in the 

interpolation step, but it is also possible that the first transformation step may not inadequately 

capture the overall fundamental behaviour of the system. 

In summary, for a given new coronary geometry which is characterised by some input 

parameters, ROM is applied on the output pressure profile of the Fluent solver [58].  

Several CFD simulations are necessary for the off-line learning step where saved pressure 

profiles are compressed into a small number of modes using a Singular Value Decomposition. 

SVD allows each pressure profile to be described by a linear combination of modes coefficients 

and modes. Once the ROM has been built, it can interactively give an accurate approximation 

of the full order solution for a new set of input parameters (on-line mode). 

To maximise the power of the current study to explore the application in large parameter 

spaces, the off-line mode has been computed on Prometheus, an HP computer based in Krakow 

(Poland, http://www.cyfronet.krakow.pl/komputery/15207,artykul,prometheus.html) plus a 

local desktop machine with 12 cores. 

 

3.1.3 Extracting modes with SVD approach 

Once all the CFD simulations have run, and the correlation matrix has been populated, the next 

challenge is to choose the dimension D of the sub-space (number of modes to recompute full 

CFD solutions). Here, the purpose is to describe a more compact combination of the solution 

vectors which supports the assembly of the full solutions so it is possible to interpolate in this 

low order space.[58]. In order to decide the right dimension for the low-order system we need 

http://www.cyfronet.krakow.pl/komputery/15207,artykul,prometheus.html
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to study the singular values, which are the output values from the singular value decomposition 

of the correlation matrix (Section 1.5.1).  
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3.2 Tuning the ROM (the on-line mode): the ROMbuilder 

tool 

The second step in building the ROM is the on-line mode. The on-line mode is the step where 

the user exploits the built ROM to compute a low order solution for a new set of parameters 

(new coronary geometry and mass-flow rate) which were not used for the off-line mode. 

The on-line process is composed of two steps: the evaluation and the validation of the ROM. 

3.2.1 Evaluation of the ROM 

To evaluate the ROM for a specific value of the input parameters, the first step to do is to 

configure the evaluation.conf which is a .json configuration file. The configuration file contains 

different fields: 

● Read ROM from: in this field the user gives the name (and the path if necessary) of 

the input file that contains the ROM. Usually the ROM is the last created in the previous 

step, with the reduce configuration file. 

● Vector type: in this field the user has to specify the type of format of the output file of 

the solution vector. The ROM is built with binary input files, so the suggested field is 

“binary”. 

● Parametric configuration: this field is the most important one respect to the above 

fields. The user has to specify the parameter values where to evaluate the ROM, so 

instead of running a full CFD simulation, we can exploit the ROM and obtain an 

accurate and low order solution in few seconds. 

3.2.2 Validation of the ROM 

The last step is the verification and validation of the computed ROM. At this stage it is possible 

to have information about the projection and interpolation errors since the user has to compute 

the CFD simulations for the cases evaluated at the former step. The validation step is necessary 

since it allows the user to check if the ROM is performing as expected. The built ROM can be 

validated against the simulations used for training the ROM and against simulations which 

were not part of the training dataset. The two methods and the error estimation step are 

explained in details in the next section. 
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3.2.3 Output errors estimation 

Once the validation step has been run it is possible to post-treat the solutions. The quality of 

the ROM is estimated by comparing in the validation points the exact solutions (full-order) 

computed by Fluent and the rebuilt solutions from the ROM. The whole error for the ROM is 

composed of two parts: the projection error and the interpolation error. 

• Projection Error: is the output error obtained from the projected field. Once the ROM is 

built, we can validate the ROM against the full order solutions used to build the ROM 

itself. The projection error is a measure of how good is the description of the exact fields 

which are projected into the basis of modes. In the next sections it will possible to notice 

how the projection error decreases if we increase the number of modes. The former trend 

is expected; in fact if we continuously increase the number of modes we should expect to 

obtain the same level of accuracy of the full order solution. The projection error for every 

case is computed as: 

𝑒𝑟𝑟 =
‖𝑋𝑖 − 𝑃𝑖‖

‖𝑋𝑖‖
 (Eq.3.1)  

where 𝑋𝑖 is the full order CFD solution for case i, 𝑃𝑖 is the projected solution and ‖•‖is the 

2-norm error. 

• Interpolation Error: is the output error computed as a difference between the full order 

solution and the predicted solution; the latter one is the low-order solution which has been 

evaluated with a complete new set of numerical parameters. Furthermore, the modes 

coefficients have been computed with interpolation. However, it has to be clear that for a 

complete new coronary geometry parameterised by a new set of parameters, is not possible 

to compute both the projection and the interpolation error if the full CFD solution has not 

been computed. To compute the norm of the interpolation error the full CFD and the 

decomposition of the solution into the mode space are needed. The interpolation error is 

described as: 

𝑒𝑟𝑟 =
‖𝑋𝑖 − 𝑅𝑖‖

‖𝑅𝑖‖
 (Eq.3.2) 

where 𝑅𝑖 is the predicted solution computed with the ROM. 
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3.3 2D axisymmetric straight tube model with a single 

stenosis 

Introduction 

In this section (divided into Introduction, Methods and Results), a ROM is constructed for an 

axisymmetric straight tube with one stenosis. The tube is 𝐿 = 70𝑚𝑚 long, inlet and outlet 

radius are 𝑅 = 2𝑚𝑚, the stenosis is centred at 𝑥 = 10𝑚𝑚. In order to construct the training 

dataset, two parameters are varied: the severity of the stenosis and the inlet mass-flow rate 

𝑄𝑖𝑛  [
𝐾𝑔

𝑠
] . The severity of the stenosis is measured as a radius reduction percentage and this 

reduction can vary between 55% and 80%, the minimum radius that can be achieved is equal 

to 𝑅𝑚𝑖𝑛 = 0.4𝑚𝑚 , which is still within the ROI (region of interest) for real stenosis in which 

FFR might be measured (tighter stenoses would generally be treated irrespective of FFR). 

The axial variation of the radius is described by the following equation: 

𝑅(𝑥) = 2 − 𝑆𝑟𝑒
(−
(𝑥−10)2

2𝜎2
)
 (Eq.3.3) 

 where 𝑆𝑟 is the stenosis radius and 𝜎 represents the width of the stenosis. 

 

Figure 3.2: Single stenosis geometry. 

In order to obtain values of mass-flow rate within the clinical range, a first estimation of the 

mass flow has been computed resolving the electrical-hydraulic circuit coupling the 2D tube 

model with a 0D model characterised with a downstream resistance 𝑅𝑚𝑐. The inputs to the 

problem are: 𝑃𝑎 (inlet pressure = arterial pressure),  𝑃𝑣 (venous pressure = 0), 𝑅𝑚𝑐 (downstream 

resistance), 𝐴𝑖𝑛𝑙𝑒𝑡 and 𝐴𝑠 (Area inlet and area stenosis). 
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Figure 3.3: 2D model coupled with 0D model. 
The coupling is made in order to compute a first estimation of the mass flow rate to use as inlet boundary 
condition. 

Considering the Bernoulli equation between the inlet and the stenosis, the venous pressure ( 𝑃𝑣) 

equal to 0 and moreover assuming no pressure recovery downstream the vena contracta we 

obtain the following quadratic equation in 𝑄(Eq.3.6): 

1

2
𝜌𝑄2 (

1

𝐴𝑠2
−

1

𝐴𝑖𝑛𝑙𝑒𝑡
2 ) + 𝑄𝑅𝑚𝑐 − 𝑃𝑎 = 0 (Eq.3.4) 

The values of 𝑅𝑚𝑐 and 𝑃𝑎 are assigned in advance for this study, although of course they could 

be additional parameters in a ROM. The value of 𝑃𝑎 is equal to the aortic pressure of 100mmHg 

or 13333Pa. The downstream resistance (𝑅𝑚𝑐) is representing the resistance of the 

microvasculature. The value of 𝑅𝑚𝑐 is a patient specific value and is changing accordingly to 

baseline or hyperaemic condition, physiologically its value changes between 50 to 90 

mmHg*s/ml [26]. For all the numerical simulations, blood has been modelled as an 

incompressible fluid with density and viscosity values equal to 1066 [
𝐾𝑔

𝑚3] and 0.0035 [𝑃𝑎. 𝑠] 

The partial differential equations were solved iteratively in Fluent, until convergence criteria 

of 10−5 were reached both for the continuity equation and for the momentum equations in the 

two dimensions. 

3.3.1 Generation of the ROM with the single lesion dataset 

Methods 

Three different training datasets with full order solutions have been used to train the ROM for 

a total of 300 cases. Each of the dataset consists of 100 geometries. However, these 100 

geometries are equal for each dataset and the variable that is varied between the three datasets 

is the value of 𝑅𝑚𝑐 (Table 3.1). For obvious reasons we should expect the inlet mass-flow rate 

to change as we change the value of the downstream resistance (higher values of mass-flow 

rate for low values of resistance and vice-versa). The two parameters used for the ROM 

construction are: 𝜆 (in percentage) which is defined as the ratio between 𝑟𝑠𝑡𝑒𝑛𝑜𝑠𝑖𝑠 and 𝑟𝑖𝑛𝑙𝑒𝑡; 

and the mass-flow inlet (Q). 
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Table 3.1: Single stenosis dataset with ROM. 

Dataset # of geometries 𝑹𝒎𝒄 value ROM 

1 [1 ⋮  100 ] 50𝑚𝑚𝐻𝑔 ∗
𝑠

𝑚𝑙
 

ROM with 2 

parameters (Radius 

reduction λ, Q) 

2 [101 ⋮  200 ] 70𝑚𝑚𝐻𝑔 ∗
𝑠

𝑚𝑙
 

3 [201 ⋮  300 ] 90𝑚𝑚𝐻𝑔 ∗
𝑠

𝑚𝑙
 

 

Considering the three datasets, the computed flow values varied between 1 [
𝑚𝑙

𝑠
] < 𝑄 <

2.2 [
𝑚𝑙

𝑠
] (Figure 3.4). 

 

Figure 3.4: Mass-flow rate vs Radius Reduction. 
The mass-flow rate is computed for different values of microvasculature resistance [50, 70, 90 mmHg * s/ml]. 

Once all the 300 CFD solutions have been computed it is possible to store all the snapshots 

into the correlation matrix and to compute an SVD. The singular values obtained with SVD are 

shown below (Figure 3.5): 
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Figure 3.5: Singular Values computed from the SVD algorithm on the training dataset. 
The x-axis represents the number of singular values, whilst the y-axis represents the value of the singular 
values on a logarithmic scale. 

The training dataset is made up of 150 simulations (50% of the full dataset size), with 50 

different geometries and where for every geometry three full order CFD simulations have been 

computed, with three different values of mass flow rate (each corresponding to a different value 

of the downstream 𝑅𝑚𝑐). From the study of the singular values given by the system (Figure 

3.5), it is possible to notice the initial steep decay of these values. This means that the first few 

modes are collecting the most important behaviour of the fluid flow. Furthermore, a reduced 

order model was built using just few modes, chosen to ensure that the ROM is capable to 

describe with a good level of accuracy every full order solution. Different ROMs have been 

built, with different number of modes. Once the ROMs have been built, the on-line mode can 

start, this means new geometries with new parameters have to be generated in order to evaluate 

the ROMs. 

Since the initial flow computed with the quadratic equation is only a crude estimation of the 

real flow, another step is necessary for the evaluation step. A recursive loop has been written 

in MATLAB to check the convergence of the mass-flow rate for every iteration. Figure 3.6 

shows the workflow: 
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Figure 3.6: Iterative loop for recomputing Q to achieve convergence. The iteration is computed in MATLAB. 

Results 

The computed ROMs are evaluated with 25 geometries outside of the training dataset. If a 

solution space for a two parameter model is smooth enough we should expect that the system 

should be well-represented by 150 points in the space. 

The graphs below (Figure 3.7) show the evaluation step for two cases (Table 3-2) outside the 

dataset exploiting the computed ROM with different number of considered modes (m=1,2,3,4). 

What should be expected is that, increasing the number of modes, the ROM solutions should 

converge to the full CFD solutions, achieving a better accuracy for the overall description of 

the different pressure profiles (and then FFR). Furthermore, a Bland-Altman graph is presented 

for the 25 cases outside the dataset when m=4 (Figure 3.8). 

 

Table 3.2: Mass flow rate and radius reduction for each simulation. 

 Mass-Flow Rate Radius reduction 

Case # 4 0.0018 71% 

Case # 8 0.0015 79% 
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Figure 3.7: Full CFD solutions vs ROM computation for two different cases of the single stenosis dataset 
described with 1 mode.  
Top Row) Pressure profiles along the length comparison for full CFD and ROM. Bottom Row) Error in mmHg 
between the pressure profiles. 
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Figure 3.8: Full CFD solutions vs ROM computation for two different cases of the single stenosis dataset 
described with 2 modes.  
Top Row) Pressure profiles along the length comparison for full CFD and ROM. Bottom Row) Error in mmHg 
between the pressure profiles. 
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Figure 3.9: Full CFD solutions vs ROM computation for two different cases of the single stenosis dataset 
described with 3 modes. 
Top Row) Pressure profiles along the length comparison for full CFD and ROM. Bottom Row) Error in mmHg 
between the pressure profiles. 

 

 

  

 
 

Figure 3.10: Full CFD solutions vs ROM computation for different cases of the single stenosis dataset 
described with 4 modes.  
Top Row) Pressure profiles along the length comparison for full CFD and ROM. Bottom Row) Error in mmHg 
between the pressure profiles. 
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Figure 3.11: Correlation between full order pressure drop and ROM computed pressure drop.  
Left) Linear correlation; Right) Bland-Altman plot. 

 

Discussion 

Although the model is very simple (single stenosis with two parameters), the results obtained 

are excellent in terms of the computation for the pressure profile. The correlation between full 

pressure drop and the low order pressure drop obtained a value of 𝑅2 = 0.99 when computing 

the solution with 4 modes. Furthermore, the maximum error shown on the Bland-Altman graph 

reached a value of 𝛥𝑃𝐶𝐹𝐷 − 𝛥𝑃𝑅𝑂𝑀 < −0.4 𝑚𝑚𝐻𝑔 at high values of pressure drop. Errors 

between full solutions and recomputed solutions with the ROM are very small, reaching a 

magnitude of 10−3 for the cases described by 4 modes. Regarding execution time comparisons, 

a full 2D steady state CFD simulation takes approximately 2 minutes; the computation of the 

ROM solution takes 0.2 seconds on a normal laptop Pc.  

 

3.3.2 2D CFD analysis vs Bernoulli pressure drop for single stenosis 

In this section, and also for the next examples the simplified Bernoulli equation and a full CFD 

analyses will be taken into account in order to consider the errors in the computation of the 

pressure drop. The aim of this section is to consider the computation of the irreversible pressure 

drop across a stenotic lesion comparing the Bernoulli and 2D CFD straight tube axisymmetric 

model with a single stenosis. The hypothesis is that even for very simple cases such as a single 

lesion along the straight tube domain the Bernoulli equation cannot describe accurately the 

fluid flow behaviour.  
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We use the geometrical model as described in the former section, i.e. one single stenosis along 

the fluid domain, followed by a sudden expansion which returns the geometry to the original 

cross-sectional area. Writing down the energy balance on a particle of fluid travelling on a 

streamline through this domain, it gives: 

(𝑃 +
1

2
𝜌𝑣2 + 𝜌𝑔ℎ)

1
= (𝑃 +

1

2
𝜌𝑣2 + 𝜌𝑔ℎ)

2
+ 𝑓 

(Eq.3.5) 

where P is the pressure, v is the velocity, g is the gravitational acceleration, h is the height, 𝜌 

is the density of the fluid and f is the frictional energy loss. However, the height in a horizontal 

tube can be eliminated on both sides and the frictional energy loss is negligible, under the 

assumption of no viscosity. The equation becomes a simplified Bernoulli equation used to 

translate velocity to a pressure difference: 

𝑃1 +
1

2
𝜌𝑣1

2 = 𝑃2 +
1

2
𝜌𝑣2

2 
(Eq.3.6) 

Pressure drop with Bernoulli has been computed considering mass flow of the fluid, the inlet 

area and the stenosis area. Applying the continuity equation and writing 𝑣 =
𝑄

𝐴
 we have: 

∆𝑃 =
1

2
𝜌𝑄2(

1

𝐴𝑠2
−

1

𝐴𝑖𝑛
2 ) 

(Eq.3.7) 

Considering the Bernoulli equation, the energy balance can be applied between any pair of 

points. 

 

Figure 3.12: Single stenosis geometry for Bernoulli computation. 

Looking at Figure 3.9 the type of geometry is a straight tube with a vena contracta, the radius 

at point 1 is equal to the radius at point 3 and considering the continuity equations the two 

velocities have to be equal. So according to Bernoulli (and neglecting frictional loss) we have 

no pressure drop between point 1 and 3. Clearly, in a real system this is not true, the pressure 

value at point 3 is lower than at point 1 due to frictional energy loss which reduces the pressure 

recovery between point 2 and 3. Furthermore the stenosis creates disturbances and complex 

flow fields which contribute to the overall losses. 
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Figure 3.13: Example of pressure contour (top) and velocity contour (bottom) for the single stenosis 
geometry. 

As expected, the blood flow increases its speed significantly as it passes through the vena 

contracta. The phenomenon of flow separation occurs just after the constriction, since there is 

a rapid expansion of the geometry. The flow separation causes a change on the fluid motion 

since the fluid starts to recirculate near the walls. Most important, it is possible to notice from 

the pressure contour, that the pressure drop is concentrated on the region of the stenosis and 

that there is a little pressure recovery downstream of the vena contracta which is due to the 

deceleration of the fluid. In fact, in the direction of the fluid, the pressure is falling on the 

convergent section of the tube, however the pressure rises as the cross sectional area starts to 

expand again after the lesion. The fluid jet continues to narrow further downstream of the lesion 

until it reaches the vena contracta where the velocity of the fluid is at its maximum speed 

(minimum fluid cross-sectional area). At this stage, the flow starts to expand, filling the whole 

cross-sectional area of the idealised straight coronary.  

