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Abstract

In this thesis we first study multiple vector bundles, which we define as certain
functors from an indexing cube category to the category of smooth manifolds. We
describe in detail the cores of n-fold vector bundles and we define an n-pullback
of an n-fold vector bundle, as well as n-fold analogues of the core sequences for
double vector bundles. We prove the existence of splittings and decompositions of
multiple vector bundles, thus showing an equivalent definition in terms of n-fold
vector bundle atlases. Furthermore, we define multiply linear sections of an n-fold
vector bundle and the category of symmetric n-fold vector bundles as n-fold vector

bundles equipped with a certain signed action of the symmetric group .S,.

Secondly, we study linear generalised complex structures on vector bundles. We
show the existence of adapted Dorfman connections, which then give adapted linear
splittings. This allows to lift the side morphism on T'"M & E* to the generalised
complex structure in TE @& T*E. We describe under which conditions on the
side morphism and the Dorfman connection they induce a linear generalised
complex structure, furthermore we show the equivalent description in terms of
complex VB-Dirac structures in TcE @ T¢E. Then we study the compatibility of
a linear generalised complex structure with an additional Lie algebroid structure
and we recover the conditions for morphisms of 2-term representations up to
homotopy. We prove that the side and core of the aforementioned complex VB-
Dirac structures form complex Lie bialgebroids and we study the induced Drinfeld
doubles. In the special case of a complex structure we show that these can be
recovered from matched pairs of Courant algebroids. Finally, we translate our
results to the abstract setting of VB-Courant algebroids, describing in a splitting
the compatibility with the corresponding split Lie 2-algebroid.
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Chapter 1

Introduction

The fundamental notion connecting both parts of this thesis is the concept of a
double vector bundle. Double vector bundles were first introduced by Jean Pradines
as a structural tool in the study of nonholonomic jets in [64] [62] 63 65]. Pradines’
original definition was given in terms of double vector bundle charts and atlases.
Later, in [48], Kirill Mackenzie gave a more modern definition of double vector
bundles as a square of compatible vector bundle structures. The equivalence of
these two definitions relies on the existence of linear splittings and decompositions
for Mackenzie’s double vector bundles. The existence of linear splittings was first
stated as part of the definition but was later shown to be redundant, a proof can

be found for example in Fernando del Carpio-Marek’s thesis [17].

The most immediate examples for double vector bundles are the tangent bundle
TFE and the cotangent bundle T*F of a vector bundle E. General double vector
bundles were studied for example for their application to Poisson geometry and the
integration of Lie bialgebroids by Kirill Mackenzie and Ping Xu in [48] and [55].
More recently, double vector bundles were also studied for their connection with
representation theory of Lie algebroids by Alfonso Gracia-Saz and Rajan Mehta
n [28], by Thiago Drummond, Madeleine Jotz Lean and Cristian Ortiz in [19]
and by Gracia-Saz, Jotz Lean, Mackenzie and Mehta in [25]. Henrique Bursztyn,
Alejandro Cabrera and Mathias del Hoyo made use of double vector bundles in
the study of vector bundles over Lie groupoids and Lie algebroids in [7]. Another
interesting application of double vector bundles is Jotz Lean’s geometrisation
of graded manifolds of degree 2 in [37], also extended to Lie 2-algebroids in [39].
Double vector bundles also play a role in the definition of infinitesimal ideal systems,

a notion of ideal in Lie algebroids introduced by Jotz Lean and Ortiz in [40].

The first part of this thesis is concerned with the higher order generalisation of

double vector bundles to multiple vector bundles. First triple vector bundles and
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then n-fold vector bundles were introduced by Kirill Mackenzie in [50] and studied
jointly with Alfonso Gracia-Saz in [26] 27]. In these papers n-fold vector bundles
are defined as n-dimensional cube diagrams of compatible vector bundle structures,
together with a splitting condition. Higher order vector bundle were also studied
by Janusz Grabowski and Mikolaj Rotkievicz in [24], who gave a definition of
an n-fold vector bundle as a manifold equipped with n commuting Euler vector
fields, generating the scalar multiplications of the different vector bundle structures.
Grabowski and Rotkiewicz also stated the existence of local charts for their n-fold
vector bundles, and thus the equivalence of the two definitions, and they gave a

proof in the case of n = 2.

The main ingredient for the second part of this thesis is the concept of generalised
complex geometry, which is a unification of complex and symplectic geometry
introduced by Nigel Hitchin in [34] and further studied by his student Marco
Gualtieri in [30} B1, 32]. Both complex geometry and symplectic geometry have
been highly important aspects of differential geometry over the course of the
last century. The study of complex manifolds naturally arises from algebraic
geometry, whereas symplectic geometry arose from the Hamiltonian formulation
of analytical mechanics. An almost complex structure equips all tangent spaces
with the structure of complex vector spaces, and gives rise to holomorphic charts
if and only if the Nijenhuis tensor vanishes, as proved by August Newlander and
Louis Nirenberg in [57]. A 2-form w on a manifold M defines a presymplectic
structure if it is closed, that is if dw = 0, whereas a bi-vector m on M defines a
Poisson structure if the corresponding Poisson bracket on C'*° (M) satisfies the
Jacobi identity. The idea of generalised geometry is to work with the generalised
tangent bundle T'M @ T*M instead of considering only the tangent bundle or
the cotangent bundle independently. Irene Dorfman in [I8] and independently
Ted Courant in [I3] introduced the Courant-Dorfman bracket on TM & T*M,
which is also independently defined and studied in [9] by Antonella Cabras and
Vinogradov. Later this bracket gave rise to the definition of a Courant algebroid
by Zhang-Ju Liu, Alan Weinstein and Ping Xu in [45]. Ted Courant showed how
the integrability conditions for Poisson and presymplectic structures can be unified
in terms of the Courant-Dorfman bracket, and defined Dirac structures on M as
a common generalisation. Later, Nigel Hitchin introduced generalised complex
structures in [34] as a unification of symplectic and complex geometry. Generalised
complex structures on a manifold M can be equivalently defined via complex Dirac
structures in the complexified generalised tangent bundle TcM @ T¢M or via an
automorphism J of TM & T*M. Marco Gualtieri proved a generalised Darboux

theorem for generalised complex structures in [30), B1] and also defined generalised



Kahler structures in [30} 32].

Since then, generalised complex geometry has been a highly active field of
research. They have been studied for instance for their relation to T-duality — a
concept arising in string theory — by Gil Cavalcanti and Marco Gualtieri in [11].
Generalised Kéhler structures in have been studied for example by Hitchin in [35]

and by Henrique Bursztyn, Cavalcanti and Gualtieri in [g].

The relation between generalised complex geometry and Lie algebroids and
Lie groupoids was first studied by Marius Crainic in [I4]. In [41], Madeleine
Jotz Lean, Mathieu Stiénon and Ping Xu defined the compatibility of generalised
complex structures on Lie groupoids with the groupoid structure, and of generalised
complex structures on Lie algebroids with the algebroid structure. Lie groupoids
and Lie algebroids with such generalised complex structures were there called
“Glanon groupoids” and “Glanon algebroids”, respectively. The authors furthermore
proved a correspondence between compatible generalised complex structures on

Lie groupoids and compatible generalised complex structures on Lie algebroids.

Results and structure of this thesis

After recalling definitions and properties of double vector bundles, Lie algebroids,
Courant algebroids, Dirac structures, generalised complex structures, VB-Courant
algebroids and graded manifolds in Chapter this thesis is divided in two

relatively independent parts.

Multiple vector bundles

First, in Chapter |3| we study multiple vector bundles. Most of this chapter can
be found on the arXiv as joint work with my supervisor Madeleine Jotz Lean
in [33]. We give a definition of n-fold vector bundles in the modern language
of category theory which is equivalent to the definition of Kirill Mackenzie and
Alfonso Gracia-Saz in [27] to. We hence define an n-fold vector bundle as a special
contravariant functor from an indexing category 0" to the category of smooth
manifolds (Definition [3.1.1]). The indexing category is here given by the poset
of the subsets of n := {1,...,n}. Unlike the definition in [27] and the definition
of Janusz Grabowski and Mikolaj Rotkievicz in [24], our definition can easily be
extended to a definition of co-fold vector bundles without a total space. These
oo-fold vector bundles might in the future prove to be a useful object leading to
a better understanding of Lie oc-algebroids. Here we give a detailed description

of the different cores in a multiple vector bundles, which generalises the notion
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of the core of a double vector bundle. We also describe several prototypes of
multiple vector bundles, notably the trivial or decomposed ones which are given as
fibred products of ordinary vector bundles. Then we define linear splittings and
decompositions of multiple vector bundles. A decomposition is an isomorphism
between a given multiple vector bundle and an associated decomposed one. Such

a decomposition therefore allows to define local charts for an n-fold vector bundle.

We define the n-pullback of an n-fold vector bundle and show that it defines
an n-fold vector bundle itself (Definition and Theorem [3.1.13)). This
n-pullback plays an important role in the definition of the ultracore sequences,
the higher order generalisation of Mackenzie’s core sequences for a double vector
bundle. We prove that the ultracore sequences are indeed short exact sequences of
vector bundles. Making use of these ultracore sequences we then prove inductively
the existence of local linear splittings using a method similar to the proof of
Fernando del Carpio-Marek for double vector bundles in [I7]. Given local linear
splittings, they can be extended to global linear splittings with a partition of unity
(Theorem [3.2.3). We furthermore show how in the n-fold case the existence
of splittings is equivalent to the existence of decompositions. More precisely, a
decomposition of an n-fold vector bundle E can be constructed from a linear
splitting of [E and additional linear splittings of all the underlying faces and cores.
Thus we obtain our main result of that chapter that every n-fold vector bundle
admits a decomposition (Corollary . We then define n-fold vector bundle
atlases and demonstrate how it follows from the existence of decompositions that

both definitions of n-fold vector bundles are equivalent.

Furthermore, we show how to obtain decompositions of co-fold vector bundles
as a colimit of decompositions of n-fold vector bundles. This is not possible with
the definition of higher order vector bundles given by Grabowski and Rotkiewicz
in [24].

We also define multiply linear sections of an n-fold vector bundle, as a straight-
forward generalisation of linear sections for n = 2. Similarly to the case of n = 2
we obtain a short exact sequence of C'°° (M )-modules, where M is the absolute

base of the n-fold vector bundle.

Moreover, we define symmetric n-fold vector bundles as n-fold vector bundles
equipped with a symmetric structure, which is given by a certain action of the
symmetric group. This is a generalisation of the concept of involutive double vector
bundles to higher orders and will be important for the geometrisation of graded
manifolds of degree n analogously to the degree 2 case, which was carried out by
Madeleine Jotz Lean in [37]. Extending this geometrisation to the case of a general

degree n is an ongoing joint project with Madeleine Jotz Lean. We will give an



explicit equivalence of categories between the category of symmetric n-fold vector

bundles and the category of [n]-manifolds.

For convenience of the reader we finally demonstrate in detail our results in the
special case of n = 3, that is for triple vector bundles, since the general notation
is fairly technical. In this case we will also demonstrate how a decomposition of
a triple vector bundle is equivalent to a horizontal lift, that is a splitting of the
short exact sequence of C*°(M)-modules given by doubly linear sections, together

with splittings of the side and core double vector bundle.

Linear generalised complex structures

Second, in Chapter [4] we study linear generalised complex structures on vector
bundles and in particular on Lie algebroids. A linear generalised structure on
a vector bundle £ — M is a generalised complex structure J: TE & T*E —

TE & T*E, which is furthermore a double vector bundle morphism

TE®T*E J TE® T*E
\ B idp \ >

T™ ¢ E* — TM & E*
M idy M

We use linear splittings of the generalised tangent bundle TE & T*E — FE of a
vector bundle £ — M in order to describe the generalised complex structures in
terms of the side morphism j: TM ¢ E* — TM @& E*. In order to do so, we use
the correspondence of linear splittings of TE @& T*E with (T'M & E*)-Dorfman
connections on E & T*M described by Jotz Lean in [36]. Dorfman connections can
be thought of as the Courant algebroid analogue of linear connections. We show
that for any linear generalised complex structure J on E with side morphism j
there is an adapted Dorfman connection such that the corresponding horizontal
lift o: I(TM @ E*) — T%(TE @ T*E) is compatible with J, in the sense that it
satisfies o (jv) = Jo(v) for any v € T(TM & E*) (Proposition [4.1.15)).

We give equivalent conditions on the side morphism j and the Dorfman con-
nection A under which these define a linear generalised complex structure on F
(Theorem [4.1.19)). To describe the integrability condition we define a bracket
A on TM & E* which does not admit an anchor and thus does not define a Lie
algebroid or dull algebroid structure. This bracket A is defined in terms of j and
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A but we can show that it is in fact independent of the choice of the adapted

Dorfman connection A.

We also show that in the case of a linear generalised Kéhler structure on F,
which involves two commuting linear generalised complex structures on E, we
can find a Dorfman connection which is simultaneously adapted to both linear

generalised complex structures.

Then we show that the linearity of the generalised complex structure is equiva-
lent to the linearity of the corresponding Dirac structures. Hence a linear gener-
alised complex structure is equivalent to a pair of complex conjugated, transversal
complex VB-Dirac structures in TcE © T3 E.

After having described the linear structure, we consider a Lie algebroid A — M
and describe the conditions on j and A, under which a linear generalised complex
structure J: TA® T*A — TA & T*A is additionally a Lie algebroid morphism
over j. The latter is the definition of Glanon algebroids given in [41]. We show
that this is equivalent to the property of the corresponding Dirac structures to
be additionally Lie subalgebroids of TcA ® T¢A — TeM @ Af and therefore such
a generalised complex structure is equivalent to a pair of complex conjugated,
transversal complex LA-Dirac structures in TcA ® TA. This correspondence
has already been stated in [41]. The proof of this equivalence makes use of the
description of LA-Dirac structures in terms of a linear splitting, which is given
by Jotz Lean in [38]. We also recover the conditions for a morphism of 2-term
representations up to homotopy which represent the VB-algebroid structure of
TA®T*A in the linear splitting (Theorem .

Afterwards we show that the core morphism of a generalised complex structure
on a Lie algebroid defines itself a generalised complex structure in the degenerate
Courant algebroid A & T*M, the definition of which was given by Madeleine Jotz
Lean in [3§].

Subsequently, we show that the ti-eigenbundles UL of the complexified side
morphism jc of a linear generalised complex structure give rise to a complex
A-Manin pair, the complexified version of the A-Manin pair defined by Jotz Lean
in [38]. This defines in particular Courant algebroids C1 such that Uy is a Dirac
structure in Cy. We show that these Courant algebroids are isomorphic to the
Drinfeld doubles of the Lie bialgebroids (U, K+), where K4 is the +i-eigenbundle
of the core morphism of the generalised complex structure. Drinfeld doubles of
Lie bialgebroids were defined by Zhang-Ju Liu, Alan Weinstein and Ping Xu in
[45] and also studied by Kirill Mackenzie in [49]. It was shown in [45] that a Lie

bialgebroid is equivalent to two transversal Dirac structures in a Courant algebroid,



namely the Drinfeld double.

We also investigate in detail the two extremal cases of generalised complex
structures on a Lie algebroid, that is the case of a generalised complex structure
induced by either a complex structure or a symplectic structure. In the case of a
holomorphic Lie algebroid we find that the two Courant algebroids C; and C_ can
be decomposed in a direct sum of Courant algebroids C’%’O &) C’g’l and C’%l @ C}l’o,
respectively. We thus show that these Courant algebroids form matched pairs and
Cy is given by the matched sum (Theorem , which are notions defined
for Courant algebroids by Mathieu Stiénon and Melchior Griitzmann in [29]. For
that we first show that in the complex case our adapted Dorfman connection can
be taken to be a standard Dorfman connection, which is induced by an ordinary
TM-connection V on E. This connection V is then adapted to the complex
structure in the sense that the corresponding horizontal lift o: T(T'M) — I'y(TE)
satisfies o(JyX) = Jgo(X). To our knowledge, this is a new insight. In the
case of a symplectic Lie algebroid we find that the complex Lie algebroids UL are
isomorphic to the complexified tangent bundle TcM and thus also to Ap. The
dual K= is therefore isomorphic to T3 M and to Ac.

Finally, we extend our results to the more abstract setting of a VB-Courant
algebroid. We therefore replace the generalised tangent bundle TE @& T*FE of a
vector bundle £ with a general VB-Courant algebroid. Here we obtain adapted
Lagrangian splittings. Making use of the correspondence between decomposed
VB-Courant algebroids and split Lie 2-algebroids described in [39], we extend the

conditions for generalised complex structures to the setting of split Lie 2-algebroids.

Appendix

In the appendix we assume that we want to work with a fixed Dorfman connection
instead of choosing an adapted one. This can be useful in the case where we have
previously fixed a linear splitting, for example adapted to a different geometric
structure on TE @& T*E. In general it might not be possible in the presence of
independent geometric structures to find one splitting which is adapted to both
simultaneously. With a general linear splitting the computations are much more
complicated. We describe how a linear generalised complex structure on E is
then equivalent to the side morphism j and a 2-form ¥ € Q(T'M & E*, E*), which

depends on the linear splitting, both satisfying certain properties (Theorem

ALE)
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Ongoing work and future projects

In the future, the two main parts of this thesis can hopefully be connected via
graded manifolds. The geometrisation of graded manifolds of degree n is an ongoing
joint project with my supervisor Madeleine Jotz Lean. We will prove an equivalence
of categories with such [n]-manifolds and the category of symmetric n-fold vector
bundles which is described here. This equivalence will be constructed analogously
to the degree 2 case in [37] and will rely on the existence of decompositions proved
in this thesis. The second goal is to describe generalised complex structures in
Lie 2-algebroids without the choice of a splitting. Generalised complex structures
naturally live in Courant algebroids which were shown to be equivalent to symplectic
Lie 2-algebroids by Dimitry Roytenberg in [66]. Building up on this equivalence
David Li-Bland gave an equivalence between VB-Courant algebroids and Lie 2-
algebroids in [44]. Later, Madeleine Jotz Lean described how this correspondence
can be obtained from her geometrisation of [2]-manifolds. She gave an equivalence
between [2]-manifolds and metric double vector bundles and showed how in this
picture Lie 2-algebroids correspond to VB-Courant algebroids, Poisson Lie 2-
algebroids correspond to LA-Courant algebroids and symplectic Lie 2-algebroids
correspond to tangent prolongations of Courant algebroids. Translating our results
for generalised complex structures in split Lie 2-algebroids to Lie 2-algebroids as
graded manifolds of degree 2 equipped with a cohomological vector field might

also lead to a definition of generalised complex structures in Lie n-algebroids.



Chapter 2
Background

In this chapter we will collect definitions and recall properties of the basic objects
that we will work with later. We will go through the definitions of double vector
bundles, Lie algebroids, Courant algebroids, Dirac structures, generalised complex
structures, VB-Courant algebroids and graded manifolds. The expert reader may
skip the sections about structures they are already familiar with and focus on the

other ones.

2.1 Double vector bundles

In this section we will recapitulate the definition and properties of a double vector
bundle. Double vector bundles were first introduced by Jean Pradines in [65] in
his study of nonholonomic jets. They were further studied for their application to
Poisson geometry and in particular the integration of Lie bialgebroids for example
by Kirill Mackenzie [48], also together with Ping Xu in [55]. For a comprehensive
overview about the general theory of double vector bundles we can recommend
Mackenzie’s book [51].

2.1.1 Definitions and examples

Definition 2.1.1. A double vector bundle (D; A, B; M) consists of vector bun-
dle structures D - A, D - B, A—> M, B— M:

D
4B
—

ay

B
J{‘IB 7 (2.1)

— s M

n— -
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such that the structure maps (bundle projection, addition, scalar multiplication
and zero section) of D over A are vector bundle morphisms over the corresponding

structure maps of B — M and the other way around.

The compatibility of the vector bundle additions is equivalent to the in-
terchange law: for any tuples di,ds,d3,dy € D such that ¢¥(d1) = ¢%(d2),
q%(d3) = ¢¥(ds), qB(d1) = ¢B(d3) and ¢E(d2) = qH(d4) we have the equality

(di1+ad2) +p (d3 +ads) = (di +p d3) +a (d2 +p ds). (2.2)
To obtain a category of double vector bundles, we have to define morphisms

between them. This can also be found in [51].

Definition 2.1.2. A morphism of double vector bundles from (D; A, B; M)
to (D'; A", B'; M") consists of maps V: D — D', pp: A — A, Yp: B — B’ and
o: M — M, such that (V,14), (V,14), (¥a,10), (¥B,1%0) are vector bundle
morphisms and such that the following cube commutes

D v D’
\ B YB \ B

J . (2.3)
A ¥4 A

AN N

M Yo

M/

The restriction of such a morphism to core elements induces a morphism of

vector bundles ¢ : C — C’, called the core morphism of W.

We will need the following properties of vector bundles, first to prove the
surjectivity of the double projection in Lemma following an argument of
David Li-Bland and Pavol Severa in [43], and later in the generalisation to multiple
vector bundles in Theorem [3.1.13] These results are straightforward and well-
known, but we want to be able to reference them in the proof of Theorem [3.1.13]

in order to keep that proof as concise as possible.

Lemma 2.1.3. Let f: M — N be a smooth map, and let qg: E — N be a smooth
vector bundle. Then the inclusion f'E < E x M is a smooth embedding.

Proof. This follows directly from the definition of the pullback vector bundle. As a
topological space f'F is given as the pullback E x (az,N,f) M, which is an embedded
submanifold of ¥ x M since qg is a surjective submersion and therefore f and ¢g

are immediately transversal. O
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Lemma 2.1.4. Let A — M and B — N be two smooth vector bundles, and let
¢: A — B be a homomorphism of vector bundles over a surjective submersion
f: M — N. Assume that ¢ is surjective in each fibre. Then the pullback homo-
morphism f'¢: A — f'B, ay, — (é(am),m) over the identity on M is surjective

in each fibre.

Proof. This statement is immediate, as the fibre of f'B over m is given exactly
by the fibre of B over f(m) and the restriction of f'¢ to the fibre over m is the

restriction of ¢ to the fibre and therefore surjective. O

The following Lemma uses the technique of Li-Bland and Severa in [43].

Lemma 2.1.5. Let A — M and B — N be two smooth vector bundles, and let
¢: A — B be a homomorphism of vector bundles over a smooth map f: M — N.
Then ¢ is a surjective submersion if and only if ¢ is surjective in each fiber and f

s a surjective submersion.

Proof. Choose a,,, € A. Then it is easy to see in local coordinates that the tangent
am) B splits
as T'y() N @® Bj(i). In those splittings, the map Tq,,¢: T4,, A — Ty(q,,) B reads

space Tg,, A splits as Ty, A ~ T, M @ A, and the tangent space Tg

To,® =T f © ¢la,,: TnM & Am = Ty N © By

Therefore, Ty, ¢ is surjective if and only if Ty, f: T M — T'p,) N is surjective and
Blagm): Am — Bym) is surjective.

Thus if ¢ is a surjective submersion, clearly f is surjective and by the argument
above f is a submersion and ¢ is surjective in every fibre. Conversely, if f is a
surjective submersion and ¢ is surjective in every fibre, by the previous argument,

T,,, ¢ is surjective for any a,, € A and thus ¢ is a surjective submersion. O

The following property is in the literature sometimes stated as an additional
condition in the definition of a double vector bundle, but David Li-Bland and

Pavol Severa showed that it is redundant in [43]. This is the case of n = 2 of

Theorem B.1.13

Lemma 2.1.6. Let (D;A,B; M) be a double vector bundle. Then the double
projection (qf,qg): D — A X B is a surjective submersion and a double vector

bundle morphism.

Proof. The vector bundle projections ¢g: B — M and qﬁ) : D — A are by definition

surjective submersions. Hence Lemma shows that ¢f is surjective in each
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fiber. Now we can identify A xj;; B with the pullback vector bundle q%A, and
then (¢,qB): D — A xjs B is identified with the pullback ¢i3¢%7: D — ¢z A as
morphism of vector bundles over B. By Lemma it is hence surjective in each
fibre, and so (¢7,¢5): D — A xj B is a surjective submersion again by Lemma

2.1.9

That it is a morphism of double vector bundles follows directly from the

definition of a double vector bundle. O

Lemma 2.1.7. Let ga: A — M be a smooth vector bundle, and let B C A and
N C M be embedded submanifolds with qga(B) = N and such that for each n € N,
B(n) C A(n) is a vector subspace. Then B — N has a unique smooth vector bundle

structure, such that the smooth embeddings build a vector bundle homomorphism
into A — M.

Proof. From the definition of a vector subbundle it is immediate that B can be
equipped with the structure of a vector subbundle of A|y. With this structure the
embedding is clearly a vector bundle homomorphism. Moreover, the embeddings

determine the vector bundle structure on g4|p: B — N uniquely. ]

An important role in the theory of double vector bundles plays the core of a

double vector bundle, which is defined in [51] as follows.

Definition 2.1.8. The common kernel of both projections of a double vector bundle

1s called the core of the double vector bundle:

C={ceD|ImeM:q5(c)=08, ¢§(c)=02}. (2.4)

Note that m € M is just the projection g4 o ¢¥(c) = g5 o ¢B(c) of ¢ to M.

Lemma 2.1.9. The core C is itself a vector bundle over M with the vector bundle
structure inherited from either the structure of D — A or of D — B, which coincide
on the subset C' C D.

Proof. That C' is a smooth submanifold of D follows from the fact that it is the
preimage of 0‘]?4 XM 05\34 under the surjective submersion (qg, qg): D — Axy B,
and that Of/f XM 05\34 is the image of the zero section in the vector bundle A ® B
and is thus a smooth submanifold of A x s B.

To show that the additions over A and B coincide on C we first note that for

any m € M we have O(?A = 0(1)73 =: OWDM as the zero section of D — A is a vector
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bundle morphism over the zero section of B — M. Take now c1,cy € C projecting
to m € M, then we use the interchange law (2.2]) to show

c14ac=(c1+B05)+4 (02 +5¢)
= (c1 +402) +5 (02 44 ¢9)

=c+BcCa.

That C' is closed under this addition is immediate as both projections q]g and qE
are vector bundle morphisms. That C' is closed under both scalar multiplications
-4 and -p follows from the same observation. That both scalar multiplications
coincide follows for integers and then rational numbers from the fact that the
additions coincide and then by continuity of the multiplications for all real numbers.
Therefore we have a well-defined vector bundle structure in C — M with the
structure given by either the restriction of the structure of D — A or of the
structure of D — B. O

Definition 2.1.10. Let (D; A, B; M) be a double vector bundle. We will view the
core C simultaneously as a vector bundle C — M and as a subset of D. A given

section ¢ € T'(C) induces a core section c' of D — A, defined by
(@) = 02, +5 cm). (25)

Linear sections of D over A are sections & € I'4(D) that are vector bundle
morphisms over some section b € I'(B). The set of core sections is denoted by
I (D) and the set of linear sections by T% (D). For an element ¢ € T'(Hom(A, C))
we obtain the core-linear section © of D over A, which is a linear section over
the zero section of B. It is defined by

Plam) =05+ @lan). (2.6)

am

for any a,, € A over m € M. In the same manner we define linear sections, core

sections and core-linear sections of D over B.

Given a double vector bundle (D; A, B; M) with core C, there are two short
exact sequences of vector bundles, called the core sequences as in the following

proposition (see also [51]).

Proposition 2.1.11. The following are short exact sequences of vector bundles

over A and B, respectively.

| A (a8.48)
0—q4C —=D gaB =0

o ob (2.7)
(qA)qB)

0— qC 2D qrA = 0.
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The maps 14 and tp are the core inclusions, defined by 1a((a,c)) := 0P +p ¢ and
1p((b,¢)) =0 +4c forae A, be B, ce C over the same m € M.

Proof. The injectivity of the maps ¢4 and ¢p is immediate. Since the addition in C
is defined as restriction of +4 and +p, both maps define vector bundle morphisms.
As a manifold quA =AxyB= quB and the map (qg , qg ) is surjective according
to Lemma That it defines a vector bundle morphism over A and over B
follows directly from the fact that qﬁ) and qé are vector bundle morphisms over

gp and g4, respectively.

Given any (a,c) € ¢4C we have that (¢%,¢B)(ta(a,c)) = (¢%,¢B)(0F +p¢) =
(a,08) and thus t4(a, c) is in the kernel of (¢¥,¢E) as a vector bundle morphism
over A. Conversely, given d € D in the kernel of (qE ,qg ) as vector bundle

morphism over A, we have that d —p OC]DE projects to Oﬁl and 02 and is therefore

(d)

by definition an element of the core,c € C. Thus d = OfD(d) +pc= LAqE(d) and
A

the first sequence is exact. Completely analogously it follows that the second

sequence is exact. ]

Definition 2.1.12. Given a double vector bundle (D; A, B; M), the flip of D is a
double vector bundle (Dﬂip; B, A; M) with the same vector bundle structures as D
but exchanged role of A and B. This is a different double vector bundle since the

position of A and B is important in the definition of morphisms of double vector
bundles, given in Definition [2.1.3

We will now give some basic examples of double vector bundles.

Example 2.1.13. For three vector bundles A, B, C over M there is the trivial

double vector bundle with sides A and B and with core C, given by

AXMBXMC%B

o l : (2.8)
M

A—

where the additions are defined as (@, by, Cm)+4 (@m, b, ) = (@, b+, e+

/
m

is thus given by c!(am) = (am, 08 c(m)), whilst core-linear sections are given by
P(am) = (am, 05, ¢(am)) for ¢ € T(Hom(A,C)).

) and analogously for the addition over B. Here the core section ¢! € T o(D)

For any manifold M we will denote by pas: TM — M the projection of the
tangent bundle to the manifold and by cp;: T*M — M the cotangent projection.
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Example 2.1.14. For any vector bundle qg: E — M the tangent double

TE -2 . F
TqEJ/ lQE b (29)
T™ 225 M

is a double vector bundle with core isomorphic to E. Core sections of TE over E

are given by vertical vector fields

e'(el) 4

m) = 7 e +te(m). (2.10)

t=0

Vertical vector fields act on linear functions {. for e € T(E*) by e'({.) = qi{e, €)

since

d , d
= S el +em)

) = G| ==

(&, € +te(m)) = (e, €)(m)
t=0

and on pullbacks of functions f € C*(M) by e’ (g5 f) = 0 since

_4d
Cdt

d

(i f)(e,) » Gif (¢ +e(m)) = | f(m) =0.

Linear vector fields ¢ € T%(TE) over X € T'(TM) send linear functions (. to linear
functions and pullbacks of functions on M to pullbacks and therefore correspond

to derivations D € Der(I'(E)) over X with the correspondence given by

§(le) =Lpey and &(qp(f)) = au(X(f)). (2.11)

Given a derivation D as above, we write D for the corresponding linear vector field.
See for example [51] and also [23] or [36]. We will also write X*(E) for the space
of linear vector fields and X°(E) for the space of vertical vector fields.

A special case of this is the double tangent bundle of a manifold.

Example 2.1.15 (Double tangent bundle). For any smooth manifold M the double
tangent bundle
TTM P TM

TPM\L lpM )

™ P s M

is a double vector bundle with core T M. This double vector bundle comes with
a canonical flip, an isomorphism of double vector bundles J: TTM — TTMP,
exchanging the two vector bundle structures Tpys and pras.
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2.1.2 Dualising double vector bundles

For every double vector bundle (D, A, B, M) with core C' there are two ways of
dualising a double vector bundle, we can dualise D either as a vector bundle over
A or as vector bundle over B. The dual bundle of D over A will be denoted by
D7 and is a double vector bundle with sides A and C* and with core B*.

D*
* rcf *
Dy - ¢

* .
wl P

A2 M
The vertical projections are the ordinary projections of the dual vector bundles,
whereas the projection of D% to C* is given by

D*
re (6)(em) = (6,08 +B cm)a,

for 6 € (D% )a,,.- The identification of the core of D% with B* is given by

<ﬁ> bm> = <6a Ome> )
for any element 3 € D% over 04 projecting to 0¢" under rgi.

In Mackenzie’s book [51] there is a detailed description of the following prop-
erties of the duals of double vector bundles, which we just recall for the sake
of completeness, as it later proves to be one way of defining the Lie algebroid

structure on the generalised tangent bundle of a Lie algebroid.

Proposition 2.1.16. There is a non-degenerate pairing between the vector bundles
DY)&s — C* and Dy, — C* given for ® € DY and ¥ € D} over the same
v € I(C7) by

(P, 0) := (P, d)4 — (V,d)p

for any d € D such that ¢§(d) = ¢¥ (®) and ¢5(d) = ¢5 (V). It is also shown
that this is a pairing of double vector bundles and induces a double vector bundle

isomorphism between (D%)¢. and the flip of D.

Example 2.1.17. Dualising the tangent double of a vector bundle (TE, E,TM, M)

over E gives the cotangent double, a double vector bundle

T"E £, F

| o -

*

)N Y

with core T*M . Sections of T*"E — E are 1-forms on E. The space of linear

sections is generated by exact 1-forms of the form dl., linear over a section
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e € I(E*). Core sections are given by pullbacks q50 of 1-forms 0 € QY(M). This

example is covered in detail in Mackenzie’s book [51)].

Kirill Mackenzie and Ping Xu proved in [53] that the double vector bundles T*E

and T*E* are isomorphic. We now give a brief recollection of this isomorphism.

Proposition 2.1.18. Given a vector bundle E — M and its dual vector bundle
E*, there is an isomorphism R: T*E* — T*FE over the sides idg and idg+ with
core morphism —idp=pr. This map is called the reversal isomorhism and is

given on core sections and prototypical linear sections of T*E* — E* as follows:

R(q}-0)(em) = dgs Le — q50(0})

(2.12)
R(dge)(gm) = de(m) (EE - q*E<€a €>) :

Thus core sections of T*E — E* are given by R(—q}«0) and typical linear sections
are given by a® := R(d/l,).

Alternatively, the inverse isomorphism R™': T*E — T*E* can be defined as
composition of the following isomorphisms. First, applying the tangent functor T
to the pairing of E with E* induces a map TE X7y TE* — TR, the projection
to the fibre in TR — R gives a non-degenerate pairing between T'E and TE* as
vector bundles over TM and thus an isomorphism I: TE* — (T'E)%,,;. This is in
fact an isomorphism of double vector bundles, and the dual of I as a morphism
over E* gives an isomorphism I4.: (TE)%y ). — T*E*. Precomposing this
isomorphism with the isomorphism between the iterated dual to the dual of TE
over E described in Proposition [2.1.16 gives the desired isomorphism of double

vector bundles TE* — T*E*.

Example 2.1.19. Another important example of double vector bundles, in partic-
ular in the study of linear generalised complex structures, is the generalised tangent
bundle of a vector bundle E. It is given as the direct sum of vector bundles over E

of the tangent double and the cotangent double:

TEST'E E

EeT*M

N

TM & E* M

We will describe this double vector bundle in more detail in Section about
VB-Courant algebroids.
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2.1.3 Decompositions and splittings

This section is concerned with decompositions and linear splittings of double vector
bundles, which shows that Definition of double vector bundles is equivalent
to the original definition in terms of double vector bundle charts given by Pradines
in [65].

Definition 2.1.20. A linear splitting of a double vector bundle (D; A, B; M) is

an injective morphism of double vector bundles
i Axy B— D

which is the identity on the sides A and B.

Definition 2.1.21. A decomposition of a double vector bundle (D; A, B; M) is

an isomorphism of double vector bundles
S: A XM B XM C—D

from the trivial double vector bundle A xy; B X pr C to D which is the identity on

the sides and on the core.

The following property is straight forward and mentioned in several places, for

example in [25].

Lemma 2.1.22. Linear splittings and decompositions of a double vector bundle

are equivalent to each other.

Proof. Let (D; A, B; M) be a double vector bundle with core C. Given a linear
splitting X, we define a decomposition by S(am,bm, cm) := X(am,bm) +B (Olfn +
Cm) = E(an%bm) +a (OD

am

+ ¢ ). Conversely, given a decomposition S of D, we
define the splitting by X(am, by) := S(am,bm,05). These constructions are inverse
to each other. O

Definition 2.1.23. Let (D; A, B; M) be a double vector bundle with core C'. Given
two different decompositions S1,S2: A X B X3 C — D, the composition 81_1 0Ss
1s an automorphism of A X B X C over the identity on A, B and C. Such a
morphism is necessarily of the form (am,bm,cm) = (Qm, bm, Cm + G(am, b)) for
some ¢ € T'(A* ®@ B* ® C). We call ¢ the change of splittings.

Conversely, given one decomposition S and such an automorphism of A X s

B xr C, the composition defines a second decomposition of D.
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We will now give a proof of the well-known fact that every double vector bundle
admits a decomposition. This has been stated in several places, however rarely
with a full proof. Fernando del Carpio-Marek gave a proof in his thesis [17]. We
first need the following short exact sequences of C'*° (M )-modules, which can be

found for example in [25].

Lemma 2.1.24. The following is a short exact sequence of C°°(M )-modules:

0 — I'(Hom(A4,C)) 0, r4(p) -~ 1r(B) =0, (2.13)

where m sends a linear section to its base section and (~) denotes the map that

sends a section of Hom(A, C) to the corresponding core linear section of D — A.

There is an analogous sequence for I'y(D).

Proof. Injectivity of (+) and exactness at I'% (D) follow directly from the exactness
of the core sequence of vector bundles over A from Proposition 2.1.11] Given
¢ € T%(D) projecting to 0: M — B we define a section ¢ € I'(Hom(4, C) by
setting for any an, € A over m € M ¢ (am) := &(am) —p 0L . Now every short
exact sequence of vector bundles is non-canonically split which can be seen by
choosing a Riemannian metric on the vector bundle in the middle of the sequence.
Choose thus a splitting s: ¢'yB — D. Then we define for any section b € T'(B) a
section b of D — A by b(am) = s(am,b(m)). Now b is a vector bundle morphism
over b and therefore an element of I'Y(D) projecting to b. This shows that the

map 7 is surjective and the sequence exact. O

The following equivalence is also described in [25].

Lemma 2.1.25. Splittings of double vector bundles are equivalent to horizontal
lifts o, which are splittings of the exact sequence of C°°(M)-modules (2.13]).

Proof. Given a linear splitting 3, we define the lift for b € I'(B) and a,, € A
over m € M by op(b)(an) := X(am,b(m)). Since ¥ is a vector bundle morphism
over A, this defines a linear section in T'% (D). Since X is additionally a vector
bundle morphism over B we have also og(b+b') = op(b) + op(b') and op(fb) =
(ga)* fop(b) and op is indeed a morphism of C*° (M )-modules.

Conversely, given a horizontal lift op splitting the sequence , we define for
any (@, by) € A Xy B the splitting by X(am, by) := op(b)(am), where b € T'(B)
is any section such that b(m) = b,,. To show that this does not depend on the
choice of the section b we choose a neighbourhood U of m € M such that Bly is a

trivial vector bundle. Choosing local basis sections 1, .. ., ¥ for B|y we can write
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any two sections by, by of B with by(m) = ba(m) = by, as a sum b; = Z?Zl f;ﬂj for
suitable functions f; € C°°(U). Using that op is a morphism of C°°(M)-modules
it then follows that og(b1)(am) = op(b2)(am) and ¥ is well-defined. That X
is a vector bundle morphism over B follows directly from the fact that op is a
morphism of C°°(M)-modules. Additionally, ¥ is a vector bundle morphism over
A since op(b) is a linear section of D — A for any b € I'(B). Thus X is a double

vector bundle morphism and a linear splitting. O

Because of the symmetry of 3 thus a horizontal lift op is therefore also

equivalent to a lift o4: T'(4) — T'5(D), splitting the sequence
0 — T(Hom(B, C)) % (D) =5 T(A) = 0.

Given two linear splittings 31, 9 with change of splitting given by ¢ € I'(A* ®
B*® (C) =ZT'(Hom(B,A* ® C)) = I'(Hom(A, B* ® C)) the corresponding lifts are

related by ok (b) — oL (b) = $(b) and oy (a) — oy (a) = d(a).

The following is an important example of a linear splitting.

Example 2.1.26. Consider the tangent double of a vector bundle (TE;TM, E; M).
As seen in Example a linear section of TE — E over X € I'(TM) corre-
sponds to a derivation on I'(E) with symbol X. A horizontal lift oppr: T(TM) —
T'%(TE) is thus equivalent to a choice of a derivation Vx of T'(E) with symbol
X for every X € I'(T'M), depending linearly on X. Thus linear splittings of TE
correspond to TM-connections V on E. The corresponding lift 0¥ := opar is given
for X e (TM) and ey, € E,, by the formula

oV (X)(em) = Trme X (m) —p % (em + £V x€) (2.14)
t=0

where e is any section of E such that e(m) = ey,.

This allows us to express properties of TE, such as the Lie bracket in terms of
the Lie bracket on T M and the connection. Let us fix a connection V as above and
denote the lift by o¥. We write Ry € T'(Hom(TM ® TM, E)) for the curvature of
the connection. Then for any X,Y € I'(T'M) and e, eq, ez € I'(E) we have

[oV(X),0V(Y)] = oV([X,Y]) - Ry(X,Y)" (2.15)
[0V(X),e] = (Vxe)! (2.16)
le]. el =0, (2.17)

which follows directly from the description of linear and core sections in Example

2.1.14. See also [25)].
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Example 2.1.27. Given a decomposition S: A Xy B X3 C — D of a double
vector bundle (D; A, B; M), the dual of S as a vector bundle morphism over A is
again an isomorphism of double vector bundles S': D% — A xp C* x5y B*. The
inverse of this is a decomposition of D%. For details on duals of double vector

bundle morphisms we refer to [51).

This observation together with Example shows in particular that also
splittings of (T*E; E, E*; M) are in one-to-one correspondence with linear T M -

connections on E.

With the previous results, it is simple to prove the existence of decompositions

as follows.

Proposition 2.1.28. Every double vector bundle is non-canonically isomorphic
to a trivial double vector bundle A < B X< C with sides A and B and core C.

Proof. Let (D; A, B; M) be a double vector bundle with core C. as shown by
Lemma [2.1.22] and Lemma a decomposition of D is equivalent to a splitting
of the short exact sequence of sheaves of C°°(M )-modules

0 = T(Hom(A4,C)) L T4 (D) 5 T(B) - 0.

Since both B and Hom(A, C) are vector bundles over M, the sheaves I'(B) and
I'(Hom(A, C)) are locally free and finitely generated. For every point p € M
there is an open neighbourhood U such that I'i;(B) and I'y(Hom(A, C)) are free
C>°(U)-modules. Free modules are especially projective and an R-module P over
a commutative ring R is projective if and only if for every surjective R-module
homomorphism 7: M — P there is a right inverse o: P — M, that is m oo = idp.
Thus there is a splitting o, of the sequence above restricted to U. As C*°(U) is
a commutative ring, the category of C°°(U)-modules is abelian and the splitting of
the short exact sequence is equivalent to FﬁHU(D) being isomorphic to a direct sum
of the free C°°(U)-modules I'yy(Hom(A, C)) and I'y(B) by the splitting lemma.
Hence FQ‘U(D) is itself a free C*°(U)-module and the sheaf T'% (D) is therefore
locally free and finitely generated and thus isomorphic to the sheaf sections of a
vector bundle B. Now a splitting op of the sequence is equivalent to a splitting of

the following short exact sequence of vector bundles:
0 — Hom(A,C)) — B — B — 0.

