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Immune-Inspired Fault Diagnosis for Robot Swarms

by James O’Keeffe

Previous work has shown that robot swarms are not always tolerant to the failure
of individual robots, particularly those that have only partially failed and continue
to contribute to collective behaviours. A case has been made for an active approach
to fault tolerance in swarm robotic systems, whereby the swarm can identify and
resolve faults that occur during operation. Existing approaches to active fault tol-
erance in swarms have so far omitted fault diagnosis, however this thesis proposes
that fault diagnosis is a feature of active fault tolerance that is necessary if robot
swarms are to achieve long-term autonomy. This thesis presents a novel method for
fault diagnosis in robot swarms that attempts to imitate some of the observed func-
tions of natural immune system. The experimental results presented in this thesis,
which were obtained in software simulation and with actual robot hardware, show
that the proposed fault diagnosis system is flexible, scalable, and improves swarm
tolerance to various electro-mechanical faults in the cases examined.
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Chapter 1

Introduction

1.1 Introduction

There is evidence to suggest that the synchronised operation of social insects is de-
centralised (Camazine et al., 2001), yet they exhibit robust, flexible and scalable be-
haviour as a system (Şahin, 2005). These are desirable features for autonomous sys-
tems, and motivate the use of, and research into robot swarms (Şahin, 2005).

Robustness – the ability of a system to withstand faults and failures – as an in-
herent feature of robot swarms was initially highlighted by Şahin (2005), and there
is evidence to support this in the case of complete failures (Winfield and Nembrini,
2006). However, it is also observed that the performance of a swarm decreases where
partial failures are present (Winfield and Nembrini, 2006). It was later demonstrated
that the reliability of a robot swarm significantly decreases as a consequence of par-
tial failures as the number of agents in the swarm increases (Bjerknes and Winfield,
2013).

The finding that the reliability and robustness of robot swarms is compromised
in some scenarios prompted Bjerknes and Winfield (2013) to advocate for an active
approach to improving the fault tolerance of robot swarms. Fault tolerance typically
consists of fault detection, fault diagnosis and fault recovery (Bayar et al., 2015). Re-
searchers have already begun investigating ways in which this could be achieved,
for example; there have been a number of approaches towards autonomous fault de-
tection in robot swarms (see work by Millard (2016), Khadidos, Crowder and Chap-
pell (2015), Tarapore, Christensen and Timmis (2017) and Christensen, O’Grady and
Dorigo (2009)).

This thesis proposes a novel approach to fault diagnosis in robot swarms. The
approach proposed in this thesis allows robots to characterise different types of fault
in real time such that recurring faults can be diagnosed more efficiently, mimicking
the observed functions of the natural immune system at a high level.

The first chapter of this thesis provides an overview of swarm robotic systems,
highlights the need for fault diagnosis as part of an approach to active fault tolerance
in robot swarms, and describes the hypothesis, structure and contributions of this
thesis.

1.2 Swarm Robotics

Swarm robotics can be described as the application of swarm intelligence to multi-
robot systems (Şahin, 2005). Swarm intelligence, as a field of research, stems from
observations on the abilities of social insects to behave co-operatively and efficiently
(Garnier, Gautrais, and Theraulaz, 2007), with seemingly no centralised method of
coordination (Şahin, 2005).
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A swarm robotic system typically consists of multiple individual robots that are
relatively simple, but can collectively exhibit complex behaviour or achieve greater
performance as a system (Şahin, 2005). The collective behaviour of a swarm robotic
system typically reflects the task or purpose for which it is being used. Collective
behaviour is sometimes emergent. An emergent behaviour is the distinct collective
product of individual robot behaviours, for example the flocking behaviour seen in
some species of birds and fish.

Swarm robotic systems are distinct from traditional multi-robot systems, which
may feature centralised or hierarchical control structures. Şahin (2005) proposes a
number of features that distinguish swarm robotic systems from other robotic sys-
tems. Although the definitions used by Şahin (2005) were published over a decade
ago at the time of writing, and the field of swarm robotics has developed since then
(more recent descriptions of swarm robotic systems are given by Brambilla et al.
(2013) and Bayindir (2016)), it is useful to revisit them in this chapter for the pur-
poses of outlining the motivation for this thesis.

1. Consist of autonomous robots
Individual robots in a swarm should have a physical embodiment, be able to
physically interact with their environment, and be able to do so autonomously.

2. Feature large numbers of robots
Swarm robot systems should be scalable and thus functional for a large range
of swarm sizes.
There is no hard threshold, in terms of the number of individuals, at which
a multi-robot system becomes a swarm robot system, but between 10 and 20
individuals is generally acceptable. The cost of hardware may represent an
obstacle when trying to realise greater swarm sizes. Studies carried out with
smaller group sizes with the promise of scalability in sight can also be consid-
ered swarm research.

3. Feature few homogeneous groups of robots
Swarm robotic systems should comprise of a large number of homogeneous
robots, or a few groups thereof. Highly heterogeneous robot groups, however
large, are less swarm-like.

4. Consist of robots with local sensing and communication capabilities To main-
tain distributed coordination in the swarm, individual robots should only pos-
sess local sensing and communication abilities.

5. Consist of relatively incapable or inefficient robots
Şahin (2005) defines this in two ways, depending on the task at hand. Either;
in cases where collective behaviour is emergent, individual robots be unable
to perform the desired collective behaviour, or; in cases where collective be-
haviour is not emergent, and so can be performed by an individual, increasing
the number of individuals that constitute the swarm should markedly improve
the overall performance of the system.
This criterion should not restrict the complexity of individual robot hardware
and/or software. Rather, incapability/inefficiency should be considered in rel-
ative terms with respect to the swarm’s task.

With the exception of point 5, all of the above criteria persist in the more recent
swarm definitions used by either Brambilla et al. (2013) or Bayindir (2016).
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Şahin (2005) proposes that swarm robotic systems, by virtue of meeting these cri-
teria, will possess an inherent degree of robustness, flexibility and scalability. These
desirable properties of robot swarms form the basis of the motivation for their use
and research, and are be defined as follows:

1. Robustness

Robustness can be defined as the degree to which a swarm system can tolerate
the presence of faults or failures that occur in individuals within the swarm.
If a swarm is tolerant to a given type of fault, the presence of that fault in
an individual should not significantly reduce the overall performance of the
swarm. Şahin (2005) attributes the high level of robustness observed in swarms
of social insects to several factors:

(a) Redundancy
If an individual fails, another can assume its place.

(b) Decentralised coordination
Failures occurring in an individual or individuals will not disable the sys-
tems emergent behaviour. This relies on the assumption that the number
of failed individuals does not cause the number of working individuals to
drop below the minimum needed to perform the swarms task (Bjerknes
and Winfield, 2013).

(c) Simplicity of individuals
The behaviour of an individual in a swarm will be relatively simple com-
pared to the swarms collective behavior, or alternative system that would
be required to equivalently perform it. There will therefore be fewer op-
portunities for faults and failures to manifest in each individual, and so
they can be considered functionally reliable by comparison.

(d) Multiplicity of sensing
This particular characteristic is not concerned with faults per se. How-
ever, any physical robot that can respond to its environment in real time,
as has previously been expressed to be desirable, will have to make deci-
sions based on information it receives from its sensors. There will be some
degree of noise present in whatever signal hardware sensors produce. If
signal-to-noise ratio is too low for a robots sensors, it may be unable to
perform its task effectively. Distributed sensing can increase signal-to-
noise ratio by providing multiple observations of a point of interest.

2. Flexibility

Bayindir (2016) defines flexibility as:

“the capability to adapt to new, different, or changing requirements
of the environment."

This is, to an extent, at odds with the requirement for robustness. If a problem
or task changes, the system should not attempt to continue exhibiting a be-
haviour that is unsuitable for the new problem, but rather be flexible enough
to adapt to the new problem appropriately. Şahin (2005) highlights that swarm
robotic systems should be able to utilise different coordination strategies in
response to changes in the environment.
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3. Scalability
Scalability can be defined as a swarms ability to increase or decrease the num-
ber of individuals that constitute it without significant consequences to overall
performance.

The definitions of flexibility and scalability in robot swarms do not differ be-
tween those used by Şahin (2005) and Brambilla et al. (2013). However, Brambilla
et al. (2013) updates the definition of robust to “the ability to cope with the loss of indi-
viduals”, rather than the ability to tolerate failures. The reasons for this will be detailed
later in this chapter and in the chapter following.

Şahin (2005) outlines a series of task domains in which there could be some ad-
vantage in taking a swarm robotic approach:

1. Tasks that cover a region

The distributed nature of swarm robotic systems means that they can typically
cover a larger area than a non-distributed system performing the same task
in a given period of time. Examples of such tasks include search and rescue
or foraging for resources, as was mentioned earlier in this chapter. The work
by Sugawara and Watanabe (2002) examines the example of foraging robot
swarms in more detail.

2. Tasks that are dangerous

In tasks where it is likely that the performer will receive damage, a swarm
robotic approach could possess an advantage in terms of cost efficiency, as
the individual robots within the swarm are often dispensable. Cassinis et al.
(1999) propose swarm robotic systems could be applied to the detection of land
mines, for example.

3. Tasks that scale up or down in time

Şahin (2005) gives the example of oil leaking from a sinking ship, whereby the
scale of the leakage can increase as the tanks of the ship break down. A swarm
robotic system containing the initial spillage in a bounded area could adapt to
the increasing oil leakage by adding more robots, allowing the bounded area
to expand in sympathy with the amount oil needing to be contained. This type
of scenario is examined in more detail in the work by Kakalis and Ventikos
(2008).

4. Tasks that require redundancy

Redundancy is defined here as a system that includes surplus components that
are non-essential to its functioning. An example of where a swarm robotic ap-
proach may give a significant advantage over other approaches is in the case
of tasks that may require redundancy. Tasks that require redundancy may also
fall under the category of dangerous tasks, or may involve the reconfiguration
of a proportion of the swarm whilst other robots continue performing their
task. An example of this would be the establishment of ad hoc wireless net-
works, as seen in the work by Correll et al. (2009), featuring mobile nodes.
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1.2.1 Fault Tolerance for Robot Swarms

A significant part of the motivation for using robot swarms hinges on their pre-
sumed robustness. However, it was shown by Winfield and Nembrini (2006) and
Bjerknes and Winfield (2013) that robot swarms are not always robust to faults or
failures in individuals – particularly in the case of partial failures. In light of this,
Bjerknes and Winfield (2013) call for an active approach to fault tolerance in au-
tonomous robot swarms.

The work by Christensen et al. (2007) supports the proposal for active fault tol-
erance by highlighting the infeasibility of implicit approaches to fault tolerance.
Christensen et al. (2007) describe fault tolerance as a multi-faceted objective, but
proposes that it will generally consist of an approach to fault detection, and possibly
approaches to fault diagnosis and fault recovery.

Previous work by other researchers towards achieving fault tolerance in robot
swarms has so far examined fault detection (Tarapore, Christensen, and Timmis,
2017) (Millard, 2016), or fault detection and recovery (Khadidos, Crowder, and Chap-
pell, 2015) (Christensen, O’Grady, and Dorigo, 2009). Some swarm behaviours will
require a minimum number of functioning robots. If faults are detected but not di-
agnosed, the only available method for fault recovery is to replace the entire robot.
Dangerous environments are highlighted as a potential application area for robot
swarms. In such environments, or in any environment that is for any reason inac-
cessible, it will not always be possible to replace faulty robots. This thesis there-
fore argues that fault diagnosis is a critical step in achieving active fault tolerance if
swarm robots are to retain long-term autonomy.

1.3 Research Question

This thesis presents a novel method for fault diagnosis in swarm robotic systems.
The research question that underpins this thesis can be broadly described as:

Can faults in swarm robotic systems be diagnosed by examining specif-
ically where discrepancies between observed and expected behaviours
originate from?

1.4 Structure

This thesis is structured as follows:

Chapter 2

This chapter provides review and discussion on the motivation for active fault tol-
erance in swarms, artificial immunity, previous approaches to fault detection and
other relevant work for consideration.

Chapter 3

This chapter details the initial work undertaken for this thesis, aimed at establish-
ing whether or not different types of fault could be classified by encoding robot
behaviours as a series of boolean behavioural features.
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Chapter 4

This chapter proposes a novel method for immune-inspired fault diagnosis in robot
swarms, and details the work completed in order to develop and test a prototype
system.

Chapter 5

This chapter further develops upon the immune-inspired fault diagnosis system for
robot swarms described in chapter 4, and details a more thorough assessment of the
system.

Chapter 6

This chapter describes the transposition of the immune inspired fault diagnosis sys-
tem from software simulation to actual robot hardware as faithfully as was possible
within the parameters of this thesis.

Chapter 7

This chapter concludes the thesis by comparing the results and achievements de-
scribed in chapters 3-6 against the hypothesis stated in the first chapter. Chapter 7
also describes the limitations of the work produced for this thesis, as well as outlin-
ing possible avenues for future work.

1.5 Contributions

The contributions of this thesis are as follows:

Chapter 3

Chapter 3 investigates whether or not common electro-mechanical faults occurring
in individual robots can be classified by encoding robot behaviours as behavioural
feature vectors. The majority of the work described in this chapter was published in
the proceedings of TAROS 2017 (O’Keeffe et al., 2017b).

Chapter 4

Chapter 4 proposes a novel fault diagnosis system for robot swarms. This is built
and tested in software simulation. The majority of the work described in this chapter
was published in the proceedings of IEEE SSCI ALIFE 2017 (O’Keeffe et al., 2017a).

Chapter 5

Chapter 5 develops the novel fault diagnosis system proposed in chapter 4, and
subjects it to more rigorous testing in software simulation. The majority of the work
described in this chapter was published as an article in the Frontiers in Robotics and
AI journal (O’Keeffe et al., 2018).
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Chapter 6

Chapter 6 implements a modified version of the diagnostic system described in
chapter 5 in actual robot hardware. This chapter demonstrates that the trends ob-
served in software simulation are also observed for a system in robot hardware.
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Chapter 2

Background and Related Work

2.1 Introduction

Swarm robotic systems are highlighted to have applicability to a number of task
domains (Şahin, 2005) (Bayındır, 2016). In particular, Şahin (2005) proposes robot
swarms will be suited to tasks in dangerous environments, on account of the in-
nate robustness of swarm systems. The findings of Winfield and Nembrini (2006),
which are discussed in the next section, that robot swarms are susceptible to partially
failed robots, challenges the universality of the swarm robotic properties described
by Şahin (2005).

This chapter outlines the problems with fault tolerance in swarm robotic systems,
which provide the motivation for this thesis. There is then a discussion on the ways
other researchers have proposed these problems could be addressed, principally by
creating artificial immunity, and the various approaches to this sub-field. Finally,
this chapter provides discussion on the previous approaches towards active fault
tolerance in robot swarms by other researchers.

2.2 Robustness in Robot Swarms

Robustness as an inherent property of swarm systems, as described by Şahin (2005)
and discussed in the previous chapter, is based on the observed behaviour of so-
cial insects. Using a definition of robustness comparable to that given by Şahin
(2005), Winfield and Nembrini (2006) perform a Failure Mode and Effect Analysis
(FMEA) (Dailey, 2004) for a wireless connected robot swarm exhibiting the follow-
ing behaviours.

• Swarm aggregation
In this behaviour the robots in a swarm try to stay together in unbounded
space

• Coherent ad hoc network
Each robot in the swarm broadcasts a message which is received and acknowl-
edged by its neighbours within wireless range. If a robot receives below a
defined threshold of messages, it is assumed to be moving out of the swarm
and will double back on itself.

• Beacon taxis
Robots in the swarm can sense and will move toward the location of a beacon

• Obstacle avoidance
Robots in the swarm are able to sense their proximity to neighbours and other
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Swarm Behaviour H1 H2 H3 H4 H5 H6

Aggregation – e2 – – e2 –
Ad hoc network – e2 – – e2 –
Beacon taxis E1 e2 – – E1 –
Obstacle avoidance E1 e2 e3 – E1 –
Encapsulation E1 e2 e3 – E1 –

TABLE 2.1: Effects of faults on swarm behaviour (Winfield and Nem-
brini, 2006)

objects. When robots detect that they are within a certain range of an object or
neighbour, they will adjust their paths accordingly in order to avoid collisions.

• Beacon encapsulation
An extension of the former behaviours, when approaching the beacon, the re-
quirement for coherence and obstacle avoidance will result in the beacon being
encapsulated by the swarm.

Utilising FMEA, Winfield and Nembrini (2006) define a list of the possible faults
that may occur in individual robots within the swarm:

• H1: Motor Failure

• H2: Communications Failure

• H3: Avoidance Sensor Failure

• H4: Beacon Sensor Failure

• H5: Control Systems Failure

• H6: Total Systems Failure

Some of these faults are benign, however the presence of others may adversely
affect the swarm’s collective behaviour. The potential fault effects are classified as
being serious or non-serious, indicated by an E (upper-case) or e (lower-case), re-
spectively:

• E1: Motor failure anchoring the swarm

• e2: Lost robot(s) loose in the environment

• e3: Robot collisions with obstacles or target

The results of the various faults on the swarm as it performs different tasks are
displayed in Table 2.1.

Table 2.1 indicates that, although there are some circumstances in which a swarm
may be able to tolerate partial or total failures in individual robots, there are others
in which partial failures in individual robots present a serious threat to swarm per-
formance. In particular, motor failures which occur in individual robots can anchor
the swarm about that robot’s location. If the swarm has been assigned a task that
requires it to move in a specific direction or towards a point of interest, such as
photo-taxis, this type of failure can prevent the swarm from completing its task.

Winfield and Nembrini (2006) conclude that:
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“Analysis of fault tolerance in swarms critically needs to consider the
consequence of partial robot failures, and future safety-critical swarms
would need designed-in measures to counter the effect of such partial
failures."

2.2.1 Fault Tolerance and Scalability in Robot Swarms

That swarm robotic systems may not be robust to partial faults also has implications
for another swarm property: Scalability.

Bjerknes and Winfield (2013) conduct an investigation into how the effects of
partial faults on swarm robotic systems differ as the scale of the swarm varies. As
a case study, a swarm of e-puck robots are considered (Mondada et al., 2009) per-
forming a modified version of the α-algorithm (Winfield et al., 2008), defined by
Bjerknes and Winfield (2013) as the ω-algorithm. The ω-algorithm is a combination
of flocking and beacon taxis, which results in a single coherent swarm moving to-
wards a beacon. The following failure modes and their effects to the overall swarm
are considered by Bjerknes and Winfield (2013):

1. Complete failure of individual robots:
This type of failure has been shown to be relatively benign (Winfield and Nem-
brini, 2006). Bjerknes and Winfield (2013) state that the only instances in which
complete failures could prevent a swarm from realising its task is if they were
to reduce the number of working robots in the swarm below the minimum
threshold required for the self-organising team work to function.

2. Failure of a robot’s infra-red (IR) sensors:
Each e-puck robot has 8 IR sensors, and so it is unlikely that a complete sensor
failure would occur. More likely would be a subset of the IR sensors failing,
resulting in one or more directional ’blind spots’ for the robot. In any case, the
failed robot could become lost. In such cases the robot would act as a moving
obstacle to the swarm. This type of failure could also act to lower the number
of working robots below the minimum required by the swarm.

3. Failure of a robot’s motors only:
Established by WInfield and Nembrini (2006) to be the most serious type of
fault, if sensing and signalling functions remain operational, a motor failure
may cause the faulty robot to anchor the swarm. This is the case for failures in
one or both motors.

Results obtained by Bjerknes and Winfield (2013), displayed in Figure 2.1 and
Figure 2.2, show that the reliability of a robot swarm depends on the number of
robots in the swarm and the probable rate at which failures occur in individual
robots.

Bjerknes and Winfield (2013) use the k-out-of-N model to characterise the relia-
bility of the swarm. In this model, reliability is the probability that at least k out of
N robots are working at a given time t. This is described mathematically by Equa-
tion 2.1.

P(k, N, t) =
N

∑
i=k

(
N
i

)
(e−tλ)i(1− e−tλ)N−i (2.1)

where λ is described by Equation 2.2.

λ =
1

MTBF
(2.2)
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FIGURE 2.1: Mean time before failure = 8 hours (Bjerknes and Win-
field, 2013)

MTBF is the mean time before failure for an individual robot.
Although the results obtained by Bjerknes and Winfield (2013) show that swarm

systems consisting of robots with a greater MTBF value are generally more reli-
able over a greater range of swarm sizes, there is a critical point in Figure 2.1 and
Figure 2.2 at which the reliability of the swarm drastically decreases with increas-
ing swarm size. This would suggest that if a swarm robotic system cannot tolerate
faults in individual robots, it cannot be considered truly scalable. These results in-
dicate that, by only making individual robots less likely to develop faults, one is just
deferring the point at which swarms stop being reliable as more robots are added if
the faults that occur are not appropriately handled.

Bjerknes and Winfield (2013) conclude that larger swarm sizes require active
measures to improve fault tolerance. Swarm systems are decentralised, so it falls
to individual robots to be able to detect and respond to failures in themselves or
their neighbours. Bjerknes and Winfield (2013) propose that it is necessary to intro-
duce new behaviours at an individual level that will allow for this, and highlight
two points for consideration, firstly; How could an individual robot reliably detect a
fault or failure in another? And secondly; Upon detection, what would be an appro-
priate response? In their concluding sentences, Bjerknes and Winfield (2013) state
that:

“[large-scale self-organising systems] cannot function without an active
approach to dealing with a failed or rogue unit, i.e. an immune response.
What is perhaps surprising is that such an approach will be needed in
swarm systems with relatively few individuals, i.e. less than a hundred."
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FIGURE 2.2: Mean time before failure = 24 hours (Bjerknes and Win-
field, 2013)

2.3 Immunity for Swarms

Bjerknes and Winfield (2013) specifically advocate for an active immune response to
deal with failed individuals in swarms. Current understanding of what an immune
response consists of is derived from observations of the natural immune system in
vertebrates. In their review paper, Timmis et al. (2008) use the following definition
of the natural immune system as:

“a defence system that has evolved to protect its host from pathogens
(harmful micro-organisms such as bacteria and viruses)"

Having evolved over millions of years, the natural immune system provides
rapid and effective defence for its host (De Castro and Timmis, 2002). The immune
system is described as consisting of two parts: The innate immune system and the
adaptive immune system (Owen, Punt, and Stranford, 2013).

The innate immune system can be thought of as a series of defence mechanisms
that an individual is born with, such as phagocytosis or the inflammatory response,
that generally do not change over the course of the individual’s life (Owen, Punt,
and Stranford, 2013).

The adaptive immune system consists of defence mechanisms that will change
and develop over the course of an individual’s lifetime. It is these mechanisms
that allow the immune system to learn how to respond to previously unknown
pathogens, as well as remember them such that future encounters are dealt with
more efficiently (Owen, Punt, and Stranford, 2013).

Consisting of trillions of cells, distributed throughout the host organism, Segal
and Cohen (2001) argue that the immune system can be thought of as a decentralised
system. Timmis et al. (2010) further propose that the immune system can be consid-
ered as a swarm system.
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Timmis, Andrews and Hart (2010) make the comparison of swarm systems to the
immune system by outlining the parallels between each across the five principles of
swarm systems, as defined by Millonas (1993), which are:

1. The principle of proximity
Swarm systems and the immune system both perform computation in response
to environmental stimuli such that the collective utility of each system is max-
imised for a given task or function (Millonas, 1993) (Timmis, Andrews, and
Hart, 2010).

2. The principle of quality
Swarm systems and the immune system respond to environmental quality fac-
tors, such as the quality of food (Millonas, 1993) or the severity of an attack
(Timmis, Andrews, and Hart, 2010).

3. The principle of diverse response
Swarm systems and the immune system are physically and functionally dis-
tributed, which provides them each with a degree of robustness to sudden
environmental changes (Millonas, 1993) (Timmis, Andrews, and Hart, 2010).

4. The principle of stability
Swarm systems do not significantly change their behaviour with slight varia-
tions in their environment (Millonas, 1993). The immune system is regulated
by a series of networks in order to prevent large uncontrolled changes in be-
haviour, although it is possible to observe major shifts in behaviour under cer-
tain circumstances (Timmis et al., 2010).

5. The principle of adaptability
Swarm systems will change their behaviour when the reward is worth the en-
ergy cost (Millonas, 1993). Similarly, the immune system has the ability to
make collective decisions on whether or not to launch an immune response,
and will only do so if it ascertains that the host’s normal function is compro-
mised (Timmis, Andrews, and Hart, 2010).

The implication of the work by Bjerknes and Winfield (2013) is that faults and
failures that occur in engineered systems could be considered analogous to pathogens,
insofar as pathogens prompt an immune response in biological systems as the au-
thors propose faults and failures should do in robotic systems. Identifying the ways
in which the defence mechanisms observed in the natural immune system be utilised
in engineered systems is non-trivial, due to the vast complexity of the natural im-
mune system. However, work towards this transposition has birthed the field of
Artificial Immune Systems (AIS).

The functional parallels, identified by Timmis, Andrews and Hart (2010), be-
tween swarm systems and the immune system lead the authors to propose that AIS
may be well suited for use with robot swarms. Consequently, Bjerknes and Winfield
(2013 cite AIS as a promising potential solution for addressing the problems they
and Winfield and Nembrini (2006) highlight on improving fault tolerance in swarm
robotic systems.

2.3.1 Artificial Immune Systems

AIS attempt to bridge the gap between immunology and engineering (Timmis et al.,
2008). They are defined by DeCastro and Timmis (2002) as:
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“adaptive systems, inspired by theoretical immunology and observed
immune functions, principle and models, which are applied to problem
solving."

