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Abstract

Array signal processing is a technique linked closely to radar and sonar systems. In

communication, the antenna array in these systems is applied to cancel the interference,

suppress the background noise and track the target sources based on signals’parameters.

Most of existing work ignores the polarisation status of the impinging signals and is mainly

focused on their direction parameters. To have a better performance in array processing,

polarized signals can be considered in array signal processing and their property can be

exploited by employing various electromagnetic vector sensor arrays.

In this thesis, firstly, a full quaternion-valued model for polarized array processing

is proposed based on the Capon beamformer. This new beamformer uses crossed-dipole

array and considers the desired signal as quaternion-valued. Two scenarios are dealt with,

where the beamformer works at a normal environment without data model errors or with

model errors under the worst-case constraint. After that, an algorithm to solve the joint

DOA and polarisation estimation problem is proposed. The algorithm applies the rank

reduction method to use two 2-D searches instead of a 4-D search to estimate the joint

parameters. Moreover, an analysis is given to introduce the difference using crossed-dipole

sensor array and tripole sensor array, which indicates that linear crossed-dipole sensor

array has an ambiguity problem in the estimation work and the linear tripole sensor

array avoid this problem effectively. At last, we study the problem of DOA estimation

for a mixture of single signal transmission (SST) signals and duel signal transmission

(DST) signals. Two solutions are proposed: the first is a two-step method to estimate

the parameters of SST and DST signals separately; the second one is a unified one-step

method to estimate SST and DST signals together, without treating them separately in

the estimation process.
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Chapter 1

Introduction

1.1 Research Background

Array signal processing techniques have been widely used in many applications. In mod-

ern radar and sonar, antenna and hydrophone array is an essential component in the

system to detect and locate the targets. Many communication systems use microphones

or loudspeakers or multiple beam antennas to achieve their performance objectives. Seis-

mic arrays are designed for oil exploration, underground nuclear tests detection and even

earthquake prediction [1]. Various medical diagnosis and treatment techniques exploit

ultrasound arrays [2, 3]. Large antenna arrays can help to achieve high resolution goals

in radio astronomy [4].

Specifically, array signal processing can be divided into three different sub-areas: signal

detection, beamforming and direction of arrival (DOA) estimation. Detection theory or

signal detection theory is a means to quantify the ability to distinguish between signals

and noise with information of the received array signals [5]. Beamforming is a widely

used technique in tracking and receiving signals from a selected direction or directions [6].

Sometimes we consider beamforming as spatial filtering [7]. It can be applied to both the

transmitting and receiving ends to achieve spatial selectivity. This is realised by combining

elements in a sensor array in such a way that signals at particular angles experience
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constructive combination, while others are added together destructively. Generally, there

are three different types of array structures for array signal processing: the linear array,

where all the sensors are placed along a straight line; the planar array, where the sensors

are spaced over a two-dimensional (2D) surface [8, 9]; the volumetric arrays, where the

sensors are placed spatially in a three-dimensional (3D) space [10]. DOA estimation in

array signal processing is used to estimate the direction of incoming signals by an array

of sensors, which is widely used in radar detection, seismology, wireless communications

and radio astronomy [11, 12]. In the following, some application areas are introduced.

Radar is probably the first application area of array processing. Although the primary

concept of phased antenna array was known during World War I, the first application was

during World War II. Most kinds of radar work in the defense sector. Examples can

be given as the fire control radars in Navy ships, high resolution bombing radars and

height-finding radars. Non-military radars are used for navigation, meteorologic, velocity

measurement and air traffic control.

Array signal processing also plays a very important role in seismology. One important

area is to detect and locate underground nuclear explosions. In the 1960s and 1970s many

useful developments were achieved in this area. One of the most famous beamformer,

Capon’s minimum variance distortionless response (MVDR) beamformer was developed

in that period [13], which will be discussed in the following chapter. Another topic related

to seismology is of great significance to us, that is the exploration seismology [14], where

the objective process is to construct an image of the subsurface in which the structure

and physical properties are described.

In many modern communication systems, antenna arrays, or sensor arrays are widely

used. Signals in a communication system are normally point sources. Due to the channel

characteristics, we can consider the signals arriving at a sensor array as a single plane

wave, multiple plane waves or as spatially spread signals [15]. In addition to receiver

noise, the interference may include other communication signals or intentional jamming

signals. Moreover, phased antenna array is an important component in satellite systems.
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For example, the Defense Satellite Communication System (DSCS III) has a 61-beam

receive MBA (multiple beam antennas) and 19-beam transmit MBA. Many of the low

earth orbit (LEO) satellite systems utilize phased arrays.

1.2 Original Contributions

In our research, the sources are considered to emit polarized signals, and we employ vector

sensor (crossed-dipole or tripole sensor) arrays to process the received signals. There are

two main focuses about the work in this thesis: beamforming and DOA estimation. The

original contributions include:

1. The first contribution is to improve the quaternion-valued capon beamformer. With

crossed-dipole antenna arrays, quaternion-valued data models have been developed

for beamforming for a long time. The quaternion-valued Capon beamformer is de-

signed to eliminate the interference signals which are close to the signal of interest.

The Q-capon beamformer tracks the aimed signals not only based on their direc-

tions, but also their polarisation information. However, for almost all quaternion-

valued array models, especially for adaptive beamforming, the desired signal is still

complex-valued. It leads to a problem that although the output signal of our de-

signed beamformer is quaternion-valued, only two components of the quaternion

result is fully made use of and the remaining two are simply discarded. As a result,

significant redundancy exists in its implementation. To deal with the disadvantage

of the original quaternion-valued beamformer, we consider a quaternion-valued de-

sired signal and develop a fully quaternion-valued Capon beamformer, which has a

better performance and a much lower complexity. Furthermore, based on this full

quaternion model, the robust beamforming problem is also studied in the presence

of steering vector errors and a worst-case based robust beamformer is developed.

However, as shown in our later work, there are some interferences from some specific

DOAs and polarisations cannot be suppressed effectively by the proposed method,

3



which is an inherent ambiguity issue associated with the array structure.

2. In the second contribution, the ambiguity problem for DOA estimation associated

with vector sensor arrays is analysed. Electromagnetic (EM) vector sensor arrays

are employed to track both the polarisation and direction of arrival (DOA) param-

eters of the impinging signals. However, the linear crossed-dipole arrays, due to

inherent limitation of the structure, can only track one DOA parameter and two

polarisation parameters. For full 4-D (2 DOA and 2 polarisation) estimation, we

could extend the linear crossed-dipole array to the planar case. In our work, in-

stead of extending the array geometry, we replace the crossed-dipoles by tripoles

and construct a linear tripole array. A detailed derivation is given to show how a

crossed-dipole array produces the ambiguity problem and why tripole arrays can

avoid the problem. It is shown that the tripole sensor structure can estimate the

2-D DOA and 2-D polarisation information effectively. Besides, a MUSIC-based

dimension-reduction algorithm is developed so that the 4-D estimation problem can

be simplified to two separate 2-D estimation problems, significantly reducing the

computational complexity of the solution. The Cramér-Rao Bound (CRB) is also

deduced as a reference to evaluate the performance of the developed algorithm.

3. In the third and also the final contribution, we consider an emerging scenario for

DOA estimation. Currently, most estimation work focuses on single signal trans-

mission (SST) signals. However, to make full use of the degree of freedom in the

spatial domain, dual signal transmission (DST) model signal can be employed in

wireless communications. But there is rarely any work on DST signal estimation.

Motivated to solve the problem, a new two-step estimator is proposed for DST sig-

nals, where an SST estimator and an DST estimator are constructed separately to

estimate the SST signals and the DST signals. To extend the two-step solution to

a more general case, a unified general estimator is derived to estimate the DOAs

of all mixed signals. An analysis is provided to explain why this general estimator

works for both kinds of signals.
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1.3 Outline

The outline of the thesis is as follows:

In Chapter 2, basic concepts of polarisation, beamforming and DOA estimation are

reviewed. A crossed-dipole sensor array is introduced to describe how polarised signals

are received. For beamforming, a well-known Capon beamformer and its application

with worst-case constraints are reviewed and some simulation results are provided to

demonstrate its performance. For DOA estimation, the well-known MUSIC algorithm is

reviewed and the algorithm is extended to 1-D, 2-D and 4-D estimation cases.

In Chapter 3, with polarised signals, a uniform crossed-dipole linear array is applied to

beamforming and a fully quaternion-valued Capon beamformer is proposed. The proposed

beamformer considers the desired signal as quaternion-valued and a detailed derivation of

the weighting vector is presented. Moreover, the new proposed beamformer is extended

to the worst-case based robust beamforming. Simulation results including beam patterns

and output SINR are provided to verify the effectiveness of the proposed algorithms.

In Chapter 4, the ambiguity problem for DOA estimation associated with vector sensor

arrays is analysed. By comparing the difference between linear crossed-dipole and tripole

sensor array, it can be found that generally the linear crossed-dipole sensor array has the

ambiguity problem while linear tripole sensor array can avoid the problem. Detailed proof

is given as a explanation to the problem. After that, based on the tripole senor array, a

complexity-reduction MUSIC algorithm is proposed, which reduce the orginal 4-D search

to 2-D searches. The CRB (Cramér-Rao Bound) is derived to evaluate the performance

of the new algorithm.

In Chapter 5, an emerging scenario for DOA estimation is considered, where the

incoming signals include both the single-signal transmission (SST) and the dual-signal

transmission (DST) signals. Traditional 4-D MUSIC algorithm fails to find the direction

and polarisation of the DST signals. To solve the problem, by exploiting the additional

information provided by DST signals, a two-step algorithm is firstly proposed. In the

solution, a rank-reduction SST estimator is applied to find the DOA and polarisation of

5



the SST signals and then a specifically designed DST estimator is derived to estimate

the DOA of DST signals. Furthermore, a general MST estimator is proposed to obtain

the DOA parameters of the SST and the DST signals in one step. After that, the CRB

(Cramér-Rao Bound) is derived to evaluate the performance of the proposed algorithms.

In Chapter 6, conclusions are drawn and some ideas for future work are introduced.
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Chapter 2

Literature Review

2.1 Introduction to Polarization

Polarisation is used to describe the phenomenon that transverse waves are able to oscillate

in different directions simultaneously. For transverse waves, the oscillating directions are

always orthogonal to the wave propagating direction, which is the reason of polarisation

in transverse waves transmission. While for longitudinal waves, the oscillating directions

are identical with the wave propagating direction. As a result, there is no polarisation

in longitudinal wave propagation. Typical longitudinal waves, for example, the sound

waves propagating in liquid or gas, do not exhibit polarisation. Those transverse waves,

such as the sound waves propagating in solid media, and transverse electromagnetic waves,

exhibit polarisation with waves propagating. In this section, the discussion of polarisation

is mainly focus on transverse electromagnetic waves.

Consider a transverse electromagnetic (TEM) wave propagating to an array with po-

larisation sensitive sensors, for example, crossed-dipole sensor array, which is shown in

Fig. 2.1. The electric field E⃗ and the magnetic field B⃗ are both orthogonal to the wave

propagating direction, which can be denoted as an incoming unit vector r̂. As the strength

of electric field and magnetic field can not be measured directly, the sensors use the in-

duced voltage gradient caused by these two fields to describe the strength instead. In the
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Figure 2.1: A linear crossed-dipole array.

following, the discussion will be based on a crossed-dipole sensor array. In crossed-dipole

array, the information of magnetic field will be ignored and only the strength of electric

field will be recorded in the array.

With the varying of time, the direction of electric field keeps changing. As the direction

of electric field at any time-instant is always orthogonal to the wave propagating direction

r̂, the directions of electric field lie in a planar. Here we use two polarized vectors ϕ̂ and

θ̂ as two basic vectors to describe the electric field planar, where the two vectors must be

both unit vectors and orthogonal to each other. Then, the electric field of the TEM wave

can be expressed in terms of these vectors

E⃗ = Eϕϕ̂+ Eθθ̂ + 0r̂

= Eϕϕ̂+ Eθθ̂ (2.1)

Notice that the component in the r̂ direction is zero in (2.1), and the electric field of the

wave is determined by the other two components. There are more than one choices in

choosing ϕ̂ and θ̂. Generally we use the following equations in our analysis,

ϕ̂ = [− sinϕ, cosϕ, 0]T (2.2)

θ̂ = [cosϕ cos θ, cosϕ sin θ,− sin θ]T (2.3)

8
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Figure 2.2: Polarization ellipse.

As time progresses, the amplitude of these two components varies periodically sharing

a same frequency of the TEM wave. As a result, the electric field varies in a polarisation

ellipse which is shown in Fig. 2.2. In the ellipse, we define β as the angle between the

major axis of the ellipse and ϕ̂. To eliminate ambiguities we also set β in the range

0 ≤ β < π. Another angle α is defined to describe the ellipticity, which is given by

α = tan−1 minor axis

major axis
(2.4)

α is defined positive when the electric ellipse rotates clockwise and negative when rotates

counter-clockwise in the range of −π/4 ≤ α ≤ π/4 [16]. For a given polarized signal, the

electric field components are denoted by

Eϕ = A cos γ (2.5)

Eθ = A sin γejη (2.6)

A is the amplitude of the signal and the relationship among α, β, γ and η is

cos 2γ = cos 2α cos 2β (2.7)

tan η = tan 2α csc 2β (2.8)

where 0 ≤ γ ≤ π/4 and −π ≤ η ≤ π.
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Generally, the electric field is an ellipse from the view of wave propagating direction and

we call it elliptical polarisation. However, the ‘ellipse’ may degenerate to a straight line or

a circle. The two special cases are noted as linear polarisation and circular polarisation.

When α = 0, the electric field E⃗ will be clustered in a line. While if α = ±π
4
, in the

ellipse, the length of minor axis will be equal to the length of major axis. As a result, the

ellipse will appear as a circle.

When an elliptically polarised signal impinges on the crossed-dipole array (linearly

polarised and circularly polarised signals can be considered as the special case of elliptically

polarised signals), as we mentioned before, the strength of electric field is recorded in the

form of induced voltage gradient and projected onto x, y and z axes in space, where

E⃗ = Eϕϕ̂+ Eθθ̂

= (Eθ cos θ cosϕ− Eϕ sinϕ)x̂

+(Eθ cos θ sinϕ+ Eϕ cosϕ)ŷ

−(Eθ sin θ)ẑ (2.9)

With more details to express Eϕ and Eθ in (2.5), the electric field becomes

E⃗ = A[(sin γ cos θ cosϕejη − cos γ sinϕ)x̂

+(sin γ cos θ sinϕejη + cos γ cosϕ)ŷ

−(sin γ sin θejη)ẑ]

= A(pxx̂+ pyŷ + pz ẑ) (2.10)

where px, py, pz are the polarisation coefficients in the Cartesian coordinate system.

In practical work, polarisation is an important design consideration. Although ellipti-

cal polarisation is the general case, the linear polarisation and circular polarisation are ap-

plied in communication systems more widely. For example, usually the linear polarisation

are applied as vertical linear polarisation and vertical linear polarisation. Vertical linear

polarisation is widely used in radiating the radio signals such as the mobile equipments.

Horizontal linear polarisation is used to broadcast television signals, which can reduce the
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interferences with mobile signals. Another consideration is that manmade noise usually

appears as vertical linear polarisation, the horizontal linearly polarised signals suffer less

interferences from noise.

Circular polarisation is mostly applied to satellite communications. One reason is

that circular polarisation is more resistant to signal degradation due to the atmosphere

conditions. For example, when signals travel through heavy clouds or rain, the rotation

of the signals may change, which affects the linear polarisation more than the circular

polarisation.

2.2 Introduction to Narrowband Beamforming

Beamforming is a technique in array signal processing to extract the signal of interest

among interferences and background noise. In beamforming, the information of the signal

envelope is collected in the array as a vector. Applying a weight vector to the received

array signals, the final output includes the desired signal from a certain DOA, while the

interferences with different DOAs and background noise are efficiently suppressed [17].

The main task of beamforming is to find a suitable weight vector. In the following, we

will give a introduction about the low pass equivalent model for bandpass signals. Then,

a narrowband model for the signal transmission will be presented. Finally, we will provide

some concepts of Capon beamformer and robust Capon beamformer based on narrowband

model.

2.2.1 Low pass equivalent model

In communication systems, the transmission signals are always real-valued. A typical

real-valued band-pass signal s(t) can be denoted as

s(t) = Re{sl(t)ejωct} (2.11)

where sl(t) is a signal with zero center frequency and ejωct can be viewed as a complex-

valued carrier signal. Thus, after Fourier transform, the frequency domain of s(t) is given

11
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Figure 2.3: Frequency domain of a band-pass signal s(t).
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Figure 2.4: Frequency domain of signal jŝ(t).

in Fig. 2.3.

Due to the symmetry of the spectrum, the components with negative frequency can

be discarded without any loss of the original signal information. Based on the idea, a new

signal jŝ(t) can be added to the original signal to eliminate the components with negative

frequency and double the components with positive frequency. The frequency domain of

the new signal jŝ(t) is given in Fig. 2.4.

From Fig. 2.3 and Fig. 2.4, the relationship between s(t) and jŝ(t) in frequency

domain can be concluded as

jF̂ (ω) =


F (ω), ω > 0

0, ω = 0

−F (ω), ω < 0

= sgn(ω)F (ω) (2.12)
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Figure 2.5: Frequency domain of analytic signal sa(t).

where the sgn(ω) is the sign function of ω. Apply the inverse Fourier transform, the

relationship of the two signals in time domain is given by

jŝ(t) = F−1{sgn(ω)F (ω)} = F−1{sgn(ω)} ∗ F−1{F (ω)}

= j
1

πt
∗ s(t) (2.13)

where ∗ is the convolution operator. The signal ŝ(t) = 1
πt

∗ s(t) is called as the Hilbert

transform of the original signal s(t). By adding the Hilbert transform to the original

signal, the output signal sa(t) is a signal with only positive frequency. This signal is

known as the analytic signal and

Fa(ω) = F (ω) + jF̂ (ω) = 2F (ω)u(ω) (2.14)

where u(ω) is the Heaviside step function. Since there is no components with negative

frequency, the analytic signal is always complex-valued in time domain. In signal process-

ing, as long as the functions applied to signals have no components of negative frequency,

or the function is analytic, the original response can be obtained by simply discarding

the imaginary part of analytic response. The frequency domain of the analytic signal is

shown in Fig. 2.5.

In communication work, the output signal is the convolution of input signal and system

response function. When the input signal s(t) and the system impulse response h(t) are

bandpass functions, it requires high computation complexity to work out the output signal
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Figure 2.6: Frequency domain of low-pass equivalent signal sl(t).

y(t). To reduce the work of computation, it’s considerable to move the center frequency

of the input signal and the system impulse response to 0. This is known as the low-pass

equivalent model. The frequency domain of the low-pass equivalent signal sl(t) is given

in Fig. 2.6. The Fourier transform of sl(t) can be denoted as

Fl(ω) = F (ω + ωc) + jF̂ (ω + ωc) = 2F (ω + ωc)u(ω + ωc) (2.15)

Similarly, the Fourier transform of the low-pass equivalent system impulse response hl(t)

is

Hl(ω) = H(ω + ωc) + jĤ(ω + ωc) = 2H(ω + ωc)u(ω + ωc) (2.16)

The output of low-pass equivalent model will be

Yl(ω) = Fl(ω)Hl(ω) = 4F (ω + ωc)H(ω + ωc)u(ω + ωc) (2.17)

If only keep the real-valued components of yl(t) with a ejωct phase shift in time domain,

the Fourier transform is

Re{yl(t)ejωct} ↔ Yl(ω − ωc) + Yl(−ω − ωc)

2

=
4F (ω)H(ω)u(ω) + 4F (ω)H(ω)u(−ω)

2

= 2F (ω)H(ω) ↔ 2y(t) (2.18)

The equation illustrates that to avoid the high computation of y(t), it’s more convenient

to compute yl(t) with the low-pass equivalent model. This low-pass equivalent model is
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widely used to evaluate the performance of bandpass signals and bandpass systems. To

recover the real-valued output y(t), we only need to add a phase shift ejωct to the low-pass

equivalent output yl(t), discard the imaginary-valued components and halve the result.

Compared to real-valued signals, complex-valued signal (low-pass equivalent signals)

simplifies the calculation and makes attributes of functions more accessible. Besides, it

also makes some developments on the derivation of modulation and demodulation tech-

niques, such as single-sideband modulation. This explains a fact that in real communi-

cation systems the transmission signals are real-valued, however, when analysing signals,

the complex-valued analytic signal is a better alternative.