Such a splitting can always be found, for example by choosing a Riemannian
metric on B and identifying B with the orthogonal complement of the image of
Hom(A4, C).
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Thus for every double vector bundle (D; A, B; M) there exists a horizontal lift
oa: T'(B) — T%(D) and therefore a decomposition S: A xy; B xp C — D. [

2.2 Lie algebroids

Lie groupoids and Lie algebroids are the many-point versions of Lie groups and
Lie algebras. Groupoids were first introduced to differential geometry by Charles
Ehresmann ([20, 21}, 22] and then subsequently studied by Jean Pradines [58, [59]
61, [60], Lie groupoids have later been studied due to their close connection with
Poisson geometry for example by Alain Coste, Pierre Dazord and Alan Weinstein
in [I2] and by Weinstein in [70]. A comprehensive overview of the theory of
Lie groupoids and algebroids can be found in Mackenzie’s books, [47, [51]. More
recently, the problem of integrability of Lie algebroids, that is the existence of a
corresponding Lie groupoid or Lie’s third theorem for algebroids, has been solved
by Marius Crainic and Rui Loja Fernandes in [I5], 16]. In this thesis we will mainly
work with Lie algebroids. However, we include the definition of a Lie groupoid here
since one main motivation behind the study of Lie algebroids is that they arise as
infinitesimal version of Lie groupoids. Furthermore, the results about generalised
complex Lie algebroids in Section can be applied to analogous results about the
integrating Lie groupoids making use of results of Madeleine Jotz Lean, Mathieu

Stiénon and Ping Xu in [4I]. This is future work.

2.2.1 Definitions and examples

Definition 2.2.1. A Lie groupoid over a smooth manifold M is a smooth man-
ifold G equipped with two surjective submersions s: G — M and t: G — M, called
source and target projection, with a smooth inclusion 1: M — G and with a smooth
partial multiplication pu: G Xy G — G, where G X3 G :={(g,h) € G x G|s(g) =
t(h)} C G x G, such that the following axioms are satisfied:

1. s(p(g, h)) = s(h) and t(u(g, h)) = t(g) for all (g,h) € G xu G,
2. u is associative,

3. s(1(z)) = t(1(z)) = = for all z € M,

4. (g, 1(s(9))) = g = n(1(t(g)), 9) for all g € G,

5. for every g € G there is g71 € G, s.t. s(g7!) = t(g), t(g™1), u(g,g7 ') =
1(t(9)) and p(g™", g9) = 1(s(g))-
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We think of the elements of M as the objects and of elements of G as arrows

between those objects, which we can compose if the source and target coincide.

Definition 2.2.2. A Lie algebroid over a smooth manifold M is a vector bundle

A — M, together with a vector bundle morphism
p: A—TM, (2.18)
called the anchor, a R-bilinear, skew-symmetric bracket on sections of A
[,]: T(A) xT'(A) - T'(A), (2.19)
that satisfies the Jacobi identity and the Leibniz identity
[a, fb] = fla, b] + p(a) ()b, (2.20)
for all a,b e I'(A) and f € C>®(M).
The following property is sometimes stated as part of the definition of a Lie
algebroid, however it already follows from the other axioms.

Lemma 2.2.3. Let A be a Lie algebroid over M. For all a,b € I'(A) we then have
p([a,b]) = [p(a), p(b)] -

Proof. Fix a,b € I'(A). Since the bracket satisfies the Jacobi identity, we have for
any ¢ € I'(A) and any f € C®°(M)

0 = [[a,b], fe] + [[fe, al, b] + [[b, fel, a]

where we made use of the Leibniz identity, skew-symmetry and again the Jacobi
identity. Since ¢ and f were arbitrary, it follows that p([a,b]) = [p(a), p(b)]. O

The following two examples are in some sense the extremal cases of Lie alge-

broids, with the anchor being the identity or vanishing.

Example 2.2.4. The tangent bundle TM of a manifold M is a Lie algebroid,
where the anchor is the identity and the Lie bracket is the Lie bracket of vector
fields.
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Example 2.2.5. A Lie algebra bundle M x g is a Lie algebroid, with trivial anchor

and fibrewise bracket.

A Lie algebra is the same as a Lie algebroid over a point, i.e. where M = {x}.

In [51] and also in [I6] morphisms of Lie algebroids are defined in the general
case of Lie algebroids over different base manifolds. This gives rise to the category
of Lie algebroids. The problem with defining such a morphism is that in general
we can not push forward any section. However, in this thesis we will only deal with
the special case of morphisms where the underlying vector bundle morphism is
already an isomorphism over a diffeomorphism on the base. This case is naturally
considerably easier since we can push forward any section. We give here only the

definition in this special case and refer to [51] or [16] for the general case.

Definition 2.2.6. Given two Lie algebroids A — M and B — N with anchor
maps pa and pp and brackets [-,-|4 and [-,-|p and a vector bundle morphism
(®,0): A — B. Assume that any section a of A can be pushed forward to a section
®ia of B, such that ® oa = (®ia) o ¢. Then (,p) is a morphism of Lie
algebroids from A to B if and only if for any a1, a2 € T'(A) we have

1. ppo®=Typopyu,
2. ®o([ar,as]a) = [d},ds]op.

Example 2.2.7. Given a Lie algebroid A, the tangent prolongation Lie alge-
broid of A is the following Lie algebroid structure on the vector bundle TA — T M.
Since T'A is a double vector bundle as in Example the space of sections
Ty (TA) is generated by core sections and linear sections. Linear sections are
given by Ta: TM — TA for sections a € I'(A), whereas core sections are given by
al: TM — TA for a € T'(A) defined by

af(vm) = 054 + ta(m). (2.21)

bty
The anchor pra of the Lie algebroid TA — TM is a vector bundle morphism
from TA — TM toT(TM)— TM, where on T(T' M) the vector bundle structure
is the canonical projection pras of the tangent bundle over the smooth manifold
TM. It is given on linear sections by pra(Ta) = [m] and on core sections by
pra(a’) = (p(a))'. Note that [p(a),-] is a derivation of T(TM) and pra(Ta) is
the corresponding linear vector field (see also Example . The Lie bracket is
defined by

[Tar, Tas] = Tlai,as],
[Tal,ag] = [ahaz]T, (2.22)
[CLJ{, a;] =0.
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More details and proofs on this construction can be found again in Mackenzie’s
book [51).

Equivalently, the tangent prolongation Lie algebroid is obtained by applying
the tangent functor to all the structure maps in the Lie algebroid A and for the
anchor composing it with the canonical flip J: TTM — TTM interchanging the
two vector bundle structures on TTM — T M.

Lie algebroids are closely related to Poisson geometry. For instance we have

the following example of a Lie algebroid.

Example 2.2.8. Let P be a Poisson manifold with Poisson bracket {-,-} on
C>®(P). The induced morphism w*: T*P — TP is the anchor for a Lie algebroid
structure on the cotangent bundle T* P defined by additive and Leibniz extension
of the bracket

[df,dg] = d{f, g},

where f,g € C*°(P). Equivalently, with the bi-vector field 7 the bracket can be
described as follows for wy,wy € I'(T*P)

[wl,wg] = ﬁﬂ,ﬁwlbk.)Q — £7ruw2w1 — d(ﬂ(wl,WQ) .

This classical example can be found in [12] and is also described in [53] and [51).

Furthermore, it is shown in [53] that Lie algebroid structures on A — M are

equivalent to linear Poisson structures on A* — M as follows.

Example 2.2.9. A Poisson structure on a vector bundle E is called linear if
nt: T*E — TE is a vector bundle morphism over some p: E* — TM. Then p is

the anchor for a Lie algebroid structure on E* with bracket given by

([ex. ezl €)= (w (e, ey ) (e)

Conversely, a Lie algebroid structure A — M with anchor p induces a linear Poisson
structure 7t : T*A* — TA* on A* by setting for a € T(A) and 6 € T(T*M)

w(dly) = [a. ], 7Hgh0) = (0'(0).

—

As before [a, -] denotes the linear vector field on A* corresponding to the derivation
[a,] of T'(A) over p(a).

The previous examples allow to define a Lie algebroid structure on the vector
bundle T*A — A* for a Lie algebroid A. This has been done by Mackenzie and
Xu in [54] and plays an important role in the study of Lie bialgebroids and Poisson

groupoids.
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Example 2.2.10. Let A — M be a Lie algebroid. Consider A* as a Poisson
manifold with the linear Poisson structure described in Ezample [2.2.9. Then
T*A* — A* is a Lie algebroid with the cotangent Lie algebroid structure described in
Ezample[2.2.8 The reversal isomorphism of double vector bundles R: T*A* — T*A
from Proposition [2.1.18 thus defines a Lie algebroid structure on T*A — A*. On
sections of the types mentioned in Proposition [2.1.18 the anchor and bracket is

then given by extension of the previous examples as follows.

prea(a®) = L, prea(07) = (p'O)T,
[af?, ) 1B, (667 = (L0, [6],60]=0.

ay, Qg

(2.23)

= [CLl,CLQ

This description can also be found in the appendiz of [30].

Now we can combine the structure of TA and T*A in order to define a Lie
algebroid structure on the generalised tangent bundle over a Lie algebroid. This is

also described for example in [30].

Example 2.2.11. Given a Lie algebroid A — M, then the generalised tangent
bundle TA®T* A has a Lie algebroid structure over T M @& A*. This is obtained from
the Lie algebroid TA — TM (Example and the Lie algebroid T*A — A*
(Example by taking the direct product TA x T*A — TM x A* and then
the pullback to the diagonal Ay — Ay to obtain a Lie algebroid structure on the
fibred product TA x4 T*A — TM X A*.

Analogously to the Lie derivative, interior and exterior derivative in the case
of the tangent bundle and differential forms we can define a Lie derivative, interior
derivative and Lie algebroid differential for general Lie algebroids. The Lie algebroid
differential then gives rise to a cochain complex defining Lie algebroid cohomology.
Details about these constructions and properties of these maps can again be found
n [51]. We recall the definitions.

Definition 2.2.12. Given a Lie algebroid A — M with anchor p and bracket
[-,:], we write Q(A) := T'(AA*). We define the Lie algebroid differential
da: QF(A) = QFFL(A) by setting for w € QF(A)

(daw)(ag, ..., ax) := Z( p(a;)w(ag, ..., ... ax)

R . (2.24)
+Z D' w([ai, aj], a0, -« oy @iy vy @Gy ag) -
1<J

For a section a € T'(A) we furthermore define the Lie derivative L2: QF(A) —
QF(A) for w € QF(A) by

(Low)(at,...,ax) = pla)w(ai,...,ax) — Zw(al,..., la,a;],...,a;) . (2.25)
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The interior derivative 1,: Q*1(A) — QF(A) is given for w € QFF1(A) by
(tew)(ar, ..., a;) == w(a,a1,...,ax). (2.26)

Another concept arising from Poisson geometry is Lie bialgebroids. They were
introduced by Kirill Mackenzie and Ping Xu in [53] as the infinitesimal counterpart

to Poisson groupoids.

Definition 2.2.13. Given Lie algebroids A and A* which are dual as vector
bundles. Then (A, A*) is a Lie bialgebroid if for all X, Y € T'(A)

d.[X,Y] = Lxd.Y — Lyd. X, (2.27)
where dy is the Lie algebroid differential of A*.

Later it was shown in [45] by Liu, Weinstein and Xu that Lie bialgebroids are
equivalent to two transversal Dirac structures in a Courant algebroid, the Drinfeld
double of the Lie bialgebroid. We recall this structure in Example

2.2.2 Linear connections

In the studies of Lie algebroids linear connections play an important role as flat
connections define representations of Lie algebroids. In this section we recall
some standard definitions about linear connections. Since we will later also need
connections of only anchored vector bundles we define connections in greater
generality. All the definitions in this sections can be found in several places, for

example in [I].

Definition 2.2.14. Given a vector bundle ) — M with an anchor map p: Q —
TM and a vector bundle B — M, then a linear QQ-connection on B is an

R-bilinear map

V:T'(Q) xI'(B) = I'(Q)

(@) o Vb, (2.28)

such that for any ¢ € T(Q), b € T'(B) and f € C*°(M)
1. Vb= fVyb,
2. Vafb=p(q)(f)b+ fVqgb.

If Q is additionally a Lie algebroid (or later dull algebroid as in Definition (2.3.14),
the curvature of V is Ry € T'(Q* ® Q* ® B*) defined by

RV(qlv Q2)(b) = vlhvlhb - vlhv(hb - v[ql,qﬂb' (2'29)
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Since the bracket of a Lie algebroid is skew-symmetric we have in that case Ry €
0%(Q, B*). In the case of a dull algebroid as in Definition [2.53.14), this is not
guaranteed. A connection is called flat if Ry = 0.

Definition 2.2.15. A representation of a Lie algebroid A on a vector bundle

E is a flat A-connection on E.

The following notion was defined by Tahar Mokri in [56] and also studied by
Jiang-Hia Lu in [46] and Kirill Mackenzie in [52].

Definition 2.2.16. A matched pair of Lie algebroids consists of two Lie
algebroids (Apa,[-]a) and (B, pg, |-, |B) over M, with representations v of A
on B and % of B on A, satisfying for all a,a1,a9 € T'(A) and b,by,be € T'(B) the
following relations:

1. [pa(a), p®)rar = —pa(Vya) + pp(Vab),

2. Valbr,balp = [V abi.bol g + [b1, Vabelp + ggbwbl - eﬁlabQ ;
3. %b[al, ag]A = [%bal, GQ]A + [al, %bag]A + %g%bal — $?a1ba2 .

The importance of the notion of matched pairs of Lie algebroids stems from

the following theorem, proved in [56].

Theorem 2.2.17. Given a matched pair of Lie algebroids A and B as above, then
there is a Lie algebroid structure A< B on A ® B, called the matched sum Lie
algebroid, which is defined as follows. The anchor is given for a € T'(A) and
beI'(B) by

p((a,b)) := pa(a) + pp(b) (2.30)

and the bracket is given for a1,as € I'(A) and by,by € T'(B) by

[(al,bl), (a2,b2>] = ([al,ag]A+$blag—$b2a1, [bl,bQ]B—i-?albg—?@bl) . (2.31)

Conversely, given a Lie algebroid structure on A @ B such that both A= A®0
and B = 0& B are Lie subalgebroids, then the equation

[(a,0), (0,5)] = (Vya, Vab), (2.32)

fora € T'(A) and b € T'(A) defines representations ? of A on B and % of B on
A, making A and B into a matched pair of Lie algebroids.
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Definition 2.2.18. Let Q be an anchored vector bundle over M and V a linear
Q-connection V on a vector bundle B — M, the dual connection V* is a

Q-connection on B*, defined by the equation

<v;/87 b> = p(Q) <B: b> - <ﬁ7 vqb> ) (233)
for any ¢ € T(Q), b e T'(B), f € T'(B*).

Definition 2.2.19. Let A be a Lie algebroid over M and E be a vector bundle over
M, the space of E-valued forms on A is given by Q*(A; E) :=T'(A\*A*® E),
and an A-connection on E induces a differential dv: QF(A; E) — QYA E) by
setting for w € QF(A; E)

(dyw)(ag,...,a) = Z(—l)ivai (w(ao, 7> N ak))

7
+ Z(—l)”jw([ai,aﬂ,ao, ey Qi QG ag)
1<J

for any ag, ... ,ar € T(A).

Definition 2.2.20. Let Q be an anchored vector bundle and VE and VC linear
Q-connections on B and C, respectively. Then this induces a linear Q-connection
viom on Hom(B, C) by

Vi (¢) =¢oVE —vTog,

for any g € T'(Q) and ¢ € I'(Hom(B,(C)).

2.2.3 Representations up to homotopy

Representations up to homotopy of Lie algebroids were introduced by Camilo Arias
Abad and Marius Crainic in [I] as a generalisation of Lie algebra representations
to general Lie algebroids. The idea of defining representations up to homotopy
goes back already to Sam Evans, Jiang-Hua Lu and Alan Weinstein, who defined
similar representations in [23]. It was shown by Alfonso Gracia-Saz and Rajan
Mehta in [28] that after the choice of a decomposition VB-algebroid structures on
a double vector bundle correspond to 2-term representations up to homotopy of
the side algebroid. Later Thiago Drummond, Madeleine Jotz Lean and Cristian
Ortiz proved in [19] that this correspondence also holds on the level of morphisms.
We recall in this section the definition of representations up to homotopy and the
aforementioned correspondence. Let in this section A always be a Lie algebroid

over M.
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The following definitions are given in [I] and recalled in [I9]. Given a Z-graded
vector bundle £ = @z Ej, the space Q(A; E) :=T'(AA* ® E) has a total grading
defined by

QA E), = P T(NA* ® E)). (2.35)
i+j=k

Definition 2.2.21. Let A be a Lie algebroid over M. A representation up to

homotopy of A is a graded vector bundle E and an operator
D:Q(A;E)e — QA E)et1, (2.36)
satisfying D? = 0 and the graded derivation rule
D(wAn) =da(w) An+ (=1)fw A D(n), (2.37)
for any w € Q*(A) and n € QA E).

Definition 2.2.22. Given two such representations up to homotopy (E, Dg) and
(F,Dp) up to homotopy of A, a morphism of representations up to homotopy is a

degree zero, Q(A)-linear map
O: QA E) — QA F),
such that ® o D = D o ®.

Because of the results of [28] and [19], 2-term representations up to homotopy
are of particular relevance to us, that is when the graded vector bundles are
concentrated in degrees 0 and 1. It is also shown in [I] that such a 2-term
representation up to homotopy of A on Ey @ FE1 is equivalent to the following data.
We use here the sign convention of [19].

1. a vector bundle morphism 0: Ey — E1,

2. linear A-connections V° and V! on Ej and E; such that 0o V0 =V91o09,

3. an element K € Q?(A;Hom(FE, Ep)), such that

L4 deomK - 0,
[ ] Rvo = —K O a and
] va == —a [©] K .

Such a 2-term representation up to homotopy will thus also be denoted by the
tuple (9,V? V! K) as above, called the structure operators of the 2-term

representation up to homotopy. According to [I9] and [I] a morphism between two
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such 2-term representations up to homotopy (0, VQE, V}E, Kg)on E=Ey® E;
and (O, V%,V Kp) on F = Fy @ Fy of the same Lie algebroid A — M consists
of the following data: A triple (¢g, ¢1,®), where ¢y : Ep — Fj for k = 0,1 are
bundle maps and ® € Q! (A4; Hom(E}, Fp)), satisfying for all a € T'(A)

1. w100 =90royq,
2. Vi (gg) = ®q 0 9p,
3. VHom(p)) = 9p o d,,

4. deom(I):gDoOKE—KFO(pl.

Now we will recall the correspondence between VB-algebroid structures on
a decomposed double vector bundle and 2-term representations up to homotopy
shown in [28, 19]. The following definition of VB-algebroids can be found in [2§]

and the definition of morphisms can be found in [19].

Definition 2.2.23. A VB-algebroid is a double vector bundle (D; A, B; M),
where additionally D — B is a Lie algebroid, such that the anchor pp: D — TB
is a vector bundle homomorphism over some pa: A — T M and the Lie bracket of

D is linear, that is
L. [P5(D),T5(D)] € Tg(D),
2. [[5(D),T3(D)] C T3(D),

3. I'4(D),I'g(D)]=0.

A morphism of VB-algebroids between two VB-algebroids (D; A, B; M) and
(D'; A, B'; M) over the same base M is a morphism (V;14,1vp;idy) of double
vector bundles, such that (V;vp) is additionally a Lie algebroid morphism.

The Lie algebroid structure on D then also induces a Lie algebroid structure
on A — M with anchor p4 and bracket defined as follows: For linear sections
¢, € T5(D) over a,b € T(A) then [¢,(] is linear over [a,b]4. With this structure
A is called the side algebroid of D.

In [2§] it is shown that there is a correspondence between VB-algebroid struc-
tures on a decomposed double vector bundle A x s B X s C' with side algebroid A
and 2-term representations up to homotopy of A onto Cg & By}, the graded vector
bundle with C' in degree 0 and B in degree 1. In [19], it is shown that this also
holds for morphisms and thus gives an equivalence of categories. More precisely,

the following statements are proved.
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Theorem 2.2.24. Let A — M be a Lie algebroid, B — M and C — M be vector
bundles. There is a one-to-one correspondence between VB-algebroid structures on
A Xy B xap C with core C and side algebroid A and 2-term representations up to
homotopy of A on Clg) @ Byy.

Let (D=AXy Bxp C;A,B; M) and (D' = A’ xp B' x5 C'; A, B'; M) be
two VB-algebroids. A double vector bundle morphism (V;4,vp;idys) from D
to D" with core morphism ¢ is a VB-algebroid morphism if and only if 1 is a
Lie algebroid morphism and (¢, ¥, ®) are the components of a morphism of the
corresponding 2-term representations up to homotopy. Here ® € Q' (A, Hom(B, C"))
is defined by the observation that any double vector bundle morphism ¥ as above

is given fora € A, b€ B and ¢ € C over m € M by

(av b, C) = (wA(a)ﬂ wB(b)ﬂ wc(c) + (ID(% b)) )
for some ® € T'(A* @ B* @ ().

This correspondence is described in [19] as follows. Given a 2-term representa-
tion up to homotopy (9, VY, VB K) of A on Clo) ® Bpy), let D= Axy B xpy C
and let o: T'(A) — I'g(D) be the canonical lift ¢ = o4 corresponding to the
decomposition idp according to Lemma Then the Lie algebroid structure
of D — B is given by the anchor

pp(o(@) = VE € ¥(B), 2.38)
po(ch) = ()" € x4(B),
and the bracket
[o(a1), o(az)] = <[a1,a2]> +K(a1,a2) .
[o(a), '] = (VST (2.39)
BRI

where a,a1,a2 € T'(A) and ¢, c1,co € T(C).

Conversely, given a VB-algebroid structure on D = A x5 B Xy C,
defines a linear A-connection V! on B and a vector bundle morphism 9: C — B.
Furthermore defines a linear A-connection VY on C and a form K €
0?2 (A,Hom(B, C)) and together, these form the structure operators of a 2-term
representation up to homotopy of A on Cig @ Byy).

2.3 Courant algebroids and Dirac structures

Irene Dorfman ([18]) and Theodor Courant ([13]) introduced independently a
bracket on the generalised tangent bundle TM & T*M. Courant showed how
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symplectic and Poisson structures can be interpreted as special cases of Dirac
structures, which depend on this Courant-Dorfman bracket. In this section we will
recapitulate the basic definitions and examples of Courant algebroids and Dirac

structures.

2.3.1 Courant algebroids

Definition 2.3.1. A Courant algebroid over a smooth manifold B is a vector

bundle E — B endowed with an anchor p: E — T B, an R-bilinear bracket
[-,-]: T(E) x I'(E) — I'(E) (2.40)
and an R-bilinear symmetric non-degenerate fibrewise pairing
() ExpE =R, (2.41)

such that for all ey, ea,e3 € T'(E)

1. [ex, [e2, es]] = [le1, e2]l; es] + [ez2, [e1, es]]

2. p(e1)(ez, e3) = ([e1, e2], e3) + (ea, [e1, e3]) ,

3. [er,ea] + [e2, e1] = Dier, ea), where D = pt od: C*°(B) — I'(E).

The two properties in the following lemma are often stated as part of the

definition of a Courant algebroid, but they already follow from the previous axioms

and are therefore redundant.

Lemma 2.3.2. Given a Courant algebroid E — B with bracket [-,-] and anchor
p we have for all e1,eq € T'(E) and f € C*(B)

4. p([er, e2]) = [p(er), ple2)],
5. [er, fea] = fler, e2] + ple)(f)ez.

Proof. To show the Leibniz identity [5| we use property [2] for sections ey, fes and

€3:

0= —p(e1)(fea, e3) + ([e1, fea], e3) + (fe2, [e1, e3])
= f(—ple1)(e2, e3) + ([e1, e2], e3) + (e2, [e1, e3]))
— ple1)(f)(e2, e3) + ([e1, fea], e3) — f([er, e2], e3)
= ([e1, fea] — fle1, ea] — ple1)(f)ez, e3) .
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Since this holds for all sections e3, we conclude 5] To show [4] we use [I] with sections

e1,es and fes and make use of the Leibniz identity:

0 = [ex, [e2, fes]] — [[e1, e2], fes] — [e2, [e1, fes]]
= f(le1, [e2, es]] — [[ex, e2], es] — [e2; [e1, es]])
+ per)(pe2)(f))es + pler(f))[ez, es] + ple2)(f)[er, es]
— ple2)(pler)(f))es — plea(f))ler, es] — pler)(f)ez2, es]
— p([e1. e2])(f)es
= ([p(e1), p(e2)] — p([e, e2])) (f)es -

Since this holds true again for all f € C°°(B) and all e3, we conclude that
holds. O

The standard example is the bundle TM = TM @& T*M over M, where the

Courant algebroid structure is defined as follows:

Example 2.3.3. The standard Courant algebroid over a smooth manifold M
is the generalised tangent bundle TM =TM & T*M with the anchor p = prryy,
the Courant-Dorfman bracket, defined by

[[(Xv 0)7 (Y7 77)]] = ([Xa Y]7 ‘CXU - Lyde) ’ (242)
and the canonical symmetric pairing, defined by
((X,0), (Y, n) :=0(Y) +n(X), (2.43)

where X,Y € T(TM) are vector fields on M and 6,1 € QY (M) 1-forms on M.

The following was introduced in [45].

Example 2.3.4. Let (A, A*) be a Lie bialgebroid. The Drinfeld double of
(A, A*) is the vector bundle C = A & A* equipped with a Courant algebroid
structure as follows. The anchor for a € I'(A) and o € T'(A*) is given by p(a, ) :=

pa(a) + pax(«). The pairing is defined to be {(a, ), (b, 8)) = (a,B) + (b,a) and
the bracket is given by

[(a, @), (b, 8)] = ([a,0]a + L£2d — 1pdara, [a, Blas + L35 — udaa)  (2.44)

Note that Example[2.3.3 is a special case of this, where T* M is equipped with the

trivial Lie algebroid structure and T M with the canonical one.

The standard Courant algebroid over M is a special case of the previous
example, where the Lie algebroid is A = T'M with the standard Lie algebroid

structure and the Lie algebroid structure on A* = T*M is the trivial one.



2.3. COURANT ALGEBROIDS AND DIRAC STRUCTURES 35

2.3.2 Dirac structures

Now we will give the definition of Dirac structures in Courant algebroids, for a
more detailed review of Dirac geometry we refer to Henrique Bursztyn’s brief

introduction in [6].

Definition 2.3.5. A Dirac structure in a Courant algebroid E is a subbundle
D CE such that

1. D is mazimally isotropic with respect to the pairing, i.e. D = D+ .
2. the space of sections is closed under the Courant bracket, i.e.

[T(D), (D)) € T(D).

In the case of the standard Courant algebroid TM over M we speak of a Dirac
structure on M. Special cases of those are presymplectic structures, Poisson struc-
tures and regular foliations. This is another example of how different integrability

conditions can be unified using generalised geometry.

Example 2.3.6. Consider a presymplectic structure, that is a closed 2-form
w € Q2(M). This is equivalent to a vector bundle morphism «°: TM — T*M
which is skew-symmetric in the sense that (w’)! = —w”. The correspondence is

given by wl’(X) := 1xw. The graph of w° is a Dirac structure D,, in TM & T*M.

Example 2.3.7. A Poisson structure is a skew-symmetric vector bundle morphism
7t T*M — TM, such that the corresponding Poisson bracket satisfies the Jacobi
identity. The graph of © is then again a Dirac structure Dy in TM & T*M.

Example 2.3.8. Given a regqular distribution on M, that is a subbundle F* C T M,
denote the annihilator of F' in T*M by F°. Then Dp := F @& F° defines a Dirac
structure if and only if F is involutive, that is the space of sections I'(F) is closed
under the Lie bracket on T M. According to Frobenius’ theorem this is equivalent

to the existence of a foliation integrating F'.

2.3.3 VB-Courant algebroids

Definition 2.3.9. A metric double vector bundle is a double vector bundle
(D; A, B; M) equipped with a symmetric, non-degenerate fibrewise pairing D X g
D — R, such that the induced map D — D% is an isomorphism of double vector

bundles. In particular the core is isomorphic to A*.



36 CHAPTER 2. BACKGROUND

Definition 2.3.10. A VB-Courant algebroid (E;Q, B; M) is a metric double

vector bundle
E B

Q* , (2.45)

N

Q M

such that E — B is a Courant algebroid, the anchor pg: E — T'B is linear, i.e. a
morphism of double vector bundles over some morphism pg: @ — TM and the

Courant bracket is linear, that is

1. [I5(E),IR(E)] € T5(E),
2. [T5(E),T§(E)] € TG(E),
3. [I'GE),I'E)]=0.

Example 2.3.11. The standard Courant algebroid over a vector bundle E is a
VB-Courant algebroid where E=TE®T*E, Q=TM ®& E* and B=F.

Example 2.3.12. The tangent double of a Courant algebroid E — M is a VB-
Courant algebroid, where E =TE, Q = FE and B =TM. The anchor of TE is
giwven by JoTpp: TE — T(TM), where J is the canonical flip, exchanging the
two vector bundle structures Tpys and prpyy of TTM — TM. Compare also the
tangent prolongation Lie algebroid in Example [2.2.7].

Definition 2.3.13. Given a VB-Courant algebroid (E;Q, B; M), a VB-Dirac
structure in E is a sub-double vector bundle (D;U, B; M) with U C Q such that
D — B is a Dirac structure in E — B.

In the study of VB-Courant algebroids also the side bundle () inherits a bracket
on its space of sections depending on a choice of linear splitting. However, this
bracket fails to satisfy the axioms of a Lie algebroid, in particular the bracket is
not necessarily skew-symmetric and does not have to satisfy the Jacobi identity.
For this reason, Madeleine Jotz Lean defined a weaker form of algebroid, called a
dull algebroid in [36].

Definition 2.3.14. A dull algebroid over M is a vector bundle Q — M endowed
with an anchor p: Q — TM and an R-bilinear bracket

[ T(Q) x T(Q) = T(Q), (2.46)
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that is compatible with the anchor, that is p([q1, q2]) = [p(q1), p(q2)] for all q1,q2 €
I'(Q) and satisfies the Leibniz identity in both terms, that is for all q1,q2 € T(Q)
and f,g € C*°(M) we have

[fa1,99] = folar, a2] + fr(a1)(9)q2 — gp(a2)(f)ar - (2.47)

Note that a dull algebroid is a Lie algebroid if and only if the bracket is
additionally skew-symmetric and satisfies the Jacobi identity. In the case of a
Lie algebroid the compatibility with the anchor follows from the Leibniz and the
Jacobi identity as shown in Lemma Since the dull bracket is not required to
satisfy the Jacobi identity, we have to impose the compatibility of the anchor with

the bracket here as an extra condition.

Dual to dull brackets are Dorfman connections, which play an important role
in the study of Courant algebroids. In some sense they are the Courant algebroid
equivalent of linear connections for Lie algebroid. For instance linear splittings of
the standard Courant algebroid over a vector bundle E are in correspondence with
(TM @ E*)-Dorfman connections on E & T*M. This is the content of Theorem
which Madeleine Jotz Lean proved in [36]. We first recall the definition of
a Dorfman connection of an anchored vector bundle on its dual, which is a slightly
less general case than the definition of [36] where also preduals are considered.

However, for our purposes the definition with the dual bundle is sufficient.

Definition 2.3.15. Let Q — M be an anchored vector bundle with anchor p and
Q* its dual vector bundle. A Q-Dorfman connection on Q* is an R-bilinear
map

A:T(Q) xT'(QY) —- T'(QY), (2.48)
such that for all ¢ € T'(Q), T € I'(Q*) and f € C°(M) we have

1. Apgm = fAGT + (g, 7)ptdf,
2. Dg(f7) = fAGT + pla)(f)T,
3. Dg(p'df) = p'd(L ) f)-

The following lemma shows the duality between QQ-Dorfman connections on

Q* and dull algebroid structures on () and can be found in [36].

Lemma 2.3.16. Given a vector bundle QQ with an anchor p: Q — T M, then a
Q-Dorfman connection on Q* is equivalent to a dull algebroid structure on QQ, with

the correspondence given by

(Aq7,a2) = p(@1)(7,a2) — (7. [a1, @2]a) (2.49)

for qi,q2 € T(Q) and T € T(Q*).
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Proof. Given such a Dorfman connection A, (2.49) defines a bracket [-,-]a on
I'(Q*) since the pairing is non-degenerate. We can easily compute that for any
q1,92 € T(Q) and f,g € C*°(M) and 7 € T'(Q*) we have:

((fa1,992)a,7) = p(far1)(992, T) — (992, Afq, T)
= fgp(ar)(az, ) + flaz, T)p(q1)(9)
— folaz, Agy7) — 9{qu, 7) (g2, p'd f)
= (f9lar, @2]a, 7) + {fo(ar)(9)az, T) — (gp(a2)(f)ar, T) -

Since the pairing is non-degenerate this shows that the bracket satisfies the Leibniz
identity in both terms. The third axiom of a Dorfman connection is dual to the

compatibility of the anchor with the bracket, that is

plq1) o p(g2) — p(g2) © p(q1) = p(la1, q2]) -

Thus (2.49) defines a dull algebroid on Q.

Conversely, given a dull bracket [-,-]g on I'(Q), (2.49) defines again by non-
degeneracy of the pairing a map A: I'(Q) x I'(Q*) — I'(Q*). The first two axioms
for a Dorfman connection follow immediately from the Leibniz identity for the

bracket by the computation above and the third axiom follows directly from the
compatibility of the anchor with the dull bracket. O

The curvature of a Dorfman connection is defined in [36] analogously to the

curvature of a linear connection.

Definition 2.3.17. Given a Q-Dorfman connection A on Q* as in Definition

the curvature of A is
Ra:T(Q) x I(Q) = I'(Hom(Q", Q%)) , (2.50)
defined by Ra(q1,q2)(T) := Agy DgoT — Dg Ay, T — A go]a T
Dorfman connections are of interest to us since (T'M @& E*)-Dorfman connec-
tions on E @ T*M are in one-to-one correspondence with linear splittings of the

generalised tangent bundle TE & T*E of a vector bundle E. Jotz Lean proved the

following theorem in [36].

Theorem 2.3.18. Let E — M be a vector bundle over a smooth manifold M. A
linear splitting X of TE @ T*E defines a Dorfman connection A: T'(TM @ E*) x
NEeT*M) T (E®T*M) by

(X, 2)(m), e(m)) = (TneX (m), de, l:) — (Axo(€,0)) (e(m)) (2.51)
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and A(x¢)(0,0) = (0, Lx0) for all sections X € T(T'M), e e ['(E*), 6 € T(T*M)
and e € I'(E). Conversely, given such a Dorfman connection, (2.51) defines a

linear splitting and the constructions are inverse to each other.

After the choice of a suitable linear splitting of the underlying double vector
bundle of a VB-Courant algebroid, the additional structure can equivalently be
defined in terms of split Lie 2-algebroids. This has been done by Madeleine Jotz
Lean in [39]. We give here a recollection of this correspondence. First we define

the suitable splittings.

Definition 2.3.19. A linear splitting X: A Xy B — D of a metric double vector
bundle (D; A, B; M) is called Lagrangian if the image of ¥ is isotropic in D.

Jotz Lean furthermore proved that a change of Lagrangian splittings corresponds
to a skew-symmetric section ® € Q2(Q, B*) C I'(Q* ® B* ® Q*).

Split Lie n-algebroids have been defined and studied by Yunhe Sheng and
Chenchang Zhu in [68]. However, we give here the definition of split Lie 2-
algebroids of [39]. The equivalence between their definitions for n = 2 is easy to
see. The definition involves linear ()-connections and their curvature, which are

both defined in Definition 2.2.141

Definition 2.3.20. Let Q — M and B — M be vector bundles. A split Lie
2-algebroid structure on Q @ B* is a tuple (pg, L, [, ], V,w), where pg: Q — M is
an anchor map, [-,-] is a skew-symmetric dull bracket on I'(Q) anchored by pg,

l: B* = @ is a vector bundle morphism, V is a linear Q-connection on B and
w € D3(Q, B*), such that for any 3,1, B2 € T'(B*) and q,q1,q2 € T'(Q) we have

1. VT(BI),BQ + v?(,@z)ﬂl =0 )
2. [a,1(B)] = U(VyB),
3. Jac[[.7.]] =lowé€ QS(Qv Q) ’

4' RV(CIb QQ)b - lt<Lq2Lq1w7 b> )
5. dyxw =0.
In [39] Jotz Lean proved the following correspondence between VB-Courant

algebroid structures and split Lie 2-algebroids when given a Lagrangian splitting

of the underlying metric double vector bundle.

Theorem 2.3.21. Let (E; Q, B; M) be a VB-Courant algebroid and X a Lagrangian
splitting with corresponding horizontal lift og: T(Q) — T'5(E). Then there is a
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split Lie 2-algebroid structure on Q & B* such that for any q,q1,q2 € I'(Q) and
T € I(Q*) we have

ps(oq(q) = V, € I(TB),
[oq(a), 7T = (A,7)T, (2.52)
[og(a1), 0q(a1)] = 0 ([a1, 42]) ~ Re(ar. a2) .

where A is the Dorfman connection which is dual to the dull bracket on @), and

R, € Q*(Q,Hom(B, Q")) is defined by Ru(q1,42)(b) = (tgytq,w, D).

Conwversely, given a Lagrangian splitting > of a metric double vector bundle
(E; Q, B; M) and a split Lie 2-algebroid structure on Q & B*, then (2.52)) defines a

VB-Courant algebroid structure on E.

2.4 Generalised complex structures

Generalised complex geometry was introduced by Nigel Hitchin in [34] as a unifica-
tion of symplectic and complex geometry. It was further developed by his student
Marco Gualtieri in his thesis [30} 31]. Since they simultaneously unify symplectic
and complex structures, generalised complex structures have been studied for their
relation to T-duality — a concept arising in string theory — by Gil Cavalcanti and
Gualtieri in [II]. The relation between generalised complex geometry and Lie
algebroids and Lie groupoids was first studied by Marius Crainic in [14]. Gualtieri
also defined generalised Kéhler structures in [30} [32]. These have been studied for

example by Hitchin in [35] and by Henrique Bursztyn, Cavalcanti and Gualtieri in
[3].
In this section we will give a brief overview of the basic definitions in generalised

complex geometry. Here [E — M always denotes a Courant algebroid as defined in
Definition 2.3.11

Definition 2.4.1. A generalised almost complex structure in E is a vector
bundle morphism J: E — E over idys such that J> = —1 and J is orthogonal with

respect to the pairing, i.e.

(J(e1), J(e2)) = (e1,€2), (2.53)
for all sections e1,eq € E.

Definition 2.4.2. A generalised almost complex structure J: E — E is called

generalised complex structure, if and only if the Nijenhuis tensor of J vanishes,
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that is

0= Ny(e1,e2) :=[e1,ea] — [J(e1), J(e2)]

(2.54)
+ J([J(e1), e2] + [ex, J(e2)]) s

for all sections ey, ez € T'(E).

In the case of a generalised complex structure in the standard Courant algebroid

TM @ T*M we speak of a generalised complex structure on the manifold M.

Example 2.4.3. Given an almost complex structure J: TM — TM the map
J:TM —TM

Jr = (2.55)
0 —Jt

is a generalised almost complex structure. For the integrability condition a simple

computation shows that

NJJ((Xv 0)7 (K 77)) = (NJ(Xa Y)> _<NJ(Xa ')777> + <NJ(Y> )a0>) )

for any X, Y € T'(TM) and 0,7 € T(T*M). Thus Jj is a generalised complex

structure if and only if J is a complex structure on M.

Example 2.4.4. Let w be a non-degenerate 2-form on M. This induces a skew-
symmetric isomorphism w”: TM — T*M. Then the map Ju: TM — TM, defined

by

T = ) (2.56)

is a generalised almost complex structure. Using classic properties of the Lie
derivative, interior and exterior derivative, in particular Lx oty =ty Lx + LX,Y]

and Lx =tx od +d oty we can compute the Nijenhuis tensor for J, and obtain
N, (X, w’V), (Y, " W)) = ((wb)_l(beydw —wiwdw), ewexdw + LyLvdw) ,

for any X, Y, VW € T(TM). Thus J, is a generalised complex structure if and

only if the 2-form w is closed, or in other words defines a symplectic structure.

The two previous examples show how the different integrability conditions for
complex and symplectic structures are simultaneously encoded in terms of the

Courant-Dorfman bracket in generalised geometry.

In his thesis [30], later published in [3I], Marco Gualtieri described an equiv-

alence between generalised complex structures and pairs of transversal, complex
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conjugated Dirac structures in TcM & T5M. In fact, Nigel Hitchin originally
defined generalised complex structures in [34] as such a pair of complex Dirac
structures in TcM © TEM.

The correspondence is the following. For a generalised complex structure J in
a Courant algebroid E, the +i-eigenbundles of the complexification J¢ are complex
conjugated Dirac structures in the complexified Courant algebroid Ec¢. Similarly
every pair of complex conjugated, transversal Dirac structures Dy in E¢ gives rise
to a generalised complex structure J on E such that the ti-eigenbundles of J¢

are given by Dy.

2.5 Complexifications

All the definitions in the previous sections can be extended complex linearly. We
then still consider (real) smooth manifolds and thus consider smooth functions and
bundles, not holomorphic ones. For the sake of completeness we write down here
the straight forward definitions of complex Lie algebroids, Courant algebroids and
complex Dirac structures as we will later need them when considering generalised
complex structures on vector bundles and Lie algebroids. We write d¢ for the
complex linear extension of d: C*°(M) — I'(T*M).

2.5.1 Algebroids and connections

Definition 2.5.1. A complex Lie algebroid over a smooth manifold M is a

complex vector bundle A — M endowed with a complex linear anchor map
p: A—=TcM, (2.57)
a C-bilinear, skew-symmetric bracket on the space of sections of A,
[,:]: T(A) xT'(A) - T'(4), (2.58)
that satisfies the Jacobi identity and the Leibniz identity
[a, b = fla,B] + p(a)(£)b. (2.59)
for all a,b € T(A) and f € C°(M,C).

Definition 2.5.2. A complex Courant algebroid over a smooth manifold M

1s a complex vector bundle C — M endowed with a complex linear anchor map

pPC - C— T((jM, (2.60)
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a C-bilinear bracket
[,-]: T(C) x I'(C) - I'(C), (2.61)
and a C-bilinear symmetric non-degenerate fibrewise pairing
(,):CxyC—C, (2.62)

such that for all ¢1,co,c3 € T'(C)

1. [ex, [e, es]] = [[es calls es] + [e2, [e1, es]]
2. p(er){c2, e3) = ([e1, e2], e3) + (e, [e2, e3])
3. [e1, o] + [e2, 1] = D{e, e2) , where D = plodg: C°(M,C) — I'(C).

Example 2.5.3. Given a (real) Lie algebroid A — M, the complexification Ac is
a complex Lie algebroid with the anchor and bracket extended C-linearly. Similarly,
for a (real) Courant algebroid E — M, the complexification Ec is a complex
Courant algebroid with the anchor, the bracket and the pairing extended C-linearly.

