
Deep Complex-Valued Neural
Networks for Natural Language

Processing

Nils Mönning

Doctor of Philosophy

University of York

Computer Science

March 2019

To my parents, Anke and Ludger, my brother Sascha and my love Sarah

Abstract

This thesis presents novel work on complex-valued neural networks applied to Natural Language

Processing. We experimentally show the validity of complex-valued neural networks for se-

mantic and phonetic processing of natural languages. We highlight important issues that complex

networks have in comparison to their real-valued counter parts. In particular this work considers

the tasks of Language Modelling, Semantic Similarity Judgement, Basic Question Answering,

Phonetic Transcription and Automatic Speech Recognition.

Our contributions are the translation of neural network building blocks to the complex plane

and their experimental application in a variety of natural language tasks.

We present criteria to compare real-valued and complex-valued neural networks for classific-

ation tasks. We present various complex embedding methods for words. These produce position

and frequency-based word representations trainable using language models and usable in down-

stream tasks. We also compare a real-valued and complex-valued memory network used for

Question Answering. We derive a quantum-inspired framework for languages. Additionally, we

demonstrate quantum-inspired Semantic Spaces. A general framework of complex-valued atten-

tion is presented in this thesis. It is used to derive spectral self-attention with a novel activation

function. We also introduce two pooling functions to reduce dimensionality of frequency-based

representations. A Spectral Transformer architecture facilitates the spectral self-attention for

Speech Recognition. This work also includes a novel dataset for transcription of children’s utter-

ances consisting of seven sub tasks each with fixed data splits and baselines for better comparison

and reproducibility.

Throughout this thesis we find that complex-valued neural networks are suitable for natural

language tasks, but require additional care in their design and training.

3

Contents

List of Tables . 9
List of Figures . 11
Acknowledgements . 12
Declaration . 13

1 Introduction 14
1.1 Context . 15
1.2 Research Questions . 16
1.3 Contributions . 18
1.4 Chapter Overview . 19

2 Theoretical Background 21
2.1 Complex Numbers . 22
2.2 Transformations and Embeddings . 24
2.3 Multi-Layer Perceptrons . 25
2.4 Recurrence . 26
2.5 Convolutions . 28
2.6 Spectral Neural Networks . 29
2.7 Complex-Valued Attention . 30
2.8 Activation Functions . 33
2.9 Loss Function . 35
2.10 Training and Optimisation . 36

3 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification 39
3.1 Introduction . 40
3.2 Related Literature . 40
3.3 Capacity . 41
3.4 Experiments . 43
3.5 Results . 46
3.6 Synthetic Tasks . 57
3.7 Discussion . 59
3.8 Conclusion . 65

4

CONTENTS 5

4 Complex-Valued Word Representations 68
4.1 Introduction . 69
4.2 Related Literature . 69
4.3 Language Modelling . 71

4.3.1 Positional Slot Models . 73
4.3.2 Phase Language Model . 73
4.3.3 Frequency Language Models . 74
4.3.4 Experiments . 76

4.4 Memory Networks . 78
4.4.1 Experiments . 79

4.5 Quantum-Inspired Models of Language . 87
4.5.1 Quantum States . 88
4.5.2 Interference . 90
4.5.3 State Spaces . 95
4.5.4 Evolution . 96
4.5.5 Composition . 96
4.5.6 Measurements . 97

4.5.6.1 Projective Measurement . 98
4.5.6.2 Positive Operator-Valued Measurements 100

4.5.7 Quantum-Inspired Semantic Framework 102
4.5.8 Semantic Spaces . 105

4.5.8.1 Simple Semantic Space . 105
4.5.8.2 Simple Semantic Quantum Space 108
4.5.8.3 Simple Topic Quantum Space 109

4.5.9 Experiments . 109
4.6 Discussion . 113

4.6.1 Neural Language Modelling . 113
4.6.2 Memory Networks . 114
4.6.3 Quantum-Inspired Models of Language 115

4.7 Conclusion . 117

5 Speech Recognition with Complex-Valued Neural Networks 119
5.1 Introduction . 119
5.2 Related Literature . 120

5.2.1 Speech Processing . 120
5.3 Spectral Self-Attention . 126
5.4 Spectral Transformers . 127
5.5 Babble . 129

5.5.1 Data Collection . 132
5.5.2 International Phonetic Alphabet . 132
5.5.3 Tasks . 133
5.5.4 Training, Validation and Test . 135
5.5.5 Baselines . 135

5.6 Conclusion . 136

6 CONTENTS

6 Conclusion 138
6.1 Findings . 138
6.2 Future Work . 140

6.2.1 Improving Complex-valued Neural Networks 140
6.2.2 Applications . 141

Appendices 143
A Babble . 143

A.1 Symbol Overview . 143
A.2 Structure . 147
A.3 Scripts and Usage . 149

Bibliography 151

List of Tables

3.1 Test accuracy of a multi-layer perceptron consisting of k + 2 layers each with 64
neurons (alternating 64 and 32 neurons in the complex MLP) and an output layer
with c = 10 neurons on MNIST digit classification task (Experiment 1). Selected
best from 10 runs. Each run was trained for 100 epochs. 47

3.2 Test accuracy of a multi-layer perceptron consisting of k + 2 layers each with 64
neurons (alternating 64 and 32 neurons in the complex MLP) and an output layer
with c = 46 neurons on Reuters topic classification (Experiment 1). Selected best
from 10 runs. Each run was trained for 100 epochs. 48

3.3 Test accuracy of a multi-layer perceptron consisting of k + 2 layers each with
128 neurons (alternating 128 and 64 neurons in the complex MLP) and an output
layer with c = 10 neurons on CIFAR-10 image classification task (Experiment
1). Selected best from 10 runs. Each run was trained for 100 epochs. 49

3.4 Test accuracy of a multi-layer perceptron consisting of k + 2 layers each with
128 neurons (alternating 128 and 64 neurons in the complex MLP) and an output
layer with c = 100 neurons on CIFAR-100 image classification task (Experiment
1). Selected best from 10 runs. Each run was trained for 100 epochs. 50

3.5 Test accuracy of a multi-layer perceptron consisting of k + 2 dense layers with an
overall budget of 500, 000 real-valued parameters on MNIST digit classification
(Experiment 2). The last layer consists of c = 10 neurons. Selected best from 10
runs. Each run was trained for 100 epochs. 51

3.6 Test accuracy of a multi-layer perceptron consisting of k + 2 dense layers with an
overall budget of 500, 000 real-valued parameters on Reuters topic classification
(Experiment 2). The last layer consists of c = 46 neurons. Selected best from 10
runs. Each run was trained for 100 epochs. 52

3.7 Test accuracy of a multi-layer perceptron consisting of k + 2 dense layers with
an overall budget of 500, 000 real-valued parameters on CIFAR-10 image classi-
fication (Experiment 2). The last layer consists of c = 10 neurons. Selected best
from 10 runs. Each run was trained for 100 epochs. 53

7

8 LIST OF TABLES

3.8 Test accuracy of a multi-layer perceptron consisting of k + 2 dense layers with
an overall budget of 500, 000 real-valued parameters on CIFAR-100 image clas-
sification (Experiment 2). The last layer consists of c = 100 neurons. Selected
best from 10 runs. Each run was trained for 100 epochs. 54

3.9 Test accuracy of convolutional neural network consisting of k + 1 convolutional
layers with 128 filters real-valued case or 64 filters in the complex-valued case.
Each convolutional layer is followed by a Max-Pooling and eventually by an
output layer with c = 10 neurons on MNIST digit classification task (Experiment
3). Selected best from 10 runs. Each run was trained for 100 epochs. 55

3.10 Test accuracy of convolutional neural network consisting of k + 1 convolutional
layers with 128 filters real-valued case or 64 filters in the complex-valued case.
Each convolutional layer is followed by a Max-Pooling and eventually by an
output layer with c = 46 neurons on Reuters topic classification task (Experiment
3). Selected best from 10 runs. Each run was trained for 100 epochs. 55

3.11 Test accuracy of convolutional neural network consisting of k + 1 convolutional
layers with 128 filters real-valued case or 64 filters in the complex-valued case.
Each convolutional layer is followed by a Max-Pooling and eventually by an
output layer with c = 10 neurons on CIFAR-10 image classification task (Exper-
iment 3). Selected best from 10 runs. Each run was trained for 100 epochs. . . . 56

3.12 Test accuracy of convolutional neural network consisting of k + 1 convolutional
layers with 128 filters real-valued case or 64 filters in the complex-valued case.
Each convolutional layer is followed by a Max-Pooling and eventually by an
output layer with c = 100 neurons on CIFAR-100 image classification task (Ex-
periment 3). Selected best from 10 runs. Each run was trained for 100 epochs. . . 56

4.1 Test log perplexity of language models. Trained for 100 epochs with random
uniform, but variance-scaled initialisations (Glorot uniform distribution). Each
model has l = 2 recurrent layers each with m� = 325 resp. m� = 650 units
after embeddings of the same size. We apply φs = relu activation function and
φg = tanhh in each recurrent layer and add a so f tmax classifier. 76

4.2 Test accuracy of best effort memory network in complex and real version on the
bAbI tasks. Selected best of 150 iterations of random search over the hyperpara-
meter search space. Each iteration was trained for 200 epochs. The model sizes
are chosen independently for real and complex models and only are limited by
the hardware available. 80

4.3 Number of real-valued parameters of the memory network versions in respect
to the bAbI tasks 1 to 20 (Experiment 2). Each model has either m� real or
complex m� neurons in the LSTM layer. In general, the capacity of the different
sized models can be ordered: m� = 8 ≤ m� = 16 ≤ m� = 16 ≤ m� = 16 ≤ m� =

21 ≤ m� = 24 ≤ m� = 64. Exceptions to this rule are marked with *. The largest
real-valued model is always significantly larger than the largest complex-valued
model. 82

4.4 Test accuracy of the different versions of the memory network in complex and
real version on the bAbI tasks (Experiment 2). Each version has m� resp. m�
neurons in the LSTM layer. Selected best of 10 runs. Each run was trained for
200 epochs. 83

LIST OF TABLES 9

4.5 Semantic similarity computed by the inner product of word representations eval-
uated using WordSim353 [1] and SimLex999 [2]. Results given in Spearman
correlation ρ calculated by averaging over participant correlation. Arrows ↑, ↓, •
indicate the performance compared to model’s direct baseline. 110

4.6 Semantic similarity computed by the magnitude of the inner product between
the representations of compound nouns, adjective-noun, verb-object and subject-
verb-object composition under addition using data sets from Mitchell and Lapata
[3] and Grefenstette and Sadrzadeh [4]. Results given in Spearman correlation ρ
calculated by averaging over participant correlation. ↑, ↓, • indicate the perform-
ance compared to model’s baseline. 111

4.7 Semantic similarity computed by the the magnitude of the inner product between
the representations of compound nouns, adjective-noun, verb-object and subject-
verb-object composition under multiplication using data sets from Mitchell and
Lapata [3] and Grefenstette and Sadrzadeh [4]. Results given in Spearman cor-
relation ρ calculated by averaging over participant correlation. ↑, ↓, • indicate the
performance compared to model’s direct baseline. 112

5.1 Types of attention. 124
5.2 Baseline accuracy on the seven sub tasks (b1 to b7). 136
5.3 Overview of the baseline’s hyper parameters. 136

1 Overview of IPA symbols and their usage in the Babble dataset. 143

List of Figures

2.1 Visual representation of the complex plane. 22
2.2 Multi-layer perceptron with k hidden layers. 27
2.3 Visual representation of dilated kernels with fixed size k = 3 and k = 3 × 3. . . . 28
2.4 Probability amplitude activation function as an alternative to the sigmoid function. 32

3.1 Multi-layer perceptron with k hidden layers. The number of hidden units per
layer m computed with Equation 3.2 for Experiment 1 and Equations 3.5 resp.
3.6 for Experiment 2. 44

3.2 CNN architecture with k + 1 convolutional layers each followed by a maximum
pooling layer. The number of kernels per layer m� = 2m� and the number of
parameters respect Equation 3.8 for Experiment 3. 45

3.3 Average absolutes of real |Re(z)|, imaginary parts |Im(z)| and average complex
magnitude |z| of all weights Wi over training epochs of the MNIST classification
task. 57

3.4 Average absolutes of real |Re(z)|, imaginary parts |Im(z)| and average complex
magnitude |z| of all weights Wi over training epochs of the Reuters classification
task. 58

3.5 Example of synthetic data’s class distribution. The class is determined by the
sum’s location consisting of complex elements xi ∈ � in the input vector. Colours
indicate different classes. 59

3.6 Example of synthetic data’s class distribution. The class is determined by the
sum’s location consisting of real elements xi ∈ � in the input vector. Colours
indicate different classes. 60

3.7 Example of independent learning behaviour of real and imaginary parts in the
classification of synthetic complex-valued data. The real and imaginary parts
change independently over the training. The exact trajectory of the graph depends
on the weight initialisation. 60

3.8 Example of dependent learning behaviour of the complex weights in the classi-
fication of synthetic real-valued data. The imaginary part follows the real part of
the weight with every epoch. The exact trajectory of the graph depends on the
weight initialisation. 61

10

LIST OF FIGURES 11

3.9 Interaction of real parts Re(Wi), imaginary parts Im(Wi) with the real-valued in-
put x and complex output zi of the i-th layer of an MLP with k = 2 layers. 61

4.1 Architecture for neural language model as real and complex baselines by Za-
remba et al. [5]. Green boxes represent single regularised LSTM layers. 72

4.2 Architecture for a neural language model using complex-valued slot positional
embeddings. Green boxes summarise multiple regularised LSTM layers. 74

4.3 Architecture for neural language model using phase shifts on real-valued embed-
dings. Green boxes summarise multiple regularised LSTM layers. 75

4.4 Architecture for neural language model in the Fourier Domain. Green boxes
summarise multiple regularised LSTM layers and light blue area indicates states,
inputs and outputs in the Fourier domain. 75

4.5 Architecture for neural language model in the Frequency Domain using a trained
Z-transformation. Green boxes summarise multiple regularised LSTM layers and
light blue areas indicate states, inputs and outputs in the frequency domain. . . . 77

4.6 Simplified end-to-end memory network architecture for comparison inspired by
Sukhbaatar et al. [6]. 79

4.7 Double slit experiment [7]. 91

5.1 Encoder-classifier architecture for Automatic Speech Recognition. Attention and
preprocessing blocks are optional. 125

5.2 Encoder-decoder architecture for Automatic Speech Recognition. Attention and
preprocessing blocks are optional. 126

5.3 Real-valued transformer architecture for speech recognition. 128
5.4 Fully Spectral Transformer architecture. Values V are frequency domain repres-

entations. 130
5.5 Spectral-Scaled Transformer architecture. Values V are time domain representa-

tions. 131
5.6 Durations of trimmed audio recordings. 132
5.7 Symbol histogram of all used IPA symbols. 133

Acknowledgements

I would like to thank my examiners Prof Dr Dawei Song, Dr James Cussens and Dr Tangming

Yuan, my supervisor Dr Suresh Manandhar and my colleagues Dr Sarah Spooner, Dr Alexandros

Komninos, Chaitanya Kaul, Marcelo Sardelich, Taghreed Alqaisi, Di Wang and Mudita Sharma

for their time, feedback and discussions. Particular thanks go to the Engineering and Physical

Sciences Research Council (EPSRC) for supporting my work with a Doctoral Training Grant.

Thank you to Dr Tamar Keren-Portnoy, Dr Helena Daffern, Kenneth Brown, Prof Dr Marilyn

May Vihman and Prof Dr Rory A. DePaolis for providing me with valuable data and even more

valuable advice. I would also like to thank the administrative staff of the Computer Science

Department and the University of York.

Thank you all for your support and efforts that allowed me to learn and grow.

Nils Mönning

March 2019, York, England

12

Declaration

I declare that this thesis is a presentation of original work and is the result of my own investig-

ations, except where otherwise stated. All other sources are explicitly acknowledged by refer-

ences. This work has not previously been presented for an award at this, or any other, University.

Signed .

Date .

Some of the material contained in this thesis has appeared in the following published paper, paper

awaiting publication or paper currently in peer review:

1. Nils Mönning, Suresh Manandhar (2018). Evaluation of Complex-Valued Neural Net-

works on Real-Valued Classification Tasks. CoRR, abs/1811.12351.

13

CHAPTER 1

Introduction

Machine Learning (ML) has become part of our day-to-day lives. Humans use speech recog-

nition and generation systems to communicate with virtual personal assistants, semantic search

to explore large data collections to find relevant documents, use translation engines to translate

texts from one language to another or recommender systems to sift out irrelevant product reviews

while shopping online. The field of Machine Learning provides methods to learn parameters of

unknown functions to solve certain tasks. This research field aims to derive problem solutions

directly from training data without explicitly programming this solution.

The area of Natural Language Processing (NLP) comprises tasks that require natural language

understanding. NLP uses ML solutions to solve tasks that require a machine to understand, inter-

pret or transform written or spoken language. Many attempts have been made to model natural

languages. In the past the most common solutions include linguistic rule-based or statistical

systems with handcrafted features.