Before writing the discussions for these cases, it is important to mention that the idealised 

coronary domain should be long enough to ensure that pressure recovery effect is complete. 

However, for the cases taken into consideration, the domain is quite short and pressure is still 

recovering, meaning that the reported pressure drops are arbitrary since the length of the 

domain is arbitrary. One should consider the pressure drop once the flow has fully recovered 

and the pressure profile starts to diminish again following a linear pressure drop given by the 

Poiseuille law after which the full effect of the stenosis has been accounted for (Figure 3.11). 
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However, as it can be seen from Figure 3.11 (considering a much longer tube L=300mm) the 

maximum pressure recovery (full recovery), can be far away and not important for coronaries. 

It can also be said that the coronaries are too short to allow blood flow to develop. The length 

needed by the flow to develop on a straight tube, is called inlet length; the inlet length 𝑙𝑖𝑛𝑙𝑒𝑡, 

depends on the Reynolds number as: 

𝑙𝑖𝑛𝑙𝑒𝑡
𝐷

≈ 0.06 𝑅𝑒 
(Eq.3.8) 

If it is considered a 𝑅𝑒 = 500 and an average coronary diameter of 4 𝑚𝑚; the length necessary 

to the blood flow to become developed is ≈ 120 𝑚𝑚. 

 

Figure 3.14: Example of pressure recovery for a long straight tube (blue circle). 
  

A Bland-Altman graph has been computed with 50 different geometries where the mass-flow 

rate was a parameter (Figure 3.12). However, the different mass-flows have been computed 

starting from different values of the 𝑅𝑚𝑐 as shown in Table 3.1. 
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Figure 3.15: Top graphs) Comparison of pressure drops computed with CFD and Bernoulli (A). 
Bland-Altman plot for the pressure drops (B). Bottom graph) FFR CFD vs FFR Bernoulli for different values of 
Rmc. 

It is possible to notice that using the Bernoulli formula (with the average velocity) the pressure 

drop is underestimated since the error ΔPBernoulli-ΔPCFD is negative. Furthermore, the difference 

between the two ΔPs is increasing whilst considering higher values of mean ΔP. An 

underestimation of the pressure drop means that the FFR index computed with Bernoulli is 

overestimated, moreover low values of FFR are poorly described since for high values of mean 

ΔP correspond higher errors on the pressure difference. It is perhaps surprising that the 

Bernoulli loss is smaller than the CFD pressure gradient despite the fact that in the Bernoulli 

computation it has been assumed no pressure recovery. This is why for the next computations 

of Bernoulli pressure drops presented in the next sections, it will be taken into account also the 

maximum velocity reached by the blood flow along the centreline of the coronary. The peak 

velocity values computed with CFD simulations have been plugged into the Bernoulli formula. 

3.3.3 Results CFD vs ROM vs Bernoulli for a single lesion 

The ROM has been validated against 90 cases which were out of the dataset, the FFR has been 

computed with three different methods, CFD, ROM and Bernoulli, in order to compare the 

accuracy. The FFR value with Bernoulli has been computed twice, the first computation has 
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been done considering the average value of velocity, instead the second Bernoulli computation 

is considering the maximum value of the velocity along the coronary centreline. The correlation 

between the FFR computations is represented with Bland-Altman graphs (Figure 3.15). Some 

results of the CFD simulations vs ROM solutions are shown in Figure 3.13 and Figure 3.14.  

 

 

Figure 3.16: Top graphs) Full CFD solution vs ROM solution with 4 modes for the pressure contour. 
Bottom graph) Axial pressure profile vs coronary length for CFD solution and ROM solution. 
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Figure 3.17: Top graphs) Full CFD solution vs ROM solution with 4 modes for the pressure contour. 
Bottom graph) Axial pressure profile vs coronary length for CFD solution and ROM solution. 
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Figure 3.18: Correlation for pressure drops and FFR computed with the different methods. 
Full CFD vs Bernoulli (top row), full CFD vs Bernoulli max (middle row), full CFD vs ROM (bottom row) The plots 
are computed for the single stenosis study. 
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Figure 3.19: Bland-Altman graphs for the different methods.  
A) CFD vs Bernoulli; B) CFD vs Bernoulli max; C) CFD vs ROM. 

 

This study is showing how the modified Bernoulli equation is not a very good estimation for 

the FFR computation, furthermore the graphs are showing that the ROM estimate of the FFR 

is better than Bernoulli with an excellent correlation (the slope of the linear regression model 

is equal to 1). However, it has to be said that the ROM is built on the same domain as the CFD, 

so it is not surprising the errors are very small. The error values computed with Bernoulli are 

higher compared to the ROM errors. It is interesting to notice how the FFR computed with 

modified Bernoulli equation using the maximum value of velocity is always overestimating the 

pressure drop meaning that the computed FFR is always underestimated. This behaviour is 

opposite to the underestimation of the pressure drop given by Bernoulli with the average 

velocity. Other studies have highlighted this kind of behaviour as in [100], [101] especially the 

case of overestimating the pressure drop, using Doppler ultrasound for clinical measurements.  

However, if considering invasive study, it is common to consider the pressure profiles 

effectively uniform after the lesion. As already described in the previous sections, the jet of the 

fluid expands downstream of the vena contracta; moreover, its velocity decreases, and pressure 

recovers thanks to the conversion of kinetic energy to pressure. The pressure recovery 

behaviour can lead to overestimation of the pressure gradient so that the measured gradient will 
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be lower if the distal catheter is positioned downstream from the vena contracta. This can lead 

to the overestimation of the pressure gradient because of the phenomena of pressure recovery.  
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3.4 2D axisymmetric straight tube model with a double 

lesion 

A potential question with regard to the analyses of a single stenosis presented in the previous 

section is whether the pressure behaviour might be captured by a 1D model. In this section a 

straight rigid tube with two stenoses in series has been analysed. For this system it might be 

expected that a 1D model might not adequately capture the interactions between the stenoses 

that are associated with jet expansion and pressure recovery. Multiple CFD studies have been 

performed for the 2D straight tube axisymmetric study with a double stenosis [12], [102]–

[104]. The present numerical study has been developed to understand the haemodynamic and 

geometrical effects of two stenosis in series since it is quite common to find multiple stenosis 

in series in a diseased coronary vessel. Although is a simple model, it is useful to understand 

the different interactions between the stenosis, representing situations which could easily occur 

in patients with CAD. The hypothesis is that the interaction between the two stenosis depends 

on the grade of the severity, on the interspacing distance between the two occlusion and on the 

mass flow rate. 

3.4.1 2D CFD interactions between two stenosis in series 

 

 

Figure 3.20: Double stenosis geometry with relative 2D mesh. 

The geometry of the straight tube is 10 cm long, the dimensions of the inlet and outlet radii are 

equal (r = 2 mm). The position of the first stenosis has been kept fixed and it is centred at 5r. 

The position of the second stenosis is varied such that the interspace distance between the two 

minimum radii of the two constrictions is varied between 5𝑟 ≤ 𝑖𝑛𝑡𝑑𝑖𝑠𝑡 ≤ 35𝑟 increasing 

gradually the distance in increments of 2.5r. Four datasets, consisting of 13 geometries each 

have been taken into consideration. The fluid flow in each of the 13 different geometries in a 
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single dataset have been simulated using different mass flow rates, with Q ranging from 1 to3 

ml/s. Every dataset is formed by 65 simulations, giving a total of 260 steady state simulations 

(Table 3-3). The interspace distance between the two stenosis, the two radii reductions (severity 

of the stenosis) and the inlet mass flow rate have been varied for this study (𝑁 =

4 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠). It will become evident in the next sections that the haemodynamic interactions 

between two stenoses in series is strongly dependant on all four parameters. We demonstrate 

that the two stenoses do not interact haemodynamically if the fluid flow after the first stenosis 

has effectively reattached to the wall. 

Table 3.3: Summary of the different simulation. 
The two lambdas (𝝀𝟏 and 𝝀𝟐) refers to the radius reduction in percentage of the first stenosis and the second 
stenosis. 

𝐒𝐞𝐯𝐞𝐫𝐢𝐭𝐲 𝛌𝟏 (%) 𝐒𝐞𝐯𝐞𝐫𝐢𝐭𝐲 𝛌𝟐 (%) Mass-flow (Q) 
[1:0.5:3] 

Distance 
[5r:2.5:35r] 

Total 
Simulations 

50 50 5 flows 13 geometries 65 

70 70 5 flows 13 geometries 65 

50 70 5 flows 13 geometries 65 

70 50 5 flows 13 geometries 65 

 

We consider axial velocities and axial pressure profiles as our variables of choice to study the 

geometric and haemodynamic interactions. 

 

Pressure profiles on the centreline 

Case-A S1=50% S2=50% 

For two stenoses in series of the same degree which are non-interacting (large interspace 

between them), the pressure drop along the centreline is (almost) double that of the pressure 

drop on a single stenosis (Figure 3.25 and Figure 3.26). In fact, the two stenoses, even if they 

are in series, act as two separate stenosis and the total pressure drop along the tube is given by 

the summation of the two independent pressure drops (case where s1=50% s2= 50% at high 

value of distance). 

In contrast, if we consider interacting stenoses, the total pressure drop along the tube is less 

than the sum of the pressure loss of each stenosis (graph of pressure profiles Figure 3.23 and 

Figure 3.24). The closer the two stenoses are, the more the difference increases in the total 

pressure drop. As the second stenosis get closer and closer to the first stenosis, the pressure 

drop across the second stenosis tends to be lower (Figure 3.21 and Figure 3.22). Moreover, the 
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minimum pressure at the throat of the second stenosis increases when the second stenosis is 

close to the first. 
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Figure 3.21: Left plot) Axial velocity profile. Right plot) Axial pressure profile. 
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Figure 3.22: Left plot) Axial velocity profile. Right plot) Axial pressure profile. 
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Figure 3.23: Left plot) Axial velocity profile. Right plot) Axial pressure profile. 
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Case-C S2=70% S2=50% 

In case the severity of the two stenoses is different, it is interesting to look at an example where 

the first stenosis is more severe than the distal one. For interacting stenoses (small interspace 

distance), the flow accelerates at the first stenosis, pressure is converted into kinetic energy and 

a big pressure drop occurs. The accelerated fluid flow does not interact haemodynamically with 

the second stenosis, in fact there is no additional pressure drop at the second vena contracta but 

surprisingly there is a pressure recovery. This effect means that the second stenosis has a 

positive impact in helping the pressure recovery [105]. The small radius reduction of the second 

stenosis does not accelerate the flow any further, on the contrary the distal stenosis decelerates 

the jet. This behaviour is explained by Figure 3.25, the jet is expanding at the second stenosis 

and this expansion is causing a reduction in velocity and a concomitant increase in static 

pressure. 

The beneficial effects of the second stenosis disappear when the interspace between the two 

increases. We note a small acceleration into the second stenosis when the two stenoses are far 

apart. As result, the less severe distal stenosis adds a small contribution to the total pressure 

drop, increasing when the distance between the two stenosis increases. It is apparent that, as 

might be expected, the two stenoses in series tend to act haemodynamically as a single stenosis 

when they are close together. The jet does not ‘see’ the second stenosis, as it is still narrow 

when it arrives at the second stenosis. 
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Figure 3.24: Left plot) Axial velocity profile. Right plot) Axial pressure profile. 
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Figure 3.25: Left plot) Axial velocity profile. Right plot) Axial pressure profile. 
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Figure 3.26: Left plot) Axial velocity profile. Right plot) Axial pressure profile. 
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Case-D S1=50% S2=70% 

When the first stenosis is less severe than the distal stenosis, the system behaves as expected. 

There is pressure drop which occurs at the first occlusion, moreover the fluid flow encounters 

the second stenosis while it is in recovery in the separation zone. The largest pressure drop 

occurs at the more severe stenosis where the flow suddenly accelerates.  
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Figure 3.27: Left plot) Axial velocity profile. Right plot) Axial pressure profile. 
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Figure 3.28: Left plot) Axial velocity profile. Right plot) Axial pressure profile. 
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Figure 3.29: Left plot) Axial velocity profile. Right plot) Axial pressure profile. 
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Pressure Profiles 

In this section we present the pressure profiles along the centreline for the dataset case A 

(S1=50%, S2=50%) in order to visualise the change in pressure with the interspace distance 

between the stenoses. Figure 3.36 shows that as the interspace distance between the two 

increases, each stenosis acts as independent. In fact, at 7cm interspace distance the total 

pressure drop is twice the pressure drop on a single stenosis. Since the Bernoulli formulation 

does not account for the geometrical and haemodynamic relations between the two stenoses, a 

decreasing difference between the computation of ΔP CFD and ΔP Bernoulli might be expected 

as the interspace distance is increased (Table 3-4 and Figure 3.37).  

 

Figure 3.30: Pressure profiles for Case A (S1=50%, S2=50%) at different interspace distances. 

Table 3.4: Comparison of CFD and Bernoulli pressure gradient. 

𝑺𝟏(%), 𝑺𝟐(%),𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 CFD ∆P [mmHg] Bernoulli ∆P [mmHg] 

50,50,5r 4.60 6.80 

50,50,20r 5.31 6.80 

50,50,35r 5.99 6.80 

70,50,5r 21.63 31.17 

70,50,20r 23.46 31.17 

70,50,35r 25.79 31.17 

50,70,5r 26.18 31.17 

50,70,20r 28.73 31.17 

50,70,35r 31.23 31.17 
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Figure 3.31: Error between Bernoulli and CFD pressure drop for three different cases: (S1, S2=50%), (S1=70%, 
S2-50%), (S1=50%,S2=70%) 

Axial velocity profile (fixed interspace distance, varying severity of stenosis) 

Velocity profiles for Case A, B, C, D are shown in Figure 3.38. The centreline velocity profile 

is shown for the different geometries at fixed interspace distance between the two stenoses of 

20r. The maximum velocities occur along the centrelines and specifically at the location of the 

vena contracta where we have global maximum values for the most severe stenoses (Case B 

70%, 70%). It is clear that after the restrictions the fluid flow decelerates and the pressure 

gradually recovers. However, the case where the first stenosis is more severe than the distal 

one (Case C 70%, 50%), velocity at the second stenosis does not increase but decreases instead. 

The second mild stenosis decelerates the jet causing a reduction in velocity and a concomitant 

increase in static pressure. 
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Figure 3.32: Velocity profiles for the four different datasets, keeping constant the interspace distance.   
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3.5 2D vs 1D vs Bernoulli of the double stenosis interaction 

model 

In the previous section it has been already demonstrated that the error between the ΔP 

computed with Bernoulli and the computation of the ΔP with an axisymmetric model decreases 

when the two stenoses have a large interspace distance; this is because the two lesions are no 

longer interacting haemodynamically. In section 3.3 the single stenosis case has been 

considered highlighting the difference between the computation of the pressure drop with a 

simple Bernoulli formula or with CFD for an axisymmetric geometry.  

However, what has not been demonstrated is a comparison between a 2D model, a 2D model 

with ROM and a 1D model. This comparison is a necessary step since if the 1D model will 

show comparable results with the 2D model, a ROM computation would not be necessary (due 

to the fact that 1D models require a small amount of CPU and RAM).  In this section a similar 

study with a comparison between axisymmetric CFD vs Bernoulli vs 1D solver has been 

computed in order to numerically assess the errors in the pressure drop when different methods 

are deployed [106],[31], [107].  

Considering the Bernoulli formula, in a straight tube, with 𝑁 stenoses in series the total pressure 

drop is the summation of the pressure drop given by the 𝑁𝑡ℎ stenosis. Therefore, we would 

have: 

∆𝑃𝑡𝑜𝑡 =∑∆𝑃𝑖

𝑁

𝑖=1

 (Eq.3.9) 

where ∆𝑃𝑖  is the pressure drop which occurs at the ith stenosis. Since in this study there are two 

stenosis in series and the geometry of the tube is known, the total Bernoulli pressure drop is 

given by: 

∆𝑃𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 =
1

2
𝜌𝑄2 (

1

𝐴𝑠1
2 −

1

𝐴𝑖𝑛𝑙𝑒𝑡1
2 +

1

𝐴𝑠2
2 −

1

𝐴𝑖𝑛𝑙𝑒𝑡2
2 ) 

 

(Eq.3.10) 

In the 1D model, the fluid flow domain is decomposed into little segments, connected at nodes. 

The 1D solver used in this section is called OpenBF, the solver is open source (Apache 2.0) 

and has been developed in INSIGNEO (Sheffield) [30]. OpenBF is a finite volume solver based 

on a 1D reduction of the Navier-Stokes equations and it is characterised by some model 

assumptions: 
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● The blood flows through narrow and circular vessels; 

● The vessels are straight and have linear elastic compliant walls; 

● Displacements in the radial direction are small; 

● The blood is an incompressible Newtonian fluid. 

For this study a single vessel is considered and furthermore the vessel must not present bends 

along the axial direction. 

The equations which describe the 1D solver are: 

{
 
 
 

 
 
 
𝜕𝐴

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
= 0                                                                

𝜕𝑄

𝜕𝑡
+
𝜕

𝜕𝑥
(
𝛼𝑄2

𝐴
) +

𝐴

𝜌

𝜕𝑝

𝜕𝑥
= −

2𝜇

𝜌
(𝛾𝑣 + 2)

𝑄

𝐴
          

𝑃(𝐴) = 𝑃𝑒𝑥𝑡 + 𝛽(√
𝐴

𝐴0
− 1) ,    𝛽 = √

𝜋

𝐴0
 
𝐸ℎ0
1 − 𝜈2

 
(Eq.3.11) 

where t is time, x is the axial coordinate, A(x,t) is the coronary cross-sectional area, Q(x,t) is 

the volumetric flow rate, 𝛼 is the Coriolis’ coefficient, 𝜌 is the blood density, P(x,t) is the blood 

pressure, 𝜇 is the blood dynamic viscosity, 𝛾𝑣 is a parameter defining the shape of the radial 

velocity profile, 𝑃𝑒𝑥𝑡 is the vessel external pressure, 𝐸(𝑥) is the vessel wall Young’s modulus, 

𝜈 is the Poisson’s ratio, 𝐴0(𝑥) is the reference cross-sectional area and finally ℎ0 is the 

reference wall thickness. The cross-sectional areas 𝐴0(𝑥) for the different cases have been set 

up to match the variation of the radius of the 2D geometries. Since the 2D geometries 

considered in the previous sections were not compliant, in order to replicate the same behaviour 

for the 1D model, it has been chosen a high value of the Young’s modulus was used. 