Definition 2.5.4. Let C be a complex Courant algebroid over M. A complex

Dirac structure in C is a complex subbundle D C C, such that
1. D is mazimally isotropic with respect to the pairing, i.e. D = D+.
2. The space of sections is closed under the Courant bracket, i.e.
[T(D), (D)) € T(D).
Analogously to Definition we define a complex dull algebroid.

Definition 2.5.5. A complex dull algebroid () over M is a complex vector

bundle Q — M endowed with a complex linear anchor
p: Q —TcM, (2.63)
and a C-bilinear bracket
[ ]: T(Q) xT(Q) = T(Q), (2.64)
that satisfies the Leibniz identity in both terms, that is
[far, 902 = falar, 2] + fola)(9)az — 9p(a2)(f)ar, (2.65)

for all g1, 42 € T(Q) and f,g € C>(M).
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Analogously to Definition [2.3.15] we define a complex @-Dorfman connection
on Q* for a complex dull algebroid @ as follows.

Definition 2.5.6. Let Q) be a complex dull algebroid over M and Q* its dual. A

complex QQ-Dorfman connection on Q* is a C-bilinear map
A:T(Q) x IN(Q") = T'(QY), (2.66)

such that for all ¢ € T'(Q), 7 € I'(Q*) and f € C*>*(M,C)

]. quT == quT + <Q7 T>ptd(Cf}
2. D(fT) = fAGT + pla)(f)T,

3. Ay(pldef) = ptd@(ﬁf(q)f).

The complex curvature of such a complex Dorfman connection A is defined
by the same formula as for a real Dorfman connection, that is Ra(q1,q2)(T) :=
Aql AQQT - quAQIT o A[th,tn]T‘

Example 2.5.7. If Q is a (real) dull algebroid over M and A is a Q-Dorfman
connection on Q*, the complexification Qc is a complex dull algebroid with the
structure extended by C-linearity and the complexification AC defined by extending

A in both arguments C-linearly is a complex Dorfman connection.

2.5.2 Double vector bundles

Now we will consider double vector bundles and their complexifications as vector

bundles over one side. Let from now on D be a double vector bundle as follows

a5
D — B

qg lCIB .

A
A0a

Proposition 2.5.8. The complezification of D as a vector bundle over A is again
a double vector bundle with sides A, Bc and core Cc. We will denote this double
vector bundle by Dé.

Proof. The projection qgg: Dé — Bg is given by the complexification of the
vector bundle morphism qg over q4. The addition and scalar multiplication are
then also given by complexification. It is easy to see that the core can be identified
with Cc. ]
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Lemma 2.5.9. For a vector bundle E — M there is a canonical isomorphism of
double vector bundles between TELM and T(Ec).

Proof. The bundle E¢ can be written as E@¢E and thus the tangent bundle of E¢
can be identified with TE @ T'(iE) where we consider the direct sum as the sum
of vector bundles over T'M. This is identified with the complexification TFE @ iT FE
of TE as bundle over T'M. O

Proposition 2.5.10. Let now additionally D — B and A — M be Lie algebroids,
such that D is a VB-algebroid, then the complexification Dé is also a VB-algebroid,
with the structure of the Lie algebroid Dé — Bc defined componentwise in real
and imaginary part of Dé.

Proof. Every section of Dé — B can be written uniquely as di + 4 ido for sections
di,dy € T'g(D). After the identification of T(Bc) with (TB){M according to
Lemma [2.5.9] we can define the anchor and bracket componentwise. It is easy to
check that this defines a Lie algebroid again. O

Definition 2.5.11. A complex VB-Courant algebroid is a (real) metric double
vector bundle (E;Q, B; M), such that E — Q is additionally a complex Courant
algebroid with linear anchor and bracket. That is pg: E — Tc B is a morphism of
complex vector bundles and the bracket is linear in the same sense as for a real
VB-Courant algebroid.

Definition 2.5.12. Given a complex VB-Courant algebroid (E;Q, B; M), a com-
plex VB-Dirac structure in E is a sub-double vector bundle (D;U, B; M), such
that D — M is a complex Dirac structure in € — B and U — M is a complex
subbundle of Q — M.

2.6 Graded manifolds

In this section we briefly recall the definition of N-graded manifolds and Poisson
structures, symplectic structures and Lie algebroid structures on these graded
manifolds. Lie n-algebroids have been studied for example by Giuseppe Bonavolonta
and Norbert Poncin in [5]. In the case of n = 2 Dimitry Roytenberg established
a one-to-one correspondence between symplectic Lie 2-algebroids and Courant
algebroids in his thesis [66] and later in [67]. David Li-Bland further studied
this correspondence in [44] and showed furthermore an equivalence between Lie 2-
algebroids and VB-Courant algebroids. Later, Madeleine Jotz Lean gave a different

description of this correspondence, first proving an equivalence of categories between
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graded manifolds of degree 2 and metric double vector bundles in [37] and then
showing how the additional Lie structure translates to the structure of a VB-

Courant algebroid in [39]. For an introduction to graded manifolds see also [10].

Definition 2.6.1. An N-graded manifold M of degree n (short [n|-manifold)
is a manifold M equipped with a sheaf C*°(M) of N-graded, graded-commutative,
associative, unital C*°(M)-algebras, which is locally freely generated by finitely
many elements of degrees 1,...,n. Here locally freely generated means that for any
m € M there is an open neighbourhood U C M, such that C*°(M)(U) is a freely
and finitely generated C°°(U)-module.

The following example is a trivial way of defining an n-manifold from a graded

vector bundle. It can be found in [5] and is also explained in [37].

Example 2.6.2. Given a graded vector bundle E_1 ®E_o®...® E_,, this induces
a split [n]-manifold, where the local generators in degree k of the sheaf C*°(M)

are given by local basis sections of E* . This graded manifold is then written as
E_ [-1]®...® E_,[-n].

An important theorem in super-geometry is Batchelor’s theorem, stating that
every supermanifold is non-canonically isomorphic to a special type of super-
manifold and was proved by Marjorie Batchelor in [4, 2 B]. We give here the

corresponding theorem for N-graded manifolds, which can be found for example in

[5]-

Theorem 2.6.3. Every [n|-manifold is non-canonically isomorphic to a split

[n]-manifold.

We will also need vector fields, Poisson structures and symplectic structures on

graded manifolds, which are defined in [37] as follows.

Definition 2.6.4. A vector field ® of degree d on an [n|-manifold is a deriva-
tion of C*°(M) of degree d, that is

[@(E)] = d + [¢] (2.67)

for a homogeneous element £ € C*°(M) of degree |].

Definition 2.6.5. A Poisson structure on an N-graded manifold M is a bracket
of degree —2 on the sheaf of functions C>°(M):

{-,-}: C®(M) x C®(M) = C®(M), (2.68)
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that is graded skew-symmetric, that is

(6,6} = —(-Dlelg g} (2.69)

satisfies the graded Leibniz identity, that is

(61,6 &} = {&, 6} &+ (-1)lRlg - {& €5} (2.70)

and the graded Jacobi identity, that is

{61,{&, &1} = {{&, &}, &) + (1) 1l{g {6, 63}, (2.71)

where £1,&2,&3 € C3G(U) are always homogenous elements of degree |&1], |&2] and
|€3], respectively.

Definition 2.6.6. A Poisson structure on M 1is called symplectic if the image

of
t: C*°(M) — Der(C*(M))

generates Der(C*°(M)) as C>°(M)-module.

(2.72)

Definition 2.6.7. Given a graded manifold M, a vector field Q on M is called
cohomological if Q> = 0. A Lie algebroid structure on M is a cohomological
vector field Q of degree 1. An N-manifold of degree n with a Lie algebroid structure

1s called a Lie-n-algebroid.

Clearly, [1]-manifolds are equivalent to ordinary vector bundles, where the
sheaf of functions corresponds to I'(A E*). Lie algebroids then correspond to
Lie 1-algebroids, with the cohomological vector field given by the Lie algebroid
differential described in Definition

As mentioned above, Roytenberg gave a correspondence between symplectic
Lie 2-algebroids and Courant algebroids in [67]. The equivalence of categories
between metric double vector bundles and [2]-manifolds is described in [37]. Here
we will briefly sketch the correspondence of split Lie 2-algebroids in the sense of
Definition and the split version of the definition above, that is as a split
graded manifold equipped with a cohomological vector field. This can be found in
[39].

Proposition 2.6.8. Given a split [2]-manifold Q[—1] & B*[—2], then the structure
of a split Lie 2-algebroid over Q & B* in the sense of Definition 1s equivalent
to a cohomological vector field Q on the split [2]-manifold Q[—1] & B*[—2].
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Proof. Given the split Lie 2-algebroid structure (pg,l, [, ], V,w), the cohomo-
logical vector field is given on functions f € C*°(M) by Q(f) = ppdf € I'(Q"),
on generating sections of degree 1, that is 7 € I'(Q*) by Q(7) = l'r + dgT €
I'(B) @ Q%(Q) and on the generating sections of degree 2, that is b € I'(B) by
Q(b) = dvb — (w,b) € Q1(Q, B) ® Q3(Q). For the proof and computations that
the condition that Q2 = 0 is equivalent to the properties of a split Lie 2-algebroid
we refer to [39)]. O
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Chapter 3
Multiple vector bundles

Double vector bundles have been intensively studied in differential geometry in the
last 50 years. For a brief review on the history, definition and properties of double
vector bundles see Section The generalisation to triple vector bundles, and
later n-fold vector bundles, was introduced by Kirill Mackenzie in [50] and studied
jointly with Alfonso Gracia-Saz in [26] and [27]. There, n-fold vector bundles are
defined as diagrams of vector bundle structures with an extra splitting condition,
which we will prove here to be redundant. Furthermore, in [27] the authors study
the duality of higher order vector bundles. In [24] Janusz Grabowski and Mikolaj
Rotkievicz define n-fold vector bundles as a manifold equipped with n commuting
Euler vector fields which generate the scalar multiplications of the different vector
bundle structures. Grabowski and Rotkiewicz also state the existence of local
charts for their n-fold vector bundles and thus the equivalence of the two definitions
and give a proof in the case of n = 2. Relying on this existence of local charts
is also Elizaveta Vishnyakova’s recent work on n-fold vector bundles and graded

manifolds with associated weight systems in [69].

In this chapter, most of which can be found on the arXiv as joint work with
my supervisor Madeleine Jotz Lean in [33], we study multiple vector bundles. In
Section we define multiple vector bundles as special functors from an indexing
category to the category of smooth manifolds. This allows not only to define
n-fold vector bundles but also co-fold vector bundles which do not have a total
space. We give several prototypes of multiple vector bundles, notably the trivial
or decomposed ones. Then we define the n-pullback corresponding to an n-fold
vector bundle in Definition [3.1.12 and show that it admits an n-fold vector bundle
structure itself in Theorem It plays the role of A x ;s B for a double vector
bundle (D; A, B; M'). Making use of this n-pullback, we prove the higher order
generalisation of Mackenzie’s core sequences in Proposition [3.1.21] Finally, we
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study in detail the cores of a multiple vector bundle.

In Section [3.2] we define linear splittings and decompositions of multiple vector
bundles and show in Theorem [3.2.2) how we can construct a decomposition of an
n-fold vector bundle from a given linear splitting and linear splittings of its highest
order cores. In Theorem we prove inductively the existence of linear splittings
for any n-fold vector bundle. Together with this proves also the existence
of decompositions. In Definition [3.2.9) we then define n-fold vector bundle atlases
and show how it follows directly from the existence of decompositions that both
definitions are equivalent. We then show how the existence of decompositions of
oo-fold vector bundles can be deduced from the existence of decompositions of

n-fold vector bundles via a colimit argument.

Then, in Section we define multiply linear sections of an n-fold vector
bundle, as a generalisation of linear sections for n = 2 and doubly linear sections for
n = 3. We construct again a short exact sequence of C'°°(M )-modules, analogously

to the case of n = 2.

In Section [3.4] we then define the category of symmetric n-fold vector bundles
as n-fold vector bundles equipped with a certain action of the symmetric group
Sn. This is a generalisation of the concept of involutive double vector bundles
to higher orders and will play an important role in the geometrisation of graded
manifolds of degree n analogously to the degree 2 case which was carried out by
Madeleine Jotz Lean in [37]. This geometrisation of graded manifolds is work in

progress, joint with Madeleine Jotz Lean.

Finally, in Section [3.5 we demonstrate our results of the previous sections
in the special case of n = 3 in detail for convenience of the reader. Since the
general notation is fairly technical, we hope that this special treatment of triple
vector bundles will make it easier to understand the results and proofs in the
general case. In particular we here present splittings, decompositions and doubly
linear sections of triple vector bundles. We also repeat the short exact sequence
of C*°(M)-modules obtained in Section here in more accessible notation. In
this case of n = 3 we will also demonstrate how a decomposition of a triple vector
bundle is equivalent to a splitting of this sequence, called a horizontal lift, and

splittings of the side and core double vector bundles.

3.1 Definition and properties

In this section we introduce multiple vector bundles and discuss some of their

properties. The novelty of our definition is that instead of considering an n-fold
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vector bundle as a smooth manifold with n-commuting vector bundle structures,
we see a multiple vector bundle as a special functor from a cube category to smooth
manifolds. In particular, the “total space” of an n-fold vector bundle does not play
that central a role anymore, and we can even define co-fold vector bundles, with

no total space at all.

In the following, we write N for the set of positive integers: N = {1,2,...}. For

n € N, we write n for the set {1,...,n}.

3.1.1 Multiple vector bundles

We define the co-cube category OV to be the opposite poset category of the
finite subsets of N. In other words, the objects are finite subsets I C N and there is
exactly one arrow from [ to J if J C I. Every morphism can of course be written

as a composition of generating arrows of the form
I —-I\{i} for ICNfiniteandie .

Every subset I C N of cardinality k is the source of k generating arrows.

In a similar manner, we define the n-cube category 0" with subsets I of n
as objects and with arrows I — J < J C I. This category can be thought of as
an indexing of an n-dimensional cube, where every vertex corresponds to a finite

subset of n and the edges correspond to generating arrows as defined above.

Definition 3.1.1. A oco-fold vector bundle, and respectively an n-fold vector
bundle, is a covariant functor E: ON — Man™ - respectively a covariant functor
E: 0" — Man®™ - to the category of smooth manifolds, such that, writing Er for
E(I) and p, :=E(I — J),

(a) for all I C N (respectively I C n) and all i € I, pf\{i}: Er — Enyiy has a

smooth vector bundle structure, and

(b) for all I CN (respectively I Cn)andi#j€l,

PL\ (3
I\{z
B —% Engiy
I N3}
lpl\{” NG Jpl\{i,j}
Pr\{ij}

Engy — Engigy
is a double vector bundle.

Note that item (a) is only necessary in order to imply that this definition for

n = 1 just gives an ordinary vector bundle. For n > 2 item (b) already implies the
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former and in the case of n = 2 it just gives a double vector bundle as defined in
Definition 2.1.11

Example 3.1.2. A triple vector bundle, or 3-fold vector bundle is a functor

E: 0% — Man®™ and can be viewed as a diagram

D

T
T Pp
P PR
Ph
L F -
Pa
e
FE B

|

/s

_
E
Pp

3
Ty

A
A
Y
M
where we wrote T :=E({1,2,3}), D :=E({1,2}), F:=E({2,3}), F:=E({1,3}),
A= FEqy, B:= Egy and C 1= Eyg.

C qc

We will generally say multiple vector bundle for an n-fold or oo-fold vector
bundle, when the dimension of the underlying cube diagram does not need to
be specified. Our definition of n-fold vector bundles is different but equivalent

notation to the definition in [27].

For better readability we will often write for the vector bundle projections
pl = pg\ i} and in the case of an n-fold vector bundle also p; := pi\ e The
smooth manifold Ey =: M will be called the absolute base of E. If E is an n-fold
vector bundle, the smooth manifold E(n) =: E is called its total space. In the case
of an oo-fold vector bundle there is no total space. Given a finite subset I C N
and ¢ € I, we write +p ;) for the addition and -p\ ;) for the scalar multiplication
of the vector bundle Ej — Ep ;. This notation is omissive since it only specifies
the base space of the vector bundle in the fibers of which the addition or scalar
multiplication is taken. However, it is always clear from the summands or factors

which fibre space is considered.

Remark 3.1.3. There is a canonical functor =} : 0" — 0% for k < n defined
by (1) =INk and (I — J) = (INk) = (JNk). The canonical functor
7 ON — O is defined in the same manner by 7 (I) = I Nn. Furthermore there
are inclusion functors of full subcategories (]} : OF — O" and (Y : O™ — ON sending

a subset I C k to the same set viewed as a subset of n or N, respectively.

The functor i} is right-inverse (and therefore right-adjoint) to the functor .,

that is 7} o 1 = idqk. Similarly, the functor LI,:] is right-inverse and right-adjoint

N
to .
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Given now a k-fold vector bundle E : (0F — Man®™, the composition E o T 8

an n-fold vector bundle whereas the composition E o TI'EI is an oo-fold vector bundle.

In this light, an n-fold vector bundle E: (0" — Man®™ can be viewed as a special
case of an co-fold vector bundle E: ON — Man™ where additionally E = Eo/N ol :

OV —E , Man™

ngl ET : (3.2)

o ——— O
L'n.

In other words E(I) =E(I Nn) for all I CN and E is completely determined by

its values on all the subsets of n already.

Remark 3.1.4. Sometimes we will want to use a different indexing category O™
isomorphic to the n-cube category (1", especially when defining the faces and cores
of a multiple vector bundle. However, in order to define the morphisms between
two n-fold vector bundles we will need to fix the indexing category to be OO". With

the greater generality we would not obtain a category of n-fold vector bundles.

But we can use an indexing category O™ as above together with an explicit
choice of isomorphism i: 0" — O™ and with slight abuse of notation call a functor

E: " — Man™ an n-fold vector bundle instead of using more precisely Eoi~!.

With this remark in mind the following lemma will allow us to use a different

indexing category for the faces of a multiple vector bundle.

Lemma 3.1.5. For each pair of subsets J C I C N with J finite, the finite sets
K C N such that J C K C I form a full subcategory OF7 of ON, which is itself
isomorphic to the (#I — #.J)-cube category O71=#7 . We will from now on fiz the
isomorphism il . O#FI=#J 5 01T which is induced by the canonical ordering on
N.

Proof. The objects in '/ are all subsets of I that contain .J. This is clearly a
full subcategory of (. The ordering on N induces an ordering of the (#I — #.J)
elements of I\ J. This then defines an isomorphism of categories i’/ : O#/—#7 —

<>I,J. ]

We will now prove the following straightforward proposition which establishes

the faces of a multiple vector bundle.

Proposition 3.1.6. Let E: OY — Man®™ be a multiple vector bundle.
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(a) The restriction of E to O/ to the full subcategory O17 of O™ is a (#I —#J)-
fold vector bundle with total space Er (if I is finite) and absolute base Ej,
denoted by B/, We call this the (I,.J)-face of E.

(b) In particular, if I = O we obtain a (#I)-fold vector bundle E'? with total
space Er and absolute base M. We call 'Y the I-face of E.

Proof. Since B+ is defined via the restriction of E to ¢/, all arrows ELY (K —
K\ {k}) = p?\{k} for JC K C T and k € K\ J are smooth vector bundles and

all possible squares

K
P\ {k1}

ELY(K)

pK K\{k1}
K\{ka} g () PR\ {k1 ko }
p
EN (K \ {kp}) ——220 BLI (KON {ky, ko))

BN (K {ka})

are double vector bundles. Therefore E// is an (#1I — #.J)-fold vector bundle. In
the case of finite I the object I is an initial object in ¢/ and Ej is the total space
of EI+/. The object J is terminal in 017 and therefore E; is the absolute base of
ELY. O

Given an oo-fold vector bundle E: 0N — Man®™ and an open subset U C M, we
define the restriction of E to U to be the oo-fold vector bundle E|;: ON — Man®,
Ely(D) = (p}) " (U) and Elu(I = J) = EU = Dl sy: (vh) ©) =
(p@_l (U). The absolute base of E|y is U. In the same manner, if E: 0" —
Man® is an n-fold vector bundle, and U an open subset of M, then its restriction
E|y to U is an n-fold vector bundle with total space (p%)*l(U ) and with absolute
base U.

Recall that a morphism of double vector bundles from (Di; Ay, B1; M;) to
(Dg; Ag, Ba; Ms) is a commutative cube

D1 L D2
B o By
| , 3
A J{ Ya A,
M1 v M2

all faces of which are vector bundle morphisms. This morphism will be written as

tuple (U514, p;1). Similarly we define morphisms of multiple vector bundles.
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Definition 3.1.7. Let E: OY — Man™ and F: OY — Man™ be two multiple
vector bundles. A morphism of multiple vector bundles from E to F is a
natural transformation 7: E — F such that for all objects I of ON and for alli € I,

the commutative diagram

E; L Fy
lpf\{i} lpg\{i} (3.4)
T(I\{i})

Engy — Frnyy
is a homomorphism of vector bundles.

Given two n-fold vector bundles E: 0" — Man®™ and F: 0" — Man®™, a
morphism of n-fold vector bundles from E to F is a natural transformation
7: E — F such that the diagram above is a vector bundle homomorphism for all
I Cn andi € I. The morphism T is surjective (resp. injective) if each of its

components 7(I), I C n is surjective (resp. injective).

Together with the definition of multiple vector bundles in Definition this
defines for n € N the category nVB of n-fold vector bundles and also the category
oo VB of oo-fold vector bundles.

Remark 3.1.8. Note that if we would not demand a fixed isomorphism between
the indexing category and the corresponding cube category, we could not define
morphisms. It is important in which position the respective faces are. For example
morphisms out of a double vector bundle (D; A, B; M) are different from morphisms
out of the corresponding flip (Df*P; B, A; M).

Howewver, if we have given two n-fold vector bundles E and F defined with the
same indexing category Q™ together with a chosen isomorphism i: 0% — O™ we
will also consider a natural transformation TE — F to be a morphism of n-fold
vector bundles if T oidy is a morphism of n-fold vector bundles from Eo1i to Foi.
With the same indexing category this makes the notation a lot less cumbersome

than precomposing everything with i.

3.1.2 Prototypes

In this section, we describe a few standard examples of multiple vector bundles,

that will be relevant in the formulation of our main theorem.

Decomposed multiple and n-fold vector bundles

Consider a smooth manifold M and a collection of vector bundles A = (¢;: Ay —
M) jeN, #7<00, With Ay = M. We define a functor EA: ON — Man®™ as follows.



56 CHAPTER 3. MULTIPLE VECTOR BUNDLES

Each finite subset I C N is sent to Ey := H]}/[g 1 Ay, the fibered product of vector

bundles over M.

For I C N with 1 < #I < oo and for k € I, the arrow I — I\ {k} is sent to

the canonical vector bundle projection

M M
pi: H AJ — H AJ.
JCI JCI\{k}

In particular, the arrow {i} — ) for < € N is sent to the vector bundle projection
péi} =quy: Fry = Ay = Ep = M. A multiple vector bundle EA: ON - Man™
constructed in this manner is called a decomposed multiple vector bundle.
A decomposed n-fold vector bundle EA: (0" — Man® is defined accordingly. In

that case we will write E4 := E4(n) for the total space. Decomposed n-fold vector
bundles are also defined in [27].

Example 3.1.9. A trivial or decomposed triple vector bundle is given by
E{1,2,3} = A{1} XM A{Q} XM A{3} XM A{1,2} XM A{1,3} XM A{Q,g} XM A{1,2,3},
with decomposed sides

B0y = Apy xm Ay X Apay s Euasy = Apy X Agsy X Aqa sy s
By = Apy xm Ay Xm Apsy
where Ay, I Cn are all vector bundles over M, the projections are the appropriate

projections to the factors and the additions are defined in an obvious manner in
the fibers.

Vacant multiple and n-fold vector bundles

As a special case of this, if 4 = (¢;: A; — M);en is a collection of vector bundles

over M, we construct the multiple vector bundle EA: ON — Man™ as follows:

M M M
I= ][4, T—=I\{E) = |pe: [J4— ] 4.
il icl iel\{k}

Such a multiple vector bundle is called a vacant decomposed multiple vector

bundle. We will see later that all cores of these multiple vector bundles are trivial.

Given a collection of vector bundles A = (qs: Ay — M)jcN, #J7<c0, With
Ay = M, we can define A = (¢;: A; — M);en by A; = Agiy. We get then a
monomorphism of multiple vector bundles

v B4 —» EA (3.5)
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defined by L(I): H%[ A{z} — HZ}/IQI AJ, L(I)((Ui)iej) = (w])Jgj, wiy = Y for
i €1, wy=vy:=me M and wy =02 for #J > 2. In particular, +({i}) = idag,
for all ¢ € N.

In the case of an n-fold vector bundle we write E := E(n) for the total space.

“Diagonal” decomposed and vacant k-fold vector bundles

More generally, consider a collection A = (¢qr: Ar — M)cy, of vector bundles, with
Ay = M, and a partition p = {Iy,..., Iy} of n with I; # 0, for j =1,...,k. Then
we can define a category {f with objects the subsets v C p and with morphisms
V1 — Vo < vy C 1. This category is isomorphic to the k-cube category OOF by the
isomorphism i”: (0¥ — O defined by sending the object {j} of OF to the object
{I;} of O”. Fixing this isomorphism, we can use the indexing category ¢” to define
a vacant k-fold vector bundle @: OP — Man® as follows

M M M
v [T A, =\ (hgn: [TAc— T Ak
Kev Kev Ke\{I}

We will from now on write [v] :== Uge, K for v C p. In a similar manner, we define

a decomposed k-fold vector bundle E;fl: QP — Man® as follows

M M M

Vi— H A[l,/], (V — l/\ {I}) — H A[u’} — H A[z/’] ,
v'Cv V' Crv v Cu\{I}

where the map on the right-hand side is the canonical projection. We get as before

an obvious monomorphism of k-fold vector bundles ¢*: @ — E;,‘l. For each v C p

we have furthermore the obvious canonical injections

M M
() Bl (w) = ] Ap) = EA WD) = [T Ay
v'cy JCW]

The tangent prolongation of a multiple vector bundle

Given an n-fold vector bundle E: (0" — Man® we define an (n + 1)-fold vector
bundle TE: 0! — Man®, the tangent prolongation of E, as follows. Given
I Cn,weset TE(I) := Er and TE(IU{n+1}) := TE;. Furthermore, fori € I Cn

we set
TE(I = I\{i}) :=p}: Er = Ep gy,
TEIU{n+1} = T U{n+1})\{i}) =T(p)): TE; » TEp 4,
T]E(IU{H-Fl} —)[) ‘= DPE;: TE; —>E[,
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where the last map is the canonical projection.

Similarly, given an oco-fold vector bundle E: [0" — Man® we define an oo-fold
vector bundle TE: (0" — Man®™, the tangent prolongation of E, as follows.
We define the category ¢ to be the poset of finite subsets of NU{0}, together with
the isomorphism i’ : N — O given by shifting by 1, that is i’ (1) := {i—1|i € I}.
Now we define the functor TEo (i7)~1: ¢ — Man™ as follows. Given any I C N,
we set TE o (i)~1(I) := E;r and TE o (i")~1(1 U {0}) := TE;. Furthermore, for

1 € 1 Cn we set

TEo (i")""(I = I\ {i}) :=p!: Er = Epy,
TEo (i")"'(TU{0} = (TU{0})\ {i}) :== T(p]): TEr = TEp gy,
TEo (i")y"YITU{0} = I):=pg,: TEr — E,

where the last map is the canonical projection.

Of course one can define the tangent prolongation of an n-fold vector bundle
with a similar shift in order to be consistent with the infinite case. However, the
given definition without such a shift seems more natural in the finite case, but

does unfortunately not extend to the infinite case.

Multiple vector spaces

A multiple vector bundle where the absolute base E(f)) = {*} is a point is called
a multiple vector space. Let E be an n-fold vector space in this sense. Corollary
which we prove later then states in this case that [E is isomorphic to a direct
product of vector spaces in the following way. E(J) = [[;c; Vs for any J C n,

where V7 is a finite dimensional real vector space.

Lemma 3.1.10. Let us consider two decomposed multiple vector spaces V(J) =
[lrcs Vi and W(J) = [1;c; Wi, with finite dimensional real vector spaces Vi, Wy
for I Cn and a morphism between them, 7: V — W. Then

r((enien) = X wplonen) (3.6)

KCJ
p=(11,...I5)EP(K) -

with w, € Hom(Vy, ® ... ®@ Vy,,Wk).

Proof. Given an element (vy)rcy € V(J) with vy, # 0 and vy, # 0 for i € I1 N I
we can write (vr)rcn = (ur)rcn +p\i (Wr)icn where up = vy for I # I, wy, =0
and uy = vy for I C n\{i}, us, = vy, and ur = 0 otherwise. Doing this repeatedly,
we can write every element (v7)rc as a consecutive sum of elements of the form

where for all non-disjoint I; and Iy either vy, = 0 or vy, = 0. Thus the map 7(.J)
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is determined by its action on elements of this form. Define for p = (I1,...,I}) €
P(K) then wy(vr,, ..., vr,) = prg 7(K)((wr)rck ) where wy; = vy, forj =1,... )k
and wr = 0 otherwise. Now 7(K) is a vector bundle morphism over all 7(K \ {k})
for k € K and thus w, has to be linear in every argument and therefore an element
of Hom(V, ® ... ® Vi, Wk).

O

Multiple homomorphism vector bundles

Given two n-fold vector bundles E and F with the same absolute base E(0)) =
F(0) = M we construct an n-fold vector bundle Hom,, (E, F), which is the n-fold
analogon of the bundle Hom(FE, F') for ordinary vector bundles E and F over M.

For m € M the restrictions E|,, and F|,, define n-fold vector bundles over a

single point as absolute base. With this we can define a space Hom,,(E, F) as

Hom, (E,F) := {@m: Eln = Flim ‘ m € M, ®,, is a morphism of
(3.7)
n-fold vector bundles} .

This space is equipped with the obvious projection to M mapping an element
®,,, to m. Since n-fold vector bundle morphisms have by definition underlying
(n — 1)-fold vector bundle morphisms between the faces there are additionally
projections Hom,, (E,F) — Hom,,_; (E2\FH0 Fr\ENDY for all k € n. Each of
these projections carries a vector bundle structure, with the addition of two
elements ®,, and ¥,, which project to the same base ¢: Eﬁ\{k}|m — Fﬁ\{k}\m in
Hom,,_; (E2\{FH0 Fr\ER0) defined as (@, +a\(k) Ym)(e) = Pr(e) +p\fky Ym(e).
That this is indeed a vector bundle follows from the fact that Now we define a
functor Hom(E, F): 0" — Man™ by setting Hom(E, F)(I) := Homy(EH?, F1?).
That this is indeed an n-fold vector bundle Hom(E, F) with total space Hom,,(E, F)
and absolute base M is an immediate application of the existence of n-fold vector
bundle charts which we prove later in Corollary since that allows to reduce
the problem to the fibres. The desired interchange laws in Hom(E, ) follow from
the interchange laws in E and F as the addition is defined fibrewise with the
addition in F.

Every morphism of n-fold vector bundles E — F over the identity on M
corresponds then to a smooth map M — Hom,(E,F) which is a section of the

projection to M.

Let us consider the case of n = 2 as an example of this construction. For that
purpose consider two double vector bundles (Dy; A1, B1; M) and (Dg; Az, Ba; M)
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over the same base manifold M. Then this gives rise to a homomorphism double

vector bundle
HOHIDVB(Dl, DQ) e HOHIVB(Bl, Bg)

| I

HOmVB(Al, Ag) _— M

and a double vector bundle homomorphism from D; to Dy fixing the base manifold
M corresponds to a map M — Hompy (D1, D) which is right-inverse to the
projection to M.

In particular, let F' — M be an ordinary vector bundle and consider the n-fold
vector bundle F defined by F(n) = F and F(I) = M for all I C n. Then we write
Mor,, (E, F) for the space of n-fold vector bundle morphisms from E to F over id ;.

Lemma 3.1.11. Let E be an n-fold vector bundle over M and F be a vector
bundle over M. Then the space Mor,(E, F) is a C°°(M)-module.

Proof. An element 7 of Mor, (E, F') necessarily satisfies 7(I): E(I) — M, 7(I)(e) =
pj(e) for all e € E(I), I C n. Take fi, fo € C°°(M) and 71,72 € Mor,(E, F). Then
(fi-m1+ fa-m2): E— Fis defined by (f1-71+ fo-12)(I)(e) = pé(e) for all e € E(I),
IS nand (fi-m+ f2rm2)(n)(e) = filpj(e)) - Ti(e) + fa(pj(e)) - a(e) for e € E(n).

By construction, (f1 - 71 + fo - 72)(n) is smooth and

E(@) (flTl+f27'2)(ﬂ) F

n
l n\{i} qu

E(n\ {i}) —=

is a morphism of vector bundles for all ¢ € n. For I C n and ¢ € I, the map
(fi -7+ fa-m)I): E(I) — M is obviously a vector bundle morphism over
T(I\{i}): E(I\{i}) —» M. O
3.1.3 The n-pullback of an n-fold vector bundle

Definition 3.1.12. Let E be an n-fold vector bundle. We define the n-pullback
of E to be the set

P:{(el,...,en)

ei € By gy and pi W (e)) = gV (e)) forijen) . (38)

In the case of n = 2, the 2-pullback of the double vector bundle (D; A, B; M)
is the space A x s B, which is a smooth manifold and a double vector bundle itself.
Furthermore, as we have seen in Lemma the double projection D — A xr B
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is a surjective submersion. We will prove in the following theorem that both of
these statements are true in greater generality for any n-fold vector bundle. This
is a crucial part of the proof of the existence of linear decompositions of multiple

vector bundles.

Theorem 3.1.13. Let E: 0" — Man® be an n-fold vector bundle. Then

(a) The n-pullback of E, denoted by P, is a smooth embedded submanifold of the
product E@\{l} X ... X Eﬂ\{n}

(b) The functor P defined by P(n) = P, P(S) = Eg for all S C n and the
vector bundle projections py: Eg — Es\(iy for all S C n and i € S and
pi: P = Epqays (e1,...,en) = e; is an n-fold vector bundle.

(¢) The map w(n): E — P given byw(n): e — (p1(e),...,pn(e)), defines together
with n(J) = idg, for J C n, a surjective n-fold vector bundle morphism

7 E— P.

Note that for each i € n, the top map w(n): E — P of 7 is then necessarily a

vector bundle morphism over the identity on Ep ;).

Proof. For the proof of this theorem, we will make use of several easy lemmas
which are proved in the background section. These are Lemma Lemma [2.1.5
Lemma 2.1.4] and Lemma

We prove this by induction over n. The case of n = 1 is trivially satisfied since
in that case E is an ordinary vector bundle £ = E¢y — Ey = M and so P = M.
Let us now take n € N with n > 2 and assume that all three claims are true for
any (n — 1)-fold vector bundle E.

Recall from Proposition that E2{*} is an (n — 1)-fold vector bundle. The
corresponding (n — 1)-pullback is

PI:lp = {(617 ce 77%7 ce ,€n) ‘ € € Eﬂ\{z} p]ﬂ\{z}(el) = pzﬂ\{]}(ej)

(3.9)
fori,j €n\ {k}}.

By the induction hypothesis (b), this is the total space of an (n — 1)-fold vector
bundle P;® with underlying nodes E; for k € J C n. The absolute base of
this (n — 1)-fold vector bundle is Ey;y, and by (c) we have a smooth morphism
e Enik} P,® of (n — 1)-fold vector bundles that is surjective. In a similar

manner, E2\{5}9 i an (n—1)-fold vector bundle. The corresponding (n—1)-pullback
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is
ow ™ n\{k,i n\{k,j
PV = {(blv--wkv'-‘abn) ‘ bi € By iy 27 (0) = o 7 (b))
for 4, j en\{k}}.
Again by the induction hypothesis (b) this is the total space of an (n — 1)-fold
vector bundle P}¥ with underlying nodes E; for J C n\ {k}. By (c) we have a

smooth surjective morphism 7i°%: E\FHO Plow of (n — 1)-fold vector bundles.

(3.10)

By the induction hypothesis (a), P,'’* and P,iow are embedded submanifolds
of TTi En\gsy and [[iz1 Ep\ ik}, respectively. Since for each i # k in n, we
itk itk ‘
have the smooth vector bundle p%\{l} t En\fiy = En\fik), the product T[i Ep iy
n n o
has a smooth vector bundle structure over []i—; Ep\ (i k), the projection of which
itk

we denote by g. Using the surjectivity of 7i°%(n \ {k}): Ep\ry — Pl the
surjectivity of py: B — Ep\ (1}, as well as the identities piﬂ\{k} opp = p%\{z} o ;i
for i # k, we find easily that g,(P,*) = Plow. Further, PP is clearly closed

under the addition of [Ti_; Epn\ 5y — [1iz1 B\ i,k Lemma 2.1.7) yields then that
itk itk

qr: PP — Pl¥ is a smooth vector bundle.

Next let us set for simplicity &, := m°%(n \ {k}): Ep 5y — P, Recall that
it is defined by

ot e (0 en), ks e))

Since n > 2 we can choose i € n\ {k}. Then 0y: Ep\ 11y — Plow is a surjective
smooth vector bundle homomorphism over the identity on Ep\ ;. By Lemma
2.1.5] it is a surjective submersion. We consider the pullback vector bundles
(6)' PP over Ep\(ky, for each k € n. As a set, each (6)' PiPcan easily be
identified with P.

Denote by ¢y, the inclusion of P'® in E,\ (13 X ... k... x Ep\{n}- Then P is
embedded into E,\ (1} X ... X Ej\ () via the composition

prXidg
P —— P™® x By ——— 5 (Epvy X ke X Epyioy) X B}
where the map on the left is the embedding as in Lemma[2.1.3] It is easy to see that
up to the obvious reordering of the factors on the right, the embeddings obtained
for k=1,...,n are the same map. Therefore, all the obtained smooth structures
on P are compatible and so P is a smooth manifold and all its projections are

smooth. In particular, we have proved (a).

The compatibility of the vector bundle structures of P over E,\ (; and Ep\ ()
for i # j € n follows from the compatibility of the structures in E2\*}9. More pre-
cisely, the interchange law in the double vector bundle (P; Ep\ (i1, En (5315 En\(4,5})
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follows immediately from the interchange laws in all the double vector bundles
(En\ (k35 B\ (ki) Bo\ (5,5} Bn\{r,i,5}) for k€ n\ {i, j}, since the different additions
in P are all defined component-wise. Hence we can define P: (0" — Man™ and

we obtain an n-fold vector bundle.

For each k = 1,...,n, m;’(n): E — P;'® is a vector bundle morphism over
Ok En\(ry — PAOW. The pullback of 7. P (n) via the map d, is hence a vector bundle
morphism E — (0;)' Py over the identity on E,\(x}, and it is easy to see that it
coincides — via the identification of P with (d;)' Py'® — with the n-fold projection

m(n) from E to P. Hence 7: E — P is an n-fold vector bundle morphism.

As before choose i € n\ {k}. Since mP(n): E — P;'® is a surjective vector
bundle morphism over the identity on Ep\ (4, it is a surjective submersion by
Lemma But since 05 : Ep\ (1) — P,iow is a surjective submersion and 7, " (n)
is a vector bundle morphism over §;, by Lemma it must be surjective in each
fiber of py: E — E,\ (k). By Lemma the pullback 7(n) = i 7, P(n): E — P
is then surjective in each fiber of py: £ — Ej\(x). Since the base map is the
identity on Ep(x, 7(n) is surjective. O

Note that we have proved as well the following result.

Corollary 3.1.14. In the situation of Theorem|3.1.15, the projection w(n): E — P

s a surjective submersion.

3.1.4 Cores of a multiple vector bundle

Given a double vector bundle (D; A, B; M), recall from Definition and Lemma
that the intersection C' = (pB)~1(0%,) N (p5)~1(04,) is called the core of the
double vector bundle (D; A, B; M) and has a natural vector bundle structure over
M, which we will denote by go: C — M. In this section, we explain the cores
of multiple vector bundles. These cores have also been defined using a different

notation by Alfonso Gracia-Saz and Kirill Mackenzie in [27].

Let E be a multiple vector bundle with absolute base M := Ej. For each S C N
and each k € S, we have the zero section Og\éj{k}: Eg\(xy = Es, e — 0Es. For each
R C S CN, all compositions of #5 — # R composable zero sections, starting with
some Ogu{i}: Er — ERygy, for some i € S \ R, and ending into Eg, are equal and
the obtained map is written O%S: Er — Eg. In particular, we set OE’S = idg,.
If it is clear from the context, which multiple vector bundle we are considering,
we write 0% = OIIE%’S. The image of e € Fr under 0% is denoted by Of, and the

image of EFr under 0% is written 0}%. For better readability we sometimes write
0%, := 05 and 0% := 0%.



64 CHAPTER 3. MULTIPLE VECTOR BUNDLES

Choose a subset S C N and j,k € S with j # k. Then

Py
Es ——— Eq\(x)

lpf - lpjs\{k}
pS\G)

Es\iy = Es\(iky
is a double vector bundle, which has therefore a core
S (S -1 (S\{4} S -1 (S\{k}
Efixy = )~ (0500) 0 #) ™ (051 y) - (3.11)
This core has then an induced vector bundle structure over Eg\(;x with projection
S\t 8 : S .S .
(ps\{k} Ops\{j})‘Efj,k}7 which we denote by ¢f; v EY; 1y — Eg\(jky- This is a

special case of the side cores, as the following proposition shows.

Proposition 3.1.15. Let E be a multiple vector bundle, S C N a finite subset and
J C S non-empty. The (S, J)-core
ES = N5) ™ (007, (3.12)
jeJ
is a smooth embedded submanifold of Es and inherits a vector bundle structure
over Eg\ ; with projection 5= (E(S — S\ J))|E§ B — Eg\j. In particular,
for J = {s} of cardinality 1, we get E = Eg and ¢ = p3.

Proof. That E§ is a submanifold of Fg follows from Theorem Consider the
(S, S\ J)-face of E, the #.J-fold vector bundle ES*\/. We denote the corresponding
#J-pullback by Pjg . This is the total space of an #.J-fold vector bundle ]P’§ with
absolute base Eg\ ;. The image of Eg\ ; under any #.J composable zero sections

S
of ij, Z = 022\1 is an embedded submanifold of PJS. By Corollary |3.1.14] the
#.J-fold projection 7rj]q : Bg — ij is a surjective submersion. Ej]q is the preimage

of Z under 7T§ and is thus a smooth embedded submanifold of Fg.