Deep Learning (DL) has achieved significant improvements over these work-intensive solu-

tions. DL is a sub field of ML. It is concerned with the study of neural networks and their

application to various problems. Neural networks have been used to achieve state-of-the-art per-

formance in many tasks. Image processing and language processing have particularly benefited

from the development of DL. Deep neural networks are capable of learning and discovering im-

portant features in the data. This ability allows most models to achieve better results than many

handcrafted and rule-based systems. To find these features they usually require large amounts of

data. In DL, different building blocks (or neural layers) are used to extract these features. Re-

current networks learn representations accumulated over sequences, convolutions allow learning

14

Section 1.1 Context 15

of context sensitive features while, multi-layer perceptrons learn to weigh and combine features.

These building blocks are combined to form complex and layered network architectures. Each

building block represents a set of functions applied to the input data or the output of the previ-

ous building block. The training data is propagated forward through the layers. At the end, the

model’s output is used to compute a loss between a target output and the systems output or scored

towards another training objective. This loss is then backpropogated through the layers updating

parameters according to the loss using gradient-based methods.

In complex-valued neural networks the layers receive complex-valued data, contain complex-

valued parameters or transform the data into complex-valued representations. They have mainly

received attention in relation to Signal Processing. Literature suggests to use them due to their

representative abilities of frequency information. However, the application of complex numbers

can be motivated from many perspectives:

• Using complex numbers increases the expressibility of functions, since any polynomial

can be factorised in the complex domain.

• Quantum theory allows a probabilistic and geometrical interpretation of complex-valued

quantum states.

• Complex-valued frequency representations are fundamental to the Fourier analysis of sig-

nals. Recent trends in NLP encourage new types of embeddings.

• Existing literature supports the use of complex-valued convolutions as natural use cases.

1.1 Context

This work intersects the areas of Complex-Valued Data Estimation, Signal Processing and Deep

Learning. We focus on natural language as a possible application. We show that it can be

modelled from a semantic and phonetic perspective using complex-valued neural networks. We

are particularly interested in finding natural language tasks for which complex-valued neural

networks improve performance and for which they do not. While it seems to be easy to combine

existing approaches to design a large complex-valued architecture which outperforms an arbitrary

architecture, we focus on comparable architectures. We are able to highlight the differences

between real and complex numbers in neural network. We experimentally show the validity

of complex-valued architectures, but also highlight important issues. Complex numbers suffer

similar problems to their real-valued counterparts, but require different solutions.

Furthermore, we point out the tasks in which the addition of complex numbers can improve

performance and where they do not. The tasks we consider are Language Modelling, Semantic

Similarity Judgement, Basic Question Answering, Phonetic Transcription and Automatic Speech

Recognition. We approach these tasks mainly with statistical unsupervised or labelled supervised

16 Introduction Chapter 1

approaches. In particular, we consider written and spoken language from various sources (books,

internet crawls, audio books, curated news articles and handcrafted questions). Our approaches

make use of existing publicly available data. Where we used unpublished data we are able to

provide the data. We focus on supervised training to solve the considered tasks.

Our experiment code is written in Python 3.5+ and were computed using TensorFlow [8],

Theano [9], Keras [10] and Tensor2Tensor [11] on an NVidia CUDA GPU. Even with this hard-

ware many of the proposed models of this thesis trained for many hours, days and even weeks.

Presented baselines have undergone extensive hyperparameter optimisation and hence should

represent stable, reliable baselines. For our own models, however, little hyperparameter optim-

isation was possible, due to time limitations on this project.

1.2 Research Questions

Our research objective was to investigate the use of complex-valued neural networks for natural

language tasks. This thesis aims to find natural language tasks which benefit from replacing

real numbers with complex numbers in neural networks and explain their behaviour. We focus

on modelling compositional language from a semantic and phonetic perspective. We present

a diverse set of tasks and various data types. This allows us to give a greater overview of the

usefulness of complex numbers for Natural Language Processing.

From various observations we derive specific research questions and experimentally find an-

swers for them. These are outlined below:

• Does the use of complex-valued neural networks improve performance for classifica-
tion tasks by increasing the expressibility of the model?

Complex numbers generalise real numbers by extending them with the possibility to ex-

press roots of negative values with the imaginary unit i2 = −1. Consequently, the real

numbers � form a subset of the complex numbers � in which the imaginary part is zero.

Complex numbers � satisfy many important properties (e.g. commutativity, associativity)

that are also satisfied by the real numbers. This extension with an imaginary part and the

similar properties support a larger expressibility compared to real numbers. This is often

exploited in factorisation techniques. Examples are complex eigenvalues and factorisation

of polynomials.

Complex numbers can be represented by a real and an imaginary part or by a magnitude

and a phase. The magnitude indicates the distance to the origin while the phase indicates

its direction from the origin. Phases may help to learn structured interactions between

parameters and representations which are difficult to learn with real numbers. An existing

example is the XOR function. Additional expressibility may be used to encode and learn

positional or structural information of the data or to learn factorisations of the input data.

Section 1.2 Research Questions 17

However, this may also be detrimental to the learning process as finding a local or global

optimum is more difficult in a complex set than in the real set.

To answer the above research question reliably we need to design comparisons with an

equal number of real-valued parameters. If the models are of drastically different size,

the performance difference may be a result of model size and not the increased express-

ibility and structure of complex numbers. Moreover, the network architectures need to be

comparable by simply replacing real numbers with complex numbers.

• Does encoding additional positional or frequency information in imaginary parts or
phases improve the performance in sequence-based language processing tasks?

A recent trend in natural language processing is to learn dense representations of words

within real-valued semantic spaces. Embeddings learn to encode the context and co-

occurrence information of each word as a fixed set of features. They often implicitly facil-

itate statistics or information across the entirety of the data. Word embeddings also are an

integral part of natural language systems tasks. For language it is fundamental to include

compositionality in order to compose word representations into phrase or sentence repres-

entations. Various improvements of word embeddings towards compositionality have been

made. They enrich embeddings with additional information like dependency statistics or

positions. Enriched embeddings have been used to improve performance in sentence-based

tasks. Complex-valued embeddings offer more possibilities to encode structured interac-

tion.

An alternative to complex-valued embeddings are transformations. Transformations can

map real (or complex) data to the complex plane. Most frequently used is the (Discrete)

Fourier Transformation which decomposes real or complex sequences into its component

sine and cosine waves. The complex-valued frequency domain allows us to gain insights

over the composing waves in a very compact way. Word representation in the frequency

domain may give a better understanding of word statistics and can be easier to learn while

containing more information.

• What advantages and differences are there in using quantum-inspired models of lan-
guage compared to non-quantum complex-valued models of language?

In Quantum Theory, complex vectors represent the state of quantum systems. Previous

work has suggested using quantum states to represent words. Quantum-inspired word

representations go one step further than complex-valued word representations. They act

in the same vector spaces (concretely a Hilbert space), but require additional constraints

on the vector space in the training process. These constraints give quantum states, and

quantum word embeddings, a geometrical and probabilistic interpretation. Learning nor-

mal complex-valued embeddings relaxes these constraints. The differences these con-

18 Introduction Chapter 1

straints introduce to the representation and learning process are not well studied. In both

cases we can learn complex-valued word embeddings that can be used in various natural

language tasks.

• Can we move the entire neural model into the frequency domain to improve speech
transcription and simplify computation?

If we move the entire learning process into the frequency domain, we are able to learn

transformations of frequencies and frequency-based representations. Spoken language,

which naturally consists of different constituent sine and cosine waves, can processed dir-

ectly in the frequency domain. Most speech recognition approaches use frequency-based

preprocessing (e.g. Mel-Frequency filter banks or Mel-Frequency Ceptrum Coefficients).

These methods, however, discard the important phase information. Learning in the fre-

quency domain in an end-to-end setting may improve performance in speech-related tasks.

Further, convolutions can be replaced with complex-valued fully-connected layers in the

frequency domain. In consequence, the layer outputs do not need to be transformed back

and forwards for every layer. This potentially improves computation in the training and

inference, too.

1.3 Contributions

This thesis makes the following contributions to existing literature:

• A translation of real-valued multi-layer perceptrons (MLP), recurrent and convolutional

layers to the complex plane that we use in this work. These can be used as drop-in replace-

ments.

• Criteria to compare real-valued and complex-valued MLPs for classification tasks.

• Embedding methods for words to receive position and frequency-based representations

usable in down-stream NLP tasks.

• A complex-valued memory network used for Question Answering which shows us which

sub tasks benefit from complex numbers.

• A general framework of quantum-inspired Semantic Spaces and instances of npmi- and

pmi-based Semantic Spaces.

• A data set for transcription of children’s utterances with fixed data splits and baselines for

better comparison.

• A general framework of complex-valued attention that is used to derive spectral self-

attention with a novel activation function. We also introduce two pooling functions to

reduce dimensionality of frequency-based representations.

Section 1.4 Chapter Overview 19

• Spectral Transformers architecture which facilitate spectral self-attention in Speech Re-

cognition.

1.4 Chapter Overview

Chapter 2 introduces mathematical background and definitions. We discuss complex

numbers and their representations. We introduce neural networks and their training in

the complex plane.

Chapter 3 compares multi-layer perceptrons and convolutional neural networks with complex-

and real-valued weights using the same number of real-valued parameters. We demonstrate

the performance of different activation functions and depths on various benchmark classi-

fication tasks: MNIST [12], Reuters newswire classification [13], CIFAR-10 and CIFAR-

100 [14]. The input data is not preprocessed, transformed or embedded into the complex

plane, hence its imaginary parts Im(x) are zero.

We find that real-valued neural networks pose an upper performance boundary for complex-

valued neural networks of the same size when used on unprocessed real-valued data. We

explain this behaviour with the interaction of weights and emphasise the importance of

embeddings and prepossessing. We also find that initialisation and training are significant

problems when training complex-valued neural networks.

Chapter 4 proposes and investigates complex-valued embeddings and transformations of

words as well as semantic vectors. These approaches follow the Distributional Hypothesis

[15] and Compositionality [16].

We train six language models on the Penn-Tree-Bank (PTB). We report on two baselines,

two positional models and two frequency-based models. Perplexity shows that frequency

information can improve n-gram language modelling. The learned word embeddings of

proposed neural language models can be used in many down-stream tasks.

Inspired by Weston et al. [17] we introduce a simple complex-valued memory network

which achieves better or similar performance using fewer parameters in many bAbI ques-

tion answering tasks. Especially in tasks that require longer dependencies.

We present a generalised quantum-inspired framework of semantic spaces. Inspired by

the findings from Levy et al. [18] we manually design Quantum-inspired semantic spaces.

These semantic vectors respect the two main constraints of quantum states (amplitude norm∑
|z j|

2 = 1 and orthogonality 〈φ|ψ〉 = 0). These two constraints give semantic vectors a

probabilistic and geometrical interpretation. We test quantum-inspired semantic vectors

on similarity judgment tasks.

20 Introduction Chapter 1

Chapter 5.5 introduces a novel data set for the phonetic transcription of child utterances.

Raw audio signals are transcribed with the symbols of the International Phonetic Alphabet

(IPA). Hence, the transcription tasks are related to phoneme-level speech recognition.

This work is a collaboration of various departments at the University of York. The raw

recordings, labels and a linguistic definition of what constitutes babble have been provided

by Tamar Keren-Portnoy, Helena Daffern and Kenneth Brown. Our contribution, which is

included in this thesis, is the cleaning and normalising of the labels, designing sub tasks for

phonetic transcription and classification, the computation of baselines and development of

a code repository.

The 7 sub tasks include 3 transcription task with a full set of available IPA symbols, 3

transcription tasks with a reduced set of IPA symbols and a binary classification task. As

baselines we chose real-valued transformer architectures in 2 sizes. Further baselines are

easily computed as the code repository uses the Tensor2Tensor API [11].

Chapter 5 presents a generalised attention framework, derives a novel spectral self-attention

mechanism and introduces a novel activation function. The spectral self-attention can be

used as scaling mechanism of frequency representations or as frequency-based extension

in real-valued architectures.

We use these building blocks to define Spectral Transformer architectures that can learn in

the real or complex domain. We test this new architecture on the LibriSpeech Autmomatic

Speech Recognition [19] task and the Babble data set introduced in Chapter 5.5.

Chapter 6 summarises our findings and concludes our work.

In addition to the content described above, every chapter contains a review of related literature

relevant to that chapter.

CHAPTER 2

Theoretical Background

This chapter introduces the mathematical background, definitions and terminology used through-

out this thesis. In the following sections we will introduce complex-valued generalisations of

well-established building blocks of DL. We consider these in relation to complex numbers, com-

plex differentiability and their use in (deep) neural architectures.

In contrast to classical Machine Learning models, Neural Networks (NN) are capable of auto-

matically discovering features. They do not need to be hand-crafted, but rely on non-linearities

and a combination of input features. Modern neural architectures consists often many layers

with the intermediate application of non-linear activation functions. Using complex numbers in

weights and input data, a specific problem may become solvable with simpler architectures or

fewer parameters. A simple example is the XOR function [20, 21].

We use the theoretical background developed in this chapter as a foundation for experiments

which investigate our research questions presented in Chapter 1. The definitions for complex

numbers and neural networks are used throughout this thesis. Gradients, activation and loss

functions are also used and discussed in all chapters. Convolutions are used in Chapter 3 in

classification experiments. Chapter 4 includes architectures that use transformations and embed-

dings to create frequency-based language models. We also use recurrence in language models

and memory models. The developed and presented generalisation of the attention mechanism

and the Convolutional Theorem is used in Chapter 5 to define a novel transformer architecture.

With our approach to transformers we can implicitly implement convolutions in the frequency

domain efficiently.

21

22 Theoretical Background Chapter 2

Figure 2.1: Visual representation of the complex plane.

2.1 Complex Numbers

The set of complex numbers � is a generalisation of real numbers�. It defines an imaginary unit

i2 = −1 to express the roots of negative real numbers. Any complex number can be defined as

z = x + iy = reiϕ. They are defined by a pair of (x, y) and (r, ϕ). As Cartesian coordinates they are

given with a real part Re(z) = x and an imaginary part Im(z) = y. As polar coordinates they are

given with their magnitude r = |z| =
√

x2 + y2 and phase ϕ = arctan(x
y) with ϕ ∈ [−π, π] using

Euler’s formula (Equation 2.1). The conjugate of a complex number z̄ = x− iy = r · e−iϕ changes

the sign of the imaginary part.

eiϕ = cos(ϕ) + i sin(ϕ) (2.1)

The set of complex numbers can be visualised as a plane (Figure 2.1). A complex-valued

function f : � → � of a complex-variable can be expressed as a function of two real variables

f (z) = f (x, y) = f (r, ϕ).

The magnitude is defined as the distance to the origin:

|z| =
√

x2 + y2,

|z|2 = zz̄ = x2 + y2
(2.2)

Section 2.1 Complex Numbers 23

The trigonometric functions in the complex plane are defined by:

sin(ϕ) =
y
r
,

sin(ϕ) =
x
r
,

tan(ϕ) =
y
x

(2.3)

We can use these functions to find the Cartesian coordinates:

y = r sin(ϕ),

x = rcos(ϕ)
(2.4)

Despite the straightforward use and representation, complex numbers define an interaction

between their two parts when used in computation. Consider the operations necessary in a re-

gression model outlined in Equation 2.16. Each element z1 ∈ � of the weight matrix W ∈ �n×m

interacts with an element z2 ∈ � of an input x ∈ �n:

z1z2 = (a + ib)(c + id)

= (ac − bd) + i(ad + bc),

z1 + z2 = (a + ib) + (c + id)

= (a + c) + i(b + d)

(2.5)

In an equivalent representation of a complex number in its polar form:

z1z2 = (r1eiϕ1)(r2eiϕ2)

= (r1r2eiϕ1+ϕ2),

z1 + z2 = (r1eiϕ1) + (r2eiϕ2)

= r1 cos(ϕ1) + r2 cos(ϕ2)

+ i(r2 sin(ϕ2) + r1 sin(ϕ1))

(2.6)

Consequently, simply doubling the number of parameters in real-valued layers is not suffi-

cient to achieve the same effect as in a complex-valued layer. This is illustrated when a complex

number z = a + ib is expressed in an equivalent augmented representation. Specifically, as 2 × 2

matrix M in the ring of M2(�):

M(a+ib) =

a −b

b a

 such that M(0+i1) =

0 −1

1 0

 , M(1+i0) =

1 0

0 1

 (2.7)

24 Theoretical Background Chapter 2

M(a+ib)M(c+id) =

a −b

b a


c −d

d c


=

ac − bd bc + dc

bc + dc ac − bd


(2.8)

A deep learning architecture that performs well with real-valued parameters may not work

for complex-valued parameters and vice versa. Models that do not facilitate the structure, or

tasks that do not require the structure, will not show improved performance. Because of their

interacting nature, complex numbers are essential to mathematically represent and handle wave

properties [22].