52 cases have been used for the comparison between 2D and 1D model, using the same 

boundary conditions. 
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Figure 3.33: 1D vs 2D model comparison for Pressure vs Length for different double stenosis geometries. 

In Figure 3.33 it is possible to notice the differences between the computations of the pressure 

profiles for different geometries. The 1D is capable of collecting the pressure drop at the right 

locations (minimum radii) however there is no sign of pressure recovery after the lesion in any 

of the plots. In fact, although 1D models are less computational expensive than 2D models, 

their drawback resides in the lack of accuracy where recirculation of flow may occur. It is also 

possible to notice how the pressure drop in the 1D model is following a linear decay just after 
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the lesion (Poiseuille pressure drop), whilst 2D models are still in pressure recovery mode. In 

Figure 3.40 it is shown a full comparison of the three different methods for the pressure drop 

computations. It can be notice that the Bernoulli computation of ΔP is overestimated in the 

majority of the cases.  

 

Figure 3.34: Bernoulli vs 1D vs 2D pressure drops for 52 double stenosis cases. 
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3.6 Generation of the ROM with double lesion 

In this section a generation of a ROM in a straight tube with double lesion is presented. This 

study is different from section 3.4, the former was characterised by two stenoses where the first 

one was kept fixed, varying the interspace distance with the second stenosis. The two stenoses 

had a fixed radius reduction as well.  

ROM Off-line step 

In this case, every geometry within the dataset is parameterised by six parameters which are: 

mass-flow rate, two parameters describing the radii reduction of the two stenosis (1 parameter 

each), two parameters for the location of the two stenosis along the axial direction and the last 

parameter is the length of the tube. The difference between the two stenosis locations along a 

single coronary domain is defined as distance. The aim is to build a ROM capable of describing 

the pressure profile along the centreline of the straight tube for every parameterised simulation.  

As already presented in section 3.3 the 2D model is coupled with a 0D model describing the 

microvasculature downstream resistance.  

A total of 3663 geometries have been considered to produce Table 3.6 and Figure 3.35. 

 

Table 3.5: Summary of the dataset for ROM construction. 

Dataset # of geometries 𝑹𝒎𝒄 value ROM 

1 [1 ⋮  1221 ] 50𝑚𝑚𝐻𝑔 ∗
𝑠

𝑚𝑙
 ROM with (Severity1, 

Severity2, Q, Location 

S1, Location S2, 

Length) 

2 [1222 ⋮  2442 ] 70𝑚𝑚𝐻𝑔 ∗
𝑠

𝑚𝑙
 

3 [2443 ⋮  3663 ] 90𝑚𝑚𝐻𝑔 ∗
𝑠

𝑚𝑙
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Figure 3.35: Pressure gradient as a variable dependent by Flow (mass-flow inlet) and Distance (distance 
between the two stenosis along a coronary domain). 
Blue dots represent the pressure drop of the 3663 geometries used to train the ROM. Higher flows will 
produce a lower pressure drop. 

In Figure 3.35 the x-axis represents the distance in mm between the two stenosis in series 

(interspace distance); the y-axis represents the mass-flow inlet used as boundary conditions for 

the different geometries. The fluid flow has been computed with the Eq. 3.4 starting with a 

distal resistance and the values of the two radii (inlet and min radius of the two stenosis). 

However, we would expect high values of pressure drop for high inlet mass flow rates, this is 

not true in this example since the mass flow rate has been computed to be inversely proportional 

to the min radius of the stenosis (𝑄 𝛼
1

𝑟𝑚𝑖𝑛
) . Mild stenosis will have a higher flow, but they will 

not be affected by a high pressure drop (bottom part of the graph). On the contrary, very severe 

stenosis will be characterised by a low value of mass flow inlet but they will be affected by a 

higher pressure drop (top part of the 3D scatter plot). 

Figure 3.36 is showing the quadratic relationship between the severity of the stenosis and the 

computed correspondent flow. For very mild stenosis 0.5 ≤ 𝜆1, 𝜆2 ≤ 0.65 the computed mass-

flows have higher values than severe stenosis; this is still in accordance with Eq. 3.4. 
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Figure 3.36: Flow dependency (z-axis) by the two stenosis severities (x and y-axis). 
Mild stenosis produce higher mass-flow inlet (top surface of the cupola red/yellow). Severe stenosis 
produce low values of mass-flows (blue part of the surface). 

The Bernoulli ΔP has been computed in two ways: firstly, considering the average velocity of 

the fluid flow and secondly considering the maximum velocities (with CFD) which occur along 

the centreline. It is noted that a diagnostic work flow based on direct Bernoulli computations 

from clinical velocity measurements are difficult in the coronaries because the measurement of 

the velocity of the blood within the coronaries is not an easy task. One method uses a Doppler 

wire introduced into the coronary artery, but the results are often difficult to interpret [13], [61], 

[108]–[110]. In other vessels the velocities are often measured using an external Doppler probe 

but this is not generally practicable in the coronaries. 

In case the velocity is known through the Doppler probe, the Bernoulli pressure drop using the 

velocity data can be written as: 

∆𝑃𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑚𝑎𝑥 =
1

2
𝜌(𝑣𝑠𝑡𝑒𝑛1

2 − 𝑣𝑖𝑛𝑙𝑒𝑡1
2 + 𝑣𝑠𝑡𝑒𝑛2

2 − 𝑣𝑖𝑛𝑙𝑒𝑡2
2 ) 

(Eq.3.12) 

where 𝑣𝑠𝑡𝑒𝑛1and 𝑣𝑠𝑡𝑒𝑛2 are the measured maximum velocities at the location of the two 

stenosis, 𝑣𝑖𝑛𝑙𝑒𝑡1 and 𝑣𝑖𝑛𝑙𝑒𝑡2 are the velocities measured at the two inlet locations. However, for 

the numerical values of 𝑣𝑠𝑡𝑒𝑛1 and 𝑣𝑠𝑡𝑒𝑛2 the two peaks velocities computed with CFD had 

been used.  

ROM On-line step (Validation) 

The built ROM with 5 modes had been validated with 51 geometries described by a completely 

new set of parameters which were not been used for the off-line mode during the training 
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process. Results of the pressure profiles along the centreline (Figure 3.37) and a comparison 

between Bernoulli, 2D CFD and ROM ΔP are shown with Bland-Altman graphs. 

Example #1 Example #2 

  
 

Example #3 
 

Example #4 

  
Figure 3.37: Comparison of pressure profiles for different geometries for the validation step (4 examples out 
of 51 geometries), computed with CFD and ROM with 5 modes.  
For all the examples blue lines correspond to the full CFD pressure profile whilst red lines correspond to 
pressure profiles recomputed using the ROM. 

As it can be seen from Figure 3.37 the overall pressure profiles are well captured, the ROM 

tends to under estimate the pressure drop caused by the major stenosis. Furthermore, the ROM 

solutions are not very smooth; the number of modes chosen for building the ROM (5 modes) 

is causing this effect. Increasing the number of modes will cause the ROM solution to converge 

to the CFD solution (this is proven in chapter 4). However, the pressure drops are perfectly 

captured with an excellent correlation for the vFFR computed with CFD and the vFFR 

computed with the ROM (Figure 3.44).  
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Figure 3.38: Correlation of pressure drops and FFR with the different methods. 
Full CFD vs Bernoulli (top), full CFD vs Bernoulli max, full CFD vs ROM 

As expected, looking at the correlation plots for the overall pressure drops and the computed 

vFFRs, it is possible to notice the major accuracy of the ROM against the Bernoulli 

computation using the average velocities and the maximum velocities at the stenosis locations. 

For the Bernoulli computation a high correlation has been obtained with values of 𝛥𝑃𝐵𝑒𝑟𝑛 ≤

20 𝑚𝑚𝐻𝑔 and 𝛥𝑃𝐵𝑒𝑟𝑛𝑚𝑎𝑥 ≤ 10 𝑚𝑚𝐻𝑔. Regarding the vFFR values, high correlations are 

obtained for 𝑣𝐹𝐹𝑅 ≥ 0.8 for Bernoulli and 𝑣𝐹𝐹𝑅 ≥ 0.9 for Bernoullimax. However, for high 

values of 𝛥𝑃 (or for low values of vFFR) the two Bernoulli formulations produce a high error 

considering the results computed with CFD. The ROM computation of the vFFR is high 

accurate with a value of 𝑅2 = 0.9985. 
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Figure 3.39: Bland-Altman plots for the three different methods on the double stenosis interactions.  
Top Left) Pressure drop with CFD vs Bernoulli for the 51 validated geometries. Top Right) Pressure drop CFD 
vs Bernoulli (using maximum velocities). Bottom) Pressure drop CFD vs ROM for the 51 validated geometries.   

 

3.7 Conclusions 

In this chapter the ingredients and the process to build a reduced order method have been 

presented. The mathematical formulations of the projection and the interpolation errors have 

been described. Multiple ROMs have been built: a ROM described by two input parameters 

with a single stenosis, and a ROM described by six input parameters with two multiple lesions 

in series. In order to establish a first estimation of the mass-flow rate for the inlet boundary, 

the 2D model was coupled with a simple zero-dimensional (lumped parameter) model. The 

pressure profiles along the centreline for idealised geometries were studied with full 2D CFD 

axisymmetric simulations, ROM computation and a 1D model. Furthermore, pressure drops 

and FFR have been computed with the former models and compared with Bernoulli pressure 

drops. We found that the ROM computation achieved a better accuracy than the Bernoulli 

computation and the 1D model regarding the pressure drop and the pressure profile for both 

the single stenosis and the double stenosis geometries. A second study was based on the fluid 

flow interactions between multiple stenosis in series. It was found that two stenoses are not 

haemodynamically interfering if there is a large interspace distance between the two. 
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Furthermore, the total pressure drop computed with CFD considering large interspace distances 

between the stenoses is compatible with a Bernoulli approximation. 
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4 Chapter 4                     

Shape parameterisation and Reduced 

Order Method in 2D patient-specific 

coronary geometries 
 

In the last few decades, invasive and non-invasive clinical imaging techniques have grown 

constantly. These techniques support the creation of a visual representation of the interior of 

the human body for clinical analysis and clinical decision making. There is an increasing 

interest in the use of personalised models of physiology, based on faithful representation of 

individual anatomy coupled with appropriate description of the boundary conditions, for the 

diagnosis of disease and for interventional planning [13]. 

Computational meshes for individual anatomies can be generated from segmented volume 

representations [111], but for the effective study of the influence of geometrical/anatomical 

variations it is necessary to find accurate and robust techniques for shape parameterisation. 

Different studies have been made for shape parameterisation in CFD. These are mainly focused 

on the parameterisation of the geometry for design optimisation purposes [112], [113], [114]. 

These techniques are heavily used in CFD studies; an example is the shape optimisation of an 

airfoil for an aircraft  [113], [115], but they are also used in naval engineering and the 

automotive industry [112], [116]. The goal of the optimiser is to deform the mesh in order to 

minimise a pre-defined objective (cost) function. 

ANSYS Fluent offers such a tool for shape optimisation, based on the usage of control points 

of a Bernstein polynomial approximation [117]. This method suffers some restrictions for 

coronary application, partly associated with difficulties of appropriate positioning of the 

control points and partly because the process supports only relatively small displacements 

which do not immediately lend themselves to the capture of the anatomical variations of 

tightly-stenosed coronary arteries. 
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Several studies of shape parameterisation have been performed for cardiovascular applications, 

especially for coronary stents or for coronary by-pass [118]–[122]. Furthermore, some shape 

parameterisation studies include ROM analyses [121], [123]–[130]. 

In this chapter, shape parameterisation approaches are not used for optimisation purposes but 

they are deployed in order to extract geometrical parameters which will feed the ROM. There 

are several possibilities to define the parametric model; however, in this chapter, we present 

different methods for shape parameterisation of coronary arteries. Furthermore, the methods 

could be used for any kind of shape analyses or shape optimisation. The analysis will be 

computed on a clinical dataset of coronary geometries previously segmented using the Philips 

3DCA software tool or the 3D reconstruction tool initiated and described in chapter 2 of this 

thesis, and subsequently further developed by other researchers in the Department.  

Parameterising coronary geometries is a necessary step for the computation of the 

parameterised ROMs [96], [131], [132], [133]. A challenge is that each extra geometrical 

parameter causes the increase of the dimension of the problem space for the system, and this 

can rapidly become prohibitive in terms of the characterisation of the solution space. In this 

chapter the number of parameters required to effectively describe the range of anatomies in the 

clinical dataset, and subsequently the pressure distribution and computed FFR, is investigated. 

The number of real anatomies in the clinical dataset is restricted, and it is used primarily to 

ensure that the anatomies that have been measured are adequately represented. The training set 

for the ROM is larger, and a synthetic dataset is constructed within the parameter space. 
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4.1 Shape parametrisation of 2D coronary geometries: 

features and goals 

The features and goals of the shape analysis are presented in this section. Before starting it is 

important to give a definition of what is meant by coronary shape. Tortuosity, dilatation, 

curvature, diameter, stenosis, are all parameters that have been used in recent studies to define 

the shape of coronary geometries [134]. The number of parameters is potentially large, and one 

of the challenges is to identify a subset that can adequately describe the most important features 

of the artery in the context of the determination of FFR. 

Three different classes of global basis functions for parameterising the coronary shapes have 

been considered in this thesis: polynomial, Gaussian and Fourier basis functions. These three 

approaches will be studied in terms of accuracy and flexibility. By accuracy we mean the 

description of the overall error between original geometry and the approximated geometry, but 

also the capability of the parameterisation method to maintain unaltered the fields of interest 

(particularly the variation of pressure along the vessel centreline) when CFD is computed. By 

flexibility we mean that the parameterisation functions have to be able to describe a wide range 

of shapes, and they have to be easy to manage and sufficiently concise in order not to make the 

ROM unfeasible. In summary, the aims of this chapter are: 

● Approximation of the shape of the available clinical dataset in order to extract the 

coronaries geometrical parameters, 

● To use a limited number of parameters, the extracted geometrical features have to 

describe “well” the clinical shapes in order to maintain unaltered the pressure profile 

along the centreline,  

● Use of the extracted geometrical parameters to create a larger phantom dataset for the 

clinical ROM training dataset; 

The number of parameters to describe the approximation of the radius along the length have to 

be limited in order not to make the building process of the ROM impractical.   
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4.2 Data Pre-processing 

Because the fluid flow is primarily a tube flow, it is likely that the primary determinant of the 

distribution of pressure along the vessel axis is the variation of radius along it. For this reason, 

the focus of the first ROM, evaluated in this chapter, is based on a 2D axisymmetric model. 

Furthermore some data cleaning has been performed. The available clinical dataset to perform 

shape analyses consists of 156 3D geometries; however, few of the patient-specific cases were 

very short or very long, largely deviating from the mean value of coronary length of the dataset. 

It had been decided to remove these geometries; the purpose is to ensure that the built ROM is 

most effective for the majority of the dataset. After the cleaning process the dataset is formed 

by 140 geometries.  

Since the aim is to compute a 2D clinical ROM starting from straight tubes, and moreover the 

available clinical geometries are in 3D, the centreline of every case had been considered and 

virtually stretched in order to compute a straight line. The total length of every coronary has 

been computed summing all the distances in the 3D space of the 3D consecutive points. The 

total vessel length can be computed with the following formula: 

𝑉𝑒𝑠𝑠𝑒𝑙 𝐿𝑒𝑛𝑔𝑡ℎ = ∑√∑(𝒙𝑖,𝐼+1 − 𝒙𝑖,𝐼)
2

𝑛

𝑖=1

𝑁−1

𝐼=1

 (Eq.4.1) 

where N is the total number of points along the centreline, n is the space dimension and I is the 

considered Ith point. From the graph below it is possible to notice that the clinical dataset is 

forming a cluster between 40 [𝑚𝑚] < 𝐶𝑜𝑟𝑜𝑛𝑎𝑟𝑦 𝑇𝑜𝑡𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ < 120 [𝑚𝑚]. This is to 

justify that the considered ROMs and the synthetic dataset have been computed considering 

the graph below (Figure 4.1). 
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Figure 4.1: Number of occurrences vs Clinical geometry vessel length in [mm]. 

4.3 Approximation of the radius along the length in 2D 

patient specific axisymmetric coronary model 

In the last decade there has been significant progress on the application of ROM methods to 

applications in fluid dynamics [59], [131], [137]. However, issues remain when considering 

ROMs which include turbulent flow or geometrical parameters [116].  

The main aim of this section is to study the different examples of shape parameterisation 

capable of extracting the geometrical parameters for any coronary artery and to maintain 

unaltered the pressure profile along the centreline when considering clinical geometries and 

approximated geometries.  

4.3.1 Approximation of 2D coronary shape 

In a 2D coronary axisymmetric model the variation of the radius along the length can be 

generally expressed with the following form: 

𝑟(𝑥) = ∑𝑃𝑝(𝑥)

𝑁𝑃

𝑝=1

+∑𝐺𝑔(𝑥)

𝑁𝑔

𝑔=1

+∑𝐹𝑖(𝑥)

𝑁𝑓

𝑖=1

 (Eq.4.2) 

 

Where on the right hand side of the equation the first term represents a combination of 

polynomial basis functions (𝑃𝑝), the second term represents Gaussian basis function (𝐺𝑔) and 

the last term represents Fourier basis function (𝐹𝑖). 𝑁𝑃, 𝑁𝑔 and 𝑁𝑓 are based on the integer 
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number of polynomial, Gaussian and Fourier basis functions considered to approximate the 

radius variation.  