Although the purpose of the natural immune system is host-defence, it is not the
only area of application for AIS (Floreano and Mattiussi, 2008). Hart and Timmis
(2008) broadly identify the major areas of application for AIS as:

• Learning
Includes clustering, classification and pattern recognition (see Watkins and
Timmis (2004) and De Lemos et al. (2007)).

• Anomaly detection
Includes fault detection and computer and network security applications (see
Stibor, Timmis and Eckert (2005) and Aickelin and Cayzer (2008)).

• Optimisation
(see Cruz-Cortés, Trejo-Pérez and Coello (2005) and Freschi and Repetto (2005))

Applying AIS to these types of problems, there are a number of different ap-
proaches that exist. Cohen (2007) outlines three schools of research within AIS:

• The literal school:
Researchers in the literal school try to faithfully replicate in silico the observed
mechanisms of the natural immune system in vivo and in vitro.

• The metaphorical school:
Researchers in the metaphorical school do not attempt to replicate the natu-
ral immune system, but rather use it as inspiration when building their own
algorithms. This is the most common school.

• The modelling school:
The modeling school, simply referred to as “the third school" by Cohen (2007),
consists of researchers that attempt to better our own understanding of immu-
nity by developing computer models of immune systems.

The problem of improving fault tolerance in robot swarms is not directly con-
cerned with improving the general understanding of immunity among researchers.
Therefore, during the work described later in this thesis, the modelling school was
not considered as a practical approach.

Freitas and Timmis (2007) assert that the dominant approach to AIS development
is the algorithm-oriented approach. The algorithm-oriented approach refers to the de-
velopment of AIS in the absence of a defined problem, or where the the choice of
algorithm employed in an AIS informs the problem it is applied to, as opposed to
the problem informing the choice of algorithm. For example, the authors (Freitas
and Timmis, 2007) highlighted a quote from Anchor et al. (2002):

“The binary string representation is employed to allow for easy manipu-
lation by a genetic algorithm in the affinity maturation ”

It is noted that there is nothing in Anchor et al. (2002) to suggest why binary repre-
sentation is needed in this scenario, as genetic algorithms are able to use real value
data (Freitas and Timmis, 2007).

Whilst there is merit in the algorithm-oriented approach from an academic point
of view, it is not able to produce practical AIS that can compete with state of the art
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FIGURE 2.3: An outline conceptual framework for a bio-inspired
computational domain (Stepney et al., 2004)

FIGURE 2.4: An outline conceptual framework for integrating bio-
inspired computational domains (Stepney et al., 2004)

alternative techniques (Freitas and Timmis, 2007). Consequently, the problem-oriented
approach is proposed by Freitas and Timmis (2007). The problem-oriented approach
proposes that AIS be tailored to their application domain.

The problem-oriented approach lends itself to the metaphorical school of re-
search, which is subject to criticism on the use of ‘naive’ metaphors. Stepney et al.
(2004) state that:

“ bio-inspired computational algorithms usually proceed directly from a
(naive) biological model to an algorithm, with little analytical framing of
the representation’s properties”

In order to avoid these weak analogies, stemming from “reason by metaphor”, Step-
ney et al. (2004) propose a conceptual framework for AIS, illustrated in Figure 2.3
and Figure 2.4.

Figure 2.3 proposes a framework whereby observations and experiments can be
used to form a view of the complex biological system (Stepney et al., 2004). Using
the framework described by Figure 2.3, one can potentially produce many repre-
sentations of the same system from the same observation, each providing different
insights (Stepney et al., 2004). It is common to have distinct representations for the
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same system, however these representations are rarely compared for unifying prop-
erties (Hart and Timmis, 2008). Hart and Timmis (2008) claim that, with a conceptual
framework, one can begin to make such comparisons.

Stepney et al. (2004) go on to propose that different conceptual, mathematical and
computational frameworks can be compared by using more integrated and generic
frameworks. Figure 2.4 applies the same conceptual model as seen in Figure 2.3, but
at a higher level (Stepney et al., 2004). The probes in Figure 2.4 are meta-questions.
The type of meta-model one develops will depend on the meta-questions one asks
(Hart and Timmis, 2008).

Hart and Timmis (2008) identify some initial areas to probe with meta-questions.
These are known as ODISS questions (Timmis et al., 2010), and refer to:

1. Openness
To what extent must the system be able to continuously grow and develop?

2. Diversity
How many different types of agent are needed for the system?

3. Interaction
To what extent and at what level must individual agents be able to communi-
cate with one another?

4. Structure
How is the system organised?

5. Scale
How many agents are needed for the system?

The advantage of adopting this approach will be the development of immune algo-
rithms that are grounded in immunology, more so than those that adopt a simple
observe and implement approach (Timmis et al., 2010).

Some examples of meta-questions are given by Hart and Timmis (2008) for com-
plex systems, population models and network models. However, most of the ex-
ample meta-questions are not directly applicable to swarm robotic systems in their
given context, for example; how scale affects diversity in a complex system. Some
initial meta-questions for fault tolerant swarm robotic systems could be:

1. How do individual robot behaviours relate to collective swarm behaviour?

2. How and when do faults appear?

3. How do faults affect individual robot behaviours?

4. How do faulty individual behaviours affect collective behaviour?

2.3.2 Implementing Artificial Immune Systems

Millard (2016) highlights that maintenance in biological systems is comparable to
fault tolerance in engineered systems, as both pertain to systems that can continue
to operate under unusual or unexpected circumstances. Specifically, Millard (2016)
highlights that the definitions used by Cohen (2000) for recognition, cognition and
action map neatly to the control engineering sub-field of fault detection, fault diag-
nosis, and recovery (FDDR).

The review paper by Bayar et al. (2015) details the application of AIS with re-
spect to FDDR. et al. (2015) conclude, unsurprisingly, that there are many different



18 Chapter 2. Background and Related Work

AIS approaches for FDDR. Bayar et al. (2015) divide work on AIS into groups corre-
sponding to their approach, for example; AIS based on self-non-self discrimination.

Self-non-self discrimination is one of many theories put forward to explain how
the natural immune system distinguishes between what it needs to attack and what
should be tolerated. This discrimination is important as an immune system that
conflates the normal cells present in a host with pathogens, known as autoimmunity,
will have the potential to kill its host (Langman and Cohn, 2000).

The self-non-self theory, as originally outlined by Burnet et al. (1959), proposes
that the immune system can distinguish between cells that originate from and be-
long to the host, and those that do not not. Cells that are foreign will be targeted for
destruction whilst native cells will be tolerated. The self-non-self model has evolved
over time in order to accommodate new findings (Matzinger, 2002). Whilst this the-
ory plausibly explains some aspects of how the immune system can defend its host
from pathogens whilst remaining tolerant of the cells that constitute the host, other
researchers have not always been satisfied that the self-non-self theory could pro-
vide comprehensive explanations for their observations, for example; the proposal
by Lafferty and Cunningham (1975) that T-Cells needed ‘co-stimulation’ prompted
Janeway (1992) to propose the infectious non-self model.

Each immune theory provides a different perspective or interpretation of the ob-
served functions of the immune system.

Immune network theory

Provided are the definitions, as used by Timmis et al. (2008), for the immune termi-
nology used in the following discussion:

• Antigen presenting cells (APC): Portions of ingested pathogen are displayed
on cell membrane as antigens to be recognised by T-cells

• T-cells and B-cells: The main actors in the adaptive immune system, both are
lymphocytes

• Lymphocytes: The only cells that produce antigen receptors. Each lymphocyte
produces a unique antigen receptor.

• Antigen receptors on T-cells are called T-cell receptors (TCR)

• Antigen receptors of B-cells are called antibodies

Jerne (1974) presents the immune network theory, an attempt to explain immune
characteristics such as the ability to learn and remember. The immune network the-
ory states that any lymphocyte receptor can be recognised by some subset of the
total receptor repertoire – which themselves have their own recognising subset and
so on. The product of this is an immune network, also referred to as an idiotypic
network. Jerne (1974) proposes that emergent properties of the immune system, such
as self-tolerance, are the result of the immune systems interactions with itself where
there is no foreign antigen present.

Farmer, Packard and Perelson (1986) build on the hypothesis presented by Jerne
(1974), using it as the basis for their simplified immune model. The simplified im-
mune model, which consists of a set of differential equations (Equation 2.3) and is
notably analogous to the classifier system described by Holland (1983), ignores the
effects of T-cells and macrophages (a phagocytic immune cell) and focuses on B-cell
population dynamics with respect to levels of B-cell stimulation (Timmis et al., 2008).
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Farmer, Packard and Perelson (1986) give the rate of change for antibody con-
centration as:

ẋi = c
[ N

∑
j=1

mjixixj − k1

N

∑
j=1

mijxixj +
M

∑
j=1

mjixiyj
]
− k2xi (2.3)

The authors (Farmer, Packard, and Perelson, 1986) elaborate on the terms that
make up equation 3.

• The first term represents the stimulation of the antigen-binding site of an anti-
body type i by the epitope of an antibody type j.

• The second term represents the suppression of antibody type i when its epitope
is recognised by paratope type j

• Parameter c is a rate constant dependent on the frequency of collisions and the
rate of antibody production stimulated by a collision.

• Match specificities mij take into account what reactions occur and how strongly.

• constant k1 represents possible inequality between stimulation and suppres-
sion.

Equation 2.3 contains the primary influences, as proposed by Farmer, Packard
and Perelson (1986), on B-cell stimulation level, namely; contributions of antigen
binding, contributions of neighbouring B-cells and suppression of neighbouring B-
cells. Included in the model are mechanisms for removing useless antibodies (a
B-cell duplicates proportionally to its degree of stimulation) and maintaining diver-
sity by introducing new ones via mutation (see Davis (1991) on genetic algorithms)
(Farmer, Packard, and Perelson, 1986).

To implement an idiotypic network for an immune response in an engineered
system would require an autonomous method for simulating antigen binding, which
could be considered analogous to fault detection in this context. Furthermore, it
would not be enough to simply detect the presence of a fault, in order to simulate
binding specificities an autonomous method of isolating the fault type would be
required, which could be considered analogous to fault diagnosis. Therefore an ap-
propriate approach to autonomous fault detection and diagnosis is prerequisite in
order to apply the immune network model to robot swarms. Of great interest, how-
ever, is the immune network theory’s ability to learn and remember. This is clearly
a desirable characteristic as it is a waste of time and computational power for an
engineered system to solve problems it has previously found solutions to.

T-cells and the Crossregulation model

Although Farmer, Packard and Perelson (1986) ignore the presence of T-cells in their
immune network model, T-cell population modelling appears in work towards fault
tolerance in swarm robots, such as that by Tarapore, Christensen and Timmis (2017),
which builds on the Crossregulation model (CRM) (Carneiro et al., 2007).

The CRM describes the population dynamics of three mutually interacting cell
types found in the adaptive immune system (Tarapore, Christensen, and Timmis,
2017):

1. Antigen presenting cells (APC). Individual APC’s have a fixed number of con-
jugation sites on which effector and regulatory cells can form conjugates.
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2. Effector cells (TE) that can potentially mount immune responses which may be
directed to foreign pathogens or to body-antigens, depending on specificity.

3. Regulatory cells (TR) that suppress proliferation of TE cells with similar speci-
ficities

All discussion here refers to the example given by Carneiro et al. (2007) in which
the CRM is described in one of its simplest, albeit unrealistic, mathematical forms.
In this scenario APC’s can form conjugates with, at most, two T-cells. Crossregu-
latory interactions between TE and TR cells can only occur on these multicellular
conjugates. This can be characterised mathematically using differential equations
describing the densities of TE and TR cell populations over time, with the same speci-
ficities (E and R).

dE
dT

= peEA − deE (2.4)

dR
dT

= prRA − drR (2.5)

where

• EA is the density of activated TE cells in multicellular conjugates

• RA is the density of activated TR cells in multicellular conjugates

• pE is the proliferation rate of activated TE cells

• pR is the proliferation rate of activated TR cells

• de is the death rate of TE cells

• dr is the death rate of TR cells

The densities of activated TE and TR cells are calculated in sequence. The equilib-
rium density of T cells in conjugates, C, is a function of the total density of T cells, T,
and the total density of APC conjugation sites, A. This is described in Equation 2.6.

C =
1 + K(A + T)−

√
(1 + K(A + T)))2 − 4ATK2

2K
(2.6)

Where K is a constant and T is given by Equation 2.7

T = E + R (2.7)

The densities of TE and TR conjugates, EC and RC, respectively, are given by
the corresponding portions of the conjugate densities (see Equation 2.8 and Equa-
tion 2.9).

Ec =
E
T

C (2.8)

Rc =
R
T

C (2.9)

The fractions of conjugation sites per APC that are occupied by TE and TR cells
at equilibrium, ε and ρ, are given by Equation 2.10 and Equation 2.11, respectively.

ε =
Ec

A
(2.10)
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ρ =
Rc

A
(2.11)

Lastly, the density of activated cells can be calculated using Equation 2.12 and
Equation 2.12.

Ea = Ec
(
1− 2ε

2− ρ

)
(2.12)

Ra = Rc
( 2ρ

2− ε

)
(2.13)

The CRMs application to fault detection problems in swarms has already been
demonstrated by Tarapore, Christensen and Timmis (2017), who devised a system
that was able to reliably detect the presence of abnormal robot behaviours whilst
remaining tolerant to normally behaving robots.

The danger model

Matzinger (2002) proposes the danger theory, which re-frames the self-non-self dis-
crimination problem as dangerous vs. non-dangerous such that the immune system
will only attack cells that it perceives as dangerous. This means that foreign bodies
will only be attacked by the immune system if they are identified as being harmful
to the host. Although this theory has its own shortfalls – its inability to adequately
explain immune responses to grafts and tumors, for example – the principle of only
responding to danger signals lends itself well to engineered systems (Pradeu and
Cooper, 2012). From a practical point of view, applying this theory to swarm robotic
systems represents a more efficient approach than trying to detect and handle every
single abnormality that might occur in a system irrespective of whether or not the
systems collective behaviour is being disrupted.

Summary

This section has discussed a number of different immune theories. Some immune
theories, such as the CRM model (Carneiro et al., 2007), have been demonstrated
to be directly applicable to FDDR problems (Tarapore, Christensen, and Timmis,
2017). Other immune theories, such as the immune network theory (Jerne, 1974)
and the simplified immune model (Farmer, Packard, and Perelson, 1986), require
an approach to FDDR or something analogous before they can be realised. The
following section will discuss the previous attempts by other researchers towards
implementing FDDR, or some part thereof, in robotic systems.

2.4 Fault detection

Although there has been a large amount of research on FDDR in engineered systems,
comparatively little has been conducted with swarm robot platforms (Zhang and
Jiang, 2008).

Reliable fault detection is the first step in any active FDDR approach. There are
two different approaches to fault detection; endogenous and exogenous.
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2.4.1 Endogenous fault detection

A robot that detects faults in itself detects them endogenously (Christensen, O’Grady,
and Dorigo, 2009). Within endogenous fault detection, there are generally two ap-
proaches; model-based methods also known as analytic method, and model-free meth-
ods, also known as data driven methods (Christensen, 2008).

Model-based fault detection compares a systems actual behaviour to a prede-
fined model of how the system should behave. Deviations from this model can
then be interpreted as faults or symptoms thereof (Christensen, 2008). A more de-
tailed description and discussion of model-based fault detection approaches can be
found in the review paper by Isermann (2005). Christensen (2008) acknowledges
the difficulty associated with producing accurate analytical models on account of
environmental uncertainties, noisy sensors and imperfect actuators.

The data-driven approach similarly detects faults based on the differences be-
tween predicted and observed data. However, predicted data is based on observa-
tions of the system during its operation (Christensen, 2008), for example; Marsland,
Nehmzow and Shapiro (2005) use unsupervised learning to train a filter which ig-
nores data similar to that which it has already seen. Alternatively, AIS based fault
detection would also fall under the category of data-driven, such as the danger-
model based AIS for fault detection proposed by Laurentys, Palhares and Caminhas
(2010).

Christensen (2008) acknowledges that there are some scenarios in which a robot
may not be able to detect faults in itself, or, even it can, may be unable or unwill-
ing to communicate the presence of faults to the rest of the swarm. Such scenarios
would make purely endogenous approaches to fault detection unreliable. Chris-
tensen (2008) identifies some examples of these scenarios as battery failures, main
board short circuiting and bugs that cause software hang, concluding that it is nec-
essary for multi-robot systems to exploit exogenous fault detection if they are to
realise their fault tolerant potential.

2.4.2 Exogeneous fault detection

Exogenous fault detection occurs where one robot is able to detect a fault occurring
in another, physically separate robot (Christensen, 2008).

Parker (1998) presents ALLIANCE, a fault tolerant control architecture for small-
medium sized teams of heterogeneous robots.

Using a hazardous waste cleanup mission as a case-study, Parker (1998) applies
the ALLIANCE architecture to a team of three R-2 robots, purchased commercially
from IS Robotics. To complete such a task co-operatively, a series of individual sub-
tasks must be performed, such as locating the site of hazardous waste (represented
in this experiment by a movable object), removing hazardous waste upon location
and communicating with other team members. ALLIANCE achieves fault tolerance
by allowing individual robots to recognise what task other team members should be
performing and, if it is decided that another robot is not performing its task quickly
enough, the individual can assume the task itself. Strictly speaking, although both
are approaches to fault tolerance, ALLIANCE does not represent an approach to
FDDR. Furthermore, the test case could not be considered swarm robotic (Şahin,
2005). However, the act of an individual acknowledging that another robot is not
performing a task effectively and the individuals subsumption of that task has a
clear applicability to active fault tolerance in swarm robot systems.
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Gerkey and Mataric (2002) present MURDOCH, which employs an auction sys-
tem for allocating different tasks among multi-robot systems. In this system, one
robot acts as an ‘auctioneer’ and announces a task to the other robots in the group.
The announcement will only be received by individuals that are capable of perform-
ing the task. Each capable individual can then ‘bid’ on the task. The strength of
the bid will be determined by a fitness function for the individual. The fittest in-
dividual(s) will then be given a ‘contract’ whereby they are allocated the task and
given a time to complete it in. The auctioneer robot then monitors the progress of
the winning robot(s) and, assuming significant progress is made, ‘renews’ the con-
tract. MURDOCH achieves fault tolerance by the fact that an individual, or group
of individuals, that do not perform their task well enough will not have their con-
tracts renewed. The task will then be reallocated to a different robot, and the under–
performing individual(s) will not be considered for subsequent tasks.

MURDOCH is validated on a team of 3 AcitvMedia Pioneer 2-DX mobile robots,
the specifications of which can be found in Gerkey and Mataric (2002).

There are several parallels we can draw between MURDOCH and ALLIANCE.

• Both approaches increase the fault tolerance of their respective systems, de-
spite neither one representing an approach to FDDR

• Both achieve fault tolerance by reassigning tasks from underperforming indi-
viduals

• Both approaches use multi-robot systems as test cases which could not be con-
sidered as ‘swarm robotic’ because of the small number of robots used (3 in
each case) (Şahin, 2005). Furthermore, the robots used rely on external sen-
sors and complex communication protocols, for example; ALLIANCE relies on
predefined system-knowledge of specific task ordering dependencies; MUR-
DOCHs use of a single ‘auctioneer’ robots means the system can be considered
centralised, and therefore subject to the associated drawbacks.

Although some of the fault tolerance principles employed by ALLIANCE and
MURDOCH may be useful for active FDDR, because the systems to which they are
applied cannot be considered swarm robotic systems, they do not, as they are, rep-
resent a solution to the problem of fault-tolerant swarms as highlighted by Winfield
and Nembrini (2006) and Bjerknes and Winfield (2013).

2.4.3 Fault detection in swarms

Fault detection in robot swarms has previously been approached in a number of
ways in software simulation and in hardware.

Firefly fault detection

Christensen, O’Grady and Dorigo (2009) propose that once can achieve fault tolerant
robot swarms by the removal of faulty robots from the swarm. In this work, faults
are exogeneously detected using a firefly-inspired system whereby robots are each
equipped with periodically flashing light-emitting diodes (LEDs) which they try to
synchronise with one–another. A fault is detected where an individual robot fails to
flash its LED at suitable intervals.

This method of fault detection is shown to be effective, being able to reliably
detect faults in a comparatively short space of time. However, the case-study con-
sidered by Christensen, O’Grady and Dorigo (2009) is limited. In order to use the
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fault detection method proposed in Christensen, O’Grady and Dorigo (2009) for the
type of scenarios described by Şahin (2005), an individual robot would need to have
its own reliable endogenous fault detection method so that it knew to stop flashing
its LED if, for example, one of its motors failed.

Internal simulator approach

The work by Millard (2016) presents an exogeneous method of detecting faults in
swarm systems at run-time. This work proposes that faults in individual robots can
be detected by comparing their real behaviour with their simulated behaviour. This
is achieved in two ways, firstly; through predicting the future behaviour of a robot,
and secondly; by analysing a robot’s past behaviour. In any case, each robot has a
simulated copy of the controller for every other robot in the swarm. A fault is de-
tected where there is discrepancy between the information observed by a robot about
its neighbours and the internally simulated information about that neighbour. Mil-
lard (2016) ultimately concludes that fault detection by predicting future behaviour
is infeasible, and favours fault detection by analysis of past behaviour.

By comparing a robots observed position with it’s expected position after a pe-
riod of time, Millard (2016) is able to detect faults correctly for a large portion of the
time they are present, whilst maintaining a general tolerance to normal behaviours.

Neighbour comparison approach

Khadidos, Crowder and Chappell (2015) describe an approach to exogeneous fault
detection and recovery in swarm robots. The experiments described within are all
carried out in simulation and use simulated e-puck robots.

Each robot in Khadidos, Crowder and Chappell (2015) broadcasts information
from its sensors, position coordinates and motor values to its neighbour, and vice-
versa. Based on this information, each robot can decide where it believes its neigh-
bour should be relative to itself by calculating the distance and angle between each
others coordinates. If there are discrepancies between where neighbours believe
each other are then both will be reported as suspicious. At this point, a third robot
will be called to the disagreeing neighbours, which will act as an independent ad-
judicator. After the adjudicator robot is subject to the same fault detection process
with each of the original neighbours, the faulty robot should be identifiable. Once a
faulty robot is detected it has its power turned off, effectively making it an object in
the arena.

The fault detection method described by Khadidos, Crowder and Chappell (2015)
works well in simulation. The decentralised manner of the fault detection mecha-
nism, combined with the relatively small proportion of the swarm required to per-
form it, means that the approach can be considered scalable. Furthermore, the com-
parison of multiple data sets should theoretically make the approach robust and
flexible.

Crossregulation model approach

Tarapore, Christensen and Timmis (2017) use a stochastic, spatial, discrete-time multi-
agent system simulator to demonstrate abnormality detection using a system based
on the CRM (Carneiro et al., 2007). This considers a swarm of simulated ground-
based mobile agents that can exhibit a number of behaviours, into which faults are
injected.
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The CRM in this instance is implemented such that behaviours that are persistent
and abundant among individuals are tolerated, whilst rare behaviours are detected
as abnormal.

This work interprets agent behaviours as a series of Boolean features that form
a binary string - where 0 and 1 indicate an absent or present behavioural feature,
respectively. This is referred to as the feature vector. The CRM provides a system of
differential equations that consider the distribution of feature vectors as inputs be-
fore deciding whether or not an agents feature vector should be tolerated or detected
as abnormal.

The CRM-based approach is shown to be effective at detecting abnormalities
in swarm behaviour. Encoding robot behaviours as feature vectors also provides
this approach with an innate degree of flexibility – features can be added or taken
away in sympathy with the requirements of a system, and the CRM-based approach
should, in theory, still provide effective fault detection. A feature vector-based ap-
proach is therefore one that might lend itself well to approaches to active fault toler-
ance in robot swarms in the long-term.

2.4.4 Summary

This section has provided an overview of approaches to exogenous fault detection
in multi-robot systems and in swarm robotic systems. In each approach, the funda-
mental mechanism that enables a fault to be detected in a robot is the comparison
of observed robot behaviour with expected robot behaviour, where a significant dis-
crepancy indicates the presence of a fault.

2.5 Fault diagnosis

It was highlighted in Chapter 1 of this thesis that fault diagnosis is a necessary step
of active fault tolerance if robot swarms are to retain long-term autonomy. Addition-
ally, discussion in section 2.3.2 of this chapter highlighted that a process analogous
to fault diagnosis is required for implementation of some immune theories. Any
model that attempts to capture the desirable characteristics of the natural immune
system, specifically learning and memory, must have some degree of ability to iden-
tify a particular fault type and it’s associated recovery procedure as distinct from
other fault types with alternative recovery procedures.

There have been a number of approaches to fault diagnosis in multi-robot sys-
tems. Although the fault diagnosis approaches discussed in this section are not ex-
plicitly designed for swarms, the described diagnostic techniques inform the work
towards fault diagnosis in robot swarms.

Winfield and Nembrini (2006) demonstrated that different types of fault cause
robot behaviour to deviate from what is expected in different ways. As faults can
be detected by observing the discrepancies between expected and observed robot
states, faults can be diagnosed by examining what specific states or features are
discrepant. For example, Daigle, Koutsoukos and Biswas (2007) use the discrep-
ancies between model-predicted behaviour and observed robot behaviours to create
a ‘fault signature’ for different types of faults, which can then be used to diagnose
faults that occur in real-time. Similarly, Cassasco, Núñez and Cipriano (2011) model
the behaviour of normally functioning and faulty robots offline. Faults are detected
based on discrepancies between the model-predicted normal robot state and mea-
sured robot states during operation. Faults are then isolated by which modelled
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state for faulty behaviour most closely resembles the measured robot state. One lim-
itation of such approaches is their lack of capability to learn or adapt to dynamic
fault signatures, and their reliance on comprehensive prior modelling in order to be
effective.