In the following definitions we are using complex numbers � for inputs and weights. They

can usually be switched with �, since every real number is a complex number with zero imagin-

ary parts. The set of real numbers are a subset of complex numbers � ⊂ �.

2.2 Transformations and Embeddings

In our work we use various transformations that map real-valued inputs to a complex-valued

representation:

A : �→ � (2.9)

The Fourier Transformation (FT) translates a time signal to the frequency domain by decom-

posing it into a sequence of sine and cosine waves. The output is a sequence of complex numbers

each corresponding to a frequency (bin). Each wave is characterised by its amplitude |zi| and a

phase offset ϕi. The Fourier Transformation F of real-valued function f is defined by:

F (k) =

∫ inf

t=− inf
f (t)e−i2πktdt (2.10)

Discretisation of the Fourier Transformation results in the Discrete Fourier Transformation

F (DFT). The DFT assumes a discrete sampling of a continuous real function. The sampled

sequence given by a real-valued function f (t) of time consisting of N samples.

F (k) =

N−1∑
t=0

f (t)ei 2π
N kt (2.11)

Its variation, the Short-Time Discrete Fourier Transformation (STDFT), applies a window

function on the original time signal f (t). It moves a window over a signal in a certain stride

length. Computationally, we can use the Fast Fourier Transform (FFT) and the Discrete FFT. We

Section 2.3 Multi-Layer Perceptrons 25

will later use the frequency representation in convolution (Section 2.5).

A further generalisation of the DFT is the Z-Transformation Z (ZT). The DFT is a Z-

Transformation with |a| = 1. Formally, the Z-TransformationZ of a sampled signal f (t) consist-

ing of N samples is defined as:

Z(a) =

N−1∑
t=0

f (t)a−t (2.12)

In contrast to the Z-Transformation the Discrete Cosine Transformation C (DCT) returns

real-valued sequence and is defined by:

C(k) =

N−1∑
t=0

f (t) cos
(πk(2t + 1)

2N

)
(2.13)

Embeddings are another way of translating discrete real-valued sequences into the complex

plane. They allow us to learn a set of dense vectors (or tensors) to represent discrete data (e.g.

words in a vocabulary). Embeddings are implemented by projecting a sparse one-hot vector

ν ∈ {0, 1}1×N (with the j-th element being a one) onto a learnable dense embedding matrix (or

tensor) E ∈ �N×K (Equation 2.14).

Emb(w j) = E(w j) = νE =

[
0 . . . 0 1 0 . . . 0

]


w11 . . . w1k

w21 . . . w2k

...
. . .

wn j . . . wnk


(2.14)

This practically ‘selects‘ the j-th row vector of the embedding matrix E. In neural networks

this operation is often referred to as the embedding layer. In NLP this method is often used as a

process of dimensionality reduction.

2.3 Multi-Layer Perceptrons

A complex-valued neuron is defined analogously to its real-valued version. We consider its

differences in structure and training. The complex neuron is defined as the output of an activation

function φ applied to the dot product · of an input x ∈ �n and the complex weight w ∈ �n with

the addition of complex bias b ∈ �:

o = φ(x · w + b) (2.15)

Arranging m neurons into single operation gives us a fully connected layer or dense layer or

perceptron:

26 Theoretical Background Chapter 2

o = φ(xW + b) (2.16)

with an input x ∈ �n,W ∈ �n×m, b ∈ �m. The output elements oi j (before the non-linearity φ)

are computed by Equation 2.17.

oi j = b j +

n∑
k=1

xikwk j (2.17)

Stacking multiple, fully connected dense layers results in the simplest DL model, a Multi-

Layer Perceptron (MLP). The neural network combines the input features and weighs the outputs

of previous layers in the next layer. This results in a repeated application of weight matrix

multiplication and non-linearities (Equation 2.18).

f̃k(x) = so f tmax(φk+2(φk+1(φ...(φ1(xW1 + b1)W... + b...)Wk + bk)Wk+1 + bk+1)) (2.18)

The MLP architecture is shown in Figure 3.1. It is mainly used for classification when com-

bined with a probabilistic output by applying softmax resp. sigmoid to the output layer. In

contrast to real-valued MLPs, complex-valued MLPs can naturally represent a periodic and/or

unbounded function [23]. A gradient-based optimisation strategy can be applied with the Back-

propagation algorithm to learn the weights and biases (Section 2.10).

2.4 Recurrence

We define complex-valued versions of Recurrent Neural Networks (RNN). The first definition

uses a simple recurrence at time step t:

ht = (xWhx) + b,

ot = φ(ht−1Whh + ht)
(2.19)

with the input x ∈ �n, input (or input-to-hidden) weights Whx ∈ �
n×m, bias b ∈ �m and

hidden-to-hidden weights Whh ∈ �
n×m. The Long-Short Term Memory (LSTM) [24] is defined

at time step t as:

Section 2.4 Recurrence 27

Figure 2.2: Multi-layer perceptron with k hidden layers.

ft = σ(xtW f + ht−1U f + b f),

it = σ(xtWi + ht−1Ui + bi),

ot = σ(xtWo + ht−1Uo + bo),

ct = ft ◦ ct−1 + it ◦ φ(xtWc + ht−1Uc + bc),

ht = ot ◦ φ(ct)

(2.20)

with the input x ∈ �n, the input gate vector i, forget gate vector f , output gate vector o, kernel

W ∈ �n×m and recurrent kernel U ∈ �n×m, bias b ∈ �m and hidden-to-hidden weights Whh ∈

�n×m. The Hadamard product (or element-wise multiplication) is denoted with ◦. Hochreiter and

Schmidhuber [24] chooses hyperbolic tangents φ = tanh as non-linearities.

The Gated Recurrent Unit (GRU) with complex weights is defined at time step t as:

zt = φg(xtWz + ht−1Uz + bz),

rt = φg(xtWr + ht−1Ur + br),

ht = zt ◦ ht−1 + (1 + zt) ◦ φh(xtWh + Uh(rt ◦ ht−1) + bh)

(2.21)

with the input x ∈ �n, an update gate vector z, a reset gate vector r and weights W ∈ �n×m

28 Theoretical Background Chapter 2

Figure 2.3: Visual representation of dilated kernels with fixed size k = 3 and k = 3 × 3.

and U ∈ �n×m, bias b ∈ �m and an output vector h.

2.5 Convolutions

Convolutions are another fundamental building block of modern neural networks. Within Con-

volutional Neural Networks (CNN) this operation is mainly used to learn how to extract context-

sensitive features from large inputs like images or signals. Formally, a convolution is an operation

that computes the integral of two functions f and g over time t:

f ∗ g =

∫ inf

− inf
f (τ)g(t − τ)dτ (2.22)

Hence, a convolution of two functions describes the area below the curve of the composite

function f (τ)g(τ) at a specific time step t. In physical systems the output describes a system’s

response to a signal. For sampled sequences, or other discrete inputs it is a repeated (matrix or

vector) multiplication of an input vector X and a moving kernel K of size k:

X[n] ∗ K[n] =

inf∑
j=− inf

X[j] · K[n − j] =

inf∑
j=− inf

K[j] · X[n − j] (2.23)

In practice, a kernel (or filter) is convolved with the input by moving the kernel K along the

time axis with a step size (stride) s over an input to compute a context representation with every

step. Another variant uses dilated (or atrous) kernels. In these dilated convolutions each element

of the kernel K is padded with d blind spots resulting in an ‘exploded‘ kernel Kk,d in order to

extend their perceptive fields. A visualisation is shown in Figure 2.3.

Convolutional layers used in DL architectures learn m filters or kernels at the same time. They

extract different sets of features from (padded) input sequences x ∈ �n with a kernel K ∈ �k×m

Section 2.6 Spectral Neural Networks 29

which is moved over the time axis with a stride s and where each kernel is of size k and a dilation

of d.

o = convs = φ(x ∗ Kk,d,m) (2.24)

Given a stride s, the kernel K and the input x the output o contains is n−k
s + 1 frames each of k

dimensions. We can achieve a dimensionality reduction by pooling the output of a convolutional

layer. Pooling applies a rectangular window function of size k to receive multiple windows Z and

computes a single representation for each window.

poolmax(Z) = max(z j, . . . , zk) (2.25)

poolavg(Z) =
1
t

k∑
j=1

z j (2.26)

Both convolutions and pooling can be adapted to higher ranks by increasing the order of

kernels and windows.

Another perspective to take for convolution in the complex-domain is to convolve a (real or

complex) signal with a complex-valued kernel. Since the convolution operator is linear, the con-

volution of a real-valued signal X[n] with a complex-valued kernel K ∈ � of size k is described

by:

X[n] ∗ K[n] = X[n] ∗ Re(K[n]) + i(X[n] ∗ Im(K[n])) (2.27)

We also adapt pooling the complex plane by applying average and maximum pooling onto

the magnitudes of the complex elements zi:

poolavg(|Z|) =
1
N

N∑
i=0

|zi| (2.28)

poolmax(|Z|) = zi, i = argmax(|Z|) (2.29)

2.6 Spectral Neural Networks

Inspired by spectral analysis there has been a number of approaches to learn frequency represent-

ations. They still rely on real-valued weight matrices, outputs and most importantly real-valued

input. A possible application are learned spectrograms. Spectograms are usually used to visual-

ise frequencies of a signal, but are also used as signal fingerprint. They map the complex-valued

output of Fourier Transformations directly to a real-valued representation. This discards import-

30 Theoretical Background Chapter 2

ant phase information that is necessary to reconstruct the original input signal. In consequence,

a real-valued neural network is limited by the use of real-valued representations. Literature on

complex-valued spectral representations created with Deep Learning is sparse [25, 26].

In our work we propose a complex-valued encoder-decoder architecture to facilitate pro-

cessing and learning of complex-valued spectral representations within the network. There have

been few approaches using complex-valued neural networks for speech processing. Drude et al.

[25], Trabelsi et al. [27], Sarroff [28] and Choi et al. [29] motivate complex-valued neural net-

works for speech processing with complex-valued convolutions and the convolution theorem.

Their work focuses on speech enhancement. Choi et al. [29] propose a complex-valued auto-

encoder architecture inspired by U-Net to enhance speech with a phase-aware masking and an

adapted loss function. Parcollet et al. [30] propose hyper-complex numbers (quaternions) to al-

low an even higher degree of freedom when extracting features from the audio signal. Zeghidour

et al. [31] propose emulating complex convolutions to learn features directly from the original

input signal, but computes a real-valued representation afterwards.

Furthermore, using frequencies for representation requires a compromise between time and

frequency resolution. We propose to use a window function of fixed duration and compute the

DFT of the resulting frame. Hence, we use the STDFT as a single preprocessing step. The

STDFT also encourages the network to learn frequency representations.

2.7 Complex-Valued Attention

We present a generalised framework of attention and derive a complex-valued attention mechan-

ism. We use the complex-valued attention to attend to (real-valued) time or to (complex-valued)

frequency representations within the network. Formally, attention is defined as a mapping of a

set of key-value pairs {(k1, v1), . . . , (kn, vn)} according to a query q to a probability distribution α

over the keys k. First, we compute the attention vector α, then a score between each key ki ∈ �
m

and the query q ∈ �m defined as:

α�(k, q) = σi(f (ki, q)),∀ki (2.30)

with softmax σi for every key ki being the i-th element of the attention vector. Attention

weights αi are used to compute a weighted average representation of the n values vi ∈ �
d:

attention�(k, v, q) =

n∑
i=1

αi(k, q)vi (2.31)

To compute the attention vector α we require a scoring function f : �m ×�m → �:

f (k, q) = q · k (2.32)

Section 2.7 Complex-Valued Attention 31

A further extension is Multi-Head Attention (MHA). Multiple heads attend to the same se-

quence which has been previously projected into different subspaces. Queries Q ∈ �r×m, keys

K ∈ �n×m of size m, values V ∈ �n×d of size d are stacks of individual keys k, values v and

queries q. Equations 2.30, 2.31, 2.32 generalise to:

attentionh(K,V,Q) = concatenate(head1, . . . , headh)WO (2.33)

MHA consists of h concatenated attention outputs. Each head attends to a different projection

of the same sequence in parallel and outputs a matrix of dimension r × s. It projects stacked

queries, keys and values to s dimensions. In the transformer that is the model size s:

head j =

n∑
i=1

αi(split j(K)UK
j ,

split j(Q)UQ
j)

split j(V)UV
j

(2.34)

with UK
j ∈ �

m× s
h ,UQ

j ∈ �
m× s

h ,UV
j ∈ �

d× s
h ,WO ∈ �m×d. The projection step precedes a

splitting of Q,K,V into h parts over the last dimension s. Each head head j outputs a matrix of

dimensions r × s
h in which each row represents the weighted average representation to each of

the r queries. They are then concatenated over the last dimension s
h . Hence, smodh = 0. The

self-attention setting used for transformer networks sets Q = K = V = X ∈ �n×d with X being the

n stacked input embeddings of dimension d, hence r = n and d = m = s. The attention vectors

are computed by the softmax. The output of α(K,Q) are r attention vectors each of length n:

α(K′,Q′) = σ(f (K′,Q′)) (2.35)

f (K′,Q′) =
Q′K′T
√

m
(2.36)

Complex-valued queries and keys require a few adaptations. Based on the formalised atten-

tion framework shown above we present a novel a generalisation. Our approach does not exclude

the possibility to attend to real-valued sequences. The main difference is the computation of

attention vectors and scoring. We use the same optional masking.

Since softmax and sigmoid functions are not explicitly defined for complex inputs, we have

to replace it in classifiers and the attention mechanism. We replace it with novel probability

amplitude activation function ψ inspired by quantum states. A quantum state given by a complex

vector |φ〉 =

[
z1 . . . zc

]
satisfies the constraint

∑c
i=1 |zi|

2 = 1. Additionally, each coefficient zi ∈

� corresponds to an element of the orthogonal bases that span a Hilbert space. The probability

amplitudes |zi|
2 thus define a probability distribution over orthogonal bases. Our function maps a

32 Theoretical Background Chapter 2

Figure 2.4: Probability amplitude activation function as an alternative to the sigmoid function.

vector of complex numbers to a probability distribution ψ : �c → �c:

ψ j(z) =
|z j|

2

1 +
∑c

a=1 |za|
2 =

Re(z j)2 + Im(z j)2

1 +
∑c

a=1 Re(za)2 + Im(za)2 (2.37)

Similarly, we define an alternative for the sigmoid function:

Ψ(z) =
|z|2

1 + |z|2
=

Re(z)2 + Im(z)2

1 + Re(z)2 + Im(z)2 (2.38)

This probability amplitude activation function is non-holomorphic, but it is real differenti-

able at most points. Hence, we can use it for gradient-based optimisation. Unlike other activation

functions it does not have any singularities and can be used as a replacement for the real-valued

softmax. We also replace the scoring function of (scaled) dot-product with a (scaled) inner-

product f : �→ �:

f (k, q) =
〈k|q〉
√

m
=

k · q̄
√

m
=

∑m
j=1 k jq̄ j
√

m
(2.39)

Equation 2.30 and 2.31 generalise to the new complex attention. For a query q ∈ �m, key

ki ∈ �
m and value pairs vi ∈ �

d it is defined as:

Section 2.8 Activation Functions 33

attention(k, v, q) =

n∑
i=1

αi(k, q)vi (2.40)

α(k, q) = ψi(f (ki, q)),∀ki (2.41)

Practically, the attention vector α ∈ �n scales the magnitudes of the values vi ∈ �
d, but

leaves the phases intact. For complex-valued MHA attentionh(K,V,Q) the projection matrices

are redefined as UK
j ∈ �

m×s,UQ
j ∈ �

m×s,UV
j ∈ �

d×s,WO ∈ �m×s:

head j =

n∑
i=1

αi(split j(K)UK
j , split j(Q)UQ

j)split j(V)UV
j (2.42)

α(K′,Q′) = ψi(f (K′,Q′)) (2.43)

The transpose needs to be replaced with the Hermitian conjugate:

f (K′,Q′) =
Q′K′†
√

m
(2.44)

This complex-valued attention mechanism can be used both in real-valued and complex-

valued networks, since the resulting attention vector is real. Depending on the choice of queries

Q, keys K and values V the output will be real or complex-valued.

The contributions in this chapter are the generalisations of existing neural networks building

blocks to the complex plane: complex-valued framework of attention, convolutional and recur-

rent neural networks.

2.8 Activation Functions

In any neural network an important decision is the choice of non-linearity. It defines how fast

a model may converge and which initialisation to choose. In the complex domain, however, the

criteria for activation functions are different [32, 33, 34]. An important theorem is the Liouville

Theorem (Equation 2.8.1).

Definition 2.8.1. The Liouville Theorem states that any bounded holomorphic function f : �→

� (that is differentiable on the entire complex plane) must be constant. Let f (z) be entire (holo-

morphic at any point in �) and | f (z)| bounded (there exists a number x s.t. | f (z)| ≤ x,∀z ∈ �) for

all values of z ∈ �, then f (z) is constant.