The goal in this section is to approximate a continuous function f(x) defined in an interval [a,b] 

using a linear combination of a set of global basis functions [138]. Let W be a function space 

spanned by a set of basis functions 𝜙1, . . . , 𝜙𝑁, so: 

𝑊 = 𝑠𝑝𝑎𝑛{𝜙1, . . . , 𝜙𝑁}, 

Every continuous function 𝑓𝜖 𝑊 can be expressed as a linear combination of global basis 

functions. By global basis function we mean a function which in general is nonzero on the 

entire domain. These global basis functions have to be able to approximate the original function 

along the entire domain. 

Each one of the former class of bases functions (Polynomials, Gaussians and Fourier) can be 

employed to fit any shape; they are competing candidate representations to approximate a 

function. Furthermore, one might use a combination of different classes, e.g. a finite number 

of polynomial bases plus a finite number of Gaussian bases. 

However, polynomials, Fourier bases and Gaussians have all different properties and in the 

next section we investigate what are the most suitable candidates to approximate the radius 

variation along the length for coronary arteries. 

Results of the shape parameterisations presented in the next sections have been obtained 

following an optimisation methods of the parameters which describe the different shapes. 

Furthermore, to achieve even better performance in accuracy we have computed a weighted 

cost function to be optimised. 

4.3.2 Introducing a weighted cost function 

The most pressure drop considering a coronary artery occurs when the fluid flow encounters a 

stenosis; very small variations in the description of the minimum radius by the approximated 

geometries can produce a completely different pressure profile. If the minimum radius of the 

coronary shape is not captured adequately, the spatial pressure variation error can be big. In 

order to reduce the error between the clinical CFD pressure profile and the pressure profile 

computed with the approximated geometry, an optimisation process has been employed. The 

problem of solving this geometrical optimisation can be thought of as finding the set of 

parameters and basis functions that best describe the variation of the radius along the length in 

2D geometrical models. It is unlikely that any combination of these geometrical parameters 

will return the clinical original shape, so the problem is to determine the optimum set or 

combination of shape parameters which minimises the error computed between the original 
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shape and the parameterised shape. This minimisation problem falls in the optimisation method 

algorithm. In brief an optimisation method is mainly composed of two parts: the definition of 

the cost function and the choice of the algorithm employed to minimise it between the two 

shapes. 

When performing an optimisation process it is necessary to specify a cost function. The root 

mean squared error is commonly used for this purpose and it is also a useful measure of the 

quality of the prediction:  

𝑅𝑀𝑆𝑒𝑟 =
√∑ (𝑦𝑐𝑜𝑟𝑜𝑛𝑎𝑟𝑦 − 𝑦𝑜𝑝𝑡𝑖𝑚)

2𝑛
𝑡=1

𝑛
 (Eq.4.3) 

  

where 𝑦𝑐𝑜𝑟𝑜𝑛𝑎𝑟𝑦 is the real value of the function (physiological coronary radius) and 𝑦𝑜𝑝𝑡𝑖𝑚 is 

the optimised value from the optimisation. However, if the simple root mean square formula is 

considered, it can be seen that it does not give special consideration to any pair of differences, 

all the differences have the same weight. Moreover, the optimal shape fitting using the simple 

cost function in Eq. 4.2 may lead to very large fitting errors when considering the overall 

coronary shape and more important very large errors for global minimum values on the 

minimum radii of the coronary occlusions.  

We therefore need to find a compromise in fitting the overall coronary shape, while keeping 

the minimum radius, the inlet and the outlet radius of the target geometry as close as possible 

to the real values. In order to resolve this issue, the cost function has to be modified to give 

extra weight to match the geometrical constraints (inlet, minimum radius, outlet). 

The cost function, 𝑓𝑐𝑜𝑠𝑡 which has been chosen for the optimisation process represents a linear 

combination of the root mean square error over the whole geometry, the error at the inlet, the 

error at the global minimum radius and the error at the outlet. 

𝑓𝑐𝑜𝑠𝑡 = 𝐶𝑅𝑀𝑆𝑅𝑀𝑆 (𝑦𝑜𝑝𝑡𝑖𝑚(𝑡), 𝑦𝑐𝑜𝑟𝑜𝑛𝑎𝑟𝑦(𝑡))

+ 𝐶𝑠𝑡𝑒𝑛𝑜𝑠(|min(𝑦𝑜𝑝𝑡𝑖𝑚(𝑡) − min(𝑦𝑐𝑜𝑟𝑜𝑛𝑎𝑟𝑦))|)

+ 𝐶𝑖𝑛𝑙𝑒𝑡(|inlet(𝑦𝑜𝑝𝑡𝑖𝑚(𝑡) − inlet(𝑦𝑐𝑜𝑟𝑜𝑛𝑎𝑟𝑦))|

+ 𝐶𝑜𝑢𝑡𝑙𝑒𝑡(|outlet(𝑦𝑜𝑝𝑡𝑖𝑚(𝑡) − 𝑜𝑢𝑡𝑙𝑒𝑡 (𝑦𝑐𝑜𝑟𝑜𝑛𝑎𝑟𝑦))| 

(Eq.4.4) 

 

where 𝐶𝑅𝑀𝑆, 𝐶𝑠𝑡𝑒𝑛𝑜𝑠, 𝐶𝑖𝑛𝑙𝑒𝑡 and 𝐶𝑜𝑢𝑡𝑙𝑒𝑡 are multiplication constants or weights for the cost 

function, defined as proportion:  

𝐶𝑅𝑀𝑆 + 𝐶𝑠𝑡𝑒𝑛𝑜𝑠 + 𝐶𝑖𝑛𝑙𝑒𝑡 + 𝐶𝑜𝑢𝑡𝑙𝑒𝑡 = 1 (Eq.4.5) 
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There is no optimal way in which to assign the relative weightings: it is a matter of human 

judgement as to which combination produces the optimal balance of fitting the coronary 

shapes. Different values of 𝐶𝑅𝑀𝑆, 𝐶𝑆𝑡𝑒𝑛𝑜𝑠,  𝐶𝑖𝑛𝑙𝑒𝑡 and 𝐶𝑜𝑢𝑡𝑙𝑒𝑡 have been considered in previous 

sets of simulation where the aim was to find the best combination of parameters which were 

best approximating the radius variation for the different clinical geometries. Based on a trial 

and error process, the values chosen for processing the geometries were: 𝐶𝑅𝑀𝑆 = 0.7,  

𝐶𝑆𝑡𝑒𝑛𝑜𝑠 = 0.2,  𝐶𝑖𝑛𝑙𝑒𝑡 = 0.05  and finally 𝐶𝑜𝑢𝑡𝑙𝑒𝑡 = 0.05.   

 

Figure 4.2: An example of parameterised shape using the weighted cost function. 
Clinical radius variation along the length (blue line), parameterised and optimised shape (red line). 

4.3.2.1 Genetic Algorithm and fminsearch  

Solving a weighted optimisation problem is strictly necessary because a small error in 

describing the minimum stenosis along the coronary shape, could lead to large error in the 

computation of the pressure profile and then to a wrong value of the FFR. An example is shown 

in Figure 4.4 and Figure 4.5 where it is presented a 2D axisymmetric clinical case; the 

difference in the description of the stenosis is minimal between the clinical shape and the 

optimised one (not with weights). However, there is not much correspondence on the two 

pressure profiles where is possible to notice a large error (Figure 4.6). 

In order to find the optimal parameters which minimise the cost function, a Genetic Algorithm 

and fminsearch optimisation techniques had been used. Firstly, a GA had been employed in 

order to find good candidates for the fminsearch process.  

Genetic Algorithm is an optimisation technique used to solve non-linear or non-differentiable 

optimisation problems. They use concepts from evolutionary biology to search for a global 

minimum. GA work by starting with an initial generation of candidate solutions which are 

tested against the objective function. Then, subsequent generations evolve from the first 

generation through selection, crossover and mutation. The process behind the GA is: 
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The output of the GA optimisation process is a set of optimal parameters which minimise the f 

function. The parameters computed from the GA optimisation are used as first guess for the 

fminsearch algorithm (Figure 4.3). 

 

 
Figure 4.3: Left panel) GA plot for first guess of the parameters. Right panel) fminsearch process to find 
best parameters in the ‘optimal sense’. 

 

Figure 4.4: Example of coronary shape approximation. 
The approximation is computed using standard L2 norm of the RMS error. 
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Figure 4.5: Example of coronary shape approximation. 
The approximation is computed using L2 norm weighted cost function. 

 

Figure 4.6: Pressure profiles for the three different geometries. 
Blue line) Pressure profile for the clinical geometry. Green line) Pressure profile for the approximated 
geometry using the optimisation function with no weightings. Red line) Pressure profile for the approximated 
geometry using the weighted cost function. 

  

4.3.3 Radius approximation with polynomial bases 

The goal is to approximate a continuous function f(x): [a,b] → 𝑅 by a linear combination of 

polynomials [139]: 

𝑟(𝑥) ≈∑𝑐𝑗

𝑛

𝑗=0

𝜙𝑗(𝑥) (Eq.4.6) 

where x ∈ [a,b], 𝑐𝑗 are the basis coefficients and finally 𝜙𝑗(𝑥) are the basis functions which 

are polynomials of degree ≤ n. 

Since radius reduction from inlet to outlet is a general feature of coronary arteries, a linear 

polynomial is an appropriate and efficient inclusion for capturing the linear taper. The taper is 

a specific form of first order global basis functions, as it shown in Figure 4.7. However, the 

polynomial representation is not usually appropriate to get a family of shapes that converge to 

the original shape as higher order terms are added.  

In this thesis will be used for the radius variation a linear approximation plus a series of 

Gaussian or Fourier basis functions of the form: 

𝑟(𝑥) ≈ 𝑐0 + 𝑐1𝑥 +∑𝐺𝑔(𝑥)

𝑁𝑔

𝑔=1

 (Eq.4.7) 



Shape parameterisation and ROM in 2D patient-specific coronary geometries

 

126 

 

or:  

𝑟(𝑥) ≈ 𝑐0 + 𝑐1𝑥 +∑𝐹𝑓(𝑥)

𝑁𝑓

𝑓=1

 (Eq.4.8) 

where 𝜙0(𝑥) = 1, and 𝜙1(𝑥) = 𝑥. 

 

Figure 4.7: Example of taper on a clinical geometry. 
Radius variation along the length (blue line), coronary taper (red line). 

 

4.3.4 Approximation of the radius with Gaussian basis 

The global basis functions chosen for the approximation are based on 1-D negative Gaussian 

curves. Gaussians basis are especially suited to the definition of local perturbations of the 

domain that diminish rapidly away from the locality, whilst global polynomial or Fourier series 

representations do not have this property. 

In fact, for diseased coronaries it is reasonable to ask whether a series of basis functions that 

best capture local lesions, such as the Gaussians, produce more effective and efficient shape 

representations than the Fourier series. The function f(x) to approximate the radius has the form 

of linear taper plus a stenosis: 

𝑓(𝑥) ≈∑𝜙𝑖 + 𝑡𝑎𝑝𝑒𝑟

𝑁

𝑖=1

        𝑤𝑖𝑡ℎ 𝑖 = 1,2,3…𝑁 (Eq.4.9) 

where N is the number of global basis functions considered for the approximation and 𝜙𝑖 is the 

ith Gaussian basis function. Every Gaussian basis function considered in this section depends 

on three parameters: 

𝜙𝑖 = 𝑓(𝐴𝑖, 𝜎𝑖, 𝑥𝑖)         𝑤ℎ𝑒𝑟𝑒 𝑖 = 1…𝑁 (Eq.4.10) 

where 𝐴𝑖 describes the amplitude, 𝜎𝑖 represents the width and finally 𝑥𝑖 describes the position 

where the Gaussian is centred for the 𝑖𝑡ℎ basis considered (Figure 4.8). 

The general form of the global basis function used is: 

𝜙𝑖 = −𝐴𝑖 ∗ 𝐶 ∗ 𝑒𝑥𝑝 (−
(𝑥 − 𝑥𝑖)

2

2𝜎𝑖
2 ) (Eq.4.11) 
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The basis functions are all normalised to the length of the vessel, so that every basis is evaluated 

on the interval 0 ≤ 𝑥 ≤ 1. The 𝐶 parameter is a constant value which has been used for 

initialisation of the Gaussian. The whole function 𝑓(𝑥) is then approximated using a finite 

number N of Gaussian global basis functions plus a taper which is collecting the radius 

reduction between inlet and outlet introduced in the former section. 

Different combinations for the C and the 𝜎 values have been tried for the GA algorithm; after 

trial and error the Gaussian basis function is initialised with the following values; 𝐶 = 0.75, 

𝜎 = 0.05 (Figure 4.8). 

 

Figure 4.8: Initialisation of the Gaussian basis function with three parameters (Amplitude, width and 
position). 
The three parameters are free to vary accordingly with the optimisation algorithm 

Approximation with one global basis function 

For N=1 in Eq. 4.9 (only one basis function), the three geometrical parameters are: 𝐴1, 𝑥1 and 

𝜎1. Using the optimisation process introduced in section. 4.3.2 it is possible to compute the best 

combination of the three parameters which minimises the error between the patient specific 

coronary shape and the approximated geometry (see Fig 4.9 for examples). 
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Figure 4.9: Example of clinical shapes approximated with one global basis function. Radius vs Length. 

From Fig 4.9 it is possible to notice how the overall coronary shape is maintained. The function 

of the taper is clear; while the single Gaussian basis function is free to move along the domain 

and tries to catch the minimum radius and the overall stenosis shape. However, as expected 

when there are sharp changes for the radius variation along the length one basis function is not 

enough.  

Approximation with two global basis functions 

Fig 4.10 shows the approximation of clinical geometries, using two global basis functions, for 

a total of 6 parameters (𝐴1,2, 𝜎1,2, 𝑥1,2). The global basis functions are described by 𝜙1(𝑥) and 

𝜙2(𝑥) (Figure 4.10, Figure 4.11). 

  

  
Figure 4.10: Example of clinical shapes approximated with two Gaussian basis functions. 

The two basis functions are shown on the bottom graph. 
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Figure 4.11: Example of clinical shapes approximated with two Gaussian basis functions. 

The two basis functions are shown on the bottom graph. 

  
Figure 4.12: Left graphs) Correlation between clinical geometries and approximated geometries on the 
pressure drop computed with 2 Gaussian basis functions. Right graphs: Bland-Altman plots 

From Figure 4.12 it can be noticed an improvement of the overall coronary shape using two 

global basis functions compared with only one. However, looking at the Bland-Altman graph 

(Figure 4.12) the CFD pressure drop computed on the clinical geometries and on the 

approximated geometries, it can be seen that the algorithm doesn’t produce accurate results 

with an 𝑅2 = 0.86 and a standard deviation equals to 12.52. Furthermore, data points in the 

ROI (10 𝑚𝑚𝐻𝑔 < 𝛥𝑃 < 30 𝑚𝑚𝐻𝑔) are fairly scattered. 

Approximation with three global basis functions 

Figure 4.13 shows the approximation of the clinical geometries, using three Gaussian basis 

functions, for a total of 9 parameters (𝐴1,2,3, 𝜎1,2,3, 𝑥1,2,3). The global basis functions are 

described by 𝜙1(𝑥), 𝜙2(𝑥) and 𝜙3(𝑥) (Figure 4.13).  
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Figure 4.14: Left graphs) Correlation between clinical geometries and approximated geometries on the 
pressure drop computed with 3 Gaussian basis functions. Right graphs: Bland-Altman plots  

As expected, increasing the number of Gaussian basis functions improve the overall correlation 

between the pressure drop computed on the clinical geometry and the approximated geometry. 

In fact, comparing the two plots (Figure 4.12 and Figure 4.14) the value of 𝑅2 increased to 

0.911 and a standard deviation of 5.10. However, it is possible to notice few outliers even for 

low values of pressure drop (Figure 4.14). 

Furthermore, since the amplitude of the Gaussian basis functions is the most important 

parameter to collect, it is a reasonable choice to study the behaviour of the approximations 

considering only one parameter to optimise (amplitude), designing few localised Gaussian 

basis functions. 

  

  
Figure 4.13: Example of clinical shapes approximated with three Gaussian basis functions. 

 1st and 3rd rows) Blue lines are representing the original clinical shapes whilst the red lines are the 
approximated clinical shapes with three basis functions. 2nd and 4th rows) Blue, red and green lines 
represent the three basis functions used to approximate the geometries. 
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4.3.5 One parameter description for the Gaussian basis functions 

Since the major pressure drop is caused by the minimum radius of the stenosis, differently from 

the previous section, it has been decided to approximate the coronary shapes with Gaussian 

basis functions depending only on the amplitude parameters. The values of the width and the 

location of the Gaussians had been kept constant: 

𝜙𝑖 = 𝑓(𝐴𝑖)         𝑤ℎ𝑒𝑟𝑒 𝑖 = 1…𝑁 (Eq.4.12) 

The normalised domain of the coronary artery has been divided into N sub-domains where each 

Gaussian is trying to approximate one of these sub-domains. Furthermore, the function f(x) has 

the form of: 

𝑓(𝑥) ≈∑𝜙𝑖(𝑥)

𝑁

𝑖=1

+ 𝑡𝑎𝑝𝑒𝑟 (Eq.4.13) 

where 𝜙𝑖 is the ith basis function described as: 

𝜙𝑖 = −𝐴𝑖 ∗ 𝐶 ∗ 𝑒𝑥𝑝 (−
(𝑥 − 𝑥𝑖)

2

2𝜎2
) (Eq.4.14) 

An example of a whole initialisation Gaussian global basis family used to approximate the 

coronary shapes with fixed width and localised in sub-domains is shown in Figure 4.15. 

 

Figure 4.15: Whole family of basis functions. The different basis functions are defined locally along the 
domain. 

Figure 4.16 and Figure 4.17 show the shape approximation using 8 and 19 Gaussian basis 

functions computed on the same clinical geometries in order to compare the results. 

 8 Gaussian basis functions approximation (1 parameter each) 
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Figure 4.16: Approximation of clinical geometries with 8 global basis functions.  

Blue line) Clinical geometry. Red line) Approximated geometry. 