Faults can also be diagnosed through more explicit assessment. Kutzer et al.
(2008) implement diagnosis such that faulty robots perform diagnostic manoeuvres,
consisting of various tests designed to isolate the root-cause of a fault. A trained
probabilistic model is then used to estimate the state of the faulty robot based on its
observed performance of the diagnostic manoeuvres.

To the best of the author’s knowledge, no attempt has yet been made towards
fault diagnosis with explicit regard to swarm robotic systems, with the exception
of the author’s previously published work (O’Keeffe et al., 2017b) (O’Keeffe et al.,
2017a) (O’Keeffe et al., 2018).

2.6 Summary

This chapter has highlighted the motivation for active fault tolerance in swarm robotic
systems, and has provided discussion the attempts towards addressing this problem
by other researchers. The relatively small body of work discussed in this chapter to-
wards active fault-tolerance for robot swarms, to the best of the author’s knowledge,
is comprehensive. This chapter has highlighted the necessity of a fault diagnosis
mechanism for enabling robot swarms to retain long-term autonomy. The absence
of previous work towards this particular problem means that, until it is addressed,
swarm robotic systems will be unable to realise the potential utility and applications
listed by Şahin (2005).
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Chapter 3

Fault Classification With Feature
Vectors

3.1 Introduction

The previous chapter discussed the approaches adopted by other researchers to-
wards improving fault tolerance in robot swarms. Of particular relevance to this
work is the behavioural feature vector (BFV) approach taken by Tarapore, Chris-
tensen and Timmis (2017). An advantage of this approach, highlighted by Tarapore,
Christensen and Timmis (2017), is that faults can be reliably detected without need-
ing an a priori model of normal behaviour. In this way, the BFV-based approach
possesses an innate degree of flexibility and adaptability.

As Winfield and Nembrini (2006) demonstrated that different faults cause robots
to deviate from normal function in different ways, this chapter tests the hypothesis
that, by encoding robot behaviour as BFVs, these deviations from normal behaviour
will be reflected in a faulty robot’s BFVs, and that these will be distinct for different
fault types. If this is the case, then there are a variety of machine learning approaches
that could be employed to classify different types of faults occurring in robots based
on the faulty robot’s BFV. This could conceivably be performed autonomously by
other robots in the swarm in a distributed fashion, as is desired.

The following chapter describes the initial work conducted for this thesis, which
investigated the feasibility of using BFVs for fault diagnosis in robot swarms by
training a decision tree on faulty robot BFVs, which could then be used to classify
different fault types. The purpose of the work described in this chapter was to obtain
proof of principle for BFV-based fault diagnosis, rather than propose a developed
method for fault diagnosis.

3.2 Behaviour Characterisation

To detect and classify faults in a robot based on its BFVs relies on the BFVs ade-
quately reflecting the specific deviations from normal robot behaviour caused by
different faults. Assuming access to the relevant hardware and software documen-
tation, it would conceivably be possible to reduce each robot functionality to a series
of base behaviours. For example, for ground based vehicles, individual features
could indicate whether or not its wheels are turning and, if so, which wheel(s) and
their speed(s).

To exhaustively reduce robot functionalities to their most basic components may
prove to be a time consuming process and, for the purposes of fault tolerance, may
not be necessary if it does not produce discriminating features. Discriminating features
allow a system to distinguish different fault types based on the features presence,
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absence, or in more complex systems, its intensity. To illustrate, a complete sensor
failure and power failure would both result in an individual robot becoming unre-
sponsive to its neighbours. However, a sensor failure would not necessarily prevent
the robot from moving, whereas a power failure would. A feature describing the
motion of the robot could therefore be considered discriminatory in this case.

For an individual robot’s BFV to be discriminatory, it is necessary that it is de-
signed in sympathy with the behaviour(s) that the robot will exhibit. The initial
approach taken for this work was to attempt to atomise high-level robot behaviours
into low-level sub-behaviours. By reducing known behaviours into sub-behaviours
of an appropriate granularity and assigning features to each, the resultant repertoire
of BFVs should then be representative of every behaviour the system can exhibit.

3.3 Experimental Method

The initial work towards validation of BFV-based methods for fault classification
was conducted using Autonomous Robots Go Swarming (ARGoS) (Pinciroli et al.,
2011), a discrete-time physics-based robot swarm simulator. Use of a robot simu-
lator was considered to be the fastest route to obtaining a proof-of-concept for this
approach to fault classification, but with the intention of demonstrating any such
system in hardware at the soonest reasonable opportunity.

This work uses simulated models of the marXbot (Bonani et al., 2010) (see Fig-
ure 3.1) swarm robotic platform. These are two-wheeled, 17cm diameter swarm
robots, with on-board proximity and range and bearing (RAB) sensors.

To be useful in swarm robotics systems, it is important that any fault classifica-
tion technique is compatible with the swarm’s requirement to be flexible, and should
therefore be applicable to any range of behaviours one might expect a given swarm
system to exhibit. Flocking, aggregation, and dispersion behaviours are examined as
a case study (see Algorithm 1, Algorithm 2, and Algorithm 3), as the behaviours are
widely used in swarm robotics research. These three behaviours can each be con-
sidered similar at an individual level, sharing simple functionalities, yet produce
significantly different collective behaviours – satisfying the behavioural conditions
for swarm robotics systems described by Şahin (2005).

Algorithm 1 Flocking

1: while Running do
2: if Distance to object < close-proximity threshold (C) then avoid object
3: if Average neighbour distance < flocking threshold (k) then calculate target

heading from the average bearings of all neighbours in range
4: else Calculate target heading from the average positions of all neighbours in

range
5: if Robot heading not in range target heading ± 15 ◦ then turn toward target

heading
6: else Move forward

The flocking threshold, k, in Algorithm 1 is a user-defined threshold that indi-
cates the point at which a robot’s desire to be close to the swarm is over-ridden by
its desire to be travelling in the same direction as the swarm (approximately 8cm
from the average neighbour position). The close-proximity threshold, C, which ap-
pears in Algorithm 1, Algorithm 2 and Algorithm 3 sets the distance at which a robot
will avert its course to avoid collision (approximately 3cm). The precise values of k
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FIGURE 3.1: The MarXbot swarm robotic platform (Bonani et al.,
2010)

Algorithm 2 Aggregation

1: while Running do
2: if Distance to object < close-proximity threshold (C) then avoid object
3: Calculate target heading from the average positions of all neighbours in

range
4: if Robot heading not in range target heading ± 15 ◦ then turn toward target

heading
5: else Move forward

Algorithm 3 Dispersion

1: while Running do
2: if Distance to object < close-proximity threshold (C) then avoid object
3: else Move forward
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FIGURE 3.2: A diagram to illustrate flocking, aggregation and obsta-
cle avoidance behaviours A: Flocking behaviour. B: Obstacle avoid-

ance behaviour. C: Aggregation.

and C were decided upon with consideration to the scales of the particular robots
and arena used for this work. Both k and C are estimated by each robot using its
RAB sensor.

Each behaviour is illustrated in Figure 3.2.

3.3.1 Fault Types

Techniques for analysing the types of faults that may occur in engineered systems,
such as Failure Mode and Effect Analysis (Dailey, 2004) or Fault Tree Analysis (Er-
icson and Ll, 1999), are not directly applicable to simulated models of robots in the
absence of actual robot hardware. The fault types considered for a simulated model
of a marXbot robot (Bonani et al., 2010) are therefore based on a cross-section of the
literature that informs this work. Consequently, some of the fault types are not nec-
essarily chosen with explicit regard to the marXbot platform, but with respect to an
as-yet undefined swarm robotic system that could conceivably be deployed in the
circumstances described by Şahin (2005).

• Software hang (H1):
Software hang is given as an example of a fault that necessitates exogenous ap-
proaches to fault detection (Christensen et al., 2008). A software hang fault will
cause a robot to become stuck performing whatever action it was performing
at the last moment it was normally functioning. For this implementation, the
robot is able to continue to broadcast its own BFV to the swarm (although this
BFV will also be stuck and unresponsive to changes in the robot’s behaviour
from external factors).

• Power failure (H2):
A recurring example in fault tolerant literature (Winfield and Nembrini, 2006)
(Carlson, 2004). A robot that suffers a power failure will completely stop mov-
ing and remain unresponsive to its surroundings. Neighbouring robots in the
swarm will still be able to detect its presence. This assumes that each robot is
able to detect the presence of its neighbours independently of whether or not
that neighbour is responsive. This may not be the case for all systems, how-
ever, in cases where robots are unable to communicate their presence for one
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reason or another, they will go unacknowledged by the swarm and become
objects in an arena for all practical purposes. Such cases have been shown to
have little to no detriment to collective swarm behaviour (Winfield and Nem-
brini, 2006), and so are therefore not a priority for active approaches to fault
tolerance.

• Complete Sensor failure (H3:
Sensor failure is another recurring example used in fault tolerant swarm re-
search (Winfield and Nembrini, 2006) (Carlson, 2004). For a complete sensor
failure an individual robot’s RAB sensor, as well its IR sensors, will completely
fail and return a value of 0. The robot will be unable to detect the presence of
neighbouring robots or objects.

• Complete Motor failure (H4):
The study by Winfield and Nembrini (2006) demonstrates motor failure in in-
dividual robots to be the most damaging to collective swarm behaviour. It is
therefore an obvious choice for inclusion in this work. For a complete failure
the motor will stop and henceforth become unresponsive to its controller.

• Partial Motor Failure (H5):
For a partial motor failure, the motor will remain responsive but will only
cause its associated wheel to turn at half speed.

• Partial Sensor Failure (H6):
Similar to the definition used in Milalrd (2016), a partial sensor failure affects
a robot such that it will only be able to detect the presence of neighbours and
objects within ±45 ◦ of its current heading.

3.3.2 Deriving Behavioural Features from Robot Behaviours

The individual robot BFV is defined by considering every instance in Algorithm 1,
Algorithm 2 and Algorithm 3 in which a robot executes an action, and then assign-
ing one feature to reflect that action and one feature to reflect the conditions that
necessitate it. Following this process leads to the following BFV that is proposed
to be sufficiently representative of the aforementioned behaviours. Each feature is
binary, where a returned value of 1 or 0 indicates the presence or absence of the
feature, respectively. The robot BFV used in this work, where the binary vector
BFV(t) = [F1(t), F2(t), F3(t), F4(t), F5(t)], can be described as follows:

F1(t) = 1 if NR(t) > 0, otherwise F1(t) = 0 (3.1)

where NR is the total number of neighbours in sensing range of the robot at time t.
F1 is illustrated in Figure 3.3.

F2(t) = 1 if NC(t) > 0, otherwise F2(t) = 0 (3.2)

where NC(t) is the total number of neighbours at a distance less than the close prox-
imity threshold, C, to the robot at time t. F2 is illustrated in Figure 3.4.

F3(t) = 1 if |v(t)| > 0.8|vmax|, otherwise F3(t) = 0 (3.3)

where |v|(t) is the magnitude of linear velocity at time t. F3 is illustrated in Fig-
ure 3.5.
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FIGURE 3.3: A diagram to illustrate F1. Red highlight indicates the
robot under consideration and its sensing range. A: The robot has
no neighbours in sensing range. B: The robot has one neighbour in

sensing range.

FIGURE 3.4: A diagram to illustrate F2. Red highlight indicates the
robot under consideration and its close proximity threshold. A: The
robot has no neighbours within its close proximity threshold. B: The
robot has one neighbour within its close proximity threshold, and so

they both turn to avoid each other.
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FIGURE 3.5: A diagram to illustrate F3. Red highlight indicates the
robot under consideration. A: Between times t0−1 the robot was turn-
ing, and so moved a relatively short distance (F3 = 0). B: Between
times t0−1 the robot was moving in a straight line at full speed, and

so moved a greater distance (F3 = 1).
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FIGURE 3.6: A diagram to illustrate F4. Red highlight indicates the
robot under consideration. A: Between times t0−1 the robot did not
move at all (F4 = 0). B: Between times t0−1 the robot did move, albeit

a short distance (F4 = 1).

F4(t) = 1 if |v(t)| > 0.2|vmax|, otherwise F4(t) = 0 (3.4)

F4 is illustrated in Figure 3.6.

F5(t) = 1 if |ω(t)| > 0.4|ωmax|, otherwise F5(t) = 0 (3.5)

where |ω(t)| is the magnitude of the robots angular velocity. F5 is illustrated in
Figure 3.7.

The combination of features F3(t), F4(t) and F5(t) allow for a distinction to be
made between a robot that has completely stopped, one that is turning and one that
is moving in a straight line. The thresholds for these features were chosen with con-
sideration to robot behaviours and system noise. Given that a normally behaving
robots wheels can only be in one of two states (moving at maximum speed or not
moving), a normally behaving robot is either moving forward with maximum lin-
ear velocity, turning with maximum angular velocity (and approximately half max-
imum linear velocity), or stationary.

The threshold for F3 is defined to be 80% of vmax. In a noiseless system it could
have been set to vmax, however, even with noise, there is no scenario in which a
normally behaving robot would ever reach this velocity if it were not moving in
a straight line. Therefore the presence of F3 is the indicator for that particular be-
havioural state.

The threshold for F4 is defined to be 20% of vmax. Similarly to F3, this could have
been set to 0 in a noiseless system. The purpose of this feature is to distinguish a
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FIGURE 3.7: A diagram to illustrate F5. Red highlight indicates the
robot under consideration. A: Between times t0−1 the robot moved
in a straight line and therefore with no angular velocity (F5 = 0). B:
Between times t0−1 the robot was turning, and therefore moved with

maximum angular velocity (F5 = 1).
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robot which has completely stopped. Although a robot with 0 < v < 0.2 ∗ vmax is
obviously not stationary in absolute terms, for this experiment there is no scenario
where a normally behaving robot should ever have a velocity in this range once its
behaviour has stabilised. Therefore, if a robots velocity does lie in this range, it can be
attributed to sensor noise about a stationary robot. Consequently, the absence of F4
is the sole indicator that a robot has stopped moving. F4 was defined in anticipation
of the effects of faults on robot behaviour (particularly power failure), which makes
it unique in the BFV for the work described in this chapter, as all other features were
defined with respect to normal robot behaviour. Although it was unknown at the
time F4 was originally defined, the results of the work in this chapter demonstrated
that consideration of the effects of faults on robot behaviour is a necessary aspect of
effective BFV design.

The purpose of F5 is to distinguish a robot that is turning. Given that a normally
behaving robot is either turning with maximum angular velocity or not turning, this
threshold could lie anywhere between 0 and ωmax in a noiseless system. In this work
the threshold was set to be as low as possible whilst retaining a reliable reading.

Notably, there is not a feature to reflect the presence of a non-neighbour object.
The reason for this is that every feature must be reliably measured internally by an
individual, as well as externally by an observing neighbour. It is not immediately
clear how this feature could be measured by an observing neighbour in a distributed
manner, and so it has been omitted from this particular BFV.

Feature Estimation

The problems associated with endogenous fault detection, such as a robot being
unable to communicate critical information to the swarm (Christensen et al., 2008),
also applies to fault diagnosis. Using the example of a software hang fault, the faulty
robot would report a BFV that did not reflect its true behaviour, potentially leading
to misclassification. The same could also be said of purely exogenous approaches
when applied to fault diagnosis. It would not always be possible for an indepen-
dent observer to reliably distinguish between a robot with a software hang fault
that renders it unresponsive to its neighbours and a complete sensor failure, as both
could have the same net effect on the robot’s behaviour.

This work proposes that a potential solution to this problem is by estimating
robot BFVs proprioceptively and exteroceptively, and combining the two estima-
tions. To achieve this, the proprioceptive BFV is estimated such that it reflects what
an individual robot believes its state is, and the exteroceptive BFV such that it reflects
what its neighbours ascertain its state to actually be. This work anticipated that mul-
tiple methods of feature estimation will not only improve the reliability of reported
behaviour, but also represent a useful starting point for a classification process, as
some faults will create discrepancies in features directly relating to the ways in which
they manifest. For example, motor failure will a cause discrepancy in features relat-
ing to motion where one feature reflects the inclination of the robot’s controller and
the other reflects the robot’s true movement.

3.3.3 Experiments

The following experiments were conducted to ascertain how useful BFVs are for
classifying fault types, where usefulness is indicated by the proportion of correct
fault classifications made by a decision tree trained on BFV data.
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FIGURE 3.8: ARGoS simulation of 10 marXbot robots performing a
dispersion behaviour. Lines connecting pairs of robots represent mu-
tual neighbour acknowledgement via RAB sensor. Lines protruding

from each robot represent IR sensor range.

A swarm of 10 marXbots (Bonani et al., 2010) collectively perform one of the three
behaviours described by Algorithm 1, Algorithm 2 and Algorithm 3 in an otherwise
empty enclosed arena measuring 16 square metres (see Figure 3.8).

BFVs are estimated proprioceptively by each robot using its RAB sensor (for fea-
tures relating to object/neighbour proximity) or its controller (for features relating
to a robot’s movement). BFVs are estimated exteroceptively using a virtual sensor to
obtain co-ordinate information for each neighbouring robot at each time step, allow-
ing angular and linear velocities for those neighbours to be estimated. Using robot
co-ordinate information is not traditionally ‘swarm-like’, and is not proposed as a
long term solution. Rather, the use of a virtual sensor facilitates experimentation by
providing the data that a robot could obtain locally with the appropriate hardware
and sensing capabilities. As the main objective of this work is to highlight the merit
of a BFV-based approach to fault classification, and there is intent to develop the sys-
tem described here towards something more swarm-like at the soonest opportunity,
this work meets the criteria for swarm robotics systems described by Şahin (2005).

Robot BFVs are updated once per control-step, at a frequency of 10Hz. Simu-
lated Gaussian noise is added to each robot’s estimation of its neighbour’s coordi-
nates (µ=0, σ = 2%vmax) and its RAB sensor (µ=0, σ=1 ◦). The effects of varying
levels of noise were investigated in later experiments. The system noise applied in
this work was selected on a preliminary basis, intended to ensure that any proof-
of-concept obtained for BFV-based fault classification was robust to imperfect robot
information.

In each experiment, the swarm performs one of the three behaviours (Algo-
rithm 1, Algorithm 2, Algorithm 3) for five minutes of simulated time. One of the six
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fault types (H1−6) is injected into a single robot after 50 seconds of simulated time,
as this is approximately when collective swarm behaviour stabilised on average for
each type of behaviour. The BFV of each robot is recorded for the duration of the
experiment and written to an external file.

This process is iterated for every type of fault and behaviour combination. The
set of data, consisting of the faulty robot’s BFV for each of the 6 fault types whilst it
performs (or attempts to perform) one of the behaviours is then used to train a de-
cision tree (Quinlan, 1986). The decision tree is trained using 100 replicates of each
behaviour-fault combination. In the initial published version of this work (O’Keeffe
et al., 2017b), only 1 replicate was used for each behaviour-fault combination. The
change to 100 was prompted by the consistency analysis in the subsequently pub-
lished work (O’Keeffe et al., 2017a), which is described in Chapter 4 of this thesis.
The advantage of using a decision tree for this process over alternative machine
learning approaches – neural networks, for example – is that a decision tree allows
a user to easily ascertain whether or not a feature is discriminatory.

Subsequent experiments are performed for every behaviour-fault combination.
The recorded BFVs of the faulty robot are then used as inputs to the trained deci-
sion tree so that the effectiveness of BFVs as a medium for fault classification can be
observed.

Consideration was not given to the behaviour of non-faulty robots in the swarm,
as noticeable differences in non-faulty robot behaviour were not observed in the
cases tested.

3.4 Results and Discussion

Table 3.1, Table 3.2 and Table 3.3 show the average classification distribution of each
fault type for a decision tree trained on aggregation behaviour when it is applied
to the BFVs produced by faulty robots attempting to perform aggregation, flocking
and obstacle avoidance behaviours, respectively. Table 3.4, Table 3.5 and Table 3.6
display the equivalent information for a decision tree trained on flocking behaviour,
whilst Table 3.7, Table 3.8 and Table 3.9 display the equivalent information for a de-
cision tree trained on obstacle avoidance behaviour. 300 replicate experiments were
performed for each behaviour–fault combination, from which the median average is
taken. Note that both training and test sets of data do not include the first 50 seconds
in which no faults are present.

classified as H1 H2 H3 H4 H5 H6

H1 42% 0% 0% 0% 56% 0%
H2 0% 100% 0% 0% 0% 0%
H3 0% 0% 90% 0% 0% 9%
H4 0% 0% 0% 56% 44% 0%
H5 0% 0% 0% 0% 99% 0%
H6 3% 0% 1% 0% 35% 56%

TABLE 3.1: A table to show each type of fault (row) and the me-
dian average distribution of classifications (column) by a decision
tree trained on a swarm performing aggregation behaviour where test

data is obtained from a swarm performing aggregation behaviour.

Table 3.1, Table 3.2 and Table 3.3 show that for training data obtained during
aggregation behaviour, a decision tree is able to appropriately classify most faults in
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classified as H1 H2 H3 H4 H5 H6

H1 42% 0% 0% 0% 54% 0%
H2 0% 100% 0% 0% 0% 0%
H3 0% 0% 91% 0% 0% 9%
H4 0% 0% 0% 90% 9% 0%
H5 0% 0% 0% 0% 100% 0%
H6 9% 0% 1% 0% 60% 19%

TABLE 3.2: A table to show each type of fault (row) and the me-
dian average distribution of classifications (column) by a decision
tree trained on a swarm performing aggregation behaviour where test

data is obtained from a swarm performing flocking behaviour.

classified as H1 H2 H3 H4 H5 H6

H1 5% 0% 0% 60% 0% 10%
H2 0% 100% 0% 0% 0% 0%
H3 0% 0% 88% 0% 0% 12%
H4 0% 0% 0% 19% 80% 0%
H5 0% 0% 0% 15% 82% 0%
H6 2% 0% 1% 0% 6% 91%

TABLE 3.3: A table to show each type of fault (row) and the me-
dian average distribution of classifications (column) by a decision
tree trained on a swarm performing aggregation behaviour where
test data is obtained from a swarm performing obstacle avoidance

behaviour.

a majority of cases, irrespective of whether or not the normal swarm behaviour has
changed. Power failure faults (H2) are correctly classified 100% of the time across
all normal behaviours. Complete sensor failure (H3) is also correctly classified for
the majority of the time it is present across all behaviours. Partial motor failure
(H5) is correctly classified in the majority of cases for all normal swarm behaviours,
however there is a substantial misclassification as complete motor failure (H4) as
partial motor failure during aggregation and obstacle avoidance behaviour (44% and
80% of the time on average, respectively). Although this is not ideal, for practical
purposes, this does not pose a significant problem for two reasons:

1. Feature thresholds could be altered in order to distinguish between partial and
complete motor failures more effectively. For example, complete motor failure
would produce circular motion with a smaller diameter than partial motor
failure, essentially making this a calibration problem.

2. Complete and partial motor failures will likely have very similar, if not iden-
tical, associated recovery actions. Therefore discriminating between the two
from a practical perspective may be redundant in many scenarios.

For these reasons, the fact that complete motor failure (H4) is misclassified as
being only partial motor failure (H5) during aggregation and obstacle avoidance be-
haviours was not considered to be a problem when conducting this work. It is also
worth noticing that for all instances of complete sensor failure being misclassified
for any normal behaviour, it is classified as partial sensor failure (H6). It follows
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that this should share the same pardon as misclassifications between complete and
partial motor failures.

Where Table 3.1, Table 3.2 and Table 3.3 highlight a potential problem with this
system is in the misclassification of partial sensor failure (H6) as partial motor fail-
ure (H5) for a substantial portion of time during aggregation and flocking behaviours
(35% and 60% of cases on average, respectively). The reason for this is that the effects
of partial motor failure (H5) are most prominently distinct from the effects of other
faults where the swarm is performing obstacle avoidance behaviour. For flocking
and aggregation behaviours, each individual robot in the swarm spends the major-
ity of it’s time turning, rather than moving in a straight line. This obscures the effects
of partial motor failure, which are most obvious when a robot is attempting to move
in a straight line. Additionally, an individual robot that is flocking or aggregating
is likely to have a neighbouring robot within 45◦ of its bearing at a given time, and
therefore will appear to be responding to its neighbour’s positions as normal. These
two factors combined mean that flocking and aggregating robots which suffer from
partial motor failure (H5) or partial sensor failure (H6) will both appear to be behav-
ing normally, and thus similarly, for large periods of time.

The most serious shortfall of using a decision tree trained on data collected dur-
ing aggregation behaviour is the persistent misclassification of software hang (H6),
most prominently as partial motor failure (H5) for normal aggregation and flocking
behaviour, or complete motor failure (H4) for normal obstacle avoidance behaviour.
A high rate of misclassification of software hang faults (H1) is common to almost
every combination of swarm behaviour and trained decision tree used for these ex-
periments, and is discussed in detail at the end of this section.

classified as H1 H2 H3 H4 H5 H6

H1 27% 0% 0% 0% 54% 0%
H2 0% 100% 0% 0% 0% 0%
H3 0% 0% 90% 0% 0% 10%
H4 0% 0% 0% 56% 33% 9%
H5 0% 0% 0% 1% 73 % 25%
H6 0% 0% 1 % 0% 9% 88%

TABLE 3.4: A table to show each type of fault (row) and the me-
dian average distribution of classifications (column) by a decision
tree trained on a swarm performing aggregation behaviour where test

data is obtained from a swarm performing flocking behaviour.

Some similar trends are observed when using a decision tree trained on data
collected whilst the swarm exhibits flocking behaviour. Table 3.4, Table 3.5 and Ta-
ble 3.6 show that power failure H2 is again correctly classified for 100% of the time it
is present for all normal behaviours. Complete sensor failure (H3) is again correctly
classified in the majority of cases for all normal behaviours, with the exception of a
minority of cases where it is classified as partial sensor failure (H6). Software hang
(H6) is again persistently misdiagnosed, this time as partial motor failure (H5), par-
tial sensor failure (H6) or complete sensor failure (H3) according to whether normal
robot behaviour is aggregation, flocking or obstacle avoidance, respectively.