The vector bundle structure is similar to the case n = 2. Any two elements
e, e € E§ Wi'th cﬁ(e) = cﬁ(e’) =: b can be added over any p;q, for j € J, since
pf (e) = ObS\{] - pf (¢/). All the additions clearly preserve ES. For any j € J,
Ogs{j }is an embedded submanifold of Eg\(;y and we get a unique vector bun-

dle structure E§ — Ogs{f } according to Lemma [2.1.7, The interchange laws

in all the double vector bundles (ES;ES\{jl}vES\{jQ};ES\{jl,jQ}) imply that af-
ter identification of Ogst{/ b with Eg\ ; all the additions coincide: Since we have

S — 05 = 0% .
OOS\{jl} =0y = OOS\U?}’ we find easily
b b

/ S S /
e + e=(e 4+ 0%y, ) + <OS , + e)
S\{j1 } < s\Uar 05 U2 ) s Gy LU0 MY gy
/

(3.13)
S S /
:e+05->+<05- +e):e+e.
( s\ 0, U ) s oy U0 Y g (G S\{j2}
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Therefore, E:? has a well-defined vector bundle structure over Eg\ ;. O

We begin by proving that a side core can be constructed ‘by stages’

Lemma 3.1.16. Let E be a multiple vector bundle and S C N. Choose K C J C S.
Then
S\{j} . S\K
ES = {e € Ey ]pf(e) € Oss{j},j € J\ K, and ci(e) € OSEJ} . (3.14)
Proof. For simplicity, we denote here by X the set on the right-hand side of the
equation. First, take e € E§ Then since pf(e) € Ogs{f} for all j € J, and
since K C J, we have for k € K: p}(e) = Oi\{k} for some e, € Eg\ ;. Since

Ofk\{k} = Oiéiﬁ}, we find pf(e) € Ogig} for all k € K. Therefore e € E% with

ok
pf(e) € Ogst{]ﬂ} for j € J\ K and we only need to check that c3-(e) € O:ZV]{ in
order to find that e € X. But for any choice of k € K, we find ¢3-(e) = pg\K(e) =

S\{k S\{k S\{k S\ K
Pk (07 (€)) = paiie (021 = 05

with e € ES\J'

Conversely, take e € X. Then since e € E}% we find for each £k € K an
element e € Fg\ g such that pi(e) = Ofk\{k}. But then e, = ps\{k} (Oesk\{k}) =

S\{K}
S\{k} S\K 0°\F}

pS\{K}(pf(e)) = pg\{K}(e) = c;g((e) € OS\J shows that e € (pf)_1 ( S\ ) Since
k € K was arbitrary and also e € (p;-g)_1 (Ogigk}) for all j € J\ K, we find that
e€ Y. O

Using this, we prove the following theorem.

Theorem 3.1.17. Let E be a multiple vector bundle. For each S C N and J C S
non-empty, the space E:? is the total space of an (#S — #J + 1)-fold vector bundle

in the following way.

The partition p5 = {J, {s1},..., {8#s—#i+1)}} of S into the set J and sets
with one element which we order in the natural ordering induced by the ordering
of N gives rise to a category <>§ = QP isomorphic to the (#S — #J + 1)-cube
category as discussed in Section[3.1.3. Let us now fix the isomorphism of indexing
categories described there by i§ = iP5 O#S—#I+L QP? We will again write
[V] := Uge, K for any subset v C pﬁ. Now we define E?: <>§ — Man®™ by setting
Eg(y) = EBV} if J €v and E?(y) = By if J ¢ v and define the morphisms by

ES (1 — o) = E([v1] — [VQ])|EBV1] : Egyl] — EL[JVQ] , if J € va Cuy,

E:S;(lll — 1/2) = E([lll] — [VQ]): E[V1] — E[ ’Lf vy C 1y % J

V2] »

E5(v1 — o) = E([1] \ J = [2]) 0 cgl]: EBVﬂ — E; ifraCuy, JEv \ 12,

V2] »

Then ES is a (#S — #J + 1)-fold vector bundle.
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Proof. The nodes of ES are given by E5 for J C S’ C S and Ey for I C S\ J.

The generating arrows are given by p!: E; — Epgy fori e I € S\ J and

&S B = Egny and p'| o BS — E5 " fori € '\ J. In the following we
J

just write pf’ for the restriction p?'| B
J

For #J < #5 we prove by induction over #J =: [ that this defines a multiple
vector bundle. For J = {s} of cardinality 1 it is easy to see that E§ = ESY, which
is an #S-fold vector bundle by Proposition [3.1.6

Now assume that Efjl ji_1} 1s the total space of a (#S — 1 + 2)-fold vector
bundle. Choose j; € S\ {j1,...,51-1}, S C S with {j1,...,5} =1 J C 5, and

choose i € S”\ J. Then by the induction hypothesis and Proposition

g’ Pj; S,\{jl}
{j1,--J1-1} 5 E{j1=-~~7jl—1}
&»-4171} ‘ \
ps’ ESn\ {1t 1} l Esn\{u,ei}
S\ {4} S"\{i,51}
E{j1 ,,,,, Ji-1} E{j1 ----- Ji—1}
Esn\ (i eevii—1.i} Esn\ (i it}

is a triple vector bundle, and by (3.14]), its upper side core is

s’ 5

lpf’ LUS/\J
TSI ’
BV 2 B oy

Hence this diagram is a double vector bundle (see for example [51]) and, as before,
all commutative squares in our (#S — [ + 1)-cube diagram are double vector
bundles. O

If I = #S, then J = S and Eg has a vector bundle structure over M with
projection c2 = E(S — ()] ps- The nodes at the source of only one arrow of ES

are the nodes Ey;, of E for i € S\ J, and the (J, J)-core ch: B — M of E.

We have then for each v C pJ an inclusion 7’ (v): ES(v) < Ey), since E3(v)
is an embedded submanifold of E,; for all v C p?.

Example 3.1.18. Given the n-fold vector bundle EA defined in Section[3.1.9, its

(S, J)-core (EA)S has nodes (EA)S o (i)~ (v) = H,]ygy Apn forv C p5 and can

thus be identified with IE;)“S defined as in Section|3.1.2 In particular, (EA)g = Ag.
J
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For instance, for n =3 (see Example we have decomposed cores

EH?}?’} = Ay X Aoy X A 2sy Eg;}g} = Apy X Agazy X Af12,3)
EH;?}S} = Aoy Xm A3y Xm Af12.3) -

Remark 3.1.19. Let E be an n-fold vector bundle.

(a) It follows directly from the definitions that the cores of the faces of E are given
by the faces of the cores of E. That 1is, (ES’Q)g = (E?)pﬁ’w for J C S Cn.
Note that both these multiple vector bundles canonically use the indexing

category <>§.
S
(b) Note also that ([3.14)) can now be written E = (E%)Zi

(c) For I,J C S with I N.J = 0 the intersection of the cores Ef U E is the
iterated core, the total space of (]E?)?i.}iel}, or equivalently the total space
of (]E?)?fj}jeJ}. This is since the intersection of the two cores consists of
all elements of E}g which project additionally to the right zeros in all J-
directions. Since the (#S — #1I + 1)-fold vector bundle structure on E3 was
given by restricting the structure of I8, this intersection is then precisely the

corresponding core in Ef .

d) In the case of I NJ # () the intersection of the cores EY N ES is given b
I J¥g Y
E‘ISUJ instead since it consists precisely of all elements of Eg which project to

the correct zeros in all I U J-directions.

Proposition 3.1.20. Given a morphism 7: E = F of multiple vector bundles, we
have for any J C S C N an induced core morphism of the (#S — #J + 1)-fold
vector bundles ’7"‘?2 ]E*3 — F§ defined by

() = ()] PE EBV] — F}V] forv C p5 with J € v (3.15)
J
() =7([v]): By — Fy for v C p5 with J ¢ v, (3.16)
where we consider E([]V} and F}V] as subsets of Ey, and Fj,), respectively. Further-

more, ():5; is a covariant functor from multiple vector bundles to multiple vector

bundles.

Proof. For J ¢ v there is nothing to show as E5(v) = E([v]) and F5(v) = F([v])

and thus all the maps are well defined vector bundle morphisms.

For J € v it remains to be shown that 77 is well defined, that is 7([v]) (EBV]) C
F}V]. Linearity follows then directly from linearity of 7. The manifold EBV] is
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defined as the set of all elements of E,; that project to OI[%][\V}]\“ Y for all jed.

Since for all I C n, 7(I): Er — Fy is a vector bundle homomorphism over 7(I'\ {i})

for all i € I, the image of e € EBV] under 7([v]) thus projects to O&k%ﬂ in Fi\ g5y

and is an element of F}V].

Functoriality follows directly from the definition: in the case of J ¢ v we have

(0o7)i(w) = (gor) (W) =a(W]) o7([V]) = o5 (v) 075 (v),
whereas for J € v we have

(cor)5(v) = (UOT)([V])\E[JVJ = U([V])!FE»J OT([V])\E[J»J =oj(w)ori(v). O

From Theorem [3.1.13| we obtain easily the following proposition; the n-fold
analogon of the core sequences for double vector bundles, which were defined
by Kirill Mackenzie in [51]. They are important in the proof of the existence of
decompositions of n-fold vector bundles. We call them the ultracore sequences of
E.

Proposition 3.1.21. Let E be an n-fold vector bundle. For each k € n, we have

a short exact sequence

0 PR e p " 0
| J J (3.17)
E\ iy E\ iy E\ (i

of vector bundles over Ey\ {1y, where P is the n-pullback defined in Theorem|3.1.15,

Proof. By Theorem [3.1.13] the map 7(n): E — P is a surjective vector bundle

morphism over id B\ (5}

Take any e in the kernel of 7(n) considered as vector bundle morphism over
Ep\ (k- Denote its projection in E; for any J Cn\ {k} by e, with m := ey € M.
Write n \ {k} = {j1,...,Jn—1}. Define now recursively

0._ L= =1 _ oF
[Fi=e, F=1 n\ {5} Oeﬁ\{k,jbm»jl—ﬂ )

Then it is easy to show by induction that p7( Hy=o! The above

ern(m\{k,j1,-5y )
implies that f*~! projects to 0f for all I C n. It is thus an element of the ultracore

E5, and we denote it by z := f"~ L.

Now

e= ((z + of ) o+ of )+ + of
\gno1}  Un=t3 G, o} “Un—1dn-2) ) n\(jg} m\y M (31g)

=: L(Z, eﬂ\{k}) .
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and the defined map ¢: Ey X s Ep\(xy — E is clearly an injective morphism of
vector bundles over E\ (), by construction making the sequence exact. That the
map ¢ does not depend on the chosen order of the set n\ {k} follows from the
interchange laws in all the top double vector bundles since all we do is adding
zero elements in different directions. This together with also shows that
the recursive definition of the ultracore-element z is independent of the chosen

ordering. n

3.2 Splittings of multiple vector bundles

In this section we achieve our main goal in this paper: we prove that any n-fold
vector bundle admits a (non-canonical) linear splitting. We begin by discussing the
notions of linear splitting versus linear decomposition. Then we prove inductively
our main theorem, and finally we explain how n-fold vector bundles can now be

defined using n-fold vector bundle atlases.

3.2.1 Splittings and decompositions of n-fold vector bundles

Let E be an n-fold vector bundle. This gives rise to a family A of smooth vector
bundles A = (q;: Ay = M) jcp, #7<c0 Over M = E() defined by Agy = Epy
fori=1,...,nand Ay = Ej for #J > 2. By Example if E is already a
decomposed n-fold vector bundle, then each element of the family of vector bundles
defining it appears as one of the cores of E. This is why we call the vector bundles

Ay = Ej the building bundles of E.

We can then consider the decomposed n-fold vector bundles EA and E := EA
defined in Section We call EA the decomposed n-fold vector bundle associated

to E and E the vacant, decomposed n-fold vector bundle associated to E.

Definition 3.2.1. A linear splitting of the n-fold vector bundle E is a monomor-
phism X : E — E of n-fold vector bundles, such that fori =1,...,n, X({i}): Eyy —
Ey;y is the identity.

A decomposition of the n-fold vector bundle E is a natural isomorphism
S: EA — R of n-fold vector bundles over the identity maps S({i}) = dg,: Agy =
Eiy such that additionally the induced core morphisms SI{I}) are the identities
idE} for all I C n.

Linear splittings and decompositions of double vector bundles are equivalent
to each other. Given a splitting 3, define the decomposition by S(am,, bm,cm) =
Y(am,bm) +B (Ogn +4 m) = X(am,bm) +4 (OaDm +p ¢n). Conversely, given a
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decomposition S define the splitting by X (am,bm) := S(am,bm,0%). These two
constructions are obviously inverse to each other. We prove here that a similar

equivalence holds true in the general case of n-fold vector bundles.

A linear splitting 3 of an n-fold vector bundle E and decompositions S’ of
the highest order cores — the (n — 1)-fold vector bundles ET for all I C n with
#1 = 2 — are called compatible if they coincide on all possible intersections. That
is, SI({{k}kEQ\I})\E(E\I) = Y(n\I) and SI(P%)‘(EA)?m(EA)% = SJ(P%N(EA)%m(EA)%
for all I, J C n of cardinality 2. Note that we view here the total spaces of (EA)?,
(EAY) and of EF and E as embedded in B4 = EA(n) and E = E(n), respectively.
Also recall that Ef({k}ren s) = E(n\ ) by definition.

Theorem 3.2.2. Let E be an n-fold vector bundle.

(a) Let S be a decomposition of E. Then the composition ¥ = Soi: E —
E, with ¢ defined as in (3.5), is a splitting of E. Furthermore, the core
morphisms S?: ErI — E% are decompositions of E% for all J C n and these

decompositions and the linear splitting are compatible.

(b) Conversely, given a linear splitting > of E and compatible decompositions of
the highest order cores B with top maps S/ (EA)% — E%, for J C n with
#J = 2, there exists a unique decomposition S of & such that ¥ =S ot and
such that the core morphisms of S are given by S?(p%) =87 forall J.

Proof. Let us consider a decomposition S: E4 — E. Then the composition
¥ = S o is clearly a monomorphism of n-fold vector bundles, with ¥({i}) =
S({i}) ot({i}) = idp, oidg,, =idp,. Furthermore, Proposition implies
that the restrictions S? are isomorphisms of multiple vector bundles. Since for
any v C p7 the (v,v)-core of E equals E[[Z}] which follows from Remark [3.1.19
for J € v and directly from the definition for J & v, these are all the building

bundles of IE% Now S[[s]} = id ) and thus S? induces the identity on all building
[v]
bundles of IE% and is therefore a decomposition. Since all S% and X are defined as

restrictions of the same map S they are clearly compatible.

Conversely, assume that we have a splitting ¥ of E and compatible decomposi-
tions S of the cores IE% with J Cn, #J =2 as in (b). We prove that there is a
unique decomposition S of E that restricts in the sense of (b) to ¥ and the S”.

Let now Jy,..., J(g) denote the subsets of n with #J, = 2. We define now
an increasing chain of (g) decomposed n-fold vector bundles as follows. For
k =0,...,(3) define a family of vector bundles over M, A* = (By);c, with
By = Ay for all I with either #I = 1 or if there is ¢ < k such that J; C I; and
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B; = M otherwise. Now let E¥ := EA" with total space EF := EA" (n). There are
obvious inclusions E(n) = E® — Fl — ... — () = EA(n). We thus view the
E* as submanifolds of E4(n). Note that additionally (EA)%Z, C E* for all i < k.
Now we show that we can define a decomposition S of E inductively on the E* for

k=0,..., (72‘) and that it is unique with respect to the given linear splittings.

Since E? = E we set S := X and this is clearly unique in the sense of (b). By
the compatibility condition it also restricts to S” on E9N (EA)%I fori=1,...,(3).
Take now k£ > 0 and assume that we have a uniquely defined injective morphism
of n-fold vector bundles S¥: E¥ — E that restricts to ¥ on E° and to S on
EFn (EA)%Z for i = 1,...,(5). Take x = (ar);cy, € E**!. Then in particular
ar = 041 if #I > 2 and there is no i < k+ 1 with .J; C I. Set y := (br)rcn
with b; = ay if either #I = 1 or there is ¢ < k such that J; C I and by = 0;?11
otherwise. Set furthermore z := (¢y);c, where ¢; = by whenever I C n\ Ji41,
c; = ay whenever Jyy1 C I and there is no ¢ < k with J; C I, and ¢ = O;f,‘lf
otherwise. Then y € E* and z € (E4)
is easy to check that

x=y + (0% + z)— + (0" + z>. 3.19
yn\{s}(ps(” n\{t) Yot L) it (3.19)

The last equality follows directly from the interchange law in the double vector

n oy .
Jpy,- Furthermore, writing Jy.11 = {s,t}, it

bundle (E; En (535 Ep\ {1} B\ {s,¢}) since S7k+1(z) is in the core of this double vector
bundle. Thus we can define
SHH(x) :=S*(y) + <0n + SJ’““(Z))

n\{s} s (SF(y)) n\{t}
(580) (3.20)

=S*(y) & <0n + 5J’““(Z)> :

e (S5 (¥)) m\{s}
It is easy to check that this defines an injective morphism of n-fold vector
bundles S¥*1: EF+l — E. Linearity over E,\ ;) follows directly from linear-
ity of S¥ and 87+ and the interchange laws in the double vector bundles
(E; En\ (51> B\ (33 En\(j,s3) and (E; Ep\ (i1, En\ (¢35 B\ 5,6) since the construction
of y and z from x is linear. If now x was already in E¥, then y = x and thus S¥*!
restricts to S* on E¥ and therefore also to ¥. If x was in (EA)% for any J C n
with #.J = 2, then y € E¥ N (EA)% and by induction hypothesis S*(y) = S (y).
Furthermore, z € (E““)%k+1 N (EA4)% and by the compatibility of S7k+1 with S7 we
get that S/»+1(z) = S7/(z). Thus clearly S¥*! restricts to all S’ on the intersection
EM1IN (EA)S. Also it clearly is the only morphism from E**! to E restricting to
S* on E* and to all S7 and thus by the induction hypothesis the only morphism
restricting to 3 and all S7. Thus we find eventually a unique injective morphism
S := S() . BA 5 E that restricts to 3 and all S for #.J = 2. That S is surjective

now follows from linearity and a dimension count. O
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3.2.2 Existence of splittings

In this section, we finally state and prove our main theorem. We prove by induction
that every n-fold vector bundle is non-canonically isomorphic to a decomposed

one.

Theorem 3.2.3. Let E be an n-fold vector bundle. Then there is a linear splitting
>:E—E,

that is a monomorphism of n-fold vector bundles from the vacant, decomposed
n-fold vector bundle E associated to E, which was defined in Section into E.

Proof. We prove the following two claims by induction over n.

(a) Given an n-fold vector bundle E, there exist n linear splittings ¥\ (4 of
E2MFH for k € n, such that Yoy (I) = Bp\jp () for any I Cn\ {i,5}.

(b) Given a family of splittings as in (a), there exists a linear splitting of E with
B(I) = ¥\ qxy(I) whenever I C n\ {k}.

The case of n = 1 is trivial. Take now n > 2 and assume that both statements
are true for [-fold vector bundles, for I < n. First, we prove (a). This is equivalent
to having splittings X; of E/? for all I C n such that X7, (J) = 1,(J) whenever
J C I1 N I,. We prove that claim with an induction over §/. For all I C n with
#1 =1 or #1 = 2, this is immediate.

Assume now that we have fixed linear splittings of EX? for all I with #I =1 <
n — 2, such that for all J C I1 NIy, X1, (J) =X ;(J) = X1,(J). For any I C n with
#1 =1+ 1 we can then find by induction hypothesis (b) a linear splitting >, of
EX? which satisfies Yr(J) =% (J) for all J C I. Now for I, Iy of cardinality [ + 1
and J C I} N I, we get Xp, (J) = X5(J) = Er,(J). This shows that part (a) is
satisfied for every n-fold vector bundle since we eventually find linear splittings

Y\ ky of all Ep\ 1y which agree on all subsets I C n of cardinality #1 < (n — 2).

We denote in the following their top maps by

M
Sk= S @\ kD) [T B = Bapy -
ien\ (k)

It is easy to check that given m € M and e; € Ep; with péi}(ei) = m for
i=1,...,n, the tuple (X1(e2,...,en), Xa(e1,€3,...,€n), ..., Xn(€1,...,€,_1) is an

element of P. Short exact sequences of vector bundles are always non-canonically
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split, so we can take a splitting #; of the short exact sequence of vector bundles
over E, 1y in Proposition 3.1.21} Define »E. Hf\gﬂ E(y — E by

Zf—;: (61, ey €n) — 01 (21(62, cey €n>, 22(61, €3,..., €n), cey En(el, ce ,en_1>) .
(3.21)
This is a vector bundle morphism over the linear splitting 31 of Ej\ (1) such that
pi(Ef (et en)) = Sjler, ..., €, ... en) € Ep iy (3.22)
for j = 2,...,n. However, ©¥ is not necessarily linear over > as 01 is not a

morphism of n-fold vector bundles. We will inductively construct a morphism

which is linear over all sides.

First we do this locally: we choose a neighbourhood U of m € M that trivialises

each of the Ey,, for i = 1,...,n. Fix smooth local frames (b, ..., bil) of Ey;y for

M
1€n

li =1k Ey. Every element of [[;c,, E;) over m € U can thus be written uniquely

as
Iy ln

(e1,-ven) = (32 BIbI(m), ... > BibL(m)

j=1 Jj=1
where ,Bg € R. Assume now that we have a morphism EE v Elu = E|y which is

linear over the splittings 3; for j = 1,...k and satisfies additionally (3.22) for all
other j. We then define EkEH’U by

E=En\{k+1}
EE+17U(61,...,en) = Z Biﬂ-EﬁU(el,...,ek,biﬂ(m),elﬁg,...,en),
J=1lkg1
where the scalar multiplication is also the one of the vector bundle E' — E,\ (541}
That this morphism is still a vector bundle morphism over X; for all j =
1,...,k follows directly from the interchange laws in the double vector bundles
(E; En\ iy En\ (k413 En\fjk+13)- That it is also a vector bundle morphism over
Y41 is immediate. It furthermore still satisfies for all other j. Starting
with the restriction to U of ¥ from we get after (n — 1) iterations the top
map of a local linear splitting B of E|y.

Now we will prove the existence of a global splitting using a partition of
unity. This method was already given for double vector bundles in the original
reference by Pradines [65]. Choose a locally finite cover of neighbourhoods as
above, U = {Ugy}aeca, and a partition of unity {¢a}aca subordinate to Y. Take
then the local linear splittings Elb;a and define the global splitting for (eq,...,ey)
over m € M by

E—FEn\ (13

YE(er,. .. en) = Z ©a(m) Zga (e1,...,en). (3.23)
{a: meUas}
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That this is a vector bundle morphism over all 3; follows again from the interchange
laws in the double vector bundles (E; Ep\ (11, En\ (535 En\f1,51)- Injectivity follows
directly from this as all ¥ are injective. The linear splitting is then given by
S(n) := XF and B(I) := B, (43 (I) whenever I C n\ {k}. This completes the
proof. O

Corollary 3.2.4. Every n-fold vector bundle E is non-canonically isomorphic to
the associated decomposed n-fold vector bundle defined in Section[3.1.3.

Proof. This follows from Theorem and Theorem [3.2.2] To apply Theorem
[3:2.2) we have to show that we can construct compatible decompositions of all the
highest order cores. This follows from a similar argument to the beginning of the

proof of Theorem [3.2.3

We have to consider all iterated highest order cores. These are firstly the
(n — 1)-fold vector bundles EF with I C n and #I = 2, secondly the (n — 2)-fold

n

vector bundles (IE%),’?7 with v C p? and #v = 2 and so forth. Theorem |3.2.3| lets

us choose linear splittings of all these multiple vector bundles. Note that the

same multiple vector bundles can occur multiple times (see for example Remark
3.1.19| (c)). For these we still fix only one linear splitting. With Theorem we
obtain then firstly unique decompositions of all occurring double vector bundles.
After fixing these, with Theorem we obtain decompositions of all occurring
triple vector bundles and these are all compatible by construction. Fixing these
we obtain compatible decompositions of all occurring 4-fold vector bundles and so
forth. Eventually after obtaining compatible decompositions of the highest order
cores Theorem gives us a decompositions of E. O

Corollary 3.2.5. For every n-fold vector bundle [E and the associated n-pullback P
there is an injective morphism of n-fold vector bundles £¥': P — E simultaneously
splitting all the ultracore sequences from Proposition[3.1.21].

Proof. We can choose a decomposition of E with top map S¥: EA(n) — E. This
is a morphism over decompositions of the faces E,\(y for all k € n. These
decompositions induce a canonical associated decomposition of P, the top map
of which we denote by S*': H%ﬂ Bl — P. Together with the canonical inclusion
L: H%n E!l — EA(n) we then define such a splitting with top map given by
EP(Q);SEOLO(SP)_l. O
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3.2.3 n-fold vector bundle atlases

In this section we show how a change of splittings corresponds to statomorphisms
of the decomposed multiple vector bundle, which were introduced in [27]. We then
explain how n-fold vector bundles can alternatively be defined using smoothly

compatible n-fold vector bundle charts.

For I a finite subset of N, we denote by P(I) = {{l1,..., Iy} | I =L U.. .U}
the set of disjoint partitions of I. Since the elements of P(I) are sets, not tuples,
we do not take the order into account. That is, we do not distinguish the partition
{I1, I} from {I, 1, }.

Definition 3.2.6. Let E be an n-fold vector bundle. A statomorphism of E is
an isomorphism 7: E — E that induces the identity on all building bundles E{ for

I Cn. The set of statomorphisms of & forms a group with composition.

Proposition 3.2.7. Let E be an n-fold vector bundle and EA the correspond-
ing decomposed n-fold vector bundle as in Definition [3.2.1. The set of global

decompositions of E is a torsor over the group of statomorphisms of EA.

Proof. Given a decomposition S: E4 — E and a statomorphism 7: E4 — EA the
composition Sor: EA — E is again a decomposition of E. This defines a right action
of the group of statomorphisms of E4 onto the set of decompositions of E. Given
two decompositions Sy, Sz: EA — E the composition 7 := 81_1 0Sy: EA — EA
defines a statomorphism of E4 such that S; o 7 = Sy. This shows that the action

is transitive. That it is free is immediate as S o 7 = § clearly implies 7 =id. O
The following description of statomorphisms can be found in slightly different
notation in [27].

Proposition 3.2.8. A statomorphism T of EA is necessarily of the following form:

p={I1,....Ix}€P(I)

7(n): (er)rcn = ( > eplern, .- 7€1k)) ; (3.24)
ICn

where @, € F(Hom(Eﬁ ®...0 E{}’:, ED) and for the trivial partition p = {I} we
additionally demand @, = idEjr.

Now we define n-fold vector bundle charts and atlases and show that our
definition of n-fold vector bundles is equivalent to the definition in terms of charts.

Definition 3.2.9. Let M be a smooth manifold and E a topological space together
with a continuous map 11: E — M. An n-fold vector bundle chart is a tuple

¢=(U,0,(VI)icn) (3.25)
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where U is an open set in M, for each I C n the space Vi is a (finite dimensional)
real vector space and ©: II71(U) — U x [l1cn Vi is a homeomorphism such that
IT = pr, 0O.

Two n-fold vector bundle charts ¢ = (U, 0, (Vi)icn) and ¢ = (U, 0", (V])rcn)
are smoothly compatible if Vi = V| for all I C n and the “change of chart”
©' 007! over UNU' has the following form:

(p, (vi)ica) = | p, ( Z wo(p)(vrys - .- ,vfk)) (3.26)
p={I1,... I }eP(I) ICn

with p e UNU', v € Vi and w, € C*(U NU',Hom(V;, ® ... ® Vi, V7)) for

p=1hL,..., I} e P(I).

A smooth n-fold vector bundle atlas 2 on E is a set of n-fold vector
bundle charts of E that are pairwise smoothly compatible and such that the set of
underlying open sets in M covers M. As usual, E is then a smooth manifold and
two smooth n-fold vector bundle atlases A1 and Ao are equivalent if their union
s a smooth n-fold vector bundle atlas. A smooth n-fold vector bundle structure

on E is an equivalence class of smooth n-fold vector bundle atlases on E.

Let E be an n-fold vector bundle. By Theorem and Theorem we have
a decomposition S: EA — E of E, with A the family (A;) 1cn of vector bundles
over M defined by Ay = E({i}) for i € n and A; = Ef for I C n, #I > 2. Set
I=E(m— 0): E— M. For each I C n, set V; := RUI™Ar the vector space on
which Ay is modelled. Take a covering {U, }oep of M by open sets trivialising all
the vector bundles Ay;

0 g7 (Us) —= Uy x Vi

for all I € n and all « € A. Then we define n-fold vector bundle charts
Ou: I"HU,) — U, x [Trcn Vi by

On = (H X (éf)%)]g@) o3_1|H—1(Ua)-
Given «, 8 € A with U, NUg # 0, the change of chart
Oa 005 (UaNUp) x [[ Vi = (UanUp) x [[ Vi
ICn ICn
is given by
(p. (v1)1cn) = (0, (7 (P)vD) 1), (3:27)
with p?‘ﬂ € C®(Us NUg,GI(Vy)) the cocycle defined by ¢¢ o (qﬁ?)*l. The two

charts are hence smoothly compatible and we get an n-fold vector bundle atlas
Q[ = {(UCY)@OH (‘/I)Igﬁ) | VA A} on E.
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Conversely, given a space F with an n-fold vector bundle structure over a
smooth manifold M as in Definition we define E: (0N — Man®™ as follows.
Take a maximal atlas A = {(Ua, O, (Vi)icn) | @ € A} of E; in particular
{Ua}aca is an open covering of M. For «, 3,7 € A we obtain from the identity
0,00, =0,0 6[;1 00500, on 171 (U, NUg NU,) the following cocycle
conditions. For I Cn and p = {I1,..., I} € P(I):

wza(p)(vh, CoUL) =

S @ (e @(n)en).
(1, k) =T, ool tsliesd ! (3.28)

e 0 (0n)ien) )

where I, :=U;e;,, Ij-

We set E(n) = E, E(0) = M, and more generally for I C n,

E(I) = (a|g|A (Ua X JHQVJ) ) / ~

with ~ the equivalence relation defined on | |,ep (Ua X [15c; V) by

Uox [[Vs > @isct) ~ (a(wr)icr) € Usx[[Vy
JcI JcI

if and only if p = ¢ and

(vg)acr = ( > wp(p)(wJuuwak)) :
r=tn JCI

..... Jk}EP(J)

The relations (3.28) show the symmetry and transitivity of this relation. As in
the construction of a vector bundle from vector bundle cocycles, one can show
that E(/) has a unique smooth manifold structure such that II;: E(I) — M,

II;[p, (vr)rcs] = p is a surjective submersion and such that the maps
OL:m | Uax [[ Vs | = Uax [] Vi, [p, (vr)1cg] = (v, (vi)1cs)
JCI JCI

are diffeomorphisms, where 77: || ep(Ua X [1;c; Vs) — E(I) is the projection to

the equivalence classes.

We have then also #1 surjective submersions

Phiy: B = E(I\ {})
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for ¢ € I, defined in charts by

Ua x [T Vs 2 (0, (ws)scr) = (. (va)igucr) € Ua x [ Vo
JcI JCI\{i}
and it is easy to see that E(I) is a vector bundle over E(I \ {i}), and that for
1,7 €1,
Py

E(I) E(I\ {i})
lpﬁ\{” 1\{j} lpfifi,}j}
E(I\ {7}) — 2 E(I\ {i, )
is a double vector bundle, with obvious local trivialisations given by the local

charts.

The constructions above are inverse to each other and we get the following

corollary of our local splitting theorem.

Corollary 3.2.10. Definition of an n-fold vector bundle as a functor from
the n-cube category is equivalent to Definition[3.2.9 of an n-fold vector bundle as a

space with a mazximal n-fold vector bundle atlas.

Our construction above of an n-fold vector bundle atlas on E(n) from an
n-fold vector bundle yields an atlas with simpler changes of charts than
the most general allowed change of charts . This is due to our choice of
a global decomposition of the n-fold vector bundle. Choosing different local or
global decompositions will yield an atlas with changes of charts as in . That

the equivalence class of atlases is independent of the choice of decomposition

follows from Proposition |3.2.7|and (3.24)). Two different decompositions will give

compatible charts.

3.2.4 Decompositions of co-fold vector bundles

In this section we show how our proof of the existence of linear decompositions of n-
fold vector bundles for all n € N yields as well the existence of linear decompositions
of co-fold vector bundles. We write here coVB for the category of co-fold vector

bundles and oo-fold vector bundle morphisms.

Let E be an oo-fold vector bundle. Then for each n € N, the restriction E o /Y
defines an n-fold vector bundle, and E" := E o /)Y o 7} defines again an oo-fold
vector bundle, given by E™(I) = E(I Nn) for all finite I C N. There is a sequence

of monomorphisms of co-fold vector bundles

0 %, 4, m2 8
E'—-E —E — ... (3.29)
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defined by i} (I) = Oﬁé for k <1 € N and a finite subset I of N; remember that
0l = idg,. Thus we have a functor E: N — coVB sending an object n € N to
E" and an arrow m < n to ¢,. In the same manner, for each n € N there is a
monomorphism ¢, : E® — E defined by ¢, (I) = 0 : E*(I) — E(I) for all finite
I C N. It is easy to see that [E together with the inglusions tn: E" — E defines a
colimit for in the category of oco-fold vector bundles.

The inductive nature of the proof of Theorem yields the following corollary.

Corollary 3.2.11. Let E be an oco-fold vector bundle. Define the family A =
(qr: Ar — M)icn g1<co of vector bundles over M by setting Aj = El for 2 <
#1 < 00, Ay = Egy and Ag = E(0) = M. Then there exists a sequence of
decompositions S™: E'AO[,E — Eoul such that the diagram of co-fold vector bundles

EY E! E2

sﬁ sﬁ sﬁ N (3.30)

(EA? —— EA —— (B2 —— ...,

commutes, where S™(I) := S™(I Nn) is the morphism of co-fold vector bundles
induced by S™.

Since commutes, and for each n, 8" is an isomorphism, we find that
EA together with the morphisms 7(n) = !t o (S")~! for all n, is also a colimit
for in the category of oco-fold vector bundles. Therefore there is a unique
isomorphism S: EA — E such that ¢, 0 S = S o ! for all n € N. We get the

following theorem.

Theorem 3.2.12. Let E be an oco-fold vector bundle. Define the family A =
(qr: A; — M)icN g1<0o of vector bundles over M by setting A = El for 2 <
#1I < o0, A{k;} = E{k} and A@ = E(@) =M.

Then E is non-canonically isomorphic to the associated decomposed oo-fold
vector bundle EA. More precisely, given a tower of decompositions as in (13.30)),

the decomposition S: EA — E of E can be uniquely chosen so that for each n € N,
S™: (B — E™ satisfies

S"(I)=SINn): (EH*(I)=EAINn) —E*(I)=EUNn) (3.31)
for all finite I C N.

Proof. The morphism S: EA — E is explicitly defined as follows. Choose a finite
subset I C N. Then there is n € N with I C n and we can set S(I) = S"(I). The
equalities (3.31]) are now easy to check. O
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3.3 Multiply linear sections

In this section we give the definition of multiply linear sections in a multiple vector
bundle and show how they fit in a short exact sequence analogously to the double
vector bundle case in Lemma [2.1.24] Let in this section E always be an n-fold
vector bundle with total space E = E(n).

Definition 3.3.1. An (n—1)-fold linear section from Ey\ x} to E is a morphism
of (n—1)-fold vector bundles T: B2\ = EnAk} gych that 7(n\ {k}): Engy = E
is a section of the vector bundle p.: E — E,\ry. We denote the set of these (n—1)-
fold linear sections by T (E). This is a C™(M)-module by (f - 7)(I)(er) =

En\ (k)
f(m) N T(I)(er) for f € C*(M), T €T (E), I Cn\{k}, e € Er and

m:pé(ef).

ﬁnfl
En\(ry

Recall that we defined in the proof of Theorem [3.1.13| two (n — 1)-fold vector
bundles, P and Plow with total spaces given by (3.9) and (3.10) as follows

P =L(er, @ o) | e € By 0 (en) = 92V e)
for i, j 6@\{k}},

Pov = L(br B bo) | b € By 0 00) = 020 1)
for i, j GQ\{k}}

We showed that P,;‘ P is additionally a vector bundle over Pliow. It is easy to
see that this in fact defines an n-fold vector bundle with total space P.*. Thus
we can consider the set of (n — 1)-fold linear sections of P,'P — PV, that is
I%n71

[gow

En\y = En\giky for j € n\ {k}.

(P;®). These are precisely compatible tuples of (n — 2)-fold linear sections

anl

By (E), we define

Given now an (n — 1)-fold linear section 7 € T’

Kn—l
low
P}

by w(7)(I)(er) :=7(I)(es) for all I C n\ {k} and

m(r) el (P®), (3.32)

(1) @\ kD) (e rp)jenriy) = (F@\{G ED € 6})) jem g - (3:33)

This is the tuple of the underlying (n — 2)-fold linear sections of 7 of all the
En\(5y = En\{ik}-

This defines a morphism of C'°°(M)-modules 7: Fgﬂ_\l{k} (E) — F%;:V(P; P,

Recall furthermore that the vector bundle E — M induces an (n — 1)-fold

vector bundle with indexing category ¢\*1:0 where the total space is given by
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E5 and in all other positions we have the base manifold M. We showed in Lemma
that the space of (n — 1)-fold vector bundle morphisms from E2\FH0 to this
(n — 1)-fold vector bundle is a ¢ (M )-module, denoted by Mor,,_; (E2\F-0 B,
We will furthermore again identify such an (n — 1)-fold vector bundle morphism

with its component on the total space, that is the smooth map Ep\ (r) — Er.

With this we can define the short exact sequence of C°°(M)-modules. The
case of n = 2 can be found in Lemma [2.1.24] and we will later demonstrate the

case of n = 3 in Proposition [3.5.4 for the convenience of the reader in detail.
Proposition 3.3.2. The map 7 defined above is surjective and fits into a short

exact sequence of C*° (M )-modules

[n—l
En\

gn—l
low
Pk

0 — Mor, 1 (E2MFH oy 5 P (B T P00 (PP) 0, (3.34)

where the injective map is induced by the map ¢: (H%\{k})!E% — E from Proposition

defined in (3.18). That is, G(en(ry) = ¢(en\ (k) P(em(5})-

Proof. Injectivity of the map ~ is clear from the injectivity of ¢.

Surjectivity of 7 follows from the existence of linear splittings. Given a section
€€ F?%;i, (P®), we consider the pullback section (J;)"¢: Ep\ ey — (6r)' PP =P
which is itself a morphism of (n — 1)-fold vector bundles. A simultaneous splitting
YP: P — E of all the ultracore sequences from Proposition as in Corollary
gives then an (n — 1)-fold linear section oy (£) := % 0 (6;)'¢ of E — Eo\ky
with 7(or(§)) = &.

Given any ¢ € Mor,_1(E2\(*H0 B2 and en\{k} € En\qry we find for any
J € n\ {k} that p;(@(en\ (1)) = %ﬂ\f{fjk} Thus ¢ is linear over the zero sections
of all Ey\ ;3 — Ep\(j,k}y and is in the kernel of 7. Conversely, given an (n — 1)-fold
linear section & over the zero sections of all Ey\ ;3 — Ep\ (k) We obtain a morphism

© by subtracting the zero elements in the reverse order. In other words,

= - 0P - ...
CNGY ((f(en\{k})ﬂ\{il} ) o )

o E
m\{ip_q} 2\in—2}

defines a morphism ¢ € Morn_l(Eﬁ\{k}’w, E5) such that ¢ = $ and we obtain that

the sequence is indeed exact. ]

3.4 Symmetric n-fold vector bundles

In this section we define symmetric structures on n-fold vector bundles. This is the

n-fold analogue of an involutive structure on double vector bundles. Symmetric



82 CHAPTER 3. MULTIPLE VECTOR BUNDLES

n-fold vector bundles will be important in the geometrisation of graded manifolds
of degree n, in an analogue way of the geometrisation of graded manifolds of degree
2 by involutive double vector bundles in [37]. This is an ongoing joint project with
Madeleine Jotz Lean. The goal is an equivalence of categories between graded

manifolds of degree n and the category of symmetric n-fold vector bundles.

For the definition of these symmetric n-fold vector bundles we first need
the appropriate flips of n-fold vector bundles. In the following, S, is always
the symmetric group of degree n. The n-cube category 1" is equipped with a
canonical left action ® of .S,, by isomorphisms of categories in the following way.
The permutation ¢ acts by ®,: (0" — 0" which maps an object I C n to the
object o(I) C n and morphisms in the obvious way. This action induces a right

action of S, on the category of n-fold vector bundles as follows.

Definition 3.4.1. For o € S,, we define the o-flip of an n-fold vector bundle E
to be the n-fold vector bundle E7 := Eo ®,: (0" — Man®. Since ® is a left action
of Sy on O™, we obtain that (E7)" = E°". Given a morphism of n-fold vector

bundles ¢: E — F, there is an obvious morphism °: E? — F?.

Note that E° has the same underlying spaces as [E but in different positions,
which is crucial when considering morphisms of multiple vector bundles. For
example the double vector bundle (D; A, B; M) is different from the double vector
bundle (D; B, A; M).

We want the symmetric structure to carry signs on the different cores analo-
gously to how an involutive structure on a double vector bundle induces —id on

the core. We therefore need the following definition of the induced signs.
Definition 3.4.2. Let 0 € S,, and I C n. Then we define the (o, I)-sign by

5(0.’ I) — (_1)#{(i7j)61><1| i<j and o(i)>0(j)} ) (335)

Equivalently, it is the sign of the permutation in Sy; on {1,...,#1} defined by
oD oa|po (fH)=1, where f7:J — {1,...,#J} for J C n is the unique order-

preserving bijection.

Here < and > denote the natural order of the natural numbers. The signs
above therefore measure the parity of the number of necessary transpositions to
bring the set o(/) from the order induced by the natural order on I to the order
coming from the natural order on o(I) C n. For example for n > 4 we have
£((13),{1,2}) = —1 and £((13),{1,4}) = +1. Now we can define a symmetric

structure on an n-fold vector bundle.
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Definition 3.4.3. Let E: (0" — Man®™ be an n-fold vector bundle such that its
building bundles satisfy Bt = E:} for all I,J Cn with #1 = #J. A symmetric
structure on E is a right Sy-action ¥: E(n) x S, — E(n) on the total space E(n)
such that

1. for any o € S, the action induces a morphism of n-fold vector bundles
U,:E— E? and
. I
2. (V)] =e(o, 1) -idps: Bf — Egly) = Bf .
We call an n-fold vector bundle together with a symmetric structure a symmetric
n-fold vector bundle.

Note that the definition implies W7

g

oV, =V ,:E - E — E™ for all
0,7 € Sp. Note that (a) and (b) also already imply that all ¥, are isomorphisms
and thus induce isomorphisms on the building bundles. We only need to impose
the condition that E{ = E:]] in order to be able to specify the signs of these induced

morphisms on the building bundles.

It is clear that in the case of n = 2 this is the same as the definition of an

involutive double vector bundle given in [37].

To define the category of symmetric n-fold vector bundles we also have to

define morphisms between them.

Definition 3.4.4. Let (E, V%) and (F, V%) be symmetric n-fold vector bundles.
Then a morphism of symmetric n-fold vector bundles from E to F is a
morphism of n-fold vector bundles V: E — F such that additionally for any o € S,
the following diagram commutes

E
E Yo, Eo

\Pi l\pﬁ ) (3.36)

F —— F°
or in other words ¥ o UE = ¥ o UF,

This then defines the category SnVB of symmetric n-fold vector bundles. For
n = 2 this is the category of involutive double vector bundles as for example
defined in [37].

