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Abstract

This thesis presents a new coherent approach to the problems of phase noise in satellite

communications systems. An original aspect of this approach is the consideration of the

effect of synthesised local oscillators, rather than local oscillators in general, as sources of

phase noise. Performance of local oscillators in such systems is critical, particularly with

respect to low data rates.

The study of synthesiser performance includes a detailed investigation of suitable

synthesiser architectures for satellite communications usage. Resulting from this are

recommendations for a unique hybrid of those synthesiser techniques which is most suited

to the particular demands of satellite communications work. Guidelines for synthesiser

component design required to implement these techniques are presented here with the aim

of avoiding the problems frequently observed within synthesisers. The expertise gained

from such a study of synthesisers is used to predict the effect of using synthesised local

oscillators on a satellite data link, a topic not often covered in literature on satellite data

systems.

A particular problem exists with flicker noise from tuneable oscillators which are required

to enable capture of received signals. Direct digital synthesis (DDS) provides a ready

solution to this problem but may introduce unwanted spurious signal products. A novel

patented method of reducing these products to a generally satisfactory level is described

here which ensures the viability of a proposed new integrated transmitter synthesiser

approach. In order to provide a synthesised local oscillator from DDS at microwave

frequencies some additional techniques must be used. One such approach using step

recovery diodes (SRDs) is described here. An in depth study is presented here that shows

that although they are capable low phase noise performance, care must be taken to avoid

chaotic effects.

Finally a novel approach to link budget analysis is suggested. Results are presented here

of software analysis written in the course of this research work to calculate the impact of

local oscillator phase noise upon link sensitivity. This demonstrates the possible

advantages of the above synthesiser techniques for local oscillators in satellite data

communications systems.
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1 Introduction

1.1 Overview and objectives

In recent years, there has been increasing use of satellite data systems, particularly with

respect to very small aperture terminals (VSATs). However unlike the television receive-

only market (TVRO), the market volume is insufficient for large economies of scale to be

made. The market volume for TYRO equipment enables such units to sell at a few

hundred pounds per unit. Satellite data terminals, on the other hand, have been restricted

to a much smaller market base and the cost per unit is much higher, being thousands of

pounds per unit. In order to broaden the market base for satellite data terminals, costs of

the terminals must fall.

One of the problems restricting such a fall in costs is lack of standardisation of system

format throughout the industry. The other problem lies in providing suitable low cost

local oscillators for the satellite terminal downconversion and upconversion stages. Low

cost downconverters have been developed for TVRO applications, and these must be

synthesised to allow selection of different channels. However, these present a number of

problems when used for satellite data systems. This thesis examines such problems,

particularly with respect to phase noise, and recommends guidelines for the design of

synthesised converters suitable for data systems. It is shown that the close to carrier

phase noise is more important in the case of satellite data terminals than in the TVRO case

where wideband noise is of greatest concern.

Satellite data terminals must also be synthesised to allow versatile re-allocation of

channels. In the majority of cases the satellite channel user does not want to have any

concern about the link RE frequency so it is desirable that this function would be governed

by the hub controller, and any channel re-allocation be undertaken automatically without
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any user intervention. For this function to be provided, the local oscillators should consist

of a synthesiser programmable from a logic controller such as a microprocessor.

Until recently, synthesiser technology has been geared towards either the radio and TVRO

markets, or the radar and military markets. In the radio and TV markets, the emphasis is

on low far from carrier phase noise. Private mobile radio (PMR) synthesisers must have

low phase noise in the adjacent channel, or the radio receiver sensitivity suffers by

reciprocal mixing of phase noise onto a strong adjacent channel signal. TV signals occupy

a broad frequency band and therefore it is essential to maintain low average phase noise

over this broad bandwidth. These requirements may be met by means of a moderately

high Q fundamental oscillator operating at the local oscillator frequency [Linnecar, 1974].

With PMR, the range of frequency tuning may not be very large, but the individual

channels are closely spaced. Achieving the phase noise specification by means of the

synthesiser processing circuitry would be difficult within the budget allowed for in the

radio set price. Therefore, the usual approach is to phase lock a low noise VCO,

designing the VCO to fit the phase noise specification of the set. The synthesiser control

circuitry then ensures that the long term stability of the crystal oscillator is transferred to

the output As the synthesiser processing circuitry phase noise is now not critical, a cheap

single IC synthesiser can be used for phase locking. An important difference between

PMR radio and satellite data system requirements is that with the latter the phase noise has

a degrading effect upon the modulation itself, in contrast to merely adjacent channel

considerations with the former. As a result of potential modulation degradation, close to

carrier phase noise performance becomes critical. Another vital difference is that the local

oscillator must operate at microwave frequencies so the phase noise becomes worse as a

result of multiplication from the reference frequency.

Radar synthesisers make similar demands in terms of phase noise as satellite data systems

in that they must operate at microwave frequencies, and display very low phase noise at

close to carrier frequencies, in order to resolve slow moving targets from background

clutter [Roulston, 1984]. A typical requirement for phase noise in this case is

-130 dBc/Hz at 3IcHz from carrier at 10 GHz. However, the step size in this case is

usually large, of the order of 20MHz. The cost of this type of synthesiser is usually no

object and they are ruggedised for airborne use.

With the advent of small terminal satellite communications, the Ku bands are rapidly

becoming crowded. As demand increases, there is mounting pressure on spectral

allocation and bandwidth. In order to keep the same information rate, and reduce
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bandwidth, higher order modulation systems must be used. Unfortunately, such schemes

place more pressure on system phase noise levels.

Among the problems encountered with the application of PMR type synthesisers to

satellite data communications systems are the following:-

1) A wide tuning range of hundreds of MHz are required;

2) The close to carrier phase noise of microwave tuneable free running oscillators is

excessive;

3) Susceptibility to vibration becomes a problem due to narrow bandwidth phase

locked loops;

4) Accurate modulation is difficult.

It is the object of this thesis to investigate methods of providing a cost effective solution to

the design of synthesisers for satellite data terminals.

An additional problem is that carrier frequencies are rising and Ka band (30GHz) systems

are beginning to enter service. As the frequency of such links increases, more will be

demanded from local oscillators in terms of phase noise and spurious levels.

With present day synthesiser technology, the cost tends to follow a series of vertical steps

[Payne, 1984] rather than rising smoothly with increasing specification demands. This

results from a given configuration failing to deliver the increased performance, and

therefore necessitating a more complicated design.

In order to arrive at a cost effective solution, it is vital to transform the system

requirements into a suitable specification for a synthesiser, to avoid expensive over-

engineering. The synthesiser design should meet any future upgradability requirements,

for instance a more bandwidth efficient modulation scheme may be used in the future.

A problem that exists to date from a system designer's point of view is that information on

phase noise has been piecemeal. This is particularly true with regard to the effect of phase

noise on system performance. System designers are often left with little understanding of

how phase noise is generated within local oscillators and synthesisers. Synthesiser

component designers on the other hand, often have limited understanding at the system

level. Demarcation exists therefore between the system designer and the synthesiser

component designer. A result of this is that synthesisers may be designed towards a
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certain phase noise goal without regard to future upgradability, or other factors that may

be important to system performance.

This thesis aims therefore aims to bring together the phase noise information relevant to

system designers. Armed with a such an understanding of phase noise, a bridge is

attempted between the system level design and the component design. Only through the

forming of such a bridge will a true cost effective compromise be reached that ensures a

long working life for a data system. It is the intention of the author to provide overall

guidance to both system and component designers on the design and selection of

synthesised local oscillators.

1.2 Outline of Thesis

Phase noise is first investigated in chapter 2 by studying how it originates and what effect

it has on a RF signal. From this, phase noise effects within oscillators are considered so

that an understanding of the oscillator spectral shape can be achieved.

In the course of the classical analysis of oscillator noise presented in chapter 2, a problem

is identified which comes under scrutiny in chapter 3: most treatments of oscillator noise

ignore the 1/f or flicker noise, particularly the resonator contribution. Chapter 3 attempts

to provide some insight into the curious phenomenon of flicker noise or 1/f noise.

Although predominantly a low frequency effect, various modulation modes can result in

flicker noise appearing on a RE signal. Chapter 3 shows why 1/f noise is of particular

importance in designing synthesisers for low data rate satellite communications

equipment. In addition to general 1/f effects, the high Q resonator in an oscillator, such as

a crystal, can contribute its own 1/f noise. In chapter 3 we show that the resonator noise

is the principal component of microwave oscillator close to carrier phase noise and

therefore a dominant factor in designing for satellite data communications systems.

In order to assess synthesiser phase noise, the synthesiser architecture must be

determined. A survey of possible synthesiser designs is undertaken in chapter 4 and their

merits and problems compared. Using an assessment of the architectures, methods of

combining the different techniques to form a hybrid microwave synthesiser are developed.

During the course of this investigation, other problems such as vibration and phase "hits"

are shown to be of importance.
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On completion of the survey of possible synthesiser architectures =Tied out in chapter 4,

chapter 5 investigates the phase noise and spurious contributions of each subsection in a

synthesiser. One problem to be given particular attention is the minimisation of "excess

noise" of a frequency multiplier in addition to the theoretical frequency multiplication

factor. Phase locked loop and non phase locked loop methods of frequency multiplication

are investigated. Computer simulation techniques are devised for both a phase locked

loop multiplier and a step recovery diode (SRD) comb generator multiplier. In the case of

phase locked loop synthesis the computer model is used to investigate injection locking

and how it can affect system design. Chapter 5 describes a method of combining the

locking properties of a phase locked loop multiplier with the low phase noise performance

of the SRD. After assessment of the resultant static phase noise levels, methods of

reducing the effects of vibration are discussed.

Chapter 6 goes on to assess the likely impact on system performance of the phase noise

levels introduced by the synthesiser architectures. Phase noise degradation calculations

are performed for coherent receivers used with a variety of different modulation schemes.

The phase noise analysis given in chapter 6 includes not only random phase noise, but

also discrete spurious sidebands. The case is argued for a phase noise link budget to be

performed iteratively alongside the normal communication link budget. It is shown that

the phase locked loop type multiplier synthesiser contributes excessive close to carrier

phase noise to the phase noise link budget for higher order modulation schemes.

This prompts an investigation, documented in chapter 7, into the use of a step recovery

diode (SRD) as a means of reducing phase noise. From work done by the author

previously on SRD multipliers it was apparent that very low levels of excess phase noise

can be achieved in this way. However, under certain circumstances, the phase noise

levels can be severely degraded. To facilitate investigation, computer programs were

written to simulate the SRD as a comb generator and results of these simulations are

shown in chapter 7. A salient feature of the simulation results shown in chapter 7 is the

demonstration of the tendency of the SRD circuits to show chaotic behaviour. It is shown

that such chaotic behaviour can drastically degrade the phase noise performance of the

SRD multiplier comb generator. A series of design guidelines are developed and

presented in chapter 7 to enable the lowest possible phase noise levels from a synthesiser

using SRD circuits to be achieved.

In particular, methods are described where the SRD is combined with a direct digital

synthesiser (DDS) to provide a fine stepping synthesiser.
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Direct digital synthesis provides low phase noise and immunity to vibration, but at present

the spurious performance often leaves something to be desired. Chapter 8 presents a

thorough investigation of this problem, leading to a possible solution for which a patent

has been applied. A method is described where, by the addition of some extra digital

components, the spurious signal levels using real 8 bit DACs can be reduced below

- 70 dBc. Computer simulations are described that illustrate the maximum spurious

signal levels. A test DDS synthesiser was constructed to verify the results of our

simulations. The results of this test synthesiser are displayed showing the improvements

in spurious signal levels. Most of the spurious signal reduction takes place in the digital

domain which enables a high level of integration.

Use of DDS is particularly interesting as it enables the synthesiser to be modulated directly

from the output of digital signal processing devices. By making the synthesiser perform

upconversion and modulation, an opportunity is therefore given to move the synthesiser

from the periphery to the centre of the system, making it more justifiable economically to

improve its performance. A method of accomplishing this is given in chapter 9.

Finally, predicted phase noise levels for various synthesiser configurations are inserted

into a phase noise analysis program written by the author. This program predicts the BER

performance of a satellite data communications system for any given synthesiser

performance and system configuration. Results of such an analysis are compared with

measurements taken on an actual modem in chapter 9. It is shown that by use of

techniques outlined in this thesis, the dominant phase noise contribution to the satellite link

comes from the satellite transponder itself. There is thus an argument for tightening of the

transponder phase noise specification to enable the use of higher order modulation

schemes in the satellite link.

1.3 Background and origin of research 

This thesis originated through the Pandata program for commercial data links by satellite

[Garrett, 1988] originally undertaken by Ferranti Computer Systems Ltd, (formerly CSR

Ltd) of Ilkley. The system was originally intended as a direct sequence spread spectrum

CDMA (code division multiple access) terminal using BPSK with forward error

correction. One of the chief obstacles to be overcome to make the Pandata system viable

was the provision of low cost local oscillator technology. Initially an attempt was made

using a TYRO type low noise block front end and synthesised down converter.

Catastrophic degradations in system sensitivity resulted, which were overcome only by
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the use of professional microwave synthesised signal generators. Research into methods

of providing low cost, low phase noise microwave synthesis was clearly necessary.

In the first stages of this research, CSR developed an offset QPSK ground station modem

terminal for the Skyphone program [Brown, 1989], which is an in flight telephone system

for commercial airlines. A VHF phase locked loop synthesiser was designed for this

using the 3 loop technique as described in §4.2.4, with a fixed phase locked oscillator for

the microwave 1st LO. The implementation loss of the modem above the theoretical

sensitivity level was only 0.2 dB. However the tuning range was only 24MHz, too

narrow for many applications. It was necessary to continue the research to enable the

above performance to be achieved using a wide tuning range microwave synthesiser.

This work was carried out at the University of York under the guidance of Mr T. C.

Tozer, and Dr A. G. Burr. The work was made possible by the kind support of Ferranti

Computer Systems Ltd of Ilkley (formerly CSR Ltd) and Ferranti Computer Systems Ltd

Microwave and Satellite Communications division at Poynton. The author would wish to

particularly thank: Dr R. Gough and Mr K. Hodson of CSR Ltd for helping to initialise

this work along with assistance during its progress; Mr. Tozer, and Dr Burr for their

helpful supervision; along with Mr M. Evanson, Dr D. Lynes and Mr G. Parkinson of

Poynton for their kind assistance. The author would wish to thank other people from the

University of York and Ferranti for their support and encouragement.
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• 2 Phase Noise, origins &
Fundamental Design

Considerations

2.1. Introduction

This Chapter describes the fundamental properties of phase noise, as generally

understood, and its relationship to thermal noise. Noise is a fundamental problem in all

communication systems, the effect being to obscure the transmitted information in some

way. In satellite data communication systems noise results in an increase in Bit Error Rate

(BER) or a penalty in terms of link power budgets. Phase noise, although less widely

appreciated than thermal noise, is none the less just as important in terms of link budget

considerations. Investigation of phase noise effects begins with a study of the degrading

effects in general terms, and this is followed by a study of the origins of phase noise.

Individual blocks of a communication system are investigated and the phase noise

contribution of each block is assessed. Finally, the significance of synthesiser "excess

noise" is stressed. "Excess noise" is noise over and above the reference oscillator

contribution whereas most treatments of phase noise often simply consider the local

oscillator to have standard oscillator noise sidebands such as 1/f3 noise.

2.2. Noise in communication systems 

.2.1.	 Degradations and noise 

The function of a communication system is to provide a faithful replica at the output of the

information present at the input. All communication systems will however degrade in
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some way the information at the output as compared with that at the input. The principal

examples are:-

1) Noise	 -The addition of unwanted signals not related to the original

signal;

2) Distortion	 -The modification of the signal by a function related to the

original signal (including inter-symbol interference).

These degradations are well known in connection with analogue signals, and they have

direct equivalents in digital systems. Here noise is present along with inter-symbol

interference (ISI), the digital equivalent of distortion: the end result is an increase in the

errors present at the output. The resulting error performance is commonly measured as

the BER which is defined as the ratio of error bits to the total number of bits sent.

In order to overcome these degradations of performance in satellite systems, a number of

measures may need to employed: improvement in link budget parameters (eg an increase

in transmitter power); use of error correction coding; and techniques such as maximum

likelihood estimation at the receiver. Techniques may also be called for to compensate for

some IS! (eg adaptive threshold decoding). However, the effects of noise cannot be

entirely eliminated, and it will be shown in chapter 6 that phase noise can lead to virtually

irreducible error rates in certain circumstances.

The noise present in a satellite communication system can take three forms:

1) Inierference from another carrier or signal;

2) Thermal or additive noise;

3) Phase noise, largely from local oscillators.

The first two sources are well documented [Feher, 1981], [Betts, 1983], but the third

source is not so well understood and is covered in chapters 3 and 6.

.2.2.	 Effects of noise

The effect of noise upon a digital modulation scheme (QPSK) is illustrated in fig2.1.
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	Fig 2.1	 Effect of noise on signal constellations

The shaded areas illustrate the uncertainties mapped out due to noise; when the noise

crosses a phase boundary, an error results. For a given noise level, the error rate is

determined by the probability density function (PDF) of the noise. Additive noise gives a

circular spread on the diagram, and this leads to "Eb/no degradation", where Etin0 is the

energy per bit to noise density ratio. Fig 2.2 shows further how E 1,/n0 degradation

occurs: the ratio of dots that cross the decision threshold to the total number of dots

represent the probability of a wrong decision.

Fig 2.2	 BER degradations caused at low SNR as a result of thermal noise
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In addition to this is degradation due to timing errors at the demodulator. Whichever

demodulation system is used, the timing of the data transitions has to be derived from the

received data signal, and the effect of noise is to create uncertainties in the recovered

timing. In fig 2.1 the effect of timing jitter is a random circular displacement of the axis.

Fig 2.1d displays the effect of using the recovered timing (including jitter) as the frame of

reference and observing the resultant data signal. The circular additive noise uncertainty

area becomes elliptical, increasing the probability of a wrong decision. The first

degradation is a function of thermal noise, but the second is a function of both thermal and

phase noise.

.2.3.	 Random phase noise

Phase noise is due to random shifts in the phase of a signal that occur in passing through a

system. The result is variation in the timing of the output signal referred to the input

signal. Phase noise is essentially a multiplicative effect, as opposed to an additive effect

such as thermal noise; the signal is effectively multiplied by el e where 0 is a random

variable. The ratio of phase noise to carrier power is independent of the signal level once

the phase noise has been introduced. When a signal is downconverted to a lower

frequency, the angle of phase noise is unchanged from the initial source. Such frequency

conversions add additional phase uncertainties, with each local oscillator contributing

additional phase noise to the downconverted signal. Much care has to be taken in the

design of microwave oscillators, since, for synthesised and phase locked oscillators, the

effect of phase noise increases by 20logN for a constant time jitter, where N = output

frequency/reference frequency = (fout)/(fref)-

The problem can be much more acute in synthesised local oscillators because of the

increase in the complexity of signal processing circuits controlling the synthesiser. In

order to design suitable local oscillators, therefore, there is a requirement to evaluate the

effect of phase noise on the demodulation of the signal. Coupled with this is a

requirement to evaluate cost effective techniques for minimising the phase noise

contribution of synthesised local oscillators.

2.2.4.	 Periodic phase noise

Periodic phase noise takes the following forms:-

1) Close to carrier spurious;

2) Far from carrier spurious receive;

3) Far from carrier spurious transmit.
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1) Close to carrier spurious (within the the bandwidth of the receive signal) power

adds to the random phase noise as a root sum of squares, to produce the Edno degradation

as mentioned above.

2) For the case of a receiver, any spurious signals outside the bandwidth of the

wanted signal may, if of sufficient level, result in false locking of the receiver carrier

recovery circuits if coherent detection is used. Also there may be breakthrough of the

synthesiser spurious signals through the receiver downconverter, and consequently a

signal present at the output for no signal input.

3) In transmit, spurious output signals outside the bandwidth of the wanted signal

may cause embarrassment to other uses by appearing in their channels. This is most

undesirable, therefore the spurious output specification of the transmitters is of utmost

importance.

2.3. Origins of phase noise

2.3.1.	 Johnson. or thermal. noise

Johnson, or Thermal, noise is a fundamental form of noise caused by thermal motion in

matter. It is a property of all electrical systems and has many sources. Phase noise

originates from interaction between such noise and a signal carrier.

The noise power N created from any source is given by:

N = kTB	 (2.1)

where k is Boltzmann's constant, and has value 1.38x10-23J/K, T is the ambient

temperature in degrees Kelvin, and B is the bandwidth. At ambient temperature (300K)

noise power is -174 dBm/Hz. This noise is proportional to bandwidth and independent

of frequency, and therefore is described as white noise. The noise power rolls off at very

high frequency due to the quantum behaviour of electrons, and therefore has the response

[Van der Ziel, 1986a]:-

no(f) = no(0)	
hf 

kt(e hfikt - 1)
(2.2)
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where h = Planck's constant, no(f) is the noise density per Hz at frequency f, and no(0) is

the noise density at low frequencies. This roll off commences at 10 14 Hz, and hence

noise can be considered as white for all practical communications frequencies.

2.3.2.	 Shot noise

Shot noise is the due to the fact that current flows in discrete quanta of charge rather than

as a continuous flow. It therefore arises in the form of pulses having amplitudes equal to

an integral number of the basic unit of electronic charge q. Shot noise is a fundamental

source of noise occurring in all electronic devices that have a direct current flowing

through them. Shot noise current In is determined by [Van der Ziel, 1986b]:-

'(ims) = 4(241&B)	 (2.3)

where q = 1.6 x 10-19 Coulombs, and Idc is the DC current. The spectral distribution of

shot noiie is the same as for thermal noise (ie. white over the communication bands).

2.3.3.	 Flicker noise

This is a generic term applied to all noise which has the relationship with frequency (f)

such that:-

no(0 cc f -1	 (2.4)

where no(f) is the noise power spectral density, and y ... 1.

This noise has many sources, for example: resistors (where it is known as excess noise);

surface states in semiconductors; traps and recombination centres in semiconductors; and

conductivity modulation in semiconductors.

Flicker noise is a characteristic of all active devices, and having many sources it is more

pronounced in some devices than in others. Because of the reciprocal frequency

relationship, flicker noise is fundamentally a low frequency phenomenon, being masked

by white noise at higher frequencies. Flicker noise is usually specified by either of two

methods: by extrapolating down to 1Hz (e.g. -120 dBm/Hz at 1Hz); or by the noise

power in a decade bandwidth (flicker noise has equal power per decade bandwidth).

Fig 2.3 displays a typical llf spectrum.
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Fig 2.3	 Flicker noise in the frequency domain

2.4. Analysis of noise in communication systems 

2.4.1.	 Additive noise

Consideration is now given to the effect of additive noise on communications systems.

Additive noise is defined as that produced when a signal is passed through a system and

the noise of the system is added with no interaction between signal and noise. Fig 2.4

shows noise and a signal carrier.in  the frequency domain. Because additive noise power

is dependent upon bandwidth, it is convenient to analyse in terms of normalised noise

power. This is frequently achieved by normalising it to the power obtained by passing it

through a hypothetical filter of equivalent noise bandwidth of 1Hz. At RF, in spectrum

analysers for example, practical filters have a bandwidth much larger than 1Hz so the

noise may be normalised as:-

n o(lHz) = 11312 	(2.5)

where no is the noise power in a 1Hz bandwidth, B is the noise bandwidth of the filter

and Np is the total noise power.
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Fig 2.4	 Frequency domain representation of a carrier plus additive noise

2.4.2.	 Modelling additive noise

The effect on the carrier of the noise sidebands can now be studied by considering the

nature of the noise passed by a 1Hz filter. If the filter is placed at a frequency f n + fm,

then for a time interval of much less than 1 second, the noise will behave as a sine wave:-

vn(0 = V(0) sin((fo + fm)2Ict +4) )
	

(2.6)

where V(0) is the instantaneous amplitude, and the phase 4) is uniformly distributed over

a long time interval. Therefore, although for times much less than the reciprocal of filter

bandwidth there would be little change in 4), over a period of time much greater than

reciprocal filter bandwidth 4) will appear to be uniformly distributed. The amplitude Vn

will be almost constant over time intervals much less than 1 second and a slow variation in

this level will occur for greater periods. The amplitude variation probability density

function (P(V)) follows the Rayleigh distribution curve Malan, 1 974a]:-

p(V)= exp —11--V	 -V 2
02	 2a2
	 (2.7)

where Vn is the instantaneous envelope level and a is the RMS value of the noise. The

mean value of the function is Vn = 4(7c/2)a. Fig 2.5 displays the Rayleigh distribution

curve.
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Fig 2.5	 The Rayleigh distribution curve

2. 4 .3.	 The Ricean Distribution

The Rayleigh distribution is for narrow-band Gaussian noise alone, but if narrow band
noise and a carrier are present, the amplitude distribution is described by the Ricean family
of curves. If the instantaneous noise and signal amplitude is z and a is the RMS noise

level [Halan, 1974b], then:-

p(z) = z_exp(-1 (z2 + A 2 \io(Az))
(2.8)a2	 c52 ‘	 l cy2

where

OD

x2n
I0(x)--/22n(n!)2

n=0
(modified Bessel function of zero order),

and A is the amplitude of the carrier wave, A sin(27tf0t ).

Fig 2.6 displays the probability function against amplitude level for the Ricean functions
of carrier plus noise. When the carrier amplitude tends towards zero the Ricean
distribution tends towards the Rayleigh distribution. Although always greater than the

carrier amplitude, the combined mean amplitude approaches the carrier amplitude at high

carrier to noise (C/N) ratios.
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Fig 2.6	 The Ricean distribution family of curves for different carrier to noise ratios

Also, at high C/N ratios the distribution curve approaches a symmetrical Gaussian

distribution centred upon the carrier amplitude. Fig 2.7 shows the mean of the amplitude

function against carrier to noise and fig 2.8 the standard deviation.
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The distribution of phase of a carrier plus additive noise is a complicated relationship

[Halan, 19744 Briefly, the uniformly distributed noise phase function becomes

increasingly biased towards the carrier phase as the C/N increases. As the carrier becomes

much greater than the noise, the phase distribution approximates to a Gaussian distribution

around the carrier phase (fig 2.9). This suggests that the analysis may be simplified if the

sum of the total noise power is much less than the carrier power. In this case the noise

can be treated as a continuum of sinusoids placed at small frequency intervals apart.

These sinusoids may be considered as separate signals or as modulation sidebands on the

main carrier, providing the total power is much less than the carrier power and the law of

superposition applies.
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Fig 2.9	 Density function of phase for a carrier plus noise

If one of these sinusoids of frequency f, + fm is added to a carrier fc, the result can

easily be visualised in vector form as in fig 2.10. If the f, carrier vector is imagined de-

rotated (so the whole diagram rotates with angular velocity 27cf 0 rads/s), then the noise

vector will rotate around the carrier vector at 2mfm, or corn. It can be seen that there will be

simultaneous amplitude and phase modulation of the carrier wave. The amplitude will

move between Vc+Vn, and V,-V, where V, is the carrier amplitude and Vn is the noise

amplitude. The phase deviation will vary between +Vn/V, and -Vn/V, radians (if

Vn<<V,). This is the contribution if a single sideband is considered, but with additive

noise, there will also be a sideband at fm It was shown earlier that narrowband noise

has a Rayleigh amplitude distribution and uniform phase distribution. Therefore for

random noise there will be no amplitude correlation between the sidebands. Also the

phase relationship will be completely random. This means that the upper and lower

sidebands will be completely independent of each other and their only common feature is

long term average power, which is equal.

The sidebands of a carrier and additive noise are therefore said to be non-conformable

[Robins, 1982]. It is this property which distinguishes additive noise from pure

amplitude or phase noise.
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Fig 2.10	 Additive noise vectors with the carrier vector de-rotated

2.4.4.	 Limiters

The creation of phase noise is best studied by considering the action of a pure limiter on a

carrier with additive noise. A limiter is represented by the following conditions:-

Input > 0 volts, Output = + volts

Input <0 volts, Output = - volts

A perfect limiter will therefore remove any amplitude variations in the signal while passing

the phase variations unaffected, providing the noise is small in comparison with the

carrier.

The general analysis of a narrow band limiter has been derived by Davenport [Davenport,

1953]. At low signal to noise ratios, the noise sidebands interact with each other as well

as with the carrier. The approximation that all sidebands can be considered independently

is therefore no longer valid. However if the carrier to total noise ratio is moderate, then

each 1Hz sideband can be considered independently as the interaction between them

becomes a negligible second order effect. This analysis can be much simplified by

considering the noise as a single sideband vector along with the carrier and observing the

resultant vector as maintained constant in amplitude, but with the phase variations

remaining.
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Fig 2.11 illustrates the result in vector form of a carrier and noise sideband. The noise

vector will have a uniform distribution of phase with respect to the carrier. As a result of

this both amplitude and phase variations will be present in the combined signal. The

limiter will remove the amplitude variations. This necessitates the creation of two

sidebands in order to cancel out the amplitude variations in the combined signal.

Fig 2.11 shows the effect of additive noise on the carrier, and fig 2.12 the resultant

vectors after a limiter. This therefore results in two vectors of half the original noise

amplitude, rotating at equal angular frequency with respect to the carrier but in opposite

directions (so that amplitude variations cancel out).

Noise vector rotates with
angular velocity +1- Wm

about the carrier vector

11./
inNoise vectors rotate with

angular velocity + win

about the carrier vector

•
nose 'vector

0..• k-
win

•*\carrier	 •

• 

Resultant carrier +	 carrier
vector • 	vector

wc 	
noise vector	 wc•

noise ;vectors

-
0 ;	 tuM

• Resultant carrier +
.	 .
• noise vector

Fig 2.11	 Single noise vector Fig 2.12	 Phase noise vectors

with the carrier vector de-rotated 	 with the carrier vector de-rotated

The rotating sideband vectors for phase modulation are seen in fig 2.12. The amplitude of

the phase noise sidebands is half that of the single additive noise sideband before limiting;

hence the single sideband of additive noise before a limiter becomes two sidebands of

frequency fc ± fm about the carrier, the power of each being 6dB less than the additive

noise. If additive noise is present at frequencies fm about the carrier, the resulting phase

noise sidebands will be a power sum of the contributions from the upper and lower

additive noise sidebands, resulting in a 3dB reduction in noise sideband power after the

limiter.
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The resultant noise sidebands will always be equal in amplitude even when considered

over small increments in time. The phase relationship of the sidebands will be such that

the vectors have equal and opposite angles about the carrier vector. Phase noise sidebands

are therefore said to be conformable. The above approximation is valid for total signal to

noise ratios of down to 10dB. Less than this and the cross products between the noise

sidebands result in more noise power density than the 3dB predicted above. Fig 2.13

displays limiter noise suppression against carrier to noise ratio.

-Z -
(MOout	 e the ratio

- '<Min of carrier to noise

at the output

- • to that at the input 	

-In	 0 <Min +10	 110
in dB

The suppression of noise on passing through an ideal limiter

2.5. Phase noise sources within communication systems

.5.I.	 Introduction 

Phase noise can arise from any of the circuit blocks that make up a typical transmit-receive

system. The phase noise generated within a system can have either additive or

multiplicative generating mechanisms. Fig 2.14 displays the circuit blocks that comprise a
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transmitter, and fig2.15 displays the receiver. Principal sources of phase noise are

highlighted in bold.

Fig 2.14	 Block diagram of simplified transmitter showing principal

phase noise sources in bold
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2.5.2.	 Phase noise from additive noise

This is generated from broadband noise that is near the carrier frequencies; it is added by

simple summation with the carrier, and subsequent limiting removes the AM component

(if the signal to noise ratio is good enough). Carrier to phase noise power ratio is

proportional to carrier power at point of addition.

2.5.3.	 Multiplicative sources of phase noise

This occurs when noise that is generated far away from the carrier is allowed to modulate

the carrier. Flicker noise (originating at baseband) is an example of the multiplicative

effect. Another common multiplicative effect occurs when broadband noise is applied to a

non-linear device such as a limiter. A characteristic of multiplicative noise is that the

carrier to phase noise ratio is not proportional to carrier power.

2.5.4.	 Main link phase noise contributors 

The main sources of phase noise in a transmit-receive system such as that for satellite

communications are:

1) Receiver low noise amplifier;

2) Transmitting power amplifier;

3) Transmitting oscillators;

4) Local oscillator in receiver (particularly the first LO);

5) Transmitting multiplication/synthesis scheme.

Each of these sources adds phase noise and causes degradation of the bit error rate. Such

degradation is quantified in chapter 6.

2.5.5.	 Receiver contribution

The low noise amplifier (LNA) at a receiver input adds thermal noise by an additive

process, as already discussed. A common noise figure (NF) at the input is 2dB for an

inexpensive LNA. Any reduction in NF is likely to result in a disproportionate rise in

system cost. An increase in signal level at the input to the receiver will improve the carrier

to noise power, but this involves an increase in either receive dish aperture, or satellite

EIRP. However there is a multiplicative effect taking place that it is not normally

considered in system specifications. At Ku band, gallium arsenide MESFETS (GaAs

FETS) are typically used, and the nature of these devices is that they contribute

considerable 1/f noise to the RF input [Motchenbacker & Fitchen, 1973]. This appears as
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1/f phase modulation of the input. Such phase noise must therefore be measured as part

of the phase noise analysis of the overall system. Satellite transponders similarly tend to

employ GaAs FETs and these will also contribute to phase noise. Most published work

on GaAs devices concentrate on either the broadband thermal noise of the device as an

amplifier, or the flicker noise of the device as an oscillator, but no treatment has been

found of the RF flicker noise performance as an amplifier. Such properties of the device

are recommended for investigation therefore.

2.5.6.	 Tx power amplifier effects

Power amplifiers in the satellite are generally travelling wave tubes (TWTs); some earth

stations may also employ TWTs for transmission. These add flicker noise by

multiplicative conversion effects. The power level in transmitters is too high for additive

effects to be important.

2.5.7.	 Oscillators

A satellite communication system will employ a number of oscillators in signal sources,

frequency converters etc. These will all contribute phase noise. Later sections of this

thesis examine in detail this contribution, for both crystal oscillators and frequency

synthesisers.

2.6. Oscillator performance

2.6.1.	 Oscillator phase noise as a function of resonator group delay,

The block diagram of an oscillator loop is shown in fig2.16. The conditions for

maintaining oscillation are:

1 Gosc l = 1 '	 ZGosc = 2nn
	

(2.9)

where Gose is the oscillator open loop gain.

The phase noise introduced into the oscillator loop can be represented by a phase

• modulator placed at point A. According to modulation theory the result of a phase

perturbation at a modulation frequency cam is the appearance of sidebands at cac ± cani.

The resonator has associated with it a group delay T, where:-
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Fig 2.16	 Block diagram of an oscillator displaying phase noise multiplication effect

Representations of the phase modulations within the oscillator are displayed in fig 2.17.

The modulation would therefore create an extra phase shift 4) at a modulation frequency

(. The oscillator must at all times have zero phase shift around the loop. Any phase

shift due to the phase noise modulations described above must be cancelled therefore in

another part of the loop; the only possible means of achieving this is by means of the

group delay of the resonator. Therefore large changes in oscillator closed loop phase

occur so that the resonator group delay can provide compensating open loop phase shifts.

Inside the resonator bandwidth the attenuation of the fed back signal can be considered to

be negligible. It is then possible to calculate the phase modulation at the output of the

oscillator providing the following assumptions can be made:-

1) That there is no relative resonator attenuation, ie the offset frequency is within

the resonator passband;

2) The resonator group delay results in a small phase shift to the phase

modulation, so that small angle approximations can be applied.
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Fig 2.17	 Time domain and vector diagrams for oscillator modulation by phase noise

This phase shift is constant, and arises as a result of the time delay through the resonator.

The noise modulation is considered to be of such a narrow bandwidth that it can be

approximated as sinusoidal in nature. The condition ZGosc= n2n must apply to the loop

including the noise modulation.

Therefore the phase shift 4:, must be equal to the difference between that appearing at the

output of the oscillator and that appearing at the opposite side of the resonator. The

resulting magnitude of the phase deviations can be represented by a vector diagram as

shown also in fig 2.17. A is the peak modulation amplitude due to noise and M is the

magnitude of the oscillator output phase deviation. Therefore the modulation 0 is given

by:-

0 = A sin coct = M sin coat - M sin(coct . -F 0)	 (2.11)

The RHS of (2.11) refers to the difference between the phase modulation at the output of

the resonator and that of the input. Expanding (2.11) and applying the following small

angle approximations we have:-
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(2.14)

= —
nfo coc

(2.16)

Cos 0 --- 1

Sin 0
	

(2.12)

A sin (Iv M(sin coct - sin cuct - (cos (uct)0)

Therefore the relationship between peak deviations is:-

A MO	 (2.13)

This is the phase shift of the modulation and is due to the time delay (group delay) through

the resonator, T, which is given by t= —
d0

.
dwc

Assuming constant group delay, then:-

The group delay of the resonator is determined by its loaded Q, Q L, and:-

QL
'T =

nfo
(2.15)

where fc, is the frequency of oscillation. Equation (2.15) is important as it uniquely

defines QL.

Substituting (2.14) into (2.15) gives:-

Far from the carrier, the phase shift at the modulation frequency through the resonator is

sufficiently decorrelated so that there is little modification of the phase noise modulation at

the output of the oscillator. Consequently, phase noise is now frequency independent and

at a level frequently referred to as the 'oscillator noise floor'. This is given by:-

A2= kTn
2	 (2.17)

where Tn is the noise temperature of the amplifier input, k is Boltzmann's constant, and A

represents the amplitude of the noise modulation. The relationship between the output

noise of the oscillator and the input is found from equations (2.13) and (2.16) where M is

the closed loop phase deviation of the oscillator:-

A , A fo
tv't	 2fcQL, (2.18)
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The peak deviations can be converted to noise power densities by squaring. In terms of

phase noise power density to carrier ratio L (f), the oscillator noise can be expressed as

(2.19), assuming thermal noise only is present:-

,,,,, kTn H2
L ") = 2 ' 2fcCt	 (2.19)

giving the relationship quoted by Leeson [1966].

Therefore for fc < f0/2Q, the noise side band power is raised by a factor (-2f19--,)2c(k
[Leeson, 1966] giving:-

L (f) = L (co) (2ffek)2	(2.20)

where L (0.) is the broadband phase noise floor within the loop.

2.6.2.	 _Spectral shape of oscillator sidebands

The spectral shape of the oscillator sidebands can be determined from equation (2.19).

The amplifier spectrum, as discussed elsewhere is multiplied by the factor(-,7-9---,f )2. For
Lic.i .

offset frequencies less than f0/2QL, this factor has a reciprocal square relationship with

frequency. This means that when the phase noise is plotted on a logarithmic offset

frequency axis, the slope of the graph is changed by a factor -2. The spectral shape is

modified depending on whether the lif corner frequency fc is less than or greater than the

resonator half bandwidth frequency. This explains the commonly observed f -2 or f -3

curves. These curves are shown in §3.3.4.

In addition, crystal and SAW oscillators can show an fc -4 slope very close to the carrier

known as the "random walk" effect [Parker, 1986]. The fc-4 slope can also occur further

out from the carrier if any of the following occur:-

1) coincident spurious modes;

2) burst noise (in drastic cases).

36



2.7. Frequency synthesis

.7.1.	 Introduction 

Frequency synthesis is considered to be necessary for the receiver local oscillator to enable

versatile re-allocation of channels. There are two fundamental methods of frequency

synthesis, the incoherent and coherent methods [Mannassewitch, 19764 The incoherent

method depends upon heterodyning a bank of reference oscillators whereas the coherent

method derives the frequency from a single reference source. The requirement for a

multiplicity of highly stable and therefore expensive reference oscillators for the incoherent

approach favours the second approach for data systems, although the first approach may

give phase noise benefits (see §5.7.5). The coherent approach can be further sub-divided

into the following four categories:

1) Direct synthesis;

2) Indirect synthesis;

3) Numerically controlled oscillator (or Direct Digital synthesis);

4) Hybrid synthesis.

Each of these approaches has its particular drawbacks and advantages which depend upon

the application. Therefore a complete survey of these is necessary and synthesiser design

is discussed in more detail in chapter 4.

.7.2.	 Penalties resulting from use of a synthesiser

In addition to the 20 log N degradation of the reference oscillator, excess noise may also

be added by signal processing circuitry within a synthesiser. The properties of the

reference oscillator would be degraded by the synthesiser processing circuitry. The two

particular problems likely to be created are:-

1) Phase noise;

2) In-band unwanted discrete carrier signals (spurious signals).

The first of these is random in nature, whereas the second is deterministic.
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Phase noise arises from noise sources in the synthesiser processing circuitry, and from

any subsidiary oscillators used. This has been described as "excess" or "residual" noise,

as it is additional to any noise generated by the reference source [Mannassewitch, 1976b].

In many inexpensive frequency synthesisers where the design is not specified for data

communications, this noise would be far in excess of that for reliable data reception

[Wilson, & Tozer, 1989].

In band spurious signals can take the following forms:-

1) Mains related spurious signals;

2) Unwanted harmonics of the synthesiser reference frequency;

3) Spurious mixing products.

Close to carrier spurious sidebands have the same effect as phase noise in that carrier jitter

is the result at the demodulator. Far from carrier spurious sidebands have the effect of

reducing the dynamic range of the system. If the spurious signal is at a high enough level,

then false locking onto the spurious signal is possible, as is the reception of interfering

signals at unwanted frequencies. In the case of transmitters, the spurious signals could

result in interference to other links on other frequencies. Chapter 4 of this thesis deals

with synthesiser design considerations in some detail.

2.8. Summary

The mechanism by which phase noise originates from additive noise has been shown. A

distinction has been made between phase noise originating from additive noise and

multiplicative noise effects. The problem of flicker noise has been raised. It has been

shown how these effects contribute to the overall shape of typical local oscillator

sidebands.

2.9. Further work

There is a requirement for an investigation of the flicker noise characteristics of travelling

wave tube amplifiers and GaAs FET amplifiers.
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3 Flicker, Phase, and Frequency

Noise in RF Systems

3.1	 Introduction 

This section further examines the origins of phase noise and related phenomena. Some

aspects are discussed which, though not normally considered, may result in increased

levels of phase noise.

A fundamental source of phase noise is flicker noise. Although flicker noise is a low

frequency phenomenon, there are mechanisms which result in its appearance at RF,

around the carrier frequency. The mechanism by which it appears is not as simple as that

for additive white Gaussian noise (AWGN) and is the subject of much contention. The

fact, however, that the noise power is concentrated close to the carrier frequency has

implications for low data rate systems. There is a case, therefore, for further investigation

into this subject. The noise can originate in both reference and synthesiser oscillators.

The 1/f3 reference oscillator noise sidebands originate mainly in the resonator; for the

synthesiser, the shape is 1/f3 and is determined by the active components. There is

relatively little information available on this topic, and attempts are made to develop it in

this thesis.

In the case of crystal oscillators it has often been assumed that the responsibility for

reducing the effect of flicker noise rested with the oscillator circuit designer, however, it

has more recently become appreciated that flicker noise within the resonator itself may

dominate the output spectrum [Moulton, 1986].
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3.2 Phase noise generation in amplifiers

3.2.1	 Transistor amplifier noise sources

Initially, it is instructive to consider a transistor amplifier. The overall noise generated

within a transistor amplifier has many origins. In a typical transistor amplifier, there are

several noise sources; Johnson and shot noise are both white noise sources and give the

device its noise figure throughout the RF regions. The principal source of Johnson noise

is in the base spreading resistance of the transistor (r bb,), while shot noise is due to DC

current flow in the device.

An equivalent circuit of a bipolar transistor displaying these noise sources is shown in

fig 3.1. The symbols pertaining here are [Motchenbacker & Fitchen, 1973] :-

7 =

a =

Bo =

q =

rbb =

rb =
rue =

Ic =
Ib =

T =

k =

Rs =

constant exponent in the flicker noise model

frequency exponent in the flicker noise model (approximately
unity)
transistor current gain
electronic charge
base spreading resistance
1/f component of base spreading resistance
equivalent base-emitter resistance
collector current
base current
temperature in Kelvin
Boltzmann's constant
source resistance

The equivalent noise input to the device is [ibicl]:-

Eni2 = 4kT(rbb.+R5) + 2qIb(rbb.+Rs)2 + 2qIc(rbb.+Rs+rb'e 2

Johnson Noise
	

Base Shot Noise	 Collector Shot Noise

CqfcIbY(Rs+Rb)2)	
f 2

+ 20c(rbb-FROtt. )+
LT

Flicker Noise	 Collector Shot Noise HF Roll-off

	)

130

(3.1)
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Some of these components are discussed below.

Equivalent input
noise voltage (E)

:Base Rb R bb' Collector

Fig 3.1	 Equivalent circuit of bipolar transistor showing noise sources

3.2.2	 Flicker or 1/f noise

Flicker noise is the least understood aspect of the noise sources, with its effects not as

well defined and documented as the white noise sources. Some of the effects may be

determined by fundamental laws of physics (as in Johnson noise), while others vary

between different devices and manufacturing processes. A typical flicker phase noise plot

for an amplifier is displayed in fig 3.2. Flicker noise may be normalised to a 1Hz

intercept point no (1Hz).

Fig 3.2	 Flicker noise in the frequency domain
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Flicker noise has been ascribed to surface effects within devices because [Buckingham,

1983a]:-

a) Junction field effect transistors, which are predominantly bulk effect devices,

show a reduced level of flicker noise;

b) Bipolar devices having their base emitter junction operating in reverse zener

breakdown mode show an increased 1/f noise level.

Voltage breakdown of a bipolar device emitter-base junction releases "hot" (high energy)

electrons into the oxide layer of the device, resulting in increased surface layer currents in

the device, and increased flicker effects. However junction FETs are not immune to this

effect, indicating that there may be a bulk effect also. Another theory relates 1/f noise to

stresses within the device crystal lattice [Buckingham, 1983b]. These stresses create traps

which hold and release charge carriers with a time delay that is 1/f in spectral response.

This effect is very pronounced in Gallium Arsenide, which, due to the nature of the atoms

which make up the compound and the doping, has a highly stressed lattice [Pucel, 1986].

3.2 .3	 Flicker noise at RF

The output of an RF amplifier has a phase noise spectrum consisting of additive white

noise and multiplicative 1/f noise. Fig 3.3 shows a display of the phase noise spectrum of

a carrier after passing through an undegenerated transistor amplifier, as would be seen on

an ideal spectrum analyser with infinite dynamic range and 1Hz resolution bandwidth. If

germanium or silicon devices are used in the RF amplifier, then it has been found that the

level of 1/f phase noise at RF is not dependent upon the device used (as opposed to at

baseband [Halford, 1967]).

There are two principal multiplicative mechanisms by which flicker noise could be

introduced to the RF spectrum:-

i)	 Non linear upconversion by intermodulation effects (analogue multiplication

mixing effects);

Phase modulation by non-static device parameters.

If non-linear upconversion by analogue multiplication is the dominant mechanism, then

the flicker phase noise would be drive level dependent. This is because a variable level

carrier is used in the mixing process. However experimental evidence reveals a constant

level of flicker noise when the signal level is varied over a range of 30 to 40dB [Moulton,

1985] and would tend to indicate that phase modulation effects are responsible.
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Fig 3.3	 A plot of flicker phase noise in the frequency domain after

amplification by an undegenerated transistor amplifier

Fig 3.4 shows a plot of phase noise introduced by a single transistor amplifier with and

without emitter degeneration.

Fig 3.4	 Plot of transistor amplifier phase noise levels (silicon bipolar)
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Fig 3.5 shows simplified circuit diagrams of the amplifier.

Fig 3.5 a	 Simplified transistor

amplifier with no

emitter degeneration

Fig 3.5b	 Simplified transistor

amplifier with

emitter degeneration

Emitter degeneration is a very effective form of RF feedback, frequently used to reduce

• performance dependence upon transistor parameter variations. Fig 3.6 indicates the

parameters that could be involved in producing the phase modulation effect. The

transistor parameters Rb(base resistance), gm(mutual conductance), Cbe and Ceb (emitter-

base and collector-base junction capacitances) tend to fluctuate about their average values,

thus causing phase modulation of the carrier. In small signal amplifiers the effect is

20-30 dB higher than upconverted 1/f noise [Muat, 19864 The 1/f intercept point has

been measured to be approximately -120 dBc/Hz at 1Hz offset. This has been observed

[Muat, 1986b] to be constant over the RF region from HF to mid UHF (700MHz). The

effect of Rb and gm could explain the constant phase modulation effect. The effect of

junction capacitance Co] and Cbe would result in increased flicker noise at higher
frequencies. The effect of adding the emitter resistor results in g m being determined by

the resistor, providing its conductance is much less than the g m of the transistor. Thus it

would be expected that flicker noise variations in g m would be much reduced in the

degenerated case. In fact, due to the application of emitter degeneration, up to 40dB

reduction in flicker noise in the VHF region can be achieved [Kroupa, 1973]. This is as a

result of circuit dependence upon the external emitter resistance rather than g m. However,

the resistor increases the Johnson noise floor as can be seen in fig 3.4.
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Base

Emitter	 -1-

Fig 3.6	 Equivalent circuit of transistor showing parameters subject to flicker noise

3.3 Phase noise generation in oscillators 

3.3.1	 Resonators

The thermal noise and flicker noise effects present in amplifiers also occur in oscillators.

However in addition to this, there is also a flicker noise contribution from the resonator.

To appreciate the need for a resonator element, we need to consider the Barkhausen

criterion for maintaining oscillation, which is:

IGosc l = 1	 (3.2)

ZGosc = n27c

where Gosc is the gain of the oscillator loop and ZG osc indicates the loop phase shift. In

addition to this, for maximum oscillator stability:-

—(ZGosc) = max possible
	 (3.3)

In addition to the loop gain requirements for oscillation, there must also be some

frequency selection within the loop. If this is not the case then unstable oscillations will

result as in fig 3.7 [Boyles, 1986]; this can typically occur if two phase-frequency

characteristics oppose each other within the oscillator loop.
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Fig 3.7	 A typical oscillator spectrum if no frequency selectivity

exits within the oscillator loop

Oscillator frequency selection is usually provided by means of a resonator with group

delay, Fig 3.8 shows a block diagram of an oscillator loop, displaying the sources of

noise within the loop. These sources could be either additive thermal noise or

multiplicative 1/f noise. Although the oscillator does respond differently in each case, it is

convenient to consider the noise as random phase modulation within the loop. The

oscillator noise spectrum is derived by considering the resonator to have a group delay r

which is related to its loaded Q (QL) by the expression:-

r = cent°
	 (3.4)

This gives a result that is accurate for offset from carrier frequencies << the resonator half

bandwidth frequency f0/2QL• Consequently the noise is raised by a factor:

f2 
L ci() =1- en

(fmQL)2

where L 01(f) is the oscillator open loop phase noise, and L ci(f) is the closed loop noise.

(3.5)
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Fig 3.8	 Block diagram of an oscillator displaying phase noise sources

3.3.2	 Additive noise

If a limiter is present in the circuit, then the amplitude variations due to additive noise

(Johnson or Shot) will be removed, provided that there is no AM to PM conversion within

the limiter. The effective phase noise contribution of the thermal noise is reduced by 3dB

compared with that resulting if all the thermal noise power consisted of phase noise. The

phase noise sideband power level L(f) is dependent upon the carrier to additive noise

power ratio at the effective noise summing point.

The formula for additive oscillator phase noise is:-

kTnfo2 

L(fm) 8Cfm2Q2

3.3.3	 Multiplicative noise

The effect of multiplicative noise is as if random phase shifts were introduced into the

oscillator loop equal in value to the noise level. Such noise generally has a Wrelationship

with offset from carrier frequency, close to carrier, and is independent of carrier power

level within the oscillator. Since this noise is effectively phase noise, no 3dB reduction

occurs as with additive noise.

(3.6)
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The phase noise contribution from multiplicative noise is therefore:-

0  L (f ) L(fo)	 (3.7)L(fm) - 4QL2fm2 fm	 4Q1..2 fm3

where L(f0) is the phase noise at 1Hz offset from carrier of the oscillator circuit measured

as an open loop two port device. It can be noticed that the phase noise sideband power

possesses an inverse cubic relationship with offset frequency.

The phase noise sideband power is independent of where the signal is removed from the
oscillator if fm « fot2QL• However, if the noise sidebands at fm are greater than the half

power bandwidth, then the sideband power depends upon which point is used to extract

the signal.

2,2ASzgar_a_Stav

The typical spectral shape of an oscillator with 1/f3 phase noise sidebands is displayed in

fig 3.9 as would be shown on a spectrum analyser screen. In addition to the steeply

rising sidebands it can be noticed that the tip of the display is diffuse. This is due to the

fact that the actual frequency of oscillation is non stationary, an important characteristic of

this phenomenon.

Fig 3.9	 Flicker noise effects within an oscillator
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If the phase noise sidebands are plotted on logarithmic scales, then the gradient is
increased by a factor -2 over the open loop gradient, for offset frequencies < f 0/2QL due

to the factor:

f2 
L cif° = L 01(0	 °(fm2QL)2

where L 01(f) is the oscillator open loop phase noise and L c1 (f) is a closed loop phase

noise as mentioned earlier. Consequently, close to carrier phase noise follows a 1/f,n3

spectrum as commonly observed in oscillators. This theory is developed further in

§5.6.2.2 in order to deal with the case of an injection locked oscillator.

Figs 3.10 & 3.11 display two commonly observed oscillator sideband spectra.

Fig 3.10	 Logarithmic phase noise sideband characteristic - low Q case

The first instance is for a low Q resonator oscillator, such as a Voltage Controlled

Oscillator (VCO). In this case the frequency where the ly noise spectrum becomes less

than the white noise spectrum, fa, is less than the resonator half power bandwidth f0/2QL.

Consequently, the spectrum has the following asymptotes:-

-100

-110

(3.8)
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Fig 3.11	 Logarithmic phase noise sideband characteristic - high Q case
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Oscillator components
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< fa)

fm-2 (fa < frn < f0/2QL)
	

(3.9)

coin	
(fm > f0/2(2)

For the case of a high Q resonator such as a crystal oscillator, the fa point is greater than

the resonator half bandwidth point, and the noise contribution from the amplifier displays

the following asymptotes:-

fm -3 fm < fc,/2Q_L

fm - 1 fo/2QL <fm < fa	 (3.10)

fm°	 > fa

- 140

-150

In general, low Q resonators result in high close to carrier phase noise, but allow a wide

tuning range. Conversely high Q resonators result in low close-to-carrier noise and a

more stable oscillator, but have a very restricted tuning range.
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This fundamental oscillator theory results in over optimistic results for oscillator phase

noise. There are additional mechanisms for phase noise generation in oscillators:-

a) AM to PM conversion;

b) Large signal effects in the limiter;

c) Resonator noise;

d) Dynamic phase noise due to vibration;

e) Phase "hits" or discontinuities in phase [Ondria & Singleton, 1988].

The effects of the above are very significant in data communications because they are

predominant in the close-to-carrier region. Until requirements arose for low cost low data

rate VSAT communications, the far-from-carrier phase noise was considered more

important. The close-to-carrier region has not been as thoroughly investigated therefore as

the far-from-carrier region.

3.3.5	 Crystal oscillator noise

3.3.5.1	 Introduction

In frequency synthesis, some kind of reference oscillator is required, and the noise

spectrum of this will dominate the output at close-to-carrier modulation frequencies. This

reference is normally provided by a crystal oscillator. The phase noise of the crystal

oscillator can originate in the maintaining amplifier or in the resonator.

3.3.5.2	 The Maintaining Amplifier

The effect of phase noise in the maintaining amplifier has already been studied [Everard,

1986]. This is under the control of the circuit designer, who must ensure that the phase

noise contribution of this is at least 10dB below that of the crystal resonator [Driscoll,

1985].

3.3.5.3	 The Crystal Resonator

Flicker phase noise contributions of resonators has been studied by many authors eg.

[Driscoll, 1985a], [Jungerman, 1985], [Driscoll, 1985b]. There are two types of

resonator noise effects possible [Parker, 1985]:-

Type (i)	 Variations in the phase relationship between the resonator terminal and

the acoustical vibrations inside the resonator,
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Slope =Group Delay

Type 1 resonator noise

Type (ii)	 Disturbances to the acoustical vibrations themselves by physical effects

within and around the resonator.

In the resonator curve displayed in fig 3.12, effect (i) results in vertical displacement of

the resonator phase curve. On the other hand, effect (ii) results in a random horizontal

shift in the curve. Effect (ii) is equivalent to random shifts in the resonator frequency.

Fig 3.12	 Resonator phase frequency curve with noise effects

3.3.5.4	 Measurements and Results

Fig 3.13 displays a block diagram showing the two port method of resonator phase noise

measurement. The loaded Q of the resonator (slope of the resonator curve) can be varied

by altering the matching network. The amplifiers are proprietary silicon MMIC modules

which possess low 1/f noise. Loaded Q's of the two resonators should be identical to

avoid decorrelation of source noise. The resulting noise is the sum of the noise

contributions of each resonator, and the resulting spectrum depends whether a type (i) or

(ii) noise generation process is involved.
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The spectrum of noise generation is displayed in fig 3.14 for a type (i) effect. Phase noise

is independent of loaded Q in the region for fm < f0/2QL. For fm > fo/2QL the noise is

modified by the 6dB/octave roll-off imposed by the resonator. This response is also

apparent from the resonator phase frequency curve. Since the noise displaces the curve

vertically, the resultant phase noise is independent of the slope of the curve. The f0/2QL,

factor is the half bandwidth of the resonator.

•	 •	 •

- Resonator
half bandwiths

Resonator noise

	 Fn=F6/201 points

Modulation
frequency Fil

10Hz	 100Hz	 ihz	 101Hz

Fig 3.14	 Type one resonator noise spectrum
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Fig 3.15	 Type two resonator noise spectrum
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Fig 3.15 illustrates the spectrum obtained for the type (ii) mechanism; as can be seen, the

effect is the reverse of the type (i) effect.

For fm < fo/2QL, movement of the resonator characteristic due to noise of 8f results in

phase disturbances:-

Therefore halving Q L halves the phase deviation, 80, resulting in a 6dB reduction in

phase noise. For fm < f0/2QL, the resonator response displays a single pole

(6 dB/octave) roll off. Therefore the phase noise rolls off at 9 dB/octave above the

resonator half bandwidth. Since lowering the QL by half lowers the in-bandwidth phase

noise by 6dB, and raises the half bandwidth by twice, the net effect is that the phase

noise above the half bandwidth is independent of QL.

The type (i) phase noise is most likely to be a function of the coupling to the resonator of

the terminals, and type (ii) is a function of the physical properties of the resonator itself.

In quartz crystals, the bulk of the resonator structure comprises the quartz, and so the type

(ii) effect is likely to be dominant. Experimental evidence [Parker, 1985] appears to verify

this.
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3.3.5.5	 Closing the loop

Closing the loop around the amplifier resonator combination to make an oscillator results

in a reversal of the open loop effects. As discussed in §2.6, the closed loop phase noise
increases at 6dB/octave above the open loop as f m decreases below f0/2QL. Therefore

instead of the break in the slope from 9dB/octave to 3dB/octave occurring at the half

bandwidth point as in the open loop case, the noise continues to rise at 9dB/octave. This

gives rise to the important effect whereby for type (ii) noise the 1/f3 noise is independent

of the loaded Q of the resonator (as shown by fig 3.15).

If type (i) noise dominates, then the 1/f3 noise is dependent upon QL. Fig 3.16 shows

how the effect of closing of the loop of a 100MHz crystal oscillator can be observed for

different loaded Q's.
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Fig 3.16	 Phase noise generation within a 100MHz crystal oscillator
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3.3.5.6	 Other Phase noise effects in crystals

Burst Noise

Burst noise consists of discrete disturbances in phase [Moulton, 1986]. Burst noise is

more easily revealed in the time domain than in the frequency domain, as the sharp

transient energy is likely to be spread in frequency, and may be obscured by flicker noise.

This form of noise may be more troublesome than flicker noise in a data system as the

sharp transients may be indistinguishable from data. The significance of this is therefore

that a crystal oscillator could appear better on a spectrum analyser, yet give inferior

performance in a system.

Crossing Modes

Crossing modes are spurious modes that occur alongside crystal oscillator main modes in

such a manner as to create a point of inflection in the phase frequency characteristic of the

resonator [Muat, 1986c]. This results in a very low effective loaded Q, and consequently,

a noisy oscillator.

3.3.6	 Other flicker noise sources

The varactor is also possibly a source of flicker noise. Rohde [1983] displays curves

showing a slope of 20 dB/octave as a result of varactor diode degradations. Slopes of

approximately 30dB/octave have however been observed by the author as indicated

below. This has been confirmed by Martin [1981] who measured a 135MHz JFET

oscillator. The circuit displayed in fig 3.17 was used to provide the results shown in

fig 3.18.

Co-axial transmission line
Cres

Fig 3.17	 Circuit diagram of VCO used for phase noise tests
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Measured results for a 350 MHz JFET VCO

The loaded Q was also obtained by means of a digital sampling oscilloscope with the test

setup of fig 3.19. The circuit was connected in open loop format, and driven at a level

equivalent to that when oscillating in closed loop configuration. A time domain

reflectometry measurement is taken at the input to determine the input impedance at the

FET source at the level which will exist in the oscillator. A transforming network is

placed at the output to load the resonant network with an impedance equal to that of the

FET source, and a plot of phase shift against frequency is then taken. The resulting

loaded Q's are found to be:-

QL with varactor	 240

QL no varactor	 =	 286

If the phase noise increase was due to the change in loaded Q, then a noise degradation of

1.5 dB would be expected. The degradation measured is far more than this, and also is

not constant with offset from carrier frequency. This leads to the conclusion that other

mechanisms must be responsible for the extra noise besides Q degradation.
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Fig 3.19	 Open loop loaded Q measurements on an oscillator

3.4 Conclusions 

This section has shown that the phase noise of a practical oscillator circuit can be far in

excess of the theoretical calculations based on additive noise. In particular, close to carrier

phase noise is more likely to be affected.

Flicker phase noise brings additional degradation, and has been shown to occur both in

the resonator and in the oscillator loop. If the flicker noise originates in the oscillator

loop, increasing resonator loaded Q will reduce the phase noise, but this is in general

ineffective against resonator noise. There is much scope for further work in relation to the

sources of flicker noise. In particular it is not known which sources are fundamental and

which are determined by the manufacturing process. This leads to some confusion as to

whether flicker noise is device dependent or not.

It has been shown that with high Q resonators the resonator noise dominates over circuit

noise in the close to carrier region. Responsibility for low close to carrier phase noise

reference sources ultimately rests with the supplier of the crystals rather than with the

circuit designer. With bulk acoustic materials such as crystals, varying resonator loaded Q
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has little effect on the phase noise. Some crystals also display other disturbing effects

such as burst noise and crossing modes.

A further problem with flicker noise has been shown to exist as a result of introducing

varactors to enable electronic tuning of oscillators. The author has shown that adding the

varactor increases the level of noise over and above that predicted from a reduction of the

loaded Q. This means that other mechanisms are responsible for the noise increase apart

from Q degradation.

Flicker noise also arises in other circuits such as multipliers, amplifiers, and dividers, all

commonly used in synthesiser circuits.

3.5 Further work

There are further investigations required into flicker noise effects in synthesiser circuits,

particularly with respect to frequency multipliers and dividers. A comparative evaluation

of different oscillator circuits and varactor types for flicker noise performance is also

required, but is beyond the scope of this thesis.

A contradiction exists between previous work on the subject of RF flicker noise for

different classes of device [Jungerman, 1985], [Puce!, 1986]. This needs investigation to

determine whether this is truly device independent. If there is a dependency then an

investigation is required to determine whether it is dependent upon semiconductor type

(silicon or gallium arsenide) or structure (MOSFET, or JFET).
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4 A Survey of Synthesiser
Techniques

4.1	 Introduction

Synthesisers are critical elements in a satellite communication system, and can serve as

oscillators in the transmitter, the satellite transponder, and the receiver chain. As such,

they contribute to phase noise at all stages.

The term synthesiser implies an oscillator whose output frequency can be controlled,

preferably with programmable logic. Modern communication systems call for readily

selectable frequencies in order to allow channel selection, and this is taken to extremes in

the case of frequency hopping spread spectrum systems.

Among the characteristics of concern to the system designer are: settling time; resolution;

temperature stability, and cost. Phase noise is however also a critical parameter and this

section examines some of the implications in terms of various design options.

There are two principal classes of synthesiser: incoherent and coherent. Incoherent

synthesis is the manipulation of a bank of reference frequencies to produce a desired

output frequency. This has been largely superseded due to demands on frequency

stability and accuracy which would be costly to implement if a multitude of sources were

used. Coherent synthesis is the derivation of the output frequency from one master

reference source.

In coherent synthesis there are three principal operations that can be applied to a reference

frequency to synthesise the output frequency. These are:-

1)	 Multiplication
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2) Fractionalisation

3) Combination.

In the first method, also called the harmonic method, the output is an integer multiple of a

reference frequency. This has the advantage of simplicity and the fixed reference

frequency being easily filtered out. The disadvantage is that the output frequency selection

is too coarse for many applications.

The second method has phase noise advantages since the reference frequency is greater

than the output frequency. The disadvantage is that the output frequency is generally low.

The third method combines methods 1 and 2 in such a manner to provide the greatest

flexibility in output.

There are four principal hardware implementations of synthesis:

Operation

a) Direct analogue	 1 & 3

b) Direct digital 	 2

c) Phase locked loop	 1

d) Hybrid techniques	 3

As to selecting the method of synthesis applicable for a particular application, there needs

to be an assessment of criteria which can be applied to aid the selection of an optimal local

oscillator arrangement. This chapter will assess different synthesiser architectures with a

view to possible selection for a satellite communication system. Chapters 6 and 9 define

the requirements for a synthesiser for such systems; the essential requirements may

succinctly be expressed as:-

i) Low cost

ii) Simple compact units

iii) Low close to carrier phase noise

iv) Low spurious signals at the output

v) Good immunity to vibration

In addition, chapter 9 suggests that the following could simplify the design of integrated

satellite data terminals:-
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vi) Rapid low transient selection of channels

vii) Very close channel spacing of less than 1Hz

viii) Modulation capability.

Many synthesiser manufacturers often have a vested interest in some form of synthesis

scheme based on historical familiarity with a certain technology, eg. a filter company that

produces direct analogue synthesisers, or a phase lock loop IC manufacturer. One of the

aims of this chapter therefore is the study of synthesiser architecture without any bias

towards a particular scheme.

4.2 Phase locked synthesis

4.2.1	 Introduction to PLL synthesis

In recent times, phase locked loops (PLLs) have dominated many aspects of frequency

synthesis. This is due mainly to the availability of complete phase locked loops on

integrated circuits. Phase locked loop synthesisers are extremely well documented

[Rohde, 1983a], [Manassewitsch, 1985a], [Egan, 1981a]. The basic loop is known as

the N divisional loop and is displayed in fig 4.1.

...
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The concept is that the output frequency is locked by feedback to the reference frequency

and therefore becomes an integer multiple thereof. Ideally the phase detector should be a

digital type as indicated in fig 4.2, as analogue phase detector types can introduce false

locking problems.

Fig 4.2
	

Edge triggered digital phase detector

The advantages of PLL synthesisers are:-

i)	 Simple implementation as single IC synthesisers are readily available;
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ii) Low costs;

iii) Simple alignment procedure;

iv) Compact;

v) Economical power consumption.

The disadvantages are:-

i) Phase noise is relatively high;

ii) Susceptible to microphony due to restricted loop bandwidth;

iii) Susceptible to induced hum due to sensitivity of post phase detector circuitry;

iv) Non-linear phase detectors introduce special design problems;

v) Restricted choice of reference frequencies.

The TVRO market has ensured the proliferation of cheap single IC synthesisers, but these

pose special problems for data communications [Wilson, 1988]. The MaXiIIMIT1 frequency

of operation of synchronous dividers is = 100MHz, necessitating the use of some form

of prescaler. A fixed modulus prescaler increases the output frequency, but the step size

is increased to pfref where p is the prescaler division ratio. This problem is usually

overcome by the use of a variable modulus prescaler (VMP) [Rohde, U, 1983b] as in fig

4.3.

Units counter counts from the preset value to zero, and prescaler set to
N+1, prescaler remains at N for the remainder of the reference cycle

Fig 4.3	 Operation of dual modulus prescaler
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The division ratio of the VMP varies over one reference cycle as shown. If the prescaler

is set to divide by p + 1 for 1 output cycles and p for n-1 cycles, the divider total division

is set by n1 = (p + 1)1 +p (n -1), giving:-

ni =p n+ 1	 (4.1)

The problem with this scheme is that:-

i) The minimum division ratio is n 2 - n;

ii) VMPs are not available with input frequencies above 1GHz [Rohde, 1983b].

The VMPs are usually designed to minimise power consumption rather than phase noise.

It is possible to cascade VMPs to reduce the n 2 - n value as in fig 4.4. The function of a

cascaded prescaler is shown in fig 4.5.

fvc

Fig 4.4	 Multistage dual modulus counters
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Fig 4.5	 Operation of cascaded dual modulus prescalers

To implement this scheme above 1 GHz then a fixed modulus prescaler would be

required, extending operation to 4.5GHz using inexpensive commercially available

dividers [Avantek, 1990]. In this case, the frequency stepping will be equal to the

reference frequency times the single modulus divider ratio. The maximum reference

frequency is set by the minimum division ratio, that is (n 2 - n) , and by the propagation

delays of the devices employed. This is about 2MHz for economical configurations. The

use of frequencies much less than this will result in excess static phase noise, dynamic

phase noise, and oscillator phase "hits" [Znojkiewicz & Vassilalcis, 1987]. The latter two

are particularly troublesome for digital communications. A consequence is that the N

divisional loop is inflexible in the choice of operating frequencies. A modification to the

N divisional loop that overcomes many of the problems and enables a step size of fret- at

frequencies up to 4.5 GHz is discussed later and in the author's paper [Wilson, 1988].

4.2.2	 Increasing Resolution 

Many techniques have been introduced to increase the resolution of the basic N phase

locked loop. They fall into two categories:-

1) Multiple loops;

2) Fractional N.
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The multiple loop approach basically involves utilising cascaded N loops that are

progressively scaled and mixed together [Stirling, 1987a], [Rohde, 1983c], [Egan,

1981b], [Brewerton, & Urbaneta, 1984], substituting phase locked loops for RF filters.

The fractional N schemes all use a non constant division ratio to change the average output

frequency together with some techniques for cancellation of spurious products.

4.2.3	 Multiple Loops 

The multiple loop is strictly classified as a hybrid between the direct and the phase locked

loop configurations. The output from one loop is fractionalised by division and summed

in by means of a mixer, as with the direct analogue synthesis. If the synthesiser is to be

used as part of a down-conversion or upconversion scheme, a multiple loop configuration

synthesiser can either be built within one synthesiser, or be distributed throughout the

down-conversion stages as a succession of single loop stages as in fig4.6.

INPUT FROM ANTENNA

11-14 GHz

89.3 MHz

177
f‘r .1>-+
rXr

70MHz

output to
Synth 2 demodulator

ref -Fif step

Fig 4.6	 Increasing resolution by means of a succession of

single loop synthesiser stages

The advantages of the multiple loop synthesiser over distributed synthesis are:-

a) The synthesiser becomes a self contained block that can be exchanged for

different band coverage and eases testing and servicing.

b) Although there is more demand on the synthesiser filtering, the synthesiser

filters have only to handle carrier wave (cw) RF rather than signals. It is

desirable that the signals through the receiver/transmitter IF chain can be at a

fixed frequency. This can ease filter requirements, since in many cases there

are stringent demands upon group delay and amplitude variations over the
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pass band frequencies of these filters. If these filters were designed for fixed

frequency IF, then the performance could be achieved at lower cost.

4.2.4	 Three loop synthesiser 

A block diagram of the three loop synthesiser is displayed in fig4.7. If the reference

frequency generator is made to be a bank of crystals, then excellent phase noise

performance can be achieved since the offset frequency is added in with no frequency

multiplication to degrade performance.

Fig 4.7	 3 loop summing or vernier synthesiser

The problems with three loop synthesiser technique are:-

1) Careful screening is required in order to isolate the separate RF sections;

2) The frequency resolution is limited by the division ratio of scarr 7 divider S
which would imply high frequencies for VC0 1 in the fine loop;

IMAGE

RUNT
ION

3) There is a problem of breakthrough of the IF frequency into the output,

particularly when synthesising at microwave frequencies. This is

compounded by the wide frequency range of the synthesiser IF and the

sensitivity of some IF channels.

71



In order to overcome the basic problem of frequency resolution, more synthesisers can be

cascaded as with direct frequency synthesis. One of the cascaded sections can be

observed in fig4.8. The synthesis stages can be repeated as necessary to provide the

required resolution [Egan, 1981b]. The use of a phase locked loop enables the saving of

one reference frequency and one mixer per stage as compared with the direct synthesiser

of fig 4.14. This is as a result of the band pass to low pass transformation within the

phase locked loop.

fr

Fig 4.8	 Phase locked loop equivalent of double mix divide synthesis

Although the repetition of the basic synthesiser units reduces the parts cost, extensive

screening is required between the synthesiser loops [Brown, 1989]. This demands a large

number of screened enclosures for each synthesiser. The phase noise of an iterative

multiple loop synthesiser is amongst the lowest recorded for any synthesiser, achieving

better than -130 dBc/Hz at a few kHz from a lOGHz Carrier [Brewerton & Urbaneta,

1984]. The advantages of the multiple loop approach are therefore:-

i) Low phase noise;

ii) Capable of low spurious output;

iii) Repeated stages reduce cost of components and testing;

iv) Fast switching times of less than 1 p.s [Brown, 1989].

The disadvantages include:-

1) Complex RF circuitry, especially around RF switches;

2) Thorough screening of each section required;
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3) Limited scope for size reduction by LSI circuitry;

4) Relatively high labour costs involved in manufacture, therefore will not

achieve price reduction in volume;

5) Not so readily modified if finer resolution is required.

4.2.5	 Fractional N PLL Synthesiser

There are three basic fractional N techniques:-

1) Digiphase

2) Modified Digiphase, or "Kingphase"

3) Fractional N phase interpolation.

Historically the first fractional N technique was the Digiphase [Gillete, 1969]. A block

schematic of this technique is displayed in fig 4.9. There are two parts to this concept: the

phase accumulator; and the phase error correction employing a DAC [Hassun, 1984].

-.1n•••-DACI---

Phase
Detector

Loop
Filter

ea,

VCOJ.
it0

line

latch

Refe ence
Diviller

0-
Crystal
Reference
Oscillator

Programmable
Divider	 Prescder

fl 1 4 LT-- Power
Splitter

Frequency
Data (MSBits)

font

Fregnency
Programming
Data (least sig bits)

Fig 4.9	 Digiphase synthesiser
-

If zero is summed into the phase accumulator, then this represents zero phase error and the

synthesiser becomes a straight N divide. However, if a phase difference is repeatedly

summed into the accumulator, this phase advance represents a frequency less than the

reference frequency, a "fractional" frequency. When this phase advance becomes greater

than or equal to 27c radians, then the value of N division is switched to N + 1 for the
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duration of one reference cycle. Although the synthesiser output frequency would average

at a fractional multiple of the reference frequency, non-stationary phase errors would

occur at sub-multiples of the reference frequency that would be extremely difficult to

remove. The DAC therefore takes the phase increments from the accumulator and

converts them to a compensatory voltage to be summed in at the loop filter. This

becomes, in effect, a direct digital synthesiser operating within a phase locked loop

[Bjerede & Fisher, 1976].

The advantages of this system are:-

i)	 Arbitrary fine frequency resolution, depending upon size of phase

accumulator,

ii) The use of excessively low reference frequencies is avoided;

iii) Readily implemented in LSI;

iv) Reduction in the complexity of RF circuitry;

v) Phase and frequency modulation capability.

Disadvantages include:-

i) Good screening essential between input and output frequencies;

ii) Spurious performance limited by DAC non-linearities;

iii) Temperature dependent spurious performance related to incomplete

cancellation of phase error products due to timing errors and amplitude errors;

iv) The maximum reference frequency fref, ie. the phase comparison frequency,

is limited by critical timing paths within the system, preventing the use of low

values of N;

v) Poor phase and frequency modulation capability;

vi) Difficult to align.

The DAC timing and non-linearities introduce severe restrictions on the spurious

performance. Although a 12 bit DAC could in theory give -78 dBc spurious

performance, when timing and non-linearity errors are taken into account the figure is

more likely to be -40 dBc [Underhill, 1986]. The contribution of the DAC in terms of

phase noise degradation is likely to be significant due to the fact that it acts at the loop filter

and will be succeeded by a large multiplication ratio in the loop transfer function. This is

as a result of a low phase detection frequency.
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4.2.6	 Kingphase Synthesiser

In order to overcome the problems of DAC inaccuracies, an innovative method was

developed by King (hence "Kingphase") that applies two levels of phase interpolation

[King, 1978], [Duck & King, 1983], see fig4.10.

Frequency
programming

data (least sig.)

Fig 4.10	 Kingphase synthesiser

The Kingphase, or linear phase modulation, synthesiser represents the first attempt to

spread the spurious generating error components away from the carrier frequency,

enabling them to be effectively filtered by the phase locked loop transfer function. The

first accumulator stores phase information as in the Digiphase system and the overflow

carry outputs from this accumulator change the N divider to N + 1 as before. However

the phase outputs from this accumulator are added into a second accumulator, which

stores the integral of phase; this integral of phase performs compensation by two means:-

i) The carry output is differentiated and applied to the dividers. This is

accomplished by applying the overflow to increase the division ratio by one.

In the next reference cycle the division ratio is decreased by one. The result is
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a much closer fit to the desired output phase plane before analogue

interpolation.

The integral of phase accumulator value is applied to the DAC for analogue

interpolation. Since this correction voltage is to be differentiated before

application to the summing point, it is much less sensitive to DAC errors than

the digiphase system. However it is just as demanding upon phase detector

linearity.

Fig 4.11 displays the Kingphase scheme with a 4 bit phase accumulator and a value of 1

input as the fractional value. The integral of phase accumulator is applied to the DAC for

analogue interpolation.

012

ot

Integral

12 13 14

3 6 i0155i24 37 2 14 119

Phase AccuMulator

ccp';	 cc

3 4 5 6 7 8 910 11

Phase Accumulator

15

8

1

9

234

1114
12

5 6

7 13

7

4

8

12

9

5

id

13

11

10

6

12131415

310

CC

+1 Phase accumulator.

+1 +1	 +1

Integral ph4se
-1	 -1:

Resulting

+1
	 modification

+1	 +1 41+1	 +1	 +1 41
accumulator divier mochficationt
-1 -1	 -1 -1 -1 	 -I	 A

accumulatar

divider N

phase error, Phase

+1

+1 +1

ResUlting phase

Fig 4.11	 Operation of the Kingphase synthesiser with fractional offset

Overflows from the integral of phase accumulator are input to the divider control shift

register. On overflow, the N divider is increased by one, this being immediately followed

by a decrease of one. The resulting phase error is displayed as the second trace of

fig 4.11. Although there are still errors from the ideal phase interpolation, the level of the

low frequency components are very much reduced. This is as a result of the

differentiation of the divide by N frequency control. Differentiation in the time domain

corresponds to a frequency domain response proportional to! 2• The error components

due to this process rise at 6dB per octave, and are therefore very low close to carrier.
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The fundamental goal of the Kingphase scheme, however, was to enable the DAC to

perform integral phase interpolation rather than phase interpolation as with the digiphase

scheme. Since this correction voltage is to be differentiated before application to the

summing point, it is much less sensitive to DAC errors at low offset from carrier

frequencies than the digiphase system. However it is just as demanding upon phase

detector linearity. The DAC noise should contribute less to the output phase noise because

the output is differentiated.

The advantages of this system are:-

Advantages as listed for the digiphase system above, plus the following:-

i) Spurious levels are much reduced and not as sensitive to temperature

variations;

ii) Phase noise is reduced close to carrier due to the differentiating circuit;

iii) Most of the processing components are digital, therefore enabling a high level

of integration.

The disadvantages include:-

i) The PLL loop bandwidth is restricted therefore only very low data rate

modulation can be used;

ii) Restricted reference frequency upper limit;

iii) Good screening is essential between input and output;

iv) DAC Non-linearity.

There are still serious limitations for data communications with the Kingphase system.

The Kingphase system has been used for data communications, but it has been suggested

[Britten &Martin, 1989] that vibration may have been a problem.

Two timing paths exist through the synthesiser, the divider path and the phase correction

path. These limit the maximum reference frequency that can be used. The level of

spurious generation for a given DAC accuracy and cancellation adjustment rises at 6dB

per octave towards the reference frequency [Racal, 1983]. A plot of spurious responses

against offset from carrier frequency is displayed in fig 4.12 for the Kingphase

synthesiser (obtained from [ibid, 1983]). This means that the loop bandwidth must be a

small fraction of of the reference frequency (typically < 0.1%). If a wide bandwidth PLL

is required, the phase detection frequency must be so high that a linear phase detector
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Fig 4.12	 Discrete sideband performance of the Kingphase technique

with 1MHz phase comparison frequency and 2% DAC linearity

The requirement of good screening between input and output is true of any fractional

synthesis technique, and is not specific to the Kingphase technique.