Another significant and related problem is singularities. Many complex-valued functions

have points in the complex plane z0 where they are not defined or have other singularities. We

34 Theoretical Background Chapter 2

may be able to exclude isolated singularities � \ {z0}. This, however, requires constrained optim-

isation methods and is therefore less desirable. Instead we should seek functions that do not have

any singularities in the complex plane.

Due to the theorem, we need to choose unbounded and/or non-holomorphic activation func-

tions φ. Activation functions for complex-valued neural networks can be categorised in complex-

valued functions φ : �→ �, split-complex functions φ : �×�→ �×� or real-valued functions

φ : � → �. Singularities like poles may not be a problem, since a gradient-based optimisation

process naturally avoids these singularities.

Similar to real-valued neural networks there are many activation functions proposed specific-

ally for their use in complex-valued neural network. We chose the identity function to identify

tasks that may not be linearly separable in �, but are linearly separable in �. The hyperbolic tan-

gent is a well-studied function and defined at most points for complex and real numbers. In the

complex numbers, however, it has singularities. The rectifier linear unit is also well understood

and frequently used in a real-valued setting. However, it has not been considered in a complex-

valued setting. This illustrates separate application on the two parts of a complex number. The

Modulo Rectifier Linear Unit is a popular function in existing literature on complex-valued neural

networks as well as the related complex hyperbolic tangent function by Hirose [23]. The mag-

nitude and squared magnitude functions are difficult activation functions. They are chosen to

map complex numbers to real numbers and to investigate their practicality. They are real differ-

entiable except at points z0 = 0, but not complex differentiable at any point. In these cases we

compute the derivatives with respect to the real parts.

• Identity (or no activation function):

φ(z) = z (2.45)

• Hyperbolic tangent:

φ(z) = tanh(z) =
sinh(z)
cosh(z)

(2.46)

• Split Rectifier linear unit (ReLU):

φ(z) = ReLU(z) = ReLU
(
Re(z)

)
+ ReLU

(
Im(z)

)
i

= max
(
0,Re(z)

)
+ max

(
0, Im(z)

)
i

(2.47)

• Intensity (or magnitude squared):

φ(z) = |z|2 = Re(z)2 + Im(z)2 (2.48)

• Magnitude (or complex absolute):

φ(z) = |z| =
√

Re(z)2 + Im(z)2 (2.49)

Section 2.9 Loss Function 35

• Modulo Rectifier Linear Unit (modRelU) [27]

φ(z) = RelU(|z| + b)
z
|z|

(2.50)

• Absolute Hyperbolic Tangents [35]

φ(z) = tanh(
|z|
m2)

z
|z|

(2.51)

To receive a real-valued loss we have to convert the complex-valued output of a neural net-

work to a real-valued prediction. While this depends on the tasks, for classification tasks a

logistic function is used to map logits to a probability distribution over the output classes. In

complex-valued neural networks, before applying the logistic function in the last layer, we use

the magnitude function |z| or amplitude function |z|2 to receive a real-valued loss.

sigmoid(|z|2) = σ(|z|2) =
1

1 + e−Re(z)2−Im(z)2 (2.52)

For an probabilistic output vector z =

[
z1 . . . zc

]

so f tmax(|z j|
2) =

eRe(z j)2+Im(z j)2∑C
c=1 eRe(zc)2+Im(zc)2

(2.53)

2.9 Loss Function

We choose a real-valued loss function as objectives for our gradient-based optimisation. Complex-

valued loss functions would require at least a partial ordering over the set of complex numbers

(similar to a linear matrix inequality). However, there is no standard (total) ordering on the field

of complex numbers, since i2 = −1. We denote the parameters of a model with θ.

Mean Squared Error (MSE) on N samples is commonly used for regression problems. It has

a straightforward generalisation for complex numbered outputs ỹ and targets y:

Jθ =
1
N

∑
∀(x,y)

|y − ỹ|2 (2.54)

The intention of Maximum Likelihood Estimation (MLE) is to learn a model so that it is able

to generate the observed data. Hence, we maximise the log likelihood of the model producing

the data using the parameters θ. The data points x j are assumed to be drawn from the same

distribution.

Lθ =
1
N

∑
∀x

ln(f (x|θ)) (2.55)

36 Theoretical Background Chapter 2

In classification and sequence transduction tasks categorical cross entropy objectives are used

to minimise the difference between an output probability distributions and the expected probabil-

ity distribution. Both distributions are assumed to be defined over the same set of labels or classes

L. The loss requires the model’s output ỹ and the expected output y given an input x (Equations

2.56, 2.57). For a sequence transducer this would be a probabilistic output p(ỹl|x) of a specific

label l ∈ L.

Jθ = −
∑
∀(x,y)

∑
l∈L

p(yl|x) log(p(ỹl|x)) (2.56)

If L ∈ {0, 1} is binary, categorical cross entropy simplifies to:

Jθ =
∑
∀(x,y)

(
− yl log(p(ỹl|x)) − (1 − yl)(log(1 − p(ỹl|x)))

)
(2.57)

2.10 Training and Optimisation

Similar to real-valued neural networks, complex-valued neural networks can be optimised using

Gradient Descent (GD) and its variants in combination with the Backpropogation algorithm.

Training using gradient-based methods requires activation functions to be differentiable with

respect to the model’s parameters θ. The training process consists of a forward and backward

pass through the neural network. After computing the loss Jθ with the result of the forward

pass, we propagate the loss back through the network updating each parameter according to their

gradients in order to minimise the loss.

Stochastic Gradient Descent (SGD) updates the parameters for each example in the j-th

(mini) batch (X j,Y j) with b samples by computing the gradient with respect to the parameters

θ. Momentum [36] is a method that increases steps towards repeating directions of the gradient

and dampens oscillations. The update rule for normal SGD with a learning rate α is given in

Equation 2.58 and with momentum γ given by Equation 2.59.

θ = θ − α∇Jθ(X j,Y j) (2.58)

vt = γvt−1 + α∇Jθ(X j,Y j),

θ = θ − vt

(2.59)

In all of our experiments we use an Adaptive Momentum Optimisation (Adam) [37] with

SGD. Adam is a gradient-based optimisation algorithm that stores both gradients and momenta

of previous updates. The update rule changes to Equation 2.60 with a decaying average of past

squared gradients vt and a decaying average of past gradients mt.

Section 2.10 Training and Optimisation 37

vt = β1mt−1 + (1 − β1)gt,

mt = β2vt−1 + (1 − β2)g2
t ,

v̂t =
mt

1 − βt
1
,

m̂t =
vt

1 − βt
2
,

θt+1 = θt −
α

√
v̂t + ε

m̂t

(2.60)

Backpropagation exploits the chain rule to update each weight according to their contribution

to the loss. It computes partial derivates for each layer. It starts with the computed loss and

propagates the error back through the network.

∂Jθ
∂θk

i j

=
∂Jθ
∂ok

j

∂ok
j

∂θk
i j

. . . (2.61)

In Equation 2.61 ok
j is the output after the activation of the j-th node of the k-th layer. The

computation of these partial derivatives with respect to the parameters is repeated for each func-

tion. An example of the function composition is Equation 2.18.

For complex differentiable function we can use the same principle. However, complex differ-

entiability is a stricter condition than real differentiability (Definition 2.10.1).

Definition 2.10.1. Similar to real differentiability, a complex function f : �→ � at a point z0 of

an open subset Ω ⊂ � is complex-differentiable if there exists a limit such that

f ′(z0) = limz→z0

f (z) − f (z0)
z − z0

(2.62)

If the function f is complex-differentiable at all points of Ω it is called holomorphic. While

in the real-valued case the existence of a limit is sufficient for a function to be differentiable, the

complex definition in Equation 2.10.1 implies a stricter property. We can express this differently

by representing a complex number z ∈ � with two real numbers z = x + iy. For f (x + iy) =

u(x, y) + iv(x, y) to be holomorphic, the limit not only needs to exist for the two functions u(x, y)

and v(x, y), but the (partial) derivatives must also satisfy the Cauchy-Riemann Equations. That

also means that a function can be non-holomorphic (i.e. not complex-differentiable) in z, but still

be differentiable in its parts x, y. Hence, real differentiability of functions u(x, y) and v(x, y) are

not sufficient to satisfy the conditions of the Cauchy-Riemann Equations (Definition 2.10.2).

Definition 2.10.2. A complex function f (x + iy) = u(x, y) + iv(x, y) with real-differentiable func-

tions u(x, y) and v(x, y) is complex-differentiable if they satisfy the Cauchy-Riemann Equations:

38 Theoretical Background Chapter 2

∂u
∂x

=
∂v
∂y
,

−
∂u
∂y

=
∂v
∂x

(2.63)

In order to apply the chain rule to non-holomorphic functions, the differentiability with re-

spect to their real and imaginary parts can be utilised. We consider the complex function f (z, z̄)

to be a function of z and its complex conjugate z̄. Effectively, we choose a different basis for our

partial derivatives.

∂

∂z
=

1
2
(∂
∂x
− i

∂

∂y
)
,

∂

∂z̄
=

1
2
(∂
∂x

+ i
∂

∂y
) (2.64)

These derivatives are a consequence of Wirtinger calculus (or ��-calculus). They allow the

application of the chain rule to many non-holomorphic functions for multiple complex variables

zi:

∂

∂zi
(f ◦ g) =

n∑
j=1

(∂ f
∂z j
◦ g

)∂g j

∂zi
+

n∑
j=1

(∂ f
∂z̄ j
◦ g

)∂ḡ j

∂zi
,

∂

∂z̄i
(f ◦ g) =

n∑
j=1

(∂ f
∂z j
◦ g

)∂g j

∂z̄i
+

n∑
j=1

(∂ f
∂z̄ j
◦ g

)∂ḡ j

∂z̄i

(2.65)

The Wirtinger calculus provides an alternative method for computing the gradient if a func-

tion is differentiable in its real parts. Many activation functions (complex- or real-valued) are

not entirely differentiable with respect to weights. However, the function does not need to be

differentiable at every point in �, but only at points at which the partial derivatives are com-

puted. Modern gradient implementations (e.g. TensorFlow [8]) will either return the left or right

derivative instead or exclude that point entirely.

This general practice allows a wide range of activation functions. The training process, how-

ever, may become unstable. An unstable training process necessitates special methods to avoid

problematic regions in the function domain. Another approach is to avoid singular points when

constructing the network. Fewer singularities make the training more reliable and stable. We use

the above theories and equations and apply these throughout this work to train complex-valued

neural networks.

CHAPTER 3

Complex-Valued Multi-layer Perceptrons for Real-Valued

Classification

In this chapter we attempt to learn complex-valued features directly from the real-valued input

data. We do not enforce learning in the frequency domain by feeding real-valued data into a trans-

formation before the network. We allow the neural network to learn necessary complex features

itself. We had hoped that the neural network would automatically learn complex transformations

(like the DFT or ZT) in order to represent data in a complex domain. Unfortunately, this is not

the case. Instead, we find that when unprocessed real-valued data is used, real-valued networks

(MLPs and CNNs) pose an upper performance bound.

We present our results on benchmark classification tasks using complex and real-valued

MLPs and CNNs. We designed three experiments which respect the total number of real-valued

parameters. We discuss the significant problems and limitations that occur when using real-

valued input data. We investigate the shown behaviour and isolate criteria to identify situations

that may benefit from this increased expressibility. We also suggest alternative approaches which

are further investigated in Chapter 4.

This chapter is motivated by the observation that the XOR function can be approximated by a

single complex-valued neuron, as explained in Chapter 1. A single real-valued neuron, however,

is not capable of approximating this logic function. This suggests that complex-valued networks

can learn features that real-valued networks cannot learn. We design simple model architectures

with respect to the number of real-valued parameters. In Chapter 2 we presented both used model

types, MLPs and CNNs, and the fundamental aspects to design and train neural architectures used

in this chapter.

39

40 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification Chapter 3

3.1 Introduction

In recent years complex-valued neural networks have been successfully applied to a variety of

real-world tasks. Their accomplishments are mainly in Signal Processing where the input data

has a natural interpretation in the complex domain. Complex-valued neural networks should

be compared to real-valued networks. However, we need to ensure that these architectures are

comparable in their model size and capacity. This aspect of the comparison is rarely studied or

only considered superficially. A metric for their capacity is the number of real-valued parameters.

The introduction of complex numbers into a model increases the computational complexity as

well as the number of real-valued parameters required, but assumes a certain structure of weights

and data input.

This chapter explores the performance of complex-valued MLPs and CNNs with varying

depth and width. We consider various activation functions and the number of real-valued para-

meters in benchmark classification tasks of real-valued data. We propose two methods to con-

struct comparable networks: 1) by setting a fixed, alternating number of neurons/filters per layer

and 2) by setting a fixed budget of real-valued parameters. The parameters are uniformly distrib-

uted over the layers. We choose the MNIST digit classification [12], CIFAR-10 image classifica-

tion [14], CIFAR-100 image classification [14] and Reuters newswire topic classification [13] as

benchmarks. We use classification of synthetic data for further investigation.

3.2 Related Literature

Complex-valued neural networks were first formally described by Clarke [38]. Several authors

have since proposed complex versions of the backpropagation algorithm based on gradient des-

cent [39, 40, 41]. Inspired by work on multi-valued threshold logic [42] in the 1970s, a multi-

valued neuron and neural network was defined by Aizenberg et al. [43, 44] who also extends this

idea to quaternions. Since then many approaches to further generalise complex-valued neural

networks to quaternion neural networks have been made [45, 46]. In the 2000s and 2010s, com-

plex neural networks were successfully applied to a variety of tasks [47, 48, 49, 50, 51, 52]. These

tasks mainly involved the processing and analysis of data with an intuitive mapping to complex

numbers. Images domain and time signals (in their wave form) have been transformed into the

Fourier domain and used as input data to complex-valued neural networks [35, 22]. They have

then be used in conjunction with convolutions [53]. While real convolutions are widely used

in DL, it is possible to replace them with complex convolutions [27, 54, 55, 56]. Despite their

successes, complex neural networks have been less popular than their real-valued variants. A

reason may be the less intuitive training process and architecture design, stemming from stricter

requirements for the differentiability of activation functions in the complex plane [57, 58].

In the past complex-valued classifiers, which are designed specifically to deal with real-

Section 3.3 Capacity 41

valued problems, have been shown to be superior to real-valued counterparts [59]. However,

neither deep networks nor the general behaviour of complex-valued MLPs has been investigated.

We systematically explore the performance of MLPs on simple classification tasks in considera-

tion of the activation function, width and depth.

When comparing complex-valued neural networks with real-valued neural networks, many

publications ignore the number of parameters altogether [44], compare only the number of para-

meters of the entire model [27] or do not distinguish between complex- or real-valued units [60].

Such comparisons are equivalent to comparing models of different sizes. In this chapter we

explicitly design our experiments with respect to comparable capacities.

3.3 Capacity

The number of (real-valued) parameters is a metric to quantify the capacity of a network and

its ability to approximate structurally complex functions. With too many parameters the model

tends to overfit the data while with too few parameters it tends to underfit.

A consequence of representing a complex number a + ib using pairs of real numbers (a, b)

is that the number of real parameters of each layer is doubled: p� = 2p�. For comparative

experiments the number of real-valued parameters per layer should be equal (or at least as close

as possible) between the real-valued and its complex-valued variant. This ensures that models

have the same capacity. Performance differences are caused by the introduction of complex

numbers as parameters and not by a capacity difference.

Consider the number of parameters in a fully-connected layer in the real case and in the

complex case. Let n be the input dimension and m the number of neurons, then the number of

parameters of a real-valued layer p� and of a complex layer p� is given by:

p� = (n × m) + m,

p� = 2(n × m) + 2m
(3.1)

For an MLP with k hidden layers, and c output dimensions the number of real-valued para-

meters (without bias) is given by:

p� = n × m + k(m × m) + m × c,

p� = 2(n × m) + 2k(m × m) + 2(m × c)
(3.2)

At first glance designing comparable multi-layer architectures, i.e. with the same number

of real-valued parameters in each layer, is trivial. However, halving the number of neurons in

every layer will not achieve parameter comparability. The number of neurons define the output

dimensions of a layer and the following layer’s input dimension. We addressed this problem

42 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification Chapter 3

by constructing networks with an even number of hidden layers k and alternating the number of

neurons per layer between m and m
2 . We receive the same number of real parameters in each layer

of a complex-valued MLP compared to a real-valued network. Let us consider the dimensions of

outputs and weights with k = 4 hidden layers as an example. For the real-valued case:

(1 × n)

Input layer︷ ︸︸ ︷
(n × m1)→ (1 × m1)

Hidden layer︷ ︸︸ ︷
(m1 × m2)

→ (1 × m2)

Hidden layer︷ ︸︸ ︷
(m2 × m3)→ (1 × m3)

Hidden layer︷ ︸︸ ︷
(m3 × m4)

→ (1 × m4)

Hidden layer︷ ︸︸ ︷
(m4 × m5)→ (1 × m5)

Output layer︷ ︸︸ ︷
(m5 × c)

→

Model output︷ ︸︸ ︷
(1 × c)

(3.3)

where mi is the number of (complex or real) neurons of the i-th layer. The equivalent using mi

complex-valued neurons would be:

(1 × n)(n ×
m1

2
)→ (1 ×

m1

2
)(

m1

2
× m2)

→ (1 × m2)(m2 ×
m3

2
)→ (1 ×

m3

2
)(

m3

2
× m4)

→ (1 × m4)(m4 ×
m5

2
)→ (1 ×

m5

2
)(

m5

2
× c)

→ (1 × c)

(3.4)

Another approach to design comparable architectures is to work with a parameter budget.