2.2.2 Narrowband model

Consider an array of L omnidirectional sensors receive M uncorrelated source signals of

frequency f0 from the far field. For signal si, each sensor records a result and the received

results differ by the arriving time at the array sensors. The time delay taken by a plane

wave of si from the direction θi in two adjacent sensors is given by

τ(θi) =
dsinθi

c
(2.19)

In a uniform linear array (ULA), every two adjacent sensors have the same distance

d, the time delay for source signal si between adjacent sensors shares the same value τ .

Assuming that si arrives at the first sensor at time 0. Then the delay for the signal arrives

at the lth sensor can be given as

τl(θi) = (l − 1)τ(θi) (2.20)

The signal received at the first sensor due to the i-th source can be normally expressed

in complex notation as

si(t) = mi(t)e
j2πf0t (2.21)

with mi(t) denoting the complex baseband signal.
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For the i-th source signal, the signal received at the lth sensor can be expressed as

si(t− τl(θi)) = mi(t− τl(θi))e
j2πf0(t−τl(θi)) (2.22)

The narrowband assumption for array signal processing states that if the bandwidth of

the signal is narrow enough and the array dimensions are small enough, the modulating

function will roughly stay constant after the time delay in all sensors. That is to say,

mi(t+ τl(θi)) ≈ mi(t).

The received signal at the l-th sensor can be expressed as [13]

si(t− τl(θi)) ≈ mi(t)e
j2πf0(t−τl(θi)) = mi(t)e

j2πf0te−j2πf0τl(θi) = si(t)ail (2.23)

where ail = e−j2πf0τl(θi), representing the phase shift at the l-th sensor of the i-th signal.

Also, these phase shifts can be considered as a vector ai varying with θi, which is known

as the steering vector and can be denoted as

ai = [ai1, ai2, ..., ain] (2.24)

Let xl(t) denote the total received signal due to all M sources and background noise

at the l-th sensor. It is given by

xl(t) =
M∑
i=1

si(t)ail + nl(t) (2.25)

where nl(t) is a Gaussian white noise at the l-th sensor with zero mean and variance σ2
n.

A narrowband beamformer is shown in Fig. 2.7. The received array signals are

multiplied by a corresponding weight coefficient wl. After that, all the weighted signals

are summed to form a new array output. The output can be denoted as

y(t) =
L∑
i=1

w∗
l xl(t) (2.26)

If we denote the weights and signals received by all array sensors as vector w and x(t),

then

w = [w1, w2, ..., wL]
T

x(t) = [x1(t), x2(t), ..., xL(t)]
T (2.27)
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Figure 2.7: A general narrowband beamforming structure.

The output is given by

y(t) = wHx(t) (2.28)

where H denotes the Hermitian transpose of a matrix. w and x(t) are referred as array

weight vector and array signal vector, respectively.

The mean output power of the beamformer is given by

P = E[y(t) · y(t)∗] = wHRw (2.29)

where E denotes the expectation operator and R is the covariance matrix defined as

R = E[x(t) · x(t)H ] (2.30)

2.2.3 Capon beamformer

There are many schemes to determine the weights of a beamformer. One well-known

algorithm is the Capon beamformer, or the minimum variance distortionless response

beamformer (MVDR) [18, 19]. The main idea of Capon beamformer is to maximize the

output SINR through maintaining a unity response to the desired signal and eliminating

the interferences and noise as much as possible.
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Given an L-element ULA, a desired signal and M-1 interferences impinge on the array.

(We assume the M signals are uncorrelated with each other.) After beamforming, the

output corresponding to the desired signal s1 is wHa1s1, where

a1 = [1, e−j2πf0τ2(θ1), ..., e−j2πf0τl(θ1)] (2.31)

To have a unity response to the desired signal, it should be satisfied that

wHa1 = 1 (2.32)

Similarly, the output corresponding to the other M-1 interferences and noise is
M∑
i=2

wHaisi+

wHn. To suppress the interferences and noise effectively, we minimize the power of the

final output. The power of interferences and noise at the output is given by the following

expression:

Pi+n = (
M∑
i=2

wHaisi +wHn) ∗ (
M∑
i=2

wHaisi +wHn)H

= wH(
M∑
i=2

aiE[sis
H
i ]a

H
i + nnH)w

= wHRi+nw (2.33)

Ri+n is the array covariance matrix for interferences plus noise, and

Ri+n =
M∑
i=2

aiE[sisi]
HaH

i + σ2
nIL (2.34)

where IL is the L× L identity matrix. The aim of the beamformer comes to

min wHRi+nw

subject to wHa1 = 1 (2.35)

In practice, the estimate of interferences and noise correlation matrix is usually not avail-

able. Instead, the covariance matrix R for the whole received array signals is used in

determine the weights. Thus, the Capon beamformer turns to solve the following prob-

lem:

min wHRw

subject to wHa1 = 1 (2.36)
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Thus, the beamformer weights are determined to minimize the output power while

maintaining unity response to the desired signal. The constraint ensures that the desired

signal passes through the beamformer undistorted. In such a case, the desired signal’s

power remains the same at the output. Keeping the desired signal and minimizing the

total output power ensure the maximum output SINR.

The Lagrange multipliers method can be applied to find the optimum value of weight

vector w, and the problem in (2.36) can be transformed into

∇w∗ [wHRw− λ(wHa1 − 1)] = 0 (2.37)

where ‘∇’ is the gradient symbol. The gradient of a function l(w) with respect to a row

vector w is defined as

∇wl(w) = [
∂l(w)

∂w1

,
∂l(w)

∂w2

, ...,
∂l(w)

∂wN

] (2.38)

w1, w2, ...wN is the elements in vector w. Notice that the result will have the same vector

structure as w. i.e, if w is a row or column vector, the gradient result will be a row or

column vector with the same dimension as w.

Here we divide the left side of (2.37) into two components∇w∗wHRw and∇w∗λ(wHa1−

1). The first component can be computed as

∇w∗wHRw = ∇w∗ [wHR] ·w+wHR∇w∗w

= Rw+wHR · 0 = Rw (2.39)

The second component is

∇w∗λ(wHa1 − 1) = λa1 (2.40)

Then we have

Rw− λa1 = 0

⇒ w = λR−1a1 (2.41)

Substituting (2.41) into wHa1 = 1, λ is then give by

λ∗ = aH
1 R

−1a−1
1 (2.42)
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Note that λ is real-valued, then

λ = λ∗ (2.43)

We then obtain the final optimum weight vector w as

w = (aH
1 R

−1a1)
−1R−1a1 (2.44)

The beam response of the array for a signal from an arbitrary direction θ is defined as

p(θ) = |wHa(θ)| (2.45)

Next we give an analysis on the output SINR after Capon beamforming. The covari-

ance matrix R includes two components, the part Rs for the signal of interest (SOI) and

the part for interferences plus noise Ri+n, which can be denoted as

R = Rs +Ri+n (2.46)

Assume there is only one desired signal s1 and M − 1 interference signals arriving at the

array with N sensors (M < N). The output SINR is

SINR =
wHRsw

wHRi+nw
(2.47)

Rs is calculated by the covariance of the steering vector of the desired signal, which is

Rs = a1E[s1s
H
1 ]a

H
1

= σ2
1a1a

H
1 (2.48)

Since the weight vector contains the part R−1, it is necessary to find out the inversion

of the covariance matrix. The Matrix Inversion Lemma for an invertible matrix A and a

vector x states that

(A+ xxH)−1 = A−1 − A−1xxHA−1

1 + xHA−1x
(2.49)

Since

R = σ2
sa1a

H
1 +Ri+n (2.50)
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then it can be deduced that

R−1 = R−1
i+n −

σ2
1R

−1
i+na1a

H
1 R

−1
i+n

1 + σ2
1a

H
1 R

−1
i+na1

(2.51)

Substituting R−1 into (2.47), the output SINR is transformed into

SINR = σ2
1a

H
1 R

−1
i+na1 (2.52)

A special scenario is that there is no other interference signals in the processing, and the

output SNR becomes

SNR = σ2
1a

H
1 R

−1
i a1

=
σ2
1

σ2
n

aH
1 a1

= N
σ2
1

σ2
n

(2.53)

After the beamforming process, the SNR increases by N times, which is the total number

of elements of the array. With this situation, the inversion of covariance matrix is

R−1 =
I

σ2
n

−
σ2
1

σ2
n
a1a

H
1

σ2
n +Nσ2

1

(2.54)

The weight vector becomes

w =
a1

N
(2.55)

Here we provide some simulation results to present how capon beamformer works

and investigate the factors that affecting the beamforming performance. In the following

simulation, the desired signal comes from 0◦ and the array sensor number is 6. The

SNR is set to 0 dB. The distance between adjacent sensors equals half wavelength of our

narrowband signals.

Firstly, we draw the beampattern of the Capon beamformer with no interfering signals.

Fig. 2.8 gives the theoretical beam response for the range θ ∈ [−90◦, 90◦] with the snapshot

number approaching infinity.

Then we consider the cases with finite number of snapshots. We give four cases with

100, 500, 1000 and 5000 snapshots, respectively.
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Figure 2.8: Beampattern with infinite number of snapshots, no interferences.
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Figure 2.9: Beampattern with 100 snapshots, no interferences.
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Figure 2.10: Beampattern with 500 snapshots, no interferences.
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Figure 2.11: Beampattern with 1000 snapshots, no interferences.
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Figure 2.12: Beampattern with 5000 snapshots, no interferences.
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Figure 2.13: The output SNR versus snapshot numbers.
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With the increase of snapshot numbers, the beampattern in Fig. 2.9-Fig. 2.12 be-

comes more and more close to the theoretical one. Fig. 2.13 also gives the output SNR

comparison of the above cases.

2.2.4 Robust Capon beamformer

Although the Capon beamformer can recover the desired signal with improved SINR

at its output. In practice, the assumed steering vector a1 may differ from the actual

value for various reasons such as imprecise knowledge of the signal’s direction and the

sensor position errors. Many techniques for minimizing the beamforming errors have

been proposed already, and one popular method is the robust capon beamformer, with

worst-case constraints [20–25]. In the following we give a review of this technique.

In the robust Capon beamformer, we first replace the original constraint by the fol-

lowing one

min wHRw

subject to min |wH(a1 + e)| ≥ 1 (2.56)

where e is the steering vector distortion caused by possible deviation from the actual

direction, sensor position errors or other unknown factors. We consider the error has an

upper norm bound ε so that |e| ≤ ε. The constraint can be further changed to

|wH(a1 + e)| = |wHa1 +wHe| ≥ |wHa1| − |wHe| (2.57)

Since |e| ≤ ε, then

|wH(a1 + e)| ≥ |wHa1| − ε|w| (2.58)

With the constraints in (2.56), it can be deduced that

min |wH(a1 + e)| = |wHa1| − ε|w| ≥ 1

|wHa1| ≥ 1 + ε|w| (2.59)
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With the rotation of w, we can always find another w1 = we−jϕ which keeps wH
1 Rw1

unchanged and ensures wH
1 (a1 + e) real-valued.

Hence, the whole formulation changes to

min wHRw

subject to |wHa1| ≥ 1 + ε|w| (2.60)

To find a solution for (2.60), we apply the CVX tool in MATLAB. Here, we give some

simulation results for the above robust capon beamformer.

Firstly, consider a scenario where the desired signal comes from θ = 1◦ with SNR = 0

dB. However, we have an imprecise knowledge of the direction as we assume that the

direction of the signal is from θ = 0◦. In the simulation, the results are obtained by 200

Monte-Carlo trials and we take 100 snapshots for each trial, and the error upper bound

ε is set to 0.1. Fig. 2.14 is the beampattern of the robust Capon beamformer, where the

response for the rough DOA range [−3◦, 3◦] is beyond 0 dB. Moreover, Fig. 2.15 gives the

output SINR comparison between the traditional Capon beamformer and robust Capon

beamformer versus the input SINR.

2.3 Introduction of DOA Estimation

To estimate the direction of signal emitter by a sensor array is of great interest in many

application areas such as radar, sonar, tomography and earthquake prediction. Many

methods has been developed to solve the estimation problem. A classical method is to

apply FFT (fast Fourier transform) to estimate DOA. However, when estimating multi-

ple targets, the algorithm performs with low resolution that the estimation results may

be not as accurate as required. To overcome the resolution problem, subspace method

such as the multiple signal classification (MUSIC) [26] and estimating signal parameters

via rotational invariance techniques (ESPRIT) [27] is developed. One well-known DOA

estimation method, the MUSIC algorithm, will be introduced in detail in this section

and the algorithm is the main tool exploited for DOA estimation in our research work.
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Figure 2.14: Beampattern of the robust Capon beamformer.
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Figure 2.15: Output SINR performance comparison.
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The MUSIC algorithm is an efficient method to estimate DOAs based on eigenstructure

analysis. It provides the parameters of multiple signals arriving at a sensor array from

the measurements at array elements. By analysing the received signals, parameters of

the signals, including the direction, frequency and polarisation can be estimated. Based

on different manifolds of the array and the model of the signals, the algorithm achieves

different estimation dimensions. In the following, we will give a brief introduction about

the classical FFT method. Then, MUSIC algorithm will be discussed as an example of

subspace method. Simulation results are given to show the different resolution of the two

methods. Finally, we extend the MUSIC algorithm in specific scenarios.

2.3.1 FFT method

d

Figure 2.16: The structure of a uniform linear array.

Consider a ULA (Fig. 2.16) with M elements receiving N signals from different direc-

tions. Similar to the model in beamforming, the sensor array collects received signals at

each sensor to form a data vector x(t). The data model can be described as [26, 28]

x(t) = [a1,a2, ...,aN ][s1(t), s2(t), ..., sN(t)]
T + n = As(t) + n (2.61)

with

ai = [1, e
−j2πdθi

λ , ..., e
−j(M−1)2πdθi

λ ]T (2.62)
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where λ is the wavelength of the incoming signals and ai (i ∈ [1, N ]) is the steering vector

associated with the 1-D direction parameter θi. The received array signal vector x ∈

CM×1. The incoming signals are represented with their amplitude and phase information

by complex values si (i ∈ [1, N ]). Noise in each sensor element, whether generated by

the internal instrumentation circuits or induced along with signals, appears in the vector

n ∈ CM×1. If we ignore the noise, after a weighted vector wH ∈ Cq×M in Fig. 2.7, the

received signal y(t) can be denoted as

y(t) = wHx(t) = wHAs(t) (2.63)

where wH is a searching vector that

wH(θ) = [1, e
j2πdθ

λ , ..., e
j2π(M−1)dθ

λ ] (2.64)

When the searching angle θ meets the impinging DOA θi, w
Hai will be maximized and

then y(t) will reach a local maximum. Hence, we can define a spectrum function to obtain

target directions by

F (θ) = |y(t, θ)| = |wH(θ)x(t)| (2.65)

Notice that

y(t, θ) = wH(θ)x(t) =
M∑
i=1

xi(t)e
j2π(i−1)dθ

λ (2.66)

This means y(t, θ) is the fast Fourier transform (FFT) of x(t) and the spectrum function

F (θ) can be also obtained by applying FFT. We give some estimation results by FFT

method in Fig. 2.17 - 2.20. It can be obtained that with the increase of sensor numbers

and SNR, the estimation performances also increase. However, FFT method shows low

resolution in distinguishing different angles. Besides, since the math model considers the

received signal without background noise, the results are very sensitive with SNR. With

low SNR, the FFT method may get very bad estimating results.
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Figure 2.17: FFT method with 2 sources from −40◦ and 60◦, 100 snapshots, 6 sensors,

and SNR = 0 dB.
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Figure 2.18: FFT method with 2 sources from −40◦ and 60◦, 100 snapshots, 10 sensors,

and SNR = 0 dB.
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Figure 2.19: FFT method with 2 sources from −40◦ and 60◦, 100 snapshots, 6 sensors,

and SNR = 10 dB.
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Figure 2.20: FFT method with 2 sources from −40◦ and 60◦, 100 snapshots, 10 sensors,

and SNR = 10 dB.
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2.3.2 1-D MUSIC with ULA

Similar with the signal model in FFT method, the signal received at the array can be

denoted as

x(t) = As(t) + n (2.67)

Instead of the weighted vector, we construct the covariance matrix Rx of x, which can

be denoted as

Rx = E[xxH ] = AE[s(t)sH(t)]AH + E[nnH ]

= Rs +Rn (2.68)

where Rs is the covariance matrix of signals, expressed by

Rs = AE[s(t)sH(t)]AH (2.69)

Rn is the covariance matrix of noise, expressed by

Rn = E[nnH ] = σ2
nIM (2.70)

Applying eigenvalue decomposition (EVD), the signal covariance matrix Rs can be de-

composed into

Rs =
M∑
k=1

αkuku
H
k (2.71)

where uk is the k-th eigenvector and αk is the corresponding eigenvalues (in descending

order). When the number of source signals N is less than M , Rs ∈ HM×M will not be

a full rank matrix with rank(Rs) = N , and it only has N non-zero eigenvalues, which

means α1 ≥ α2 ≥ · · ·αN ≥ αN+1 = · · · = αM = 0.

Since Rn = σ2IM , we can write Rn in terms of

Rn =
M∑
k=1

σ2
nuku

H
k (2.72)
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Then

Rx = Rs +Rn =
M∑
k=1

λkuku
H
k (2.73)

where λk is the k-th eigenvalue of the covariance matrix Rx satisfying λk = αk + σ2
n. As

Rs is the function of steering matrix A, any steering vector ai in A should be the linear

combination of the eigenvectors with non-zero eigenvalues in Rs, which are the also the

first N eigenvectors in Rx. These eigenvectors construct an N -dimension matrix, which

is referred as the signal subspace.

The remaining M − N eigenvectors of Rx have the same eigenvalue σ2
n. Since Rx is

Hermitian, the eigenvectors with different eigenvalues are orthogonal to each other, which

means the the arbitrary steering vector ai is orthogonal to the last M −N eigenvectors in

Rx. Denoting the matrix including the last M −N eigenvectors by UN , which is referred

as the noise subspace, then

UH
Nai = 0 (2.74)

The minimum repeated eigenvalues can be found by computing all the eigenvalues of

Rx, the noise subspace is constructed by eigenvectors related to these eigenvalues. Once

the noise subspace is estimated, the work next is to search for the DOA of the M incoming

signals. Foe convenience, we ignore the label i of ai and let a(θ) denote the steering vector

corresponding to direction θ and then search through θ from −90◦ to 90◦ with a step size,

for example 0.5◦. This can be accomplished by searching for the peaks of the function

PMU(θ) =
1

a(θ)HUNU
H
Na(θ)

(2.75)

The M peaks in the function above provide the information of DOA of M incoming signals.

Now we give a DOA spatial spectrum with the 1-D MUSIC in Fig. 2.21.

2.3.3 2-D MUSIC with URA

The 1-D MUSIC estimates the angle between the signal direction and the sensor array.

Actually the method only detects the possible cone range of the source signals, which is
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Figure 2.21: 1-D MUSIC with 2 sources from −40◦ and 60◦, 100 snapshots, and SNR

= 0 dB.
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shown in Fig. 2.22. However, in some situations, the azimuth-elevation angle information

need to be estimated. To achieve a 2-D DOA estimation, one solution is to extend the

linear array into a planar array. One of the basic planar array structures is the uniform

rectangular array (URA) [29–32], which is shown in Fig. 2.23. In this model, the steering

vector an is associated with two direction parameters: the azimuth angle θn and the

elevation angle ϕn, which is denoted by

a(θi, ϕi) = ax(θi, ϕi)⊗ ay(θi, ϕi) (2.76)

Figure 2.22: Cone range of source signals for linear arrays.

The symbol ‘⊗’ is the Kronecker product. ax(θi, ϕi) and ay(θi, ϕi) describe the phase

shift along the x-axis direction and y-axis direction, respectively. The expression is given

by

ax(θi, ϕi) = [1, e−j 2πdx
λ

sin θi sinϕi , ..., e−j
2π(N−1)dx

λ
sin θi sinϕi ]

ay(θi, ϕi) = [1, e−j 2πdy
λ

sin θi cosϕi , ..., e−j
2π(N−1)dy

λ
sin θi cosϕi ] (2.77)

Similar to the 1-D MUSIC algorithm, the 2-D DOA estimation can be achieved by

searching for the peaks in the following cost function

PMU(θ, ϕ) =
1

a(θ, ϕ)HUNU
H
Na(θ, ϕ)

(2.78)

An example for 2-D MUSIC search result is provided in Fig. 2.24 and Fig. 2.25.
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Figure 2.23: Structure of a uniform rectangular array.

Figure 2.24: DOA spectrum of 2-D MUSIC, with two sources from (θ1, ϕ1) = (60◦, 40◦)

and (θ2, ϕ2) = (−40◦,−20◦), SNR = 0 dB, and 100 snapshots.
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Figure 2.25: Vertical view of the 2-D MUSIC spectrum.

2.3.4 4-D MUSIC for polarized signals

The previous applications of MUSIC algorithm focus on the signals without polarisation.