There are also some differences for a decision tree trained on data collected whilst
the swarm exhibits flocking behaviour. For example, partial sensor failure (H6) is
correctly classified for a substantially larger proportion of time, on average 32% and
74% more for test data taken during aggregation and flocking normal behaviour,
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classified as H1 H2 H3 H4 H5 H6

H1 31% 0% 0% 0% 0% 62%
H2 0% 100% 0% 0% 0% 0%
H3 0% 0% 91% 0% 0% 9%
H4 0% 0% 0% 90% 4% 5%
H5 0% 0% 0% 0% 49% 49%
H6 0% 0% 1% 0% 4% 93%

TABLE 3.5: A table to show each type of fault (row) and the me-
dian average distribution of classifications (column) by a decision tree
trained on a swarm performing flocking behaviour where test data is

obtained from a swarm performing flocking behaviour.

classified as H1 H2 H3 H4 H5 H6

H1 0% 0% 84% 0% 0% 12%
H2 0% 100% 0% 0% 0% 0%
H3 0% 0% 88% 0% 0% 12%
H4 0% 0% 4% 19% 4% 72%
H5 0% 0% 3% 15% 8% 73%
H6 0% 0% 3% 0% 2% 95%

TABLE 3.6: A table to show each type of fault (row) and the me-
dian average distribution of classifications (column) by a decision tree
trained on a swarm performing flocking behaviour where test data is

obtained from a swarm performing obstacle avoidance behaviour.

respectively. This result would suggest that the ambiguity between partial sensor
failure (H6) and partial motor failure (H5) that was observed when the decision
tree was trained on data collected during aggregation behaviour had been reduced.
However, partial motor failure (H5) is frequently misclassified as partial sensor fail-
ure (H6) for all normal behaviours, demonstrating that ambiguity between the two
faults remains for for a decision tree trained on data collected during flocking be-
haviour, but that the shared characteristics are now assigned preferentially to partial
sensor failure (H6) by the decision tree. Complete motor failure (H4) is misclassi-
fied as partial sensor failure (H6) for the majority of the time it is present where the
swarm is performing obstacle avoidance behaviour. This is unsurprising given the
shared characteristics of complete motor failure (H4) and partial motor failure (H5).

Table 3.7, Table 3.8 and Table 3.9 show that for training data obtained whilst
the swarm exhibits obstacle avoidance behaviour, power failure (H2) is once again
classified correctly in 100% of cases for all normal behaviours, and complete sensor
failure (H3) is either correctly classified or classified as partial sensor failure (H6) for
all normal behaviours. Software hang (H1) is again misclassified for a majority of
the time during aggregation and flocking behaviours. However, the decision tree
trained on data collected whilst the swarm exhibits obstacle avoidance behaviour
is uniquely able to classify software hang (H1) appropriately for the majority of the
time it is present during normal obstacle avoidance behaviour.

Table 3.7, Table 3.8 and Table 3.9 display a number of similarities to the exper-
iments where the decision tree was trained on data collected whilst the swarm ex-
hibits aggregation behaviour (Table 3.1, Table 3.2 and Table 3.3). For example, com-
plete motor failure (H4) is correctly classified or classified as partial motor failure
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classified as H1 H2 H3 H4 H5 H6

H1 27% 0% 0% 0% 57% 0%
H2 0% 100% 0% 0% 0% 0%
H3 0% 0% 90% 0% 0% 10%
H4 0% 0% 0% 56% 44% 0%
H5 0% 0% 0% 0% 99% 0%
H6 0% 0% 1% 0% 40% 56%

TABLE 3.7: A table to show each type of fault (row) and the me-
dian average distribution of classifications (column) by a decision
tree trained on a swarm performing obstacle avoidance behaviour
where test data is obtained from a swarm performing aggregation

behaviour.

classified as H1 H2 H3 H4 H5 H6

H1 31% 0% 0% 0% 54% 4%
H2 0% 100% 0% 0% 0% 0%
H3 0% 0% 91% 0% 0% 9%
H4 0% 0% 0% 90% 9% 0%
H5 0% 0% 0% 0% 100% 0%
H6 0% 0% 1% 0% 61% 37%

TABLE 3.8: A table to show each type of fault (row) and the me-
dian average distribution of classifications (column) by a decision tree
trained on a swarm performing obstacle avoidance behaviour where

test data is obtained from a swarm performing flocking behaviour.

classified as H1 H2 H3 H4 H5 H6

H1 85% 0% 0% 0% 0% 9%
H2 0% 100% 0% 0% 0% 0%
H3 0% 0% 88% 0% 0% 12%
H4 0% 0% 0% 19% 80% 0%
H5 0% 0% 0% 15% 85% 0%
H6 0% 0% 1% 0% 8% 91%

TABLE 3.9: A table to show each type of fault (row) and the me-
dian average distribution of classifications (column) by a decision tree
trained on a swarm performing obstacle avoidance behaviour where
test data is obtained from a swarm performing obstacle avoidance

behaviour.

(H5) in the vast majority of cases for all normal behaviours. Likewise, partial mo-
tor failure (H5) is either correctly classified or classified as complete motor failure
(H4). Furthermore, there is a high rate of misclassification of partial sensor failure
(H6), which is frequently misclassified as partial motor failure (H5) during normal
aggregation and flocking behaviours.

For all experiments, a notably high rate of correct classification across all be-
haviours for a robot exhibiting power failure (H2) – 100% of all cases tested. The
reason for this is that a robot exhibiting power failure will produce a feature vector
that is not only distinct from that of any of the other fault types, but also one that
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will remain largely constant. The only features that will change once a robot experi-
ences a power failure will be externally sensed neighbour features. All other features
will return 0 for the entire duration of the failure. It can be observed in Figure 3.9,
Figure 3.10 and Figure 3.11 that a robot will be classified with a power failure when
feature Fp

4 (t), corresponding to proprioceptively estimated motion, returns 0. This
is a characteristic unique to a power failure fault, as for all other faults the robot
controller will still attempt to keep the robot moving, making it immediately recog-
nisable.

For all experiments, with the exception of those which inform Table 3.9, a persis-
tently high rate of misclassification of software hang (H1) is observed. The reason
for this is that software hang can produce entirely different behaviours depending
on what the robot was doing at the point of fault injection. For example, if a decision
tree is trained on data software hang was injected whilst the robot was moving in
a straight line and then applied to a new instance of software hang that is injected
whilst the robot is turning, two very different BFVs are produced over time for the
same type of fault. Furthermore, if the robot is moving in a straight line and has
no neighbours in sensing range at the point of fault injection, the resultant faulty
behaviour is indistinguishable from complete sensor failure (H3) by its BFV.

How an individual fault might produce several different behaviours, dependent
on external factors, is something that was not anticipated in the work described in
this chapter. However, consideration to this may be very important, if not essen-
tial, to a reliable fault diagnosis mechanism. Another absent consideration from this
work, and one that could have decreased misclassification, is how different fault
types may produce distinct time-dependent BFV patterns. Observing software hang
over a period of time would make the fault easily identifiable, as a static propriocep-
tive BFV would be observed for a changing externally estimated BFV.

Visualising the trained decision trees in Figure 3.9, Figure 3.10 and Figure 3.11
shows that all 10 estimated features were used in the classification process for each
tree, making them discriminatory. The bounds used for each decision are all set to
0.5, as this represents the midpoint between the potential values each feature can as-
sume (0 and 1). As each feature is Boolean, the decision tree would give an identical
output for 0 < ∀b < 1.

Table 3.10 shows that overall performance of each decision tree is greatest when
swarms perform the same behaviour in training and test data (with the exception
of the decision tree trained on data collected whilst the swarm exhibits flocking be-
haviour, which performs marginally better on test data obtained whilst the swarm
exhibits aggregation behaviour). This is unsurprising, as it follows logically that the
BFVs produced by faults will be most similar between two robots which, along with
the rest of the swarm, are attempting to perform the same normal behaviours. Ta-
ble 3.10 also shows that for any combination of normal behaviours exhibited during
test data and training data, each decision tree is able to appropriately classify the six
fault types in a majority of cases.

3.5 Summary

The work described in this chapter has shown that by characterising robot behaviour
as BFVs, different fault types can be classified with a generally high reliability. How-
ever, there are still a number of issues to address, such as how a system can reliably
diagnose fault types which can manifest in different ways, or consideration of how
faults can be diagnosed online and in real-time using robot BFVs without relying on
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FIGURE 3.9: Visual representation of the decision tree trained on data
collected whilst the swarm exhibited aggregation behaviour where
p and e indicate proprioceptively and externally estimated features,

respectively.

FIGURE 3.10: Visual representation of the decision tree trained on
data collected whilst the swarm exhibited flocking behaviour where
p and e indicate proprioceptively and externally estimated features,

respectively.
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FIGURE 3.11: Visual representation of the decision tree trained on
data collected whilst the swarm exhibited obstacle avoidance be-
haviour where p and e indicate proprioceptively and externally es-

timated features, respectively.

(Test Data)
(Training data) Aggregation Flocking Obstacle avoidance

Aggregation 83% 77% 82%
Flocking 80% 77% 57%
Obstacle 81% 78% 96 %

TABLE 3.10: A comparison of the median average proportion of cor-
rectly classifed faults for training and test data collected during all

combinations of normal swarm behaviour

a priori models of robot behaviour – although decision tree algorithms can be useful
for identifying discriminating features, their inflexibility makes them unsuitable for
the fault tolerant approach envisaged by this work.

The following chapters detail the work towards a practical fault diagnosis system
for robot swarms, whereby faults can be associated with a recovery option via a
series of diagnostic tests and a process of trial and error, after which the BFVs of
subsequent faults can be tested for similarities to known faults. The results described
in this chapter support the hypothesis that, if this can be accomplished, it is possible
to diagnose faults by the similarities observed between faulty robot BFVs of a given
type.
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Chapter 4

Fault Diagnosis in Software
Simulation: Part I

4.1 Introduction

The previous chapter detailed the initial investigation into the suitability of Be-
havioural Feature Vectors (BFVs) for classifying different types of faults. The results
obtained showed promise, and the decision was made to continue working with
BFVs (albeit with some modifications).

The work discussed in this chapter used BFVs to encode robot behaviour, al-
lowing for BFV-signatures to be obtained for different types of faults. These were
then used as the basis for an immune-inspired fault diagnosis mechanism, whereby
faults could be diagnosed and resolved more efficiently if the swarm had already
been exposed to them.

This chapter describes the conception of a novel fault diagnosis algorithm, and
the design and testing of an initial prototype in software simulation, using the sys-
tem described and results obtained in the previous chapter as an experimental basis.

4.2 Fault Diagnosis for Swarm Robots

To conceive of a novel approach to fault diagnosis in robot swarms, the vertebrate
immune system is examined at a high level as a benchmark for what artificial im-
munity should encompass and be able to achieve.

The vertebrate immune system is observed to be able to recover its host body
from harm and illness with which its host was previously unfamiliar (Capra et al.,
1999). This is a characteristic that any approach towards artificial immunity will
need to reproduce to some degree. Of equal importance is the natural immune sys-
tem’s ability to remember what it has previously learned, allowing it to recover from
known illnesses in a more efficient manner (Capra et al., 1999).

When the vertebrate immune system encounters an infection, the lymphocytes
that recognise pathogens proliferate and differentiate (Owen, Punt, and Stranford,
2013). Once the pathogens have been destroyed, most of the immune cells that were
involved in the immune response are eliminated, except for a small population of
long-lasting elements made up of the immune cells which most effectively fought
the pathogens (Floreano and Mattiussi, 2008), known as memory cells (Kindt et al.,
2007). These cells have an increased sensitivity to antigens and will prompt a faster
immune response should their host encounter the same pathogen again (Floreano
and Mattiussi, 2008). As this process is invaluable in maintaining a host organism
for a natural immune system, so too will it be for maintaining a robot swarm – an
Artificial Immune System (AIS) should seek to minimise any down-time within a
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swarm as this is where the system will be most vulnerable to further faults. For ex-
ample, for emergent behaviours requiring n functioning robots, the swarm system
will be less vulnerable to faults, in terms of task performance, if it consists of n + 1
functioning robots than the bare minimum n. AIS should not only be able to diag-
nose faults that are occurring for the first time, but also be able to characterise these
faults for comparison against any other faults that might occur in the future. When
subsequent faults do occur, the system should be able to recognise if that fault is
similar to one it has previously encountered and diagnose it more efficiently.

Recalling that artificial immunity consists of fault detection, fault diagnosis and
recovery (FDDR) (Millard, 2016), fault diagnosis is situated between fault detection
and fault recovery. Each of the sub-processes are inter-related, meaning that fault di-
agnosis cannot be thoroughly examined without consideration of how it integrates
with fault detection and recovery. In the early experiments for the work in this chap-
ter it became evident that reliably classifying or diagnosing faults in real time nec-
essarily required a means of fault detection. To illustrate, if a robot was trying to
diagnose a fault in its neighbour based on the previous t seconds of its neighbour’s
behaviour, a reliable diagnoses could only be made if the neighbour’s behaviour
adequately reflected its fault type. If, on the other hand, the neighbour had a fault
with its left motor but was turning on its left wheel, it would appear to be behav-
ing normally. The work described in this chapter towards fault diagnosis, and in all
subsequent chapters in this thesis, therefore includes an approach to fault detection
(although fault detection is not examined to the same degree in this thesis).

In Chapter 3 it was demonstrated that BFVs could be used to classify different
types of fault in a robot swarm using a decision tree. A drawback to this approach,
that was outlined in the previous chapter, is that supervised learning techniques are
inflexible in this context; they require a comprehensive set of training data (which it
may not always be possible to produce, particularly in hardware systems) and are
unable to recognise a lack of shared characteristics. A recurrent problem in the work
described in chapter 3 was that a trained model would categorise a fault in line with
the training data to which it was most similar – even if this similarity was not sig-
nificant – sometimes resulting in misclassification. It was therefore speculated for
the work in this chapter that an unsupervised-learning technique could provide bet-
ter solutions to fault diagnosis based on BFVs – this would also allow the system
to retain one of the advantages of BFVs, highlighted by Tarapore, Christensen and
Timmis (2017) in their work on fault detection, which is that a trained model is not
required in order to gain valuable insight into robot behaviour. Adopting this ap-
proach facilitates the integration of fault detection and diagnosis, as is desired, with
a common medium for behaviour representation and in an unsupervised manner.

4.3 Experimental Method

Work towards novel fault diagnosis for robot swarms began with the same system
used in the previous chapter. Namely, using Autonomous Robots Go Swarming
(ARGoS) (Pinciroli et al., 2011) to generate a swarm of 10 simulated models of the
marXbot (Bonani et al., 2010) swarm robotic platform. These robots again exhibit
flocking, aggregation, and dispersion swarm behaviours. In all of these behaviours,
each robot moves in response to the location and proximity of its neighbours, so a
normally functioning robot will always be motional.

The same faults types as described in the previous chapter were used again for
this work, namely:
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The faults considered in this work are:

• Software hang (H1): This fault will cause a robot to get stuck performing what-
ever action it was performing at the last moment it was normally functioning.

• Power failure (H2): A robot that suffers a power failure will completely stop
moving and remain unresponsive to its surroundings.

• Complete Sensor failure (H3): For a complete sensor failure an individual
robot will be unable to detect the presence of any neighbours, light sources or
obstacles.

• Complete Motor failure (H4): A complete motor failure will cause one of the
afflicted individual’s motors to stop and henceforth become unresponsive to its
controller. The other motor will remain functional, meaning that the afflicted
robot will either stop completely if it is trying to turn using its faulty motor, or
otherwise be limited to turning on the spot.

• Partial Motor failure (H5): For partial motor failure the individual’s faulty
motor will remain responsive, however it will only allow its associated wheel
to turn at half speed.

• Partial Sensor failure (H6): For a partial sensor failure a robot will only be
able to detect the presence of neighbours, light sources and obstacles within
±60 ◦ of its current heading. This angle is increased from the value of ±45
◦ used in the previous chapter in order to try and make H6 more separable
from H4, however all subsequent experiments suggested that this change was
of negligible consequence to any performance metric.

4.3.1 Deriving Behavioural Feature Vectors

Although BFVs remove the need for a priori information on robot behaviour for the
purposes of producing a classification model, a priori knowledge of the SRS is still
required to define BFVs that can be used to discriminate between fault types. This
knowledge will include information on individual robot hardware and robot be-
haviours. The work described in the previous chapter showed that deriving fea-
tures exclusively from robot hardware and normal behaviours did not produce a
comprehensive enough faulty behaviour representation to reliably diagnose every
type of fault considered. This was largely because some faults, depending on en-
vironmental circumstances, could cause the afflicted robot to deviate from normal
behaviour in a number of distinct ways. In order to effectively utilise BFVs for the
purpose of fault diagnosis, the types of faults that are likely to occur in individual
robots should also be considered. Although not applicable to this work, which uses
predetermined fault types, there exists techniques for identifying and anticipating
the types of faults robot hardware could be susceptible to, such as Failure Mode and
Effect Analysis (FMEA) (Dailey, 2004) or Fault Tree Analysis (FTA) (Ericson and Ll,
1999).

This work initially follows the process of atomising swarm behaviours into indi-
vidual robot sub-behaviours and conditions described in the previous chapter, ini-
tially arriving at the same set of Boolean features:

F1(t) = 1 if NR(t) > 0, otherwise F1(t) = 0 (4.1)
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where NR(t) is the total number of neighbours in sensing range (approximately 1m)
of the robot at time t.

F2(t) = 1 if NC(t) > 0, otherwise F2(t) = 0 (4.2)

where NC(t) is the total number of neighbours at a distance less than the close prox-
imity threshold, C, (approximately 0.3m) from the robot at time t.

F3(t) = 1 if |v(t)| > 0.8|vmax|, otherwise F3(t) = 0 (4.3)

where |v(t)| is the magnitude of linear velocity at time t and |vmax| is the maximum
linear velocity a robot can achieve (approximately 5cms−1 in this work).

F4(t) = 1 if |v(t)| > 0.2|vmax|, otherwise F4(t) = 0 (4.4)

F5(t) = 1 if |θ(t)| > 0.4|θmax|, otherwise F5(t) = 0 (4.5)

where |θ(t)| is the magnitude of angular velocity at time t and |θmax| is the maximum
angular velocity a robot can achieve (approximately 24◦s−1 in this work).

In the work described in the previous chapter, software hang, H1, was by far the
most difficult fault to reliably diagnose, and was often misclassified. The reason for
this was that, depending on environmental circumstances, the afflicted robot could
deviate from normal behaviour in a number of very different ways. To compensate
for this, a final feature, F6(t), inspired by the watchdog timer (Huang and Selman,
1986) commonly found in embedded systems, was added to the BFV. If H1 is present
in a robot, its feature F6 will return a value of 1 – providing a common characteristic
for every instance of software hang.

F6(t) = 1 if H1 = True, otherwise F6(t) = 0 (4.6)

The close proximity threshold, C, is the distance at which robots will turn away
from each other in order to avoid collision (approximately 30cm again).

Whilst the feature vector BFV(t) = [F1(t), F2(t), F3(t), F4(t), F5(t), F6(t)] is only
one possible imagining of a BFV for this system, F1−5 were demonstrated to be each
individually discriminatory when a decision tree was used to classify the same six
fault types, and the utility of F6 (or some alternative) was highlighted in the previous
chapter.

As in Chapter 3, each robot estimates its own BFVs proprioceptively as well as
exteroceptively estimating the BFVs of any of its neighbours in range.

4.3.2 Integrated Fault Diagnosis System

Detailed in this section is the initially proposed system for fault diagnosis, and how
it is integrated with provisional fault detection and recovery mechanisms for an au-
tonomous approach to FDDR. An overview of the system is given by Figure 4.1.

Fault Detection

Each of the faults described here and in the previous chapter will cause some dis-
crepancy between proprioceptively estimated features, Fp

1−6, and exteroceptively es-
timated features, Fe

1−6. Using this as a fault detection mechanism ensures that faults
are represented in the set of BFVs that are then analysed for diagnosis. For the work
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FIGURE 4.1: A flowchart of the proposed fault diagnosis process.

described in this chapter and in those following, faults are detected according to
Equation 4.7.

fault detected at time t = true if
T

∑
t=T−W

d(t) ≥ ρW for T > W (4.7)

Where T indicates the time elapsed since a robot started being observed by a
neighbour. The binary value d is set according to Equation 4.8, where d = 0 if
there is agreement between exteroceptively and proprioceptively estimated robot
features. A robot will make W observations of its neighbour, once per control-step,
at discrete times, t, before a fault can be detected, where t indicates the time elapsed
since the start of an experiment. The value of ρ indicates what proportion of the W
observations must prompt the value of d to be equal to 1 in order for a fault to be
detected.

d(t) =

{
0 if Fp

i (t) = Fe
i (t) for i = 1, .., 6

1 otherwise
(4.8)

The variables in Equation 4.7 are investigated in the following chapter. However,
for the work described in this chapter, the values were set after a process of trial and
error as follows:

• W = 100

• ρ = 1

This means that faults are detected when a persistent discrepancy is observed
between a robot’s proprioceptively and exteroceptively estimated BFV states over
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100 consecutive control steps. This approach to BFV-based fault detection, whilst far
simpler than that presented by Tarapore, Christensen and Timmis (2017), shares the
benefit of not needing an a priori model of faulty behaviour.

When a fault is detected in a robot by another member of the swarm, the set of
BFVs, comprising the faulty robot’s proprioceptively estimated features and the de-
tecting robot’s exteroceptively estimated features for the faulty robot, which prompted
the fault to be detected, can be used as the BFV signature for that particular fault.

Fault Diagnosis

The previous chapter showed that BFVs are an effective medium for comparing fault
signatures where there is a known reference for each type of fault. However, con-
structing a priori models of faulty robot behaviour negates the advantages of BFV-
based fault detection, as described by Tarapore, Christensen and Timmis (2017). To
retain these advantages, there needs to be a way of associating fault categories with
their respective BFV signatures online.

As the types of fault that may occur in robots can be anticipated using techniques
such as FMEA and FTA, it is a realistic possibility to design a series of tests that can
isolate the root cause of the fault. These tests can be assessed in real-time by another
robot in the swarm, in a similar fashion to the diagnostic manoeuvres used by Kutzer
et al. (2008), which declares itself as the assessing robot once it detects a fault in its
neighbour. These tests are designed in sympathy with each type of fault such that
a robot will only be able to pass the test if it is not affected by its corresponding
fault type. A robot performs every test in sequence – a brute-force approach to fault
diagnosis – until it passes them all or it fails one, which indicates the presence of an
associated fault. In this manner, different categories of fault can be identified and
thus associated with their BFV signatures in the first instance.

When an assessing robot initiates a diagnostic test routine, it approaches the
faulty robot and instructs it to stop moving so that it can begin its assessment. Whilst
it is performing its diagnostic routine, the assessing robot will also act as a beacon,
instructing other approaching robots in the swarm to turn away so as not to interfere.

The diagnostic tests are arranged in order such that the faults which most severely
inhibit robot behaviour are tested for first, as some faults could obscure the test re-
sults for others. For example, a robot suffering power failure would also fail motor
and sensor tests. The diagnostic tests used for the work in this chapter, and the
respective faults they test for, are as follows:

• Software hang (T1): This occurs immediately after the assessing robot moves
into testing range. In order for the faulty robot to perform later diagnostic tests,
it must be able to communicate with the assessing robot. To establish this com-
munication, the assessing robot first pings the faulty robot and instructs it to
stop moving. If the faulty robot is suffering from software hang, it will disre-
gard this request. If the faulty robot is persistently unreachable and ignores the
assessing robot’s stop request, it will be diagnosed as having a software hang
fault. This assumes that communication between normally operating robots is
reliable.

• Power failure (T2): Almost identical to T1, however in cases where the robot
is suffering from power failure it will also stop moving. The assessing robot
therefore diagnoses power failure in instances where the faulty robot is un-
reachable but stationary. It is acknowledged that this would only work for
normal behaviours where robots should always be in motion. For a swarm
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exhibiting behaviour that necessitated periods where the robot was stationary,
the relationship between T1 and T2 would have to be revised.

• Complete Sensor failure (T3): Once the faulty robot has been established as
responsive to the assessing robot, the two robots should have settled within
range of each other – something that will be reflected in their BFV. A complete
sensor failure is diagnosed if the faulty robot’s feature Fp

1 returns a value of 0.

• Complete Motor failure (T4): The faulty robot is asked to spin on its right and
left wheels. If the faulty robot receives and processes this request but is unable
to perform one or both of the turns, it is decided that the robot is suffering from
complete motor failure. This is ascertained by monitoring the faulty robot’s
feature Fe

4 , where a returned value of 0 indicates the robot has failed the test.

• Partial Motor failure (T5): Having established that both of its motors are re-
sponsive, the faulty robot is then asked to demonstrate that both motors work
together as they should. The faulty robot is asked to move forward in a straight
line. If the faulty robot is observed to move in an arc or otherwise deviate from
moving in a straight line, it is decided that the faulty robot is suffering from
partial motor failure. This is achieved by monitoring the faulty robot’s feature
Fe

5 , where a returned value of 1 indicates that the robot has failed the test.

• Partial Sensor failure (T6): To test for partial sensor failure, the faulty robot
performs a 360◦ turn whilst acknowledging the presence of the assessing robot.
If the faulty robot fails to acknowledge the assessing robot for any period of
this turn, the robot is decided to be suffering from partial sensor failure. Partial
sensor failure is sometimes diagnosed as complete sensor failure if the assess-
ing robot initially approaches the faulty robot from an angle that is beyond its
now impaired line of sight. It is not clear how this could be resolved without
significantly increasing the time taken to perform the diagnostic tests. Further-
more, as both faults share the same recovery option, it does not truly represent
a problem for the system.