There is a forgetful functor from SnVB to nVB, given by forgetting the
symmetric structure. Clearly, this functor is neither full since not every morphism

of n-fold vector bundles between two symmetric n-fold vector bundles respects the
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symmetric structure, nor injective on objects as the same n-fold vector bundle can
carry different symmetric structures. For instance, given a symmetric structure
¥ on E and any statomorphism ®: E — E, then there is an induced different

symmetric structure defined by
02 = (9°) loVod: E — E°. (3.37)

Thus any n-fold vector bundle that admits one symmetric structure always admits

other symmetric structures, defining different symmetric n-fold vector bundles.

The following example is the standard example for such a symmetric n-fold

vector bundle.

Example 3.4.5. Let Aq,..., A, be vector bundles over M. Denote by A =
{Ar}1c, the family of vector bundles given by A; = Ay and let EA be the
corresponding decomposed n-fold vector bundle defined in Section[3.1.3. Then there
is a canonical symmetric structure on BEA, defined by

Vo (n): E4(n) = (EY)7(n)

(3.38)
(ar)icn = (e(o, D)ar) .

This is called the standard symmetric decomposed n-fold vector bundle.

The strategy for the geometrisation of graded manifolds of degree n is the
following. First, we need to show that any symmetric n-fold vector bundle is
isomorphic to an associated standard symmetric decomposed n-fold vector bundle.
We need to show that we can always find symmetric decompositions and thus obtain
an analogue to Corollary[3.2.4]in the symmetric case. Then we can define symmetric
n-fold vector bundle atlases and obtain an equivalence between symmetric n-fold
vector bundles as in Definition and a definition in terms of symmetric atlases.
With these atlases we can then construct a sheaf of graded commutative C*°(M)-
algebras similarly to the construction of Madeleine Jotz Lean in the double vector
bundle case in [37]. This sheaf defines an N-graded manifold of degree n over M as
in Definition Conversely we can construct a symmetric n-fold vector bundle
atlas from the sheaf of functions of such a graded manifold. We then have to show
that these functors define an equivalence of categories between graded manifolds
of degree n and symmetric n-fold vector bundles. Then it will also be clear why
we used the signs (o, I) in Definition of symmetric n-fold vector bundles.

There are still some complicated technical problems and details to check in
this entire construction, already in the case of n = 3. Solving these problems and
checking all details in the general case is an ongoing joint project together with

Madeleine Jotz Lean.
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3.5 Example: triple vector bundles

In this section, we explain for the convenience of the reader how our results and
considerations in Sections and [3.3] read in the case of n = 3. In this special
case we will also show how one may obtain a decomposition from a splitting of
the short exact sequence of C'°°(M)-modules defined in Section together with

splittings of the side and core double vector bundles.

3.5.1 Splittings of triple vector bundles

Given a triple vector bundle E we will write in the following T := E({1, 2,3}),
D = E({1,2}), £ := E({2,3}), FF := E({1,3}), A := Eyy, B := Eg and

C := E3y. The triple vector bundle is then a cube of vector bundle structures

Xﬁ/‘

— D

T

Pp
T

P
PR
pL F
P&

FE

A
F
pAl , (3.39)
- B [\
R
pE
C o N

where all faces are double vector bundles.

We will denote the cores of the double vector bundles (T'; D, E; B), (T; E, F; C),
(T;F,D;A) by Lpg, Lgr and Lrp and the cores of the double vector bundles
(D;A,B; M), (E;B,C; M), (F;C,A; M) by Kap, Kpc and K4, respectively.

In the general notation we would write Eg’gf’} =: Lpp, Ef{{ll ’;}3} =: Lpg and
Eﬁ’g}?’} =: Lgp for the upper cores and E{{11,722]% =: Kup, Eg:g% =: Kpc and
EE g% =: K¢ 4 for the lower cores. The triple core of this triple vector bundle is

S = EH;;{, a vector bundle over M.

The upper cores Lpg, Lgr and Lrp are themselves double vector bundles by
Theorem All three have by Lemma the core S, whereas the sides of
Lpg are given by Kca and B, the sides of Lgr by Kap and C, and the sides of
Lrp by Kpc and A.

A decomposition of a triple vector bundle (T'; D, E, F; A, B,C; M) as above is
now an isomorphism of triple vector bundles S from the associated decomposed
triple vector bundle as in Example to T over decompositions of D, E and F

as double vector bundles and inducing the identity on S. In particular it is over the
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identities on A, B and C, and is inducing the identities on K g, Kpc and Ko 4.

A linear splitting of a triple vector bundle (T'; D, E, F'; A, B,C; M) as above
is an injective morphism of triple vector bundles ¥ from the vacant triple vector
bundle (A X BxpC; Ax B, BxpC,C Xy A; A, B, C; M) over linear splittings
of the double vector bundles D, F and F, hence over the identities on A, B and C.

We have proved the following lemma, which is the case n = 3 of Theorem [3.2.2]

Lemma 3.5.1. A decomposition of a triple vector bundle T is equivalent to a
linear splitting of T and linear splittings of the three core double vector bundles

Lpg,Lgr and Lrp.

Note that here, starting from the splittings we get an explicit formula for the

decomposition: S(a,b,c, kap, kpc,kca,s) equals
((E(@a b,¢) +0 (0504 p) +F S5 (a,k50))) +F (05 (40 +5 Z5F (c, kAB)))

5 (085 ,0p0) +0 B2 (b, k) + (0 +£5))
(3.40)

Now let us consider the pullback triple vector bundle associated with a triple
vector bundle. Given double vector bundles (D;A, B; M), (E;B,C; M) and
(F;C, A; M), we consider the set

P={(de,f) € Dx Ex F| pR(d) = pi(f), pB(d) = pE(e), pé(e) = pt(f)} -
(3.41)
Then P is a triple vector bundle, with the obvious projections to D, F and F' and

the additions defined as follows. The space ¥ X F' has a vector bundle structure

EXCF%BXMAa (eaf)’_) (pg(e)’pi(f))a

with addition (ey, f1) + (e2, fo) = (e1 +p €2, f1 +4 f2). Since D is a double
vector bundle and so non-canonically split, we have the surjective submersion
§P: D — B xy A, given by §(d) := (pB(d), p5(d)). We define the vector bundle
P — D as the pullback vector bundle structure (6°)'(E x¢ F) — D. We call P
the pullback triple vector bundle defined by D, E and F' because it fills a

cube in a similar manner as the pullback in category theory fills a square.

We have three short exact sequences of vector bundles over D, E and F,

respectively; the one over D reads

(6P) (PEPE)

0 — (xi)'s T P 0, (3.42)

where 70 = g4 0 p§ = qp o pB. We are now able to state Theorem in the

case n = 3.
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Theorem 3.5.2. Ewvery triple vector bundle is non-canonically isomorphic to a

decomposed triple vector bundle.

3.5.2 Splittings, decompositions and horizontal lifts

Let us recall here first that a decomposition of a double vector bundle is equivalent to
a splitting of the short exact sequences given by its linear sections. As we have seen
in Section [2.1] a splitting X: A xps B — D of D is equivalent to a homomorphism
of C®°(M)-modules o: T'(B) — T% (D) (a horizontal lift) which splits this short
exact sequence. The correspondence is given by op(b)(am) = X(am,b(m)) for all
b € I'(B) and a,, € A. By symmetry of ¥ a horizontal lift op is therefore also
equivalent to a horizontal lift o 4: T'(A) — I'5(D), splitting the sequence

0 — I'(Hom(B, C)) — I'4(D) = T(A) — 0. (3.43)

In this section, we explain how a splitting of the triple vector bundle 7' is
equivalent to a “horizontal lift” of pairs of linear sections in 'y (F") X1(C) I'5(E) to
doubly linear sections of T'— D. Of course, similar results hold for doubly linear
sections of T'— E as lifts of elements of ', (F) Xp(A) I'%(D), etc.

Definition 3.5.3. A doubly linear section of T over D is a section which is
a double vector bundle morphism from (D; A, B; M) to (T; F,E;C) over some
morphisms £: A - F, n: B— E, ¢c: M — C. The morphisms £ and n are then
themselves linear sections of the double vector bundles E and F over the same
section of C. We denote the set of doubly linear sections of T' over D by F‘g (7).

The space Fg (T) is naturally a C°°(M)-module: for f € C°(M) and £ €
Fg (T) doubly linear over {4 € T (F) and £p € T%(E), the section (ga o pR)*f - &
is doubly linear over ¢ f - {4 and ¢5f - &B.

Consider the double vector bundle S with sides M and core S:

LNy V/{

QS\L lid]y[

M 6y

As we have seen in Lemma [3.1.11} the space Mory(D, S) of double vector bundle
morphisms D — S is a C°°(M)-module. It is easy to see that given a decomposition
A xy B xy Kap — D, we get Morg(D,S) ~T(Kip®S5)@T(A*®@ B*®S). We

have an obvious inclusion

T Mory(D, S) = T'H(T),
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the images of which are exactly the doubly linear sections that project to the zero

sections of £ — A and F' — B, and so to the zero section of C.

Both I'(F) and I';(E) project onto I'(C), thus we can build the pullback
Y (F) X1(C) I'5(E) which consists of pairs of linear sections of the respective
bundles which are linear over the same section of C. Now I €D2 (T) fits into a short

exact sequence of C°°(M)-modules as in the following proposition.

Proposition 3.5.4. Let T be a triple bundle as in (3.39). We have a short ezxact
sequence of C°°(M )-modules

0 = Mora(D, S) = T2 (T) 5 T (F) xr(c) F'B(E) = 0. (3.44)

Proof. Injectivity of ~ is immediate. To show surjectivity of 7, choose a linear
splitting %% of the double vector bundle (T; E, F;C). Given & = (¢F,¢F) ¢
4 (F) X1(0) T'%(F) we can then define ¢ € I‘g (T') by

£(d) == SEF(EE (pR(d)), £ (PR (d)) -

It is easy to see that this is in fact a doubly linear section. Note that the map *

does not define a splitting of the short exact sequence, as it is not linear over D.

Given any ¢ € Mory(D,S) and d € D over a € A and b € B it is clear that
pE(d(d)) = OF and pL(é(d)) = OL. Thus ¢ is linear over the zero sections of
E — B and F — A and thus in the kernel of w. Conversely, given £ € F£D2 (T') over
the zero sections of E — B and F' — A, we get for any d € D over a € A and
b € B that (£(d) —g 0%) —p ng? projects to zero in all directions and thus defines
an element ¢(d) of the triple core S. It is easy to check that this assignment defines
a morphism ¢ € Mory(D, S). Then & = 6 and the sequence is exact. O

Proposition 3.5.5. A decomposition of a triple vector bundle T as in 18
equivalent to linear splittings of the double vector bundles D, E, F', Lpg and
Lpp and a horizontal lift, that is a splitting o: T (F) Xr(C) I'%(F) — Fg (T)
of the short exact sequence that is compatible with the splittings of the
double vector bundles in the sense that for all d € D we have J(q;ﬁ,og)(d) =
07 +5XL2% (pB(d), ¥ (p8(d))) for all 6F € T(Hom(A, Kca)) and o(05, 67)(d) =
0F -+ TEr (pB(d), 62 (pB(d))) for all 6 € T(Hom(B, Kpc)).

Proof. A given decomposition S of T induces decompositions of all the double vector
bundles by definition. These are equivalent to linear splittings and horizontal lifts
0c&:T(C) = T4(E) and of: T(C) — 'y (F). Now any two linear sections ¢¥ €
I'5(E) and ¢F € TY(F) over the same ¢ € T'(C) can be written as ¢F = 0§ (c) +g;)\;3
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and ¢F = oli(c) + q;)} for some ¢F € I'(B* ® Kpc) and ¢f € T(A* @ Kc). We
define a horizontal lift by

J(§E7§F) (SD(ama b, km)) = S(ama b, C(m)7 km, ¢F(am)7 ¢E(bm)a 0%) .

It is easy to check that this lift satisfies the additional compatibility conditions.

Conversely, given linear splittings of the double vector bundles D, E, F, Lpg,
Lrp and a horizontal lift ¢ satisfying the extra condition, we first define a linear
splitting X287 C x5 Kap — Lgr by SLEF (e, kap) = o(cki(c),0E(c))(kap)
for any section ¢ of C' — M with ¢(m) = ¢, and where we view K4p as a subset

of D. Then we define a linear splitting of T" by
Y (@m, by em) = 0 (0E(c), 0&(c)) (ZP (am, b))

where ¢ € I'(C) is any section such that ¢(m) = ¢,,. Together with Lemma

this gives a decomposition of T'.

Straightforward computations show that these two constructions are indeed

inverse to each other and we get the desired equivalence. O
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Chapter 4

Linear generalised complex

structures

In this chapter, we study linear generalised complex structures on vector bundles
and in particular on Lie algebroids. Generalised complex Lie algebroids have
already been studied by Madeleine Jotz Lean, Mathieu Stiénon and Ping Xu in
[41], where they are called “Glanon algebroids”. In [41] the authors furthermore
gave a correspondence between generalised complex structures on Lie groupoids and
generalised complex structures on Lie algebroids, in both cases being compatible

with the respective additional structure.

In Section 4.1 we describe linear generalised complex structures on F in terms of
the side morphism j: TM & E* — TM & E* and a linear splitting of TEGT*E. We
prove the existence of an adapted Dorfman connection, such that the corresponding
lift satisfies o(jv) = Jo(v) for any v € I'(TM @ E*). To describe the integrability
condition we define a non-anchored bracket A on TM @ E*, which is independent
of the choice of adapted Dorfman connection A. We also show that in the case
of a linear generalised Kéahler structure on E, we can find a Dorfman connection

which is simultaneously adapted to both the linear generalised complex structures.

Then, in Section we show that the linearity of the generalised complex
structure is equivalent to the linearity of the corresponding Dirac structures
and a linear generalised complex structure is therefore equivalent to a pair of
complex conjugated, transversal complex VB-Dirac structures in Tc £ @ T¢E. This

correspondence has already been stated in [41] for Lie algebroids.

In Section [4.3|and Section [4.4] we consider a Lie algebroid A — M and describe
the conditions on j and A, under which the generalised complex structure J is
compatible with the Lie algebroid structure as defined in [41]. We show that this
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can be equivalently stated in terms of complex conjugated, transversal complex
LA-Dirac structures in Tc A ® T¢ A, using the description of LA-Dirac structures
in a linear splitting given by Jotz Lean in [38]. We also recover the conditions for

a morphism of 2-term representations up to homotopy.

In Section [4.5] we consider the degenerate Courant algebroid A ¢ T*M, given
in [38], and show that the core morphism of a generalised complex structure on a

Lie algebroid defines a degenerate generalised complex structure in A  T*M.

Subsequently, we show in Section that the ti-eigenbundles U4 of the side
morphism j of a linear generalised complex structure give rise to a complex A-

Manin pair, and how this defines Courant algebroids C1 with Dirac structure
U+.

We show in Section that (Ui, K<) is a Lie bialgebroid, where Ky is
the +i-eigenbundle of the core morphism of the generalised complex structure.
Furthermore, we show that the Drinfeld double of this Lie bialgebroid (U, K<) is

isomorphic to the Courant algebroids Cy of the previous section.

Then, in Section we look at the two extremal cases of generalised complex
structures. In the case of a holomorphic Lie algebroid we find that the two Courant
algebroids C'; and C_ are given as matched sum Courant algebroids C’ilp’o & Cg{l
and C%l o C 1’0, respectively. In the case of a symplectic Lie algebroid we only find
that the complex Lie algebroids UL are isomorphic to the complexified tangent
bundle Tc M and thus also to Af. The dual K+ is therefore isomorphic to T¢M
and to Ac.

Finally, in Section 1.9 we translate our results to general VB-Courant algebroids.
We obtain adapted Lagrangian splittings and define generalised complex structures

in a split Lie 2-algebroid.

In Section[A]of the appendix we work with a fixed Dorfman connection instead of
choosing an adapted one. This might be useful when studying generalised complex
vector bundles in the presence of another geometric structure on TE & T*E. We
will describe how a linear generalised complex structure on FE is then equivalent to
the side morphism j and a 2-form ¥ € Q(TM @& E*, E*), depending on the linear
splitting, both satisfying certain properties (Theorem .

4.1 Generalised complex structures on vector bundles

In this chapter E — M is always a smooth vector bundle over a smooth manifold
M. The generalised tangent bundle TE = TFE @& T*FE is then a double vector
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bundle
TEDT'E FE

E®T*M . (4.1)

N

TM @ E* M

The vector bundle TE @ T*E — FE has additionally the structure of a Courant
algebroid as described in Example 2.3.3] the standard Courant algebroid over the
total space F.

The main definition we will work with in this chapter is the following of a linear

generalised complex structure.

Definition 4.1.1. A generalised complex structure J on a vector bundle E — M
1s called linear if 7: TE & T*E — TE & T*E is a morphism of double vector
bundles over some side morphism j: TM & E* — TM ® E* and core morphism
jo: E®T"M - E®T*M.

TE®T*FE J TE © T*E
\ B idp \ B
J . (4.2)
T™ @ E* — TM @ E*
\ I idas \ o

The most immediate examples of these structures are given by holomorphic
vector bundles, where 7 is induced by a linear complex structure on F. In this case
we have a complex structure J on the total space E and require as compatibility
condition with the linear structure that J is additionally a vector bundle morphism
over some complex structure jp; on M. This special case is considered in more
detail in Section .87l

The other extremal case of generalised complex structures is given by symplectic
structures. In this case the condition to be linear is very restrictive, any linear
symplectic structure w”: TE — T*E has to be the canonical symplectic structure
on T*M = E. We recall this special case in Section

Another motivating example for our studies are linear Poisson structures.
Although these do not immediately give generalised complex structures, since

Poisson structures can be degenerate, they showcase the idea behind our main
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results. Given a Poisson structure 7# on a vector bundle E, the linearity condition is
that it is a double vector bundle morphism over some side morphism p: E* — T M.
The Poisson structure can then be completely described in terms of E*, it is
equivalent to a Lie algebroid structure on E*. This was shown by Kirill Mackenzie
and Ping Xu in [53], and is recalled here in Example In this section we
show a similar result for linear generalised complex structures, where we describe
the structure on TFE @ T*E in terms of the side morphism j and a suitable linear
splitting of TE @& T*E.

Let us first consider the trivial example of a linear generalised complex structure
on a vector space, that is a vector bundle over a point, M = {x}. In this
case the tangent and cotangent bundle are canonically split, TE = F x E and
T*E = E x E*. The linearity condition on the generalised complex structure J
therefore is equivalent to J being determined by the maps in the fibres, that is
by the side morphism jg+-: E* — E* and the core morphism jo: E — E. These
have to be in negative duality to each other, that is j = —j, since the generalised
complex structure is orthogonal with respect to the canonical pairing. Therefore a
linear generalised complex structure on a vector space in this sense is equivalent
to the choice of an ordinary complex structure in the vector space. This is not
surprising, as the existence of a linear symplectic structure on a vector space in

this sense implies that the vector space vanishes.

Now we will need some computational tools in order to study linear generalised
complex structures. In particular we will use linear splittings of the generalised
tangent bundle TFE. Recall from Section that a linear splitting of the double
vector bundle TE & T*E is equivalent to a (T'M @& E*)-Dorfman connection on
E@T*M (see [36]). The lift 02: I'(TM @ E*) — I'g(TE@®T*E) corresponding to
such a Dorfman connection A is defined for X € I'(T'M), e € I'(E*) and e, € E
over m € M by

(X, e)(em) = (TneX(m), de, le) — A(x.o)(€,0) (em) (4.3)

for any section e € I'(E) such that e(m) = €,,. Here A(x (e, 0)T denotes the core
section of TE @ T*E — E corresponding to A(x.)(e,0). For any 7 = (e,0) €
['(E @ T*M) the corresponding core section is defined by:

en, + te(m), (Te;an)tG(m)) . (4.4)
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The lift in (4.3)) defines indeed a morphism of C*°(M )-modules since we have

o2 (f(X,€))(em) = (Tme(fX (m)), de, Lyc) — Af(x,e) (e, 0)" (em)
= (f(m) & Tne(X (m)), de,, (41 L2))
— (fA(xo(e,0) (em) = ({e,€)(0,df)) (em)
= (f(m)TmeX (m), f(m)de,, (L) + (e,e)(m)de,, (qE.f))
— (fAxe)(e.0) (em) — (e,€)(m) (0, (Te,,q8) " de,, f))
= f(m)o™((X,€))(em) + (e, )(m) (0, de,,qiof — (Te,qp) de,, f)
f(m)a=((X, ))(

A
A(( em) )

(m)o

and thus o2 (fv) = ¢} fo®(v). That the definition of ¢® does not depend on the
choice of section e € I'(F) with e(m) = e, follows then from C°°(M)-linearity
completely analogously to the proof of Lemma [2.1.25)

A section ¢ € I'(Hom(E, E @ T*M)) induces a core-linear section of TE @
T*E — FE as defined in Definition [2.1.10} The core-linear section corresponding to
© will be denoted by .

Furthermore, a (T'M & E*)-Dorfman connection on E®T* M with the canonical
non-degenerate pairing was showed in [36] to be dual to a dull bracket [-,-]a on
TM & E* anchored by prr;,;. This correspondence is recapitulated in Lemma
and is given by the following equality for any vy, vo € T'(TM @® E*) and
Trel(E®T*M)

(A, 7, v9) = propy (v1)(T, v2) — (7, [v1, 12]A) - (4.5)

Let us also denote by Skewa € T'((TM @ E*)* ® (TM @ E*)* ® E*) the tensor
defined by

Skewa (v1,v2) = prg«([v1, v2]a + [v2, v1]A) -

The following description of the symmetric pairing in TE ® T*E was proved
in [36]:

Theorem 4.1.2. Let A be a TM & E*-Dorfman connection on E® T*M. For
sections v,vy,vy € T(TM & E*) and 7,171,720 € I'(E @& T*M) we have

1. {02 (1), 0% (12)) = lskewn (v1,00) -

2. (cB(v), ") = (v, 7)),

3. (TI,TJ) =0.

Additionally, in [36] the following description of the Courant-Dorfman bracket

of horizontal lifts and core sections was proved:
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Theorem 4.1.3. Let A be a (T'M & E*)-Dorfman connection on E & T*M. For
sections v,v1,v9 € T(TM @® E*) and 7,711,170 € T'(E ® T*M) we have

1. [o% (), 0% (w)] = o* (11, 12]a) = Ra(1,2)(-0).
2. [o®w), 7] = (A1),
3. [, 7] =0,
where Rp denotes the curvature of A as in Definition[2.5.17 That is
Ry T(TM @ E* ) xT(TM @ E*) > T(Hom(E®T*M,E®T*M)), (4.6)
defined by Ra(v1,v)(7) i= Ay Ay,T — Ay Ay T — Ay, 1y]a T
A Dorfman connection is said to be skew-symmetric, if the corresponding

dull bracket is skew-symmetric. Given any dull bracket [-, ], we can define its

skew-symmetrisation by
1
1. valsien = 5 (1,000 = 2, 111) (47)

The following lemma is stated in [36] and shows that we can always work with
a skew-symmetric Dorfman connection. For the sake of completeness we will give

here the straightforward proof.
Lemma 4.1.4. The skew-symmetrisation of a dull algebroid is again a dull alge-

broid with the same anchor p.

Proof. Since the Lie bracket on vector fields is skew-symmetric, we obtain

p([v1, vo]skew) = P<; ([[Vlv vo] — [ve, Vl]]))

(162),p(02) = [p(22). p01))

= (1), p(12)] .

N

For the Leibniz identity, we obtain for all fi, fo € C*°(M)
[fiv1, fave]lskew = ;([[fﬂ/l, fovo] — [[f27/2,f17/1]]>
= ;(flf?[[l/la vo] + fip(v1)(f2)ve — fap(v2)(f1)v

— (Pl + Faplv2) (P = ipln) (fo)s)
= fifolvr, vellskew + frp(11)(f2)ve = fap(v2)(fi)vr -
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This shows that we can assume that the ("M & E*)-Dorfman connection on
E @ T*M is skew-symmetric, since we can always take the skew-symmetrisation of
the corresponding dull bracket and then the Dorfman connection corresponding to
the skew-symmetric bracket. In that case the pairing of two horizontal lifts o (1)
and o (1) vanishes according to Theorem m

In the following we fix such a skew-symmetric Dorfman connection
A:TTMae E)@TEeTM) -T(E®T*M), (4.8)

and therefore a horizontal lift ¢2: T(TM @© E*) — I'y(TE ©® T*E).

Let us now consider a double vector bundle morphism 7: TE & T*E —
TE ®T*FE as in (4.2). We want to give conditions on j and jo in order for the

morphism J to be a generalised complex structure.

First we describe how J acts on lifts o2 (v) for v € I'(TM @& E*) with respect

to a fixed Dorfman connection.

Lemma 4.1.5. Given a double vector bundle morphism J over j as in (4.2)
and a skew-symmetric Dorfman connection A as in (4.8)), there is a section
Qe (TMOE ) Q@E*®(E®T*M)) such that for any v € T(TM @ E*)

T (02 w) = o®(j(v) + ¢ (v). (4.9)

Here we identify (TM @ E*)* @ E*® (E®T*M) with Hom(TM @® E*, Hom(E, E ®
T*M)) in order to define ®(v).

Proof. Since J is a vector bundle morphism over j, J(c®(v)) is a linear section
over j(v). Thus J(c®(v)) — ¢®(j(v)) is a core-linear section and this gives us for
every v a section ®(v) € I'(Hom(E, E @ T*M)), such that

J(02w) = o2(j(v) + @(v).

That & is linear and tensorial in v, follows directly from the fact that 7 and j and

vector bundle morphisms and that ¢ is a morphism of C°°(M)-modules. Then

O(fv) =T (@™ (fv) — c®(i(fv))
= qpfI(@* W) — qpfo™(i(v))

So &(fv) = f®(v) and ® € T((TM & E*)* ® E* @ (E & T*M)). 0

Now we can describe in terms of A, j, jo and ® how J acts on core sections,

core-linear sections and linear sections.
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Lemma 4.1.6. For any sections T € I'(E & T*M), v € I'(TM & E*) and ¢ €
I'Hom(E,E & T*M)) we have

1. (") =je(n)',

2. J(0%(v)) = o2 (j(v)) + 2(v),

3. J(p)=jcoyp.

Proof. The first equality follows directly from the definition of the core morphism
jo whereas the second equality is directly by definition of ®. To show the action
on core-linear sections we work with local basis sections {e;}ier of E* and {7;},cs
of E®T*M for some finite index sets I and J. The section ¢ can then be written
as ¢ = >, 1, fik€i ® 7 for smooth functions fi, € C>° (M) and therefore we obtain
for the core-linear section p = 3=, ;. quikfsiTg. Using now that J((1%)") = (jore)T

we obtain
T@) =Y apfijte,(Gor)
i,J

= (jc o). O

4.1.1 Generalised almost complex structures on vector bundles

In this section we will give a description of generalised almost complex structures
without taking the integrability condition into account. Given a double vector
bundle morphism J: TE ®T*E — TE ®T*FE as in and a skew-symmetric
(TM @ E*)-Dorfman connection A on E @ T*M, we will describe conditions on 7,

jc and ® under which J is a generalised almost complex structure on E.

J squares to —id

The first property of a generalised almost complex structure is to square to — id.
We will describe under which conditions on j, jo and ® the map J: TEGT*E —
TFE ® T*E satisfies this property.

Lemma 4.1.7. A double vector bundle morphism J as in ([4.2)) satisfies J? =
—idreer+E if and only if for any skew-symmetric Dorfman connection A as in
(4.8) and for all v € T(TM & E*) we have

1. j? = —idrymer-

2 .
2. j& = —idperMm ,
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3. ®(j(v)) = —jco (®(v)).

Proof. Tt is sufficient to check that J? = —idrper-g on lifts 02 (v) for any
v € I'(TM @ E*) and on core sections 71 for any 7 € I'(E @ T* M), as those span
Tryvep (TE @ TE).

For core sections we obtain by definition of the core morphism jo
T ") = T (Ge(m)) = (Gé)'.

This equals —71 if and only if jé& = —idgar-Mm.

For linear sections, we obtain by definition of ® and Lemma that

AL s : : (4.10)
= 02" V) + 2(j(v)) + jc o (2(v))
If now J2? = —idrger+ £, then the side morphism j has to satisfy j2 = — idryrqp:.
Now (4.10) implies that
®(j(v)) = —jc o (2(v)). (4.11)

Conversely, if j?> = —idryep- and ®(j(v)) = —jo o (®(v)), then by ([4.10) we
get immediately that J2(c®(v)) = —o®(v) for all v € T(TM @& E*). The lemma
follows. O

J is orthogonal

The second property of a generalised almost complex structure is that it is orthog-
onal with respect to the canonical pairing. Now we describe in terms of j, jo and
® when a morphism J as in (4.2) that additionally squares to — id is orthogonal.

Since the image of a lift ¢®(v) under J involves a core-linear section, we need

the following corollary to Theorem [4.1.2

Corollary 4.1.8. Given a skew-symmetric Dorfman connection as in (4.8), ¢, €
I'Hom(E,E @ T*M)), v € I'(TM & E*) and 7 € I'(E & T*M) the following
equalities hold:

1. (2,0%W)) = Ly
2. (p,71) =0,

3. (B,) =0.
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Proof. Let us fix local basis sections {&; };cr of E* and {7y }xex of EGT* M for some
finite index sets I and K. The section ¢ can then be written as ¢ = 3, ;. fir€i @ T
for smooth functions f;; € C°°(M) and therefore we obtain for the core-linear
section p = Yikdp fikfsﬁg . Since the pairing is bilinear and the pairing of any
two core sections vanishes we get immediately that (@, E> =0 and (p,71) = 0.
For the pairing of the core-linear section with a horizontal lift we compute with
Theorem for any e,, € E over m € M

@02 @) em) = (O aifinter), o)) (em)
ik
=" i finle (), 2 (1)) (em)
ik
= apfinle, 0 {Th V) (€m)
ik

= (3 Fulm)te, (e relm). ()
ik

= (p(em), v(m))
€¢*(V)(em) .

Thus (3,02 (v)) = Lo vy (em)- O

Now we can prove the following lemma.

Lemma 4.1.9. A double vector bundle morphism J as in (4.2) such that addi-
tionally J? = —1, is orthogonal if and only if for any skew-symmetric Dorfman
connection A as in (4.8)) and for all vi,vs € T(TM @& E*) we have

1. ]: _(jC)ta

2. ®(n)t(jr1) = —®(11)'(j(a)) -

Proof. Again it is sufficient to check orthogonality of J on core sections and on

horizontal lifts.
First, the equality
(1), T () = (i, =)
for 71, o sections of E'@® T*M is automatically satisfied, since J (7'1T ) = (jer:)T
and the pairing of two core sections vanishes according to Theorem [£.1.2]

Second, for the pairing of a lift with a core section we again make use of
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Theorem [£.1.2) and of Corollary [£.1.§ and obtain on one hand
(To2(w), T () = (42 () + 2(¥), jo(r)")
= 4(j(v), e (1) + (2(¥), jo(r)")
B(i(v),jo(T))

and on the other hand
Hence

if and only if
(W), jo(r)) = (v, 7).
According to Lemma we have j2 = —1 and therefore this is equivalent to
j=-le)

Third, for the pairing between two lifts we obtain using the skew-symmetry
of the chosen Dorfman connection and Theorem and Corollary on one
hand

(T (2 (1)), T (02 (1)) = (62 (1)) + @(11), 02 (j(12)) + (12))
<ffA A(J’(Vz))) +(@(11), ©(12))
+ (02 ((12)), 2(11)) + (02 ((11)), ©(12))
= Lao(uy)t(j(n)) +5‘I>(V1) (j(v2))
and on the other hand
<O’A(V1),O'A(V2)> =0.
Hence
(To™ (1), T (0% (1)) = (0% (1), 0% (12)) = 0
if and only if
D(12)'(j (1)) = —@(1)" (§ (1)) - O

We now introduce the following notions ¥, ¥/, (*¥) € I'((TM & E*)*® (TM &
E*)* @ E*), defined as follows

(v, 1) = ®(v1) (1), (4.12)
U (1, 19) 1= B(11) (1), (4.13)
(01, v2) = W (G, jra) - (4.14)

This lets us combine Lemma, and Lemma in the following way:
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Proposition 4.1.10. A morphism J as in (4.2) is a generalised almost complex

structure on E, if and only if for every skew-symmetric Dorfman connection A as

in (4.8) we have

2. ] = _(jC)t’
3. VU is skew-symmetric, that is ¥ € Q*(TM & E*, E*),

4. \I/(I/l,VQ) = —j*\I’(Vl,VQ) .

Proof. The condition ®(v2)!(jv1) = —®(v1)!(jv2) of Lemma is equivalent to
UJ being skew-symmetric. The conditions j?2 = —id and j = — j& imply the second
condition in Lemma j% = —id. Given those properties, we can evaluate both
sides of the condition ®(j(v)) = —jc o (®(v)) of Lemma[4.1.7 at any e € I'(E) and
pair with v/ € T'(T'M @& E*) to obtain the following equivalent condition:

U(jv, V') = ¥(v, V). (4.15)

Write now v = jvs. Then under the assumption of skew-symmetry of ¥/ and
of j2 = —1 the equation ({4.15] is equivalent to ¥ being skew-symmetric since

. -4-15 . . P
—V(v1,10) = ‘I’(JQVhVQ) U(jvy, jra) = ‘I’j(]Vl,W)
= =W (g, j11) = =V (v, j°11) = U(v2,11).

The condition that both ¥ and ¥/ are skew-symmetric is equivalent to ¥ being skew-

symmetric and satisfying ¥ (vy, jra) = ¥(jv1,12) or equivalently j*¥ = —W. [

4.1.2 Adapted Dorfman connections

This section shows that given a linear generalised almost complex structure J
on £ — M, we can always find a Dorfman connection A which is adapted to J
in the sense that the corresponding lift o2 satisfies J (02 (v)) = o2 (jv) for any
section v € I'(TM @ E*). Equivalently, the corresponding ® defined by Lemma
4.1.5] vanishes. This will vastly simplify all the computations for the Nijenhuis

tensor and later of the conditions for Lie algebroid morphisms.
First we describe the change of splittings.

Definition 4.1.11. Given two (TM @ E*)-Dorfman connections A and A% on
E ® T*M with corresponding lifts o1 and oo, the change of splitting from A'
to A? is @12 € I((TM @® E*)* @ Hom(E, E & T*M)) defined by the equation

D15(v) == 02(v) —o1(v), (4.16)
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for any v € I'(TM @& E*). The change of splitting is called skew-symmetric if
Uio(vy,1v9) i= Pra(11)! (v2) (4.17)

is skew-symmetric, that is W15 € Q*(TM ® E*, E*). We will equivalently call U1y
the change of splittings.

Lemma 4.1.12. Given two Dorfman connections A', A% as above, their corre-

sponding dull brackets are related by

[[1/1, VQ]]AQ = [[Vl, VQ]]AI + (0, \Iflg(Vl, VQ)) . (418)

Proof. The definition of the change of splittings together with the correspondence
between lifts and Dorfman connections as in (4.3|) immediately gives that for any
vel'(TM @& E*) and 7 € I'(E @ T* M) we have

A2r = Alr — ®15(v) (prg 7). (4.19)

Again dualising this equation gives the desired formula for a change of splittings

for the corresponding dull brackets

1, va]az = [v1, vellar + (0, Ui2(v1,12)) .

An immediate consequence is the following corollary.

Corollary 4.1.13. If the Dorfman connection A1 is skew-symmetric, then Ag is

skew-symmetric if and only if the change of splitting is skew-symmetric.

We also need to describe how the 2-form Wy given by Proposition [4.1.10| behaves
under the change of splitting. We prove the following.

Lemma 4.1.14. Given a linear generalised almost complex structure J on E and
two skew-symmetric Dorfman connections Ay and As as above with change of

splitting W12, then we have
Vo (v, v2) = Wi(v1,v2) — Wia(v1, jve) — Yia(jvi, va), (4.20)

where W1, Wy are the 2-forms defined by Proposition for A1 and As, respec-
tively.
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Proof. We compute

(I)Q(V)

T (02(v)) = 02(jv)

J(01(v) + @12(v)) — 01(jv) — Pr2(jv)

—_—

1GV) + 01(0) + o 0 ®12(v) = 01(jv) = Bra(jv)
D1(v) + jo 0 Pra(v) — Pr2(jv).

|
Q

Il
KA

Dualising this equality leads to
Ua (v, v2) = Wi(v1,v2) — Wia(v1, jve) — Yia(jvi, va),

where we used that j&, = —j according to Proposition [4.1.10 O

Using this change of splittings as in (4.20)) we can now always find a skew-
symmetric Dorfman connection A such that the corresponding 2-form W vanishes,

or equivalently such that J(c?(v)) = 2 (jv).

Proposition 4.1.15. For every linear generalised complex structure there is a skew-
symmetric (T M @ E*)-Dorfman connection A on E* @ TM such that J(o®(v)) =
o2 (jv). We call this Dorfman connection adapted to J.

Proof. Fix any skew-symmetric Dorfman connection 7'M & E*-Dorfman connection
A1 on E* @ T'M and denote the corresponding lift by o1. Proposition 4.1.10| gives
us a two-form ¥y € Q*(TM @ E*, E*) such that J(01(v)) = o1(jv) + m
Let now Wia(vy,10) := —%\Ill(ul,jl/g). By Proposition this form is skew-
symmetric and therefore the dull bracket defined by is skew-symmetric
again. Now according to and using the properties from Proposition
the corresponding 2-form Ws vanishes. Hence we have found a Dorfman connection
A := Ay with Uy = 0 which by definition of ¥y is equivalent to J(c®(v)) =
a2 (jv). O

However, the adapted Dorfman connection is not unique. We define the
following notion of j-equivalence of Dorfman connections in order to take this into

account.

Definition 4.1.16. Given a vector bundle morphism j: TM & E* — TM @ E*, we
call two skew-symmetric (T'M @& E*)-Dorfman connection Ay and Ay on E*®TM j-
equivalent, if their change of splittings V1o defined by satisfies the following
equation for all vi,vy € T(TM @& E*):

Uio(vy, v2) = Yia(jrn, jra) . (4.21)



104 CHAPTER 4. LINEAR GENERALISED COMPLEX STRUCTURES

If the Dorfman connection A; is adapted to J, then a second Dorfman connec-
tion Aq is adapted to J if and only if they are j-equivalent. This follows from the

following lemma.

Lemma 4.1.17. Let J be a linear generalised almost complex structure J on a
vector bundle E — M and Ay and Ay be two skew-symmetric (T'M & E*)-Dorfman
connections on E @ T*M. Denote the two-forms given by Proposition
corresponding to Ay and Ag by Wy and Vo, respectively. Then A1 and Ao are
j-equivalent if and only if V1 = Us.

Proof. Denote the change of splittings again by ¥i5. Now A is j-equivalent to
Ay if and only if for all vy,v9 € T'(TM @& E*) we have

Wia(v1, jra) = —Wi2(i (1), jr2) = —Vi2(jrr, 1v2) - (4.22)
By (4.20) we have that ¥; and Wy are related as follows:
Vo (vi, 1) = Wy (v1,1v0) — Wia(v1, jro) — Wia(jrr, v2) .

So W, = W, if and only if (4.22) holds, that is if and only if A; and Ay are
j-equivalent. O

4.1.3 Integrability

Now that we have characterised generalised almost complex structures for a given
Dorfman connection in terms of j, jo and ® and have proved the existence of
adapted Dorfman connections, we will consider the integrability condition of a

generalised complex structure, the vanishing of the Nijenhuis tensor.

Let us now consider a linear generalised almost complex structure J on E as
in and fix a Dorfman connection A as in which is adapted to J. In
particular j, jo satisfy the conditions of Proposition [4.1.10] and the corresponding
U vanishes. That is, J(c2(v)) = o2 (jv) for all v € T(TM @ E*).

Evaluated at two core sections the Nijenhuis tensor vanishes trivially, as the
Courant-Dorfman bracket of two core sections vanishes and the double vector

bundle morphism 7 sends core sections to core sections.

For the Nijenhuis tensor of J evaluated at a horizontal lift o2 (v) for v €
['(TM @ E*) and a core section 7' for 7 € ['(E®T*M) we compute using Theorem
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Nz (@), m") = [0® W), 7] = [T (c® (), T (1]
+ I ([T (@ @), 7+ [02 (), T(+N])
= (A7)~ [02 (i), je ()]

+ (1600, 7+ [0 @), e()'D)

= (A7) = (A0de(m) + j<(Aj(u)T)T + (AVJC(TW)

= (A7) = (A0)ic(™) + Ge(Bj0m) + GeAvje().

Thus the Nijenhuis tensor of 7 vanishes for any such pair of a lift ¢ (v) and a
core section 71 if and only if for all v € T(TM @ E*) and 7 € I'(E @ T*M) we have

AT — Aj(y)jc(T) + jc(Aj(,,)T) + jc(A,,jc(T)) =0 (4.23)

As the pairing is non-degenerate, we can dualise this condition by pairing with
a second section vy € I'(T'M & E*). We now write v; = (X1,e1) instead of v and
use Proposition [f.1.10] and the duality of the Dorfman connection with the dull
bracket on TM @ E* as described in [36] and in to compute:

<AV17 = Djonic(t) +jc(DjenT) + o (Dujo(T)), V2>
= (A, 1,v2) = (Aju)ic(T),v2) = (AT, (12) — (Aujo(T), j(v2))
= X1, v2) — (7, [v1, 2] )
= prpa (5 (1)) e (7), ve) + (e (7). [i(v1), ve]a)
— proar (3 (v1))(7, 4 ( V2)> (7, i (1), 3 (v2)]a)
= X1(jo(1), j(12)) + (o (1), [v1, §(12)] a)
= (r, =, ol = § (L), walla) = (I, 5 ()]a) + L), 5 (v2)]a )

- <T7 NG 3a (V1 ”2)> ’

Thus the Nijenhuis tensor of J vanishes when evaluated at a pair of any lift
o®(v) and any core section 71 if and only if the Nijenhuis tensor of j with respect

to the dull bracket [-,-]a vanishes. Here A is Dorfman connection adapted to J.

We lastly need conditions for the Nijenhuis tensor of 7 evaluated at a pair of

two horizontal lifts 02 (1) and o®(v2) vanishes. Again we make use of Lemma
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Theorem and compute for v1,v, € D(TM @& E*):
Ny (o® (), 0%(v2)) = [02 (1), 0% ()] = [T (0 (), T (6* (v2))]
+ I ([T7(0® ), 0® (2)] + [0* (1), T (0% (12))])
= 02 ([v1,12]a) — Ra(v1,1)(-,0)
o® (i), j(v2)]a) + Ra (1), (v2)) (-, 0)

+J(0A([[j(V1)7V2]]A) + 0 ([, j(m)]a)

= 0%([v1.2]a) — Ra(v1,12)(-,0)
— ([ (n).()]a) + Ra(i(n), i (22)(-,0)
+ 0213 (), v2a)) + 0 (G ([v1, 5 (v2)]a))
= 0% (N[, (V1,12))

Note that since the dull bracket on T'M ¢ E* is anchored by pry;, and
Ax,e)(0,0) = (0,Lx0) the curvature Ra(v1,v2)(0,0) for 6 € T'(T*M) always
vanishes. Therefore the terms with Ra above evaluated at (e,0) vanish if and
only if the corresponding terms vanish evaluated at (e, ) for any 6 € I'(T*M).
Thus the Nijenhuis tensor of J vanishes for all sections if and only if the Nijenhuis
tensor of j with respect to [-,-]a vanishes and additionally the curvature of the
adapted A satisfies

0= Ra(j(11),7(v2)) (1) = Ra(v1,v2)(7)
— jo(Rali(m),v2)(7)) = jo (Ra(v, j()(7)) .
for all v, 1o e N(TM @ E*) and T e '(E & T*M).