 
 
 
 
 

19 Gaussian basis function approximation (1 parameter each) 

  

  
Figure 4.17: Approximation of clinical geometries with 19 global basis functions. 

Blue line) Clinical geometry. Red line) Approximated geometry. 

As expected, using 19 local basis functions to approximate the coronary shapes produces a 

more accurate representation of the radius distribution along the vessel than that achieved using 

8 local basis functions. For the latter the reconstructed geometry is much smoother than the 

clinical geometry, there is not a high level of detail but the important features (inlet, outlet, 

min. radius) are still well captured. 

It is expected that a more accurate representation of the geometry will naturally produce a more 

accurate representation of the pressure gradients. The total pressure drop along the whole 

vessel, computed by CFD for the original and approximated geometries, is illustrated in Figure 

4.18. The value of 𝑅2 is 0.96 and the standard deviation is 3.57 for nineteen terms; 𝑅2 is 0.91 

and standard deviation is 7.80 for eight terms, but it is noted that there are outliers with high 

error, up to ≈ 21 mmHg, even for the higher-order representation. 
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8 Gaussian basis functions approximation (1 parameter each) 

  
19 Gaussian basis function approximation (1 parameter each) 

  
Figure 4.18: Left graphs) Correlation between clinical geometries and approximated geometries on the 
pressure drop computed with different number of localised Gaussian basis functions. 
Right graphs: Bland-Altman plots. 
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4.3.6 Approximation of the 2D coronary shape by Fourier boundary 

variations 

It is well known that any periodic function described by 𝑓(𝑥) = 𝑓(𝑥 + 𝑇) where T is the period 

of the signal, can be written as a summation of weighted cosine and sine functions waves 

characterised by increasing their frequencies [140]. Our 𝑓(𝑥) function is the variation of the 

radius along the axial axis for every clinical segmented geometry in our clinical dataset. Using 

Fourier analyses is possible to decompose the original clinical shape into harmonics 

components. Our 1-D function f(x) with Fourier series will have the form of: 

𝑓(𝑥) =
𝐴0
2
+∑(𝐴𝑛 cos (

2𝜋𝑛

𝐿
𝑥) + 𝐵𝑛sin (

2𝜋𝑛

𝐿
𝑥))

∞

𝑛=1

 (Eq.4.15) 

Since we are considering a finite number of harmonics to approximate the function 𝑓(𝑥), and 

expanding Eq. 4.14 with cosine and sine we obtain:  

𝑓𝑎𝑝𝑝𝑟𝑜𝑥(𝑥) =
𝐴0
2
+∑(𝐴𝑛 cos (

2𝜋𝑛

𝐿
𝑥) + 𝐵𝑛sin (

2𝜋𝑛

𝐿
𝑥))

𝑁

𝑛=1

 (Eq.4.16) 

where 𝐴𝑛 and 𝐵𝑛 are the cosine and sine harmonic coefficients, 𝐴0 is the fundamental 

harmonic, n is the number of harmonics considered for approximating the function. 

The Fourier approximation works well when the function is periodic, however our clinical 

shapes are non-periodic. In these cases, the quality of approximation with Fourier series near 

the end points (inlet and outlet) could be poor if the behaviour of the function at both ends does 

not match. To mitigate this issue, a taper can be added to the description of the function 𝑓(𝑥) 

as in Eq. 4.16 so the values at the inlet and outlet of the function match: 

𝑓(𝑥) = 𝐹𝑓𝑜𝑢𝑟𝑖𝑒𝑟 + 𝑡𝑎𝑝𝑒𝑟 (Eq.4.17) 

If we compute the difference: 

𝑓(𝑥) − 𝑡𝑎𝑝𝑒𝑟 = 𝐹𝑓𝑜𝑢𝑟𝑖𝑒𝑟 (Eq.4.18) 

 

The value of the function at the inlet and outlet is 𝐹𝑓𝑜𝑢𝑟𝑖𝑒𝑟(𝑖𝑛𝑙𝑒𝑡) = 0 and 𝐹𝑓𝑜𝑢𝑟𝑖𝑒𝑟(𝑜𝑢𝑡𝑙𝑒𝑡) = 0. 

Recomposing the signal with: 

𝑓𝑎𝑝𝑝(𝑥) = 𝐹𝑓𝑜𝑢𝑟𝑖𝑒𝑟 + 𝑡𝑎𝑝𝑒𝑟 (Eq.4.19) 

where 𝑓𝑎𝑝𝑝(𝑥) is the approximated function with n number of Fourier harmonics. 

The approximation of the clinical geometries have been studied four different times using a 

different number of harmonics: 10, 15, 20 and 25 harmonics. A log file with the root mean 
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squared error is saved for all the geometries for each of the four datasets. Examples of 

approximation are shown in Figure 4.19 and Figure 4.20. 

Approximation with 10 harmonics 

 
Figure 4.19: Fourier approximation with 10 harmonics. Clinical geometry (blue line). 

Clinical geometry approximated with Fourier (red dashed line). 

On these plots, the coronary shapes have been approximated with 10 harmonics. The overall 

shape is very well maintained, however looking at the red circles the minimum radii are not 

caught by the approximations. This means that the pressure profile and the pressure drop for 

the clinical case and the approximated case will not be maintained very well.  
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Approximation with 25 harmonics 

 
Figure 4.20: Fourier approximation with 25 harmonics. 

Blue line clinical geometry. Red dashed line approximation with Fourier. 

In Figure 4.20, the coronary shapes have been approximated with 25 harmonics (Figure 4.20). 

The overall shape is very well maintained even at very sharp variations thanks to the harmonics 

with high frequencies. The minimum radii are perfectly captured. Computing CFD on both 

geometries (clinical, approximated) results in a very good correlation regarding the pressure 

drops. However, the major downside of this approach is that using N harmonics, in the case of 

a parameterised ROM we have to consider 2 by N number of parameters, because of the cosine 

and the sine coefficients for the Fourier series. A very high number of parameters would make 

the ROM impractical. 
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Having logged all the RMS errors for all the cases approximated by a different number of 

harmonics is possible to notice how the average error decreases whilst increasing the number 

of harmonics (Figure 4.21). 

 

Figure 4.21: RMS error vs Number of Harmonics.  
As it can be seen, increasing the number of harmonics the error decreases. 

Applying Fourier decomposition to our coronary shapes, we should expect that the power 

content of the Fourier harmonics should be concentrated in the first few harmonics. In general, 

at high frequencies the power spectrum of the harmonics should approach the zero value, whilst 

the first few harmonics contain most of the power. 

As can be seen in Figure 4.22, the power spectrum of the Fourier harmonics reaches the zero 

value for high frequencies. Not surprisingly, a good approximation of coronary shapes is 

obtained using the first few harmonics. 

 

Figure 4.22: Power Spectrum vs number of harmonics. 

Using the Fourier approach to parameterise the clinical geometries and their pressure profiles, 

generates a good representation of the overall shape and well-matched pressure profiles with a 

good grade of accuracy especially for 10 𝑚𝑚𝐻𝑔 < ∆𝑃 < 30 𝑚𝑚𝐻𝑔 (Figure 4.23). 
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Increasing the number of harmonics on the system allow to capture very sharp variation on the 

actual shape for local areas. However, the method is not efficient when coupled with ROM 

applications. The number of the parameters to describe the approximated geometry with high 

accuracy is very high, e.g. for a Fourier series with 25 harmonics the number of parameters to 

considered when building a ROM is more than double. 

 

Approximation with 10 harmonics 

  
Approximation with 15 harmonics 

  
Approximation with 20 harmonics 

 
 

Approximation with 25 harmonics 
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Figure 4.23: Left column) Pressure gradient approximated geometries vs Pressure gradient clinical 
geometries described with different number of harmonics. 
Right column) Bland-Altman for the different descriptions. 
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4.4 Discussion 

In the former section accuracy and flexibility have been taken into consideration for different 

approaches of geometry parameterisation. Focus has been given to polynomials, Gaussians and 

Fourier basis functions. Moreover, it has been considered for the shape parameterisation a 

combination of the basis; a combination of a first order polynomial with a series of Gaussians 

and a first order polynomial with a Fourier description. 

When considering a high number of harmonics, the Fourier approach produces good results in 

terms of accuracy and it is able to collect very sharp variations of the coronary shape. However, 

this method is impractical due to the high number of geometrical parameters involved which 

would result in a very large design space. 

The Gaussian basis functions, dependent on three parameters are also affected by the high 

number of parameters (three parameters for every basis functions). Furthermore, they are not 

accurate in terms of maintaining an unaltered pressure profile and the error on the pressure 

gradient diminishes very slowly with increase in number of bases. 

The Gaussian basis function with only the amplitude parameter to be optimised produces the 

best results in terms of flexibility. They are easy to create and easy to manage. Furthermore, a 

good grade of accuracy for the pressure profile has been obtained using a limited number of 

basis functions. Limiting the number of parameters is useful for maintaining a low level of 

computational cost for the ROM construction. 

For these reasons, it has to be chosen to create clinical ROMs using the Gaussian basis 

functions (8 bases) described by only one parameter (the amplitude) while keeping the width 

and the location of the basis fixed, plus the taper which is useful to collect the common feature 

of radius reduction on coronary arteries.  



Shape parameterisation and ROM in 2D patient-specific coronary geometries

 

141 

 

4.5 Clinical ROM construction 

In this section is presented the process to build a parameterised ROM starting from patient 

specific coronary geometries [90], [96], [124], [131], [132], [141]. In order to build and 

populate the training dataset, the geometrical parameters used for creating the synthetic dataset 

are the 8 basis parameters (amplitudes of the Gaussians), plus 2 parameters for the taper, the 

vessel length of the coronary and lastly the mass flow inlet for a total of 12 parameters. The set 

of parameters spanning the parametric space are presented in Table 4.1. 

Table 4.1: Maximum and minimum values of each parameter for the ROM. 

Parameters Min Max 

Amplitude 1 -0.78 1.25 

Amplitude 2 -0.74 2.08 

Amplitude 3 -0.94 1.62 

Amplitude 4 -1.02 1.63 

Amplitude 5 -0.91 1.65 

Amplitude 6 -0.79 1.45 

Amplitude 7 -1.14 1.47 

Amplitude 8 -0.66 0.59 

Taper P1 -1.97 0.19 

Taper P2 0.84 2.99 

Length (Norm.) 0.33 1 

Mass flow rate 0.0010 0.0022 

 

The constructed synthetic dataset consists of 24933 geometries. Different ROMs have been 

created starting from the same training dataset, in order to study the changes of the projection 

errors and interpolation errors. The correlation matrix is populated with pressure values along 

the symmetry axis of every CFD steady state analysis, hence the final matrix dimension of 

[Nx699] where N is the number of snapshot considered for the offline process.  
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ROM with 33% of geometries for off-line process 

In this example the dataset for constructing the ROMs consists of 8311 geometries (a third of 

the entire dataset). Two ROMs have been created, the first one with 12 modes, the second one 

with 15 modes. 

Table 4.2: Summary of the two ROMs created with one third of the dataset used for training. 

ROM Number Size of the Training Dataset # of modes for the ROM 

ROM 1 8311 12 

ROM 2 8311 15 

 

The projection errors and the interpolation errors are both computed (Figure 4.24). 

ROM #1 (12 modes) 

 
 

 

  
ROM #2 (15 modes) 

  
Figure 4.24: Left column) Projection errors in percentage for geometries within the training dataset (blue 
dots) and outside the training dataset (red dots) for different number of modes.  
Right column) Projection errors (blue dots) and interpolation errors for cases outside the training dataset 
for different number of modes. 

It can be seen that the projection errors computed for the geometry within the training dataset 

are decreasing in magnitude whilst increasing the number of modes. The projection errors for 

the geometry not used for training follow the same trend. Regarding the interpolation errors on 
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the right hand side of Figure 4.24, considering a higher number of modes (15 vs 12 modes) 

does not change the description of the pressure gradient.  

 

ROM with 50% of geometries for off-line process 

In this example the constructed ROMs are built considering half the size of the full phantom 

dataset. The training dataset are composed of 12467 geometries. Four ROMs have been built 

maintaining same size for the training dataset but changing the number of considered modes 

(Table 4-3). 

Table 4.3: Summary of the ROMs created with half of the dataset used for training. 

ROM Number Size of the Training Dataset # of modes for the ROM 

ROM 1 12467 8 

ROM 2 12467 10 

ROM 3 12467 12 

ROM 4 12467 15 

Figure 4.25 shows the comparison between the pressure profiles computed with full 2D 

axisymmetric simulations and the pressure profiles computed with different number of modes 

for some cases within the training dataset.  
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Figure 4.25: Pressure vs Length comparison between full CFD and low order solution varying the number of 
modes. 
Top left) Pressure profile with 3 modes. Top right) Pressure profile with 8 modes. Bottom left) Pressure profile 
with 15 modes. Bottom right) Pressure profile 20 modes. 

The projected solutions converge towards the full CFD solution with increasing number of 

modes. Furthermore, the computed basis functions are able to capture the overall pressure drop 

even with a small number of modes (modes = 3). However, the pressure solution with 3 modes 

is not capable to capture the local variations of the pressure profile and the pressure drops when 

the fluid flow encounters a stenosis.  

In summary, the graphs show that the first few modes are capable of capturing the overall fluid 

flow pattern. However, increasing the number of modes captures more of the local details. In 

fact, using 20 modes an excellent accuracy between the full CFD solution and the reduced-

order solution. 

For the example taken into consideration, the two major pressure drops occurring at 20mm and 

60mm are captured very well. 

The plot of the average projection error versus number of modes for every computed ROM is 

shown in Figure 4.26. As expected keeping the same size and same geometries for the training 
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dataset, but varying the number of modes results in a decreasing of the average projection error. 

It can be noticed that using 15 modes, the average projection error for the ROM is < 2%.  

 

Figure 4.26: Projection error vs number of modes 

Once the ROMs have been trained, the evaluation and validation steps for every ROM were 

performed on a total of 1000 simulations; 500 geometries were within the training dataset, 

whilst the remaining 500 simulations were outside the training dataset; the latter ones were 

characterised by completely new parameters (geometrical and inlet flow within the parameters 

space) [57], [58]. 

In the graphs shown below, for every different clinical ROM, both the projection error and the 

interpolation error have been computed. The projection error has been computed for the whole 

validation dataset (500 + 500 geometries), the interpolation error has been computed only for 

the geometries which were outside the dataset (500 geometries). As already mentioned in 

Chapter 3, in order to have an estimation of the projection and interpolation errors, the user has 

to compute the full CFD solutions in order to compare the ROM to a ‘gold standard’. 

As expected, the projection error magnitude for the computed ROMs is very similar; this means 

that the computed modes with the SVD are capturing the most important fluid flow patterns 

and are also able to describe accurately the geometries outside the dataset. 

A detailed comparison between the pressure gradients computed with full CFD and ROM is 

shown in the plots below using different number of modes (Figure 4.27). 

 

 

 

Projection Errors for different # of modes 𝜟𝑷 𝑪𝑭𝑫 𝒗𝒔 𝜟𝑷 𝑹𝑶𝑴 for different # of 

modes 
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Shape parameterisation and ROM in 2D patient-specific coronary geometries

 

147 

 

  
Figure 4.27: Left column) Projection errors in % for geometries within the training dataset (blue dots) and 
outside the training dataset (red dots) for different number of modes. 
Right column) Projection errors (blue dots) and interpolation errors for cases outside the training dataset 
for different number of modes. 

 

The left column of Figure 4.27 is showing a comparison between the projection errors with 

different number of modes computed for 500 geometries within the dataset (blue dots) and 500 

geometries not used for training (red dots). It is important to notice that the average projection 

error is very small for all the cases (𝑀𝑎𝑥 𝐴𝑣𝑔𝑒𝑟𝑟 ≤ 0.07 for 8 modes). Furthermore, the right 

column of Figure 4.27 is representing both the projection errors and the interpolations errors 

for 500 geometries, for which the considered geometries were not used for training (new input 

numerical parameters). The pressure drop computed projecting the full solutions onto the base 

of modes (blue dots) have an excellent correlation. The pressure drop computed with 

interpolation (red dots) have still a good correlation for values of 𝛥𝑃 ≤ 30 𝑚𝑚𝐻𝑔, however 

for high values of the pressure drop the error starts to increase. 

Some pressure profiles computed with the four different ROMs are shown in Figure 4.28 in 

which the pressure profiles are evaluated for new geometries (not used for training) and 

completely new sets of parameters. The plots are produced with 8, 10, 12 and 15 modes in 

order to compare the dynamic of the description of the different pressure profiles whilst 

increasing the number of modes. As it can be seen, with 8 modes the ROM is already capable 

of describing the full CFD solution with a fairly good degree of accuracy. The overall pressure 

drop for all the considered geometries is well maintained (Figure 4.28).  

Increasing the number of modes, as already shown for the projection errors, it can be seen that 

the ROMs try to push the low order solutions toward the full order solutions, where sharp 

variations are better captured. The overall error improves for the pressure profiles description; 
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however, there are no major improvements for the pressure drop since it was already well 

captured with 8 modes. 

The evaluation step for the on-line mode can be performed on a normal laptop. The ROM 

pressure profile for each case is computed in ≈  0.2 s; a full order simulation for a 2D steady 

state axisymmetric is computed in ≈ 180 s. The improvement in the execution is clear since the 

ROM computation is ≈ 900 times faster. 

Example # 1 Example # 2 
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Figure 4.28: Recomputed pressure profiles for cases outside the dataset for different number of modes. 
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4.6 Validation of the vFFRCFD vs vFFRROM for patient-

specific data  

In the previous section, the built ROMs with the parameters extracted from the clinical dataset 

were validated against synthetic geometries which were not used for the training and are 

dependent on new set of numerical parameters.  

In this section, the ROMs built with the synthetic dataset will be tested against the 

approximated clinical geometries described by 12 parameters. Only the interpolation error is 

taken into account in this study. Two ROMs have been considered (described in details in the 

former section). The two ROMs are characterised by 12 and 15 modes and they had been built 

considering half the size of the full dataset for training (12467 solutions). 