In each of these tests, the condition for failure must be met for 10 consecutive
control steps by the robot before it is considered to have failed the test.

The use of a finite number of pre-written diagnostic tests will only allow for the
diagnosis of a finite number of distinct categories – something that could be con-
sidered inflexible. However, it is proposed that there is an equivalence between this
approach and a high level understanding of the vertebrate immune system. The ver-
tebrate immune system is reliant on an exceedingly large lymphocyte repertoire that
has the ability to bind to an exceedingly large number of potential pathogens (Owen,
Punt, and Stranford, 2013). This property is the product of cross-generational evolu-
tion rather than something learned in the lifespan of a single host body (although the
specific composition and distribution of the repertoire does change during host life
span). For a swarm robotic system with finite functionality, there will, at a high level,
be a finite number of discrete fault types a robot can be affected by, such as actuator
failure, sensor failure or power failure. Each of these faults can theoretically then be
identified by a corresponding diagnostic test. It is proposed that the resulting reper-
toire of diagnostic tests that resolve these fault types can be considered analogous to
the lymphocyte repertoires observed in the natural immune system – and the use of
techniques like FMEA to identify a series of fault types analogous to natural evolu-
tions spurring of the production of lymphocyte repertoires in individual host bodies
(albeit an accelerated version). In the event that a fault occurred in a robot that did
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not fall into one of the identifiable categories, or for any reason was not recognisable
as such, the effect would be the same as when the natural immune system is unable
to recognise or remove harmful pathogens; the problem persists and, if the host is
not tolerant, it eventually perishes.

Fault Recovery

When a fault is diagnosed, the system must be able to ascertain whether or not the
diagnosis was appropriate. This is done by carrying out a corresponding recovery
action and then subsequently observing the faulty robot to check whether the fault
persists. All six fault types used for this work are resolved by one of three recovery
actions:

• Power Cycle (R1): It is assumed for this work that, when a robot has its power
cycled, it is turned back on with a new or replenished power source. This
recovery action resolves software hang (H1) and power failure (H2) faults.

• Sensor Replacement (R2): Replacement of robot sensors resolves complete
and partial sensor failures (H3 and H6, respectively).

• Motor Replacement (R3): Replacement of robot motors resolves complete and
partial motor failures (H4 and H5, respectively).

It is acknowledged that carrying out these proposed recovery actions autonomously
with the marXbot platform is not realistic at the time of writing, and all recovery ac-
tions are simulated for this work. However, it is anticipate that future swarm robotic
platforms will possess the ability to perform similar actions and, as with the selec-
tion of faults H1−6, the diagnosis system presented here is designed with intention
of being implemented on such a platform in the future.

When a recovery action is executed, the faulty robot continues to be observed
by the assessing robot. If the faulty robot’s exteroceptively and proprioceptively
estimated BFVs match after a recovery action has been performed, the fault is con-
sidered to be resolved.

The work performed for this chapter was intended to provide a proof-of-principle
for the proposed method of fault diagnosis. As such, the tests T1−6 were coded such
that they would always successfully arrive at the correct diagnosis. More realistic
scenarios, such as where the diagnostic tests failed to identify a fault, or misdiag-
nosed a fault type, were investigated in later work which is detailed in the subse-
quent chapters of this thesis.

4.3.3 Fault Memory

The diagnostic tests (T1−6) take a relatively long time to run reliably and, in a swarm
system, will require at least one additional robot to postpone its primary task in
order to ascertain which tests the supposedly faulty robot passes or fails (outcome
of diagnostic tests must be concluded exogenously so that they are not subject to
the problems associated with endogenous fault detection (Christensen et al., 2008)).
Repeatedly removing robots from the swarm will jeopardise long-term autonomy.
Furthermore, the natural immune system is observed to recover more quickly from
illness after its host’s initial exposure to it. The system proposed here attempts to
mimic this capability as follows:

Each time a fault is successfully resolved, the BFV signature for that fault and the
respective diagnosis are stored in the doctor robot’s memory, which is then shared
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with other members of the swarm via local communication. When subsequent faults
occur, the BFV representations of those faults can be checked for similarity against
the BFV representation of previous faults.

Similarity between two faults is established by finding the Pearson correlation
coefficient (Benesty et al., 2009) between their BFV signatures (Equation 6.3):

r = ∑m ∑n(Fmn − F)(F0mn − F0)√
(∑m ∑n Fmn − F)2(∑m ∑n F0mn − F0)2

(4.9)

Where r is the correlation coefficient between a current and previous fault signature,
F and F0, respectively, where F and F0 are two dimensional binary data sets. F and
F0 are the mean values of sets F and F0, respectively, and m and n indicate positional
index within the 2D binary data set (the specific orientation of m and n is arbitrary
for this equation).

When attempting to diagnose a fault from memory, the previously stored fault
which produces the greatest r-value (Equation 6.3) is considered the most likely fault
type and recovery is initiated in sympathy with that fault. The minimum r-value
required for two faults to be considered similar, and thus eligible for this process,
was set to 0.66 for this work (however this value is investigated thoroughly in the
subsequent chapters of this thesis).

The system proposed here is adaptive; the previous chapter discussed how in-
dividual fault types could affect robots in different ways, according to the robot’s
circumstances. This is similar to the evolution of pathogens which makes it harder
for the vertebrate immune system to detect and destroy them. In this system, as long
as a fault is detectable and diagnosable by tests T1−6, its BFV representation will be
committed to memory. In this way the system’s representation of each fault type
is dynamic and can evolve in real time, as the vertebrate immune system is able to
adapt to evolving pathogens (Floreano and Mattiussi, 2008). It is therefore argued
that this system, at a high level, mirrors the desirable characteristics of the vertebrate
immune system described earlier in this chapter.

4.3.4 Experiments

In each experiment a swarm of 10 simulated marXbots collectively perform flock-
ing (Algorithm 1), aggregation (Algorithm 2) or dispersion (Algorithm 3) behaviour
in an otherwise empty enclosed arena of approximately 16 square metres (see Fig-
ure 3.8). Simulated Gaussian noise is added to robot orientation sensors (µ=0, σ=1
◦
), range and bearing sensors (µ=0, σ=3cm) and the overhead sensor (µ=0, σ= 5%

dmax) where dmax is the maximum distance that a robot can travel in a single con-
trol step (approximately 0.5cm). The noise on the overhead sensor is applied to the
co-ordinate values for each robot.

The experiments run for 36000 control steps, representing one hour of simulated
time. As in the experiments in the previous chapter, the swarm’s normal behaviour
is randomly selected from one of the three predefined swarm behaviours, and is
updated randomly after every 5000 control steps (500 seconds). A fault is injected
at random into a robot after 500 control steps of normal behaviour. Only one robot
can be faulty at a time. Faults are detected according to Equation 4.7. When a fault
is resolved, another 500 control steps elapse before a new fault is injected again.
This approach means that every time an experiment is run, the swarm exhibits a
variety of behaviours and is subjected to a variety of faults – very often exhausting
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all possible combinations. For this reason it is proposed that the results obtained in
this work satisfy the conditions for swarm flexibility (Şahin, 2005).

The experiments described in this chapter, and throughout the remaining chapter
of this thesis, do not investigate instances of false-positive fault detection. Therefore,
if a fault is detected in a given robot it is because there is a fault is present in that
robot. The reason that instances of false-positive fault detection are omitted from
this study is that it was initially assumed that, whilst a nuisance, a robot that was
incorrectly detected as faulty would comfortably be able to pass each diagnostic test
(T1−6), and therefore be recognised as normally functioning by the swarm. It was
also assumed that fault diagnosis and fault detection would be generally separable
processes and that by focusing on fault diagnosis in this thesis, integration with fault
detection could be safely relegated to future work until such a time as detection and
diagnostic processes had independently developed to a sufficient level. Both of these
assumptions are challenged by the results of experiments that were later conducted
for this thesis, and this is discussed in Chapter 7.

Proprioceptively sensed features are estimated by each individual robot, using
its on-board sensors for Fp

1 and Fp
2 , its controller for Fp

3 , Fp
4 and Fp

5 or a watchdog-
inspired internal counter for Fp

6 . BFVs are estimated exteroceptively using a virtual
sensor to obtain co-ordinate information for each neighbouring robot at each time
step. As with the experiments in the previous chapter, the use of an overhead sensor
can be thought of as equipping each robot with its own virtual range and bearing
sensor – similar to the approach taken by O’Dowd, Winfield and Studley (2011). The
proposed system therefore still meets the criteria for swarm research, as specified by
Şahin (2005), and is conceptually distributed.

Each robot writes fault information to its own circular buffer with 18 places (three
times the number of distinct fault categories) as it was considered unlikely in this
case that a fault category would be passed out of memory once it had been encoun-
tered. The exact number of places will vary for different systems depending on the
hardware used and memory space available. Storing fault memory to a circular
buffer makes the system scalable by preventing the gradual accumulation of fault
data to the software/hardware limitation of whatever platform the system is imple-
mented on, and thus does not inhibit long-term autonomy.

When a fault type and its associated BFV signature is stored in an assessing
robot’s memory, the assessing robot then passes the information to any other swarm
robots it comes within range of, these robots then do likewise and so on. This simu-
lates the swarm robots sharing and updating fault memory via an ad-hoc network.

The criteria used to characterise our system’s performance during these experi-
ments are as follows:

• P1: The proportion of faults the system is able to diagnose from memory

• P2: The proportion of attempts to diagnose a fault from memory that result in
misclassification

• P3: The average r-value between faults, using Equation 6.3, when diagnosing
from memory

For all experiments 100 replicates are performed. This number of replicates was
selected after performing consistency analysis (Read et al., 2012) to find the point at
which performing additional replicates does not alter the median value of the entire
set. This was achieved by using the SPARTAN package (Alden et al., 2013) on P1, as
this is considered this the most indicative measure of overall system performance.
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FIGURE 4.2: This figure shows the A-Test scores for the proportion
of faults the system is able to diagnose from memory (P1) and the
proportion of attempts to diagnose a fault from memory that result
in misclassification (P2). 19 subsets of 100 experimental replicates are

tested (1900 total experiments).

Figure 4.2 shows the A-Test scores for the proportion of faults the system is able to
diagnose from memory (P1) and the proportion of attempts to diagnose a fault from
memory that result in misclassification (P2). For 19 sets of 100 experimental repli-
cates, the A-Test scores for P1 and P2 tend to fall around a = 0.5, which means that
the median averages of P1 and P2 converge for 100 experimental replicates (although
P2 converges with a lower number of experimental replicates, which is indicated in
Figure 4.2 by the A-Test score falling closer to a = 0.5).

4.4 Results and Discussion

For the experiments described in this chapter, the median average proportion of
faults that were successfully diagnosed and resolved by their similarity to previously
encountered faults, P1, was 0.71

Across all experiments, where the system attempted to diagnose a fault using
Equation 6.3, it arrived at an appropriate recovery option R1−3 in almost all cases
(median average 100%). Therefore, the median average proportion of diagnostic
attempts resulting in misclassification made by the system, P2, is a remarkably low
0. To be clear, the system does occasionally misclassify a fault from memory, however
these instances represent a tiny minority of cases.

Of the small number of cases where the system does misclassify a fault when
attempting to diagnose from memory, a significant proportion occur in instances
where normal swarm behaviour had changed since the last instance of the fault was
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H1 H2 H3 H4 H5 H6

Total 18 0 1 3 3 2
Behavioural Inconsistency 5 0 1 1 0 0
Fault Forgotten 0 0 0 1 3 0

TABLE 4.1: Total instances of attempts to diagnose from memory that
resulted in misclassification (P3).

H1 H2 H3 H4 H5 H6 Hm
0.95 0.92 0.93 0.97 1.00 0.92 0.71

TABLE 4.2: Median average correlation coefficients, P3 (±σ), for diag-
noses from memory over 100 replicates.

committed to memory (behavioural inconsistency), or where the last instance of the
fault had simply been passed out of memory (fault forgotten). Table 4.1 shows that
41% of all misclassifications occurred in such cases. Unsurprisingly, the most com-
monly misclassified fault was software hang, H1 – the variable nature of which was
discussed in chapter 3.

Interestingly, in all cases where faults were misclassified, the misclassification
occurred with a relatively low associated correlation coefficient, r. Table 4.2 details
the average r-values with which each fault is diagnosed from memory in the 100
experiment replicates, where Hm indicates a misclassification.

Table 4.2 shows that, whilst all correct diagnoses from memory typically occur
with an r-value between 0.92− 1.00, instances of misclassification occur with an r-
value at around 0.71. Interestingly, all diagnoses of partial motor failure, H5, occur
with a very high r-value. This is because H5 is only ever detected during obstacle
avoidance behaviour. The reason for this is that H5 does not cause a robot to devi-
ate from normal behaviour significantly enough to be detected during flocking or
aggregation behaviours. This means that every subsequent instance of H5 occurs
under very similar circumstances.

In all 100 experiments, there was no instance of misclassification that occurred
with an r-value greater than 0.74. An obvious way to reduce instances of misclassi-
fication would therefore be to increase the required threshold for a fault to be diag-
nosed from memory from 0.66 to equal to or greater than 0.74. This would remove
all instances of misclassification from the data, which would now simply have the
diagnostic tests run on them. Given that this has to occur anyway, this would essen-
tially be saving the system the time and resources required to carry out the incorrect
recovery option. However, this would be at the expense of any successful diagnoses
that occur with an r-value of less 0.74.

Until thorough recovery options are implemented as part of an integrated FDDR

T1 T2 T3 T4 T5 T6

Control Steps 12 11 13 116 165 500
Instances 35 35 36 31 2 32

TABLE 4.3: Average time required to identify faults using diagnostic
tests, and the number of additional instances each would occur if the

similarity threshold was raised to 0.74.
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H1 H2 H3 H4 H5 H6

Total Instances 263 6 0 72 3 97
Behavioural Inconsistency 130 3 0 57 0 38
Fault Forgotten 2 2 0 1 3 0

TABLE 4.4: Total instances of faults requiring diagnostic tests despite
previous encounters.

system, it is difficult to say exactly how time and resource efficiency would be im-
pacted by changing the similarity threshold. From a purely diagnostic point of view,
however, the average time taken to correctly and reliably identify a fault type using
the diagnostic tests can be considered.

Table 4.3 reveals that, although increasing the similarity threshold would remove
27 instances of misclassification, it would also require an additional 171 diagnostic
tests to be performed. It is worth noting here that the 32 instances of partial sensor
failure would not add to the total time spent performing diagnostic tests as dras-
tically as Table 4.3 would seem to imply, as partial sensor failure is diagnosed as
complete sensor failure in 91% of cases. Nonetheless, these additional tests would
still increase the average number of control steps the system had to spend perform-
ing diagnostic tests by approximately 2416 – equivalent to approximately 4 minutes
of real time. In order for this to be a worthwhile trade, average recovery time for
the system would have to be no shorter than 5.2 seconds. This is almost certainly
unrealistic and so optimisation of the similarity threshold with respect to misclassi-
fication rate, time taken to perform diagnostic tests and time taken to recover is a
problem that will need to be properly addressed in a fully integrated FDDR system
of this kind once implemented in hardware.

That the median average proportion of faults diagnosable from memory, P1, is
0.71, whilst the median average proportion of attempts to diagnose from memory
that result in misclassification, P2, is 0, means that there is a substantial number
of instances in which the BFV signature of a fault does not produce a correlation
coefficient with Equation 6.3 that is great enough for it to be recognised by the system
and successfully diagnosed from memory.

In each experiment there will be a period of learning, where the system encoun-
ters faults for the first time, that necessitates use of diagnostic tests T1−6. However,
removing these scenarios from consideration, across all experiments there were a
total of 441 instances where the diagnostic tests had to be run for a fault despite the
system having previously encountered its type (not including cases where diagnos-
tic tests had to be run because the system misclassified a fault when attempting to
diagnose from memory with Equation 6.3). As with attempts to diagnose from mem-
ory resulting in misclassification, P2, a significant portion of these instances arose in
scenarios where there was behavioural inconsistency, or where the fault type had
been forgotten by the system. A breakdown of the results can be seen in Table 4.4.

The results in Table 4.4 show that, of the 441 diagnostic tests run on faults af-
ter initial exposure, 53.51% occurred in cases where there was behavioural incon-
sistency, or where sufficient time had passed since the fault was last encountered
that it had been passed out of the memory buffer. Furthermore, 59.64% of all cases
were for instances of software hang, H1. Notably, complete sensor failure, H3, never
had to be re-diagnosed after initial exposure, and the only reason the same cannot
be said of partial motor failure, H5, is because there were 3 instances in which it
was passed out of the fault memory buffer. All other fault types in Table 4.4 take
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FIGURE 4.3: The times at which a fault is classified using diagnos-
tic tests or from memory in each experiment replicate (1 hour total
run-time). Dashed line indicates the point at which the first fault is

injected in each experiment.

a significant contribution to their total number of occurrences from instances where
swarm normal behaviour changes. A change in normal swarm behaviour signifi-
cantly increases the probability of a given fault type exerting a different effect on an
individual robot e.g. a software hang fault is far more likely to make a robot turn in
circles if the robot was previously performing aggregation behaviour than if it was
performing dispersion behaviour.

Figure 4.3 shows the time spread for faults classified from the diagnostic tests
(DiagnosisT) and from memory (DiagnosisM). The results in Figure 4.3 clearly show
a tendency for diagnostic tests to be used earlier in each experiment replicate and
increasingly infrequently as time elapses. In contrast, the spread of times for diag-
nosis from memory appear to be, in general, evenly distributed with a slight offset
from the first instance of fault injection. This means that, after a short initial period
of each experiment where faults are being encountered for the first time, diagnosis
from memory occurs with a fairly even spread for the rest of the experiment.

The results from Table 4.4, Figure 4.3 and the overall proportion of faults diag-
nosable from memory are evidence of the diagnosis system gradually learning and
eventually establishing a multi-faceted characterisation of individual fault types on-
line and in real-time.

4.5 Summary

This work described in this chapter has demonstrated a novel, adaptive and dis-
tributed approach to fault diagnosis in simulated robot swarms. The system pre-
sented here was able to diagnose fault types adequately in a majority of cases through
a process of learning and memorising the fault’s characteristics. In 71% of cases,
faults were diagnosed based on their similarity to previous faults the system had
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encountered and resolved. Furthermore, there was a very low rate of misclassifi-
cation, a median average of 0% (and a mean average of ≤ 1%). The advantages of
using BFVs have been retained, as this system exhibits unsupervised learning in real
time.

Although the work described in this chapter showed promise for the initially
proposed fault diagnosis method, several areas of improvement/further investiga-
tion in simulation were identified:

1. System parameters, such as the similarity threshold, s, were defined after a
brief process of trail and error, but were not subjected to thorough scrutiny.

2. The method of fault detection used in this chapter was simplistic and served
as a place holder until a more sophisticated fault detection algorithm could be
integrated with the proposed method of fault diagnosis. The ways in which
modifications to fault detection algorithms can affect the performance of fault
diagnosis algorithms was not investigated in this chapter.

3. In real world scenarios it is possible that the diagnostic tests T1−6 could fail to
appropriately diagnose a fault. This is something that was not investigated in
this chapter, but will need to be addressed before this system can be deployed
in the swarm robotic scenarios described by şahin (2005).

4. In real world scenarios it is possible that multiple robots may develop faults
at the same time. The system’s ability to deal with faults in parallel was not
examined in this chapter.

5. Although not predicted to have any significant effect on overall performance,
a useful modification identified during this work was the inclusion of active
memory allocation. If a very high correlation coefficient is observed between
two faults, it may be wasteful to store both in a finite memory buffer as op-
posed to relocating the older instance to the front of the buffer.

6. A swarm exhibiting the behaviours used in this work, flocking, aggregation
and obstacle avoidance, cannot have its performance quantified in the way a
swarm performing beacon-taxis can. To understand the benefits of the pro-
posed fault diagnosis method, it should be implemented on a swarm where
the performance of faulty and non-faulty swarms are quantifiable.

The work proceeding that described in this chapter aimed to address the six
points listed above, and is detailed in the following chapter.
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Chapter 5

Fault Diagnosis in Software
Simulation: Part II

5.1 Introduction

Chapter 1 of this thesis proposes that faults can be diagnosed by examining the ways
in which various faulty robot behaviours deviate from their normal behaviours. The
previous chapter presented a novel method for immune-inspired fault diagnosis
in autonomous robot swarms, this is achieved by encoding robot behaviour as be-
havioural feature vectors (BFVs) and associating the BFVs produced by faulty robots
with the respective fault present in that robot. The experimental data collected and
analysed suggested that this method of fault diagnosis could work effectively in
real world scenarios and directly address the concerns highlighted by Winfield and
Nembrini (2006) on fault tolerance in robot swarms. However, it was considered
that the work described in the previous chapter was incomplete in terms of the cases
tested and insofar as it made the critical assumption that autonomously assessed di-
agnostic tests would always arrive at an appropriate classification, which may not
hold true for all systems and scenarios.

The work detailed in this chapter directly builds on that described in the previ-
ous chapter, by presenting what is largely the same fault diagnosis mechanism (al-
beit with some modifications) and subjecting it to more rigorous experimentation.
Specifically, the system presented in this chapter is modified in the following ways:

1. The diagnostic tests (T1−6) described in the previous chapter now have the
potential to incorrectly classify a faulty robot

2. Multiple robots can be faulty at any one time

3. When writing fault BFV signatures to memory, a BFV signature will only be
remembered if it is sufficiently different to previously encountered faults i.e.
multiple very similar recollections of the same type of fault will not be retained
in memory.

This chapter also tests the proposed system in the following new ways:

1. Variable system parameters, such as the time faulty behaviour has to be ob-
served over before a fault is detected, are subjected to sensitivity analysis.
Noise sensitivity analysis is also performed.

2. A swarm performing the beacon phototaxis algorithm described by Winfield
and Nembrini (2006) is examined, and the performance of a faulty swarm with
and without the proposed diagnostic system is compared.
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This chapter aims to demonstrate and quantify how the proposed immune-inspired
fault diagnosis mechanism addresses the problems on fault tolerant robot swarms
that are discussed by Winfield and Nembrini (2006) and Bjerknes and Winfield (2013),
as well as highlighting its limitations.

5.2 Experimental Method

As in the previous chapter, the work described here is conducted in Autonomous
Robots Go Swarming (ARGoS) (Pinciroli et al., 2011) and uses simulated models of
the marXbot (Bonani et al., 2010). In the experiments described in this chapter, all
robots exhibit flocking (Algorithm 1), aggregation (Algorithm 2), obstacle avoidance
(Algorithm 3) or collective photo-taxis swarm behaviours (Algorithm 4). In each
of these behaviours, individual robots move in response to the position of neigh-
bouring robots, obstacles or a point of interest. Normally functioning robots, that
is robots that are not experiencing power failure, complete motor failure or in some
instances complete sensor failure or software hang, will always be motional.

Algorithm 4 Collective Phototaxis

1: while Running do
2: if Line of sight to point of interest then close-proximity threshold = 3.5cm
3: else close-proximity threshold = 3cm
4: if Distance to neighbour < close-proximity threshold then avoid neighbour
5: if Robot heading not in range average bearing of neighbours ± 15 ◦ then

turn towards average bearing of neighbours
6: else Move forward

The fault types examined here are carried over from the previous two chapters,
but listed again for convenience as follows:

• Software hang (H1): This fault will cause a robot to get stuck performing what-
ever action it was performing at the last moment it was normally functioning.

• Power failure (H2): A robot that suffers a power failure will completely stop
moving and remain unresponsive to its surroundings.

• Complete Sensor failure (H3): For a complete sensor failure an individual
robot will be unable to detect the presence of any neighbours, light sources or
obstacles.

• Complete Motor failure (H4): A complete motor failure will cause one of the
afflicted individual’s motors to stop and henceforth become unresponsive to its
controller. The other motor will remain functional, meaning that the afflicted
robot will either stop completely if it is trying to turn using its faulty motor, or
otherwise be limited to turning on the spot.

• Partial Motor failure (H5): For partial motor failure the individual’s faulty
motor will remain responsive, however it will only allow its associated wheel
to turn at half speed.

• Partial Sensor failure (H6): For a partial sensor failure a robot will only be able
to detect the presence of neighbours, light sources and obstacles within ±60 ◦

of its current heading.
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The robot BFV used in this work, where the binary vector
BFV(t) = [F1(t), F2(t), F3(t), F4(t), F5(t), F6(t)], is also carried over from the work
described in the previous chapter and given again here for convenience:

F1(t) = 1 if NR(t) > 0, otherwise F1(t) = 0 (5.1)

where NR(t) is the total number of neighbours in sensing range (approximately 1m)
of the robot at time t.

F2(t) = 1 if NC(t) > 0, otherwise F2(t) = 0 (5.2)

where NC(t) is the total number of neighbours at a distance less than the close prox-
imity threshold, C, (approximately 0.3m) from the robot at time t.

F3(t) = 1 if |v(t)| > 0.8|vmax|, otherwise F3(t) = 0 (5.3)

where |v(t)| is the magnitude of linear velocity at time t and |vmax| is the maximum
linear velocity a robot can achieve (approximately 5cms−1 in this work).

F4(t) = 1 if |v(t)| > 0.2|vmax|, otherwise F4(t) = 0 (5.4)

F5 = 1 if |θ(t)| > 0.4|θmax|, otherwise F5(t) = 0 (5.5)

where |θ(t)| is the magnitude of angular velocity at time t and |θmax| is the maximum
angular velocity a robot can achieve (approximately 24◦s−1 in this work).