In this part, we also give a review for the MUSIC algorithm applied to the polarized signal

scenario. With the two extra polarisation parameters, the traditional MUSIC algorithm

can be extended to 4-D parameter estimation. In this thesis, we replace the original om-

nidirectional sensor by electromagnetic-sensitive sensors [33–35]. A full electromagnetic-

sensitive sensor receives the signal in both electric field and magnetic field from x-axis, y-

axis and z-axis directions, respectively. In other words, each full electromagnetic-sensitive

sensor receives six components of the incoming signals. To simplify the array model, we

only keeps two electrical components in x-axis and y-axis direction, and this is called the

crossed-dipole sensor array. In the following, most work is based on the crossed-dipole

sensor array.

The main problem for 4-D estimation is to estimate the joint steering vector of incom-

ing sources. Generally the model considers the received x-axis and y-axis components in

each crossed-dipole sensor as a 2-D vector, and the length of the whole steering vector
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becomes 2M (M is the length of the sensor array). This is referred to the long-vector

model [36–38].

In the long-vector model, with the incoming signal s, the received signals at the m−th

senor can be represented as

rxm = ampxs

rym = ampys (2.79)

where am is the phase shift of the source signal at the m − th sensor, and px and py

are the polarisation parameters along the x-axis and y-axis directions, respectively. By

combining the two results into 2-D vector, the new result becomes

rm =

rxm
rym

 = am

px
py

 s

= am · p · s (2.80)

where p is the polarisation vector with

p =

px
py

 =

sin γ cos θ cosϕejη − cos γ sinϕ

sin γ cos θ sinϕejη + cos γ cosϕ

 (2.81)

The results for the whole array are denoted by a long vector

r =



r1

r2

.

.

.

rM


=



a1ps

a2ps

.

.

.

aMps


= a⊗ ps (2.82)

where a is the steering vector of the incoming signal and the symbol ‘⊗’ means the

Kronecker product. Given two matrices A,m× n and B, p× q, the Kronecker product is
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given as

A⊗B =



a11B ... a1nB

. . .

. . .

. . .

am1B ... amnB


(2.83)

Here we use q to denote the joint steering vector, given by

q = a⊗ p (2.84)

The joint steering vector q is associated with four parameters θ, ϕ, γ, η. Then the cost

function of the 4-D MUSIC estimator can be expressed as

PMU(θ, ϕ, γ, η) =
1

qHUNU
H
Nq

(2.85)

2.4 Summary

In this chapter a review of polarisation, narrowband beamforming and DOA estimation

has been presented. The crossed-dipole sensor array structure is introduced for receiv-

ing polarized signals. Capon beamformer and its worst-case constraint application are

reviewed for narrowband beamforming. The beampattern and the output SINR curve

are given to demonstrate the performance of the algorithm. The MUSIC algorithm is re-

viewed for DOA estimation, and the algorithm can be extended into multiple-dimensional

search. The search spectrum is given for both 1-D and 2-D cases.
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Chapter 3

Fully Quaternion-Valued Adaptive

Beamforming Based on

Crossed-Dipole Arrays

3.1 Introduction

Electromagnetic (EM) vector sensor arrays can track the DOA of impinging signals as

well as their polarisation. A crossed-dipole sensor array, firstly introduced in [16] for

adaptive beamforming, works by processing the received signals with a long polarisation

vector. Based on such a model, the beamforming problem was studied in detail in terms

of output signal-to-interference-plus-noise ratio (SINR) [39]. In [13, 40], further detailed

analysis was performed showing that the output SINR is affected by DOA and polarisation

differences.

Since there are four components for each vector sensor output in a crossed-dipole array,

a quaternion model instead of long vectors has been adopted in the past for both adaptive

beamforming and direction of arrival estimation [41–48]. In [49], the well-known Capon

beamformer was extended to the quaternion domain and a quaternion-valued Capon (Q-

Capon) beamformer was proposed with the corresponding optimum solution derived.
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However, in most of the beamforming studies, the signal of interest (SOI) is still

complex-valued, i.e. with only two components: in-phase (I) and quadrature (Q). Since

the output of a quaternion-valued beamformer is also quaternion-valued, only two com-

ponents of the quaternion are used to recover the SOI, which leads to redundancy in both

calculation and data storage. However, with the development of quaternion-valued com-

munications [50, 51], it is very likely that in the future we will have quaternion-valued sig-

nals as the SOI, where two traditional complex-valued signals with different polarisations

arrive at the antenna array with the same DOA. In such a case, a full quaternion-valued

array model is needed to compactly represent the four-component desired signal and also

make sure the four components of the quaternion-valued output of the beamformer are

fully utilised. In this thesis, we develop such a model and propose a new quaternion-valued

Capon beamformer, where both its input and output are quaternion-valued.

Based on the proposed full quaternion model, we further study the robust adaptive

beamforming problem in the presence of steering vector errors. In the past, many methods

have been proposed to improve the robustness of an adaptive beamformer, such as diagonal

loading [6, 52] and those based on the optimization of worst-case performance [53, 54]. In

[47], the worst-case based method is extended to the quaternion-valued case for crossed-

dipole arrays; however, it is not a full quaternion model since the desired signal is still

complex-valued. In this thesis, we extend the worst-case optimisation approach to the full

quaternion model and a worst-case based full-quaternion robust adaptive beamforming

method is proposed.

3.2 Quaternions

3.2.1 Basics of Quaternion

Quaternion was introduced by W. R. Hamilton [55]. A quaternion is constructed by four

components, with one real part and three imaginary parts, defined as

q = qa + iqb + jqc + kqd (3.1)
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where i, j, k are three basic imaginary units. The multiplication principle among such

units is

i2 = j2 = k2 = ijk = −1, (3.2)

and

ij = −ji = k, ki = −ik = j, jk = −kj = i (3.3)

The conjugate q∗ of q is q∗ = qa − iqb − jqc − kqd.

Note that generally the multiplication of quaternions is non-commutative: for q1, q2 ∈

H, q1q2 ̸= q2q1, where H represents the quaternion domain. However, if one of the factors,

say q0, is real, then we have q0q1 = q1q0.

3.2.2 Quaternion vector and matrix

Quaternion vectors and matrices are quite different from real and complex ones. For

quaternion vectors, the space can be denoted by two different bases, left-spanned and

right-spanned, which are given by

spanL{u1, u2, ...uM}, spanR{u1, u2, ...uM} . (3.4)

Here we use qL to denote the left linear combination case and qR to denote the right

linear combination case. Note that q = qL = qR,

qL =
M∑

m=1

τmum

qR =
M∑

m=1

umγm (3.5)

where τm,γm∈ H, for m = 1, 2, ...,M .

Similarly, the eigendecomposition operation for quaternion matrices also differs from

real and complex ones. We can also define the left eigendecomposition QL and right

eigendecomposition QR for a Hermitian matrix Q ∈ HN×N , (Q = QH , where {}H is the

Hermitian transpose, a combination of the quaternion-valued conjugate and transpose
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operations)

QL =
N∑

n=1

αnunu
H
n

QR =
N∑

n=1

unu
H
n βn (3.6)

where α and β are the left and right eigenvalues [41, 56, 57]. In this thesis, only right-

spanned spaces and left eigendecomposition are employed.

3.2.3 The gradient for a quaternion function

The gradient describes the changing rate of a function at the given point with a certain

direction. Unlike the ordinary derivative of a single variable, the gradient of a function

contains several multiple variables and appears in a vector. Let l(w) be a scalar function

of a variable vector w, where

w = [w1, w2, ..., wN ] (3.7)

The gradient vector with respect to w is defined by [58]

∇wl = [
∂l

∂w1

,
∂l

∂w2

, ...,
∂l

∂wN

] (3.8)

where ‘∂’ means the partial derivative. When w is real-valued, the elements in the gradient

vector, for example ∂l
∂w1

, can be calculated easily. However, when w is complex-valued and

even quaternion-valued, it’s not straightforward to obtain the results. In the following,

firstly a derivation of the partial derivative with respect to a complex-valued variable is

given. After that, the results are extended to quaternion field as well.

Consider all variables in w are complex-valued. The first variable w1 and its conjugate

w∗
1 are given as

w1 = x+ iy, w∗
1 = x− iy (3.9)

where x, y are the real and imaginary parts of w1 respectively. Notice that x and y are

both real-valued variables and

x =
w1 + w∗

1

2
, y =

w1 − w∗
1

2i
(3.10)
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For convenience, we ignore the variable w2, w3, ..., wN because they have no influence on

computing the partial derivative ∂l
∂w1

. Then the function l(w) can be viewed as a function

of x and y, which is denoted by f(x, y). As shown in (3.10), the function can be also

viewed as a function of w1 and w∗
1, which can be denoted by g(w1, w

∗
1). Then we have

l(w) = f(x, y) = g(w1, w
∗
1) (3.11)

According to the chain rule, the partial derivative with respect to x and y can be obtained

by 
∂f
∂x

= ∂g
∂w1

∂w1

∂x
+ ∂g

∂w∗
1

∂w∗
1

∂x

∂f
∂y

= ∂g
∂w1

∂w1

∂y
+ ∂g

∂w∗
1

∂w∗
1

∂y

(3.12)

By (3.9), it’s clear to know that 

∂w1

∂x
= 1

∂w∗
1

∂x
= 1

∂w1

∂y
= i

∂w∗
1

∂y
= −i

(3.13)

Substitute (3.13) into (3.12), we have
∂g
∂w1

= 1
2
(∂f
∂x

− i∂f
∂y
)

∂g
∂w∗

1
= 1

2
(∂f
∂x

+ i∂f
∂y
)

(3.14)

Since l(w) = g(w1, w
∗
1), the partial derivative with respect to a complex-valued variable

can be denoted as the linear combination of two real-valued variables, where
∂l
∂w1

= 1
2
(∂f
∂x

− i∂f
∂y
)

∂l
∂w∗

1
= 1

2
(∂f
∂x

+ i∂f
∂y
)

(3.15)

Specially, when l(w) = w1, we have
∂l
∂w1

= 1
2
(1 + 1) = 1

∂l
∂w∗

1
= 1

2
(1− 1) = 0

(3.16)
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If w is quaternion-valued, similarly, the first variable w1 can be extended into four

components

w1 = w1a + iw1b + jw1c + kw1d (3.17)

where w1a, w1b, w1c and w1d denote the real, i, j and k component of w1 respectively.

These components are all real-valued. Unlike complex-valued variable, these real-valued

components cannot be simply denoted as the linear combination of w1 and its conjugate.

However, these components can be connected in another way. Notice that


iw1i = −w1a − iw1b + jw1c + kw1d

jw1j = −w1a + iw1b − jw1c + kw1d

kw1k = −w1a + iw1b + jw1c − kw1d

(3.18)

Then it can be found that

w1a =
1
4
(w1 − iw1i− jw1j − kw1k)

w1b =
1
4i
(w1 − iw1i+ jw1j + kw1k)

w1c =
1
4j
(w1 + iw1i− jw1j + kw1k)

w1d =
1
4k
(w1 + iw1i+ jw1j − kw1k)

(3.19)

Similarly, we ignore other quaternion-valued variables w2, w3, ..., wN . The function l(w)

with respect to quaternion-valued variable w1 can be viewed as a function f(w1a, w1b, w1c, w1d)

with respect to real-valued variables w1a, w1b, w1c and w1d. Also, it can be viewed as a

function g(w1, iw1i, jw1j, kw1k) with respect to w1, iw1i, jw1j and kw1k.

By chain rule, the partial derivatives with respect to w1a, w1b, w1c and w1d can be

denoted as 

∂f
∂w1a

= ∂g
∂w1

∂w1

∂w1a
+ ∂g

∂iw1i
∂iw1i
∂w1a

+ ∂g
∂jw1j

∂jw1j
∂w1a

+ ∂g
∂kw1k

∂kw1k
∂w1a

∂f
∂w1b

= ∂g
∂w1

∂w1

∂w1b
+ ∂g

∂iw1i
∂iw1i
∂w1b

+ ∂g
∂jw1j

∂jw1j
∂w1b

+ ∂g
∂kw1k

∂kw1k
∂w1b

∂f
∂w1c

= ∂g
∂w1

∂w1

∂w1c
+ ∂g

∂iw1i
∂iw1i
∂w1c

+ ∂g
∂jw1j

∂jw1j
∂w1c

+ ∂g
∂kw1k

∂kw1k
∂w1c

∂f
∂w1d

= ∂g
∂w1

∂w1

∂w1d
+ ∂g

∂iw1i
∂iw1i
∂w1d

+ ∂g
∂jw1j

∂jw1j
∂w1d

+ ∂g
∂kw1k

∂kw1k
∂w1d

(3.20)
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Some partial derivatives can be obtained from (3.18), which can be denoted in a matrix

∂w1

∂w1a

∂iw1i
∂w1a

∂jw1j
∂w1a

∂kw1k
∂w1a

∂w1

∂w1b

∂iw1i
∂w1b

∂jw1j
∂w1b

∂kw1k
∂w1b

∂w1

∂w1c

∂iw1i
∂w1c

∂jw1j
∂w1c

∂kw1k
∂w1c

∂w1

∂w1d

∂iw1i
∂w1d

∂jw1j
∂w1d

∂kw1k
∂w1d


=


1 −1 −1 −1

i −i i i

j j −j j

k k k −k


(3.21)

After solving (3.20), the partial derivative with respect to the quaternion-valued vari-

able w1 can be denoted as

∂l

∂w1

=
1

4
(
∂f

∂w1a

− ∂f

∂w1bi
− ∂f

∂w1cj
− ∂f

∂w1dk
) (3.22)

In addition, the function l(w) can be also viewed as a function of w∗
1, iw

∗
1i, jw

∗
1j and

kw∗
1k. Follow the same derivation, we can also find out the partial derivative with respect

to w∗
1, where

∂l

∂w∗
1

=
1

4
(
∂f

∂w1a

+
∂f

∂w1bi
+

∂f

∂w1cj
+

∂f

∂w1dk
) (3.23)

Specially, when l(w) = w1, we have
∂l
∂w1

= 1
4
(1 + 1 + 1 + 1) = 1

∂l
∂w∗

1
= 1

4
(1− 1− 1− 1) = −1

2

(3.24)

3.3 Model for Crossed-Dipole Arrays

A quaternion number q = qa+iqb+jqc+kqd can be conveniently expressed as a combination

of two complex numbers c1 = qa + jqc and c2 = qb + jqd as follows

q = c1 + ic2 = (qa + jqc) + i(qb + jqd) = qa + iqb + jqc + kqd (3.25)

We will use this form later to represent our quaternion-valued signal of interest.

Consider a uniform linear array with N crossed-dipole sensors, as shown in Fig. 5.1,

where the adjacent vector sensor spacing d equals half wavelength, and the two compo-

nents of each crossed-dipole are parallel to x− and y−axes, respectively. A quaternion-

valued narrowband signal s0(t) impinges upon the vector sensor array among other M un-

correlated quaternion-valued interfering signals {sm(t)}Mm=1, with background noise n(t).
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s0(t) can be decomposed into

s0(t) = s01(t) + is02(t) (3.26)

where s01(t) and s02(t) are two complex-valued sub-signals with the same DOA but dif-

ferent polarisations.

Assume that all signals are ellipse-polarized. Here we use θ to denote the azimuth

angle, ϕ to denote the elevation angle, and γ and η the polarisation parameters of the

signal. The parameters, including DOA and polarisation of them-th signal are denoted by

(θm, ϕm, γm1, ηm1) for the first sub-signal and (θm, ϕm, γm2, ηm2) for the second sub-signal.

Each crossed-dipole sensor receives signals both in the x and y sub-arrays.

1
r

x

z

y

2
r

N
r

( )
m
s t

m

m

Figure 3.1: A crossed-dipole linear array with N vector sensors.

For signal sm(t), the corresponding received signals in the x and y sub-arrays are

respectively given by [47]:

x(t) = am1pxm1sm1(t) + am2pxm2sm2(t)

y(t) = am1pym1sm1(t) + am2pym2sm2(t) (3.27)

where x(t) represents the received part in the x-sub-array and y(t) represents the part in

the y-sub-array, and (pxm1, pym1) and (pxm2, pym2) are the polarisations of the two complex
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sub-signals in x and y directions, respectively, given by,

pxm1 = − cos γm1

pym1 = cosϕm sin γm1e
jηm1

pxm2 = − cos γm2

pym2 = cosϕm sin γm2e
jηm2 , when θm =

π

2
(3.28)

Note that am1 and am2 are the steering vectors for both sub-signals, which are the same

since the two sub-signals share the same DOA (θm, ϕm).

am1 = [1, e
−j2π sin θm sinϕm

λ , ..., e
−j(N−1)2π sin θm sinϕm

λ ]T

am2 = [1, e
−j2π sin θm sinϕm

λ , ..., e
−j(N−1)2π sin θm sinϕm

λ ]T (3.29)

A quaternion model can be constructed by combining the two parts as below:

qm(t) = x(t) + iy(t) (3.30)

= am1(pxm1 + ipym1)sm1(t)

+am2(pxm2 + ipym2)sm2(t)

= bm1sm1(t) + bm2sm2(t) (3.31)

where {bm1, bm2} ∈ HN×1 can be considered as the composite quaternion-valued steering

vector. Combining all source signals and the noise together, the result is given by:

q(t) =
M∑

m=0

(bm1sm1(t) + bm2sm2(t)) + nq(t) (3.32)

where nq(t) = nx(t) + iny(t) is the quaternion-valued noise vector consisting of the two

sub-array noise vectors nx(t) and ny(t).

3.4 The Full Quaternion-Valued Capon Beamformer

3.4.1 General algorithm

To recover the SOI among interfering signals and noise, the basic idea is to keep a unity

response to the SOI at the beamformer output and then reduce the power variance of the
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output as much as possible [18, 59]. The key to construct such a Capon beamformer in the

quaternion domain is to design an appropriate constraint to make sure the quaternion-

valued SOI can pass through the beamformer with the desired unity response.

Again note that the quaternion-valued SOI can be expressed as a combination of two

complex sub-signals. To construct such a constraint, one choice is to make sure the first

complex sub-signal of the SOI passes through the beamformer and appear in the real

and j components of the beamformer output, while the second complex sub-signal appear

in the i and k components of the beamformer output. Then, with a quaternion-valued

weight vector w, the constraint can be formulated as

wHC = f (3.33)

where C = [b01 b02], f = [1 i].

With this constraint, the beamformer output z(t) is given by

z(t) = wHq(t)

= s01(t) + is02(t)︸ ︷︷ ︸
s0(t)

+wHnq(t)

+
M∑

m=1

wH [bm1sm1(t) + bm2sm2(t)] (3.34)

Clearly, the quaternion-valued SOI has been preserved at the output with the desired

unity response.

Now, the full-quaternion Capon (full Q-Capon) beamformer can be formulated as

min wHRw

s.t. wHC = f (3.35)

where

R = E{q(t)qH(t)} (3.36)

Applying the Lagrange multipliers method, we have

l(w,λ) = wHRw+ (wHC− f)λH + λ(CHw− fH) (3.37)
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where λ is a quaternion-valued vector of the Lagrange multipliers.

The minimum can be obtained by setting the gradient of (3.37) with respect to w∗

equal to a zero vector [58]. It is given by

∇w∗l(w,λ) =
1

2
Rw+

1

2
CλH = 0 (3.38)

Considering all the constraints above, we obtain the optimum weight vector wopt as

follows

wopt = R−1C(CHR−1C)−1fH (3.39)

A detailed derivation for the quaternion-valued optimum weight vector can be found

at later subsection.

In the next, we give a brief analysis to show that by this optimum weight vector, the

interference part at the beamformer output z(t) in (3.34) has been suppressed effectively.

Expanding the covariance matrix, we have

R = E{q(t)qH(t)} = Ri+n + σ2
1b01b

H
01 + σ2

2b02b
H
02 (3.40)

where σ2
1, σ

2
2 are the power of the two sub-signals of SOI and Ri+n denotes the covariance

matrix of interferences plus noise. Using (3.39), we have

wopt = R−1
i+nCβ (3.41)

where β = (CHRi+nC)−1fH ∈ H2×1 is a quaternion vector.

Applying left eigendecomposition for quaternion matrices,

Ri+n =
N∑

n=1

αnunu
H
n (3.42)

with α1 ≥ ... ≥ αM−2>αM−1 = ... = αN = 2σ2
0 ∈ R, where 2σ2

0 denotes the noise power.

With sufficiently high interference to noise ratio (INR), the inverse of Ri+n can be

approximated by

R−1
i+n ≈

N∑
n=M+1

1

2σ2
0

unu
H
n (3.43)
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Then we have

wopt =
N∑

n=M+1

1

2σ2
0

unu
H
n Cβ =

N∑
n=M+1

unρn (3.44)

where ρn = 1
2σ2

0
uH
n Cβ. Since uH

n ∈ H1×N ,C ∈ HN×2 and β ∈ H2×1, ρn is a quaternion-

valued scalar. Clearly, wopt is the right linear combination of {uM+1, uM+2, ..., uN}, and

w ∈ spanR{uM+1, uM+2, ..., uN}.