4.2.7	 Fractional N "Analogue Phase Interpolation" Method 

This system is similar to the Digiphase systems but it presents another method of

overcoming the DAC linearity problem. It is achieved by means of a switched charge

pump in the phase detector. The charge pump current is switched on for a length of time

proportional to the contents of the phase accumulator [Hewlett-Packard, 1978]. A block

diagram of the system is displayed in fig4.13. This results in a correctly summed phase

interpolation at the phase detector. Timing is still a problem, but the phase error spectrum

is uniform with frequency and so it can tolerate a wider loop bandwidth. A disadvantage

with this approach is that fairly complicated analogue circuitry is required for the

switching making integration more difficult. In common with other fractional N phase

locked loop schemes, unless it can be implemented in VLSI, a very complicated system

results.
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Fig 4.13	 Fractional N synthesiser

4.2.8	 Harmonic Sampling Loop

Fig 4.14 displays a schematic of the harmonic sampling phase locked loop which is a very

simple phase locked loop that involves applying an impulse to a Schottky diode phase

detector. This is a multiplicative synthesiser technique only. A detailed description of the

sampling loop is given in §5 4.3.1. The detector is gated for the duration of the impulse.

Sampling of the RF signal occurs at a rate determined by the reference frequency, and any

difference between the RF signal and an integer harmonic of the reference frequency is

aliased down to the difference frequency. If the RF frequency is equal to a harmonic of

the reference frequency, then a DC signal is output from the phase detector which can be

used to lock the loop. When the diode is not gated, the sampled signal is stored at the

hold capacitor. An efficient method of generating the impulse is by means of a step

recovery diode (SRD) [Josefsberg, 1991] and design criteria for this type of circuit are

further covered in chapter 7. If a fast step recovery diode and Schottky detector diodes are

used, then operation can be obtained at frequencies of up to 20GHz [Grove, 1966].

The harmonic sampling loop can offer the following advantages over the use of a ÷N

loop:-

i)	 Avoiding long chains of dividers improve phase noise;

Oscillators can be locked at frequencies at which low phase noise dividers are

not available, eg Phase-locked dielectric resonator oscillator (DRO).
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4.2.9	 M/N LOOQ

A block diagram of a M/N synthesiser is given in Fig4.15 [Thrower, 1977]. This is so

called because the output of the main synthesiser loop is divided by a factor M, as well as

the N division in the feedback loop. Although there are now a greater number of channels

possible, the output frequency channel step size is no longer constant. This problem may

be overcome by the addition of another loop at the output of the synthesiser which

frequency multiplies by M. An alternative name to this synthesiser is the tandem

synthesiser since two division ratios are changed in tandem [ibid]. Although the M/N

synthesiser is similar in architecture to the 3 loop synthesiser followed by a multiplier, the

design is eased by the restricted range of the IF frequency. This synthesiser is covered in

more detail in § 4.7 below. Advantages of the M/N synthesiser are:-

1) Reduced tuning range of the main oscillator required, therefore a lower noise

oscillator performance could be achieved;

2) Reduced loop count to achieve the same level of performance as with the multiple

loop synthesiser;

3) Simplified microwave circuitry required.
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The main disadvantage of the N/M technique is that the multiplication ratio in the output

must be changeable in integer steps, not always possible in microwave multiplier and

phase locked oscillator circuits.

4.3 Direct analogue synthesis

4.3.1	 Introduction 

Direct analogue synthesis employs the use of mixers, filters, dividers and switches to

perform mathematical operations on the reference frequency to obtain the output

frequency. In order that the units are cost effective to build and test, it is vital that

repetitive sections are employed [Manassewitsch, 1985b]. One such scheme is known as

iterative direct synthesis. A bank of reference frequencies is used throughout this system,

spaced apart a nominal frequency M. This bank of frequencies is coherently derived by

multiplication or division from some master reference frequency and the same reference

frequencies are used throughout the system. At the frequency selection matrix, these

reference frequencies are input to the switch. The switch selects the appropriate frequency

for that section to give the wanted frequency at the output. As a result, parallels can be

drawn between multiple loop indirect synthesis blocks and direct synthesis blocks. This

would provide an effective comparison between the PLL technique and the direct
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nil nt =integer, range
1 to 10

Example:

f1 = 8fr+101Af

f2= fr-1041

Synthesiser output

synthesis technique. A commonly employed direct synthesis technique is the decadic

double mix divide as seen in fig 4.16.

4
Fig 4.16	 Example of double mix divide iterative direct synthesis

An example of specific frequencies that can be used are given in this figure. Also shown

in fig 4.8 is the equivalent PLL technique. In addition to the bank of reference

frequencies, two master frequencies f1 and f2 need to be generated for the double mixing

process. These must be related to the master reference frequency fref by the relationship:-

fi n — (
f- 1 +9 f2)	 (4.2)

Output frequency selection is by means of switch matrices consisting of electronically

gated RF switches. These are readily available with high reverse isolation and fast

switching times. The shaded block shows the area which can be repeated for as many

stages as necessary to give the desired resolution by feeding the output of the shaded

block into the reference input of the succeeding stage. Finally, an iterative stage is

provided at the output, but with the divider omitted. For the direct synthesis technique,

with one iterative stage and one output stage, as shown in fig 4.16, the synthesis

equations are:-
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(free + ft + f2+ ntAf)f	 + fi + f2 + n2Af = 10 fref + 
npal 

+ n2Af (4.3)out -	 10	 10

Fixed frequencies f 1 and f2 are determined by equation 5.2 and a mixing combination that

gives the lowest levels of in-band spurious. These frequencies are used throughout all the

iterative blocks. In equation (4.3) it can be observed that the factor n 1 is divided by a

factor of 10 at the output and n 2 has unity weighting. Usage of a double mix system

enables the elimination of tracking filters and the use of realistic filter values to enable the

elimination of unwanted mixing products. A triple mix divide technique (fig4.17 ) can be

used to space out the frequencies to ease filtering, and to reduce the generation of spurious

products in the mixers.

40fr-104+naf

ie f=fr/10

Fig 4.17	 Triple mix divide synthesis eases filter requirements

The design of such circuitry is a non-trivial exercise owing to the presence of large

numbers of potential spurious mixing products [Meyer, 1970].

4.3.2	 Comparison of Direct Analogue synthesis with PLL technique

It has been quoted in published literature [Feinberg, 1986] that the advantage of the direct

analogue synthesis technique is that it is much faster owing to the lack of loops. However

such analyses often neglect the group delay associated with the spurious rejection filters

required with such synthesisers [Stirling, 1987b]. Further work that could therefore be

undertaken would be to compare the speed performance of a double mix divide

synthesiser with an equivalent Z-transform speed optimised phase locked loop for similar

configurations and for an identical spurious specification. The PLL technique allows

considerable simplification in that one fewer reference frequency is required to be

83



distributed, and in addition one mixer and three bandpass filters are eliminated. The

consequent reduction in the number of stages and frequencies generated eases screening

requirements which will impact on costs per section. Another advantage is the fact that the

mixer input frequencies are closer together so that in-band spurious frequencies are of a

higher order and therefore lower in levels. This PLL approach is a classic case of a hybrid

technique retaining the fast RF switching of the direct synthesiser.

4.3.3	 Switching time considerations 

The ultimate switching time of a direct analogue synthesiser is limited by the maximum

clock rate of the divider (presently 14GHz). This would theoretically allow a switching

time of around lOnS making it one of the fastest techniques known. The PLL approach

may be limited by the slewing speed of the VCO, in this case, to something slower than

this [Harris, 19891. Research is presently being undertaken into harnessing the parametric

oscillation phenomenon in varactors to enable division in millimetric synthesisers up to

100 GHz [Harrison, 1977], [Harrison, 1983]. One distinct property of this type of

synthesis is that a large frequency change will be faster than a small change as the small

change has to ripple through a larger number of sections. A conclusion can therefore be

drawn that although the switching speeds of phase locking and direct analogue

synthesisers may be comparable, the limited slew rate of the VCO may provide the

ultimate limitation to the switching speed of the fastest PLL synthesisers.

4.3.4	 Output faults

One distinct advantage of the direct approach is that if a fault occurs then the result is likely

to be no output rather than a free running VCO output.

4.3.5	 Advantages of direct analogue synthesis

These are:-

i) Capable of the fastest switching time of any synthesis technique

ii) Very low phase noise close to carrier

iii) Failure likely to result in lack of output rather than an output at the incorrect

frequency

iv) Capable of implementation in a small size at millimetre wave frequencies

v) Could accommodate high data rate modulation.
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These are:-

i)	 Complex RF circuitry required

ii) Potential for spurious generation as a result of the number of mixers and

frequencies present, therefore extreme care is required in the design and

construction

iii) Labour intensive to build, therefore not cheap to manufacture in volume

iv) Far from carrier phase noise relatively high compared with PLL techniques

v) Difficult to commit to LSI circuitry, therefore limited miniaturisation possible

vi) Not so readily modified if finer resolution is required.

4.4	 Direct digital synthesis (DDS)

4.4.1	 Introduction 

Direct digital synthesis (DDS) is a generic term for synthesisers which generate the output

frequency by digital manipulation of the reference frequency. DDS is a purely fractional

operation on the reference frequency, as opposed to phase locked loop synthesis which

includes multiplicative operation on the reference frequency.

Types of direct digital synthesis include [Reinhardt, 1986]:-

i) Pulse output DDS

ii) Pulse swallowing DDS

iii) Triangle output DDS

iv) Sine output DDS

v) Phase interpolation DDS

vi) Jitter injection DDS.
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The first three types, although simple in architecture, suffer from aliasing of the harmonic

series, resulting in excessive spurious products. The method (v) applies a compensating

phase correction to methods (i) and (ii) to reduce the phase error at the pulse transitions

that result in spurious responses. Method (vi) [Wheatley & Phillips, 1981], [Wheatley,

1983] involves the use of a random dithering technique to spread the spectral errors

throughout the DDS spectrum up to the clocking frequency. Method (iv), the sine output

DDS, is the most common implementation of DDS, and involves the generation of a

sinewave in an attempt to reduce the harmonic content that can be aliased back. Because

of the high spurious signal content, the other types will not be considered further. Here

the sine output DDS is to be examined further.

4.4.2	 Sine Output DDS 

A schematic diagram of a sine output direct digital synthesiser (hereafter to be referred to

as DDS) is shown in fig4.18. It comprises a look up table which stores the phase voltage

coefficients of a sinewave. The amount of phase advance per clock cycle is given by the

value added in to the phase accumulation register at each clock cycle. This therefore

controls the output frequency. The output of the look up table is applied to a digital to

analogue converter (DAC) in order to construct the analogue output frequency. Unwanted

higher frequency aliasing products are removed by the anti-aliasing products.

	 DATA

	 SIGNAL

fout

Fig 4.18	 Direct digital synthesiser (DDS) block diagram
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(4.5)

(4.6)

4.4.3	 Operation of DOS 

A fixed time interval is generated for the operation by means of a clock pulse, and the

value added into the accumulator ALU advances the phase value entered to the look up

table every clock cycle. Phase is therefore represented by the accumulator contents. The

accumulator is effectively integrating the data value fed into it, therefore the input data
dcl)

represents frequency, since angular frequency co = —dt , where •:1) is the phase content of

the accumulator.

If the content of accumulator A represents a complete cycle of phase, and is of dimension

m bits, and the input is value p, then the phase advanced in one clock period will be:-

0 = 27tp 2-m	radians	 (4.4)

If the clock frequency is fref then the output frequency will be:-

c	 Ofref
L out =

2n

Therefore:-

fout = p 2-mfref

The minimum step size can be found be found by setting p = 1 and this gives the

criterion for the size of the accumulator:-

m = cell (log2 (f ))
L28f))

where cell is the nearest integer number greater than the result of the operation in

brackets.

The generation of the output primary spectrum is shown in fig4.19. The actual synthesis

process is a reversal of the sampling of a sinewave. Fig4.19a displays the effect of

impulse sampling a sinewave. The frequency domain displays the output frequency at fout

and the two aliasing components at fref ± fout. These components are 7E radians out of

phase with the fout component, hence they appear below the frequency axis in fig 4.19a.

In a practical synthesiser the output will be held at a constant level between clock

transitions, so the effect of the hold function must be accounted for. In the time domain,

the effect is convolution of the sampled sinewave with the hold function as shown in

fig 4.19(c). This is equivalent to frequency domain multiplication of the sampled

sinewave with the hold function. An equation representing the hold function is given

(4.7)
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a) Sampled sinewave spectrum
4

frequency

(0

sin ff f function

b) Including DAC hold function r	f-

(4.8)

below, with Ts equal to the clock period, and Ts ,Tp equal to the peak DAC output

amplitude:-

amplitude
c) Hold function

Fig 4.19	 Operation of the direct digital synthesiser

The result of this is the spectrum displayed in fig4.19b. Nulls are present at the clock

frequency and its harmonics. The aliasing component, if f0  << fref, is very much

reduced by the sinc function. If fout is close to f„f/2, the aliasing component will be close

in amplitude (3dB down on the low frequency level) and frequency and thus difficult to

filter from the wanted signal. An anti-aliasing filter will therefore be required to remove

the unwanted signal.
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Being able to produce a realistic filter is the factor determining the ultimate limitation of the

maximum output frequency. At fref/2, the output frequency and aliased component may

cancel each other out. This technique, as with all sampling techniques, is subject to the

Nyquist criterion. The aliasing component can be filtered out by the anti aliasing filter

(shown in fig4.18). The ability of this filter to reject the aliasing component sets the

maximum fraction of the clock frequency that can be output to typically .-- 0.4f„f.

The phase word is a truncation of the accumulator value applied to the address input of

sine wave table ROM. The width of this word is determined by the size of the ROM.

The advantages of the DDS technique are:-

i) It is suitable for very large scale integration (VLSI) implementation, therefore

reducing chip count;

ii) Random phase noise is very low;

iii) There are no microphony sensitive VCOs or bandpass filters;

iv) Frequency step size can be arbitrarily fine, being only constrained by the size

of the phase accumulation register,

v) Channel selection is extremely fast as it is not constrained by loop settling

times or bandpass filter group delays.

The disadvantages are:-

i) Discrete spurious products tend to be relatively high;

ii) The output frequency is restricted at present to a few hundred MI-Iz;

iii) For the higher speed versions the cost per unit tends to be rather high.

4.4.4	 Phase noise in DDS 

Since the reference clock frequency is higher than the output frequency, this tends to

reduce the phase noise at the output of this type of synthesiser. Fig4.20 [Browne, 1988]

displays published results for a typical direct digital synthesiser. The phase noise is

generated at the input latch to the DAC and the DAC itself, so therefore these parts should

be selected for low phase noise. Logic gate jitter in the latch and DAC controllers,

combined with noise generated in the analogue circuits of the DAC contribute mainly

towards the phase noise.
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Fig 4.20	 Published results [Browne, 1988] for a direct digital synthesiser

4.4.5	 Frequency resolution 

The minimum frequency step is set by the size of the accumulator. The number of bits, L,

is given by:-

(4.9)

where cell = integer larger than function, and Sf = frequency step. If a very large scale

integration VLSI synthesiser chip is purchased, then the size of the accumulator is fixed at

chip manufacture and this is not alterable by the user. It is essential to acquire a chip that

is capable of providing the finest frequency resolution that is likely to be required in a

system; some accumulators allow for cascading to increase the resolution.

4.4.6	 Switching time

This is determined by:-

1) The time required for a new phase step to be propagated through the system.

For a pipelined adder this will be several clock cycles [Williams, 1987].

2) The time response of the anti aliasing filter.

L= cell (log2 (-f-r.))
2•5f))
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There is a trade-off here in that if the maximum output frequency is only a small fraction

of the reference frequency, then a simple filter will be required. The group delay will then

be small; eg for a maximum of frer/10, a third order Chebychev filter of ldB ripple would

give a delay of 4/f„f. If the output frequency is allowed to be up to 0.4fref, then a

multistage elliptical filter would be required to reject the aliasing product at fret .. In this

case the filter delay could be as high as 200/fref for a 100 MHz reference frequency

system, and maximum output frequency of 10 MHz [Zverev, 1967]. The propagation

delay time would be approximately 80 ns but with a maximum output frequency of

40 MHz this could rise to 2 ;Is.

4.4.7	 Discrete spurious

The major problem with the DDS technique is the generation of discrete spurious signals.

There is a theoretical limit due to the quantization errors determined by the resolution of

the DAC [Matteson & Coyle, 19881. The total distortion products generated by

quantization are represented by [Benn & Jones, 1989]:-

S/N = V 46
	

(4.10)

This refers to the total power present in all spurious and harmonics (apart from an aliasing

product at f	 f 1-ref — -out,• However the close to carrier spurious is usually more relevant.

This can be calculated by considering the DDS as a sampled data system acting on a

quantized sine wave. The harmonics of the sampled signal become aliased back by the

reference frequency as in fig4.21. If the output frequency is an integer sub-multiple of

the reference frequency, then all the higher order products alias back to the output

frequency and no close to carrier spurious signals are generated. Predicting where the

spurious signals are likely to occur is a straightforward task, but predicting the magnitude

of the spurious is extremely complicated. The frequency distance of the closest spurious

to the carrier can be found from consideration of the sampling and aliasing process

[Nicholas & Samuli, 1987]. Each output frequency will have harmonics associated with it

due to the non-linearities in the DDS process.

1f f0 and fref are the output and reference frequencies, then harmonics will exist at mfo and

nfref where m and n are integers. When a harmonic at mfo is near to the output frequency

fo away from a harmonic of the clock sampling frequency nfref, then that harmonic is

aliased back to near the output frequency.

Spurious signals are therefore generated at:-

M fo ± n fref = fref t fs
	 (4.11)

therefore:-
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Fig 4.22	 Aliasing back of harmonic distortion products to give spurious signals

fs = m fo ± (n - 1) fref	 (4.12)

where fs represents the spurious sideband frequency offset from carrier. Representing the

highest common factor of fo and fr as:-

fout = x	 (4.13)

and:-

fref = Y	 (4.14)

where x and y are integer values, then:-

fs = (mx ± (n - 1)y)f1	(4.15)

if f1 is the highest common factor of fr and fo, then for any m and n, the lowest non zero

value of (mx ± (n - 1)y) is 1. Therefore, the closest spurious frequencies will be at

In a direct digital synthesiser there will always be a lowest common factor to f r and fo,
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which is determined by the accumulator word length L. This relationship between the

minimum step size and the reference frequency is:-

8f . fref (4.16)

If a frequency select word p is input to the synthesiser, then the output frequency is:-

f o = P 8f
	

(4.17)

substituting (4.16) and (4.17) into (4.19) and (4.20) then:-

xfi=pof
	

(4.18)

and:-

Y fi = 2L 5f
	

(4.19)

therefore:-

yp=x2L
	

(4.20)

If the highest common factor of p and 2L is C, then the minimum spurious frequency from

carrier is:-

fs = C Of
	

(4.21)

However if an offset from this frequency of f is introduced, then spurious frequencies will

be generated at:-

(4.22)Lower sidebands = fout - ((rim + 1) - 1)51

Upper sidebands = fout + ((rim 1 ) + 1)Of
	

(4.23)

where n is an integer and m is the nearest integer submultiple of fout. The consequence of

this is that the level of close to carrier spurious decreases as m increases, as the power

present in higher harmonic products diminishes, but often this rate of decrease is slow.

More work is required to establish the exact harmonic levels.

The principal sources of spurious signals in direct digital synthesis are due to [Williams,

1987], [Burr Brown, 1988], [McCune, 1988]:-

i)	 DAC non-linearities;

Non-linearities in the switching transients of the DAC;
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iii) Data skew at the input to the DAC;

iv) Phase and amplitude word truncations.

In a practical DDS, the first three sources are likely to dominate the fourth. The DAC

suffers from two types of non-linearity [Analogue Devices, 1984] and both enhance the

production of harmonics. However the integral non-linearity produces low harmonics (up

to the 5th) while differential linearity produces high order harmonics (>5th). Integral non-

linearity is only a problem at frequencies close to the maximum output frequencies

(> 0.25fref). The spurious products fall rapidly with reducing frequency. Differential

linearity on the other hand produces large numbers of high order spurious even at low

output frequencies (< 0.1fref). Therefore it is essential to employ a DAC which has been

designed for very good differential linearity, such as is required for video applications.

Switching transients can be reduced by employing a fast sample and hold at the output of

the DAC as in fig 4.22. The sample and hold is switched to track after the DAC settling

time. It is vital however that both hold feedthrough and intermodulation effects of the

transient are minimised [Williams, 1987].

Phase Accumulator

Ramp op of Accumulator sine op of table

Fig 4.22
	

Direct digital synthesiser with sample/hold to reduce glitches
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Data skew is caused by different input bit lines to the DAC changing at different intervals

in time. This results in unwanted output transitions at the output of the DAC with

catastrophic effects on the spectral purity. Fig 4.23 displays the basic synthesiser

performance of an experimental DDS clocked at 7.6MHz and with an output frequency of

799 kHz.

4.4.8	 Numerical Example

The above spurious analysis can be illustrated by a numerical example. Measurements

were taken for a DDS clocked at 4 MHz. This has a 16 bit accumulator and it is

programmed with the value 13088. The output frequency is determined by equation (4.9)

to be:-

fout = 4 x 106 x 2 16 x 13088	 (4.24)

fout = 798.828131cHz
	

(4.25)

The resulting output is displayed in fig4.23.

In order to determine the spurious spacing of the sideband spectrum, the highest common

factor must be found for fou t and fref• The highest common factor of 13088 and 2 16 is 32,

since 13088/32= 409, which is a prime number. From the relationship (4.21), the

spectral lines are spaced at 32 step size intervals apart in frequency, in this case

1.9531251cHz. Therefore, a spurious signal will be present at this interval across the

entire output spectrum, but the levels will vary greatly between different spurious

products. This can be observed from the spectrum analyser plot of the synthesiser output,

fig 4.23. The closest spurious signals are at 32 x channel spacing away from carrier, and

can be only just observed as they merge into the spectrum analyser IF filter skirts.
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Fig 4.23	 Output spectrum of direct digital synthesiser clocked

at 4MHz

4.4.9	 Cost of direct digital synthesis 

At present the cost increases rapidly with reference frequency (fret). This is due to the fact

that:-

i)	 Specialised high frequency processes are required to manufacture the

transistors in the integrated circuits;

Special design techniques are required to optimise the speed of the operations

within the system [Williams, 1987];

iii) Fast DDS is very demanding on DAC technology.

If a 2 GHz reference frequency is to be used the transistors must have a transition

frequency (IT) of greater than 200Hz [Saul & Taylor, 1989a], [Saul & Taylor, 1989b].

However if the reference frequency is 20MHz then cheap custom ULAs (uncommitted

logic arrays) can be employed.
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The DAC could be one of the many standard video devices which are already in volume

production, and are therefore economic. The cost of a synthesiser in this case could be

<£50. Comparing published results for the direct digital synthesiser and for a digiphase

synthesiser [Underhill, 1986], [Browne, J 19881 would indicate that the performance of

such a unit would be comparable, in terms of discrete spurious, with the basic digiphase

phase locked loop technique. Phase noise performance however would be much

improved on account of the higher reference frequency. The performance would be

inadequate for use at microwave frequencies and so additional techniques are required in

order to synthesise at GHz frequencies. This suggests a requirement for the use of hybrid

synthesis techniques.

4.5 Downconversion/upconversion schemes 

4.5.1	 Application 

With the aid of the synthesiser architecture survey reported in the first part of this chapter,

a study is now undertaken of possible combinations of such architectures most suitable for

satellite communications use. A satellite system is likely to employ several

downconversion and upconversion stages. These arise in:-

1)	 The transmitter (typically to 70MHz, and again to 700 MHz prior to final

carrier frequency);

ii)	 The satellite (generally a single downconversion stage, albeit of fixed

translation frequency);

The receiver (typically from RF to 70MHz, perhaps via an intermediate

700 MHz, and again to lower 1Fs within the modem).

Each stage of conversion relies upon an oscillator or synthesiser of some kind. One of the

criteria that is most instrumental in determine the structure of a synthesiser is its position in

the satellite link.

4.5.2	 Position of synthesisers in a satellite link 

The ideal position for a synthesiser in an upconversion or downconversion system (eg. a

commercial satellite system) is the first local oscillator on account of the smaller percentage

tuning range required at that point. This simplifies the frequency conversion problems

since mixer intermodulation products will be of a higher order. If the antenna is to be
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close to the receiver, for example with portable satellite equipments, then the first stage

can be synthesised. However, this can create problems if the antenna is to be remotely

located. In such a case, the synthesiser will have to be remote programmed across the link

from the antenna to the main unit. It would be considerably simpler, therefore, if a fixed

local oscillator could be used for the first LO as shown in fig4.24. This could therefore

be a self contained unit, requiring only the IF connections (with power). A further

advantage of this is that the synthesiser could be located close to the modem where it could

aid signal acquisition. Chapter 9 covers this form of downconverter arrangement by

discussing a split synthesis technique. In such an arrangement, each local oscillator stage

is synthesised. The problems with this approach is that front end bandwidth will be

limited, extra complication is involved due to three stages of conversion, and spurious

signal problems are more likely due to the wide tuning range at L-band. In addition,

chapter 9 shows that the phase noise induced BER degradation of the spilt synthesis

technique is worse than using a single low phase noise synthesiser because the phase

noise produced from each synthesised LO is additive.

Fig 4.24	 Fixed front end approach to downconverter/demodulator design
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With the simplified schemes discussed in chapter 9, it may be possible to mount all the RF

sections at the antenna, and transmit the baseband signals down the cable. If this was

possible, considerable savings in cost could result as the long downlead cable could be

inexpensive low frequency cable rather than expensive low loss RF cable.

For the remainder of this chapter, both fixed frequency and synthesised first local

oscillators will be investigated.

4.6	 Fixed first local oscillator

We concern ourselves here with the choice of the first local oscillator (LO), as this

exemplifies the design consideration. The following choices are likely to be available for

the first LO in a receiving system:-

i) Free running dielectric resonator oscillator (DRO);

ii) Phase locked oscillator (PLO) with L-band cavity oscillator and multiplier,

iii) Phase locked DRO;

iv) Phase locked voltage controlled oscillator,

v) Microwave oscillator (direct).

4.6.1	 Free running DROs

4.6.1.1	 Characteristics

Free running DROs have conventionally being used for commercial television receive only

(TVRO) applications. The DRO is housed within the low noise block converter (LNB).

For data communications this type of oscillator poses three problems:-

i) Excessive phase noise;

ii) Phase "hits" due to mechanical construction;

iii) Frequency stability.

The phase noise of a free running DRO compared with a multiplied crystal oscillator is

observed is fig 4.25. The free running oscillator plot was obtained by measurement from

a typical TVRO LNB. The performance of the system can be quantified and it will be
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the result.
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Fig 4.25	 Comparison of multiplied crystal

oscillator and free running DRO phase noise

4.6.1.2	 Phase "hits" with DROs 

Phase "hits" are also an important consideration in data systems beside phase noise and

are further discussed in §6.5 Higher data rate systems may be more seriously degraded

since more data is likely to be lost during a "hit". With a free running DRO, the

mechanical construction of the oscillator and oscillator housing would have to be carefully

designed to avoid phase "hits". These are due to sudden movements of the mechanical

dimensions of the frequency determining elements as the environmental parameters

change. The resulting sudden discontinuities in phase give errors in the data modulation.

4.6.1.3	 Frequency stability 

The frequency stability performance of a DRO over the operating temperature range may

mean that a search over a frequency range of many MHz is required in order that the

receiver can acquire the signal. Such search and acquisition can take considerable time

and is therefore undesirable.
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4.6 2	 Phase locked oscillators

4.6.2.1	 The need for phase locking

Chapter 9 illustrates that excessive BER degradation is likely over a data link if free

running DROs or cavity oscillators are used. To take advantage of the improved phase

noise performance of a multiplied crystal oscillator, some form of phase locking of the

microwave oscillator is desirable; in order to produce a phase locked oscillator (PLO),

some form of electronic tuning is required. Microwave oscillators that can be tuned are

cavity oscillators, DR0s,VC0s, and YIG tuned oscillators (YTO). YTOs are most likely

to be used in tuneable local oscillators so discussion of these will be reserved for §4.7 of

this chapter.

4.6.2.2	 L-band cavity PLO 

This is a mature technology consisting of a cavity oscillator operated at high power levels

driving a multiplier filter arrangement which selects the required output harmonic. The

disadvantage of this is that the cavity oscillator tends to be bulky. The mechanical

construction is critical in order to avoid phase "hits" and this results in cavity oscillators

being expensive. Another problem is that around one watt of power is generated at

L-Band, and this may cause problems if sensitive receiving circuits are present in the same

chassis.

4.6.2.3	 Ceramic resonator oscillator

The ceramic resonator oscillator is a variation on the cavity oscillator PLO above whereby

the mechanically tuned cavity oscillator is replaced with a ceramic cavity oscillator. The

high dielectric constant of the ceramic cavity makes possible considerable miniaturisation.

The advantages of the ceramic resonator are:-

i) Compact construction;

ii) Freedom from phase "hits" due to the fact that the frequency determining

element is a totally enclosed single unit;

iii) The frequency stability is excellent.

The disadvantage of this is that multiplication is still required up to the final output

frequency together with high power at L-band.
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4.6.3	 Phase Locked DRO

Dielectric resonator oscillators, on account of the high Q of the resonator, are capable of

good far-from-carrier phase noise. The close-to-carrier phase noise is generally poor

however, due to the higher llf noise of microwave active devices and some method of

phase locking to a low close-to-carrier crystal oscillator would therefore be desirable. In

order to achieve this a harmonic sampling loop can be used to phase lock a DRO. The

advantage is that the fundamental frequency oscillator means the output is at local

oscillator frequency. The lack of requirement for a multiplier and filter results in very

compact construction.

The disadvantages are:-

i) The lack of frequency stability and the lack of harmonic power with the

crystal oscillator at around 10 MHz means that a VHF crystal oscillator is

required as a reference oscillator;

ii) It is more susceptible to phase hits as the resonant frequency is to some extent

dependent upon the oscillator enclosure;

iii) The DRO has a very limited tuning range, therefore is suitable for fixed

frequency oscillators only.

4.6.4	 Voltage controlled oscillators

The advantage of voltage controlled oscillators (VC0s) is that fundamental output

frequency operation can be achieved. However, the following disadvantages result with

VCOs:-

i) The low Q of these results in poor far-from-carrier phase noise performance;

ii) The poor frequency stability demands that a high reference frequency be used

in order to avoid the output being at the wrong harmonic of the reference

frequency.

4.6.5	 Microwave oscillators

At present, the only microwave oscillator that can compete with the crystal oscillator is the

High Overtone Bulk Acoustic Resonator or HBAR. Currently, these are expensive,

although this may change in future.
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4.6.6	 Choice of crystal oscillator frequency 

The above synthesisers generally rely upon some kind of crystal reference, and here there

are many design considerations to be taken into account. For close-to-carrier phase noise,

the main contribution is noise from the crystal resonator. A 10MHz crystal can be made

with lower resonator phase noise than a 100 MHz crystal when the noise is normalised at

a particular output frequency, and it is more desirable to use a 10MHz crystal oscillator as

a reference in order to obtain low close to carrier phase noise. This poses the following:-

i) More demand is placed upon the phase locking technique;

ii) A frequency stable oscillator must be used at microwave frequencies.

For the phase locking technique, a harmonic locking phase detector is more desirable

because of simplicity and lower phase noise than the divider type phase locking.

Chapter 7 discusses the problems associated with multiplying from a frequency as low as

10 MHz. Although harmonic locking phase detectors using SRDs are capable of low

phase noise, increased flicker noise will result at 10MHz rather than VHF. For the

lowest close to carrier phase noise therefore, an optimum scheme is a VHF crystal phase

locked to a low phase noise 10MHz crystal.

4.7 Tuneable first local oscillators and synthesisers

4.7.1	 Introduction 

§4.5.2 of this chapter indicates that considerable simplification can be achieved if the first

local oscillator can be made tuneable. For this to be viable, especially with remote

mounted front ends, cost effective rugged compact synthesiser units must be capable of

being realised. Obstacles that must be overcome ,are the high frequency of the output and

the temperature range over which an antenna mounted unit must operate. The aim of the

remainder of this chapter is to determine the most viable approach to a synthesised first

local oscillator. This is accomplished by a study of the architectures and performance of

three microwave synthesiser implementations. These 3 types are:-

i) VHF synthesiser and PLO

ii) L band Cavity Synthesizer

iii) M/N synthesiser.
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4.7.2	 VHF synthesiser and PLO 

One possible approach to the problem of providing a synthesised microwave local

oscillator is a VHF synthesiser followed by a phase locked oscillator (PLO). The

architecture of a VHF synthesiser suitable for satellite communication applications is

shown in fig4.26. Although the output frequency of the synthesiser is at VHF, a

microwave phase locked oscillator (PLO) must be used in order to obtain a synthesised

signal at microwave frequencies.
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Fig 4.26	 Multiple PLL VHF synthesiser
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Usually this PLO would consist of an L-band cavity oscillator followed by a multiplier.

The L-band oscillator is phase locked to a harmonic of a comb generator. Since a two

stage frequency multiplication process is involved the overall multiplication factor M must

be factored into two integer multiples mc and mm where Inc is the multiplication of the

input reference frequency to L-Band and m m is the output multiplication ratio. Therefore

the total multiplication ratio m is given by:-

M = me mm	 (4.26)

Restrictions are therefore placed on the value of m such that mc and mm are themselves

integers. As a result of this, the M/N architecture described in §4 2.9 of this chapter

cannot easily be implemented. The VHF synthesiser must therefore be of the multiple

loop type described in §4 2.3 of this chapter. Since the output frequency is multiplied by

M, strict demands are placed on the spurious signals and phase noise outputs of the VHF

synthesiser. The majority of fractional techniques would have excessive spurious outputs

to be used directly as the reference frequency input to a PLO. To obtain a 60dB spurious

level at 20GHz, a spurious level of better than -106 dBc is required at 100MHz. Since

a multiplication of M times occurs in the PLO, the tuning range at the output of the VHF

synthesiser is Fume/M. In order to guarantee a small value of the synthesiser intermediate

frequency (IF), the reference frequency f 1 must be made tuneable. Therefore a bank of

switched crystals must be used for this reference, phase locked to a master reference. f1 is

an integer multiple of the synthesiser reference frequency fr. Therefore, the output

frequency of the crystal oscillator loop f 1 is given by:-

fi =frN i 	 (4.27)

A small IF frequency is necessary to avoid mixer related spurious being introduced into

the loop. A recommended implementation of a VHF synthesiser is given in fig4.26. The

synthesis equation for this loop is:-

f _ 
fref (N3 N_2_

out — 2 p2	 P)p )-Ff 1 (4.28)

Two cascaded fine loops are used, each succeeded by a scaling divider of ratio P. It is

this scaling divider that enables fine frequency stepping at the output. Ratio N2 is that of

the programmable divider in the first fine loop and N3 is that of the second fine loop.

Ratios N are therefore programmable and P is fixed. A single synthesiser IC can be used

for each loop such as the Qualcomm CA 3036 IC which includes the dividers and the

phase detector [Qualcomm, 1990].

With the 3 loop synthesiser of fig 4.7 a problem exists in that meeting the requirements of

the phase noise specifications at the output requires too coarse phase steps in the fine loop. 	 .
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In order to overcome this problem, a further fine loop is required to be mixed in.

Therefore an extra mixing loop is also required to combine these loops. A total of 6 phase

locked loops are required, including the PLO at the output. The architecture is ultimately

limited by the step size of the fine loop satisfying the phase noise and microphony

requirements of the synthesiser. If finer step size is required, then more loops must be

cascaded. In order to keep the phase noise and spurious signals within the specification

bounds, a large number of crystals may be required, approximately one per 100MHz at

10 GHz. The synthesiser must be split into 8 screened sections (not including PLO).

Tuning range at the local oscillator is restricted by the tuning range of the cavity oscillator

multiplier to approximately 8% of the output frequency.

4.7.3	 Synthesis at microwave frequencies

It is possible to implement a multiple loop synthesiser at microwave frequencies [Stirling,

1987d]. This would have a speed advantage since there is nothing placed at the output of

the synthesiser. The disadvantage of this however, is that care would have to be taken to

ensure that synthesiser IF products do not swamp a sensitive receiver. This would require

a proliferation of active devices at microwave frequencies, and would therefore have a

severe impact on cost. In addition, the microwave components must be adapted to the

output frequencies required, making it difficult to economise by scale in production.

4.7.4	 L Band synthesiser with cavity

The L-band cavity synthesiser is an extension of the VHF synthesiser. Because of the

increased VCO frequency, the reference frequency of the coarse loop can be increased.

This allows for increased rejection of spurious signals and phase noise. A reduction in the

number of reference crystals to two is now possible. A recommended implementation of

such a synthesiser is given in fig 4.27. The synthesis equation is as below:-

fout = (y. csk) + frefN 1)4
	

(4.29)

Factor N1 is the programmable frequency multiplication ratio of the coarse loop, N2 is the

programmable divider in the fine loop and P is the scaling divider at the output of the fine

loop. Since the synthesiser IF band is mixed in at L-band the post oscillator multiplication

is lower than with the VHF band. As a result of the lower multiplication ratio, noise

degradation from the IF is reduced by approximately 23 dB. This allows the use of only

one IF loop for a step size of down to 125 kHz at lOGHz.

The problem with this type of synthesiser is that as higher values of the final output

frequencies are required, 20 logN degradation of the IF phase noise would result. This

would require a major restructuring of the synthesiser as frequencies are increased or the
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step size is reduced. Two L-band oscillators are required alongside the appropriate

mixing and phasing circuitry at L-band. In order to provide a low phase noise coarse

loop, this loop has to employ a secondary comb generator. Fig 429 shows the coarse

loop in the shaded area. The use of two comb generators implies a more complicated

coarse loop which must be partitioned internally, so the total number of screened

compartments must be not less than 6, not including the cavity oscillator-multiplier.

Unfortunately the comb generators are not easily adapted to a high level of integration.

2. 5,411z f r

Fig 4.27	 Block diagram of L-Band cavity synthesiser

4,7.5	 YIG oscillators 

Another approach is to discard the cavity multiplier approach and use a tuneable

microwave oscillator. One type of tuneable oscillator that is suitable for the high

frequencies required is the Yttrium Iron Garnet (YIG) oscillator. Such oscillators have

been used in military and electronic warfare applications for some time, although only

recently have they been cheap and compact enough for civil satellite communication
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applications. A YIG oscillator consists of a Yttrium iron garnet in the shape of a sphere

that has a resonant frequency which is dependent upon the applied magnetic field. There

are many references in the literature eg.[Osbrink & Grande, 1989] to this type of oscillator

so only a brief description is required. Tuning the YIG resonator is equivalent to tuning

both the inductance and the capacitance simultaneously of a conventional oscillator.

Therefore a very wide tuning range is possible. The loaded Q of the resonator is typically

between 200 and 300 [Grande, 1990], a value between that of the cavity oscillator or DRO

and that of a varactor controlled oscillator. Since the resonant element of the oscillator is

compact, YIG oscillators have proved themselves resistant to phase "hits" [Vella, 1991],

and are therefore highly suitable for data communications applications. YIG oscillators

have too wide a tuning range for most satellite communication applications, so therefore it

is possible to compromise tuning range for power consumption and size by means of

permanent magnet bias. The phase noise compared with other oscillators is shown in

fig 4.28 obtained by measurement at Ferranti [internal communication, G. Parkinson,

1991].

10Hz	 100Hz	 lkHz	 101Hz	 1001Hz	 1MHz	 10MHz
Offset from carrier

Fig 4.28	 Phase noise of free running microwave oscillators
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4.7.6	 YIG phase locked oscillators

By the use of a microwave step recovery diode sampling detector, it is possible to phase

lock a YIG oscillator to a VHF reference source. The advantage of such an arrangement is

that the multiplication ratio can be any integer value. Therefore it is possible to use this

arrangement to form a synthesiser. However, the step size in this case would be 50MHz

minimum; if smaller step sizes were required then the phase locked oscillator must be

combined with other synthesiser methods. A block diagram of a YIG phase locked

oscillator is given in fig 4.29. A programming voltage is applied to the main tuning coil

port; this is a large tuning coil which provides the main magnetic field for the tuning.

Reference Frequency

foutim

Fig 4.29	 Block schematic of YIG PLO

This large coil is capable of tuning the frequencies over many GHz. However the coil

must have a large inductance and therefore is relatively slow to tune. The 3dB bandwidth

of such a tuning is likely to be a few kHz [Law, 1985] and is insufficient for phase

locking purposes. Therefore a separate FM coil is provided for this purpose. Only a

limited tuning range of approximately 70MHz is possible from the FM coil. The

inductance of the coil is very much lower. As a result of reduced inductance, bandwidth
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fout = fre0- +2M 8M
(4.30)

is increased. A typical 3dB point of an FM tuning coil is 1 MHz. This increased

frequency is much more suitable for systems that must incorporate some form of phase

locking. If the reference frequency is made equal to a frequency above that of the tuning

range of the FM coil then the YIG oscillator is capable of a wide phase locking range.

Unlike the cavity phase locked oscillator, no output multiplier is required, therefore there

is complete freedom over the selection of multiplication value M. The value M refers to

the harmonic of the reference frequency that the output oscillator locks to. M is the ratio

of output frequency to the reference frequency; the frequency multiplication factor of the

YIG phase locked oscillator (YIG PLO) is restricted only by the tuning range of the main

tuning coil. The composition of the phase locked loop is identical to a conventional phase

locked source apart from the change of oscillator. The main coil is pre-tuned to

approximately the correct frequency by means of the pre-tune DAC. When the loop is not

locked, the loop filter is arranged to sweep the FM coil tuning, until the YIG frequency is

an exact harmonic of the reference frequency. In this case, phase locking will occur.

4.7.7	 The YIG WM synthesiser

The fact that a YIG oscillator has complete freedom over the selection of ratio M enables

the use of a modified synthesiser architecture. Since there is no multiplication at the

output of the YIG PLO, the factor mm in equation (4.26a) is unity and therefore the

multiplication ratio M can take on any integer value. This extra flexibility can be fully

exploited in an additional synthesiser architecture shown in fig4.30. Such an architecture

is known as the N/M synthesiser, since it is based upon the use of two division ratios that

can be changed. Being allowed this extra degree of freedom enables some of the

complexity of the above described architectures to be avoided. The frequency synthesis

equation is:-

All division ratios M and N are programmable. N1 is the division ratio of the divider in

the feedback of the coarse loop and N2 is the division ratio of the divider in the fine loop.

At the output frequency, the values of M cancel, but at VHF, the variable value of M

enables a reduced tuning range of fm f/M rather than ftuniM with concomitant reduction in

the level of spurious signals generated by the mixer in the transfer loop (see §5.4.6).

Furthermore, this enables the effective multiplication of the fine loop to the output

frequency to be independent of the final output frequency. There is therefore no need for

architectural changes as the output frequency is increased. There is only one reference

frequency required which means that this could be a high quality reference source.
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Fig 4.30	 Block schematic of YIG N/M synthesiser

With this type of synthesiser there is unfortunately a limit to the minimum resolution of the

fine loop. This is determined by the phase noise and microphony of the coarse loop.

However the frequency increment at the mixer per fine step is very small. As only one

reference frequency is required, it is possible to employ a VCXO for this frequency and

form this into a synthesiser with a large division ratio. In this case output microphony and

phase noise will be determined by the VCXO and a narrow loop bandwidth of

approximately 1Hz must be used. Providing the loops are sufficiently isolated from one

another, the spurious generating mechanism of this loop is virtually non existent enabling

- 80 dBc to be achieved at the output at 10GHz. This does not include spurious modes

introduced by the crystal.

§4.2.1 shows that the problem with single chip PLL synthesisers is that loop bandwidth

and phase noise performance must be compromised over that possible with entirely

discrete components. However the extra flexibility allowed by the M/N architecture

enables a synthesizer frequency plan such that this reduced performance can be tolerated.
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Unlike the previously discussed synthesisers, the demands on the various loops are such

that a high level of integration is therefore possible. Single chip synthesisers can be used

for the fine and coarse loops. Demands of the coarse loop is still quite severe for the

majority of synthesiser chips, but the latest generation of synthesiser chips, such as the

Qualcomm CA 3036 has sufficient flexibility to meet the demands of the coarse loop.

Since the reference loop is a narrow band loop the step size can be reduced to low values

(100 Hz is a realistic minimum). If a narrow loop bandwidth is used in the fine loop, the

phase noise becomes determined by the crystal oscillator, and the demands on the

synthesiser chip are removed. Therefore a PMR synthesiser chip, such as the Plessey

NJ8830, can be used. Although the Plessey device has poorer phase noise performance

and is inflexible in its choice of reference frequency, it is a fraction of the price of the

Qualcomm chip, consumes less current, and has a much smaller surface area. Thus,

integration of the two loops give this architecture the highest integration level of all the

viable alternatives.

A further advantage of the YIG M/N synthesiser is that the YIG harmonic locking section

is a stand alone product itself, a YIG PLO. This gives a further advantage in terms of

product rationalisation. The microwave section is simplified and can be made output

frequency independent. Microwave component costs are therefore reduced drastically.

One problem with this type of synthesiser is that fine frequency selection is through a

narrow band loop that will have a very long settling time. The settling time could be of the

order of seconds, even if adaptive loop filtering is used. However, for the vast majority

of satellite communication work which does not require regular channel changes this will

not be a difficulty. If rapid frequency selection is required, then a DDS variant of the

synthesiser must be provided.

The multiplication ratio M is large and therefore care must be taken to ensure that the

frequency multiplying components do not degrade performance. This effect is further

investigated in chapter 7.

4.7.8	 N/M loop with DDS 

In order to provide a truly dynamic synthesiser a modification is required. Fig 4.31

indicates that the narrow loop bandwidth synthesiser disappears and the coarse loop is

replaced with a DDS (direct digital synthesiser). Settling time will now be of the order of

microseconds. This form of synthesiser is especially suitable for tracking applications. A

DDS has capability of arbitrarily fine frequency resolution enabling the step size to be set

by the controlling microprocessor, rather than the configuration of the loops. The division

is necessary to ensure that the DDS stays within the phase noise and spurious signals
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specifications. The analogue circuitry is very much simplified compared with the other

synthesiser methods. Spurious products generated in an unmodified DDS are in general

too great for this implementation. Chapter 8 outlines methods that can be used to reduce

the spurious levels of the DDS to levels compatible with this method.

Some synthesiser implementations follow the DDS with a narrow bandwidth phase locked

loop to remove some of the spurious products [Vella, 1991]. In applying this, they have

rejected the single most important asset of a DDS: its ability to rapidly change frequency.

A loop bandwidth of 1 kHz means that a frequency change will take 10's of milli-

seconds, whereas a DDS is capable of doing this in nanoseconds. The implementation

which is proposed here follows the DDS with a wide bandwidth loop, thus reducing

frequency change times.

Fig 4.31	 Block schematic of YIG synthesiser with DDS
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Such an arrangement is possible because of the spurious reduction techniques outlined in

chapter 8. The DDS replaces the coarse loop in the M/N synthesiser. Since the DDS has

such fine resolution that no interpolation is required, the 100MHz reference is fixed

frequency, and the divider in the output of the DDS can be a fixed divider. This allows

considerable simplification by removing a high frequency variable divider. The transfer

loop at the DDS output is used to reject the broadband noise output from the DDS which

would otherwise add in a root sum of squares manner at the divider input. The loop

bandwidth must be approximately equal to the minimum frequency at the output of the

divider.

4.8 Expected phase noise performance of microwave LO

4.8.1	 Estimation of phase noise

A prediction of phase noise levels of the synthesiser types given in the previous section is

given here. Phase noise data is taken from the various oscillators and synthesiser

processing circuitry measurements performed by the author and detailed elsewhere in this

thesis.

4.8.2	 VHF synthesiser

For the VHF synthesiser of fig 4.26, the principal phase noise contributors are:-

i) The single chip synthesiser phase detector and dividers;

ii) The synthesiser transfer loop;

iii) The 100MHz processing components and the step recovery diode harmonic

generator;

iv) The Cavity oscillator;

v) The VCXO.

4.8.2.1	 Using a single IC synthesiser

An example of an integrated circuit PLL +N synthesiser is the Qualcomm 3036 IC. The

phase detectors and dividers in the Qualcomm IC all contribute phase noise to the output

signal within the loop bandwidth. This phase noise has been measured by Qualcomm

engineers [Qualcomm 1991] to be -150 dBc at 1 MHz reference frequency. Other

measurements on ECL type dividers indicate similar figures (see § 5.7.2.4). By
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multiplying this signal by the effective transfer function to the output frequency of the

synthesiser, fout, the final output phase noise can be determined. 1MHz is chosen as a

comparison frequency according to the criteria given in §4.2.1 of this chapter.

4.8.2.2	 Synthesiser transfer loop 

The synthesiser transfer loop covers from 4 to 6M1-Iz in this synthesiser implementation.

Using a FAST TTL phase detector, the phase noise contributed can be estimated according

to equation (5.46) of chapter 5 to be a maximum of-148 dBc/Hz.

4.8.2.3	 Step recovery diode phase noise

Step recovery phase noise data is taken from published measurements displayed in §5 7.5

for a 100 MHz input.

4.8.2.4	 VCXO phase noise

The VCXO phase noise dominates the close to carrier spectrum. Standard low phase

noise crystals are used since 5 of these are required for each synthesiser unit. The phase

noise plots are taken from measurements by the author. These measurements agree with

those obtained by Driscoll [1985].

4.8,2.5	 VHF synthesiser and PLO phase noise at microwave frequencies

Fig 4.32a and fig 4.33 series of plots show the expected phase noise of the VHF

synthesiser at 10 GHz and 20 GHz respectively. The VHF synthesiser is as the

configuration shown in fig 4.26. Coarse loop phase noise performance is dictated

principally by the VCXO phase noise. Fine loop contribution to the overall phase noise is

determined by the Qualcomm synthesiser chip. This is multiplied up by 20logN to the

synthesiser output frequency output so the fine loop phase noise contribution is frequency

dependent. Phase noise performance of such a configuration comes close to the Eutelsat

specification at 20GHz [Eutelsat 1989]. It must be stressed that this is an overall system

specification and therefore refers to the sum of all contributions.
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Fig 4.32	 Phase noise contributions, VHF synthesiser at lOGHz
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Fig 4.33 Phase noise contributions, VHF synthesiser at 20GHz

116



4.8.3	 L-Band synthesiser

4.8.3.1	 Coarse loop phase noise

With the L-Band synthesiser, the coarse synthesiser will be the dominant source of phase

noise. Multiplication of the phase noise from the single IC loop is less than with the VHF

synthesiser. Once again, the dominant source of phase noise is frequency dependent. In

order to realise the phase noise specification, considerable complication of the coarse loop

is required including the use of a secondary phase detector.

The phase noise is determined by the secondary sampling phase detector, SRD phase

noise and crystal oscillators. Measurements obtained from a working circuit are plotted in

fig 4.34. The sampling of SRD noise by the secondary phase detector represents the

largest phase noise component, except at very low offset from carrier frequencies.

4.8.3.2	 Fine loop phase contribution

The phase noise arises principally from the Q3036 chip and the VCO. Since the loop

mixing is at L-Band, rather than VHF, the translation multiplication factor to the output is

reduced by 23dB.

4.8.3.3	 Transfer loop 

As with the fine loop, since the multiplication factor is reduced, a 23dB reduction in

transfer loop contributions as compared against the VHF synthesiser occurs.

4.8.3.4 L-Band synthesiser phase noise at microwave frequencies 

Fig 4.34 and fig 4.35 show the expected phase noise of the L-band synthesiser. Such a

synthesiser has phase noise which is dominated by the secondary sampling phase detector

in the coarse loop. Contributions from the Qualcomm synthesiser IC and transfer loop are

very much reduced on account of the lower multiplication factor to the synthesiser output

frequency. The phase noise is reduced over that of the VHF synthesiser. It can be

deduced from the simulation of chapter 7 that the multiplier after the cavity oscillator

should contribute negligible phase noise on account of the high drive frequency.

The L-Band cavity oscillator synthesiser could be modified to replace the fine loop with a

DDS synthesiser. In this case the output from the DDS will be connected directly to the

transfer loop, and the secondary sampling detector omitted from the course loop. Such a

combination would give a similar phase noise performance to the DDS/YIG combination

outlined in §4.8.5 below in this chapter, and would enable high data rate modulation of

the synthesiser. However, the presence of the multiplier at the output limits the flexibility

of the synthesiser arrangement.
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Fig 4.34	 Phase noise contributions, L-band cavity synthesiser at lOGHz
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Fig 4.35	 Phase noise contributions, L-band cavity synthesiser at 20GHz
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4.8.4	 YIG M/N_ synthesiser

4.8.4.1	 Coarse loop phase noise

Using the M/N architecture enables the division ratio after the coarse loop to be higher; a

reduction in phase noise transferred to the output will therefore follow. Increasing the

output frequency increases the division ratio following the coarse loop by a proportional

amount, therefore phase noise contributions from the coarse loop will be independent of

output frequency.

4.8.4.2	 Transfer loop 

The required tuning range of the transfer loop is in inverse proportion to the output

frequency as mentioned in §4.7.7 of this chapter. From equation (5.46) of chapter 5 it

can be seen that the phase noise power at the output is inversely proportional to the phase

detector frequency. Therefore, this source of phase noise should increase by 3dB for

every doubling of output frequency.

4.8.4.3 VCXO

The VCXO phase noise increases at 6dB for every doubling of output frequency.

4.8.4.4	 SRD comb generator phase noise

Phase noise contributions from the comb generator in the N/M synthesiser will be identical

to that of the VHF synthesiser case and will increase by 6dB for every doubling of output

frequency.

4.8.4.5	 YIG N/M microwave synthesiser phase noise 

The projected phase noise levels from the YIG synthesiser configuration is given in

fig 4.36 for a 10 GHz synthesiser configuration and fig4.37 for a 20 GHz synthesiser.

The YIG synthesiser configuration is capable of the best phase noise performance at the

higher output frequencies. All this is achieved without even considering the superior

phase noise performance of a YIG oscillator. When YIG oscillator performance is

considered, the phase noise advantage becomes even greater. This advantage comes about

because the tuning range of the VHF transfer loop is reduced over that of the VHF

synthesiser PLO arrangement. Transfer loop tuning range reduces further as the output

frequency is increased. Such a reduced tuning range means that a higher division ratio is

possible after the coarse loop. The advantage of the intended implementation suggested

here compared with other possible implementations is that translation from this chip to the

final output frequency is output frequency independent. Most other configurations

degrade the phase noise by 20logN. Therefore the phase noise is independent of output

frequency. This is especially convenient for satellite communications work where phase
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noise specifications are in general carrier frequency independent. Degradation by 20logN

still applies to the 100MHz signal, however. An interesting development of this is to

replace the coarse loop with a DDS.

100112	 11Hz	 101Hz	 1001Hz	 1

Fig 4.36	 Phase noise contributions, YIG N/M synthesiser at lOGHz
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Fig 4.37	 Phase noise contributions, YIG N/M synthesiser at 20GHz
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4.8.5	 YIG M/N synthesiser with DDS

4.8.5.1	 DDS 

Replacing the coarse loop with a DDS enables the low phase noise of a DDS to be

exploited. If the spurious reduction technique of chapter 8 is implemented, a phase noise

of -120 dBc/Hz could be expected from a DDS synthesiser with a 300MHz clock rate.

This translates to a phase noise of - 114 dBc/Hz at the final output frequency at

microwave. The phase noise of the other components apart from the VCXO will be

identical to that of the synthesiser discussed in the previous section.

4.8.5.2 VCXO

Using the DDS enables the use of one fixed frequency VHF reference crystal. Therefore a

very low phase noise SC cut crystal could be employed to give excellent close to carrier

phase noise levels. SC crystals are more expensive, but the phase noise has been

measured [personal communication, Cains,T, 1991] at -130 dBc/Hz at a 100Hz offset

on a 100MHz carrier frequency for an oscillator circuit.

NIM synthesiser  with DDS phase noise overall

Lowest phase noise figures of all the projected synthesiser arrangements surveyed are

available from the N/M synthesiser with DDS. Fig 4.38 displays the phase noise

contributions to the output of a lOGHz N/M and DDS hybrid synthesiser and fig 4.39 a

20 GHz synthesiser.
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Fig 4.38	 Phase noise contributions, YIG N/M synthesiser with DDS at lOGHz
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A phase noise contribution of less than 110dBc/Hz is given from the DDS section, and

therefore with an improved transfer loop, this figure could be obtainable at the synthesiser

output for offset frequencies of greater than 3kliz. This synthesiser would be capable of

being modulated at relatively low modulation rates of a few kBits/sec. For higher

modulation rates of 100s of kBits/sec, a microwave VCO would be required at the

synthesiser output, but the far from carrier phase noise would suffer.
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Transfer loop

-120

-140

1111111111MM	 RfJ cornp generator
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11111111111
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Fig 4.39	 Phase noise contributions, YIG N/M synthesiser with DDS at 20GHz

4.9 Conclusions

In chapter 4 a synthesiser survey has been undertaken, initially looking at synthesis

methods and finally discussing microwave synthesiser implementations.

Multiplicative synthesis schemes such as the N divide phase locked loop have the

fundamental drawback of a high multiplication ratio, resulting in high phase noise and a

limit to the minimum step size capability. Although this can be overcome by a multistage

downconverter, designing for a small step size places critical demands on the

downconverter filtering.
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More care has to be taken with the design of fractional and combinational synthesisers

because of the potential for spurious outputs that can occur as close to the wanted carrier

as a single channel spacing. This unwanted output would be too close to carrier to be

removed by filtering such as with a phase locked loop.

Multiple section iterative direct analogue and phase locked loop combinational schemes,

although capable of excellent performance, have complicated RF circuitry, and have

stringent multiple section screening requirements. For this reason the iterative techniques

were rejected in the later parts of the chapter which deal with possible implementations of

microwave synthesisers.

The fractional synthesis schemes of direct digital synthesis and fractional 'N' have

simplified architectures, less demands upon screening, and arbitrarily fine frequency

resolution. They are, however, susceptible to internal processing errors which can result

in the generation of spurious frequencies. Some fractional 'N' techniques rely on a

narrow phase locked loop bandwidth to remove the spurious responses from the output.

This is undesirable in a digital data system as there would be vibration induced VCO phase

noise present at the output. The fractional techniques have the advantage of having the

capability of being directly phase and frequency modulated.

A table giving comparison between the techniques is difficult because of the many

different aspects of synthesiser design, such as step size, phase noise, spurious

requirements, switching speed and output frequency.

The performance and implementation of four possible architectures have been considered

with a view to synthesising a microwave local oscillator. It now possible to conclude

which combinations offer the greatest flexibility and yield the most efficient synthesiser in

terms of phase noise against level of complexity.

The VHF synthesiser is the most complicated requiring 6 loops, a multitude of low phase

noise reference crystals and a PLO at the output. If a cavity PLO is used, large amounts

of power will be generated at L-band frequencies so there is a potential interference

problem. Due to the phase noise demands on each loop, it is not possible for much

integration of the loops. The only possible advantage of a VHF synthesiser is when the

synthesiser must be remote mounted from the microwave local oscillators, as it is much

easier to cable 100MHz than 10 GHz. This advantage could however be gained from the

other architectures by dividing the outputs down in frequency.
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The L-Band synthesiser suffers from the disadvantage of requiring two microwave

oscillators. In addition, the demands on the coarse loop in terms of phase noise

performance is quite severe, and a multiple stage phase detection is required. Such an

arrangement is complicated and does not allow much scope for integration. However only

one fine loop is now required. This arrangement could, however be modified to include a

DDS capable of being modulated at high data rates.

As a result of the synthesiser survey, it can be concluded that the YIG MIN synthesiser

architecture, or its DDS variant is suitable for most satellite communication applications.

With the MIN architecture, the VHF input to the YIG PLO has a very much reduced

tuning range. This enables the coarse loop of the previously discussed architectures to be

replaced with a single high quality crystal reference source. Therefore, this loop removes

much of the complication of the previously discussed architectures. By allowing this high

quality reference to tune over a small frequency range, it is possible to interpolate between

the steps of the fine loop, and therefore have a much smaller step size than the previous

architectures. The main disadvantage of this approach is the tuning speed: once a

frequency step is made, it would take several seconds before the full specifications of the

synthesiser would again be reached. In many applications where the frequencies are

changed infrequently this may not be important. If this is important, then the alternative

implementation involving the DDS must be used.

With the DDS approach, tuning speed would be microseconds providing the tuning range

is within the FM coil tuning range of the YIG oscillator, otherwise the tuning speeds of

the main coil must be taken into account, and the tuning speed would then be

milliseconds. This is an unavoidable restriction imposed by the YIG oscillator. This

effect would not be important if the DDS is used for low data rate modulation or tracking

purposes. Careful design procedures must be followed if the DDS approach is used to

avoid problems with spurious signals. The two key areas are the DDS generated

spurious, and the M loop multiplier response, both of which will be covered in later

sections.

The DDS would result in about 10dB reduction of phase noise to about -115 dBc/Hz.

The spurious performance would be equal. With a DDS the tuning would be virtually

continuous with a step size of less than 1Hz at the output frequency.
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5 Synthesiser component design
considerations

5.1	 Introduction

This section describes research undertaken by the author into the effect of the components

of a synthesiser upon the output excess phase noise and spurious signals, that is the noise

present at the output over and above the theoretical 20logN [Grebenkemper, 1982]

multiple of the reference phase noise. Details of specific phase noise performance of

synthesiser circuitry in obtainable literature are sparse and there is ample scope for

investigative work here.

The components to be discussed in this section are frequency dividers, multipliers, and

limiters. The other major synthesiser components, oscillators, have already been covered

in chapters 1 to 3 and appear frequently in published literature. However it is difficult to

predict the performance of a synthesiser simply from oscillator specifications alone. By

investigating the performance of dividers, multipliers and limiters all the major

components within a synthesiser can be quantified, and the most economical synthesiser

configuration may be derived.

An important aspect of synthesiser design is electromagnetic interference (EMI). Signals

generated in one part of a synthesiser may couple into another area and give unwanted

spurious signals by interference effects. An interference emitter is a source of interference

to surrounding circuitry, and a susceptor is a circuit sensitive to EMI. One of the major

problems of synthesiser design lies in separating the above two. Two of the most

problematic circuits in synthesiser design as regards EMI are multipliers and dividers. It

is suggested that multipliers can be broadband emitters and dividers, broadband

susceptors. An area not often considered, but investigated in this section is the effect of

limiters on broadband noise and as an interference susceptor. This is followed by a
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consideration of the effect of broadband noise and signals on phase noise in logic circuits.

Another EMI problem not always appreciated is the susceptibility of low Q oscillators to

external signals close to their free running frequency.

Frequency multiplication of some form is necessary to transfer the low close to carrier

phase noise performance of a crystal oscillator to microwave frequencies. There is a

phase noise degradation of at least 20 log N for a frequency multiplication factor N. A

substantial proportion of this chapter will therefore be devoted to a study of frequency

multipliers for which many configurations are possible. The effect of various multiplier

circuits upon output phase noise is to be considered with the aim of producing guidelines

for correct selection.

One possible implementation of a frequency multiplier is the divide by N phase locked

loop (PLL). Although the divide by N phase locked loop is simple to implement and

align, it brings certain drawbacks. Many phase detectors used with this kind of loop

sufferer from severe non-linearity, and this effect is studied along with possible remedial

action. Another problem is the phase noise introduced by digital devices. Different phase

detector configurations are compared for phase noise, linearity and reference spurious

feedthrough. Phase noise introduced by a phase locked loop configured as a multiplier

using a variety of phase detectors is compared with the phase noise of non PLL

multipliers. The comb generator sampling loop is discussed as a possible compromise

between the simplicity of alignment of the phase locked loop multiplier and the phase

noise level performance of the non phase locked loop multiplier. During the investigation

of phase detectors a new type of phase detector was invented, the image rejection phase

detector. This type of phase detector is described together with its use in a transfer loop in

multiple loop synthesisers.

Many authors apply the 20 log N rule to dividers, in reverse to that applied to multipliers;

however, a subtle flaw lies with this approach in that it does not take full account of

broadband effects. Here broadband effects will be analysed by a method based on

consideration of the switching action in a perfect limiter. This switching action can fold

up the spectrum over a broad range to around the carrier; such a switching action can

occur at the input stages of digital circuitry within a divider, and this can result in higher

than expected phase noise and spurious signals at the output of the dividers. Limiter

theory is then developed to attempt a prediction of divider and phase detector phase noise

when used within a PLL synthesiser.

PLL design is further investigated by means of a computer simulation written by the

author. This simulation is applied to problems related to injection locking and vibration in
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phase locked loop synthesisers. Modifications to PLL designs which would improve

rejection of vibration are examined.

Finally, a method of overcoming the 201og N rule is suggested that uses non-coherent

frequency multiplication is discussed.

5.2 Noise sources within synthesisers

5.2.1	 Introduction 

Synthesised sources generate both discrete spurious and random noise modulation. The

latter is traditionally referred to as phase noise. The noise can be both inherent in the

synthesiser circuits and induced by external vibrations (microphony). Both processes can

degrade the BER performance of a data link as shown in chapter 6. From BER

measurements taken on a satellite data receiver subject to shock such as is discussed in

chapter 9 it can also be concluded that vibration is a particular problem. This topic is

covered in §5.8.

	

5.2.2	 Discrete spurious

Sources of discreet spurious signals are:-

	

1.	 Mains related products;

2. External signals, ie EMI susceptibility;

3. Reference feedthrough;

4. Unwanted spurious mixing components.

Mains hum and EMI susceptibility (1 & 2) refer to sources external to the synthesiser unit.

The first step towards reduction of these is to investigate the means of coupling of the

interference. Power supplies are a particular problem. Switched mode power supplies

generate very large amplitude signals with a large harmonic content. Furthermore the

frequency changes with loading and as the power supply oscillator is allowed to free-run,

the frequency becomes a function of the regulation mechanism. If a switched mode power

supply is to be used in the system then particular attention must be paid to filtering and RP

coupling. With linear power supplies the dominant means of coupling are magnetic and

acoustic. Since the spectrum is concentrated at low frequencies this form of power supply

is usually less troublesome than the switched mode which produces a broad spectrum of
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interference. Due to the switching action of the latter, harmonics of the switching

frequency can be present up to hundreds of MHz. Therefore broadband filtering must be

present for several modes of propagation, for example, electromagnetic radiation,

transmission along power supply lines, mutual coupling through the ground circuitry, and

coupling into signal cables whenever switch mode power supplies are used.

Numbers 3 and 4 of the above listed discrete spurious sources are inherent in the

synthesiser processing circuitry. Sources of spurious products are well documented in the

literature for direct and indirect analogue synthesisers [Manassewitsch, 1985a],[,Rohde,

1983a]. The important difference between reference related spurious and mixing products

is that the former can normally be removed by filtering, whereas the latter can move across

the output signal spectrum and be as close to the output as one output channel spacing.

Reference related spurious signals are normally associated with multiplier synthesis,

where all output frequencies are a product of the reference frequency only.

In fractional synthesis unwanted mixing products are present alongside reference spurious

signals due to the necessity of including some form of frequency conversion within the

loop. This effect can be demonstrated by consideration of the spurious generation

equations for a mixer [Bain, 1989]. Applying a similar analysis as in §4.4.7 results in the

presence of spurious products at offset frequencies of c channels away where c is the

highest common factor of the inputs to the mixer.

5.2.3	 Reference spurious

Reference spurious signals arise due to feedthrough of the reference frequency to the RF

spectrum around the carrier, so that sidebands appear at the reference frequency and at its

harmonics.

In the frequency multiplier, the reference frequency feedthrough is determined by the out

of band rejection of the output filter. Consequently the problems associated with

unwanted sideband rejection increase with increasing multiplication ratio. This is because

the nearest reference sideband becomes a smaller fraction of the output frequency and

therefore filters of a smaller percentage bandwidth must be used. However multipliers can

provide excellent adjacent channel suppression at low multiplication ratios due to high

filter element Q's that are possible at microwave frequencies [Wong, 1988].

5.2.4	 Phase locked loop reference rejection 

Phase locked loops can be used to provide improved rejection of adjacent reference

sidebands [Stirling, 1987]. The phase locked loop performs a low pass to bandpass
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transform to phase modulation, so that the low pass characteristic of the phase locked loop

H(s) is transformed to the bandpass characteristic by the low pass to bandpass

transformation [Kuo, 1966]:-

0)o S	 0)oH(s)b	 (=	 -+ -.	 )20k (0.	 0

where mo is the carrier frequency and mc is the phase locked loop cut off frequency. The

advantage of this is that the filtering can be done at baseband where it is generally more

economical and where more effective filters can be realised. Consequently, in theory very

large multiplication ratios can be accommodated, though in practice this is not

recommended for the reasons described in §5.7.2.4 of this chapter.

In a phase locked loop, there is a natural rejection of spurious feedthrough above the loop

bandwidth, of 20dB per octave ie. a single pole rejection. This can be increased by

adding additional filtering on the VCO control line. A third order type two loop displays

an increased reference frequency attenuation as against the second order type two loop

[Jones, 1986]. The third order loop is formed by the use of a single pole VCO control

line filter. However, there is a limit to the amount of filtering that can be applied within

the loop, otherwise the transfer characteristic of the phase locked loop will have poles in

the right half plane on the s diagram and the loop be unstable. Calculation of a phase

budget at the unity loop gain frequency is the simplest way of avoiding this problem. This

method is extensively covered in the literature eg. [Rohde, 1983b]. There is therefore a

potential problem with reference feedthrough if the loop bandwidth is not small relative to

the reference frequency.

One type of phase detector in common use is the analogue phase detector. The analogue

phase detector of fig 5.1 will typically have 30dB of reference frequency suppression

[Watkins and Johnson, 1989] and no suppression of twice the reference frequency.

An analogue multiplier can be a mixer
with a DC coupled IF output

IF "to
ex,

Phase
Inputs

LO
Filter
sum

Phase
Error
Output

IN,

rejects
product

-.4

Fig 5.1
	

Using a mixer as an analogue phase detector

(5.1)
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Some of the contributions to the overall noise performance from individual components

within the synthesiser will now be discussed.

5.3 Effect of limiters and dividers in synthesisers

5.3.1	 Significance of limiters in synthesisers 

Limiters are critical elements in frequency synthesisers as they may contribute to the

overall spurious and noise performance. Limiters are commonly used in frequency

synthesisers to convert the analogue outputs from (for example) mixers, VCOs and filters

to suitable inputs for driving digital dividers. Digital dividers as with limiters involve

switching through an approximately linear transition region between the static levels.

Effects akin to those occurring in limiters can therefore be shown to occur within digital

devices themselves.

5.3.2	 Noise considerations for limiters in synthesisers

Within most synthesisers there will be methods of conversion of sinewaves into

squarewaves. This process may be considered to be perfect limiting. Most analyses of

limiters' effects on the presence of sign for the presence of signals and noise relate to the

main transmit-receive signal path and are therefore concerned with a bandlimited

environment [Aein, 1973] [Davenport, 1953]. On the other hand, synthesiser work

demands a noise analysis over a broad bandwidth. To this end attention must be focused

on the noise generated by the active devices within the limiter alongside that present

additive to the input signal. Since broadband noise will be indigenously present within the

limiter, the process of phase noise generation within limiters must be treated as limiting a

signal plus broadband noise, since there is no narrow band process within the limiter.
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5.3.3	 Measurement of noise effects within limiters

Modular amplifiers

/\

Input Z

Broad
hand
Noise

Fig 5.2

t* —4 Output

limiter
stage

Block diagram of experimental limiter

An experiment was undertaken to investigate noise effects within limiters. A signal and

broadband additive noise was applied to the 1st stage of a limiting amplifier (fig5.2) and

an amplifier with a gain in the linear region of 45dB was used together with a Schottky

diode limiter at the output. The amplitude of the signal was varied and the output signal

was measured on a spectrum analyser. Care was taken to ensure that limiting occurred

only at the output stage. The output signal to noise ratio was measured and plotted against

the input drive power giving the plot shown in fig 5.3.
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Fig 5.3	 Measured phase noise of ideal limiter
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(5.2)

(5.3)

It can be observed that for drive levels above a certain threshold, there is a 3dB

improvement in output signal to noise ratio for every 6dB increase in drive level.

This indicates that the output signal to noise ratio varies in relation to the square root of the

input drive level. The following section provides some explanation for this behaviour.

5.3.4	 Conversion of additive noise to multiplicative noise in a

jimiter

By treating the limiter as a clipping amplifier a noise analysis can be performed. In an

ideal limiter, there will be no AM to PM conversion of noise. Consequently, the response

of the limiter to AM noise is not considered in this analysis.

Fig 5.4 shows a limiter in the time domain. The shaded line indicates the output of the

amplifier if no limiting mechanism was present, and the large signal gain equalled the

small signal gain. Amplifier gain will be represented by G in the linear region; limiting

occurs at output voltage level ± VL; the input level is V i and the angle at which the

amplifier is in its linear region is 13 where (if p « 1 radian):-

2VL 
G Vi

The time t for which this transition occurs is:-

tcVL 
—

itGV;

The limiter is considered to have a signal at the input plus broadband additive noise. This

noise is assumed to remain additive as it passes through the amplifier. At the output of the

limiter, during the clipping part of the cycle, the noise is assumed not to contribute to the

output; only during the active region is the noise assumed to be amplified. Therefore, the

effective output noise at a frequency around the output fundamental frequency can be

found from a convolution of the broadband noise function with a window function which

is of value 1 during the transition period and 0 at other times. The window function can

be represented as a sinc function in the frequency domain:-

r• ee

Itcoc mtcoc
W(co)	 —sinc--

227c
(5.4)
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where co, is the reference frequency, and m represents harmonics of the reference

frequency. A result of this convolution operation would be carrier phase jitter in the form

of random phase modulation, or phase noise.

Fig 5.4	 Time domain waveforms of a limiter

Owing to the narrow active window of the limiter phase noise can be introduced from

noise at a very broad band of frequencies, extending up to frequencies of many multiples

of the carrier rate. Performing convolution, as described above, results in the sampling

and aliasing of the broadband noise to phase noise modulation on the carrier. This effect

applies to offset from carrier frequencies of up to half the carrier frequency. Any periodic

signals within the previously described broadband would be affected in a similar manner

to phase noise. The convolution must therefore be applied to any periodic signals at the

input to the limiter. Fig 5.5 shows the effect of considering the transitions as a window

function. At the output of the limiter, the noise output is represented by NM.

The result of considering amplification of the noise during the window period only is

[Wilson & Tozer, 1989]:-

No(E) NotC0c	
(5.5)

It

at the fundamental frequency coc. Limiter noise output, No(L) is therefore a function of the

additive noise level before the limiter (at point 2 in fig5.2), the limiter transition time, and

the fundamental output frequency ok. This is as would be expected from a calculation of
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:	 .

the ratio of the noise power being transmitted to the output (window function = 1) to that

being suppressed (window function = 0).
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Fig 5.5	 Contribution of device noise to limiters and logic device phase noise

Although a simple analysis based on the ratio of the transition time to the off time has been

given [Wilson & Tozer, 1989], the convolutional approach would show that noise present

at high frequencies (large value of N) appears at the carrier output frequencies. It follows

that aliasing down from high frequencies has serious implications for synthesiser design

in that noise peaks and spurious signals would be folded down around the carrier from far

frequencies. The circuit would be sensitive to noise over a very broad band of frequencies

and this must be taken into account in the design of the synthesiser.

For synthesiser design, it can be deduced from this section that the use of high gain, high

speed low noise devices is essential for low phase noise at the limiter. Coupled with this,

however it is essential that the stage is adequately screened and decoupled over a

frequency range corresponding to the fl of the devices. Using emitter degeneration would

have serious implications for broadband white phase noise as effective device gain will be

reduced, the devices will switch slower, and another noise sources is introduced into the

circuit. Such degeneration may have an effect upon the 1/f noise of such a stage, but
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futher study of this is beyond the scope of this thesis and can be recommended as an item

of further work.

5.3.5	 Frequency dividers

Frequency dividers are now available for use in synthesis at frequencies up to greater than

20 GHz. Three commonly used forms of dividers are digital devises, dynamic charge

storage devices, and parametric devices. Digital devices are almost universally used at the

lower frequencies (up to 5 GHz) and devices are presently being manufactured that can

achieve 14 GHz. They are based on the flip flop and can therefore be considered as static

in operation, that is as long as the pulse rise time is kept short, there is no lower frequency

limit to the operation.

Dynamic devices are based upon a similar principle as dynamic RAM, that is charge

storage in a MOSFET junction. Such devices use fewer transistors than the static variety

and are capable of operating at frequencies of greater than 20GHz. A major disadvantage

of these devices is however, that, as they depend upon charge storage for their operation,

there will be a minimum toggle frequency for correct operation.

Parametric devices rely upon a parametric amplifier made to oscillate at a subhannonic of

the the input pump frequencies. Of all the divider types, these devices are capable of the

highest frequency of operation, but they are the most difficult to align and manufacture.

This chapter will concentrate on digital dividers. These devices will therefore have two

states at their input to the devices with a transition through those states as the digital

elements change states. The resulting phase noise of the output will be a summation of all

the contributions from the digital elements in the critical path between input and output.

5.3.6	 Application of the limiter theory to digital dividers

The limiter theory described in the previous section (5.3.4) can now be applied to digital

dividers. A window area is created at the input of a divider whereby noise generated by

the input devices during the transition is sampled. This leads to speculation that the phase

noise power density at the output of the divider is proportional to the toggle frequency.

It is possible to consider the divider problem from another angle. If the noise addition at

the divider transitions are considered to be events independent of other transitions, the

total RMS time jitter in seconds must be independent of the divider toggling frequency.

This means that the total RMS phase jitter is proportional to the toggle frequency. Total

RMS phase jitter can be found from the phase noise density by integration in the
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frequency domain. Phase noise originates mainly from the edge transitions in the case of

clocked digital devices, and such transitions only occur in the same direction once per

cycle. Since the phase noise is only active at discrete points in time, the problem

resembles that of a sampled data system. Therefore the power spectrum will take the

form:-

L(cu) = L(0)sinc2(coTp/2)	 (5.6)

where ; is the period of one reference cycle, 1.. (0) is the phase noise asymptote at low

frequencies, and L(o)) is the frequency dependent phase noise power density.

By performing a power integration, the equivalent rectangular bandwidth of the phase

noise can be shown to be 1/2T. As described in §5.3.4 above, this noise may consist of

noise aliased down from higher frequencies by sampling during the transitions. Therefore

the total phase noise power will exist over a bandwidth of 1/T 1,, that is a range equivalent

to the toggle frequency, at the output of a digital device.

Because the total RMS time jitter is constant the total RMS phase jitter power is increased

by a squared relationship with frequency, but the integration area increases proportionally

to frequency. Therefore, phase noise power density increases in a proportional

relationship to frequency.

In practice, the divider problem is more complex than this, particularly since there is a

tendency for oscillations to occur at high frequencies when the input stage is in its linear

region [Apte & Cummings, 1990]. This means that oscillations will begin to build up if

the transitions through the linear region are not rapid. Effects on noise performance

would then be unpredictable. It is vital that the dividers are fed with transitions that are

approximately equal to or faster than a reciprocal of the maximum toggle frequency of the

divider. From the suggestions raised in §5.3.4 concerning the selection of limiters, the

same criterion can be applied to dividers. ECL, although generally reckoned to be fast,

consists of emitter coupled amplifiers switching between current limited states. Therefore

the transition through the linear regions is relatively slow and the limiting amplitude is at a

low level (typically 0.7 volts). With voltage limiting logic such as TTL and CMOS the

logic is generally slower, but this is principally due to increased propagation delay during

the limiting state rather than a slow transition region. This, coupled with the higher

thresholds of voltage limiting logic indicates that ECL may not give the best phase noise

performance. From the above criteria, indications are that FAST TTL should give the

lowest phase noise. More on this subject will be given in §5.7 dealing with the phase

noise of -I-N PLL synthesisers. However, the absence of saturated states may give ECL

the edge in terms of phase detector linearity. This is further discussed in §5.7.2.3.
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With dividers, the sampling and aliasing effects described earlier in this section have

important EMI implications. Since signals can be aliased down from a broad range of

frequencies, the device can act as a broadband susceptor. Aliased spectral components

from frequencies close to a multiple of the divider output frequency can appear as close-to-

carrier sidebands at the output frequency.

Dividers and limiters are often an integral part of a phase locked loop which is commonly

used in synthesisers. Therefore PLLs will be considered next.

5.4 Phase Locked Loops

5.4.1	 Introduction 

Phase locked loops find extensive usage in frequency synthesis. A brief survey of the

properties of various PLL implementations will now follow. The phase locked loop

synthesiser can use the following phase detectors:-

a) Dual flip-flop phase frequency detector

b) Harmonic sampler

c) Analogue multiplier (mixer)

d) Ramp sampler (linear phase)

e) Image rejection phase detector

f) Single flip flop.

5.4.2	 Phase Frequency Detector

5.4.2.1	 Introduction

The phase frequency detector is the most common type of phase detector, and therefore is

very well referenced [eg. Egan & Clark, 1978], [Connell, 1987]. A circuit diagram of a

phase frequency detector is given in fig 5.6. The phase output is not a level proportional

to signal, but is in fact a pulse width modulated signal. One distinctive feature of this

detector is that it is frequency sensitive. This is due to the fact that this detector is a state

machine with the present state being dependent on previous states of the detector.
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Assuming the detector starts with both outputs at zero, whichever output (pull up or pull

down) goes high depends upon whichever input goes high first. Once an output goes

high, it requires a transition on the opposite input to the phase detector to cancel this high

level. Whichever input has the greater number of transitions will always be the one which

can set the corresponding output. Such an output will be reset by the input with the lesser

number of transitions. Such sensitivity to the relative number of transitions of each input

gives the phase detector the property of frequency sensitivity.

voltagt
Effective transfer characteristic

phase

Fig 5.6	 Phase Frequency Detector

5.4.2.2	 Performance of the Phase Frequency Detector

There is much literature concerning the lack of linearity of this kind of phase detector [eg.