F6(t) = 1 if H1 = True at time t, otherwise F6(t) = 0 (5.6)

Features are updated at each control-step with threshold values for F3, F4 and
F5 set to 80% of vmax (Equation 5.3), 20% of vmax (Equation 5.4) and 40% of ωmax
(Equation 5.5), respectively.

It was demonstrated in Chapter 3 of this thesis that F1 − F5 were each individu-
ally discriminatory when a decision tree was used to classify the same six fault types,
and the merits of F6 for classifying software hang faults were clearly demonstrated
in Chapter 4 of this thesis.

As in the previous two chapters, each robot estimates its own BFVs proprio-
ceptively as well as exteroceptively estimating the BFVs of any of its neighbours in
range.

5.2.1 Integrated Fault Diagnosis

The fault diagnosis mechanism proposed in the previous section is restated here for
convenience, and the modifications made in this work highlighted.

Fault Detection

Faults are detected according to Equation 5.7. This is the same equation as that used
for fault detection in the previous chapter, however the variables as these will be
investigated in the experiments described later in this chapter.

fault detected at time t = true if
T

∑
t=T−W

d(t) ≥ ρW for T > W (5.7)
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Where T indicates the time elapsed since a robot started being observed by a
neighbour. The binary value d is set according to Equation 5.8, where d = 0 if
there is agreement between exteroceptively and proprioceptively estimated robot
features. A robot will make W observations of its neighbour, once per control-step,
at discrete times, t, before a fault can be detected, where t indicates the time elapsed
since the start of an experiment. The value of ρ indicates what proportion of the W
observations must prompt the value of d to be equal to 1 in order for a fault to be
detected.

d(t) =

{
0 if Fp

i (t) = Fe
i (t) for i = 1, .., 6

1 otherwise
(5.8)

As in the previous chapter, whenever a fault is detected in a robot by another
member of the swarm, the set of BFVs which prompted the fault to be detected are
then used as the BFV signature for that particular fault.

Fault Diagnosis

The diagnostic tests described in the previous chapter are carried over for this work,
and restated here for reader convenience:

• Software hang (T1): This occurs immediately after the assessing robot moves
into testing range. In order for the faulty robot to perform later diagnostic
tests, it must be able to communicate with the assessing robot. To establish
this communication, the assessing robot first pings the faulty robot and in-
structs it to stop moving. If the faulty robot is suffering from software hang,
it will disregard this request. If the faulty robot is persistently unreachable
and ignores the assessing robot’s stop request, it will be diagnosed as having
software hang. This relies on the assumption that communication between
normally operating robots is reliable.

• Power failure (T2): Almost identical to T1, however in cases where the robot
is suffering from power failure it will also stop moving. The assessing robot
therefore diagnoses power failure in instances where the faulty robot is un-
reachable but stationary. It is acknowledged that this would only work for
normal behaviours where robots should always be in motion. For a swarm
exhibiting behaviour that necessitated periods where the robot was stationary,
the relationship between T1 and T2 would have to be revised.

• Complete Sensor failure (T3): Once the faulty robot has been established as
responsive to the assessing robot, the two robots should have settled within
range of each other – something that will be reflected in their BFV. A complete
sensor failure is diagnosed if the faulty robot’s feature Fp

1 returns a value of 0.

• Complete Motor failure (T4): The faulty robot is asked to spin on its right and
left wheels. If the faulty robot receives and processes this request but is unable
to perform one or both of the turns, it is decided that the robot is suffering from
complete motor failure. This is ascertained by monitoring the faulty robot’s
feature Fe

4 , where a returned value of 0 indicates the robot has failed the test.

• Partial Motor failure (T5): Having established that both of its motors are re-
sponsive, the faulty robot is then asked to demonstrate that both motors work
together as they should. The faulty robot is asked to move forward in a straight
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line. If the faulty robot is observed to move in an arc or otherwise deviate from
moving in a straight line, it is decided that the faulty robot is suffering from
partial motor failure. This is achieved by monitoring the faulty robot’s feature
Fe

5 , where a returned value of 1 indicates that the robot has failed the test.

• Partial Sensor failure (T6): To test for partial sensor failure, the faulty robot
performs a 360◦ turn whilst acknowledging the presence of the assessing robot.
If the faulty robot fails to acknowledge the assessing robot for any period of
this turn, the robot is decided to be suffering from partial sensor failure.

Fault Recovery

The recovery options for faults H1−6 used in this work are the same as described in
the previous chapter, but are restated for reader convenience:

• Power Cycle (R1): It is assumed that when a robot has its power cycled, it is
turned back on with a new or replenished power source. This recovery action
resolves software hang (H1) and power failure (H2) faults.

• Sensor Replacement (R2): Replacement of robot sensors resolves complete
and partial sensor failures (H3 and H6, respectively).

• Motor Replacement (R3): Replacement of robot motors resolves complete and
partial motor failures (H4 and H5, respectively).

As in the previous chapter, when a recovery action is executed the faulty robot
continues to be observed by the assessing robot. If the faulty robot’s exteroceptively
and proprioceptively estimated BFVs agree after a recovery action has been per-
formed, the fault is considered to be resolved.

An extension made by the work described in this chapter is that the success of
diagnostic tests T1−6 in identifying a robot’s fault type is also evaluated. For the vast
majority of cases, diagnostic tests T1−6 will classify a fault correctly, however there
are some circumstances in which they misclassify faults or the newly-resolved robot
is unable to convince the assessing robot that it is no longer faulty. If a robot’s fault
persists after having attempted diagnostic tests T1−6, the faulty robot is declared to
be beyond the swarms ability to recover it, and so it is shut down. The faulty robot
will now be, for all intents and purposes, an inanimate object in the environment.
On the other hand, if a robot is subjected to diagnostic tests T1−6 and passes them
all, the faulty robot is treated as a false-positive and is allowed to continue operating
normally. The fault signature is considered void in this case and not used for any
subsequent comparison.

Fault Memory

As in the previous chapter, each time a fault is successfully resolved, the BFV sig-
nature for that fault and the respective diagnosis are stored in the assessing robot’s
memory, which is then shared with other members of the swarm via local commu-
nication. When subsequent faults occur, the BFV representations of those faults can
be checked for similarity against the BFV representation of previous faults.

Similarity between two faults is again established by finding the Pearson corre-
lation coefficient (Benesty et al., 2009) between their BFV signatures (Equation 6.3):
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r = ∑m ∑n(Fmn − F)(F0mn − F0)√
(∑m ∑n Fmn − F)2(∑m ∑n F0mn − F0)2

(5.9)

Where r is the correlation coefficient between a current and previous fault signature,
F and F0, respectively, where F and F0 are two dimensional binary data sets. F and
F0 are the mean values of sets F and F0, respectively, and m and n indicate positional
index within the 2D binary data set (the specific orientation of m and n is arbitrary
for this equation).

As in the previous chapter, when attempting to diagnose a fault from memory,
the previously stored fault which produces the greatest r-value (Equation 6.3) is con-
sidered the most likely fault type and recovery is initiated in sympathy with that
fault. The minimum r-value required for two faults to be considered similar, and
thus eligible for this process is investigated at the end of this chapter.

5.2.2 Experimental Setup

FIGURE 5.1: A: ARGoS simulation of 10 marXbot robots performing
obstacle avoidance in an empty arena (O’Keeffe et al., 2017b), B: AR-
GoS simulation of 10 marXbot robots performing obstacle avoidance
in a cluttered arena, and C: ARGoS simulation of 10 marXbot robots
performing collective photo-taxis in an arena with a beacon in the

north-west corner.

In all experiments described in this chapter, features are updated at every control-
cycle (10ms). Gaussian noise is applied to the raw linear and angular velocity read-
ings obtained by robot’s RAB sensors and its compass. These are the only sensor-
obtained values that the proposed system uses to estimate robot BFVs, and thus
relies on for overall performance. It is acknowledged that system noise in hardware
will not necessarily correspond to noise added in simulation, this effect is known as
the reality gap (Jakobi, Husbands, and Harvey, 1995). However, the purpose of im-
plementing noise in this manner is to demonstrate that the proposed system is able
to retain performance with imperfect information on robot states. The noise applied
to robot RAB sensor readings during the experiments described in this chapter (with
the exception of those in section 5.3.2) is as follows:

• Linear velocity, simulated Gaussian noise (µ = 0, σ = 5% dmax)

• Angular velocity, simulated Gaussian noise (µ = 0, σ = 5% ωmax)

Where dmax is the maximum distance that a robot can travel in a single control
step (approximately 0.5cm) and ωmax is the maximum angular distance a robot can
travel in a single control-step (approximately 2.4◦).
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The system parameters used in these experiments are as follows:

• The length of observation period, o, during which the assessing robot decides
post-diagnosis whether or not the associated recovery action is successful in
resolving faulty behaviour. o = 29.

• The similarity threshold, s. When two faults produce an r-value using Equa-
tion 6.3 that is greater than s they are considered similar for the purpose of
diagnosis from memory. s = 0.56

• The detection window, W. The positive integer W represents the number of
control-steps over which a faulty robot must be observed to be producing mis-
matched BFVs before it is declared faulty. This is the accumulation of the data
the system has with which to characterise a given fault and attribute to it a
signature. W = 29

• The proportion of BFVs in W, ρ which must be mismatched before a fault is
declared. ρ = 0.88

Details of how these parameter values were chosen are given in section 5.3.4 of
this chapter.

Fault memory is written to a circular buffer with capacity for 18 discrete fault sig-
natures, or three times the number of unique fault types. 18 places typically gives a
high probability that each type of fault has at least one BFV representation in system
memory (assuming all fault types have been encountered).

When a fault type and its associated BFVs are stored in the assessing robot’s
memory, the assessing robot then passes the information to any other robots it comes
within range of, these robots then do likewise and so on. This simulates the swarm of
robots sharing and updating fault memory via an ad-hoc network. To avoid thrash-
ing, particularly as swarm size increases, robots record which neighbours they have
shared memory with and will not attempt to do so again until at least 1000 control-
steps have passed.

5.3 Experiments

The criteria used to characterise the proposed system’s performance during the ex-
periments described in this chapter (with the exception of those performing collec-
tive photo-taxis) are as follows:

• P1: The proportion of faults the system is able to diagnose from memory

• P2: The proportion of attempts to diagnose a fault from memory that result
in misclassification or are otherwise unrecognised as by the system as being
correct.

• P3: The average r-value between faults, using Equation 6.3, when diagnosing
from memory

• P4: The total number of faulty robots the system is unable to resolve and are
shut down in an hour of simulated time

• P5: The average time (in control-steps) it takes the system to detect a fault

• P6: The total number of faults the system is able to detect

As in the previous chapter, 100 replicates are performed for all experiments, from
which a median average is taken for P1−6.
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5.3.1 Scalability & Flexibility

To investigate the scalability and flexibility of the proposed system, a swarm of sim-
ulated marXbots collectively perform flocking, aggregation or obstacle avoidance
behaviour in a proportionally scaled enclosed square arena. The ratio of robots to
square metres is set at 1 : 1.6 (see Figure 5.1A).

As in the previous chapter, these experiments run for one hour of simulated time
(36000 control-steps). The swarm’s normal behaviour is updated randomly between
flocking, aggregation or dispersion at 5000 control step intervals. A maximum of
50% of the robots in a swarm can be faulty at one time, so that there are never more
faulty robots than the swarm can provide assessors for. Each robot has a 0.1% proba-
bility of having a random fault injected at each control-step, which was chosen after
a process of trial and error. A 0.1% probability of having a fault injected was found
on average to prompt new faults to be injected into robots with a regularity such
that it was common for more than one robot to be faulty at a time, but very rarely
reached the maximum 50% of robots with faults as they would be resolved before
this could occur. As in the previous chapter of this thesis, instances of false-positive
fault detection are not examined (see section 4.3.4 for details).

Results & Discussion

The performance of the proposed diagnostic system for robot swarms of varying
sizes is displayed in Table 5.1. The total number of faults detected, P6, is removed
from the table as this will increase proportionally as swarm size increases, and thus
is not an indicator of the system’s scalability.

Swarm size P1 P2 P3 P4 P5 (control-steps)
10 0.68 0.04 0.87 0 444
40 0.76 0.03 0.91 0 572
90 0.76 0.04 0.90 0 474

160 0.74 0.05 0.90 1 592

TABLE 5.1: Performance of system for swarms of varying sizes

Table 5.2 shows how the performance of the swarm varies when obstacles are
added to the arena, and when fault memory gathered from the swarm in an empty
arena is imported into a swarm in an arena with obstacles (see Figure 5.1B). The
purpose of the latter is to demonstrate that the proposed system is flexible to varying
or dynamic environments.

Arena type P1 P2 P3 P4 P5 P6 (control-steps)
No obstacles 0.68 0.04 0.87 0 444 30

Obstacles 0.68 0.04 0.87 0 403 30
Obstacles (imported memory) 0.93 0.03 0.91 0 413 30

TABLE 5.2: Performance of system for robot swarms in different en-
vironments

Table 5.1 shows the proportion of faults successfully diagnosed from memory, P1,
increases slightly between swarm size 10 and 40. P1 then stabilises between swarm
sizes of 40 and 90, in which no significant trend is observed. Performing a Wilcoxon
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rank-sum test (Haynes, 2013) on the data distributions of P2 for swarm sizes of 40
and 90 produced a value p = 0.98, where p > 0.05 indicates that two data sets are
drawn from the same distribution. The small drop in P1 for swarm sizes of 160 is
discussed later in this section. The reason for the increase in P2, from P2 = 0.68
to P2 = 0.76 between swarm sizes of 10 and 40, respectively, is because of the ten-
dency to diagnose from memory more frequently as each experiment run goes on.
In each experiment the system reaches a point of familiarity with the faults it can be
subjected to, after which it can diagnose subsequent faults from memory in a major-
ity of cases (approximately 76% of cases for swarms consisting of 40 and 90 robots,
and 74% of cases for swarms consisting of 160 robots). In the previous chapter it
was demonstrated that the majority of diagnoses occur in the latter two thirds of the
hour-long experiments for a swarm with 10 robots – this is approximately where the
system reaches its point of familiarity. The rate at which the system is able reach this
point will be affected by how often the system encounters faults and how quickly it
can resolve them. Reaching the point of familiarity will be accelerated as swarm size
increases (as this will naturally increase the frequency of faults occurring if the prob-
ability of occurrence is constant) and, combined with the increased overall amount
of faults encountered by the system, contributes to the increase in P1 observed be-
tween swarm sizes 10 and 40. This would suggest that the saturation point of the
system reaching the point of familiarity with respect to increasing swarm size lies
between 10 and 40. Table 5.3 reveals that this rise in actually occurs over a compar-
atively small subsection of the range – between 15 and 21 robots – before stabilising
for swarm sizes of up to 90 robots.

Swarm size P1
15 0.69
16 0.73
17 0.73
18 0.74
19 0.75
20 0.75
21 0.76

TABLE 5.3: Proportion of faults successfully diagnosed from memory
for swarms of varying sizes

Table 5.1 does not display a clear trend between swarm size and the proportion
of unsuccessful attempts to diagnose faults from memory, P2. The distribution of P2
does not change significantly for swarm sizes of 10 and 90, performing a Wilcoxon
rank-sum test on these distributions produces a value p = 0.152. P2 is at its highest
for a swarm size of 160. This, coupled with the slight drop in the proportion of
faults successfully diagnosed from memory, P1, could be attributed to the increased
probability that a faulty robot will find itself near the centre of a robot cluster at the
time it is being observed by an assessing robot. If the robots neighbouring the faulty
robot are unable to disperse or otherwise move out of the faulty robot’s path it may
disrupt the assessment process.

The total number of faults that are unresolvable, P4, is 0 between swarm sizes of
10 and 90. P4 increases from 0 to 1 for swarm size 160, which could be attributed
to the vastly increased swarm size increasing the probability of the circumstances in
which a faulty robot is unresolvable occurring within one hour. The average r-value
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between faults, P3, and the average time taken to detect faults, P5, do not display a
clear trend with increasing swarm size.

Table 5.1 reveals slight fluctuation in performance with varying swarm size.
These fluctuations are observed over an order of magnitude, whilst P1, the most
indicative measure of performance, remains within approximately 90% of its ob-
served maximum. Based on this, it is proposed that the proposed diagnostic system
is generally stable – and thus scalable – for practical swarms of between 10 and 160
robots.

Table 5.2 shows that the only difference in median average performance between
a swarm in an empty arena and a swarm in a cluttered arena is a reduction in the
average time taken to detect faults, P5, of approximately 9%. For swarms in an arena
with and without obstacles, there is no significant difference between the distribu-
tions of performance criteria P1−4,6 when subjected to a Wilcoxon rank-sum test (p-
values 0.33, 0.33, 0.31, 0.81, 0.55, respectively). When fault memory from the swarm
in an empty arena is imported to a swarm in an arena with obstacles, there is a large
improvement in the proportion of faults successfully diagnosed from memory, (P1),
an additional 25% of all faults. There is also an improvement in the proportion of at-
tempts to diagnose faults from memory that were unsuccessful, P2, which falls from
4% to 3% (representing a reduction of 25%). This is because the system begins the
experiment already at the point of familiarity with the faults that will be injected and
so is able to diagnose a greater proportion from memory – even though the system’s
gathered memory originates from the empty arena. This suggests that there is little
difference between the fault data gathered from robots performing in empty arenas
and those in cluttered arenas. The data in Table 5.2 suggests that the proposed sys-
tem is flexible and robust to environments with varying degrees of complexity, so
long as they do not inhibit the swarm from performing normally.

5.3.2 Noise Sensitivity

These experiments again use an identical setup to that described in the flexibility
and scalability experiments (described in section 5.3.1), with the exception that the
Gaussian noise applied to the calculations of robot linear and angular velocity is
varied.

Latin Hypercube Analysis is used to test the proposed system’s performance for
varying levels of noise on the linear and angular velocity readings obtained by robot
RAB sensors. Latin Hypercube Analysis is a statistical technique for sampling multi-
dimensional data distributions, two dimensional in this instance. The SPARTAN R
package (Alden et al., 2013) is used to perform the sampling for Latin Hypercube
Analysis, which allows 500 parameter sets to be randomly generated, where each
parameter value is unique in the set, in the following ranges:

• RAB sensor linear velocity reading, simulated Gaussian noise (µ = 0, 0 < σ <
dmax)

• RAB sensor angular velocity reading, simulated Gaussian noise (µ = 0, 0 <
σ < ωmax)

Again, 100 experimental replicates are performed for each parameter set from
which the median value is taken for performance criteria P1−6.
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Results & Discussion

The results of these experiments are plotted where there is a visible trend to be ob-
served between the standard deviation of applied Gaussian noise and the perfor-
mance criteria (P1−6). This is displayed in Figure 5.2 and Figure 5.3.

FIGURE 5.2: A: The effects of noise on RAB sensed linear velocity
on median r-values between diagnoses, and B: the effects of noise on
RAB sensed linear velocity measurements on the proportion of faults

successfully diagnosed from memory

Unsurprisingly, no correlation was observed between noise applied to RAB sen-
sor readings and the average time taken to detect faults, P5.

The average r-value between faults, P3, was noticeably affected by noise applied
to linear velocity estimations obtained from RAB sensors (see Figure 5.2A), although
this is observed over a comparatively small scale. Interestingly, there was no obvious
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FIGURE 5.3: The effects of noise on RAB sensed linear velocity mea-
surements on the proportion unsuccessful of attempts to diagnose

faults from memory

correlation between P5 and the noise applied to RAB estimated angular velocity.
The reason for this observed robustness is that angular velocity is only able to affect
a single robot feature Fe

5 . The maximum effect that noise can have on a feature is
setting it to an incorrect state. Because the features used in this chapter are set by
thresholds, in order for the true state to be altered by system noise, the noise needs
to be of a significant magnitude and of the appropriate sign. As the simulated noise
generated on sensor readings is normally distributed, this means that the probability
that a feature state is correct will always be greater than that of it being incorrect, no
matter how large the standard deviation of noise is set to be. These factors combined
mean that the overall change in robot BFVs is comparatively small and therefore
the r-values produced between faults represented by these BFVs is not significantly
reduced.

The same trend is observed for the proportion of faults successfully diagnosed
from memory, P1, and proportion of attempts to diagnose faults from memory that
are unsuccessful, P2. Noise applied to RAB sensed linear velocity has a clear corre-
lation with system performance (see Figure 5.2B and Figure 5.3, respectively) whilst
noise applied to RAB sensed angular velocity was not observed to have any notice-
able effect by comparison.

The total number of unresolvable faults, P4, was unaffected by noise applied to
sensor readings. This is primarily because a robot is only declared faulty when it
is consistently unable to pass diagnostic tests T1 − T6. Of these diagnostic tests, the
only tests reliant on feature observations that could be disrupted by sensor noise are
T4 and T5 (constituting a third of all faults encountered by the system on average)
and, even with maximum sensor noise applied, there is a greater probability that fea-
tures will remain in the correct state at any given point in time. Although increasing
sensor noise will increase the probability that diagnostic tests need to be run (Fig-
ure 5.3, Figure 5.2B), there is still only a slim increase in the overall probability that
a faulty robot will be deemed unresolvable.

The work in this chapter does not examine how sensor noise would impact fault
detection. Based on the effects of noise on RAB sensor readings, (Figure 5.3), it is



5.3. Experiments 75

predicted that increasing sensor noise (at least on the virtual range sensors) would
drastically increase the amount of false-positives encountered by the system in a
scenario where fault detection was more realistically implemented. Although the
results in this section demonstrate that the system would generally be capable of re-
solving these scenarios, they would correlate with an increase in the amount of time
spent with one or more robots performing diagnostic routines, which may cause
problems in time-critical scenarios or where a certain number of functioning robots
are required.

5.3.3 Collective Photo-taxis

These experiments again consider a swarm of simulated marXbots, this time per-
forming collective photo-taxis behaviour. The implementation of this behaviour
here is similar to that used by Bjerknes and Winfield (2013), whereby robots in the
swarm will attempt to aggregate whilst avoiding collisions with one another. The
behaviour is described in Algorithm 4. Robots that are closer to a beacon will avoid
neighbouring robots at greater distances than those that are furthest away (robots
usually turn to avoid collision at distances less than 0.3m, for these experiments the
robots closest to the beacon will turn away from neighbours at distances less than
0.35m). The emergent effect of this behaviour is that the swarm gravitates towards
the beacon.

Here the performance of a normally functioning swarm, a faulty swarm without
active fault tolerance and a faulty swarm with active fault tolerance are compared.
The experiments in this section use a swarm of 10 marXbots in an enclosed arena
(6m× 6m), where robots begin in the south-east corner of the arena and are drawn
to a light source at the north-west corner (see Figure 5.1C).

The diagnosis system is implemented in the same manner as previously. Robots
that are engaged in the diagnostic process are unable to participate in collective
photo-taxis, however the assessing robot will still repel nearby neighbours, prevent-
ing the diagnostic process from anchoring the swarm. Faults are injected into be-
tween 1 and 5 robots after the first 500 control-steps of each experiment, as this was
found to be the point at which swarm behaviour had typically stabilised (one or
more robot clusters will have formed after 500 control-steps have passed).

The performance criteria examined in these experiments are the times taken for
the first member of the swarm to reach the beacon, the time taken for half the mem-
bers of swarm to reach the beacon, and the time taken for all members of the swarm
to reach the beacon, and the average distance of all members of the swarm at these
times, respectively. An individual robot is considered to have reached the beacon
when the distance between the two is less than 0.8m.

As with all other experiments, 100 replicates are performed from which a median
average is taken for all performance criteria.

The performance of a normally functioning swarm is used as a point of reference,
which is displayed in Table 5.4.

The performance of a swarm where 1− 5 robots are faulty is examined as a pro-
portion of the performance of a normally functioning swarm, where the value for
proportional performance is given by Equation 5.10.

Proportional Performance (Pp) =
1
3

3

∑
i=1

dti0 − dti

dti0
(5.10)
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Time (control-steps) Avg. dist. from beacon (metres)
1st Robot 24388 1.4275
Half Robots 25548 0.8517
All Robots 26909 0.4746

TABLE 5.4: Normally functioning swarm performance of collective
photo-taxis

Where dt1−30 and dt1−3 are the average distances between a normally function-
ing swarm and the beacon and the average distances between a faulty swarm and
the beacon after 24388, 25548 and 26909 control-steps, respectively (these values are
taken from Table 5.4). Equation 5.10 is such that a swarm that takes longer to reach
the beacon than the normally functioning swarm described in Table 5.4 will produce
a proportional performance value Pp < 0. A swarm that takes the same amount
of time to reach the beacon as the normally functioning swarm will produce a pro-
portional performance value Pp = 0. A swarm that reaches the beacon in a shorter
amount of time than the normally functioning swarm will produce a proportional
performance value 0 < Pp < 1.

The proportional performance of robot swarms with and without the proposed
diagnosis system are then compared.

Results & Discussion

Figure 5.4A displays the proportional performance of the robot swarm performing
the ω-algorithm with up to 5 faulty robots where the proposed diagnosis system
is not implemented. Figure 5.4B displays the proportional performance of the same
swarm in the same conditions where the proposed diagnosis system is implemented.

For an output of Equation 5.10 that returns Pp > 0, the test swarm has performed
better than the control swarm. In some cases, the test swarm outperforms the control
swarm by such a large margin that comparing the distances at the times of interest
listed in Table 5.4 loses applicability. In this case the value of some or all parts of
dt1−3 go to 0, returning a proportional performance value of 1. As Equation 5.10
should only ever approach 1 asymptotically, performance plots in these instances are
removed from Figure 5.4, but it should be noted that the time taken for all members
of the swarm to reach the beacon was less than that of a normally behaving swarm.

With the exception of some cases of partial sensor failure, H6, the performance
of the test swarm with any number of faulty robots is worse than for the control
swarm, which corresponds with the findings of Winfield and Nembrini (2006).