For those M interfering signals, their quaternion steering vectors belong to the space

right-spanned by the related M eigenvectors, i.e. bm1, bm2 ∈ spanR{u1, u2, ..., uM}. As a

result,

wH
optbm1 ≈ 0, wH

optbm2 ≈ 0, m = 1, 2, ...,M (3.45)

which shows that the beamformer has eliminated the interferences effectively.

3.4.2 Derivation for the quaternion-valued optimum weight vec-

tor

The gradient of a quaternion vector u = wHCλH with respect to w∗ can be calculated

as follows:

∇w∗u = [∇w∗
1
u ∇w∗

2u ...∇w∗
n
u]T (3.46)

where wn, n = 1, 2, · · · , N is the n-th quaternion-valued coefficient of the beamformer.

Then,

∇w∗
1
u =

1

4
(∇w1au+∇w1b

ui+∇w1cuj +∇w1d
uk) (3.47)

where

w∗
1 = w1a − w1bi− w1cj − w1dk (3.48)

Since w1a is real-valued, with the chain rule [58], we have

∇w1au = ∇w1a(w
H)CλH +wH∇w1a(CλH)

= [1 0 0 ... 0]CλH (3.49)
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Similarly,

∇w1b
u = [−i 0 0 ... 0]CλH

∇w1cu = [−j 0 0 ... 0]CλH

∇w1d
u = [−k 0 0 ... 0]CλH (3.50)

Hence,

∇w∗
1
u =

1

4
(4Re{CλH}1) = Re{CλH}1 (3.51)

where the subscript {}1 in the last item means taking the first entry of the vector.

Finally,

∇w∗u = Re{CλH} (3.52)

The gradient of the quaternion vector v = λCHw with respect to w∗ can be calculated

in the same way:

∇w1av = λCH∇w1aw+∇w1a(λC
H)w

= λCH [1 0 0 ... 0]T (3.53)

Similarly,

∇w1b
v = λCH [i 0 0 ... 0]T

∇w1cv = λCH [j 0 0 ... 0]T

∇w1d
v = λCH [k 0 0 ... 0]T (3.54)

Thus, the gradient can be expressed as

∇w∗
1
v = −1

2
{CλH}∗1 (3.55)

Finally,

∇w∗v = −1

2
(CλH)∗ (3.56)

The gradient of cw = wHRw can be calculated as follows.

∇w∗cw = [∇w∗
1
cw ∇w∗

2
cw ... ∇w∗

n
cw]

T (3.57)
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∇w∗
1
cw =

1

4
(∇w1acw +∇w1b

cwi+∇w1ccwj +∇w1d
cwk) (3.58)

Now we calculate the gradient of cw with respect to the four components of w1.

∇w1acw = ∇w1a(w
HR)w+wHR∇w1aw

= [1 0 0 ... 0]Rw

+wHR[1 0 0 ... 0]T (3.59)

The other three components are,

∇w1b
cw = [−i 0 0 ... 0]Rw

+wHR[i 0 0 ... 0]T

∇w1ccw = [−j 0 0 ... 0]Rw

+wHR[j 0 0 ... 0]T

∇w1d
cw = [−k 0 0 ... 0]Rw

+wHR[k 0 0 ... 0]T

Hence,

∇w∗
1
cw = Re{Rw}1 −

1

2
{Rw}∗1 =

1

2
{Rw}1 (3.60)

Finally,

∇w∗cw =
1

2
Rw (3.61)

Combining (3.52), (3.56) and (3.61), with (3.37), we have

∇w∗l(w,λ) =
1

2
(Rw+CλH) = 0 (3.62)

Further,

w = −R−1CλH (3.63)

Subsituting (3.63) into (3.33),

λ = −f(CHR−1C)−1 (3.64)

Finally,

w = R−1C(CHR−1C)−1fH (3.65)
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3.4.3 Complexity analysis

In this section, we make a comparison of the computation complexity between the Q-

Capon beamformer in [49] and our proposed full Q-Capon beamformer. To deal with

a quaternion-valued signal, the Q-Capon beamformer has to process the two complex

sub-signals separately to recover the desired signal completely, which means we need to

apply the beamformer twice for a quaternion-valued SOI. However, for the full Q-Capon

beamformer, it is not needed and the SOI is recovered directly by applying the beamformer

once.

For the Q-Capon beamformer, the weight vector is calculated by

w = R−1a0(a
H
0 R

−1a0)
−1 (3.66)

where a0 is the steering vector for the complex-valued SOI. To calculate the weight vector,

firstly we need to evaluate the computation complexity of the matrix inversion. In the

following, we use Gaussian elimination to calculate the matrix inversion. The Gaussian

elimination can be concluded as several steps:

• 1. Expand the original matrix with a identity matrix of the same dimension.

• 2. Transform the original matrix to a upper triangular matrix by elementary row

operations.

• 3. By dividing the right coefficients to make every diagonal entry to be 1.

• 4. Continue to transform the upper triangular matrix to a diagonal matrix.

• 5. The identity matrix follows the same row operations in steps 2,3 and 4. The

resultant matrix is the inverse of the original matrix.

Here we have assumed that the covariance matrix is acquired in advance and the array

have N crossed-dipole sensors. To calculate the inversion of the given matrix R, we can

follow the steps 1, 2 and 3 first. To transform the matrix to a triangular matrix and make

every diagonal entry to be 1, we need to transform the lower elements to zeros of each
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column. For the first column, the zero entries can be approached by N−1 multiplications,

N − 1 additions and N divisions. As the operation is the row operation, the number of

multiplications and additions should be multiplied by the length of the row vector N .

However there is no increase of the divisions since the division operation is calculated based

on row vectors. In total, the first column needs N(N − 1) multiplication-additions and N

divisions. In the second column, since there are N −1 zero entries in the first column, the

operations will be reduced to N − 2 multiplication-additions and N − 1 divisions. As the

new row vectors have a zero entry, the length is also reduced to N − 1. As a result, the

operations to calculate the second column include (N−1)(N−2) multiplication-additions

andN−1 divisions. Similarly, in the third column, (N−2)(N−3) multiplication-additions

and N −2 divisions are needed. Finally, the multiplication-additions needed to transform

an upper triangular matrix is

N∑
n=1

n(n− 1) =
N∑

n=1

n2 −
N∑

n=1

n =
N3 −N

3
(3.67)

And the number of division operations is

N∑
n=1

n =
N(N + 1)

2
(3.68)

Next we transform the matrix to a diagonal matrix. The N − th column needs N − 1

multiplication-additions to ensure zero entries. However, there is no need for division

operations because the last element of this column is 1. Similarly, the (N − 1) − th

column needs N − 2 multiplication-additions, and the first column needs 0 operations.

Hence, the total number of multiplication-addition operations needed for the diagonal

matrix is
N∑

n=1

(n− 1) =
N(N − 1)

2
(3.69)

The total number of multiplication-addition operations for the whole matrix inversion

is

N3 −N

3
+

N(N − 1)

2
=

2N3 + 3N2 − 5N

6
(3.70)

The total operations for matrix inversion include 2N3+3N2−5N
6

multiplications, 2N3+3N2−5N
6

additions and N(N+1)
2

divisions.
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Since R−1 is a quaternion-valued matrix, all the operations are based on quaternion-

valued. To calculate the product R−1a0, N
2 multiplication and N(N − 1) addition oper-

ations are needed. There are extra N multiplications and N − 1 additions in the whole

product aH
0 R

−1a0. As the product is a scalar, the inversion only needs 1 division op-

eration. Based on the operations, calculating the result of (aH
0 R

−1a0)
−1 needs N2 + N

multiplications, N2−1 additions and 1 division. Finally, the weight vector w is calculated

by the product ofR−1a0 and (aH
0 R

−1a0)
−1, which needs N multiplications. In conclusion,

the number of quaternion-valued operations to calculate a weight vector is

2 · 2N
3 + 3N2 − 5N

6
+

N(N + 1)

2
+N2 +N +N2 − 1 + 1 +N

=
2

3
N3 +

7

2
N2 +

5

6
N (3.71)

For a quaternion-valued signal, the Q-Capon beamformer needs two beamforming opera-

tions to reconstruct the signal. Then the total number of operations needed is

2 · (2
3
N3 +

7

2
N2 +

5

6
N)

=
4

3
N3 + 7N2 +

5

3
N (3.72)

For the proposed full Q-Capon beamformer, the weight vector is acquired by the

product of R−1C(CHR−1C)−1fH . The operation for matrix inversion has been discussed

in the Q-Capon beamformer part, and here we first focus on the product R−1C. It

can be obtained that this product needs 2N2 multiplications and 2N(N − 1) additions.

Calculating CHR−1C needs extra 4N multiplications and 4(N − 1) additions. The total

operation number of CHR−1C is 2N2+4N multiplications and (2N+4)(N−1) additions.

To calculate the inverse of the 2× 2 matrix, 3 multiplications, 3 additions and 3 divisions

are needed. There are 2N multiplications and N additions with the product of fH . The

total operations needed for the full Q-Capon beamformer

2 · 2N
3 + 3N2 − 5N

6
+

N(N + 1)

2
+ 2N2 + 4N + (2N + 4)(N − 1) + 9 + 3N

=
2

3
N3 +

11

2
N2 +

47

6
N + 5 (3.73)
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Ignoring the lower order of the results, the Q-Capon beamformer approximately re-

quires 4
3
N3 operations and the full Q-Capon beamformer requires 2

3
N3 quaternion-valued

operations, which indicates the full Q-Capon beamformer has less computational com-

plexity than the original Q-Capon beamformer. When the sensor number N approaches

a large number, the full Q-Capon beamformer takes half the complexity of a Q-Capon

beamformer.

3.5 Worst-case Based Robust Adaptive Beamform-

ing

3.5.1 Worst-case constrained algorithm

The proposed full quaternion beamformer is based on accurate steering vectors of incident

array signals. However, steering vector mismatch usually exists in array processing as a

result of DOA or polarisation mismatch and various model errors. With such a mismatch,

there will be an error vector e (|e| ≤ ε, where ε is the upper bound of its norm) between the

assumed quaternion-valued steering vector bm and the actual quaternion-valued steering

vector b̄m, which can be expressed as [47]

b̄m = bm + e (3.74)

According to (3.74), the actual quaternion-valued steering vector could be any vector

within the multi-dimensional sphere, centered at bm with a radius ε.

In order to achieve a robust response, the beamformer can be constrained to have a

response greater than unity for all steering vectors within such a sphere. For the proposed

quaternion-valued beamformer in the last section, the constraint can be formulated as

minwHRw

s.t. min |wH b̄01| ≥ 1, min |wH b̄02| ≥ 1 (3.75)
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According to (3.74), for the first constraint (corresponding to b̄01), we have

|wH b̄01| = |wHb01 +wHe| ≥ |wHb01| − |wHe| . (3.76)

Since |e| ≤ ε, we further have

|wH b̄01| ≥ |wHb01| − |wHe| ≥ |wHb01| − ε||w|| (3.77)

From (3.77), it can be derived that

min |wH b̄01| = |wHb01| − ε||w|| ≥ 1

|wHb01| ≥ 1 + ε||w|| (3.78)

Now the constraint becomes

minwHRw

s.t. |wHb01| ≥ 1 + ε||w|| (3.79)

We should ensure that the response for the first sub-signal s01(t) is constrained in the real

and j domain and the response for s02(t) in the i and k domain. For a given quaternion-

valued vector w, the final output power wHRw keeps unchanged if w undergoes any

phase shift. That is to say, we can always find a quaternion-valued vector w to make the

product wHb01 real-valued. Then, the constraint can be changed to

minwHRw

s.t. Re{wHb01} ≥ 1 + ε||w||

Im(i){wHb01} = 0

Im(j){wHb01} = 0

Im(k){wHb01} = 0 (3.80)

We can transform the constraint of the b̄02 part in the same way. Then, the overall
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formulation for the worst-case based method can be described as

minwHRw

s.t. Re{wHb01} ≥ 1 + ε||w||

Im(i){wHb01} = 0

Im(j){wHb01} = 0

Im(k){wHb01} = 0

Re{wHb02} = 0

Im(i){wHb02} ≥ 1 + ε||w||

Im(j){wHb02} = 0

Im(k){wHb02} = 0 (3.81)

This is a convex optimization problem. A convex optimization problem is a problem

where all of the constraints are convex functions, and the objective is a convex function

if minimizing, or a concave function if maximizing. We refer the convex optimization

implementation as the full quaternion worst-case constraint beamformer (FQWCCB).

3.5.2 Optimization implementation of FQWCCB

The first constraint in (3.81) is to minimize wHRw. To further simplify the constraint,

it’s reasonable to apply Cholesky decomposition on R. The Cholesky decomposition

is a decomposition of a Hermitian, positive-definite matrix into the product of a lower

triangular matrix and its conjugate transpose. As discussed in former sections, R is a

Hermitian matrix with all positive eigenvalues. The Cholesky decomposition of R is in

the form [60]

R = QQH (3.82)

where Q is a lower triangular matrix with real and positive diagonal entries. As QH

is the conjugate transpose of Q, it’s a upper triangular matrix with the same diagonal
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entries as Q. For every Hermitian and positive-definite matrix, there is a unique Cholesky

decomposition.

After the decomposition, the output power wHRw can be rewritten as wHQQHw,

which is the l-2 norm of the vector wHQ. To simplify the computation, the constraint

can be transformed into

min ||wHQ||

s.t. Re{wHb01} ≥ 1 + ε||w||

Im(i){wHb01} = 0

Im(j){wHb01} = 0

Im(k){wHb01} = 0

Re{wHb02} = 0

Im(i){wHb02} ≥ 1 + ε||w||

Im(j){wHb02} = 0

Im(k){wHb02} = 0 (3.83)

Note that Q,w, b01 and b02 are quaternion-valued. As we cannot use quaternion-

valued variables directly with CVX tools in matlab. As a result, it is necessary to convert

the quaternion-valued matrices or vectors into real-valued ones.

We can rewrite Q,w, b01 and b02 as follows

Q = Q1 +Q2i+Q3j +Q4k

w = w1 +w2i+w3j +w4k

b01 = b01,1 + b01,2i+ b01,3j + b01,4k

b02 = b02,1 + b02,2i+ b02,3j + b02,4k (3.84)

where Ql,wl, b01,l and b02,l(1 ≤ l ≤ 4) are all real-valued.
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We can also define a new form for the quaternion-valued matrices

Q̄ ,


Q1 Q2 Q3 Q4

−Q2 Q1 −Q4 Q3

−Q3 Q4 Q1 −Q2

−Q4 −Q3 Q2 Q1


(3.85)

The quaternion-valued vectors can be denoted as

w̄H , [wT
1 −wT

2 −wT
3 −wT

4 ]

b101 , [bT01,1 − bT01,2 − bT01,3 − bT01,4]
T

b201 , [bT01,2 bT01,1 bT01,4 − bT01,3]
T

b301 , [bT01,3 − bT01,4 bT01,1 bT01,2]
T

b401 , [bT01,4 bT01,3 − bT01,2 bT01,1]
T

b102 , [bT02,1 − bT02,2 − bT02,3 − bT02,4]
T

b202 , [bT02,2 bT02,1 bT02,4 − bT02,3]
T

b302 , [bT02,3 − bT02,4 bT02,1 bT02,2]
T

b402 , [bT02,4 bT02,3 − bT02,2 bT02,1]
T (3.86)

It can be verified that

||wHQ|| = ||w̄HQ̄||

Re{wHb01} = w̄Hb101 , Re{wHb02} = w̄Hb102

Im(i){wHb01} = w̄Hb201 , Im(i){wHb02} = w̄Hb202

Im(j){wHb01} = w̄Hb301 , Im(j){wHb02} = w̄Hb302

Im(k){wHb01} = w̄Hb401 , Im(k){wHb02} = w̄Hb402 (3.87)
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Based on the above real-valued matrices and vectors, the formulation changes to

min ||w̄HQ̄
H ||

s.t. w̄Hb101 ≥ 1 + ε||w|| , w̄Hb102 = 0

w̄Hb201 = 0 , w̄Hb202 ≥ 1 + ε||w||

w̄Hb301 = 0 , w̄Hb302 = 0

w̄Hb401 = 0 , w̄Hb402 = 0 (3.88)

Solving the above convex optimization problem, we can obtain a real-valued weight

vector w̄H ∈ R1×4N . The quaternion-valued weight vector can be recovered from the four

corresponding elements of w̄H by (3.84) and (3.86).

3.6 Simulations Results

In this section, simulations results are provided in terms of the resultant beam pattern,

output SINR and robustness against steering vector mismatch. In the beam pattern part,

both 2-D and 3-D beam patterns are presented for the proposed full Q-Capon beamformer

to show the unity response to the desired signal and effective suppression to interferences.

The beam pattern of the FQWCCB is also provided to show its tolerance around the

desired DOA and polarisation region. In the output SINR performance part, the full

Q-Capon beamformer, FQWCCB, and the Q-Capon beamformer are compared in two

scenarios: one without steering vector mismatch, and one with steering vector mismatch.

A solid-line is also displayed as the optimal (ideal) beamforming result. The error constant

ε for FQWCCB is set to 1.3. In the robustness part, the beamformers are compared in

terms of output SINR versus the snapshots number with 1◦ and 5◦ DOA and polarisation

mismatch errors, respectively.
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Figure 3.2: Beam pattern obtained from the full Q-Capon beamformer with θ = 90◦

and γ = 60◦.

3.6.1 Beam pattern

In this part, result based on the algorithm is given to show interferences are suppressed

in 3-D beampattern. In our simulations, we consider 10 pairs of cross-dipoles with half

wavelength spacing. All signals are assumed to arrive from the same plane of θ = 90◦

and all interferences have the same polarisation parameter γ = 60◦. For the SOI, the two

sub-signals are set to (90◦, 1.5◦, 90◦, 45◦) and (90◦, 1.5◦, 0◦, 0◦), with interferences coming

from (90◦, 30◦, 60◦,−80◦), (90◦,−70◦, 60◦, 30◦), (90◦,−20◦, 60◦, 70◦), (90◦, 50◦, 60◦,−50◦),

respectively. The background noise is zero-mean quaternion-valued Gaussian. The power

of SOI and all interfering signals are set equal and SNR (INR) is 20dB.

Fig. 3.2 shows the resultant 3-D beam pattern by the proposed full Q-Capon beam-

former, where the interfering signals from (ϕ, η)=(30◦,−80◦), (−70◦, 30◦), (−20◦, 70◦) and

(50◦,−50◦) have all been effectively suppressed, while the gain of SOI from ϕ = 1.5◦ stays

almost a constant.

Figs. 3.3 and 3.4 show the 2-D beam patterns for η = −80◦, 30◦, 70◦,−50◦, respectively,
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where deep nulls have been formed at locations ϕ = 30◦,−70◦,−20◦, 50◦.
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Figure 3.3: The resultant beam pattern for 1) θ = 90◦, γ = 60◦, η = −80◦; 2) θ =

90◦, γ = 60◦, η = 30◦.

The 3-D beam pattern for the proposed FQWCCB is provided in Fig. 3.5. We can still

see that the interferences from (ϕ, η)=(30◦,−80◦), (−70◦, 30◦), (−20◦, 70◦) and (50◦,−50◦)

are suppressed but the suppression is not as deep as in the case of the full Q-Capon

beamformer; moreover, a large magnitude response are formed around the direction of

the desired signal.

3.6.2 Output SINR performance

In the following, the output SINR performance of the two Capon beamformers (full Q-

Capon and Q-Capon) is studied with the DOA and polarisation (90◦, 1.5◦, 90◦, 45◦) and

(90◦, 1.5◦, 0◦, 0◦) for SOI and (90◦, 30◦, 60◦,−80◦), (90◦,−70◦, 60◦, 30◦), (90◦,−20◦, 60◦, 70◦),

(90◦, 50◦, 60◦,−50◦) for interferences, respectively. Again, we have set SNR=INR=20dB.

All results are obtained by averaging 1000 Monte-Carlo trials.