Egan & Clark, 1978]. Although Fast TTL offers lower noise than other digital phase

detectors, the non-linearity effects can be much worse [Connell, 1987]. One of the

methods of overcoming this problem is to apply a fixed bias to the input of the integrator.

The output of the phase detector must therefore be offset in order to cancel this bias.

Phase detector operation is then biased away from the zero phase error region where most

of the non-linearity exists. The disadvantages of applying bias are:-

1) The reference feedthrough from the phase detector is increased;

2) There is a possibility of introducing noise on the bias line.

Connell [ibid] discusses a method of measurement of non-linearity effects. The author

was concerned because the quoted 10 phase resolution for the technique did not offer fine

enough phase resolution to expose all the phase-gain variations. The 1 kHz signal

employed effectively averages out any phase-gain deviations within the range of this
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sweep. An alternative scheme is therefore proposed here for measurement of non-linearity

effects as shown in fig 5.7.
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Programmed
synthesiser 2
f=frilf 

Voltage
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Program Rai°
Contrt I

Clock
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Od 1111z

Fig 5.7	 Linearity measurement of phase detector

The phase detector is connected to two synthesisers, both maintained at the same

frequency. The phase of synthesiser 2 is swept relative to synthesiser 1 resulting in the

presence of a swept voltage at the output of the phase detector. Dividing this voltage (after

removal of any static offset) by the phase difference at the input to the phase detector gives

the gain of the phase detector in volts per radian. The output of the phase detector feeds

two circuits each performing a separate functions: phase locking and measurement. Phase

locking is necessary to ensure that the phase detector is always swept about its central

region. Any DC offset in the phase detector characteristic must be removed from the gain

calculation, and this is achieved by obtaining the change in output over the change in input

rather than measuring static values. A frequency step is equivalent to a phase ramp, so

therefore synthesiser 2 has its frequency switched ±fd about the nominal frequency to

provide a phase ramp input to the phase detector and enable its transfer characteristics to

be swept. In order to obtain zero mean phase error, the filtered phase error voltage Ve is

fed to the mark-space ratio control of oscillator Od• This is in effect a phase locked loop

whereby the voltage Ye controls the mean frequency of synthesiser 2 by means of the

mark-space ratio of Od• Amplifier A2 forms the loop filter. The phase deviation 4)d is

given by:-
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where Od is the maximum phase deviation at the detector, 8 fr is the frequency offset at the

synthesiser, and fck is the clock generator frequency. The resultant voltage V2 is a ramp

that traces out the phase characteristic of the phase detector. Changes in slope gradient are

not as easily observed as changes in level, therefore it is preferable to have a plot of phase

detector gain rather than the transfer characteristic (fig 5.8). The ramp is converted to a

gain value by the differentiator. Phase detector gain value, K p, is determined by the slope

of the phase plot:-

K-	 (5.8)

(5.7)

relative to nominaGain

11111111111111111ffliff
I	 I	

1 

-50 -40 -30 -20 -10 0	 10	 20	 30	 40
Phase difference at detector

Fig 5.8	 Gain of Fast TTL phase detector, unmodified version

The advantage of this measurement technique over that suggested by Utsi [1983] is that a

fixed locked synthesiser can be employed rather than using the frequency modulation

input which tends to lack stability by comparison. In order to examine the results

published by Connell & Egan, the gain of the phase detector in fig 5.9 with its output

configured as in fig5.10 was measured at 5 MHz; the resulting gain plot, (see fig 5.8)

was then similar to that noted by Connell [19871, but the gain peaks were even higher

(40 dB). Initially a charge pump type circuit was tested, but similar results were obtained

144



74F74

-4 Modulus	 •
I control 

counter

'------___

NMI
RI

P2R2

.2

L______E=ILL

2

	+ Phase error
oOp amp output

Rzsrr

Q

_

1

with the operational amplifier arrangement of fig 5.10. This contradicts findings by

Hatchett [1978] which suggest that the charge pump is the cause of the non-linearity

problem.
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Fig 5.9	 Arrangement of phase detector and dividers which gave poor linearity
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Fig 5.10	 Phase Frequency Detector using linear amplifier

This suggests that the non-linearity problem may be internal to the device. Underhill

[personal communication, 1989] suggests a "ratchet effect" internal to the device whereby

ringing and other transient phenomena result in a variation of propagation delay according

to various switching effects internal to the devices. The measured gain plot in fig 5.8

described above would be unusable as the switching glitches would be spread throughout

the phase detector characteristic and applying bias would therefore be ineffectual. It was
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noticed that in fig 5.9, the Nand gate shares several functions including a high frequency

clock buffer. The circuit was redesigned to only use one of the gates for switching

applications, that is the feedback for the two flip-flops. Also, improvements to the layout

resulted in direct connections between the flip flops and the Nand gates without crossing

other signal lines. A gain plot resulting from the modification described above, measured

by the author, is shown in fig 5.11. This is an improvement in the gain plot shown in

fig 5.8 in that the large positive gain peaks have been eliminated leaving a single

"deadband". A bias current applied to the phase detector enabled the production of reliable

synthesiser designs.

-20dD	

Deviation at phase

detector gain from
-10d 	

nombal

-10dIB

- -20dB

-10	 -5	 0	 5	 10
Degrees of phase shift at 35 Wiz comparison freq

Fig 5.11	 Gain characteristic of a modified Fast TTL Phase Detector

However, the use of a fixed bias introduced reference feedthrough that required heavy

filtering on the VCO line to reduce the spurious signal. Excess phase shift in the VCO

filter places a restriction on the maximum loop bandwidth value which is undesirable for

fast settling loops. A possible solution to this problem [Rohde, 1983c] is the injection of

the bias in the form of a pulse rather than a constant current. The pulse should ideally be

placed so as to minimise interaction between the bias pulse and the phase detector

operation. This method is displayed in fig 5.12. A suitable pulse is available in the form

of an overflow output from the divide by N counters. Since both transients are confined

to a small part of the phase detector duty cycle, the resulting phase modulation spectrum

would be concentrated at higher frequencies and hence be easier to filter out.

Unfortunately, however, such a pulse would also contribute jitter and therefore would

degrade the phase noise floor of the detector. The use of a specially designed linear phase
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Fig 5.12	 Applying pulse biased offset to linearise a Phase Frequency Detector

5. 4.3	 Harmonic sampling phase detector

5.4.3.1	 Sampling loop 

Fortunately there is a ready solution to the problem of reference feedthrough. A zero

order data hold sampling at the reference frequency has infinite theoretical reference

suppression at the reference frequency and its harmonics. The zero order data hold

response is:-

Kp = exp(— mc(1

4
Phase

This response has a zero at an co value of 211. The phase lag introduced by this filtering

effect compares favourably with other loop filters. In addition, the effect of the sample

and hold can be incorporated into a Z transform analysis of a phase locked loop to

optimise settling times [Baker, 1989]. Usually the sample and hold function is

incorporated into the phase detector itself. The most commonly used phase detector of

this type is the 3 state dual flip flop phase frequency comparator of fig 5.6. This is so

called because of its ability to provide frequency acquisition as well as phase locking.

(5.9)
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5.4.3.2	 Microwave Sampling Phase Detector

The drawbacks of the phase frequency detector in terms of phase noise, reference

feedthrough, bandwidth restriction and linearity prompted an investigation into other

phase detection circuitry. Microwave sampling phase detectors are usually driven by a

Step Recovery Diode (SRD) comb generator which when correctly designed may have the

following advantages:-

1) Lower phase noise;

2) Complete freedom of choice of reference harmonic and multiplication ratio;

3) Operation at frequencies over 200Hz.

Step recovery diodes are further discussed in chapter 7. Microwave sampling phase

detectors make use of the narrow impulse delivered by SRDs to turn on diodes arranged

as a sampling gate. SRDs are also commonly used in frequency multipliers as in fig5.13.

Matching	 RD	 Matching	 Adjacent
Harmonic
Filter

Fig 5.13	 Fixed frequency step recovery diode multiplier

A problem with the frequency multiplier arrangement of fig 5.13 is the rejection of

adjacent reference sidebands with larger multiplication ratios, say >10. If, instead of

using the SRD as a frequency multiplier, it is used to drive a sampling gate in a phase

locked loop (PLL), the inherent rejection at the sampling frequency of the sample and hold

can be used to reject reference sidebands. Additional rejection of reference sidebands is

given by the PLL transfer function.

Another possible method of frequency multiplication is given in fig 5.14. The PLL

affords additional rejection of sidebands if the loop bandwidth is made narrower than the

reference sideband frequency.
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Fig 5.14	 Fixed Frequency SRD Multiplier with PLL as sideband filter

An analogue mixer is used as a phase detector in this case. The problem with the

multiplier PLL scheme is that flexibility is lost because the multiplier must be fixed tuned.

Therefore one cannot change the multiplication ratio by an electrical means. One method

of overcoming this problem would be to replace the multiplier with a Y1G filter and comb

generator as shown in fig 514. Additional amplification is required because of the low

output of the comb generator at any single frequency; this combined with the bulkiness,

expense and power consumption of the multistage YIG filter makes fig 514 a less

attractive option for satellite communications work. If the filter is omitted and the comb

generator fed directly into a mixer, the high peak amplitude of the comb generator output

would overdrive the mixer.

The high speed sample and hold detector is the most desirable option for frequency

multiplication in satellite communications applications. A block diagram of a sampling

phase locked oscillator is displayed in fig 5.15. If the oscillator is a YIG tuned oscillator

or a voltage controlled oscillator (VCO) then complete flexibility in the choice of

multiplication ratio M is achieved. This facility can be used to simplify a microwave

synthesiser as described in §4.8.4. The operation can be represented in signal processing

terms as a mixer followed by a hold device; mixing results in the comb signal being

multiplied with the VCO signal.

If the baseband component of the signal after analogue multiplication (mixing) were used

to form the error to control the phase locking, its level would be too low to be effective.

Therefore, a hold function is applied to the output of the multiplier. Applying a hold

function enables a value of baseband signal to be held until the next reference pulse

arrives.
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Fig 5.16 displays the function of the sample and hold detector in the time and frequency
domains.
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Fig 5.16	 Operation of the Harmonic Sampling Detector
in the time (a&b) and frequency (c&d) domains

The Laplace transform of the hold function in this detector is given [Egan, 1980] by:-

f Level

where ; is the duration of the on pulse and T. is the sample period. Substituting s j(0
gives:-

T pCjoff.A.hIc(col
G(s) =	 L 2 )P

(5.11)
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This is the definitive equation for a hold device. The Fourier transform of an impulse is a

comb of lines of amplitude T p/T s . Therefore the result of the above described

multiplication is a reduction of amplitude by Tp/Ts . Following this by the hold function

restores the overall gain back to unity.

The reference frequencies fall at the null points of the hold transfer function hence the

theoretical attenuation of the reference is infinite. At the front of the equation the

exponential factor corresponds to a phase shift of coT s/2 in the detector of the transfer

function. This phase shift must be taken account of in PLL dynamics calculations.

5.4.3.3	 Increasing phase detector bandwidth 

An extra pole must be added to the theoretical transfer function above due to the finite time

taken to charge the hold capacitor during the sample period t p , due in turn to finite

response times of the sampling diodes and inductance in the sampling circuit. The circuit

of the phase detector as used in many phase locked oscillators is displayed in fig5.17a.

The circuit is self biasing in that it derives its own bias voltage through rectification in

diode pair D2 and D3. A pulse is generated during the impulse period of the SRD and is

coupled through by capacitors Cl and C2. These capacitors differentiate the waveform

and provide sharp conduction pulses to D2 and D3. When the diodes conduct, D2 and D3

end of capacitors Cl and C2 are connected to the microwave input signal. When the

diodes reverse, the voltage stored on Cl and C2 is increased by an amount equal to the

voltage stored at the junction of D2 and D3.

Fig 5.171) I mproved phase detector for greater

bandwidth
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A problem exists in that the stored voltage is decoupled to ground through C4 and C5.

This provides a pole at a low frequency forcing a reduction in loop bandwidth, which

would be unsatisfactory if there were a possibility of injection locking, or if it were to be

used in a high vibration environment, or in a frequency hopping synthesiser where the

locking time must be small. The author has investigated the problem of the phase detector

pole. A synthesiser was built whereby a 1 GHz signal was phase locked to a 2.5MHz

comb generator. A plot of the response of the phase detector in terms of peak amplitude at

the output against error frequency was obtained. The response obtained was

approximately single pole, first order and the point at which the output was 3dB down on

the DC level taken as the phase detector pole frequency. There must be an allowance for

the sinc on sampling function in this calculation. Calculations based on these

measurements reveal a phase detector pole at 180kHz, which would restrict the natural

frequency con of the loop to approximately 50IcHz. This means that problems could be

encountered since the VCO was a low Q very wide bandwidth device. There is a danger

of problems due to injection locking of the VCO (see §5.6.3).

A modification to the circuit therefore was devised. Fig 5.17b displays the modified

circuit. Separation of the bias circuits from the signal circuits has been achieved. The bias

is developed across C3. Baseband signals are developed across Cl, C2, and C4.

Resistors R3, R4, and RV1 provide the second half of the bridge. DC Balance is

provided by RV1. Measurements on the improved circuit revealed a pole at 800 kHz.

Increasing the reference frequency to 10MHz increases the pole to 1.675MHz.

5.4.3.4	 Upper frequency of operation of sampling phase detector

The maximum frequency of operation of the above described circuit will be set by the

amplitude of the comb and the effect of stray components in the circuit. The maximum

frequency of operation was measured to be 1.6 GHz. In order to increase this it is

possible to either:-

(1) add reflectors to speed up the switch off of the diodes; Or

(2) use an integrated comb generator phase detector.

Method 1 is based on the sampling detector arrangement designed by Grove [19671. This

phase detector operates by allowing the reflected wave from a short circuit to turn off the

detector diodes after they have been turned on by the SRD pulse wave. The reflected

wave will be 1800 out of phase with the applied wave, and will cancel the effect of the

applied waveform. Fig 5.18 gives a circuit of a microstrip equivalent of the Grove

method.
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By using the arrangement of fig 5.18 the maximum frequency of operation was doubled

to 3.2 GHz. The circuit is similar to fig 5.16a apart from the addition of rnicrostrip lines
X1 and X2. These lines reflect the pulse back to the diodes, turning them off after a time

interval equal to twice the propagation length of the microstrip line. However, since the

SRD used has a risetime of 50 ns, it is evident that the maximum frequency of operation is

restricted by the inductance arising from interconnections between the components. There
is commercially available a complete phase detector package measuring lmm x lmm

which can operate up to 200Hz [Metellics, 19891, the circuit equivalent of which is

shown in the dotted area of fig 5.18. The increased speed is obtained due to the small size

of the device.

R7

Ref I.
Input I.

C2	 Baseband
R4z, output

Fig 5.18	 Speeding up sampling phase detector
by means of reflection strips X1 and X2.

5.4.3.5	 Two Phase detector approach

In order to overcome the problems of linearity and reference feedthrough, a two phase

detector approach has been recommended [Underhill, 1977]. The phase frequency

detector is used for acquisition, and a ramp and hold type detector is used to maintain

lock. Utsi [1983] also recommends the ramp and hold phase detector to solve the linearity

problem. Underhill [1986a] suggests that a harmonic sampling phase detector could be

used in conjunction with a rate multiplier type frequency locking loop to combine the low

noise performance of the former with the broadband frequency locking capability of the

latter. An alternative method to this was developed by the author [Wilson, 1988] where

the frequency locking capability of the phase frequency detector is combined with the high

frequency phase locking of the sample and hold phase detector as shown in figure5.19.

The advantage of using the phase frequency detector in such a manner is that single IC

synthesisers are available with a phase frequency detector built in, and the phase

frequency detector can rapidly achieve lock.

RV1
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Fig 5.19	 Two phase detector method of reducing phase noise

The harmonic sampling detector is phase sensitive and therefore does not have the

frequency locking capability of the frequency detector. Therefore, the initial locking is

achieved using the phase frequency detector and, when the phase error is reduced to a low

value, the sampling phase detector assumes control. The phase frequency detector must

then be removed from the loop, otherwise contention will occur between the two

controllers. There is still a requirement for the phase frequency detector to monitor the

locking condition of the loop. It is not necessary to operate the two detectors at the same

reference frequency, the only required condition being that the detectors give a DC output

at the same frequency. The phase detector will lock to any harmonic of the reference

frequency:-

CRYSTAL	 FREQUENCY

REFERENCE PROGRAMMING

OSCILLATOR DATA

where the factor N is an integer. For the divider arrangement of fig5.19, the relationship

for locking is:-

In order for both arrangements to lock at the same output frequency fout then we require

R = M. Therefore the problem of the phase comparison frequency having to be reduced
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if a fixed prescaler M is used, is overcome. This is of great benefit as fixed prescalers are

available at frequencies of up to 5 GHz and variable modulus prescalers manage 1.30Hz

at present. This method also gives greater flexibility over the choice of prescaler. If

locking time is not critical, then the prescaler could be replaced with a fixed divider. The

advantage of the two phase detector approach is therefore:-

(1) The problems of reference feedthrough of the phase frequency detector are

reduced;

(2) The phase noise is much lower and more easily predicted;

(3) Higher phase comparison frequencies can be used;

(4) The elimination of the variable modulus prescaler results in reduction in

complexity and current consumption and easier sourcing of devices;

(5) Loop gain parameters are independent of changes in N value;

(6) Higher phase detector gain reduces sensitivity to hum and amplifier noise.

One of the problems that need to be overcome is a method of fast reliable switching

between the phase detectors. When transfer occurs, the phase detector must be switched

into the loop and the phase frequency detector must be removed. This must be achieved

without introducing transients into the loop that may cause the loop to lock at the wrong

harmonic of the reference frequency. One method of overcoming this problem is with a

Schottky diode gate.

5.4.3.6	 Measurement of performance of 2 phase detector loop 

A single loop synthesiser including a Fast TTL phase detector was built with the minimum

of gates in the signal path. The performance was measured against a unit containing a

dual phase detector.

A synthesiser built by the author to include the two phase detector method had output

spectra as displayed in fig 5.20. This measurement was obtained on a HP 8566B

spectrum analysers. One of the traces is that of the output when the phase frequency

detector is maintaining lock. The second trace is that of the harmonic phase detector

controlling the VCO. Table5.1 displays a comparison between two identical step size

synthesisers. Apart from a 20 dB reduction in static phase noise, there is a vast

improvement in discrete spurious and the increase in loop bandwidth enables an increase

of 29 dB of loop suppression of dynamic phase noise originating in the VCO.
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MARKER

1500.01

-98.6

RBW

100 Hz

SAMPLE

VBW

30 Hz

OFFSET

-2.4 dB

Table 5.1

Comparison of measured synthesiser performance for an output

frequency of 2GHz and a channel step of 2.5MHz

Fast TTL detector Dual detector

Phase	 Noise	 at

2.5 kHz offset

-83 dBc/Hz -103 dBc/Hz

Reference sidebands -35 dBc (6251cHz) -70 dBc (2.5MHz)

Loop	 natural

frequency (fn)

15 kHz 80 kHz

2.1 dBm

10 dB/

ATT 10 uf	 A<R	 1500.0126 MHz

-4)8. 6 -51377-nl-z

paltEn

SWP F
5-"A

SPAN 5.0 kHz	 CENTER 1500.01445 MHz
	.741

Fig 5.20	 Spectrum analyser plot of the two

phase detector synthesiser at 1.5 GHz output

5.4.4	 Analogue multiplier

The analogue multiplier, together with the digital equivalent, the exclusive-or gate, is also

ubiquitous in frequency synthesisers. The input signals are multiplied together, to yield

the following:-

Sin(cot + a)Sin(ca + p) = Ycos(a - f3) - cos(2cot + a + 13))	 (5.14)
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Equation (5.14) suggests that upon achieving phase lock there will be an unwanted

component at twice the input frequency, and the baseband output will be zero, with

cc -13 =7c/2, ie the input is in quadrature. This type of phase detector is well covered in

the literature leg. Robins, 1982 (2)]. It is phase sensitive only, therefore an acquisition

aid will be required [eg. Cheah, 1991]. If the inputs are not sinusoidal, there is a potential

for self locking onto a harmonic of the input signal. Of particular hazard is a frequency

divider with a third harmonic which is only 10dB down on the fundamental. To avoid

false lock, therefore, an exclusive or gate should be used with digital signals. A

squarewave digital signal at the gate is equivalent to a sinewave at the analogue multiplier,

therefore if the harmonics of one signal lie at the same frequency as the fundamental of the

other, then there is no resulting DC output. However two signals of equal fundamental

frequency will give rise to a DC output.

5.4.5	 Linear ramp phase detector

The linear ramp phase detector, also known as the dual sampling detector or ramp

sampling detector, is also well covered in the literature [eg. Underhill, 1980]. Its greatest

virtue is its linearity and excellent reference sideband rejection. The essential feature is a

ramp which converts time intervals into a voltage levels. If the time interval is started on

the reference pulse edge and finishes on the divided output of the VCO edge, then this

time interval is proportional to the phase difference between the waveforms.

Fig 5.21 gives a simplified circuit diagram and fig 5.22 displays the operation of the ramp

sampling detector. The S-R flip flop on the LHS of fig 5.21 provides a pulse for the

duration of the phase difference between the input waveforms. Capacitor Cl is charged

by switched current source It resulting in a voltage ramp across Cl. When a transition

occurs at the VCO input, the ramp is stopped. The resultant phase error value is

temporarily stored in Cl. During this hold period, C2 is connected to the output of Cl.

In fig 21 a monostable is used to determine the time duration that C2 is connected to Cl.

This is intended for illustrative purposes only, and in practice the C2 sampling pulse

would be derived from the VCO divider chain. Before the end of the reference cycle, C2

is disconnected from Cl , and the charge in Cl is dumped to ground. Due to this

secondary sampling effect, the reference feedthrough rejection is very good, and extra

filtering, apart from the loop filtering may not be necessary for most applications. The

phase noise, however, is measured to be the highest of any of the phase detectors. At

25 IcHz comparison frequency, the phase noise of this type of phase detector (Plessey

NJ88C25) was measured to be - 134 dBc/Hz, as against - 156 dBc/Hz for a CMOS

phase frequency detector both referred back to 25IcHz. The increased noise could be due

to the increased complexity of this type of circuit and the possibility of extra noise

introduced in the capacitor charging and discharging circuits.
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Sample and Hold Control

Sample

Hold

Fig 5.22	 Dual sampling phase detector operation

5.4.6	 Image rejection phase detector

A problem exists when using a phase detector for the transfer section of a multiple loop

synthesiser, such as fig 5.23.
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IImage rejection

I	 detector	 1

Fig 5.23
Reference Osc.

3 loop summing, or vernier synthesiser

Chapter 4 established that for good spurious response rejection, VC01 and VCO2 should

be as close together in frequency as possible. However, if very accurate tracking of the

VCOs is not achieved, then there is a possibility of the frequency of VCO2 to be on the

wrong side of that of VC01 (eg. at the difference frequency rather than at the sum). In

this case, there will be a difference frequency in the translation loop, but an ambiguity

exists as this frequency could be equal to the same difference frequency if VCO2 is greater

than or less than in frequency to VC01. In order to resolve this ambiguity, an image

rejection phase detector was designed that contributed towards a patent application

[Hardstone, Lees &Wilson, 1991]. Fig 5.24 displays the functional diagram of the image

rejection phase detector.

In the image rejection phase detector, the output of VCO2 is split into an in-phase and

quadrature component. These components are mixed with the output from VC01 and the

following results occur:-

Case 1 If co2 < col

In phase mixer:

sin (wit) sin(c020 = 1/2(cos(w 1 - (02)t - cos(oh + 0)2)0
	

(5.15)
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sin (col t) cos(co2t) = 1/2(sin(co1 - co2)t + sin((co i + co2)t)
	

(5.16)
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Image rejection phase detector

Case 2 If co2 > ca 1

In phase mixer:

sin (co l t) sin(co2t) = 1/2(cos(co2 - (opt - cos(co l + (1)2)0
	

(5.17)

Quadrature mixer:

sin (col t) cos(co2t) = 1/2(-sin (0)2 - coi)t + sin ((00 1+ (02)0	 (5.18)

For all the above cases, the difference term that is required for phase locking is the first

term on the right and the unwanted sum signal is the second term. In the first case, when

VCO2 is lower in frequency than VC01, the I mixer phase detector error will lead the Q

mixer phase detector error phase error by n/2. In the second case, the Q mixer output will

change phase by 71 in relation to the first case, and therefore the I mixer output will now

lag the Q mixer output by it/2.
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At the phase detector, the in-phase signal input clocks the signal flip flop and the

quadrature component becomes the D input. When the VCO2 is tuned to the incorrect side

of VC01, the signal flip flop becomes permanently reset and the reference permanently

set, resulting in a rapid return to the correct side of VC01.

The advantage of the image rejection phase detector detector in a multiple phase locked

loop synthesiser is that VC01 and VCO2 can operate much closer together in frequency,

therefore any harmonic intermodulation products at the mixer would be of higher order

and thus at a very low level. This results from the fact that higher terms in the mixer

analogue multiplier intermodulation characteristic have lower values of coefficients.

5.4.7	 Summary of phase detector survey

Phase frequency detectors possess the useful property of being able to perform frequency

and phase acquisition simultaneously. On locking, however, noise performance is

inferior to that obtained using other types of phase detector. Good noise performance is

possible by the use of a microwave sampling phase detector. Combining the two

detectors into a PLL synthesiser and automatically switching between them enables a rapid

acquisition loop with good noise performance to be built.

The image rejection phase detector enables achievement of rapid acquisition in a summing

loop where the output frequencies and reference frequencies are close.

5.5 Simulation of a PLL Synthesiser

5.5.1	 Introduction

It has been described in chapter 4 why direct digital synthesis (DDS) is the ideal method of

synthesis for a frequency hopping or fast frequency agile source, although this may have

to be combined with other synthesis methods such as PLL synthesis in order to achieve

the desired range [Harris, 1991]. Wide bandwidth phase locked loops are necessarily to

ensure fast switching speed, and the normal PLL design procedures are complicated by

the discrete time nature of the digital sections of the PLL. For this reason, in order to

investigate settling times of phase locked loop synthesis after frequency hops, software

simulation of the PLL was written which is further discussed in appendix A3.

Frequency agility requirements fall into four distinct cases for data communications

systems:-
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J). 	 Fixed frequency communications

This refers to a case when the frequency is selected by the user and then remains on

that channel until a further instruction to change channels is received from the user.

The settling time requirements for such a system are not critical, as a channel

change transient is not anticipated during normal communications.

2)	 Signal tracking synthesiser

In this case, the synthesiser is used to track the signal, allowing for temperature

drifts and Doppler shifts. Here, the following are required for the synthesiser.-

a) Fine enough resolution in frequency in order to avoid BER degradation or

loss of carrier lock during tracking;

b) The frequency change transient should be of short enough duration to avoid

degradation or loss of lock.

The frequency changes are typically of small frequency steps.

3)	 Slow frequency hopping

The frequency channel is changed at periods of many data clock cycles. One

common implementation is to aid in the provision of secure communications for civil

systems. In this case it may be possible that coherent detection can still be used.

The requirements are similar to the tracking synthesiser, but frequency change is

more random, and can result in large shifts in frequency. Slow frequency hopping

can also be used in conjunction with other communication techniques such as direct

sequence spread spectrum [Dixon, 1985].

4)	 Fast frequency hopping

The frequency channel is changed at the data rate, or at greater rates than the data

rate. In this case coherent communication is impossible due to non-coherent

combining at the receiver and non-coherent combining loss occurs. The principal

requirement for synthesiser design in this case is fast switching and low settling

time.

In all the above cases, apart from case 1, the frequency change response time is of critical

importance.
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5.5.2	 Using a hybrid synthesis scheme to obtain low settling time
frequency agility

With a hybrid synthesis scheme it is vital that the various tradeoffs are examined so that

the subsections that make up the hybrid can be configured correctly. As discussed in

§4.8.3.4, a PLL can be used to ensure full bandwidth coverage, and a time domain

simulation can be used to aid correct selection of reference frequency and other loop

parameters.

5.5.3	 Phase locked loop synthesis

In the past phase locked loop digital +N synthesis was associated with slow frequency

stepping [Gorski - Popiel, 1979]. A block diagram of such a synthesiser is displayed in

fig 5.32 of §5 7.2 of this chapter. This association arose out of a misunderstanding about

the effect of digital devices within a phase locked loop; this will be elucidated in the

paragraph below. Before the problem was seriously addressed, PLL loop bandwidth

would typically have been reduced to a maximum of 1/40 of the reference frequency, at

which the loop would have been indistinguishable from that of the analogue loop, and

therefore could be analysed by the usual equations. A slow response and poor resistance

to microphony are a consequence of the use of too narrow a loop bandwidth.

Initial investigations by workers in the field revealed discrepancies between the observed

behaviour of a PLL and the usual analogue equations as the loop bandwidth approached

the reference frequency [eg. Przedpelski, 1983]. The discrepancies suggested some dead

time or delay effect. This delay effect was initially ascribed to "divider delay" in which the

finite delay between signal input to the dividers and the output was held responsible

[Goldman, 1984]. Work by Egan [1984] and Crawford [1985] suggested that the

sampled time nature of the digital phase detector was responsible, and could be allowed

for by a time delay of exp(-sTs) into the open loop transfer function. This is equivalent to

multiplying the magnitude by a factor of unity and adding an open loop phase shift of

0.a/2. The stability is determined from Bode plots in the usual way, and gives a

pessimistic result for the stability of the loop. Crawford suggested that a more accurate

result would be obtained from a Z transform analysis of the PLL response. Blake [1988]

applied the sampling model of a PLL and predicted frequency and phase lock in

approximately 8 sample periods for the optimum step response loop. The optimum loop

natural frequency would be 23% of the reference frequency and a natural frequency of

32% is the maximum limit for stability.
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Baker [1989] suggested that for a phase frequency detector there is no sampling delay, but

that the sampling delay should be added if a sample and hold device be used in the loop.

He then went on to apply the Z-transform to a third order type 2 loop with a sample and

hold phase detector. Egan [1991] arrived at the conclusion that the sampling delay must

be applied if the phase frequency detector is used with a second order type 2 loop; but not

if used with a third order type 2 loop having the additional pole much less than the

reference frequency. This is because a second order loop does not have any loop filtering

at the reference frequency and all the higher order sampling terms are allowed through.

The higher order terms contribute to the sampling delay. If a filter is applied as with a

third order loop, the higher order terms are negligible compared with the fundamental, and

consequently cannot increase the phase delay. This suggests that a third order type 2 loop

is more desirable for use with a phase frequency detector since better reference rejection is

obtained for little degradation in loop stability. With a speed optimised phase locked loop,

there is little filtering of the reference components, leading to problems with reference

sidebands. We overcame these problems with the aid of a second analogue phase detector

as mentioned in §5 4.3.5 above.

5,5,1 .Computer aidedA	 locked loops

If more filter stages are included after the loop filter, the Z transform analysis becomes

complicated and a simulation program would be desirable. This is particularly the case

with a practical high speed loop where the response of the VCO must be taken into

account [Harris, 1989]. Conventional phase locked loop analysis programs perform a

frequency domain analysis on the loop. The phase detector and VCO are given an

approximate characteristic, and the Laplace transform of the loop filter stage is taken. Any

post loop filtering is then added in the form of a Hurwitz polynomial [McGillen &

Cooper, 1986]. The combined open and closed loop transfer functions are then evaluated.

Initially, a commercially available software package that followed this approach was

evaluated by the author. This is a dedicated synthesiser design package by Rohde

[1983d], the "PLL Design" kit, available from Compact Corp. Unfortunately the program

calculated (wrongly) stable results for a phase locked loop with a natural frequency greater

than the reference frequency. Such a result is not possible for a loop that includes digital

phase detectors or dividers. Therefore a program is designed that gives more accurate

results for loop bandwidths close to the reference frequency, and this program is

described below.
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5.5.5	 Phase locked loop simulation program

5.5.5.1	 Method of simulation 

The author proceeded to write a dedicated phase locked loop simulation program. Simple

documentation on this design is given in appendix A2 and a listing of this program is

given in appendix 2. A time domain simulation method is used which solves the loop

differential equations over discrete intervals in time. Fig 5.25 is a block diagram

representing the simulation model. Output and reference frequencies are indicated by f,

and fref respectively. An improvement on Badger's [1988] method is used in that the

implicit Trapezoidal integration rule is applied rather than the Backward Euler method to

the simultaneous differential equations, resulting in greater accuracy as discussed later in

Chapter 7. The phase detector is the conventional phase frequency type, although this

could be replaced by other types if necessary, and is described by its logical function. A

charge pump type loop filter is assumed, although this could be replaced by an op-amp

type. The time increment is represented by At.
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•	 COMPARATOR •
: f r	 LIMA

	 UPull dovnt
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Fig 5.25	 PLL simulation, models and variables
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5.5.5.2	 Loop filter in simulation

As with the step recovery diode simulator in chapter 7, a trapezoidal integration is carried

out for the capacitors in the loop filter capacitor. For a capacitance C:-

n

Ec=
 f

1(t)
c dt

n-1

Applying the integration rule to this:-

Eco) = E (n-1) 
+ I(4)d1 

1- itlt

(5.19)

(5.20)

where Ec(n) is the present step voltage across capacitor C, and Eco_1) is the previous step

voltage across C, 1(n) and 101_0 represent the corresponding current values through the

capacitor.

By applying 1Circhhoffs' laws and the integration approximation of equation 5.20 to the

loop filter network the following equations are produced:-

Iun-ndt ImodtEdo) = Ecio- 1) +	 +2C1	2Ci	
(5.21)

aln-1)-Il(n-1))dt + (1(nril(n))dt
Ec2(n) = Ec2(n-1) +	 2C2	 2C2

(5.22)

Ban) = Eci(n) + I1R	 (5.23)

A problem lies in applying the above equations directly in that the unknown current II is

implicit. This can be overcome by rearranging the equations in the form:-

2C 1 C2(Ec2(n_1) - Ec io-o) - I I(n-1) C2 dt + C i dta(n) + I(n-i)- Ii(n-1))
11(n) —	 C1 dt + C2dt + 2C1C2R	

(5.24)

, a(n-1) - I 1 (n-1 Odt aln) - I l (ddtEci(n) = Eci(n-1) -1-	 +	 n ,-,
2C2	 AA-2

Ec2(n) = Ed . (n) + I1R

(5.25)

(5.26)

II can be first solved, enabling E l(n) to be obtained, followed by E, 200. These values are

then stored for use as the n-1 values in the next time increment.
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More complicated loop filters, such as elliptical filters can be included by either forming

the network equations into a matrix as in chapter 7, or by applying the bilinear transform

to the poles and zeros of a loop filter [Hatcher, 1989].

5.5.5,3	 Results of optimum settling time simulation

Fig 5.26 displays the results of a simulation of a PLL synthesiser with the values of phase

locked loop components given in table 5.2. The loop filter, consisting of Cl, R and C2,

is a lead lag type followed by a reference filter capacitor, giving the loop a third order type

2 characteristic.

Table 5.2

Simulation element Circuit value Units

Reference fr- euenc 4N 111.11

 10

200
gIIIIIIIIIIIIIIMNEMIIIIIIIII

MHz

ns

EN=121111111111
pF

Division ratio

VCO tuning at 0 Volts

VCO Tuning at 2 Volts

Phase detector, dual fli • fib. PFD

...y...asstinvyneconstant
Char :e ' um. current INLoo, filter ca sacitor

Dam o in	 resistor

Post loop filter capacitor

R	 6
C2	 40

In Fig 5.26, varactor tuning voltage (fine trace) and phase error (bold trace) are plotted

against the time axis. The centre of the plot represents zero phase error.

The loop settles in approximately 6 reference cycles, that is 61.is. However this settling

time is very sensitive to changes in loop parameters. For example a rise in loop gain of

3 dB from the optimum settling point results in an unstable loop giving oscillations at half

reference frequency. This simulation is extended later in this chapter to enable study of

locking phenomena and loops of different order.
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Fig 5.26	 PLL simulation, result for an optimum settling time loop

5.5.5.4	 Summary of time domain simulation of PLL

Consideration of the switching and settling time of a synthesiser has led to the

development by the author of a time domain simulation program for phase locked loop

synthesisers. Commercially available software for PLL synthesis does not consider the

sampling effects of dividers and phase detectors, hence giving inaccurate results as the

natural frequency approaches the reference frequency. Armed with a suitable model of a

phase locked loop it is now possible to examine further problems that may occur within

synthesisers such as injection locking.

5.6	 Spurious signal injection into local oscillators

5.6.1	 Introduction

Spurious signals incident upon a free running oscillator can have various effects

depending upon the frequency difference between the spurious frequency and the
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oscillator frequency. Sources of induced spurious signals can include radiated signals,

power supplies, mixers connected to the oscillator output, and varactor tuning circuits.

Although these susceptibilities are displayed by any free running oscillators, this section

will dwell on voltage controlled oscillators.

5.6.2	 Effect of spurious signal injection on a free running oscillator 

At RF, there are three effects of injection of spurious signals into an oscillator, depending

upon the offset from carrier region:-

1)Broadband (f,n>f0/2QL), offset from carrier (region 1);

2) Resonator bandwidth enhancement (f,„<foRQL), offset from carrier (region 2);

3) Injection locking (fm<412QL), offset from carrier (region 3).

Analysis of the effect of a spurious signal on an oscillator can be performed in a similar

manner to the effect of noise in chapter 3. Bandlimited noise was considered to aid the

analysis and here the same treatment is given a discrete spurious incident signal. In the

broadband region 1, the output depends upon the position of the resonator. The spurious

signal is additive to the VCO signal and subsequently modified by any limiting function

and resonator function within the oscillator. The limiter results in the creation of two

sidebands and a 6dB reduction of power in each sideband. This can be seen from

equation 3.5 in chapter 3, but since only one sideband was incident upon the circuit, the

power will be halved. The resonator will also attenuate the signal if there is a stopband for

offset frequencies above the fd2Q L frequency. Since the resonator is the most likely

susceptor for the interference [Manassewitsch, 1985b] a good position for the resonator is

after the amplifier but before the limiter, a circuit with this configuration is least susceptible

to external signals, providing care is taken with broadband interference if a hard limiter is

used. In the broadband region, therefore, the spurious sidebands at the output can never

be greater than the ratio of spurious signal to oscillator signal at the susceptor.

In region 2, there is effectively little attenuation of the spurious RF signal by the

resonator. If the spurious signal is substituted for the phase noise in equation (3.7) in

chapter 3, then assuming an ideal limiter the following relationship results:-

(N/C)out	 4	 4QL2fm2
(N/C)it 	fo2 

Equation (5.27) suggests that there is a 20dB enhancement of the spurious signal for each

decade reduction of fin, as in the case of phase noise. Therefore the spurious sidebands

can appear much larger than the incident spurious signal level which will be further

(5.27)
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Closed loop vector diagram for
oscillator modulation

discussed in §5.6.2.1. This can be a major problem for the design of frequency

synthesisers [Underhill, 19861)].

In region 3, an even more troublesome phenomenon can occur. In chapter 2, fig 2.17,

repeated as fig 5.27, graphically displays the effect of phase noise on the oscillator by

considering the resonator delay between vectors A and B of the modulation.
is a fixed phase shift caused by the resonator group delay to the
modulation

0 is the phase modulation deviation due to open loop phase noise of the

Deviation	
im oscillator

of phase
modula

(reds)

I is the peak deviation of the open loop oscillator phase due to an incident

spurious signal,

111 is the closed loop deviation before the resonator,

and M: is the closed loop deviation after the resonator

Fig 5.27	 Time domain and vector diagrams for

oscillator modulation by phase noise

For the case of an injected spurious signal, a similar analysis can be applied. Assume that

a small signal I is incident upon the oscillator and is added to oscillator vector A at the

input to the resonator r. I rotates around A at fm. The resultant vector B now displays a

phase shift of 0 where:-

0 = Arcsin (I) sin (coat)A (5.28)

This extra phase shift occurring in region 2 or 3 would violate the Barldiausen criterion for

an oscillator, so the oscillator must react to enable a loop phase shift of zero. This can be

accomplished in two ways: enhanced phase modulation for offset from carrier region 2, or

injection locking for offset from carrier region 3.
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5.6.2.1	 Enhanced phase modulation

Here, as can be seen from the vector diagrams illustrating enhanced phase modulation

given in fig 5.28, the incident spurious vector I rotates around oscillator vector A. The

phase shift as given in equation (5.28) above occurs. The Barkhausen criterion for

oscillation must still be satisfied, however. This can only be achieved by changing the

phase shift through the resonator.

f'
	 if 

P

te

maximum

Fig 5.28	 Local oscillator enhancement of incident spurious signal

Because of the resonator group delay r, additional phase shift through the resonator a is
related to oscillator output phase change from nominal where:-

a r—
dt
	 (5.29)

Assuming the oscillator has phase modulation at a rate cum then the phase error will

be:-

• = 4)p sin (o)„,t)	 (5.30)

where Op is the peak phase error.

Differentiating the above and looking for the maximum rate of change at the peak value of

•, that is op, then:-

CY =	 = con4p	(5.31)

and:-
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(5.33)

,	 N 01 C spur
n 0/....inc =	 4 (5.36)

Op = ap = Rom4)p	(5.32)

In chapter 3, the relationship between oscillator loaded Q and group delay was shown to

be:-

Substituting this into equation (5.29) gives:-

11'a _  fo 

0 QL2fmP

Assuming an ideal limiter, the conversion from incident power to phase shift is:-

No/Cout _ op2 _ f02

NG/Cinc 0p2 QL24fm2

(5.34)

(5.35)

since the output spurious power is proportional to the angular deviation squared. If an

ideal limiter is used, an incident spurious signal power no/Cinc is converted to spurious

phase modulated sideband power by the relationship (see §2 6.1):-

Substituting this into equation (5.35) gives the oscillator output spurious for an incident

spur power no/Cspur:-

f02 (no/C)uut —	 4 
T

+
4QL2fm2)

C)s
(5.37)

Fig 5.28 displays the effect of the spurious signals in a phase diagram. The line P refers

to the average phase of the oscillator. Spurious signal I rotates at the spurious offset

frequency. The rate of change of oscillator modulation angle 4) produces phase shift

through the resonator which is cancelled by I. When I lies on the vertical axis, then I is

almost in phase with A and A will be at the stationary point at the peak of the deviation.

Since d4)/dt will be at its lowest, a will be zero. In fig 5.29 I is rotating at a slower rate

and as a result 4) is achieving large angular swings such that the small angle theory no

longer applies. In this case I becomes perpendicular to A for a large portion of the cycle

in the upper half of the diagram. The value of I that corresponds to the stationary points

of 4) moves to the left as shown.
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Effect of incident spurious signal under large signal conditions

5.6.2.2	 Injection locking

Referring again to fig 5.29, the next logical step is for I to remain perpendicular to A for

a full half cycle of I. For this to occur,

Rather than vector A swinging back and forth as above, the vector will continue to rotate

in the same direction. From equation (5.33):-

The rotation of m provides a phase shift which is exactly compensated by I. In this case

A rotates continuously with I. This results in the third condition listed at the beginning of

§5.6.2 which is known as injection locking [Kurokawa, 1969]. In this case, the oscillator

becomes monotonic at a frequency fo - fff, and the output at fc, suddenly disappears.

Using equation (5.33) it is possible to examine this effect further. Substituting for r
results in:-

= QLfo
	 (5.40)

The incident power needs to provide this angle. Since the two vectors are at the same

frequency, voltage addition will take place. Addition of I occurs in a peak to peak manner

to increase the phase of A. The following value of a results,
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(5.41)

p.2	 fm

PO2 = QL:f.(7
(5.42)

Combining this with equation (5.40) results in the following condition for injection

locking:-

The factor fm in this case defines the "locking bandwidth" whereby the oscillator will

injection lock over twice fm around f.. The actual process involved is far more complex

than this simplified analysis suggests since the differing effects of the limiter on the

monotonic and non-monotonic signals has not been taken into account, neither has the

effect of the oscillator loop gain. The capture effect of the limiter results in the

suppression of the non dominant signals by 6dB [Underhill, 19891. The result of this is

that there is 6dB more gain for the signal at f in when the oscillator becomes monotonic.

This, together with the excess gain normally provided to maintain oscillation can result in

considerable hysteresis whereby the oscillator, once locked can remain locked over a

region greater than the locking bandwidth. In addition, various chaotic states are possible

due to the heavily non-linear injection process.

It has been suggested [Farr, 1986], [Lucus, 1989] that this method be used to provide low

close to carrier phase noise LO's at microwave frequencies. However it can only be

successfully employed in conjunction with oscillators that are stable in resonator
frequency and possess a low Q L (<100). If a dielectric resonator is used with a loaded Q

of 2000 in a 20 GHz oscillator, then the locking bandwidth for a - 60 dBc signal would

be 10kHz. This would therefore impose stringent temperature requirements on the

oscillator. If the injected signal is an impulse, such as from a Step Recovery Diode

(SRD), then any increase in injected power will result in unwanted sidebands on the

oscillator at the SRD drive frequency due to limited stopband attenuation of the resonator.

Injection locking must still be considered, however, to be an undesirable phenomenon

when phase locked VCO's are employed [Underhill, 1986b1. VCOs are usually low Q

circuits, and are therefore more susceptible to injection locking. The "brute force"

approach would be to exclude any signals from the oscillator which are capable of

injection locking the VCO. This may prove costly to implement and a more satisfactory

solution would be to model the effect of contention between the injection locking and

phase locking systems. An extension has been added to the Pascal PLL simulation

described in §5.5.5 to enable modelling of the injection locking effect.
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0 = arcsin C--1
ft.,

(5.43)

5.6.3	 Model of injection locking of oscillator

A simplified model of the injection locked oscillator is used for the study of the behaviour

within a phase locked loop. By reference to fig 5.29, the injected signal provides the

extra phase shift through the resonator that occurs due to rotation of the oscillator phase

vector. The angle of the injected signal to the oscillator signal is therefore given by 0

where:-

where fm is the offset from the nominal oscillator frequency, and f i, is the injection locking

bandwidth [Kurokawa, 19761, [Hines, 19681.

Within the injection locking bandwidth, the phase noise power of the free running local

oscillator is multiplied [Farr, 1986] by a factor:-

Olo(locked) = 41o(free)

[

1 1, (e) (5.44)

where k is the injection locking bandwidth and fm is the offset from carrier frequency.

The local oscillator power is reduced by 6dB per octave reduction (power of 2) in

frequency below the locking bandwidth as in the case for a first order loop. Since most

oscillator phase noise increases at 9dB/octave reduction in offset frequency close to

carrier, then there should be an increase of 3dB per octave reduction in frequency. This

agrees with measurements taken by Farr [19861

This first order characteristic was included in the simulation program. The behaviour of

the VCO on locking is different from PLLs due to the non-monotonicity of the oscillator

signals. However this effect is not taken into account in the simulation. A block diagram

of the simulated system is displayed in fig 5.30. A third order type two phase locked loop

designed for minimum locking time is used in the simulation. Adding the injection

locking produces some interesting results. The worst case occurs when the injection angle

is 1800 out of phase with the phase locking angle. Simulation shows that if the injection

locking bandwidth exceeded the phase locking bandwidth, a contention oscillation results

in phase transitions that could resemble data; such transitions would result in a high BER

in an operating data receiving system. If sufficiently irregular, these transitions may not

be observable on a spectrum analyser, making tracing of the problem difficult. In less

severe cases of injection locking, the loop parameters of the synthesiser are modified.
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Results of the author's simulation are given in fig5.31 showing the effect of changing

phase locked loop gain with an injection locked PLL and with no injection locking. As the

value of loop gain moves away from the ideal in the simulation, the settling time degrades

more rapidly with injection locking than it would without injection locking.

The loop becomes unstable with lower values of loop gain, in comparison with the non

injection locked case which is unconditionally stable for low gain values. Margins of

stability are therefore reduced. This problem could occur whenever a phase locked loop is

used within a synthesiser, particularly when phase locking to a comb generator. A

minimum value of isolation is required after the VCO to provide sufficient attenuation of

any potentially injection locking signals that may be present at the output, for example due

to EMI induced spurious signals, or harmonics of a comb generator or divider chain.

The phase locked loop is one of a number of methods of frequency multiplication.

Having discussed phase locked loops a comparison with these other methods will now

follow.
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5.7 Phase noise in Frequency multipliers

5.7.1	 Introduction

In order to operate at high frequencies eg.around 30GHz, then some form of frequency

multiplication must be employed. There are many methods of frequency multiplication,

with different levels of implementation difficulties and phase noise levels. One such

example, the SRD multiplier, is further dealt with in chapter 7.

5.7.2	 Phase noise of dividers and phase detectors

5.7.2.1	 Divide by N loop 

In order to compare the phase noise of various multiplication schemes it is necessary to

evaluate the phase noise of the phase locked loop multiplier. Phase noise contributions of

digital dividers and detectors were discussed in § 5.3.5. Such predictions must now be

compared with measurements taken on actual loops.
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5.7.2.2	 Measurement of N loop synthesiser phase noise

Measurements were taken on a synthesiser based on the block diagram of fig5.32 as part

of a programme leading to the development of a Ku-band local oscillator. The VCO was a

stripline L-Band oscillator, the output of which was to be fed to a frequency multiplier.

PHASE-FREQUENCY	 LOOP

COMPARATOR	 FILTER
	

VCO

Fig 5.32	 A ÷N PLL Synthesiser

Phase noise sidebands were measured on a spectrum analyser type HP8566B.

Measurements on a spectrum analyser are acceptable if the source is stable and has noise

sidebands significantly higher than the analyser local oscillator. Therefore this technique

is acceptable since the synthesiser has a crystal oscillator as reference. Two types of loop

filters were used, the charge pump type loop filter and a balanced linear op-amp filter. In

addition phase noise measurements were performed on both the phase frequency detector

and divider section of a CMOS MC145151 synthesiser IC and on a 74LS74 D type with a

74LS00 Nand gate in a minimum active gate synthesiser configuration. A Vectron type

217-6050 crystal oscillator is used as a reference source for these measurements; the phase

noise contribution of this oscillator is at least 20dB below any of the authors'

measurements on the synthesiser. Reference phase comparison frequencies were set by

the programmable reference divider, and the output frequency changed by means of the

programmable VCO dividers. For comparison purposes, an ECL divide by 2 was used to

drive an SRD at 50MHz and phase noise measurements obtained.
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5.7.2.3	 Results

Fig 5.33 displays the results of the phase noise measurements. All measurements were

obtained at an offset from carrier frequency of 1 kHz and with a loop natural frequency of

1 0 kHz.
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Fig 5.33	 Phase noise of a ÷N PLL Synthesiser referred to the reference frequency

The dashed line indicates measurements taken with the CMOS MC145151 and a linear

balanced filter using a low noise op amp type OP27GN. The dotted measurements were

taken with LS TTL and a charge pump filter. The solid line indicates the LS synthesiser

with the low noise op amp fitted. These measurements approximately conform to

equation (5.45), apart from when the charge pump loop filter was used at low

frequencies. With the latter loop filter, a high impedance is presented to the tuning

varactor and this may increase phase noise levels.

5.7.2.4	 Discussion of results

The divide by N loop synthesiser used in these measurements was shown in the block

diagram of fig 5.32. Although this form of frequency multiplication is simple, we have

measured significantly more phase noise at the output than with other methods. Using a

50 MHz step size harmonic sampling loop synthesiser controlling a 2GHz VCO, which

in turn drives a SRD multiplier, the phase noise is plotted in fig 5.34. This includes noise

from the SRD and ECL divider. Phase noise results for the LS Tri., detector are excessive
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However, at elevated temperatures (60°C) the divider/SRD combination phase deteriorated

by 40dB and this problem is investigated further in chapter 7. The mechanism for phase

noise generation is extremely complex in the case of the phase frequency divider and

difficult to determine. There are many variables, and manufacturers of digital dividers,

apart from certain producers of high speed devices, do not provide data on the phase jitter

of their devices. Empirical rules can be applied to predict the level of noise floor obtained

from a divide by N synthesiser using a dual flip-flop phase frequency detector in a

minimum gate configuration. The phase detector noise floor measured by the author and

normalised to 1Hz is as follows:-

Table 5.3
logic family Extrapolated phase

noise 1 Hz intercept

11111111
-203 dBc/Hz

HCMOS
LSTTL
10K series ECL-
FAST TTL

...	 .	 .	 ..... ..
-210 to -215dBc/Hz

The phase noise can be estimated at the output of the synthesiser by means of the

following formula [Wilson, 1988]:-
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L(fout)= L(fi Hz) + 20 log foul- 10 log fref	 (5.45)

where L(f01) is the phase noise in dB at the output frequency, 1(fi Hz) is the phase noise

normalised to a reference frequency of 1Hz, and fref is the reference frequency. This

requires closer investigation and more work is required to study the effect of phase noise

in this type of synthesiser. The phase noise performance of the latest high speed

subrnicron HCMOS devices (eg. ACT) devices has not been evaluated. It is beyond the

scope of this work to investigate this, but it could be recommended for further

investigation. At frequencies close to carrier, flicker phase noise results in an increase in

phase noise levels to above the figures predicted in equation (5.45). This equation

indicates that the phase noise at the output of the synthesiser increases as the phase

comparison frequency is decreased, therefore a problem of high phase noise is presented

if a large multiplication ratio N is implemented.

5.7.3	 Non reactive Multipliers

5.7.3.1	 Schottky diode multipliers

A non-reactive multiplier is a multiplier which relies on the variation of the real part only

of the device impedance with drive voltage; as opposed to a reactive multiplier which

produces variations in the real and imaginary parts of that impedance. Examples of non-

reactive multipliers are those using Schottky diodes or transistors.

Non reactive multipliers employ a fast switching device to provide the harmonic

generation. Such a device can be either a diode or transistor. Transistors can also be used

with the added advantage that gain can also be incorporated into the system [Faller, 1973].

Schottky diodes, however, have the reported ability [Scherer, 1981] to generate the lowest

level of close to carrier phase noise, but have the disadvantage of generating only low

order harmonics. Fig 5.35a displays a schematic of a doubler using Schottky diodes.

The Fourier series expression for the voltage output of the doubler is:-

V = Vpk(2 - 4(cos2(oreft + cos4oheft + 	 ))	 (5.46)

Fig 5.35a	 Schottky diode frequency doubler



Fig 5.35b	 Schottky diode frequency tripler

One implementation of a Schottky diode tripler is a squarewave generator as in fig5.35b.

Square waves possess a series of odd harmonics decreasing at a rate of 1/n (6dB/octave)

against frequency. A plot of harmonic power against frequency is given for various

frequency multipliers in fig5.36c. The tripler appears to give greater harmonic power

than the SRD comb generator, but this is because the SRD comb generator power is

spread over a larger number of harmonics. The tripler is also feasible as a harmonic

generator, unlike the doubler where harmonic level falls approximately 12dB per octave.
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The advantage of Schottky diodes, is that the associated minority carrier recombination

effects are negligible. Also the output phase is dependent upon the input phase rather than

on a combination of input phase and amplitude as with reactive multipliers. Therefore AM

to PM conversion is much lower with this type of multiplier. With Schottky diodes, llf

noise generation is reported to be the lowest of any multiplication method [Wenzel, 1987].
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Fig 5.37 illustrates a phase noise plot obtained for Schottky diode multipliers by Wenzel.
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In addition to this, special Schottky diodes can be purchased which possess a very low

level of flicker noise. Since the real part of the impedance only is switched, parametric

upconversion and oscillation effects are less troublesome. On the other hand, efficient

simple high order multipliers may be best realised with SRDs, by virtue of their impulsive

nature.

I	 I	 I	 1	 1 

	

1
	

1
1Hz 10Hz 100Hz lkHz 10kHz 100kHz

Offset from carrier frequency

Fig 5.37	 Measured phase noise plot of shottky

diode multiplier at 10MHz from [Wenzel, 1987]

Care has to be taken, however with harmonic generators because of their EMI

implications. When fast switching devices are used, such as Schottky diodes and SRDs,

a broad spectrum of frequencies are generated, therefore these devices act as broadband

EMI emitters, and such radiation must be contained. Particular hazards are: use with

dividers which are broadband susceptors of EMI, and injection locking of oscillators.

Use of comb generators is best therefore restricted to a section of circuitry where low

phase noise is particularly critical, and the circuitry can be well isolated. An example of

such an approach is given in §4.8.4.

5.7.3.2	 Subharmonic mixers 

There is a very important development of the non-reactive multiplier which can enable low

phase noise synthesis to extend into the hundreds of GHz region. This is the

subharmonic mixer. A Schottky diode multiplier is actually incorporated into a mixer
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circuit, so the RF signal is mixed with a harmonic of the local oscillator signal (LO)

[Carson, Schneider & McMaster, 19781. The mixer diodes are arranged in anti parallel in

order that the complete mixer characteristic is traced out twice per cycle. Mixing is

therefore achieved at twice the harmonic drive frequency. Developments of this technique

are allowing the use of frequencies of four times and greater of the local oscillator

frequency. The same criteria apply to this form of mixer as to the Schottky multiplier in

terms of excess phase noise.

5.7.4	 Varactor multipliers

Varactor multipliers utilise the non-linear capacitance voltage relationship of the varactor

diode. This results in waveform distortion and the subsequent generation of harmonics.

The main non-linear generation is a second order process which means that harmonics

other than the second are produced at a very low level. Therefore idler circuits are

necessary to re-circulate the lower order harmonics and allow higher harmonic generation

by mixing due to the device non-linearity. For example the third harmonic is created by

multiplication of the second harmonic with the drive waveform. An idler resonance is

necessary consisting of a series resonance at the second harmonic, in order to allow

second harmonic current to flow through the diode. This idler can create additional

problems due to parametric upconversion and oscillation. Also the idlers increase the

number of adjustments and complicate the alignment procedure. For this reason, use of

varactor multipliers tends to be restricted to doublers or when high power output

multipliers are required. Work by McDade [1966] suggests that varactor multipliers may

introduce lower phase noise than SRD multipliers due to the absence of recombination

current.

5.7.5	 Non-coherent frequency multiplication 

All previous discussions are related to coherent multiplication, ie one reference source.

However if more than one source is combined then interesting results follow.

§5.1 mentions that on multiplying up to microwave frequencies, the crystal oscillator

phase noise is degraded by:-

20 log (ft)	 dB	 (5.47)

where fin is the input frequency and fon t is the output frequency. The sinewave crystal

reference source is raised to a power equivalent to the frequency multiplication ratio in

order to produce the output frequency. This can be demonstrated by considering

frequency doubling by squaring a signal (analogue multiplication by itself).
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Input frequencies to the analogue multiplier can be represented as:-

V1 = Asin (cot + a)
	

V2 = Asin (cot +13)	 (5.48)

where a and 13 are phase noise errors introduced by phase noise. Applying each source to

an analogue multiplier results in:-

A z
A sin (cot + a) A sin (cot +13) =

2
T k cos (a - 13) — cos (2(0 t + a + t3)	 (5.49)

If both inputs are from the same source (coherent multiplication) then 13= a and therefore

equation (5.49) becomes:-

1.
A sin2 (cot+a) = -2-kl - cos (2on + 2a)) (5.50)

Equation (5.50) suggests that the output frequency would be twice the input frequency
and have twice the phase error superimposed on it. This accounts for the 6dB rise in

phase noise in this case. If, however, the frequency multiplication is achieved from two
uncorrelated sources, then the two inputs will be independent, therefore the phase error
terms a and 13 in equation (5.49) would be uncorrelated. The combined effect of two

uncorrelated phase errors would be their root sum of squares:-

a + 13 = -4a2 4. 132	 (5.51)

Phase errors will now be increased by 3dB rather than the 6dB increase for the single

source case. Fig 5.38 illustrates a method of frequency multiplication based upon this

principle. A single source is fed to a 16 times frequency multiplier to obtain an output at

1.6 GHz in fig 5.38a. In fig 5.38b, however, 16 sources are combined to provide the

output frequency.
The sources are all phase locked together to a common reference with loops that have a
narrow loop bandwidth compared to the offset from the carrier frequencies likely to be of

importance in the application. This eliminates frequency errors from the system (apart

from the master reference). The phase degradation of the 16 source method will be 12dB
fo t(10 log t1 ) rather than 24 dB with conventional multiplication. Therefore an

improvement of 12dB can be made in the output phase noise performance. A problem

with this method is that the complication of 16 reference oscillators forbids this technique

for production equipment, but this may not be a problem for a reference local oscillator to

test the production equipment. If the test equipment oscillator is 12dB lower in phase

noise than the production equipment, then the error introduced will be approximately
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Coherent and incoherent forms of frequency multiplication

5.7.6	 Summary of multiplier phase noise 

Fig 5.39 gives plots of phase noise measured from different multiplier schemes given by

various publications. The noise plots are normalised to lOGHz for comparison.

By far the worst contribution is from the Gallium arsenide phase frequency detector. The

plot is taken from results published by Gavin & Hickling [1988] measured at a phase

comparison frequency of 10 MHz. Substantially better results are obtained from a 74F

series phase comparator measured by the author. The phase comparison frequency was

5 MHz. This is clearly surpassed by phase locked oscillators based on SRD harmonic

generators. Divide by N phase locked loops in general give poor phase noise performance

in comparison with other methods. The SRD . multiplier gives low phase noise if driven

from a high frequency. Schottky diodes appear to deliver the lowest phase noise figures

when driven from low frequency sources. Using non-coherent frequency multiplication

results in still further reduction of phase noise, but at a cost of vastly increased

complexity. Therefore this method is best reserved for phase noise measurement

equipment.
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Fig 5.39	 Phase noise of some comb gens,

multipliers and phase locked oscillators

The preceding discussions refer to static phase noise, ie that generated within the local

oscillator in perfectly still conditions. As much equipment will have to perform in high

vibration environments, it is necessary to consider phase noise effects under dynamic

conditions.

5.8. Dynamic phase noise (Vibration)

5.8.1	 Methods of reducing the effects of vibration 

Besides the consideration of static phase noise, the effect of vibration must be carefully

considered as many applications for data transmission equipment operate in high vibration

environments. Vibration tends to affect the phase noise of the synthesiser by changing the

physical parameters of resonators used in oscillators and filters. Therefore, in indirect

synthesisers, these effects are present in the reference oscillator and VCO's, and in direct

synthesisers in the reference oscillators and filters.

100MHz
HP 33004a Comb Gen
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Vibration in crystal oscillators is a vast subject in itself and as such is outside the scope of

this work.

The effects of vibration are considered in the author's 3rd paper [Wilson & Tozer 1989].

The crystal oscillator reference should ideally be mounted in a vibration proof

environment. The VCOs must be phase locked to the reference so that the loop gain is

high enough to suppress vibration for all disturbance frequencies likely to be encountered.

A second order or third order type 2 loop is normally used for phase locking in

synthesisers. Possible approaches to the problem of vibration include:-

1) Use of a wide bandwidth loop;

2) Use of a third order type three loop [Tausworthy & Crow, 1972].

In a second order or third order type 2 loop with 2 poles at the open loop origin, the loop

gain increases at 40dB per decade reduction in modulation frequency. If an extra pole

can be added near the origin, to form a third order type 3 loop, this will increase to 60dB

per decade. The result of this is a large increase in loop gain at low frequencies for an

equivalent loop bandwidth. For static phase noise, little advantage would be gained for

the extra complexity since the phase noise - frequency slope is rarely greater than f-4

(40 dB per decade). However if high level vibrations are present at low offset from

carrier frequencies, for example on a ship's deck, then the extra loop gain could be of

benefit.

5.8.2	 Loop gain compensation with third order type three PLL

In order to investigate this effect further, a computer simulation of a third order

Tausworth-Crow Loop was carried out to assess the feasibility of using the loop in the

presence of imperfect integrators (finite DC gains of op amps). The simulation described

in §5.5.5 was modified to include an extra integrator in the loop filter.

A block diagram of the phase locked loop simulated is shown in fig 5.40. The extra op

amp is simulated by the second current source and loop filter components C3, C4 and R2.

R3 and R4 are included to represent the finite loop gains of op amps.
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Fig 5.40	 PLL simulation, Third order type 3 loop

Fig 5.41 displays the results of the computer simulation of a third order type two loop and

fig 5.42 a third order type three loop written in order to predict the effects of vibration.

To simulate oscillator rnicrophonics, a 100Hz signal is used to modulate the oscillator

frequency. In figs 5.41 and 5.42 the fine trace represents the oscillator resonator

frequency deviation due to vibration, and the thick trace represents the phase deviation of

the oscillator when locked.

In order to obtain the third order type three loop plot of fig 5.42, a modification to the

above program is carried out to simulate the effect of adding an extra integrator stage to

form the third order type three loop. Extra loop gain at the lower frequencies results in a

lower level of spurious signals. Both loops had a phase detector reference frequency of

25 kHz.
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Simulated effect of vibration on a Third order type 2 loop

The output frequencies were 5MHz and the uncorrected deviation of the oscillator was

200 kHz peak. An open loop Bode plot of such a loop indicates there is a point at low

frequencies where the forward loop gain phase shift becomes greater than 180°. This

means that the loop gain has a lower limit for stability besides the upper limit. Loop gain

must be carefully controlled therefore. Limited benefit would be gained, however, if the

synthesiser channel spacing were close, since this limits loop bandwidth. Its possible

main application is in retro-fitting to synthesisers that have vibration problems since few

additional components are required (1 op amp stage).
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Fig 5.42	 Simulated effect of vibration on a Third order type 3 loop

If close channel spacings are required, then it is inevitable that the required loop

bandwidth will be greater than the channel spacing, and this involves the following

options:-

1) Multiple loop synthesiser

2) Direct digital synthesiser

3) Fractional phase locked loop.

5.9 Conclusions

This chapter has addressed a number of key issues concerning the sources of noise within

synthesisers.
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Spurious signal problems have to be treated differently according to whether the

synthesiser is a simple multiplier, or whether it is a fractional or combinational

synthesiser. With a fractional or combinational synthesis scheme, spurious signals, once

introduced are too close to the carrier to be easily removed.

It was suggested that the addition of limiters and digital dividers may act as broadband

interference susceptors where broadband noise and spurious signals are folded down to

around the carrier. Extra care needs to be taken whenever these devices are used to ensure

they are not exposed to such broadband signals. Here we also show that phase noise

power density introduced by digital devices is proportional to the toggling frequency.

There are many types of phase detectors which can be used in frequency synthesisers.

The phase frequency detector is commonly used in PLLs because of its self acquisition

properties. Linearity is a problem with this type of detector, and methods of overcoming

this problem were discussed including layout and IC utilisation.

High phase noise is a problem with the phase frequency detector, but it has been shown

that this can be reduced by adopting the two phase detector approach. In addition, the use

of a microwave sampling detector enabled the linearity problem to be overcome, and is

capable of operating at a higher microwave frequency than a variable modulus prescaler.

A modification to the commonly used phase frequency detector has been suggested that

would increase switching speeds and allow the use of higher loop bandwidths.

In the PLL transfer loop, as commonly used in multiple loop synthesisers, an ambiguity

can occur if the oscillators to be locked together are close together in frequency. An image

rejecting phase detector has been developed which rapidly rejects the ambiguous

frequency locking condition. This configuration has been used to enable rapid locking in

multiple loop synthesiser configurations.

Although phase locked loop synthesisers had a reputation of being slow, methods of

speeding the locking and raising the loop bandwidth have been presented. There is a

minimum settling time which can be obtained by selection of optimal loop filter component

values. However, care must be taken as there is only a 3dB loop gain stability margin at

the minimum settling time point. Commercial phase locked loop simulation programs for

PLL synthesisers demonstrated shortcomings, therefore a phase locked loop simulation

program was written by the author to enable study of locking times and the problem of

injection locking. Simulation showed that phase and frequency locking can generally be

achieved in a few reference periods with a phase frequency detector.
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Simulation of PLLs was extended to include injection locking. The model of injection

locking used was a simplified one but it demonstrated the effect of injection locking upon

stability. Injection locking introduced a minimum loop gain for stability and reduced the

maximum loop gain for stability. Reduced stability margins are a direct consequence of

injection locking therefore. The spurious sensitivity of free running VCO's increases by

6 dB for each octave reduction in offset frequency below the loaded resonator half

bandwidth. Extreme care must therefore be taken in the screening of low Q oscillators.

The issue of phase noise in frequency multipliers and dividers has been addressed and it

emerged that a scarcity of available literature existed on the subject. It was discovered that

analogue type multipliers could offer a much lower phase noise alternative to PLLs which

use dividers. GaAs phase frequency comparators gave very poor phase noise especially

close to carrier. Measurements were undertaken of phase noise in divide by N PLLs that

use digital dividers.

The third order type three phase detector was shown to be advantageous in some cases for

the suppression of dynamic phase noise arising from vibration. It was shown that it may

be possible to retro-fit an existing synthesiser with an extra amplifier to give a third order

type 3 response. Care must be taken to ensure that loop gain is kept within bounds for

this type of loop. Benefits from such a modification are limited if the phase comparison

frequency is low, and in this case an alternative synthesiser design must be considered.

Frequency multiplication is a critical part of microwave frequency synthesis. This chapter

outlines various component design considerations necessary for good phase noise

performance.

5.10 Further work

An investigation would be required of currently available synthesiser and phase detector

integrated circuits that claim to have overcome the linearity problem. They should be

evaluated for phase noise levels and reference spurious breakthrough. Samples of the

latest generation of submicron CMOS logic need to be evaluated alongside other types of

logic for phase noise levels. The subject of phase noise generated by digital logic in

general requires more work, to determine whether present divider and phase detector

technology could be improved. One suggestion would be the provision of special

resynchronisation circuits driven from the device clock input that are optimised for low

phase noise. This chapter covered the problem of frequency independent phase noise in
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divider and phase detector circuits. However benefits could be gained from investigating

the effects of 1/f noise in dividers and limiters.

Many different configurations of analogue mixer are possible. Measurements would be

required to ascertain their high order spurious performance. In particular, the spurious

performance of passive mixers could be compared with that of active mixers.

The two phase detector approach requires more refinement to obtain a fast switch over

between the phase detectors.

Injection modeling involved extensive simplifications and consequently, the results

obtained were only valid when the PLL was within its linear region. Improvements are

therefore required to the injection locking model to include non linear effects in the

simulation.
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6 Effect of phase noise upon

system performance

6.1	 Introduction

This chapter examines the effect of synthesised local oscillator phase noise upon practical

systems. Satellite data communications systems are analysed in terms of phase noise, data

rate and modulation schemes, culminating in the development of the concept of a link

budget for phase noise. Chapter 9 continues this by calculating the phase noise link

budget for various local oscillator and system configurations. The emphasis here is upon

coherent modulation schemes, in particular BPSK and QPSK.

Local oscillator performance is a vital factor in digital communications systems especially

as frequencies of over 30GHz are increasingly being used. Any loss in sensitivity of the

receiver, even of fractions of a dB, must be made up by increasing the power of the

satellite transponder, or the size of antennas, both of which are expensive measures.

Although modulation and coding schemes result in coding gains which reduce receiver

demands on link budgets, such gains could be compromised if due consideration is not

given to local oscillator design. This applies not only to the receiver, but throughout the

link. Therefore it is necessary to assess the likely effect of the parameters of synthesised

local oscillator upon bit error rate (BER) performance. The local oscillators that must be

considered are all the local oscillators in the system, and this is undertaken by analysis of

the effect on the demodulator of oscillator phase noise.

As an example, although the local oscillators used in domestic TVRO downconverters are

very inexpensive owing to mass production, their use in some data links may have such

an adverse effect upon the link budget that the system is unworkable. Even if the link

performance is viable, the margins to other forms of interference may be impaired. TYRO

downconverters however tend to employ a free running dielectric resonator oscillator
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(DRO), possessing poor close to carrier phase noise that will excessively degrade

demodulator performance. A plot of the phase noise sidebands of a typical DRO in

comparison with multiplied crystal oscillators is displayed in fig 6.1. It will be shown

later that such hardware can be quite unsuitable for use in data communications at low bit

rates, and with correspondingly low C/No.

Fig 6.1	 Comparison of multiplied crystal

oscillator phase noise, and free running DRO phase noise

Analysis is undertaken for a variety of synthesised local oscillator configurations in order

to determine the optimum combination for a particular application. In addition to the

analysis, the performance of a trial modem and satellite link built for link budget analysis

will be considered.
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6.2 Analysis of Coherent Phase Shift Keying

6.2.1	 In the presence of a perfect recovered carrier

Analysis of the performance of a data demodulator in the presence of thermal and phase

noise can be very involved, especially when coding techniques are employed. Therefore,

the case of straightforward binary phase shift keying (BPSK) will be initially considered.

A perfect recovered carrier is assumed in the first instance, and this situation is well

covered in the literature [Betts, 1983]. Calculations are performed in terms of the energy

per bit to noise-density ratio, Eb/No. Eb is the signal power divided by the bit rate and has

units of watts/Hz. (In coded systems it is important to distinguish between the

information energy per bit Ei and system link energy per bit Es: the former is derived

using the bit rate at system I/0 (input output) whereas the latter is derived from the bit rate

over the link. The ratio of the two depends upon the symbol or coding rate). As

described in chapter 3 of this thesis, a bit error occurs when the noise perturbation causes

the decision threshold to be crossed to give an output error. Fig 6.2 shows the effect of

noise causing the decision thresholds to be crossed for a quadrature phase shift keyed

(QPSK) signal.

In the presence of additive thermal noise, the noise spreads the actual constellation points

around the ideal constellation points (Fig 6.2 a) in a circular fashion. The probability of

crossing the threshold gives the error rate Peo, assuming matched filtering, as [Bhargava,

1981a]:-

Peo = (erfcAk:d 	 (6.1)
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Fig 6.2	 Effect of noise on signal constellations

The curve displayed in the extreme left of fig 6.3 shows the case with no carrier jitter, and

assumes that perfect carrier recovery takes place. However, in a practical demodulator,

the following will occur:-

1) Static phase error, 4)., due to phase shifts in filters, amplifiers and offsets in

phase detectors;

2) Residual thermal noise on the recovered carrier, 4;

3) Local oscillator phase noise on recovered carrier, Op.

As can be seen for the curves displayed in figs 6.3 and 6.4, any coding gain is rapidly lost

if carrier recovery loop (CRL) phase errors are present. It is therefore necessary to look at

the performance of a CRL in some detail.
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Fig 6.3	 BER-Eb/No plot for uncoded BPSK in

the presence of an imperfect recovered carrier

These curves are produced from a computer program written by the author, which

performs calculations of equation 6.7 in §6.2.3. This program is incorporated into the

phase noise analysis program discussed in chapter 9.
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The effect of a fixed carrier offset is an effective reduction in the Eb/No at the

demodulator. The carrier offset at the demodulator is represented by 0. The demodulated

waveform is:-

-11:7sin 0 d(t)	 (6.2)

where d(t) is the modulation that can have values of ±1. In the case of a fixed recovered
.

carrier offset, 00 the recovered signal effective m becomes:-
- • oeff
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(6.5)

(6.6)

(6.7)

Eb _ Eb.2Noeff —	 sin 0

It is desirable, therefore, to minimise the offset in order to maximise Eb,/Noe ff• A major

source of the static phase offset is the phase shift through the pre-squarer filter.

6.2.3	 The effect of a time variant carrier phase offset

In the analysis performed by Holmes [1982a] the phase noise is considered to be a time
variant offset. This results in a mean offset of 00 with a phase noise offset of 0(t) added,

so that:-

e(t) = +	 (6.4)

where e(t) is the instantaneous phase offset.

In order to calculate the bit error rate of the system with phase noise, it is necessary to
evaluate the following over all possible values of phase error:-

1	 E
Pe = –erfc 

qb cos2 e2	 NT,

Or alternatively:-

Pe = .% 1 2Eb
COS2E

Ni no

The average bit error rate can be found from the integral:-

BER = fre(4)) P(0).d0

where P(0) is the probability density function of the phase error [Bhargava, 1981b].

From the above this integral becomes:-

x

,vEbBER = f–erfc — co s 2(00 + ( t)) P0).d4)2	 no

There is a possible source of error here in that for finite 0 0 there is a small probability of

0 0 + OW exceeding ±r, whereupon the BER will erroneously appear to fall again.

However this effect should not contribute to erroneous results for usable values of phase

noise. The analysis presented here assumes that the phase noise is close to carrier

[Holmes, J.K.1982b1 and does not significantly change over one data bit period.

(6.3)

(6.8)
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However some synthesisers can have significant phase noise at the data rate. In this case
the noise offset should be averaged over one cycle so that the expression (6.8) becomes:-

Pe = erfc
	 (6.9)

where cos2 e is the mean value of COS2 E over one symbol period.

6 2 - 4	 Probability density function of phase offset due to phase

111211S

In order to evaluate the above integral (equation 6.7), it is necessary to provide results for
P(4)), the probability density of there being a phase offset of 4) due to phase noise. Viterbi

[1963] analyses the tracking performance of a second order carrier recovery loop in the
presence of phase noise by application of Fokker Planck techniques. These techniques are
devised to allow prediction of system behaviour when the input is randomly variable.

They are therefore suitable for phase locked loop analysis when the signal to noise ratio is

too small for linear analysis. By application of the Fokker plank techniques the

probability density function can be shown to be:-

exp(a' cos 4))
P(4)) –

2x1,3(ce)

where a is the signal to noise ratio in the loop bandwidth given by:-

A2
a =

noBL

(6.10)

(6.11)

and Alno is the signal to noise density ratio and BL is the loop bandwidth. Equation

(6.10) is the Tikhonov probability distribution and is the Gaussian distribution modified

for angular systems. For a second order loop [Gardner, 1979a]:-

00

61111(s)12.df = (un (C-1-1)
4C

For a reasonably large a (say >5) then a can be approximated as:-

1a = —a 2
4)

Where a 2 is the phase error variance.

(6.12)

(6.13)
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One problem is that the Fokker plank techniques were devised to produce results for a

system whereby the noise process driving the system is large compared to system

bandwidth, such as with additive thermal noise. However in the case of local oscillator

phase noise, the noise process occurs within the loop (Fig 6.5). The above analyses may

therefore not be strictly applicable [Prabhu, 1976], but this approach will be adopted here

as a reasonable approximation. The above distribution is approximately Gaussian for

large a (for a say > 20). For most cases of usable phase noise, the Gaussian distribution

can be applied for both thermal and phase noise.

	

2	 2	 2

	

Tet...1 phase jilter o'r=	 vP DEMODULATOR

The complete integral to be applied becomes:-

X

BER = fierfc	 cos2 (00-1-0(t)) 
exp(cr2 cos 49.02	 no	 2nI0(0-2)

(6.14)
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6.3. Carrier Recovery

There are three factors to be considered giving rise to phase errors. These are as

discussed below.

6.3.1.1	 Static Phase Errors 

It is the nature of CRLs that some form of static phase error is difficult to avoid. Fig 6.6

displays a schematic of a typical CRL. The principal source of static phase errors is

uncertain differential phase shifts in the paths between data recovery and carrier

regeneration usually due to filtering. The use of digital techniques could assist in reducing

this by the implementation of more stable filters. The use of second order loops would

remove the offset frequency dependence of the phase error at the phase detector, leaving a

residual constant phase shift.

E(s) for phase noise jitter
II(s) for thermal noise jitter DEMODULATOR

IF input

Fig 6.6
	

Block diagram of carrier recovery loop
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6.3.1.2 Dynamic Phase Errors 

As stated earlier in this report, the phase jitter at the demodulator results from thermal

noise and local oscillator phase noise. The total local oscillator phase noise to be

considered is the root sum of squares contribution of each local oscillator in the link,

including both transmitter, satellite transponder and receiver downconverters (and, to a

lesser extent, the local carrier recovery oscillator). A computer generated plot of the BER

against Edno using equation (6.14) is given in fig6.3 of §6.2.1 with the carrier recovery

phase jitter as a parameter.

6.3.1.3	 Thermal Noise

In coherent demodulation, the carrier component is normally absent from the signal and

has to be regenerated by a non-linear operation. In a power CRL, the signal is raised to a

power equal to the number of phase states in the data signal, and the phase shifts in the

signal are multiplied by the power to which the signal is raised. The signal at point A in

fig 6.6 consists of a carrier and broadband noise; since the carrier occupies a very narrow

spectral width, a very narrow filter must be used to isolate the carrier from the noise. The

CRL provides a filtering function by means of a narrow band phase locked loop (PLL).

An alternative implementation is the Costas Loop, whose performance is essentially

equivalent to the power CRL [Holmes, 1982c].

6.3.2	 Thermal noise and the CRL multiplier

A rigourous analysis of the effect of the multiplier in a CRL is extremely complicated

owing to the presence of noise, modulation and carrier in the calculation. The usual

method of analysis is the convolution of the signal and noise with itself. Oberst and

Schilling [1971] obtain their results using an unmodulated carrier as the input. They make

no mention of the frequency distribution of the noise around the recovered carrier, but

they do consider the effect of different pre-squarer filters. Davenport and Root [1987] use

the same method but obtain the spectral distribution at the output for the case of a

rectangular input frequency distribution. Holmes [1982d] and Gardner [1979b] also use a

rectangular input frequency distribution but take account of modulation in their analysis.