Interestingly, Figure 5.4A shows that the presence of some faults, most notably
partial sensor failure, H6, actually improves overall performance from that of the
control swarm. Depending on how many robots are faulty, this ranges from an av-
erage of +0.274 proportional performance (given by Equation 5.10) to such an im-
provement that all robots had reached the beacon in less than 24388 control steps.
This is true for any number of faulty robots with partial sensor failure. The reason
for this is that robots afflicted with partial sensor failure will not be inclined to ag-
gregate towards the centre of a swarm if the centre of mass is behind them. This
means that the faulty robots will press ahead, whilst normally functioning robots
are consequently able to move toward the beacon at a faster rate.

The performance of the swarm under the same conditions with the proposed
diagnostic system implemented is shown in Figure 5.4B.
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FIGURE 5.4: A: The performance of a robot swarm with no active fault
tolerance exhibiting the collective photo-taxis when a varying propor-
tion of robots are subjected to a variety of faults, and B: The results of
the same experiment with active fault tolerance. Where there is a red
box over the condition type indicates that proportional performance
is not applicable because the entire swarm reached the beacon in less
than 24388 time-steps, meaning that average distances at t ≥ 24388

control-steps could not be taken.

Figure 5.4B shows that, again with exception of some cases of partial sensor fail-
ure, H6, the presence the proposed diagnosis mechanism results in a large improve-
ment in overall system performance where faulty robots are present. Depending on
the type of fault and the number of faulty robots, this can be as much as a +11.8
improvement in proportional performance (given by Equation 5.10). Additionally,
in a number of cases overall performance is again better than that of a normally
functioning swarm. This is because when two robots are involved in a diagnostic
routine, they will repel other normally functioning robots in the swarm, allowing
them to continue toward the beacon unhindered and at a faster rate brought about
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by a smaller local swarm size (this is only true for local swarm sizes with 3 or more
robots, however this is most likely the case in these experiments given that all robots
start experiments within local sensing range of each other Figure 5.1C).

Figure 5.4 validates the proposed diagnostic system in the context of the original
proposal for active fault tolerance in swarms by Winfield and Nembrini (2006). The
results in this section demonstrate a clear improvement in swarm performance in
most cases where active fault tolerance mechanisms are present.

5.3.4 Parameter Sensitivity Analysis

Using an identical setup to that detailed in the scalability and flexibility experiments
in section 5.3.1 (with the exception that swarm size is kept at 10 and the arena clear
of obstacles for all experiments), the sensitivity of overall system performance to
variable system parameters is tested.

The purpose of these experiments is twofold; to identify a baseline parameter
configuration for future work, and to shed a general light on where certain parame-
ter configurations become unacceptable.

Latin Hypercube Analysis was used again to test the proposed system’s perfor-
mance for varying parameter values. The SPARTAN R package (Alden et al., 2013)
was again used to randomly generate 500 parameter sets in the following ranges:

• Observation period, 1 < o < 100 (control-steps)

• Similarity threshold, 0 < s < 1.

• Detection window, 1 < W < 500. (control-steps)

• The proportion of mismatched BFVs in W, 0.01 < ρ < 1 .

Once again, 100 replicates are performed for each parameter combination, from
which a median is taken for performance criteria P1−6.

Results & Discussion

Results from these experiments are again only plotted where there is a correlation to
be observed between a parameter value and performance criteria (P1−6).

Sensitivity to observation period The value of the observation period, o, pre-
dictably, did not effect the average time taken for the system to detect faults, P5.
More surprisingly, the value of o did not effect the total number of faults detected by
the system, P6. This is believed to be because of two factors; the decentralised nature
of the proposed diagnostic system means that faults can be recovered in parallel i.e.
the system does not need to wait until one fault is resolved before it can begin work-
ing on another, and secondly; the 100 control-step maximum value of o is a short
amount of time compared to the 36000 control-step experiment length.

The value of o most prominently affected the total number of faulty robots that
the system is unable to resolve, P4 (see Figure 5.5). In the experiments performed,
diagnostic tests T1−6 failing to resolve the fault occurred under one scenario; where
a faulty robot became stuck in a corner or against a wall or object. In these circum-
stances the fault could have been diagnosed correctly, either from memory or the
diagnostic tests, and the fault resolved. However, the subsequent observations of
the robot would lead the assessing to believe the fault had persisted. This is because
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FIGURE 5.5: The median total number of unresolvable faults, P4, over
one hour of simulated time against the value of the observation pe-
riod, o. Non-integer values indicate a median value between two in-

teger values, rather than 0.5 unresolvable robots.

the faulty robot would try to move normally but be obstructed by the walls of the
arena. How long the robot is observed for directly corresponds to the likelihood of
this scenario occurring; the larger the value of o, the more opportunity a stuck robot
has to become unstuck and demonstrate its normal function.

The the value of o also has a somewhat less pronounced effect on the proportion
of faults successfully diagnosed from memory, P1, the proportion of unsuccessful
attempts to diagnose faults from memory, P2, and the average r-value produced
between faults P3. For all three properties, values of o ≤ 5 tend to severely reduce
performance. Above this value, however, there is no observable correlation as o
increases. To minimise the time spent in the diagnostic process and the number of
robots lost, and to maximise reliability of diagnoses from memory, the value of o is
set at o = 29.

Sensitivity to similarity threshold In these experiments the similarity thresh-
old, s, was observed to have no effect on the total number of faults detected, P6, or
the average time taken to detect them, P5. The value of s was not observed to have
any obvious correlation with the total number of unresolvable faults, P4, as this is
caused by the circumstances in which the diagnostic tests are run, rather than how
well two faults correlate. As s increases, the average r-value between faults, P5, also
increases. However, this is simply because lower r-values are removed from the set
of values which are averaged.

As s approaches 1, the proportion of faults successfully diagnosed from memory,
P1, remains largely unresponsive until s > 0.55, at which point it rapidly declines
(suggesting that the average r-value for all fault, behaviour and parameter combina-
tions is approximately at this point) Figure 5.6A. Therefore, to maximise the number
of faults the system can diagnose from memory, and minimise the time spent in the
diagnostic process, the value s should be minimised. However, as s approaches 1,
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FIGURE 5.6: A: The median proportion of faulty robots the system
was successfully able to resolve from memory against the value of
the similarity threshold, s, and B: the median proportion of attempts
by the system to diagnose from memory that failed or were not recog-
nised as successful against the value of the simulation threshold, s.

the proportion of unsuccessful attempts to diagnose faults from memory, P2, de-
creases in sympathy, averaging 0 for all other parameter combinations at s > 0.825
Figure 5.6B. The value s will therefore be greater than 0.825 in order to minimise
time wasted on performing incorrect recovery actions.

The goal here is to find the value of s that will provide optimal cost efficiency
between running more diagnostic tests and performing wasteful recovery actions.
For a real world scenario, this will depend on a number of circumstances such as
the time-sensitivity of a particular task, and the number of replacement parts avail-
able to the swarm. If it is assumed that there is an ample stock of replacement robot
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FIGURE 5.7: A: The median time taken to detect faults against the
value of the detection window, W, and B: the median r-value of suc-

cessful diagnoses against the value of the detection window, W.

parts, this becomes a time-optimisation problem, specifically between the time taken
to perform recovery actions and the time taken to perform the diagnostic tests. The
time taken to perform diagnostic tests and recovery actions will vary for different
swarm robot platforms, and cannot be known in the context of this work until the
specific recovery actions described in section 5.2.4 have been investigated for an ap-
propriate robot platform. It is argued that the best that can be done at this stage is
to minimise the number of attempts to diagnose a fault from memory that fail to
resolve the fault. Figure 5.6B shows that for s ≥ 0.56 there are parameter combi-
nations that result in an average of P3 = 0, suggesting that for combinations with
s ≥ 0.56 where there are failed attempts, it is because of an alternative parameter
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FIGURE 5.8: The median total number of faulty robots the system
was unable to resolve over one hour of simulated time against the
value of the detection window, W. Non-integer values indicate a me-
dian value between two integer values, rather than 0.5 unresolvable

robots.

value. The value of s is therefore set to 0.56. Conveniently, this allows the system to
theoretically retain a performance score of P1 that is close to the maximum potential
value.

Sensitivity to detection window size The experiments in this section showed
that as the detection window size, W, increases, so too does the time taken to detect
faults, P5, (see Figure 5.7A), which consequently decreases the total number of faults
detected by the system, P6. In order to maximise how quickly the diagnostic system
is able to resolve the faults, the time spent observing the fault prior to investigating
should be minimised.

It was observed that as the detection window size, W, increases, so too does the
proportion of unsuccessful attempts to diagnose faults from memory, P2, and that
the proportion of faults successfully diagnosed from memory ,P1, decreases. This
trend arises from the tendency of a larger detection window to reduce the average
r-value of diagnoses, P3 (see Figure 5.7B).

The reduced average r-value of diagnoses, P3, with increasing values of W is
caused by greater opportunity for what could be considered outliers in robot be-
haviours to be observed in the fault’s characterisation. To illustrate; consider two in-
stances of a robot with a partial motor failure. The robot is detected as faulty when it
is observed to be moving in an arc whilst it is attempting to move in a straight line. If
the faulty robot is observed for a very short period of time, it is likely that this effect
will be observed for the entire duration each time, resulting in a very high r-value
between the two faults. If the effect is not observed, the fault will not be detected. If
it is only observed in one instance, the two faults will then have such low r-values
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that they will not be recognised as the same fault and therefore not eligible for diag-
nosis from memory. If the faulty robots are observed for a long period of time, it is
far more likely that the arcing effect will be observed for a majority of the time, but
not the entirety – resulting in the lower r-values we observe in Figure 5.7B.

There is also a positive correlation between W and the total number of unresolv-
able faults, P4, (see Figure 5.8). Because this effect arises from the environmental
circumstances of the faulty robot, this correlation is attributed to the increased time
a robot will spend being faulty before being detected as such – which increases the
probability that these circumstances arise.

All analysis of W suggests that its value should be minimised. The value of W
could theoretically be set to 1 in a noiseless system, and the results in this section
reveal no obvious drawback to using the smallest possible value of W. However,
this work has not thoroughly examined how the value of W will affect fault detec-
tion, particularly false-positive fault detection. Using the method of fault detection
described in this chapter, a low W value combined with any system noise or delay
whatsoever would certainly result in large numbers of false-positive detections –
resulting in time and resources being wasted by the system on performing diagnos-
tic tests and wasteful recovery actions. Although it is impossible to know precisely
how the value of W will effect system efficiency until fault detection and diagnosis
are properly integrated, it can be said that the optimal value will strike a balance
between maximising the r-values between faults and minimising the time taken to
detect faults and the frequency of false-positives. In the analysis of the observation
period, o, 29 control-steps was ascertained to be the minimum amount of time re-
quired for consistently reliable analysis of robot behaviour, and so the value of W is
therefore set to 29. Figure 5.8 shows that this value is comfortably in the range that,
on average, completely mitigates unresolvable faults in robots.

Sensitivity to proportion of BFV mismatches In the initial experiments con-
ducted for this section, the proportion of mismatched BFVs, ρ, had almost no cor-
relation with any of the performance criteria. Given the counter-intuitive nature of
this observation, it was theorised that this may be because the magnitude of con-
tributions of s and W to the performance criteria were obscuring the contributions
made by the value of ρ. The effect ρ had on performance criteria whilst s and W
were held at their optimised values was then examined. These additional experi-
ments, which produced Figure 5.9 and Figure 5.10, confirmed these suspicions.

The step-like behaviour observed in Figure 5.9A, Figure 5.9B and Figure 5.10
arises from the fact that, as W = 29, the value of ρ must increase by approximately
0.035 before it can represent an additional control-step where BFVs were matched
or mismatched. As 500 unique parameter values between 0.01 and 1 are used, ρ is
incremented at a finer granularity than that required to cause any observable change.

There is a positive correlation between the value of ρ and the average time taken
to detect faults, P5, as one would expect, meaning ρ should be minimised in order to
minimise the time faulty robots go undetected. Figure 5.9A shows that this effect is
observed over a considerably smaller scale for ρ than W, which would explain why
this correlation was not observed when plotting the effects of all s, W, ρ and o on a
single graph. This is true of all relations between ρ and system performance.

There was no visible trend observed between the value of ρ and the proportion
of faults successfully diagnosed from memory, P1, however there is a clear negative
correlation between increasing values of ρ and the proportion of attempts to diag-
nose faults from memory that were unsuccessful, P2 (see Figure 5.9B). Figure 5.9B
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FIGURE 5.9: A: The median time taken to detect faulty robots against
the proportion of mismatched BFVs in the detection window, ρ, and
B: the median proportion of attempts by the system to diagnose from
memory that failed or were not recognised as successful against the

proportion of mismatched BFVs in the detection window, ρ

suggests that the optimal value of ρ lies between 0.83 and 0.86 (the precise value of
ρ in between this range makes no difference).

Figure 5.10 shows that the highest average r-values between faults, P3, are ob-
served as ρ approaches 1 (for ρ > 0.55). Interestingly, a quadratic relationship is ob-
served between the value ρ and P3, with the trough centred in the approximate range
0.5 < ρ < 0.6 (see Figure 5.10). Obviously, when ρ is a high value, it necessitates that
the BFV must comprise of instances where a fault is explicitly demonstrated in robot
behaviour. Instances of each fault category are therefore more likely to be similar, re-
sulting in high r-values between faults. However, even when the value ρ is very low,
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FIGURE 5.10: The median r-value of diagnoses against the proportion
of mismatched BFVs in the detection window, ρ

robots still need to make observations of the faulty robot for W control-steps (this is
another contributing factor to the comparatively small effect of ρ compared to other
parameters). If the fault type heavily effects robot behaviour, this will be represented
in the BFV irrespective of the value ρ. If the fault type is more tolerable, there is an
increased chance the robot will exhibit normal behaviour for a greater proportion of
the period W, which will also result in an increased r-value compared to instances
where ρ is in a mid-range. This is because instances where faults are more tolerable
will necessarily then be observed as a combination of normal and faulty behaviour
with a random distribution. However, this effect is relatively insignificant on overall
performance, as demonstrated by the small scale of Figure 5.10. The reason the rela-
tionship between P3 and ρ is stronger for ρ > 0.55 is believed to be because, where
the value ρ is very low, there is an element of luck present in the BFV representa-
tions produced by robots, whereas higher ρ values will produce BFVs that reliably
represent the fault present and so produce higher r-values.

The value of ρ was observed to have no effect on the total number of unresolvable
faults, P4.

Based on these observations, ρ is set to 0.86 . This value gives an average detec-
tion time of approximately 450 control-steps – an increase of 335 from the theoretic
minimum of 115. Given that the previous chapter demonstrates that the average
time taken to run diagnostic tests is approximately 180 control-steps (not including
the additional period of observation, o), and that these may have to be run multiple
times if the proposed system does not diagnose faults correctly the first time, the
compromise on detection time necessitated by choosing a high value for ρ is consid-
ered to be worthwhile.

5.4 Summary

This chapter set out to modify the diagnostic system proposed in the previous chap-
ter, with the aim of making it closer to a system that could conceivably be deployed
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on an actual swarm robotic system. This chapter also set out to demonstrate the
proposed diagnostic system’s flexibility, scalability and ability to improve the fault
tolerance of swarm robotic systems.

This chapter has presented a modified version of the novel approach towards
autonomous fault diagnosis in robot swarms which was proposed in the previous
chapter. The new diagnostic system with specifically chosen parameter values was
demonstrated to be flexible and scalable, being able to diagnose faults from memory
in 68%− 76% of cases on average, depending on the size of the robot swarm. The
proposed system also displayed a low rate of misclassification (3%− 5% on average)
and a general tolerance to imperfect robot state information.

A clear improvement in performance was observed when the proposed diag-
nosis system was implemented on a swarm performing collective photo-taxis and
subjected to partial faults. This improvement supports the case for active fault toler-
ance proposed by Bjerknes and Winfield (2013) and also represents a viable solution
for artificial immunity in robot swarms, as the proposed method for autonomous
fault diagnosis should be compatible with existing methods for autonomous fault
detection and, eventually, autonomous fault recovery.

This chapter also performed parameter sensitivity analysis on the proposed di-
agnostic system. It is acknowledged that truly optimal system parameters, and the
extent of some system limitations – such as dependence on reliable communication
– cannot be known until fully integrated FDDR is implemented in a hardware robot
swarm. The work described in the following chapter attempts to take steps towards
addressing this problem by implementing the diagnosis system proposed here as
faithfully as possible on a hardware robot swarm.
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Chapter 6

Fault Diagnosis in Hardware

6.1 Introduction

The previous chapter presented a novel immune-inspired fault diagnosis system for
robot swarms in software simulation. The system was demonstrated to be generally
scalable for swarms of between 10 and 160 robots, as well as flexible. The benefits of
the system were demonstrated by the increase in the overall performance of a sim-
ulated swarm where a number of individual robots were injected with various sim-
ulated sensor and actuator faults. This was performed in a very similar scenario to
that described by Winfield and Nembrini (2006) (albeit a simulated version), which
provides much of the motivation for the work conducted for this thesis.

The results detailed in the previous chapter were a promising indicator that the
proposed fault diagnosis system (or some version thereof) could be suitable for de-
ployment on actual robot hardware in real world scenarios. Actually achieving this
was beyond the scope of this thesis, however the work described in this chapter
aims to provide a proof-of-concept that the proposed diagnosis system could be ef-
fectively implemented in robot hardware.

To demonstrate an improvement in robot performance as was accomplished in
the previous chapter, would require experimental equipment and infrastructure that
was not readily available during the completion of this thesis. Instead, this chapter
proposes that if similar trends as were observed in software simulation can also be
observed in a comparable hardware system, then it suggests that the desirable fea-
tures of the proposed diagnostic system, such as increasing overall swarm perfor-
mance, may also hold true.

The swarm system used for the experiments described in this chapter was de-
signed to be as faithful as possible to that used in software simulation in previous
chapters, but it was not possible to reproduce all elements of the simulated swarm,
such as each robot being equipped with a range and bearing (RAB) sensor, which
required workarounds (all of which are detailed in the following chapter). In all
cases where the hardware swarm necessarily deviates from the software swarm, the
deviation was implemented to be as conceptually similar to the software swarm as
was possible.

6.2 Experimental Methods

The experiments for this chapter were conducted using the psi-swarm robot (Hilder
et al., 2016), a two-wheeled, 10.8cm diameter swarm robot with on-board proximity
sensors. The lack of a RAB sensor on the psi-swarm meant that the proposed diagno-
sis system could not be faithfully reproduced in hardware. To work around this, the
ARDebug tool (Millard et al., 2018) was used, which tracks an arUco tag mounted
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on top of each psi-swarm, allowing distances between and linear and angular veloc-
ities for each robot to be calculated. Whilst not traditionally swarm-like, the use of
ARDebug to provide robots with the information they require on their neighbours
does not interfere with the performance of the proposed diagnosis system. Rather, it
allows this research to progress until such a time as there are readily available robot
platforms that can acquire this information reliably and autonomously.

FIGURE 6.1: The Psi-Swarm robot used for the experiments in this
chapter (Hilder et al., 2016).

A swarm of 5 robots performed obstacle avoidance behaviour in a 2.2 square
metre enclosed arena (see Figure 6.2). These robots were subjected to a subset of the
faults examined in previous chapters, namely; Power failure (H2), Complete Sensor
failure (H3) and Complete Motor failure (H4). Each of these faults are implemented
in the same way as in previous chapters, but are described again here for conve-
nience:

• Power failure (H2): The robot completely stops moving and is unresponsive
to its surroundings.

• Complete Sensor failure (H3): The robot is unable to detect the presence of
neighbours or obstacles.

• Complete Motor failure (H4): One of the robot’s motors stops and becomes
unresponsive to its controller.

It was impractical to allow experiments to run for one hour of real time due to to
power constraints. The Psi-Swarm robot is stated to have a battery life of approxi-
mately 30 minutes where all LEDs are on, IR sensors active at 10Hz, Bluetooth active
and motors at 100% on a smooth surface. This is a generally accurate reflection of the
Psi-Swarm behaviour used in the experiments described in this chapter. However,
during the work conducted for this chapter, it was also found that the Psi-Swarms
became increasingly unreliable, particularly in their ability to send and receive com-
mands over Bluetooth, as their power was depleted (typically after approximately
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FIGURE 6.2: Five Psi-swarms performing obstacle avoidance in an
arena. The robot with a green hat suffers from power failure (H1),

whilst its assessing robot in this case is circled in blue.

15-20 minutes of use). In the simulated experiments described in the previous chap-
ter, an average of 30 faults were encountered by a swarm of 10 robots during one
hour of simulated time. Therefore each hardware experiment was set to last for as
long as it took the system to resolve an equivalent amount of faults. As the experi-
ments in this chapter consider half as many robots (5) that can be subjected to half
as many fault types (H2−4), the first hardware experiments ran for as long as it took
the system to encounter and resolve 15 faults. In these experiments, each robot had
a 1% probability of being injected with a random fault. As with the previous chap-
ters of this thesis, instances of false-positive fault detection are not examined (see
section 4.3.4 for details). As these experiments are using 5 robots, a maximum of 2
robots can be faulty at one time so that there are never more faulty robots than the
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remaining swarm can assess at a given time.
Robot behaviour is encoded as BFVs, where the binary vector

BFV(t) = [F1(t), F2(t), F3(t), F4(t), F5(t)], is defined as the following set of features:

• F1(t) = 1 if NR(t) > 0, otherwise F1(t) = 0
where NR(t) is the total number of neighbours in sensing range (approxi-
mately 1m) of the robot at time t.

• F2(t) = 1 if NC(t) > 0, otherwise F2(t) = 0
where NC(t) is the total number of neighbours at a distance less than the close
proximity threshold, C, (approximately 0.3m) from the robot at time t.

• F3(t) = 1 if |v(t)| > 0.8|vmax|, otherwise F3(t) = 0
where |v(t)| is the magnitude of linear velocity at time t and |vmax| is the max-
imum linear velocity a robot can achieve (approximately 5cms−1 in this work).

• F4(t) = 1 if |v(t)| > 0.2|vmax|, otherwise F4(t) = 0

• F5(t) = 1 if |θ(t)| > 0.4|θmax|, otherwise F5(t) = 0
where |θ(t)| is the magnitude of angular velocity at time t and |θmax| is the
maximum angular velocity a robot can achieve (approximately 24◦s−1 in this
work).

As these experiments do not consider software hang faults, the watchdog timer
inspired feature used in the previous chapter, F6(t), which appeared in the Chapters
4 and 5, is omitted from the BFV here. It was shown in Chapter 3 that the BFV given
above was sufficient for classifying H2−4 in a majority of cases. The parameters used
in feature calculations for hardware experiments vary slightly:

• The range of the virtual RAB sensor is 60cm

• Close proximity threshold C = 3cm

• Threshold values to set F3−5 high are 7.5cms−1, 1.5cms−1 and 75◦s−1, respec-
tively.

Fe,p
1−2 are conceptually estimated for each robot using the ARDebug virtual RAB,

where faults will only affect the proprioceptively sensed features. F3−5 are estimated
proprioceptively by the robot monitoring its own controller output, and exterocep-
tively by the rate of change in readings from the ARDebug virtual RAB. Features
are updated at an approximate frequency of 1.5Hz. Faults are detected according to
Equation 6.1.

Faults are detected when discrepancy is observed between proprioceptively es-
timated features, Fp

1−5, and exteroceptively estimated features, Fe
1−5, according to

Equation 6.1. This is the same method of fault detection as described in the previous
chapter, but is given again here for convenience.

fault detected at time t = true if
T

∑
t=T−W

d(t) ≥ ρW for T > W (6.1)

Where T indicates the time elapsed since a robot started being observed by a
neighbour. The binary value d is set according to Equation 6.2, where d = 0 if
there is agreement between exteroceptively and proprioceptively estimated robot
features. A robot will make W observations of its neighbour, once per control-step,
at discrete times, t, before a fault can be detected, where t indicates the time elapsed



6.2. Experimental Methods 91

since the start of an experiment. The value of ρ indicates what proportion of the W
observations must prompt the value of d to be equal to 1 in order for a fault to be
detected.

d(t) =

{
0 if Fp

i (t) = Fe
i (t) for i = 1, .., 6

1 otherwise
(6.2)

When a fault is detected in a robot by another member of the swarm, the set of
W proprioceptively and exteroceptively estimated BFVs which prompted the fault
to be detected are used as the BFV signature for that particular fault. The assessing
robot – the robot that first detected the fault – then initiates a diagnostic test routine.
The remainder of the swarm will continue to perform their normal behaviours, as
per the simulated experiments in previous chapters. Over the course of setting up
and conducting these experiments, writing a routine for the assessing robot to follow
the faulty robot, as in the simulated experiments described in previous chapters, was
found to be infeasible. This was because the controller for that routine would have
had to run on the ARDebug system and communicate commands to the robots over
Bluetooth, the latency on the robots receiving and processing these commands was
unacceptable for such a task. Instead, the assessing robot stops while the faulty
robot performs the diagnostic tests. Each robot still only has access to the same
information as in the previously detailed simulated experiments – for which there
was a conceptually fully distributed system. Again, this implementation is intended
to allow this work to progress until appropriate robotic platforms become available.

The selection of diagnostic tests used for these experiments are arranged as fol-
lows, where failing the test indicates the presence of its associated fault:

• Power failure (T2): Almost identical to T1. H1 and H2 are distinguished in an
unreachable robot by whether it has stopped moving.

• Complete Sensor failure (T3): The assessing robot, whilst in sensing range,
observes the faulty robot’s feature Fp

1 , which should return 1.

• Complete Motor failure (T5): The faulty robot is instructed to move forward
in a straight line whilst its feature Fe

5 , which should return 0 is monitored.