(4.24)

We want to dualise this equation again in order to get a condition purely
depending on sections of TM @ E* and not additionally on a section of £ & T* M.
We will in the following write Jaca € Q3(TM @ E*, TM & E*) for the dual of the
curvature Ra, that is the Jacobiator of the dull bracket [-, -]a:

Jaca (v1,v2,v3) :==Ra(v1,12)" (v3)

=[[v1, v2]a, 3]a + [v2, [v1, v3]ala — [v1, [ve, valala  (4.25)

— [v1, [v2, v3] Ala + cyclic permutations,
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where the cyclic permutations are over the set {1,2,3}. Skew-symmetry of the
bracket implies that Jaca is indeed alternating. By pairing the right hand side of
(4.24) with a third section v3 of TM @ E we then get the condition

0 = Jaca(jv1, jra, v3) + Jaca (v, vo, jus) + Jaca(vi, jra, jvs) (4.26)

— Jaca (v1,v2,13),

Using (4.25)) we can write (4.26]), without writing out all cyclic permutations

of vy, vy and vy explicitly, as follows
0 = 1, [ve, vs)alla — [v1, [ive, vslala — [ivi, [v2, jvs]ala — [v1, [ve, jvs]ala
+ cyclic permutations in 1,2,3

= [v1, [v2, 3]a — [ive, jus]ala + [ive, —[ve, jus)a — [jve, v3]ala

+ cyclic permutations in 1,2,3.

(4.27)
Let us now define a bracket A on I'(TM @& E*) by
1 . .
A(vi, 1) = 5([[1/1, vola — [[]I/l,]VQ]]A> . (4.28)
Then Nj[. 1, vanishes if and only if A satisfies
A(v, jra) = jA(v1,v2) . (4.29)

Furthermore, (4.27)) is now immediately seen to be equivalent to the Jacobi identity
of this bracket A, and the right hand side of (4.27)) is the Jacobiator of A.

Note that the bracket A does not admit an anchor on T'M & E*, and is thus not
a Lie algebroid bracket on T'"M & E*. However, A is skew-symmetric and R-bilinear.
Furthermore, it is independent of the choice of adapted Dorfman connection A as

proved in the more general case of any Dorfman connection in the appendix (see
Lemma |A.1.4)).

Summarising we have proved the following proposition.

Proposition 4.1.18. Let J be a generalised almost complex structure on a vector
bundle E and A an adapted Dorfman connection. Then the Nijenhuis tensor of J
vanishes if and only if the non-anchored bracket A defined by (4.28) satisfies

1. the Jacobi identity,

2. A(v1, jo) = jJA(v1, 1) for all vy v in T'(TM @ E*).

The following Theorem is an immediate consequence of Proposition
Proposition and Proposition
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Theorem 4.1.19. A linear generalised complex structure on a wvector bundle
E — M is equivalent to a vector bundle morphism j: TM & E* — TM & E*
and a j-equivalence class of skew-symmetric (T M @& E*)-Dorfman connections A
on E®T*M such that j and the non-anchored bracket A defined by A(vy, o) =

%([[1/1, volla — [jv1, jrala) satisfy the following:

1. j* = —idrmer
2. A satisfies the Jacobi identity,

3. A1, jva) = jA(v1,12) .

Note that the bracket A does not depend on the choice of representative A in the

j-equivalence class.

Proof. Given a linear generalised complex structure J on E as in (4.2]) we have
by Proposition Proposition and Proposition a vector bundle
morphism j and a Dorfman connection A, defining A, such that j and A satisfy

all of the properties above.

Conversely, given j and a Dorfman connection A as above, we define a double
vector bundle morphism J: TE®T*E — TE®T*E by setting for 7 € I'(E®T*M)
and v € I(TM & E*)

Again by Proposition [4.1.10] and Proposition [4.1.18| this defines a linear generalised
complex structure on E. These two constructions are inverse to each other up to

the choice of a different j-equivalent Dorfman connection. O

4.1.4 Generalised Kahler structures on vector bundles

Generalised Kéhler structures were introduced by Marco Gualtieri first in his thesis
[30] and later in [32]. In this section we will show that in the case of a generalised
Kéhler structure on a vector bundle E we can always find a Dorfman connection
which is adapted in the sense of Proposition [£.1.15| to both the generalised complex

structures simultaneously.

First let us recall the definition of a generalised Kéhler structure given by
Gualtieri in [30]. Recall that the generalised tangent bundle TM & T*M of a
manifold M is equipped with a non-degenerate pairing as described in Example
allowing to identify TM @ T*M with its dual. After this identification any
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automorphism G of TM @ T*M which is symmetric, that is G* = G, and squares
to id defines a symmetric metric on TM @& T*M. Thus such an automorphism
will here be called a metric. Now we can state the definition of generalised Kéhler

structures.

Definition 4.1.20. A generalised Kdhler structure on a manifold is a pair of
commuting generalised complex structures Jp and Jo such that the symmetric

non-degenerate metric G := —Jp o Jo is positive definite.

Now let us take a vector bundle £ — M equipped with such a generalised
Kéhler structure where both generalised complex structures J; and Js are linear.
Denote the side morphisms on TM & E* by j; and j2, respectively. Take now any
skew-symmetric TM @ E*-Dorfman connection A on E @ T*M. This gives rise to
the corresponding 2-forms ¥; and Ws as in Proposition We will now prove
the following compatibility between ¥y and j;.

Lemma 4.1.21. In the setting above, we have
Uo(jivn, vo) + Wa(vr, jive) = Wi(jove, v2) + Wi(v1, jore), (4.30)

for allvi,vo € TM & E*.

Proof. Since J; and J> commute, so do their side morphisms j; and jo. We now
use the definition of ®; and ®9 in Lemma [£.1.5 and the action of the generalised
complex structure on core-linear section from Lemma in order to compute
for any v € I'(T'M @ E*) the following:

0= o (jrjav) — 0% (josiv)
= J10% (jov) — 1(jav) — Joo™ (j1v) — ®2(j1v)
= .71J2UA(V) — jlm - W

(

—_—

— B Ji02 (V) + To®1(v) + o (j1v)
= —m — ®4(jov)

+ —j5 0 ®1(v) + P2(j1v),

since the core morphisms of J; and Jo are —j¢ and —j, respectively. Thus we
obtain jt o ®y(v) — @1 (jov) = j o ®1(v) — Py(j1v) and pairing this with a second
arbitrary section vy € I'(T'M @ E*) and dualising then gives after renaming vy := v

the desired equality

Uy (jive, v2) + Wa(vy, jive) = Wi(jove, v2) + Wi(vy, jare) - 0
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With this lemma we can easily prove the existence of a Dorfman connection

adapted to both generalised complex strctures.

Proposition 4.1.22. Given two commuting linear generalised complex structures
J1 and Jo on a vector bundle E — M, there is a TM & E*-Dorfman connection
A on E®T*M which is adapted to both J1 and Js.

Proof. Take a skew-symmetric Dorfman connection Ay, which is adapted to J;
as constructed in Proposition Thus the 2-form ¥; vanishes. The previous
Lemmathen shows that WUy (v1,10) = Wa(jiv1, jro) for all vy, vy € T(TM &
E*). In order to obtain a Dorfman connection As adapted to Jo we have to
use as change of splitting the form Wi, := —%\112(‘,]'2‘) as shown in the proof of
Proposition [£.1.15] But since j; and j, commute we get immediately that also this
change of splittings satisfies W19(j1v1, j1v2) = Wia(vy, v2) for all vy, 9 € TM @ E*.
Thus As is ji-equivalent to Ay as in Definition Now Lemma shows
that A, is still adapted to J; and therefore to both generalised complex structures

simultaneously. O

4.2 Complex VB-Dirac structures

In this section we make use of the equivalence of a generalised complex structure
and a pair of complex conjugated Dirac structures in the complexified generalised
tangent bundle as described in Section We will show that a linear generalised
complex structure on a vector bundle F is equivalent to a pair of complex conjugated

VB-Dirac structures.

Let us for that end consider the complexification of TE as a vector bundle
over E. As described in Proposition [2.5.8| this is again a double vector bundle
TcE = TcE © TEE with complexified core and side bundle.

TcE @ TEE E
(TrymeE*)C Ec o TeM . (4.31)
TcM & E¢ M

We will in the following need linear splittings of this double vector bundle and in

particular need the following statement which is merely a complex linear extension

of Theorem [2.3.18| proved in [36].
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Proposition 4.2.1. Consider the double vector bundle TcE as in (4.31). A linear
splitting > of TcE which is additionally a morphism of complex vector bundles over

the side E gives rise to a complex (Tc M @® EE)-Dorfman connection on Ec @ TEM
by

2((X.8)(m), e(m)) = ((Tme)e X (m), (dedebs) — (Ao (e.0)) (elm) (4.32

and A(x)(0,0) = (0, L50) for all sections X € T(TcM), e € T(EL), 6 € T(TEM)
ande € T(E). Here we denote by dc and LE the complex linear and complex bilinear
extensions of d and L. Conversely, given such a complex Dorfman connection,
defines a linear splitting which is additionally complex linear over E and

these constructions are inverse to each other.

Proof. This follows from an argument directly analogously to the proof of Theorem
4.1. in [36].

The only additional observation to be made is that defining A, (e, 0) for sections
e € I'(E) and v € I'(TcM @ E) already determines A, completely on the
complexification I'( E¢) by complex linearity. O

Lemma 4.2.2. Let A be a real (TM & E*)-Dorfman connection on E @& T*M
and X be the corresponding linear splitting. Denoting the complexification of A by
AC. Then the corresponding linear splitting according to Proposition is the
complezification XC of ¥, that is the complex linear extension of ¥ in TM & E*.

Proof. This is immediate since both the complexified splitting and the complexified

Dorfman connection are given by complex linear extensions. O

Let J: TE — TFE now be a linear generalised complex structure on F over
j: TM®E* — TM®E* and with core morphism jcas in Definition [4.1.1} Then we
obtain get a pair of complex conjugated complex Dirac structures D4 C TcFE, the
+i-eigenbundles of the complexification of 7, which we denote by J¢ : TcE — TcFE.
They are given by

Dy ={£-iJ()|€ € TcE}

(4.33)
D_={{+1TJ([€ € TcE}

Since J is a vector bundle morphism over j, elements of the form £ +4.7 (&) project
under (mryer+)c to Trver+(§) £ ij(mrmer+(€)). The core of Dy is given by
all elements that project to 0 on both sides, which are all elements of the form
T Fijo(r) for T in the core of TE, which is E® T*M.
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Thus we obtain two sub-double vector bundles of T¢E:

D4 E
(TrymeE*)clDy Ky 9E ,
Ut M

with

Uy ={v—1ij(v)|v € TcM & E¢},
U_={v+ij(v)lveTcM & E¢},
Ky ={r—ijo(r)|T € Ec ®T¢M},
K_={r+ijo(r)|T € Ec ®T¢M}.

U, is the £i-eigenbundle of the complexification of j:

jc: (TM SV, E*)(C — (TM D E*)(c

' _ - (4.34)
(v1 +ivg) — j(11) +ij(ve),
whereas K is the +i-eigenbundle of the complexification of jo:
jec: (E@T*M)c — (E®T"M)c
( ) ( ) (4.35)

(11 +im2) = jo(m1) +ijo(m2) .

Lemma 4.2.3. Consider a linear generalised almost complex structure on a vector
bundle E as in (4.2]). Denote by Us and K+ the ti-eigenbundles of jc and jcc,

respectively. Then we have
Ul =Ky, (4.36)

where UL denotes the annihilator of Uy in (TM @ E*)* = E&T*M.

Proof. The annihilator of Uy consists of all elements 71 + io of (£ @& T*M)c that
pair with every element of Uy to zero. That is, for every v € TM ® E*

0= <7’1 + iTQ, vV F Z](l/)>(c
= (11, v) £ (72, jv) + i, ) F 171, 5 (¥))

Since j' = —jc by Proposition [4.1.10] both the equation for the real part and for
the imaginary part are equivalent to the condition 7 = +jo7» or in other words

that 71 +im = 7 F ijcmi is an element of Ky. Thus U3 = K. O]
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Previously we have defined a bracket A on TM & E* in using a Dorfman
connection adapted to the linear generalised complex structure. We noted that
the bracket does not admit an anchor on all of TM @ E*, since we can compute
for any function f € C*°(M) and vy,vy € I'(TM & E*):

A(vy, frr) = %(-[[jlfl,j(fl&)]]A + w1, fV2]]A)
= 5 (~ ST, 3w — prras (i) (s

(4.37)
+ flv, ve] + pl"TM(Vl)(f)V2)

= FA, ) 5 prra () (f)iva + 5 rras () (e

Let us now instead consider the complexification of A, defined by extending

complex linearly:
Ac(vn +iv),ve +ivh) = Avy, o) — AV, vg) +i(A(vr, vh) + A(vy,1n)) . (4.38)

We now show that Ac restricted to Uy defines a Lie algebroid structure on Uy, in

particular it admits an anchor on this restriction.

Proposition 4.2.4. Let J be a linear generalised complex structure on a vector
bundle E — M and A a skew-symmetric Dorfman connection adapted to J. Then
the restriction of the complexified bracket Ac as in to the ti-eigenbundles of
jc, denoted by Uy, coincides with the restriction of [-,-|ac and defines a complex

Lie algebroid structure on Uy with anchor pro v -

Proof. The condition A(vy, jre) = jA(v1, v2) of Proposition 4.1.18| ensures that we
can restrict the complexified bracket Ac to the two eigenbundles UL of j¢, as for
any vy,v € I'(TM & E*) we have:

Ac(v1 Fijvi, vo Fijro) = A(vi, o) — A(jur, jro) T iA(v1, jro) F iA(jrr, v2)
= 2A(V1, VQ) F ij2A(V1, 1/2) s

which is again an element of U,.

It follows directly from the definition of A in that the restriction of
Ac to Uz coincides with the complexification of [-,-]a for any adapted Dorfman
connection A. Therefore it is anchored by the restriction of pry,. ), and satisfies the
Leibniz identity. Furthermore, since A is skew-symmetric, so is the complexification
and according to Theorem A it satisfies the Jacobi identity on all of I'(T'M &
E*). Therefore the complexified bracket Ac¢ also satisfies the Jacobi identity and
defines indeed a Lie algebroid structure on U.. O
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In [36], Jotz Lean described VB-Dirac structures using splittings corresponding

to adapted Dorfman connections, which were defined in the same paper as follows.

Definition 4.2.5. Given a sub-double vector bundle D CTE & T*E over U C
TM & E* with core K C E®T*M, then a Dorfman connection A as in is
called adapted to D if D is spanned by the sections k' for k € T(K) and o™ (u)
forue'(U).

Analogously, for a sub-double vector bundle D C TcE © TE which is addition-
ally a complex subbundle over E over U C TcM @ Ef with core K C Ec ©@ T¢M,
a complex (TeM & Ef)-Dorfman connection A on Ec @ T¢M is adapted to D if
D is spanned by the sections k' for k € T(K) and o™ (u) for u € T(U).

The existence of an adapted real Dorfman connection for any such sub-double
vector bundle is also proved in [36]. The corresponding result for the complexified
generalised tangent bundle follows from the same argument by extending everything

C-linearly.

Now we will show that the complexification of a Dorfman connection A which is
adapted to J is adapted to both eigenbundles DL simultaneously. The brackets on
UL given by restriction of the complex dull bracket corresponding to a complexified
adapted Dorfman connection are independent of the choice of the adapted A, these

complex dull brackets can only differ when evaluated on I'(Uy) x I'(U-).

Proposition 4.2.6. Given a linear generalised complex structure J on E and a
Dorfman connection A adapted to J, then the complexification AT is adapted to
both Dy and D_.

Proof. That the lift sends sections of Ut to sections of D4 follows directly from
the fact that J (02 (v)) = 02 (jv). As Dy is a double vector bundle over Uz and
E with core K, the space of sections I'g(D+) is generated by core sections and
the lifts of sections of Ut. Since oA s by definition a horizontal lift for the double
vector bundle TcE and oA° (D'(Uy)) CTr(Dy4), this implies that the complexified

Dorfman connection A€ is adapted to D4, simultaneously. O

Corollary 4.2.7. In the situation above, AS for u € T(Uy) preserves T(K4).

Proof. Let k € I'(K+) and u,up € I'(U+). According to Lemma we have
K, = UJ and according to Proposition the bracket [-,-]ac preserves UL.

Therefore
<Agk7 u2> = prTcM(u)(<k7 U2>> - <k, [['LL, UQ]]AC> =0,

and ACE is again a section of K. O
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In [36] Jotz Lean proved the following description of VB-Dirac structures in

the generalised tangent bundle TE.

Theorem 4.2.8. Let D be a sub-double vector bundle of TE over E and U C
TM @ E*, with core K C E®T*M Let A be a (TM @& E*)-Dorfman connection
on E®T*M which is adapted to D. Then D is a VB-Dirac structure if and only
if U =K° and (U,preay v, [ -]alv) is a Lie algebroid.

Extending everything in this theorem complex linearly then immediately gives

the following corollary about complex VB-Dirac structures.

Corollary 4.2.9. Let D be a sub-double vector bundle of TcE over E and U C
TeM @ E¢, with core K C Ec © TEM such that D is a complex subbundle of
TcE. Let A be a complex (TcM & Ef)-Dorfman connection on Ec & TEM which
1s adapted to D. Then D is a complex VB-Dirac structure if and only if U = K°
and (U, proa |us [+ -]alu) s a complex Lie algebroid.

This description of complex VB-Dirac structures together with Theorem

then leads to the following corollary.

Corollary 4.2.10. A linear generalised complex structure J on a vector bundle
E is equivalent to a pair of transverse, compler conjugated complex VB-Dirac

structures D4 in TcFE.

Proof. Given a linear generalised complex structure J and A an adapted Dorfman
connection given by Proposition Let D4 be the ti-eigenbundles of 7. By
Proposition the restriction of [-,-Jac to U+ defines a Lie algebroid structure.
Additionally, according to Lemmawe have U3 = K4 or equivalently Uy = K¥.
With Theorem this shows that Dy are complex VB-Dirac structures in TcFE.
That they are transverse and complex conjugated, that is TcE = D4y & D_ and
D, = D_ follows directly from the definition in .

Conversely, given a pair of transverse, complex conjugated complex VB-Dirac
structures D4 in TcFE over Uy and with core K4y, we can write any element
vETecM @ Ef as v:=u+ for u,u’ € I'(U;). We then set

jec(w)=i-u—i-u.

This defines a vector bundle morphism jc: TcM ® E¢ — TcM @ Eg, which
additionally respects the conjugation, that is jc(¥) = jcv for any v € TcM & E¢.
Thus jc is the complexification of a real form j: TM & E* — T M & E*.

Now choose any complex Dorfman connection A™ adapted to D, . Denote the
corresponding lift by 2" : D(Te M & E:) = T (TcE © TEE). Then we define a
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new lift by setting for u, v’ € T'(Uy)
olu+) =™ (u) + oA ().

Now this is still C*°(M, C)-linear and since the vector bundle structure of Tc E @
TEE over TeM @ Ef is given by the complexification of the corresponding real
structure, it respects the complex conjugation and therefore o(u + u/) is indeed
again a linear section over u + u/. Thus o gives rise to a second complex Dorfman
connection A®. This Dorfman connection is now by construction adapted to
both Dy and D_. It is easy to see from that this Dorfman connection
additionally respects the complex conjugation in the sense that Ag? = TST and
is therefore the complexification of a real Dorfman connection A. Now the dull
bracket corresponding to AC restricts to the Lie algebroid structures on U, and U_
and therefore the bracket A defined by A(v1,v2) = 1 ([v1,v2] — [j1n, jio]) satisfies
all properties of Theorem [£.1.19] A different choice of adapted Dorfman connection
At will lead to a Dorfman connection A€ where the dull bracket agrees with the
first on I'(U4) x I'(U+) and only differs on I'(U+) x I'(Us). This is equivalent to
the two Dorfman connections being j-equivalent. Thus by Theorem [£.1.19] this

gives rise to a linear generalised complex structure as required.

That these two constructions are inverse to each other follows directly from

the corresponding result for generalised complex structures on any manifold. [

4.3 Generalised complex structures on Lie algebroids

Now we want to consider the case where the vector bundle has the additional
structure of a Lie algebroid A — M. In this case the generalised tangent bundle
TA is itself a Lie algebroid over the side TM @ A*. This structure is described
in Example in the background section. We will give a description of the
compatibility of a linear generalised complex structure on A with this Lie algebroid
structure in terms of a linear splitting corresponding to a skew-symmetric adapted

Dorfman connection
A:T(TM @A) xT (A T"M) - T(AGT*M). (4.39)

To compute the compatibility with the Lie algebroid structure we will need the
following definitions and results from [36] describing the Lie algebroid structure
TA—TM ® A*.

Definition 4.3.1. Given a Lie algebroid A — M with anchor p and a skew-
symmetric Dorfman connection A as in (4.39)) we define

Q: T(TM ® A*) x T(A) — T(A® T*M) (4.40)
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and for a € I'(A) derivations Lo of I'(TM & A*) and of T(A@T*M) over p(a) by
setting for (X,a) e T(TM @ A*) and (a’,0) e T(A® T*M)

Q(Xﬂ)a = A(X,a) (a, O) — (O,d(a, a)) s (4.41)
Lo(X,a) = ([p(a), X], Locv) , (4.42)
L,(d,0):= ([a,a/},ﬁp(a)ﬂ) ) (4.43)

This allows to define the two basic connections associated to a Dorfman

connection as given in [36].

Definition 4.3.2. Given a Lie algebroid A — M with anchor p and a skew-
symmetric Dorfman connection as in (4.39) the basic connections associated

to A are maps

VP T(A) x T(TM @ A*) — T(TM @ A*), (4.44)
VP DA x T(A@ T M) - T(Ae T*M). (4.45)

They are defined for a € T'(A), (X,a) e (TM @& A*) and (a',0) € T(A®T*M) by
Vs (X, @) i= (p, p) (Qxa)a) + La(X, Q) (4.46)

vgas(alv 9) = Q(p,pt)(zz’ﬁ)a + La(a,, 9) . (4.47)

The following result is also due to Madeleine Jotz Lean. Since the straight
forward computational proof is left to the reader in [36], we decided to write it

down here again for the convenience of the reader.

Proposition 4.3.3. The two basic connections defined in Definition [{.3.9 are
ordinary linear connections and are dual to each other, that is for a € T'(A),
vel'(TM & A*) and T € T'(A* @ TM) we have

(Vhasr 1) = p(a)((T,v)) — (k, vbhasy) (4.48)

Furthermore, they are compatible with the vector bundle morphism (p, p') in the

following sense:

V(. p)(d',0) = (p, p")VES(d',0) . (4.49)

Proof. Let a € T'(A), (X,a) € T(TM & A*), (d/,0) € T(A® T*M) be arbitrary
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sections and f € C°°(M) be an arbitrary smooth function. Then we compute

Qp(x,a)a = Af(X’a)(a,O) —(0,d{fa,a))
= fAxa)(a,0) + (a,a)(0,df) = (@, a)(0,df) — f(0,d(a,a))
= fQx,aa-

Qx.a)fa=Axa(fa,0) - (0,d{a, fa))
= fA(x,0)(a,0) + X(f)(a,0) = (a,a)(0,df) = f(0,d(e, a))
= fQx a0+ (X(f)a, —(a,a)df).

That both £, are derivations over p(a) follows directly from the Leibniz identity
for the bracket in A and 7'M and the fact that the standard Lie derivatives are

derivations over p(a) and X, respectively.

La(f(X, @) = ([pla), fX], Lafe)
= f(lp(a), X], Loa) + p(a) (f)(X, @)
= fLo(X, ) + p(a)(f)(X, ),
La(f(a',0)) = ([a, fa'], Lpa) f9)
= f(la,a'], L,(a)0) + pla)(f)(d’,0)
= fLa(d',0) + pla)(f)(d',0),
Lia(X,a) = ([p(fa), X], Lta0)
= f([p(a), X], Loa) + (=X (f)p(a), (o, a)p'df)
= fLo(X, ) + (=X (f)p(a), (@, a)p'd ),
Lyia(d',0) = ([fa,a'], Lyisa)f)
= f([a.d], Lp()0) + (=p(d')(f)a, (0, p(a))df)
= fLa(d,0) + (—p(a’)(f)a, (0, p(a))df) -

Using all these properties, we can show that VP defines ordinary linear connec-

tions.

VR (XL @) = (0. 0") (Qxa)fa) + L1a(X, )
= (0. (Quxwa+ (X(a, ~ (e a)d)))
+ fLa(X, ) + (=X (f)pla), (o, a)p'df)
—fv'm(X,a)
Ve f(X,0) = (0. ) (Qpxa)@) + La(f(X, )
P (FQx)0) + FLa( X, ) + p(a) (f)(X, )
—fvba%x, a) + p(a)(F)(X, ).
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VY (d,0) = Qp pty(arp)fa + Liald,0)
= Q.00+ (p(d)(fa, —(p'0,a)d f)
+ fLa(d,0) + (=p(a)(f)a, (6, p(a)d )
= [Va=(d,0),
VRS f(d,0) = Qppty ()0 + La(f(d,0))
= Q) (000 + fLa(d',0) + p(a)(f)(d',0)
= [V, 0) + pla)(f)(d,0) .

To check that the two basic connections are in duality with each other we compute

(Ve(X,a), (,0)) + (X, ), Vh™(a'0))
= ((p, ) (QUx.0)a) + La(X, ), (@,0)) + (X, 0), Yy a0y + Lald,6))
= ((p, 1) (A (x.)(0,0) = (0,d (e, a))) + ([p(a), X1, Laa), (a',0) )
+((X,a),A ppwe)( 0) = (0,d(p'0, ) + ([a, ], L) )
= (=[(X,a), (p, ") (@, )] 5, (,0)) + X (a, '6)
- <ptd<a, a), a'> + ([p(a), X],0) + (Lo, a')
+(=T(p, )@, 0), (X, )] 5, (a,0)) + p(a)a, )
— (d{p'0,a), X) + (X, L) + (@, [a,a])
(a)(X,0) + pla){a,a)

= p(a)
= p(a)<(X, 0‘)7 ((L 70)> :

For the compatibility with (p, p*) we finally compute

Vo (p, p)(d',0) = (p, p) V™ (', 0)

( ) (p,pt)(a’,6)Q + La (p P )(a,a ‘9) - (P, pt)Q(p,pt)(a’,G)a - (P, pt)ﬁa(a/, 0)
(lo(a), p(a)), £ap'0) — (p([a, @), 5 L))
0,

where the last equality follows from the fact that p([a, a’]) = [p(a), p(a’)] and the
observation that for any a” € T'(A)

<£apt0 - ptﬁp(a)ﬁ, CLH> = _<pt07 [a, D + pla )<pt9> a”>
+([p(a), p(a")]), 0) — p(a)(0, p(a”))
=0.

This completes the proof. O
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Also in [36] Madeleine Jotz Lean defined the basic curvature associated to a

Dorfman connection A.

Definition 4.3.4. Given a Dorfman connection as in (4.39)) the basic curvature
RR:T(A) xT(A) x T(TM & A*) - T(A® T*M) (4.50)
associated to A is defined for given ai,as € I'(A) and v € T'(TM & A*) by

RY® (a1, ap)v == — Qy[a1, as] + La, (az) — Lo, (Qaq) (451)
+ Qvlggsual — QVE?SVCLQ . .

The proof of the following statement is also left to the reader in [36], so we will

repeat the straight forward computation here.

Proposition 4.3.5. The basic curvature is tensorial and skew-symmetric in a;
and ay, in other words RX € O?(A,Hom(TM & A*, A® T*M)). The basic
curvature encodes the curvature forms of the basic connections in the sense that
vaas - RA o (p p ) and vaas = (Paﬂt) ° Rlzas_

Proof. Skew-symmetry is immediate as the Lie bracket is skew-symmetric. To show
that RR is tensorial we compute for aj,as € ['(A), v = (X,a) € T(TM & A*)
and f € C*°(M) using the properties computed in the proof of Proposition m
the following:

RX(fay,a2)v = —Qy[far, as] + Lia, (Qaz) — Lay (Qfar)
+ Qgpas, fa1 = Qgpas, a2
= a1, a2] = (X(f)lar, az), (@, [a1, az])df )
+ plaz) () a1 + (X (plaz)(f))ar, — (e, ar)d(p(az) f))
+ fLay Oy + (—p<prA Qua2)(f)ar, (prrar Qaz, plar))df )
— FLay2ar — plaz) (F)ar — Loy (X(far, —(a, a1)df)
+ I Qgpas, a1 + (prras (V) (Har, —(pra- (Viv)an)df )

- vaab?sVGQ
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= fRX(a1,a2)(v)
+ (X plaz)](Har, (@, lar, as])d )
+ (p(praaz)(fas,0)
+ (07 (pry«as Quaz, P(a1)>)
+ (proar (0, p)2a2) (Far + prras(Layv) (f)ar, 0)
— (0, (pra- ((p, )22 + Layv), a1 )df )

= fRX(a1,a2)(v)

where we made use of the facts that pryy, o(p, pt) = popry and pr . o(p, pt) =

p o pry«ys, of the property of the Lie derivative Lydf = d(Y (f)) and of skew-
symmetry of the Lie bracket.

Finally we also compute

R (ay,a2) fv = —Qyyla1, az] + Lay (Qppa2) — Lay (Qppa1)
+ Qvggs,fyal — Qv}gfsfua?
= —fQ a1, a2] + fLay (Qaz) + plar(f)Qaz
= La, (Qpva1) — plaz)(f)dar
+ fQgpas, a1 + plaz) (f)Qar = fQgpas, a2 — plar(f)az
= fRX(a1,a2)(v)

The computations for the equalities Rgpas = Rzaso (p, p') and Rgpas = (p, pt)oRZaLS
can be found in [36]. O

Recall from Example[2.2.11|that the generalised tangent bundle TA = TA®T*A
over a Lie algebroid A has itself a Lie algebroid structure over TM @& A*. In [36]
Madeleine Jotz Lean proved furthermore the following description of this Lie

algebroid structure in terms of core sections and linear sections.

Theorem 4.3.6. Let A — M be a Lie algebroid A — M with anchor p and A a
skew-symmetric Dorfman connection as in (4.39)). Write © for the anchor of the
Lie algebroid TA. Then we have for any a,ay,az € T'(A) and 7,71, 70 € T(A®T*M)
the following properties

L [o3(a1), 04 (a2)] = 0% ([a1, a2]) — RXS(a1, a2) ,

2. [05(a), 7] = (Vi)

3. [TIT,TJ] =0,
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4. O(0f(a) = Vi € X(TM & A7),
5. 001 = ((p, p1)r)' € x4(TM @ A*).

Equivalently, the map (p,pt): A®T*M — TM @& A*, the basic connections VP
and the basic curvature Rgas define the 2-term representation up to homotopy
corresponding to the VB-algebroid structure on TA @& T*A in the decomposition
corresponding to A. For a description of this correspondence in general see [28,[19],
we also recall it in Section[2.2.3.

4.3.1 Anchor preservation

Let us now consider a Lie algebroid A — M and a linear generalised complex
structure J on A. We will describe in the following the compatibility of J with
the Lie algebroid structure, in other words we will give conditions for A to be a

generalised complex Lie algebroid as in the following definition.

Definition 4.3.7. A generalised complex Lie algebroid is a Lie algebroid
A — M equipped with a linear generalised complex structure J: TA — TA which
1s additionally a Lie algebroid morphism over the side morphism j: TM & A* —
TM @ A*.

As shown before, any skew-symmetric Dorfman connection then gives rise to
Pel(TMae A ) @ A* @ (A T*M)) by
T (0P e a (V) = 0T uea- (jv) = D(v) . (4.52)

Equation (4.52)) describes the compatibility of the morphism J with the lift
o2 : T(TM @ A*) — T (TA). To give conditions on the compatibility with the

Lie structure we will need the analogue for the lift of sections of A instead.

Lemma 4.3.8. Let @ be defined by (4.52) and identify (TM®A*)@ A*Q(AST*M)
with Hom (A, Hom(TM @ A*, A® T*M)). Then we obtain for the lift o (a) €
FETM@A* (TA) of a section a € T'(A) the following equation.

T (0™ (a)) = 0*(a) 0 j + Bla) o j L 0. (4.53)

= (jocoT) o]
for allT e T(A®T*M) and on core-linear sections we obtain J(¢) = joopoj
for all p € T(Hom(TM & A*, Ae& T*M)).

Furthermore, on core sections in TA — TM @ A* we have J (1)

Proof. Since the linear splitting 3 corresponding to the horizontal lift is a double

vector bundle homomorphism, this shows immediately that
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for any a € I'(A) and v € I'(TM & A*). Furthermore, by definition of core-

—_—

linear sections we have ®(v)(an) = 014 +rp@ar @(v(m))(am) and ®(a)(vy,) =
024 44 @(vp) (a(m)) where we view the core A& T*M as subset of TA. Using the
interchange law in the double vector bundle TA we then see that o2 (jv)(am) +a
O(v)(am) = 02(a) (jvim) +ryear ®(a) © 57 (vm).

The equality J(71) = (joo7)l o for all 7 € T(A @ T*M) follows directly
from the definition of the core morphism jo. The equality J (@) = joogoj
for all ¢ € I'(Hom(TM & A*, A® T*M)) follows from an argument completely
analogous to the proof of Lemma using local basis sections. This completes
the proof. O

In particular, for a Dorfman connection A adapted to J we have J (04 (a)) o

j ' =0%(a) and J(r7) 071 = (joo7)!. From now on we will work again with an

adapted Dorfman connection. The corresponding results in the case of a general

connection with ® not vanishing are described in the appendix in section [A.2]

Let us denote the anchor of the Lie algebroid TA — TM & A* again by
©:TA—-T(TM o A*).

Proposition 4.3.9. A linear generalised complex structure J on a Lie algebroid
A — M preserves the anchor of TA if and only if for all a € T'(A) and for any

adapted Dorfman connection A we have
1 (jo(p.p) =—jo(pp"),
2. VP o j = joVbas,
Proof. The anchor preservation condition for [J over j is the following (see [51]):
BOoJ =TjoO.
We compute firstly for a core section 7! using Theorem m
(0 wm)) = Ti(((p:)7) (V)

(vim + t(p, p')7(m)))

t=0

4t Gvm + (o, 7 (m))

= (i(p, P)7) (V)

On the other hand we get with Lemma [4.3.8}

0T (' (vm))) = ©((Gen) (jvm)) = (0. p)icT)" (jvm)
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Thus the anchor is preserved for every core section if and only if
(p,p") 0 je =370 (p,p"). (4.54)

According to Proposition we have j' = —jc and thus is equivalent to
(Go(p.p") = =jo(p.p").

Now we consider a horizontal lift o4 (a) and make use of Theorem and of
Lemma [4:3.8 to obtain the following:

007 (053(a)(wm)) = ©(4 (@) (jvm) ) = V5 (jvm) (4.55)
and on the other hand:

Tj 0 O(0% (@) (1) = T (V2 ()

=3jo Va0 (jvm).
The anchor preservation condition for horizontal lifts is therefore
Vbhas o j = jovhas (4.56)

for all a € T'(A). O

4.3.2 Bracket preservation

In this section we will give conditions, when the generalised complex structure J
is compatible with the Lie bracket of TA — T M @& A*. We will compute again the

conditions for core sections and linear sections separately.

Proposition 4.3.10. Let J be a linear generalised complex structure on a Lie
algebroid A and A be a Dorfman connection adapted to J. Then J is compatible
with the Lie bracket of TA — TM & A* if and only if for all sections a,b € T'(A)

1 Vg®oj=joVg™,
2. jo o RY®(a,b) = R3¥(a,b)oj.
Proof. Since J and therefore j are invertible, every section can be pushed forward

via J. The bracket is then preserved under J if for all sections (, & € I'rasgax(TA)
we have the property (see for example [51] and [16])

[JoCoj ', Toloj  |=T0[(,&oj". (4.57)

Since the bracket of two core sections T{r and TQT always vanishes and Jo7Toj =t =

(jc o 7)f according to Lemma m this condition is immediately satisfied on core

sections.
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For the bracket of a lift with a core section we obtain on one hand again making
use of Lemma [4.3.8 and Theorem [4.3.6]

(T 008(a) o, (jor)| = o8 (@), Gen)T] = (Ve(Ger)".
On the other hand we have
J ook (a), 0" = (jeVerr)!
and thus we obtain the condition
VP o jo = jo o VP, (4.58)

As the Dorfman connection was chosen to be skew-symmetric, the two basic
connections have to be dual to each other according to Proposition Thus

(Vhasjy — jVE*y, 1) = —(ju, Voo1) + p(a)(jv, T)
— (1, VEjoT) + p(a) (v, joT)

= (v, Va®jot = jeVgT),
and hence equation for a linear generalised complex structure is equivalent
to (£56), VL™ 0 j = j o V* for all a € I'(A).
For the bracket of two lifts we get on one hand the following:
[Took(@) o, Took(b) o] = [0h(a), 05 (b))
= o4 ([a. b)) - BR™(a.b).
On the other hand we compute with Lemma [1.3.8]
T o lo (@), od®)] o 5" = o4 ((a,b) — jo o RXS(a. ) 0.
This gives the last condition for J to be a Lie algebroid morphism:

jo o R3S (a,b) = RR(a,b) 0 j. (4.59)

Summarising we obtain the following Theorem:

Theorem 4.3.11. A linear generalised complex structure J on A defines a gen-
eralised complex Lie algebroid if and only if for any adapted Dorfman connection
A we have for any a,b € T'(A)

1. (p,p)ojc=7jo(p,p'),
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2. VS oj=joVy®,

3. jo o R (a,b) = R3S (a,b)oj.

This is equivalent to the statement that (jc, 7,0) is the automorphism of 2-term
representations up to homotopy of ((p, p'), Vhas ybas, Rgas) corresponding to the
VB-algebroid structure on TA @ T* A in the linear splitting defined by the adapted
Dorfman connection A. For this correspondence see also [19, [36] and here recalled
in Theorem and Section

Together with Theorem this immediately gives the following characteri-

sation of generalised complex Lie algebroids.

Corollary 4.3.12. Let A be a Lie algebroid over M with anchor p. A linear
generalised complex structure on A compatible with the Lie algebroid structure in the
sense of Definition [{.3.7 is equivalent to a vector bundle morphism j: TM & A* —
TM & A* and a j-equivalence class [A] of TM @& A*-Dorfman connections on
A®T*M, such that the bracket A defined by and the corresponding basic
connections and basic curvature satisfy for vi,vo € I'(TM @& A*) and a,b € I'(A)

1. j2 = —id,

2. A, jro) = jA(v1,v2),

o

(p,pt) o jc=3jo(p,pt),

b Vo= jovin,

)

. jo o R3S (a,b) = R85 (a,b)oj.

4.4 Pair of transversal LA-Dirac structures

In Corollary we showed that a linear generalised complex structure on a
vector bundle is equivalent to a pair of transversal complex VB-Dirac structures
D in the complexified generalised tangent bundle. Given now a Lie algebroid A we
obtained additional compatibility conditions of the generalised complex structure
with the Lie algebroid structure described in Theorem We will now show
that these conditions are equivalent to Dy defining LA-Dirac structures. For this
we need a description of the Lie algebroid structure on TcA — Tc M @ Af in terms

of a complex Dorfman connection

A:T(TeM ® AL) x T(Ac ® TEM) — T(Ac @ TEM) . (4.60)
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This is completely analogously to the real case covered in [36] and [38]. It is note-
worthy that since in the double vector bundle T¢ A the side A is not complexified,
we also have to extend the basic connections and basic curvatures only complex

linearly in the other argument. We write down the complex version of Definition

.31l and of Definition 4.3.2]

Definition 4.4.1. Given a Lie algebroid A — M with anchor p and a skew-

symmetric complex Dorfman connection A as in (4.60) we set for a € T'(A) and
(X,a) eT'(TcM @ AL):

QF: I(TeM @ AL) x T(A) = T(Ac ® TEM), (4.61)

Q((CX@)Q = A(x,0)(a,0) = (0,dc (e, a)c) . (4.62)

We denote by LS the complezifications of the L, and define the complex basic
connections by the following equations, where now (a’,0) € T'(Ac ® TEM):

VES(X, @) = (p, p")e(Qfx @) + LE(X, @), (4.63)
Vs (a',0) = O, )0y + Lg (a',0) . (4.64)

The complex basic curvature is given by the same formula as in the real case,
that is for a,b € I'(A) and v € I'(Tc M & AF)

R (a,b)v == —QS[a, b] + LS (Q50) — £5(0%a) + QF s a — QF
b 1%

¢ Sbas b (4:65)

If A is the complexification of a real Dorfman connection, then the basic
connections and the basic curvature defined by A are the complexifications of the
corresponding maps defined by the real Dorfman connection. It is easy to see that
the complex version of Proposition also holds.

In [38] the following statement is proved.

Proposition 4.4.2. A VB-Dirac structure D C TA with side U CTM & A* and
core K C A®T*M is additionally a Lie subalgebroid of TA — TM & A* if and
only for an adapted Dorfman connection A as in the following conditions
are satisfied for all a,b € T'(A), u e I'(U):

1. (p,p')(K) CU,
2. Vhasy € T(U),
3. R (a,b)u € I(K).

Equivalently, the the 2-term representation up to homotopy of A on (A®T*M)q) ®
(I'M & A*)py) describing the VB-algebroid structure of TA in the splitting cor-
responding to A restricts to a 2-term representation up to homotopy of A on
K[O] ©® U[l].
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Since according to Proposition the complexified generalised tangent
bundle TcA carries a Lie algebroid structure over TcM & Af which is defined
componentwise, the completely analogous statement to Proposition holds for

complex Dorfman connections and T¢A:

Corollary 4.4.3. A complex VB-Dirac structure D C Tc A with side U C Te M &
A% and core K C Ac ® TEM is additionally a Lie subalgebroid of TcA — TeM @©
AL if and only for an adapted complex (Tc M @ Ag)-Dorfman connection A on
Ac @ TEM the following conditions are satisfied for all a,b € I'(A), u e I'(U):

1. (p,p")c(K) C U,
2. Vbhasy € T(U),

3. RR(a,b)u € T(K).

Note that here VP and Rzas denote the complex basic connections and complex
basic curvatures as defined in Definition [{.4.1]

With this description of complex LA-Dirac structures, Theorem and
Corollary [£.:2.10] we can easily prove the following description of generalised complex

Lie algebroids.