A plot of calculated output signal to noise ratios against input signal to noise ratios is given

in fig 6.7 [Oberst & Schilling, 1971] for different carrier recovery powers.

One fact that emerges in all the analyses is that in high signal to noise ratios there is a

degradation of 20log(n) dB in signal to noise ratio (SNR) at the output of the multiplier,

where n is the power to which the signal is raised. At low SNRs, there is an additional

loss known as the squaring loss. In many communications systems, such as those using
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coding, or direct sequence spread spectrum, the SNR at the squaring loop can be negative,

so consideration of the squaring loss becomes vital.

Fig 6.7	 Signal to noise ratio after raising

signal to a power N [Oberst & Schilling, 19711

Using the Oberst and Schilling method, the relationship between the SNR at the output of
the squarer (snro) and that at the input to the squarer (snri) is given by:-

1 raysnr.,2
2 BL

snro — F(2) + 2(snr1)
(6.15)

where B is the bandwidth of the presquarer filter and BL is the equivalent noise

bandwidth of the CRL. F(n) is a factor derived from the convolution of the input

spectrum with itself n times (2 for a squaring loop). In order to work with noise density

ratios, the following substitutions are made:-
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NoBpC = 1,,,
No  2" F(2)+2N.Bp

(6.17)

snr0=C/NoBL, snri = S/N0Bp	
(6.16)

where C is the recovered carrier power and S is the signal power at the input. At low

signal to noise ratio, the squaring loss portion of the input-output noise curve can be
extended to the output signal to noise axis to give a 0 dB intercept point. This intercept

point is therefore a useful figure of merit in order to determine the efficiency of the

squarer.

Substituting 6.21 into 6.20 gives:-

Inverting this to obtain the noise density to carrier power gives:-

No . 4(1F,2 N,,,Bp + ipo
5—	S

(6.18)

If IF(2) 1%--1-7f1 4x 1, the result is independent of the Presquarer filter and the output signal to

noise ratio is 4 times that at the input, equivalent to a 6dB rise in noise. The factor

1	 NoBp .

—F(2)-- is known as the "squaring loss". When it becomes greater than unity, the2	 S
output noise increases by 12dB for every 6dB increase in input noise. This is displayed
in fig 6.7 which is Oberst and Schilling's plot for a Gaussian presquarer filter. The factor

F(2) is dependent upon presquarer filter response and is:-

F(2) = 42 for a Gaussian response

and	 F(2) =2 for a single pole filter.

For the case of a Gaussian filter the noise sidebands are:-

No _ 4( 1 NoBp + 1 lo
c	 4-2- s l

(6.19)

It appears that the output noise spectral shape depends upon the shape of the presquarer

filter. According to Davenport the use of a rectangular presquarer filter results in a

triangular distribution due to squaring loss. Figs 6.8 and 6.9 illustrate squarer

performance as depicted by Davenport. Fig 6.8 shows the effect of the squarer on a
Gaussian noise input only. The spectral distribution forms a triangular shape at twice the
input frequency, the apex of the triangle being at the center of the input noise band and the

base stretches over twice the input band.
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The peak of this apex is at a power density proportional to the square of input power and

input power bandwidth. On application of input signal, the signal x noise products and

noise x noise products are additive, so in addition to the triangle distribution as in fig6.8

there is a rectangular distribution of width equal to the input bandpass filter.

The rectangular distribution is due to signal x noise products. The corresponding equation

of noise sideband density for a rectangular pre-squarer filter is:-

Lia _ 4(2in,,,

S 

pi ÷ ik
, - 

Note that the point at which the slope of the signal/noise curve changes from (1 dB to

1 dB) to (2dB to 1 dB) is 4.5dB higher for a rectangular filter than for a Gaussian, so it

is expected that superior performance should be obtainable from a Gaussian input filter.

6.3.3	 Measured Results from a Carrier recovery loop sauarer

As part of prototyping programme of a 20.48 kbaud BPSK modem, the performance

measurements of which will be covered in §9.10, a squarer was built and its performance

evaluated against the theory. The squarer function is provided by a Schottky diode full

wave rectifier which has approximately square law characteristics [Stroud, 1984]. A

surface acoustic wave filter with Gaussian characteristics and a noise bandwidth of

300 kHz was used as a presquarer filter. Such devices are inexpensive and readily

available commercially for use as FM stereo IF filters in broadcast receivers. Fig6.10

shows a circuit diagram of the squarer implementation for the BPSK modem.

(6.20)

Schottky Diode Frequency Doubler

As used to recover carrier in the experimental BM system

1.2 and C form a resonant circuit at the output frequency

Fig 6.10	 Schottky diode frequency multiplier

An intercept point of +40dBm was required of the input amplifier in order to avoid

degradation of the input signal with negative signal to noise ratios. By using a specially

calibrated spectrum analyser against a known filter response, the input signal to noise ratio

was measured. Recovered carrier sideband noise to carrier power ratio is shown against

input noise to signal power in fig 6.11.
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On this curve is shown the zero squaring loss line and a straight line fit is placed against

the curve in the squaring loss region. A plot of the recovered carrier and its noise

sidebands is shown in fig 6.12. A plot is obtained for each of the two different input

signal to noise ratios; the upper plot represents the spectrum for a -49 dBc/Hz noise

density to signal ratio which would incur considerable squaring loss. It can be noticed

that the spectral density profile is approximately flat around the carrier which contradicts

Davenport's expectation of a triangular noise profile. However, there is spectral

broadening at the edges of the presquarer bandpass filter response which is in agreement

with Davenport's theory. This curved profile around the carrier could explain the superior

performance of the Gaussian filter against the rectangular filter as used by Davenport

which results in the recovered carrier being at the apex of the triangular noise profile. The

intersection of the above plotted squaring loss line in fig 6.11 with the zero loss line gives

a measure of squarer performance. Such an intersection is represented by a squaring loss

factor of unity in equations (6.22) and (6.23). The intersection point is at an input signal

to noise ratio of -2.0dB and can be compared with -1.5 dB as predicted by Schilling's

analysis. Davenport's analysis gives an intercept point of +3 dB which would result in

higher recovered carrier jitter. This intercept point is therefore a useful figure of merit in

order to determine the efficiency of the squarer.
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Fig 6.12 Spectrum analyser plots of the recovered carrier at the squarer output

6.3.4	 Calculation of Recovered Carrier .Titter

It is necessary to determine the jitter on the recovered carrier due to the additive thermal

noise, as well as that on the signal itself. Both of these are applied to the multiplier

forming the signal demodulator, and the degree of decorrelation of the two must be

determined. As described by Prabhu [1976], the CRL is usually a second order loop and

performs the following functions:-

1) Re_inserts the carrier into the signal, in order that it can be demodulated;

2) Reduces the effect of broadband additive noise on the recovered carrier by

means of the out of band rejection of the unwanted noise.

The thermal noise will appear as phase noise sidebands around the recovered carrier. This

is due to the reduced sensitivity of the CRL phase detector to the amplitude component of

the noise [Viterbi, 1966a] when the signal to noise ratio in the PLL bandwidth is good.

Inside the loop bandwidth of the PLL, the value of the phase noise sidebands on the
recovered carrier will be L(0), where:-
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1 ( 1 NoBp
at — 2 1/2 S +

00

(121H(s)12.df
(6.23)

Lcd(0) = sT-b'

and hence:-

fill 1 ( 1 NoBp 1)11/Q
Lcrlui — .0, S 4-2	 s

(6.21)

(6.22)

The recovered carrier is at twice signal frequency, therefore the phase deviation must be

divided by two to normalise it with respect to the carrier. The noise power must therefore
be divided by four. A further factor of two can be included to account for the fact that the
additive noise on the recovered carrier is converted to phase noise. (This is only valid for

good PLL SNRs.) This brings the total division ratio to 8. The sideband level is
modified by the closed loop transfer function of the CRL (H(s), 1). From modulation

theory [Robins, 19824 the jitter can be determined as ar where:-

The result of the integral operation is determined by the CRL characteristics, viz: the loop
natural frequency con and loop damping factor C. The most commonly used value of

damping factor is 1.3 [Blanchard, A., 19764 [Robins, 1982b], as this gives the

optimum resistance to CRL cycle slipping.

For a CRL damping factor of 1.3 it can be shown that:-

f2IH(s)1 2.df = 3(2°11
0

(6.24)

Assuming a second order PLL, the integral in equation (6.24) is equal to the equivalent

noise bandwidth of the phase locked loop bandwidth, BL, which is also given by:-

(On	 1
BL = ( + -

4C
)

where C is the loop damping factor.

For the particular case of C which is usually chosen of 1.3:-

Ron
BL = 4 Hz

(6.25)

(6.26)

and inserting this in equations (6.23) and (6.25) gives:-
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(6.27)

The natural loop frequency of the CRL is therefore a function of the additive sourced
phase jitter.

6.3.5	 Other Coherent PSK Schemes

A QPSK signal can be considered as two orthogonal BPSK signals on the same channel.

The same error rate analysis that is applied to BPSK signals can also be applied to QPSIC,

but account must be taken of interference between the two signals for a non zero phase
reference. It can be shown that the error rate for QPSK is given by:

-	

-

Th, 1(42Eb(cosE + sinE)2 
+ Q

,\,/ 2Eb(cosE - sinE)2 )
1-e 2	 No	 No

where Q(x) is the Marcum Q function.

(6.28)

There is a 50% probability of the quadrature signal having the same level as the in phase
signal. In this case the resultant Eb/No is the sum of the component Eb/N0 values from the

in phase and quadrature signals. The first part of equation (6.28) relates therefore to I and
Q data being equal. On the other hand if the data values are in opposition, the quadrature

component must be subtracted, thus giving the second part to equation (6.28).

This must be substituted into the expression (6.7) above to obtain a BER result. The
value of the Q function is exactly defined as:-

CO

1	 -u2
P(0) _-Sexp—du

11
-2- 7,c	 2

x
(6.29)

However, in order to aid numerical evaluation, a form of Mills expansion is used as

published by Zelen & Severo [Abramowitz & Stegun, 1964], which gives a residual

error:-
8 < 7.5x10-8.

The Mills expansion is as follows:-

-xexp-2-
Q(x) - —

42n 
(bit + b2t2 + b3t3 +1344 + b5t5) + 8 (6.30)

where:-
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1 t - (l+px)
(6.31)

1 111 0

1 0 11

0
I
/2 11/2 1/2 1 /2 11 /2 0 1/2 11/211/2 It 	 0

a 1. 01 0

1111 00

Time

1

and:-

p=.2316419

b1 =.3193811530
b2 = -.356563782

b3 =.1.781477937
b4 = -1.821255978
b5= 1.330274429

For offset QPSIC, as can be seen in fig 6.13, a data transition point in one signal occurs at

the midpoint of the other signal. If a data change occurs at the transition the interference

component from the first half of the second signal is cancelled by the component from the

second half. In this case the BER is identical to that of BPSK. If no transition occurs
then the error rate is identical to that of QPSK. The probability of either of these cases

occurring is one half.

112

Constellation
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In QP3B, Data Transitions in both channels are coincident in time.

In offset QPSK, Data transitions in one channel occur at the midpoint
between data transitions in the other channel. There cannot therefore
be 180 0 transitions in phase when simultaneous :channel transitions occur

Fig 6.13	 Offset QPSK modulation

Therefore the BER for an offset QPSK signal is:-

•	 218



4

cc 2 30--5 (1NoBP 4_
-t - 4 L4 S ik	 (6.33)

POQPSK = 1PQPSK + 1PBPSK	 (6.32)

Computer plots have been produced during work for this thesis to show the degradation

of BER for various modulation and coding schemes. The results can be compared with

published work [Holmes, 1982e],[Heller & Jacobs, 1971]. Fig 6.14. displays these

without coding for offset QPSK. The value of jitter used is the RSS (root sum of

squares) jitter in degrees, allowing for the response of the CRL.

Fig 6.14	 Plots of BER against Et/No for different

values of recovered carrier jitter, uncoded QPSK

In a QPSK system a frequency quadrupler must be used to recover the carrier and the

cone sponding jitter value for a quadrupler can be shown to be approximately:-

Throughout this thesis, half-rate Viterbi convolutional encoding, constraint length 7, with

Viterbi decoding, will be considered. (Hereinafter referred to simply as Titerbii.)
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6.3.6	 Bit Error Rates for Coded Data

In order to operate at lower signal to noise ratios, some form of Forward Error Correction

coding (FEC) is often used. For satellite channels in the presence of Gaussian noise,

convolutional encoding with Viterbi decoding is often chosen. The bit error rates for

coded channels cannot be accurately analytically defined, so they have to be found by

simulation results and a polynomial fit found to the BER vs E,/N 0 curve [Heller &

Jacobs, 1971]. This polynomial must be used to replace the standard error rate expression

(or its equivalent for QPSK), viz:-

Pe=Peo (Eb/No co52(00 + (1:(t))	 (6.34)

where 00 is the static phase offset and 4)(t) is the offset due to phase noise. The result of

this operation has been published in the literature [Heller & Jacobs, 1971]. In order to

generate the above polynomial, the author applied a polynomial fit to published

performance data on a commercially available Viterbi device [Sorep, 1989]. Computer

generated curves have been produced, and shown to agree with the published literature.

Fig 6.15 displays BER curves with offset QPSK as above, using convolutional coding

and Viterbi half-rate, constraint length seven, with soft decision 4 level decoding.

Fig 6.15	 Plots of BER against Et/Nc, for different

values of recovered carrier jitter, coded QPSK
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f = 0

(6.34a)

One striking feature of these curves is the steepness of the BER curve when Viterbi

decoding is employed with half-rate seven segment convolutional encoding.

When coding is used, the data rate over the link, bL, is related to the information rate bi

by:- bL, = bi/m, where m is the coding rate (m < 1). For phase noise calculations bLiS

used for the data-rate, whereas the information rate bi may be plotted as the independent

variable in phase noise degradation plots. Fig 6.15 gives the BER curves for a coded

QPSK signal.

6.3.7	 Discrete spurious signals

In practice, a synthesiser system will not only contain random phase noise sidebands, but

also discrete sidebands. These sidebands, commonly referred to as spurious signals will

have different effects on the BER calculation to Gaussian distributed random noise. At the

CRL, the resultant effective spurious contribution would be the root sum of squares

(RSS) of all individual spurious signals modified by the error function of the carrier

recovery loop:-

where aps2 is the phase jitter variance due to discrete spurious signals, and PA is the

power of each individual spurious signal at an offset from carrier frequency f.  The

distribution of crps2 can be assumed to be uniform rather than Gaussian. Therefore this

variance can be added to the static phase offset in equation 6.8 to give:-

BER = fierfc •NI Eb COS2(0o+Cr +4)(0) P(4)).d4)N;	 Ps

—7C

(6.34b)

Therefore when attempting a BER analysis of a system, the phase error contribution of the

spurious signals must be calculated before the random phase noise effects are calculated.

6.3.8	 Acquisition time

If the above system was adapted to a spread spectrum application and the local oscillator

was required to tune over 2MHz in order to acquire the signal, then the expected

acquisition time could be of interest.

The maximum sweep rate is determined by [Viterbi, 1963b]:-
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Assuming a loop bandwidth of 18.63Hz the maximum sweep rate would be 2.18 kHz

per second. In order to guarentee reliable locking, it would be necessary to sweep less

than this, say 1.3IcHz per second, whereupon a sweep time of 26 minutes would be

required. This would be totally unacceptable for most applications. A method of

speeding acquisition would therefore be required. One possible approach would be the

use of an FFT based search algorithm together with a direct digital synthesiser

implemented as in chapter 8 used to provide a search oscillator.

6.4 Phase Noise Jitter

6.4.1	 Introductim

So far only the additive thermal noise contributions to the carrier recovery jitter have been

considered. However, the phase noise of every local oscillator in the link also contributes

to this jitter figure.

6.4.2	 Phase Noise Link Budget

The system designer has traditionally calculated a thermal noise link budget in order to

arrive at the most economical means of providing a given BER [Feher, K, 19811. This

involves considering propagation loss, dish size, satellite EIRP, and front-end noise

figure in order to arrive at a suitable E1)/No. Another link budget calculation may thus be

required which considers the cumulative effect of all the local oscillators in the link.

This process could well be iterative with the first process based solely upon additive

thermal noise, leading eventually to a final value of Eb/No. The BER degradation may be

determined by the above equation (6.7) (or plots such as fig 7.4) for a given total phase

jitter variance Gr 2. This jitter variance is the sum of all the jitter variances in the system,

ie:-

n

CrT2 = at2 + a1,2 and CYp2 =a2

	
(6.35)

i = 1

The total phase jitter at the demodulator crT2 is the sum of contributions from additive

thermal noise 012 and the total local oscillator phase noise a1,2. The total local oscillator

phase noise is in turn the root sum of the squares of contributions of each local oscillator

in the link, where n is the total number of local oscillators.
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6.4.3	 Phase Noise to Jitter Conversion

Equation (6.7) requires the phase noise to be expressed as a variance in radians squared,

but oscillator phase noise is conventionally expressed as a phase noise power density ratio

as a function of offset from carrier frequency. If synthesised local oscillators are used

then the phase noise distribution can vary according to the synthesiser architecture, and is

not necessarily the f-3 relationship quoted in many authors' analyses of the problem

[Surinder,K 1988]. In order to convert the phase noise sidebands to carrier recovery

jitter, the response of the CRL to the noise sidebands must be considered. The CRL

responds to local oscillator phase noise as if the noise originates within the loop, rather

than external to it as with the additive noise. The reason for this is because, as shown in

in fig 6.6, the same phase noise is present in both the data and carrier recovery arms of the

demodulator. The CRL can respond to the phase noise and closes the loop around it by

means of the local oscillator that it controls. Any phase noise which appears at the

demodulator does so as a result of the error function of the CRL, where:-

H(s)cri = 1 - E(s) 1 	(6.36)

The phase jitter contribution of each local oscillator can be found by integrating the phase

jitter components of the sidebands over all offset frequencies up to the data rate:-

fd
a 2 = 2 JL(f.)21E(s)12.df„,px	 (6.37)

The integration from zero offset from carrier is defined in this case because the f-3

relationship close to carrier of the oscillator is balanced by the 0 relationship of the PLL

error function. The magnitude of the error function for a second order loop is [Blanchard,

1976b]:-
co4

(on 4
I E(s)12. 	

'	 (42-2)(02 (04
1+	 ej	 + A

(on 	 (on,

(6.38)

where con is the loop natural frequency in radians/sec, and is the synthesiser damping

factor.

In order to evaluate the RMS jitter it is necessary to integrate the phase noise over a

frequency range up to the data rate. There are two possible approaches to this:-

1)	 Integrate for measured and plotted values of phase noise for the local
oscillator,
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2)	 Perform a phase noise analysis of the synthesiser and then integrate the E(s)

curve.

Procedure 1 is normally taken if either of the following are used:-

a) An oscillator of known power law for the phase noise sidebands; or,

b) A local oscillator where the internal structure is either not known, or not of

interest and only measurements are required.

An example of Procedure 1 is when dealing with a satellite transponder, or when

determining specification levels. Procedure 2 is used when dealing with the design of data

terminal synthesisers whereby the influence of the synthesiser architecture upon terminal
performance can be evaluated. A computer program has been written for each case, as

part of the work for this thesis, to perform the above calculations, and will be further

described in chapter 9.

6.4.4	 Phase Jitter to BER Conversion 

The bit error rate can be determined as:-

n

BER = SPe(4)) P(4)).d4) 	 (6.39)
—it

where Pe(0) is the probability of an error conditioned on 4), and P(4)) is the probability of

finding a given phase offset 4), where, for a second order carrier recovery

4)) —	

loop:-

P(4))
	 cos 4))

2nL3(c)-2)

(I. is the modified Bessel function of zero order).

6.5 Phase "Hits"

Phase "hits" are a sudden discontinuity in the phase of the output of a local oscillator. The

causes include:-

1) Temperature effects in local oscillator resonators [Ondria, &Singleton, 1988].

2) Bifurcation points in frequency multipliers and PLOs [Wilson, M.P. &

Tozer, T.C, 1991]. Multiplier bifurcation points are investigated in detail in

chapter 7.

(6.40)
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3)	 Resonator "burst noise". Evidence of resonator burst noise has been

discussed in §3.3.5.6.

Phase "hits" are a problem because the "hit" becomes misrepresented as data. Due to the

high speed nature of this transient, this becomes more of a problem with high speed data

and more data is lost in this case. Phase "hits" can be measured in a similar manner to the

2-port phase noise test circuit of §3.3.5.4. The output is differentiated and then fed to a

threshold detector. Transitions above a certain threshold are subsequently counted.

Hwan & Brown [1988] suggested another method suitable for PLOs. The tuning voltage

fed to the oscillator varactor is monitored for sudden changes. A window comparator then

enable s any such "hits" to be logged by a computer.

In oscillators, rather than a continuous change in mechanical dimension, sometimes the

change occurs in a ratchet manner as stored mechanical energy is suddenly released. This

sudden change in mechanical dimension results in a sudden phase change in the output, or

phase "hit". If the oscillator is phase locked, unless a very wide loop bandwidth is used,

the PLL will temporarily lose lock, and therefore be ineffectual as regards phase hit

performance. Attention therefore must be paid to the detailed mechanical design of the

oscillator. Some oscillators are more susceptible to phase "hits " than other types. The

implications for microwave oscillator design is further discussed in §4.6.1.2. It is beyond

the scope of this thesis to thoroughly investigate phase hits and therefore such an

investigation is recommended for further work.

Infl	 n	 f	 -f-r-n	 N
Performance 

6.6.1	 Introductioq

The residual phase noise may be obtained by adding the 20logN factor in dB to the

fundamental reference phase noise in the receiver CRL. Although the degradation thus

caused is generally small compared to the synthesiser excess noise, it may not be the case

for low error rates. This is because the reference phase noise typically displays an offset

frequency dependence of f-3 up to an offset frequency of 1 kHz.

Another problem is that there must be some means of providing a continuously variable

VCXO so the CRL may lock onto the incoming signal. This oscillator must be able to

cope with all the frequency uncertainties in the system, including ageing and temperature
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effects. VCX0s that have a larger pulling range must use a resonator with a lower

unloaded Q, resulting in greater f-3 noise [Parker, T.E, 1985]. One way of overcoming

this problem is to use a synthesiser with narrow step size to track the signal. A possible

solution to this problem is discussed in chapter 8.

6.6.2	 Differentially Encoded PSK (DPSK)

It has been suggested that non-coherent demodulation techniques may provide an

alternative method of demodulation for low data rates [Robins, 1982c]. A block diagram

of a DPSK demodulator is displayed in fig 6.16. This is in effect a frequency

demodulator. The probability of error 13. with a differential demodulator is:-

P. = exp-(Eb/No)
	

(6.40)

where Nc/2 is the (double sided) amplitude of the power spectrum of the additive white

Gaussian noise (AWGN).

Delay =td

One data period

Fig 6.16	 Non-coherent DPSK demodulator

This represents a theoretical required increase in E 1,/N0 of =0.8dB over that for coherent

BPSK for most practical error rates. The main problems with this technique are

[Park,J.H, 1978],[Winters, J.H, 1984]:-

1)	 The frequency uncertainty of the downconverted signal must be kept small;

2) The filtering must be carefully matched to avoid excessive losses due to

intersymbol interference (1S1);

3) The delay must be accurately toleranced;

4) The clock recovery circuits become more critical.
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All this implies a requirement for the use of digital signal processing techniques in the

demodulator.

The effect of 2) alone increases the losses by typically at least another 1.2dB; normally

this additional loss is highly undesirable, but it is possible that use of this technique can be

made for conditions where coherent demodulation is difficult, or impossible. Such

conditions include low data rates and high carrier frequencies (eg >30 GHz), or the

resultant non-coherent combining from frequency hopped spread spectrum systems. For

the high frequency case there must be a point where the implementation loss for a coherent

demodulator will exceed that of the non coherent demodulator, this could be a subject for

further investigation.

The problem with the coherent case is that it is subject to the close to carrier 1/f- 3 noise of

the reference resonator. The relative sensitivity to phase noise of the non-coherent

demodulator is not constant with frequency. The sensitivity profile is displayed in

fig 6.17, which is a plot of the sensitivity against offset from carrier frequency as given

by Robins [Robins,W.P, 19824

Fig 6.17	 Relative sensitivity of non-coherent demodulator to phase noise

At low offset frequencies relative to the data rate the sensitivity increases at 6dB per

octave increase in offset frequency. However, the sensitivity of this technique peaks at
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the half data rate, and so therefore this technique may be more subject to the effects of

synthesiser excess phase noise. Although the sensitivity to very close to carrier phase

noise is reduced with this technique, the sensitivity to noise at half the symbol rate is

increased relative to coherent BPSK demodulation. This would result in an increased

sensitivity to synthesiser phase noise, vibration, and spurious sidebands.

Vibration and discrete spurious may pose a particular problem because of the localised

spectral properties of discrete components. This has particular relevance to direct digital

synthesis that may be used in frequency hopping applications. Therefore more care may

be needed in the synthesiser design, but it may be more resilient to reference resonator

noise. The advantage of this is that the synthesiser design is under the control of the

terminal manufacturer, but the quality of crystals is less of a known quantity, and crystal

manufacturers may demand a premium payment for low phase noise crystals.

The calculation of the degradation due to phase noise would proceed in a similar manner to

that of coherent methods, but the weighting function for the differential demodulator must

be added_ Furthermore, phase noise will be passed onto the clock recovery circuits, the

response of which must also be taken into account.

6.7 Conclusion 

Chapter 6 has analysed possible effects on system performance of phase noise. The effect

of imperfect carrier recovery was analysed with respect to a BPSK system. This was

extended to include QPSK and the effect of coding. Computer programs were written to

produce curves of sensitivity degradations against recovered carrier jitter. Such curves

indicated that uncoded BPSK was relatively insensitive to phase noise, but QPSK and in

particular coded BPSK and QPSK had steep BER curves and were therefore very

sensitive to phase noise. These degradations result in adverse effects on the system link

budget that may require expensive modifications to system components such as power

amplifiers or low noise amplifiers.

The additional degradations brought about by the effects of phase noise imply that a phase

noise link budget is required in addition to the usual system power link budget for each

local oscillator in the system. Many local oscillators have phase noise sidebands which

display both discrete and random components. These components must be given separate

treatment in any link budget analysis.
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Carrier recovery by the use of a frequency multiplier has been discussed and analysed. It

has been shown that a square law input to output noise relationship is reached as the signal

to noise ratio becomes negative. Carrier recovery multiplier performance is therefore

critical especially when coded schemes are used that have a low signal to thermal noise

ratio. The intersection of the square law section to the linear section of the output noise

curve gives a useful figure of merit for a carrier recovery circuit.

There is a contradiction in requirements for the carrier recovery loop for coherent

demodulation schemes. A narrow carrier recovery loop bandwidth is required to

effectively remove thermal noise, and a wide loop bandwidth is required to remove phase

noise.

The use of differential demodulation techniques may be advantageous when very low data

rates are employed. In this case the dominant effect would be the 1/0 noise of the crystal

resonator source which could impose insuperable problems for a coherent system.

Differential demodulation is more sensitive to noise components further away from carrier

and therefore may not be advantageous when the phase noise is not falling steeply as the

offset frequency is increased.

Phase noise requirements for synthesised local oscillators have been considered in

chapter 6 in terms of possible impact on system performance.

6.8 Further work

The analysis applied in chapter 6 for coherent systems assumes that most of the phase

noise power is close to the carrier and therefore within the carrier recovery loop

bandwidth. However if most of the power is outside the CRL bandwidth, the CRL will

have little effect and therefore a modification to the above analysis may be required. It is

beyond the scope of the thesis to investigate this, but could be recommended as a topic of

further investigation.

The fact that other degradations in system response are likely to be present simultaneously

with the phase noise effects implies that simulation will be required to obtain accurate

results. Such a simulation is beyond the scope of this thesis but important factors have

been raised that must be taken into consideration. For the modulation schemes discussed

in chapter 6, the tails of the various noise distributions discussed (Gaussian, Tikhonov)
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were far more significant in determining the BER than the main body of the distribution.

This implies that the Gaussian model used must be tested to ensure an accurate tail, rather

than using without question the Gaussian models provided by the simulation package

used. Many standard models are derived from the central limit theorem and may produce

poor tails unless large numbers of samples are used.
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7 Phase Noise and Spurious

Considerations for SRD Circuits

7.1	 Introduction 

In order to predict the phase noise and spurious performance of a synthesised local

oscillator, it is necessary to determine the response of any multipliers or phase locked

oscillators used within. Chapter 5 discussed design guidelines in general for frequency

multipliers and mentions the fact that step recovery diodes (SRDs) potentially offer low

phase noise performance. This chapter expands the subject further by exposing various

caveats that must be observed to obtain reliable performance with SRDs. Computer

simulations are described here which enable predictions of SRD circuit performance; these

demonstrate the fact, that under certain conditions, such circuits are capable of chaotic

behaviour.

Classically, for frequency multiplication, the 20 log (foutifin) rule is applied to the phase

noise and the amplitude noise component is assumed to be eliminated by the multiplication

process. However this rule will not account for.-

1) Any excess noise added by the multiplier,

2) AM to PM conversion;

3) Subsequent phase locked loop response;

4) Parametric enhancement, or subharmonic phenomena.

These effects depend upon the actual multiplier configuration and cannot be readily

determined by simple "rule of thumb". Two additional noise phenomena need to be

considered:-
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i)	 The effect of the multiplier on noise sidebands present on the reference

signals;

Indigenous noise sources to the multiplier circuit.

Both effects are important. The first case is particularly relevant to far-from-carrier noise

and spurious signal specifications, and the second case to close-to-carrier noise

specifications.

Although the SFtD is capable of low phase noise frequency multiplication, performance

can be impaired by apparently unpredictable effects if care is not exercised during the

design process. In this chapter, the computer simulations and models used are described

and, following this, stability problems are demonstrated by means of a time domain

simulation. A fast Fourier transform (1-Fr) is then taken of the time domain simulation to

illustrate the effects of stability problems on phase noise in the frequency domain. It will

be shown here that SRDs are capable of showing chaotic behaviour. This leads to a

discussion of how the observed chaotic behaviour relates to recursion theory and

ultimately to an extension of the SRD simulation program which can rapidly evaluate

comb generator stability.

Further extensions of the program are described which enable investigation of the effect of

carrier lifetime fluctuations and self bias levels upon SRD phase noise. Finally an SRD

comb generator circuit is described; this comb generator was constructed so that the effects

discussed in this section could be measured.

7.2 Effects of frequency multipliers on phase noise

In all cases of frequency multiplication involving one source (coherent) the phase noise at

the input is increased by a theoretical minimum of 20 log (foudfin) at the output

[Grebenkemper, 1982]. The offset from carrier frequency will be unchanged and, unless

the noise sidebands become so great that the small angle criterion is violated, the spectral

profile will remain unchanged. The 20log (fouifin) ratio represents the best that can be

achieved with a noise free multiplier and, in addition to this, in practice there will be noise

internally generated from the multiplier known as "excess noise" [Manassewitsch, 1985a].

Whereas there is an absolute minimum level of phase noise degradation, which is a

fundamental property of frequency multiplication, the response to AM noise depends upon

the configuration of the multiplier [ICroupa, 1973a]. A circuit with a small signal
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polynomial response will raise the AM noise also by 201og (f0ut/fin). If there is a limiter

associated with the multiplier then the increase will be very much less than this. However

some multipliers convert the amplitude noise to phase noise by AM to PM conversion.

This can result in unexpectedly large amounts of phase noise being produced. Chapter 5

mentions the fact that reactive multipliers are worse in this respect. In addition, reactive

multipliers tend to be more prone to subharmonic and chaotic phenomena. However, a

particular reactive multiplier using a SRD can be both simple and efficient; therefore this

merits particular attention.

7,3 Step Recovery Diode (SRD)

7.3.1	 Characteristics of SRD's

SRDs are chiefly used as impulse generators or as frequency multipliers. Their ability to

switch rapidly is almost universally exploited in their application. An impulse generator

outputs narrow pulses, and is often referred to as a comb generator because of the

frequency domain representation of such an impulse as a comb of steadily decreasing

harmonics. Frequency multiplication refers to a circuit with a resonance at the output thus

enabling concentration of the output energy at a single output frequency rather than at a

broadband comb of frequencies. The circuit that will be discussed here will be the comb

or impulse generator.

The SRD is well covered in the literature [eg Hewlett-Packard, 1969], and particularly

with reference to frequency multipliers [Pontius, 1967] [Lean, 1978] [Hamilton & Hall,

1967a], although literature on the use of SRDs in phase locked loops is scarce, and little is

written about the phase noise performance.

Briefly the step recovery diode has a doping profile as displayed in fig7.1. and a

capacitance voltage characteristic as displayed in fig7.2. Step recovery diodes consist of

a PIN junction with a doping profile such that charge carriers can accumulate in the

intrinsic layer during conduction. Unlike normal diode rectification, the charge stored

during conduction must be depleted during reverse bias before conduction can cease. In

the forward conduction mode charge carriers are injected into the depletion region and the

diode displays very low resistance. When the drive voltage reverses, the carriers are

swept out of the intrinsic region. When charge carriers accumulate in the intrinsic region

after conduction, there will be a finite time before all carriers are removed.
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Fig 7.1 Doping profile of step recovery diode

Co is the reverse capacitance measured at Va
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Fig 7.2	 Capacitance voltage characteristic of a varactor and a SRI)

When these carriers are removed from the intrinsic region, the mechanism for current flow

in the diode is removed, and the diode characteristics resemble a reverse biased diode.

Essentially, the diode shows two distinct modes of operation, the conduction mode and
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the impulse, or reverse bias, mode. On conduction the diode displays a low impedance

resembling that of a large capacitor. In the reverse biased mode, diode capacitance is very

low, and shows little capacitance variation with applied current or voltage.

The step recovery effect was originally discovered by Boff and Moll in 1960 [Boff,

1960]. Since then, a great deal of design effort has been invested to optimise the speed of

transfer between reverse recovery high current flow and reverse bias low current flow

[Watson, 1969]. In order to control reverse bias capacitance changes the intrinsic region

is in fact very lightly doped [Siemens, 1987].

7.3.2	 Applications of SRD

SRDs fuld applications in frequency multipliers, impulse generators, microwave sampling

devices for Phase locked oscillators (PLOs) and time domain devices. Their applications

in PLOs are widespread, such frequency sources being the backbone of most

communications systems. In addition the property of generating large numbers of

harmonics enable them to find use in frequency synthesis.

All these applications exploit the devices' ability to switch rapidly between the high current

reverse recovery phase and the low current reverse bias phase. This rapid transition

enables the device to produce pulses with rapid transitions which can be measured in 10's

of picoseconds. Large multiplication ratios are capable of being realised in a single step

by virtue of the step recovery diode's property of rapid transition, which represents the

single most important property of the SRD.

7.3.3	 The SRD as a means of frequency multiplication

Fig 7 3 gives a typical circuit diagram of an SRD impulse generator, and fig7.4 displays

the resulting waveforms.

Fig 7.3	 Circuit diagram of SRI) impulse generator
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Fig 7.3 is the simplest circuit possible to generate a comb of harmonics. It consists of a

small inductance, the impulse inductance Ld and a load resistance R. An equivalent

circuit is shown in dotted lines consisting of the diode bulk resistance Rd and diode

junction capacitance Cd. As outlined in §7.3.1, there are two parts to the cycle, the

conduction mode and the impulse mode. During the conduction mode, the effective value

of Cd is virtually infinite, therefore giving the diode a low impedance at its terminals.

When the transition to the impulse mode occurs, Cd suddenly drops to its low reverse

value, therefore the diode terminal impedance suddenly rises. This sudden abrupt change

in current flow can be as high as 109 amps per second. Any inductance present, such as

the drive inductance Ld results in large voltage spikes as in fig7.4. The resulting sharp

spike results in spectral energy being present at frequencies of >100 GHz. A damped

resonant circuit is formed from a combination of drive inductance, diode capacitance, and

load resistance, and the output voltage begins to ring as shown in the top half of fig7.4.

If reversion to the conduction mode could be prevented, then the output voltage would

continue to ring as shown by the dotted line. When the forward barrier voltage of the

diode is exceeded, however, the diode begins to conduct. Damping of the waveform is

altered due to the very low on resistance of the diode. The ringing waveform becomes
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severely overdamped, resulting in a relatively long decay time of the SRD voltage after

this point.

A critical factor in determining the phase noise characteristics of the comb generator is the

conduction angle a. This is the angle between the reversal of the input drive voltage and

the start of the impulse region and is therefore determined by the time interval required in

order to remove accumulated carriers in the intrinsic layer. There are two mechanisms for

removal of this accumulated charge: diffusion and recombination. With diffusion, as

many charge carriers flow out of the layer as was introduced, so the mean current flow is

zero, therefore there is no rectification. With recombination, the accumulated charge
recombines at a rate determined by the carrier lifetime T. Any carriers that are lost due to

recombination must be made up by current flow from the supply, hence a small DC

current flows; carrier recombination therefore results in rectification.

In the normal operating mode of the SRD, carrier lifetime t is long compared with an input

cycle period therefore the DC current flow due to rectification will be only a small fraction

of the AC current.

The differential equation for the impulse period can be shown to be of the form:-

d2Vc	 dVc
x(t) = LdCd 2 + RxCd-aT + V

dt

where x(t) is the driving waveform and Vc is the voltage across the capacitor. The free

response of the circuit can be shown to be:-

i
V(t) — 'P----ke-(A — 13)t _ 

e-(A + I3)t)	 (7.2)

2CdI3

where A and ii are given by:-

(7.1)

If p is imaginary then equation (7.2) becomes:-

1
V(t) = _Le-Atsin(po

Cd13

or if p is zero then equation (7.2) becomes:-

(7.4)
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These equations explain the steep rise during the impulse period. As the value of 0
increases, the pulse becomes wider.

The implementation of the step recovery diode in a phase locked loop or as a multiplier has

been described in chapter 4. In the present chapter, spurious and noise generation

properties will be examined. During the course of several months of work with SRD

comb generators it became apparent that although the device is capable of low phase noise

harmonic generation, under certain circumstances the phase noise can be severely

degraded. In addition it became apparent that subhamionic phenomena can suddenly

appear. A manual on the subject of harmonic generators [Hewlett-Packard, 1969]

suggested that the bias circuits may be responsible for the subharmonic generation.

However, we confirmed by measurement that even if all resonances are removed and the

device is operated at zero bias, subharmonic phenomena can still appear.

The remainder of this chapter will analyse this effect and the variation in phase noise

levels. Many parameters have potential to affect the level of phase noise, we therefore

investigated these effects using computer simulation techniques. In particular, an attempt

is made to establish whether the subharmonic phenomena can degrade phase noise.

7.4 Step recovery diode phase noise

7.4.1	 Phase noise mechanisms 

Extensive literature searches failed to reveal an analysis of the phase noise of the SRD

multiplier, therefore one was investigated by the author.

Upconversion of noise from the input frequencies to the output frequencies is governed by

the Manley-Rowe relationships [Manley& Rowe, 1956]:-

v(t) = I 1, V(nvo expa [ mmi + no)ref})	 (7.6)
m=-.3 n= -c. N

+.0	 +.0

,E........ n.__i.I(n,n) expa [ mcoi + mord))m 

(7.5)

i(t) = (7.7)
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where uhtf is the input carrier frequency and v(t) and i(t) represent the voltage and currents

through a non-linear reactance. These define a Fourier series that consists of a series of

harmonics with sidebands at frequency ±coi offset from carrier. Idler frequency is the

term that commonly refers to the coi frequency. The Manley-Rowe relationships predict

that an extra input signal of either at frequency offset oN from carrier, or at a baseband

frequency of wi, will result in sidebands at offset from carrier frequency ±(0i at the

harmonics of the frequency (oref• This upconversion effect will also apply if the sidebands

are replaced by noise.

The sources of noise are [Watanabe & Falcatsu, 1967]:-

1) Additive thermal noise white

2) Avalanche noise white

3) Microplasma noise 1112

4) Recombination noise

5) AM to PM noise Wand white.

The signal levels at the input to the multiplier are generally large (eg, +20dBm) so that the

additive thermal noise is small compared with the signal (eg, -160 dBc/Hz at 5 GHz

output frequency). Noise performance is, however, critically dependent upon signal level

[Scherer, 1981a].

Avalanche breakdown results in high levels of white noise [Watanabe & Fakatsu 1967] if

the firing voltage peaks are excessive due to high drive levels. Microplasma noise can

result in an f2 relationship with offset frequency; this in turn causes excessive close to

carrier phase noise. If the drive level is optimised for maximum output power, the phase

noise may be increased due to breakdown effects. It has been reported for example

[Scherer, 1981a] that a 500MHz multiplier specified for +27 dBm drive level was found

to give optimum noise performance at +24 dBm.

Recombination noise occurs as a result of statistical variations in carrier lifetime.

Watanabe [ibici] suggested that a higher level of noise was generated in a varactor when

forward conduction occurs. McDade [1966] confirmed that higher noise levels were

generated when significant rectification occurred. This prompted an investigation here as

to the possible influence of carrier recombination effects on the noise level. Statistical

fluctuations in carrier recombination result in variation in the effective carrier lifetime, T.
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da . fa0)

dr	 (fr2)
(7.11)

In the intrinsic (I) layer, some of the carriers recombine rather than become swept out of

the layer, as a result, more carriers are swept into the intrinsic layer during the forward

conduction than are swept out during reverse recovery. Some rectification takes place,

and a small DC current, 6, flows. The percentage of carriers that recombine in a cycle of

input can be calculated [Hewlett-Packard, 1969], giving the average storage time as:

ta = lafreb where fref is the input drive frequency. DC current flow is determined by

Id, = Ip„Joirerr, where I I., is the peak AC current.

This recombination results in a reduction in the charge that must be removed from the I

layer. A premature termination of the recovery period therefore results. The ratio of
charge lost in the recovery period qo to the total charge q t is:-

go _ 27r

qt TO)ref

Assuming that the recovery current is approximately constant around the impulse time,
then the ratio of charge lost to total charge is equal to the ratio of phase advance a' to the

firing angle ao. Charge loss indicates the fraction of a cycle that the impulse point has

moved, therefore a0 is a constant representing the value of a corresponding to infinite

lifetime:-

1
a = ao(1+--)

freft

In predicting phase noise, statistical variations in carrier lifetime are assumed to occur. To
simplify the analysis, sinewave variations in T will be considered. The instantaneous

value of T, T(t), will be:-

¶(t) = i + -411Yr sin comt
	 (7.10)

where. com is the effective frequency of the noise, v is the fraction of the RMS statistical

variations in T to T and i is the mean value of T. By differentiating 7.9, the conversion

factor can be found from T variations to a variations:-

(7.8)

(7.9)

The RMS fluctuations in a, Ace can be found from substituting the RMS fluctuations in 'I

from equation (7.10) into equation (7.11), giving:-

Aa = -C-cl--)11)	 (7.12)
ft
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These RMS fluctuations in a represent the value of phase noise introduced by carrier

lifetime fluctuations and therefore the phase noise introduced by a step recovery diode due

to recombination, provided fref >> lit.

7.4.2	 Effect of biasing

Fig 7.5 displays a method of self biasing the SRD. If self bias were used to enhance the

Vd

Impulse output

Fig 7.5	 Circuit of SRD impulse generator showing biasing

output power of the multiplier, the value of the bias voltage would vary due to changes in

the recombination current Idc. This current is determined by T, the carrier lifetime.

t fluctuates as a predominantly llf process [Buckingham, 1983], therefore the value of

self-bias voltage will also fluctuate. Firing angle variation occurs as a result of its

dependence upon the lifetime, and flicker phase noise is therefore generated. The

relationship between bias voltage and firing angle is [Hamilton & Hall, 1967b]:-

1
Ec +0=Esin a.- irco

_\/  4Rd2 dcL .d2 j
4Rd2 Cd - La

(7.13)

where Ec is the bias voltage, (I) is the diode junction barrier potential, E is the applied

signal voltage, C is the reverse capacitance of the diode, Li is the driving inductance, and

Rd is the load resistance.

7.4.3	 AM to PM conversion 

This is another principal mechanism for phase noise generation in SRD multipliers. A

variation in amplitude of the drive signal results in some variation in the firing angle .

[Hamilton & Hall 1967b] and might arise from mutual conductance variation due to llf

effects in the driver transistor. A computer simulation as described later in this chapter

could aid the selection of an optimum amplitude and wave shape of the drive waveform

for minimum AM to PM conversion.
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nC,
G— n+1 (7.14)

7.4.4	 Subharmonic phenomena: parametric oscillation or chaos? 

The negative real admittance component of a device that displays non-linear capacitance
voltage effects is [Manassewitsch, 1985b]:-

°	

-

where n is determined by the junction properties of the diode used (n =1 for abrupt

junction diodes).

The voltage capacitance for a junction diode can be described as:

C(v) = Ks(4)-Vsj
4)-V

(7.15)

where Cd is the capacitance measured at some DC voltage Vd and 4) is the diode contact

potential (approximately 0.7 V). With a step recovery diode, the capacitance voltage
curve is extremely steep, resulting in a large n value. Therefore if n -4 00, then:-

(ITT) -5 1
	

(7.16)

and equation (7.14) becomes:-

G = -NfoCv	 (7.17)

The presence of this negative conductance indicates that the device is susceptible to

oscillation. These oscillations are often called parametric oscillations by analogy with

reactance swing varactors [Prabhu, 1967]. There are problems however in using this

equation to determine stability: negative resistance is essentially a small signal parameter,

and cannot be easily fitted to the heavily non-linear operation of the SRD multiplier/comb

generator.

It has been suggested [Hewlett-Packard, 1969] that the presence of resonances in the band
at which the negative resistance exists is the cause of parametric instabilities. These

resonances are called idler resonances. Apart from the instability problem, any gain in the

system must be investigated as this implies the possibility of raising the level of noise in
the system. Any such noise level increase may have adverse effects upon phase noise

level. SRD comb generators do exhibit parametric gain [Hewlett-Packard, 1969], and this

can increase the noise level already present. Kwitkowski, addressing the problem of

stability of power amplifiers [Kwitkowski, 1988], suggested the addition of a low level

carrier from a sweep generator. An alternative is to use additive broadband noise and this
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was employed during the measurements described in §7.11. Such noise peaking effects

are also simulated in software with random noise values added to the driving waveform as

described in §7.7.

It has been observed, however, from practical work with SRDs that it is possible to obtain

parametric instabilities even when there were no idler circuit elements intentionally

designed into the circuit. The assumption that idler elements are necessary may be as a

result of an over simplistic consideration of negative resistance effects only. Parametric

effects may be analysed in terms of non-linear differential equations. However these

non-linear differential equations are capable of showing chaotic behaviour. Such unstable

chaotic behaviour is described in §7.8 below. M I Sobhy et al [1990] suggested that any

driven second order nonlinear system is capable of chaotic behaviour. Even the basic

SRD impulse circuit of fig7.3 is of this form. It could however be argued that parametric

oscillations are a specific manifestation of a more general effect known as chaos. This

suggests that the subharmonic phenomena may be associated with the operation of the

device as an impulse generator, rather than due to any externally applied circuitry such as

bias circuits or other resonant circuits. Various authors [Vidkjaer, 1976], [Bernard &

Neau 1990] have found that subharmonic phenomena most frequently occur at either close

to carrier or at half carrier frequency.

Because of the complicated behaviour of the SRD comb generator circuit it was considered

necessary to produce a computer simulation in order to guarantee correct functioning.

Models had to therefore be developed to enable simulation. In this manner, several

iterations of component values could be assessed in terms of stability. The following

section will describe the methods used.

7.5 Computer simulation of SRD circuit

7.5.1	 Modelling

The models to be used in this simulation are based on the networks displayed in fig 7.6,

and fig 7.7. The circuit elements were taken from papers by Krakauer [1962] and Friis

[1967]. Friis illustrates the actual models used for the diode. In the dotted areas are

circuit elements used to simulate the diode. Modelling is accomplished by splitting the

reference cycle into two parts: the impulse part, and the conduction part. Fig 7.6 displays

the equivalent circuit of the simplest SRD comb generator, ie. with no means of

impedance matching at the input. Circuit a is the actual circuit simulated, and C,. and
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Ld I	 3RD

current •
I- h

Impulse mode

7. 6c

are effectively infinite value components used for self bias purposes. Ld is the impulse

inductance, and Vd is the output impulse voltage. In the conduction mode, circuit b
displays the equivalent circuit with the SRD represented by a voltage source Vbar, and a

forward resistance Rf.

----ra—Tir---Ld	 7. 6a

Vd

Impulse output

Thevenin source A
---I---i---]ir	 Ld

Fig 7.6	 Step recovery diode equivalent circuits used in simulation, network 1

In the reverse mode, circuit c, the forward voltage source, Vbar is replaced with the the

reverse junction capacitance, Cd. The drive voltage is assumed to have a source

resistance, Rsource.

A problem with this simple comb generator circuit is that the input impedance Rsource must

be small or the damping effect on the drive inductance would be such that the impulse

output voltage would be limited. To overcome this problem the matching transformer and

reflection capacitor circuit of fig 7.7 is introduced. The problem of the source impedance

damping the impulse inductance is solved by introducing the reflection capacitance C2,

and the impedance matching transformer secondary inductance L2.

Although the model for the conduction part is different from that of the reverse part, the

conduction model can be built with the same nodal elements as used in the reverse model.

This can be achieved by setting the diffusion capacitance to infinity, and the stored voltage

constant at the barrier voltage. Therefore an identical network is built for both cases. In

7. 6b
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order to solve the network behaviour, differential equations are built from the current and

voltage relationships for each of the elements [Kuo, 1966].

3RD Diode

Fig 7.7	 Step Recovery Impulse Generator and Matching Transformer, network 2

The relationships for the resistive elements is ICirchhoffs law, and the voltage VL across

the inductor L is given by:-

NTL= -La

Inductor current I due to applied voltage V I, is given by:-

t(n)

I =L Pk.dt
t(n-1)

(7.18)

(7.19)

For the case of a capacitive element C, the current through the capacitor as a function of

applied voltage V is given by:-

VL 
,,dv
	

(7.20)
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-t
q = qo exp- (7.23)

Expressing current I in terms of applied voltage V is:-

t(n)

t
V =

ip

t(n-1)

(7.21)

The drive waveform can be any repetitive waveform, but a sinewave is most frequently

specified:-

Edriv	 = Epic S111(21Lf1t)
	

(7.22)

where Edriv is the source voltage at any instant t., Rs is the source equivalent output

resistance (in fig7.7), L2 is the driver transformer output inductance, CI is the impulse

reflection capacitor and Ld is the impulse inductance. The conduction angle a is,

represented by the phase of the reference cycle at the termination of the conduction part of

the simulation.

Another factor that must be included is the breakdown voltage of the SRD junction. When

the voltage across the diode exceeds the avalanche voltage in the impulse part of the cycle,

the diode impedance drops to a low value. In the simulation this is represented by limiting

the voltage across the diode to the avalanche voltage.

Conduction analysis commences when the SRD is forward biased, and finishes when all

the charge carriers are swept out of the intrinsic layer. Fig7.6b shows the model used for

the conduction phase. The diode equivalent circuit consists of a resistor representing the

junction bulk resistance in series with a battery representing the barrier potential of the

S RD junction.

In the impulse part of the cycle, the SRD model is represented as in fig7.6c. This

consists of the junction capacitance Cd, the reverse bias diode loss, Rd and the load R.

Termination of the impulse phase is made to occur when the voltage across the equivalent

junction capacitance exceeds the barrier voltage V.

So far, in the model, the lifetime of carriers in the forward part of the cycle was assumed

to be infinite. Allowance therefore must be made for a fmite lifetime. The charge carriers

injected into the diode during forward conduction are assumed to decay with a time

constant T. Total charge will decay according to [Grove 1967]:-
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7.5.2	 Choice of simulation method

There are many techniques used for simulation of electronic circuitry. The most

commonly used are [Obregon, 1990]:-

i) Linear frequency domain

Solution of linear impedance networks;

ii) Harmonic balance technique

Uses method 1 with the non-linear elements lumped together and solved in

the time domain;

iii) Volterra series

Expresses the non-linear transfer function of the system as a sum of a

polynomial series;

iv) Describing function

Essentially 1 modified to use the large signal admittance coefficients in the

networks;

v) Time domain analysis

Step by step solution of integro-differential equations.

i) Linear analysis is the process of forming and solving the admittance matrix for the

system in the frequency domain. The analysis can give rapid results, but is not suitable

when it is necessary to analyse non linear effects.

ii) A hybrid of the linear and non linear methods has been devised, known as the

harmonic balance technique. As a steady state solution only is produced, this method is

not suitable if the transient response is required. The linear components of the network

are abstracted and analysed in the frequency domain. This leaves the non linear elements

which must be analysed in the time domain. Equations are formed for each of the

harmonics in the Fourier series for the time domain network. Applications are for mainly

determining the operating points of amplifiers and oscillators so that factors such as

compression points or harmonic output can be determined. This is not suitable for

strongly non linear systems such as SRD multipliers where the frequency domain network

cannot be determined.

iii) Analysis by Volterra series involves the representation of the network initially as

its linear transfer function. In parallel with the linear network is a series of networks
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having transfer functions of ascending order up to an order n to represent the non linearity

of the system. This is equivalent to a Fourier series representing a signal as a series of up

to order n. If the network is strongly non linear, such as with the SRI) circuit, the value

of n required before transfer function h(n) becomes insignificant is large. As a result of a

large number of transfer functions being required, insuperable computational problems

arise.

iv) The describing function method defines a large signal admittance matrix alongside

the small signal. Circuits such as transmitter output stages, where the large signal

characteristics can be measured at several different operating points, are most suitable for

analysis by the describing function method. Extrapolation can then be used to find the

correct large signal characteristics. This method is not suitable for broadband cases where

large series of harmonics are generated as its accuracy depends upon the filtering of the

harmonics.

v) In time domain simulation, the integro-differential equations are formed for the

system and solved on a step by step basis. A classic example of this is the transient

analysis mode of the Spice simulation system. The frequency domain can be obtained

from the time domain by means of a fast Fourier transform (I.F1) after the initial transient

condition has elapsed. Although time domain analysis can be very demanding in terms of

computational effort, it has many advantages when the steady state mode of operation

cannot be assumed, or the non-linearities dominate the transfer function of the circuit. It is

for this reason that time domain analysis was selected for study of the SRD circuit.

7.5.3	 Time domain simulatiort

A time domain simulation involves solution of the system differential equation over

discrete time intervals. Such a simulation could be either non-linear or piecewise linear.

Time domain simulations have one great drawback, however, recursion. A recursive

formula is used to derive the present time step results from the previous. Recursive

formulae can show the kind of chaotic instability that we are attempting to demonstrate in

this chapter with SRD's. It was vital, therefore, that the algorithms were investigated for

stability before use in the simulation. One test that can be applied to gain confidence in the

simulation results is to vary the time step.

With a non-linear simulation, at each step, non-linear relationships are assumed and the

problem is solved by iteration [Calahan, 1971]. The Spice transient simulation uses this

method [Nagel, 1975]. A problem with this method is that stability of solution cannot be

guaranteed [Meares, & Hymowitz, 1988], especially in the presence of noise. By

assuming that the system is linear over each time step it is possible to arrive at a method

250



I 1

Yn = yn-l+At C-
(7.27)

that is less accurate but more reliable in terms of stability [Gear, 1971]. Such a method is

known as a piecewise linear method.

The simplest method of piecewise linear differential equation solving is the Euler method

[Stroud 1990]. With this method, the differential equation:-

4Y	 (7.24)
dt = Rt'Y))

is written as a difference equation:-

yn = Yn-l+At gtn- i,Yn-i))
	

(7.25)

This is now recursive, as yn will become yn_i for the next time step.

A problem with the forward Euler technique is that stability is conditional on the time step,

and this is precisely the condition that must be avoided. However, Badger [1988] has

applied the more stable backward Euler technique to a transient analysis of the Phase

Locked Loop (see chapter 5):-

Yn = Yn-l +At Rtn,Yn))	 (7.26)

In this manner, equation (7.21) describing the voltage stored in capacitance C can be

converted to:-

By using this method of approximation, the resultant integration of the current through

capacitance C is as displayed in fig 7.8. The value of In is assumed constant from

tirnestep tn_i to tn.

Therefore, if a steep gradient is encountered for di/dt, a large error will result. Errors

introduced by the Euler method can be shown to be of the form [Dalquist & Bjorck,

1974a]:-

Y(x,At) = y(x) + At c 1 (x) + At2c2(x) + At3 c3(x)+ 	
	

(7.28)

where the expressions containing At constitute the error of one step and Cl. c2 ....etc. are

constants.
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Fig 7.8	 Piecewise linear time domain simulation

with first order polynomial approximation to the integration

If instead, however, the value of I„ is not assumed constant, but a trapezoidal

approximation is carried out to equations (7.19) and (7.21), then a considerable

improvement in accuracy is possible. This can be observed from fig 7.9 showing a much

closer fit to the curve in this case.

The formula for trapezoidal integration is:-

At	 At
Yn = Yn-1 + T ntn-1,Yn-1) + T f(tn,Y)	 (7.29)

giving for equation (7.21):-

At	 At In
Vn = +	 + — —c; 2 C

The error for the integration approximation can be shown to be:-

YOE ,A0 = y(x) + At2c 1 (x) + At3c3(x) + At4c4 (x)	

(7.30)

(7.31)

By eliminating the At term present in equation (7.28), considerable improvement in

accuracy can be gained. Implicit integration methods are used since in general they give

more reliable results than explicit methods such as the Runge Kutta method [Nagel,

1975]. The method is called implicit integration because the integration appears on the

right hand side of the equation.
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Fig 7.9	 Second order polynomial integration

approximation (Trapezoidal) improves accuracy

Trapezoidal integration is a polynomial integration of order 2. This is the maximum order

for an A-stable integration that is easy to implement. A-stability describes an algorithm

that is stable if the solution is stable [Dalquist & Bjorck, 1974]. It is possible to reduce

the truncation error by the use of a higher order integration approximation. A method of

improving the truncation error by performing 3 trapezoidal integrations of different time

steps and extrapolating to a zero time step was devised by the author. This was effectively

a fourth order method, and would normally provide an increased accuracy of several

orders of magnitude. However, this method is conditionally stable and would require

careful control of the time step. It was considered that this trade-off of reliability against

accuracy was not acceptable and therefore discarded in favour of the simple trapezoidal

method.

There can be difficulties with single step trapezoidal integration if the eigenvalues of the

approximation equations are near the imaginary axis. Such an occurrence is likely if a

resonant circuit has a natural frequency around the inverse of the time step and a small
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damping factor. In this case, the integration is operating near the limits of stability, and

the solutions at each time-step oscillate around the correct value. An example where this

may result is in allowing for diode package inductance, giving rise to what is known as a

"stiff' set of differential equations. The cure may lie in the use of Gears [1971b] multi-

step methods which are stable for such stiff problems. Device package parasitics were not

included in the simulation described here, but are recommended for further research work

into comb generator simulation.

A diagram of the SRI) embedded in a comb generator circuit is shown in fig 7.7. The

network current and voltage variables are also shown. There are 5 elements in this

network, requiring 5 equations for the network. Applying the trapezoidal integration rule

to the reactive elements yields the following four equations:-

At V12 At Vu
12 = 12 +	 + 2 1,2

T,	 At V'm 4. At VI-1= + 2 L i - 2 LI

At 	  At (1241) 
Eci = Ek'2 + c l +27 C1

At I' At I
Ec2	 +

(7.32)

(7.33)

(7.34)

(7.35)

It is necessary to define a link between sections of the network, so that a non-singular

system of simultaneous equations can be formed. Applying Kirchhoff s laws to the

network gives the following equations for VIA and Vu which can be substituted into

equations (7.32) and (7.33):-

= Edri„ - I2R5 - Eci	 (7.36)

VL1 EC1 Vd	 (7.37)

The resulting five simultaneous linear equations can be formed into the linear system:-

B = Ax

and thus solved for x. The components of equation (7.38) are:-

x= [

Eci

Il
Vd

(7.38)

(7.39)
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(7.40)

(7.41)

	

2L2+RsAt At 0 0	 0

-At 2C1 At 0	 0

A=	 0	 -At 2L At	 0	 1

0	 0 Ri., - I	 -RI,

0	 0 0 2Cd -(2CRF+At)

B = 2L1' 1 + (E' ci Ar d)At

[2CE'c i + (r2 -I'i)At

2L21'2 + (NT' L + Edri,)At

2CdE'c2 + I'At

0

This could be solved by using upper and lower decomposition followed by Gaussian
elimination. The problem with Gaussian elimination is for N equations the number of

computations is of the order of N 3 [Berry, 1971]. Since a sparse matrix is formed for this

type of network, a reduction of the number of computations can be achieved [Hachtel et

al, 1971]. The matrix A is a tri-diagonal matrix, and the total number of computations to

solve the system is 3(N-1) [Dalquist, & Bjorck, 1974c1. Since the values of the variables

in the matrix cannot be defined on construction of the algorithms, partial pivoting must be
carried out to avoid divide by zeros or a loss in accuracy. For a tri-diagonal matrix with

partial pivoting, 5(N-1) operations are required. With the SRD simulation, the linear
solving program was originally taken from the Linpac series of linear solving programs

[Strang, 1980]. The program was converted to Pascal during the course of this research

and modified to enable fast solutions of a tri-diagonal system with partial pivoting. A

listing of this is given in appendix A2.

To undertake a time domain simulation, the linear system is solved between t for the
known nodal values, and t + At for the unknown nodal values. The recursion is

provided by equating the solved nodal values to the known nodal values on the succeeding

step.

During the process of a simulation, a decision must be taken to change between the
reverse and forward modes of the simulation. For phase noise estimation, any changes in

firing angle must be accurately determined. In general, the time steps are too coarse to

satisfy this requirement, and so a method of interpolation between time steps is required.

One of the problems in using Spice for frequency multiplier simulation is that the discrete

timesteps of the computations can lead to troublesome limit cycle oscillations which

obscure any phase noise effects. A standard method of interpolating against external
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f (t)
tn+1 =	 At)

(7.42)

boundary conditions is Newton-Raphson's interpolation [Dalquist & Bjorck, 1974d],

[Calahan, 1972]:-

where f(t) is the dependent variable under consideration. f(t), the time derivative is found

from the gradient of the previous points calculated. Therefore the solution to the limit

cycle problem adopted here is to perform Newton-Raphson iterations against a boundary
condition to interpolate between calculation steps. The iteration is carried out to an end
point twindow given by:-

twindow > itn-tn+li
	

(7.43)

If twindow is set too small then convergence will fail due to round off errors. Therefore it
is desirable that t is set to a minimum level commensurate with negligible contribution to

calculation errors. The algorithm implementation is illustrated in appendix A2.

7.5.4	 Carrier lifetime effects

In the conduction part of the simulation it is important to consider the carrier lifetime.

Charge carriers accumulate in the junction during forward conduction. Summation of the

charge flowing through the junction at each step of the calculation simulates charge

storage.

The total charge q that has accumulated in the diode can now be calculated, but this charge

decays according to [Grove, 1967] from an initial value q0:-

q = qo exp	 )
	

(7.44)

Modelling of the effect of the carrier lifetime is achieved by the convolution of the carrier

decay function with the applied current I. A modified value of the carrier concentration at

the end of each step results. We have derived the following expression by performing a

convolution of the decay function with the forward current:-

h_cLI + I
- exp	 ))+qoexp

))	 ) (7.45)

When the accumulated charge is found to become negative the Newton-Raphson's

interpolation routine is initiated to find the exact point at which the charge becomes zero.
At the exact point at which the accumulated carrier concentration charge reaches zero, the

program switches to the impulse mode.
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E = I r .dc dc bias (7.47)

7.5.5	 Self bias

In addition it is necessary to simulate the effect of self bias. A self bias circuit has been

shown in fig 7.5, consisting of bias resistance Rbias and inductance L. As discussed in

§7.3.3 a small DC current flows due to recombination. This current is found by

averaging the current flow through the diode over one cycle. The averaging operation is:-

t

Idc = fief	 i klt	 (7.46)
(t -1/fre f )

This DC current is converted to the bias voltage by multiplying the value with the bias

resistor:-

7.5.6	 Using simulation to calculate phase noise

Having established a stable configuration, the phase noise can be predicted. A most

suitable method of estimating phase noise levels is to examine changes in the firing angle

a measured against the phase of the reference drive waveform.

One of the objects of the program to be described in appendix A2 therefore is to calculate

the firing angle a. In order to improve the accuracy, Newton-Raphson's interpolation is

performed in between discrete time steps at the termination of the conduction cycle. Any

change in value of the following will change the firing angle:-

1) Carrier lifetime;

2) Drive level;

3) Diode model value fluctuations (resistance and capacitance).

Considering the observations of Watanebe [Watanabe & Falcatsu, 1967] and McDade

[1966], the contribution of carrier lifetime functions to phase noise was investigated. A

conversion factor is determined for carrier lifetime fluctuations to phase noise by applying

a step change to the carrier lifetime and observing the change in a. Determination of the

lifetime change AT would be necessary by means of either measurement or noise theory.

For ease of comparison a constant phase noise level of -115 dBc/Hz was assumed at 1Hz

from carrier as reported by Muat [1986]. Fig7.42, §7.10.5, displays a plot of reciprocal

carrier lifetime against phase noise, other parameters remaining constant, with and without

self bias. A constant bias level of 1 volt is maintained by changing the bias resistor to

compensate for the effect of changing carrier lifetimes. The results for the phase noise are
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normalised to 1Hz from carrier so that a relationship can be applied to the phase noise

levels at other offsets from carrier frequencies. These figures can be applied to other

offset frequencies by applying a factor -10logio(f).

If no bias is used, the phase noise angle varies approximately according to the reciprocal

of lifetime, as predicted from equation (7.12) above. If bias is used, the program

indicates a higher level of phase noise, less dependent upon lifetime.

7.5.7	 Simulation program functional description

7.5.7.1	 Program overview 

The complete SRD simulation was written in Turbo Pascal Version 5.5 run on a PC using

a 33 MHz 80386 and 80387 co-processor. Program listings together with a description

can be found in appendix A2.

At the core of the program is the time domain simulation which runs continuously in a

closed loop, the loop being completed for each computed time-step of the simulation.

These time-steps will be for either the reverse or forward modes, transition between the

two modes being determined by the following boundary conditions:-

Forward to reverse mode	 Stored charge q <0

Reverse to forward mode	 Voltage across junction capacitance > barrier

voltage and diode current > 0

At the periphery of the main program lie the other sub program packages which act upon

the simulation and modify the input data. The following functions are provided by these

packages:-

a) Time domain simulation

b) Frequency domain plot with added noise

c) Feigenbaum diagram

d) Phase noise- carrier lifetime plot

e) Firing angle recurrence relation plot

7.5.7.2 Time domain plot

The basic function of the simulator is to provide a time domain file of the circuit over user

defined time limits. This can be either plotted to a screen or printed as a hardcopy.
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7.5.7.3	 FFT plot

For the FFT plot, the simulation is carried out with 4 types of noise sources either added

to or modulating the carrier input as will be described in §7.7.2:-

a) Additive noise

i) baseband

ii) RF (at carrier frequency)

iii) Broadband

b) AM noise

c) PM noise.

Any of these can be optionally selected by the user. They are all filtered by a first order

filter function to limit adverse high frequency effects with the simulation. Upon

requesting an FFT, the results of the time domain simulation are stored in a large array in

extended memory of size determined by the user. The FFT time increments are equally

spaced and independent of the simulation time steps. Linear interpolation is carried out

between the nearest data points to the FFT time increment. On completion of the time

domain simulation, an in place FFT is taken so the time domain data is replaced by

frequency domain data. The user will then need to specify the frequency range of which

an FFT is taken. An option exists in the display package for the FFT to provide a moving

average of the display to reduce noise variations and enable a value to be estimated for

noise levels. The moving average is taken retrospectively as the frequency point is

incremented

2.11.4Ecizgnbaumlagram
The remaining functions require the calculation of the firing angle a. This is calculated for

each cycle when the first reverse mode step is encountered. A Feigenbaum diagram is

formed from a plot of firing angle against load resistance and is discussed in §7.8.1 in

connection with SRD instability and subharmonic phenomena. The load resistance is

incremented by a small amount as a new conduction cycle is initiated. Load resistance is

represented by the horizontal axis of the diagram. A value of firing angle is given each

time the reverse region is initiated from a calculation of the time interval between the

present reverse region and the previous one. Firing angle plots are obtained on an axis

from ir/2 to 3ir/2 radians. Any firing angle values above that represent a lost impulse and

are overlaid by having the nearest integer value of 27r subtracted. Any value of firing

angle below E/2 represents double pulsing and is represented by a white spot. The

number of cycles subtracted is represented by a colour of the diagram as displayed on the

computer screen as follows and such a display is illustrated in plates 1 to 3 of §7.8.1.:-

259



0	 white

1	 red

2	 light blue

3	 yellow

4	 light green

The display is updated at the start of the reverse region, as a new value of a is calculated;

also a value is written to a file in a RAM disk for permanent storage after the program

halts. Such a data file enables rapid recreation of the display by storing the graph

co-ordinates.

The program halts after a user specified maximum value of R is exceeded.

7.5.7.5	 Phase noise plot

As described in §7.4.1, a small change is applied to the carrier lifetime in order to

estimate the resulting value of contribution to output phase noise. Ten cycles of input are

then allowed before the resulting phase change is measured. This is to enable transient

effects to decay away. After a measurement is taken, the carrier lifetime is incremented to

the next value to be plotted in the graph.

The adjustments to carrier lifetime, C, and subsequent measurements are carried out at the

start of the reverse region. The number of cycles are counted, and upon reaching the

10th, either of the following may occur:-

a) A value of firing angle a is stored, and the lifetime is incremented by a small

factor, or

b) A new value of a is obtained and from it, the previously stored value of a is

subtracted.

This resultant change of a is used to represent the phase noise value. A new value of

carrier lifetime in then applied ready for the next plotting point. Steps a) and b) are carried

out in turn after 10 successive cycles have elapsed.

Inverse lifetime is sent to the plotting package as the horizontal axis, as described in

§7.10.5, and phase noise is sent to the vertical axis. Since the inverse lifetime factor is

used, the graticule routine was re-written for a reciprocal factor on the horizontal axis.

Results from this option are presented and discussed in §7.10.5.

7.5.7.6	 Recurrence relationships

The theory behind the use of recurrence relationships to ascertain the likelihood of stability

problems is given in §7.9.3. To obtain a recurrence relationship, the starting point on the
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time axis is varied, and the value of successive cycles firing angle are plotted against the

previous cycle firing angle. On starting, the value of time is normally set corresponding to

the point on the input drive equal to the diode barrier voltage. For the recurrence

relationship plot, this time is offset by a factor that is incremented in a loop around the

time domain simulation. As the simulation proceeds for each time increment, the value of

a obtained for each successive input cycle is stored in an array. On completion of the

simulation, the nth value of a, stored chronologically in the a array are plotted against the

(n - 1)th value of a, for values of n= 3 to the final value of a stored. Following this, the

loop increments the simulation starting time offset and another simulation is carried out

until the offset range covered approximately equals one cycle. This method was chosen in
preference to adding displacements to a ohen the simulation is running, because

difficulties would be encountered when a becomes a strange attractor, that is when

non-convergence to a singular value occurs (see §7.8).

7.6 Time domain simulation results and implications

7.6.1	 Time domain simulation results 

The results of simulations for two comb generator circuits are presented below. The first

to be considered is the basic impulse generator of fig 7.6. of §7.5.1. Secondly, a

practical comb generator that contains the inductance of the matching transformer, and a

reflection capacitor that restricts the fast rising impulse to the output stage was considered.

By setting the values of Li and Cl to zero, the second circuit can be modified to give the

first circuit, enabling the same simulation to be used for both cases. The resulting time

domain plots given by the simulator for the basic impulse generator is displayed in

figs 7.10 and 7.12 below. Table 7.1 below illustrates the values of components used in

the simulations.

A time domain plot of a normally operating SRD comb generator is displayed in fig7.10.

The voltage level across the diode is plotted as the fine upper trace. Diode current is

plotted as the lower, more dense trace. The impulse in diode voltage corresponds to a

sharp step in negative diode current. When the charge is removed from the intrinsic layer,

the impulse occurs as the diode impedance rapidly rises. Initially, the diode conducts and

the carrier concentration in the junction increases. Maximum stored charge is achieved

when the diode current falls to zero, and begins to decline as the current flow is reversed.

Although the current flow is now negative, the diode junction is equivalent to a very large

capacitance, and the diode terminal voltage will remain positive, although the output
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voltage will fall due to the voltage across diode bulk resistance Rd. As the stored charge

falls to zero, the virtually infinite junction capacitance falls rapidly to the reverse junction

capacitance.

Simulation element

Table 7.1

Network 1 Network 2 Units

Reverse capacitance C.d 2.2 2.2 pF

Reverse resistance Rd 3 3 0

Minority carrier lifetime t 100 100 ns

Impulse drive inductance Lid 80 80 nH

Load Resistance R,, 50 100 SI

Source resistance Rsource 10 10 0

Peak drive voltage Epic 4 6 V

Drive frequency fr 100 100 MHz

Transformer inductance L1 0 470 nH

Reflection capacitor C2 0 25 pF

Time step dt 10-10 10-ro s

. I I fit 	 rtn U1 V1Ztf1.

Fig 7.10	 Time domain simulation with 500 load, network 1
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Consequently, a sharp peak in reverse (negative) voltage occurs and a damped oscillation

begins in the diode reverse voltage due to the effect of drive inductance and reverse

capacitance. When the oscillation results in the diode junction barrier voltage being

exceeded, forward conduction begins. This effect has been illustrated earlier in fig7.4.

The forward conduction is being driven by stored energy in inductance Ld. A small

amount of residual reference feedthrough is present due to the finite bulk resistance of the

diode, but this is small in comparison with the large reverse peak in output voltage that

occurs as the diode impedance increases.

The frequency domain representation of the time domain files can be obtained by a fast

Fourier transform. Fig 7.11 displays the frequency domain plot of the time domain file of

fig 7.10. A series of harmonics of steadily decreasing intensity is obtained. Between

harmonics, there is noise present as a result of the noise source introduced to the

simulation.

Leve 1 (

10dBn/d
....... ..............................................

Fig 7.11	 FFT of comb generator with 500

load and broadband additive noise, network 1
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Carrier storage division, network 1, Rx=4000

7.6.2	 Demonstration of the stability problem

The time domain simulation can now be used to investigate the various subharmonic

phenomena that may occur.

Ryan [Ryan & Williams, 1964] suggested that carrier storage effects can result in

frequency division. The effect of carrier storage division is that oscillation can occur at

sub-multiples of the driver frequency fret Although it is possible to harness this property

to undertake frequency division as well as multiplication [Pritchard, 1985], in general

these spurious modes are undesirable. Such modes could be induced in the simulation,

and in a real circuit (see §7.11) by simply changing the load resistance RX. Fig7.12

displays a time domain simulation of a SRD comb generator showing the effect of raising

the load resistance to 4000, giving carrier storage division. Every alternate impulse is

lost when more carriers are injected into the intrinsic region than can be removed during

	 TIME 2061 'PER ti.rursron .



Note the complete obliteration of every alternate pulse due to charge storage effects. This

provides proof that parametric oscillation can be achieved without idlers.

In fact the above described mode of operation more closely resembles a digital divider

rather than a negative resistance parametric oscillator [Goto, 1959]. An FFT of the time

domain file indicates that frequency halving is taking place. If this effect could be stable

and reliably maintained, then use could be made in the design of synthesisers. A plot of a

time domain measurement with a digital storage scope is shown in fig7.13 and displays

this effect. In the frequency domain this effect is displayed in fig7.25 in §7.8.1 that

shows the frequency domain results.
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Fig 7.13	 Digital storage oscilloscope trace showing carrier storage division

Fig 7.14 displays the fact that still other modes of operation are possible. This plot was

obtained by including the matching transformer and a load resistance of 1400a Random

variations in the period of the waveform appears to occur. An FFT of this time domain

file gives a plot resembling broadband noise similar to fig7.27 of §7.8.1. This

phenomenon is commonly referred to by RF engineers as "spectral breakup".

Thus the mode of operation of the same circuit configuration can be varied; altering one of

the circuit parameters slightly results in drastic changes in behaviour, and such changes

are termed bifiucations [Lauwerier 1986a];
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Fig 7.14	 Time domain plot, network 2
showing chaotic behaviour with Rx=1300S/

A time domain simulation is capable of indicating the mode of operation, but used alone

cannot indicate whether or not the circuit is operating near a bifurcation point, nor is it able

to enable evaluation of phase noise. One method of overcoming these difficulties is to

transform the time domain results into the frequency domain by means of an FFT, and this .

will be discussed in the next section.
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7.7.1	 Simulation method 

Phase noise is investigated by the introduction of noise sources into the SRD model.

Since the investigation concentrates on the mean power level of the noise rather than its

power distribution, uniform rather than Gaussian distributed random numbers are used.

(Accurate Gaussian random numbers use considerably more computation time to generate

than uniform random numbers.) Uniform numbers are acceptable if the output mean

power only of the noise is of interest, but if the simulation is to be part of a larger system

simulation that is sensitive to the noise distribution (eg bit error rates) then Gaussian

distributed random numbers must be used.

Initially, the degradation effects of the comb generator upon a signal with noise

modulations are considered. Distribution of the noise in the frequency domain is plotted

with the aid of an FFT, and this enables a further check on stability. Then, noise sources

internal to the SRD are simulated and the results discussed in §7.10. Particular attention is

given to carrier recombination noise as this appears to the principle noise source in the

SRD. Changes to the self-bias and SRD lifetime are made during simulation and the

resulting noise output is recorded.

7.7.2	 Input signal models

For the case of noise modulations on the input signal, the following noise excitations were

used:-

1) Additive noise;

2) Amplitude Modulation (A.M) noise;

3) Phase noise.

To study the spectral distribution of the noise and signals at the output of the comb

generator, the appropriate noise modulation is selected, and a time domain file is created.

Subsequently, an FFT is taken of the time domain file to convert it to a frequency domain

file.
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The input carrier to noise density is first established by obtaining an FFT of the modulated

input waveform. From a moving averaged display obtained as described in §7.5.7.3 the

carrier to noise density ratio is measured by inspection against the graticule. For each

noise type, the measured signal to noise ratio in dB is given with the captions of fig7.15

to 7.19. The same procedure is repeated for the FFT of the 10th harmonic of the output of

the simulated comb generator; the difference in these levels in dB gives the actual noise

increase due to frequency multiplication, which can be compared with the theoretical value

of 20 dB.

The RF input signals to be used in the simulations are shown in figs 7.15 to 7.19.

Fig 7.15 displays the signal with random phase modulation. Fig7.16 displays amplitude

modulation, fig 7.17 is bandlimited RF noise, fig7.18 broadband additive noise and

fig 7.19 is baseband additive noise.

With the additive noise, it is important to bandlimit the noise applied to the simulation to

ensure accurate results by avoiding aliasing problems. The noise is bandlimited by

applying the function:-

Vni = Vnpk (2 x rand -1)	
(7.48)

Vnni(n) = Vnoi(n-1) (Vni - Vnoi(n-1)(1 - eXp(-111	 (7.49)

where rand is a random number generated by PASCAL and Vnpk is the peak noise

voltage. r is a filter time constant of 1/fr, Vni is the random noise voltage source,

Vnoi(n-1) is the previous noise output of the bandlimiting filter and Vnoi is the present

output. If the random number is updated at every time step in the simulation and the

additive noise formula is used:-

Edriv := Epeak(Sin(27tft) Vnoi)	 (7.50)

A spectral display obtained by computation of the FFT of the broadband additive noise

and input reference frequency is given in fig7.15.

As can be seen from the Manley-Rowe series equations (7.6 & 7.7), additive noise can

introduce phase noise in a non linear circuit by two principal mechanisms: direct at the

carrier frequency and by upconversion from low frequencies. Both effects are possible in

the step recovery frequency multiplier and so it is necessary to discriminate between these

effects. Low frequency noise on the input signal can be filtered out by means of a

transformer, but effects within the diode such as forward barrier voltage fluctuations

cannot be removed in this manner.
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Fig 7.15	 Input signal +broadband additive noise; signal to noise density = -68dB

If instead of adding a new random number every time step of the time domain simulation,

a new random number is added every input cycle, baseband additive noise is created.
Equation (7.49) can be also used in this case. Baseband additive noise can be used to

investigate upconversion effects from low frequencies. In the frequency domain, a

spectrum that is approximately flat at DC, but with notches at the reference frequency is

obtained as can be seen from fig7.16.

A.M noise is assumed to be unchanged by the multiplier according to many authors

[ICroupa, 1973]. Other authors assume that the multiplier is to be preceded by a limiter

[Manassewitsch, 1985c]. However this does not consider the fact that residual AM noise

can be introduced by the limiting process and by the multiplier itself. There are

publications [Fairley, 1968] that assume a multiplier raises the AM noise by 20logN,

where N is the multiplication ratio. Egan [1981] states that in many cases AM noise is
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suppressed by the multiplier, but carries on to say that the degree of suppression of the

multiplier depends upon the configuration. Manassewitstch [ibid] suggests that the actual

'multiplier response to AM noise is given by 20 log (m N) where m is a configuration

dependent coefficient which can vary from 0 (total suppression) to 1 (20logN rule).