Firstly, we consider a scenario without steering vector mismatch. Fig. 3.6 shows the

output SINR performance versus SNR with 100 snapshots, where the solid-line is for the
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Figure 3.4: The resultant beam pattern for 1) θ = 90◦, γ = 60◦, η = 70◦; 2) θ =

90◦, γ = 60◦, η = −50◦.
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Figure 3.5: The resultant FQWCCB beam pattern with θ = 90◦ and γ = 60◦.
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Figure 3.6: Output SINR versus input SNR, for snapshots number 100, without steering

vector mismatch.

optimal beamformer, i.e. with infinite number of snapshots. Note that with only 100

snapshots, there will be non-negligible data model errors. It can be seen that for most

of the input SNR range, the FQWCCB has the best output SINR performance versus

the input SNR, while the full Q-Capon has a worse performance, but it still outperforms

the Q-Capon beamformer. In the lower SNR range, FQWCCB and the full Q-Capon

beamformer have a similar result, but the gap becomes greater from input SNR=10dB

onwards. Also in the lower range, the proposed full Q-Capon beamformer has a better

performance than the Q-Capon beamformer; for very high input SNR values, these two

beamformers have a very similar performance. The long vector beamformer has a similar

performance with Q-Capon beamformer. With the increase of SNR, when SNR reaches 0

to 10 dB, the long vector beamformer outperforms the Q-Capon beamformer. However,

when SNR continues to increase to above 15 dB, the long vector beamformer loses its

advantage against Q-Capon beamformer.

Next, another set of simulations is performed in a similar setting, which is shown

in Fig. 3.7. The only difference is that there is 5◦ DOA and polarisation mismatch

66



Input SNR (dB)
-20 -10 0 10 20 30

O
ut

pu
t S

IN
R

 (
dB

)

-20

-10

0

10

20

30

40

Optimal SINR
Full Q-Capon
Q-Capon
FQWCCB
Long vector

Figure 3.7: Output SINR versus input SNR, for snapshots number 100, with 5◦ mis-

match.

for the SOI: the actual parameters of the two desired sub-signals are (95◦, 6.5◦, 95◦, 50◦)

and (95◦, 6.5◦, 5◦, 5◦). For lower input SNR values (from -20 dB to -10 dB), the four

beamformers have a similar output SINR, all worse than the example without steering

vector mismatch. As the input SNR increases, difference among the three beamformers

appears. From SNR=0dB onwards, the output SINR of FQWCCB and the full Q-Capon

beamformer continue to increase while the output SINR of the Q-Capon beamformer

and long vector beamformer start to drop slowly. Compared with the full Q-Capon

beamformer, the FQWCCB has achieved a higher output SINR than the full Q-Capon

beamformer with high SNR, which means the FQWCCB has a better performance than

the full Q-Capon beamformer in this situation.

3.6.3 Performance with DOA and polarisation mismatch

Next, we investigate their performance in the presence of both DOA and polarisation

errors with SNR=SIR=15dB. The output SINR with respect to the number of snapshots

is shown in Fig. 3.8 in the presence of 1◦ error for the SOI, where the actual DOA and
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Figure 3.8: Output SINR versus snapshot number with SNR=SIR=15dB and 1◦ error.

polarisation parameters are (91◦, 2.5◦, 91◦, 46◦) and (91◦, 2.5◦, 1◦, 1◦).

We can see that the FQWCCB has the best performance in the presence of DOA and

polarisation mismatch, with output SINR above 20dB for a varied number of snapshots.

Both the full Q-Capon beamformer and the Q-Capon beamformer experience a loss of

SINR (below 5dB at the beginning and increases with the snapshots number). However,

the full Q-Capon beamformer still has achieved a much higher output SINR than the

Q-Capon beamformer, and this gap increases with the increase of snapshots number. Fig.

3.9 shows a similar trend in the presence of a 5◦ error. For the Q-Capon beamformer, the

output SINR stays below 5dB with little fluctuation, while the full Q-Capon beamformer

and its worst-case constraint version can achieve a relatively high output SINR level of

above 15dB with 500 snapshots. Overall, we can see that the proposed full Q-Capon

beamformer (both with worst-case constraint and without worst-case constraint) is more

robust against array steering vector errors than the original Q-Capon beamformer.
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Figure 3.9: Output SINR versus snapshot number with SNR=SIR=15dB and 5◦ error.

3.7 Summary

In this chapter, a full quaternion model has been developed for adaptive beamforming

based on crossed-dipole vector sensor arrays, with a new full quaternion Capon beam-

former derived. Different from previous studies in quaternion-valued adaptive beamform-

ing, we have considered a quaternion-valued desired signal, given the recent research

development in quaternion-valued communications. The proposed beamformer has a bet-

ter performance and a much lower computational complexity than a previously proposed

Q-Capon beamformer and is also shown to be more robust against array pointing er-

rors. Furthermore, based on this full quaternion model, the robust beamforming problem

has also been studied in the presence of steering vector errors and a worst-case based

robust beamformer was developed. The effectiveness of the full Q-Capon beamformer

and the robustness of the further developed worst-case based beamformer was verified by

simulations.
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Chapter 4

Joint 4-D DOA and Polarization

Estimation with Crossed-dipole and

Tripole Sensor Arrays

4.1 Introduction

The joint estimation of direction of arrival and polarisation for signals based on electro-

magnetic (EM) vector sensor arrays has been widely studied in the past [34, 61–66]. In

[34], the EM vector sensor was first used to collect both electric and magnetic informa-

tion of the impinging signals, where all six electromagnetic components are measured to

identify the signals. So far most of the studies are focused on the linear array structure

employing crossed-dipoles, where the general two-dimensional (2-D) DOA model is sim-

plified into a one-dimensional (1-D) one by assuming that all the signals arrive from the

same known azimuth angle ϕ. In [43], a quaternion MUSIC algorithm was proposed to

deal with the joint DOA (θ) and polarisation (ρ, ϕ) estimation problem by considering the

two complex-valued signals received by each crossed-dipole sensor as the four elements of

a quaternion, where a three-dimensional (3-D) peak search is required with a very high

computational complexity. In [44], a quaternion ESPRIT algorithm was developed for
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direction finding with a reduced complexity. Furthermore, a dimension-reduction MU-

SIC algorithm based on uniform linear arrays with crossed-dipole sensors was introduced

in [67], where the 3-D joint peak search is replaced by a 1-D DOA search and a 2-D

polarisation search.

In practice, the azimuth angle θ and the elevation angle ϕ of the signals are unknown

and they are usually different for different signals and need to be estimated together.

However, as rigorously proved for the first time in this chapter, linear crossed-dipole

array cannot achieve this because such an array will produce an ambiguity problem,

where the azimuth angle and the elevation angle of the impinging signals can not be

uniquely identified and there could also be false peaks in the resultant spatial spectrum.

To tackle this ambiguity problem, one solution is to extend the linear geometry to a two-

dimensional (2-D) rectangular planar array, such as the uniform rectangular array (URA),

at significant space cost, and one good example for this solution is the work presented in

[68], where based on a URA, a pencil-MUSIC algorithm is proposed to solve the full 4-D

DOA and polarisation estimation problem. However, it is not always feasible to use the

rectangular array as a solution due to space limit. On the other hand, it is possible to

add one dipole to the crossed-dipole structure to form a tripole sensor and tripole sensor

array has been proposed in the past for DOA estimation [69–71]. Therefore, as another

solution, motivated by simultaneously simplifying the array structure and reducing the

computational complexity, instead of extending the linear crossed-dipole array to a higher

spatial dimension, we replaced the crossed-dipoles by tripoles and constructed a linear

tripole array in our earlier conference publication for joint 4-D DOA and polarisation

estimation for the first time [72] . Moreover, for the first time, we give a clear proof about

why a linear tripole array can avoid the ambiguity problem except for some special cases

and can be used for four-dimensional joint DOA and polarisation estimation.

At the algorithm level, two MUSIC-like algorithms for the 4-D estimation problem are

proposed. The first is a direct search in the 4-D space to locate the DOA and polarisation

parameters simultaneously (4-D MUSIC), which has an extremely high computational
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complexity. The other algorithm is to transform the 4-D search into two separate 2-D

searches (2-D MUSIC), significantly reducing the computational complexity. To evaluate

the performance of the proposed algorithms, the Cramér-Rao Bound (CRB) of the linear

tripole array for 4-D estimation is derived. In the past, CRBs have been derived under

different circumstances, such as the results for arrays with arbitrary geometries in [73].

Obviously, the types of signals and noise will affect the derived CRB result. Normally,

noise is assumed to be temporally and spatially white and the source signal can have two

different types: one is to assume the source signal is deterministic [74–76], while the other

assumes that the signal is random and a common choice is being Gaussion distributed

[77–82]. In this thesis, we assume the source signal is of the second type.

This chapter is structured as follows. The linear tripole array is introduced in Sec-

tion II with a detailed proof for the 4-D ambiguity problem associated with the linear

crossed-dipole array and why the linear tripole array can solve the problem. The two

4-D estimation algorithms are proposed in Section III with the CRB derived in detail.

Simulation results are presented in Section IV, followed by a summary in Section V.

4.2 Tripole Sensor Array Model

4.2.1 Tripole sensor array

Suppose there are M uncorrelated narrowband signals impinging upon a uniform linear

array with N tripoles, where each tripole consists of three co-located mutually perpen-

dicular dipoles, as shown in Fig. 4.1. Assume that all signals are ellipse-polarized.

The parameters, including DOA and polarisation of the m-th signal are denoted by

(θm, ϕm, γm, ηm),m = 1, 2, ...,M . The inter-element spacing d of the array is λ/2, where λ

is the wavelength of the incoming signals. For each tripole sensor, the three components

are parallel to x, y and z axes, respectively. The background noise is Gaussian white

noise with zero mean and variance σ2
n, which is uncorrelated with the impinging signals.

Due to the phase shift among the sensors, the steering vector for the m-th signal can be
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denoted as

am = [1, e−jπ sin θm sinϕm , ..., e−j(N−1)π sin θm sinϕm ] (4.1)

and the polarisation vector pm is determined by the product of DOA component Ωm and

the polarization component gm, where

pm = Ωmgm (4.2)

The DOA component is a matrix consisting of two vectors that are orthogonal to the

signal direction. There are infinite number of choices for these two vectors and generally

the following two are used [83]

Ωm =


cos θm cosϕm − sinϕm

cos θm sinϕm cosϕm

− sin θm 0

 (4.3)

The corresponding polarization component is given by

gm =

sin γmejηm
cos γm

 (4.4)

where γm is the auxiliary polarization angle and ηm the polarization phase difference. By

expanding (4.2), the polarisation vector pm can be divided into three different components

in x, y and z axes

pm =


cos θm cosϕm sin γme

jηm − sinϕm cos γm

cos θm sinϕm sin γme
jηm + cosϕm cos γm

− sin θm sin γme
jηm

 (4.5)

For convenience, we replace the three elements in pm by pmx, pmy and pmz, which is given

by:

pmx = cos θm cosϕm sin γme
jηm − sinϕm cos γm

pmy = cos θm sinϕm sin γme
jηm + cosϕm cos γm

pmz = − sin θm sin γme
jηm (4.6)
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The received signal at the tripole sensor array can be denoted as a function of steering

vector am, polarisation vector pm, source signals sm and background noise n. At the k-th

time instant, the received signal vector x[k] can be expressed as

x[k] =
M∑

m=1

[am ⊗ pm]sm[k] + n[k]

=
M∑

m=1

vmsm[k] + n[k] (4.7)

where ‘⊗’ stands for the Kronecker product, vm is the Kronecker product of am and pm,

and n[k] is a 3N×1 Gaussian white noise vector. The covariance matrix R of the received

signal vector is given by

R = E{x[k]x[k]H}

=
M∑

m=1

vms[k]s[k]
HvHm + σ2

nI3N (4.8)

In practice, R is not available and can be estimated by averaging a finite number of

snapshots. In such case, an estimated covariance matrix R̂ is used to replace R

R̂ ≈ 1

K

L∑
l=1

x[k]x[k]H (4.9)

where K is the number of snapshots.

4.2.2 Comparison between crossed-dipole array and tripole ar-

ray

This section will mainly show why the ULA with crossed-dipoles cannot uniquely deter-

mine the four parameters associated with each impinging signal, leading to the spatial

aliasing problem, and why the ULA with tripoles can provide a unique solution for the

joint 4-D estimation problem.

To show the ambiguity problem, we consider one source signal impinging upon the

array so that the subscript m can be dropped for convenience. The joint DOA and
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Figure 4.1: Geometry of a uniform linear tripole array, where a signal arrives from

elevation angle θ and azimuth angle ϕ.

polarisation estimation problem can be considered as estimation of the steering vector of

this source signal.

For crossed-dipole sensor array, its joint steering vector w is given by

w = a⊗ q (4.10)

where

q =

px
py

 (4.11)

Here, w is a 2N ×1 vector with a 2×1 polarisation vector q. For the tripole sensor array,

the joint steering vector v is a 3N × 1 vector with a 3× 1 polarisation vector p, i.e.

v = a⊗ p (4.12)

where

p =


px

py

pz

 (4.13)

The ambiguity problem associated with the cross-dipole array can be stated as follows:

for a given steering vector w1, by varying parameters (θ, ϕ, γ, η), there exists at least one
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vector w2 which is in parallel with w1. By parallel we mean

w2 = k ·w1 (4.14)

where k is an arbitrary complex-valued scalar.

When we say that the tripole array can avoid the ambiguity problem, we mean that

for a given tripole array steering vector v1, no matter how we change the parameters

(θ, ϕ, γ, η) change, it is impossible to find another steering vector v2 which is in parallel

with v1.

To prove these two statements, firstly we give the following lemma.

Lemma 1 Given two complex-valued vectors w1 = a1 ⊗ q1 and w2 = a2 ⊗ q2, w1//w2

is necessary and sufficient for a1//a2 and q1//q2, where // means the two vectors are in

parallel.

Proof 4.2.1 Necessity: If a1//a2 and q1//q2, then

a2 = k1 · a1

q2 = k2 · q1 (4.15)

where k1 and k2 are arbitrary complex-valued constants. Then,

w2 = a2 ⊗ q2

= (k1 · a1)⊗ (k2 · q1)

= (k1k2) · (a1 ⊗ q1)

= (k1k2) ·w1 (4.16)

Hence, w1//w2.
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Sufficiency: By (4.10), w can be expanded as

w = a⊗ q =



a1q

.

.

.

aNq


=



a1px

a1py

.

.

.

aNpx

aNpy


(4.17)

The Hermitian transpose wH is given by

wH = aH ⊗ qH (4.18)

The norm of w is

|w| =
√
wHw

=
√

(a1a∗1 + ...+ aNa∗N)(pxp
∗
x + pyp∗y)

= |a| · |q| (4.19)

Then, we have

|w1| = |a1| · |q1|

|w2| = |a2| · |q2| (4.20)

Generally, by (4.18), the modulus of the inner product of w1 and w2 can be expanded as

|wH
1 w2| = |(aH

1 ⊗ qH
1 ) · (a2 ⊗ q2)| (4.21)

According to the mixed-product property of Kronecker product, the lemma 4.2.10 in [84],

(4.21) can be deduced to

|wH
1 w2| = |aH

1 · a2| ⊗ |qH
1 · q2|

≤ |a1| · |a2| · |q1| · |q2| (4.22)
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On the other hand, since w1//w2, we know w2 = kw1 and |w2| = |k||w1|, which leads to

|wH
1 w2| = |wH

1 · kw1| = |k||w1| · |w1|

= |w1| · |w2| = |a1| · |a2| · |q1| · |q2| (4.23)

The equality in (4.22) holds only when a1//a2 and q1//q2. Combined with (4.23), the

sufficiency proof is completed.

Although we used the joint steering vector of the crossed-dipole array in the above

proof, it is straightforward to show that Lemma 1 is also applicable to the joint steering

vector of tripole sensor arrays.

Now we first consider the ambiguity problem in crossed-dipole sensor arrays. Given

w1 = a1 ⊗ q1, our aim is to find a vector w2 = a2 ⊗ q2 with a1//a2 and q1//q2.

First Equation (4.1) indicates that a1 is only determined by the value of sin θ1 sinϕ1.

To ensure a1//a2, given an arbitrary value from 0o to 90o for θ2, ϕ2 can be worked out by

sin θ1 sinϕ1 = sin θ2 sinϕ2 (4.24)

Based on (4.24), we need further choose values for γ2 and η2 to satisfy q1//q2. From (4.6)

and (4.11), the polarisation vector q1 is determined by all four parameters θ1, ϕ1, γ1 and

η1 with

q1 =

cos θ1 cosϕ1 − sinϕ1

cos θ1 sinϕ1 cosϕ1

sin γ1ejη1
cos γ1


= Ψ1g1 (4.25)

Hence, the other polarisation vector q2 = Ψ2g2 need to satisfy

Ψ1g1 = λΨ2g2

⇒g2 = λ−1Ψ−1
2 Ψ1g1 (4.26)

λ is a constant and without loss of generality we assume its value is 1. Here g2 is a 2× 1

vector with g2[1] = sin γ2e
jη2 and g2[2] = cos γ2, where “[1]” and “[2]” denote the first
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and the second elements of the vector.

tan γ2 =
|g2[1]|
|g2[2]|

tan η2 =
Im{g2[1]/g2[2]}
Re{g2[1]/g2[2]}

(4.27)

Using the values of (4.24) and (4.27), the new joint steering vector q2 will be in parallel

with the original q1. As a result, we can not uniquely determine the four DOA and

polarisation parameters of a source using the crossed-dipole array.

Next, we consider the tripole sensor array case. Given a joint steering vector v1 =

a1 ⊗ p1, we want to prove that a parallel v2 = a2 ⊗ p2 does not exist and we prove it

by contradiction. Similar to the crossed-dipole case, an arbitrary value from 0o to 90o is

chosen for θ2, and then (4.24) is applied to calculate ϕ2, so that the new elevation and

azimuth angles ensure a1//a2. For the polarisation vector p1, assume that there exists a

vector p2 which is in parallel with p1, i.e.

Ω1g1 = λΩ2g2 (4.28)

where λ is an unknown complex-valued constant. Expanding Ω1 and Ω2 by the column

vector, where Ω11 and Ω12 are the first and second column vectors of Ω1, and Ω21 and

Ω22 are the first and second column vectors of Ω2, respectively. (4.28) is transformed to

[Ω11 Ω12]

g1[1]
g1[2]

 = λ[Ω21 Ω22]

g2[1]
g2[2]


⇕

Ω11g1[1] +Ω12g1[2] = Ω21g2[1]λ+Ω22g2[2]λ (4.29)

The left side of (4.29) can be viewed as a vector which is a linear combination of Ω11 and

Ω12. The right is a linear combination of Ω21 and Ω22. Here we define a two-dimensional

space A1 spanned by Ω11 and Ω12, also A2 spanned by Ω21 and Ω22. Since Ω11,Ω12,Ω21

and Ω22 are all 3× 1 vectors, the equation holds only in the following two cases:

Case 1: A1 and A2 are the same two-dimensional span.
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It can be noticed that A1 intersects x−y plane at vector Ω12. And A2 intersects x−y

plane at vector Ω22. If A1 and A2 are the same two-dimensional span, it must satisfy

that Ω12//Ω22, then we have
− sinϕ1

cosϕ1

0

 //


− sinϕ2

cosϕ2

0

 ⇔ − sinϕ1

cosϕ1

= − sinϕ2

cosϕ2

⇔ tanϕ1 = tanϕ2 (4.30)

However, ϕ1 ̸= ϕ2, (4.30) conflicts with the basic assumption, which means with tripole

sensor array, there is no other joint steering vector v2 in parallel with the given v1 in such

a case.

Case 2: A1 and A2 are two different two-dimensional spans. Then p1 and p2 must be

in parallel with the intersecting vector of A1 and A2.

Firstly we denote the intersecting vector as Ωx. Since Ω11,Ω12,Ω21,Ω22 are all real-

valued vectors, all the elements in the intersection vector Ωx must be also real-valued.

From eq.(4.5), p1 can be transformed to

p1 = ejη


cos θ cosϕ sin γ − sinϕ cos γe−jη

cos θ sinϕ sin γ + cosϕ cos γe−jη

− sin θ sin γ


= ejη · p̂1 (4.31)

It can be seen that p1//p̂1. In most situations, with γ ̸= 90◦, γ ̸= 0 and η ̸= 0,

the first two elements in p̂1 are complex-valued and the last element in p̂1 is real-valued,

which indicates that with such a situation, it is impossible for p̂1 to be in parallel with

the intersecting vector Ωx. Hence, with γ ̸= 90◦, γ ̸= 0 and η ̸= 0, there is no ambiguity

in DOA and polarisation estimation with tripole sensors.

However, when γ = 90◦ or γ = 0 or η = 0, p̂1 or p1 becomes a vector with all elements

being real-valued, and it may be possible for p1 to be in parallel with the intersecting

vector Ωx. Now with the assumption p1//p2//Ωx, p1 and p2 must all real-valued, which
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means γ1 = 90◦ or γ1 = 0 or η1 = 0, and at the same time γ2 = 90◦ or γ2 = 0 or η2 = 0.