These diagnostic tests are implemented in the same way as in the simulated ex-
periments described in the previous chapter, with the exception of testing for com-
plete motor failure (H4). Instead of using T4 for this, T5 is used instead. The psi-
swarms were able to perform T5 in a much more fluid manner, primarily because of
the latency incurred by using bluetooth communication to initiate each part of T4.
As partial motor failure, H5, was not examined in these experiments, the use of T5 to
test for H4 did not cause any problems.

When a fault is diagnosed, the system then carries out a corresponding recovery
action. These are the same as those used in the previous chapter, but are given again
here for convenience:

• Power Cycle (R1): This recovery action resolves power failure (H2) faults.

• Sensor Replacement (R2): Replacement of robot sensors resolves complete
sensor failures (H3).

• Motor Replacement (R3): Replacement of robot motors resolves complete mo-
tor failures (H4).
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Carrying out these recovery actions autonomously with the marXbot platform
is not realistic at the time of writing, and all recovery actions are simulated for this
work.

The assessing robot then makes another W observations of the faulty robot. If the
faulty robot’s exteroceptively and proprioceptively estimated BFVs match during
this period, the fault is considered to be resolved. This period was described as a
separate parameter, o, in the previous chapter. However, as W and o both pertain to
the period over which faults are detected, they are set to be equal to one another.

If a robot’s fault persists after having attempted diagnostic tests T2,3,5, the faulty
robot is shut down, at which point it becomes an inanimate object in the environ-
ment.

When a fault is successfully resolved the BFV signature for that fault and the
respective diagnosis are stored in the assessing robot’s memory, which is then shared
with other members of the swarm via an ad-hoc network, which is facilitated by the
ARDebug system i.e. each robot reports its state to the ARDebug system, which also
monitors the robot’s state independently, and this information is then shared with
other robots in the swarm via bluetooth communication. When subsequent faults
occur, the BFV representations of those faults are checked for similarity against the
BFV representation of previous faults by finding the Pearson correlation coefficient
(Benesty et al., 2009) between their BFV signatures, given again here for convenience
(Equation 6.3):

r = ∑m ∑n(Fmn − F)(F0mn − F0)√
(∑m ∑n Fmn − F)2(∑m ∑n F0mn − F0)2

(6.3)

Where r is the correlation coefficient between a current and previous fault sig-
nature, F and F0, respectively, where F and F0 are two dimensional binary data sets.
F and F0 are the mean values of sets F and F0, respectively, and m and n indicate
positional index within the 2D binary data set.

When attempting to diagnose a new fault from memory, the previously stored
fault which produces the greatest r-value (Equation 6.3) is considered the most likely
fault type and recovery is initiated in sympathy with that fault. To be eligible for this
process |r| > s is required, where s represents the threshold above which two BFV-
signatures are considered similar.

The parameter sensitivity analysis performed in the previous chapter suggests
that optimum parameter values for experiments in software simulation were s =
0.56, W = 29 and ρ = 0.88. These were therefore used as the starting point for the
experiments described in this chapter.

The proposed system’s performance during these experiments was assessed on
the following criteria:

• P1: The proportion of faults the system is able to diagnose from memory

• P2: The proportion of attempts to diagnose a fault from memory that fail or are
unrecognised by the system

• P3: The average r-value between faults, using Equation 6.3, when diagnosing
from memory

• P4: The total number of faulty robots the system is unable to resolve and are
shut down in an hour of simulated time

To summarise:
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• 5 Psi-Swarm robots perform a random walk/collision avoidance behaviour in
an otherwise empty enclosed arena

• Once the experiment has begins, each robot has a 1% probability of being in-
jected with a fault. When a fault is injected, the chosen robot will receive a
bluetooth command from the ARDebug system that will alter the robot’s cur-
rent behavioural program to reflect that fault type.

• The ARDebug system estimates co-ordinate information, and therefore BFV
states, for each robot at each control-step. These BFV states are then used to
detect faults according to Equation 6.1. This is implemented in such a way
as to simulate decentralised fault detection by other robots i.e. a fault will
only be detected if a neighbouring robot has been within sensing range for the
duration of the process, and all robots in sensing range of a faulty robot are
able to detect the fault.

• A fault is detected when Equation 6.1 returns true. If there were multiple
robots in sensing range of the faulty robot for the duration of the detection
process, there will be multiple detections of the same fault at the same control-
step. In this case, when assigning a robot to assess the fault, the first robot in
the list of paired devices will be selected.

• If the fault is similar to a previous fault in the assessing robot’s memory, it will
use the remembered diagnosis. Otherwise, it will initiate diagnostic tests T2,3,5.
The commands in these tests are communicated via bluetooth from the ARDe-
bug system. If one of the tests is failed, the system will make the corresponding
diagnosis. If no tests are failed, the detected fault is treated as a false-positive
and normal behaviour resumes for faulty and assessing robots.

• Once a robot is diagnosed, it will resume normal behaviour under observation.
If the ARDebug system estimates abnormal BFVs form the robot under obser-
vation, the diagnosis is treated as incorrect. If the diagnosis was made from
memory, the system will now initiate diagnostic tests T2,3,5. If diagnostic tests
T2,3,5 have already been performed, the faulty robot is shut down via bluetooth
command and becomes an obstacle in the arena.

• If the diagnosed robot is able to demonstrate normal BFVs, as estimated by the
ARDebug system, the presumed-to-be-correct diagnosis is stored in memory,
as well as the faulty robots BFV sequence that initially caused Equation 6.1 to
return true. There is then a simulated process of sharing this information via
local communication. Initially, only the assessing robot is able to access the
information. As that robot comes within range of other robots in the swarm,
they too will be allowed to access the information, who in turn will allow their
neighbours to access it and so on.

• Throughout the experiment, performance criteria P1−3 are recorded in real time
by the system.

• The experiment ends once 15 faults have been resolved by the system in one
way or another.

• 10 replicates are performed for each experiment.
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P1 P2 P3 P4
Software 0.68 0.04 0.87 0

Hardware 0.27 0.41 0.75 1.5

TABLE 6.1: Comparison of the performance of the proposed diagno-
sis system in software simulation and hardware experiments, where
s = 0.56, W = 29 and ρ = 0.88. Data for software simulation experi-

ments is taken from O’Keeffe et al. (2018).

6.3 Results and Discussion

The performance of the proposed diagnosis system implemented in robot hardware,
where s = 0.56, W = 29 and ρ = 0.88, is displayed in Table 6.1, as well as the results
obtained in software simulation in the previous chapter for comparison.

Table 6.1 shows that, using the parameters that gave optimal performance in
software simulation and applying them to hardware experiments, performance suf-
fers considerably on all metrics. The primary cause of this is that setting W = 29
does not allow enough time for the faulty robot to react, this is especially true for
T5. To illustrate, the assessing robot will instruct the faulty robot to demonstrate its
motor function. The faulty robot receives this request over Bluetooth and returns
a message to the assessing robot, instructing it to begin its observations. Between
the assessing robot making its first and twenty-ninth observation, the faulty robot is
often unable to accelerate quickly enough and maintain velocity for long enough to
satisfy the assessing robot that the fault is resolved.

A general shortcoming of this system in hardware is that there is latency between
proprioceptively and exteroceptively sensed features updating. When a robot turns
to avoid an obstacle or neighbour, it is able to communicate this change in con-
troller state almost immediately. However, it takes longer for the ARDebug system
to observe and report this change in linear and angular velocity. This is often to the
extent that, by the time the exteroceptively sensed features reflect the robot turn-
ing, the turn has already occurred and the robot is back to moving in a straight line,
which is reflected by the proprioceptive features in close to real-time. This means
that for short turning periods, which account for the vast majority of occasions in
which a robot turns during these experiments, there is discrepancy between propri-
oceptively and exteroceptively sensed features. As instances of false-positive fault
detection are beyond the scope of this thesis, this does not pose a significant prob-
lem to detecting faults or their BFV signatures. However, when observing a faulty
robot post-diagnosis, the greater the proportion of time it spends exhibiting avoid-
ance behaviour, the greater the likelihood that it will be assessed as having its fault
persisting, even if the fault has been resolved. The most immediate way around this,
given that avoidance is commonly exhibited but generally only for short periods of
time, is to observe how increasing the value of W affects the proportion of faults di-
agnosable from memory. The same experiments were repeated for integer multiples
of W. The results are shown in Table 6.2.

The trends observed in Table 6.2 are very similar to observed in simulation. A
step-like relationship between W and P1,2 was observed in the previous chapter,
where values below a threshold (W < 5 in simulation) severely reduced perfor-
mance. Above this threshold, however, there was no observable correlation as W
increased. Table 6.2 demonstrates that increasing the value of W from 29 to 58 im-
proves overall performance on metrics P1−4, after which point there is relatively little
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W P1 P2 P3 P4
29 0.27 0.41 0.75 1.5
58 0.5 0.1 0.78 0
87 0.53 0.15 0.79 0.5

TABLE 6.2: Comparison of system performance, where s = 0.56 and
ρ = 0.88, for varying values of W.

Num. Faults P1 P2 P3 P4
15 0.5 0.1 0 0.78
25 0.6 0.14 1 0.75

TABLE 6.3: Comparison of system performance where the system en-
counters 15 and 25 faults in an experiment (s = 0.56, W = 58, ρ =

0.88).

change in performance.
It was also observed in the previous chapter that for low values of W, P4 is ini-

tially at optimum P4 = 0. However, increasing W eventually causes P4 to increase
proportionately (Figure 5.8), a trend that can be seen in the data in Table 6.2 be-
tween W = 58 and W = 87. The fact that P4 is at its highest value for low values of
W (W = 29) in Table 6.2 but not in Figure 5.8, arises because the previous chapter
separated the detection window, W, and the observation period, o, whereas in this
chapter the two variables are merged i.e. the window over which faults are detected
is equal to the period over which a diagnosis is assessed to be correct. Figure 5.5
demonstrated that using a short period to assess the validity of a diagnosis also re-
sults in a high number of unresolvable faults, P4, during an experiment.

Table 6.2 shows that the best overall performance was obtained for W = 58. This
is the value therefore used for all remaining experiments.

In chapter 4 it was observed that, the longer an experiment went on, the more
frequently the system was able to diagnose faults from memory. This effect can be
seen in Figure 4.3, and is a result of the system establishing a more comprehensive
repertoire of BFV signatures for different types of faults such that it eventually be-
comes very probable when a fault is encountered that the system will have already
diagnosed and resolved the fault under similar circumstances. Table 6.3 compares
performance where the system encounters 15 faults and 25 faults during an experi-
ment.

The results obtained in hardware obey the trend observed in Figure 4.3: As the
system is subjected to more faults, it becomes increasingly likely that future in-
stances will be diagnosable from memory.

The last trend investigated in these hardware experiments is how altering the
value of s affects performance, this is displayed in Table 6.4.

The trends between s and system performance observed in Table 6.4 are very
similar to those we observed in software simulations. In the previous chapter it was
observed that P1 is largely unresponsive to s until a critical point, presumed to be
the average r-value between faults, after which P1 begins to decline with increasing
s. The data in Table 6.4 generally fits this trend, but suggests that the critical point
for s is lower in hardware, which is supported by the lower value of P4 observed.

It was also observed in the software simulation experiments described in the pre-
vious chapter that P2 decreases for increasing values of s, which can also be observed
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s P1 P2 P3 P4
0.28 0.6 0.34 1 0.72
0.42 0.63 0.19 0 0.72
0.56 0.5 0.1 0 0.78

TABLE 6.4: Comparison of system performance, where W = 0.58 and
ρ = 0.88, for varying values of s.

in Table 6.4.
It has been argued throughout this thesis that P1 is the most indicative measure

of our system’s performance. The hardware experiments described in this chapter
were able to achieve P1 = 0.63, which is proposed to be comparable to the value ob-
tained by our system in software simulation, P1 = 0.68. A reduction in performance
is to be expected when implementing a system in hardware (Jakobi, Husbands, and
Harvey, 1995). The fact that the proposed system in hardware was able to achieve
93% performance on what is considered the most fundamental performance met-
ric, combined with the fact that the same general trends are observed in hardware
experiments as in software, is evidence of the proposed system’s feasibility for de-
ployment in real-world scenarios, and that the results obtained and trends observed
in experiments conducted in software simulation should generally translate propor-
tionately into real-world systems.

6.4 Summary

The work described in this chapter has demonstrated a novel approach to fault diag-
nosis in a hardware robot swarm. The system presented here performed compara-
bly in hardware and software simulation. Although performance was reduced on all
metrics in hardware, the proposed system was able to diagnose faults from memory
in the majority of cases (P1 = 0.63) when set with appropriate parameter values, and
was also able to maintain a comparatively low rate of misclassification (P2 = 0.19 for
the same parameter values, although by adjusting the parameter values the system
was able to get this as low as P2 = 0.1). The proposed system also maintained a very
low rate of instances where it was unable to diagnose a fault (P3).

Although the results discussed in this chapter demonstrate the proposed sys-
tems viability as a solution to improving fault tolerance in hardware SRS, they also
highlight some of the present limitations. Most prominent of these is the proposed
system’s dependence on reliable fault detection. That low values of W result in such
degradation in performance is indicative of the fact that, without a reliable means of
assessing the presence or absence of faults and failures autonomously, the proposed
system cannot be expected to demonstrate learning and memory functionality as
desired. This is largely unsurprising, and previous chapters highlight that fault de-
tection is necessary for effective fault diagnosis. However, the results presented in
this chapter suggest that work on this particular method of fault diagnosis is now
mature enough that it is no longer practical to separate the process of diagnosis from
detection, as it has been demonstrated in this chapter and in previous chapters that
the two processes are intrinsically linked.
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Chapter 7

Conclusion

7.1 Introduction

The concluding chapter of this thesis summarises the work detailed in the previous
chapters, as well as outlining the contributions made by this thesis. This chapter
then discusses the limitations of the work described in the previous chapters of this
thesis, before suggesting what steps might be taken to carry this work forward. This
chapter closes with a comparison of the conclusions of this thesis with the initial
research hypothesis described in the first chapter.

7.2 Summary and Contributions

Chapter 2

Chapter 2 highlights the motivation for providing swarm robotic systems with ac-
tive fault tolerance capabilities. It then goes on to discuss a variety of the approaches
towards active fault tolerance in multi-robot systems and swarm robotic systems
devised by other researchers. Chapter 2 also details a number of immune-inspired
approaches to fault tolerance, and broadly describes the natural biology those ap-
proaches draw from. Chapter 2 demonstrates the body of work towards active fault-
tolerance for robot swarms to be relatively small, and in doing so highlights the large
space for novel approaches towards active fault tolerance in swarm robotic systems.
Chapter also highlights the necessity of a fault diagnosis mechanism for enabling
robot swarms to retain long-term autonomy. The absence of previous work towards
this particular problem justifies the work undertaken in this thesis.

Contributions

1. An up to date review of existing work towards fault tolerant swarm robotic
systems.

2. An argument that fault diagnosis is a necessary component of active fault tol-
erance for swarm robotic systems.

3. The identification of ways in which previous work on fault detection could be
carried forward for a novel approach to fault diagnosis.

Chapter 3

Chapter 3 carries forward the Behavioural Feature Vector (BFV) approach, demon-
strated to be effective in fault detection by Tarapore, Christensen and Timmis (2017),
and applies it to fault classification. By encoding robot behavioural states as BFVs,
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Chapter 3 demonstrates that a number of different electromechanical fault types can
be classified offline by training a decision tree on the BFVs produced by robots with
a variety of different fault types operating within a swarm. The results obtained in
Chapter 3 showed promise for a BFV-based approach to fault diagnosis for robot
swarms.

Contributions

1. A demonstration that BFVs can be used effectively to classify a variety of elec-
tromechanical fault types in individual robots within a simulated swarm.

Chapter 4

Chapter 4 is informed by the results obtained in Chapter 3, and uses a BFV-based ap-
proach to devise and present an immune-inspired novel, adaptive and distributed
approach to fault diagnosis in simulated robot swarms. Chapter 4 demonstrates the
proposed fault diagnosis system to diagnose fault types appropriately in the major-
ity of the cases tested through a process of learning and memorising a given fault’s
characteristics online and in real time. The proposed diagnostic system method was
also demonstrated to give a very low rate of misclassification.

Contributions

1. The proposal of a novel method for fault diagnosis in swarm robotic systems.

2. A demonstration that the proposed method of fault diagnosis can diagnose a
variety of fault types appropriately in the majority of cases tested, and that the
proposed system mimics some of the desirable characteristics of the natural
immune system.

Chapter 5

Chapter 5 builds on the work described in Chapter 4, and makes adjustments to the
proposed fault diagnosis system to bring it closer to a system which could conceiv-
ably be deployed in a real world scenario. The fault diagnosis system presented in
this chapter is novel, and is demonstrated to be flexible and scalable when imple-
mented on a simulated autonomous robot swarm. The proposed diagnostic system
is demonstrated to be able to appropriately diagnose a variety of electromechanical
faults in the majority of the cases tested, as well as maintaining a low rate of misclas-
sification. The system is also subjected to parameter and noise sensitivity analysis.

The proposed diagnostic system is also tested on a simulated swarm performing
collective photo-taxis and subjected to partial faults, in a scenario very similar to
that used by Winfield and Nembrini (2006) which significantly motivates this thesis.
A clear improvement in performance was observed when the proposed diagnosis
system was implemented, compared with a simulated swarm without active fault
tolerance. This improvement supports the case for active fault tolerance proposed by
Bjerknes and Winfield (2013) and also indicates that the proposed diagnostic system
is a viable solution for achieving long term autonomy in robot swarms.

Contributions

1. The proposal of a novel method for fault diagnosis in swarm robotic systems.
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2. A demonstration that the proposed method of fault diagnosis can diagnose a
variety of fault types appropriately in the majority of cases tested, and that the
proposed system mimics some of the desirable characteristics of the natural
immune system.

3. A demonstration that the proposed diagnostic system is flexible, scalable and
robust to varying degrees of system noise under the conditions tested.

4. A demonstration that the proposed diagnostic system improves the overall
performance of a simulated robot swarm by providing it with active fault toler-
ance under similar conditions to those used by Winfield and Nembrini (2006).

Chapter 6

Chapter 6 attempts to implement Chapter 5’s novel fault diagnosis approach in hard-
ware as faithfully as possible. Chapter 6 demonstrates a novel approach to fault di-
agnosis in a hardware robot swarm. The system presented in Chapter 6 performs
comparably with that presented in software simulation in Chapter 5. Although per-
formance was reduced in hardware, the proposed system was able to diagnose faults
appropriately in the majority of cases tested, and was also able to maintain a com-
paratively low rate of misclassification.

Chapter 6 revealed that the proposed diagnostic system, when implemented
in hardware, displayed the same general trends as the software simulated version
when the same parameter values were varied. This suggests that the vast improve-
ment to swarm performance observed in Chapter 5 may also hold true for a hard-
ware system. If this is the case, then the proposed diagnostic system described in
this thesis takes a direct step towards addressing the problems associated with fault
tolerant robot swarms that are outlined by Bjerknes and Winfield (2013).

Contributions

1. The implementation and demonstration of a modified but conceptually similar
version of the proposed diagnostic system in actual robot hardware.

2. A demonstration that the proposed diagnostic system in hardware generally
obeys the same trends as in software simulation when system parameters are
varied.

7.3 Limitations

This section highlights the limitations of the work presented in this thesis that were
identified during its undertaking.

7.3.1 Communication

Each variation of the fault diagnosis system, described in Chapters 4, 5 and 6, is
heavily dependent on reliable communication between robots. Each robot needs to
be able to communicate its own BFV states with neighbouring robots, as well as be-
ing able to share its memory of previous fault signatures. If this data is lost, delayed,
sent or received in the wrong order or otherwise not as it should be, this will affect
system performance. When robots communicate their BFV states it must be done in
real time with as little delay as is possible. If this is hindered, two possible outcomes
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are predicted; a robot will be unable to make a comparison of proprioceptively and
exteroceptively estimated BFVs at that point in time, in which case any active di-
agnostic processes will have to pause until up-to-date BFV information becomes
available again; or, robots will have to use the most recent BFV data irrespective of
whether or not it accurately describes a robot’s present state – which is tantamount
to system noise in this case, the effects of which have already been shown to be
detrimental to overall performance. Similarly, if memory data is lost or corrupted,
the system will either have non-representative fault characterisations – which will
lead to an increase in failed diagnosis attempts – or it will simply have no repre-
sentation at all in these scenarios, in which case it will require the time-consuming
diagnostic tests to be run more frequently.

7.3.2 Fault Types Tested

The experiments conducted for this thesis only consider individual robot faults that
can be considered orthogonal to each other. In real world scenarios it is possible that
multiple faults may occur at once or in sequence, or that the effects of one type of
fault may be indistinguishable from the effects of a different type of fault by their
BFV signatures – this was observed in Chapter 3, however it might not always be
possible to get around these problems with the addition of new features. Additional
problems may occur if faults do not explicitly manifest in robot software/hardware,
but in the interaction space between robots. Although it is beyond the scope of this
thesis, as AIS in robots develop, it is probable that Trusted Autonomy (Abbass, Leu,
and Merrick, 2016) will become an increasingly prevalent consideration for fault
tolerant systems. The proposed fault diagnosis system described in the previous
chapters of this thesis is not equipped to examine or address this problem space,
and to modify it do so would require an additional dimension of fault detection,
diagnosis and recovery to be integrated.

7.3.3 Fault Detection Mechanism

In the wider context of achieving fault tolerant swarms, another limitation of the
proposed fault diagnosis system, and perhaps of the process of fault diagnosis in
general, is the dependence on reliable fault detection. This is indicated by the results
of the noise sensitivity analysis, and in the parameter sensitivity analysis in Chapter
5. Without a reliable means of autonomous fault detection, the proposed fault diag-
nosis system in software simulation is impaired in its ability to demonstrate learning
and memory functionality as is desirable. This was even more prominent when the
fault diagnosis system was moved into hardware in Chapter 6, where a large degra-
dation in performance was observed when using low values of W, which determines
the window of time a fault is detected over. To reiterate what was proposed in the
summary of Chapter 6, a general conclusion of this thesis is that the process of fault
diagnosis is not practically separable from fault detection.

7.3.4 Available Hardware & Fault Recovery

Fault recovery at a finer scale than the replacement of an entire robot is a problem
that is beyond the capabilities of any swarm robotic platforms known to the author
at the time of writing. Until the functionality of swarm robotic hardware increases
such that basic recovery actions – such as those described in this thesis or similar
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– are possible, the path to achieving fault tolerant swarms will be confined to the
realm of concept.

7.4 Future Work

This section discusses some potential and/or necessary avenues for carrying the
work described in this thesis forward.

7.4.1 Complex Faults

A natural avenue for future work is the inclusion of multiple faults in parallel, or
faults occurring in series where one is the consequence of another e.g. a software
fault that causes a sensor or motor fault. It is possible that such faults may have
unique fault signatures, or that they may be indistinguishable from single faults. In
the case of the former, the proposed system should be able to learn the signature of
the new type of fault, however it may be desirable for the system to be able to initiate
multiple recovery actions in parallel rather than dealing with each fault individually
in a brute force style approach. To implement this additional layer of complexity to
the proposed system will likely be non-trivial, but the ability to isolate the individ-
ual faulty components that comprise a complex fault signature would certainly be
desirable for autonomous systems.

7.4.2 Integration with fault detection

Future work should seek to integrate the proposed method of fault diagnosis with
a mature approach to fault detection. The CRM-based approach (Tarapore, Chris-
tensen, and Timmis, 2017), or something similar, is an obvious candidate for this in-
tegration. The results obtained for this thesis suggest that improved fault detection
mechanisms would allow the proposed system to achieve competitive performance
when implemented in hardware as was demonstrated in software simulation. If this
can be achieved, available swarm robotic hardware will be one of the last remain-
ing barriers between research into improving fault tolerance in robot swarms and
tangible real-world demonstrations of fault tolerant swarms.

7.4.3 Development of more capable swarm hardware

To the best of the author’s knowledge, at the time of writing there are no commer-
cially available swarm robotic platforms that have the sensing capabilities required
to estimate the behavioural states of neighbouring robots as is described in this the-
sis. This is a necessary element of the proposed fault diagnosis system in order to
avoid the limitations associated with endogenous fault detection. Additionally, the
recovery actions proposed in this paper are beyond the capabilities of current swarm
robotic platforms. This thesis argues that the ability of the swarm to autonomously
perform recovery actions on individual robots is crucial to maintaining long-term
autonomy.

Whilst not a direct extension of this particular work, the development of swarm
robotic platforms with greater sensing capabilities and a greater range of function-
alities is a requirement for implementing the proposed system in actual robot hard-
ware, as well as generally bringing the state of swarm robotic hardware closer to
being able to perform the types of task described by Şahin (2005).
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7.5 Conclusion

The initial research question set out in the first chapter of this thesis was:

Can faults in swarm robotic systems be diagnosed by examining specif-
ically where discrepancies between observed and expected behaviours
originate from?

This thesis demonstrates in Chapter 3 that different fault types could be classi-
fied appropriately and reliably by encoding robot behaviours as behavioural feature
vectors (BFVs). In Chapters 4, 5 and 6 this thesis proposes and demonstrates a novel
method for fault diagnosis in software simulation and robot hardware, based around
the fault signatures produced by different types of faults in robot BFVs. The pro-
posed system was demonstrated to quantifiably improve swarm performance when
implemented, and was also demonstrated to be flexible and scalable as is desired for
swarm systems.

The initial aims of this thesis have been met, and the motivating factor of improv-
ing fault tolerance in swarms has been directly addressed. The research described
in this thesis therefore represents a valuable new step towards achieving active fault
tolerance in swarm robotic systems.
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