Fig 7.16
	

Input signal +baseband additive noise signal to noise density = 71dB

For the specific case of the SRD multiplier, the sensitivity to AM noise can be determined

by the simulation program described here. AM noise modulation on the input carrier is

introduced by the following equation:-

E:= Epe.„k(1 + Vnoi)sin(27tft)
	

(7.51)

Once again a filtering function such as (7.50) must be applied to avoid aliasing problems.

Fig 7.17 shows the input signal with AM noise applied.
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Fig 7.17
	

Input signal + AM noise; signal to noise density = -75dB

Phase noise is introduced by phase modulation of the applied waveform:-

Edriv:= EpeakSin(27Cft+Vnni)
	

(7.52)

Fig 7.18 displays the effect of phase noise upon the input signal.

The RF additive noise is obtained by simultaneously applying AM and phase noise.
Separate random numbers NT l and Nina are used for the AM and phase noise.

Vnii = V k(2 x rand -1)

11
-t

Vnoil(n) = Vnoil(n-1) + (Vn11 - Vnoil (n-1))(1 - exPex(----))

Vni2 = Vnpk(2 X rand -1)

(7.53)

(7.54)

(7.55)
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Vnoi2(n) = Vnoi2(n-1) (Vn12 Vnoi2(n-1))(1 - expra	 (7.56)

This is an approximation that is only valid for the good signal to noise conditions that are

likely to occur with synthesisers. A frequency domain representation of the bandtimited

additive noise is a spectrum that is approximately flat around the carrier, but has notches at

baseband and twice carrier frequency.

Fig 7.18	 Input signal +phase noise; signal to noise density = -75dB

Fig 7.19 displays the spectrum with bandlimited additive noise added. A single time

constant filter is used for simplicity. The filtering function is not as ideal in terms of

frequency response as if more complex filtering is used such as finite impulse response or

window filters, but is less demanding on computation. If more accurate results are

desired such filters will be required.
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7.8 Bifurcatius: implications for phase noise and
spectral purity,

7.8.1	 Relationship between the Feigenbaum diagram and the

frequency domain spectrum

An option exists in the SRI) simulation program as discussed in §7.5.7.4 to plot the firing
angle a against load resistance R. For a certain mode of operation of the comb generator

circuit, certain values of firing angles will be reached after initial transients have decayed,
the value of a is therefore the attractor. The attractor - load resistance R plot was

introduced to map out all possible modes of operation of the comb generator circuit. For a
particular value of load resistance, either a single value of a exists (sink attractor),

multiple values of a are produced in cyclic rotation (limit cycle attractor shown as multiple

273



1 Plate 1 Feigenbainn Diagram for Comb Generator

load Resistance (R) ohms
200	 600	 800

points on the graph), or very large number of a points may exist (strange attractor). The

last condition is known as chaos, and the transitions between the conditions are the

bifurcation points. Such a plot of a values, displayed as plate 1, is of particular interest

as it resembles a class of solutions displaying chaotic behaviour known as Feigenbaum

structures [Becker &Dorfler 1990]. A Feigenbaum diagram is a particular form of the

bifurcation diagram [ibid] that is commonly encountered in chaos theory.

This behaviour originates from the population of stored charge carriers in the device, and

the carrier storage effect [Ryan & Williams, 1964] is a physical manifestation of the above

solutions. The fact that a Feigenbaum diagram is produced implies that some form of

recursion or feedback mechanism must be present together with a non-linear function.
The value of a determines the number of charge carriers generated in the conduction
phase, these in turn determine the value of a in the next cycle, and so on. Non-linearities

are introduced mainly by the discontinuity between the conduction and impulse regions.

Period doubling at the onset of the chaotic behaviour is a characteristic of this particular

phenomenon, hence the subharmonic generation.
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It would seem that the Feigenbaum Diagram enables a more global approach to the

problem of phase noise analysis since it can include carrier storage division, not easily

accounted for by parametric (negative resistance) analysis.

Even if oscillations cannot occur, the parametric gain will result in enhancement of either

the SRD noise or driver circuit noise (see fig7.11) as discussed in §7.4.4. At frequencies

close to the desired signal the negative resistance is reduced due to finite carrier lifetime.

We observed, however, that this "parametric gain" is closely linked to the distance from

splits or bifurcations in the Feigenbaum Diagram. Referring to Plate 1 the single line at

the left represents stable harmonic generation. For low noise frequency multiplication it is

vital that the bifurcation points be avoided.

In order to demonstrate the significance of the Feigenbaum diagram, points on such a

diagram are related here to their corresponding frequency domain plots by selecting RF

additive noise on the input and obtaining an FFT of the time domain file. Subsequent to

obtaining the FFT, the noise sidebands at the 10th harmonic are displayed. Both circuit

configurations given in §7.5.1 are subject to this simulation. Initially, dependence of

phase noise on the effect of bifurcation points is investigated with RF additive noise

applied at the input, an FFT taken of the time domain file and fig7.20 displays the

spectrum with a 501.2 load to the simplest comb generator circuit as given in table7.1.

Fig 7.21 shows the effect of increasing the load to 1000.

In fig 7.10, §7.6.1. a time domain simulation of a correctly functioning comb generator

with one impulse per cycle of input has been displayed. An impulse occurs when the

charge is removed from the intrinsic layer, and the diode impedance rapidly rises. Point A

on the Feigenbaum diagram (plate 1) represents a stable comb generator with a single
value of a. An FFT of the above simulation is displayed in fig 7.20 showing noise

sidebands at the 10th harmonic. There is significant peaking at the half carrier frequency,

but the noise is increased by approximately 20dB in comparison with the sidebands on

the RF input signal. This is as expected from the 20Log (N) formula.

Increasing the value of load resistance nearer the bifurcation point at point B gives an FFT

plot of fig 7.21. At an offset frequency of half the input frequency, the peaking increases

to 14dB, but at the close to carrier frequencies, no additional degradation is apparent.
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Fig 7.20	 RI additive noise added, network 1, 500 load.
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Fig 7.21	 RI additive noise added, network 1, 1000 load.
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The pealdng in the noise floor is much more pronounced between the comb lines. If a

large peak occurs at any frequency, in some systems, the noise will appear at baseband

due to non linear intermodulation effects, and phase noise degradation could result as in

the case with fig7.22 which was obtained by increasing the load resistance to 14O.

Noise peaking at the half carrier frequency increases to 27dB and the close to carrier

noise is increased an extra 17dB above the theoretical level.

As a check to ensure that the bifurcations were a result of SRD behaviour and not due to

the algorithm, simulations were carried out at varying values of time step. Only slight

differences in results were obtained, on account of the different values of integration

approximation error.

..	 .......................................................

leve1(d0n)	 •........................................
10dBn/diuision

'Frequency (MHz):
:woo	 :1050	 .	 . 1150

Fig 7.22	 Rf additive noise added, network 1, 140f/ load.
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At the bifurcation point on plate 1, as indicated by point C, it can be noticed that the phase
plot is vertical on the a axis. A vertical line indicates that a range of phase values can

exist simultaneously. This has disastrous implications for the phase noise and "phase hit"
performance. An FFT of the time domain file, fig7.23, displays the resulting high phase
noise, obtained by increasing the load resistance to 1640. As the bifurcation point is

approached at 164n the noise at the 10th harmonic becomes greater in power than the
signal.

..	 ............................................................................

Fig 7.23	 Rf additive noise added, network 1,
plot of 10th harmonic with 164Q load.

A spectrum analyser plot of a comb generator built to a circuit as described in §7.11 and

measured by the author is displayed in fig7.48 below.

As the bifurcation point is approached, a plot of the close-to-carrier excess phase noise

above the multiplication factor is displayed in fig 7.24. It can be observed that the noise

stays close to the multiplication factor, until Rx is increased above 1100. The phase

noise begins to increase and rises rapidly towards the asymptote at the bifurcation point.
This effect could have catastrophic consequences for any system if such a circuit is used
as a local oscillator.
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Fig 7.24	 Plot of excess noise close to carrier for network 1

against load resistance as bifurcation point is approached

At the bifurcation point, two attractor points appear, but the impulse repetition rate is equal
to the input frequency. However, the firing angle takes on of two possible values for each

alternate input cycle. After this bifurcation point a region of chaotic behaviour is

encountered. In this region, the repetition rate is equal to the input frequency, but the
strange attractor a will take on many values, but at a rate of one per cycle. When the load

resistance becomes greater than 3000, cycles begin to be lost at the output, and on

increasing values of Rx still further, a stable carrier storage division region is obtained.

Frequency halving is indicated by a colour change to blue on the Feigenbaum diagram,
plate 1. Fig 7.25 shows the 10th harmonic of the input frequency with a load resistance
of 400 ri. The noise sidebands appear to show a degradation of 8dB in addition to the

multiplication factor, but stable frequency halving is demonstrated.
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Fig 7.25	 RI additive noise added, network 1,
plot of 10th harmonic with 4000 load

On further increases of load resistance to 500, fig 7.26 is given showing peaking effects

between the comb lines as a further bifurcation point is approached. Noise peaks are

visible at a quarter carrier frequency indicating the emergence of another bifurcation point,

as can be seen from fig7.26. Excess noise degradation above the multiplication factor is
now 4dB.
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Fig 7.26	 RI additive noise added, network 1,
plot of 10th harmonic with 5000 load

At very high values of load resistance, such as 1300S2, a further region of chaotic

behaviour as displayed as can be seen at point E in the Feigenbaum diagram, plate 1. A

frequency domain plot, fig 7.27, indicates a continuous spectrum resembling noise. The

noise source is turned off to demonstrate that the noisy spectrum resulting is due to the
circuit behaviour rather than any noise source. This provides evidence that the noise like

structure of the spectrum originates from the chaotic behaviour of the comb generator

circuit and exists even there is no noise source present in the circuit. The spectrum is due

to chaotic behaviour rather than noise. Another characteristic behaviour of such a chaotic

circuit operation is a drastic change in overall shape of the spectrum for only slight

changes in load resistance, and there are windows in the chaotic region where a discrete

line spectrum can suddenly appear.
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Fig 7.27	 RI additive noise disabled, network 1, overall
spectrum showing chaotic behaviour with a 13000 load

The Feigenbaum diagram indicates that the phenomenon is not noise, since noise would

result in a random spread of points on the display. The display is not random, but forms a

pattern characteristic of chaotic systems.

7.8.2	 Multiple bifurcations 

A particular form of bifurcation diagram that relates to period doubling chaos is given by a

Feigenbaum diagram. Such a form of chaos describes effects resulting in the formation of
half carrier subhannonics. As mentioned in §7.6.2 other forms of chaos are possible. If

the comb generator is driven by the high inductance matching transformer circuit of

network 2, fig 7.7, §7.5.1, then another form of chaos common in RE non-linear

circuitry is possible. This results in the chaos developing close to the RE carrier

frequency rather than half carrier frequency. The bifurcation diagram corresponding to

values given in table 7.1 is given in plate 2. A scale of colours are used to represent the

different periods between the firing of the SRD. The white dots appearing higher up the
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graph represent double pulsing, that is more than one pulse is being produced per input

cycle.

The area around the multiple bifurcation point is expanded to give the plot of fig7.28.

The colours representing the different time periods are given in §7.5.7.4. Point A

represents a value of load resistance of 100f/ at the extreme left of plate2. At such a

value of resistance, the comb generator is displaying normal harmonic generator operation

and fig 7.29 illustrates the output spectrum. This spectrum is formed from RF additive

noise at the input and by a load resistance of R=100; showing the effect of "parametric

gain" increasing the level of noise above the theoretically expected level. Noise sidebands

are increased at a frequency of approximately 20MHz away from the carrier by 10dB

above the theoretical 20LogN. The increase is sustained for offset frequencies greater

than 20MHz offset frequencies. However, the noise floor is free from any peaking under

these conditions. Any spurious signals on the input carrier signal at an offset from carrier

frequency of 20MHz would also be raised by a factor of 10dB in addition to the

multiplication factor. If the transfer function of a phase locked oscillator including a SRD

as a comb generator fails to include this additional factor in the synthesiser spurious signal

calculations, the synthesiser will perform worse than expected and may well fail to meet

any specifications for spurious signals.
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Fig 7.28	 Plot of enlarged area of multiple bifurcation point, plate2
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Fig 7.29	 Plot of comb generator with 1000 load, network 2.

Increasing Rx to 2700 at point B just before the multiple bifurcation point on plate 2

results in the appearance of noise peaks around the carrier frequency as shown in fig 7.30.

Peaking of the noise floor in SRD circuits has also been demonstrated by measurement

[Scherer, 1981]. Again as the bifurcation point is approached, the phase noise is
increased. With network 2, there exists a multiple bifurcation point, that is the attractor a

branches into many points; this effect is further discussed in §7.9.5.

:900 :95o
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Fig 7.30	 Plot of comb generator with 2700 load, network 2.

At point C, an FFT of the spectrum, fig 7.31, displays the degeneration of the circuit
performance into chaos for a load resistance of 3500. Close to carrier noise is raised by

20 dB above the multiplication factor theoretical level and spurious signals are appearing
at large numbers of offset frequencies. This spectrum is typical in cases where the close

to carrier form of chaotic behaviour occurs.

Such form of chaos can also be observed in class C RF power amplifiers [Luettgenau,

1973] where the effects are potentially destructive.

:900
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Fig 7.31	 Plot of comb generator with 35O2 load, network 2.

Raising the drive level to 12 volts peak with network 2 gives another bifurcation diagram,

plate 3. In this case there is variation in the number of successive missed cycles as

revealed by the numbers of colours in the diagram. The time domain plot, fig7.11

reveals that this is the case.
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7.9 Recurrence relationships and bifurcations 

7.9.1	 Introduction to recurrence relationships in SRD circuits 

Having demonstrated that bifurcations have important implications for the phase noise

performance of a SRD comb generator in the previous section, the origin of the bifurcation

effect in such circuits will be discussed here.

Feigenbaum published a paper [Feigenbaum, 1978] demonstrating the universality of the

bifurcation effect. This universality applies to systems that contain some form of

recurrence relationship ie:-

Xn = f(x-)
	

(7.57)
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03o = ArfLC
(7.60)

For dynamical systems a steady state solution exists when:-

3(n = Xn-1	 (7.58)

For this reason, x„ is called the attractor.

Carrier storage effects could contribute to the recurrence relationship since the quantity of
charge stored affects the firing angle a; in turn affecting the the charge stored in the next

period. In studying chaotic behaviour of the comb generator it is convenient to make the
firing angle a be the attractor.

7.9.2	 Contribution to the recurrence by the SRD impulse

One mechanism by which the stored charge in one cycle affects the stored charge in the

successive cycle will be discussed here. A change in the level of stored charge as a result

of firing angle changes alters the current flowing in the diode at the onset of the impulse

Ii,. A relationship between the current Ip and the reverse impulse can be obtained from

equation 7.2:-

Vd = --;---3(exp-(A - 13)t - exp-(A + 13)0
2Cdj (7.59)

where A and 13 are as defined in §7.3.3. When the forward cycle commences, the energy

remaining from the impulse response contributes to the recurrence effect. This
contribution depends upon the value of 13. A plot of the residual energy after the impulse

interval against the value of load resistance Rx is given in fig7.32. Point A corresponds
to a damping factor C of unity, where C is given by:-

C = ,\41 1+113-04

o

A value of unity for C occurs at a load resistance Rx in ohms of:-

RI = •NrC4C
	 (7.61)

With the values used for network 1, this corresponds to a value of 95.30 for R.

As can be seen from fig7.32, on decreasing C below 1, the energy contribution to the

next cycle increases substantially.
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Fig 7.32	 Plot of residual impulse energy against
damping factor at termination of impulse period

7.9.3	 Determining stability from recurrence relation plots 

A plot of the recurrence relationship for a was obtained from the time domain simulation.

The initial conditions of the simulation were varied and a plot made of the resulting values
of a.

Plots of an against an_ i are illustrated in figs 7.35 to 7.38. These plots are obtained by

monitoring the firing angle in the first period and storing this as a. In the succeeding
period, the firing angle is stored as an. A complete plot can be built up from as little as 20

cycles making this a rapid method of evaluating stability. A straight line is plotted on the
graph representing 041_ 1 = an.

Figs 7.33 and 7.34 illustrate possible relationships between an and ocn_1. The shaded

curve is the recurrence relationship, and the solid line a possible locus of the value of a to

the attractor.
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Feigenbaum [1978] suggests that the gradient of the recurrence relationship determines

what form the convergence of a n takes to the attractor ac.,: a positive slope suggests

monotonic convergence, a fractional negative slope gives a damped oscillatory

convergence for example in fig7.35, and a slope of -1 gives the limit for convergence to a

singular attractor ac.,. If the absolute value of the slope is greater than -1, for example in

fig 7.36, then the recurrence trajectory will diverge away from ac., in an expanding locus

until the geometric mean of the slopes at a2 and al is unity. At this point, a stable

recurrence occurs between a2 and al . This trajectory is known as a "limit cycle

oscillation" and occurs in many cases such as digital filters [Rabiner & Gold, 1975]. The

transition point between singular aoc, and limit cycle oscillation gives a bifurcation point.

The bifurcation point is therefore defmed as the point where the gradient is:-

dan - -1
	

(7.62)
dan_i

It is possible for the limit cycle oscillation to be unstable, such as in fig7.36, where

successive cycles result in the geometric mean being alternately greater than or less than

unity. In this case a further bifurcation is possible. This situation occurs in the

bifurcation diagram at point D'.

The recurrence plot ceases at a particular value of ctn.'. If an_1 exceeds this, the charge in

the next forward mode will not decrease to zero, therefore the impulse will not occur in

that time period. Therefore if the limit cycle oscillation extends beyond the maximum

point of the recurrence relationship, a cycle is omitted, and an impulse occurs at every

alternate cycle.

In the case of the plot, fig 7.35, for Rx = 5OS2 the slope is of value -0.25 indicating a

non monotonic convergence with limited oscillation.
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For Rx = 1000 the slope is now -0.75. Onto fig 7.36 is traced the trajectory of the

recurrence to a value of a. for the case of Rx = 1000. Fig 7.36 indicates that the

convergence is non-monotonic with many oscillation cycles before a. is finally reached.

In the case of Rx = 100, although a convergence occurs to a singular value a,„. there is

considerable oscillation before the final value is reached. This oscillation in the time

domain results in peaking in the frequency domain. This can be clearly seen in fig7.21,
§7.8.1, which is a FFT plot of the time domain simulation of network 1 with a 100 SI

load. The noise peaks up by 14dB in this case, and could be a potential embarrassment

to the performance of a system that includes such a circuit in its local oscillator.
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For Rx = 161 0 at point C, the slope is -1, corresponding to the bifurcation point. This

can be seen in the plot 7.37. Stable limit cycle oscillations occur when the geometric mean
of the gradients at the intersection of the oscillations with the recurrence curve of a

equals -1.

.c
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7
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1	 2	 3.	 4.	 5.

Fig 7.37 Plot of recurrence relationship with 1610 load resistance
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Increasing the value of Rx beyond this in fig 7.38 results in the limit cycle oscillation

developing as indicated by the rectangle at the intercept between y = x and the recurrence

curve. In this case the limit cycle oscillations are unstable, leading to further bifurcations.
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Fig 7.38	 Plot of recurrence relationship with 200f/

load resistance showing unstable limit cycle oscillation
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7.9.4	 Other contributions to the reccurrence relation

The oscillatory convergence cannot be totally explained by energy remaining after the

reverse impulse, however. According to fig 7.32, there is little energy transferred from

the previous cycle through the reverse impulse region for load impedances of less than

100 O. Therefore, the quantity of stored charge in one cycle can have little direct effect on

the stored charge in the next cycle; although the frequency domain plots of fig7.21

suggest considerable peaking. Another means by which the stored carrier level in one

region may influence the charge level in the next region must be found and investigations

with the simulation program reveal that it is the phase of the conduction and reverse

impulse regions relative to the drive waveform that result in the peaking effect. Increasing

the duration of the conduction mode past the equilibrium value results in an increase in the

phase angle of the impulse region. Such an increase in phase angle results in an increased

drive voltage being applied to the impulse coil towards the end of the impulse period, thus

shortening the impulse period. This increased drive results in the onset of the next

forward region being delayed further towards the end of the positive going half of the

input drive waveform. Consequently, the maximum charge level in the intrinsic region of

the SRD will be lower, thus a shorter charge removal time will be required. Since both

forward and reverse regions are shorter in time duration, an increase in firing angle for

one cycle results in a decrease in the firing angle for the next forward cycle.

As can be observed from fig 7.32, an increase in the slope of the recurrence relationship

corresponds to an increase of the energy fed forward from the previous cycle. It is

implied therefore that a high value of damping factor would be necessary to ensure

stability. Unfortunately, however, a high damping factor would result in poor output at

high harmonic frequencies. To ensure that sufficiently large amounts of energy are

available at higher harmonics it is necessary to operate the comb generator at a low

damping factor. This is particularly the case with a frequency multiplier which must

operate at maximum efficiency. This poses a problem with respect to stability. A plot of

the recurrence relationship would considerably ease the risks associated with the design of

comb generators and multipliers. Multipliers must frequently operate in conditions of

extreme temperatures such as at antenna mountings. When a low damping factor is used,

the recurrence curve gradient changes rapidly. Although a multiplier may exhibit

monotonic convergence at room temperature, this may not be the case at other

temperatures. In fact the operating point may pass right through the region of oscillatory

convergence and through a bifurcation point. Disastrous effects on system performance

will therefore ensue. Fig 7.39 displays a 10 GHz multiplier that displayed such an

instability over temperature..
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As a result of the stability problem, the extra complexity of a comb generator driven PLO

over a multiplier can be justified when the local oscillator must operate over a wide

temperature range.

This section has shown that there are three effects that determine the stability of the SRD

comb generator:-

1) Carrier storage effects resulting in failure to switch to the impulse mode during

some cycles. This is characterised by a discontinuity in the recurrence curve.

2) Energy stored in the SRD reverse capacitance and impulse inductance remaining

after the termination of the impulse mode, revealed by sharp curves in the

recurrence graphs for alpha.

3) Phase relationships of the regions with respect to the input waveform result in a

gentle curve in the recurrence plots. A connection between this stability effect

and the shape of the driving waveform is therefore indicated.

CENTER 10.29 OHz	 SPAN 2.00 OHs
RES OW 2 MHz	 VOW 100 kHz	 SWP 80.0 muse

Fig 7.39	 Spectrum analyser plot of a

100th multiplier displaying period doubling
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Further work, not covered by this thesis, would be required to assess the effect on

stability of the shape of the driving waveform.

7.9.5	 Recurrence relation and multiple bifurcation points

The recurrence relationships so far discussed are for a single dimensional recurrence map

which result in period doubling bifurcations. More complex behaviour results if a multi-

dimensional recurrence map exists for a particular configuration [Lauwerier 1986131. Such

is the case for network 2 using the matching transformer, where the phase of the voltage

across the reflection capacitor and the SRD firing angle enter into the recurrence relation.

With the one dimensional recurrence relation, the limit cycle attractor can only move out

from the sink in two directions on a single line, therefore each bifurcation results in

successive period doubling. With a multidimensional recurrence, the limit cycle attractor

can move out from the sink in many directions, resulting in the limit cycle looping round

many points. Therefore the bifurcation point becomes a multiple bifurcation point as

shown in plates 2 and 3. The fact that the attractor can break into a long limit cycle

enables the chaotic phenomena to develop at close to carrier frequencies rather than at half

carrier for period doubling chaotic behaviour. It is beyond the scope of this thesis to

examine multi-dimensional recurrence relationships in more detail, but is recommended as

a topic for further research.

7.10 Results of simulation: other noise effects

7.10.1 Flicker noise from the driver stage

The simulation work discussed so far used additive noise modulation on the input. Other

noise modulations are considered here and are of interest primarily as possible means of

introducing llf noise.

7.10.2 Frequency domain plotting of the simulations with phase
poise on the input

Plots were obtained for both networks using phase noise on the input carrier and load

resistances of 100Q. The plots closely resembled the additive noise plots and are

therefore not presented here. Approximately 20logN of degradation in the noise floor is

revealed.
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7.10.3 Effect of AM noise

AM noise is of interest because a mechanism exists for introduction of lff noise as a result

of low frequency amplitude variations from the preceding amplifier/ limiter stage. On

applying AM noise to network 1 with a 1000 load resistor, a similar plot to the additive

noise plot of fig 7.21 is obtained. The noise is raised by 19 dB against the noise at the

input frequency, that is 1 dB less than the multiplication factor. A plot of the output

obtained from applying AM noise to network 2 with a 100S2 resistor is displayed in

fig 7.40. The AM noise is raised 17 dB from that at the carrier frequency. There is an

increase in upconverted noise away from the carrier as with additive noise. In both these

cases, AM results in noise multiplication alongside PM noise. One may therefore

conclude that the AM rejection of the SRI) circuit is poor.

Fig 7.40	 FFT Plot of comb generator output

with 100 SI load, network 2, AM input noise.
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7.10.4 Broadband additive noise

Broadband additive noise was input to the simulation of network 1 with a 1000 load on

the output. Noise degradation is now 30dB, that is 10dB above the multiplication

factor. Included in this figure is the upconversion factor from low frequencies. Therefore
the SRD is more sensitive to upconverted low frequency noise, than to noise at the input

carrier frequency.

7.10.5 Effect of bias

The simulations so far studied deal with externally introduced noise to the SRD. Attention

is now turned to the indigenous sources of phase noise. Baseband additive noise is used
to simulate the effect of barrier voltage fluctuations. Degradation is measured by
comparing the signal to noise at the output harmonic to that of the ratio of input signal to

low frequency noise. Low frequency noise sensitivity is of particular interest as there is

potential for noise to be introduced here as well as with the AM noise. Fig7.41

shows a plot of baseband upconversion against bias resistance for the simulation. As the

bias voltage is increased, the circuit becomes less sensitive to baseband noise. This could

suggest that adding bias could make the circuit less sensitive to bather voltage variations.

— 38- 	

—36- 	

—34- 	

—32 	

—28-

—26-

—- 24

22

- 20
Bis resistanel (ohny)

0	 200 400 600 800 1000 1200

Fig 7.41	 Relationship between bias resistance and upconverted

baseband additive noise, simulated SRD comb generator
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Fig 7.42	 Plot of phase noise against carrier lifetime

calculated for SRD comb generator drive frequency of 100MHz
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7 10.6 Effect of carrier lifetime fluctuations

Another indigenous mechanism for llf noise is carrier lifetime fluctuations. By varying

the lifetime of the carrier and observing the change in firing angle, the effect of carrier

lifetime upon phase noise can be estimated. A conversion factor is determined for carrier

lifetime fluctuations to phase noise by applying a step change to the carrier lifetime and
observing the change in a as described in §7.4.1. The lifetime change would need to be

determined from either measurement or noise theory. For ease of comparison a constant
phase noise level of -115 dBc/Hz was assumed at 1Hz from carrier [Muat, 1986].
Fig 7.42 displays a plot of reciprocal carrier lifetime against phase noise, other parameters
remaining constant, with and without self bias. As the lifetime is varied, the DC current
used for self bias varies. Therefore the value of bias resistor is changed to keep a constant

bias level of 1 volt. The results are intended to apply at 1Hz from carrier. These figures

can be applied to other offset frequencies by applying a factor -10 logio(f).

• Phase jitter (mierorads/ Hz)

•• • •	 ........ • ...................................................................

•• • • ......... • .............................................

	  .... • ................... .....................

With Bias



If no bias is used, the phase noise angle varies approximately according to the reciprocal

of lifetime, as predicted from equation (7.12) above. If bias is used, the program

indicates a higher level of phase noise, less dependent upon lifetime.

The effect of carrier lifetime variations agrees with that suggested by McDade [1966] in

that phase noise increases with increased forward current. For best phase noise

performance therefore, the reference frequency should be well above the reciprocal of the

lifetime.

According to the computer simulation, when self bias is used, the fluctuations in carrier

lifetime result in fluctuations in bias voltage which exacerbate the phase noise degradation.

Long carrier lifetime devices, which would otherwise result in low phase noise if no bias

was used, show a particularly marked increase in phase noise. This is in contradiction

with the sensitivity to forward bias voltage variations. More information is required to

determine the optimum operation point by consideration of the trade off between the

relative levels of carrier recombination noise and noise due to forward barrier fluctuations.

noise noise levels could in particular be determined by the above discussed effects.

McDade [ibiel] and others observed more noise when significant rectification current was

flowing. The implication from this is that the dominant mechanism for noise introduction

is carrier recombination, rather than baseband forward voltage fluctuations of the junction

barrier voltage which would occur independently of rectification.

In order to optimise the noise performance it would be necessary to minimise the effect of

recombination noise, bather fluctuation effects, AM to PM conversion, and then take an

FFT of the spectrum in order to evaluate subharmonic effects.

7.11 Measured results

7.11.1 Published results for SRD multiplier phase noise

It is instructive to compare some available results for phase noise performance of comb

generators, multipliers and phase locked oscillators. These are shown in fig7.43.

Manufactured phase locked oscillators have much higher phase noise than the comb

generator optimised for low phase noise. The intercept point of the 500MHz comb

generator at fin is -131 dBc/Hz [Scherer, 1981]. If a value can be assigned to the lifetime

variations, then it should be possible to predict the phase noise for any SRD comb

generator.
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In order to verify the simulated results, comb generators were built and measured. In the

time domain, measurements were taken with a Digitizing Sampling Oscilloscope (DSO).

type HP54121T (Hewlett-Packard). Fig 7.44 displays the circuit used for the

measurement of SRD performance in the simplest configuration which was driven by a

Marconi 2022 signal generator followed by RENT 603L 3W amplifier and output filter to

reduce the harmonic content to below 50dB. 3 dB pads are used to reduce the effect of

undefined impedances. Drive inductance is formed from the secondary of the matching

transformer. A small capacitor is used as a potential divider at the output to couple signals

to the HP 8566B spectrum analyser. Diodes D1 and D2 are for the sampling phase

detector. The RF input is unused in this measurement. The digital sampling oscilloscope

(DSO) is connected directly across one side of the SRD.

100MHz

HS 33004a Comb Gen
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Simplest SRD comb generator circuit built for measurements

Measurements for a circuit corresponding to network 2, V1.5.1 were obtained from the

specially built sampling phase detector circuit of fig7.45. Fig7.46 displays a method of

adding broadband noise. In addition to the matching transformer, there are two impulse
inductors Ld and the reflection capacitor added. The advantage of this circuit is that it
allows a broader bandwidth on the input but stills maintains narrow pulse widths at the

output.

Fig 7.45	 Circuit with matching transformer

and reflection capacitor built for measurements
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Fig 7.46	 Adding broadband noise to investigate peaking effects

Fig 7.47 and 7.48 displays the results of DSO plots for values of load resistance of 1000

and 500 S2 respectively. The 5000 plot shows clearly the effect of carrier storage period

doubling.
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Fig 7.47	 Digital storage oscilloscope (DSO)
plot of SRD comb generator with 1000 load

Frequency domain plots were made with a Hewlett-Packard HP8566B spectrum analyser.
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Fig 7.48	 Digital storage oscilloscope (DSO)
plot of SRI) comb generator with 5001) load

The drive frequency is in this case 88MHz, but similar effects were obtained to that at
100 MHz. Fig 7.49 displays the frequency domain plot with a 1300 load.

Fig 7.49	 Spectrum analyser plot of SRI)

comb generator showing half carrier noise peaks
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Noise peaks at half carrier offset frequencies can be noticed. An increase in noise level is
also displayed around the carrier harmonics. Increasing the load resistance to 150S/

results in the drastic degradation of signal to noise ratio as can be observed from fig7.50.

The effect of the bifurcation point on the phase noise can be clearly observed.
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Fig 7.50	 Spectrum analyser plot of SRD

comb generator showing bifurcation point

Increasing the value of the load resistance to 40011 gives stable frequency halving.

Fig 7.51 shows this frequency halving effect. It can be observed that the noise sidebands
have increased.
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A broadband plot displaying carrier storage division by having a load resistance value of
400 can be observed in fig7.52.
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Fig 7.52	 Spectrum analyser plot of SRD comb generator

showing broadband output of network 1 with frequency halving.

A broadband plot of the SRD generator built with network 2 and a 100S2 load resistor is

given in fig 7.53. Stable comb generation at the input frequency can be observed. A

reduced frequency range span can be seen in fig 7.54. Increasing levels of noise
sidebands as the offset from carrier frequency increases can be observed as predicted with

the simulation result of fig7.29.
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of network 2 with 100S1 load, reduced frequency span

The author has measured the phase noise performance of a comb generator driven from a

crystal oscillator. Two crystal oscillator circuits are measured, both derivatives of the

Colpitts circuit. Collector output is used for the circuit of fig 7.55 and also another output

is taken directly from the resonator circuit as suggested by Rohde [19834 Fig7.56

displays the measurement circuit. An output from a 3 GHz cavity oscillator is connected

to the microwave input of a sampling phase detector driven from a comb generator.

Downconverted output from the phase detector is fed through a gain compensated

amplifier to ensure gain flatness across the band. It is important that the level fed into the

phase detector is maintained at such a level that the phase detector is not driven out of its

linear operating region. Confirmation of linearity is obtained by plotting output voltage

against input. Drive level is maintained 10dB below the 1 dB compression point. The

noise spectrum is plotted on a low frequency spectrum analyser.

The resulting plot is displayed in fig7.57 for the two sources. By taking the output from

the collector of the Colpitts oscillator transistor, a higher output noise level results.

Peaking in the noise floor occurs as predicted by the simulation. It can be observed that
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the different methods of driving the comb generator give noise peaking at different offset

from carrier frequencies. However, this may be explained by the different drive levels

and drive waveforms in each case. Using the sampling phase detector for

downconversion is prone to errors introduced by simultaneous downconversion from the

image frequency. For this reason noise measurements were taken at a frequency of

30 MHz, giving an error of 3dB at the lowest noise point measured.

Fig 7.55	 Crystal Oscillator circuit used for

Step Recovery Comb Generator Measurements

Fig 7.56	 Equipment used to measure phase

noise of Xtal oscillator, comb generator combination
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7.12 Summary and conclusions

Chapter 7 described a SRD comb generator simulator that could be used to guarantee low

phase noise performance when SRDs are used for frequency multiplication.

Chapter 7 has investigated a number of key factors that must be considered in the design

of SRD based comb generators. A simulation program for SRDs has been written that

demonstrated important effects that can occur in the actual circuits. Time domain

simulation was initially carried out, followed by a conversion to the frequency domain by

FFT. This simulation has enabled the study of subhannonic phenomena and phase noise

performance of such circuits. Both these topics are not very well covered in published

works. The subharmonic effects were compared with the work of Feigenbaum which

suggest similarities with classic period doubling chaotic effects. Modifications to the

simulation program enabled the production of both a recursion diagram and a bifurcation

diagram. A recursion diagram demonstrated the fact that it is possible for a comb

generator, which may appear to be stable, to suddenly degenerate into period doubling

chaos. The bifurcation diagram demonstrates the possible operating modes that the circuit

is capable of. Both diagrams demonstrated how the phase noise can be severely degraded
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by such effects. Also shown was the fact that two forms of chaotic behaviour can be

supported by the SRD circuit: period doubling chaos, and a close to carrier form of chaos.

The simulation showed that the use of higher Q circuits in the SRD impulse generator

increased the likelihood of chaotic behaviour, and that more problems were likely to be

experienced with multipliers than comb generators.

The simulation was used to study excess noise effects that increase the multiplier phase

noise degradation effects above the theoretical 201og N. In some cases, especially as a

result of subharmonic effects, the excess noise can be severe and could seriously degrade

the far from carrier spurious and phase noise performance of local oscillators. In general,

it was shown that the phase noise sidebands of the multiplied SRD signal increase as the

offset from carrier frequency increases. This could result in increased phase noise if the

comb generator is used as a harmonic mixer. If the downconverted signal is phase locked

at the lower frequency, the signal to noise ratio will reduce as a result of the subharmonic

effects between the harmonics. For optimum noise performance it is preferable for the

phase locking to occur at zero offset frequency at the SRD phase detector.

For the optimum phase noise performance, simulation and theory indicate that a long

lifetime diode and zero bias are desirable. As the reference input frequency decreased, ly
and white recombination noise becomes greater in level. For this reason, SRD comb

generators give better performance with a reference frequency much greater than the

reciprocal of the lifetime. This corresponds to coarse frequency steps in a synthesiser.

Indications are that the phase noise levels will be high if the SRD is used in a fine stepping

synthesiser with a low reference frequency. If a fine stepping synthesiser is required, the

SRD loop would have to be combined with a DDS as described in the next section. In

chapter 4 a synthesiser configuration that enables fine stepping while driving the SRD at a

high reference frequency is described.

The investigation into AM noise suggests that this is increased by the 20logN factor by

AM to PM conversion, and the AM rejection of such a comb generator is poor. Therefore

as much AM noise as possible should be removed before the SRD harmonic generator

circuit.

7.13 Further work on SRD comb generators

The SRD simulation program could be developed further by the addition of a user friendly

interface with the aim of providing a useful design tool for engineers.
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To enable accurate phase noise levels to be predicted in SRD comb generators, a value

must be determined for the statistical fluctuations of the carrier lifetime. This may either

be measured, or calculated from semiconductor theory.

The effect on stability margins of different drive waveforms could be investigated other

than the sinewave input used in chapter 7. §7.9.4 raised the possibility of controlling the

shape of the recurrence relationship by means of the waveshape; there may be an optimum

waveshape which may be provided by the driver circuit. Another effect worth

investigating would be the effect of drive amplitude upon AM to PM conversion to

minimise the introduction of phase noise from this source.

In the simulation described in this chapter, no account was taken of device parasitics such

as lead inductance. Although the simulation equations could be easily altered to achieve

this, Gear integration methods may be desirable for accurate results. A recommendation

for further work would be to implement such modifications.

In this chapter, it was demonstrated how a recurrence relationship could be plotted for a

single resonant circuit. If more than one resonant circuit exists, as for example in network

2 of §7.5.1 then more work will be required to produce a multidimensional recurrence

plot.
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8 New Design Techniques for

DDS

8.1	 Introduction 

The major problem with fine step size synthesisers is achieving low phase noise together

with immunity to vibration and low levels of spurious signals. Direct digital synthesis

(DDS) will provide low phase noise and immunity to vibration, but the spurious signal

performance at present often leaves something to be desired. In this chapter a thorough

investigation of the problem is undertaken. This leads to a possible solution for which a

patent has been applied for. Most of the processing takes place in the digital domain

which enables a high level of integration. Many spurious problems arise from the use of

an imperfect digital to analogue converter (DAC), therefore this chapter will begin with a

discussion of the use of DACs in DDS.

8.2 A Survey of DAC performance

1.1.1DA.C_Arshassfaria

There are several types of DAC in common usage [Merisse, 1988]. The principal types

are the current weighted DAC, the segmented DAC, and the R-2R ladder DAC.

The current weighted DAC consists of a bank of switched current sources (See fig 8.1.).

This raises problems of glitches due to mismatches in the switching characteristics.
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The current weighted DAC is potentially the fastest DAC

The R-2R DAC is shown in fig 8.1c. The R-2R network effectively forms an attenuation

ladder, whereby the current is halved at each stage. This network, although not as prone
to glitches relies on expensive laser trimming of the resistors for accuracy.

A segmented DAC consists of a bank of matched equal current sources. The scaling is

then formed by paralleling up current sources for increasing significance on the input bit,
ie. the nth significant bit will have 2" current sources connected to this. Clearly such a
DAC can only have limited resolution due to the number of current sources required.

The latest generation of DACs have a Hybrid architecture [Jordan, 1991]. A Hybrid
architecture consists of a segmented architecture for the most significant bits and a R-2R

network for the least significant bits. Glitch performance is superior for the Hybrid types
of DACs.

Each of the above mentioned types of DACs can be of either multiplying or non

multiplying configuration. A multiplying DAC is a DAC which has a facility for
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programming the input reference current. Since the current is used as a reference for the

current sources, the output is effectively scaled by the input reference current. A non

multiplying DAC will not have this current brought out to the external pins. By keeping

the reference current internal, a reduction in complication of the circuitry and therefore

distributive capacitance results in higher speed performance [Analog Devices, 1988].

8.2.2	 Use of a DAC in Direct Digital Synthesis 

The hub of a sinewave output direct digital synthesiser is the DAC. There are many

different DAC architectures and it is necessary to evaluate specific parameters that are most

relevant to direct digital synthesis. The most obvious factor is the DAC resolution, but

other factors are just as important. These factors are:-

1) Update rate;

2) Glitch level;

3) Differential linearity;

4) Integral linearity;

5) Digital feedthrough;

6) Clock feedthrough;

7) Cost.

$.2.3	 Update rate

This is determined by the settling time of the switches in the DAC. The settling time is

usually quoted as the time required for the output to settle to within a stated range around

the final steady state value (usually ±1/2 LSB). For synthesiser usage, the output is

continuously updated, and so therefore this settling transient is a source of error at the

output. This maximum update rate will put a ceiling on the clock frequency of the

synthesiser. 8 bit non-multiplying DACs possess the maximum update rates [Weiss,

1989] while high precision 16 bit DACs have a slow update rate [Saul, 1991]. For

synthesiser usage, the form of the settling transient is more important than its duration. A

settling transient that is linear in relation to the steady state change is equivalent to low

pass filtering the output. A non-linear transient, in addition to this, will generate

unwanted spurious frequencies.
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8.2.4	 Glitch level

A glitch is a transient that is a result of skew in the switching of currents that compose the

analogue output of the DAC [Jordan, 1991]. Since there is no linear relationship between

this and the magnitude of the DAC transition, then intermodulation product problems will

result. There is a difference between this and a linear transient which is the equivalent of

the effect of a low pass filter on a perfect transition. The latter process will not introduce

intermodulation products. The glitch problem is aggravated by any timing skew on the

digital signals at the input to the DAC. A desirable feature is therefore the use of a clocked

register on the same chip as the DAC. The use of high resolution DACs does not

necessarily imply improved glitch performance as the effect appears to be related to the

speed of the current switches.

8.2.5	 Differential non-linearity (DNL)

Differential non-linearity is an additional source of high order products in a DDS. It is the

deviation of a LSB step from 2 n/(n-1). This therefore introduces a limit on the resolution

of the DAC. For this reason larger bit DACs have lower levels of differential

non-linearity. Unlike the previous effects DNL is a static DAC parameter, therefore the

primary harmonic spectrum (ie that before aliasing) will be independent of output

frequency.

8.2.6	 Integral Non-linearity (INL) 

Integral non-linearity (INL) is the overall deviation of the DAC transfer characteristic from

a straight line. Since this effect encompasses the full DAC transfer curve, low order

intermodulation distortion products occur at the output of the DAC. INL determines the

overall accuracy of the DAC [Daura, 1985]. Instrumentation DACs will therefore be

optimised for lower integral non-linearity.

8.2.7	 Clock feedthrough

In a practical DAC, with a clocked latch, there will always be feedthrough of the clocking

frequency to the output [ICamoto, Akazawa & Shinagawa, 1988]. This, in itself, will not

constitute a problem, as the clock frequency can be filtered out. However, if the level of

feedthrough varies according to the state of the DAC switches, then an average error value

could exist which is not linearly related to the output signal. Consequently, spurious

products would be generated. Intermodulation effects with the clock frequency is a major

problem with high speed devices [personal communication, Jordan 1991].
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8.2.8	 Digital feedthrough

One of the major problems with high speed DDS is the feedthrough of the digital signals at

the DAC input. The digital signals have a similar effect on the output as data skew,

introducing non linear effects, and therefore intermodulation products. Avoiding digital

feedthrough is difficult in a practical system because of the effect of lead inductances and

stray capacitances [Colotti, 1990]. The problem can be alleviated to some extent by the

use of a clocked DAC. A similar effect to this occurs internally in the DAC when the

flip-flops in the clocked latch at the digital input changes state. A spike is generated that

can be transferred to the analogue side of the current switch circuitry [Kamoto et al,

1988].

8.2.9	 Cost

The cost of a DAC depends on the technology employed and the application. The use of a

DAC that will be employed in other popular applications such video graphics will incur

lower costs than a dedicated DAC. Prices of high speed DACS could be reduced as

demand for high speed DDS increases.

$.2.10 Comparison of available DACS 

A survey was carried out into six DAC manufacturers' products in order to ascertain

suitability for use in a DDS and the results are displayed in table 8.1.

Table 8.1 DACS suitable for DDS

Non-linearity levels decrease with increasing resolution as would be expected.

Technology and internal configuration determine glitch levels rather than resolution.

Superior glitch performance can be obtained with low level logic such as ECL and GaAs

and by using an internal clocked latch to eliminate data skew at the input terminals. This
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implies that increasing the resolution of the DAC does not necessarily mean improved

DDS performance at high clock speeds. Work is required to ascertain the effect of the

different non-linearities upon the spectral purity of a DDS at different clock rates.

Published figures generally show that as the Nyquist limit is approached when the DAC is

clocked at its maximum rate, the spurious performance deteriorates.

Another factor that must be considered is the increased close to carrier phase noise of any

GaAs switches used in the DAC due to the high llf phase noise of GaAs devices (see

§3.2.2). Unfortunately there is no data available for the phase noise of a GaAs DAC.

The cost of DACs increases drastically above 500MHz at present.

8.2.11 Dynamic properties of DACs in DDS 

Since a DDS is likely to be clocked at the maximum clocking frequency of the DAC, the

DAC dynamic performance is the most important parameter to consider. The static

parameters such as INL and DNL will remain constant with clocking frequencies, but the

dynamic effects, particularly the glitch performance will degrade markedly. In adopting a

• strategy for improving DDS performance, the glitch problem must be of the foremost

importance.

8.3 Improving The Performance of Direct Digital 
Synthesis 

8.3.1	 The problem of spurious signals with high speed DACs

Although the DDS technique has many desirable properties, the spurious content of the

output is excessive for most satellite communications applications. To enable operation at

high clock frequencies, it would be desirable to employ a 8 bit fixed reference DAC. Such

DACs have achieved clock rates of over 2 GHz [Saul, & Taylor, 1989]. From

measurement and from published results, the maximum spurious level up to 1/3 clock

frequency of a 8 bit DDS, with the DAC clocked at its maximum frequency appears to be

around -45 dB [Browne 1988], [Stanford Telecom, 1987]. To date there have been

several attempts to improve the spurious performance of this technique.
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8.3.2	 Existing spurious reduction techniques

8.3.2.1	 Use of a Zero Order Sample and Hold

A zero order sample and hold can be placed after the DAC to remove DAC non linear

glitches as in fig 8.2 [Burr Brown, 1988]. The sample hold device samples after the DAC

has settled, thus removing the DAC transient energy.

Fig 8.2	 Direct Digital Synthesiser Block Diagram

8.3.2.2	 Use of Dither to convert spurious signals to broadband noise 

Wheatley [Wheatley &E. Phillips, 1981] suggested the removal of the DAC and the

generation of square waves rather than sine waves. Dither is then applied to the phase

accumulator to randomise the resulting square wave Fourier series and convert this to

broadband noise. Thus the output spectrum consists of carrier plus noise rather than

carrier plus square wave products.

8.3.2.3 Random switching between 2 DACs

A method has been developed [Fish, 1982] to reduce spurious products in the direct

digital synthesiser by random switching between DACs. A direct digital synthesiser is

modified as shown in fig 8.3 by switching in a pseudo-random fashion between 2 DACS

or between two function generators (with similar control of the DAC reference voltage), or

between two function generator DAC pairs, or by randomly or pseudo-randomly varying

the scaling voltage applied to a multiplying DAC.
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8.3.2.4	 Selection of output frequencies that avoid close to carrier Spurious

This involves the use of frequency outputs from the direct digital synthesis that have the
spurious signals far removed from the carrier (see chapter 4) [Jones & Gardiner, 1987].

The far from carrier spurious signals can then be removed by means of bandpass filters or

a phase locked loop. In order to ensure that the spurious signals do not appear close to the

wanted carrier it is necessary to restrict the output frequencies to values that have a high
common factor between output and reference frequencies.

8.3.3	 Disadvantages of existing techniques

8.3.3.1 Post DAC Sample and Hold

The disadvantage of the use of the sample and hold deglitcher is as follows:-

1) The cost of a suitable high speed sample and hold that will not degrade
performance due to intermodulation products is prohibitive;

2) The deglitcher can only reduce the spurious products associated with DAC
switching. The remaining spurious products will be unaffected.

8.3.3.2	 Squarewave synthesiser and dither

The elimination of the DAC in such a synthesiser, results in a low overall signal to noise

ratio. The resulting phase noise sidebands of this system calculate to be approximately
-72 dBc/Hz (-37 dBc in a 3 kHz bandwidth) [Wheatley & Phillips, 1981]. This figure is

far in excess of that required by satellite data links [Eutelsat, 1989].
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8.3.3.3 ' DAC Switching

Fish [1982] also suggests the use of a pseudo random sequence to randomise periodic

errors in the direct digital synthesis process, but the method of application of the pseudo

random sequence is in such a manner that there is little decorrelation of the DAC transfer

characteristic. An averaging of the DAC transfer characteristics results. If the DACs are

identical (ie if they are from the same batch), then little improvement would occur with this

method.

A further development of the above approach [ibid] is the use of random scaling before the

DAC and its subsequent removal by means of varying the reference voltage at the input to

a multiplying DAC. One problem with this is that multiplying DACs, on account of their

construction, are slower than fixed reference DACs [Analog Devices, 1988]. Another

problem is that of scaling and rescaling the pardon of the output cycle which is at a low

level relative to the quantization. This means that either the randomisation at that point is

limited, leading to repeating errors (and hence spurious output signals), or a large amount

of noise being introduced.

8.3.3.4	 Restriction of output frequencies 

The problem with this technique is that the output frequency is restricted to values that

give no close to carrier spurious frequencies, the nearest spurious signal frequency is

arranged to be so that it is capable of being rejected by a phase locked loop at the output.

The highest common factors in the fraction of the output frequency to the clock frequency

ratio must be kept high so the phase accumulator output repeats itself over a short

duration. While this is acceptable for radar applications where the number of channels is

limited, in satellite systems where carrier tracking is required or in frequency hopped

spread spectrum applications, channel spacing can be less than 1Hz. This would require

a PLL bandwidth of millihertz which would be totally unacceptable.

8.4. A novel Technique for the reduction of DDS spurious

8.4.1	 Introduction 

The following section describes a novel technique invented by the author which is

producing encouraging results [Wilson, 1990]. The technique is based on the application

of the pseudo-random numbers to achieve the following:-

1)	 Decorrelation of the DAC transfer characteristic;
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2)	 Dither of the digital trigonometric word to reduce quantization effects.

8.4.2	 The objective of DAC decorrelation

A typical DAC transfer function is displayed in fig 8.4

Fig 8.4	 DAC Non-linearity errors

As described in chapter 4, apart from quantization, the main sources of errors are DAC
polynomial linearity errors and switching transients.

8.4.2.1	 Polynomial errors

The output of a practical DAC will consist of the following:-

Vout=Vief((Q/(2T-1))Ep (Q)
	

(8.1)

where Vref is the DAC reference voltage, Q the digital input word, T the full scale digital
world, and Ep(Q) a polynomial which represents non-linearity errors of the DAC. When

a sinewave is acted upon by a polynomial function, each term in the polynomial raises the
sinewave to the corresponding power of that term. It can be shown that each (sin n x) term
produces a series of (sin mx) terms up to m = n [Bromich, 1908] where m and n are
integers. Therefore, polynomial errors result in the sampled waveform consisting of a
sinewave plus harmonics of order m. These harmonics are aliased by the sampling
frequency fref to produce spurious signals [Wheatley, & Phillips, 1981]. This polynomial
is independent of fref and represents the integral non-linearity (INL), and differential

non-linearity (DNL). The effect of these errors is displayed in fig 8.4.
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8.4.2.2	 Switching errors 

Owing to the fact that not all the DAC current sources switch simultaneously, transients

are introduced which are unrelated to the analogue level transitions [Harris, 1982]. This

has the effect of introducing an additional error polynomial Sp(Q) which can be expressed

in terms of the averaged value of the transients over one fref period. The actual values in

the polynomial are dependent upon the level transitions and reference frequency fref

involved. Sp(Q) represents dynamic non-linearity effects of the DAC and is

distinguishable from DNL and ENL in that the base spectrum before aliasing changes with

output frequency. The DAC decorrelation technique aims to randomise the error

polynomials so that there is no correlation of errors from one cycle of the DAC

characteristic to the next.

8.4.2.3	 The Principle of Decorrelation 

In the time domain, decorrelation produces the effect shown in fig 8.5.

Sinewaie

Cancelling signal From
2nd DAC

Fig 8.5	 DAC decorrelation over one DDS cycle
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A pseudo-random number is added or subtracted to the look up table output by means of

an ALU placed at the digital port of the DAC. By reference to fig 8.5 the decorrelation

process acting upon a typical DAC transfer function can be observed. A DAC output level

at point A becomes A' and that at point B, B'. By the analogue subtraction of a

compensating signal from a second DAC, the signal is restored to the correct level. On a

subsequent cycle of signal, for the same intended output point, the random number offset

will be different, leading to a different values of A' and B'. Errors will therefore not

correlate between adjacent cycles.

The effective output of the analogue circuitry is the average of all levels over which the

decorrelation is applied. The memory mapped sinewave modified by the decorrelatal

DACS will have a spectrum as displayed in fig 8.6. After sampling at the clock

frequency, the noise, rather than the harmonics are folded back over the signal output

range. Instead of a carrier plus aliased harmonics being present at the output, carrier plus

noise result. Effectively, the reconstructed sampled data signal becomes a sinewave plus

noise rather than sinewave plus harmonics: in order to completely randomise the

polynomials, every level of the DAC should be used at random to generate each level of

desired output signal. Therefore the added decorrelation factor must be uniform across all

DAC levels, and be cancelled in the post DAC analogue section by means of another

DAC.

In practice complete decorrelation of the DAC is difficult to achieve as the average value of

all the DAC levels would be zero. Therefore a compromise must be reached where some

weighting of the DAC decorrelation distribution is allowed. This weighting should be

designed to be effective on the lowest order term possible in the error polynomials ie

integral non-linearity [Zavrel, 1987]. Two methods of implementation of the

decorrelation technique have been investigated by the author. These will be described

below.
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Fig 8.6	 Conversion of spurious products to noise by the DAC decorrelation

process

8.4.3	 First Implementation Method 1: No Overflows

In this method a P -1 bit random number is subtracted (if the trigonometric word is

positive) or added (if the trigonometric word is negative) to the main DAC input. In this

manner overflows are prevented. The random number is also fed to the second DAC, and

the output of the DACs are summed in such a manner that the desired output signal is

recreated. It is seen that the random number component number is effectively removed.

A residual error signal remains, but the error pattern becomes non-repetitive. Fig 8.7

demonstrates the technique.

Uppermost on fig 8.8 can be observed the output from the post look-up table DAC. The

sinewave is regenerated by adding in the output of DAC2. With this technique, only the

upper or lower half of the DAC is being decorrelated and there is a possibility of a

repetitive discontinuity at the zero voltage level. Due to these factors, the improvement in

spurious levels was expected to be limited. It was confirmed by measurement that there is

a limit to spurious improvement of approximately 10dB (see fig 8.51 for results ).
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8.4.4	 Second Implementation Method Allowing overflows

A modified decorrelation method was implemented to enable the use of accumulator
overflows as displayed in fig 8.9.
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In this method, the post look up table DAC output level is determined by the n-1 least

significant bits of the n bit pseudo random number. Digital addition or subtraction of the

random number to the output voltage word is achieved by an accumulator following the

PROM table and ALU function is controlled according to the MSB of the random number.

In this way, the ALU adds or subtracts randomly. The system would have to be able to

accommodate ALU overflows: a problem exists in that when such an overflow occurs, the

ALU would output a result corresponding to the opposite half of the sinewave to that of

the desired output. This is unacceptable as the second DAC output can only compensate

for up to half the output range.

A solution to the overflow problem found during the course of study for this chapter will

now be described. If the sum of all the components added to, or subtracted from, the look

up table output word a (and the resulting carry is ignored) all add up to (2") for a p bit

word, then a value of a is again produced. These components can be added or subtracted

by a mixture of digital and analogue means. Therefore on occurrence of an overflow, a

half range (2"/2) value is added or subtracted from the input to the DAC, by digital means,

to bring it in range of the compensating DAC. This is most conveniently achieved by

forcing the MSB of the DAC input. The compensating DAC adds the remainder to return

the output to the correct level.

The following table summarise the operations for the four scenarios; where a is the

amplitude word and y the p-1 bit pseudo-random number.
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Table 8.2

Addition, no overflow

DAC word a + y = a'

Compensation DAC -y

Result a' - y = a

Addition, with overflow

DAC word a + y = a' - 2p+carry (a'>2p)

MSB adjustment DAC a' - 2" + 212-1 = a' - 2P-1 applied to signal

Compensation DAC +(2P-1- y)

result a'-2P-14-(2P-1-y) = a

Subtraction no overflow

DAC word a - y = a'

Compensation DAC

result a'+y=a

Subtraction with overflow

DAC word a - y = a' +2" + borrow a<0

MSB adjustment a' + 2' - 2P-1 = a' + 2"

Compensation DAC 42p-1. _ y)

_output a' + 2P-1 - (2P-1 -y) = a

The function 2P-1-y is readily provided by 2's complementing the p-1 bits of the random

number y. Fig 8.8 in §8.4.3 of this chapter displays the distribution of DAC levels as a

result of allowing overflows. Although the waveform structure of each DAC output

appears identical, instantaneously the actual outputs are different. With this method, the

decorrelation covers the total range of the DAC at the centre level of the waveform. At the

waveform peaks, only half the DAC characteristic is used. A residual signal level is

therefore still present in the DAC outputs giving rise to an intermodulation generation

capability. It will be shown that there is still a second order harmonic and intermodulation

generation capability; however any residual signal is less than the noise power, resulting

in noise cross products being generated alongside signal cross products. This may

suggest a reduction in signal related cross products. The effect of this method on integral

non linearity may be limited therefore. On the other hand, differential non-linearity effects

are completely decorrelated by method 2. With method 1, differential effects around the
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centre of the DAC characteristic will not be decorrelated, and there would be a crossover

distortion effect

The method of combining the DAC outputs is important. Most high speed DACS have a

current and an inverse current output (I and I). It is important to use both the outputs in a

balanced mode in order to reduce low even order effects [McCune, 1988]. A suggested

method is given in fig 8.10. This involves the use of all of the DAC output currents from

both DACS in a summation circuit at the outputs.

Fig 8.10	 Analogue summation of decorrelated DACS

$.4.5	 Reducing truncation spurious signals by Dither 

All direct digital synthesisers will introduce some truncation of the digital phase and

amplitude words. Both these truncation effects will each introduce spurious signals in the

analogue domain. Truncation of the phase and amplitude digital words (quantization

effects) result in a sawtooth error function as displayed in fig 8.11. Wheatley and

Phillips, [1981] proposed the use of phase accumulator dither to overcome the problem of

DDS spurious. In their method the DAC was removed resulting in a squarewave rather

than a sinewave synthesiser.

The process of dithering of the errors then becomes a one rather than a two dimensional

(phase and amplitude) problem as with the sinewave synthesiser. Phase accumulator

dither can be applied after the phase accumulator output. The output transition normally

occurs too late by an amount te seconds, as there has to be an accumulator overflow in

order to obtain an edge transition. The clock period will be represented as tc.
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Fig 8.11	 Error waveform due to DAC quantization

Therefore, although the average transition is correct, the repetitive edge jitter of up to one

clock cycle too late gives rise to spurious products. Referring to fig 8.12, when a random

number of e = 0 to e = k - 1, where k is the frequency word, is added, the probability

of late overflows is given by:-

p(te) =
	

(8.2)

and the probability of early overflows by:-

P(te-tc) 
= (1-e)
 k	 (8.3)

The resulting periodic average value <1> is:-

<1> = te P(te) (tetc)P(tetc)	 (8.4)

Substituting equation 8.3 into 8.4 gives:-

<r> = te + (4_0(11)	 (8.5)
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Now from fig 8.12:-

k-e _ te
k te

Inserting this into equation 8.5 gives <t> = 0. Although the average value of t=0, the

actual value is randomly displaced from this, giving rise to phase noise. The error

displacements using this method are large, resulting in high levels of phase noise (see
fig 8.13 ).

The author has investigated the application of dither to a sinewave synthesiser. It was
found [Wilson, 1990] that dither could be applied to provide interpolation (interpolative

dither) between truncation points on the DAC and hence reduce spurious signals due to

truncation. Phase noise can be much reduced if it is applied to a sinewave rather than a
squarewave synthesiser. However, the situation is more complicated with the sinewave

type of synthesiser. With a sinewave synthesiser, the error waveform is as displayed in

fig 8.11. The cycle period of the sawtooth error waveform varies according to the part of
the cycle of the synthesised wave.

(8.6)
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If an 8 bit output look up table is driven from a 12 bit phase address, then the number of

input steps per output step varies from 5 at zero level to 163 at the waveform peaks.

There is obviously a trade off between dither and added phase noise. Unlike that of a

squarewave synthesiser, the length between steps in phase is independent of frequency

word, so the dither random number level can be fixed. The reason why dither has not

previously been applied to a sinewave synthesiser is that the effect of DAC non-linearities

dwarfs the contribution due to DAC quantization errors [Williams, 1987]. This would

render the dither effect ineffectual if the DAC non-linearities are allowed to remain.

However the effects of DAC decorrelation are such that the possibility of benefits from

dither can be considered. Fig 8.14 displays the method used by the author to add phase

and amplitude dither.

Randomise truncation	n•••••

number
[Random

System Generator

Cluck k
Fig 8.14	 Sine DDS with dither
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8.5 Phase noise penalty incurred by the new
interpolative dither teshnique 

$.5.1	 Mechanism for phase noise effects

Although the new interpolative dither technique is effective in combating the DDS

truncation problem, there is a disadvantage in that the use of pseudo random numbers

introduces some broadband phase noise into the output of the DDS. The noise has a flat

frequency distribution, therefore should be less of a problem for low data rate satellite

communication system systems than other forms of phase noise. Since the clocking

frequency of a DDS is generally high, the phase noise will be spread over a broad range of

frequencies, resulting in a low value of phase noise density. It is important, however, to

quantify these phase noise levels to compare the new technique presented here to that

already suggested by Wheatley [ibid].

The phase noise mechanisms for a DDS using the new technique will be due to:-

1) Incomplete cancellation of the PRN at the DAC outputs;

2) The baseband component of the randomised glitch energy;

3) Noise due to interpolative dither on the truncation.

Incomplete cancellation of the PRN will result in noise at the output of the DDS. The feed

through of the total noise energy is likely to be more of a problem at high clocking

frequencies, but it may be possible to introduce some form of dynamically adjusting

cancellation technique. Such a technique would adjust the timing and magnitude of the

combining signals for the optimum broadband noise levels. This is beyond the scope of

this thesis, but can be recommended as an item of further work.

The DAC glitches cannot be cancelled as the randomisation of this normally periodic effect

is an inherent part of the technique.

The phase noise introduced by dither also cannot be cancelled as it is an inherent part of

the technique, therefore it is vital that the minimum amount of dither commensurate with

adequate spurious signal cancellation be used.
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The last two effects, namely dither and DAC glitches will now be calculated for a typical
DDS implementation.

S.5.2	 Calculation of phase noise introduced by phase word dither

In the

521 Noise power

 consideration of noise effects, the following terms will be used:-

N(0) Total phase noise power to carrier ratio,

S(,) total phase noise equivalent power in radians,

no	 noise power total, N noise power density,

So() total radian equivalent noise density,

L	 phase noise power density to carrier ratio

L	 the number of phase steps in one output cycle.

Since dither is applied before the look up table it can be considered as phase modulation.
If the dither word is considered as width D, the equivalent RMS phase modulation power
for a uniformly distributed dither signal is:-

Drmso — 
21,12

	 (8.7)

Total noise power to radian ratio, S 0 is:-

so 4n2D 2x2	 rad.s2	(8.7b)

8.5.2.2	 Frequency distribution 

In order to obtain the noise density it is necessary to obtain the the frequency distribution

of the noise. This noise is assumed to be constant between reference cycles. Therefore,

from the sampling theorem, the noise distribution is:-

no(f) = no(0) smc. 2Ctf	
(8.8)

where no(0)is the effective noise density at DC. For the lower frequency of operation of

the direct digital synthesiser,

110(0 n(0)(0)

The relationship between the noise density and total noise power is therefore:-
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. 2(71fN = fn0(0) smc ve-f)df

Evaluating this integral [Dwight, 19614 gives a relationship between noise density and

total noise power for a sampled data system.:-

N = no(0)(fref)12 	 (8.10)

Applying this to the noise power radian ratio of equation (8.7b) gives the radian noise
density ratio SO4, in terms of radian noise power ratio So for small values of S:-

S0  (0) = 2S4)/(fref) 	 (8.11)

Therefore:-

(8.9)

From modulation theory (see §2.4.4) the phase noise power density is 3dB less in value

than the noise density in radians. Therefore, the phase noise power density ratio
L(0) = S 012. Hence:-

Converting to a relationship involving the dither word D from equation (8.7) gives:-

,	 IL2D2
mo) -	 2

2frefL

It may be more convenient to express this in dB form:-

L(o) = 20(log10(71)+log10(D)-log10(L)) - 10(log10(C f))-3	 (8.14b)

The largest step on the phase axis occurs at the sinewave peak where dv/ditto is a

minimum. Calculations suggest that L/32 phase steps would be required to produce one

LSB amplitude step at this point. This would give -83 dBc/Hz for 1MHz clock rate and

-113 dBc/Hz for 1 GHz clock rate. For comparison, the Wheatley technique gives the

following result [Wheatley & Phillips, 19811:-

2
r	 3fref (8.15a)

It tout

(8.14a)
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For f0ut/5 this would result in -62 dBc/Hz for 1 MHz and -92 dBc/Hz for 1 GHz, an
improvement of 21 dB using a DAC.

If the value of the dither word is reduced, then the phase noise introduced will reduce but

the spurious signals will rise. It is therefore possible to arrive at a suitable compromise

for the system requirements. A good compromise would be one step width at the zero

crossing point where the effect of truncation errors would be a maximum upon the phase

jitter. In this case, the value of L would be 1024. Corresponding phase noise figures are

then 101 dBc/Hz at 1 MHz and -131 dBc/Hz at 1 GHz. Using a 10 bit DAC would

improve these figures to -113 dBc/Hz at 1MHz and -143 dBc/Hz at 1 GHz.

One problem with the dither technique using DACs is that the width of the DAC step

varies throughout the cycle. Ideally, therefore the dither dimension D would have to vary,

which would be considerably difficult to implement in hardware. Therefore the effect on

spurious reduction of a non ideal dither must be considered.

8.5.3	 Non ideal phase word dither

Phase dither performs a time averaging function on the waveform. The dither can be

considered therefore as a window which is time shifted by the system clock. This is

demonstrated in fig 8.15.

Truncation gives a sawtooth shaped waveform as displayed in fig8.11. The effect of

dither on the truncation errors may be demonstrated by approximating the sawtooth

waveform to a sinewave. Therefore, the frequency domain representation will be a single

spurious signal corresponding to this sinewave.
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Fig 8.15	 Phase Dither
If dither is applied, the effect displayed in fig 8.16 occurs for a error waveform E t given
by:-

F4= Etpk COS (cot)	 (8.15b)

where Etpk is the peak amplitude.

The point in the cot axis that a sample is taken is uniformly distributed throughout the

dither width, therefore the average periodic residual of the waveform can be represented
as:-

(8.15c)

giving:-

<Et> = Etpksinc(oxi)	 (8.15c1)
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Fig 8.16	 Effect of non-ideal phase dither on a sinusoidal error component

A sketch of these function is given as fig 8.17.

Spurious suppression in dlYs

Fig 8.17	 Dither width / error waveform width in phase space

The amplitude of the resulting spurious signal after dither will be non-zero apart from

exact multiples of the DAC step. Therefore apart from this special case, a repetitive

residual will remain, although the amplitude of the correlated repetitive error signal will

reduce. So if a restriction must be placed on the dither width D, then it could be worth

considering another dither function other than uniform. One possible function that could

be readily implemented is the Gaussian function. This suggests that a computer
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simulation would be required to determine the effect of both uniform and Gaussian
functions on the error residual is required. Such a simulation is beyond the scope of this

thesis, but can be recommended as an item of further work.

$.5.4	 Amplitude Dither

The effect of amplitude dither is to randomise the round up of the least significant bit at the
DAC input. Fig 8.18 displays the effect of a finite truncated word on the synthesised
sinewave. The sinewave becomes a series of quantized steps. This has been attributed
[Reinhardt, 1986] as the major contributor to source of spurious signals in DDS, but it is
maintained that this is incorrect and the predominant source is from DAC dynamic effects.

Wavef rm Map stored in ROM

C1.1 C12 Ci3 C14 Edge correlation.
Clock Samples
(fref)

Fig 8.18	 Error waveform through DAC quantization in a DDS

Each quantized step produces its own set of Fourier components. By using Parsivals'

theorem it can be shown that the sum of all the individual quantized steps (ie the composite

synthesised waveform) is equal to the sum of the Fourier components of each step. Some

of the Fourier components will be coincidental at certain output frequencies. As the

Fourier components will be additive and subtractive, widely different levels of these

Fourier components will be present across the output spectrum. An analysis of the

spectrum of DDS phase and amplitude truncation has been presented [Nicholas and

Samueli, 1987] which demonstrates that spurious products can indeed be additive and
produce high levels at some output frequencies. The maximum spurious signal for a 8 bit

DAC and 12 bit phase quantization is -47.5 dBc; this can be compared with the general

formula for DDS truncation noise [Hosking, 1973], er:-

— Amplitude
Quantisation
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g.1

er = 2n,r6
	

(8.16)

which gives a value of signal to noise of 56dB. In order to satisfy Parsivals' theorem,

the amplitude of the wanted signal must reduce, which implies correlation of the

quantization edges.

8.5.5	 Ouantization edge correlation

Fig 8.18 also displays the effect on a sampled quantized waveform of correlated edges.

Clock samples are denoted by ckl, ck2 etc. At ck8 the sequence is repeating but advanced

by few bits. On successive samples of the complete waveform, the sampling points

advance to the quantization edge and there is a simultaneous shift in all the sampling

points, resulting in a maximum amount of phase jitter. This increase of close to carrier

phase jitter will be shown in the truncation simulation of §8.10.2 of this chapter. The

phase modulation can be approximately shown to be -52 dBc. This quantization edge

effect can be reduced by means of amplitude dither of one least significant bit, giving an

effect as displayed in fig 8.19. The sine look up table is truncated rather than rounded,

and a least significant bit is added at random, to enable the table output to be either

rounded up or down at random.

	 4dIEri
4 	 h. 	

 ..........................

0 	  6. 	 Random rounding 	

	  A 	 1  Adjustment 
I 	 i 	

ri 	 l 	
i 	  1

A 	  l 	

—Amplitude
_level 	

Fig 8.19	 Destruction of edge correlation by means of amplitude dither

Effectively, the contribution of each quantization edge is randomised, reducing the effect

of spurious product addition. There is still periodicity in the averaged error waveform

however, resulting in discrete spurious signal products, but they are more evenly

distributed. This periodicity is displayed in fig 8.19. Phase dither can be applied to
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reduce this periodicity by means of an adder on the output of the phase accumulator as in

fig 8.14, in §8.4.5 of this chapter. If amplitude dither is applied together with phase

dither, then any remaining repetitive errors will be evenly distributed across the spectrum.

A DDS built by the author using uniform phase dither and amplitude dither was found to

have (see fig 8.51) discrete spurious products of approaching 80dB using 8 bit DACs at

frequencies up to fref/8. This is unprecedented for a direct digital synthesiser using 8 bit

DACs.

$.5.6	 Phase Noise as a result of DAC Decorrelation

It has already been noted that the process of DAC decorrelation implemented while

undertaking work associated with this chapter, (see §8.4.2) converts spurious signals to

broadband additive noise. It is important to calculate the level of phase noise produced.

Presented here is an analysis produced by the author of the expected phase noise due to

decorrelation of glitches. The principal contribution to the spurious signals of an

unmodified DDS is the DAC switching glitches, therefore it is expected that the principal

contributor to decorrelated DAC noise will be glitches.

The waveshape of a typical DAC glitch is displayed in fig 8.20.

sitv..Full scale level

DAC Mitch

Static 
DAC level

n11,

Zero level (

Fig 8.20	 Typical DAC transition with glitches

It has already been previously stated in §8.2.10 that the glitches that occur as the DAC

changes state are likely to be the major source of noise. Rather than sampled pseudo

random noise, the noise takes the form of a series of Dirac Delta functions (see fig8.21)
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V(f) = "FTC) sinc(M (8.17)

N'Tn(f) =41V70(T)TSinGi—fe (8.18)

[Stroud, 1985] of pseudo random area. This can be formed by differentiating the sampled
random function.

1•0110

g
Pseudo random

-Lr
AMIn

n11n11.

number sequence.

In practice, ft) is derived from
a different f(t) due to properties of DAC

•n•n

41%.

11 11 ;u Lt.	 L
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,

;
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Bantiiirnitlg function
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Fig 8.21	 Noise contributions of DAC glitches

The differentiated glitch pseudo random function is unrelated to the actual pseudo random

sequence that is used to decorrelate the DACs as the glitch amplitude is unrelated to the

DAC level transition, but the distribution of glitch levels is assumed here to be uniform.

By differentiation of the pulse spectrum, the shape of the glitch spectrum can be derived.

The Laplace Transform of the differentiation operation in the time domain is equivalent to

multiplication by s in the frequency domain. In the frequency domain, a pseudo random

signal VD can be represented as:-

Differentiating this in the frequency domain is equivalent to multiplying this by 27tf/fref,

therefore:-

In order to calculate the noise power for a particular output frequency, equation (8.18) is

integrated over all frequencies. As in the case of evaluating phase noise due to dither, the
integral of this equation is made equal to the power as calculated from the time domain

representation of the waveform.

Hence, the frequency domain power calculation is:-
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Iv	 Q fref2....(g) —	 2 (8.20)

Squaring 8.22 to obtain the noise power density gives:-

sin
fno = 4110(0)	 ref

(RferffY

(8.23)

1CfN()2 = 
t)
f4n0(0) sin2(

d1f (8.19)

The result of this evaluation of this integration is infinity as the sin x function is not
contained. This agrees with the time domain representation which will also be infinity on

account of the infinite height of the Delta Dirac function. Unfortunately, the evaluation of

the spectral density function no at a particular output frequency from direct integration of

equation (8.19) is therefore prevented. One way to overcome this problem is to consider

the power which is likely to appear in band only. The power can be band limited by

considering the glitch to be averaged over one clock cycle as in fig 8.21 above.
Bandlimiting the power in this way can be achieved by multiplying by the hold function.

If the peak glitch energy is represented by the voltage averaged over one second, as Q

Volts seconds, and assuming a uniform distribution of glitches, the average glitch power
may be expressed as:-

Assuming the glitch energy remains constant over one clock cycle, the glitch can be
multiplied by the hold function,

H(0 = sinc(e)
	

(8.21)

This gives a function representing the approximate in band noise power distribution:-

vdo= 41-4-0—nsin(z-fef) sinc(e)
	

(8.22)

This function is now contained and the power in the frequency domain spectrum can be
evaluated [Dwight, 1961b].
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(girs.n2
N/C = 8

VDAC) (8.25)

N =614n0(0) sin rei =n0fref	 (8.24)

The quantity 4110(0) represents the maximum noise density point on the output spectrum

and will be referred to Nomax•

In the time domain, the power level must now be evaluated. If the output range is

represented by V volts, then the signal output RMS power will be V/242. Assuming a
uniform distribution of glitches in the time domain, the noise to signal ratio (N/C) at the
output of the DAC is therefore given by:-

From Parsivals' theorem, the total power in the time domain can be equated to the total
power in the frequency domain:-

N nomaxfref
— 4

From equations (8.25) and (8.26),

nomax iC= 32frefg—cf

(8.26)

(8.27)

Substituting this into the differentiated noise spectral density function (equation (8.18))

results in an equation for the additive noise density ratio no/C:-

no/C=3244---Q—„ )2sin2r. )
v DAc	 iref

For random additive noise, the phase noise sideband components are half of the total
additive noise, therefore the phase noise Lo) is:-

Loo = 16fre0Vsin2kfilc )
	

(8.28b)

This is the final result for the prediction of phase noise due to glitches after DAC

decorrelation. The spectral shape of the resulting signal plus noise is as shown in
fig 8.22.

(8.28a)
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fref

N ise modified by bandlimiting function

Fig 8.22 Signal and noise spectrum of DDS with DAC decorrelation

Equation 8.28b implies that the glitch spectrum will have a distinctive shape rather than the

flat spectral shape predicted for the other error spectrums. Fig8.51 in §8.11.6 show

results measured from a DDS incorporating DAC decorrelation built by the author. It can

be observed that the spectra are indeed not flat and in fact the phase noise declines at 6dB

per octave for reducing output frequency as can be expected by equation 8.28b for

fout<<fref. If this equation is applied to some commercially available DACs then

interesting results follow, as below.

Considering 2 DACs, the noise power will be purely additive, however and will increase

by 3 dB. The net result will be a degradation of 3dB in signal to noise ratio over that

predicted above.

Table 8.3 presents the dynamic characteristics of some of the latest generation of high

speed DACs. The commercial DACS under consideration are: the Triquint TQ6111B

[TRW, 1988], TRW TDC1018 [F.g.Weiss, A, 1986] and the latest development from

Analogue Devices, the low glitch AD9720.
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Table 8.3
TQ6111B TDC1018 AD9720

Resolution 8 bit 8 bit 10 bit
Max clock frequency 1 GHz 200 MHz 350 MHz
Glitch energy 25 pVsec 30 pVsec 4 pVsec
Full scale range 1 V 1.071 1.0 V

If the TDC1018 is clocked at 200MHz and an output frequency of 50MHz is selected,
the close to carrier additive noise can be calculated to be be -116dBc/Hz, corresponding
to -119 dBc/Hz of phase noise. With the Triquint clocked at 1 GHz, and an output

frequency of 250MHz chosen, -113 dBc/Hz of Phase noise can be expected, while
selection of 50MHz, will result in -126dBc/Hz of phase noise.

With the low glitch DAC type ADC 9720 the phase noise at 50MHz would be an

impressively low -139 dBc/Hz. This performance is 35dB better than the Wheatley
technique. The above phase noise figures could be improved if a sample and hold is
placed after the DACS to reduce some of the glitch energy. This would incur a cost
penalty and may degrade spurious performance.

8.6 Calculation of spurious reduction as a result of DAC
decorrelation 

8.6.1	 Spurious signal generation due to DAC errors in DDS 

After calculating the predicted phase noise levels an attempt will be made to analyse the

spurious signal levels in order to assess the advantage of the new technique. Spurious

product calculation is an extremely complex issue. However, a comparison can be gained

by the introduction of a DAC error and a subsequent calculation of the spurious products.

In this treatment of the problem, the spurious products are considered to originate from a
'base spectrum', which is the Fourier series representation of the primary waveform

before sampling and aliasing effects take place. Points on this primary waveform are

addressed by the phase output of the accumulator, therefore the usual horizontal time axis
for waveforms is replaced with a phase space axis.

The base spectrum consists of a sinewave and harmonics. We model the DDS process as

a sampled waveform system where the sampled waveform is the stored sinewave plus

errors, called the primary waveform. This stored waveform consists of a sinewave and
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Error fUnction Error function

cos(nx)dx	 (8.32)

distortion products (harmonics) giving rise to the primary or base spectrum mentioned in

§4.4.3. The actual output of the DDS is equivalent to sampling the primary waveform at a

clock frequency fief. §4.4.3 discusses how these harmonics are aliased by the sampling

frequency (clock). Fig 8.23 displays a time domain representation of the DDS base

spectrum with an error added to the DAC to initiate calculation of the spurious products.

Distribution doubled
due to ov rflows

With DAC decorrelation	 No spurious reduction
Fig 8.23	 Probability distribution of DAC values

Fig 8.24 displays the resulting error function rescaled in preparation for conversion to its

corresponding Fourier series. The error pulse is one DAC step wide and occurs once per

accumulator cycle. The mark - space ratio of this pulse in the primary waveform is 27trn

where:-

m = 21"	 (8.29)

and p is the resolution of the DAC in bits. The maximum width of this pulse in primary

waveform phase space T is:-

-1	 1AOmax = cos( 1 -

If AO is less than .64)max then:-

1
= lTz Sec(4))

(8.30)

(8.31)

From fig 8.24, the Fourier series coefficients are:-

eon
2 T.,A_ = — dinerror

-11 X
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This gives a series:-

ESeries =
Emory,

1	
1Sin n —m Sec(0) cos nT

n=0

(8.33)

+E
er LI

Error tago level

Phase Space

Fig 8. Z4 a urn
1T/2IT	 31112

47:717171"

0

—E errio. ri2m
L	

.11n11	

Cos•1 (1. -sin0)
Fig 8. 24 b

Fig 8.24	 Error responses for DDS without

(upper) and with (lower) DAC decorrelation

For comparative purposes, let the error occur at an angle of 300. Also assuming that n is

« m, that is the harmonics considered are less than the reciprocal error pulse width, then
the above series approximates to a flat comb of harmonics of the form:-

Eermr( 2 + 2 COS (T) +	 cos2(T) + 	Eseries- 	  4-j	 -3- (8.34)

This is an important result as it goes some way to explaining why spurious signals abound

in many DDS implementations. A large series of slowly declining spurious signals result.

These will be aliased back to around the carrier frequency as discussed in chapter 4.
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Initially, the spurious signals generated by static errors will be considered. These are
represented as before by an error E	 as before. There are three levels of probability of

the error influencing the output.