With the constraint sin θ1 sinϕ1 = sin θ2 sinϕ2, we consider all of the nine different cases:

Case 2.1: γ1 = 90◦ and γ2 = 90◦.

In this case

p1 = ejη1


cos θ1 cosϕ1

cos θ1 sinϕ1

− sin θ1



p2 = ejη2


cos θ2 cosϕ2

cos θ2 sinϕ2

− sin θ2

 (4.32)

With θ1 = θ2 and ϕ1 = ϕ2, we have p1//p2 for arbitrary η1 and η2. An example is

(30◦, 60◦, 90◦, 20◦) and (30◦, 60◦, 90◦, 50◦).

Case 2.2: γ1 = 90◦ and γ2 = 0◦. (same for γ1 = 0◦ and γ2 = 90◦)

p1 = ejη1


cos θ1 cosϕ1

cos θ1 sinϕ1

− sin θ1



p2 =


− sinϕ2

cosϕ2

0

 (4.33)

In this case, with θ1 = 0◦ and tanϕ1 = − cotϕ2, we have p1//p2 for arbitrary θ2, η1 and

η2. An example is (0◦, 90◦, 90◦, 20◦) and (50◦, 0◦, 0◦, 50◦).
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Case 2.3: γ1 = 90◦ and η2 = 0◦. (same for η1 = 0◦ and γ2 = 90◦)

p1 = ejη1


cos θ1 cosϕ1

cos θ1 sinϕ1

− sin θ1



p2 =


cos θ2 cosϕ2 sin γ2 − sinϕ2 cos γ2

cos θ2 sinϕ2 sin γ2 + cosϕ2 cos γ2

− sin θ2 sin γ2

 (4.34)

For arbitrary given θ1, ϕ1, θ2, ϕ2 which satisfy the constraint (4.24), if p1//p2, then
sin θ1

sin θ2 sin γ2
=

cos θ1 cosϕ1

cos θ2 cosϕ2 sin γ2 − sinϕ2 cos γ2
sin θ1

sin θ2 sin γ2
=

cos θ1 sinϕ1

cos θ2 sinϕ2 sin γ2 + cosϕ2 cos γ2

(4.35)

leading to 
sinϕ2 = cosϕ2

sinϕ2 = − cosϕ2

(4.36)

which causes the contradiction. In this case, there is no ambiguity.

Case 2.4: γ1 = 0◦ and γ2 = 0◦.

p1 =


− sinϕ1

cosϕ1

0



p2 =


− sinϕ2

cosϕ2

0

 (4.37)

In this case, with ϕ1 = ϕ2, we have p1//p2 for arbitrary η1 and η2. An example is

(30◦, 60◦, 0◦, 20◦) and (30◦, 60◦, 0◦, 50◦).

82



Case 2.5: γ1 = 0◦ and η2 = 0◦. (same for η1 = 0◦ and γ2 = 0◦)

p1 =


− sinϕ1

cosϕ1

0



p2 =


cos θ2 cosϕ2 sin γ2 − sinϕ2 cos γ2

cos θ2 sinϕ2 sin γ2 + cosϕ2 cos γ2

− sin θ2 sin γ2

 (4.38)

In this case, to satisfy the parallel condition, firstly θ2 should be 0◦ and η1 can be an

arbitrary value. Further we have

tan γ2 =
cosϕ1 sinϕ2 − sinϕ1 cosϕ2

cosϕ1 cosϕ2 + sinϕ1 sinϕ2

(4.39)

An example is (30◦, 0◦, 0◦, 30◦) and (0◦, 30◦, 30◦, 0◦).

Case 2.6: η1 = 0◦ and η2 = 0◦.

p1 =


cos θ1 cosϕ1 sin γ1 − sinϕ1 cos γ1

cos θ1 sinϕ1 sin γ1 + cosϕ1 cos γ1

− sin θ1 sin γ1



p2 =


cos θ2 cosϕ2 sin γ2 − sinϕ2 cos γ2

cos θ2 sinϕ2 sin γ2 + cosϕ2 cos γ2

− sin θ2 sin γ2

 (4.40)

In this case, due to the parallel condition, we know
sin θ1 sin γ1
sin θ2 sin γ2

=
cos θ1 cosϕ1 sin γ1 − sinϕ1 cos γ1
cos θ2 cosϕ2 sin γ2 − sinϕ2 cos γ2

sin θ1 sin γ1
sin θ2 sin γ2

=
cos θ1 sinϕ1 sin γ1 + cosϕ1 cos γ1
cos θ2 sinϕ2 sin γ2 + cosϕ2 cos γ2

(4.41)

Each equations in (4.41) will produce a unique solution to tan γ2. Except that all the

parameters (θ1, ϕ1, γ1) = (θ2, ϕ2, γ2), there is no other solutions for γ2 and therefore there

is no ambiguity in this case.
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4.3 Cramér-Rao Bound for Tripole Sensor Arrays

The Cramér-Rao bound (CRB) provides a lower bound on the variance of unbiased esti-

mators. The estimator is said to be unbiased if the mean of the sampling distribution of

a given parameter is equal to the parameter to be estimated. In paper [74], it has been

proved that the MUSIC estimation errors are asymptotically joint Gaussian distributed

with zero mean when the snapshot number is large, which means the MUSIC estimator

is an unbiased estimator for the given parameters and CRB is suitable to evaluate the

estimation performance. In the joint estimation problem, (θ, ϕ, γ, η) are four unknown

parameters. For convenience, we use α = (θ, ϕ, γ, η) to denote the unknown parameters.

With the N-element linear tripole sensor array, the probability density function for single

received snapshot is given by [73]

px|(α) =
1

det[πRx(α)]
e{−[x−m(α)]HR−1

x (α)[x−m(α)]} (4.42)

where Rx(α) is the covariance matrix and m(α) is the mean value of received vector

data.

With K independent snapshots, the likelihood function can be denoted as the product

of K single functions

px1,x2,...,xK
|(α) =

K∏
k=1

1

det[πRx(α)]

× e{−[xk−m(α)]HR−1
x (α)[xk−m(α)]} (4.43)

The log-likelihood function is given by

Lx(α) = ln px1,x2,...,xK
|(α)

=−K ln det[Rx(α)]−KN lnπ

−
K∑
k=1

[xk −m(α)]HR−1
x (α)[xk −m(α)] (4.44)

Considering the unconditional model, which means the source signals are random in
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all realizations [85], , for one source the mean value and covariance matrix is given by

m(α) = 0

Rx = σ2
svv

H + σ2
nI (4.45)

where σ2
s is the power of source signal and σ2

n is the noise power.

The fisher information matrix can be denoted as:

F(α) =


Fθ,θ Fθ,ϕ Fθ,γ Fθ,η

Fϕ,θ Fϕ,ϕ Fϕ,γ Fϕ,η

Fγ,θ Fγ,ϕ Fγ,γ Fγ,η

Fη,θ Fη,ϕ Fη,γ Fη,η


(4.46)

Each element in the matrix can be expressed as the product of derivatives of (5.70) with

respect to the corresponding parameter [73]:

Fαi,αj
=tr{R−1

x (α)
∂Rx(α)

αi

R−1
x (α)

∂Rx(α)

αj

}

+ 2Re{∂m
H(α)

αi

R−1
x (α)

∂m(α)

αj

} (4.47)

where the symbol tr{} means the trace of a matrix, Re{} means the real part, and αi, αj

denote two arbitrary parameters among (θ, ϕ, γ, η).

With (5.74), (4.47) can be simplified to

Fαi,αj
= tr{R−1

x (α)
∂Rx(α)

αi

R−1
x (α)

∂Rx(α)

αj

} (4.48)

The CRB matrix C(α) is the inverse of fisher information matrix, i.e.

C(α) = F−1(α) (4.49)

Finally, the Cramér-Rao bounds for each estimated parameter are given by:

CRB(θ) = Cθ,θ = [F−1(α)]1,1

CRB(ϕ) = Cϕ,ϕ = [F−1(α)]2,2

CRB(γ) = Cγ,γ = [F−1(α)]3,3

CRB(η) = Cη,η = [F−1(α)]4,4 (4.50)
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4.4 The Proposed Algorithm

In the following, the proposed low-complexity joint 4-D DOA and polarisation estimation

algorithm for tripole sensor arrays is introduced based on a subspace approach.

Firstly, by applying eigenvalue decomposition (EVD), the covariance matrix R can be

decomposed into

R = Rs +Rn =
3N∑
k=1

λkuku
H
k (4.51)

where uk is the k-th eigenvector and λk is the corresponding eigenvalue (in descending

order). Furthermore, we can rewrite (4.51) into

R = UsΛsU
H
s +UnΛnU

H
n (4.52)

where Us = [u1,u2, · · · ,uM ] and Un = [uM+1,uM+2, · · · ,u3N ] are the eigenvectors of

the signal subspace and noise subspace, respectively. Λs and Λn are diagonal matrices

holding the corresponding eigenvalues λk. As the rank of the noise subspace cannot be

less than 1, the DOF (degree of freedom) of the algorithm is 3N − 1.

Clearly, the joint steering vector vm is orthogonal to the noise subspace Un, i.e.

UH
n vm = 0 (4.53)

or

vHmUnU
H
n vm = 0 (4.54)

As a result, to find the DOA and polarisation parameters (θm, ϕm, γm, ηm) of the m-th

signal, we construction the following function

F (θ, ϕ, γ, η) =
1

vHUnU
H
n v

(4.55)

The peaks in (4.55) indicate the DOA and polarisation information (θ, ϕ, γ, η) for

impinging signals.
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The above MUSIC-type algorithm is based on direct 4-D peak search with an extremely

large computational complexity. In the following, we transform the 4-D search process

into two 2-D searches, significantly reducing the complexity of the solution.

First, we separate vm into two components: one with DOA information (θ, ϕ) only,

while the other only contains the polarisation information (γ, η). In this way, (4.53) can

be changed to

0 = UH
n [am ⊗ (Ωmgm)]

= UH
n [(am ⊗Ωm)gm]

= [UH
n bm]gm (4.56)

where bm is the Kronecker product of am and Ωm.

Note that UH
n bm is a (3N −M) × 2 vector and gm is a 2 × 1 vector. (4.56) shows a

linear relationship between the columns in UH
n bm, which means the vector has a column

rank less than 2. Multiplied by its Hermitian transpose on the right, the new 2×2 product

matrix cannot have a full rank, with its determinant equal to zero. Here we use det{} to

denote the determinant of a matrix. Then, we have

det{bHmUnU
H
n bm} = 0 (4.57)

We can see that bm is dependent on the parameters (θ, ϕ) only. As a result, a new

estimator can be established corresponding to θ and ϕ as [86]

f(θ, ϕ) =
1

det{bHUnU
H
n b}

(4.58)

The new estimator first performs a 2-D peak search over θ and ϕ. After locating θ

and ϕ, the polarisation parameters γ and η can be obtained by another 2-D search in the

following

f(γ, η) =
1

gHbHUnU
H
n bg

(4.59)

The following is a summary of the proposed algorithm:
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• Calculate the estimated covariance matrix R̂ from the received signals.

• Calculate the noise space Un by applying the eigenvalue decomposition on R̂. The

last 3N −M eigenvalues and the corresponding eigenvectors form the noise space.

• Use the 2-D estimator (4.58) to locate the DOA parameters θ and ϕ.

• Use the 2-D estimator (4.59) to locate the corresponding polarisation parameters γ

and η.

4.5 Simulation Results

In this section, simulation results are presented to demonstrate the ambiguity issues we

discussed earlier and the performance of the proposed algorithm.

4.5.1 Ambiguity phenomenon

Assuming one source signal from (θ, ϕ, γ, η) = (30◦, 80◦, 20◦, 50◦) impinges on a uniform

linear crossed-dipole array and a uniform linear tripole array respectively. Both arrays

have the same senor number N = 5 and the inter-element space is set to d = λ/2.

Fig. 4.2 and Fig. 4.3 present the DOA estimation results for these two arrays, re-

spectively. Apparently, the tripole sensor array gives a unique peak point at the source

direction while the crossed-dipole senor array shows a peak line due to the ambiguity

problem and there is no way to identify the real direction of the signal.

4.5.2 RMSE results

Now we study the performance of the proposed algorithm based on tripole sensor ar-

rays. There are two source signals from (θ, ϕ, γ, η) = (10◦, 20◦, 15◦, 30◦) and (θ, ϕ, γ, η) =

(60◦, 70◦, 60◦, 80◦). The tripole sensor number is set to N = 4 and the number of snap-

shots for each simulation is K = 1000. The root mean square error (RMSE) results of the

estimated parameters by 200 Monte-Carlo trials are shown in Fig. 4.4-4.7, where we can
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Figure 4.2: DOA estimation result using the linear crossed-dipole sensor array.
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Figure 4.3: DOA estimation result using the linear tripole sensor array.
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Figure 4.4: RMSE of θ.

see that with the increase of SNR, the RMSE level decreases consistently. The accuracy

of the 4-D MUSIC using (4.55) is always better than the proposed 2-D MUSIC algorithm

for any parameters at the cost of a much higher level of computation complexity. The

performance of both algorithms are close to the CRB.

4.5.3 Linear tripole and planar crossed-dipole array

Since a planar crossed-dipole array can also be used to estimate the four parameters of an

impinging signal, it would be interesting to know that given the same number of dipoles,

which one is more effective for 4-D parameter estimation, the linear tripole array or the

planar crossed-dipole array. To find out, in this part, we consider a 4 × 1 linear tripole

array and a 2 × 3 planar crossed-dipole array both of which have the same number of

dipoles or DOFs. We compare their estimation accuracy using the proposed 2-D MUSIC

algorithm. All the other conditions are the same as in 4.5.2.

Fig. 5.10 shows the RMSE results for the first signal’s azimuth angle. It can be seen

that the planar array has given a higher estimating accuracy and its CRB is much lower

than the linear tripole array, which means that the compact structure of the linear tripole

sensor array is achieved at the cost of estimation accuracy. However, it’s hard to say
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Figure 4.5: RMSE of ϕ.
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Figure 4.6: RMSE of γ.
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Figure 4.8: RMSE of crossed-dipole and tripole sensor array.
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that the planar crossed-dipole array outperforms the linear triple array totally. In some

special scenarios, if the sensor array has to be placed in a narrow area, for example, on

the surface of an airplane. The planar array will result in the short inter-space in one

direction, which may cause other problems like mutual coupling between sensors. While

linear array can avoid this and ensure enough distance between sensors.

4.6 Summary

With a detailed analysis and proof, it has been shown that due to inherent limitation of

the linear crossed-dipole structure, it cannot uniquely identify the four parameters associ-

ated with impinging signals. In order to simultaneously estimate both the 2-D DOA and

2-D polarisation parameters of the impinging signals, we could increase the dimension of

the array and construct a planar crossed-dipole array. To avoid this and have a compact

structure, a linear tripole array has been employed instead. It has been proved and also

shown that such a structure can estimate the 2-D DOA and 2-D polarisation information

effectively except for some very special cases. Moreover, a dimension-reduction based

MUSIC algorithm was developed so that the 4-D estimation problem can be simplified

to two separate 2-D estimation problems, significantly reducing the computational com-

plexity of the solution. However, the dimension-reduction also brings the problem of less

accuracy. Since both the planar crossed-dipole array and the linear tripole array can be

used to effectively estimate the four parameters of an impinging signal, a brief compari-

son between them was also carried out and it was shown that given the same number of

dipoles, the planar structure has a better performance, although this is achieved at the

cost of increased physical size.
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Chapter 5

Direction Finding for Signals with

Mixed Signal Transmission Models

5.1 Introduction

Direction of arrival estimation has been widely studied in recent years [63, 64, 87, 88],

and many algorithms have been introduced to solve the DOA estimation problem, such

as MUSIC [26], estimation of signal parameters via rotational invariance techniques (ES-

PRIT) [27] and those based on sparsity or compressive sensing (CS) [89, 90]. In its

early time, most research on DOA estimation was based on omnidirectional antennas,

ignoring the polarisation information of impinging signals. To consider the polarisation

information, electromagnetic vector sensor arrays were proposed to jointly estimate the

DOA and polarisation information [16, 34, 43, 91]. The MUSIC, ESPRIT and CS-based

algorithms can be extended to solve the joint DOA and polarisation estimation problem

[61, 62, 67, 72, 92–95]. However, in their models, for each direction, it is assumed either

explicitly or implicitly that there is only one signal impinging upon the array; in other

words, each source only emits one single signal with specific direction and polarisation

and we refer to such system as a single signal transmission (SST) system.

To make full use of the degree of freedom provided by a vector sensor array, two

94



separate signals could be transmitted simultaneously from each source, and this is refer

to the dual signal transmission (DST) model [96]. For a DST signal, the two sub-signals

have the same DOA but different polarisations. One DST example is to use two orthogonal

linearly polarized signals with amplitude or phase modulation [97, 98]. However, there has

rarely been any research reported on estimating the DOAs of DST signals. Instinctively,

we could consider a DST signal as two independent SST signals and estimate their DOAs

one by one. However, as we will see later, a direct application of the traditional DOA

estimation methods such as the subspace-based ones may not work expected for DST

signals and a new approach is needed.

In this thesis, based on a uniform linear tripole sensor array, we first try to extend

the classic MUSIC algorithm straightforwardly to the 4-D case to find the parameters

of a mixture of impinging SST and DST signals. As analysed later, due to inherent

physical property of signal polarisation and array structure, we can only find the DOA

and polarisation parameters of SST signals and for the DST signals, it fails due to an

ambiguity problem with their estimation. The ambiguity problem associated with the

polarisation parameters of DST signals cannot be solved by any estimator due to limitation

of the degrees of freedom available in the polarisation domain. However, it is possible

to obtain the DOA information of DST signals. As a solution and also to reduce the

complexity of the 4-D search process of the extended MUSIC algorithm and also exploit

the additional information provided by DST signals, i.e. the two sub-signals of each DST

signal share the same DOA, a two-step algorithm is proposed. In this solution, the DOA

and polarisation information of SST signals are found first by a rank-reduction algorithm

(referred to as the SST estimator) and then the DOA information of the DST signals

is estimated by a specifically designed estimator (referred to as the DST estimator).

Furthermore, a general estimator (referred to as the MST estimator) is proposed which

can obtain the DOA parameters of the SST and DST signals in one single step, while the

polarisation information of SST signals can be obtained by a separate 2-D search if needed.

Moreover, the CRB (Cramér-Rao Bound) is derived to evaluate the performance of the
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proposed estimation algorithms. As demonstrated by simulation results, for SST signals,

the two proposed estimators (the two-step estimator and the general estimator) have a

similar performance, while the general estimator has a higher accuracy in estimating the

direction of DST signals.

5.2 Signal Models

In our mixed signal transmission model, there are M1 SST and M2 DST narrowband

polarized sources impinging on a uniform linear array with N tripole sensors from the far

field as shown in Fig. 5.1. Each SST source emits only one signal sm(t),m = 1, 2, · · · ,M1,

and each DST source emits two sub-signals sM1+2m−1(t) and sM1+2m(t),m = 1, 2, · · · ,M2,

with the same elevation-azimuth angle (θ, ϕ) but different polarisation (γ, η), where γ, η

denote the polarisation auxiliary angle and the polarisation phase difference, respectively.

For convenience, the parameters of the DST signal sM1+2m−1 and sM1+2m are denoted

by (θM1+2m−1, ϕM1+2m−1, γM1+2m−1, ηM1+2m−1) and (θM1+2m, ϕM1+2m, γM1+2m, ηM1+2m), re-

spectively. Note that 
θM1+2m−1 = θM1+2m

ϕM1+2m−1 = ϕM1+2m

(5.1)

In discrete form, the received SST signals of a single tripole sensor at the k-th time

instant is denoted by a 3× 1 vector xs[k] (noise-free)

xs[k] =

M1∑
m=1

pmsm[k] (5.2)

where pm is the SST angular-polarisation vector given by

pm =


cos θm cosϕm − sinϕm

cos θm sinϕm cosϕm

− sin θm 0


sin γmejηm

cos γm


= Ωm · gm (5.3)
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In the above equation, Ωm denotes the angular matrix associated with DOA parameters θ

and ϕ, and gm is the polarisation vector including polarisation parameters γ and η, given

by

Ωm =


cos θm cosϕm − sinϕm

cos θm sinϕm cosϕm

− sin θm 0

 (5.4)

gm =

sin γmejηm
cos γm

 (5.5)

The DST signals collected by a single tripole sensor can be considered as the sum of all

2M2 sub-signals, where each sub-signal can be viewed as a SST signal. Hence, the received

DST signals are in the form

xd[k] =

M1+2M2∑
m=M1

pmsm[k] (5.6)

Considering a pair of sub-signals as a single composite DST signal, we can use a 2 × 1

vector sm to denote the m-th DST signal corresponding to the pair of sub-signals sM1+2m−1

and sM1+2m, which is defined by

sm[k] =

sM1+2m−1[k]

sM1+2m[k]

 (5.7)

Then, (5.6) can be transformed to

xd[k] =

M2∑
m=1

[pM1+2m−1 pM1+2m−1]

sM1+2m−1[k]

sM1+2m[k]


=

M2∑
m=1

Pmsm[k] (5.8)

where Pm is the angular-polarisation matrix for DST signals, with

Pm = [pM1+2m−1 pM1+2m−1]

= [ΩM1+2m−1gM1+2m−1 ΩM1+2mgM1+2m] (5.9)

97



x

y

z

d

s

Figure 5.1: Geometry of a uniform linear tripole array, where a signal arrives from

elevation angle θ and azimuth angle ϕ.