Corollary 4.4.4. A generalised complex structure on a Lie algebroid is equivalent

to a pair of transverse, complex LA-Dirac structures in TcA.

Proof. According to Corollary a linear generalised complex structure J on
A is equivalent to a pair of transversal, complex VB-Dirac structures Dy. We
choose a Dorfman connection adapted to J as in Proposition Then the
complexification of A is adapted to Dy and to D_ simultaneously. According to
Theorem J is a Lie algebroid morphism if and only if

L (p,p")ojc =jo(p,p'),
2. VP oj=joVps,

3. jo o R3S (a,b) = R85 (a,b) 0.

The first condition is equivalent to (p, p')(K1) C Us, the second condition is
equivalent to VP*uy € T'(Uy) for any a € T'(A) and uyx € T'(Uy) and the
third condition is equivalent to RR3(a,b)(us) € T'(K4) for all a,b € I'(A) and
ug € I'(Ux). According to Corollary these conditions are equivalent to Dy

being complex LA-Dirac structures. O
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4.5 The degenerate Courant algebroid A ® T*M

Let in this section A — M be a generalised complex Lie algebroid with generalised
complex structure J. We recall here the structure of a degenerate Courant
algebroid on A @ T M described by Madeleine Jotz Lean in [3§]. Then we show
that the core morphism jo of J is a degenerate generalised complex structure in

this degenerate Courant algebroid.

The anchor of the degenerate Courant algebroid structure on A @ T*M is
defined to be popry: A® T*M. Given sections a,b € T'(A) and 0,7 € T'(T*M),
there is a bilinear pairing on A @ T*M defined by

((a,0), (b;n)), = (p(a),n) + (p(b),0), (4.66)

and a bracket on I'(A @ T*M) by setting

H(aa 9)7 (bv n)]]d = ([a7 b]? ﬁp(a)n - Zp(b)de) : (4'67)

This anchor, bracket and pairing satisfy all properties of a Courant algebroid as in
Definition [2.3.1] except for the non-degeneracy of the pairing. This will be called
the degenerate Courant algebroid A @ T*M. The bracket can be described in

terms of a Dorfman connection and the corresponding basic connection as follows.

Lemma 4.5.1. Let A be any skew-symmetric Dorfman connection as in (4.39).
Then the bracket in the degenerate Courant algebroid A®T*M as defined by (4.67)
is given for two sections 1,70 € T(A® T*M) by

[r1,72la = Aty T2 — Vs 71 (4.68)

Pry 72

Proof. First we compute

Vi (a,0) = Qp pty@p)b + Lola, 0)
= A(p,pt)(a,@) (ba 0) - (07 d<pt9a b)) + ([ba (I],Lp(b)e) ’

and

<A(pa,pt9) (07 77)7 (Xv 04)> p(a) <77a X> - <(07 77)7 [[(pa, pt9)7 (Xv a)]]A>
P(a)<77a X> - <777 [pa7 X]>

(Lo@n X) .
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Thus we obtain

A(p,pt)(a,e) (bv 77) - V}))aS(a7 0) = [a7 ) _ﬁpbg) + A(pa,,otH) (07 77) + (Oa d<pt07 b))

This completes the proof. O

Now consider a generalised complex Lie algebroid structure J on A. This
induces the core morphism jo on AGT*M. It follows from the previously obtained
conditions that this defines a generalised complex structure with respect to the

degenerate Courant algebroid structure defined above.

Proposition 4.5.2. The core morphism jo: AGT*M — A®T*M of J satisfies
j% = —1id, is orthogonal with respect to (-,-)q and the Nijenhuis torsion of jo with
respect to [-,-]a vanishes. We call this a degenerate generalised complex structure
in the degenerate Courant algebroid A @ T*M.

Proof. Since J is a linear generalised complex structure we have j% = —id
according to Proposition [.1.10] It remains to be checked that jc respects the

pairing and that the Nijenhuis tensor of jo vanishes. For the pairing we compute

(jeri, jer2)a = ((p, p")jcTi, o)

(p,
3(p, )11, joTa)
(p,

(
= {
{(p, p) 71, 72)
(

T1, T2)d s

where we have used j = —jf according to Proposition 4.1.10| and j o (p, p') =
(p, p) ojc according to Theorem [4.3.11} Hence j¢ is indeed orthogonal with respect

to the degenerate pairing.

Now we fix a Dorfman connection A that is adapted to J. Recall that Theorem

4.3.11| shows the equality V22 o jo = jo o VP2 ([58)). Now we use Lemma
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to compute the Nijenhuis torsion of jc.

Nig 14T, 72) = [11, 72la — [Jom, jomla +jc([[jcﬁ, molla + [[Tlaj07'2]]d)

_ bas
=Bty T2 — Vir, Tl

= B(ppt)jenJoT2 + VB?Z jomdCTl

+ I (pptyjen T2 — VRS L jeT

+ JeApptyndoTs — JeVRS T
= Bipptym T = Bppt)jem JOT

T J0A (ppt)jer T2 T ICA (ot ICT2

which vanishes for any linear generalised complex structure according to (4.23|) with
v=(p,p')r and T = 9. Thus j¢ is a degenerate generalised complex structure in
the degenerate Courant algebroid A @ T*M. O

4.6 The complex A-Manin pair

In [38] Jotz Lean defined A-Manin pairs for a given Lie algebroid A over M and
constructed an equivalence between A-Manin pairs and Dirac bialgebroids over
A. In this section we consider complex Courant algebroids and complex Dirac
structures (see Section and will obtain the definition of a complex A-Manin

pair completely analogously to the definition over the real numbers in [3§].

Let us from now on fix a generalised complex Lie algebroid A and denote the
generalised complex structure by 7, the corresponding LA-Dirac structures by
D, C TcA with side bundles Uy C TcM @ Af. Let A be a Dorfman connection
adapted to the generalised complex structure as in and denote by VPas
the corresponding basic connections defined in We denote by AC the
complexification of A as defined before in Example [2.5.71 The results of the
previous sections show that AC is adapted to both Dy and D_.

We furthermore denote here by VP25C the complexifications of VP with respect
to both the A-argument and the A®T™* M-argument or T'M & A*-argument, respec-
tively. Note that these are not the same as the basic connections corresponding to
AC as in Definition since there the A-argument is not complexified. However,

in this section we will need the additional complexification in this direction.

We can now define a complex A-Manin pair as follows:

Definition 4.6.1. A complex A-Manin pair consists of a compler Courant
algebroid C over M, a complexr Dirac structure U — M, with v: U — TcM &
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AG such that py = pry, ot and a morphism of (degenerate) complex Courant
algebroids ®: Ac @ TE¢M — C' such that

S(AcdIcM)+U=C
and (u, ®(17 +i1"))c = ((w), 7 +i7’) for all (u,7 +i7") € U xp1 (Ac ® TEM).

In [38] Jotz Lean showed that the Courant algebroid structure on C' and the
morphism ® can in fact be recovered from the Lie algebroid structures on A, U
and ¢. All the arguments can be extended complex linearly to obtain the following

straightforward consequence.
Proposition 4.6.2. Let Uy be the ti-eigenbundles of the side morphism j of a
generalised complex structure. Define
Ur @ (Ac @ TEM)
C:t = )
graph (—(p, p')clic, : Ko — Us)

(4.69)

and define an anchor map, a C-bilinear pairing and a bracket as follows. For
w,ur,ug € N'(Uy), 7,71, 72 € I'(Ac @ TEM) we define the anchor by

ce(u®T) = pus (u) + (pa)c o pra, 7, (4.70)
the pairing by
(ur ® 71,up @ T2) oy = (ur, 72) + (uz, 1) + (71, (p, p')c(72)) (4.71)
and the bracket by

bas,C bas,C
[ @ 71,09 @ T2y = ([ ualo, + VoS uz — VRS

(4.72)
&) ([[7—1,7—2]](17(: + A(,ElTQ — A('EL:QTl + (O,d(c<7'1,u2>)) .

Then C1 are both complex Courant algebroids and (Cy,Uy) together with v: Uy <
TeM @ AL and ®@: Ac ®TEM — C' the canonical inclusions are complex A-Manin

pairs.

4.6.1 The induced generalised complex structure

Now we will show that the generalised complex structure on A induces generalised

complex structures .J4. in the Courant algebroids C'+ defined by Proposition [£.6.2}

Proposition 4.6.3. Let u® 7 € I'(Cy). Then
Ji(u®T) = jcu @ jocT (4.73)

is well-defined and a generalised complex structure in Cy.
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Proof. Given any element (—(p, p')ck) @ k of graph(—(p, p')c|k..) we have

Jx((=(p, p")ck) ® k) = (—jc o (p, p')ck) ® ik
= +i((—(p, p')ck) ® k),

which is again an element of graph(—(p, p")|k.). Thus the map Jy defined by
(4.73) is indeed well-defined on C'y..

To show that Ji is a generalised complex structure in C+ we have to check
that it squares to — id, that it respects the pairing and that the Nijenhuis torsion

with respect to the bracket on C'y vanishes.

First, it is clear that J% = —1 as J was a generalised complex structure and
thus j2 = —1 and j% = —1 by Proposition 4.1.10
Second, Jy also respects the pairing of Cy as for u; @ 7 and ug @ 72 in I'(Cy)

we compute:

(Ji(ur & 1), J+(u2 ® 12))cy = (Jcui, jocme) + (Joug, jocTi)
+ (e, (p, p')c © joc(T2))
= (u1,m2) + (u2, 1) + (11, (p, p')c(72))

= <u1 D 71, U2 @TQ)Ci.

Here we used that j2 = —1, that jt = —joc and that (p, p')c o jcc = jco (p, p')c,
which follows from Proposition and Theorem

The last condition remaining to be checked is that the Nijenhuis torsion of Ji

with respect to the bracket on C'y vanishes.

NJiv[['v‘ﬂCi (u1 @D 71, u2 D 7'2) = |Iu1 @® 11, u2 B 7'2]] N
- [[Jj:(Ul S 7—1)7 J:I:(UQ @ 7—2)]] Cy
+ I [Je(u @) ue @ 2] o

+ Ji Jur & 11, Ju (us @Tz)]]ci-

We compute the Ui-component and the (Ac @ T M )-component of NJi7[[.7,]]Ci
independently, by writing the bracket as in . Note that there is no well-defined
projection from C1 onto these factors, but the bracket and thus the Nijenhuis
torsion is well-defined, which allows us to choose the representative given by .

For the Uyi-component of this representative of NJi7[[.7.]]Ci (u1 & 71,u2 B T2) we
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obtain

[Uh UQ]Ui + vbas,(C Uy — vbas,(C uy

Prac 71 Pras 72

— [jew, jeuslu, — ngi’fjamjcuz + ngifjc’mjcm

+jc ([jcul, uslu, + VE?i’qum Uy — Vg?f,’fmjcul)

+ Jjc ([ul, Jeousluy + V};?Z’fﬁjcuz - Vgii’fjmmul)
= [ur, uglyy + VRS up — VI un

— [:I:iul, ii’U,Q]Ui + ivgij\fjc,cﬁ u9 + ivgfifjc,cmul

+ i[tiug, ugly, + j@Vi?i’ij,CTluQ T ij(cvgﬁi’fmul

t ifur, Fiuzlu, + ije VRS us - j@vgi‘jfjcmul
- V'S?jf 2~ vg?if U1

+ iv];?ifjc,cﬁ up x ivgiifjo,cfzul

+ ivg';‘jfjcmug — () w

+ P VRS i F IV e et

=0,

where we used that joup = tiug for k = 1,2, that the bracket on Uy is C-bilinear
and that VP2C preserves U.. The latter property follows directly from the equality
Vbas o j = j o VP of Corollary 4.3.12]since Uy are the +i-eigenbundles of jc.

For the Ac@®T¢M-component of this representative of NJiy[[,7,]]Ci (u1 DT, U2 697'2)

we compute

[, =2]ac + ASJQ - AS2T1 + (0,dc (71, u2))
— liccm jecmlac — AL, docre + AL, dccm — (0,de{jocm, jous))
+ jc,c([[jc,cﬁ, rlac + A5, 12 — AL jecr + (0, de(iccm, U2>))
+jeoc ([[Tl,jc,cTz]]d,c + AL jocere — AL, + (0, d<c<T1,j<ch>))

= Njc,cy[['f]]d,(c (1, 72)

+ AL T — AT F AT jocr £ AL jocm

tijocAS T — jocAL jocm + jocAS joe FijocAS,m
= AL (r Fijocm) ijocAS (2 Fijocm)

— AS (11 Fijoen) FijocAS (n Fijoen)
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- ASI (TQ + ijC,(C7'2) + (ii)zAgl (7’2 F ijoy@Tg)
- A(Sg (Tl + ijC,(CTl) — (ii)zA& (7'1 F ijC,(CTl)
= O’

where we used first that jcu, = £iug for k = 1,2 and then the property that joc
is a degenerate generalised complex structure on the degenerate Courant algebroid
A @ T*M according to Proposition and thus the Nijenhuis torsion of the
complexification vanishes. Finally we used that 7 Fijo cm for [ = 1,2 defines a
section of K4, the fi-eigenbundle of jo ¢, that Agk preserves K according to
Corollary and hence we have jC,CASk T FijocT = iiASle Fijo,cT

Thus we have shown that the Nijenhuis torsion of Jy vanishes and that Ji

defines indeed a generalised complex structure in C'y. O

4.7 The Drinfeld double of the Lie bialgebroid (U., K)

Let again A be a generalised complex Lie algebroid over M with generalised
complex structure J over side morphism j. Denote again by Dy, UL and Ky
the corresponding eigenbundles as before. In this section we show that the pair
(Us, K¢) forms a Lie bialgebroid. The Drinfeld double of this Lie bialgebroid is a
Courant algebroid and we will show that it is isomorphic to C'y. First we need the
following identification of K+ with the dual of U.

Lemma 4.7.1. There are canonical isomorphisms UL = K+ and K = Ux.

Proof. We have Uy C TcM @ Ay and furthermore a canonical isomorphism
Up®U- =TcM & Af where (uy,u_) is sent to uy + u—. The inverse is given
by v +— (%(1/ — ijcv), %(1/ + ijcv)). Analogously we have an identification of
Ac ® T¢M with Ky @ K. Now we have K+ = Ug, according to Lemma [4.2.3]
This immediately gives the desired identification of K+ with U} and of U+ with
Kx. O

Proposition 4.7.2. The restriction of the degenerate Courant algebroid structure

on Ac ® TEM induces a complex Lie algebroid structure on K.

Proof. The Courant algebroid structure on Ac @ T¢3M is given by complexifying
the structure on A @ T*M defined in section According to Proposition [£.5.2
the morphism jo is a generalised complex structure in A @ T*M. The vanishing

of the Nijenhuis tensor and C-linearity of the complexified bracket imply that the



136 CHAPTER 4. LINEAR GENERALISED COMPLEX STRUCTURES

bracket restricts to the +i-eigenbundle K4 of joc since for ki, ky € I'(Ky) we

have

0 = joc((Nje [, 32)c(F1, k2))
= jeclki, kelac — ©%ieclk, kelac % 2058 c[k1, k2lac
= 2jcoclk, k2llac F 2i[k1, k2]ac,

and thus [k1, k2]qc is again a section of Ki. Since the pairing in A & T*M
was given by (4.66) and by Theorem [4.3.11| we have that (p, p')c sends K+ to
Ut = K3 the pairing restricted to K4 vanishes and thus the restricted bracket is

skew-symmetric and defines a Lie algebroid structure on K. O

Proposition 4.7.3. There is an isomorphism of vector bundles

F:Ui@K:F—>0i

(k) »udk. (4.74)

This equips U+ & K+ with the structure of a Courant algebroid. Both Uy © 0 and
0 ® K+ are Dirac structures in this Courant algebroid and thus the pair (Us, K+)

is a complex Lie bialgebroid.

Proof. The inverse of F' is given by

FhCy —»Uso Ky
DI D (4.75)
ud T <u+ (p,pt)c(i(T$Z]<CT))75(TiZJ(CT))-

This inverse map F~! is indeed well-defined on C4 since for any k € K4 we have

(=) ) = (=(ou o )ck+5 (0, e (RFiCER)), 5 (£i(£i))) = (0,0).

It is easy to check that they are inverse to each other and are thus vector bundle

isomorphisms.

The Courant algebroid structure of C induces via this isomorphism a Courant
algebroid structure on the bundle Uy ® K+. We now show that the Lie algebroids
Ut and K+ are Dirac structures in Cy.. Liu, Weinstein and Xu showed in [45] that
two transversal Dirac structures in a Courant algebroid are equivalent to a Lie
bialgebroid. Thus (Ui, K1) is a Lie bialgebroid and we can define the Drinfeld
double Courant algebroid on Uy & K+. Then we will show that the pairing and
bracket of C1 are equal to the pairing and bracket of this Drinfeld double and

that they are thus isomorphic as Courant algebroids with the isomorphism given
by the map F defined in (4.74)).
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The bracket on Cy was defined in (4.72)) as

— bas,C bas,C
[ur © 71,u2 ® T2y = ([Ul, u2luy + Vel ru2 = Ve 72U1)

® ([[71,72]]01,@ + AT 7 — AL 7+ (0,de(m, U2>)) -

The bracket of two sections (0@ k1), (0 @ k2) of Cy where ki, ks € I'(K+) is
then given by

[(0® k1), (0@ k2)]cs = ([0,0]r, + Vo€, 0 — Vi€, o)

prACkl prACkg
k1, k Alky — ASky + (0,dc (k1,0
69([[1, olac + Agks gk1 + (0,dc(k1,0))
=0 [k, k2]ac -

Similarly, for two sections uj,up € I'(Ux) we have [(u; & 0), (ug @ 0)]c, =
[ur,u2]uy @ 0. The pairing in Cy was defined in (4.71)) as

(u1 @ 11,u2 ® T2)cy = (u1, T2) + (u2, 1) + (11, (P, pe(m2)) .

It is easy to see that both Uy @ 0 and 06 K1 are maximally isotropic with respect
to this pairing and thus Dirac structures in Cy. Thus by the argument in [45]
(U+, K+) form complex Lie bialgebroids. O

To show that the brackets in the Drinfeld doubles are the same as the brackets

in Cy we need two technical lemmas. First we prove the following lemma.
Lemma 4.7.4. For ui,us € I'(Ux) and ky, ks € T'(Kx)
AL ko — AL k1 + (0,de(kr,u2)) — LY k2 + v,duks (4.76)

s a section of Ki.

Proof. We make use of the fact that the dual bracket to the Dorfman connection
AC restricted to Uy is precisely the Lie bracket on Ut and that the Lie algebroid Uy
is anchored by the restriction of prq,. ). If we pair the above section of Ac & T¢M

with an arbitrary section u of Uy we obtain

(u, AS ko — AT k1 + (0,dc (b, us)) — LY ko + tuydiks)

= pry g (ur)(ka, u) — (ke, [ur, u]) — progag(u2) (b1, w) + (ki [ug, ul)
+ prozas (W) ki, uz) — progas(wn)(u, ko) + (K2, [ur, u])
+ pro s (u2) (ks w) — progar(u) (ki uz) — (ki [ug, ul)

=0.

Since u € I'(U) was arbitrary and U = Ky, the term (4.76) is indeed a section of
K. O
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Now we can prove the second lemma which is necessary for the proof of the
following Theorem [4.7.6]

Lemma 4.7.5. For ui,us € I'(Ux) and ky, ks € T'(K+) we have
L us = ydicur = (p, p)c(AS ko = ALk + (0, de (kr, us)) — L5 ks + tuydurks )

bas,C bas,C
+ VprA k1 ug — vprAC kQul .

(4.77)

Proof. The left hand side of the equation is a section of Uy since we showed
in Proposition that (Ux, K+) is a Lie bialgebroid. The basic connections
preserve I'(UL) according to Corollary as Uy is the side of a complex LA-
Dirac structure to which A is adapted. The remaining term was seen in the
previous Lemma [.7.4] to be a section of Us. Thus also the right hand side of the
equation is a section of Ui and hence we can pair the equation with an arbitrary
section k of K+ = U to obtain an equivalent equation. We write now k = (a, ),
ki = (a;,6;) for a,a; € I'(Ac) and 6,0; € I'(TEM) and similarly u; = (X5, o) for
X; € T(TcM) and oy € T(Ag). Since (p,p')(Kz) € Uz = K2, the pairing of k
with (p, p')(—LY k2 + tu,dykr) vanishes. With this observation, the definitions of
the basic connections and of the bracket on K+ and the property of the Dorfman

connection A%(0,6) = (0, Lopry, 1 uf) we can compute
(k, (p, p')c (AT ks = ALk + (0, de(kr, us)) — L ks + tupdurks )

£k1u2 + LdeK’LLl + vbas C vbas,(C >

prag kit Prag k21
= <k' (p; pt)C(A§1k2 — AL k1 + (0, dC<klvu2>))
— LiSus + wydieun + Layus + (p, p')e (A, (a1,0) = (0, de (a1, u2)))
— La,ur — (p, Pt)c(Agl(%O) - (Ovdc<a2,u1>))>
= ((p, p')ck, AT, (0,02) = AL, (0,61))
+ (o, ')k, (0, dcth, u2) — (0, dcar, u2)) + (0, dcas, ur)) )
+ (b, —Lf s + L un — dic (o, wa))
(k, Layuiz = Layun )
= (p(a), Lx,02 — Lx,01) + p(a){k1,uz)
(a){a1, az) + pla){az, ax)
(a1)(ua, k) + (uz, [k1, k]) + plaz)(ur, k) — (ua, [k2, K])
— pla)(ur, ka) + (@, Layaz — Loyarr)
0

+ (0, [p(ar), Xo] — [p(az), Xa])
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= X1(p(a),02) — <[X17 p(a)], b2) — Xa(p(a),61) + ([X2, p(a)], 1)
+ p(a)((a1, a X2791>) p(a){a1, a2) + p(a){az, 1)

—P(al)(<X2, (a,a2)) + (a2, a1, al)
+ (X2, L )e Ly + d{p(a), 61))
+ plaz) ((X1,0) + (a, 1)) — (o, [az, al)
— (X1, L) — Lya)b2 + d(p(a),b2))
— pla)({ag, a1) + (X1,62)) + (a, Lo,z — Layar)
+ (0, [p(ar), X2] — [p(az), X1])

=0.

In the last step we only used the equalities p(a)(d’, &) = ([a,d'], ) + (a/, Loar) and
X(Y,0) = ([X,Y],0) + (Y, Lx0) for any a,a’ € T'(A), a € T(A*), X, Y e T(TM)

and @ € I'(T*M) in order to cancel all the remaining terms.

Since k € I'(K+) was arbitrary this shows the desired equation. O

Now we can finally prove that both Courant algebroid structures are isomorphic.

Theorem 4.7.6. The Drinfeld double Courant algebroid on Uy © K+ is isomor-
phic as a complex Courant algebroid to C+ with the isomorphism given by the
isomorphism of vector bundles of Propositz’on sending a pair (u, k) to u® k.

Proof. For elements of the form u @ k the anchor in Cy is given by c(u @ k) =
pu. (u) + p(pr 4, k) which is the anchor of (u, k) in the Drinfeld double Courant
algebroid Uy @ K+.

The pairing in the corresponding Drinfeld doubles is given by

((u1, k1), (ug, k2)) = (u1, ko) + (u2, k1),

which is easy to be seen to coincide with the pairing in Cy since (p, p')c sends K+
to Uy = K3 according to Theorem {4.3.11

The bracket in the corresponding Drinfeld doubles is defined by the following
equation where uj,us € I'(Ux) and ky, ko € T'(K5)

[(u1, k1), (w2, k2)] = ([Ul,uﬂ + L up — gy dgus, (78)
4.78
[er, ko] + LY, o — tuydurkr )

Note that in [45] the bracket in the Drinfeld double is defined slightly differently,
as there the Courant bracket is skew-symmetric whereas we defined Courant

algebroids with a bracket satisfying the Jacobi identity.
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We make use of Lemma [£.7.5] to compute the following

[ur @® k1, u2 ® k2o, = ([Uh uglu, + stifklw - ngi’f@m)
® ([[kh kalac + AS ks — AT k1 + (0, dc(k17u2>))
bas,C bas,C
= ([Uh u2ue + Ve, 2 = Vi, Tt
+ (p: P (Aﬁkz — Ak + (0, de(ky, ug))
_ ,Culk‘g =+ Lququ))
® ([[kh kolac + L5 ks — LugdU/ﬁ)
= ([u1;u2]Ui + /JkKluz - LdeKUI)

& ([kn kel iy + L5 ks = tpduk )

This is exactly the bracket in the Drinfeld double. Thus the isomorphism of
Proposition [£.7.3] is indeed an isomorphism of Courant algebroids. O

4.8 Special cases

In this section we focus on some special cases and examples of generalised complex

structures.

4.8.1 The complex case

In this section we consider the case of a holomorphic Lie algebroid. This corresponds

to a linear complex structure J on A

A id A
/ qa /
TA J TA qa
l s , (4.79)
Tqa M —1d J M
TM : TM

IMm

with core morphism ja: A — A.

The complex structure J makes the total space A into a complex manifold,

whereas jps is an almost complex structure on M. That the integrability condition
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of the almost complex structure on M is already implied by the integrability
condition of the almost complex structure on A follows — after choice of an
adapted splitting (see Corollary 4.8.6) — immediately by computations completely
analogously to the computations in Section

The linearity condition now guarantees that the projection g4: A — M is
compatible with the two complex structures, that is T'q4 o J = jpr 0 T'ga and thus
is a holomorphic map. The core morphism j4 defines a complex structure on the
fibres of A, making A into a complex vector bundle. Hence this description in
terms of linear complex structures is equivalent to the usual definition of complex

vector bundles.

Note that in this section we will work with a real Lie algebroid which is
additionally a holomorphic vector bundle as described above. We thus have a Lie
bracket which is defined on all sections and not only on the holomorphic sections as
in the definition of holomorphic Lie algebroid given by Camille Laurent-Gengoux,
Mathieu Stiénon and Ping Xu in [42]. Therefore we can apply the results of the
previous sections about generalised complex structures on real Lie algebroids to

this special case.

The corresponding generalised complex structure J is now given by
J = , (4.80)
0 —Jt

and the morphism j: TM & A* — TM $ A* is given by

v 0
=1 . (4.81)
0 —jh4

The core morphism of the generalised complex structure jo: A®T*M — A@T*M

is given by
. Jja 0
jo = . (4.82)
0 iy
Note that in this case we immediately observe that j = —j.

The eigenbundles of the complexified morphisms are now given by

Uy =TYM @ (AM)*,
U = TO,IM D (AI’O)* ,
K+ — Al,O D (To’lM * ’

| (4.83)
K_ = AO,l fan (Tl’OM)* ,
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where we wrote THOM, T M, A0 and A% for the +i-eigenbundles of jj; and

jA, respectively.
These eigenbundles are Lie algebroids and thus also define Drinfeld double
Courant algebroids
Cr’ =1""M & (T"°M)*,
Oyl =T M @ (T M)*
Ci‘,o — A0 g (ALO)*
Cg,l — A0 g (A01)*

(4.84)

induced by the Lie bialgebroid structure where T*M and Af are endowed with
the trivial Lie algebroid structure with vanishing bracket and anchor. That is on

C’%’O and C%l the brackets are given by

[(X,0), (Y, )] = ([X, Y], Lxn — wydf), (4.85)
and on C}l’o and Cg’l by

[(a, @), (b, B)] = ([a,b], LB — d?a). (4.86)

We observe that as vector bundles C; = C’%’O ® Cg’l and C_ = C%l @ C’i{o.

In the following we will show that they in fact form matched pairs of Courant
algebroids, a notion introduced by Melchior Gritzmann and Mathieu Stiénon in
[29]. There the authors describe all the conditions to obtain a Courant algebroid
structure on the direct sum of two Courant algebroids acting on each other by
connections. In the case of two Courant algebroids given as subbundles of a

Courant algebroid an equivalent definition is the following.

Definition 4.8.1. Let E be a Courant algebroid over M and E1 and Es be two
subbundles of E such that E = FE1 & E5. Assume, that E1 = E2L with respect to
the pairing in E and that furthermore both E1 and Es with the restriction of the
anchor and the pairing and a bracket defined by the projection of the restriction of
the bracket of E are Courant algebroids. Then E1 and Fy are a matched pair
of Courant algebroids. Note that the bracket in E is not required to restrict to
the brackets in Eq or Es.

Naturally this definition defies the purpose of giving intrinsic conditions on
Fq and Es and their actions in order to retain the Courant algebroid structure
in E. However, Griitzmann and Stiénon proved in [29] that their conditions are
equivalent to the situation described above in the case of an already given Courant
algebroid structure in F; & Ey which is the case we consider here. For more details

on the general case we refer to [29].
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Standard Dorfman connections

In order to show that the Courant algebroid structures restrict in the way described
in Definition we want to give a particular description of the bracket in Cx.
To do so we make use of standard Dorfman connections, defined by Jotz Lean in

[36, Example 4.2] in the following way.

Definition 4.8.2. A (TM @& A*)-Dorfman connection A on A @ T*M is called
standard Dorfman connection if it is induced by an ordinary connection
V:T(TM) x T'(A) = T'(A) in the following way:

Axa(a,0) = (Vxa, Lx0+ (Via,a)). (4.87)

The dull bracket on TM & A* corresponding to such a standard Dorfman

connection is then given by
[(X,a),(Y,B)]a = ([X, Y], VXB —~ V*ya) : (4.88)

In exactly the same way we define a complex standard Dorfman connection

induced by an ordinary complex linear connection V.

Definition 4.8.3. A complex (TcM & At)-Dorfman connection A on Ac®TEM is
called complex standard Dorfman connection if it is induced by an ordinary
complex connection V: T'(TcM) x T'(Ac) — T'(Ac) in the following way:

Axa(a,0) = (Vxa, Lx0+ (Via,a)). (4.89)

Now we describe standard Dorfman connections in terms of the corresponding
dull bracket.

Lemma 4.8.4. A skew-symmetric (T M & A*)-Dorfman connection A on A®T*M
is a standard Dorfman connection if and only if [(X,0),(Y,0)] = ([X,Y],0) for
all sections X, Y € T(TM) and [(0,«), (0,5)]a = 0 for all sections «, 5 € T'(A*).

The analogous result holds for a complex standard Dorfman connection.

Proof. Given a standard Dorfman connection A, then the corresponding bracket
is given by (4.88) which clearly satisfies these properties.

Conversely, let A be a skew-symmetric Dorfman connection such that we have
[(X,0),(Y,0)]a = ([X,Y],0) for all sections X,Y € I'(T'M) and [(0, a), (0, 5)]a =
0 for all sections «, 5 € I'(A*). Define then for any X € I'(T'M) and o € I'(A*)

Via :=prg[(X,0),(0,a)]a -
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Since the bracket [-,-]a is anchored by pryj, we immediately obtain that for any
fel>®(M), X e '(TM) and « € T'(A*) we have Viya = fVia and Vi fa =
fV5ia+X(f)a. Thus V* defines an ordinary T'M-connection on A*. Furthermore,
since the bracket is anchored by prpas, prras[(X,0), (0, a)]a = [X,0] = 0. Now A

is induced by the T'M-connection V on A dual to V*, since we have

[(X, ), (Y, 8)]a = [(X,0), (Y, 0)]a + [(0, @), (0, 5)]a
+ [(X,0), (0, 8)]a + [(0,0), (Y,0)]a
= ([X,Y],VxB - Via),
The same argument with C-linear connections and brackets shows the analogous

statement in the complex case. ]

Let us from now on consider a linear generalised complex structure 7 induced
by a complex structure as in (4.80)).

We want to show that we can choose the adapted Dorfman connection to be a
standard Dorfman connection. This allows us to write the brackets in the simpler

form. We show the following statement.

Lemma 4.8.5. Let J be a linear generalised complex structure on a vector bundle
A, induced by a complex structure as in . Let A be any standard Dorfman
connection induced by an ordinary connection V: T'(TM) x T'(A) — T'(A). Then
the induced Dorfman connection A’ given by Pmposition which is adapted

to J is also a standard Dorfman connection.

Proof. Given such a standard Dorfman connection A and a generalised complex

structure J induced by a complex structure, we defined ® by the equation
T(a®(v)) = o2 (jv) = @(v),

and set \I/(lll, Vg) = (I)(Vl)t(yg>.

Because the connection A is induced by a connection V, the corresponding lift
takes for X € I'(TM), a € I'(A*) and a € T'(A) such that a(m) = a,, the following

form

() am) = (FaX (), o te)~( G

(am~+tVxa), (Taqu)t (Vea, a)) )
t=0

Thus
(X, a))(an) = (J(TnaX (m)) = Tnajn X (m), da,, Lt o — T (da,,la))

aAm™ )

d
(am +tVxa)) + —

d
+(=7(5 . -

7 (am +tVj,, xa),

t=0

< ;MTamlIA(.)a - v;aqu(o)j2a7a>) .



4.8. SPECIAL CASES 145

Now for any «, 5 € I'(A*) and a € I'(A)

(W((0,0),(0,8)),a) = (2((0,@))(a), (0, 5)) -

But since the T'A-part of m(am) vanishes, the A-part of ®((0,«))(a) has
to vanish as well, since A is the core of T'A. Therefore ¥((0, «), (0,3)) = 0 for all
a, B € I'(A*). Additionally we have for any X, Y € I'(TM) and a € I'(A)

<\II((X7 0)7 (Y70))7 a) = <(I)(<X7 O))(a)7 (1/7 0)) :

Since the T*A-part of m vanishes, the 7™ M-part of ®((X,0))(a) has to
vanish, as T*M is the core of T*A. Thus we also have ¥((X,0),(Y,0)) = 0 for any
X,Y € T(TM).

The bracket corresponding to the adapted Dorfman connection A’ of Proposition
4.1.15| was now given for any v,y € I'(T'M & A*) by

1 )
1, va]ar = 1, v2lla — 5‘1’(1/1,]@)-

Now A is a standard Dorfman connection and j is given by equation .
Thus also ¥((0,«),5(0,5)) =0 and ¥((X,0),,(Y,0)) = 0. With this we observe
immediately that the bracket corresponding to the adapted Dorfman connection also
satisfies the properties of Lemma and thus the adapted Dorfman connection

is also a standard Dorfman connection. O

Recall that linear T'M-connections V on E are in correspondence with lifts
oV:T(TM) — XY(E) as we recapitulated in Example [2.1.26 The adapted stan-
dard Dorfman connection in the previous lemma is therefore induced by a linear

connection that is adapted to the complex structure in the following sense.

Corollary 4.8.6. Given a complex structure J: TE — TE on a vector bundle
over a complex structure jar: TM — TM, there is always a linear T'M -connection
on E which is adapted to J in the sense that the lift oV : T(TM) — XY(E) induced
by V satisfies

J(oV(X)) =0V (juX), (4.90)

for any X e I'(TM).

Proof. According to Lemma there is a standard Dorfman connection adapted
to the induced generalised complex structure J as in . The T E-part of
the corresponding lift is given by the lift oV : T'(TM) — X*(E). Since A is now
adapted to J, the lift satisfies Jo2(X,¢) = 02 (j(X,¢)). It follows immediately
that the lift oV : T(TM) — X‘(E) satisfies (4.90). O
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Note that this result can also be obtained directly without the use of generalised
complex structures and Dorfman connections. We can apply the same techniques
as in the proof of Proposition to splittings of the tangent bundle TE. First
we choose any linear T'M-connection V on E, then consider the corresponding
horizontal lift oV : I'(TM) — X*(E). Similarly to the case of generalised complex
structures, for a complex structure J on E over jyr: TM — TM, the difference
J(0V(X)) —goV(jumX) then defines a core-linear section ®(X) of TE — E, where
O cT(T*"M ® E*® E). After showing the analogue to Lemma in the complex
case we can change the splitting with %jE o ®(X), where jp: E — FE is the core
morphism of J and obtain an adapted lift and therefore an adapted connection as
above. To our knowledge this is a new insight to almost complex structures on

vector bundles.

The previous Lemma allows us to choose the adapted Dorfman connection
to be a standard Dorfman connection. Let us from now on fix a standard Dorfman
connection A induced by an ordinary T'M-connection V on A which is adapted to
J . Furthermore, by abuse of notation we also write V: I'(Tc M) @ T'(Ac) — T'(Ac)
for the complexification of V in both arguments. This complexification satisfies

the following.
Proposition 4.8.7. In the setting above, we have

Vxa € T(AY0),  for all X e D(TYOM), a € T(AYY),

(4.91)
Vxa € T(AY),  for all X e (T M), a € T(A").

Proof. Since A is an adapted Dorfman connection we have by Corollary
that ATk € T'(K4) for any u € T'(Ux) and k € T'(K1). With the description
of Uy and K as in equation together with the definition of a standard
Dorfman connection as in Definition [£.8:2] we immediately obtain the two properties
(T.91). O

Now with the adapted standard Dorfman connection, we can describe the

brackets, Lie derivatives and Lie differentials on U4+ and on K4 as follows.

Lemma 4.8.8. In the setting above, the Lie derivatives LU%: T'(Uy) x T'(Kz) —
I'(K+) are given by the restriction of the complexification of A. The Lie derivatives
LB+ T(Ky) x T(Uz) — L'(Ug) are given by
K_ .
Lo (X,a) = (prTl,oM([p(a), X]), Lact — Prigo.1y- pthdH) , (4.92)

E(IZ}) (X,a) = (prTo,lM([p(a), X]), Lot — Pr( 41,0y« ptiXd9> . (4.93)
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The respective Lie algebroid differential in degree 1 are given by the formulas
A= (X, a)((a,8)(b,m) = d”a(a,b) + p(a)(X,n) — p(b)(X.6)
— (X, L@y — ipmydl)
d”* (a,0)((X, @), (Y, 8)) = d(X,Y) + X (a, B) — Y(a, )
—(a,Vxp —Vya).

(4.94)

(4.95)

Proof. In the setting above, we have

(X, @), (¥, B)lu, = ([X.Y), V&5 - Via),

where X and Y are sections of THOM or T9'M, respectively and o and 3 are
sections of (A%1)* or (A'0)*, respectively.

The bracket on K4+ was defined as

[((Z, 9)7 (b’ 77)} K_ — ([av b]’ ‘Cp(a)n - ip(b)d9> )

where a,b € T(A%!) or T'(AM0), respectively and 6,7 € T((THOM)*) or T((T%1M)*),

respectively.

We can now compute the corresponding Lie derivatives. Since the bracket of UL
is dual to the restriction of AC, the Lie derivative £U* : T(Uy) x T'(K+) — ['(K<)

is given by the adapted Dorfman connection, that is

E(UX,a)(aﬂ) = (an,ﬁXQ + <Vfa,a>) )

Secondly, £L5: T'(K1) x I'(Uz) — I'(Uz) can be computed as follows

(L5 0)(X ), (b)) = p(a) (X, @), (b)) = (X, @), ([0, B, Lp(ayn — t)d0))

p(a)(a, b) - <O‘a [av b]> + ,O(CL)<X, 77> - <Xa ‘cp(a)n - LP(b)d9>
<£aa> b> + <[p(a),X],17> + <Xa Lp(b)d9> :

Thus the Lie derivatives are given by
Ly (X.0) = (prruony([p(a), X)), Lo = preson). plixdo).
L0 (X,a) = (pryosy([p(a), X]), Laa = prianoy. plixdo) .
For the corresponding Lie algebroid differentials we obtain
d™* (X, a)((a,6), (b,m)) = p(a){(X, @), (b,m) = p(B)((X, @), (a.6))
— (X, @), [(a,0), (b, )] x)

= d"a(a,b) + p(a){X,n) — p(b)(X,6)
— (X, Lp(ayn — ippydf) -
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In the case where X = 0 this is the differential of A: d®(0,a) = (0,d*a). The
differential of U, is

d”*(a,0)((X, @), (Y, 8)) = X{(a,6), (Y. 8)) = Y{(a,6), (X, a))
- <( 9)7 [(X7 a)? (Y7 6)]Ui>

do(X,Y)+ X(a,B) —Y(a,a) — (a, Vx5 — Vya).
(

Q

)

In the case of a = 0 we get dV+(0,0) = (0,d6). O

Now we can prove the following theorem.

Theorem 4.8.9. Let A be a generalised complex Lie algebroid A with generalised
complez structure induced by a complex structure as in (4.80). Let Cy be the

. . 0,1 1,0 0,1
complex Courant algebroids defined by Pmposmon and let Cp~, C37, Cy
and Ci{o be the Courant algebroids defined by (4.84). Then

1. C%l and Cj{o form a matched pair of Courant algebroids and their matched

sum Courant algebroid is C .

2. C%’O and Cﬁ’l form a matched pair of Courant algebroids and their matched

sum Courant algebroid is C_.
Proof. By Theorem the bracket on C1 is for uj,ug € I'(Uyx) and ky, kg €
I'(K+) given by
[ur & ki, up @ kalow = [u, ualuy + Ly Fug — 1, d"Fuy
B [k, ko) ks + L kg — tupd" iy

With the formulas from Lemma it is now straightforward to see that for two
sections of the subbundle C’%’O C C4 we have

[(X,0) @ (0,6), (Y,0) @ (0,n)]e, = ([X, Y], p"(Lxn — ivdd))
D (0, £X77 — iyd9> .
Thus C;O is not a Courant subalgebroid, as the bracket does not restrict to C;O.
But the projection to Cilp’o of the bracket on C of two such sections is precisely
the bracket of these sections in C’%’O. Analogously, the projection to C%l of the

the bracket on C_ of two sections of C’%l equals the bracket of these sections in
the Courant algebroid C%l.

Similarly for two sections of the subbundle Cg"l C C4 we obtain
[(0,) & (a,0), (0, 8) & (b,0)]c, = (0, LaB — ipd”a)
& ([0,0), (Vio, b) + (Vea, B) )
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Again, Cg’l is not a Courant subalgebroid of C since the bracket does not
preserve Cg’l. However, the projection of this bracket to Cgl’l coincides again with
the bracket of the Courant algebroid Cg’l. The analogue result holds true for
cylcc.. O

Since in this case the Courant algebroid structure on the direct sum is already
given, we do not need to describe the two actions of the summands on each other
to obtain a matched pair. However, we still compute the two connections since by
the result of [29] the Courant algebroid structure on Cx can be recovered from the

structures on the summands and these connections.

Proposition 4.8.10. In the situation above, the action of Cr_lp’o on Cg"l and the
action of C’%l on Ci{o are given by

€(X79) (a,a) = (Vxa,Via). (4.96)
. 0,1 1,0 - .
The action of C'y~ on C3" is given by

¥ o) (X, 0) = (prprops ([p(a), X1), Loy8) (4.97)

and the action of Ci’o on C’%l by
¥ l0.0) (X, 0) = (prro131([(0), X)), £y6) (4.98)

Proof. To obtain the action of C}’O on Cg’l we compute the bracket for sections of

the two subbundles as follows
[(X,0) & (0,0),(0,0) & (a,0)]c, = ((0, Vi) — t(a0)d"~ (X, 0))
D ((VX(L, —Lp(a)de) — L(O’o[)deL (0, 9))
= (_ prTl’OM([p(a)a X])v v}a) ® (VXCL, _Lp(a)de) )

where we used that (,,0)d"F(X,0) = ([p(a), X],0) and 1(g)d"*(0,0) = 0. The

action is now given by the projection of the bracket above to C’E"l,
?(Xﬂ)(a?a) = (Vxa,Vka).