Given a fixed budget of real parameters p� we can define real or complex MLP with an even

number k ≥ 0 of hidden layers such that the network’s parameters are within that budget. The k

hidden layers and the input layer have the same number of real or complex neurons m� = m�.

The number of neurons in the last layer is defined by the number of classes c.

m� =


− n+c

2k +

√
(n+c

2k)2 +
p�
k , if k > 0

p�
n+c , otherwise

(3.5)

m� =


− n+c

2k +

√
(n+c

2k)2 +
p�
2k , if k > 0

p�
2(n+c) , otherwise

(3.6)

In the case of a convolutional neural network designing an architecture with equal number of

parameters is easier. Again, let f be the size in a one-dimensional kernel f × 1 or 2-dimensional

kernel f × f convolving over an input w × h × d. The number of parameters in a real-valued

Section 3.4 Experiments 43

convolutional layer p� and of a complex-valued convolutional layer p� with m filters is given by:

p� = (f × f × d × m),

p� = 2(f × f × d × m)
(3.7)

For an architecture with k + 1 convolutional layers followed by a fully-connected layer with

n resp. n × n input dimensions and c output dimensions the number of real-valued parameters

(without bias) is given by:

p� = (f × f × d × m) + k(f × f × m × m) + (w × h × d) × f × c,

p� = 2(f × f × d × m) + 2k(f × f × m × m)+
(3.8)

Pooling layers may be used to decrease the dimensionality for the last layer. Using pooling,

however, will change the number of parameters proportionally in a real-valued and complex-

valued model. To design a convolutional neural network architecture with the same number of

parameters we fix the kernel size f × f and alternate between halving the number of complex-

valued kernels (filters) m� = 2m� and the full number of kernels m� = m�.

3.4 Experiments

To compare real and complex-valued MLPs and CNNs (Figures 3.1, 3.2) we investigated them in

various classification tasks. The specific version of the MNIST data [12] used in our experiments

is provided by Yan LeCunn and Corinna Cortes 1. This version is a curated subset of the original

MNIST data. It is split into 50,000 images as training set and a balanced test set of 10,000

images. The mass-centred black-and-white images are 28x28 pixels in size. We use a balanced

validation set of 5,000 images randomly selected from the training data.

The CIFAR dataset is a labelled subset of a large collection of 32×32 pixel images [14]. The

80,000,000 tiny images collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton were

curated by Alex Krizhevsky into two datasets: CIFAR-10 and CIFAR-1002. CIFAR-10 consists

of 60,000 images classified into 10 classes. Each class is represented with 6,000 images. The

data is divided into 6 balanced batches each with 1,000 images per class. One batch is provided

as a test set by the authors. The other 5 are training data. For our validation we selected a single

random batch from the training data. CIFAR-100 also consists of 60,000 images, but classified

into 100 classes. Each class is represented with 600 images. It is also divided into 6 balanced

batches each with 100 images per class. Again, one batch is provided as test set by the authors

and we choose one batch as validation set from the training data.

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/ kriz/cifar.html

44 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification Chapter 3

Figure 3.1: Multi-layer perceptron with k hidden layers. The number of hidden units per layer m
computed with Equation 3.2 for Experiment 1 and Equations 3.5 resp. 3.6 for Experiment 2.

Reuters-21578 (Distribution 1.0) newswire topic classification is a document classification

task [13]. The original dataset consists of 21,578 documents to be categorised into 90 classes,

each representing a topic. We use the ‘Modified Apte‘ split by David D. Lewis34. The training

set consists of 9,603 documents and the test set of 3,299 docs documents. 8,676 documents are

unused. We chose 960 random documents from the training set as a validation set. In all of the

following experiments the task was to assign a single class to each real-valued data point:

• Experiment 1: We tested MLPs with k = 0, 2, 4, 8 hidden layers, fixed width of units in

each layer in real-valued architectures and alternating 64 and 32 units in complex-valued

architectures (Section 3.3). We did not apply a fixed parameter budget. We tested the

models on MNIST digit classification, CIFAR-10 Image classification, CIFAR-100 image

classification and Reuters topic classification. Reuters topic classification and MNIST digit

classification use m� = 64 units per layer, CIFAR-10 and CIFAR-100 use m� = 128 units

per layer.

• Experiment 2: We tested MLPs with fixed budget of 500,000 real-valued parameters. The

MLPs have variable width according to the depth and the parameters. They are tested on

3http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
4http://www.daviddlewis.com/resources/testcollections/reuters21578/

Section 3.4 Experiments 45

Figure 3.2: CNN architecture with k + 1 convolutional layers each followed by a maximum
pooling layer. The number of kernels per layer m� = 2m� and the number of parameters respect
Equation 3.8 for Experiment 3.

MNIST digit classification, CIFAR-10 Image classification, CIFAR-100 image classifica-

tion and Reuters topic classification. We rounded the units in Equations 3.5 and 3.6 to the

next integer.

• Experiment 3: We tested architectures with k = 0, 2 convolutional layers each followed by

a Max Pooling layer. The convolutional blocks are followed by a single fully-connected

layer with fixed number of units c. We tested the models on MNIST digit classification,

CIFAR-10 Image classification, CIFAR-100 image classification and Reuters topic classi-

fication. We used fixed-size kernels 3 × 3 (3 × 1 for Reuters) and striding of 1 × 1. The

maximum pooling relies on a pool of size 2 × 2 (2 × 1 for Reuters). Each convolutional

layer trains an alternating number of m� = 64,m� = 128 filters/kernels.

We used the weight initialisation presented by Trabelsi et al. [27] for our experiments. To

reduce the impact of the initialisation we trained each model 10 times. Each run trained the

model over 100 epochs with an Adam optimisation. We used categorical or binary cross entropy

loss depending on the task. We used sigmoid(|z|2) or so f tmax(|z|2) as the activation function for

the last fully-connected layer.

46 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification Chapter 3

3.5 Results

Tables 3.1, 3.2, 3.3, 3.4 show the results for MLPs with variable depth, fixed width and no para-

meter budget (Experiment 1). Tables 3.5, 3.6, 3.7, 3.8 show the results for MLPs with variable

width according to the targetted depth and a fixed parameter budget of 500, 000 real-valued para-

meters (Experiment 2). Tables 3.9, 3.10, 3.11, 3.12 show the results for CNNs with fixed kernel

sizes, but reduced number of kernels (Experiment 3). In our experiments the achieved accuracy of

complex- and real-valued MLPs are close to each other. Similarly for real- and complex-valued

CNNs. Nevertheless, the real networks consistently outperform complex-valued networks. The

complex-valued neural networks often fail to learn any structure from the data or fail the training

process.

Complex-valued MLPs and CNNs can be used to classify short dependencies as a bag-of-

words (e.g MNIST digits or short texts). For the two image classification tasks CIFAR-10 and

CIFAR-100 the results indicate that a complex-valued MLP does not learn any structure. These

two tasks require larger weight matrices in the first layer and weight initialisation is a significant

problem to be solved with an MLP. However, CNNs improve performance while reducing the

number of parameters required.

The best non-linearity in complex MLP is the split-activation with rectifier linear unit relu,

similar to the real-valued models. The hyperbolic tangents tanh outperforms relu in the real-

valued case. However, the results using the rectifier linear unit relu are much more stable. Despite

the similarity of the activation functions |z|2 and |z|, their performance in all tasks differ signific-

antly. The magnitude |z| consistently outperforms the squared magnitude |z|2. In convolutional

neural networks we observe a different behaviour. Firstly, the performance difference between

activation functions is smaller. The magnitude |z| still outperforms the squared magnitude |z|2.

Moreover, it also outperforms all other activation functions for both real and complex CNNs in

all considered tasks.

As expected, we observe that with a fixed number of neurons per layer (Experiment 1) and

increasing depth, the accuracy increases in both cases. As we are increasing the total number

of parameters, the model capacity increases. An exception here is Reuters topic classification

where the performance decreases with increasing depth. When choosing the number of neurons

per layer according to a given parameter budget (Experiment 2 with Equations 3.5, 3.6), the

performance decreases significantly as model depth increases. Overall, the width of each layer

is more important than the overall depth of the complete network. Increasing the number of

convolutional layers in CNNs improves their performances for all tasks except Reuters newswire

classification.

We found that the performance variance between the 10 initialisations of MLPs is very high

for the complex-valued cases. We hypothesized that weight initialisation in complex MLPs be-

comes much more difficult with increasing depth. Hence, their performance is highly unstable.

Section 3.5 Results 47

Table 3.1: Test accuracy of a multi-layer perceptron consisting of k + 2 layers each with 64
neurons (alternating 64 and 32 neurons in the complex MLP) and an output layer with c = 10
neurons on MNIST digit classification task (Experiment 1). Selected best from 10 runs. Each
run was trained for 100 epochs.

Hidden
layers

k

Real
parameters

p�

Activation
function

ϕ
MNIST

� �

k = 0 50,816

identity 0.9282 0.9509
tanh 0.9761 0.9551
relu 0.9780 0.9710
|z|2 0.9789 0.9609
|z| 0.9770 0.9746

k = 2 59,008

identity 0.9274 0.9482
tanh 0.9795 0.8923
relu 0.9804 0.9742
|z|2 0.9713 0.6573
|z| 0.9804 0.9755

k = 4 67,200

identity 0.9509 0.9468
tanh 0.9802 0.2112
relu 0.9816 0.9768
|z|2 0.8600 0.2572
|z| 0.9789 0.9738

k = 8 83,584

identity 0.9242 0.1771
tanh 0.9796 0.1596
relu 0.9798 0.9760
|z|2 0.0980 0.0980
|z| 0.9794 0.1032

48 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification Chapter 3

Table 3.2: Test accuracy of a multi-layer perceptron consisting of k + 2 layers each with 64
neurons (alternating 64 and 32 neurons in the complex MLP) and an output layer with c = 46
neurons on Reuters topic classification (Experiment 1). Selected best from 10 runs. Each run
was trained for 100 epochs.

Hidden
layers

k

Real
parameters

p�

Activation
function

ϕ
Reuters

� �

k = 0 642,944

identity 0.8116 0.7939
tanh 0.8117 0.7912
relu 0.8081 0.7934
|z|2 0.8050 0.7885
|z| 0.8068 0.7992

k = 2 651,136

identity 0.8005 0.7836
tanh 0.7978 0.7320
relu 0.7921 0.7854
|z|2 0.7725 0.6874
|z| 0.7996 0.7823

k = 4 659,328

identity 0.7925 0.7787
tanh 0.7814 0.4199
relu 0.7734 0.7671
|z|2 0.5895 0.0650
|z| 0.7863 0.7694

k = 8 675,712

identity 0.7929 0.7796
tanh 0.7542 0.1861
relu 0.7555 0.7676
|z|2 0.0053 0.0053
|z| 0.7671 0.7524

Section 3.5 Results 49

Table 3.3: Test accuracy of a multi-layer perceptron consisting of k + 2 layers each with 128
neurons (alternating 128 and 64 neurons in the complex MLP) and an output layer with c = 10
neurons on CIFAR-10 image classification task (Experiment 1). Selected best from 10 runs. Each
run was trained for 100 epochs.

Hidden
layers

k

Real
parameters

p�

Activation
function

ϕ
CIFAR-10

� �

k = 0 394,496

identity 0.4044 0.1063
tanh 0.4885 0.1431
relu 0.4902 0.4408
|z|2 0.5206 0.1000
|z| 0.5256 0.1720

k = 2 427,264

identity 0.4039 0.1000
tanh 0.5049 0.1672
relu 0.5188 0.496
|z|2 0.1451 0.1361
|z| 0.5294 0.1000

k = 4 460,032

identity 0.4049 0.1000
tanh 0.4983 0.1549
relu 0.8445 0.6810
|z|2 0.1000 0.1000
|z| 0.5273 0.1000

k = 8 525,568

identity 0.4005 0.1027
tanh 0.4943 0.1365
relu 0.5072 0.4939
|z|2 0.1000 0.1000
|z| 0.5276 0.1000

50 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification Chapter 3

Table 3.4: Test accuracy of a multi-layer perceptron consisting of k + 2 layers each with 128
neurons (alternating 128 and 64 neurons in the complex MLP) and an output layer with c = 100
neurons on CIFAR-100 image classification task (Experiment 1). Selected best from 10 runs.
Each run was trained for 100 epochs.

Hidden
layers

k

Real
parameters

p�

Activation
function

ϕ
CIFAR-100

� �

k = 0 406,016

identity 0.1758 0.0182
tanh 0.2174 0.0142
relu 0.1973 0.1793
|z|2 0.2314 0.0158
|z| 0.2423 0.0235

k = 2 438,784

identity 0.1720 0.0100
tanh 0.2314 0.0146
relu 0.2400 0.2123
|z|2 0.0143 0.0123
|z| 0.2411 0.0100

k = 4 471,552

identity 0.1685 0.0100
tanh 0.2178 0.0157
relu 0.2283 0.2059
|z|2 0.0109 0.0100
|z| 0.2313 0.0100

k = 8 537,088

identity 0.1677 0.0100
tanh 0.2000 0.0130
relu 0.2111 0.1956
|z|2 0.0100 0.0100
|z| 0.2223 0.0100

Section 3.5 Results 51

Table 3.5: Test accuracy of a multi-layer perceptron consisting of k + 2 dense layers with an
overall budget of 500, 000 real-valued parameters on MNIST digit classification (Experiment 2).
The last layer consists of c = 10 neurons. Selected best from 10 runs. Each run was trained for
100 epochs.

Hidden
layers

k
Units

Activation
function

ϕ
CIFAR-10

m� m� � �

k = 0 630 315

identity 0.9269 0.9464
tanh 0.9843 0.9467
relu 0.9846 0.9828
|z|2 0.9843 0.9654
|z| 0.9857 0.9780

k = 2 339 207

identity 0.9261 0.9427
tanh 0.9852 0.6608
relu 0.9878 0.9835
|z|2 0.9738 0.8331
|z| 0.9852 0.9748

k = 4 268 170

identity 0.9254 0.2943
tanh 0.9838 0.2002
relu 0.9862 0.9825
|z|2 0.8895 0.2875
|z| 0.9846 0.9870

k = 8 205 134

identity 0.9250 0.1136
tanh 0.9810 0.1682
relu 0.9851 0.9824
|z|2 0.0980 0.0980
|z| 0.9803 0.1135

52 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification Chapter 3

Table 3.6: Test accuracy of a multi-layer perceptron consisting of k + 2 dense layers with an
overall budget of 500, 000 real-valued parameters on Reuters topic classification (Experiment 2).
The last layer consists of c = 46 neurons. Selected best from 10 runs. Each run was trained for
100 epochs.

Hidden
layers

k
Units

Activation
function

ϕ
Reuters

m� m� � �

k = 0 50 25

identity 0.8072 0.7970
tanh 0.8112 0.7832
relu 0.8054 0.7925
|z|2 0.8037 0.7929
|z| 0.8059 0.7912

k = 2 49 25

identity 0.7992 0.7809
tanh 0.7952 0.7289
relu 0.7898 0.7751
|z|2 0.7778 0.6887
|z| 0.7716 0.7911

k = 4 49 25

identity 0.7636 0.7854
tanh 0.7796 0.4550
relu 0.7658 0.7676
|z|2 0.5823 0.0289
|z| 0.7809 0.7573

k = 8 48 24

identity 0.7760 0.7663
tanh 0.7449 0.1799
relu 0.7182 0.7484
|z|2 0.0053 0.0053
|z| 0.7449 0.7302

Section 3.5 Results 53

Table 3.7: Test accuracy of a multi-layer perceptron consisting of k + 2 dense layers with an
overall budget of 500, 000 real-valued parameters on CIFAR-10 image classification (Experiment
2). The last layer consists of c = 10 neurons. Selected best from 10 runs. Each run was trained
for 100 epochs.

Hidden
layers

k
Units

Activation
function

ϕ
MNIST

m� m� � �

k = 0 162 81

identity 0.4335 0.1006
tanh 0.5032 0.1676
relu 0.5007 0.4554
|z|2 0.5179 0.1006
|z| 0.5263 0.2381

k = 2 148 77

identity 0.4069 0.1000
tanh 0.5205 0.1673
relu 0.5269 0.4963
|z|2 0.1395 0.1273
|z| 0.5315 0.1000

k = 4 138 74

identity 0.4052 0.1000
tanh 0.5218 0.1475
relu 0.5203 0.4975
|z|2 0.1065 0.1010
|z| 0.5234 0.1000

k = 8 123 69

identity 0.4050 0.1003
tanh 0.5162 0.1396
relu 0.5088 0.4926
|z|2 0.1000 0.1000
|z| 0.5194 0.1000

54 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification Chapter 3

Table 3.8: Test accuracy of a multi-layer perceptron consisting of k+2 dense layers with an overall
budget of 500, 000 real-valued parameters on CIFAR-100 image classification (Experiment 2).
The last layer consists of c = 100 neurons. Selected best from 10 runs. Each run was trained for
100 epochs.