Note that the two sub-signals of the same DST signal share the same angular matrix, and

here we use Ξm represent the common angular matrix of the m-th DST signal, i.e.

Ξm = ΩM1+2m−1 = ΩM1+2m (5.10)

We use Gm to denote the polarisation matrix of the m-th DST signal, defined as

Gm = [gM1+2m−1 gM1+2m] (5.11)

Then Pm is the product of Ξm and Gm,

Pm = ΞmGm (5.12)

The total received signal x[k] is the sum of SST and DST signals, which is given by

x[k] = xs[k] + xd[k]

=

M1∑
m=1

pmsm[k] +

M2∑
m=1

Pmsm[k] (5.13)

Now we consider the whole array system. The phase delay of source signals collected

by different tripole sensors is defined as the steering vector, am, given by

am = [1, e−jτ sin θm sinϕm , ..., e−j(N−1)τ sin θm sinϕm ]T (5.14)
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where τ is the phase shift between two adjacent sensors in the array

τ =
2πd

λ
(5.15)

with λ being the wavelength of the narrowband signals and d is the spacing between

adjacent tripole sensors.

Firstly, consider the each-sub signal as a separate SST signal. With the Gaussian

white noise n[k] of variance σ2
n, the array output snapshot at the k-th time instant y[k]

is given by [72]

y[k] =
M1+2M2∑

m=1

am ⊗ pm · sm[k] + n[k] (5.16)

Consider every pair of sub-signals as a DST signal, (5.16) will be transformed to

y[k] =

M1∑
m=1

am ⊗ pm · sm[k]

+

M2∑
m=1

aM1+2m−1 ⊗Pm · sm[k] + n[k] (5.17)

In the DST signal part, as each pair of sub-signals come from the same direction, the two

steering vectors are equal to each other, i.e.

aM1+2m−1 = aM1+2m (5.18)

Therefore, in (5.17), aM1+2m−1 can be replaced by aM1+2m, too.

To further simplify (5.17), qm is used to denote the direction-polarisation joint steering

vector for SST signals, defined as

qm = am ⊗ pm (5.19)

and Qm is the DST joint steering matrix, given by

Qm = aM1+2m−1 ⊗Pm

= aM1+2m−1 ⊗ [pM1+2m−1 pM1+2m−1]

= [qM1+2m−1 qM1+2m] (5.20)
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With the above notation, (5.17) is further changed to

y[k] =

M1∑
m=1

qm · sm[k] +
M2∑
m=1

Qm · sm[k] + n[k] (5.21)

5.3 Proposed Estimators

As mentioned in Introduction, the traditional subspace-based DOA estimation algorithms

could be used to find the DOA of both SST and DST signals. Therefore we will try to

extend the classic MUSIC algorithm to the 4-D case to show its limitations for a mixture

of impinging SST and DST signals. To reduce the complexity of the 4-D search process

and also exploit the additional information carried by DST signals, a two-step algorithm

is proposed, consisting of two estimators, one for SST signals and one for DST signals.

The one-step general MST estimator is proposed after that with a detailed proof for its

working.

Before introducing the proposed estimators in detail, we first provide some basic con-

cepts for subspace based DOA estimation method as the starting point. The covariance

matrix of the received signals is given by

R = E{y[k]y[k]H} (5.22)

which can be estimated by a finite number of snapshots as follows

R̂ ≈ 1

K

K∑
k=1

y[k]y[k]H (5.23)

where K is the number of snapshots.

For the general MST model, assume M1 + 2M2 < 3N . After eigendecomposition, the

covariance matrix can be expressed by

R =
3N∑
n=1

λnunu
H
n (5.24)

where λn is the n-th eigenvalue and un is the associated eigenvector. After sorting the

3N eigenvalues in descending order, the eigenvectors u1,u2, ...,uM1+2M2 form the signal
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subspace, while uM1+2M2+1,uM1+2M2+2, ...,u3N form the noise subspace. We use Us and

Un to denote these two subspaces

Us = [u1,u2, · · · ,uM1+2M2 ]

Un = [uM1+2M2+1,uM1+2M2+2, · · · ,u3N ] (5.25)

Clearly, both the SST joint steering vector qm and the DST joint steering matrix Qm are

orthogonal to the noise subspace Un.

5.3.1 Extension of the traditional MUSIC estimator to 4-D

A traditional DOA estimator considers all incoming signals as seperate SST signals, i.e.

the given M1 SST signals and M2 DST signals will be considered as M1 + 2M2 SST

signals in the algorithm. The joint steering vector qm is already introduced in (5.19).

After applying eigenvalue decomposition, the signal subspace and noise subspace can be

calculated by (5.24), (5.25). Since the joint steering vectors qm are orthogonal to the

noise subspace, then

UH
n qm = 0 (5.26)

By (5.3) and (5.19), it can be deduced that

qm = am ⊗ pm = am ⊗ (Ωmgm) (5.27)

Then (5.26) can be further transformed to

UH
n am ⊗ (Ωmgm) = 0 (5.28)

The DOA and polarisation parameters will be estimated by finding the peaks of the

following cost function through a 4-D search.

F (θ, ϕ, γ, η) =
1

qHmUnU
H
n qm

(5.29)

However, as shown in the following analysis, there is an ambiguity problem with both

DOA and polarisation of DST signals. As a result, their DOA and polarisation information
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can not be obtained by the subspace based method. In the following, we give a detailed

explanation to the ambiguity problem.

Firstly, we give the explanation to the ambiguity problem associated with the polar-

isation parameters. When the estimator is applied to a DST signal, the noise subspace

will be orthogonal to the joint steering vectors of both sub-signals. Using q1 and q2 to

denote the two different joint steering vectors, we have
UH

n q1 = 0

UH
n q2 = 0

(5.30)

This can be further derived that 
UH

n a1 ⊗ p1 = 0

UH
n a2 ⊗ p2 = 0

⇒


UH

n a1 ⊗ (Ω1g1) = 0

UH
n a2 ⊗ (Ω2g2) = 0

(5.31)

Note a1 is an N × 1 vectors, and a11, a12, ..., a1N denote the elements in a1. Then we have

a1 ⊗ (Ω1g1) = [a11Ω1g1, a12Ω1g1, ..., a1NΩ1g1]
T

= [a11Ω1, a12Ω1, ..., a1NΩ1]
Tg1

= (a1 ⊗Ω1)g1 (5.32)

Similar to a2, we have

a2 ⊗ (Ω2g2) = (a2 ⊗Ω2)g2 (5.33)

Then, (5.31) can be changed to 
UH

n (a1 ⊗Ω1)g1 = 0

UH
n (a2 ⊗Ω2)g2 = 0

(5.34)

Since the two sub-signals come from the same direction, we have

a1 ⊗Ω1 = a2 ⊗Ω2 (5.35)
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On the other hand, as the two sub-signals have different polarisation, the vector g1 is not

in parallel with g2. Hence, it must satisfy that

UH
n (a1 ⊗Ω1) = 0 (5.36)

Then, given a third arbitrary polarisation vector g3, different from g1 and g2, we have

UH
n (a1 ⊗Ω1) · g3 = 0 (5.37)

As a result, F (θ1, ϕ1, γ3, η3) will be recognised as a peak in the spectrum and wrongly

identified as the parameters of a non-existing source. This means the algorithm fails

when trying to estimate the polarisation of DST signals.

Next, we give an analysis to the ambiguity problem associated with the DOA of DST

signals.

Given q1 and q2 as the joint steering vectors of the two sub-signals. By (5.32), (5.33)

and (5.35), we have 
q1 = (a1 ⊗Ω1)g1

q2 = (a1 ⊗Ω1)g2

(5.38)

which can be further derived to 
q1 = (a1 ⊗ I3)Ω1g1

q2 = (a1 ⊗ I3)Ω1g2

(5.39)

where I3 is a 3×3 identity matrix. Consider a non-existing source s3 with its DOA angles

satisfying 
sin θ3 sinϕ3 = sin θ1 sinϕ1

sin θ3 ̸= sin θ1

sinϕ3 ̸= sinϕ1

(5.40)

Then, it can be obtained that

a1 = a3 (5.41)
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To ensure q3 is the linear combination of q1 and q2, which can be denoted by

q3 = k1q1 + k2q2 (5.42)

where k1, k2 are scalars (not all zero). Since the three steering vectors have the same

component a1 ⊗ I3, (5.42) can be transformed to

Ω3g3 = k1Ω1g1 + k2Ω1g2 (5.43)

The problem to find k1 and k2 is transformed into finding if there is at least one suitable

g3 satisfying (5.43), so that q3 will be the linear combination of q1 and q2. Consider

Ω1,Ω3 by their column vectors, it can be obtained

Ω1g1 = [Ω11 Ω12]

g1[1]
g1[2]


= g1[1]Ω11 + g1[2]Ω12 (5.44)

where Ω11,Ω12 are the first and second column vector of Ω1. g1[1], g1[2] are the first and

second elements of g1. Then the right side of (5.43) is the arbitrary linear combination of

Ω11 and Ω12, representing a 2-D planar space L1 supported by Ω11 and Ω12. Similarly,

the left side of (5.43) can be considered as a vector in the 2-D space L3 constructed by Ω31

and Ω32. Since sin θ3 ̸= sin θ1, sinϕ3 ̸= sinϕ1, it can be verified L1 is not in parallel with

L3. The only possibility is that both sides in (5.43) are in parallel with the intersection

vector of these 2-D spaces. So it must satisfy that

(Ω11 ×ΩT
12)Ω3g3 = 0 (5.45)

where ‘×’ means cross product of two vectors. By solving (5.45), the polarisation of s3 can

also be obtained. Notice that Ω11,Ω12,Ω31,Ω32 are real-valued vectors, the intersection

vector must be a real-valued vector as well. As mentioned above, Ω3g3 is in parallel with

the intersection vector. As the second element of Ω3g3 is real-valued, it can be deduced

that the first element must also be real-valued, which means η3 = 0◦. Then g3 can be

expressed as

g3 =

sin γ3
cos γ3

 (5.46)
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Due to the orthogonality in (5.45), we have

(Ω11 ×ΩT
12)Ω3 = k3

− cos γ3

sin γ3

 (5.47)

Using H to denote the left side of the above equation for convenience, then

H = (Ω11 ×ΩT
12)Ω3 (5.48)

The polarisation parameter γ3 of the ambiguity source can be found at

γ3 = arctan(−H[2]

H[1]
) (5.49)

Since the DOA and polarisation parameters (θ3, ϕ3, γ3, η3) can be obtained by above

equations, , whose joint steering vector is also orthogonal to the noise subspace, the

ambiguity problem appears. As an example, if a DST signal comes from (30◦, 80◦), one

ambiguous source can come from (40◦, 50◦) with polarisation parameters (19.2◦, 0◦). For

each DST signal, there will be an infinite number of ambiguous SST signal directions.

For the mixed signals scenario, although the 4-D search algorithm cannot identify the

DST signals, it works for SST signals. However, an obvious problem with the algorithm

is the significantly high computational complexity of the 4-D peak search process. In the

next subsection, we propose a two-step algorithm, which estimates the DOAs of SST and

DST signals separately with a much lower complexity.

5.3.2 The proposed two-step method

As can be seen from the name, there are two steps for the proposed method. The first

step is to apply a newly proposed SST estimator to obtain the DOA and polarisation of

SST signals, while the second step is to apply a specifically designed DST estimator to

find the DOA of DST signals.

In the first step, we only focus on the SST signals. By exploiting the orthogonality

between the joint steering vector qm and the noise subspace Un, we have

UH
n qm = 0 (5.50)
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In order to avoid the computationally expensive 4-D search, (5.50) can be transformed to

0 = UH
n [am ⊗ (Ωmgm)]

= UH
n [(am ⊗Ωm)gm]

= [UH
n bm]gm (5.51)

where bm is the kronecker product between am and Ωm,

bm = am ⊗Ωm (5.52)

For SST signals, there is only one polarisation vector gm from a specific direction (θm, ϕm)

satisfing [UH
n bm]gm = 0 and (5.51) indicates that the column rank of UH

n bm equals to

1. Notice that UH
n bm is a (3N − M1 − 2M2) × 2 matrix. By multiplying its Hermitian

transpose on the right side, the product matrix is a 2× 2 matrix with rank 1, which can

be denoted as

rank{bHmUnU
H
n bm} = 1 (5.53)

where the symbol rank{} is used to denote the rank of the target matrix. As the matrix

is not of full rank, we have

det{bHmUnU
H
n bm} = 0 (5.54)

where det{} represents the determinant of the matrix. By taking the inverse of (5.54), a

DOA estimator for SST signals is given by

F1(θm, ϕm) =
1

det{bHmUnU
H
n bm}

(5.55)

where the peaks of the above function give the desired DOA angles of SST signals.

With the DOA information obtained, the polarisation parameters can then be estimated

through another 2-D search using (5.51).

However, as analysed earlier in Section 5.3.1 and further in the following, the above

SST estimator does not work when source signals are DST ones.
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Firstly, the kronecker product bm can be extended to DST signals, for the m-th DST

signal, we have

bm = aM1+2m−1 ⊗Ξm (5.56)

According to (5.36), for the DST signal direction

UH
n (aM1+2m−1 ⊗ΩM1+2m−1) = 0

⇒ UH
n (aM1+2m−1 ⊗ I3)Ξm = 0 (5.57)

Ξm is a 3× 2 matrix and can be divided into two column vectors as

Ξm = [Ξm1 Ξm2] (5.58)

(5.57) indicates that all the row vectors in UH
n (aM1+2m−1 ⊗ I3) are orthogonal to the two

column vectors Ξm1 and Ξm2 simultaneously. As Ξm1 and Ξm2 are 3×1 vectors and they

are not in parallel, all the row vectors in UH
n (aM1+2m−1⊗ I3) should be parallel with each

other, which means the row rank of UH
n (aM1+2m−1⊗I3) equals 1. Given the pair of angles

(θe, ϕe) where there is no actually signal coming but it satisfies sin θe sinϕe = sin θm sinϕm,

it can be obtained that the direction has the same angular steering vector as the DST

signal, i.e. ae = aM1+2m−1. It can be further deduced that

det{bHe UnU
H
n be} = 0 (5.59)

As a result, this new direction will also be recognised as a peak in the spectrum even if

there is no signal coming from that direction. It’s easy to verify that there are infinite

number of directions satisfying sin θe sinϕe = sin θn sinϕn and these directions provide

ambiguity in the estimation results. To solve the ambiguity problem of the SST estimator,

in the following we propose a new estimator to deal with the DST signals, which is the

second step of the proposed two-step method.

As mentioned, a DST signal sm includes two sub-signals sM1+2m−1 and sM1+2m with

different polarisations, which means gM1+2m−1 and gM1+2m are not in parallel with each

other. Since gM1+2m−1 and gM1+2m are both 2× 1 column vectors and each row vector in
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UH
n bM1+2m−1 is of 1× 2 orthogonal to gM1+2m−1 and gM1+2m, it can be deduced that all

the row vectors must be zero-vectors and UH
n bm is a zero-matrix as indicated by (5.57).

Comparing to SST signals, the rank of bmUnU
H
n bm for DST signals equals to 0 instead

of 1. Hence, the following cost function can be used to estimate directions of DST signals

F2(θn, ϕn) =
1

||bHmUnU
H
n bm||2

(5.60)

where ||x||2 denotes the l2-norm of vector x.

This estimator solves the DOA estimation problem of DST signals. However, when

the DST estimator is applied to a mixture of SST and DST signals, the estimator (5.60)

only selects the directions with

rank{bHmUnU
H
n bm} = 0 (5.61)

However, for SST signals, (5.53) indicates that the rank of bHmUnU
H
n bm equals 1, which

results in the loss of SST directions in the DST estimator.

The following is a summary to the proposed two-step method:

• Calculate the noise subspace Un by applying eigenvalue decomposition to the esti-

mated covariance matrix R̂.

• Apply the SST estimator (5.55). Based on the DOA results obtained from the SST

estimator, find the DOAs of SST signals by 2-D search.

• Find the polarisation parameters of SST signals using (5.51) by 2-D search.

• Apply (5.60) to estimate the DOAs of DST signals.

5.3.3 The proposed general MST estimator

Instead of employing separate estimators for SST and DST signals, in this section we

propose a single general estimator for MST signals, which has an better performance in

terms of estimation accuracy.
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Before introducing the general estimator, we first investigate the rank and determinant

of the two matrices (am ⊗ I3)
HUnU

H
n (am ⊗ I3) and bHmUnU

H
n bm. In the following, for

convenience we drop the subscript m and denote the two matrices as

A = (a⊗ I3)
HUnU

H
n (a⊗ I3)

B = bHUnU
H
n b (5.62)

In the scenario with a mixture of SST and DST signals, we can divide the direction range

into four regions: the SST signal direction region, the DST signal direction region, the

DST ambiguity direction region and the remaining uninterested direction region. Table

5.1 gives a summary of the ranks of A and B and the their associated direction regions.

Table 5.1: rank A and B for different direction regions

Rank(A) Rank(B)

SST Signal 2 1

DST Signal 1 0

DST Ambiguity 1 1

Uninterested 3 2

As discussed before, the SST estimator selects the direction with the condition rank{B} <

2 and the DST estimator selects the direction with rank{B} = 0. From Table 5.1, we can

see that the SST estimator can find the SST signal directions, DST signal directions and

the DST ambiguity directions while the DST estimator only estimates the DST signal

directions. As a solution to the problem, we propose a general MST estimator which can

work in all cases of signals and its cost function is given by

F3(θ, ϕ) =

3∑
i=1

3∑
j=1

det{Ai,j}

det{B}
(5.63)

where Ai,j is the cofactor matrix of matrix A by removing its i−th row and j−th column.

The estimator is able to estimate DOA information for all signals without determining its
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type, i.e. SST or DST. After obtaining all the DOAs, we can then use (5.51) to find the

polarisation parameters of SST signals through 2-D search if needed. For DST signals,

we can distinguish them from the SST ones by checking whether there is polarisation

ambiguity problem or not when doing the search using (5.51).

The reason why the above cost function works can be explained roughly as follows.

First, note that matrix A is a 3 × 3 matrix and its cofactor matrix is of 2 × 2. For

the SST signal direction region, the rank of matrix A is 2 and then one of its cofactor

matrices must have a rank of 2 so that its determinant is nonzero and the summation in

the numerator is nonzero, while matrix B has a rank of 1 and its determinant is zero; as

a result, the cost function at the directions of SST signals will have a peak (an infinitely

large value in theory). For the DST direction region, the rank of matrix A is 1 and then

one of its cofactor matrices must have a rank of 1 and non-zero-valued, so that although

its determinant is zero and the summation in the numerator is also zero, it approaches

zero at those directions at the first order, while the 2 × 2 matrix B has a rank of 0 and

its determinant is zero and approaches zero at those directions at the second order (a

2 × 2 zero matrix); as a result, the cost function at the directions of DST signals will

have a peak too (an infinitely large value in theory). For the DST ambiguity region, the

rank of matrix A is 1 and similar to the case of DST direction region, the summation in

the numerator of (5.63) is zero, but it approaches zero at those ambiguity directions at

the first order, while the 2× 2 matrix B has a rank of 1 and its determinant is zero and

approaches zero at those directions at the first order (a 2×2 nonzero matrix); as a result,

the cost function at the DST ambiguity region will be a nonzero finite value, but not a

peak representing an infinitely large value. For the uninterested region, both matrices A

and B have full rank and neither of the numerator and denominator of the cost function

is zero-valued; as a result, the cost function at the uninterested direction region will be a

nonzero finite value, but not a peak representing an infinitely large value.

A detailed proof can be found in the Appendix.

A summary for the unified general MST estimator is give below:
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• Calculate the noise space Un by applying eigenvalue decomposition to the estimated

covariance matrix R̂.

• Apply the MST estimator (5.55) to obtain the DOA of all signals by 2-D search.

• Find the polarisation parameters of SST signals by (5.51).