1) Probability 0

2) Probability 1/2m

3) Probability 1/m

Probability of zero occurs when the output is more than the MSB in equivalent voltage

level away from the point at which the error occurs. A probability of 112m occurs when
there are no overflows (thinly shaded region of fig 8.23). A probability of 1/m occurs

when overflows result in the folding over of the DAC outputs. The effective error output
voltage is shown in fig 8.24.

The Fourier series of this waveform will now be found to enable the base spectrum to be

calculated. By multiplying this probability by the error voltage, one can find the

contribution of the error to the output. Inserting this into the formulae for the Fourier
coefficients gives:-

fa—.

, 1 rerror „ ,
An 

= —m coS(nX)aX +
a 0

X

perror
cos(nx)dx

m
n—cos- 1 (sin 0)

Calculating the Fourier coefficients results in:-

1 E	 1
(a error a	 /An = 7-t--ni n sin n kit/2-4))+sin n (x-cos-1 (sin 4))))

(8.35)

(8.36)

For comparison with the undecorrelated case, the coefficients are calculated for the case of
the error appearing at an angle of 30 degrees, therefore substituting 4) = r.16 into equation

(8.36) gives:-

Es enes - Eer-(1. 0)cos 5(T)+0)cos 7(T)+ 	 	 (8.37)
nitm

Fig 8.25 compares the spurious levels contributed by equation 8.34 with the spurious

levels from equation 8.37. For values of 4) other than 7t/6, even products will begin to
1 the	 iappear, but at reduced levels. The important difference is e appearance of the factor -n in

the coefficients, thus resulting in much lower levels of high order spurious signals. All
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spurious signals are reduced relative to the undecorrelated case, but in particular the

reduction of higher spurious products gives a much cleaner spectrum.

Sp
de

II I

	 111111111111111111
1 IH161111111

;.. !if
21

Spurious order number

Fig 8.25	 Comparison of spurious levels for

static errs, with and without DAC decorrelation

8.6.3	 Dynamic errors

8.6.3.1	 definition
At high clocking speeds, dynamic errors are the major cause of spurious products, rather

than static errors, and the spurious reduction scheme was designed particularly to cope

with dynamic errors. Such errors relate to the clock frequency and display a distinction

from static errors in that their contribution to the primary spectrum depends upon the

clocking frequency. In our analysis presented here the assumption is made that switching

glitches are the main contributor to dynamic errors: the highest glitch levels occur for

changes in the second most significant bit (MSB/2) and the most significant bit (MSB) of

the DAC word, which are the major transition points and therefore give the highest level

of dynamic errors.

8.6.3.2	 MSI3/2 glitches
The probability of a second most significant bit transition (for example from 00111111 to

01000000 for an 8 bit DAC) is analysed here. In fig 8.26 the distribution of transitions

can be seen. At the most negative point (level 0), point A on fig 8.26, the probability of a

MSB/2 transition is 0.25. As the output level rises, transitions of MSB/2 to zero in the

lower quarter will be replaced by identical transitions to the third quarter.
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Fig 8.26	 Probability of MSB/2 transitions with DAC decorrelation

In fig 8.26 this corresponds to a new point B. Transitions from MSB/2=1 in the upper

quarter to MSB/2 = 0 in the lower quarter are reduced by 8, where 8 is the ratio of the

distance below the sine curve at B to half the DAC range. This will be offset by the

number of transitions from the second quarter, MSB/2 =0 to the third quarter MSB/2 = 1

which will be 8. The probability of a MSB/2 transition will therefore remain constant.

When the DDS output moves above the lower MSB/2 point, the loss in lower MSB/2

transitions are replaced by upper MSB/2 transitions. Effectively, MSB/2 transition

probability remains unchanged at 0.25 throughout the cycle resulting in a base spectrum

containing a DC component only. The same criteria apply to lesser transitions.

8.6.3.3	 MSB glitches

In many DAC implementations, the major transition is at MSB. The analysis commenced

for the undecorrelated case will now be extended to include dynamic glitches. Although a

similar analysis can be performed as for the static case, the width of the error pulse must

be modified. In the static case a particular error Er occurs for a particular DAC output

level. In the dynamic case, however, the error occurs on a transition across the MSB

boundary. Rather than be determined from the static DAC level width, the error is

therefore determined by the clock period. Effectively, the error pulse window, as shown

in fig 8.24a above becomes such that:-
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27cfclock

out
m— 	.radians (8.38)

Esenes — EdYnerrcElS in nicos (nT)m'
7C

n=0
(8.42)

Distribution doubled
due to overflows

Base Signal

Actual Signal Output

Dec outputs

m
Window for glitch pulses• A

Error function: Error function

Pulse width modification becomes necessary because the base spectrum appears as if there
are many error pulses rather than a single error pulse as represented by equation (8.29).

The DAC levels over a window m' show an identical error due to the transition glitch.
This pulse must therefore be represented as being the width of one clock cycle rather than

one quantisation bit as with the static case. Inserting the modified pulse width m' into the
series for the DAC error primary spectrum in phase space T (equation 8.33):-

00

where Ed ynerror represents the dynamic errors introduced due to the glitch. The error

spectrum is a slowly declining series. As with the static case, spurious signals will
abound. In addition the lower order spurious signal levels will be at much higher levels

than with the static case due to a reduced effective value of m.

MSB glitch contributions will now be determined on the assumption that DAC

decorrelation is invoked. The probability of an MSB transition is calculated from

fig 8.27. The probability is zero at the peak and trough of the output waveform, but rises

as a function of the upper bound of the probability distribution.

With DAC decorrelation 	 No spurious reduction

Fig 8.27	 Probability distribution of DAC values due to MSB glitches

The upper bound takes the form:-
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1
error = Egiitairef g (1 +Cos(2T)) (8.44b)

Epulse = 1-sin T

The distribution of transitions across the MSB boundary becomes therefore:-

1
By =	 - sin2

(8.43)

(8.44)

In order to find the level of the error component due to glitches, the amplitude of the glitch

must be found besides the distribution. There are two possible relationships between the

DAC destination level (determined by the amplitude of the transition across the MSB

boundary) and the glitch amplitude: constant and proportional to the transition. The former

case is assumed to apply for cases of clock feedthrough, switching spike feedthrough, and

digital signal feedtluough; the latter case is assumed to apply for a glitch contribution from

current source mismatch.

8 6.3.4	 Constant glitch level
If the glitch level is assumed constant, the glitch error E'error can be determined from

equation 8.44 to be:-

(1 Sin2T)
Furor = EglitchlreV + 4 (8.44a)

Where Eglitch is the glitch energy in volts seconds. By the use of trigonometric identities,

the above can be rearranged to give:-

The most striking feature of this is that the error function consists of a DC level and the

second harmonic only. If DAC decorrelation is not used, the error function consists of a

series of harmonic terms.

8.6.3.5	 Switching mismatch glitch errors

Fig 8.28 shows the effect of DAC decorrelation on glitch errors due to mismatches in the

current source switching. The contribution of a glitch to the output depends upon the

particular transition. Assuming that the non-linear component of the glitch is an impulse

equal to an MSB in height, the actual contribution of the glitch to the error function can be

calculated. In this case a linear relationship between the destination DAC level and the

glitch height would be upheld. According to fig 8.28 it is possible for either the MSB

switch to occur before the LSBs turn off, Or vice versa. In the former case a positive

glitch would occur, or in the latter case a negative glitch. With a negative glitch, the lower

the starting point, the lower the glitch level.
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Fig 8.28	 Effect of DAC output transitions on the glitch level

.p! 7, •	 .?! 7?
7,.!71,!.;117,.!7,!p!';,?7,,!7,!7/1;?
7,./ 7 •1;•17,.!7e 7,!*:,!.1•17't

On the other hand, a positive glitch is reduced on increased level of DAC destination

address. If the contribution of the glitch to errors is El..yrterror then the actual error

introduced as a function of DAC destination level is:-

E' error = 1-X'	 (8.45)

The total contributions of glitches to the spurious error function as a function of boundary
By is the area under this curve as shown hashed in fig 8.28:-

BY
E'en" = Edynermr(11-.Vd.x1

	
(8.46)

This results in:-

B 2
E'	 = Ed or(By---1—)

Substituting equation (8.44) above into this gives:-

Eerror = Eglitchfref (1(1 - Sin2T) - 11-(1 - Sin2T)2)

(8.47)

(8.48)
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By the use of trigonometric identities, the above can be rearranged to give:-

7	 7
Eerror = Eglitchie

 
ref(64- 256 cos  ,4_ ))+ 67. Cos(27) - —

1 
	 ( T (8.49)

In this case there is a much smaller fourth order term present.

8.6.4	 Comparison of calculated spurious levels 

It is instructive to compare the level of spurious signals for the cases of output of one third s

clock frequency, foock/3 and one fifth clock frequency foock/5. With no decorrelation

applied, the error waveform can be shown from equation 8.42 to be:-

Eseries

ect

Eglitch	 frefrSill 1/1COS (n7)_
n	 m'it

11:31

(8.49a)

In the following examples, a typical high speed DAC is assumed with a glitch energy of

100psV. and 100MHz clock frequency.

Output of one third clock frequency

In this case, the second harmonic product is calculated from equations (8.42) and (8.49).

The spurious level would be:-
Error spur =	 -57(1Bc	 DDS

Error spur =	 -58dBc	 DAC decorrelation technique,

Clock or dig feedthrough

Error spur =	 -59.2dBc	 DAC decorrelation technique,

switching mismatch

Total spurious suppression 1 dB.

Dutput of one fifth clock frequency

For the case of 1/5 of the clock frequency, the following spurious levels would be

calculated:-

Error spur =	 -62.4dBc	 DDS
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Error spur =
	 DAC decorrelation technique,

Clock or dig feedthrough

Error spur =	 -88dBc	 DAC decorrelation technique,

switching mismatch

Total spurious either 25 dB or absolute depending upon the source of the errors.

With the second order product, the above calculations show little change to the level of

spurious signals, but in practice with the unmodified DDS there will be additional

contributions to the second order product from other major transitions; such contributions

will be absent when the spurious reduction techniques are used. For higher order products

the above equations predict large reductions in spurious signal levels from glitches as a

result of the use of such techniques.

8.7 Summary of spurious reduction techniques

In summary, a fundamental principle behind the DAC decorrelation technique is the

broadening of the errors in the sampled time domain by a random signal. These lead to a

corresponding contraction of spurious signals in the frequency domain. This means that

the spurious signals are concentrated in the fundamental (wanted) signal and lower

harmonics, thus giving a drastic reduction in the levels of higher harmonics. Two

methods of DAC decorrelation have been studied and are the subject of a patent application

(Wilson, 1990). These techniques involve the use of two DACs, each DAC providing a

randomly varying contribution to the analogue output. The second technique allowing

overflows provides a much improved spurious reduction capacity.

In addition to the decorrrelation of the DACs to improve DAC related errors, the question

of improving truncation spurious errors by means of interpolative dither was investigated.

A disadvantage of these techniques is the increase in broadband noise level, but the levels

are sufficiently low for satellite data communications usage. As clock frequencies are

increased, a reduction in noise density should occur as the noise energy is spread over a

broader frequency range. For this technique to be economically viable, however the extra

logic required must be integrated in the form of a custom IC or a Logic Array. Having

demonstrated that the spurious reduction techniques are theoretically viable, computer

simulations are presented in §8.9, followed by details of the construction of an

experimental synthesiser and measured results in §8.11.
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8.8 Other applications

There are possibilities for extending the basic principle of this invention outside the field

of frequency synthesis. The reduction of harmonic and other spurious products could be

applied to many systems that employ DACS and ADCs. One particular application could

be in pulse doppler radar digitizers where correlation of spurious products close to the

wanted signal could obscure small targets close to a reflection from a large target. In

audio work, the human ear fmds a preponderance of high order spurious products much

more disturbing than broadband noise. Therefore a potential exists to reduce impairments

in the quality of sound processed by ADCs and DACs in digital audio equipment. Other

examples where this technique could be useful include instrumentation and video

applications.

8.9 Simulation work for DDS

$.9.1	 The requirement for simulation

Since there are many distortion generating processes involved in Direct Digital Synthesis,

a simulation would be a most suitable means of predicting expected performance. The

situation is complicated by the fact that there are many possible output frequencies, each

with a unique spectrum. In order to gain confidence in a proposed implementation it is

necessary to investigate each channel over the band of interest. A simulation would be

required to search through each channel and record the worst case performance obtained.

8.9.2	 Fast Fourier Transform

8.9.2.1	 Using FFT to obtain the DDS spectrum

A principal part of a simulation for a DDS consists of a time domain simulation of the

waveform construction followed by a conversion to the frequency domain to observe the

resultant frequency spectrum. Since the synthesis process is equivalent to a reconstruction

of a sampled sinewave, a Fast Fourier Transform (1tT) is a most effective means of

analysis. From chapter 4, it was indicated that the longest cycle of repetition is 2" clock

cycles. The synthesiser is therefore clocked through 2' clock cycles, where p is the

accumulator width. From the repetition rate, the lowest spurious frequency will be
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Feocti2P. Therefore, in order to resolve individual spurious products, the FFT size
should be 2P.

If 2' are taken, one for each clock cycle, FFT processing gives an output point

corresponding to each possible output channel frequency of the synthesiser. From
consideration of the data that must be accurately resolved, that is discrete spurious

frequencies, it is desirable that synthesiser operations repeat exactly at a rate equal to the
reciprocal of FFT width. In this case no FFT overlapping, or windowing would be

required. Fig 8.29 displays the situation with no overlapping. The bars represent the

possible outputs from the DDS, and the curve the response of the FFT process. Each
DDS output corresponds to a peak in the FFT channel response, but is at the nulls of each
of its neighbours. It follows that a single FFT sample can then be taken of a complete
DDS cycle, and the results will accurately represent the DDS output spectrum. The
disadvantage of this method is that large FFTs are required (64kpoints for 16 bit DDS,
and 4* 109 for 32 bit DDS). For the 16 bit case, the size is manageable, but presents an

insuperable problem for the 32 case. However, the 16 bit case can be treated as a subset
of the 32 bit case, and the 16 bit case will be used in the study.

Fig 8.29	 Response of non-overlapped FFT to DDS spurious signals

8.9.2.2 FFT Algorithm

The FFT is a discrete Fourier Transform (DFT) with the redundant steps removed. There

is an abundance of literature on the treatment of FFTs, therefore only a brief description

will be given here. The DFT can be represented by [Rabiner-Gold, 1975a]:-

n=N- 1
X(k) = Ex(n)Wnk
	

(8.50)
nZI

where X(k) is the output in the frequency domain and x(n) is the nth input sample in the
time domain, where:-
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.(27c)ik

Wnk = eAN (8.51)

N	 kX(k) = X1(k4) + W X2 (k--,-,-)	 2 .� k �..N- 1N 	 h (8.55)

or:-

The FFT removes the repeating terms in W. A full DFT can be split into two smaller
DFI's, one operating on the even terms on the input and one on the odd terms:-

n=N/2-1 n/2-1,-N

X(k) = Ex(2n)W+ Ex(2n+1 )W(2n+l)k	 (8.52)
n=0	 n=0

This involves a 50% reduction in computations over a full DFT. Each of these DFTs can
in turn be reduced into smaller DFTs. Putting W2N equal to Ww2 equation 8.52 can be

written as:-

n=N/2-1	 n=N/2-1
kX(k) =/ix1 (n)Wr wf +	 XX2 Wn k

N/2 N 	 N/2
n=0	 n=0

(8.53)

The DFT output X(k) can be written therefore in terms of two smaller DFI's X(1) and
X(2):-

X(k) = Xi (k) + WkN X2(k)
	

05k5-2 -1
	

(8.54)

This process can be iterated until it arrives at a starting point of N/2 2-input DFTs.

8.9.2.3 FFT program design

With the 16 bit case, a large data memory must be managed, therefore special program

techniques must be used for optimum performance. The design is based on that used by

Cooley and Welch [Cooley, Lewis, Welch, 1969].

The machine to be used was based on an IBM PS2 using a 33 MHz 80386
microprocessor, and Pascal used as the top level design language. The following facts

had to be taken into account in the design of the program:-

1) The machine can only perform high speed memory access from a limited

cache memory storage (32kbyte);

2) The core of the FFT process (the butterfly) is performed more efficiently by
ensuring parallelism between the 80386 and its 80387 numeric co-processor
unit.
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The program is designed to allow restricted access to the memory at any one instant.

To enable effective parallelism, the butterfly is written in 80386 and 80387 assembly

code, and subsequently inserted as a subroutine into the main Pascal code. Using this

approach, an FFT program was produced by the author that performed a 256 kpoint FFT

in 61 seconds. Fig8.30 displays a data flow diagram of the FFT process.

Fig 8.30	 Data flow diagram for the particular implementation

of a FFT used here, the dotted borders indicate memory cacheing

The first operation, at the top of the diagram is the bit shuffling operation that arranges the

data in correct order for the decimation in time algorithm. Bit shuffling is the name given

to the process where an address of an time domain point is bit reversed, and the data is

moved to a location pointed to by the bit reversed address. A procedure was written by

the author that performed bit-wise operations on the memory address. The bit reversing is

implemented in assembler code by testing each bit and re-writing the bit in reverse order.

A method developed by Radar [1968] is considerably more efficient, but was not

implemented as the overall time saving would be minimal (less than 1 second out of 61 for

a 250k FF1). Bit shuffling of addresses is necessary to ensure that the frequency domain

data appears in the correct order. The data is initially arranged in blocks of 2048 point

FFTs, as can be observed from fig 8.30 (shown here as 4 point FFTs for clarity). This

means that the processor has instantaneous access to only 16kbyte of data if single

precision numbers are used in the data. When the decimation block becomes greater than

2 kbyte, then the block is split as can be observed from the RHS of fig 8.30. Storage of
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k

X = A+BWN

Complex Addition/subtraction

Y = A-BW
k
X

Inputs

A

coefficients 'Ain after use in the butterfly must be achieved so they can be reused in
subsequent blocks.

A critical path analysis of the FFT process reveals that the butterfly is by far the slowest
step in the process. This in effect contains most of the numeric processing. A flow
diagram of the butterfly is given in fig 8.31.

k

will

Complex
Multiply

Fig 8.31	 Data flow diagram for the FFT butterfly

The only other non-trivial numeric processing is the principal root of unity W IN . As
this is evaluated only log2(N) times, for moderate to large N, WIN is well outside the
critical path. The 80387 processor is arranged to be continuously engaged in numeric

processing, while the 80386 simultaneously manages memory and program flow.

Fig 8.32 displays the data flow diagram of the 80387 processing of the butterfly.

Efficient butterfly processing could be achieved by using the 80387 stack as a scratchpad

for intermediate results. 8 stack registers are present within the 80387 which can be

accessed more rapidly than the memory. Numbers are given on the data flow diagram

which indicate stack usage. Fig 8.32 is the flow diagram that was produced prior to the

assembly code to minimise the number of operations required in the butterfly process.
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Fig 8.32	 Data flow and stack utilisation diagram for

the FFT butterfly using the 80387 numerics coprocessor IC.

8.9.2.4	 Accuracy
There is a trade off between processing speed, memory usage and accuracy. The formula

for accuracy is (Rabiner-Gold, 1975b):-

where b is the number of bits resolution. Error/C is the ratio of RMS error to RMS full
scale signal. A single precision IEEE number has 24 bits precision for the mantissa. For

a FFT size of 256k an effective signal to noise ratio of -104dB results, ignoring any

round off effects in the WI multiplier coefficients. If there is a round effect here due to

single precision then there will be negligible additional degradation because this factor is
only used once per butterfly. However, if the principal root WIN is made single

precision, this will be effectively multiplied many times, the build up in roundoff errors

would be catastrophic. Therefore double precision numbers are used for this as there is

negligible penalty in storage or speed for this factor.

8.9.3	 FFT Response to Noise

In order to establish the noise density present at the output of the simulated synthesiser the

response of the FFT to noise must be known. Each output channel of the FFT is often
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referred to as a "bucket". As mentioned in §8.9.2.1 non overlapping FFTs will be

performed. Fig 8.29 of this chapter, §8.9.2.1, displays the response of the FFT

"buckets" to noise. The output of the FFT to noise is represented by a power integration
to infinity under this curve. Since with noise it is not important that some of the output

may have originated from other output buckets, the aliasing is not considered a problem.

The form of the rectangular window response is given by:-

E	 — 
sin(xf ) 

(8.57)
Pulse	 gf

The power integration is given by:-

00

Epulse — 

oisin2(xf)
di— 

1
x 2)02 	 2 (8.58)

This represents only one half of the response, therefore the bandwidth conversion factor

for a rectangular window in this case is unity.

8.9.4	 Simulation of DDS. truncation effects only

The program details for the DDS simulation is given in appendix 3. Simulation of the
DDS is straightforward if truncation effects only are studied. As with a real look up table
DDS the look up table is calculated upon starting the program. Addressing of the look up

table is achieved by an integer having a maximum value 2 q, where q is the phase word.
Phase truncation is therefore represented by the value of q. The output of the look up
table is restricted to values of 2m where m is the resolution of the DAC (amplitude
truncation). The look up table is represented by the following:-

V = 0.542P-2)(0.5+0.5cos(122q )out (8.59)

where Vc,ut represents the synthesiser output voltage and T the phase input word value to

the table. Voltage levels for each time sample are stored in memory in a file. After the

simulation processing, an FFT is performed on the file, and the results displayed in a

spectrum analyser type logarithmic display. The vertical axis used in the display is given

by:-

vout = io log10
(x2+y2)	 (8.60)

where VFFr= x + jy.

371



The output is approximately valid up to the Nyquist frequency, but as the upper half of the

spectrum is exactly the mirror image of the lower half, this region is never plotted.

$.9.5	 Truncation plus dither,

To the simulation program above, a dither word D is added to the phase input word. In

addition, rounding is controlled by a random number. The source of the random numbers

is the pseudo random number generator used in the Pascal program. Dither application is

equivalent to phase modulation with a random signal. This phase word is of maximum

value 2d where d is the number of bits of the word. The phase and amplitude dither are

provided from separate random numbers.

Amplitude dither is provided by random rounding of the output of the look-up table-
according to a pseudo-random binary sequence. The look-up table is rounded down if the

sequence is zero, or up if the sequence is one.

Phase dither is injected by summation of the dither value to the output of the phase

accumulator. An idealised DAC is assumed as in §8.9.4.

$.9.6	 DAC simulation

Although simulation of the DDS is simple, the same cannot be said for simulation of

DACs. Intermodulation effects within DACs are complicated and have many sources

[Personal communication, Basler, 1991]. Therefore, rather than attempting to simulate a

particular DAC, a model was built of a perfect DAC and by introducing to this the effects

discussed in §8.2, a prediction can be made of possible degradations. The DAC to be

simulated was a switched current source [Weiss, 1986]. In the simulation, a weighted

current source is switched in for each bit of the DAC input word. The program

description and code for the DAC simulation is given in appendix 3. The simulation was

split into two parts; static effects and dynamic effects.

8.9.6.1	 Static Effects 

Static effects are errors introduced by mismatches within current sources. In the

simulation, this is represented by a random error component added (or subtracted) to the

ideal current for each control bit. In this way, a Monte Carlo simulation of DAC models

can be undertaken. Such errors are responsible for INL and DNL in a real DAC. A plot

of DAC errors is given in fig 8.33 for this type of error. The standard deviation of the

DAC errors was assumed to be LSB/2. A Monte Carlo program generates a simulated

production run of DACs. Each DAC is a file consisting of current sources and associated

error values.
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Fig 8.33	 DAC static error characteristics

8.9.6.2	 Dynamic errors 

The situation becomes even more complicated when dynamic factors are considered as is

required for a fast DDS simulation. With switching effects, the DAC output is dependent

not only upon the present output level, but also upon previous DAC levels. Since the
clock period is usually greater than the the DAC settling time, a useful approximation is to

consider the present (x(n)) and previous DAC state (x(n-1)), but states previous to this are

ignored. Modelling of the switching transient needs to be undertaken. Two aspects to
this switching are considered:-

1)	 Variations in propagation delay;
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0 
Alswitching —	 t

ck
(8.62)

(10-10(tp+Tt)

switching —	 t
ck

AI (8.63)

2)	 Variations in the switching transient.

For a clocked DAC, the effect of propagation delay will be minimalised, and so the
dominant effect considered is the switching transient.

For the simulation, an exponential first order transient is assumed, although in practice the

transient is more likely to be second order due to the effect of metalization inductance and

diffusion capacitance. The transient for a first order system takes the form:-

i( t )

It. = (Io-IF)e Itt)+Ip

where Tt is the time constant of the transient, 4 is the switched current source initial

current, IF the final current and It. the current during the transient. These factors are

entered into the Monte Carlo analysis to take account of the spread of diffusion

characteristics across the chip. A calculated value is required of the average error over one

clock period tp. This error, AIswitching will have contributions from the propagation delay

tp and the settling transient:-

Of

j.(!)

.1.00-IF)e .'c Odf+Iotp

(8.61)

Evaluating this integral gives:-

A sketch illustrating the nature of this transient is illustrated in fig 8.34. When the DAC is

clocked during the simulation, an error current ('err) is added to the static current

depending upon the previous value of the current. If the switch was turned off, the output
current consists of the error voltage only. If the current source is turned on, the error

current is added to the static current. If there is no change in the current then no error

component is added. Feedthrough from the other current sources or clock intermodulation

is not taken into account in order to simplify the analysis.
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Fig 8.34	 Simulated DAC current switch transient

The next component that was considered was digital signal feedthrough. This is modelled

by capacitive edge coupling from the digital signals to the current sources. When a digital

transition takes place, a component of this is assumed to couple through to each current
source, resulting in an error value. This is a very simplified model of the actual problem
which can include inter-metalisation coupling in the IC, and cross coupling through the

ground and external circuit The composite DAC current is modelled as:-

I
ref

,	 = —(LS B 2o+LS B 
+1

21 	 +MSB2P-1)
analogue g

which is the idealised model for a DAC.

(8.64)

There will be an error contribution to each bit, as determined by:-

CHLVs+/-
I	 . = I	 +AI .	 . . +per bit	 source	 static	 switching (8.65)

where I	 is the switched current source current for the bit, AI . is a random valuesource	 static
selected from the Monte Carlo process, ADS\D06(switching) is as defined by equation 8.63
and Cm, is the capacitive coupling between the control bits and the analogue coupling for
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a high to low control logic swing on the particular DAC input bit. Vs (+/-)is the effective

logic voltage swing, and if a low to high logic swing occurs, a different value of coupling

capacitance CLH is used in place of CHL in equation 8.65. Different values of Ccoupling

are used depending upon whether a positive or negative logic swing occurs at the input to

the DAC. This facility is used to model the effects of spikes from the control logic

coupling to the DAC current source switch. The particular values of coupling capacitance

used for the two DACs in the DDS simulations of §8.9.9 and §8.10.3 are displayed in

table 8.4.

Table 8.4

Digital switching feedthrou h capacitances

Capacitance DAC1 DAC2

Cul 0.13 pF 0.093pF

0.16pF Cm

i

_	 0.2 pF

The aim of this model was to be representative, rather than accurately model a particular

DAC. However, benefits could be gained from modelling clock intermodulation effects in

addition, but this is beyond the scope of the thesis. A specification giving DAC

characteristics and limits is shown in table 8.5 and this is used as an input to a computer

program which provides a Monte Carlo simulated production run of 20 DACs with a

Gaussian spread on the various error contributions. Two samples were selected with

approximately the standard deviation on all error characteristics. These yielded the worse

dynamic linearity characteristics, (fig 8.35) and are used for the spectral plots of the new

DDS techniques in this chapter. The time constant and propagation delay have spreads on

them that have standard deviations given by the corresponding spreading values in

table 8.5

Table 8.5 Simulated DAC specification

DAC Characteristic

Max clock frequency

DAC current mismatch (each bit)

Digital edge feedthrough capacitance

DAC settling time constant

Settling time constant spread between bits

Switch propagation delay spread

Glitch energy

Value

100 MHz

± 0.5 LSB

0.2 pF max

1.1 ns

loops

600 ps

156 pVs
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8.9.7	 Simulation of DAC Decorrelatioq

In order to simulate of DAC decorrelation effects two DACS are selected from the Monte

Carlo production run. These DAC files are then inserted into the DDS with decorrelation

simulation program as outlined in appendix 3. The algorithm used in the Decorrelation

simulation is exactly as described in §8.4.4. Pseudo random numbers are provided by

means of the Pascal pseudo random number generator.

8.9.8	 High speed DDS. without spurious reductioq

For the simulations described in the remainder of this chapter, a DDS will be studied using

the following parameters:-

Values	 Units

Clock frequency	 100	 MHz

Accumulator size	 16	 bits

Frequency Word	 9356 or	 16374

Output Frequency	 14.276	 MHz

Before carrying out the DDS simulation, the characteristics of the simulated DAC selected

from the Monte Carlo process is plotted by a software routine that increments through the

DAC characteristic. By incrementing through . the digital word at the DAC input, and

dividing the DAC output by the ideal value of DAC output corresponding to the input

digital word, a DAC linearity curve can be obtained. If the DAC switching effects are

ignored, then a plot of INL and DNL is obtained, giving the plot of fig 8.33 in §8.9.6.1.

If the DAC is incremented at full clocking speed and switching errors are included, a plot

can be obtained of the DAC dynamic characteristic, such a plot is displayed as fig 8.35. It

can be observed that the linearity is poorer, and that glitches occur as the most significant

bits change
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Fig 8.35	 DAC dynamic error characteristics at 100MHz

A simulation of a 100MHz synthesiser was performed with no spurious reduction

techniques enabled. A FFT of the resulting DAC output can be observed in fig8.36.
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Fig 8.36	 Broadband FFT of DDS giving 14.276MHz output

If a perfect DAC is used, and the simulation is repeated, an FFT plot, fig 8.37 is obtained,

showing the effect of errors due to truncation. The real DAC spectrum of fig 8.36 is more

typical of high speed synthesisers than the idealised case of fig 8.37.
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Fig 8.37	 Broadband plot, Ideal DDS with truncation

Fig 38 gives a close to carrier plot of the sidebands, and it can be observed that the highest
spurious level is -50 dBc. Large numbers of high order spurious signals are visible in the
broadband plot of fig 8.36 up to the Nyquist frequency. Second and third harmonics are
also clearly visible.
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Fig 8.38	 Fig 8.36 expanded showing close to carrier region

8.9.9	 High speed DDS. including spurious reduction methods 

Firstly, a simulation was obtained with the decorrelation but no truncation dither applied.

The FFT output is displayed in fig 8 39. Spurious level reduction can be clearly

observed, but some products are still clearly visible above the noise floor.

381



• Second order •

product

:+7dBm	 . FFT of DDS simulation.uith spurious reduction. technique

Level (&i)
	 fout:=14.276MHz, fref:=100110z,

:10m/division

:FrequenCy (MHz):

0	 .10	 .20	 .30	 :	 :40	 50

Fig 8.39	 Broadband DDS with decorrelation, but no dither

By applying truncation interpolative dither in addition to decorrelation, the spectrum

display of fig 8.40 can be obtained. Spurious products can no longer be observed clearly

above the noise floor, apart from the second order product.
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Fig 8.40	 Broadband DDS with decorrelation, and interpolative dither

By expanding a region around the carrier of the broadband plot of fig 8.40, the plot of
fig 8.41 is obtained. The spurious sideband signals are reduced to a level

indistinguishable from the noise floor.
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Fig 8.40 expanded showing close to carrier region

:14.05

In many DDS implementations, the 3rd harmonic aliased product is usually high. This
occurs at fref/4, therefore a simulation was performed at this output frequency. Fig8.42

illustrates the output spectrum with no spurious reduction techniques enabled, clearly

illustrating the third order product at folic = fciock /4. Applying decorrelation results in the

spectrum of fig 8.43 for an identical range of frequencies. The third order product is
reduced by at least 20dB.
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Fig 8.42	 DDS simulation with real DAC, showing third order product.
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Fig 8.43	 DDS simulation with real DAC

and decorrelation, showing third order product.

8.10 Frequency Search of Simulated Synthesiser

With direct digital synthesisers, the error spurious spectrum can change drastically as
different output frequency channels are selected. For this reason it is necessary to

undertake a frequency search. The synthesiser is incremented through a range of possible

output frequencies and the maximum level of spurious signal produced by the FFT is

noted. The close to carrier spurious signals are primarily of interest, therefore searching is
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restricted to a limited region around the carrier. Modifications were therefore carried out

to include each synthesiser simulation in a loop that repeats the simulation for every

frequency increment. Appendix A4 illustrates the program simulates the DDS and stores

the data. Maximum levels of spurious signals are monitored over a small range of 200

channels. A histogram is then used to display the maximum spurious signal level for each

band.

8.10.1 Ideal Synthesiser. no dither

Fig 8.44 displays the plot of the frequency search for the ideal 8 bit synthesiser over a

search range of ±1 MHz. It can be observed that there is considerable variability in the

levels of spurious signals between the bands. Another observation is that no trend is

visible as the output frequency is increased. The maximum spurious level obtained with 8

bit amplitude and 12 bit phase resolution is -58 dBc at an output frequency of

12.109 MHz. This result is a theoretical one therefore the results for a practical

unmodified DDS implementation will be greater than -58dBc.
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Fig 8.44	 Maximum levels of spurious signals

obtained from frequency search of 9.155 to 27.47MHz

8.10.2 Ideal Synthesiser. with dither

Phase and amplitude dither are then introduced to the simulation of the ideal synthesiser.
The phase dither is 8 bits wide giving a total dither value of 11256 of a cycle. With dither

applied, the FFT size was increased to 250k points to allow increased resolution of

spurious signals in the noise. A frequency scan is begun of the synthesiser resulting in a

maximum spurious level plot as shown in fig 8.45. The maximum level obtained in the

plot is -75 dBc which can be contrasted with -58 dBc with no dither.
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Fig 8.45	 Spurious signal levels, ideal DAC

and dither, frequency range 9.155 to 13.732MHz

8.10.3 Synthesiser with simulated real DAC. DAC decorrelation and

din=

A frequency scan of the complete synthesiser with simulated real decorrelated DACs and

interpolative dither is displayed in fig 8.46. As with §8.9.9, a 256k FFT is used. The

maximum spurious signal levels recorded range from -72dBc for a frequency value of

9 MHz to -68 dBc at 27.5 MHz. This may not be the actual level of spurious signals, but

the peak levels of the residual pseudo-random noise at the output. Nevertheless, the level
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of spurious signals is below that given by truncation errors from a DDS with an idealised

DAC as plotted in fig 8.44 above.
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Fig 8.46	 Spurious levels, real DAC, decorrelation

'	 and dither, frequency range 9.155 to 27.47MHz
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• •11	 I

spurious reduction techniques 

8.11.1 Look-up Table

After computer simulations indicated favourable results with the spurious reduction
techniques described in §8.4, construction of an experimental synthesiser commenced.
The synthesis equation used was:-

= 0.542P_10.54-0.5cosnout	 2q (8.66)

This equation was blown into a 4kbit EPROM which allowed the use of 12 bit address
lines and 8 bit data lines.

$.11.2 Pseudo-random number generator (PRIsil 

Fig 8.47 displays the circuit diagram of the random number generator used in the
experimental synthesiser [Rabiner &Gold, 19804 An advantage of such an

implementation is speed, as one random number per clock cycle is generated. The random

number generator must be seeded, and this is achieved by allowing the bank of flip-flops
A to be set to a high impedance output state. The pull up and pull down resistors R1 -3

set the value of the seed. Other flip-flop output will be indeterminate, but this gives no

adverse consequence as the actual seed value is unimportant so long as all bits are neither

all ones or all zeros. When the flip flop outputs are changed from the high impedance
state to the enabled state, the pseudo-random number generation process begins.

8.11.3 First decorrelation circuit

Fig 8.48 displays a schematic diagram of the circuitry that implements the first
decorrelation method. IC51 is a 16 bit ALU configured as an accumulator by enabling the

internal feedback path between the output register and the B input register. Immediately
following this is the look-up table 1052 which is a 64kbit EPROM that stores a complete

cycle of a sinewave. After the EPROM is placed a re-synchronising latch 1053 which
cuts down the propagation delay between the output of the EPROM and 4 bit ALUs 1054
and 1056. These ALUs add the pseudo-random sequence if the EPROM MSB output is
low, or subtract if the MSB bit is high. Outputs from the ALUs are fed to clocked latch

1055, which reduces data skew at the input to the DAC. 1059, 1060, 1061, 1062 enable
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cancellation of the pseudo-random number by addition if IC 54 and IC56 subtract, and
form the 2's complement for subtraction if IC54 and 56 add. Complementation of the
pseudo random signal is achieved be means of the XOR gates of IC59 and IC60.

Latch IC58 can be enabled and disabled to allow the decorrelation to be inserted or

removed. Such a facility enables the performance to be compared with or without the use
of the spurious reduction technique.

Fig 8.49 shows the summation of the DACs. The DACS used were DAC 0800, which

gave a particularly poor spectrum in the normal DDS circuit. Both DACS have
re-synchronising latches at the input as discussed above. The analogue outputs of the
DACS are summed at the op amp IC82 as described in §8.4.4.

8.11.4 Second decorrelation circuit

Fig 8.50 is a schematic of the second decorrelation circuit. In essence, the circuit is
similar to fig 8.48 but includes extra circuitry to allow the ALU to overflow. Overflows

are managed by means of the gates in IC8 to 11. The output, pin 8 of IC 8 forces the
signal DAC, IC80 of fig 8.49 MSB when overflows occur. Overflows or underflows are
signalled by means of the carry output from the the post EPROM ALU comprising IC5
and IC7. The output of IC9 pin 8 controls the MSB of the cancellation DAC, IC81 of
fig 8.49 via IC16. Decorrelation is enabled by means of Si. At the RHS of fig8.50, the

digital signals are fed to the analogue conversion circuit of fig 8.49. IC13 to 16

performed 2's complementation as do IC59 to 62 of fig 8.48. The analogue conversion

circuit is identical for whichever decorrelation circuit is used. No cancellation or balancing
adjustments are provided. A spectrum analyser can be connected to the analogue output to

enable the spurious signal and noise sidebands to be measured. In both DDS circuits the
clock frequency is provided by crystal Xi.

8.11.5 Interpolation dither circuit

Fig 8.50 also includes the phase dither circuit This is implemented by means of an adder

IC2 which adds the pseudo random number to the output of the phase accumulator. The

magnitude of the distribution limits (width) to the pseudo-random number (PRN) can be

set by a DIP switch DIP1 in ascending powers of 2 to a maximum of 28. In the interests

of economy, the PRN is selected from lower tappings on the output of the PRN generator

of fig 8.47. In doing so, only one PRN generator is required for the synthesiser. Such a

practice will not guarantee freedom from correlation with the PRN used for DAC

decorrelation, but measurements indicated that dither still produced significant gain. A

computer simulation is recommended for further study to ensure that the spurious signals
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0	 ------ Uncorrected

Dac decorrelation method 1
-10

Dac decorrelation method 2

Spurious
- 40 dBc
-50

.•

-60 	 	 •4.•
 -

/

- 70

-BO

- 90
Relative Frequency

-20
Dac decorrelation 2

- 30	 with dither • -

refCelli 0

Fig 8.51	 Measured performance of

various DDS embodiments fre f =7.643MHz

Nyquist limit

remained low for all frequency outputs and accumulator phase states. Phase truncation

dither is selected by S2, and two state amplitude truncation dither by means of S3.

S.11.6 Verification of performance

A DDS has been built to implement the above techniques discussed in §8.4.3 and §8.4.4.

7.6 MHz was used as the clock rate fref. The resulting performance is displayed in

fig 8.51.

Decorrelation method 2 gives far superior results to that of method 1. Although the

spurious products were reduced with method 2, they were reduced still further by the

simultaneous application of dither, and the number of products were also reduced (fig

8.52). Also it can be noted that the spurious reduction was not as effective for output

frequencies above fref/4. It was not clear from the measurements whether these spurious

signals arise within the DACS or within the operational amplifiers following the DACs.

Table 8.6 shows that the harmonics of fout are also reduced by this technique.

Fig 8.52 illustrates a spectrum analyser plot of the close to carrier spectrum of the

measured DDS output at 1.529 MHz.
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Fig 8.52	 Measured Spurious signals of the prototype DDS, fout = 1.5291MHz
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A blue trace is used to represent the output with no spurious reduction, and the black trace
represents the synthesiser with decorrelation applied and phase truncation dither switched

off. To demonstrate the effect of dither, figs 8.53, and 8.54 show the output spectrum of
the synthesiser at 388IcHz and 447 kHz respectively. In the former spectrum, the brown
plot represents the application of decorrelation and amplitude dither only, and the green
trace shows the reduction in spurious signal levels by the simultaneous application of

phase truncation dither and decorrelation. The latter plots, fig 8.54 show the effect of a

frequency change, removing the dither gives the black trace, and applying the dither gives

the blue trace. Broadband plots are given by fig 8.55, for a 274 kHz output, displaying

the effect of decorrelation on the harmonics. The spectral shape of the noise due to the

glitches can be clearly seen here, predicted by equation 8.28b to be distributed in the form

of a One curve.

The output noise of the prototype synthesiser was measured with the aid of a

Hewlett-Packard spectrum analyser type HP8566B. Noise density figures obtained from

such a measurement will include the AM component of the noise, and this must therefore

be allowed for in the calculation of the phase noise levels. The noise sideband

measurement results obtained from the prototype DDS are given in fig 8.56. These

results were obtained 10kHz from the carrier.

0. 5MHz	 1. OMHz	 1. 5101Hz	 2. OMHz	 2. 5MIlz
Synthesiser Frequency

Fig 8.56	 Measured phase noise of the prototype DDS, fief = 7.643MHz
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Having demonstrated the effect at low frequencies it is now necessary to implement this at
RF frequencies. Computer simulations need to be undertaken to ascertain the effect of the

different DAC non-linearities. The effect of different forms of dither must also be

considered on the spurious performance of the synthesiser. In addition, degradation of
the phase noise performance of a synthesiser by a sample and hold must also be

considered. The implementation of this form of synthesiser in conjunction with other

techniques in order to realise a fast hopping/ high purity microwave synthesiser is

recommended for consideration.
Table 8.6
	

DDS measured harmonic output

Clock Frequency 7.64314MHz Harmonic

Frequency	 Decorrelation 2nd 3rd 4th 5th

60 kHz	 Off
IIIIIIIIIIIII	 On

250 kHz	 Off

-52 dBc -55 dBc -62 dBc -55 dBc

-70 dBc -65 dBc <-75 dBc -66 dBc

-55 dBc -38 dBc -60 dBc -44 dBc

On <-70 dBc -60 dBc

-32 Mt
-60 dl3c

<-70 dBc
111111111IIM
111111111111

<-70 dBc
450 kHz	 Off

On
1.9 MHz	 Off -40 dl3c -27 dBc

On 	 -44  dBc -48 dBc  	 	 	

8.12 Conclusions

Chapter 8 has showed that significant reduction of spurious signal levels can be achieved

for DDS without compromising phase noise levels excessively for satellite

communications work.

In chapter 6 a requirement for a rule stepping synthesiser with low spurious sidebands,

low phase noise and low susceptibility to microphony is suggested. Direct digital

synthesis can provide low microphony and phase noise, but the reduction of the spurious

sideband levels are the subject of this chapter. In direct digital synthesis, the majority of

the spurious signals arise from non-linearities in the DAC. A discussion of these

non-linearities was given. It was concluded that glitches from switching errors was a

major contribution to the spurious signal spectrum at high clocking speeds. Existing

methods of overcoming spurious problems were described. All these methods displayed

some drawback which hindered their usefulness.
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In this chapter two new techniques are introduced that reduce the spurious signal levels.

These techniques involve the use of locally generated pseudo-random signals to remove

repetition of the error patterns in the DACs. The only analogue components required are

an extra DAC and a summing means; most of the processing can be accomplished using

digital circuitry. Both methods involve the addition of the pseudo-random number to the
digital output from the synthesiser, which is subsequently removed after conversion to an

analogue signal by the second DAC. The methods differ, however, in that overflows in
the digital summation are allowed and catered for in the second scheme. Allowing
overflows demonstrated much reduction in residual spurious signals by comparison with

the first method. Therefore the remainder of the chapter concentrated on the application of
the second method. These methods were termed DAC decorrelation owing to their

removal of time domain correlation of the DAC errors that result in high spurious signal

levels. Suppression of dynamic DAC errors enabled the use of an interpolative dither to
reduce truncation errors.

Having established a suitable method of spurious reduction, the chapter followed this with

a phase noise analysis of the decoffelation end dither methods. The analysis indicated that
the phase noise is a function of DAC glitch level, output frequency and clock frequency.

Predicted levels of phase noise was lowest from a segmented DAC clocked at 300MHz
which gave a noise floor of better than -125 dBc/Hz. Phase noise levels should improve

as the clock frequency is increased.

Following the phase noise study, an analysis of discrete spurious levels was undertaken.

In the general case this proved an extremely complex issue, therefore a simplification was
allowed by considering the errors as an impulse. The aim was therefore to compare

spurious levels resulting from implementation of the different methods, rather than predict

the absolute levels. For static errors a reduction in levels occurred that increased with the

order of the spurious product. When dynamic errors (glitch errors ) was considered, all

products higher than the second vanished. This satisfied the aim of DAC decorrelation in

reducing the effect of DAC switching phenomena.

Computer simulation programs were written for the following cases:-

a)DDS with an ideal DAC showing the effect of truncation errors

b) Application of interpolative dither to an ideal DDS

c) DDS using a real DAC

d) DDS using a real DAC along with DAC decoffelation and dither.
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The computer simulations were undertaken by creating a time domain file of the

synthesiser output and converting by means of an FFT to the frequency techniques.

Special computation techniques had to be devised to to enable rapid processing of the large

FFT files. Simulation d) confirmed that spurious signals of an order greater than 2 were

drastically reduced by the decorrelation process. To provide confirmation of spurious

reduction a spurious search was undertaken over a range of frequencies most likely to be
used in practice. Since the close to carrier frequencies are most of interest, the spurious

search was restricted to ±1 MHz from carrier.

A plot of maximum spurious levels obtained by simulation d) over the frequency range,

not only confirms spurious signal reduction from the unmodified DDS case but also

shows reduction below the ideal DAC case.

Finally, to confirm the results obtained from this chapter, a DDS was built such that the

decorrelation and dither techniques could be implemented. A switch was included so that

the DDS performance could be measured with and without spurious reduction techniques.
With the first decorrelation method, the spurious products were reduced by at most

10 dB. With the second method applied together with interpolative dither spurious signals

were progressively reduced on increasing order to a level of -75 dBc below carrier. In
some cases the reduction was greater than 30dB.

8.13 Further work

The work presented in chapter 8 could be continued by investigating alternative dither

techniques. One such technique is the generation of Gaussian distributed random

numbers for the dither process.

Simulation could be improved by the use of a more accurate DAC model gained from the

manufacturer of the DAC. Also a DDS could be built using the decorrelation technique

and including one of the latest generation of segmented DACs.

Although effective modifications have been described, they would be difficult to justify

economically unless integrated into a single chip. A program would therefore be required

to produce a custom logic device for the digital circuitry. Low cost erasable
programmable high density logic devices are available, but the maximum clock speed is at

present limited to less than 100MHz. Faster programmable logic devices are available

than this but they will be subject to high development costs. Such a path could be justified
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only if economies of scale can be made. An essential part of a further development would
therefore be marketing research to see if such economies of scale could be made.

One further modification to the synthesiser could be the use of an active phase noise
cancellation circuit. In this case, the noise level is monitored at an unused part of the
band, for instance at very low frequencies, and adjustment made to amplitude and timing

of one of the DACs to find the lowest phase noise point. By the use of control theory

techniques, the noise could be dynamically maintained at the lowest point. Such a

technique could enable the realisation of a very low phase noise synthesiser.
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9 Application of synthesis to
satellite communications systems

9.1	 Introduction

This chapter examines the application of synthesiser technology discussed earlier in this

thesis to satellite data communications systems.

The advent of digital signal processor (DSP) technology is creating new opportunities for

satellite modem modulation techniques [Davarian & Sumida, 1989]. Unfortunately there

has not been a similar leap forward in local oscillator technology and many producers are

adhering to mobile radio/FVRO synthesiser practice, often with disastrow implications for

the BER performance [Payne, 19841 One effect of such use of noisy synthesisers is that

BPSK tends to be still favoured for practical modulation schemes over more advanced

coding/modulation schemes such as QPSK and 8PSK. Although the /after can offer

greater bandwidth efficiency and coding gain, BPSK is more robust in terms of phase

noise degradation [Heron, 1989].

Some of the synthesisers studied are capable of being directly modulated. This has

implications for possible simplification of communications systems. This chapter

therefore examines how synthesisers, when combined with digital signal processors

(DSP), could provide a complete interface between the data and the RF signals. For a

transmitter, an architecture is described whereby a synthesiser, DSP and power amplifier

are all that is required for a complete transmitter section of a modem. However, not only

is it possible to simplify the system design, but lower phase noise levels enable the use of
more efficient high level modulation schemes. The effect of such simplifications are

demonstrated in this chapter.
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Specific satellite communications systems are examined in terms of phase noise
performance, applying figures gained from synthesiser configurations studied earlier in

this thesis. A goal of such a study is to compare the capabilities of the synthesiser

configurations with performance requirements of various modulation schemes. The work
centres around a computer program developed to plot performance in terms of equations

outlined previously. Initially modem performance is analysed, and this is followed by

calculation of effects on overall system link budgets.

Results measured from a modem with a data analyser are then obtained using two different

local oscillator configurations. The BER curves are then plotted to compare the effect of

the synthesiser configuration.

9.2 Key areas of concern for local oscillator design

So far the following issues have arisen in the use of synthesiser technology for local

oscillators in satellite communications systems:-

1)Crystal oscillator technology:

2) In many synthesiser designs the close to carrier phase noise is determined by

digital divider and phase detector phase noise, as discussed in §5.7.2.3,

which are only in exceptional circumstances specified by the device

manufacturer [Avantek, 1989].

3) The inadequate vibration performance of many synthesiser designs.

4) The complexity of present transmitter and receiver design practice is likely to

result in pressure to economise on synthesiser performance.

5) The high cost of local oscillators for frequency hopping spread spectrum systems

may preclude this technique for competitively priced secure communications

systems.

9.2.1	 Crystal oscillator technology

In chapter 3 the problem of crystal oscillator phase noise was discussed and in chapter 6

the effect of this on the performance of communications systems was reviewed. As

exposed in §6.3.5, problems were most significant for communications systems using

high order modulation schemes.
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One of the principal problems in the design of receivers arises as a result of having to
provide an AFC system to track out oscillator ageing and satellite doppler effects. The

coherent demodulators must include a VCO in order to close the carrier recovery loop and

track the received signal. There are two usual approaches to this as in fig 9.1 and 9.2: the

short loop and the long loop methods.

Carrier Recovery Loop

Fig 9.1	 Receiver system employing a "short loop" Carrier recovery loop

Short loop 

An example of a short loop is displayed in fig 9.1. The VCO is placed directly in the

demodulator and is tuned to provide the recovered carrier. A minimum tuning range of

2% would typically be required to provide adequate carrier tracking. This is beyond the

pulling range of crystal oscillators and would therefore imply a requirement to use a

voltage controlled oscillator (VCO). However VCOs produce more phase noise, are

sensitive to shock and vibration, and are susceptible to mains related spurious.
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4
"Long loop" approach to downconverter /demodulator design

Long loop

An example of a long loop is displayed in fig 9.2. The VCO in the demodulator is

replaced with a fixed oscillator, and the crystal oscillator which provides the reference for

the 1st local oscillator is varied. Tuning requirements for the VCO to ensure carrier

tracking are now reduced to typically 100ppm and can be provided by a voltage

controlled crystal oscillator (VCXO). The problems with this technique are that:-

a) Vcxos tend to be more expensive to produce than fixed crystal oscillators and tend

to have inferior phase noise and long term stability performance compared

with fixed frequency oscillators.

b) In many systems the first conversion stage is often a self contained unit of

reference oscillator, phase locked oscillator (PLO), and low noise amplifier

(LNA). If a VCXO is used then it would be necessary to provide a tuning

voltage or reference frequency up to the front end which adds to system

complexity.

There are now available on the market inexpensive fixed frequency crystal oscillators that

have proven vibration and static phase noise performance [Zeigler, 1988]. There would .

clearly be an advantage if a fixed frequency oscillator could be employed as a reference
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source for the microwave local oscillators. Fig9.3 displays typical phase noise curves for
a fixed crystal oscillator and VCXO with appreciable tuning range.
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10Hz	 100Hz	 1111z	 101Hz

Fig 9.3	 Comparison of a commercial VCXO and fixed frequency oscillator phase

noise

9.2.2	 Synthesiser logic devices

Many current synthesiser designs rely on the phase noise performance of digital dividers

to determine the close to carrier phase noise [Rodhe, 1983]. A method has been described

by the author in chapter 5 that avoids the problem of digital divider phase noise. However

this method is only likely to yield advantages for synthesiser step sizes of 1MHz or

higher. To implement the modulation techniques outlined in this chapter, fmer step sizes

are required. Methods of reducing the step size have been outlined in chapter 4.

9.2.3	 Synthesiser vibration performance

As stated in chapter 6 satellite modems will frequently have to operate in high vibration

environments. Besides this they must not lose lock or give bursts of high BER when

subject to moderate shock. Frequently the effects on performance are greater than static

phase noise [Wilson & Tozer, 1989]. Unlike static phase noise there appears to be little

quantitive data available on this subject. A computer simulation in chapter 5 predicts that a

considerable reduction in vibration induced phase noise could be achieved by the use of
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third order type three phase locked loops in the synthesisers. It is preferable however, to

design the architecture so that wide loop bandwidths are possible in the PLLs.

9.2.4	 System configuration performance tradeoffs

The multistage up- and down-conversion techniques typically used are complex, require

critical alignment procedures, and are demanding upon screening requirements. A block

diagram of a typical satellite communication transmitter is shown in fig9.4.

A block diagram of a typical satellite communication transmitter multi-stage upconverter is

given in fig9.5 which is followed by the high power amplifier stage (HPA). After each

frequency conversion, notch filters and band pass filters are required to prevent spurious

responses. In addition, each stage must be separately screened, and the synthesised local
oscillators must in turn have separate screening.
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Block diagram of the proposed transmitter
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One method of overcoming these difficulties is to combine the process of modulation,

frequency generation, and up-conversion into one unit, the synthesiser In order to form an

integrated transmitter as shown in fig9.6.
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The synthesiser itself therefore becomes the link between the digital baseband signal
processing domain and the analogue radio frequency domain. This has several

advantages:-

1) The synthesiser is moved from the periphery of the system, as shown in the

shaded area of fig 9.5 to the centre as in the shaded area of fig 9.6, making it
more justifiable economically to improve its performance.

2) If the final output frequency can be generated at the synthesiser then multi stage

up conversion will not be required.

3) Accurate control of the modulation process can be achieved by connection of a

digital signal processor (DSP) to the digital modulation input of the
synthesiser.

4) The total number of local oscillators are reduced, therefore reducing the total
number of phase noise sources (see §9.8.4.3).

With consideration of these points, a possible scheme for a simplified transmitter system

will now be described.

9.3 An integrated approach to transmitter design

A block diagram of a typical satellite communication upconverter and transmitter has been

displayed in fig 9.5. This consists of many stages which must be screened tam eaclt

other, therefore making it a relatively expensive item to produce, especially as demands on

transmitter spurious levels are increasing [GCEL, 1990]. The possibility of employing

the synthesiser to form the link between the analogue and digital sections of the transmitter

has been made realisable by the application of digital circuits to synthesisers. One
possible solution is the use of a PLL synthesiser in the form of the fractional N /digiphase

technique. A major problem could occur due to the limited loop bandwidth used in these

techniques. In FM radio speech channels a commonly used technique is two point

modulation [Scott & Underhill, 1980]; in this technique, modulation is simultaneously

applied to the VCO and the phase detector. When correctly adjusted, the PLL response is
unaffected by the modulation. The following problems may arise in applying this

technique to data systems:-
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a) The data rate in many systems may approach that of the loop bandwidth of the

PLL, therefore care would be required to maintain effective cancellation of the

signal at the PLL.

b) It would be difficult to provide the accurate phase control required for high order

digital modulation schemes such as QPSK and higher.

In chapter 8, direct digital synthesisers have been demonstrated that can attain low

spurious signal levels. Use of the direct digital synthesiser (DDS) can now therefore be

considered a realistic option. With a direct digital synthesiser, phase modulation may

simply be provided by means of an adder at the output from the phase accumulator

[McCune, 1987]. Response time is therefore no longer a problem, and accurate phase

control can be achieved.

Use of this technique entails problems due to the limited output frequencies of direct

digital synthesisers. It is not possible, as yet, to obtain an output directly at microwave
frequencies from a DDS. However, work is at present being undertaken [Saul & Taylor,

1989] to increase the speed of the devices with a microwave DDS as the ultimate goal.

The direct modulation suggested by McCune [ibic1J would still require a conventional

analogue upconverter to reach microwave frequencies. Jones eta! [1989] suggested the

use of the transfer phase locked loop to raise the DDS to microwave frequencies. Since
the PLL phase detection frequency can be high, a wide loop bandwidth can be used,

alleviating the requirement for two point modulation within the PLL. Unfortunately, by

its very nature, only phase information can be transferred through the loop. Therefore

only constant amplitude modulation schemes such as MSK (minimum shift keying) and

FSK (frequency shift keying) can be employed directly with this technique as these

modulation systems can be provided by phase variations only. Gaussian minimum shift

keying (GMSK) is particularly suitable and has low sidelobe levels. Phase shift keyed

modulation (PSK) schemes must normally be subjected to bandlimiting to avoid adjacent

channel interference during transmission. Concomitantly, signal envelope variations

occur. To enable bandlimited PSK modulation some means of providing the necessary

amplitude variation at the output must be provided; this will be discussed in the following
section.
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design

For an integrated approach to modulator, and transmitter design, some means of providing

simultaneous phase and amplitude modulation of the signal is required [Davarian &

Sumida, 1989]. Direct digital synthesis has the facility to enable accurate phase

modulation of the signal as discussed in §4.4. This property enables DDS to be an ideal

choice for the new integrated approach to transmitter design. Central to such an approach
is the resolution of the modulation into PM and AM components. With DDS, an arithmetic
multiplier can be placed after the PROM stored waveform map to provide AM by varying

the level of the signal according to the baseband modulation Zavrel [1988]. There are

however, the following disadvantages with this technique:-

1) Reduction of spurious free dynamic range due to rescaling of the DAC average

AC level;

2) A linear upconverter is still required to transfer the amplitude modulation to the

antenna output.

The first problem arises because the DAC range must now correspond to the peak signal

level and not to the average signal level as when no AM is provided. This would

correspond to loss in DAC dynamic range.

Illustrated in fig 9.7 is a block diagram of a novel approach to these problems proposed

by the author. The PM can be input direct to the synthesiser, and the AM components are

input into an amplitude modulator placed after the synthesiser. Essentially the novel part
of the improved modulation scheme proposed here transfers the amplitude modulation

circuit to the microwave output of the modulator before the high power amplifier stage

(HPA). PIN diodes can be used to provide the amplitude modulation, since the reactive

component of the diode impedance is relatively constant with modulation.
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The variation in phase shift through a PIN diode amplitude modulator is less than 5° for a

3 dB amplitude modulation at 18 GHz [General Microwave, 1988]. This could be

compensated for by providing a phase adjustment to the phase modulator. Baseband

modulating signals must first be filtered and then input to a cartesian to polar converter in

order to resolve the signal into phase and amplitude components. Such an operation could

form part of the pre-modulator baseband signal processing normally undertaken by a

DSP. A problem still exists however, in that the amplitude modulation introduces some

undesirable phase modulations. Therfore with bandlimited PSK, a modulation scheme

should be chosen such that amplitude variations are kept to a minimum. For example,

Signal Processing Worksystem (SPW) simulations are given here for bandlimited QPSK

and bancllimited offset QPSK so that their amplitude variations can be compared. A block

diagram of an SPW simulation of a bandlimited offset QPSK modulator is given in

fig 9.8.
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Fig 9.8	 Block diagram of bandlimited offset QPSK SPW simulation

The filter provides a lowpass bandwidth of 1.5 times the data rate. A constellation

diagram of such a simulation is given in fig 9.9, and the envelope variation given in

fig 9.10; the latter diagram indicates that envelope levels never fall to zero.

Fig 9.9	 Constellation diagram given by bandlimited offset QPSK SPW simulation
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An idealised form of the constellation diagram is given in fig9.11.
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Idealised offset QPSK constellation diagram

0	
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Scatter Diagram

Point • . 200 a 400
X Value n 1.1726
Y Velue n 0.87843

Al

The actual trajectory of the signal is displayed by means of the thick solid lines. Overall

signal variation can be easily shown by inspection to be -0. This means that the total

amplitude variation for offset QPSK is 3dB. Also it can be noticed that in fig9.9 and
fig 9.11 there are no crossings through the centre of the constellation. For comparison, a

similar simulation was run of straight QPSK. Such a simulation results in the

constellation plot of fig9.12.

Fig 9.12	 Constellation diagram given by bandlimited straight QPSK SPW

simulation

It can be noticed that zero crossings are now present. For straight QPSK, the

corresponding variation will be infinity as there are transitions through the centre of the

constellation diagram. The envelope plot of fig9.13 shows that indeed this is the case.
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Infinite amplitude variations increase phase variations to approximately 50° as found from

typical PIN diode attenuator data sheets [General Microwave, ibitn. Therefore the method

is better suited to modulation schemes with restricted amplitude variation, such as offset

QPSK Although this appears to be very restrictive in terms of modulation schemes, such

schemes also enable more efficient usage of power amplifiers.

9.5 Alternative Approaches to Receiver design 

Having considered a method of simplifying transmitter design, alternatives to receiver

design must be considered. Unfortunately, the design of a receiver will not be as

straightforward as the transmitter case for the simple reason that the gain is much higher.

A typical receiver gain from antenna to demodulator is 90dB, as opposed to 50dB with a

transmitter. Overcoming this gain problem requires some intermediate frequency

conversion, and hence image problems arise.

The receiver section of a data system can however, be very much simplified by the use of

DSP techniques. There are several options available for DSP demodulators.

a) Baseband sampling

The received signal is downconverted to baseband at the IF mixer as shown in fig9.14.
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Carrier recovery then can be achieved by means of a Costas loop [Britten & Martin,

1989]. Although Costas loops can be implemented in a DSP, a VCXO will be required to
provide interpolation between the synthesiser frequency steps and this must be external to
the system. A fine stepping frequency synthesiser can then be used as a local oscillator.

The anti- aliasing filter must have a low pass function. Unfortunately with this approach,

DC offsets can degrade performance [ibid] and an analogue VCXO would be required.

Implementing a Costas loop also requires that a quadrature mixer is used for the
downconversion [Holmes, 1982], the advantage of which is that image rejection is no

longer a problem.

b) Ouasi baseband sampling

Quasi baseband sampling principally aims to remove the problem of DC offsets. A block

diagram of a quasi baseband sampling system is similar to the baseband system displayed

in fig9.14.

The difference is that the signal is downconverted to nearly baseband, ie. much less than

the data rate [Heron, ibid]. A carrier gyration loop [Marston, 1987], which is a

mathematical form of a carrier recovery loop, is used within the DSP to track and

demodulate the signal. Any frequency synthesiser used for tracking must have fine

enough step size to avoid introducing significant phase transients into the gyration

process. The gyration can only operate on a complex baseband signal so a quadrature

downconverter must be used even for a BPSK signal. A major advantage of this

approach is that the VCXO is no longer required. Image rejection is still not a problem as
the signal is near baseband. AC coupling can be used thereby eliminating problems of DC

offsets. The disadvantage is that a more complex mixer arrangement is required to

provide the complex signals.
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g) IF or bandpass sampling

With bandpass sampling, the IF signal is converted to baseband by a pre-DAC sample and

hold which samples at a subharmonic of the IF frequency [Vaughan, 1991]. If a complex

modulation scheme such as QPSK is used, then quadrature sampling would be necessary

to obtain the I and Q samples. With quadrature sampling, the Q sample is taken at a time

delay corresponding to a quadrature phase shift at the IF frequency after the I sample. The

pre-conversion bandpass filter becomes the anti-aliasing filter for the sampling rather than

the more usual lowpass and-aliasing filter. This anti aliasing filter is critical to preserving

the signal to noise ratio of the down converter as adjacent signals and noise at multiples of

the sampling frequency are aliased by the sampling process into the wanted channel. A

particular problem can arise if strong adjacent channel signals are present. The baseband

signal at the output of the sample and hold can be input directly to the DACs and the

remainder of the processing accomplished digitally. FFT algorithms could be used to

assist carrier recovery [Inmos, 1989], in order to speed up acquisition. There is much

scope for further investigation on this subject. A fine stepping synthesiser could be

accomplished with digital circuitry within the DSP [Plessey, 19881. This woukitake tht

form of a DDS with no DAC present at the output Analogue local oscillators used in such

a system would thus be coarse stepping resulting in much simplification. The advantage

of such a system would be the increased flexibility, but the disadvantage at present is the

prohibitive cost of the high speed signal processing components and the inssibiy stiff

requirements for an anti-aliasing filter. All this may change however, in the future and

these areas require further investigation.

9.6 Summary of integrated receiver and transmitter
design techniques

Concern was raised by the author in §9.2.4 about the complexity of typical transmitter

upconversion equipment. The author has suggested a method of taking advantage of the

latest synthesiser developments to simplify the transmitter. In addition to the use of new

synthesiser technology suggested in chapter, the author proposed the use of a novel

2 point modulation technique to eliminate upconversion and make feasible a fully

integrated transmitter design.

The receiver was not so readily simplified. A brief study of receiver techniques was

undertaken to investigate the feasibility of some simplification. The principal obstacle to

simplification is the necessity to preserve the real and imaginary components of the signal.

A firm favourite at the present appears to be the quasi baseband sampling receiver, a
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critical element of this approach is a synthesiser of very fine step size. However, direct

digital synthesis could be used to advantage to provide a tracking synthesiser to replace the

VCO in the demodulator.

One advantage of an integrated approach to receiver and transmitter design is the reduction

of the total number of local oscillators contributing phase noise to a complete satellite link.

In order to assess any advantage of the integrated techniques, comparison must be made
with conventional transmitter receiver techniques by means of a phase noise link budget

analysis as described in §6.4.2. Such an analysis is carried out in the remainder of this

chapter.

9.7 Link Budget Analysis for Phase Noise

9.7,1Iatirmludisaiaiinkludgriiinalxsis
All the synthesiser techniques discussed in chapters 4, 8 and 9 must be evaluated in terms

of system requirements. In particular, it would be of interest to demonstrate if any

possible gain in system performance can accrue from the use of the integrated design

techniques discussed earlier in this chapter. Chapter 6 exposed that a requirement exists
for a phase noise link budget to be concomitant with the usual communications link

budget. Before carrying out a complete link budget analysis however, further

considerations and improvements to synthesiser design were reported in chapters 7 to 9 so

enabling the availability of a full range of synthesiser phase noise profiles.

Link budgets are analysed for a selection of satellite system configurations, coherent

modulation techniques and synthesiser phase noise levels. One salient feature of this

section is a demonstration of the effect of phase noise on FEC (forward error correction),

commonly used in satellite data links. Convolutional coding and Viterbi soft decision

decoding is the FEC scheme studied in this section, hereafter referred to as "Viterbi

decoding". The analysis is performed by a Pascal program written by the author that

incorporates a unique feature necessary for accurate phase noise link budget analysis. In

addition to providing a demonstration of benefits gained to satellite system performance by

applying the synthesiser design techniques in this thesis, the link budget analysis program

could be useful in itself as a tool for system design. The program had to be sufficiently

flexible to enable a variety of local oscillator and synthesiser architectures to be

incorporated into the analysis.

420



9.7.2.1	 Program functional description

The function of the analysis program packages is to calculate the degradation in sensitivity

for a bit error rate (BER) specified by the user. Before commencement of the analysis,

phase noise and offset from carrier frequency data points are input into an preliminary

database for each local oscillator in the system. This database is accessed by a database
management program that is not discussed here. On completion of the analysis, a plot of

degradation in sensitivity is obtained against data rate, with the ratio of carrier recovery

loop bandwidth to data rate as a parameter. Data rate is plotted logarithmically on the
horizontal axis. Degradation is plotted in dB on the vertical axis.

A value of phase jitter ap. must be obtained from the integration programs for each local

oscillator in the link. The resultant phase jitter at the demodulator is then the RSS of all

phase jitter contributions as described above. A modified BER curve can then be plotted

which accounts for this phase jitter. For a constant BER, the Et/No can be compared with
the ideal BER curve and an estimate of the BER degradation obtained for the phase errors.

The analysis program automates this process and plots the expected degradation over a
wide range of data rates.

9.7.2.2	 Structure chart (Tree Diagram)

The program will be described in this section by means of the structure chart of fig9.15.

This diagram illustrates how the various Pascal units are called by each other and by the

main program. Detailed listings of code and documentation will be given in appendix 4.
Central to the structure chart is the main analysis program. This runs in a loop which

repeatedly increments the data rate in a logarithmic fashion and analyses the link for each

value of data rate. This main program calls various units in turn. The input unit controls

the updating of the database each time the program is initiated. Output, controlled by the

appropriate unit, is sent to the screen and optionally gives a hardcopy from a printer. Each

local oscillator phase noise sideband is converted into a recovered carrier phase jitter

contribution by means of an appropriate integration unit and its phase noise database. The

degradation is calculated within the BERCALC unit. An additional unit is called from

within the BERCALC unit, the thermal noise unit, which calculates the thermal noise jitter

contribution.
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As discussed in §6.4.2, a value of phase jitter ap. must be obtained from the integration

programs for each local oscillator in the link. The resultant phase jitter at the demodulator

is then the RSS of all phase jitter contributions as described above. A modified BER

curve can then be plotted which accounts for this phase jitter. In chapter 6, a program was

discussed that produced a graph of estimated bit error rate against calculated phase jitter.

This program forms a unit which can be incorporated into the main analysis program. A

modification had to be carried out to enable calculation of the loss in sensitivity from the

BER phase jitter curves. Fig9.16 shows an example curve selected from those of fig6.3

to illustrate this process. For a constant BER, a horizontal line is drawn across the graph.

An intersection of this line with the ideal BER curve occurs at point A and with the

modified BER for finite phase jitter at point B. Sensitivity degradation is represented by

the distance from A to B on the horizontal axis.
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9.7.2.4	 'Thermal noise jitter unit

Another unit calculates a figure for the thermal noise jitter variance in radians as a function

of carrier loop bandwidth, input filter bandwidth and Et/No. This unit uses the thermal

noise calculations referred to in §6.3.1.3 and is called by the BER calculation unit for the

reasons which will be elaborated in §9.7.2 below.

9.7,2,5	 Phase noise jitter units

A phase noise jitter unit, called from the main program, will exist for each local oscillator

in the system. Its function is to call up the appropriate local oscillator data base and

integrate the phase noise sidebands to give a value for the phase noise jitter. As each value

of phase jitter is returned to the main program, a test is carried out to establish wether the

cumulative phase jitter is likely to result in a degradation value off the scale of the output
plot. If this is the case, integrations are discontinued to avoid wasting CPU time

calculating values of degradation that are excessive to be of use. Each phase jitter unit

calls either of two phase noise integration units depending whether the synthesiser

architecture is known or just the phase noise curve.
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9.7.2.6	 Phase noise integration

As discussed in chapter 6, an integration must be formed of the phase noise sidebands

modified by the IE(s)12 response of the carrier recovery loop. This integration is

performed numerically by Simpson's rule in the analysis program. If Simpson's rule is
applied without modification under the phase noise curves, a large number of steps would

be required. For example, if the CRL loop bandwidth is 1/1000 of the Data Rate then

10000 steps would be required for an accurate integration. A more efficient method is to
apply the summation rule and integrate over each decade:-

	

f2	 10f1	 102f1	 f2

fi IE(s)12df = fi 1E(s)12df + of IE(s)12df +	  5 IE(s)12df
1	 1 1	 lOnfi

	 (9.1)

In this case the number of steps can be reduced to 80 with little degradation in accuracy.

This method makes use of the fact that the phase noise is generally higher close to carrier.

In each phase jitter analysis unit, there are a choice of two integration units to cover the

two cases of phase noise data input that could arise as described in §6.4.3:-

9.7.2.7	 Integration unit 1:	 Measured phase noise 
A logarithmic interpolation is taken between the phase noise points and an integration

performed. Logarithmic interpolation is used because phase noise specifications are

frequently presented in logarithmic form. In this case, data is enteced intz die grog-min

logarithmic amplitude form. For local oscillators, §3.3.5 demonstrated that phase noise
can be represented as a reciprocal polynomial series. A straight line is then taken between

two data points as can be seen from fig 9.17. An area representing the phase noise

integration is shown by the shading under the phase noise curve.

Between the data points, the 1Hz intercept point c and the slope of the graph m are related

to the extrapolated logarithmic power by:-

log DAL(f)) = m log iof+c	 (9.2)

In order to perform the integration, the logarithmic phase noise sideband power, log
i cs(L(f)) must be converted to actual sideband power, L(t). Thus by taking antilogarithms

of equation (9.2) we obtain the equation used in the noise integration process:-

L(f) = mf+10c	 (9.3)
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When performing the integration, the program begins at the left of fig9.17 and progresses

to the reciprocal of the data rate, the data frequency, fd. Extrapolation is calculated

between the two database points (f 1 to f5) which lie immediately either side of the current

calculation point on the frequency axis. Calculation of the 1Hz intercept point cx and the

slope mx is undertaken between frequency points G and fx+1. The slope and intercept
factors are used to obtain the extrapolated power at the current integration calculation

point. The integration is complete when the current calculated point equals the data rate.

9.7.2.8	 Integration unit 2:	 Synthesiser architecture

An integration unit was written for cases where the synthesiser architecture is known for
the local oscillator. It was assumed to be a single loop PLL synthesiser such as shown in

fig 5.32 or that one PLL predominated, although the program could be readily modified

for other forms of synthesis. For the divider and phase detector noise, a third order type 2

transfer function is assumed [Wilson & Tozer, 1989]:-

con2 2Cmns 
H(s) — 

rs3 + s2 + 2mnCs + cons

where con is the loop damping factor, s is the complex frequency variable, C is the
damping factor, and r is the post loop filter time constant.

(9.4)
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VCO phase noise is multiplied by the synthesiser PLL error function, Esyn(s). In the

design study undertaken in this chapter, the third order response is approximated by the
second order type 2 error response. This error function is given by:-

0)4
(Dna

IE(s)12 - 	 	 (9.5)
(4c (02 2) (0 2	 034

1 + 	 + —4con2	
(On

A diagram illustrating the contributions to single loop synthesiser phase noise and the

effect of integrating the sidebands is given in fig9.18. The solid line indicates the
composite phase noise of the synthesiser.
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Fig 9.18	 Phase noise integration of PLL synthesiser sidebands

At lower offset from carrier frequencies, this composite phase noise is approximately

equal to the reference noise transferred through the loop. §5.7.2.4 described the sources

of phase noise from components in this type of synthesiser. The components of the
synthesiser loop that contribute phase noise multiplied by H(s) are shown in the shaded

section of fig9.18. Components in the unshaded section are multiplied by E(s).

Phase dividers and phase detector noise will have contributions from 	 noise and a

426



wideband frequency independent noise floor. The wideband noise is given by equation

(5.45) in §5.7.2.4. The composite noise from a single loop PLL can be shown to be

[Wilson & Tozer, ibid]:-

L(fm) tot =Hsyn(s)B (L(1filz)Pd +L(floor)pd)+Esyn(s)" 111Pvc°
	

(9.6)

Equation (9.6) is formed from the various phase noise power relationships for the
different components within the synthesiser loop. Digital dividers and phase detectors
have and frequency independent contributions to the noise densities. Voltage

controlled oscillators as discussed in §3.3.6 have predominantly 10 phase noise profiles

close to the carrier. 1ff contributions of PLL digital devices in the synthesisers are

accounted for in the first term. Such noise of dividers and phase detectors is a subject

lacking exposure in published literature. Measurement of these levels ere therefore
required for a particular synthesiser configuration. The term L(1 Hz)pd refers to the 1Hz

intercept point (1If noise extrapolated down to 1Hz). Also multiplied by Ilsyn(s) is the

second term of the equation giving the wideband noise floor of the digital devices
L(floor)pd. VCO noise appears in the third term and is represented by L(1 Hz), again

referring to noise extrapolated back to 1Hz. VCO phase noise, unlike divider and
detector noise is reduced by the feedback loop gain of the PLL. Therefore, the VCO
phase noise is multiplied by the loop error function E syn(s), which is related to the loop

transfer function by:-

	

E5 (s) = 1 - H(s)	 (9.7)

In fig 9.18, the effect of the third term is the boundary of the dark shaded area. It can be
noticed that the ultimate rate of attenuation for a third order type 2 loop H(s) is

40 dB/octave, whereas the E(s) roll off is determined by the phase noise of the VCO, that

is 30 dB/octave at the most. The phase noise integration takes the area under the

combined response curve.

Integration of L(fm) tot up to the data rate results in a value of phase jitter, a px for that

particular local oscillator.

9.7.3	 Parameters and Program steps

Steps taken by the analysis program will now be described. Plots of sensitivity

degradation are obtained over a range of data rates using the carrier recovery loop
bandwidth as a parameter. In this way, the optimum carrier recovery loop bandwidth can

be given for a particular configuration. Program steps taken during the analysis are as
follows:-
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1) Calculation of the phase jitter contribution at the demodulator due to each local

oscillator in the system as a function of data rate and CRL bandwidth;

2) Calculation of the perfect recovered carrier Et/N0 for the specified BER;

3) Calculation of the additive thermal noise contribution to the demodulator jitter
for the above level of Eb/No;

4) Find the increase in E1,/No necessary to attain the desired BER with the

combined RSS of all the above calculated jitters;

5) Re-calculate the additive jitter contribution (step 3) with the new value of
Et/No;

6) Iteration is performed on steps 4 and 5 until the desired level of accuracy is

attained;

7) Subtract the modified value of Et/No in dB from the phase noise free channel

Eb/No to obtain the degradation in sensitivity.

A unique feature of this link budget analysis program incorporated by the author is the
ability to include the additive jitter contribution calculation in an iteration loop that

calculates the degradation in sensitivity in the presence of phase jitter for a user defined

BER. This is necessary because a reduction in sensitivity forces an increase in input
signal to noise ratio, thus giving a reduced value of thermal jitter a t. Subsequently, this

modified value must be used in the calculation of the total phase jitter at for the next

iteration.

As the BER curves are very steep, especially when Viterbi decoding is used, care has to

be taken with the iteration algorithm. The standard iteration algorithms, such as

Newton-Raphson's [Dalquist & Bjorck, 1974], implemented elsewhere in this thesis,

may fail if used alone. Even the bisection method may give catastrophic failure when

implemented here. A not very optimal, but very reliable method used here is to increase

the E1,/No in 1 dB steps until the specified BER is exceeded. After overstepping the

desired BER, the next lower 1 dB step is selected and E b/No is increased in 0.1 dB steps

until the specified BER is again reached. The Newton-Raphson algorithm could be

applied after the 1 dB stepping stage, to greatly improve accuracy. However, since since

such a level of accuracy is out of proportion with the remainder of the link budget, it is

difficult to justify the increased complexity in the program.
-
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Because of the inclusion of the thermal noise jitter calculation in the above described
iteration, the thermal noise jitter unit is called from within the BER unit, rather than from

the main program as with the local oscillator jitter units. The latter units give phase jitters
that are independent of signal levels therefore it is not necessary to include them in the

iteration loop.

9.7.4	 System Configuratioq

9.7.4.1	 Architecture 

A block diagram of a typical one way satellite communication data link system is shown in

fig9.19.

to phase noise
Contributions

link budget	 satellite

\4'in shaded areas

Fig 9.19	 Block diagram of typical SATCOM 1-way link

synth
Transponder

Major phase noise contributors that are analysed by the phase noise link budget program

described in chapter 9.7 are shown shaded. Fig 9.19 relates to a receiver with split

synthesis local oscillators. Each local oscillator will have its phase noise contributions

entered separately. For the ground station and satellite transponders, the phase noise of
the station or transponder are usually considered as a whole, rather than considering each

separate local oscillator. Therefore the complete phase noise specification for the grand

station and transponder are entered.
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The link configurations analysed were as follows:-

1) Hub station to VSAT;

2) VSAT to Hub station;

3) VSAT to VSAT.

In the case of VSAT to VSAT, to a large extent the arrangement of oscillators is

symmetrical, in the transmitter from IF interface up to carrier frequency and vice versa in

the receiver. It may help to initially describe these in terms of the receiver configuration.
Two broad classes of receiver configurations will be considered either with a single

synthesiser feeding the first local oscillator, or synthesis split between the local oscillators.

9.7.4.2	 Receiver local oscillators - Split synthesis 

An example of a split synthesis receiver is shown in fig 4.6 of §4.2.3. The receiver
downconverter system was analysed by means of the programs described in §9.7. The

first local oscillator achieves down-conversion from the carrier frequency to a suitable

wide-range IF, perhaps 70 or 700MHz. It is assumed to be a fixed tuned oscillator as

discused earlier in this thesis, and will be either a free running DRO as used in TVRO low

noise blocks (LNBs), or some form of phase-locked oscillator locked to a crystal
oscillator. Examples of the phase noise of these two oscillators at Ka band are shown in

fig 9.20 for a free running DRO and later in fig9.23 for a phase locked oscillator locked

to a crystal oscillator.