Hidden
layers

k
Units

Activation
function

ϕ
CIFAR-100

m� m� � �

k = 0 158 79

identity 0.2807 0.0314
tanh 0.2308 0.0193
relu 0.2153 0.1935
|z|2 0.2364 0.0124
|z| 0.2439 0.0279

k = 2 144 75

identity 0.1723 0.0100
tanh 0.2440 0.0203
relu 0.2481 0.2224
|z|2 0.0155 0.0151
|z| 0.2453 0.0100

k = 4 135 72

identity 0.1727 0.0100
tanh 0.2397 0.0150
relu 0.2381 0.2147
|z|2 0.0122 0.0100
|z| 0.2390 0.0100

k = 8 121 67

identity 0.1706 0.0100
tanh 0.2209 0.0164
relu 0.2167 0.2027
|z|2 0.0100 0.0100
|z| 0.2191 0.0100

Section 3.5 Results 55

Table 3.9: Test accuracy of convolutional neural network consisting of k + 1 convolutional layers
with 128 filters real-valued case or 64 filters in the complex-valued case. Each convolutional
layer is followed by a Max-Pooling and eventually by an output layer with c = 10 neurons on
MNIST digit classification task (Experiment 3). Selected best from 10 runs. Each run was trained
for 100 epochs.

Hidden
layers

k

Real
parameters

p�

Activation
function

ϕ
MNIST

� �

k = 0 217,472

identity 0.9812 0.9804
tanh 0.9820 0.9814
relu 0.9855 0.9885
|z|2 0.9854 0.9881
|z| 0.9862 0.9888

k = 2 297,344

identity 0.9900 0.9865
tanh 0.9907 0.9786
relu 0.9924 0.9922
|z|2 0.9926 0.9924
|z| 0.9937 0.9932

Table 3.10: Test accuracy of convolutional neural network consisting of k+1 convolutional layers
with 128 filters real-valued case or 64 filters in the complex-valued case. Each convolutional layer
is followed by a Max-Pooling and eventually by an output layer with c = 46 neurons on Reuters
topic classification task (Experiment 3). Selected best from 10 runs. Each run was trained for
100 epochs.

Hidden
layers

k

Real
parameters

p�

Activation
function

ϕ
Reuters

� �

k = 0 29,434,496

identity 0.7943 0.7858
tanh 0.7956 0.7854
relu 0.7867 0.7743
|z|2 0.7832 0.7716
|z| 0.7872 0.7680

k = 2 7,446,912

identity 0.7792 0.7818
tanh 0.7778 0.7796
relu 0.7631 0.7703
|z|2 0.7386 0.7462
|z| 0.7569 0.7271

56 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification Chapter 3

Table 3.11: Test accuracy of convolutional neural network consisting of k+1 convolutional layers
with 128 filters real-valued case or 64 filters in the complex-valued case. Each convolutional layer
is followed by a Max-Pooling and eventually by an output layer with c = 10 neurons on CIFAR-
10 image classification task (Experiment 3). Selected best from 10 runs. Each run was trained
for 100 epochs.

Hidden
layers

k

Real
parameters

p�

Activation
function

ϕ
CIFAR-10

� �

k = 0 291,456

identity 0.6151 0.6157
tanh 0.6169 0.6140
relu 0.6663 0.6540
|z|2 0.6186 0.6195
|z| 0.6678 0.6682

k = 2 303,488

identity 0.6867 0.6606
tanh 0.7157 0.6185
relu 0.7302 0.7156
|z|2 0.6683 0.6476
|z| 0.7756 0.7471

Table 3.12: Test accuracy of convolutional neural network consisting of k+1 convolutional layers
with 128 filters real-valued case or 64 filters in the complex-valued case. Each convolutional
layer is followed by a Max-Pooling and eventually by an output layer with c = 100 neurons on
CIFAR-100 image classification task (Experiment 3). Selected best from 10 runs. Each run was
trained for 100 epochs.

Hidden
layers

k

Real
parameters

p�

Activation
function

ϕ
CIFAR-100

� �

k = 0 2,883,456

identity 0.2922 0.2851
tanh 0.2973 0.2940
relu 0.3515 0.3382
|z|2 0.3141 0.3179
|z| 0.3735 0.3698

k = 2 349,568

identity 0.3842 0.3551
tanh 0.4167 0.2881
relu 0.4048 0.3991
|z|2 0.3241 0.2358
|z| 0.4270 0.3765

Section 3.6 Synthetic Tasks 57

Figure 3.3: Average absolutes of real |Re(z)|, imaginary parts |Im(z)| and average complex mag-
nitude |z| of all weights Wi over training epochs of the MNIST classification task.

We confirmed this by training a complex MLP (k = 2, tanh) with 100 runs (instead of 10 runs)

on the Reuters classification task. The performance gap decreases if a setting is initialised more

often. We found a test accuracy of 0.7748 in complex-valued case in comparison to 0.7978 in

the real-valued case (Table 3.2). CNNs do not suffer from the same problem. Performance for

CNNs are very stable.

3.6 Synthetic Tasks

In further examination of the training process we observed that the imaginary parts of the complex

weights always follow the real parts of the weights in their average magnitudes. This is presented

in two examples from our experiments in Figures 3.3 and 3.4.

This behaviour can be further illustrated with two synthetic classification tasks. Random

complex data points x ∈ �n are to be classified using a complex-valued MLP according to the

quadrant of its sum
∑n

i=0 xi or if it is close to the origin (Figure 3.5). Real data points x ∈ �n

follow the same rule. This is equivalent to a projection of complex data points to � (Figure 3.6).

We classify n = 10, 000 complex resp. real input with Gaussian noise σ = 0.2 and d = 25

dimensions using a complex-valued MLP with k = 2 hidden layers and with each m = 64 units

per layer. Again, we observe that the weight initialisation is a significant problem. However,

the complex model can reliably approximate the underlying complex or real functions achieving

58 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification Chapter 3

Figure 3.4: Average absolutes of real |Re(z)|, imaginary parts |Im(z)| and average complex mag-
nitude |z| of all weights Wi over training epochs of the Reuters classification task.

training accuracy of 0.981 and a test accuracy of 0.908. We observe that our complex-valued

weights behave differently depending on the input type. Using complex-valued input the real and

imaginary parts develop independently and then reach convergence independently (Figure 3.7).

When training with real-valued synthetic data the magnitudes of imaginary parts follow the real

parts very closely (Figure 3.8). Independently of the initialisation, the real parts converge a few

epochs before the imaginary part. In our synthetic experiments this is between 3 and 5 epochs

before.

To explain the training behaviour of the imaginary weights, we consider the computations

within a complex-valued MLP (Figure 3.9). Consider the information flow within an complex-

valued MLP.

Real-valued data does not require the interaction that is provided by complex numbers. The

imaginary part of the input Im(x) is zero, so the multiplications in Equation 2.8 simplifies to:

Re(xW) = Re(x)Re(W),

Im(xW) = Re(x)Im(W)
(3.9)

The real parts Re(x) and Re(W) dominate the overall classification of a real-valued data point.

We see that the real and imaginary parts of the weights act identically on the input in order to

reach a classification result. Hence, the final classification is the average of two identical or very

Section 3.7 Discussion 59

Figure 3.5: Example of synthetic data’s class distribution. The class is determined by the sum’s
location consisting of complex elements xi ∈ � in the input vector. Colours indicate different
classes.

similar parallel classifications. The complex-valued logits of the last layer are simply averaging

the output. These logits are then mapped to a probability distribution over the classes. If in

the training phase the averaged absolute values of the weight’s imaginary part follow those of

the real parts, the imaginary part of the input is either distributed exactly the same way as its

real part, or the considered task simply does not benefit from using complex-valued hypothesis.

Hence this behaviour in the training process, can be used to identify tasks that may benefit from

a complex-valued hypothesis. It can also be used as a criterion to select tasks for further in-depth

experimenting and hyperparameter optimisation under a complex-valued hypothesis.

3.7 Discussion

For many applications that involve data which is interpretable on the complex plane complex-

valued neural networks have already shown that they are superior [35]. However, the selected

tasks in our work use real-valued input data.

Complex-valued MLPs consistently perform slightly worse or significantly worse than real-

valued neural networks. This can be observed across activation functions and depth. This seems

60 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification Chapter 3

Figure 3.6: Example of synthetic data’s class distribution. The class is determined by the sum’s
location consisting of real elements xi ∈ � in the input vector. Colours indicate different classes.

Figure 3.7: Example of independent learning behaviour of real and imaginary parts in the clas-
sification of synthetic complex-valued data. The real and imaginary parts change independently
over the training. The exact trajectory of the graph depends on the weight initialisation.

Section 3.7 Discussion 61

Figure 3.8: Example of dependent learning behaviour of the complex weights in the classification
of synthetic real-valued data. The imaginary part follows the real part of the weight with every
epoch. The exact trajectory of the graph depends on the weight initialisation.

Figure 3.9: Interaction of real parts Re(Wi), imaginary parts Im(Wi) with the real-valued input x
and complex output zi of the i-th layer of an MLP with k = 2 layers.

62 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification Chapter 3

counter-intuitive at first, since every real value is just a complex number with a zero imaginary

part. Solving a real-valued problem with a complex-valued model should approximate the func-

tion at least as well as a real-valued model. If there are any features to be discovered, that a

real-valued model can not capture (e.g. phases) a complex-valued hypothesis should be able to

learn these features, too. Therefore, the question as to why complex-valued models are inferior

arises. Through our previous analysis, we know that the neural network learns two separate and

equivalent classifications. These classifications are learned in the real and in imaginary parts

of the model. The imaginary weights follow the real weights in their training and come to the

same classification. This results in two separate, but connected real-valued classifiers. However,

each classifier contributes its own noise into their interaction. We can identify tasks that would

benefit from complex-valued neural network by comparing the training behaviour (e.g. by the

average absolute values) of real and imaginary weights. If the imaginary part does not follow

the real parts behaviour across epochs, the task benefits from assuming a complex hypothesis.

Real-valued classification tasks do not benefit from complex-valued hypothesis. It also suggests

that a complex network requires explicit incentives in a real-valued loss or explicit encoding of

input information to learn valuable intermediate complex representations. A possible way to

encode additional input information is preprocessing the input data to a complex representation

(e.g. transformations or embeddings). In this context, frequency-based representations are a

natural interpretation in the complex domain. Alternatively, embeddings that capture additional

positional information allow MLPs to classify based on position while at the same time treating

the input as orderless. We investigate this principle in Chapters 4 and 5.

Considering CNNs across activation functions, complex-valued networks also perform sim-

ilarly or slightly worse compared to their real-valued counterparts. Only under certain activation

functions and depth, do they perform better. This performance difference, however, is insigni-

ficant (< 0.001). As expected, the context-aware CNNs perform better than MLPs on image

classification tasks. Generally, CNNs and MLPs perform similarly well. However, convolutions

reduce the number of parameters significantly. In direct comparison with MLPs, CNNs perform

similarly or better. This may be due to the nature of our chosen tasks that require context-aware

decisions. Specifically the image-based task benefit significantly from the use of a CNN. Fur-

thermore, complex- and real-valued CNNs require fewer parameters by design.

The Liouville Theorem states that we need to choose an activation function that is either

unbounded and/or non-holomorphic. Existing literature suggests that using unbounded activation

functions may even improve the learning process in deep neural architectures by reducing the

vanishing gradient problem [61]. We empirically support this claim with our observations. The

split-activation variant of the Rectifier Linear Unit appears to be much more stable in deeper

networks. For CNNs the best activation is the magnitude which behaves similarly to the rectifier

linear unit.

We found that the training process often fails, due to singularities (poles, removable singular-

Section 3.7 Discussion 63

ities, essential singularities or isolated singularities) within the domain of the activation function.

Singularities may break the training process. Generally, a singularity (or singular point) is a point

z0 in the function’s f (z) domain where it fails to be analytic. Not every singularity type is equi-

valently problematic for a gradient-based optimisation processes. Certain types of singularities

require active methods in order to avoid these points. Others may not affect the training process

at all, due to the nature of gradient descent optimisation. Poles are an example of usually unprob-

lematic singularities. Functions act regularly in the neighbourhood of these singularities, but are

infinite at these singular points. Further, a function does not need to be differentiable at all points

to be used as an activation function. If a function is only non-differentiable at single specific

point, it is very unlikely for the training process to break by ‘hitting‘ these specific points. Mod-

ern frameworks assign a fixed scalar as a gradient or return the nearest derivative to a singular

point to prevent a failed training process.

Since CNNs use fewer parameters by design, they are also less affected by singularities and

difficult initialisations than MLPs.

When designing complex-valued neural networks, we must consider boundedness, the beha-

viour of a function around singular points and, real/complex differentiability of the entire func-

tion. To reduce the problem of a failing training process, we should choose unbounded activation

functions which only contain removable or unproblematic singularities and which are complex

and/or real differentiable at most points. Depending on the type of singularity, we need to employ

other methods to avoid these points (i.e. constraint training). It is not possible to make a general-

ising statement about the behaviour of activations functions in the complex plane. Consequently,

each function should be examined individually with respect to singular points. Other methods

to stabilise the training may originate from the real domain. Normalisation methods like batch

normalisation, weight normalisation and gradient clipping can be used to support the training

process and its stability.

ReLU is the best performing non-linearity for both real and complex MLPs. ReLU is an

unbounded, not entirely differentiable function with a singularity at z0 = 0. Existing empirical

evidence repeatedly confirmed the success of ReLU in the real domain. This is further supported

by theoretical work on the consequences of unboundedness in deep neural networks [61]. Since

it does not ‘squash‘ the values into an interval, the gradients do not rapidly decrease smaller

through layers, thus mitigating the vanishing gradient problem. In the complex domain it shows

its viability as a split activation function. However, this may also be due to the setting we chose

to investigate. We discovered that using the complex-valued MLP on real-valued data learns two

parallel classifications with two similar weights for real and imaginary parts. By applying the

same activation function within each of these, only allowing interaction of the parts in matrix

multiplications, we simulate two identical parallel ReLU-activated classifications. In (complex)

CNN taking both real and imaginary parts is important, due pooling function that is based on

magnitudes. The magnitude function behaves very similarly to the rectifier linear unit in the real-

64 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification Chapter 3

valued case. In the complex case it equally takes both the real and imaginary part into account.

The maximum (magnitude) pooling in CNNs also contributes to the increased performance in

comparison to other activation functions, since they are both based on the absolute value.

The training process was found to fail more often with increasing depth. With every layer

that applies an activation function containing singular points, the training stability decreases.

Each application of an activation function adds more singular points to the overall loss function.

Hence, the likelihood of encountering a singular point in deeper models increases. Further, in-

creasing depth also seem to have an impact on the performance. The classification performance

varies drastically between different runs if the model depth increases. Initialisations with not en-

tirely differentiable activation functions become more critical with increasing depth [62]. We use

Trabelsi et al. [27] variance-scaled complex initialisation. This initialisation method is inspired

by Glorot and Bengio [63]. This observation cannot yet be fully explained for complex-valued

neural networks and lacks further empirical evidence. This area requires further research. The

training process of complex-valued CNN fails less often, since CNNs have fewer parameters

by design. The separation of filters provided by CNNs with pooling makes their training more

stable. Even if a single filter encounters a singularity, other filters are not affected. This provides

a complex-valued CNN with a certain level of fail safety.

The budget networks (Experiment 2) outperform the alternating-fixed-width networks (Ex-

periment 1), because they use significantly more parameters per layer. In Experiment 2 we have

chosen a budget of 500, 000 real-valued parameters which is purposefully oversized for most

of the chosen benchmark tasks to show their use of parameters. In shallower networks these

parameters are distributed over fewer layers making them wider.

We found that width is more important than depth for our classification tasks. Networks with

k = 0 hidden layers often outperform networks with k > 0. Wider networks tend to memorise

the training data while deeper networks learn new features with every layer. Wide networks

put memorisation before generalisation and abstraction. Benchmark tasks are simple tasks and

the limited data complexity rewards simply recalling the data. For example wide MLPs in the

MNIST memorise possible digit variations rather than abstracting to more general features of

digit images. This was found by monitoring the training and test accuracy. In both the real

and complex case the training accuracy converges significantly higher than the test accuracy

(3 − 5 percent). Shallow and wide MLPs tend to overfit. However, the over-fitting property of

the complex-valued neural network tends to be less intense (2 − 3 percent). This indicates that

complex-valued neural networks have a regularising effect on the training process.