5.4 Cramér-Rao Bound for MST Signals

In this section, we derive the CRB for DOA estimation of a mixture of one SST signal

and one DST signal to evaluate the performance of the proposed algorithms. A basic

assumption is that all source signals are unconditional [85], which means the source signals

are random in all realizations. The SST signal and the two DST sub-signals have the same

power σ2
s .

Here we use the symbol α to denote the parameters to be estimated, which can be

denoted as

α = (θ1, θ2, ϕ1, ϕ2) (5.64)

where (θ1, ϕ1) is the DOA parameters for the SST signal and (θ2, ϕ2) is the parameters for

the DST signal. Note that in the proposed estimators, the DOA parameters are obtained

separately from the polarisation parameters. This means in the DOA estimation process,

the polarisation parameters can be considered as kind of irrelevant parameters. From

(5.16), the received signals can be changed to

y[k] =

M1+2M2∑
m=1

am ⊗Ωmgm · sm[k] + n[k]

= (

M1+2M2∑
m=1

bm · sm[k] + n[k]gHm)gm (5.65)

The equation holds because

gHmgm = 1 (5.66)
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Define a matrix of the received signals Z[k], where

Z[k] =
M1+2M2∑

m=1

bm · sm[k] + n[k]gHm (5.67)

In the proposed two methods, we estimate DOA parameters (θ, ϕ) by Z[k] instead of y[k].

For each snapshot, the probability density function is given by [73]

pz|(α) =
1

det[πVZ(α)]
e{−[Z−m(α)]HV−1

Z (α)[Z−m(α)]} (5.68)

where VZ(α) is variance of Z and m(α) is the mean value.

The joint probability density function with K snapshots can be denoted as

pZ1,Z2,...,ZK
|(α) =

K∏
k=1

1

det[πVZ(α)]

· e{−[Zk−m(α)]HV−1
Z (α)[Zk−m(α)]} (5.69)

which leads to the following log-likelihood function

Lx(α) = ln pZ1,Z2,...,ZK
|(α)

=−K ln det[VZ(α)]−KN ln π

−
K∑
k=1

[Zk −m(α)]HV−1
Z (α)[Zk −m(α)] (5.70)

The elements in the fisher information matrix (FIM) can be found as

Fαi,αj
=E[

∂LZ(α)

∂αi

· ∂LZ(α)

∂αj

]

=− E[
∂2LZ(α)

∂αi∂αj

] (5.71)

where i, j are integers and i, j ∈ [1, 8].

According to (8.32) in [73], (5.71) can be simplified to

Fαi,αj
=tr{R−1

Z (α)
∂RZ(α)

αi

R−1
Z (α)

∂RZ(α)

αj

}

+ 2Re{∂m
H(α)

αi

R−1
Z (α)

∂m(α)

αj

} (5.72)
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Since the source signals are unconditional, we have

m(α) = 0 (5.73)

and

VZ =σ2
sb1b

H
1 + σ2

sb2b
H
2 + σ2

sb3b
H
3 + σ2

nI

=σ2
sb1b

H
1 + 2σ2

sb2b
H
2 + σ2

nI (5.74)

The FIM elements are transformed to

Fαi,αj
= tr{V−1

Z (α)
∂VZ(α)

αi

V−1
Z (α)

∂VZ(α)

αj

} (5.75)

The fisher information matrix is a 4 × 4 matrix. The CRB for DOA information can be

obtained as

CRB(θ1) = [F−1(α)]1,1

CRB(θ2) = [F−1(α)]2,2

CRB(ϕ1) = [F−1(α)]3,3

CRB(ϕ2) = [F−1(α)]4,4 (5.76)

The CRB for only SST signals and only DST signals can be obtained by simply

removing the DST or SST signal part in (5.67), and the fisher information matrix will be

reduced to a 2× 2 matrix.

5.5 Simulation Results

In this section, simulations are performed based on a scenario with one SST signal and

one DST signal impinging on the array from the far field.

5.5.1 DOA spectrum

Consider a uniform linear tripole sensor array with M = 5 sensors and the inter-element

distance d is set to half wavelength λ/2. The SST signal and each sub-signal of a
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Figure 5.2: DOA spectrum of SST estimator.

DST signal have the same power σ2
s with SNR = 10 dB. The SST signal comes from

(θ1, ϕ1, γ1, η1) = (20◦, 20◦, 50◦, 10◦) and DST signal comes from (θ2, ϕ2, γ2, η2, γ3, η3) =

(30◦, 80◦, 20◦, 50◦, 70◦,−40◦). The total number of snapshots is set to 1000 and the search-

ing stepsize is set to 0.5◦. The spatial spectrum results obtained by applying our proposed

two-step method and the one-step general method are shown in Fig. 5.2, Fig. 5.3 and

Fig. 5.4.

Fig. 5.2 and Fig. 5.3 are for the results by two-step method. IThe SST estimator result

is shown in Fig. 5.2, where the peak corresponding to the SST signal appears around the

aimed direction (θ, ϕ) = (20◦, 20◦); however, the DST signal direction is shown among

a band of peak points instead of single peak as discussed in the former section. On the

other hand, the second step focuses on locating DST signals and as shown in Fig.5.3, only

peak appears around the aimed DST signal direction (θ, ϕ) = (30◦, 80◦) while the SST

signal direction is lost in the spectrum.

For the one-step general estimator or the so-called MST estimator, the spectrum have

two peaks at around (θ, ϕ) = (20◦, 20◦) and (30◦, 80◦), indicating the directions of the

SST signal and DST signals have been identified successfully.
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Figure 5.3: DOA spectrum of DST estimator.
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Figure 5.4: DOA spectrum of MST estimator.
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Figure 5.5: RMSE of elevation angle θ versus SNR, SST signal only.

5.5.2 RMSE result

In this part, we compare the estimation accuracy for the two proposed solutions. Three

scenarios are considered: only one SST signal is present; only one DST signal is present;

a mixture of one SST signal and one DST signal. In these scenarios, the directions of

SST and DST signals are the same as in Section V-A, and the power of SST signal is

equal to that of one DST sub-signal. We calculate the RMSE (root mean square error)

of the azimuth-elevation angle θ, ϕ by 200 Monte-Carlo trials. The number of snapshots

is K = 100 and the searching step size 0.05◦. The RMSE of θ, ϕ is defined as follows,

RMSEθm =

√√√√ 1

200

200∑
t=1

(θt − θm)2 (5.77)

and

RMSEϕm =

√√√√ 1

200

200∑
t=1

(ϕt − ϕm)2 (5.78)

where ϕt is the estimated value in the t− th trial and θm, ϕm is the actual value.

In the first scenario, only one SST signal impinges on the array. As shown in Fig. 5.5

and Fig. 5.6, the two methods have almost the same estimating accuracy and the RMSE

of both estimator decrease gradually with the increasing SNR.
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Figure 5.6: RMSE of azimuth angle ϕ versus SNR, SST signal only.

In the second scenario with DST signals, the results are presented in Fig. 5.7 and Fig.

5.8. Compared to the SST signal case, the DST case has lower average estimation errors,

and the general one-step method has a higher accuracy than the two-step method.

In the last scenario, it has one SST signal s1 from (20◦, 20◦) and one DST signal s2

from (30◦, 80◦), and the RMSE results are shown in Fig. 5.9 and Fig. 5.10. Compared to

Fig. 5.5 and Fig. 5.6, the estimation error increases a little due to the additional DST

signal. Fig. 5.11 and Fig. 5.12 also indicates the same difference versus Fig. 5.7 and

Fig. 5.8. In this scenario, the two proposed methods still have a very similar performance

in estimating the SST signal direction. However, the general one-step method has lower

RMSE than the two-step method with the DST signals.

5.6 Summary

In this Chapter, the DOA estimation problem for a mixture of SST and DST signals

has been studied based on a tripole linear array. Two subspace based DOA estimation

methods were proposed and the CRB was derived to evaluate their performance. The

two-step method estimates the SST and DST signals’ directions separately with two

corresponding estimators, one for the SST signals and one for the DST signals. The
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Figure 5.7: RMSE of elevation angle θ versus SNR, DST signal only.
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Figure 5.8: RMSE of azimuth angle ϕ versus SNR, DST signal only.
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Figure 5.9: RMSE for SST signal elevation angle θ1 versus SNR, mixed signals.
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Figure 5.10: RMSE of SST azimuth angle ϕ1 versus SNR, mixed signals.
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Figure 5.11: RMSE of DST elevation angle θ2 versus SNR, mixed signals.
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Figure 5.12: RMSE of DST azimuth angle ϕ2 versus SNR, mixed signals.
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second method is a general one-step method which estimates the signal directions together

without distinguishing the different types of signals. Simulation results showed that the

proposed two methods have a very similar performance for SST signals, but the one-step

method has some advantages in dealing with DST signals.
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Chapter 6

Conclusions and Future Plan

6.1 Conclusions

In this thesis, we first gave a review of some basic concepts and related techniques in

array signal processing in Chapter 2 and then focused on three main contributions in the

following three chapters, respectively.

In Chapter 3, a fully quaternion-valued adaptive beamformer was first proposed. The

existing quaternion-capon beamformer only changes the steering vector into the quater-

nion field with the polarisation parameters. A problem is that the signal itself is still

complex-valued so that the beamformer is not a full quaternion model in maths, lead-

ing to unnecessarily high computational complexity. To solve the problem, two separate

signals s1 and s2 from the same direction but different polarisations are considered as a

quaternion signal q = s1 + is2. Based on this, a full quaternion capon beamformer is pro-

posed, with the received signals constrained to the form of s1+is2. The main contribution

is to make full use of the storage, avoiding wasting the i, k parts as in quaternion beam-

former. Analysis on computation complexity shows the full quaternion beamformer has

lower complexity than the existing quaternion beamformer. Moreover, the full quaternion

Capon beamformer was further developed into a robust one to tackle various array model

errors.
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As studied in Chapter 4, for the joint DOA and polarisation estimation problem,

the ambiguity phenomenon cannot be avoided when linear crossed-dipole sensor array is

employed and a proof was given to explain why this ambiguity occurs in this case. To

solve the problem, a tripole senor array can be used as supported by detailed analysis.

With tripole sensor array, the joint estimation problem can be solved by a 4-D MUSIC

algorithm. Unfortunately, the 4-D peak search has an extremely high computational

complexity. In order to reduce the complexity and avoid 4-D search, the complexity

reduction MUSIC algorithm was proposed, where the 4-D search is replaced by two 2-D

searches. However, simulation shows that complexity reduction is achieved at the cost of

estimation accuracy, and the 4-D search algorithm has a higher accuracy.

In Chapter 5, the DOA estimation problem for a mixture of SST and DST signals

was studied for the first time. An analysis was first given to show that for SST signals,

both DOA and polarisation parameters can be estimated. However, for DST signals, only

their DOA can be estimated while the polarisation parameters cannot due to inherent

property of the DST signal model. To estimate the DOAs of both SST and DST signals,

two solutions were proposed. One is a two-step method to separately estimate the DOAs

of SST and DST signals. The other is a unified one-step method to estimate the DOAs of

all signals together. Simulations were provided to compare the performance between the

two solutions versus CRB. As shown, the two methods had a similar performance for SST

signals while for DST signals, the one-step method outperformed the two-step method.

6.2 Future Work

In our past research, most estimation work is based on the long-vector maths model. As

introduced in literature review and the quaternion beamformer chapter, the received signal

model can also be constructed by a quaternion model. In the future, the quaternion model

can be applied to the DOA estimation work. The difference between these two models can

be analyzed and it will be a nice work to find out the reason which leads to the difference.
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Another idea for the future work is to investigate a rotating sensor array. For example,

in a tripole sensor array, each sensor rotates with a constant angle compared to the last

sensor. When applied for DOA estimation, by analysing the CRB between the new sensor

array and the traditional one, it can be obtained which structure has a higher estimation

accuracy.

After that, another interesting topic is the DOA estimation and the related analysis

of dual-transmission signals. We have proposed a MUSIC like algorithm in the paper

to solve the problem, however, our algorithm is based on an assumption that the two

sub-signals are uncorrelated. If the signals are correlated, the MUSIC like algorithm

may fail to estimate the DOA. To solve the problem, it’s reasonable to consider apply-

ing other algorithms, for example, the compressive sensing (CS) algorithm for correlated

DOA estimation. However, since our estimation is based on polarised signals, the DOA

and polarisation parameters appear in 4-D vectors. The existing CS algorithm only con-

siders 1-D direction parameter. If 4-D parameters are applied in the algorithm, it’s very

important to find a way to reduce size of the searching matrix.

The DOA estimation problem for DST signals is still not widely studied. There may

exist many problems when apply DST signals directly in current communication system.

Our current research has found out the ambiguity problem due to the same DOA of the

two sub-signals. It’s believed that there are still many unknown problems in this area

and it’s worth to taking efforts to study in this field. I hope one day, DST signals could

be widely used in our communication system, which may be a great revolution for our

modern life.
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Appendix

Proof of the MST Estimator

The appendix is to explain how MST estimator works in sec 5.3.3. For convenience, in

the next we use x to denote sin θ and y to denote sinϕ. Then, the steering vector a can

be expressed by

a = [1, e−jτxy, ..., e−j(N−1)τxy]T

= [1, Cxy, C2xy, ..., C(N−1)xy] (1)

where C = e−jτ is a constant. The angular matrix Ω becomes

Ω =


√
1− x2 ·

√
1− y2 −y

√
1− x2 · y

√
1− y2

−x 0

 (2)

Adding an infinitely small value ∆x → 0 and ∆y → 0 to x and y, respectively, the new

steering vector â becomes

â = [1, C2(xy+x∆y+y∆x+∆x∆y),

..., C(N−1)(xy+x∆y+y∆x+∆x∆y)]T (3)

We use ā to denote the difference between the two vectors

ā = â− a (4)

Its n-th element ān, n ∈ [1, N ] is expressed as

ān = C(n−1)xy[C(n−1)(x∆y+y∆x+∆x∆y) − 1] (5)
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Similarly, the difference between the original and the new angular matrix Ω̄ can be also

calculated by

Ω̄ = Ω̂−Ω (6)

where

Ω̄11 =
√

1− (x+∆x)2 ·
√

1− (y +∆y)2

−
√
1− x2 ·

√
1− y2

Ω̄12 = −∆y

Ω̄21 =
√

1− (x+∆x)2 · (y +∆y)−
√
1− x2 · y

Ω̄22 =
√

1− (y +∆y)2 −
√
1− y2

Ω̄31 = −∆x

Ω̄31 = 0 (7)

The differences ā and Ω̄ lead to changes of matrices A and B. The changed matrices

are

Â = [(a+ ā)⊗ I3]
HUnU

H
n [(a+ ā)⊗ I3]

B̂ = Ω̂HÂΩ̂

= (Ω+ Ω̄)HÂ(Ω+ Ω̄) (8)

Replacing A, B by Â, B̂ in (5.63), we have

F3(x+∆x, y +∆y) =

3∑
i=1

3∑
j=1

det{Âi,j}

det{B̂}

=

3∑
i=1

3∑
j=1

(det{Ai,j}+ vi,j)

det{B}+ w
(9)

where vi,j and w are the determinant differences between the original and the changed

matrices. When ∆x,∆y → 0, vi,j and w also approach 0.

Now we consider the four cases listed in Table 5.1.
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Case 1: For SST signal directions, rank{A} = 2 and rank{B} = 1. The sum of

the determinant for each cofactor
3∑

i=1

3∑
j=1

det{Ai,j} must be non-zero. As vi,j → 0, the

numerator of the estimator approaches a non-zero constant. Since rank{B} = 1, we have

det{B} = 0. As w → 0, the denominator of the estimator approaches 0. Hence for SST

signal directions, the estimator will have an infinitely large value and the directions will

be detected by the estimator as peaks.

Case 2: Expanding equation (8), we have

Â = (a⊗ I3)
HTn(a⊗ I3) + (ā⊗ I3)

HTn(a⊗ I3)

+ (a⊗ I3)
HTn(ā⊗ I3) + (ā⊗ I3)

HTn(ā⊗ I3) (10)

where

Tn = UnU
H
n (11)

For DST signals, the direction parameters are already known. In (10), a and T are vector

and matrix with constant value elements. We have the difference matrix Ā as

Ā = (ā⊗ I3)
HTn(a⊗ I3) + (a⊗ I3)

HTn(ā⊗ I3)

+ (ā⊗ I3)
HTn(ā⊗ I3) (12)

Define D = Cy∆x+x∆y+∆x∆y. As ∆x,∆y → 0, we have D → 1. By (5), the elements

Āij, i, j ∈ [1, 3] can be expressed in the following form (ignoring the constant factor

determined by i, j)

Āij ↔
N−1∑
m=1

N−1∑
n=1

(Dm − 1)H(Dn − 1)

+
N−1∑
m=1

(Dm − 1)H +
N−1∑
n=1

(Dn − 1)

= O(E) +O(E2) (13)

The symbol ‘O’ denotes the infinitesimal order. Ignoring the high order infinitesimal, we

have

Āij = O(E) (14)
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Assume the original matrix A is in the form

A =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 (15)

Here we take the first cofactor of A as an example, i.e.,

A1,1 =

A22 A23

A32 A33

 (16)

By adding the cofactor of difference matrix Ā1,1, we have

Â1,1 =

A22 + Ā22 A23 + Ā23

A32 + Ā32 A33 + Ā33

 (17)

The determinant is given by

det{Â1,1} = Ā22Ā33 − Ā23Ā32 + A22Ā33

+A33Ā22 − A23Ā32 − A32Ā23

= O(E) (18)

Similar with other cofactor matrices, the infinitesimal order of the cofactor matrix

det{Âi,j} will be

det{Âi,j} = O(E) (19)

From (8), the relationship between the practical Â and B̂ can be denoted as

B̂ = Ω̂HÂΩ̂

= ΩHAΩ+ Ω̄HAΩ+ΩHAΩ̄+ Ω̄HAΩ̄

+ ΩHĀΩ+ Ω̄HĀΩ+ΩHĀΩ̄+ Ω̄HĀΩ̄

= B+ B̄ (20)

where

B̄ = Ω̄HAΩ+ΩHAΩ̄+ Ω̄HAΩ̄+ΩHĀΩ

+ Ω̄HĀΩ+ΩHĀΩ̄+ Ω̄HĀΩ̄ (21)
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It can be obtained that the elements in B̄ consist of the linear combination of infinitesimals

Ω̄H
ij , Ω̄ij, Ω̄

H
ij Ω̄ij, Āij Ω̄H

ij Āij, ĀijΩ̄ij and Ω̄H
ij ĀijΩ̄ij. As discussed above, Āij = O(E). It

can be verified that, for all infinitesimals Ω̄ij, we have

Āij

Ω̄ij

→ ∞ (22)

which means Ω̄ij has higher infinitesimal order than O(E). Keeping the lowest order of

infinitesimal in B̄, the elements has the order

B̄ij = O(E) (23)

As DST signals have rank{B} = 0, then B is in the form

B =

0 0

0 0

 (24)

The determinant of B̂ is denoted by

det{B̂} = B̄11B̄22 − B̄12B̄21 (25)

The infinitesimal order is

det{B̂} = O(E2) (26)

The estimator is calculated as

F3(x+∆x, y +∆y) =

3∑
i=1

3∑
j=1

det{Âi,j}

det{B̂}

=
O(E)

O(E2)
→ ∞ (27)

The infinity value indicates the peaks in the DOA spectrum and the estimator could also

find the DST signal directions successfully.

Case 3: For DST ambiguity directions, rank{A} = 1 and rank{B} = 1. The numer-

ator of the estimator is the same with the DST signal direction case, which is denoted

by

3∑
i=1

3∑
j=1

det{Âi,j} = O(E) (28)
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However, the rank of theoretical matrix B equals 1 instead of 0, which means B is not a

zero matrix and can’t be ignored. Then we have

B̂ = B+ B̄

=

B11 B12

B21 B22

+

B̄11 B̄12

B̄21 B̄22


=

B̄11 +B11 B̄12 +B12

B̄21 +B21 B̄22 +B22

 (29)

where B11, B12, B21, B22 are constants which cannot equal to zero simultaneously. The

denominator of the estimator can be calculated as

det{B̂} = B̄11B̄22 − B̄12B̄21 +B22B̄11

+B11B̄22 −B21B̄12 −B12B̄21

= O(E) (30)

In this case, the estimator is in the form of

F3(x+∆x, y +∆y) =
O(E)

O(E)
(31)

The final results will approach an undetermined constants instead of infinity. In the DOA

spectrum, the DST ambiguity directions will not appear as a peak.

Case 4: For the uninterested directions, rank{A} = 3 and rank{B} = 2, which means

these two matrices are full-rank matrices. The numerator of the estimator
3∑

i=1

3∑
j=1

det{Âi,j}

will be a non-zero constant, and so is the denominator det{B̂}. The results of the estima-

tor are finite values and these directions will not appear as peaks in the DOA spectrum.
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