The second and third local oscillators are synthesised in order to provide the frequency

selection: the first local oscillator provides coarse frequency selection, whereas the second

stage provides the individual channel selection.

The synthesiser blocks consist of single phase locked loops CPLLs). Each ?IL employs a

VCO, which may contribute significant phase noise sideband power as illustrated in
fig 9.20. This shows the results of the author's measurements on a DRO and a wide

tuning range TVRO type VCO. Close to carrier phase noise sideband levels are largely

determined by the PLL reference signal which is provided by a crystal oscillator.
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Fig 9.20	 Phase noise of free running microwave oscillators

The detailed design of the PLL synthesiser blocks determine the phase noise

characteristics, and ultimately the BER degradations; different PLL techniques are

considered in these calculations, viz:-

1) Single chip CMOS divider phase detector with a variable modulus prescaler

added to provide division from UHF;

2) Use of a specially designed low noise synthesiser.

The parameters of the above synthesiser configurations are summarised below:-
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Table 9.1

Parameter CMOS LOW NOISE

fine coarse fine coarse

Phase detector noise floor -50 -67 -90 -103 . dl3c/Hz

Phase detector 1Hz Intercept

VCO 1Hz Intercept point

-35 -50 -70 -73 dl3c/Hz

dBc/Hz+15 50 +15

,

50

Synthesiser Loop Natural 100 80k Hz
Freq.

Synthesiser loop Damping 0.7 0.7 0.7 0.7
Factor

Post	 loop filter	 break
frequencyf

500 15k 20k 250k Hz

9.7.4.3	 Receiver local oscillators - synthesised 1st LO
In some applications, such as in portable satellite communication equipment, it may be

desirable to have the first stage synthesised to simplify the downconverter. In this case,

the YIG based synthesiser together with a DDS will be considered as described in chapter

4. When analysing this synthesiser, the phase noise curve of fig4.34 (chapter 4) is

entered into the phase noise integration program. A point worth considering here is that

the DDS scheme discussed in chapter 8 has phase noise that is not purely Gaussian; the

phase noise is in fact band limited uniformly distributed noise. When bandlimiting such

noise, the group delay of the filter results in a series of uniformly distributed events

combining together over the duration of this group delay. Such summing together can be

shown by the use of the central limit theorem to give an approximately Gaussian response

[Papoulis, 1965]. Since the noise can never be greater than the total uniformly distributed

noise power, the tail of the distribution is at a finite level rather than at infmity with a

purely Gaussian distribution. A reduced level of this tail means the effective contribution

to the overall BER would be reduced. However, making an exception like this to the one

oscillator would considerably complicate system analysis. A good conservative estimate

is therefore to assume the noise from the low spurious DDS is purely Gaussian distributed

as is all the other random phase noise in the system.

The other local oscillator in the system is not considered as it would be a fixed oscillator at

a much reduced frequency.
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1

9.7.5.1	 Detailed specification of each section of the link

After broadly considering the configuration of the links to be analysed by the phase noise

link budget program, detailed specifications of each link component will follow.

9.7.5.2	 Satellite transponder
The satellite transponder phase noise is derived from the Eutelsat II phase noise
specification [Eutelsat, 1989]. As the exact composition of the local oscillators is
unknown, the phase jitter contribution must be determined by integration of the oscillator

sideband specification. This phase noise performance is represented in fig9.21.

r

1

( (	 ( ( l (

level

dBc/Hz

1N\Ph

noise

I

1

1

\\NN
0

0
,

0

---I
0

10Hz	 1001Iz	 11112	 101Hz	 100kHz	 1MHz	 10MHz
Offset from carrier

Fig 9.21	 Phase noise of Eutelsat satellite transponder

9.7.5.3 Hub Station to VSAT

In this analysis, the Eutelsat SMS specification [Eutelsat 1987] for the data service ground

station local oscillators may be used for the hub station transmitter. Again, as the exact

composition of the local oscillators are unknown, the phase jitter contributions are
Idetermined by integration of the oscillator sideband specifications. The phase noise	 1

performance is represented in fig 9.22.

433 I



--5G

--60
Ph

--80

— —90.

DO	

11 0	

12

	

130	

10Hz
	

100Hz	 11112	 101112	 1001Hz	 1MHz	 10MHz

noise evel

Offset from carrier

Fig 9.22	 Phase noise specification for the Eutelsat ground station transmitter

For the hub station receiver, the local oscillator configuration is defined, therefore

synthesiser transfer functions are used rather than a phase noise specification.

The following local oscillator options are analysed:
1ste Local oscillator 	to 1.5 GHz or v.v

1)	 Single frequency free running DRO, phase noise as fig9.20;

2) Phase locked Voltage Controlled Oscillator, phase noise as in

fig 9.23;

3) Phase locked DRO, phase noise as in fig9.23;

4) Direct modulation synthesiser, very low phase noise incorporating

DDS and the very low phase noise BVA [Besson & Peier, 1980]
crystal resonator reference source, phase noise as in fig9.24.
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2nd Local oscillator (Converting 1.5 GHz. to 700 MI-!z or v.v)

1) Single IC synthesiser,

2) Low phase noise synthesiser;

3rd Local oscillator (Converting 700 MHz to 70 MHz or v.v)

1) Single IC synthesiser,

2) Low phase noise synthesiser;
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Fig 9.24	 Very low phase noise synthesised first LO

9.7.5.4	 VSAT to hub Station

The phase noise level is assumed the same as the Hub station to VSAT case.

9.7.5.5 2-way VSAT link
In this case the transmit and receive local oscillators are assumed identical.

9.7.5.6 2-way VSATs with Direct Modulation
A direct modulation transmitter consists of a direct digital synthesiser modulated with data.
The configuration outlined in fig4.31 is used in this study. A direct digital frequency
synthesiser clocked at 300MHz is used as the modulator. This drives a wideband PLL
transfer loop of loop bandwidth 10MHz. The reference loop is a YIG synthesiser. Here
a single local oscillator is assumed, using a special low phase noise crystal resonator. For
the receive section, only a single synthesised local oscillator is used, consisting of a YIG
M/N synthesiser as described in chapter 4.

436



9.7.5.7	 Choice of crystal resonator
The following crystal oscillator reference sources (which drive all the synthesisers) are

assumed:

1) An inexpensive VHF crystal resonator of standard phase noise performance;

2) A specially designed low phase noise crystal reference source at 10MHz

output frequency, eg the BVA resonator [Oscilloquartz, 1990].

9.7.5.8	 Modulation
The following modulation schemes are considered in this analysis:

a) Uncoded BPSK;

b) BPSK with 7 segment half rate convolutional coding and Viterbi 16 level

quantized soft decision decoding;

c) Uncoded Offset QPSK;

d) Offset QPSK with Forward Error Correction as b).

9.8 Results of several configurations selected from 
above 

9.8.1	 Overview

The results of the computer analyses are plotted in figs 9.25 to 9.39, (Plots 1 to 14).

These show the degradation of performance .(ie sensitivity) in dB due to phase noise, as a

function of the data rate, fd, and the carrier recovery loop bandwidth (eg fd/10, etc). A

BER of 10-7 is taken throughout. There are 14 plots altogether, which are according to

the table following. The prefix 'C before the modulation indicates the use of FEC.

All plots display an increase in degradation at low data rates above that possible with

perfect carrier recovery, this is due to the steeply rising close to carrier phase noise. Such

phase noise can be tracked out with the carrier recovery loop for higher data rates.
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Table 9.2

Hub-VSAT
& vice-versa 2-way 2-way Direct mod

Free running DRO

Low cost
Synthesiser

BPSK

CBPSK

Plot 1

Plot 2

1st LO Phase locked

Low cost

, Synthesiser

BPSK

CBPSK

OQPSK

COQPSK

Plot 3

Plot 4

Plot 5

Plot 6

CBPSK Plot 10

nSynthesiser

1st LO Phase locked

Low noise

CBPSK

COQPSK

Plot 7

Plot 8

CBPSK Plot 11

Phase locked DRO

Low noise

Synthesiser

COQPSK Plot 9

,

Synthesiser

, BVA

Phase locked DRO

Very Low noise

reference

CBPSK	 Plot 12

OQPSK Plot 13

COQPSK Plot 14

2.1.2Ilse_A_TIRO_Lysicms

Initially, degradations were calculated for phase noise performances as would be

encountered if a TYRO type system be used; with a free running DRO used as the first

local oscillator. For uncoded BPSK systems, as can be observed from plot! (fig 9.25),

degradation begins to occur for data rates of less than 100kbit/s. For the coded system,

plot 2 (fig 9.26) shows degradation occurring for data rates below 1 Mbits/s. Coding

gain still results over that of an uncoded system, but the coding gain is reduced. The

reduction is due to the fact that a higher carrier loop bandwidth can be used for an uncoded

system due to the lower levels of thermal noise jitter contributions. By contrast, below

20 kbits/s, the coding gain becomes higher than for a system with no phase noise.
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Fig 9.25	 Plot 1 Phase noise degradation: Uncoded BPSK, free running DRO

When coding is used, the link data rate is increased, resulting in an increase of thermal

noise; this increase of thermal noise is allowed for in the calculations of Viterbi coding

gains. If the dominant phase noise mechanism is 1 tp noise, there will be little increase in

effective phase noise levels for the increased link rate. Therefore an increase in the

effective coding gain should be observed. However, for uncoded systems it is possible to

reduce the effect of phase jitter by the use of a wider CRL bandwidth, due to the lower

thermal noise level.
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Fig 9.26	 Plot 2	 Phase noise degradation: Viterbi BPSK, free running DRO

This effect of 1/./5 noise should become visible for data rates below 20kbits/s because it is

not practicable to increase the carrier recovery loop bandwidth above a tenth of the data

rate for the uncoded case. Any increase of loop bandwidth may result in data feedthrough

of the carrier recovery loop.
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9.8.3	 One way systems with phase locked local oscillators

9.8.3.1	 BPSK uncoded
As expected from the theory, uncoded BPSK is the most robust modulation scheme in the

presence of phase noise. As can be observed from plot 3 (fig 927), if a phase locked 1st

local oscillator is used the performance is insensitive to synthesiser type for data rates of

1 kbits/s or greater.
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Fig 9.27	 Plot 3 Phase noise degradation: Uncoded

BPS K, Phase Locked VCO First LO, TVRO synthesiser
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At low data rates, degradation occurs due to close to carrier phase noise of the crystal
oscillators. With low phase noise oscillators in the transmitter and receiver, degradation

still occurs for data rates of less than 200 bits/s. The dominant contribution to the phase

noise is the transponder crystal oscillator, determined by the satellite specification. This is
irreducible and therefore the minimum limit for uncoded BPSK can be taken to be

200 bits/s with these parameters.

9.8.3.2 Coded BPSK

The use of forward error correction coding has a marked effect upon the phase noise

sensitivity of systems. Coding gain is the gain in sensitivity over that obtained if coding is

not used for identical conditions.

From plot7 (fig 9.31, later) it can be observed that the lowest data rate that can be. twesi

before significant degradation occurs is 2Icbits/s, bin coding gain will resuk for data rates
of greater than 100bits/s. The use of a low cost synthesiser (plot4, fig 9.28) results in

some degradation for most error rates.

For a Viterbi system, the increased bit rate over the channel should result in negligible
increase in phase noise power for 1/f3 noise; this can be contrasted with a 3dB increase

for thermal noise. However, the level of thermal noise is much higher with Viterbi due to

squaring loss in the carrier recovery loop. As a result, there is less margin available for

phase noise; consequently, the Viterbi system is more sensitive to both synthesiser noise

and reference noise. An experimental modem was tested and is described later in §9.10.

This operated at 20.48 kbits/s which is marked as a vertical bar on fig9.28 for ease of
reference.
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Fig 9.28	 Plot 4 Phase noise degradation: Viterbi

BPSK, Phase Locked VCO First LO, TYRO synthesiser

9.8.3.3 Uncoded offset Qpsic

For QPSK systems, the degradations were excessive for all data rates studied. The static

phase offset had to be reduced to 2 degrees in order to obtain useful results, which implies

the use of digital techniques to reduce this offset for QPSK.

The degradation results for a system using uncoded QPSK and single chip synthesisers is

shown in plot 5 (fig 9.29). With QPSK systems, phase noise has a much more drastic
effect.
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Fig 9.29	 Plot 5 Phase noise degradation: Uncoded
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When a low cost synthesiser is used, degradation rapidly increases for data rates below

1 Mbits/s. At data rates of 10kbits/s, the degradation is greater than 10dB. If a low

noise synthesiser is used, then little degradation occurs until the data rate becomes less

than 10kbits/s. At high data rates, in a similar manner to plot8 (fig 9.32) for coded

QPSK, the degradation begins to increase again, and is due to the high far-from-carrier

noise of the VCO used as local oscillator.

100k IPI
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9.8.3.4	 Offset QPSK with Viterbi

This is the most demanding of all the situations surveyed as regards phase noise. If cheap

synthesisers are used, as shown in plot 6 (fig 9.30), the degradation is totally
unacceptable.

Fig 9.30	 Plot 6 Phase noise degradation: Viterhi
QPSK, Phase Locked VCO First LO, TVRO synthesiser
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Therefore low noise synthesisers are mandatory with this modulation format. With the

low noise synthesiser, as can be observed from plot 8 (fig 9.22), the degradation never

falls below 1 dB and increases rapidly below 10kbits/s. Increased sensitivity to VCO

phase noise is also observed by the increase of phase noise at data rates of above

500 kbits/s. Plot 9 (fig 9.33) displays the effect of replacing the phase locked VCO with
a phase locked DRO-, the improved far-from-carrier noise results in reduced degradation at

high data rates, hence the rise in degradation evident in plot8 does not occur.
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Fig 9.32	 Plot 8 Phase noise degradation: Viterbi
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9.8.4	 One way system with state of the art LOs 

If state of the art synthesisers and reference oscillators are used, there was little change

from the results displayed in plots7 (fig 9.31) and 8 (fig 9.32) for the low noise
synthesiser case. As the ground station was a major contributor to the overall phase jitter,

any improvement in the receiver synthesiser would result in little change to the overall

phase jitter.
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9.8.5	 2-way Systems 

More care has to be taken in the design of 2-way systems as the local oscillators in the

transmitter all add to the phase noise.

9.8.5.1	 Single chip synthesisers 
For the case of two way systems employing single chip synthesisers, the performance for
coded BPSK is shown in plot 10 (fig 9.34). A phase locked first LO is used in this case.

Degradation occurs even for uncoded BPSK, for data rates of between 10kbits/s and

100 kbits/s. If Viterbi is used, as with plot 10, degradation occurs for any data rate below

1 Mbits/s.
10—	c1/2013	 di	 n=fdilk

Fig 9.34	 Plot 10	 Phase noise degradation: Viterbi BPSIC,

2 Way system Phase Locked VCO First LO, low cost synthesiser
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9.8.5.2	 Low noise synthesisers

If low noise synthesisers are used, then for a 2-way system, according to plot 11
(fig 9.35), the point at which degradation occurs for a Viterbi system is below lkbits/s.
This is an improvement on the one way system and is due to the reduced phase noise of

the transmitter over that of the ground station.
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9.8.5.3	 Direct modulation transmitter

Direct modulation transmitters allow the reduction of local oscillators to one. Modulation
is applied to a direct digital synthesiser, and, in addition, a low phase noise crystal

reference is used in both transmitter and receiver. Therefore significant reduction in total

system phase noise is possible. For uncoded BPSK, degradation is less than 1 dB at data

rates of 100 bits/s. With Viterbi, shown in plot 12 (fig 9.36), degradation rapidly

increases for data rates of less then 500 bits/s. For uncoded offset QPSK the
corresponding data rate is 2kbits/s plot 13 (fig 9.37), and for offset QPSK with Viterbi,
10 kbits/s (plot 14, fig 9.38).
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Fig 9.36	 Plot 12	 Phase noise degradation:

2 Way system, Viterbi BPSK, Direct modulation synthesiser
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9.8.6	 Effect of using phase locked DROs and low noise-floor
synthesisers

The effect of using a phase locked DRO is a reduction in the far-from-carrier phase noise.

It is not practicable to reduce the phase noise of the VCO in the synthesiser because of the

wide tuning range requirement, therefore a reduction in synthesiser noise floor will be

required. Plot8 displays the effect on a Viterbi offset QPSK system of using VCOs for

local oscillators. The degradation begins to increase for data rates above 200 kbits/s.

Below this figure the effect of improving far from carrier phase noise will be negligible.
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Plot 9 (fig 9.33) displays the effect of using a phase locked DRO and a low phase noise

floor synthesiser, the degradation no longer rises for high data rates.

9.9 System performance summary

For digital satellite communications systems, a phase noise link budget calculation is

required alongside the conventional thermal noise link budget. For coherent PSK there is

a contradiction in requirements for the carrier loop bandwidth: a narrow loop bandwidth is

required to remove thermal noise, and a wide loop bandwidth required to remove phase
noise. The steeply rising BER curves of decoding schemes such as Viterbi mean that they
are especially sensitive to additional phase errors as a result of phase noise, and any

coding gain may be lost due to inadequate phase noise performance.

With forward error correction schemes, the signal to noise ratio at the point of carrier

recovery may be extremely small, and therefore the performance of the carrier recovery

multiplier may be critical. The intersection of the squaring loss section of the curve with

the normal large C/N curve as discussed in §6.3.2 may give a useful figure of merit to the

squarer performance.

Sources of phase noise include the crystal reference oscillator f- 3 multiplied up by

20 log N and the synthesiser excess noise. The use of single chip CMOS synthesisers

tends to give excessive BER degradation. Synthesiser excess phase noise also results in

the demodulator being more sensitive to CRL static phase offsets. The llf component of

the synthesiser excess noise is of great significance for BER degradation. Vibration can

also be a problem as shown in §5.8 when close stepping synthesisers are used unless

expensive measures are taken with the VCOs. By implementing the author's low spurious

DDS technique discussed in chapter 8, it is possible to have wideband phase locked loops

and low cost VCOs throughout the synthesiser design. This should result in drastically

reduced contribution to the phase noise budget from vibration induced phase noise. A fine

stepping synthesiser could remove the requirement for a wide tuning range VCXO,

thereby removing the ills noise from this source.

Although the phase noise of the local oscillators in the ground terminals could be

improved, there is an ultimate limit to the phase noise contributions to the jitter, that due to

the satellite transponder oscillators. An example of the phase jitter contribution of the

transponder phase noise is given in §9.10 while illustrating the phase noise link budget of

a typical satellite data link. The satellite transponder oscillators are not alterable once the
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satellite is in service. In the calculations of link performance undertaken with this work,
the transponder specification limit was taken as the phase noise contribution to the system.
Therefore, the results obtained above may be pessimistic, especially for low phase noise
synthesiser systems, as individual transponder performance may be better than

specification. It is worth noting that for future satellite transponders, benefits could be

gained by fitting a state of the art crystal resonator to the reference oscillator in order to

guarantee optimum performance with complex modulation schemes. The predicted

figures however, give the worst case performance that can be expected regardless of the
individual transponder used.

In contrast with coherent modulation schemes, as exposed in §6.6.2, the problems of non
coherent systems increase with data rate. For very low data rates (</00bits/s), non
coherent systems may offer significant performance advantages. Differential

demodulation techniques may be more robust in terms of reference resonator phase noise,

but may be more critical in terms of synthesiser phase noise and discrete spurious
unwanted signals.

Application of the direct modulation scheme to the satellite data systems resulted in notable

improvements in performance, particularly with respect to QPSK with Viterbi. Not only
was the phase noise of the synthesisers much reduced, but a reduction of the total number

of oscillators resulted in reduction of overall link phase noise. The improvement to the

phase noise performance of the synthesisers resulted partly from the use of a direct digital

synthesiser and partly from the use of step recovery comb generators. Using the DDS

enabled low phase noise to be achieved together with fine step sizes. Use of step recovery

diodes enabled an overall frequency coverage greater than that possible from usage of

DDS alone. If care is taken in the design of step recovery circuits, as discussed in chapter

7, superior phase noise performance to other commonly used techniques can be achieved.

Another advantage of these synthesiser techniques is the use of wide loop bandwidths
enabling greater immunity from vibration effects. The problem of increased sensitivity

degradation at high data rates due to VCO phase noise can be solved by the use of a YIG

oscillator. Such oscillators enable a unique combination of wide tuning range and

moderate phase noise levels.

Having obtained results from a computer aided phase noise analysis, measurements taken

on an actual satellite data system will be discussed in the following section.
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9.10 Measurement of phase noise effects on system 
performance

As part of the Pandata program [Garret, 19861 a satellite modem receiver was built and
used to evaluate local oscillator effects on a BER performance. Input data was conveyed

at 20.48 kbits/s. The modem employed half rate seven segment Viterbi decoding with

convolutional encoding. A VCXO drives a phase locked oscillator, which constitutes the
first local oscillator. This oscillator forms the VCO in a long loop type carrier recovery

loop.

A conventional analogue type demodulator was used incorporating the squarer described

in chapter 4. Two alternative local oscillator schemes were tried for the second and third

local oscillators. One such line up included PMR-type CMOS single ICs. An alternative

line-up included synthesisers designed for low phase noise and included the two phase

detector technique described in chapter 5.

Using a specially calibrated modem test set-up, the equipment BER was measured under a

range of signal to noise ratios. The measured BER results were plotted giving the phase
noise degradation plot of fig 9.39. The left curve is the theoretical curve for the BER

assuming perfect carrier recovery and no intersymbol interference.

A measured curve taken with the 2-phase detector synthesiser is displayed in the centre.

This curve includes degradations due to differential encoding and filter matching. At the

right hand side, a curve shows the results obtained by using the single chip CMOS

synthesisers as local oscillators. The steep upward curve at the top may be due to carrier

unlocking giving bursts of errors. An average of 10 BER measurements were taken to

improve accuracy. Referring to fig9.28, for a 6° static phase error, the degradation in

sensitivity for a BER of 10- 6 for an information rate of 20kbits per second was

approximately 1 dB for the CMOS synthesiser. The phase noise analysis program gave a

sensitivity degradation of 1.5dB, a discrepancy of 0.5dB, but the measured figure does

not account for any phase noise contributions from the satellite transponder and

transmitter. To illustrate the relative contributions of the various phase noise sources in

more detail, table 9.3 displays the results from applying the phase noise analysis to the

modem described in this chapter.
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TABLE 9.3

CMOS SYNTH LOW NaSESYNTH

2.1° 0.69°

7.6° 0.28°

0.5° 0.5°

4.0° 4.0°

3.0° 3.0°
9 . 3 0 5.1°

11.56° 3.13°

The CMOS synthesiser contributed vastly more to the phase jitter than the specially

designed low noise synthesisers or the first local oscillator in the downconverter. Despite

the fact that the first local oscillator was at the highest frequency, the fact that a simple

phase locked oscillator was used rather than a close frequency stepping synthesiser

resulted in lower phase noise levels. The satellite transponder and ground station make a
relatively high contribution of 5° to the overall phase noise budget. If CMOS synthesisers

are used throughout a 2 Way link, the phase noise budget accumulates to an excessive
11.56°, but if a low phase noise direct modulation transmitter is used, the phase noise is a
much lower 3.130, and is still dominated by the satellite transponder phase noise.

457



Another point of note was that with the CMOS synthesisers, the setting up adjustments for

the demodulator were far more critical for phase offset, DC offsets and soft decision levels
than for the low noise synthesiser. This could be expected as the phase noise adds extra
error margins. In terms of dynamic phase noise performance, the CMOS synthesiser gave

bursts of high error rates and even carrier recovery lock loss when the unit was subject to

moderate vibration levels. Vibration was not a problem with the low noise synthesiser.

Such problems could be accentuated by the narrow phase locked loop bandwidths used in
the CMOS synthesiser in order to optimise the static phase noise performance and reduce

reference feedthrough spurious.

9.11 Conclusions

This chapter has demonstrated possible improvements to satellite system performance

gained from application of the synthesiser techniques discussed earlier in this thesis.

Improvement of the spurious response of direct digital synthesis (DDS) presented already

in chapter 8 has enabled much improvement in system performance to be demonstrated,

together with considerable simplification. Having an acceptable DDS performance has

enabled us to propose a direct modulation scheme that has only orre local ascillamt iA&t.

transmitter.

The receiver was unfortunately not as easily simplified as the transmitter. However, a

direct digital synthesiser was suggested for implementation in a local oscillator that could

be used for signal tracking instead of a VCXO with much improvement in oscillator 1/f3

noise. It was proposed that further simplifications could be envisaged with the

development of a DDS that can be clocked at microwave frequencies. In this case it may

be possible to have a direct output at microwave with out any intermediate conversion.

In order to demonstrate these improvements to system performance it was necessary to

analyse satellite communication systems for the effects of phase noise. The design study

concentrated on coherent demodulation schemes. Systems are normally specified in terms

of a certain bit error rate. System designers are therefore interested primarily in the

sensitivity degradation for a fixed bit error rate. This will have direct implications for the

system link budget. The aim was therefore to produce a system phase noise link budget

analysis which could be performed alongside and possibly iteratively with the normal

system link budget. Integrations were carried out under the phase noise curves of all the

local oscillators in the system taking account of the carrier recovery loop (CRL) response.

Such an integration resulted in a value of carrier recovery jitter for each local oscillator.
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This jitter was summed and converted into BER degradation by means of the BER curves

produced in chapter 6. As a new value of signal to noise ratio is reached, changes to the

thermal noise jitter component of CRL jitter occur. This change means that the computer

program undertook several iterations before the correct value of sensitivity degradations

were reached. Sensitivity degradations were plotted over a wide range of data rates using

the carrier recovery loop bandwidth as a parameter.

The free running DRO oscillator gave poor performance even with uncoded BPSK over

most data rates. However, when a phase locked first LO was used, uncoded BPSK was

shown to be not sensitive to synthesiser phase noise. With coded BPSIC, and all offset

QPSK schemes, performance degradation was evident unless low phase noise

synthesisers were used. In particular, coded QPSK demanded the use of the lowest noise

levels of all the synthesiser schemes studied. For very low data rates, even the use of

state of the art crystal oscillators resulted in significant degradation. In this case, it may be

necessary to use non-coherent demodulation techniques.

When the lowest phase noise local oscillator configuration was selected for the terminal,

the performance was ultimately limited by the satellite transponder phase noise. If the

satellite transponder phase noise could be reduced, then benefits could be gained for the

higher order modulation schemes. As a result of the work in this chapter, a case can be

made for revising the specification for transponder phase noise so that maximum

advantage can be gained from improvements in synthesised local oscillator technology.

A satellite modem terminal was tested with different synthesised local oscillators for BER

performance. Measurements revealed that for a 20.48 kbits/s modem using BPSK with

Viterbi, an additional penalty of 1 dB in sensitivity was incurred by the use of single IC

PMR type synthesisers. Such a level of sensitivity loss agreed with predictions from the

analysis described in this chapter. Under vibration, the degradation was even worse, with

the CRL intermittently losing lock.

9.12 Further Work

The split modulation scheme suggested in this chapter must be simulated and tested to

evaluate any performance degradation from imperfections in the signal constellation. Such

a scheme could then be built and tested in an actual link. Simulation of the above could be

extended to include the use of a very fine stepping DDS with a view to eliminating the use
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of any analogue tuned oscillator in the carrier recovery loop. Dither interpolation (see

chapter 8) would be required to eliminate limit cycle oscillations between frequency steps.

By modifying the integrations in the above analysis it may be possible to predict phase

noise degradation effects for non coherent demodulation schemes.

The phase noise analysis results presented in this chapter could be compared with a

simulation. In order to perform a suitable simulation, a suitable model of Gaussian

distributed llf noise would be required and also it is necessary to test the accuracy of any

Gaussian distributed noise source used in the simulation.

The phase noise analysis program needs to be written into a complete package complete

with a user friendly interface, such as Microsoft Windows, and marketed as a design tool

for satellite communication System Engineers. Such an analysis program could be made
more flexible by expanding it to include non-coherent PSK and FSK demodulation

techniques.
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10 Conclusions and further work

10.1 Conclusions

This work began by investigating the origins of phase noise and it was shown that at close

to carrier offset frequencies there is a particular problem with flicker noise, especially with

respect to oscillators. Measured results on oscillators often give worse phase noise

figures than would be expected from application of straightforward oscillator theory; this

has been raced to the effect of the resonator in producing phase noise in addition to that of

the amplifier. Phase noise effects become significantly worse as the tuning range of

oscillators increases; although some of this may be explained by the reduced loaded Q of

the oscillator tuned circuit, the predominant effect was shown to be due to the tuning

element itself. As the frequency of oscillators is increased, the phase noise degradation

was found to be worse than the 20 log N factor, at higher frequencies loaded Qs of the

oscillator resonators are in general lower, and the flicker noise levels of the active devices

higher.

The simplest type of synthesised downconverters on the market are for satellite TYRO

applications, consisting of a free running microwave oscillator at the front end and an

effectively free-running wide tuning range VCO at one of the subsequent stages. Since it

was shown that this approach gave far from satisfactory results for most low data rate

modulation schemes, guidelines had to be produced to aid the selection of suitable

synthesisers for satellite data communications systems. In the course of such action, a

threshold effect was noticed on the link BER for increasing levels of phase noise and it

became clear that a phase noise link budget was required to be calculated concomitantly

with the usual communications link budget. For improved signal to noise ratios, a

reduction in the above mentioned threshold has been found to accompany lower Bit Error

Rates(BER); thus the expected extrapolation to lower bit error rates would not occur in the

presence of phase noise. When coded channels are used, the link is even more sensitive

to phase noise because more of the phase noise link budget is taken up by the increased
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level of thermal noise induced jitter which results from squaring loss in the carrier

recovery process. In addition to the phase noise, other problems such as phase "hits" and

vibration can have an adverse effect upon the link. Especially when higher order

modulation schemes are used, it was shown that the close to carrier phase noise

performance of a crystal oscillator transferred to the microwave local oscillators is critical.

It was found that a tuneable oscillator needs to be present within the carrier recovery loop;

this oscillator should be capable of capturing the input signal over a frequency range

sufficiently wide to allow for all uncertainties in the system. Unfortunately conventional

wide tuning range analogue oscillators cannot provide satisfactory close to carrier phase

noise levels for higher order modulations schemes.

A detailed survey has been undertaken into synthesiser performance which identified a

number of limitations, and some respective solutions were proposed. The commonly

used divide by N phase locked loop synthesiser in general gives high phase noise levels

and is prone to instability as a result of phase detector non-linearity. These problems were

shown to be overcome for a synthesiser with coarse frequency step size by means cif a.

two phase detector approach, using the divide by N loop to fmd lock and a Step Recovery

Diode (SRD) sampling phase detector to maintain lock. Although the latter device may

show chaotic behaviour under certain circumstances, it can be used to obtain much better

phase noise performance providing that the synthesiser reference frexpectcy is kig/t.

Simulation software was developed for the SRD comb generator and was shown to be

capable of predicting chaotic modes of operation. In addition, the effect of noise and

spurious signals was shown to be enhanced for increasing offset from carrier frequencies.

In general, satellite data system downconverters and upconverters require finer frequency

step size than can be provided by the above single loop solution. Therefore other

techniques were considered and Direct Digital Synthesis (DDS) was found to provide a

solution to the problem of microphony and phase hits. DDS can provide such fine

frequency resolution that the problem of tracking frequency uncertainties in a satellite link

can be solved. However, the discrete spurious sideband levels from existing DDS

clocked at high speeds were excessive for most local oscillator applications.

Considerable investigation culminated in the development of techniques which reduced the

close to carrier spurious signals. Using a DDS modified to include two DACs and a

random offset it was possible to vastly reduce the discrete spurious signal levels by

converting them to broadband noise (decorrelation). The resulting noise sidebands are

then frequency independent. Such a modified DDS can effectively become a broadband

tuneable oscillator with the close to carrier phase noise performance of a fixed frequency

crystal oscillator.
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A suitable combination for a fine resolution microwave synthesiser was found to be a

modified DDS feeding a YIG phase locked oscillator. YIG oscillators are capable of

excellent phase "hit" performance by virtue of their mechanical rigidity. A further

advantage of the above described hybrid synthesiser is that the SRD sampling phase

detector is operated at zero offset frequency thus the SRD enhancement of noise is

avoided.

A method of combining the synthesiser described above with the upconverter in the

transmitter was proposed. This utilises the phase modulation capability of the DDS. In

PSK systems if the baseband modulation is resolved into phase and amplitude

modulation, and the AM component applied at the synthesiser microwave output, the

upconversion has to transmit phase modulation only. Considerable simplification may

then be achieved by substituting a wideband PLL for the several stages of mixers, filters

and amplifiers normally required for upconversion.

Software was written to enable the prediction of link sensitivity degradation from a given

synthesiser performance. This showed that system performance improved with reduction

in synthesiser phase noise levels only up to a certain limit, which was determined by the

satellite transponder phase noise. There is thus clearly a case for a reduction of future

satellite transponder phase noise levels to enable the use of more bandwidth efficient

modulation schemes.

10.2 Summary of original work

This thesis presents a new coherent approach to the problems of phase noise in satellite

communications systems; some relevant material was previously available in a somewhat

piecemeal form, spread throughout different publications. An original aspect of this

approach is the consideration of the effect of synthesised local oscillators, rather than local

oscillators in general, as sources of phase noise. Such a strategy elicits a detailed

investigation of synthesiser performance with a view to synthesiser applications in satellite

communications systems; this seems a promising alternative to the general applications

approach usually taken. A number of key areas of concern relating to synthesiser

performance is highlighted, and solutions developed to some of these problems.

465



One of the above highlighted problems is discussed in chapter 3, that is the contribution of

the resonator to the phase noise of high Q oscillators such as crystal and SAW oscillators.

This is shown to be predominant over other sources such as those in the maintaining

amplifier circuit. It is shown here that a contradiction arises among various authors'

findings as to whether RF flicker noise is device dependent or not. A general consensus

of opinion indicates that Ga As devices are worse with respect to generation of flicker

noise.

The study of synthesiser performance included a detailed investigation of suitable

synthesiser architectures for satellite communications usage which is covered in chapter 4.

Resulting from this are recommendations for a unique hybrid of those synthesiser

techniques which is most suited to the particular demands of satellite communications

work.

Chapter 5 brings together in one section guidelines for synthesiser component design with

the aim of avoiding the problems frequently observed within synthesisers. Some of these

guidelines are the author's own work, and others are taken from various publications.

Among the problems covered are: aliasing of spectral components and noise by limiters

and dividers; the problem of phase frequency detector linearity and phase noise; and

injection locking in phase locked loops. A method of overcoming the problems of the

phase frequency detector was developed during the course of this work. The detector is

shown in chapter 5 to give improved performance. Software has been written using an

original approach to analyse a PLL synthesiser in the time domain. This software was

used to model the effect of injection locking and to show the effect on vibration induced

phase noise of using a third order type 3 loop. Investigation of phase detectors led to the

development of a novel image rejecting phase detector which is especially suitable for

transfer loops in synthesisers as a result of its property of rapid rejection of the unwanted

image frequency in such circuits.

A comparison of various frequency multiplication techniques in terms of phase noise

occurring in excess of that expected from the 201og N rule is presented here. In addition

to this, a method giving only 10 log N increase in phase noise and based upon non-

coherent sources is discussed.

In chapter 6, the expertise gained from the study of synthesisers is used to predict the

effect of using synthesised local oscillators on a satellite data link. Here is presented a

concise account of the effect of phase noise upon a satellite data link using coherent

demodulation, a topic not often covered in literature on satellite data systems.
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An in depth study is presented in chapter 7 of the SRD comb generator. No other

publication was found to reveal this much detail on these important devices. SRDs are

receiving a resurgence of interest due to the availability of integrated microwave sampling

phase detectors using SRDs. This chapter is thus of particular relevance to modern

synthesiser design. One novel aspect of this discussion is the splitting of multiplier excess

phase noise into two sources: the enhancement of noise already present by more than the

theoretical multiplication ratio, and noise indigenous to the devices. In some cases the

contribution of the former can result in severe increase of phase noise levels due to the

onset of chaotic behaviour. Chapter 7 constitutes a breakthrough in the study of these

devices since no evidence has been found of chaos theory previously being used to

explain SRD behaviour. Software has been written to perform a time domain simulation

of the SRD comb generator to illustrate the chaotic modes of behaviour, and to investigate

the effect on the enhancement of phase noise levels. Such software is used to estimate the

effect of statistical fluctuations in carrier recombination upon the indigenous phase noise

of the SRD.

The application of DDS to frequency synthesis has up to now been hampered by the

preponderance of spurious products that arise during the process of generating a

synthesised analogue signal. During the course of this work it was found that the

spurious products could be much reduced by the process of DAC decorrelation, and this

became the subject of a patent application. Such a method converts the localised unwanted

spurious signal to random broadband phase noise. The phase noise density of such noise

is a negligible contribution to the overall phase noise of a satellite data link. Widespread

possibilities therefore exist for application of this technique to such links. The technique

described above resulted in reduction of the spurious glitch spectrum of the DAC to such

an extent that it became possible to apply a further technique not previously applied to this

form of DDS, viz, interpolative dither. By applying interpolative dither together with

DAC decorrelation it is possible to achieve unprecedented spurious signal levels with 8 bit

DACs.

Having developed a DAC spurious reduction technique, it is possible to propose new

applications for DDS. One application proposed in chapter 9 is to form an integrated

transmitter synthesiser approach. The novel way of achieving this suggested in chapter 9

is to split the modulation into phase and amplitude components, applying the amplitude

component at the final transmitter frequency and the phase component to the DDS.

Previous methods apply the AM component digitally within the DDS. Transmitter design

should be greatly simplified using the new method because the requirement for linear

upconversion will be avoided. This method reduces system phase noise levels by

reducing the total number of local oscillators to one.
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Finally a novel approach to link budget analysis is suggested in chapter 9. Software was

developed to calculate the impact of local oscillator phase noise upon link sensitivity. The

novel feature of this software is that the calculation of the thermal noise jitter is performed

iteratively from the result of the calculation of system sensitivity, since the thermal noise

level decreases with the receiver sensitivity. This enables the program to more accurately

evaluate the effect of phase noise on systems that use forward error correction.

10.3 Further work

The issue of flicker noise has still not been properly resolved. There is in particular a

requirement for further investigation into flicker effects within frequency multipliers,

dividers and phase detectors as discussed in chapter 5. Further optimisation with the aid

of computer simulations will be required to ensure fast frequency changes with the

2-phase detector method. The problem of injection locking requires investigation to

enable the non linear effects to be included in the time domain simulation and so enable

accurate calculation of the lockup transients.

For the system analysis for phase noise covered in chapter 6, the analysis assumed that

most of the phase jitter is close to carrier and therefore is within the carrier recovery loop

bandwidth. Therefore, the Tikhonov distribution used may have to be modified if most of

the phase jitter lies outside the CRL bandwidth as in the case of a synthesiser with

frequency independent phase noise characteristics.

The split modulation scheme of chapter 9 could be simulated and built for evaluation. If a

fute stepping DDS is to be used, then it should be possible to eliminate any analogue

tuning required in the CRL.

Modifications to the phase noise link budget analysis program discussed in chapter 9 are

recommended to enable the analysis of non-coherent modulation schemes. A continuation

of this software development programme would be to add a user friendly interface to the

software and market the complete package as an invaluable design tool for system design

engineers. This phase noise analysis could be further validated by comparison with a

signal processing simulation of the link. However, a means of simulating Gaussian 1/f

noise would have to be found.
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To enable the SRD simulation program of chapter 7 to accurately predict phase noise

levels, some further information is required. A value is required for the levels of statistical

fluctuations in the diode carrier lifetime.

Having demonstrated a working SRD simulation program, it could be used to guarantee

the stability of the comb generator by investigating the effect of different reference signal

waveshapes. Chapter 7 raised the suggestion that there may be an optimum drive

waveform that guarantees stability.

Although the spurious reduction techniques demonstrated in chapter 8 proved viable, a

prototype high speed modified direct digital synthesiser needs to be built and evaluated.

To make the technique viable commercially, the modified DDS would need to be

integrated into a custom logic array. The cost of committing such a design to a custom

device rises with increasing clock speed. Some market research is therefore necessary to

establish the maximum clock speed that will ensure an adequate return on the initial

investment made. This DDS design could then be incorporated into the DDS/YIG

synthesiser which is proposed in chapter 4 and also recommended for construction and

evaluation.
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Appendix

A.1 Introduction 

The appendix gives pseudocode and descriptions for the software written during the

course of preparation for this thesis.

Turbo Pascal was used as the main language, designed to execute on a IBM PS2

compatible computer with a 33MHZ clock speed 80386 as the CPU, a 80387 numerics

co-processor, and 4MByte of dynamic RAM. Unfortunately, the maximum data files

accessible by Turbo Pascal is 64kbyte, and therefore supplementary programs written in

80386/80387 assembler had to be written in order to handle the large data files created by

time domain simulations.

For clarity, the source code is omitted, but pseudocode is presented based on ADA type

constructs [Young, 1984]. For the important sections of code, data flow diagrams and

structure charts using standard software engineering notation [Sommerville, 1989] is

given. The data flow diagrams illustrate how data is handled by the algorithms within the

code, and structure charts illustrate how each section of code relates to the program as a

whole.
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A.2 SRD Time domain simulation program 

A-2. 1 	 Introductioq

SRDSIM is a program developed as part of this work to perform a step wise linear solution
of the differential equations which describe the SRD impulse generator circuit. A brief

description of the salient algorithms will be given here followed by a brief description of

program structure and the programs outlined in pseudocode.

The following notation will be used:-

y	 Variable tested against boundary condition

y(n) Final value of variable tested against boundary condition

y(n_l) Initial value of variable tested against boundary condition

y'(n) Derivative (gradient) of y(n)

t	 Time variable

ddt	 Present value of time step
ddt_l Previous value of time step

A.2.2	 Time step

The value of the time step used is of the order of the transition time of the diode, typically

50 to 100 nsec. A variable time step mechanism is not provided because the value of the

higher order derivatives that form the local truncation errors of the integration remained

relatively constant throughout the cycle. Unless iterations are being carried out against the

boundary conditions, the final nodal values at the end of a time step (tres) are assigned to

the initial nodal values (tres_1) before the next time step and the value of time (t) is

incremented by the value of the time step (ddt). If, during iteration, the value of t is not

incremented, then the initial nodal values are unchanged before the start of the next time

step calculations.

A.2.3	 Newton-Raphson iteration

A test to determine the sign of y is carried out at each time step. To prevent limit cycle

oscillations, the changeover between the forward and reverse modes and vice versa must
be accurately defined; to enable this a Newton-Raphson iteration is carried out at the end

of each conduction and each reverse component of the cycle to find the exact transition

point. The transition point is used to determine the firing angle and phase noise levels.
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ddt =—Y-A-
Yn

(A2.1)

y axis

New	 e of ddt for next
time step

Initial
values

I
	ilmo- I

1

1

I

A • 2.4	 Newton-Raphson iteration control

Fig A2.1 illustrates the steps taken upon encountering the boundary condition. Shown

here are the initial nodal values (the record tres_1) and the final nodal values (tres). The

final values contains the negative y value, which indicates that the time has gone past the

boundary condition of zero y. On encountering the first negative y value, the gradient yn'

of the curve between the previous two points (tres and tres_1) is calculated and this
gradient is used in the Newton-Raphson calculation below. First the old value of time

step, ddt is assigned to ddt_l, then a Newton-Raphson interpolation is carried out to

estimate the point in time at which y is zero. This point is given by a time step ddt back

from the time at the end of the calculation that has just completed, ddt being given by:-

Final
values

time axis

ddt_l

Fig A2.1	 Time domain simulation encountering

a boundary condition during the first iteration

Variable ddt is then updated as follows:-

ddt := ddt_l - ddt
thus ddt becomes the time step from the start of the calculation just completed to the

estimated zero y value. The first iteration is now complete, and the second iteration is

begun with the updated value of ddt. Time (t) is not incremented, therefore the initial

nodal values at the start of the second iteration are unchanged.

A test is again carried out for negative values of charge. If a negative value of charge (y)

is obtained for the second and subsequent iterations, the value of ddt calculated by

equation A2.1 for the first iteration is now calculated by:-
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ddt
	

(A2.2)
n

This results in the new value of ddt being projected back an equal distance in time on the

opposite side of the estimated zero point. A regula falsi iteration is then carried out with

the initial nodal values not updated before final value solutions are calculated.

If the value of y is positive after the iteration, a full Newton-Raphson interpolation is

carried out; thus a new time step ddt is calculated as indicated in equation A2.1 preceding

the next iteration. This time the initial nodal values are updated with the previous
iteration's final nodal values resulting in the initial nodal values moving much closer to the

exact boundary condition point. In summary, positive values of y enable a full Newton-

Raphson interpolation, and negative values result in a regula falsi interpolation. As

Newton-Raphson iterations converge much faster, it is desirable that as many iterations as

possible are Newton-Raphson. The reason for the projection back with double the time

step using equation A2.2 is to force a positive value of y which in turn will force
Newton-Raphson iterations. When the value of ddt falls below the value of time step

window (twind.„ in §7.5.3 and represented by the variable window in the program) the

iterations are stopped and the simulation switches mode. The value of a constant is

assigned to the window.variable.

A.2.5	 Structure of software

In the main program, the bulk of code is contained within a loop; this loop is performed

once for each time step as illustrated in the data flow diagram A2.2. The program consists

of a core package, SRDSIM which loops round for each time step.

Code from other packages is accessed which deal with either the reverse or conduction

modes depending upon the settings of control flags. A block diagram of the structure of

the complete program is given in fig A2.2. Data flow during program execution is given

by figs A2.3 to A2.7 for the different objects. For these figures, the rounded edge boxes

represent a transformation of data, the square boxes represent file storage, and the circle

represents interaction with the outside world. Psuedo-code for the main program is given

in section A2.6 below and sections A2.7 to A2.11 give the Psuedo-code for the packages.

Apart from essential algorithms, text will be used to describe the processes undertaken. In

section A2.12 the pseudocode for the tridiagonal matrix linear algebra solving package

will be given.

The vdtation waveforms used in the simulation are all sinewaves with options of either

added phase noise, A.M noise, or additive noise.
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The reverse package contains code which deals with the reverse mode as shown in the

dataflow diagram of fig A2.8 and is composed of four parts:-

i)	 Initialisation,- initialise variables such as alpha

ii) Exitation - Adds noise to input waveform

iii) Time step solution - derives final nodal values from initial nodal values

iv) Boundary value test - testing for boundary condition

For each time step calculation, code from the Reverse or Conduction packages is called by
the main loop. Initialisation (see above) occurs once at the point of starting the reverse
mode, and a value of the firing angle a is obtained and processed depending upon the plot

option chosen. During the reverse part of the cycle, the code from the exitation package is

implemented first, this provides the current instantaneous drive level. Following this, the
code from the REVSOLV package (see below) is executed, which calculates the final nodal

values from the initial nodal values and the time step ddi Finally, a test is performed
against the boundary conditions.

The conduction mode follows similar steps to the reverse mode, but with the addition of

two extra steps for determining the intrinsic charge level q and the DC current flow I d, Self

bias levels are calculated in the initialisation section of conduction, which is entered only

as the first calculation of the mode is performed.

There is an exit point on the main loop where the value of time is compared with an end

point condition depending upon the plotting option selected.

The REVSOLV package implements the equations listed as equation number 7.38 to 7.40 in

section 7. These calculate the co-efficients to the linear solving matrices of equation 7.37

and passes them to the tridiagonal solving package TRISOLV. When the TRISOLV code has

been executed, the linear algebra solutions are converted by REVSOLV to give the final

nodal values, which then used by either reverse or conduction software.

The TRISOLV package was adapted from the linear solving package given by Strang

[1980]. This adaption was achieved by omitting the inner loops in the upper and lower

decomposition routines. As the inner loops increase, matrix elements are selected from

either near the top right hand corner of the matrix, or near the lower left hand corner.

Since these are zero in a tridiagonal matrix, these loops can be omitted. Unlike algorithms

by other authors [e.g. Sedgewick, 1988], the partial pivoting facility has been retained,

but the upper and lower decomposition matrices must be two strips wide, rather than a

single strip without partial pivoting.
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A.3 PLL Time domain simulation program 

A.3.1	 Introduction;

PLL_SIMULATOR is a program which uses a step wise linear method to solve the
differential equations which describe a -I-N synthesiser PLL with a phase frequency

detector. A brief description of the salient algorithms will be given here followed by a

brief description of program structure. User selectable options exist for injection lock

modelling or conversion to a type three loop. A structure chart for the program packages
is given as fig A3.1.

The following notation will be used:
PVflag	 Flag set when PV exceeds 2n
PRflag	 Flag set when PV exceeds 2n
PV	 Divided down VCO phase input to phase detector
PR	 Reference input to phase detector
t	 Time variable
ddt	 Present value of time step
ddt_l	 Previous value of time step

A.3.2	 Time step

The value of the time step used is of the order of the transition time of the logic to be used

in the system, typically lOns. A variable time step mechanism is provided to mdsce, dw,

step size near the critical 2n point since this is the point where most of the changes to the

variables occur during any single reference cycle. As with the SRD simulator,

Nel,vton_Raphson interpolations are carried out against a boundary condition to prevent

limit cycle oscillations arising due to the time step resolution of the simulator. For the

PLL simulator the boundary condition occurs when the divided down VCO phase (PV in
program) reaches 2n.

A.3.3	 Phase frequency detector

The simulation of the phase frequency detector is implemented in software according to

the state machine diagram of fig A3.2. The state of the phase detector flip flops is

represented by flags PVflag and PRflag in the program, in the state machine diagram these

correspond to VCO phase and reference phase respectively. If the reference phase
exceeds 2n first then PRflag is set, or if the divided down VCO phase exceeds 2n first,

A.22



then PVflag is set. When both flags are set, they are subsequently reset. These flags
become pulse width proportional controllers for the corresponding current sources.

A.3.4 Main program

The main program is formed into a loop which repeats itself for each time step as does the

SRD simulator and is represented by fig A3.3. Pseudocode for the main program is given

in §A3.7. Outputs to the FFT file and screen are managed within this loop, along with the

phase frequency detector operation. The loop calculations for each time step are contained
within the PLL calculation procedure PLL CALCULATION.

A.3.5 PLL calculation package

Fig A3.4 represents the procedure PLL_CALCULATION. The calculations pertaining to the
relevant section of the loop, fig 5.25 are performed sequentially here. Pseudocode for
this procedure is given in §A3.7. In common with the SRD simulation package, each time

step begins with a local initialisation, however the PLL calculation package code follows

this with calculation of the reference phase, and subsequent testing to determine whether
the reference phase exceeds phase exceeds 2n. A user selectable option exists here to use

the difference between the VCO phase and reference phase to first order phase lock the

VCO in order to simulate spurious injection locking. The proportional integral loop filter
calculation is performed next by package PLLOOPF (§A3.8) according to equations 5.24 to
5.26 of §5.5.5.2, giving a voltage output across C2. In most practical PLL

implementations a perfect integrator is not possible, therefore a leakage current is allowed

to flow from the integrator input, the leakage being proportional to the loop filter output

voltage. A user defined option exists to cascade an identical loop filter after the main loop

filter, so forming a type three loop as described in §5.8.2. Leading on from this is a

facility to frequency modulate the VCO to simulate effects of vibration, then a pole is

introduced to the VCO tuning input to simulate the finite time response from tuning input
changes to changes in VCO frequency.

A.3.6	 Outputs

VCO control voltage and VCO phase are taken as outputs to be plotted, the VCO phase is

also stored in extended memory to enable FFT processing of the output. By taking an

FFT, an estimation of the response of the PLL to phase noise may be obtained. An

estimation of the PLL settling time may be calculated by observing the time taken for the
VCO phase to reach a steady state value.
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State Machine for Frequency Detector - PLL
Simulation

•

vrO Phase = 160 •,,, vrn phAcp = 160

Reference phase = 1 60

60Reference phase = 1 •

-	 •

STATE 1:

VCO Phase FALSE

Reference

Phase	 FALSE

STATE 2:

VCO Phase TRUE

Reference

Phase	 FALSE

STATE 4:

VCO Phase FALSE VCO Phase TRUE

Reference	 Reference

Phase	 TRUE	 Phase	 TRUE

STATE 3:
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Setup screen.
which is scaled
depending on value of
reference phase.

Beginning of cycle for 1 	 PFD flip

tiMeStep	 variables In
flags, other flags,

ding time.

(Perform calculations for 1 time step,
changes values of voltages, current and	 •	
phases in PLL. PLL is configured depending
on injection and type 3 loop options..

[Phase frequency
detector -
determines output
current value.

New Pt L state
values

Newton-Raphson for end s Display or store
of VCO cycle.	 data in files.

FFT
file

Main Loop - PLL_Simulator

Injection

o

flag, type 3
100D flab - •
component
values.

/	 \ Injection	 /

User selects whether	 locking flag.	 Store user values.
type 3 loopInjection locking and/or	 rodlnitialise variables.—Reg,	

type 3 loop simulation 	 component	 Setup initial value of
required. User enters	 values.	 timestep.
component values.

n	 ./
Initial va

step

/
Calculate time step

End of cycle for 1 time step.

Note:

The process represented in this flow diagram is one complete cycle
between the points shown. During any single execution this cycle
may be repeated until end conditions are met.
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Calculation Details in One Time step - PLL_Simulator

(Main Loop

re-initialised and
u r specified variables.
Me ory variables set in
pre ous cycle.

Calculation of reference
phase, If reference phase
> 360 sets reference flag. ,

‘
Solve type 3 loop
titer.

Reference
e and

Initla	 ues.
VCO phase.

Final V3 lues

Reference OR
phase and
Initial vales.

values	 Solve loop filter. NvCo	 If injection
ediate f

OR	 "0-lock changes
frequency

Fin	 ues	 VCO

Vequency.

1
()pen loop frequency
modulation the VCO to
simulate vibration.

Voltage of VCO

allowing for
modulation

Insert VCO pole
'time constant.

Calculate VCO
frequency and VCO
phase. Set PV flag
If VCO phase > 360.

[

Update time.

Flags, variables

concerned with PLL
conditions, time (

Return to main
loop.
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A.4 DDS simulation

A.4.1 Program overview

DDS_SIMULATOR is a program which simulates a direct digital synthesiser (DDS). This

program produces a time domain file in extended memory which can then be used as an

input to a FFT. The program is designed to simulate the use of non-ideal DACs.

Code for the simulation is organised into a main program which performs the simulation,

with subsidiary packages for DAC simulation, EPROM look up table calculation, and

storage in extended memory. A structure chart for the DDS simulation program is given

as figA4.1.

The bulk of code in the main program is held in a loop which is repeated once every clock

cycle. Because this is a clocked digital system no interpolation between the discrete
increments in time is required. On commencement of the main program and before the

loop is entered, the EPROM look up table is built, and the tables holding DAC switching

current characteristics (in record DACDYNAM1C) are calculated in order to reduce the

computational load within the main loop. A data flow diagram showing the main loop is

displayed as fig A4.2 and closely resembles the DDS architecture of fig4.18. The main

loop exactly follows the logical structure defined by decorrelation method 2 in §8.4.4 and

incorporates phase and amplitude truncation dithers as described in §8.5.3 and §8.5.4.

These spurious signal reduction mechanisms can be disabled or enabled by altering flags

in the code.

The analogue values produced by the simulation are stored in a time domain file in

extended memory in preparation for a FFT.

A. 4 . 2 DAC simulation

For the DAC simulation, files are created by a program which simulates a production run,

of which a description only is given here. This program generates a random spread in the

DAC characteristics between the tolerance limits specified in §8.9.6.2. For each DAC in
the simulated production run a record holding the characteristics is stored in a hard disk

data file (with extension .DAT). Before commencement of a DDS simulation, two DAC

characteristic files are selected from the simulated production run. The characteristics

stored are static current levels corresponding to each bit, and spreads in the time constants

and switching propagation delays for all bits.
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Immediately prior to simulation, the DAC files are read into a record which is

subsequently used to create the DAC simulation. When the main program commences,

the first task is to calculate errors due to switching transients on each bit as given by

equation 8.63. Two arrays are generated in this process: one corresponding to each bit
switching from off to on, and the other corresponding to switching from on to off. These
ways are stored in a record of switching characteristics (DACDYNAMIC as mentioned

earlier).

During the course of the main loop, the actual analogue output is calculated from the static

and dynamic DAC characteristics so far determined. As discussed in §8.9.6.2, each bit of

the DAC word is compared with the corresponding bit of the appropriate previous clock

cycle DAC word and if there is a change, the contribution from the switching

characteristics record (DACDYNAMIC) is summed in. Further adjustment to the output is

necessary to account for digital signal edges capacitative coupling through the current
switches in the DAC; this coupling is calculated according to equation 8.65. This leads to

the requirement for calculation of a further contribution (DIG_FEEDTHROUGH in

pseudocode), which is added to the DAC current along with the switching current error as

described above. The calculated DAC currents and errors for all the bits are then summed

according to equation 8.64 to form the DAC analogue output
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A 5 Phase noise analysis program

A5 . 1	 Introduction to phase noise analysis program

This appendix gives details of the link budget degradation program which analyses the

effect of local oscillators on satellite communications systems. Most of the functional

details have been covered in §9.7, therefore only a brief description will be given here,

together with the pseudocode and data flow diagrams.

A5.2	 Main program

A structure chart relating to this program is given as fig9.15 in §9.7. The main program

is concerned principally with plotting the graph of degradation against data rate on a

logarithmic axis. The data flow within the main process is shown in fig A5.1. There is a
facility in the main program for permanent storage of the plotted data to enable rapid
re-creation of the plots at a later date. Pseudocode for the main program is given in

§A5.7.

On commencement of execution of the main program the user is first requested to enter

whether the plot will be calculated or simply read from a previously stored file. If

calculation is chosen, the user is further prompted for a choice of static phase offset and

modulation type. If the replot option is chosen, the stored plot file is read from the

permanent storage media into memory. On completion of this step, the computer display

is setup and then plotting of data commences. Finally, if the calculation option is chosen,

the plot files are stored to permanent storage media then whatever the selected option, a

hardcopy of the plot is produced if requested.

A 5.3	 Main loop

The main loop is executed within the main program after initial setup of data as can be

from figs A5.1 and A5.2. The function of the main loop is to provide a logarithmic

increment in the value of data rate which is plotted against degradation for a given value of

carrier recovery loop bandwidth. Seven such values are acquired by executing the loop

seven times. Before commencement of these seven loop cycles, one dummy run of the

loop is performed which establishes the horizontal logarithmic graticule. To obtain a value

of degradation the MAIN_CALCULATION code is executed. If the conditions for a

particular data rate are such that no meaningful value of sensitivity degradation can be

obtained, calculations are aborted and no points plotted for that value of data rate.
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ALLAlain_salculations

The main calculations produce a value of sensitivity degradation from the present value of

data rate and selected modulation type. A data flow diagram for the main calculations code

is given as fig A5.3. Firstly the link data rate is established as a function of the input /

output data rate and modulation type, the latter is user selected and may be coded or

uncoded. The software proceeds to calculate a value of carrier recovery (CRL) filter

bandwitdh as a function of link data rate. The integration calculations for each local
oscillator are then performed with the effect of obtaining a phase jitter value for each local

oscillator as described in §6.4.2, these values being assigned to a data structure for later

use. If, during these integration calculations an excessive value of jitter is produced, the

calculations are aborted and no points plotted. Finally, the degradation is calculated from

the value of phase jitter produced by the integrations. Pseudocode for the

MAIN_CALCULATION procedure which contains code for the main calculation is given in

§A5.7.

A.L.5LacaLascillaimsalgulations

Dedicated packages perform integration for each local oscillator. The data flow, which is

common to all these packages, is given in fig A5.4 and a description of the two types of

local oscillator integration given in §9.7.2.7 and §9.7.2.8. Each time a local oscillator

package is invoked, the relevant phase noise data is read from the phase noise data base on

the permanent storage media. Pseudocode for the local oscillator integration packages is

given in §A5.9 and §A5.10.

A 5 . 6	 Degradation calculations

The package BERCALC performs calculation of the sensitivity degradation resulting from

the calculated values of phase jitter and the user selected value of bit error rate (BER). The

data flow diagram for this package is given as fig A5.5. This package performs iterative
calculations of Eb/no corresponding to the user selected BER value, in both the presence

and absence of LO phase noise in the manner described in §9.7.2.3 and §9.7.3.

Integration of the probability distribution of the recovered carrier phase values is
performed numerically by Simpson's rule. For each iteration of Eb/no in the presence of

phase noise, the thermal noise calculation package is executed in order to obtain a value of
thermal phase jitter on the recovered carrier. This code is described in §9.7.2.4. If, at

any point the recovered carrier phase jitter is excessive, the calculation is aborted, and

execution returns to the main unit. BERCALC also contains code for the following

mathematical functions:-

Marcum Q function
	

Q(x)
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Modified bessel functiuon

Complementary error function	 erfc(x)

Tikhonov distribution function	 Tk(x)

Viterbi curve fit polynomial	 Vitpoly(x)

Simpson's rule integration

Pseudocode for the BERCALC package and the thermal jitter calculation THERMAL.' is

given as §A5.8 and §A5.11 respectively.
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Read in static
phase offset and
replayback
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o fset
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F.
Get values of
modulation type
required from
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Offset degradati
Modulation type

Static fset
Modulatio	 pe
Replayback	 on

Arrays o slots

Variables as read from
files or ertered.

Main loop. Plot 7 graphs
with carrier recovery
loop bandwidth as a
parameter.

If calculating (not
replayback) store
\plots. 

V

Display plots.

Main Process - Datarate Degradation

data tor plots -
degra iation V.
datarite 

f
If fast play)ack
required read file of
arrays of plots
(degradation v.
datarate).

Begin setup of
logarithmic
graticule, screen
display, etc.
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Data read in from files If
required (plots as
other

centered by user
(see other diagram).

KRL value

If not on replay perform
-nain calculation of
sensitivity for given BER
see diagram).

degradation
Sensitivity	

OR

LOG(datarate:
I

(Plot and store
points in memory.

1
If calculation
aborted, no points
plotted or stored.

n ]
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— _End of main loop.

Calculate
datarate to be
used in plots.

n	

1
Datarate

Main Loop - Datarate Degradation

/

	

	 1Perform first
cycle which sets
up logarithmic

\ graticule.	 -I
Initial aid final values of
data rat ?

_ _ Beginning of main
loop.

/
As each cycle after first
cycle corresponds to a
value of KRL, establish a
Qlue of KRL. 

1/
Begin logarithmic
incrementation of
datarate.

\	
Datarate
Power of 10
LOG(datarate)



Data frequency
UP Frequency

OR
Pha,se

Main Calculations Of Sensitivity For Given BER -
Datarate Degradation

(Establish value of	 Modulation type 
data frequency	 -.1	 main loop

depending on
modulation.

Data f	 ncy
anon type

1Calculate
bandpass filter
width.

If value of phase jitter
resulting from any of the
above integrations is
excessive, calculation
will be aborted.

Cerform phase noise
integrations on the following
local oscillators- TxL0,
Satellite transponder LO,
Rx 1 LO,
Rx2LO,
tx3LO.

1.1Data frequency
Phase Jitter
ockdatiort type

/
Calculate
degradation in
sensitivity.

\,	 .../

1 
Degradation

[

Return to main
loop
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Phase integration on local oscillators

NOTE: This data flow is the same
for each LO. However the method
of integration varies depending
on whether LO is a synthesiser or
fixed oscillator.

Data rate

Read phase noise data
from disc.

Phase noise data
Carrier recovery loop
data
Data rate

V
(Perform integration on

phase noise data for LO.
This gives value of phase
jitter for La 

Phase Jitter

I

Return to main
loop
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1

Cycle ends here, now
repeat this cycle

111 which calculates
I Eb/No in presence of
I phase noise.

OR

odulatlon type
se Jitter

BER get

f phase Jitter too
igh abort
alculation

Calculate BER
allowing for
phase jitter
values

Eb/No	

>

Local oscillator phase
jitter contributions

Total phase
held constant here.	 Jitter

Eb/No
b/No)o

contribution to
phase jitter
,sigmatherm

te Cycle begins
ter here, which

calculates Eb/No
7 presence of
p• se noise.

Slgmatherm Calculate thermal

Data
Phase
data bloc

BER
(Eb/No)o

(Add sigmatherm to
phase jitter values.

Subtract (Eb/No)o
from Eb/No to get
sensitivity
degradation.

increment Eb/No
If BER target

Calculation of Sensitivity Degradation for a Given
Phase Jitter

Return to main loop
with value of
sensitivity
degradation.

•

NOTE: (Eb/No)o is Eb/No with no phase
noise.
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LOW COST SYNTHESISED SOURCES FOR VSAT FREQUENCY CONVERTER
APPLICATIONS

Martin Wilson

VSAT SOURCES

This program of development has been concerned with the production of low cost downconverters
for very small aperture (VSAT) receivers.

VSAT receivers are often used to receive narrow band data signals in a low carrier to noise
environment; especially 'so if forward error correction is used which reduces the carrier power
needed for a given bit error rate. In such cases narrow carrier recovery loop bandwidth is required
[1]. As a result of this, low close to carrier phase noise is required from any LO's in the
downconverters.

It is tempting to use a proprietary low noise block downconverter (LNB) used for the SHF to UHF
conversion stage (Fig 1). The LNB employs a dielectric resonator oscillator (DRO) as the SHF
local oscillator (LO). The next stage of downconversion employs a simple two chip UHF
synthesiser as the second LO.

The LNB system presents problems to the VSAT demodulator due to:-

1) The frequency uncertainty of the DRO (± 1 MHz) means that the demodulator acquisition tin)
can be unacceptably long for a narrow carrier recovery loop bandwidth.

2) The synthesiser and DRO phase noise result in excessive demodulator carrier phase slipping
when used with a narrow carrier recovery loop bandwidth.

3) The phase noise is compounded by the presence of phase "jumps" which occur due to
disturbances in DRO components, particularly because the DRO, with its high Q resonator, is
subject to high flicker noise [2].

As an alternative the DRO can be substituted by an externally synthesised LO using a digital divider
and phase detector. A wide tuning range VCO is used as a UHF reference oscillator which
employs a low Q resonator, such that its phase noise is reduced by phase locking to a VHF
reference. Close to carrier phase noise then becomes dominated by the crystal resonator of the
VHF reference. In the critical region around the edge of the carrier recovery loop bandwidth, the
phase detector/divider chain phase jitter is also important. A diagram of the phase - frequency
detector is shown in Fig. 2 and was chosen because of its self acquisition properties.

PREDICTION OF DIGITAL DIVIDER AND DETECTOR PHASE NOISE

If the digital divider and detector are used to phase lock a microwave source, the phase noise floor
of the digital devices dominate the resultant spectrum. This type of synthesiser system is edge
driven, and can therefore be modelled considering a single direction transition. It would be very
difficult to accurately model the phase jitter effects of digital logic because of the different internal
states that exist, and the dependence upon IC internal state device characteristics. It is, however,
possible to predict a general rule that can be applied to a particular logic technology from a few
measurements at different frequencies. The edge transition results in a finite sampling time

Martin Wilson is with Communication Systems Research Ltd, Ilkley, West Yorkshire,
LS29 9EE



window T, repeating at a reference frequency Fr which effectively samples the broadband noise floor
of the input devices of the logic gates. The noise sidebands at multiples of Fr are aliased back and
are added on a power basis (Fig 3). Assuming a flat noise spectrum, the noise contribution from
each multiple of Fr is multiplied by the sampling function:-

(sin
2
 (RnF, .1)

VT, = PF 	 	 (1),
(7mFr t)

2

where n is the multiple of reference frequency F1 , PFr is noise power at the reference frequency and

PnFr is noise power at the n th harmonic of the reference frequency. In most cases Fr << lit.

The sampling of the noise results in a time jitter At on the signal. This time jitter is proportional to
the sampled noise voltage such that;

At a V.

The number of times the broadband noise is folded around the reference frequency is inversely
proportional to the reference frequency so there the noise power (root noise voltage) is increased in
inverse proportion to the reference frequency;

A I a ,. la
vr

Within the loop bandwidth, the time jitter At is transferred directly to the output frequency (Fout).

• The phase noise at the output frequency FouL is given by :-

4 . 2 (AtirFout )2

4 is noise power spectral density (watts/Hz). Substituting (2) into (3) gives ;

4 a i-- Fj

PHASE NOISE PREDICTION

By normalising Fr and Fout to 1 Hz, a general formula can be used to predict the phase noise
performance of a digital divider/phase detector system [3] ;

4 . K (dbc) -20 log10 (F0 ) + 10 log10 (F1) (dbc/Hz)	 (4)

In equation (4) K is the constant of proportionality, arising from the previous equation (3): Its value
depends upon logic technology and is typically -180 dbc/Hz for HCMOS and -215 dbc/Hz for
FAST TM

1
(2)

(3)

2



In addition, low frequency flicker noise is sampled by the transitions and therefore, below a certain

offset frequency, the phase noise takes on a (Fm od )-1 dependence, where Fmod is the modulation

frequency of the data signal consequently. The noise power density .e, increases 10 dB for each
decade drop in modulation frequency. It is this effect which causes the principle degradation in low
bit rate systems. In GaAs logic systems, although "C is very much reduced, the high flicker noise
makes them unsuitable for use in systems that require good close to carrier phase noise.

Based on these observations, a fully synthesised downconverter using ECL variable modulus
prescalers and fast logic dividers and phase detectors for first and second LOs can be considered.
The phase performance (curve 3 of Fig 5) is barely acceptable, however, and additional problems
arise due to current consumption and operating termperature range.

AN IMPROVED DESIGN

The addition of a well designed analogue phase detector to the two chip synthesisers as shown in
Fig 4 results in a reduction in close to carrier phase noise (curve 4 of Fig 5). The self locking
properties of the digital phase frequency comparator is initially used to acquire lock. When locking
has taken place the analogue phase detector gives fine control of the VCO phase. As a result the
dividers and digital phase detector are then removed from the loop. High noise CMOS components
can be used, giving a number of advantages as follows ;

(i) Lower component cost

(ii) Lower current consumption

(iii) Smaller space requirements

(iv) Reduced electromagnetic interference problems.

(v) The use of a fixed prescaler rather than a variable modulus pre-scaler gives greater design
flexibility.

(vi) Linear and predictable phase detector characteristics.

(vii) Reduction of reference spurious and mains related sidebands.

(viii) Operation at temperatures down to -30*C.

REFERENCES

1	 PUCEL, A. The GaAs FET Oscillator, Its Signal And Noise Performance. Proceedings of
the 40th Annual Control Symposium, 1986.

2	 ROBINS. W.P. Phase Noise In Signal Sources - IEE Press 1982

3	 UTS1. P.A.U. Phase Noise In Digital PLL due to detectors and dividers - IEE Conference on
Land Mobile Radio, March 1983, Leeds.
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SYNTHESISERS FOR LOW DATA-RATE SATEWTE RECEIVERS

M.P. Wilson & % and T. C. Tozer%

'Communication Systems Research Ltd
G University of York, UK

tal3S2210411

There is currently considerable interest in
application of very small aperture terminals
(VSATs) to business or mobile satellite
communications. Such systems are well
established in the USA, and are poised to expand
into Europe, particularly as regulatory constraints
are relaxed.

Because of the small antenna gain and associated
low carrier-to-noise density, these terminals
operate at a low data-rate (typically no higher than
64 kbit/s, and often considerably less). This
places stringent requirements upon the phase noise
produced by receiver downconverter local
oscillators, which must also be frequency agile for
flexible channel assignment, and producable at low
cost.

As a result of the proliferation of consumer
television receive-only (TVRO) systems, very
inexpensive synthesised satellite receivers are
widely available. However, although these may
provide a satisfactory noise figure, they are
frequently unsuitable for use in low data-rate
communications due to their poor close-to-carrier
phase noise. Here we examine some of the
requirements and trade-offs for VSAT receivers.

The effects of synthesiser phase noise and thermal
phase noise upon data demodulation are identified,
tgether with the conflicting requirements placed
upon the receivers carrier recovery loop. The
origins of phase noise in single-loop synthesisers
ire outlined, and its elements characterised. This
leads to the derivation of some design criteria and
parameters, and resulting performance is
llustrated in the implementation of VSAT
receivers.

EtiASENOSEQQNSDEBABMS

It is important to define exactly what is required
in terms of phase noise within a particular system,
and to avoid expensive over-specification. The
VSAT system performance will aim to work close
b the limits set by the basic link budget, in terms
of satellite EIRP, antenna gain, and receiver LNB
km-noise block downconverter) noise figure. All
of these are at a considerable premium, and a high
Price is demanded for any link margin as

compensation for phase noise degradation of the bit
error-rate (BER).

Many VSAT data systems may use error correction
coding, such as convolutional codes with Viterbi
decoding. The coding gain advantage further
reduces the already low carrier-to-noise density in
the receiver, placing very stringent requirements
upon the demodulator design. Furthermore, the
slope of the error curve with Eo/No can be very
steep leaving little margin for uncertain
degradations.

Figure 1 illustrates a typical receiver outline. Two
or more stages of downconversion may be
employed, (eg from a signal at 14 GHz to
intermediate frequencies (IFs) at1 GHz and 70 MHz).
The function of the carrier recovery loop (CRL) is
to regenerate a carrier reference from the
incoming signal, which is then used for coherent
demodulation. Data modulation with binary phase
shift keying (BPSK) is considered here, although the
principles may be extended to OPSK, which is also
commonly used.

The CRL is a squaring loop, or equivalently a Costas
Loop [1], employing a phase-locked-loop (PLL) with
transfer function H(s). Two components of noise
are present at the input to the CRL:

a) Oscillator phase noise introduced by the
downconverter stages. This noise component lies
predominantly close-to-carrier and hence within
the CRL's loop bandwidth (typically a few 10's of
Hz). Thus to a large extent the loop can track this
phase noise;

b) Thermal noise. This noise component has a
flat spectrum, and will not be tracked.

Figure 2 [from ref.2] illustrates the degradation of
BER due to the combination of thermal noise (No)

and additional phase jitter. This jitter is manifest
differentially at the inputs to the demodulating
multiplier, and has variance aT 2 (radian 2). The

jitter is due to two effects:

(i) Phase noise appearing differentially between
the signal input and the CRL output. The difference
arises because the CRL substantially tracks the
phase jitter arising from the downconversion
synthesiser(s);



(ii) Thermal phase noise appearing on the
recovered carrier, which is not coherent with the
signal input thermal noise by virtue of the effect
of squaring circuit within the CRL.

It is clear that errors will occur as cr T approaches

the phase distance between symbols, and that the
situation becomes more demanding for OPSK and
higher orders of modulation. (In practice, the
performance shown in Figure 2 may be further
aggravated by non-linearities and cycle slips at
low carrier-noise levels within the CRL).

The receiver designer has to face a trade-off in
parameters for the CRL, which requires a wide loop
bandwidth to track local oscillator phase noise and
a narrow loop bandwidth to minimise thermal noise
effects. Further design constraints may be
imposed by acquisition and Doppler tracking
requirements.

OSCILLATOR PHASE NOISE EFFECTS

Synthesiser phase noise is introduced at each stage
of down-conversion in the receiver, and the phase
noise powers will add. (It cannot be assumed that
the contributions from each stage will be the same,
and one may expect significantly greater phase
noise from the higher frequency source, at say
12 GHz).

This phase noise lies mostly close-to-carrier, and
it is this portion which will predominate over the
other products produced by the squaring loop. In
other words, the loop will largely track this jitter,
such that the inputs to the demodulating mixer are
not substantially uncorrelated.

The squarer itself is relatively wideband, and so
the reponse of the CRL to this phase noise is
determined approximately by H(s). Hence this
phase noise contribution differentially to the
demodulator multiplier is determined by:

I - [NsncRL as [E(s)lcm.	 -A

where E(s) is the PLL's error function [3].

The contribution of downconverter synthesiser
phase noise to the differential jitter at the
demodulator may be represented as:-

a 2
P

f .

-

fd

I 2L(f) I[E(S)]21	 (radian 2).cRL•Cif ....(ii)

f . 0
where L(f) is the phase noise power-density to
carrier power ratio, and fd is the data rate, taken

to be a practical upper limit of integration.

The form of L(f) is very much dependent upon the
particular synthesiser and its architecture, and
there is no universally applicable result for this
function. Some factors determining L(f) are
discussed later.

In order to minimise a 2, I[E(s)]2 1c R should be made

as small as possible, which implies [H(s)1dFIL —• 1,

and hence the PLL natural frequency coo chosen to

be high [3]. This conflicts with the thermal noise
requirement upon co o , as detailed below.

MEBMALIIIMENOSEEEEGIS

Besides the direct impact upon Ep/N o , additive

thermal noise gives phase jitter which is modified
by the CRL, which is unable to fully track it. This
gives rise to a differential input to the
demodulator multiplier, and degradation of the data
bit error rate (BER).

If the level of noise within the CRL bandwidth is
high, then non-linear effects such as the addition
of orthogonal amplitude modulation components of
the noise also become significant. Cycle slipping
also becomes a problem at low carrier-to-noise
levels. In order to minimise cycle slipping, a high
damping factor C in the CRL is desirable, and a
value of 1 .3 is generally chosen [4, 5].

The squaring function within the CRL gives rise to
the product (noise) x (signal), which has a low
correlation with the thermal noise additive upon
the data signal. This decorrelated noise is subject
to the CRL transfer function H(s).

The loss introduced by the squarer is dependent
upon the shape of the bandpass filter preceeding it.
For the particular case of a Gaussian pre-squarer
bandpass filter of bandwidth B p , we have [61:-

f C N2

B 42kB N /in

(ITC )out = C—12 1--f	 ‘

1+ 442k/W)in.
p o

....(iii)

where C is the carrier power and No the thermal

noise power density.

Thus the normalised thermal phase-noise power
density following the squarer is given by:-

L(f), - 7 k7M 4. 41 -E
1 fs N	 N No

....Qv)
Here the first term in the brackets represents the
squaring loss. L(f) t around the recovered carrier

component will be flat over the relatively narrow
bandwidth of the CRL frequency response H(s),
after which L(f) t is characterised by:
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1 f B N. I No Ks)?
81 2 k7FiT + 4/

...(v)
SinceSince the output of the CAL will be halved in
frequency to recover the actual carrier, the
corresponding phase jitter variance applied to the
demodulator is reduced by a factor of 4, and is
given by:-

I...
i Bp N o	 N No

' lWY C + 1 1 C f IH0012.df

fw0

....(vi)

Assuming a second order PLL, the integral in
equation (vi) is equal to its equivalent noise
bandwidth B L , which is also given [7] by:-

Cilq + —1— ) Hz2	 g

....(vii)

where C is the loop damping factor.

For the particular case of C - 1.3 (which is usually
chosen, as described above),

3B = — co HZL	 4 •

....(viii)

Therefore the natural frequency con of the CRL, may

be related to the specified thermal noise jitter at

as follows:-

4 	 dit 

3 f B No	 N No

kATIT C +iir
....(ix)

With a given allowance for a t2 , co n may then be

chosen. It is seen that a small co n is required, and

thus a compromise is necessary between that value
of o) n required to minimise thermal noise phase

jitter, and the tracking requirements due to local
oscillator phase jitter.

SYNTHESISER STRUCTURE AND PHASE NOISE

The usual, and the most economical, synthesiser
implementation for VSAT downconverters is the
single PLL method. In order to maintain a fine
frequency resolution over a large frequency range,
a number of stages may be required. Each stage has
its own loop synthesiser, with the higher local
oscillator frequencies coarse stepping and the
lower frequency oscillators fine stepping. Figure 3
shows the architecture of a single loop
synthesiser; the loop consists of dividers and an
edge triggered phase-frequency comparator.

Figure 14 displays the typical phase noise spectrum
of such a synthesiser, which comprises a number of
distinct regions. The f 3 region closest to the
carrier is due to crystal resonator noise
(multiplied up to the final output frequency). The
f- 1 and f- 0 regions arise from the active devices
employed in both the phase-frequency comparator
(and associated dividers) and the loop filter. The
outer f 3 region represents the free-running
voltage-controlled-oscillator (VCO) phase noise.

There appear to be several phenomena giving rise to
the f- 1 flicker noise in logic circuits, and this
subject is felt to be an area requiring further
investigation. The transition from the ri region to
the white noise floor (f. °) region for the logic
jitter increases in frequency as the phase
comparison frequency is increased. With CMOS
comparators at a 25 kHz comparison frequency, for
example, this transition point is approximately
50 Hz from carrier.

The phase noise contribution from the loop filter
itself can be minimised with careful design.
However, the jitter from the comparator and
associated logic circuitry will remain as the
principal contributor to the phase noise; this is
exacerbated because the phase comparison in the
synthesiser is often accomplished at a low
frequency. The jitter may become a significantly
large fraction of a radian when translated to the
output frequency in the microwave region.

The mechanism for the generation of phase noise
within logic circuitry has many sources [8], and i
can be difficult to determine its value. However, it
is possible to predict the phase noise levels for a
particular phase detector logic technology an
configuration, based upon observed measurement
at a single frequency. This analysis is outlinec
below. (The same criteria may be also applied tc
oscillators, limiters, sine- to square- wave
converters, and pulse generators used elsewhere
within synthesisers).