Interpolation Error with 12 modes 

Example # 1 Example # 2 

  
Example # 3 Example # 4 

 
 

 

Figure 4.29: Examples of CFD (blue lines) vs computed ROM pressure profiles (red lines) with 12 modes. 
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Figure 4.30: Left) Pressure gradient CFD vs Pressure gradient ROM (12 modes). Right) Bland-Altmann plot. 
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Interpolation Error with 15 modes 

Example # 1 Example # 2 

  
Example # 3 Example # 4 

 
 

 

Figure 4.31: Examples of CFD (blue lines) vs computed ROM pressure profiles (red lines) with 15 modes. 

 

Example # 5 Example # 5 

  
Figure 4.32: Left) Pressure gradient CFD vs Pressure gradient ROM (15 modes). Right) Bland-Altmann plot. 

As expected the overall pressure gradients for the evaluated dataset testing the two ROMs is 

very well maintained, this behaviour also explains the high correlations between the 𝛥𝑃 
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computed with full CFD and the ROM 𝛥𝑃 (Figure 4.31). It is also possible to notice how the 

ROMs try to catch the major pressure gradients due to the presence of lesions, and how 

increasing the number of modes from 12 to 15 the ROM slowly pushes the solutions to 

converge towards the high fidelity CFD solutions. Figure 4.32 is showing a very good 

correlation between the full CFD 𝛥𝑃 and the computed pressure gradient in the region of the 

ROI, then for high values of pressure drop the accuracy start to decrease. It is also possible to 

notice this behaviour from the Bland-Altmann plot where there are outliers for values 

of 𝛥𝑃𝑚𝑒𝑎𝑛 ≥ 28 𝑚𝑚𝐻𝑔.  

 

4.7 Conclusion and discussion 

In the first part of the chapter have been shown different methods and approach of shape 

parameterisation for the 2D axisymmetric coronary patient specific geometries. Different types 

of global basis functions have been explored as approximation functions. The best 

approximation method chosen for creating the clinical ROM is the Gaussian basis described 

by a single parameter (amplitude); which allowed a good grade of accuracy, maintaining the 

overall coronary shape of the considered coronary with a well-matching pressure profiles using 

a small number of parameters. The extracted geometrical parameters have been used to create 

a large phantom dataset. 

In the second part of the chapter, multiple ROMs have been created. The ROMs have been 

trained using different numbers of fluid flow simulations to populate the correlation matrix. 

Furthermore, the ROMs have been trained with different number of modes in order to check 

the level of accuracy and convergence toward the full order solution. Both the projection and 

the interpolation errors were computed. The accuracy of the ROMs has been studied both on 

the phantom geometries not used for the training dataset, and on the actual patient specific 

clinical dataset. 

In this chapter it has been shown that the SVD method is a valuable approach to compute the 

modes necessary to rebuild the full order solutions. In fact, it has been shown that a limited 

number of modes are capable of capturing the most predominant fluid flow information for 2D 

steady state axisymmetric CFD simulations. Furthermore, it had been shown that the projected 

solutions converge towards the full order CFD solutions by incrementing the number of modes.  

Coupling the modes with an interpolation method to compute the modes coefficients, the 

ROMs have shown good grade of predictions when evaluating the pressure profile for 
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completely new geometries described by a new set of numerical parameters. The prediction of 

the pressure profiles is possible training the ROM with parameters spanning the parameter 

space of interest.  
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5 Chapter 5                    
3D CFD coronary arteries simulations: 

towards a Reduced Order Method for 

fast haemodynamic prediction 
 

In the previous chapters it has been demonstrated that a ROM can effectively represent the 

pressure gradients computed by full CFD in a straight axisymmetric tube with radius varying 

along its length. It has also been shown that the results are comparable with actual clinical 

measurements, suggesting that the principal governing factor is the variation of radius. There 

is, however, the obvious question of whether the three-dimensional curvature of the vessel 

might also be an important factor in the determination of the pressure gradient.  

The purpose of this chapter is to extend the analysis to include low-order parameterisation of 

the 3D shape of the vessel centreline. For clinical applications, reconstruction of 3D geometries 

from images is the key to develop patient-specific models, which can then be studied to 

estimate clinical indices avoiding the invasive procedure [68],[69],[70],[71], [72].  

Furthermore, 3D CFD simulations are performed in cardiovascular applications in order to 

capture the dynamic of blood flow patterns (pressure and velocity) and to estimate other 

parameters of clinical interest such as the wall shear stress, which influences the endothelial 

proliferation within the vessel wall [142]–[145]. Although there is evidence in the previous 

chapters that the pressure gradient might be adequately represented by the ROM of the 

axisymmetric system, and therefore that it might be sufficient for the computation of FFR, it 

would not be anticipated that the shear stress distribution would be captured using this 

approximation. This chapter does not address the shear stress distributions themselves, but does 

examine whether the ROM can be extended by increasing the number of parameters that 

represent the 3D vessel curvature and remain effective and accurate. Figure 5.1 presents the 

workflow which has been followed for Chapter 5. 
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Figure 5.1: Main workflow for Chapter 5. 
FFRs computed with 2D vs 3D with 2D curvature and full 3D are compared. When the FFR values are not 
comparable a 3D ROM needs to be developed following three main steps: centreline parameterisation, mesh 
morphing and building the 3D ROM.  

Section 5.2 focuses on the comparison between three different CFD models: 2D axisymmetric 

geometries, 3D coronary geometries where the centreline lies on a 2D plane (2D curvature) 

and full 3D coronary geometries. The main aim is to compare the FFRs which have been 

computed with the three models. When the computed FFRs are very similar to each other (2D, 

3D with 2D curvature and 3D), then there is no need to develop a 3D ROM since the 2D 

axisymmetric ROM for the clinical cases is already accurate. 

If the FFRs are not compatible between each other, then there is the need to build a 3D ROM. 

In this case, a first step is to find a possible solution for centreline parameterisation; this is 

covered in section 5.3. Once a satisfactory centreline parameterisation is found, the next step 
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is to perturb the centreline parameters; this allows the user to morph the geometries in order to 

obtain isotopological meshes.  After introducing and explaining the methods for centreline 

parameterisation, focus will be given on creating a large synthetic dataset with full 3D 

geometries and correspondent 3D volumetric meshes (Section 5.3.2).  

In Section 5.5 results will be shown in terms of projection errors and interpolation errors as 

well regarding the built 3D ROM. 

In Section 5.6, conclusions for the chapter will be presented.   

5.1 Introduction 

From the computational point of view, solving numerical 3D fluid flow simulations require a 

lot of computational power and time. For example, a full transient blood flow simulation on a 

coronary artery could take more than 24h on a normal desktop PC. The time scale is not 

compatible with clinical application, where a fast, accurate and reliable patient-specific 

solution should be available in near real-time.  

In this chapter reduced order method for computing pressure profiles along centrelines for 

coronary arteries in three dimensions is introduced [26]. The numerical complexity of the 

model is hugely decreased by application of a proper orthogonal decomposition (POD). The 

creation of a patient-specific dataset is the starting point for the ROM construction [58], [59], 

[96], [131], [132], [146]. In fact, a similar process for creating a 2D parameterisation, had been 

followed for the 3D parameterisation of the geometries. There is a combination of human 

intelligence, testing and experimentation in order to decide the algebraic nature of the 

parameterisation, which combined with a clinical dataset is useful to determine an appropriate 

quantitative range of the geometrical parameter to develop the design of experiment. The ROM 

combines geometrical parameters for shape and centreline approximation and physical 

parameters. Moreover, coronary geometry variations are handled with the introduction of a 

centreline parameterisation algorithm. 

The main goal of this chapter is to introduce a reduced order method which is capable of a fast 

pressure profile computation with patient specific clinical data [147]. By construction of a 

dataset of full CFD solutions, which are used as basis functions, a fast evaluation of pressure 

profiles is possible. 

Many CFD studies have been performed on 3D coronary artery geometries. However, only few 

of these include parameterised ROMs [121]–[125]. ROMs applied for cardiovascular 

applications are described in Manzoni et al. [59], Ballarin et al.[131] and Colciago et al. [137]. 
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In Manzoni et al ROMs are applied to carotid artery bifurcations to achieve a fast evaluation 

of the blood flow. Their method is based on the combination of low-dimensional shape 

parameterisations of the computational domain and the reduced basis method to solve the flow 

equations. The computational domain is a 2D domain, with a very simplified mesh. In order to 

use a small number of geometrical parameters to describe the carotid vessel, the mesh was 

morphed following the displacements of few control points defined along the vessel’s wall. 

The usage of control points can induce a local or a global variation of the computational 

domain. However, for this study the usage of control points to deform the original shape is 

restrictive since the control points cannot be chosen freely but their starting position is already 

pre-determined at the beginning of the study.  

Ballarin et al. applied ROMs to 3D Coronary Artery Bypass Grafting (CABG) to provide 

information about haemodynamic conditions for different surgical choices. CABG is a 

procedure to restore myocardial blood flow when more coronary vessels are occluded, limiting 

the correct perfusion of myocardium. The use of a CFD solution for each case would require 1 

day to produce the results even in modern high-performance computers, while the ROM can 

provide the solution in few minutes. Their ROM consists of three steps: parameterised 

formulation, geometrical variation and computation of the solution with a POD method. Ten 

patients were recruited, each with a different number of grafts. Their model is defined by two 

geometrical parameters: stenosis severity (between 0% and 90%) and grafting angle 

(antegrade, T-shaped and retrograde).  The stenosis location and extension were kept fixed 

based on the anatomical data. The centreline-based parametrisation allowed deformation of the 

patient specific mesh into a parametric one in an automatic way. This is essential to apply the 

ROM efficiently to different geometrical configurations represented by the same mesh. The 

group suggested that further improvements were required with regards to the personalisation 

of the model, using lumped models as inflow-outflow boundary conditions.  

Colciago et al.applied ROM to a patient specific aortofemoral artery. The aim of the group was 

to compare the results between a full fluid-solid interaction (FSI) and a reduced fluid-solid 

interaction study (RFSI). They chose a single parameter for their model, the Young’s modulus. 

Even in this case the group used the POD method to compute the modes. The group stated that 

the RFSI model can run on a normal laptop in 3.4s achieving good accuracy for pressure, 

velocities and shear stress. However, their study was limited in that the computed RFSI cannot 

predict the fluid flow for any patient-specific artery since the trained ROM model was 
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composed of a single aortofemoral geometry. Changing the patient, would require the 

recomputation of the off-line phase. 

 

5.2 3D CFD vs 3D (2D curvature) vs 2D Axisymmetric 

simulations on patient specific coronary arteries 

The aim of this section is to present a comparison between three levels of representation in 

models for patient specific geometries: full 3D geometries, 3D geometries described by a 2D 

curvature and finally 2D axisymmetric models. The same boundary conditions have been 

applied for every coronary artery included in the study.  

The goal is to determine the degree to which the curvature of the coronary artery centreline 

influences the pressure profile of the coronaries. It is not expected that the pressure profile will 

remain exactly the same in each of the different models. However, since the radius variation 

along the length is the same for a single geometry, based on the success of the axisymmetric 

ROM described in the previous chapter in reproducing clinical measurements of FFR, it is 

hypothesised that pressure profiles will be similar. If this hypothesis is proven, it might not be 

necessary to create a 3D ROM since the 2D axisymmetric ROMs are already capable to capture 

the overall pressure gradient with a sufficient accuracy.  

Nine cases (both RCA and LAD vessels) have been considered for this analysis. A number of 

steps were necessary to develop the models as described in the following sections. In particular, 

it is necessary to create the volumetric meshes for each case (3D and 3D with 2D curvature) to 

be imported into the Fluent solver.  

5.2.1 Creation of volumetric meshes 

Creation of triangular surface meshes 

Before starting computing CFD, different .stl files have been created in MATLAB; for CFD 

simulations in medical application it is common to start with a surface mesh, which is formed 

by triangles. As a second step, the triangular surface meshes have been imported into Fluent 

Meshing to create the volumetric meshes. 

Create volumetric mesh 

Since several 3D full CFD simulations have to be computed, it is impractical to mesh every 

single geometry one by one, and so journal files were produced to make the process completely 

automatic. All the necessary journal files were written with MATLAB scripts. 
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The creation of a good volumetric mesh is a very important step within the workflow. The 

computed mesh has to be fine enough to capture correctly the complex flow behaviour in detail, 

and the accuracy of the solution generally depends on the quality of the mesh, although this 

constraint is less onerous for finite volume methods as opposed to finite element. 

Within Fluent Meshing is possible to set the following boundary conditions: 

● Inlet: Mass-flow rate 

● Outlet: Pressure Outlet 

● Wall: No-slip condition 

A no slip condition has been set up for the wall boundary and, because this is where the velocity 

gradients are high, an inflation approach has been used to create a fine and regular mesh in this 

region. Starting and propagating from the coronary wall, prism layers have been created with 

an increasing gradient of cell size (Figure 5.1). Furthermore, a refinement of the mesh had been 

employed using a sizing function depending on the curvature of the geometry. 

 

Figure 5.2: Prism layers starting from the wall boundary. Prism layers have been created propagating from 
the wall with an increasing gradient of cell size. 

5.2.2 Convergence Criteria 

The root mean squared (RMS) residuals were monitored to ensure convergence of the CFD 

simulations. The default convergence criteria in ANSYS Fluent is 10-3, however ANSYS 

states: 

● Values larger than 10-4 may be sufficient to obtain a qualitative understanding of the flow 

field; 

● 10-4 is relatively loose convergence, but may be sufficient for many engineering 

applications; 

● 10-5 is good convergence, and usually sufficient for most engineering applications; 
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● 10-6 or lower is very tight convergence, and occasionally required for geometrically 

sensitive problems. It is often not possible to achieve this level of convergence, particularly 

when using a single precision solver. 

It has been chosen to apply a convergence criteria of 10-4 for both the continuity equation and 

for the momentum equations in all the three dimensions. A study has been carried out in one 

of the geometries (V048_LCx) to ensure the choice of the convergence criteria has no effect 

onto the pressure and velocity distribution on the 3D centreline along the length of the domain 

(Figure 5.2). 

V048_LCx 

  
Figure 5.3: Results of different convergence criteria for case V048_LCx. 

Left) Pressure drop vs Length along the centreline for different convergence criteria. Right) Blood velocity vs 
Length along the centreline for different convergence criteria. 

As can be seen, the computed pressure and velocity profiles along 

the centreline are identical for RMS residuals ≤ 10-4. All the CFD 

simulations computed in this chapter are set to reach a convergence criteria of 10-4 based on 

these findings.  

5.2.3 Full 3D CFD simulations 

Starting from the patient specific stl files, nine volumetric meshes have been created for full 

3D CFD analyses. The type of boundary conditions were already set up during the creation of 

the meshes under the Fluent Meshing environment; however, boundary conditions values have 

to be given during the solver settings. Regarding the rheology, blood had been characterised 

by a viscosity of 𝜇𝑏 = 0.035 [
𝑔

𝑐𝑚 𝑠
] and 𝜌 = 1066 [

𝐾𝑔

𝑚3].  

The steady state numerical CFD simulations have been performed in parallel using 4 cores of 

an Intel i7-6700 at 3.4GHz with 32GB of RAM. On average a full 3D simulation took ≈ 15 

mins to reach convergence. Figure 5.3 and Figure 5.4 show two examples of results for full 3D 
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solutions on two patient specific cases. As expected, in the pressure contour plot a sudden 

decrease in pressure is observed when the blood flow encounters the stenosis, with an 

associated increase of velocity. The actual pressure profile along the centreline for these two 

cases (and other 3D geometries) will be presented in the next section. 

 

V010_LAD 

 

 
 

 

V048_LCx 
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Figure 5.4: CFD results of full 3D pressure profile (top) and velocity field (bottom) for case V010_LAD and 
V048LCx. 
It is possible to notice the pressure drop across and the increase in velocity across the stenosis.  

5.2.4 3D CFD simulations with 2D curvature 

In this section, 3D CFD simulations have been performed on the same dataset of patient specific 

geometries considered in the previous paragraph, but with the geometry adjusted so that the 

vessel centreline lies in a plane. The aim of this section is to study if the fluid flow patterns and 

the pressure drop remains invariant when considering a coronary centreline with two 

dimensions rather than three. The motivation for this study is that coronary arteries can have 

high curvatures, but generally these are in a single plane. The out-of-plane curvatures are 

usually relatively small, and this might provide the opportunity to reduce the number of 

parameters needed for a ROM characterisation for clinical application, with benefits in 

stability, accuracy and computational effort in the construction of the ROM. 

Extract 2D coronary centreline from 3D geometries 

In order to extract the centreline information starting from the 3D geometry, the first step is to 

compute the best fitting plane to the xyz coordinates of the 3D coronary centreline.  

The general equation of a plane is (Eq.5.1): 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 (Eq.5.1) 

The idea is to compute the best coefficients of the plane (A, B, C and D) employing an 

optimisation problem. The goal is to minimise a particular cost function starting from an initial 

guess.  

The cost function to be minimised is the sum of the distances between the computed plane and 

the 3D centreline points. The cost function has the form (Eq.5.2): 

𝑐𝑜𝑠𝑡𝑓𝑢𝑛𝑐 = ∑
|𝐴𝑥𝑝𝑖 + 𝐵𝑦𝑝𝑖 + 𝐶𝑧𝑝𝑖 + 𝐷|

√𝐴2 + 𝐵2 + 𝐶2

𝑁

𝑖=1

 
(Eq.5.2) 

where 𝑥𝑝𝑖 , 𝑦𝑝𝑖 and 𝑧𝑝𝑖 are the 3D coordinates of the ith point P. 