Since C%’O = (Cg’l)O the bracket of those sections is skew-symmetric and the action

of Cg’l on C}’O is therefore given by the negative of the projection to C’%’O.

¥ o) (X, 0) = (pry1ys ([p(a), X1), Lo)6)

Notice that ¢,,)df = L,q)0 since p(a) € D(T%*M) and thus (p(a),0) = 0. With
these actions the Courant algebroids C%’O and C’S{l form a matched pair and their

matched sum is C.
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Completely analogously we obtain for the Courant algebroid C_ = C’%l @ Cj{o
the action of C%l on Ci{o by the same equation as (4.96)) and the action of Cil’o
on C’%l by

%(a,a) (Xv 9) = (prTOle([p(a)7 X]), Ep(a)e) ’ (4'99)

where in this case X € TT® M, 0 € T ((T%*M)*), a € T(A?) and «a € T'((A10)*).

By Theorem [£.8.9] these actions satisfy all properties of a matched pair of
Courant algebroids as defined in [29] and the Courant algebroid structures on C

and C_ can be described as a matched sum. O

In [42] Camille Laurent-Gengoux, Mathieu Stiénon and Ping Xu studied holo-
morphic Lie algebroids in detail. They showed an equivalence between holomorphic
Lie algebroid structures on A — M and linear holomorphic Poisson structures on
the complex dual Homc (A, C). They also showed that for a complex manifold M
the Lie algebroids T*9M and T M form a matched pair of complex Lie algebroids
with matched sum T M and more generally for a holomorphic Lie algebroid A the
Lie algebroids A0 and A%! form a matched pair with matched sum Ac. Matched
pairs of Lie algebroids have been introduced by Tahar Mokri in [56] and further
studied by Kirill Mackenzie in [52]. See also here Definition and Theorem
2217

4.8.2 The symplectic case

In this section we consider the special case of a symplectic Lie algebroid, that is
when the generalised complex structure is induced by a linear symplectic structure
w: TA — T*A on A which is a Lie algebroid morphism over some vector bundle
morphism o: TM — A*, both of which have to be invertible since the symplectic

structure is an isomorphism of vector bundles over A.

A id A
/ " /
TA Y, T*A qa
J y , (4.100)
Tqa M —1d J M
TM A*

with core morphism 7: A — T*M.
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The generalised complex structure J is then given by

J = , (4.101)
w 0

and the side morphism j: TM & A* — TM & A* is given by

j= . (4.102)

jo = . (4.103)
T 0

The property j = —jk is thus equivalent to 7 = —o".

The symplectic structure on A induces a Poisson structure on M, given by
7y = po(—ot)~L. This Poisson structure induces a Lie algebroid structure on T* M
and —o! is an isomorphism of Lie algebroids between A and T*M with respect to
this structure ([51]). Furthermore, A* carries a Lie algebroid structure induced by
the linear Poisson structure on A or equivalently by the isomorphism o: TM — A*.
Now (A, A*) and (T*M,TM) are Lie bialgebroids and they are isomorphic as such.
All these properties of symplectic Lie algebroids have been studied for example by
Mackenzie and Xu in [53], see also [51]. These Lie bialgebroids then give rise to two

isomorphic Drinfeld double Courant algebroids as defined in [45] and recapitulated

in Example [2.3:4]
Cpi= A A,
Cr=TM&T*M.

Let us now consider the two eigenbundles of the complexification jc. They are

given by

Ur ={(X,a) Fij(X,a) | (X,a) € TM & A*}
= {(X+ioc 'a,aFioX) | (X,a) € TM @ A*}
={(
{(

X +4Y,£(cY —ioX) | (X,Y) € TM & TM}
Z$i(0cZ) | Z € T(cM}.

Since the anchor of the Lie algebroid Uy is given by the projection prp.,; we
immediately get from this description that U is isomorphic to TcM and thus also
to A¢ by the isomorphism oc o pry.: Ux — Ag.
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Similarly the two eigenbundles of jo ¢ are given by

0) Fijc(a,0) | (a,0) € AT M}
aFi(o ) 1o H:I:iata)|(a 0)e AoT*M}
a+ib, F(o tb—ma)|(a byc Ad A}
c+i(ohe) | c € Ac}.

{(a,
{(
{(
{(

Here the projection to Ac is a Lie algebroid morphism and by this description an
isomorphism. Thus K is isomorphic to Ac and therefore to T3 M.

Summarising, we have the following isomorphisms of Lie algebroids

A=T*M
TM = A*,
Us = TeM =2 Af,
Ki=Ac=TEM .

Since Cy is the Drinfeld double Courant algebroid of the Lie bialgebroid
(U, K<) it is isomorphic to the complexification of the Courant algebroid C4 and
hence also to the complexification of the Courant algebroid Cp. In this case C+ can
not be viewed as a matched sum Courant algebroid of these but as complexification

instead.

4.9 Generalised complex structures in VB-Courant al-

gebroids

Instead of considering the standard Courant algebroid over the total space of a

vector bundle as in Section 4.1| we can consider a general VB-Courant algebroid as
in Definition 2310

E B

o . (4.104)

~N

o) M

Since the anchor p: E — T'B is a double vector bundle morphism, it induces a

morphisms of the cores dp: Q* — B, called the core anchor of E.

A linear splitting > of the double vector bundle E is called Lagrangian if

the image of ¥ is isotropic in E. Madeleine Jotz Lean shows in [39] that a
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change of Lagrangian splittings corresponds to a skew-symmetric element &1 €
NQ*® B*®Q").

None of the results in Section does rely on the Courant-Dorfman bracket
on TE @& T*FE, but only on the structure of a metric double vector bundle and
the corresponding Lagrangian lifts. Thus all the results immediately translate to
corresponding results for the more general case of a VB-Courant algebroid in the

following way.

Let us now fix a Lagrangian splitting ¥ of E and denote the corresponding lift
by o: T(Q) — I'5(E). Let us consider a double vector bundle morphism 7: E — E
over idg and j: Q — @ with core morphism jo: Q* — Q*. Then we obtain
analogously to Lemma the following definition of ® depending on the choice
of the splitting.

Lemma 4.9.1. Given a double vector bundle morphism J: E — E over j and
idp there is ® € T'(Q* ® B* ® Q*) defined by setting for any q € T'(Q)

JI(o(q)) = o(jq) + (q)- (4.105)

Furthermore, completely analogously to the description of generalised almost
complex structures on a vector bundle in Section we obtain in the case of a

general VB-Courant algebroid the following two lemmas.

Lemma 4.9.2. A double vector bundle morphism J:E — E satisfies J? =
—idrEger+E if and only if for any Lagrangian splitting and corresponding ® we get
for any ¢ € T(Q)

1. 2 = —idg),
2. j& = —idg-,
3. @(j(q)) = —jc o (P(q)) -

Lemma 4.9.3. A double vector bundle morphism J : E — E such that additionally
J? = —1, is orthogonal if and only if for any Lagrangian splitting we have for all
beT(B) and q1,q2 € T(Q)

1. j=—(jo),
2. (j(q1), ®(g2)(0)) = —(j(q2), ®(q1)(D)) -

Now we can again define a 2-form ¥ € Q2(Q, B*) by setting

U(q1,q2) == ®(q1)"(q2) - (4.106)
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With this definition we obtain completely equivalent to Proposition [£.1.10] the

following proposition.

Proposition 4.9.4. A morphism J: E — E is a generalised almost complex

structure in E, if and only if for any Lagrangian splitting we have

2. j = _(jC)t7
3. U is skew-symmetric, that is ¥ € Q*(Q, B*),

4. \IJ(I/l,I/Q) = —j*\I/<V1, 1/2) .

Also in this case we can adapt our Lagrangian splitting to the generalised almost
complex structure. As mentioned before it was shown in [39] that such a change of
splittings corresponds to a skew-symmetric element @15 € I'(Q* ® B* ® Q*). We

obtain the following

Proposition 4.9.5. Given a generalised almost complex structure J in a VB-
Courant algebroid (E;Q, B; M) with side morphism j: Q — Q, there is a La-
grangian lift o: T'(Q) — T'5(E), such that for any q € T(Q) we have

J(o(q)) =0o(jq)- (4.107)

Proof. Let us fix any Lagrangian lift o;. This defines then by Lemma a
tensor 1 € I'(Q* ® B* ® Q). Define another tensor ®19 € I'(Q* ® B* ® Q*) by
setting for any ¢ € I'(Q)) and b € I'(B)

D12(0)(8) 1= 3 jc(®1(a)(8).

By Lemma [£.9.2] and Lemma [4.9.3] this ®;2 is skew-symmetric. We define a new

—_

Lagrangian lift by letting 02(q) := 01(q) — ®12(¢q). Now we simply compute making
use of Lemma [£.9.2] and Lemma [£.9.3t

I (02(0)) = T (1) — P12(a))

Setting o := g9 completes the proof. O
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Using this existence of an adapted Lagrangian splitting, we can use the cor-
respondence of VB-Courant algebroid structures to split Lie 2-algebroids proved
n [39]. Let us fix such an adapted Lagrangian splitting as in Proposition m
Then the VB-Courant algebroid structure is equivalent to a split Lie 2-algebroid
structure (pg, 0%, [, Ja, V,w) on Q & B*, where the bracket in E is described by

the dull bracket on ) and the dual Dorfman connection as follows.

[o(a1), o(g2)] = o([q1, 92]a) — Resla1, q2)
[o(q), 7] = (Ag)T
[[TI,T;]] =0.

Here R, (q1,q2) = w(q1,q2,-)" € T'(Hom(B, Q%))

With this description of the Courant algebroid bracket we obtain similar
computations and results for the Nijenhuis tensor of core sections and lifts for a
linear generalised almost complex structure in the VB-Courant algebroid E as in
Section in the special case of TE @ T*E.

First, we get analogously to the computations in Section m that N7 (o(q),7")
of a generalised almost complex structure J in E vanishes for any ¢ € T'(Q) and
7€ I'(Q*) if and only if N; . g,

the Nijenhuis tensor of two lifts gives

vanishes. Second, the analogous computation for

Nz(o(@r),0(a2)) = 0® (N 110 (@1,42)) + Ruo(G(ar)s i(a2)) — Rular, a2)

- (4.108)
= jo o Ru(j(a1), ¢2) — jo o Ru(q1, j(g2))
Dualising the property

Ru(j(q1),5(q2)) — Ru(q1,q2) — jo o Ruw(j(q1), g2) — jo o Ruw(qr, i(q2)) = 0, (4.109)

by evaluating at any b € I'(B) and then pairing with g3 gives as an equivalent
condition on w € Q3(Q, B*) the following:

w(q1,92,93) —w(iqr,jq2, q3) — w(iaqr, a2, 793) — w(qr,jq2, jgz) =0.  (4.110)
Thus we obtain the following proposition.

Proposition 4.9.6. A linear generalised almost complex structure J in E over
7: Q — Q is integrable if and only if for any adapted Lagrangian splitting we have
in the corresponding split Lie 2-algebroid for any q1,q2 € T'(Q)

L Njpga(a1,22) =0,

2. w(q1,q2,q3) —w(iq1,792,q3) — w(iq1,q2,793) — w(q1,7q2,7q3) = 0.
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We can also define as before an equivalence relation on the Lagrangian splittings

depending on the vector bundle morphism j: Q — Q.

Definition 4.9.7. Given a VB-Courant algebroid (E; Q, B; M) and a vector bundle
morphism j: Q — @Q, two Lagrangian splittings %1 and o are j-equivalent if the
corresponding change of splittings U € Q2(Q, B*) satisfies for any q1,q2 € I'(Q):

V(g1,42) = ¥(5q1,3a2) - (4.111)

Analogously to Lemma [£.1.17] we obtain again that given a splitting ¥; which
is adapted to a linear generalised almost complex structure (7, j), then a second
splitting 3o is also adapted to (7, j) if and only if ¥; and ¥ are j-equivalent.
This then allows to formulate the analogue of Theorem [£.1.19] in the general case

as follows.

Theorem 4.9.8. A linear generalised complex structure J in a VB-Courant alge-
broid E is equivalent to a vector bundle morphism j: Q — @ and a j-equivalence

class of linear splittings such that in the corresponding split Lie 2-algebroid

(,0@833, [, -]a, V,w) over Q @& B* we have for any q1,q2,q3 € T'(Q)
1. 2= —idg),
2' N])[[’]]A = O’
3. W(QLQQ’%) - w(quvaQ)Q?)) - WUQL%J%) - W(Ql,jQQaj%) =0.

Note that we could define a bracket A as in the special case but we can not
express the condition on the curvature terms as a Jacobi identity of this bracket. In
the case of TE @ T*E the vanishing of the terms in R, on all of I'( E') is equivalent
to the extension to Ra vanishing on all of I'(E @ T*M). In the general case we do

not have an analogous property.

Theorem [£.9.8 now allows us to define a generalised complex structure in a

split Lie 2-algebroid as follows.

Definition 4.9.9. A generalised complex structure in a split Lie 2-algebroid
(pg, 0%, [, -1, V,w) over Q & B* is a vector bundle morphism j: Q — Q, such
that for any q1,q2,q3 € I'(Q) we have

1. 2= —idg),
2. N]’[[v]] = 0’

3. wl(qr,q2,q3) —w(iq1,792,q3) — w(iq1,q2,793) — w(q1,5q2,793) = 0.
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The translation of generalised complex structures to Lie 2-algebroids without
a splitting is future work. This will make use of the one-to-one correspondence
between VB-Courant algebroids and Lie 2-algebroids first described by David
Li-Bland in [44], building up on Dimitry Roytenberg’s correspondence between
Courant algebroids and symplectic Lie 2-algebroids in [66]. Madeleine Jotz Lean
described in [37] and [39] how this correspondence can be deduced from her
geometrisation of graded manifolds of degree 2. Whereas such [2]-manifolds
correspond to metric double vector bundles, it is shown that Lie 2-algebroids
correspond to VB-Courant algebroids, Poisson Lie 2-algebroids correspond to
LA-Courant algebroids and finally symplectic Lie 2-algebroid corresponding to the
tangent prolongations TE of Courant algebroids F. In this light, a generalised
complex structure J in a Courant algebroid gives rise to a map corresponding to
TJ between two symplectic Lie 2-algebroids, which is a morphism of the underlying
symplectic [2]-manifolds and additionally compatible with the cohomological vector
field. Describing this compatibility in the non-split case and then extending

generalised complex structures to Lie n-algebroids for arbitrary n is future work.
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Appendix A

More general Dorfman

connections

In this chapter of the appendix we will give computations for linear generalised
complex structures J on a vector bundle E or a Lie algebroid A where we do not
choose the Dorfman connection to be adapted to 7. This can be useful in the
case where we already chose a specific Dorfman connection. For example we might
want to choose such a Dorfman connection adapted to a different present geometric
structure and cannot find a connection adapted to both simultaneously. Note that
in the case of generalised Kéhler structures we can always find a suitable connection
adapted to both generalised complex structures as showed in Proposition

We will also give a description of the Dorfman bracket involving core-linear

sections, which might also be useful for other problems.

Since a lot of the computations in this chapter are fairly lengthy and it therefore
seems a lot more reasonable to work with adapted connections, we decided to move

them into the appendix.

A.1 Nijenhuis tensors

If we use any skew-symmetric Dorfman connection, which is not adapted to the
generalised almost complex structure, then we will need Dorfman brackets involving
core-linear sections in order to compute the Nijenhuis tensor involving lifts of
sections of TM & E* .

In [36] the T'M & E*-connection V on E corresponding to a Dorfman connection
A as in (4.8)) was defined by V,(e) := pry A,(e,0). The following description of
the anchor in the Courant algebroid TE & T*E — E, that is p = pryg is also
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proved in [36].

Proposition A.1.1. Given a Dorfman connection A as in (4.8), v € I'(T'M & E*)
and T € T(E @® T*M), we have

—~

1. prop(a®(v)) =V,
2. prop(t!) = (pr(m)T.

Definition A.1.2. Given a Dorfman connection A as in (4.8), we define for
vel(TM & E*) a derivation ¢, of T (Hom(E, E & T*M)) over prpy v by

Ovpi=Ay,0p—poV,.
Note that this does not define a connection on Hom(E, E @& T*M) as it is not
C*(M)-linear in v.
Using this definition we can now state prove the following corollary to Theorem

about the Dorfman brackets involving core-linear sections:
Corollary A.1.3. For any skew-symmetric Dorfman connection A as in ,
¢, € T'(Hom(E,E®T*M)), v € I(TM ® E*) and 7 € T(E @ T™) we have

L [ %) = (plprp(m) = (.71

2. [p 4l =doprgop—poprgov,

3. [o2 (), 3] = Oup,

4. [7.0% )] = 0w + 02 (0, 0" () + Do,p10) (- ).

Proof. Again we write in local coordinates ¢ = 3,  fir€i ® 7 and ¢ = 3, grser ®

7s. This allows us to write the core-linear section  as
P=>_ difuler].
ik
Using Theorem Proposition and the action of vertical vector fields on

pullbacks and linear functions as described in Example 2.1.14] we compute now

17> dinfinteri] = - (@i fute) 77l + () (e finte) 7))

=Y prog (T @k firle,) )
ik

=" g fadp (e prp(T)))
ik
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Hence
[+, %] = (e(pra(m)’,

and since (71, ) = 0 we obtain additionally
~ ~ T
[, 7] = —I7". %] = —(p(prp(r)" -
For the bracket of two core-linear sections  and ;; as above we compute

[, 4] = HZ quzkEank,Zqurs e T, s]]

— Z (quZkggqugrsfar[[Tka s]]

i,k,r,s

+quzk£€@(prE( %)) (QEgrsger)TsT

— Ggrale, (005 (7)) (g Firl)) 7))

= Z (q*Efikgsiq*Egrs(ﬁ?<prE Tk 57">7_J - qz'gTSZEqu'fik‘<prE(TS)7 5i>7_;z)

i,k,r,s

=1 oprgop —@oprgoy.

Now we will compute the bracket of a lift o (v) with the core-linear section 3.
We write 6\,, for the linear vector field on E corresponding to the derivation V,
of I'(F) as in Example 2.1.14] We also write X := pry,, v and use the properties

from Proposition
AW), Y aifute il = Y prrp(o® ) (@ finle) 7]+ difunle[o™ (v), 7]

=" Vulap finle)Th + i firele,(Dyri)t
ik

= ZCIE (fir) ﬁsﬁk + quzkfv*a,Tk + g finle, (A,73)T

Using the definition of the dual derivation and the properties of a Dorfman
connection (see Definition [2.3.15]) we compute for e € T'(E) on the other hand:

(Ovp)(e) = Au(p(e)) — ©(Vue)
=Y Ay firlei )i — falei, Voe) i

ik

=Y finlei e)Avti + X (firleir €))7 — fin (X(<€z', e)) — (Vi €>)Tkz
ik

= Z fir(eis ) Ayt + X (fir) (€ ) + fin(Vyei, €)Th -
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Hence we have

Vv = D ap finle (D) + ai (X (fir)) b7} + dp firlwsei Ty
ik

Comparing the terms we conclude that
[o% (), 3] = Oup .
The definition of the lift as in
o2 (X, e)(e(m)) = (TneX (m), dle(e(m))) — (Ax (e, 0)
for X =0 leads to
(0. dte(e(m))) = *((0.€)) + (A (e,0)
Thus we obtain

[, 02 W)] = 0 + (0,d(F, 0% (1))
= —0,® + (0,dl,,)
= 008 +2((0,0')) + D) (5 0).

Now we can finally compute the relevant Nijenhuis tensors. Let us now consider
a linear generalised almost complex structure J on E as in and fix again a
Dorfman connection A as in . In particular j, jo and ¥ satisfy the conditions
of Proposition

For two core sections the Nijenhuis tensor vanishes trivially, as the Dorfman
bracket of two core sections vanishes and the double vector bundle morphism J

sends core sections to core sections.

For the Nijenhuis tensor of J evaluated at a horizontal lift o2 (v) for v €
['(TM @ E*) and a core section 7' for 7 € ['(E®T*M) we compute using Theorem
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413 and Corollary [A.T.3] the following

[o2(w), 711 - [T (e (), T ()]

+ T[T ), 7]+ [0 0), T (D)

(A7) = [ () + @), je(7)']

+7 (I G0) + 2671+ [040).do ()]

= (A7) = Qi)' + (‘I>(V)(IJI‘E(J'O(T))))T
+ 7 (@07 = (20)Ere(r) + (Auic()')
= (A" = (Aj050(m) + (‘I>(V)(PI‘E(J'O(T))))T

+ (je(d0)m)" = (je (@) (prE(T))))T + (je(Avje(r)

Ng(o®(v), ")

Thus the Nijenhuis tensor of J vanishes for a lift and a core section if and only
if forall v e I'(TM & E*) and 7 € I'(E @& T*M) we have

Ayt = g ic(r) + () (prelic(r)) +jo (B0 7)

(A.1)
— je (@) (pru(r))) + jo(Avje(r)) =0

As the pairing is non-degenerate, we can dualise this condition by pairing with
a second section vy € T'(T'M @ E*). We now write 11 = (X1, ¢£1) instead of v and
use Proposition and the duality of the Dorfman connection with the dull
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bracket on TM & E* as described in [36] and in (4.5)) to compute:

<Am = Ajunio(r) + 0w (prp(io(r)) + e (Aj0,)7)

~ o (B (prp(r)) + o(Buic(r)), )

— (Bmm) — (Bnie(r)vm) + (@0) (prslic(r). )
— (DT (v2)) + (1) (pri(1)), (1)) — (Avjo(7), j(1v2))
= Xi(7,v2) — (7, [v1,2]A)

— prra (5 (1)) e (), v2) + (o), [5(v1), v2]a)
— prya (5 (v1))(7, 5 (v2)) + < [[J(Vl) ( v2)]a)
_X1<.70 )7]( >

J(v
o)) + (Jo(T), [v1, (v2)]a
+(®(01) (prg(ic(r)), v > <<1><u1><prE<r>>,;;<vz>>

= (1, [, v2la = § ([H01), valla) = 3 (71, 5@2)]a) + L), 3 (2)]a )

+ (7, (0, 2(1)! (i (1)) = 5(0, @(1)" (1)) )

= (7, =Ny p1a (71, 02) + (0,0()"( ())) — (0, ®(11)' (2))) )

- <T, N1 (1, 0) + W (1, 1m) — U (0, y2)> :
where we have extended the forms ¥, U/ by abuse of notation to forms ¥, ¥/ €
QX(TM @ E*,TM & E*):

U (v, 1) i= (0, ¥(v1,00)) = prig ¥(v1, 1)
W (v1,v9) := (0, W (11, 1)) = prg W' (v1, ).

Since v1, v9 and 7 were arbitrary and the pairing is non-degenerate, the

Nijenhuis tensor of J of a lift and a linear section vanishes if and only if

Nif]a+ ¥ —jU=0. (A.2)

Let us from now on assume that J satisfies this equation. We will now compute
conditions when additionally the Nijenhuis tensor of J for two horizontal lifts
vanishes. Again we make use of Lemma Theorem and of Corollary
and compute for vy, v € I'(T'M & E*) the following:

Nz (0%(n),0%(m)) = [02(n), 0% ()] = [T (02 (1)), T (a2 (v2))]
I ([ (@)™ w2)] + [ (1), T (o™ (v2))])
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= 0™ ([v1, v2]a) — Ra(v1,12)(-,0)
— o2 ([i(), i (w2)]a) + Ra(i(n1), j(»2))(,0)
= [ ()), @w2)] = [@(1), 2 ((2))] — [2(11), @ (12)]
+ 7 (oA ([0),121s) + 0 1,501
+ [0 00). 8001 + [30n).0*wa)] )
= o2 ([v, v2]a) — Ra(v1,12)(,0)
— (L), J(2)]a) + Rali(1), 1(2))(-.0)
— 051y @(2) + (o) @(v1) — (0, (1) (1))

— D 0,0(1)tj(v2)) (5 0))

— ®(vy) 0 pryo®(v1) — B(11) 0 pry; 0B (1)
+ 02 (L), v2]a)) + o2 (G (w1, 5(v2)]a))
+([j(11), vala) + ([, (v2)]a)
—jc o Ra(j(v1),v2)(+,0) — jo o Ra(v1, j(v2))(:, 0)
+Jc © Ouy (®(12)) — i © Oy (®(11))
+08(5(0, 2(1)'v)) + (0, (1) 'vs)
+ 30 (B 0.6(yz) (- 0))
= 05 (Nj [ 1a (1, 12))
+ m’) = Qi) 2(12)
+ Jc 0 Qv (2(12)) — Jic © Ouy (P(v1))
+ Ra(j (1), (#2))(,0) = Ra(v1,1)(-,0)
— je o Ra(j(n1),12)(-,0) = jo o Ra(v1,j(v2))(-,0)
— ®(v3) 0 pryo® (1) — ®(v1) © pry; 0B (1)
+ ([ (1), valla) + ®([v1, 5 (2)]a)
— 020, 2(11)" (j(v2))) + 02 (5 (0, B (1) (12)))
+ (0, ®(11)!(2))
+ (Je(A0,0w)t) (5 0))) = (A,aw1)tjws)) (5 0)) -

The three terms involving horizontal lifts combine to the term
oA (Nj7|['7']]A(l/17 v) — W (v, 19) + ¥ (v, VQ)) .

This is precisely the horizontal lift of the left hand side of Equation (A.2)). Since
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we assumed that J satisfies (A.2)) this therefore already vanishes.

Thus the Nijenhuis tensor of J vanishes for all sections if and only if
holds and additionally for all vy, vy € T(TM @ E*) and 7 € T(E @ T*M)
0= Qo) P(W1)(T) = Oj(u,)@(2)(T)

+ 50 (00 (@@2))(7)) = je (0w (@(11)(7) )
+ R (j(1),(v2)) (1) = Ra (1, 12)(7)
— je(Ra(i(),m)(r) = jo (Ra (v, 5 (2))(r)) (A.3)
— ®(v2)(@(11) (7)) + B(11) (@(v2)(7)) + B ((0,D(w1)! (1) ) (7)
+ @([i(), vo]a) () + @([r1, 5 (12)]a) (1)
+Je (D)) ™) = Do) i)

(
2)

As we did for (A.1]), we want to dualise this equation in order to get a condition
purely depending on sections of TM @ E* and not also on a section of £ & T*M.

For this we will use again the non-degeneracy of the pairing and pair the left hand
side of (|A.3) with a third section v3 of TM @ E.

Firstly, we compute:

(0u ®(v2) (1), v3) = —(®(12)(Vi, prig(7)), V) + (Ao, B(02)(7), v3)
—(A, 7, (1) '3) + (A, @(v2)(T),13)
= —propr (1) ({1, @) v3)) + ([v1, @(v2)'vs]a,7)  (A4)
+ pryag (1) ((@(v2)(7), v3)) — ([v1, v3]a, @(12)(7))
= ([, 2(2)'vs]a — @) ([1, 3]a), )

Using this equality we can now pair the left hand side of (A.1)) with a section
v3 of TM @& E* and compute the following:

0= <<> () 2()(T) = Qo) B(12)(7)

+ 5 (O (2(12))(7)) — jo (Ouy (R(1))(T))

+ Ra(j(1),j(v2))(7) — Ra(vi,v2)(T)
—je(Ra(i(v),v2)(1)) — jo(Ra(v, j(v2))(7))

— (1) (®(11)(7)) + ®(11) (®(12) (7)) + @((0, D(v1)" (v2))) (7)
+ (1), ve]a) () + @([1, 5 (v2)]a) (7)

+ 30 (D 0,801) ) T) = D0,8(01)1(1r2)) T V3>
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_ <T, Ljva, ®(1)'vs] , — (1) (Liva, vs]a)

— [jv1, ®(v2) V3]]A + @ (o) ([jvr, v3]a)

= [ @(2)' (jv3)] o + @(v2)' ([v1, jvs]la)

+ [ve, @(1) (jvs)] o — @) ([, vs]la)

— B(1)'D(v2)" (v3) + D(v2) @ (1) (v3) + D(D(v1) )" (v5)
+ O([jv1, vola) vz + (11, jrola)vs

— [jvs, @(1)'1a] y — w3, ®(v1)" (Grv2)] o

+ Ra(j(11),§(12))"(13) = Ra(v1, 1) (v3)

- RAG (1), ) (js) + RA<ul,j<u2>>t<ju3>> .

Note that the properties of the dull bracket [-,-Ja imply that this equality is

independent of pry.,,(7) and only depends on prg(7).

Since 7, v1, v and v3 were arbitrary sections, the vanishing of the Nijenhuis
tensor is now equivalent to the term on the right hand side to vanish for all vy,
vo and v3. Using the notion of ¥/ we can rewrite this condition in the following

equation:

0= —[[1/3, \I/j(l/l,l/g)]]A — [[1/1, \I/j(l/g,l/g)]]A — [[1/2, ‘l’j(Vg,l/l)]]A
+ [[ng,\I/j(Vl,jljg)]]A + [[jVQ, \Ilj(ug,jul)]]A + [[le,\I’j(l/g,jyg)]]A
— W ([jva, vsa, jv1) — W ([v2, jusla, jvi)
— W ([jvs, i]a, jva) — W (s, jrilla, jva)
— W ([jvr, vola, jva) — W ([, jrallas jvs)
- ‘I’J(JVh W (vy, ju3)) — W7 (jiva, W (w3, j1n)) — W (jvs, W (v, jira))

wa (v, jra, v3) + wa(jrr, v, juz) + wa (v, jre, jv3)

(4
(

— WA V171/27U3)

using the notion wa € Q3(TM & E*, TM @& E*) as in (4.25).

Without writing all cyclic permutations of v1, vo and vg explicitly, (A.5)
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simplifies to the following:

0= —[v1, ¥ (va,v3)]a + [ive, U (va, ju3)]a
— W ([jva, vs)a, vr) — W ([, jusla, 1) — W9 (jun, W (v, ju3))
+ [v1, [ve, vslala — [ivis [ive, vs]ala
= Liv1, [ve, juslalla — v, [ve, jvslalla
+ cyclic permutations in 1,2,3
= [, [v2, vs]a — [jve, jvs]a — ¥ (v, v3)] A

+ [[le, —[[V2,jV3]]A - ij27 V3]]A - ‘I’(V2: V3)]]A
- w(ul, [V, jvsla + [jves vala + U (vs, u3>)

+ cyclic permutations in 1,2,3.
Let us now define a pseudo-bracket A on I'(T'M & E*) by

Ay, 1) ::% ([[V1, vala — [iva, jrala — W (11, V2>)

X (A.6)

=2<—j[[j1/1,l/2]]A — jlv1, jre]a — j‘I’(”hV?)) :

The equality of those two expressions is immediately seen to be equivalent to
the condition (A.2)) obtained before. Thus this condition can now be expressed

alternatively in terms of the pseudo-bracket A as
Av, jro) = jA(1,12) . (A7)

This property is stronger than the equality A(vq, jve) = A(jr, v2), which follows
already from the properties of a generalised almost complex structure, since then

j*U = —¥ according to Proposition [4.1.10

Note that the pseudo-bracket A does not admit an anchor on TM & E*, and
is thus not a Lie algebroid bracket on T'M & E*. However, A is skew-symmetric
and R-bilinear. Furthermore, it is independent of the chosen linear splitting or

equivalently the chosen Dorfman connection A as we prove now.

Lemma A.1.4. Let J be a linear generalised almost complex structure on E.
Then the pseudo-bracket A defined by (A.6)) does not depend on the choice of the

skew-symmetric Dorfman connection A.

Proof. Let us consider two skew-symmetric Dorfman connections A! and A? with
change of splittings W15, With (4.20)) we compute for the pseudo-brackets A; and
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Ay defined by ({A.6) with the respective Dorfman connections:

=289 (v1,v2) = jlive, vallaz + jlvr, jralaz + 5 ¥2(v1, v2)
= jlivi, velar + j¥12(jve, 12)
+ v, gvelar + W12 (v1, jre)
+ jWa(v1,v2)
= jljvi, o)1 + j¥12(jv1, v2)
+ jlve, jvelh + jWia (v, jro)
+ 31 (v1,v2) — jW12(jv1, v2) — JW12(11, jre)
= —2A1(v1,19)

Thus the pseudo-bracket A defined by (A.6) is indeed independent of the choice of
splitting. O

With this pseudo-bracket A we can write the condition (A.5)) now equivalently
in the following way

0 = [v1, [va, vs]la — [jve, jvsla — W (ve, v3)]A
+ i1, —[ve, jv3]a — [jve, v3]a — ¥(v2,13)]A
- ‘1’<V1, [v2, jva]a + Ljve, v3]a + ¥(vo, V3))
+ cyclic permutations

= [[v1,2A (v, v3)]A
— [jv1, 52A(v2, v3)] A
- \I’(VIJQA(V% V3))>
+ cyclic permutations
= 2A(11, 2A(ve, 13))
+ cyclic permutations
= Jacgy (v1,12,13)

Thus the Nijenhuis torsion for J vanishes, if and only if the pseudo-bracket A
satisfies the Jacobi identity and is compatible with j in the sense of (A.7)), that is

Av, jrva) = jA(r1, 1) .
We have proved the following proposition.

Proposition A.1.5. Let J be a generalised almost complex structure on a vector
bundle E. Then the Nijenhuis tensor of J wvanishes if and only if for A defined by
(A.6) we have for all vy, v in T(TM @ E*)
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1. A(V1>j’/2) = jA(Vl)V2)7

2. A satisfies the Jacobi identity.

The following theorem is an immediate consequence of Proposition 4.1.10| and
Proposition

Theorem A.1.6. Let E — M be a vector bundle. Fizx a skew-symmetric T M ® E*-
Dorfman connection A on E@®T*M. A linear generalised complex structure on B

s equivalent to the following data:

1. A wvector bundle morphism j: TM & E* — TM & E*,

2. U e QXTM @ E*, E*),

such that
1. j?> = —idrymeE:
2. "W = -V,

3. A defined by (A.6|) satisfies the Jacobi identity,

4. A1, jve) = jA(v1, 1) .

Proof. Given a linear generalised complex structure J on E as in (4.2)) we have by
Lemma [4.1.5] Proposition and Proposition a vector bundle morphism
j and a form ¥ € Q*(TM @ E*, E*) satisfying the properties above.

Conversely, given j and ¥ as above, we define a double vector bundle morphism
J:TEGT*E - TE®T*E by setting for r e '(E®T*M) and v € I'(T'M @ E*)

J(r1) = (=5t )T,
T(02(v)) = 0 (j (1) + (¥(r, )"

Again by Proposition 4.1.10| and Proposition this defines a linear generalised

complex structure on E. These two constructions are inverse to each other. [

Note that whilst A does not depend on the choice of A, ¥ does depend on
this choice. Given a different skew-symmetric Dorfman connection Ay, we get the

form corresponding to the same generalised complex structure by the change of

splittings as in Lemma
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A.2 Lie algebroid morphisms

In this section we will give the computations corresponding to the results in section
in the case where we work with a general skew-symmetric Dorfman connection

instead of one which is adapted to the generalised complex structure.

Let us assume A — M is a Lie algebroid and 7 is a linear generalised complex
structure. Let A be any skew-symmetric T'M @& A*-Dorfman connection on AGT* M.
To compute the conditions on the Lie bracket and the anchor in terms of this
splitting, we will need to describe Lie brackets of core-linear sections with other

sections.

Given the basic A connections V* on A ® T*M and on TM @ A* described
in Definition and Proposition we will now write VH™ for the induced
A-connection on I'(Hom(T'M & A*, A® T*M)) defined by

Voo = Voo — oV, (A8)
Now we will prove the following corollary to Theorem [4.3.6
Corollary A.2.1. Let A be a Lie algebroid with anchor p and A a Dorfman
connection as in (4.39). Let ¢, p1, p2 € T(Hom(TM & A*, A ® T*M)), 7 €

F(A®T*M) and a € T'(A). Then we obtain the following Lie brackets in TA

1 [,3] = e, )7)",

2. _?ﬁi,&?i] =20 (p,p') o1 —p10(p,p')ops,

3. |oh(a), §| = Vi,
4. 0(@) = (p,p")op.

Proof. Using local coordinates we can write ¢ = 3 fijk; ® 7; where f;; € C*°(M),

ki, Tj € ['(A@®T*M). Then we obtain for the corresponding core-linear section

p= Z q;MGaA* fijeﬁiT; ) (A.9)

where 7'; € I'7yypa-(TA) is the core section corresponding to 7;. Now we compute
using Theorem the following Lie bracket of a core section with a core-linear
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section
[TT@} = [TTsz?M@A*fijngﬂ
=" Graroafiibe [T 1]+ 7 (0, 007 (@asen Fisle) 7]
=3 (0, 0)7) (Grarea- fisles) 7]
=" Ghvwa Fii@rasear (is (p, 1) 7)T]

= o((p, pH)7)"

For the bracket of two core-linear sections we write both 1 and 3 in local
coordinates analogously to (A.9) and compute:

|51.%5) = [Z Graron-Flila CHL Y Gharoa sl (72)1

=Y q:lk“MEBA*filjgnll Q?M@A*figlgni [(THT, (7))
+ Z qflk"MéBA* lejgnzl 302((/)7 pt)le)T
- Z Q;MEBA* fl?l&i@l((ﬂ, Pt)Tzz)T

= a0 (p,p) o1 — @10 (p,pt) o,

Lastly, we compute the bracket of a lift 04 (a) with a core-linear section § in

local coordinates:
[4(0.%] = |04 (@). X tiwron i)

= > dhupa fiilelod (@), 7))

+ 30 VS (s figle)T]
=" Grmoar Figle, (V5T5)

+>  Gryvear (p(a)fij)ngj + drmea fijévlgas,ﬂT;
= VP 0 — o Vi

= vilomg,

In the second to last step we have used that the two basic connections are dual to
each other as shown in Proposition [£.3.3]

To compute the anchor of p we just note that © is a vector bundle morphism
from TA to T(T'M @ A*) over the identity on TM @ A* and thus

O(X drwrear Fisln)) = 3 draroar fiilnO(T)
=" raraa Fiilus ((p, 0)75)

=(p,p") 0.
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O]

Now we are able to prove the following analogue of Proposition for general
splittings.

Proposition A.2.2. A linear generalised complex structure J on a Lie algebroid
A — M preserves the anchor of TA if and only if for all a € T(A) we have

1 (jolpp) =—jolpr),

2. Vb3 05 — joVhas = (p, pt) o ®(a).

Proof. The anchor preservation condition for J over j is again ©® o J = Tj 0 O.
The computation for core sections is the same as in the case of an adapted Dorfman
connection in Proposition m For a horizontal lift 04 (a) we now make use of
Theorem [£.3.6] of Corollary [A.2.1] and of Lemma [4.3.8] to obtain the following:

007 (03(0) ) = (73 (@) (vm) + Bla) 2 (1)
= V25 (jvm) + (9, p') 0 ®(a) 0 5 (jvm)
and on the other hand:

Tj 0 O(0% (@) (¥m)) = TH(VES (1)

=j o Ve o (jvm).

Note that m denotes here the core-linear vector field on T'M & A*.

So the anchor preservation condition for a lift reads
(Vo —joVpeoj=t) = (p,p)o®(a)ojt.

The linear vector field on the left is core-linear and (V£ —joVbas05~1) is tensorial.
The anchor preservation condition for horizontal lifts is therefore equivalent to the

following condition:
Va0 j—jo Ve =(p,p')o®(a). (A.10)

O

Furthermore, analogous to Proposition we obtain for a general linear
splitting the following result.
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Proposition A.2.3. A linear generalised complex structure J on a Lie algebroid
A which preserves the anchor of TA — TM & A* is additionally compatible with
the Lie bracket of TA — TM & A* if and only if for all sections a, b € T'(A) we

have

jo o RYS(a,b) — RYS(a,b) 0 j = (dynom®)(a,b) .

Proof. Since J and therefore j are invertible, every section can be pushed forward
via J. The bracket is then preserved under J if for all sections ¢, £ € I'rarga=(TA)
we have the property (see for example [51] and [16])

(TCoj ,Toloj  |=T0[(,&ojt. (A.11)

For two core sections we obtain again the same as in Proposition 4.3.10, For

the bracket of a lift with a core section we obtain on one hand making additionally
use of Corollary the following

(7 00t(@) 07", Gor)T] = [04(a), Gon)T] + [@(a) 0 571, (o)

= (V2 (i) = (9(a) 0 57 ((p, i)'

On the other hand we have again
J o loi(a), 710 = (jeVerr)!
and thus we obtain the condition
V0 jo — jo o VI = B(a) o j Vo (p, ) 0 jo = B(a) o (p,p!),  (A2)

where we used the anchor preservation condition in the last step. According
to Proposition we know that ®(a) has to be skew-symmetric. That is
®(a)t = —®(a). As the Dorfman connection was chosen to be skew-symmetric, the
two basic connections have to be dual to each other according to Proposition [4.3.3
Hence equation for a linear generalised complex structure is equivalent to
(A.10) which we assume to be satisfied as J is required to respect the anchor.

For the bracket of two lifts we get now on one hand the following:
(T ook(a) o™ T ood(b) o] = [03(a) + (a) 05", 03 (0) + B(b) 0]
= Uﬁ([av b]) - Rzas(aﬂ b)

+ VR o b(b) o T —d(b) o) o Vi

~Vp*od(a)oj !t —®(a)oj oV
+®(b)ojto(p,p)o®(a)ojt
—®(a)ojto(p,p')o®(b)oj L.
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On the other hand we compute with Lemma [£.3.§]
T oloR(@.od®)] 05" = o ([a.b]) + @(fa.b]) 0" — jo o RR™(a.D) 0 5"

Using the property V22 o j = j o VP & (p, p') o ®(a) this gives the last condition
for J to be a Lie algebroid morphism:
jo o RX®(a,b) — RX®(a,b) 0 j = ®([a,b]) + V™ 0 B(a) — ®(a) 0 V™
— Va0 ®(b) + ®(b) 0 Vo (A.13)
= (dyuom®)(a,b) .

Summarising we obtain the following Theorem:

Theorem A.2.4. A linear generalised complex structure J on a Lie algebroid

A is a Lie algebroid morphism if and only if for every skew-symmetric Dorfman

connection A as in (4.39)) and ® defined by (4.52)) we have for any a, b € T'(A)

1. (p,p")ojec=7jo(pp),
2. Ve oj—joVe®=(pp')o®(a),
3.

jo o RX*(a,b) — RX*(a,b) 0 j = &([a, b)) + V™ 0 @(a) — @(a) 0 V;™
— VI 0 ®(b) + (b) o VE™ .

An equivalent formulation is that the tuple (jco,j, ®) forms a automorphism of
the 2-term representation up to homotopy ((p,p'), VP2, VP2 RB3) of A onto
(A@T*M)g ® (TM @ A*)py) which defines the VB-algebroid structure of TA in
the linear splitting corresponding to A. The correspondence between VB-algebroids
and their morphisms after a choice of decomposition and 2-term representations
up to homotopy and their morphisms was shown in [28] and in [19]. We recall this

correspondence in Section |2.2.5
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