We found that the CIFAR benchmarks are not solvable with MLPs, but that the classification

is entirely random using a complex MLP. Generally, long sequential inputs are difficult or even

impossible to learn for MLPs, since the image is flattened before being used as an input to the

network. This flattening destroys the 2D dependencies within an image. Learning the long-

distance dependencies between input features (pixels) is difficult for an MLP and exceed their

Section 3.8 Conclusion 65

capabilities in larger images. However, complex-valued MLPs do not learn any dependencies

within the input data. This finding was unexpected, because a complex MLP should have at

least the same expressibility compared to real MLPs. An explanation for this observation is the

unstable training process we discussed in previous findings. The complex-valued MLP simply

does not converge at (local) optima. As expected, the two CIFAR benchmarks can better be

approached with context-sensitive convolutions.

Certain choices made in this work limit the interpretability of our findings. We are bound

by our selection of activation and pooling functions. A wider range may have led to improved

results in complex-valued neural networks. Further investigation could use our current findings

and include other activation functions like Hirose [35] hyperbolic tangents or modReLU. Fur-

ther, our chosen benchmark tasks may be too easy for the MLPs. Other benchmarks task could

include audio classification tasks, question classification tasks or further synthetic tasks. In our

image-based tasks the images are preprocessed by flattening the 2D image into a vector. An

alternative approach that respects the 2D structure may be investigated in future work. Complex

convolutions have been suggested and tested in existing literature [54, 56]. We focused on MLPs,

because they are very frequently used as classifiers or as part in many larger architectures. We

purposefully did not apply methods to stabilise training like batch normalisation, weight norm-

alisation or gradient clipping, since we did not want to inflate our results. Instead we aimed for a

simple comparison in order to compare the impacts of real and complex numbers, not the impact

of additional methods.

3.8 Conclusion

In summary, we found that real-valued models pose an upper performance bound in real-valued

tasks when compared to complex-valued models of the same capacity. Real and imaginary parts

act identically on the input. Hence, the MLP is simply learning two separate, but equivalent

classifications. We found that singularities in activation functions may lead to failed training

processes. However, not all singularities have a negative impact. When designing complex-

valued neural networks, we need to consider boundedness, the behaviour of activation functions

around singular points and real and complex differentiability of the entire function. We found

that the split-activation function ReLU outperforms other activation functions. MLPs in our

simple benchmark tasks prefer wide networks rather than deep networks, indicating a preference

of memorisation over abstraction. Complex CNNs also achieve similar results to real CNNs, but

prefer the magnitude as activation function and are more suitable for context-sensitive tasks.

This work contributes to the growing literature on complex-valued neural networks. We

have added an in-depth investigation of complex-valued neural networks for classification. We

elaborate on various problems that appear when designing and training complex neural networks

and suggest possible solutions. We have discussed the impact of singularities and differentiability

66 Complex-Valued Multi-layer Perceptrons for Real-Valued Classification Chapter 3

of activation functions. Additionally, we generalised a criterion to identify tasks which may

benefit from a complex-valued hypothesis early in the training process. We also derived various

recommendations for the design of complex-valued neural networks.

In answer to our research question: ‘Does the use of complex-valued neural networks improve

accuracy in classification tasks by increasing the model’s expressibility?‘ we did not observe per-

formance improvements in classification of real-valued input data directly. When real-valued data

is used as an input into a complex-valued classifier the real and imaginary parts of the weights

convergence together. The complex-valued logits of the last layer are simply scaling the output.

These logits are then mapped to a probability distribution over the classes. A complex-valued

MLP and CNN can, therefore, at best perform on-par with its real-valued counterpart on real-

valued classification tasks. However, it is more likely to perform worse, due to its initialisation

and approximation error. The extended expressibility does not allow the network to learn useful

information if they are not explicitly encoded or encouraged.

In existing literature we have observed that complex-valued neural networks outperform real-

valued neural networks. Particularly for signal- or image-related tasks complex-valued neural

networks should outperform real-valued networks. We could not find experimental evidence to

further generalise the recommendation. Following our findings and the findings in existing lit-

erature, we recommend the use of complex numbers in neural networks if a) the input data has

a known mapping or transformation to complex numbers, b) the noise in the input data is as-

sumed to be distributed on the complex plane, c) complex-valued embedding or a transformation

can be learned from real-valued data by explicitly encoding additional information or d) a real-

valued loss function creates an explicit incentive to learn a complex-valued hypothesis. These

recommendations are addressed in later chapters:

Section 4.3 and Chapter 5 present approaches that involve mapping the data into the fre-

quency domain using Fourier and Z-transformations.

In chapter 5 the frequency representations of speech data contain noise frequencies which

can be learned to be filtered out in within the representation.

Sections 4.3, 4.4 and 4.5 present methods to embed the data into the complex plane. We in-

vestigate providing positional information or implicitly learn task-specific word representations.

Instead of designing specific loss functions J : � → �, we generalised existing loss func-

tions (e.g. cross entropy) to the complex plane. Existing literature, however, found task-specific

loss functions that emphasise complex-valued hypothesis and improve performance [23, 28, 64].

Hence, we can not ignore them in our recommendations and suggest their further investigation

in future work.

We believe that new methods of learning complex-valued representation in conjunction with

further work on new activation and loss functions for the complex domain will greatly improve

the results of existing approaches. More investigation of the normalisation of complex-valued

neural networks will stabilise the learning process further.

Section 3.8 Conclusion 67

Our findings suggest that complex-valued models can not extract improved features from

real-valued data. In the next chapter we apply alternative techniques to extract features. We

achieve this by transforming and embedding real-valued data into the complex domain. We

focus on language modelling and memory networks. We also found that the training process is

very unstable which inspires the further investigation of constraints to the complex domain. Our

findings also inspire Chapter 5 which applies the same transformation techniques on signal data.

Signal data naturally has a direct translation to the complex domain. Hence, we consider the

complex models to process both real and complex data.

CHAPTER 4

Complex-Valued Word Representations

In the previous chapter we worked with real-valued data as a direct input to a complex-valued

neural networks and recommended to use them if there is a natural translation to a complex-

valued domain.

In this chapter we focus on language representations that attempt to decide additional in-

formation in the complex plane. We show various methods that facilitate dense complex-valued

representations for language processing tasks. In particular, we consider Language Models,

Memory Networks and Quantum-Inspired Models. We use complex-valued neural networks

to learn embeddings, or occurrence statistics to design quantum-inspired semantic representa-

tions. We facilitate recurrent neural networks and related architectures. Our approaches follow

the Distributional Hypothesis [15] and attempt to capture compositionality of words [16].

Chapter 1 presents the expressibility of complex-valued representations. Its applicability

to Embedding learning motivates the chapter on complex-valued word embeddings. Chapter 2

introduced recurrent networks, embeddings and transformations. We apply these building blocks

to Embedding Learning and present them in this chapter. We consider general and task-specific

word embeddings. This chapter is additionally motivated by our findings in Chapter 3 which

indicate that embeddings and transformations are necessary to extract further features from real-

valued data.

68

Section 4.1 Introduction 69

4.1 Introduction

In recent years neural language modelling has been used to train dense representations of words

[65]. Embeddings are used to improve performance in more complex natural language tasks. In

this work we explore complex-valued dense representations of words.

Complex-valued representations promise more interaction between the constituent words in

compositions. Word embeddings are often combined (e.g. by summation) to receive sentence

representations from multiple word embeddings. Complex-valued embeddings with their phase

information cause an additional, structured interaction between the words. We hypothesised

that complex-valued embeddings can improve performance in various natural language tasks by

implicitly facilitating interference in compositions.

In this work we proposed multiple approaches to learn complex-valued representations. All

methods increase their information density by using the embedding’s phase or imaginary parts to

encode additional information. We design quantum-inspired, positional or spectral embeddings,

or use the complex weights to increase the model’s degrees of freedom.

With increased degrees of freedom we can train task-specific embeddings. We demonstrate

this using a question answering task (QA). For this purpose we also investigate different activ-

ation functions. We facilitate complex-valued versions of Long-Short Term Memories (LSTM),

embedding layers and fully connected layers. Complex-valued neural networks, have been suc-

cessfully used for a variety of tasks. However, there is a significant lack of literature reporting

advantages, disadvantages and limitations of complex-valued representation learning.

4.2 Related Literature

Word embeddings are dense, low-dimensional representations of words in a specified vocabu-

lary. They can capture semantic and syntactic relationships between words. The idea for em-

beddings originates in Distributional Semantics which attempt to quantify word meaning by its

context words. They have been used to improve performance in down-stream natural language

tasks. Pre-trained word embeddings have been used in speech recognition [65, 66], questions

answering (QA) [6, 67], knowledge base completion [68] and many more applications too nu-

merous to list. They follow the Distributional Hypothesis [15]. Historically, approaches were

based on statistical features such as co-occurrence, term frequency and mutual information. Ex-

tracting these statistics from corpora resulted in sparse, high-dimensional representations which

required further processing for dimensionality reduction. Earlier approaches can be categorised

into generative (e.g. LDA [69]) or factorisation methods (e.g. LSA [70]). While in the past these

observable features have been manually chosen, DL methods implicitly learn the features. The

principle of discovering smaller sets of features for a high-dimensional input, is also applied to

other data types e.g. sequences, images or signals [71, 72, 73, 74]. This research field is often

70 Complex-Valued Word Representations Chapter 4

referred to as Representation Learning.

Representations of natural language are most commonly learned in two ways. Task-specific

embeddings can be learned as a by-product of any natural language tasks, or they can be purpose-

fully trained as general-purpose embeddings. Their reliability and quality in tasks depends on the

size and type of corpus used. To overcome the frequent problem of small task-specific data sets,

general semantic representations are trained on large, generic corpora in order to be retrained on

the smaller task-specific corpus. Neural language modelling has often been used to create general

semantic embeddings in an unsupervised setting [75]. The objective of statistical language mod-

elling is to predict a target word given its context. Hence, n-grams are used as an input. A popu-

lar alternative is design objective functions specifically to learn embeddings. Word2Vec [76] and

GloVe [77] are probably the most commonly known examples. Further investigation of earlier

methods has shown that these particular embeddings are mimicking classical approaches that

rely on context statistics [78, 18]. These developments have given rise to more recent approaches

Context2Vec [79] and ELMo embeddings [80] which rely on bidirectional learning. Most re-

cently, attention mechanisms are applied with recurrent networks to improve their performance

on long-term dependencies [81]. By individually attending to sequences of representations, a

model learns to scale the importance of elements in a weighted average. Standard recurrent cells

are replaced by more complicated attention-based memory architectures to allow reliable storage

and query of attended input [82, 6, 83, 81]. Attention and memory networks enhance current

encoder-decoder architectures [84]. Transformer networks, a neural encoder-decoder architec-

ture based on attention without recurrence or convolution, has been used to learn Bidirectional

Encoder Representations (BERT). The learned embeddings achieve significant performance im-

provements in many natural language tasks [85, 86]. In this work, we use simple complex-valued

language model architecture to learn general-purpose embeddings on a generic corpus and ques-

tion answering embeddings on a task-specific corpus. We test the advantages and disadvantages

of complex-valued embeddings in both settings.

Compositionality extends the principle of word representations to sentences and phrases.

Some syntactic structure of sentences are implicitly attained in embeddings trained for sequence-

oriented natural language tasks, since the statistical objective requires the model to model the

word’s context. As a consequence, embeddings are only meaningful in relation to each other.

They are also transformed and composed within architectures to phrase representations. In

sequence-based tasks, word embeddings are eventually composed into the hidden states, cell

states or outputs in order to represent the entire sequence. Compositions and transformations are

the main inspiration for complex-valued embeddings. The additional degrees of freedom allows

an interaction between the representations based on syntactical or positional information.

Complex-valued semantic representations were first mentioned by van Rijsbergen [87]. He

argued for a quantum theoretical approach towards Information Retrieval (IR) due to the geo-

metric and probabilistic interpretation of quantum states. This basic idea was further discussed

Section 4.3 Language Modelling 71

in context in a larger body of literature Bruza et al. [88], Song et al. [89]. In the following years

notable approaches have been made to quantum-inspired representations in IR. González and

Caicedo [90] developed a quantum variant of existing latent topic models. Widdows and Co-

hen [91] have further developed the field of quantum-inspired semantic spaces. Eventually Sor-

doni et al. [92] applies quantum-like neural language models. While Widdows and Cohen [91]

mainly argue from a geometrical interpretation, Sordoni et al. [93] and González and Caicedo

[90] use the statistical perspective to argue in favour of a quantum-inspired language model.

The body of literature has grown in recent years. Quantum-like language models and repres-

entation learning learn quantum states and combine them under the principle of quantum theory

[94, 95, 92, 96, 97, 98, 99, 100]. Some of these approaches exploit the quantum representa-

tion and notation, but ignore the complex-valued nature of quantum states entirely. Statistical

and geometrical constraints are the main benefits of a quantum theoretical models. We believe,

however, this approach will only reach its full potential if more progress for complex-valued

embeddings has been made. The use of complex numbers over real numbers is a fundamental

difference of our work compared to previous work on NLP and Representation Learning.

In addition to quantum-inspired approaches, there have been other attempts to use complex

numbers in generic representation learning. Trouillon et al. [101] and Trouillon et al. [102] de-

veloped complex embeddings for link identification in knowledge base completion. [25, 103, 26]

apply the Fourier Transform to learn representations of real-valued audio signals. Scattering

networks have been found useful in learning representations of images [104, 105] to achieve a

compromise between location and frequency resolution. Scattering networks are based on the

application of wavelet transformations of differing resolution scales. Whereas, spectral repres-

entations fix the resolution in convolutional neural networks [106].

Recurrent neural networks reduce the sequence to a single representation or a sequence of

hidden states. Thus, they are popular for encoding word sequences. There have been a number

of existing approaches to complex-valued recurrence in neural networks [107, 108, 109]. Existing

work with complex-value recurrent neural networks mainly involves the processing and analysis

of complex-valued data. Transformed input signals are processed with complex weights [110].

Additionally, the properties of complex numbers and matrices can be used to define constraints

on DL models. Introduced by Arjovsky et al. [111] and further developed by Wisdom et al. [112],

recurrent weights can be constrained to be unitary. Unitary computation steps ease vanishing or

exploding gradient problems in the training process of deep networks and reduce the number of

parameters required.

4.3 Language Modelling

The goal of language models is to predict the next word based on the previous word sequence.

Formally, we maximise the average log probability of a target word w j given its previous context

72 Complex-Valued Word Representations Chapter 4

Figure 4.1: Architecture for neural language model as real and complex baselines by Zaremba
et al. [5]. Green boxes represent single regularised LSTM layers.

sequence C = w j−c, . . . ,w j−1 in a corpus of length M. The context sequence C may be limited by

a sentence of length m or be of constant size c across sentences:

min J = −
1
M

M−1∑
j=0

ln p(w j|w j−c, . . . ,w j−1) (4.1)

p(w j|w j−c, . . . ,w j−1) =
p(w j−c, . . . ,w j)

p(w j−c, . . . ,w j−1)
(4.2)

We compare our language models to a real-valued (LM-�) and a complex-valued (LM-�)

baseline inspired by Zaremba et al. [5]. The authors present a number of experimental results

with a simple baseline architecture. The architecture itself, including the application of dropout

regularisation, have been optimised for LSTMs and this specific task. Zaremba et al. [5] demon-

strated the architecture using various hyperparameter settings. Hence, the chosen setting is a very

strong baseline for this task. These baseline architecture consist of an embedding layer, multiple

LSTM layers and a densely connected layer for prediction of the next word (Figure 4.1).

As a by-product we learn a dense representation for each word in the vocabulary V . We learn

real embeddings zi ∈ �
1×K or complex embeddings zi ∈ �

1×K . Each embedding zi is the i-th row

vector from the weight matrix E ∈ �N×K or E ∈ �N×K of the embedding layer or composed from

two separate vectors. They are extracted by projecting a one-hot vector of word wi (with the i-th

Section 4.3 Language Modelling 73

element being a one) onto the embedding matrix E. We denote embedding selection of a word

wi from an embedding matrix as a function Emb(wi) (Equation 2.14).

4.3.1 Positional Slot Models

We propose two models which explicitly utilise the complex embeddings by feeding positional

information into the imaginary part instead of implicitly determining the imaginary part. The

complex-valued embedding is therefore a combination of two real-valued embeddings. The word

is embedded separately from its position in the sentence and composed to a complex-valued

embedding to be fed into the complex-valued recurrence (Figure 4.2).