3D CFD coronary simulations & 3D ROM

 

166 

 

All the coefficients have been set equal to 1 for initialisation. This optimisation problem had 

been solved in MATLAB using the fminsearch algorithm. At this stage, the next step is to 

project the 3D centreline points onto the fitting plane. For any given 3D point 𝑃(𝑥𝑝, 𝑦𝑝, 𝑧𝑝) the 

problem is to find its projection 𝑃′ which lies on the plane. Furthermore, 𝑃′ lies at the same 

time on the line 𝑃𝑃′ which is normal to the plane. The coordinates of any point along the line 

𝑃𝑃′ can be written in parametric form as (Eq.5.3): 

{
𝑥 = 𝑥𝑃 + 𝐴𝑡
𝑦 = 𝑦𝑃 + 𝐵𝑡
𝑧 = 𝑧𝑃 + 𝐶𝑡

 (Eq.5.3) 

Plugging these equations into the equation of the plane (Eq.5.5) will determine the value of the 

parameter 𝑡 such that the point will be at the same time on the plane and along the normal line. 

The general form of the equation to solve for the parameter 𝑡 is (Eq.5.4): 

𝐴(𝑥𝑃 + 𝐴𝑡) + 𝐵(𝑦𝑃 + 𝐵𝑡) + 𝐶(𝑧𝑃 + 𝐶𝑡) + 𝐷 = 0 (Eq.5.4) 

An example of the best fitting and the computation of the projection of the 3D points onto the 

plane is shown in Figure 5.5.  

The computation of the best fitted plane has been repeated for each of the 9 patient specific 

cases. 

 

Figure 5.5: Example of best fitting plane for a 3D coronary centreline. 
Red line) Original 3D coronary centreline shape. Yellow line) The 3D centreline has been projected on the best 
fitting plane. 

5.2.5 Results of the comparison 

A graphical comparison with pressure contours plot for the 3D geometries with 2D curvature 

and 2D axisymmetric geometries is presented in Figure 5.6. A quantitative comparison with 
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pressure profiles plots between the three different models is shown in Figure 5.7. For the right 

hand figures the view is along the plane of the artery to emphasise the planar geometry. 
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V010_Dx 

 
 

V010_LAD 

 
 

V015_RCA 

  
V018_LAD 

  
V019_LAD 
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V020_LAD 

 

 

V028_LAD 

 
 

V048_LCx 

 

 

V065_RCA 
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Figure 5.6: Qualitative visual comparison of pressure profiles for the 9 cases. 
Left column) CFD on the 3D geometries with 2D curvature. Right column) CFD on 2D axisymmetric 
geometries. 

 

 

Pressure Profiles for the different models 
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Figure 5.7: Pressure profiles for the 9 patient-specific coronary geometries obtained with different models. 
Blue lines) Pressure profiles obtained from the 2D axisymmetric models. Purple lines) Pressure profiles 
obtained from the 3D with 2D curvature models. Red lines) Pressure profiles obtained from the full 3D 
models 

 

Visual inspection of the individual case results presented in Figure 5.7 indicates that the 2D-

curved model and the straight-axisymmetric model both give distributions that are qualitatively 

similar to the 3D result, and this is quantitatively verified in Table 5-1 and in Figure 5.8 where 

the different values of FFR for the different models has been compared for each case.  
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Table 5.1:  Comparison of the different FFR values computed with different models and cases. 

Case name 2D FFR 3D with 2D curv. Full 3D 

10_Dx 0.5904 0.5948 0.50 

10_LCA 0.7112 0.7392 0.73 

15_RCA 0.7827 0.7889 0.7906 

18_LAD 0.9380 0.9312 0.9202 

19_LAD 0.8474 0.8539 0.8447 

20_LAD 0.8454 0.8393 0.8297 

28_LCx 0.9031 0.9003 0.8796 

48_LCx 0.8771 0.8754 0.8713 

65_RCA 0.9161 0.9110 0.8986 

 

 

Figure 5.8: Comparison of FFR values for the different nine cases and models. 

As would be expected, the 2D-curved results (red curves), as a first level of approximation, are 

generally closer to the 3D results (pink curve) than are the straight-axisymmetric results (blue 

curves). For three of the nine cases (cases 10_Dx, 28_LCx and 65_RCA) the 3D curvature 

appears to be more important: the 2D-curved and 2D-axisymmetric results are similar to each 

other but less similar to the 3D. In absolute terms the most significant deviation (approximately 

10 mmHg) is for case 10_Dx. This case had been studied more carefully in order to understand 

the reason for the difference on the pressure profiles (Figure 5.9-5.13). 

 

V010_Dx (3D with 2D curvature) V010_Dx (full 3D) 
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Figure 5.9: Geometries for case V010 Dx obtained with the approach 3D with 2D curvature (left) and the 
full 3D approach (right). 

  
Figure 5.10: Results of  velocity contours in selected planes for case V010 Dx obtained with the approach 
3D with 2D curvature (left) and the full 3D approach (right). 

  
Figure 5.11: Results of  velocity vectors in selected planes for case V010 Dx obtained with the approach 3D 
with 2D curvature approach (left) and the full 3D approach (right). 

  

Figure 5.12: Results of  velocity streamlines in selected planes for case V010 Dx obtained with the approach 
3D with 2D curvature approach (left) and the full 3D approach (right). 
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Figure 5.13: Results of velocity contour in a selected for case V010 Dx obtained with the approach 3D with 2D 
curvature approach (left) and the full 3D approach (right). 

It is clear how the sharp curvature of the stenosis is affecting the increasing of pressure gradient. 

Although the deviation of the centreline out of the plane is small compared with the length of 

the vessel, and the associated out-of-plane curvatures are low compared with the curvature in-

plane, the streamlines indicate a more spiral component of the flow in the full 3D. It might be 

possible in the future to identify which vessels might require full 3D analysis by a priori 

examination of the curvature and tortuosity of the vessels, and this is highlighted in the further 

work chapter.  
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5.3 Geometrical Parameterisation 

In Chapter 4 all the ingredients have been given to create a ROM including geometrical 

parameters for the shape approximation of the radius along the length. Furthermore, it had been 

shown that in order to create a ROM a parametric representation of the system is required. In 

this section will be introduced a centreline parameterisation in order to create ROMs for curved 

coronary arteries, reflecting the geometries that are typically seen in patients [149]–[152]. As 

discussed in the previous section, to reduce the number of parameters the coronaries are 

represented by planar approximations, capturing only the primary curvature. This can readily 

be extended in the future to a full 3D representation at the cost of an increased number of 

parameters. The workflow developed for this application is shown below (Figure 5.14): 

 

Figure 5.14: Workflow  

5.3.1 Patient-specific parameterisation of coronary centreline 

In the literature there are multiple methods to parameterise a curve (e.g. polynomials, spline) 

[131]; in this section a Fourier-based parameterisation method for the 3D curves, combined 

with a first order polynomial, is chosen for approximating coronary centrelines. A general 3D 

representation of a centreline using a finite number of harmonics would be of the form: 

𝑥𝑛 = 𝐶𝑥0 + 𝐶𝑥1𝑡𝑛 +∑𝐴𝑥ℎ cos(2𝜋ℎ𝑡𝑛)

𝐻

ℎ=1

+ 𝐵𝑥ℎ sin(2𝜋ℎ𝑡𝑛) 

(Eq.5.5) 𝑦𝑛 = 𝐶𝑦0 + 𝐶𝑦1𝑡𝑛 +∑𝐴𝑦ℎ cos(2𝜋ℎ𝑡𝑛)

𝐻

ℎ=1

+ 𝐵𝑦ℎ sin(2𝜋ℎ𝑡𝑛) 

𝑧𝑛 = 𝐶𝑧0 + 𝐶𝑧1𝑡𝑛 +∑𝐴𝑧ℎ cos(2𝜋ℎ𝑡𝑛)

𝐻

ℎ=1

+ 𝐵𝑧ℎ sin(2𝜋ℎ𝑡𝑛) 
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However, it has been chosen to represent the different coronary centrelines on a local axis 

system so that the displacements in the local z direction are minimised (Figure 5.15). The 

Fourier approximation has the desirable property that the lower frequency coefficients remain 

stable as higher-order terms are added to increase the fidelity of the representation (in contrast 

as higher order terms are added to improve a polynomial representation all coefficients 

change). Furthermore, a good approximation is achieved using only few harmonics. For this 

application the control parameter t is chosen to be zero at the inlet and unity at the outlet. The 

local axis system in which the vessel is defined has its origin at the inlet and the x-axis along 

the line from the inlet to the outlet. Then the linear polynomial coefficients in the y and z 

directions are zero and the deviation from the axis is simply a Fourier series. The linear 

polynomial coefficient in the x-direction is a length term. The xy plane is defined as that 

containing the inlet, the outlet and the point on the centreline that is furthest from the x axis. 

The selection of a local co-ordinate system by this process is appropriate because the 3D 

parametric representation of the coronary is independent of the pose (i.e. it doesn’t matter how 

the coronary is oriented in space, only the shape matters, so the representation is independent 

of the image views and image co-ordinate system). The centreline based Fourier approximation 

plays a key role in the proposed centreline parameterisation algorithm.  

 

Figure 5.16 shows that the coronary centreline using ≈ 150 harmonics overlapps perfectly with 

the original coronary centreline. It is natural that the error of the approximation is much higher 

when considering only one Fourier harmonic. However, the overall curvature of the coronary 

centreline in the 3D space is captured very well (Figure 5.17). 

The idea for constructing a parameterised ROM is to consider only 6 parameters for describing 

the curvature and the other 12 parameters describing the shape parameterisation and mass-flow 

inlet. The 3D centreline is parameterised with only one harmonic; the chosen parameters shown 

in Table 5-2Table 5-2: Constant, linear, cosine and sine coefficients for each coordinate. in 

yellow are the ones considered for parameterisation. The y-coordinate constant coefficient 

represents the average values of the 3D curved centreline along the y axis; the x coordinate for 

the linear coefficient is representing the distance between the starting point of the coronary and 

the end point. Furthermore, the cosine and sine coefficients for the x and y coordinates are 

considered. 
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Figure 5.15: Example of 3D coronary centreline in local coordinate system. 
 

 
 

 

Figure 5.16: Two different views of a coronary centreline parameterised and approximated with ≈ 150 
Fourier harmonics. 
 

 
 

 

Figure 5.17: Two different views of a coronary centreline parameterised and approximated with only one 
Fourier harmonic. 

 

As expected the first few harmonics are collecting most of the information achieving a good 

grade of accuracy (Figure 5.18) 
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Figure 5.18: Fourier coefficients of centreline in local co-ordinates. 

The coefficients matrix with one harmonic is presented in Table 5-2. 

Table 5.2: Constant, linear, cosine and sine coefficients for each coordinate. 

 Constant Coeff. Linear Coeff. First Cosine First Sine 

x-coordinate 0.601 43.980 -0.1032 -5.5737 

y-coordinate 16.685 0 -11.548 -0.2789 

z-coordinate -0.784 0 -1.091 -1.0804 

 

The total number of parameters, including geometrical and physical parameters, is 17 (Table 

5-3). 

Table 5.3: List of geometrical and physical parameters. 

Parameters 

𝑨𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆𝒊  𝒊 = 𝟏…𝟖 
𝑻𝒂𝒑𝒆𝒓 𝒙 𝟐 
𝑭𝒐𝒖𝒓𝒊𝒆𝒓 𝒙 𝟓 
𝑴𝒂𝒔𝒔 𝑭𝒍𝒐𝒘 

𝑽𝒆𝒔𝒔𝒆𝒍 𝑳𝒆𝒏𝒈𝒕𝒉 

 

Once the centreline for a single geometry had been morphed and parameterised the next step 

is to apply radius information to the centreline. Geometrical parameters from the previous 

chapter had been used for the radii information. 
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5.3.2 Creation of a 3D training dataset 

The LCx considered for the parameterisation is shown in Figure 5.19 and Figure 5.21 

(V048_LCx). The Fourier parameters for the description of the 3D centreline are presented in 

Table 5-4.  

Table 5.4: Constant, linear, cosine and sine coefficients for each coordinate for V048_LCx  

 Constant Coeff. Linear Coeff. First Cosine First Sine 

x-coordinate 1.185 62.823 -0.309 -0.4174 

y-coordinate 7.178 0 -5.426 -3.825 

z-coordinate -0.285 0 -1.188 1.572 

 

The 6 parameters are perturbed in order to describe different coronary centrelines.  

 

Figure 5.19: 3D morphing of a patient-specific LCA geometry. 

In Figure 5.20 it is possible to notice how the four geometries shown in Figure 5.19 vary 

between them starting from the clinical geometry. 



3D CFD coronary simulations & 3D ROM

 

180 

 

 

Figure 5.20: The four cases overlapping each other for visualisation. 

 

Figure 5.21: Original clinical geometry  

Starting from the morphed centrelines, radius variation with shape parameters have been 

considered for creating cross sectional circles along the centreline to form the coronary 

skeleton. 

 

5.4 Building the ROM for the 3D single lumen geometries 

ROMs have the potential to compute quasi real time analyses which is an extremely useful 

feature for medical application; moreover they require less RAM and CPU compared to a full 

CFD simulation. A Proper Orthogonal Decomposition (POD) algorithm is employed to 

compute the reduced basis (section 1.5.1). However, choosing an appropriate and efficient set 

of basis functions for a particular application can be challenging. 

During the off-line phase 3D simulations have to be computed. The correlation matrix S (eq. 

1.15) is then formed by the pressure profile along the centreline for every phantom geometry 

considered. In this application the chosen input parameters are the coefficients of the Fourier 

harmonics describing the curvature of the centreline, a length term, the shape parameters for 
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the radius variation and the inlet mass-flow rate (a total of 17 parameters). The main purpose 

of this section is the computation of the modes and the modes coefficients to reconstruct the 

pressure profile for 3D coronary geometries. 

 

5.4.1 3D ROMs challenges 

A prerequisite for ROM construction is the rectangular form of the solution snapshot matrix S. 

In fact, all the CFD solution vectors have to be of the same dimension. In practice, the 

construction of the S matrix requires computing CFD simulations on isotopological meshes 

(same connectivity and number of nodes on the meshes) whilst changing the input parameters 

(geometrical and/or physical parameters). However, if creating isotopological quadrilateral 

meshes for 2D axisymmetric models in MATLAB had been a fairly easy process to perform, 

for 3D ROM applications involving input geometrical parameters, creating accurate volumetric 

isotopological meshes using mesh morphing techniques is still challenging [153].  

A practical solution could have been using the mesh morpher tool embedded in ANSYS Fluent, 

employing the usage of control points. However, this tool is not designed to accommodate 

severely deformed geometries (both global and local deformations). If any severe deformations 

occur when using the mesh morpher, a warning message indicates that the morphing is not 

possible and a re-mesh of the geometry has to be performed. A re-meshing of the morphed 

geometry would result in a mesh with a completely different number of nodes than the starting 

non-morphed mesh. Testing with the available clinical data indicated that this re-meshing 

occurred in a large proportion of the cases. 

Therefore, there are some restrictions and limitations in the application of the ROMBuilder 

tool that was used for the analysis presented in chapter 4 to the 3D curved systems when using 

the parameterisations developed for the current study. Alternative parameterisations and 

geometrical representations would have been possible that would have supported the direct 

application of the ANSYS ROMBuilder tool but for the purposes of this thesis, for consistency 

of parameterisation, a custom process for development of the ROM has been developed, 

described below. 

1. Extract a series of points on the 3D centreline and the radius as a function of position 

from segmentation of the image projections; 

2. Produce a parametric representation of the centreline in 3D; the case and simulations 

results (.cas and .dat files) are saved for each geometry onto the dataset; 
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3. Create a 3D surface with the appropriate radius distribution on the parameterised 

centreline; 

4. Perform CFD analyses; 

5. Simulation results are imported into CFD-Post for result visualisation and validation; 

6. The .csv file created at step 1 is imported in CFD-Post to create a polyline; 

7. Pressure values are saved along the 3D polyline as a .csv file; 

8. .csv files are imported into MATLAB to build the snapshot matrix S and for building 

the 3D ROM.  

This process supports the population of the S matrix with just the pressure profiles along the 

centreline for different 3D geometries, as required for the construction of a ROM for the 

purposes of this specific FFR application. 
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5.5 Results 

In this section projection and interpolation errors are presented for the 3D ROM. Several 

questions arise in the application and validation of the ROM. The first is whether the 

reconstructed solutions from the modes are equivalent to the original solutions (they should be 

if the implementation is correct), and how effectively a reduced number of modes retained in 

the reconstruction can represent the original solution in the training set. The error in this 

representation is called the projection error. The second is whether the modes computed in a 

training set can be used effectively to describe a new system, not in the training set, if 

appropriate coefficients can be found. Finally, can the appropriate coefficients for the new 

system be found by interpolation in the space of the training set? The following paragraphs 

address these questions for the ROM constructed for this application. 

 

5.5.1 Projection errors 

The decomposition produces a transformation from raw pressure data at each point in the 

solution space to the representation as a linear combination of the modes. If all modes are 

included in a reconstruction, with their appropriate coefficients, the original field is recovered. 

An approximation of the field is recovered by omitting the higher modes. The first validation 

test is the measurement of the projection errors versus the number of retained modes, exploiting 

for training the full size of the dataset (N = 329 coronaries). The code, implemented in 

MATLAB, has been run several times, increasing the number of extracted modes. Table 5-5 

presents the mean projection errors and the maximum projection errors (with case number) for 

specific numbers of modes, whilst Figure 5.22 is showing how the projection errors are 

decreasing whilst increasing the number of modes. 

Table 5.5: Mean and maximum projection errors for specific number of modes. 

# of modes Mean Fractional Projection 
errors 

Max Fractional Projection 
error 

2 0.251 0.721 (168) 

8 0.068 0.464 (168) 

12 0.032 0.178 (32) 

15 0.020 0.140 (32) 
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Figure 5.22: Average projection errors vs number of modes. Using the entire dataset for training. 

 

Example #1 (Case #1) 
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Example #2 (Case #8) 

  

  

 
 

 
Example #3 (Case #25) 
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Example #4 (Case #722) 

  

  
 

 
Figure 5.23: Results for a sample of four geometries chosen at random. The pressure profile is 

recomputed increasing the number of modes. 