LOGIC JITTER PHASE NOISE FLOOR

At the input stage of a logic gate, broadband noise
is present up to an effective cut-off frequency
determined by the input device and its technology,
and this can be very high (eg 5 GHz) for TTL and
ECL. This broadband noise will only contribute
during the switching transition time s . This ocurs
once per cycle at the comparison frequency fc

(-1/T), as shown in Figure 5. The output noise
spectrum may be expressed from consideration of
the product of the input noise with a window
function which is unity during time s, and zero
elsewhere.

BL =

0)o



Let the input noise power spectral density be z

(watts/Hz). The effective duty cycle is T /T, and
hence the output noise power spectral density is
proportional to z s /T • z .1 fo.

It is clear from the above that the phase noise is
reduced as z is diminished. This can be achieved
with high speed logic with fast transition times,
provided that yi is otherwise unchanged.	 The

close-to-carrier phase noise at the synthesiser
output will be contributed by several gates in the
synthesiser loop. This phase noise will be
multiplied up from the comparison frequency fo to

the output frequency four

The phase noise contributions from each logic gate
will add. Representing the normalised phase noise
power-density (from the output of the phase
detector) as L(f)opd ,	 and the oscillator output

power as C, then:-

y T f

.1()CP1
 IC-

 IC 6 kt)

....(x)

This result will also be subject to the transfer
function of the synthesiser loop filter, H(s)11.

The overall phase noise will manifest itself as BER
degradation in the receiver, determined by the CRL
in the demodulator as outlined previously. It is
therefore necessary to arrange to have as few
active gates as possible in the synthesiser loop,
and effectively reduce them in number through
re-synchronisation techniques.

With the above relationship, it is possible to
predict the synthesiser output phase noise for a
particular output frequency and comparison
frequency, for a given configuration and logic
technology. Representing the logic contribution to
the phase noise floor (f° region in Figure 4) as
L(f)opd dBc/Hz, then:

+ 20 Log %Lit -.	

-

Kn	10 Log fo dBc/HzL(f)opa 
...(xi)

.where K n is a constant determined by the

configuration and logic technology used, foot is the

synthesiser output frequency and fo the synthesiser

comparison frequency.

Based on measurements taken, the following values
for Ko were determined for a typical single loop
synthesiser with commonly used edge-triggered
phase-frequency comparators:

Kn	 . - 200 dl3c/I-lz for fast CMOS

- 205 dBc./Hz for ECL and
low-power schottky TTL

-215 dBc./Hz for Fast series TTL.

(CMOS using MC145151, ECL using 10,000 series, LS series
TTI, and 74F series Tn. respectively).

The range shown here of 15 dB can be very
significant in terms of resulting system
performance. It is worth noting that although ECL
has a fast switching speed, this advantage is
offset by a high level of input noise yi. These

results are supported independently by Utsi in [9].

CASE STUDY DESIGN EXAMPLE

The total phase noise produced by the synthesiser
can be represented in terms of the f-0 floor L(f)opd,

f- 1 flicker noise region (closest to the carrier in
Figure 4), and the VCO phase noise (r 3 region). The
synthesiser normalised phase noise power-density
can be expressed as:-

f.-(f)	 2. ags)e,I2 0-40,0 + [L(f)trici ] 7 ) +Piat	
f.1 

1

(11-H(s)sr,12 )[ “0„co 1

....(xii)

Here L(f) opti is the phase noise contribution of the

logic jitter, and the subsequent term represents
the flicker noise normalised to that at 1 Hz offset
from carrier. L(fl-,vco(f-l) is the VCO phase noise

extrapolated to 1 Hz offset, and H(s) 5  is the

synthesiser PLL transfer function.

The resultant synthesiser RMS phase jitter
appearing differentially at the demodulator may
now be determined numerically from equation (ii).

The above criteria are illustrated by a synthesiser
having a 2 GHz output frequency, and using CMOS
logic with a phase comparator operating at 50 kHz.
The contribution to the output phase noise from
logic jitter, L ()oo.	 is then -61 dBc/Hz, from

equation (xi). The synthesiser is observed to have
a VCO phase noise of -40 dBc/Hz at 1 kHz offset.

The receiver operates at a data rate of 40 kbit/s
and Eb/No of 6 dB, with half-rate Viterbi decoding.

A value of a t is chosen initially to obtain a

suitable compromise between BER degradation and
the acquisition time of the CRL. The CRL employs a
Gaussian pre-squarer filter with 131 . 200 kHz, 0.)n -

31 Hz and ;. 1.3. The above parameters may be
typical of a VSAT receiver. The following
demodulator jitter figures result:



191 Utsi, P.A.V., 'Phase noise in digital PLLs due to
detectors and dividers'. Proceedings IEE Conf.
on 'Land Mobile Radio', Leeds, March 1983.

61 thermal jitter 	 •	 3.0°

Op phase noise jitter	 10.7°

or RSS total jitter	 .	 11.10

In practice several iterations of the calculation
may be performed in order to find the value of CRL
m n that gives the lowest value of GT . As may be
observed from the BER curves (Figure 2), the above
parameters produce a degradation of about 1 dB in a
BPSK system, and would have a very significant
effect upon a OPSK or higher order modulation
system.

The use of Fast TTL logic instead of CMOS in the
synthesiser would result in a lowering of op to

4.9°, giving a reduction in aT to 5•70. Negligible
degradation would then ensue for BPSK, although
there would still be severe degradation for OPSK.

These results imply that the present generation of
low-cost single chip CMOS synthesisers have
severe limitations for low data rate
downconverters.

=ELM=
Phase noise is a significant parameter in low
data-rate receivers such as VSAT terminals. Both
thermal noise and phase noise from downconversion
synthesisers affect demodulators employing a
carrier recovery loop (CRL), giving degradation of
BER performance. Each places conflicting demands
upon loop bandwidth of the CRL

Single loop synthesisers are simple and attractive
U downconverter local oscillators, but their phase
noise can be excessively large for data receivers.
It is possible to predict levels of phase noise from
given configurations as a function of the logic
1echnology employed. Synthesiser phase-frequency
detectors may be critical design components. Some
low cost synthesiser designs may prove inadequate
in this respect to meet receiver BER requirements.
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Figure 1 Simplified outline of VSAT receiver
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THE EFFECT OF LOCAL OSCILLATOR PHASE NOISE IN LOW DATA-RATE
SATELLITE RECEIVERS

M. P. Wilson & T. C. Tozer

1. Introduction

The development of Very Small Aperture Terminals (VSATs) is leading to critical appraisal of the
origins and effects of phase noise within modems. Because of their small antenna gain and
associated low carrier-to-noise density, these terminals operate at a low data-rate (typically no
higher than 64 kbit/s. and often considerably less); this places stringent requirements
particularly upon the phase noise produced by receiver downconverter local oscillators, which
must be not only low cost but frequency agile for flexible channel assignment.

Very inexpensive synthesised satellite receivers are becoming readily available, as a result of
the mass production of consumer television receive-only (IVRO) systems. However, although
these may provide a satisfactory noise figure. they are frequently unsuitable for use in low data-
rate communications due to their poor close-to-carrier phase noise.

The origins of phase noise in single-loop synthesisers are outlined here, and the effects of
oscillator phase noise and thermal phase noise upon data demodulation are identified, together
with the conflicting requirements placed upon the receivers carrier recovery loop. Some design
criteria and parameters are outlined, and performance illustration given for the implementation
of a VSAT receiver.

Figure 1 illustrates a typical receiver outline. Two or more stages of downconversion may be
employed. kg from a signal at 14 GHz to Ws at 1 GHz and 70 MHz). Data modulation with
BPSK is considered here, although the principles may be extended in general to QPSK. The
carrier recovery loop (CRL) is taken to be a squaring loop, or equivalently a Costas Loop.
employing a phase-locked-loop (PLL).

2. Synthesisers and Phase Noise

(a) Architecture

The usual, and the most economical, synthesiser implementation for VSAT downconverters is
the single PLL method. In order to maintain a tine frequency resolution over a large frequency
range, a number of stages may be required. Each stage has its own loop synthesiser. with the
higher local oscillator frequencies coarse stepping and the lower frequency oscillators fine
stepping. Figure 2 shows the architecture of a single loop synthesiser: the loop consists of
dividers and an edge triggered phase-frequency comparator.

The typical phase noise spectrum of such a synthesiser is displayed in Figure 3, and comprises
a number of distinct regions. The f-3 region closest to the carrier is due to crystal resonator
noise (multiplied up to the final output frequency). The P I and f-0 regions arise from the active
devices employed in both the phase-frequency comparator (and associated dividers) and the
loop filter. The outer f-3 region represents the free-running VCO phase noise.

There appear to be several phenomena giving rise to the f- 1 flicker noise in logic circuits, and
this subject is felt to be an area worthy of further investigation. The transition from the f-1
region to the white noise floor (Po) region for the logic jitter increases in frequency as the phase
comparison frequency is increased. With CMOS comparators at a 25 kHz comparison
frequency, for example, this transition point is approximately 50 Hz from carrier.

M. P. Wilson & T. C. Tozer are with the University o( York. Heslington, YORK YO1 5DD

1



co4
coa4 + K2 	)5

I F4s) Iv/nth
1 • o)2(4C2 - 2)— • co4—0;24cans

The phase noise contribution from the loop filter itself (eg op amp components) can be
minimised with careful design. However. the Jitter from the comparator and associated logic
circuitry will remain as the principal contributor to the phase noise: this is exacerbated
because the phase comparison in the synthesiser is often accomplished at a low frequency.
The Jitter may become a significantly large fraction of a radian when translated to the output
frequency in the microwave region.

(b) Vibration & Microphoruj

In addition to static phase noise, vibration also creates phase uncertainties within the
oscillators. The reference crystal oscillator vibration appears at the output modified by the
transfer function H(s) of the synthesiser phase locked loop. The synthesiser VCO microphony
contribution, generally the predominant component'''. Is modified by the error function E(s) of
this PLL. For a second order type one PLL this error function is determined as followsI21:

where E(s) = 1 H(s)

Here con is the loop natural frequency. C is the damping factor. and K = K ampKpd/S„m/N. where
Kamp is the loop amplifier gain. K pd is the phase detector gain. Kano is the VCO gain, and N is
the division ratio of the synthesiser dividers. When co « cow the denominator -) 1. For a
second order type two loop. K effectively -• and the term w2/K2 -)0.

In order to minimise' E(s)laynth. it is necessary to maximise con and K. The maximum value of
con depends on the reference frequency chosen. for a single loop synthesiser. Traditionally the
value of con is determined by the requirement to equalise the reference and VCO contributions
to the output phase noiseI31. The requirement upon con for vibration performance can increase
Its value away from this point. increasing the contribution of reference phase noise. Although
the value of K would make little difference to the static phase noise, it can have considerable
Influence on the vibration performance. This is as a result of the effect on the value of I E(s)I at
low frequencies.

For a second order type two loop. K = s• and !E(s)1 decreases at 40 dB per decade with reducing -
frequency below con. For a type one loop, an open loop pole mists at cop = o)/K and it can be

observed from eqn (i) that below this point I E(s)I decreases 0 20 dB per decade. The
suppression of low frequency vibration in the VCO would be less than anticipated in this case.
The problem would be exacerbated in a loop with large division ratio N. as can be observed from
the expression for K. above, due to the finite DC gain of the loop amplifiers.

(c) Choice of Logic Technology

The mechanism for the generation of phase noise within logic circuitry has many sourcesI41,
and it can be difficult to determine its value. However, it is possible to predict the phase noise
levels for a particular phase detector logic technology and configuration, based upon observed
measurements at a single frequency. This analysis is outlined below.
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At the input stage of a logic gate, broadband noise is present up to an effective cut-off frequency
determined by the input device and its technology, and this can be very high (eg 5 GHz) for TTL
and ECL. This broadband noise will only contribute during the switching transition time r,
which occurs once per cycle at the synthesiser comparison frequency fc (=1/1). The output
noise spectrum may be expressed from consideration of the product of the input noise with a
window function which is unity during time t. and zero elsewhere.

Let the input noise power spectral density be (watts/Hz). The effective duty cycle for which
the noise is effective is .r /T, and hence the output noise power spectral density is proportional
to yi /T = N fn.

It is clear from the above that the phase noise is reduced as is diminished. This can be
achieved with high speed logic with fast transition times, provided that N is otherwise
unchanged. The close-to-carrier phase noise at the synthesiser output will be contributed by
several gates in the synthesiser loop. This phase noise will be multiplied up from the
comparison frequency fn to the output frequency lout.

The phase noise contributions from each logic gate will add. Representing the normalised
phase noise power-density (from the output of the phase detector) as Lfflopd. and the oscillator
output power as C. then:-

1;11.c rout))2
"°°Fd ec	 -C

This result will also be subject to the transfer function of the synthesiser loop filter. H(s).

The overall phase noise will manifest itself as BER degradation in the receiver, determined by
the CRL in the demodulator as outlined previously. It is therefore necessary to arrange to have
as few active gates as possible in the synthesiser loop, and effectively reduce them in number
through re-synchronisation techniques.

With the above relationship. it is possible to predict the synthesiser output phase noise for a
particular output frequency and comparison frequency, with a given configuration and logic
technology. Representing the logic contribution to the phase noise floor (1° region in Figure 3)
as Lfflopd dl3c/Hz. then:-

Lfflopd z Kn + 20 Log foot - 10 Log fe dBc/Hz

where Kn is a constant determined by the configuration and logic technology used..

Based on measurements taken, the following values for Kn were determined for a typical single
loop synthesiser with commonly used edge-triggered phase-frequency comparators:

Kn	 - 200 dBc/Hz for fast CMOS
- 205 dBc/Hz for ECL and low-power Schottky ITL
-215 dBc/Hz for Fast series Tn..

(CMOS using MC145151. ECL using 10,000 series. LS series Tn.. and 74F series Tn. respectively).

The range shown here of 15 dB can be very significant in terms of resulting system
performance. It is worth noting that although ECL has a fast switching speed, this advantage
is offset by a high level of input noise N. These results are supported independently by UtsiI51.
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(a) Bit Error Rate Degradations

The combination of thermal noise (No) and additional phase jitter each give rise to degradation
of BER The Jitter is manifest differentially at the inputs to the demodulating muitiplier, and
has variance et.r2 (radian2). It is due to two effects:

(i) Phase noise appearing differentially between the signal input and the CRL output the
difference arises because the CRL does not totally track the phase Jitter arising from the
downconversion synthesiser(s):

(U) Thermally-derived phase noise appearing on the recovered carrier, which is not coherent
with the signal input thermal noise by virtue of the effect of squaring circuit within the CRL.

It is clear that errors will occur as or approaches the phase distance between symbols. and
that the situation becomes more demanding for QPSK and higher orders of modulation. (In
practice, the performance may be further aggravated by non-linearities and cycle slips at low
carrier-noise levels within the CRL).

The receiver designer has to face a trade-off in parameters for the CRL. which requires a wide
loop bandwidth to track local oscillator phase noise and a narrow loop bandwidth to minimise
thermal noise effects. Further design constraints may be imposed by acquisition and Doppler
tracking requirements.

(b) Oscillator Phase Noise

Synthesiser or oscillator phase noise is introduced at each stage of down-conversion in the
receiver, and the phase noise Jitters will add on an RSS basis. (It cannot be assumed that the
contributions from each stage will be the same, and one may expect significantly greater phase
noise from the higher frequency source, at say 12 GHz). Such local oscillator phase noise is
not substantially decorrelated by the squaring circuit[6].

The phase noise power-density to carrier power ratio L(f) can be determined for each oscillator.
The resulting differential jitter at the inputs to the demodulator is given by:-

f f

a
2 	

2U0 I Ms021 drCRC
(.0

(radian)	 ...(v)

where E(s) Is the error function of the CRL (= 1 - H(s)). and fd is the data rate, as a practical
upper limit of integration. The total phase noise derived differential phase jitter u then the
RSS of the several values act derived above.

The form of L(0 is very much dependent upon the particular synthesiser and its architecture.
and there is no universally applicable result for this function.

In order to minimise o 1,2 . I IF.(s))2 1 cm should be made as small as possible, which implies

Iii(s)/cRL 1. and hence the carrier recovery PLL natural frequency co n chosen to be

hight31. This conflicts with the thermal noise requirement upon to w as detailed below.

(c) Thermally-derived Phase Noise

Besides the direct impact upon Eb/No. additive thermal noise gives phase Jitter which is
modified by the CRL. which is unable to fully track it. This gives rise to a differential input to
the demodulator multiplier, and degradation of the BER

4



If the level of noise within the CRL bandwidth Is high, then non-linear effects such as the
addition of orthogonal amplitude modulation components of the noise also become significant.
Cycle slipping also becomes a problem at low carrier-to-noise levels: in order to minimise cycle
slipping, a high damping factor C in the CRL is desirable, and a value of 1-3 is generally
chosen17•81.

The squaring function within the CRL gives rise to the product (noise) x (signal), which has a
low correlation with the thermal noise additive upon the data si,gnaL This decorrelated noise is
subject to the CRL transfer function H(s). The performance can be analysed in terms of the
CRL parameters, including the shape of the pre-squarer bandpass filter. For the particular
case of a Gaussian pre-squarer BPF of bandwidth BpI91. it can be shown with some analysis
that the additional jitter due to thermal noise, at, can be related to ton as follows:-

at = —7—t - -,;(i T 4' 1 C
2 3 con (Bp No )No	

—NO

With a given allowance for at. too may then be chosen. It is seen that a small too is required.

and thus a compromise is necessary between that value of too required to minimise thermal
noise phase jitter, and the tracking requirements due to local oscillator phase jitter.

4.—ncligaExanuat
The total phase noise produced by the synthesiser can be represented in terms of the f- 0 floor
L(flopd.11- 1 flicker noise region (closest to the carrier in Figure 3). and the VCO phase noise (f-3
region). The synthesiser normalised phase noise power-density can be expressed as:-

Loco : 1 H(s),„,,12(Li1)opd + {un ilickef j) + 11 - H(s)enIT[f.40,tor.ID]
	

...MO

Here L(f) pd is the phase noise contribution of the logic jitter, and the subsequent termo

represents the flicker noise normalised to that at 1 Hz offset from carrier. L(f) r 1 is the VCO

phase noise extrapolated to 1 Hz offset. and H(s) rin is the synthesiser PLL transfer function.

The above criteria are illustrated by a synthesiser having a 2 Gib output frequency, and using
CMOS logic with a phase comparator operating at 50 kHz. The contribution to the output
phase noise from logic jitter. L(fl opd. Is then -61 dBc/Hz, from equation (iv). The synthesiser is
observed to have a VCO phase noise of -40 dBc/Hz at 1 kHz offset.

The receiver operates at a data rate of 40 kbit/s and Eb/No of 6 dB. with half-rate Viterbi
decoding. A value of at is chosen initially to obtain a suitable compromise between BER
degradation and the acquisition time of the CRL. The CRL employs a Gaussian pre-squarer
filter with BL = 200 kHz, con = 31 Hz and C = 1.3. The above parameters may be typical of a
VSAT modem.

The following demodulator Jitter figures result:

Ct thermal jitter = 6.0°
Op phase noise jitter = 10.7°
...M.
dr RSS total Jitter = 12.3°

5



In practice several iterations of the calculation may be performed in order to find the value of
CRL con that gives the lowest value of ar As may be observed from the BER curves (Figure
4)1 101, the above parameters produce a degradation of about 2 dB in a BPSK system, and would
have a very significant effect upon a QPSK or higher order modulation system.

The use of Fast TIL logic instead of CMOS in the synthesiser would result in a lowering of crp to
4.9°, giving a reduction in oT to 7.8°. Negligible degradation would then ensue for BPSK.
although there would still be severe degradation for QPSK. These results imply that the
present generation of low-cost single chip CMOS synthesisers have severe limitations for low
data rate downconverters.

5. Conclusion,'

Phase noise is a significant parameter in low data-rate modems for VSAT applications. Both
thermal noise and phase noise from synthesisers affect demodulators employing a carrier
recovery loop, giving degradation of BER performance. Each places conflicting demands upon
loop bandwidth of the CRL.

Single loop synthesisers are simple and attractive as dovmconverter local oscillators, but their
phase noise can be excessively large for data receivers. It is possible to predict levels of phase
noise from given configurations as a function of the logic technology employed. Synthesiser
phase-frequency detectors may be critical design components, and some low cost synthesiser
designs may prove inadequate in this respect to meet receiver BER requirements.

Vibration and microphony need to be taken into account. in addition to static phase noise.
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SIGNAL GENERATION USING DIGITAL-TO-ANALOGUE CONVERSION

This invention relates to the generation of continuous

analogue signals from repeated application of digital numbers to

digital-to-analogue conversion means and in particular to

mitigation of the effects of distortion in such analogue signals

5 caused by the digital-to-analogue conversion means.

The invention is particularly, but not exclusively,

concerned with the generation of analogue signals at specific

frequencies, so-called frequency synthesis, and mitigating the

production of spurious frequencies inherent in such analogue

10 signal distortion.

The invention may be applied to so-called direct

digital synthesis, in which the digital-to-analogue conversion

means delivers an analogue signal of appropriate frequency, and

to phase locked loop synthesis, in which in a phase locked loop,

15 incorporating a voltage controlled oscillator, a circuit

controlling loop phase error incorporates digital-to-analogue

conversion means in a manner similar to direct digital synthesis.

The basic form of direct digital synthesiser with which

20 the invention is concerned is illustrated at 10 in Figure 1 and

comprises a system clock 11, a digital number generator 12 which

provides a number, conventionally identified as K, representing

the frequency to be synthesised, an accumulator 13 to which the

number is added at each system clock cycle to provide a series

25 of "phase" numbers increasing linearly with time and a digital

function generator 14, such as a read only memory (ROM), which

defines the form of the signal to be generated, for example

sinusoidal, as a further series of numbers. All the numbers are

formed as digital binary words and a digital-to-analogue

30 converter (DAC) 15 generates a series of analogue values

corresponding to the numbers represented by the words which in

time define the signal having a waveform defined by function

generator 14 and at a frequency defined by the value of number

K. The output of the DAC 15 may be passed by way of an

35 anti-aliasing filter 16.
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It is convenient to, and at times this specification

will refer to, numbers synonymously with the digital binary

words representing those numbers unless the context of the

description makes it more appropriate to consider the structure

of the words

5	 themselves.

Such basic form of direct digital frequency synthesiser

and modifications thereto are described in UK Specification No.

2121627B.

It is also a feature of such basic form of direct

10 digital frequency synthesiser, and also described in the above

referenced UK patent specification, that the analogue signal

generated is not confined to the desired frequency represented

by number K but it also accompanied by unwanted spectral

components or spurii attributable to DAC operation.

15 Furtheremore if truncation of the digitial word length is

required for any component, such truncation also adds spurious

spectral components, although dominated by those related to the

DAC.

Spurious generation in the DAC may be due inter alia to

20 differential non-linearity, switching transient errors and

quantisation errors. Switching transient errors manifested as

energy present at the DAC output are particularly troublesome

with synthesisers having a high clock speed able to operate at

high clock speeds used to generate high frequency signals.

25 . It has been proposed to use a high speed sample-and-

hold device to the output of the DAC to remove switching

transients by sampling only after the DAC has settled for each

input word.	 However, in generating high frequencies, the

duration of each output level may be shorter than the settling

30 time of the DAC so that even high speed sample-and-hold devices,

which may themselves introduce an unacceptable cost penalty, may

be unable to satisfactorily remove switching transients. -

It has also been suggested in US patent specification

No. 4410954 to avoid the problems caused by DAC use by omitting

35 the function generator and DAC. However, the elimination of

the DAC results In low overall signal-to-noise ratio and phase

noise sidebands unacceptable for most communications systems or
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where frequency hopping is required.

In order to address the error mechanisms due to DAC

operation the above mentioned UK patent No. 2121627B identifies

that the high levels of spurii arise from correlation of errors

5 due to repetition of an error at a particular DAC step each time

a particular word is output from the function generator. That

specification proposes to relieve the effect by 'randomising'

the digital-to-analogue conversion by control of the DAC whereby

for any particular phase numbers produced by the accumulator the

10 DAC response to the function generated is pseudo-randomly varied

to try to spread the hitherto correlated narrow-band spurii at

frequencies close to the sought frequency across the frequency

band as wide-band noise.

Several arrangements are proposed therein but all are

15 restricted to being a random choice between two sets of devices

having slightly different chacateristics and are believed to

provide insufficient relief for use in generating very high

signal frequencies that in practice require system clock

frequencies in the GHz range and high rates of frequency

20 changing.

One form of the 'randomising' proposed comprises the

use of two DACs with switching means randomly placing one DAC or

the other in circuit. If each is responding to the same

digital function generator word the DACs must operate with

25 ostensibly the same characteristics and randomisation is due

only to the actual differences which exist between nominally

identical devices. If each DAC is paired with an individual

function generator then the DAC and/or its operating reference

can be adjusted to provide considerably different error response

30 than the other. However, there is a limit to how different

from each other the DACs can be whilst accurately converting the

principal signal and with any selected pair of devices the

randomness is confined to a band representing the difference in

their characteristics. Furthermore, there is the need to

35 provide switching which may prove difficult to engineer for

generating very high frequencies without also introducing

undesirable transient energy effects.
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As an alternative to switching between different DAC

devices that patent proposes to use a scaling DAC with randomly

varied scale control and DAC reference. Although the switching

is absent a multiplying DAC is required which cannot operate as

5 fast as a fixed reference DAC and is unsuitable for generating

very high frequencies.

Single phase-locked loop frequency synthesisers are

also well known per se, the loop oscillator frequency being

controlled by phase comparison of a reference frequency and one

10 provided by division of the oscillator output frequency by a

number N, the resultant phase difference drifting until at a

phase angle 21 with respect to the reference frequency it

self-corrects with a repetitive phase jitter characteristic of

such circuits. Any VCO phase jitter due to other sources can be

15 corrected provided they are within the loop bandwidth. The

frequency division is performed in a digital counter circuit and

by definition the number N is an integral and the smallest

frequency interval that can be generated, or frequency

resolution, is limited by the integral number step and the

20 reference frequency. Achieving a high frequency resolution by

means of a low reference frequency is not always practicable as

it requires a small loop bandwidth and results in slow loop

response, conflicting with requirements of high loop speed and

wide bandwidth for noise rejection.

25	 It has become common practice to avoid the conflict by

effectively introducing fractions of the integer N, by

so-called fractional-N synthesis. In this technique the divider

is switched at intervals from divide-by-N to divide-by-(N+1)

for a cycle of the reference frequency signal, the interval

30 being determined in accordance with what is in effect the

integral of a fractional frequency instruction, also usually

defined by a digital number. The integration takes place in a

digital accumulator, overflow of which effects the

aforementioned one cycle change of divisor from N to (N+1), but

35 although simple in concept, it suffers a drawback in that

alteration of the divisor results in additional phase



- 5 -	 FCSL013/JH

perturbations or jitter. Because such additional perturbations

are directly related to the residual content of the overflowed

accumulator, the effect can be mitigated by deriving an analogue

representation of this residual content in a digital-to-analogue

5 converter (DAC) and either injecting it into the loop at the

output of the phase comparator or applying it to a phase

modulator which restores the phase of the divided VCO signal

applied to the phase comparator. Such a configuration is

illustrated schematically in Figure 11 and described in more

10 detail hereinafter.

It has been suggested that mitigating this additional

jitter by such analogue signal is only practicable when the

phase detector is operated at frequencies significantly below

its potential maximum. This is due, at least in part, to

15 non-linearity of the DAC and repeated use of DAC steps.

It will be appreciated that the source of the number

representing the fractional frequency instruction, or

alternatively stated, the desired oscillator output frequency,

the accumulator and DAC comprise the elements of a direct digital

20 synthesiser substantially as described above but which, by

virtue of its direct connection between linearly increasing

accumulator output and DAC, generates over a period cf time sn

analogue signal having a sawtooth waveform.

Notwithstanding the specific nature of the circuits

25 described above for generating signals of specific frequency, it

is an object of the present invention to provide a method of

mitigating effects of distortion on an analogue signal derived

from repeated application of digital numbers to

digital-to-analogue conversion means and a circuit arrangement

30 for generating an analogue signal in which such effects are

mitigated. Further objects of the invention relate to the

provision of specific direct digital frequency synthesis and

phase locked loop synthesis circuit arrangements.

According to a first aspect of the present invention a

35 method of reducing the effects of distortion in an analogue

signal derived by repetitively accumulating digital numbers as a

function of time and subjecting the results of accumulation,
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representing phase of the analogue signal, as phase related

numbers to digital-to-analogue conversion, comprises the steps

of producing digital random or pseudorandom numbers (as herein

defined) in synchronism with the accumulation of phase related

5 numbers, modifying values of phase related numbers in accordance

with the values of the random numbers, applying the randomly

modified phase related numbers and the random numbers to

conversion means so as to derive analogue values directly

related thereto and combined in such a manner as to eliminate

10 the effect of the random numbers from the analogue signal

derived as a function of time from the analogue values.

The method may be applied to the synthesis of analogue

signals having particular frequencies defined by the digital

numbers, in particular to so-called direct digital synthesis

15 (DDS), by combining analogue values resulting from conversion,

and phase locked loop synthesis (FLLS) by utilising the analogue

values resulting from conversion in loop phase correction.

In accordance with a second aspect of the present

invention a circuit arrangement for deriving an analogue signal

20 comprises system clock means, a digital frequency- number

generator responsive to the system clock means to generate in

each clock cycle a digital number representative of the

frequency of a signal to be generated by the arrangement, a

digital accumulator operable repetitively to accumulate to a

25 predetermined total digital frequency numbers generated as phase

increments of the signal and to provide each new total as a

phase number representing the current signal phase value, means

responsive to a phase number to provide a digital function

number representative of an amplitude value of the signal to be

30 generated at the current phase value, random or pseudorandom (as

herein defined) digital number generating means, arithmetic

logic means operable to modify at least some digital function

numbers each by a generated random digital number, and

conversion and combining means responsive to digital numbers

35 provided by the arithmetic logic means and by the random digital

number generating means to derive and combine in the analogue

domain signal values directly dependent on said digital number
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ABSTRACT

;	 D4t.	 t.;

A circuit for generating an analogue signal by way of digital-to-

analogue conversion, such as a direct digital frequency synthesiser

(Fig. 3) of the type including a frequency number generator 12,

phase number accumulator 13, function number generator 14, such as a

look-up table of sine values, and DAC 15 mitigates the production of

analogue signal errors, manifested as spurious frequency signals, by

modifying the digital number representing each function value with a

random digital number added or subtracted in ALU 22. The randomly

modified function number and random digital number are converted to

analogue values in DAC 15 and further DAC 28 respectively and the

analogue values combined to remove the effect of the random

number. Because conversion in DAC 15 is spread randomly over all

DAC levels, even when the function number is not, any conversion

errors associated with any DAC steps which by repeated use would be

manifested as spurious frequency signals are decorrelated to

broadband noise. Less troublesome correlations due to function

number truncation may be mitigated by limited random dithering of

the phase number (Fig. 6) and randomly dithering rounding of the

function number (Fig. 5).A similar circuit (110, Fig.10) generating

a sawtooth signal may be employed in improving phase control

linearity in a phase locked loop frequency synthesiser.
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COMPUTER SIMULATION OF SRD-iode COMB GENERATORS

M.P. WILSON & T.C. TOZER

University of York
York, UK

Abstract

This paper examines the performance of Step Recovery Diodes used as frequency

comb generators. A model is produced and a computer simulation derives the

circuit behaviour. The resulting Phase Noise performance is analysed and it is

shown how the performance of such comb generators can be chaotic.

1 Introduction

1.1 The step recovery diode as a means of frequency multiplication

In order to generate stable microwave signals at frequencies around 30G1iz

some form of frequency multiplication must be employed. There are many methods

of frequency multiplication, with varying levels of implementation difficulties and

phase noise performance. One useful such implementation involves a Step

Recovery Diode (SRI)).

The step recovery diode can be embedded in either a comb generator or a

frequency multiplier. In a comb generator, the abrupt pulses across the diode are

connected directly to the output. Such narrow pulses result in a large series of

harmonics of steadily decreasing level, known as a comb. Fig la displays a typical

local oscillator configuration comprising crystal reference oscillator and comb

generator. In a Multiplier, an idler circuit (resonant circuit allowing a signal path) at

the desired output frequency allows all harmonics to mix together within the diode,

resulting in concentiation of signal power at this frequency.



SRDs are well covered in the literature, particularly with reference to

frequency multipliers [1,2,3,4]. Large value frequency multiplications are possible

within a single stage as a result of an abrupt non-linear SRD transfer characteristic.

Good noise performance is possible due to the simplicity of the circuit and high

signal levels. Published work on the stability and noise performance of SRDs is

scarce; however, the comb generator must be correctly designed to optimise the

noise performance, particularly when the drive frequency is low.

We will show that this abrupt non-linearity is also responsible for period

doubling chaos which can result in unstable operation. We have observed that an

apparently normally operating comb generator can suddenly display high phase

noise or instability as a result of a change of external parameters such as power

supply voltage or temperature. We will demonstrate how this can occur with the

aid of a Feigenbaum diagram.

1.2 Phase noise In SRD circuits

With conventional methods of frequency multiplication which use a single

oscillator as the source, the phase noise at the input is increased by a factor

20log(f0utif1n) at the output at a constant offset from carrier frequency [5]. Unless the

noise sidebands become so great that the small angle criterion is violated, the

spectral profile will remain unchanged. The above ratio represents the best that can

be achieved with a noise free multiplier. In practice there will be additional noise

internally generated from the multiplier, known as "excess noise" [6].

In the past, the phase noise contribution of crystal oscillator sources tended to

dominate the noise from multipliers, and the above model was sufficient. However,

more recently, there have been requirements for stable signal sources at frequencies

to above 100GHz. While the quality of reference source oscillators has much



improved, the excess phase noise of the comb generator or frequency multiplier can

no longer be considered negligible.

2 Step Recovery Diode,

2.1 The case for modelling

The comb generator can be represented by a second order non-linear

differential equation and a forcing function. An analysis of the comb generator is

compounded by the fact that solving the differential equation can result in 3

separate solution sets [7]:-

	

I)	 Frequency generation at harmonics of the driving frequency (the

forcing function);

2) Frequency generation at subharmonics of the driving frequency,

and at their harmonics (parametric oscillation);

3) Chaotic operation (spectral break-up).

For a harmonic comb generator, only the first case is desirable. We will also show

that, at the boundary between solutions, an increase in phase noise is possible.

The situation is further complicated by the parameters that are capable of

influencing the output, viz:-

1) Drive level;

2) Forcing function;

3) Bias level;

4) Diode carrier lifetime;

5) Choice of circuit components.

As a result of the complexity of the problem we decided to consider computer

modelling of the circuit. Linear analysis packages commercially available do not

cater for SRDs and cannot be adapted to calculate phase noise. A computer program



that accomplishes a non-linear simulation of the SRD impulse generator is

described. This was written in PASCAL, and implemented on a PC.

2.2 The SRD model

The step recovery diode has a doping profile as displayed in fig lb, and the

capacitance-voltage characteristic is as displayed in fig 2. During the forward

conduction phase, charge carriers are injected into the depletion region and the

diode displays a very low on resistance. When the drive voltage reverses the carriers

are swept out of the intrinsic (I) region; while carriers are being removed from the I

layer, the diode will then continue to display a low impedance. Upon removal of all

these carriers, there is an abrupt seizure of diode current, which results in the diode

entering the high impedance reverse bias mode. The diode then displays the reverse

biased junction capacitance Cd. A change in the current flow of up to 10 amps per

second is a consequence of the impedance switch. Any inductance results in large

voltage spikes as in fig 3, and spectral energy will be generated at frequencies of

greater than 100GHz as a result of the spikes. Large multiplication ratios can

therefore be performed in a single step, a most important property of an SRD circuit.

Fig 3 displays the waveforms of the SRD comb generator.

There are two parts to the cycle, the conduction phase and the impulse phase.

In the case of the latter phase, a damped resonant circuit is formed by the drive

inductance, diode capacitance, and load resistance. Ringing of the output voltage

commences as shown in the top half of fig 3. If the diode remained in the intrinsic

state, then the output voltage would continue to ring as shown by the dotted line.

As soon as the forward barrier voltage of the diode is exceeded however, the diode

begins to conduct. As a result of the very low on resistance of the diode, the ringing

waveform becomes severely overdamped, giving a very slow decay of the SRD

voltage after this point. A critical factor in determining the phase noise



characteristics of the comb generator is the conduction angle a; this is the angle

between the reversal of the input drive voltage and the start of the impulse phase.

3 SRD Simulation program

3.1 Description

A time domain simulation is carried out which is split into conduction and

impulse phases. The two are separated by a boundary condition related to carrier

storage within the device. The conduction phase continues while carriers are

present in the intrinsic layer, whereas the impulse phase begins when all carriers are

removed from the intrinsic layer. Fig 4a shows a circuit diagram of the comb

generator where inductor Ld provides the impulse when current flow is interrupted

by the SRD.

3.2 Conduction phase

Conduction analysis commences when the SRD is forward biased, and finishes

when all the charge carriers are swept out of the intrinsic layer. Fig 4b shows the

model used for the conduction phase. The diode equivalent circuit consists of a

resistor representing the junction bulk resistance in series with a battery

representing the barrier potential of the SRD junction. External components include

the impulse inductance Ld and the source resistance Rsource . The elements L. and

Rbias are used for developing the self bias.

At each small increment in time At, voltage and current values at the circuit

nodes in fig 4 are calculated [8]. The voltage across the inductor is given by:-
, d I

VL = —1- --	 (1)
d t

The current due to applied voltage VL is given by:-
to

I = L fVL df	 (2)

t_ 1



The integration may be approximated by the trapezoidal rule:-
I = I+ (VL+VLo)At 

2L
	

(3)

or a current change from Io to I. VII) and VL are corresponding values for the

voltages across the inductor.

By Kirchoffs law,the voltage across the inductor can be calculated as:-

VL =	 Et-Vd
	 (4)

where Vd is the drop across the diode. The diode terminal voltage can be readily

determined as:-

Vd =	 IRO-4)	 (5)

where . represents the diode junction barrier voltage, approximately 0.7 volts.

The total charge q that has accumulated in the diode can now be calculated, but this

charge decays according to [9]:-
- t

q = qo ex()	 (6)

The effect of the carrier lifetime T is modelled by the convolution of the carrier decay

function with the applied current L A modified value of the carrier concentration at

the end of each step results. It can be shown that the convolution of the decay

function with the forward current gives:-
+Io	 -t N	 -t

	

CI = (I-2 ) T (1-exp(7) NoexpLI )	 (7)

The source voltage is assumed to be:-

E =	 Epic sin(2frt)	 (8)

In order to take into account the source resistance Rsource,

Et =	 E4Rsource	 (9)

where Et is the source terminal voltage.

When the accumulated carrier concentration charge reaches zero, the

program switches to the impulse phase.



3.3 Impulse phase

In this mode, the SRD model is represented as in fig 4c. This consists of the

junction capacitance Cd, the reverse bias diode loss, Rd and the load R.

Current through a capacitor can be represented as:-

I = C
dV

(10)dt

Integration is carried out to find the voltage across the diode junction capacitance as

with the inductor in the conduction phase. The trapezoidal rule is used again to

obtain a linear equation:-
(I+Io )At

V, = V0+ 2c	 (11)

Application of Kirchoffs laws to the reverse biased diode model leads to 3

linear equations to define 3 unknowns, derived from:-

((I-Ii +L-I10) At 
E= Eco +	 2Cd	 (12a)

c riRdi) At)Vd = E+ 	 (12b)

((VL +VL0) At)
I = 10 +	 (12c)2Ld

Vd = I1 R	 (12d)

VL = Eterm-Vd	 (12e)

These equations are arranged in matrix form, and are solved simultaneously

according to AX: = B where A and B are matrices and X is the solution vector.

Termination of the impulse phase occurs when the current through the diode



changes sign to a forward direction and the diode junction voltage is greater than

zero. The program then returns to the conduction phase.

This program in its basic form will provide a time domain simulation of a

SRD comb generator. In order to obtain a frequency domain spectrum of the

simulated signal the output file was subjected to a 4096 point fast fourier transform

(FFT). The solution results are discussed further in §5.

4 SRD Phase Noise

4.1 The phase noise model

Extensive literature searches failed to reveal an analysis of the phase noise of the

SRD multiplier, therefore one was produced by the author.

The sources of noise are:-

1) Additive thermal noise white

2) Avalanche noise white

3) Microplasma noise VP

4) Recombination noise 1/f

5) AM to PM noise 1/f and white.

The signal levels at the input to the multiplier are generally large (=+20dBm) so that

the additive thermal noise is small compared with the signal (eg, -160dBc/Hz at

5GHz output frequency). Noise performance is, however, critically dependent upon

signal level [10].

Avalanche breakdown results in high levels of white noise [11] if the firing

voltage peaks are excessive due to high drive levels. Microplasma noise can result

in a f-2 relationship with offset frequency; this in turn causes excessive close to

carrier phase noise. If the drive level is optimised for maximum output power, the

phase noise may be degraded due to breakdown effects. A 500 MHz multiplier



specified for +27dBm drive level was found to give optimum noise performance at

+24dBm [11].

Recombination noise occurs as a result of statistical variations in carrier

lifetime [12]. In the intrinsic layer, some of the carriers recombine rather than

become swept out of the layer; as a result, more carriers are swept into the I layer

during the forward conduction than are swept out during reverse recovery. Some

rectification takes place, and a small D.0 current, Idc flows. The percentage of carriers

that recombine in a cycle of input can be calculated [13], giving the average storage

time as: ta = 1/21. The DC current flow is 'dc = 'pad an, where Ipac is the peak ac

current.

This recombination results in a reduction in the charge that must be removed

from the I region. A premature termination of the recovery period therefore results.

The ratio of charge lost in the recovery period qo to the total charge qt is:-

SI =	 2.at
(14)

qt 	 TO)

Assuming that the recovery current is approximately constant around the

impulse time, then the ratio of charge lost to total charge is equal to the ratio of

phase advance a' to firing angle ao. Charge loss indicates the fraction of a cycle that

the impulse point has moved, therefore ac, is a constant representing the value of a

corresponding to infinite lifetime:-

a = a0(1 +J	 (15)
ft

If a step change in T occurs due to phase noise, the rate of change of I is:-
clt

it	 (16)dt =

where v is a constant at particular offset frequency from carrier. The resultant

change in a is :-

da _ (da)Adt(1_ au
dt — dr	 — ft

(17)



This represents the phase noise introduced by a step recovery diode due to

recombination, provided f>> 1/I.

4.2 Effect of biasing

If self bias were used to enhance the output power of the multiplier, the value

of the bias voltage would vary due to changes in the recombination current Lie. This

current is determined by 'I, the carrier lifetime. 'I fluctuates as a predominantly 1/f

process [14], therefore the value of self-bias voltage will also fluctuate. Firing angle

variation occurs as a result of its dependence upon the lifetime, and flicker phase

noise is therefore generated. The relationship between bias voltage and firing angle

is [15]:-

E+$= E sin (ao—moV(44RdRd221M	 (18)

where V is the bias voltage, • is the diode junction barrier potential, E is the applied

signal voltage, C is the reverse capacitance of the diode, Ld is the driving inductance,

and Rd is the load resistance.

4.3 AM to PM conversion

This is another principal mechanism for phase noise generation in SRD

multipliers. A variation in amplitude of the drive signal results in some variation

in the firing angle [15] and might arise from mutual conductance variation due to

1/f effects in the driver transistor. Amplitude and wave shape of the drive

waveform should be selected for minimum AM to PM conversion.

4.4 Parametric enhancement

The negative real admittance component of a device that displays non-linear

capacitance voltage effects is [16]:-
-nfonCv

G =

	

	 (19)n+1



where n is determined by the junction properties of the diode used (n = i for abrupt

junction diodes).

The voltage capacitance for a junction diode can be described as:-

C(V)= IC (LZIT	 (20)
4)—V

where Cd is the capacitance measured at some dc voltage Vd and 4) is the diode

contact potential (approximately 0.7V). With a step recovery diode, the capacitance

voltage curve is extremely steep, resulting in a large n value. Therefore if n--)=,,

then:-
cn+ 1) _)i

and equation (19) becomes:-

G = -7tfoCv	 (21)

where Cv is the capacitance at the DC operating point.

The presence of this negative conductance indicates that the device is

susceptible to oscillation. There are problems in using this equation however to

determine stability: negative resistance is essentially a small signal parameter, and

cannot be easily fitted to the heavily non-linear operation of the SRD

multiplier/comb generator.

SRD comb generators do exhibit parametric gain [17], and this can increase the

noise level already present. Such peaking effects were investigated by adding noise

to the input as shown in fig la, and the effect was also simulated in software with

random noise values added to the driving waveform.

4.5 Instabilities

It has been suggested [17] that the presence of resonances in the band at which

the negative resistance exists is the cause of parametric instabilities. These

resonances are called idler resonances.



However we have observed that it is possible to obtain parametric instabilities

even when there were no idler circuit elements intentionally designed into the

circuit. The assumption that idler elements are necessary may be as a result of an

over simplistic consideration of negative resistance effects only. Parametric effects

arise as a result of non-linear differential equations, and this unstable chaotic

behaviour is described in §5 below.

5 Results of the SRD Simulation

5.1 Component values

A computer simulation of the equations in §3 was run in its basic form,

without attention to phase noise effects. The results are displayed in figs 6 and 9,

and are discussed below. Values of components used in the simulations are given in

table 1 below.

Table 1

Point on Fig 13 Point A Point B Point C Point D

Reverse capacitance C.d 2.2pF 2.2pF 2.2pF 2.2pF

Reverse resistance Rd 30 30 3Q 30

Forward resistance Rf 5.0 50 5C2 50

Minority carrier lifetime t 100ns 100ns 100ns 100ns

Impulse inductance La 80nH 80nn 80nH 80nH

Load resistance R 500 1200 5000 15000

Source resistance Rsource 100 100 100 100

Peak drive voltage Epeak 4 volts 4 volts 4 volts 4 volts

Drive frequency fref 100MHz 100MHz 100MHz 100MHz



5.2 Comb generator stability and chaotic behaviour

In order to investigate comb generator stability, we obtained a plot of firing

angle a against load resistance R which is displayed in fig 13. The diagram is of

particular interest as it resembles a class of solutions displaying chaotic behaviour

known as Feigenbaum structures [19].

This behaviour originates from the population of stored charge carriers in the

device, and the carrier storage effect [20] is a physical manifestation of the above

solutions. The fact that a Feigenbaum diagram is produced implies that some form

of recursion or feedback mechanism must be present, together with a non-linear

function. The value of a determines the number of charge carriers generated in the

conduction phase; these in turn determine the value of a in the next cycle, and so

on. The non-linearity is introduced by the discontinuity between the conduction

and impulse regions. Period doubling at the onset of the chaotic behaviour is a

characteristic of this particular phenomenon, hence the subharmonic generation.

It would seem that the Feigenbaum Diagram enables a more global approach

to the problem of phase noise analysis since it can include carrier storage division,

not easily accounted for by parametric (negative resistance) analysis.

The effect of carrier storage division is that oscillation can occur at sub-

multiples of the driver frequency fief. Although it is possible to harness this property

to undertake frequency division as well as multiplication [18], in general these

spurious modes are undesirable. Even if oscillations cannot occur, the parametric

gain will result in enhancement of either the SRI) noise or driver circuit noise (see

fig 5 ). At frequencies close to the desired signal the negative resistance is reduced

due to finite carrier lifetime. We observed, however, that this "parametric gain" is

closely linked to the distance from splits in the Feigenbaum Diagram. Referring to

fig 13, the single line at the left represents stable harmonic generation. As the locus



of a approaches the first split, peaking in the noise floor between harmonic combs

becomes evident. At point B there is a large change in a for a small change in input

conditions, leading to phase noise problems. The phase noise extends to the carrier

rather than being confined to localised peaks. as can be observed in fig 8. This

phenomenon is known as a splitting or Bifurcation point and can result in high

phase noise and phase "hits".

If a large peak occurs at any frequency, in some systems the noise will appear

at baseband due to non linear intermodulation effects, and performance degradation

could result.

For low noise frequency multiplication it is vital that the bifurcation points be

avoided. We have built a comb generator in order to compare our simulation

results with measurements. Fig 7 displays a spectrum analyser plot of this generator

operating near such a point, where the high phase noise can be seen. Fig 8 displays a

4096 point FFT of the results of a time domain simulation of the same circuit. The

operating points of figs 6 and 7 are represented by point B on the Feigenbaum

Diagram.

In fig 6 a time domain simulation of a correctly functioning comb generator

with one impulse per cycle of input is displayed. An impulse occurs when the

charge is removed from the intrinsic layer, and the diode impedance rapidly rises.

Point A on the Feigenbaum diagram represents a stable comb generator with a

single value of a. An FFT of the above simulation is displayed in fig 5.

Increasing the value of load resistance results in the onset of parametric

oscillations in the form of carrier storage division [20], as demonstrated in fig 9. Each

alternate impulse is lost when more carriers are injected into the intrinsic region for

the part of the input cycle when the diode current is positive (forward), than can be

removed when the diode current is negative (reverse). Fig 9 can be compared with

fig 10 which is a digital sampling oscilloscope plot of our test bench SRD comb



generator undergoing carrier storage division. The lighter trace illustrates the drive

voltage, corresponding to point C on the Feigenbaum diagram (fig 13), where the

single locus represents stable period doubling.

Fig 11 illustrates an FFT of the time domain simulation file corresponding to

point D on the Feigenbaum diagram (fig 13). In fig 11 the period doubling parametric

oscillations are no longer stable and chaotic operation of the comb generator is

observed. Although fig 11 assumes the appearance of broadband noise, this is not

the case. The shape is actually a result, characteristic of chaotic systems, of the fact

that a small change in input conditions results in a large change of output form.

SRD comb generators could be an ideal candidate on which to focus study of chaotic

systems.

An additional problem is that more than one impulse may be produced per

cycle when the drive frequency is reduced (to 35MHz in this simulation). This is due

to the oscillatory effect of drive inductance and diode capacitance driving the diode

into reverse bias before the commencement of the subsequent input cycle. An

unstable spectrum can also be a result of crossing into the above described mode.

Rather than implying that SRD comb generators are destined to become a

problem, this work indicates the ease of simulating the comb generator and thus

predicting whether problems may occur.

5.3 Using simulation to calculate phase noise

Having established a stable configuration, the phase noise can be predicted.

The program calculates the firing angle a, which is used to calculate the phase noise.

In order to improve the accuracy, linear interpolation is used in between discrete

time steps at the termination of the conduction cycle. Any change in value of the

following will change the firing angle:-



1) Carrier lifetime;

2) Drive level;

3) Diode model value fluctuations (resistance and capacitance).

A conversion factor is determined for carrier lifetime fluctuations to phase

noise by applying a step change to the carrier lifetime and observing the change in a.

The lifetime change would need to be determined from either measurement or

noise theory. For ease of comparison a constant phase noise level of -115dBc/Hz was

assumed at 1Hz from carrier [21]. Fig 12 displays a plot of reciprocal carrier lifetime

against phase noise, other parameters remaining constant, with and without self

bias. The value of bias resistor is changed to keep a constant bias level of 1 volt. The

results are intended to apply at 1Hz from carrier. These figures can be applied to

other offset frequencies by applying a factor -10logioff).

If no bias is used, the phase noise angle varies approximately according to the

reciprocal of lifetime, as predicted from equation (17) above. If bias is used, the

program indicates a higher level of phase noise, less dependent upon lifetime.

6 Further work and conclusions

6.1 Further Work

It is intended to continue this work with simulation of different embedding

circuitry and drivers for the SRI) comb generators or multipliers. The effect of other

phase noise sources will be included, and different driving waveforms will be

simulated in order to determine the effect upon stability and phase noise.

Accurate simulation would depend upon absolute values of phase noise

contribution from carrier lifetimes being obtained via semiconductor theory or

measurement. It would also be helpful to compare the results with actual phase

noise measurement of practical comb generators.



6.2 Concluslons

A computer program has been written that can simulate an SRD comb

generator circuit. This successfully demonstrated instability effects with such

generators. Time domain simulation was initially carried out, followed by a

conversion to the frequency domain by FFT. In addition a Feigenbaum diagram of

the firing angle was produced. This showed similarities with classic period doubling

chaotic effects: by the use of this diagram, particular combinations of circuit

parameters to be avoided can be shown. The results compare favourably with those

obtained from a comb generator built for test purposes. We therefore recommend

that the Feigenbaum diagram be a suitable tool for use in the design of SRI) comb

generators.

Contributions to phase noise performance of SRI) comb generators by carrier

lifetime fluctuations have been assessed. For the optimum phase noise

performance, simulation and theory indicate that a long lifetime diode and zero bias

are desirable.
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ABSTRACT

PHASE-LOCKED LOOP OSCILLATOR CONTROL CIRCUIT

A fixed-frequency oscillator (12) provides a signal to

a phase-shifting network (22) which provides two signals of the

same fixed frequency but in phase quadrature. Two mixer (20,

21) are provided, to each of which is applied an output from a

voltage-controlled oscillator (10) and a separate one of the two

phase quadrature signals. A phage detector (13) responds to

the outputs of the mixers (20, 21) and to a reference signal

from a further oscillator (14) to provide an output voltage for

application to the voltage-controlled oscillator (10) to control

the frequency thereof.
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DAC non-linearity errors

I 110 •	 .1 • •	 I; Of I	 U.	 .1

* M.P. Wilson and T.C. Tozer

Introduction

The major problem with fine step size synthesisers is achieving low phase noise concomitant
with immunity to vibration and low levels of spurious signals. Direct digital synthesis will
provide low phase noise and immunity to vibration, but the spurious performance at present
often leaves something to be desired. This has led to a possible solution for which a patent has
been applied for [1]. The proposed DDS implementation takes place largely in the digital
domain which enables a high level of integration.

Origin of DDS spurious signals 

Apart from quantization, the main sources of errors are DAC polynomial linearity errors and
switching transients. The output of a practical DAC may be represented as:-

Vo,s-Arref((Q/(2T-1))Ep(Q)

where V,ri is the DAC reference voltage, Q the digital input word, T the full scale digital world,
and E(Q) a polynomial which represents non-linearity errors of the DAC.. This polynomial will
produce harmonics of the intended smewave, which are abased by the sampling frequency f,, f to
produce spurious signals [2]. It is independent of frd and represents the integral non-linearity
(INL) and differential non-linearity (DNL). The effect of these errors is displayed in fig 1 which
shows a typical DAC transfer function.

Because not all the DAC current sources switch simultaneously, transients are introduced which
are unrelated to the analogue level transitions [M. This has the effect of introducing an
additional error polynomial Sp(Q) which can be expressed in terms of the averaged value of the
transients over one f„f period. The actual values in the polynomial are dependent upon the level
transitions involved and fril. Sp(Q) represents dynamic non-linearity effects of the DAC and is
distinguishable from DNL and B•IL in that the base spectrum before aliasing changes with output
frequency.

M.I'. Wilson and T.C. Tozer are with the Electronics Department, University of York
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The Proposed Technique

The proposed DAC decorrelation technique aims to randomise the error polynomials so that
there is no correlation of errors from one cycle of the DAC characteristic to the next. In the time
domain, decorrelation produces the effect shown in fig 2. A pseudo-random number is added or
subtracted to the look up table output by means of an ALU placed at the digital port of the DAC
The decorrelation process acting upon a typical DAC transfer function can be observed. A DAC
output level at point A becomes A' and that at point B, B'. By the analogue subtraction of a
compensating signal from a second DAC, the signal is restored to the correct level. On a
subsequent cycle of signal, for the same intended output point, the random number offset will be
different, leading to a different values of A' and B'. Errors will therefore not correlate between
adjacent cycles.

Caocellin signal from
22I De

Fig 2	 DAC decorrelation over one DDS cycle

The effective output of the analogue circuitry is the average of all levels over which the
decorrelation is applied_ After sampling at the clock frequency, the noise, rather than the
harmonics, are folded back over the signal output range. Effectively, the reconstructed sampled
data signal becomes a sinewave plus noise rather than sinewave plus harmonics. In order to
completely randomise the polynomials, every level of the DAC should be used at random to
generate each level of desired output signal. Therefore the added decorrelation factor must be
uniform across all DAC levels, and be cancelled in the post DAC analogue section by means of
another DAC The pseudo-random number generator can be of any of the standard techniques
with the main requirement of a long repetition cycle.

Implementatioa

In practice complete decorrelation of the DAC is difficult to achieve as the average value of all
the DAC levels would need to be zero. Therefore a compromise must be reached where some
weighting of the DAC decorrelation distribution is allowed. This weighting should be designed
to be effective on the lowest order term possible in the error polynomials, ie integral non-
linearity [4]. Two methods of implementation of the decorrelation technique have been
investigated, and are described below.

In the first method a P-1 bit random number is subtracted (if the trigonometric word is positive)
or added (if the trigonometric word is negative) to the main DAC input, thus preventing ALU

4 / 2



Decurrelatiao Ms 2

DAC 1 and DAC 2

_%..otdoe to wertIowslimilhill

Dtarrehtits typ I

overflows. The random number is also fed to the iecond .DAC, and the output of the DACs are
summed such that the desired output signal is recreated; it is seen that the random number
component number is effectively removed. A residual error signal remains, but the error pattem
becomes non-repetitive. Fig 3 demonstrates the technique.

Fig 3 Decorrelation of DACS by means of pseudo-random number

The output from the post . 
m
look-up table DAC can be observed uppermost on fig 4a: the sinewave

is regenerated by adding  the output of DAC2.

Fig 4a	 Probability distribution of	 Fig.4b	 . Probability distribution
DAC values, no overflows 	 with overflows

With this technique, only the upper or lower half of the DAC is being decozrelated and there is a
possibility of a repetitive discontinuity at the zero voltage level. Due to these factors, the
improvement in spurious levels was expected to be limited, and it was confirmed by
measurement that there is a limit to spurious improvement of approximately 10dB.

To facilitate further reduction of spurious levels, the method was modified to allow the ALU to
overflow after the addition of the pseudo random number. Such an arrangement allows the
modified DAC word to fold back into the DAC output range, as indicated in fig 4b. This
method allows a smooth cross-over at the midpoint of the DAC range, resulting in a reduction of
high order spurious products.

In order to reduce the spurious products generated by truncation errors, interpolative dither is
also added between DAC quantization steps. If an 8 bit output look up table is driven from a 12
bit phase address, then the number of input steps per output step varies from 5 at zero level to
163 at the waveform peaks. There is obviously a trade off between dither and added phase
noise. Unlike that of a squarewave synthesiser, the length between steps in phase is
independent of frequency word, so the dither random number level can be fixed. The reason
why dither has not previously been applied to sinewave synthesisers is that the effect of DAC
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non-linearities dwarfs the contribution due to DAC quantization errors [5]; dither effects would
be ineffectual if DAC non-linearities are allowed to remain. However the effects of DAC
decorrelation are such that the possibility of benefits from dither can be considered. Fig 5
displays the method of adding phase and amplitude dither.

' Irma ALII

Fig 5 Sine DDS with dither

Results 

An experimental DDS was built implementing the techniques described here. DAC 0800 chips
were used, updated at a frequency of 7.6MHz. Spurious signal levels were measured by means
of a HP8566B spectrum analyser, and are displayed in fig 6.

Fig 6 Measured performance of various DDS spurious reduction techniques. F Tef = 7.643MHz

Without the spurious reduction technique, the performance of the DAC 0800 is noticeably poor,
and high order spurious products abound in the output spectrum. With the spurious reduction
technique, there is a substantial reduction in the level of spurious products amounting to 30 dB
over part of the usable DDS output frequencies. Allowing overflows made a substantial
difference to the spurious spectrum, as did truncation dither for the lower frequency ranges. Fig
7 shows a spectrum analyser display of the synthesiser output at 1.529MHz with no spurious
reduction techniques (faint trace), and with DAC decorrelation and interpolative dither (bold
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trace). All measured spurious signal reduction effects were verified by computer simulations.
However, the low order spurious signals were reduced further in the simulation than the
measurements suggest. The discrepancies may be due to INL effects in the DAC, but further
investigations are required of this.

F.:MIMEO&

To complete this program, the following work is recommended.-

* The construction of a circuit with a faster clock frequency and better DACs;

• Committing the design to a custom VLSI to reduce size and component coun t;

• Investigate why low order spurious levels are tirsts_	 theory or simulation
suggests.
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Fig 7 Spectrum analyser plot without and with spurious reduction techniques

Conclusions

A method of randomising the transfer functions of DACS used in DDS and achieving a
consequent reduction in spurious signal levels has been demonstrated. After this DAC transfer
function decorrelation, it was possible to use interpolative dither to reduce the effect of
truncation errors. By the combination of these techniques together with a 8-bit DAC it was
possible to obtain spurious signal levels lower than -70dBc in relation to the carrier over much
of the useful output range of the DDS.

References

[1] Wilson, /AY "Signal generation using analogue-to-digital conversion", European patent
application 91302926.0

[2] Wheatley, C.E. and Phillips,"Spurious suppression in direct digital synthesisers",
D.E. USA Eradcom May 1981 FT. Monmouth NJ0770

[3] Harris inc. "Definition of DAC Specifications", Harris Linear and Data Conversion
Handbook 1982 p5.20.

[4] Zavrel, R "Digital Modulation using the Numerically Controlled Modulated Oscillator", RF
Design, Sept 1987 pp27-31.

4/5


	DX171105_1_0001.tif
	DX171105_1_0003.tif
	DX171105_1_0005.tif
	DX171105_1_0007.tif
	DX171105_1_0009.tif
	DX171105_1_0011.tif
	DX171105_1_0013.tif
	DX171105_1_0015.tif
	DX171105_1_0017.tif
	DX171105_1_0019.tif
	DX171105_1_0021.tif
	DX171105_1_0023.tif
	DX171105_1_0025.tif
	DX171105_1_0027.tif
	DX171105_1_0029.tif
	DX171105_1_0031.tif
	DX171105_1_0033.tif
	DX171105_1_0035.tif
	DX171105_1_0037.tif
	DX171105_1_0039.tif
	DX171105_1_0041.tif
	DX171105_1_0043.tif
	DX171105_1_0045.tif
	DX171105_1_0047.tif
	DX171105_1_0049.tif
	DX171105_1_0051.tif
	DX171105_1_0053.tif
	DX171105_1_0055.tif
	DX171105_1_0057.tif
	DX171105_1_0059.tif
	DX171105_1_0061.tif
	DX171105_1_0063.tif
	DX171105_1_0065.tif
	DX171105_1_0067.tif
	DX171105_1_0069.tif
	DX171105_1_0071.tif
	DX171105_1_0073.tif
	DX171105_1_0075.tif
	DX171105_1_0077.tif
	DX171105_1_0079.tif
	DX171105_1_0081.tif
	DX171105_1_0083.tif
	DX171105_1_0085.tif
	DX171105_1_0087.tif
	DX171105_1_0089.tif
	DX171105_1_0091.tif
	DX171105_1_0093.tif
	DX171105_1_0095.tif
	DX171105_1_0097.tif
	DX171105_1_0099.tif
	DX171105_1_0101.tif
	DX171105_1_0103.tif
	DX171105_1_0105.tif
	DX171105_1_0107.tif
	DX171105_1_0109.tif
	DX171105_1_0111.tif
	DX171105_1_0113.tif
	DX171105_1_0115.tif
	DX171105_1_0117.tif
	DX171105_1_0119.tif
	DX171105_1_0121.tif
	DX171105_1_0123.tif
	DX171105_1_0125.tif
	DX171105_1_0127.tif
	DX171105_1_0129.tif
	DX171105_1_0131.tif
	DX171105_1_0133.tif
	DX171105_1_0135.tif
	DX171105_1_0137.tif
	DX171105_1_0139.tif
	DX171105_1_0141.tif
	DX171105_1_0143.tif
	DX171105_1_0145.tif
	DX171105_1_0147.tif
	DX171105_1_0149.tif
	DX171105_1_0151.tif
	DX171105_1_0153.tif
	DX171105_1_0155.tif
	DX171105_1_0157.tif
	DX171105_1_0159.tif
	DX171105_1_0161.tif
	DX171105_1_0163.tif
	DX171105_1_0165.tif
	DX171105_1_0167.tif
	DX171105_1_0169.tif
	DX171105_1_0171.tif
	DX171105_1_0173.tif
	DX171105_1_0175.tif
	DX171105_1_0177.tif
	DX171105_1_0179.tif
	DX171105_1_0181.tif
	DX171105_1_0183.tif
	DX171105_1_0185.tif
	DX171105_1_0187.tif
	DX171105_1_0189.tif
	DX171105_1_0191.tif
	DX171105_1_0193.tif
	DX171105_1_0195.tif
	DX171105_1_0197.tif
	DX171105_1_0199.tif
	DX171105_1_0201.tif
	DX171105_1_0203.tif
	DX171105_1_0205.tif
	DX171105_1_0207.tif
	DX171105_1_0209.tif
	DX171105_1_0211.tif
	DX171105_1_0213.tif
	DX171105_1_0215.tif
	DX171105_1_0217.tif
	DX171105_1_0219.tif
	DX171105_1_0221.tif
	DX171105_1_0223.tif
	DX171105_1_0225.tif
	DX171105_1_0227.tif
	DX171105_1_0229.tif
	DX171105_1_0231.tif
	DX171105_1_0233.tif
	DX171105_1_0235.tif
	DX171105_1_0237.tif
	DX171105_1_0239.tif
	DX171105_1_0241.tif
	DX171105_1_0243.tif
	DX171105_1_0245.tif
	DX171105_1_0247.tif
	DX171105_1_0249.tif
	DX171105_1_0251.tif
	DX171105_1_0253.tif
	DX171105_1_0255.tif
	DX171105_1_0257.tif
	DX171105_1_0259.tif
	DX171105_1_0261.tif
	DX171105_1_0263.tif
	DX171105_1_0265.tif
	DX171105_1_0267.tif
	DX171105_1_0269.tif
	DX171105_1_0271.tif
	DX171105_1_0273.tif
	DX171105_1_0275.tif
	DX171105_1_0277.tif
	DX171105_1_0279.tif
	DX171105_1_0281.tif
	DX171105_1_0283.tif
	DX171105_1_0285.tif
	DX171105_1_0287.tif
	DX171105_1_0289.tif
	DX171105_1_0291.tif
	DX171105_1_0293.tif
	DX171105_1_0295.tif
	DX171105_1_0297.tif
	DX171105_1_0299.tif
	DX171105_1_0301.tif
	DX171105_1_0303.tif
	DX171105_1_0305.tif
	DX171105_1_0307.tif
	DX171105_1_0309.tif
	DX171105_1_0311.tif
	DX171105_1_0313.tif
	DX171105_1_0315.tif
	DX171105_1_0317.tif
	DX171105_1_0319.tif
	DX171105_1_0321.tif
	DX171105_1_0323.tif
	DX171105_1_0325.tif
	DX171105_1_0327.tif
	DX171105_1_0329.tif
	DX171105_1_0331.tif
	DX171105_1_0333.tif
	DX171105_1_0335.tif
	DX171105_1_0337.tif
	DX171105_1_0339.tif
	DX171105_1_0341.tif
	DX171105_1_0343.tif
	DX171105_1_0345.tif
	DX171105_1_0347.tif
	DX171105_1_0349.tif
	DX171105_1_0351.tif
	DX171105_1_0353.tif
	DX171105_1_0355.tif
	DX171105_1_0357.tif
	DX171105_1_0359.tif
	DX171105_1_0361.tif
	DX171105_1_0363.tif
	DX171105_1_0365.tif
	DX171105_1_0367.tif
	DX171105_1_0369.tif
	DX171105_1_0371.tif
	DX171105_1_0373.tif
	DX171105_1_0375.tif
	DX171105_1_0377.tif
	DX171105_1_0379.tif
	DX171105_1_0381.tif
	DX171105_1_0383.tif
	DX171105_1_0385.tif
	DX171105_1_0387.tif
	DX171105_1_0389.tif
	DX171105_1_0391.tif
	DX171105_1_0393.tif
	DX171105_1_0395.tif
	DX171105_1_0397.tif
	DX171105_1_0399.tif
	DX171105_1_0401.tif
	DX171105_1_0403.tif
	DX171105_1_0405.tif
	DX171105_1_0407.tif
	DX171105_1_0409.tif
	DX171105_1_0411.tif
	DX171105_1_0413.tif
	DX171105_1_0415.tif
	DX171105_1_0417.tif
	DX171105_1_0419.tif
	DX171105_1_0421.tif
	DX171105_1_0423.tif
	DX171105_1_0425.tif
	DX171105_1_0427.tif
	DX171105_1_0429.tif
	DX171105_1_0431.tif
	DX171105_1_0433.tif
	DX171105_1_0435.tif
	DX171105_1_0437.tif
	DX171105_1_0439.tif
	DX171105_1_0441.tif
	DX171105_1_0443.tif
	DX171105_1_0445.tif
	DX171105_1_0447.tif
	DX171105_1_0449.tif
	DX171105_1_0451.tif
	DX171105_1_0453.tif
	DX171105_1_0455.tif
	DX171105_1_0457.tif
	DX171105_1_0459.tif
	DX171105_1_0461.tif
	DX171105_1_0463.tif
	DX171105_1_0465.tif
	DX171105_1_0467.tif
	DX171105_1_0469.tif
	DX171105_1_0471.tif
	DX171105_1_0473.tif
	DX171105_1_0475.tif
	DX171105_1_0477.tif
	DX171105_1_0479.tif
	DX171105_1_0481.tif
	DX171105_1_0483.tif
	DX171105_1_0485.tif
	DX171105_1_0487.tif
	DX171105_1_0489.tif
	DX171105_1_0491.tif
	DX171105_1_0493.tif
	DX171105_1_0495.tif
	DX171105_1_0497.tif
	DX171105_1_0499.tif
	DX171105_1_0501.tif
	DX171105_1_0503.tif
	DX171105_1_0505.tif
	DX171105_1_0507.tif
	DX171105_1_0509.tif
	DX171105_1_0511.tif
	DX171105_1_0513.tif
	DX171105_1_0515.tif
	DX171105_1_0517.tif
	DX171105_1_0519.tif
	DX171105_1_0521.tif
	DX171105_1_0523.tif
	DX171105_1_0525.tif
	DX171105_1_0527.tif
	DX171105_1_0529.tif
	DX171105_1_0531.tif
	DX171105_1_0533.tif
	DX171105_1_0535.tif
	DX171105_1_0537.tif
	DX171105_1_0539.tif
	DX171105_1_0541.tif
	DX171105_1_0543.tif
	DX171105_1_0545.tif
	DX171105_1_0547.tif
	DX171105_1_0549.tif
	DX171105_1_0551.tif
	DX171105_1_0553.tif
	DX171105_1_0555.tif
	DX171105_1_0557.tif
	DX171105_1_0559.tif
	DX171105_1_0561.tif
	DX171105_1_0563.tif
	DX171105_1_0565.tif
	DX171105_1_0567.tif
	DX171105_1_0569.tif
	DX171105_1_0571.tif
	DX171105_1_0573.tif
	DX171105_1_0575.tif
	DX171105_1_0577.tif
	DX171105_1_0579.tif
	DX171105_1_0581.tif
	DX171105_1_0583.tif
	DX171105_1_0585.tif
	DX171105_1_0587.tif
	DX171105_1_0589.tif
	DX171105_1_0591.tif
	DX171105_1_0593.tif
	DX171105_1_0595.tif
	DX171105_1_0597.tif
	DX171105_1_0599.tif
	DX171105_1_0601.tif
	DX171105_1_0603.tif
	DX171105_1_0605.tif
	DX171105_1_0607.tif
	DX171105_1_0609.tif
	DX171105_1_0611.tif
	DX171105_1_0613.tif
	DX171105_1_0615.tif
	DX171105_1_0617.tif
	DX171105_1_0619.tif
	DX171105_1_0621.tif
	DX171105_1_0623.tif
	DX171105_1_0625.tif
	DX171105_1_0627.tif
	DX171105_1_0629.tif
	DX171105_1_0631.tif
	DX171105_1_0633.tif
	DX171105_1_0635.tif
	DX171105_1_0637.tif
	DX171105_1_0639.tif
	DX171105_1_0641.tif
	DX171105_1_0643.tif
	DX171105_1_0645.tif
	DX171105_1_0647.tif
	DX171105_1_0649.tif
	DX171105_1_0651.tif
	DX171105_1_0653.tif
	DX171105_1_0655.tif
	DX171105_1_0657.tif
	DX171105_1_0659.tif
	DX171105_1_0661.tif
	DX171105_1_0663.tif
	DX171105_1_0665.tif
	DX171105_1_0667.tif
	DX171105_1_0669.tif
	DX171105_1_0671.tif
	DX171105_1_0673.tif
	DX171105_1_0675.tif
	DX171105_1_0677.tif
	DX171105_1_0679.tif
	DX171105_1_0681.tif
	DX171105_1_0683.tif
	DX171105_1_0685.tif
	DX171105_1_0687.tif
	DX171105_1_0689.tif
	DX171105_1_0691.tif
	DX171105_1_0693.tif
	DX171105_1_0695.tif
	DX171105_1_0697.tif
	DX171105_1_0699.tif
	DX171105_1_0701.tif
	DX171105_1_0703.tif
	DX171105_1_0705.tif
	DX171105_1_0707.tif
	DX171105_1_0709.tif
	DX171105_1_0711.tif
	DX171105_1_0713.tif
	DX171105_1_0715.tif
	DX171105_1_0717.tif
	DX171105_1_0719.tif
	DX171105_1_0721.tif
	DX171105_1_0723.tif
	DX171105_1_0725.tif
	DX171105_1_0727.tif
	DX171105_1_0729.tif
	DX171105_1_0731.tif
	DX171105_1_0733.tif
	DX171105_1_0735.tif
	DX171105_1_0737.tif
	DX171105_1_0739.tif
	DX171105_1_0741.tif
	DX171105_1_0743.tif
	DX171105_1_0745.tif
	DX171105_1_0747.tif
	DX171105_1_0749.tif
	DX171105_1_0751.tif
	DX171105_1_0753.tif
	DX171105_1_0755.tif
	DX171105_1_0757.tif
	DX171105_1_0759.tif
	DX171105_1_0761.tif
	DX171105_1_0763.tif
	DX171105_1_0765.tif
	DX171105_1_0767.tif
	DX171105_1_0769.tif
	DX171105_1_0771.tif
	DX171105_1_0773.tif
	DX171105_1_0775.tif
	DX171105_1_0777.tif
	DX171105_1_0779.tif
	DX171105_1_0781.tif
	DX171105_1_0783.tif
	DX171105_1_0785.tif
	DX171105_1_0787.tif
	DX171105_1_0789.tif
	DX171105_1_0791.tif
	DX171105_1_0793.tif
	DX171105_1_0795.tif
	DX171105_1_0797.tif
	DX171105_1_0799.tif
	DX171105_1_0801.tif
	DX171105_1_0803.tif
	DX171105_1_0805.tif
	DX171105_1_0807.tif
	DX171105_1_0809.tif
	DX171105_1_0811.tif
	DX171105_1_0813.tif
	DX171105_1_0815.tif
	DX171105_1_0817.tif
	DX171105_1_0819.tif
	DX171105_1_0821.tif
	DX171105_1_0823.tif
	DX171105_1_0825.tif
	DX171105_1_0827.tif
	DX171105_1_0829.tif
	DX171105_1_0831.tif
	DX171105_1_0833.tif
	DX171105_1_0835.tif
	DX171105_1_0837.tif
	DX171105_1_0839.tif
	DX171105_1_0841.tif
	DX171105_1_0843.tif
	DX171105_1_0845.tif
	DX171105_1_0847.tif
	DX171105_1_0849.tif
	DX171105_1_0851.tif
	DX171105_1_0853.tif
	DX171105_1_0855.tif
	DX171105_1_0857.tif
	DX171105_1_0859.tif
	DX171105_1_0861.tif
	DX171105_1_0863.tif
	DX171105_1_0865.tif
	DX171105_1_0867.tif
	DX171105_1_0869.tif
	DX171105_1_0871.tif
	DX171105_1_0873.tif
	DX171105_1_0875.tif
	DX171105_1_0877.tif
	DX171105_1_0879.tif
	DX171105_1_0881.tif
	DX171105_1_0883.tif
	DX171105_1_0885.tif
	DX171105_1_0887.tif
	DX171105_1_0889.tif
	DX171105_1_0891.tif
	DX171105_1_0893.tif
	DX171105_1_0895.tif
	DX171105_1_0897.tif
	DX171105_1_0899.tif
	DX171105_1_0901.tif
	DX171105_1_0903.tif
	DX171105_1_0905.tif
	DX171105_1_0907.tif
	DX171105_1_0909.tif
	DX171105_1_0911.tif
	DX171105_1_0913.tif
	DX171105_1_0915.tif
	DX171105_1_0917.tif
	DX171105_1_0919.tif
	DX171105_1_0921.tif
	DX171105_1_0923.tif
	DX171105_1_0925.tif
	DX171105_1_0927.tif
	DX171105_1_0929.tif
	DX171105_1_0931.tif
	DX171105_1_0933.tif
	DX171105_1_0935.tif
	DX171105_1_0937.tif
	DX171105_1_0939.tif
	DX171105_1_0941.tif
	DX171105_1_0943.tif
	DX171105_1_0945.tif
	DX171105_1_0947.tif
	DX171105_1_0949.tif
	DX171105_1_0951.tif
	DX171105_1_0953.tif
	DX171105_1_0955.tif
	DX171105_1_0957.tif
	DX171105_1_0959.tif
	DX171105_1_0961.tif
	DX171105_1_0963.tif
	DX171105_1_0965.tif
	DX171105_1_0967.tif
	DX171105_1_0969.tif
	DX171105_1_0971.tif
	DX171105_1_0973.tif
	DX171105_1_0975.tif
	DX171105_1_0977.tif
	DX171105_1_0979.tif
	DX171105_1_0981.tif
	DX171105_1_0983.tif
	DX171105_1_0985.tif
	DX171105_1_0987.tif
	DX171105_1_0989.tif
	DX171105_1_0991.tif
	DX171105_1_0993.tif
	DX171105_1_0995.tif
	DX171105_1_0997.tif
	DX171105_1_0999.tif
	DX171105_1_1001.tif
	DX171105_1_1003.tif
	DX171105_1_1005.tif
	DX171105_1_1007.tif
	DX171105_1_1009.tif
	DX171105_1_1011.tif
	DX171105_1_1013.tif
	DX171105_1_1015.tif
	DX171105_1_1017.tif
	DX171105_1_1019.tif
	DX171105_1_1021.tif
	DX171105_1_1023.tif
	DX171105_1_1025.tif
	DX171105_1_1027.tif
	DX171105_1_1029.tif
	DX171105_1_1031.tif
	DX171105_1_1033.tif
	DX171105_1_1035.tif
	DX171105_1_1037.tif
	DX171105_1_1039.tif
	DX171105_1_1041.tif
	DX171105_1_1043.tif
	DX171105_1_1045.tif
	DX171105_1_1047.tif
	DX171105_1_1049.tif
	DX171105_1_1051.tif
	DX171105_1_1053.tif
	DX171105_1_1055.tif
	DX171105_1_1057.tif
	DX171105_1_1059.tif
	DX171105_1_1061.tif
	DX171105_1_1063.tif
	DX171105_1_1065.tif
	DX171105_1_1067.tif
	DX171105_1_1069.tif
	DX171105_1_1071.tif
	DX171105_1_1073.tif
	DX171105_1_1075.tif
	DX171105_1_1077.tif
	DX171105_1_1079.tif
	DX171105_1_1081.tif
	DX171105_1_1083.tif
	DX171105_1_1085.tif
	DX171105_1_1087.tif
	DX171105_1_1089.tif
	DX171105_1_1091.tif
	DX171105_1_1093.tif
	DX171105_1_1095.tif
	DX171105_1_1097.tif
	DX171105_1_1099.tif
	DX171105_1_1101.tif
	DX171105_1_1103.tif
	DX171105_1_1105.tif
	DX171105_1_1107.tif
	DX171105_1_1109.tif
	DX171105_1_1111.tif
	DX171105_1_1113.tif
	DX171105_1_1115.tif
	DX171105_1_1117.tif
	DX171105_1_1119.tif
	DX171105_1_1121.tif
	DX171105_1_1123.tif
	DX171105_1_1125.tif
	DX171105_1_1127.tif
	DX171105_1_1129.tif
	DX171105_1_1131.tif
	DX171105_1_1133.tif
	DX171105_1_1135.tif
	DX171105_1_1137.tif
	DX171105_1_1139.tif
	DX171105_1_1141.tif
	DX171105_1_1143.tif
	DX171105_1_1145.tif
	DX171105_1_1147.tif
	DX171105_1_1149.tif
	DX171105_1_1151.tif
	DX171105_1_1153.tif
	DX171105_1_1155.tif
	DX171105_1_1157.tif
	DX171105_1_1159.tif
	DX171105_1_1161.tif
	DX171105_1_1163.tif
	DX171105_1_1165.tif
	DX171105_1_1167.tif
	DX171105_1_1169.tif
	DX171105_1_1171.tif
	DX171105_1_1173.tif
	DX171105_1_1175.tif
	DX171105_1_1177.tif
	DX171105_1_1179.tif
	DX171105_1_1181.tif
	DX171105_1_1183.tif
	DX171105_1_1185.tif
	DX171105_1_1187.tif
	DX171105_1_1189.tif
	DX171105_1_1191.tif
	DX171105_1_1193.tif
	DX171105_1_1195.tif
	DX171105_1_1197.tif
	DX171105_1_1199.tif
	DX171105_1_1201.tif
	DX171105_1_1203.tif
	DX171105_1_1205.tif
	DX171105_1_1207.tif