 

Figure 5.23 illustrates results for a sample of four of the cases, chosen at random, and indicates 

that the solutions for any artery in the training dataset can be effectively described by the 

reconstruction using relatively few modes. As second validation test, it is useful to show and 

demonstrate how the same set of modes can be employed to represent the pressure profile for 

a new case, not in the training set. The aim is to determine whether the coronary training dataset 

is rich enough, in the sense that the training dataset is able to capture all the pressure profiles 

variability.  
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To achieve this, the number of computed modes is kept fixed (m= 2 modes) whilst increasing 

the size of the training dataset (n= 20,100,200,300). The test is repeated multiple times for m= 

8, 12, 15. The pressure profiles of the test dataset are projected into the base of modes computed 

with the training dataset. 

 

Figure 5.24: Projection errors considering different sizes of the training dataset. 

As expected, the average projection errors decrease whilst increasing the number of pressure 

profiles for the dataset (Figure 5.24). Moreover, the average errors converge using a small 

number of modes (m= 2, 8, 12, 15) when the training set is composed of 200 arteries. It can be 

concluded that, assuming the selection of the training set was random, 200 CFD analyses are 

enough to determine a representative set of modes for this application members of the dataset. 

 

5.5.2 Interpolation Errors 

In the previous section it had been shown how the set of modes can represent any other pressure 

profile not used for the training dataset. However, the full CFD solutions to be recomputed 

were known and the modes coefficients have been computed projecting the full solutions into 

the base of modes. In this section it is introduced a method to compute the modes coefficients 

exploiting the input parameters of the training dataset taken into account when the full CFD 

solutions (described by new input parameters) are not known. With the input parameters 

available, the aim is to find a model which is capable of representing the system behaviour 

(outputs) in between the data points. The appropriate modes coefficients for the new system 

can be found by interpolation in the high dimensional space of the training set. Using an 

interpolation method can be advantageous for locating local variations in the behaviour 

response. This is also beneficial for locating area of the space that may require additional 
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refinement points. However, employing an interpolation method is not beneficial if the system 

response is noisy, in fact the fitting of the response surface could create multiple local 

minimums and/or maximums. Figure 5.25 shows a general example of a response surface with 

two inputs and one output to help the visualisation [97]. 

 

Figure 5.25: Example of a response surface with two inputs and one output. 

The 3D phantom dataset consists of 329 different geometries, where every geometry is 

parameterised by 17 parameters. It had been chosen to consider 200 geometries for training 

and 129 geometries for evaluation and testing; the number of considered modes for the ROM 

is 15. Figure 5.26 shows a comparison between full solution, projected solution and ROM 

solution computed thanks to the interpolation for evaluating the modes coefficients for any new 

set of input parameters. 
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Examples of different pressure profiles 

  

  

  
Figure 5.26: Comparison of pressure profiles for geometries outside the dataset between full CFD 

solution(blue), projected solution (red) and interpolated solution (green). 

 

As it can be seen from Figure 5.26 the 15 modes computed from the training dataset can 

describe accurately any solution outside of the training dataset. This is also clear looking at the 

bar plot where the average projection error for the 129 geometries is less than 2.8% (Figure 

5.27). The aim of this section was to give a brief introduction on how to compute the modes 

coefficients (outputs) starting from the parameters of the ROM (inputs). The ROM results 
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employing the interpolation step implemented in MATLAB are quite poor and it is clear that 

further improvements are necessary. 

 

Figure 5.27: Average of the fractional errors (interpolation and projection) 

 

5.6 Conclusions 

In the first part of this chapter a comparison between full 3D simulations, 3D simulations with 

2D coronary curvature and 2D axisymmetric models was presented. The second part presented 

a computational reduction algorithm for patient specific coronary artery geometries. A 

centreline parameterisation method was described, and it has been showed that the 

parameterisation is capable of capturing the overall curvature of the coronary with a good 

degree of accuracy. The parameterisation of the variation of the radius along the length 

introduced in the former chapter is coupled with the centreline parameterisation in order to 

create full patients-specific parameterised geometries. Following this parameterisation 

algorithm, a dataset of 329 3D volumetric meshes was created to populate the training dataset. 

Modes and modes coefficients were computed applying SVD to the correlation matrix. 

Furthermore, the projection error was computed for every geometry considered within the 

dataset. 
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6 Chapter 6          
Conclusions and Future work 

 
 

In this thesis, patient-specific coronary images and geometries are integrated into 

computational tools to achieve a computer based representation of the patient’s physiology. 

There is specific focus on the fast computation of pressure profiles for patient-specific coronary 

geometries characterised by single or multiple lesions in series. The final result of the 

computational analysis is a quantitative value of the FFR index with sufficient accuracy to help 

clinicians on their decision making. 

At the end of every chapter conclusions have been presented and this final chapter aims to 

summarise them. 
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6.1 Conclusions 

The aim of this thesis was to characterise the clinical index of coronary Fractional Flow 

Reserve, using CFD and ROM techniques, for any patient-specific coronary geometry. The 

study is focused on single arteries, but arterial tree structures could be created by extension of 

the work flow. 

The first step in achieving this goal was the development of a segmentation tool for coronary 

artery reconstruction. The tool was written in MATLAB and is able to reconstruct coronary 

arteries in 3D starting from 2D multi-single plane angiographic projection images. The 3D 

reconstruction supports quantitative assessment of the patient-specific vessel. A novel and 

simple table movement correction has been developed and successfully implemented in the 

tool. Coronary centrelines are identified manually, and this requires some user interaction, but 

it gives to the user more control than an automatic segmentation. A GUI has been designed in 

order to make the tool easy to use; the developed application can also be exported to any other 

machine without the need of having MATLAB installed. The output of the reconstruction tool 

is a 3D surface mesh (.stl) which can be imported to any CFD solver for fluid flow simulations 

after creating the volumetric mesh. Within this work the tool was validated by reconstructing 

a 3D printed straight tube with a single stenosis along the domain. Results were satisfactory, 

but highlighted the necessity to implement a process by which manual corrections could be 

made. Manual corrections are necessary to help the user to capture correctly the overall radius 

variation along the domain, but more important the minimum radius occurring at the stenosis 

location which is the predominant factor for overall pressure drop. Development of the tool has 

continued within the research group, and further validation was performed by a medical student 

as part of an intercalated Masters degree, for which a distinction was awarded, using 3D printed 

representations of patient-specific arteries. 

 

Chapter 3 introduces a 2D ROM approach for idealised coronary arteries characterised by a 

single stenosis or multiple stenosis in series. The basic capacity of ROMs to reduce the 

computational demand relative to a full CFD simulation is highlighted. A challenging aspect 

regarding CFD simulations is the application of appropriate boundary conditions. In this thesis 

for the 2D and 3D CFD simulations, values of mass-flow rate has been defined at the inlet 

boundary and static pressure at the outlet boundary. To obtain values of mass-flow rate 

compatible with the clinical range, a first estimation of the mass-flow rate has been obtained 



Conclusions and future work

 

195 

 

by coupling the 2D/3D model with a 0D model characterised by a clinical value of the distal 

resistance of the myocardial coronary vasculature. Multiple ROMs have been created 

comprising both single lesion and multiple lesions in series for a 2D axisymmetric straight 

geometry. Excellent results were achieved in terms of accuracy regarding pressure drops and 

computed FFR compared with high fidelity full 2D CFD simulations. One of the obvious 

questions is whether the ROM offers significant improvement in accuracy relative to 

alternative, even simpler, models. Pressure drops for a single stenosis and for multiple stenoses 

in series have been compared based on Bernoulli, 1D, ROM and CFD computations. The 

pressure drops and FFR values obtained with ROMs obtained better accuracy than Bernoulli 

or 1D computations, especially for serial stenoses. As might be expected, two stenosis in series 

act independently if they are distant from each other, and the total pressure drop is given by the 

summation of the two independent pressure drops. However, the closer the two stenosis are, 

the more they interact and the total pressure drop along the geometry is less than the sum of 

the pressure loss of each stenosis. This is difficult to capture with the simpler models, but the 

ROM performs well. 

 

Following the study of idealised systems in Chapter 3, Chapter 4 goes on to apply the same 2D 

axisymmetric approach to the computation of FFR on coronary geometries with patient-

specific variations of radius along the length of the artery. It is hypothesised that the radius 

variation is the most important characteristic of the stenotic artery, more important than any 

3D curvatures of the centreline. A shape parameterisation technique is developed, using global 

basis functions to describe the radius variations. Different types of global basis functions were 

studied for shape parameterisation. The goal was to maintain unaltered the pressure profile 

considering a shape approximation. The shape parameterisation is twofold: geometrical 

parameters have been extracted from a coronary clinical dataset in order to create a large 

synthetic dataset similar to the clinical one and secondly to study the influence of anatomical 

variations on flow fields. The ROMs that were developed (which included 12 parameters, 11 

geometrical and 1 physical) have been evaluated against both CFD and actual clinical 

measurements, achieving a good grade of accuracy related to the pressure gradient and FFR. 

The computation of the pressure drop using the ROMs is ≈ 900 times faster than a full CFD 

simulation.  

 



Conclusions and future work

 

196 

 

The first part of Chapter 5 presents a comparison between different patient-specific 

representation models in order to establish the influence of coronary curvature on pressure 

profiles. A centreline based Fourier approximation is introduced, the former parameterisation 

coupled with the shape parameterisation allows to fully characterise any patient-specific 

coronary artery. The second part of the chapter assesses the construction of a 3D clinical ROM 

based on input parameters computed from a clinical dataset. Projection and interpolation errors 

are computed for a 3D phantom dataset based on 129 geometries. The interpolation errors 

suggest that further improvements are necessary. 

 

6.2 Future Work 

Computer in silico modelling in order to predict patient-specific clinical indices has shown 

great promise for the development of future healthcare. This thesis considered an example of 

computer-based modelling exploiting patient-specific clinical data in order to improve clinical 

decision making. However, a number of assumptions and limitations have been required for 

the development of the project. 

Despite limitations in the segmentation tool developed for this thesis, described in detail in 

Chapter 2, it underpinned the extraction of the radius distributions that were used for 

development and testing of the ROM. One limiting factor is the construction of the 3D surface 

mesh with cross-sections formed by circles. Fitting cross sectional ellipses along the centreline 

would be beneficial in order to have a more natural representation of the coronary vessels. A 

further development for the tool could be designing an algorithm using more than two 

projection images to improve the reconstruction accuracy using the extra information given by 

the multiple views. The first version of the tool did not include the feature of manual corrections 

for vessel edge detection, but further development has already been made within the research 

team so that the tool now includes this feature. Since difficulties arise when epipolar lines are 

parallel to the vessel a hybrid approach for vessel reconstruction has also been implemented 

(epipolar lines plus other reconstruction method). Although manual centreline extraction gives 

more control to the user, a robust automatic centreline extraction could be explored in future 

development.  

 

In chapter 3, ROMs for idealised geometries were introduced. Furthermore, a comparison on 

pressure drops computed with different methods was shown. A limiting factor in the 



Conclusions and future work

 

197 

 

comparison for pressure drop between full CFD, ROMs and Bernoulli is the length of the 

considered idealised coronary. The pressure drop for CFD and ROMs was computed whilst the 

blood flow was still in recovery mode. This might not be relevant for coronaries, however it 

could be worth for a future study to consider a much longer tube and compute the pressure drop 

when pressure starts to diminish again following Poiseuille’s law. 

 

Several challenges were encountered in the shape parameterisation process for chapter 4. The 

first challenge was related to the number of global basis functions with geometrical parameters 

for describing the variation of the radius along the length. It could be thought that more 

complex is a model, a better representation of the system might be expected. The number of 

parameters chosen for the shape parameterisations impacts as well the dimensions of the 

parameter space for the ROM. Furthermore, as the complexity increases also the number of 

parameters increases requiring more points for the off-line training step of the ROM. However, 

it is not still clear what is the optimal amount of simulations for training the ROM, quantifying 

the optimal number of points related to the number of parameters could be beneficial. It might 

also be expected that the number of points depends on the form of the relationship between 

input and output parameters, a further development would be to detect the regions of the space 

characterised by high gradient and then refine the number of points in that region.  

 

A major challenge for the development of the 3D clinical ROM, using the approach described 

in Chapters 2 and 3, is still the creation of isotopological volumetric meshes. Finding a robust 

and accurate method which accommodates large variations for the coronary arteries geometry 

has to be prioritised. Once isotopological meshes are available, a further development would 

be to consider a full 3D CFD solution for pressure values on the fluid volume instead of 

considering only the pressure profile along the 3D centreline. Of course, considering only the 

pressure profile along the 3D centreline is a simplification and does not exploit all the fluid 

flow information collected by a 3D flow field. In Chapter 5 the creation of the phantom dataset 

starts from a single LCA geometry which is morphed following a centreline and shape 

parameterisation; it would be beneficial to consider a larger cohort of clinical geometries for 

training the ROM. Regarding the 3D CFD simulations, an improvement could be to consider 

transient 3D simulations instead of a steady state, this change would also impact the way to 

populate the correlation matrix to compute the modes. In fact, differently from the steady state 

cases, the rows of the correlation matrix would contain fluid flow solutions at a different time 
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steps. It could be also interesting to consider a different model for the interpolation process for 

computing the modes coefficients. 

 

6.3 Thesis in perspective 

In this thesis, a new ROM approach for a fast and accurate computation of the FFR in patients 

with coronary artery diseases has been introduced. This approach provides a non-invasive and 

objective assessment of FFR from 3D reconstructed coronary geometries obtained from 2D 

angiography projection images. The proposed method is very fast and it computes FFR and 

full pressure profile for an unseen geometry in quasi real-time. 

To the best of our knowledge, our approach is the first one in the literature which considers a 

ROM applied to a large cohort of clinical coronary arteries with lots of variability in terms of 

shapes between them. Furthermore, we considered ROMs in both 2D and 3D geometries with 

shape and centreline parameterisation. 

We have proven that with the 2D ROM approach we obtained better results than the Bernoulli 

pressure drop computation. Furthermore, the 2D ROM had been tested against a 1D solver and 

even in this case the ROM performed better. Our ROM method is computationally efficient, in 

terms of both hardware requirements and computation speed since the on-line stage can run on 

an average laptop PC in seconds; so potentially it could be suited for clinical applications in 

the catheterisation laboratories during angiography. 

The ROM approach has been shown to be effective on 2D geometries; however, when 3D 

geometries were considered (Chapter 5) limited success and poor results were achieved. 

Difficulties arose when the number of geometrical parameters started to increase, furthermore 

dealing with geometries characterised by very large deformations proved to be challenging. As 

already discussed, another factor influencing the accuracy of the ROM for the evaluation step 

is the interpolation method (kriging) in order to compute the modes coefficients for a 

completely new coronary geometry.   

Possible paths for new research projects that can advance the work are listed below: 

1. The ROM method applied to 2D coronary geometries has effectively proven itself. In 

Chapters 2, 3 and 4 strong fundamentals of the ROM approaches have been shown and 

proved. In order to bring the work forward, priority and attention has to be given to:  

creation of isotopological meshes for geometries with large deformations in 3D and 

investigation of different interpolation approaches for modes coefficients computation. 
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When changing the focus to 3D ROMs, it has been found difficult to deal with 

geometries with large deformations. For this reason, it would be interesting to develop 

two different 3D ROMs: first a ROM, which takes into account right coronary arteries, 

whilst the second ROM takes into account only the left coronary arteries. The idea here 

is that the centreline parameters do not change much when dealing with only one class 

of coronaries. For example, most of the right coronary arteries have all the same overall 

shape (C shape), and therefore the parameters describing the curvature should not have 

a lot of variability. The purpose is to ensure that the built ROM is most effective for the 

majority of the dataset considered (right or left coronary arteries). 

 

2. A further approach can start from the same idea of computing FFR in an effective and 

accurate way. The development of machine learning algorithms with the 

implementation of deep neural networks in order to learn the non-linear relationships 

between inputs and outputs should be considered. In our case, a neural network could 

be coupled with POD; predicting the values of the modes coefficients (outputs) giving 

the set of input parameters.  

A simpler approach would exploit the neural network only to compute a single output 

(scalar value) such as the FFR values for different geometries. MATLAB 

(https://uk.mathworks.com/) or open-source deep learning frameworks 

(TensorFlow https://www.tensorflow.org/, PyTorch https://pytorch.org/) are 

already providing such powerful tools, with GPU support to speed up the training when 

large volumes of data are provided. Either way, the key ingredients for the design of a 

deep learning neural network are the availability of training data and the extraction of 

features which are most significant to the computation of the FFR. 

In a manner similar to the ROM workflow, the deep learning one would be composed 

by an off-line and an on-line stage. 

 

Off-line: In an ideal scenario, the training dataset will be composed by thousands of 

geometries extracted from different angiography images. However, segmenting 

thousands of geometries to create such a large dataset would be very time-consuming. 

To solve this issue, the main idea would be to consider a training dataset, which 

comprises of synthetic vessel generated from the geometrical parameters extracted from 

clinical geometries. In this thesis (Chapters 3, 4 and 5) a lot of work has been done in 

https://uk.mathworks.com/
https://www.tensorflow.org/
https://pytorch.org/
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this direction. The synthetic dataset is parameterised with the basis functions for the 

radius variation along the length introduced in Chapter 4 and the centreline 

parameterisation introduced in Chapter 5.  CFD will be run for every single 

parameterised geometry and the corresponding value of the FFR will be logged.  

The geometrical parameters will be used as input parameters for the network whilst the 

corresponding values of FFR (quantity of interest) will be used as output or target 

parameter. Whilst training, the network will learn the relationship between input and 

output parameters. Additionally, the set of input parameters could be expanded to 

include patient’s information such as gender, age, weight, smoke etc. etc. which could 

play a significant role in determine the FFR value. 

On-line: The trained neural network is deployed and can return a new value of FFR for 

a completely new geometry described by the input parameters. 

 

 

6.4 Conclusion 

In conclusion this thesis has demonstrated the value of accelerated computation for prediction 

of FFR under a range of cases. Feasibility is apparent, but the complexity of the 3D vessel 

geometry requires further developments and even further hardware. Nonetheless, such 

advances can be foreseen and consequently this thesis contributes an important element which 

can be ultimately anticipated to result in personalised computation of FFR in the future.   
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