Our positional language model (LM-�-slots) uses an indexing function (Equation 4.3) to

embed the positional information as an imaginary part of the embedding (Equation 4.4). The

number of positional slots S determines into how many parts every sentence is divided. The

semantic and positional embeddings are learned separately. The semantic word embeddings

Emb(wi) are trained following the approach described for the real-valued case. The positional

embeddings Emb(ps) are similarly trained, but the index is selected by a positional slot function

s(j,m) = 0, . . . , S − 1 of the word’s position j in a sentence of length m:

ps = s(j,m) = f loor(j
S
m

),∀ j ∈ {0, . . . ,m} (4.3)

The semantic embedding of a word Emb(wi) and the positional embedding Emb(ps) are com-

posed to the complex word embedding zi:

zi = Re(zi) + iIm(zi) = Emb(wi) + iEmb(ps) (4.4)

4.3.2 Phase Language Model

Our phase-based model applies a phase shift as a positional embedding pφ to the semantic em-

bedding Emb(wi) (Figure 4.3). The semantic embeddings Emb(wi) and the phase φ are composed

to a complex word embedding zi:

zi = Emb(wi) · eiφ = |Emb(wi)| · eiϕ+φ = |Emb(wi)| ·
(

cos(ϕ + φ) + i sin(ϕ + φ)
)

(4.5)

Every word receives a phase offset φ(j,m) based on its position j in a sentence of length m:

φ(j,m) =
(
j
2π
m

)
,∀ j ∈ {0, . . . ,m} (4.6)

While we test a single instance of a phase-shift model, this defines a family of models. Equa-

tion 4.6 divides the unit circle into m equally sized parts, thus the phases are distributed over

74 Complex-Valued Word Representations Chapter 4

Figure 4.2: Architecture for a neural language model using complex-valued slot positional em-
beddings. Green boxes summarise multiple regularised LSTM layers.

the unit circle. Each word embedding in a sentence is then assigned a phase according to its

position in the sentence. It starts with a start-of-sentence token at 0, 2π
m , 2

2π
m , Alternatively,

a phase shift vector φi can be learned independently for each word wi. Phase learning can also

be applied to existing embeddings (e.g. word2vec) by initialising the weights with an existing

embedding matrix. Phase learning requires further and more in-depth consideration, which may

be considered in future research.

4.3.3 Frequency Language Models

We propose another type of language model: the Frequency Language Model. Frequency Lan-

guage Models apply transformations to the frequency domain onto a sequence of real-valued

embeddings. In our first frequency-based model we apply a Discrete Fourier transformation

(DFT) F (x[K]) (LM-�-fourier, Figure 4.4). The DFT decomposes each embedding into a se-

quence of cosine and sine waves of the same length in the frequency domain (Equation 4.7). In

our case the DFT is applied on the sequence of embeddings Emb(w0), . . . , Emb(wm). This results

in a complex-valued frequency representation of the same size as input to the recurrent layers.

[
z0 . . . zm

]
= F (Emb(w j)),∀w j ∈ C (4.7)

Our last model is a generalisation of our complex models that we have previously presented

Section 4.3 Language Modelling 75

Figure 4.3: Architecture for neural language model using phase shifts on real-valued embeddings.
Green boxes summarise multiple regularised LSTM layers.

Figure 4.4: Architecture for neural language model in the Fourier Domain. Green boxes sum-
marise multiple regularised LSTM layers and light blue area indicates states, inputs and outputs
in the Fourier domain.

76 Complex-Valued Word Representations Chapter 4

(LM-�-transform). Instead of applying the DFT that decomposes a signal into cosine and sine

functions in the frequency domain, we apply the unilateral Z-Transform Za(x[K]) (Equation

4.8). The ZT is a generalisation of the DFT where |a| = 1. In this model we learn vector complex

variables a to transform embeddings into the Z-domain (Figure 4.5). Overall, we learn a set of

possible transformations and the recurrence works within the frequency domain.

[
z0 . . . zm

]
=

[
Za(Emb(w0)) . . . Za(Emb(wm))

]

=



Emb(w0)[0]a−0 Emb(w0)[1]a−1 . . . Emb(w0)[K]a−K

Emb(w1)[0]a−0 Emb(w1)[1]a−1 . . . Emb(w1)[K]a−K

...
. . .

Emb(wm)[0]a−0 Emb(wm)[1]a−1 . . . Emb(wm)[K]a−K



(4.8)

We extract the ZT as series in a complex vector with a = Re(a) + iIm(a) = |a|
(

cos(φ) +

i sin(φ)
)
:

Z(x[K]) =

[
x[0]a−0 . . . x[K]a−K

]
(4.9)

4.3.4 Experiments

Table 4.1: Test log perplexity of language models. Trained for 100 epochs with random uniform,
but variance-scaled initialisations (Glorot uniform distribution). Each model has l = 2 recurrent
layers each with m� = 325 resp. m� = 650 units after embeddings of the same size. We apply
φs = relu activation function and φg = tanhh in each recurrent layer and add a so f tmax classifier.

Model Parameters PTB
LM-� 19,765,200 6.5095
LM-� 16,385,200 6.7012

LM-�-slot 25,790,100 7.0166
LM-�-phase 22,081,100 7.1389
LM-�-fourier 33,030,400 6.2781

LM-�-transform 33,030,410 6.2290

We experiment with our language models on the Penn-Tree-Bank Corpus (PTB) [113]. The

PTB corpus contains 887,521 tokens in the training set, 70,390 tokens in the validation set and

78,669 token in the test set. We choose our baseline hyperparameters similar to Zaremba et al.

[5] medium-sized regularised experiments. We attempted to use the standard hyperbolic tangents

Section 4.3 Language Modelling 77

Figure 4.5: Architecture for neural language model in the Frequency Domain using a trained Z-
transformation. Green boxes summarise multiple regularised LSTM layers and light blue areas
indicate states, inputs and outputs in the frequency domain.

φg = tanh in our complex-valued models, but we had to replace it with Hirose [35]’s hyper-

bolic tangent tanh to improve the training stability. For our complex versions we used σ(|z|2) as

recurrent activations and σ(|z|2) as the activation function for the output layer.

Our results are shown in Table 4.1. We observe that the complex-valued baseline does not

outperform the real-valued baseline. The performance is significantly worse than the baseline.

This supports our findings in Chapter 3. The tested methods to explicitly encode further in-

formation into the complex representation show slightly different results. Explicit encoding of

positional information perform even worse than the real baselines, but frequency-based repres-

entation outperform our real-valued baseline.

We also observe that the numerical stability is problematic in larger language models. The

positional slot model and the phase model often fail in training and need to be restarted from a

checkpoint. Gradient norm clipping improves this behaviour, but does not solve it. This may still

be due to the choice of activation functions. These observations have also been made in Chapter

3.

We found that our results are far worse than more recently reported results, since we do

not use any regularisation, stateful training [5]. While their baselines also underwent extensive

regularisation, hyperparameter tuning and other methods to improve the results, we intended to

compare real- and complex-valued language modelling without these methods. Regularisation

78 Complex-Valued Word Representations Chapter 4

(e.g. dropout) and hyperparameter tuning (e.g. initialisation) in the complex domain require new

methods and other considerations. Our models are also not as deep nor wide as state-of-the-art

approaches.

4.4 Memory Networks

Memory networks were introduced by Weston et al. [17] and further developed by Sukhbaatar

et al. [6] and Kumar et al. [114]. They have been widely successful for Question Answering (QA)

and Question Classification tasks [115]. Existing approaches use complex-valued recurrent net-

works as image memories [116] or density matrices as joint sentence representations of questions

and answers in an end-to-end setting [117]. In this section we consider complex-valued memory

networks in comparison to real-valued memory networks. We modify the end-to-end memory

network architecture [6] to achieve a better comparison of the real-valued and complex-valued

model. Instead of forcing certain information into the complex-valued embeddings, the chosen

complex architecture allows embeddings to be learned freely.

The model structure is shown in Figure 4.6. Suppose we want to store an input sequence

x = x1, x2, . . . xm and retrieve an answer ỹ to a query q = q1, q2, . . . , qo. The input and query are

embedded to EmbA(xi) ∈ �K or EmbA(xi) ∈ �K and EmbQ(q j) ∈ �K or EmbQ(q j) ∈ �K . They

are dense representations, but originated in different semantic spaces of the same dimensionality.

We compute a probability distribution p over a matching score between the embedded input

sequence and question using dot-product or inner product:

p = σ(EmbA(x) · EmbQ(q)) (4.10)

In the complex case we compute the distribution as:

p = σ(| 〈EmbA(x)|EmbQ(q)〉 |2) (4.11)

We compute another memory output embedding EmbB(xi) ∈ �Q or EmbB(xi) ∈ �Q with

Q being the maximum query length. For the memory response vector o the memory output

embedding EmbB(xi) is weighted by the probability distribution p and summed with the memory

output embedding EmbB(xi):

o =

m∑
i=1

piEmbB(xi) (4.12)

The memory output vector o is concatenated with the query embedding EmbQ(q) and passed

to an LSTM. Eventually, the last state hc is classified with a softmax classifier:

ỹ = σ(hcW + b) (4.13)

Section 4.4 Memory Networks 79

Figure 4.6: Simplified end-to-end memory network architecture for comparison inspired by
Sukhbaatar et al. [6].

The complex-valued version again relies on the squared amplitude:

ỹ = σ(|hcW + b|2) (4.14)

4.4.1 Experiments

We investigated this architecture in all 20 bAbI question answering tasks [118]. The data set

consists of a large number of tasks for each subtask. Thus, we are able to train task-specific em-

bedding using the bAbI data set. We compared the architecture as complex-valued network with a

real-valued version. We replaced real-valued weight matrices with complex-valued matrices. For

the embeddings, however, the complex-valued embeddings have half the length 1
2 K compared to

real-valued embeddings K. For our complex version we used σ(|z|2) as recurrent activations and

σ(|z|2) as the activation function for the classifier. Our real-valued version uses relu and sigmoid

activation functions.

In a best effort comparison of complex and real-valued Memory Networks we applied a ran-

dom search over the hyperparameter space. Specifically, we considered the activation functions,

80 Complex-Valued Word Representations Chapter 4

initialisations and initialisation scales, learning rate and rate decay, dropout probability for em-

beddings and recurrence. We chose the largest possible model with m� = 512 and m� = 256

recurrent units and embedding size of 256 in the real case or respectively 128 in the complex

case. We used 150 iterations of random search over the hyperparameter search space. Each time

we trained the models until convergence, but stopped after a maximum of 200 training epochs.

Table 4.2 displays the best effort results.

Table 4.2: Test accuracy of best effort memory network in complex and
real version on the bAbI tasks. Selected best of 150 iterations of random
search over the hyperparameter search space. Each iteration was trained
for 200 epochs. The model sizes are chosen independently for real and
complex models and only are limited by the hardware available.

bAbI task �-valued network �-valued network
Q1:

Single
Supporting

Fact
0.9960 0.9910

Q2:
Two

Supporting
Facts

0.4190 0.4130

Q3:
Three

Supporting
Facts

0.3560 0.3560

Q4:
Two Arg.
Relations

1.0000 1.0000

Q5:
Three Arg.
Relations

0.9050 0.8860

Q6:
Yes/No Question 0.9870 0.9700

Q7:
Counting 0.9060 0.8920

Q8:
Lists/Sets 0.8600 0.8510

Q9:
Simple Negation 0.9880 0.9610

Q10:
Indefinite

Knowledge
0.9870 0.9530

Q11:
Basic

Co-Reference
0.9960 0.9970

Q12:
Conjunction 1.0000 0.9990

Q13:
Compound

Co-Reference
1.0000 0.9990

Q14:
Time

Reasoning
0.5100 0.5160

Continued on next page

Section 4.4 Memory Networks 81

Table 4.2 - Continued from previous page
bAbI task �-valued network �-valued network

Q15:
Basic

Deduction
0.6080 0.6220

Q16:
Basic

Induction
0.5280 0.5280

Q17:
Positional
Reasoning

0.9970 0.9780

Q18:
Size

Reasoning
0.9400 0.9410

Q19:
Path

Finding
0.4080 0.3970

Q20:
Agent’s

Motivations
0.9890 0.9890

We found that the majority of tasks are solvable with our memory network. This finding sup-

ports the choice of our memory network architecture. We further investigated different activation

functions φ and smaller sized models. We used the weight initialisation discussed by Trabelsi

et al. [27]. We initialised each setting 10 times and trained it for 200 epochs with an Adam

optimisation. Tables 4.4 show our results. Due to the nature of this architecture it was difficult

to create a complex- and real-valued version with exactly the same number of parameters. We

compare the number of real-valued parameters in Table 4.3. Again, the embeddings were not

pre-trained on a larger corpus, but trained only using the bAbI data.

82 Complex-Valued Word Representations Chapter 4

Table 4.3: Number of real-valued parameters of the memory network versions in respect to the
bAbI tasks 1 to 20 (Experiment 2). Each model has either m� real or complex m� neurons in the
LSTM layer. In general, the capacity of the different sized models can be ordered: m� = 8 ≤
m� = 16 ≤ m� = 16 ≤ m� = 16 ≤ m� = 21 ≤ m� = 24 ≤ m� = 64. Exceptions to this rule
are marked with *. The largest real-valued model is always significantly larger than the largest
complex-valued model.

�-valued units �-valued units
bAbI
task m� = 16 m� = 32 m� = 64 m� = 8 m� = 16 m� = 21 m� = 24

Q1 12,814 24,750 54,766 10,364 18,716 24,456* 28,092
Q2 45,912 89,048 181,464 43,568 83,120 108,360 123,696
Q3 130,845 258,669 520,461 128,618 252,858 331,028 378,122
Q4 8,944 17,488 40,720 6,528 11,488 15,108* 17,752
Q5 61,658 119,610 241,658 59,476 113,844 148,344 169,236
Q6 20,906 38,730 80,522 18,612 32,852 42,272 48,116
Q7 32,720 61,232 124,400 30,528 55,456 71,556 81,408
Q8 35,596 66,540 134,572 33,336 60,696 78,316 89,080
Q9 13,997 26,397 57,341 11,626 20,442 26,472 30,282

Q10 15,108 28,484 61,380 12,744 22,536 29,176 33,352
Q11 14,369 26,929 58,193 11,954 20,930 27,060 30,930
Q12 14,179 27,347 59,827 11,734 21,318 27,828 31,926
Q13 15,009 28,209 60,753 12,594 22,210 28,740 32,850
Q14 17,168 32,304 68,720 14,848 26,400 34,140 38,976
Q15 12,228 22,724 49,860 9,864 16,776 21,616* 24,712
Q16 10,808 20,984 47,480 8,368 14,960 19,600* 22,576
Q17 10,331 19,467 43,883 8,070 13,622 17,612* 20,198
Q18 19,565 37,981 80,957 17,258 32,090 41,880 47,946
Q19 13,204 23,556 50,404 11,064 17,832 22,582* 25,624
Q20 16,026 28,346 59,130 13,844 22,580 28,560 32,340

Section 4.4 Memory Networks 83

Table 4.4: Test accuracy of the different versions of the memory network
in complex and real version on the bAbI tasks (Experiment 2). Each
version has m� resp. m� neurons in the LSTM layer. Selected best of 10
runs. Each run was trained for 200 epochs.

� �

bAbI
task

Activation
function

φ
m� = 16 m� = 32 m� = 64 m� = 8 m� = 16 m� = 21 m� = 24

Q1:
Single

Supporting
Fact

identity 0.5210 0.5860 0.8020 0.5350 0.5440 0.5410 0.5420
tanh 0.5110 0.5410 0.5830 0.5280 0.5380 0.5360 0.5390
relu 0.5290 0.7650 0.8910 0.5360 0.5350 0.5380 0.5360
|z|2 0.5920 0.7630 0.8620 0.5670 0.5280 0.5390 0.5930
|z| 0.7120 0.8480 0.9090 0.5160 0.5300 0.5900 0.5310

Q2:
Two

Supporting
Facts

identity 0.3940 0.3970 0.4080 0.4060 0.4030 0.4120 0.4110
tanh 0.3030 0.3700 0.4030 0.3250 0.3800 0.3870 0.3780
relu 0.3910 0.4110 0.4090 0.3800 0.3870 0.4060 0.4090
|z|2 0.4020 0.4070 0.4170 0.3360 0.3800 0.3660 0.4000
|z| 0.4170 0.4090 0.4130 0.3640 0.3760 0.3900 0.3830

Q3:
Three

Supporting
Facts

identity 0.3190 0.3050 0.2760 0.3480 0.3560 0.3460 0.3450
tanh 0.2870 0.2950 0.2690 0.2590 0.2990 0.2970 0.3060
relu 0.3330 0.2960 0.2880 0.3060 0.3220 0.3420 0.3320
|z|2 0.3490 0.3380 0.3540 0.3020 0.2540 0.2610 0.2510
|z| 0.2960 0.2900 0.2840 0.3020 0.3090 0.3330 0.3080

Q4:
Two Arg.
Relations

identity 0.7940 0.7970 0.7950 0.8030 0.7990 0.8000 0.7980
tanh 0.7670 0.7950 0.8020 0.7910 0.7970 0.7980 0.8020
relu 0.7830 0.8010 0.7980 0.7870 0.7990 0.8090 0.8040
|z|2 0.7730 0.7970 0.7930 0.7290 0.7910 0.7940 0.7910
|z| 0.7820 0.7980 0.7990 0.7650 0.7950 0.7920 0.8040

Q5:
Three Arg.
Relations

identity 0.8760 0.9050 0.9030 0.8700 0.8670 0.8690 0.8640
tanh 0.7870 0.8280 0.8800 0.5130 0.6800 0.5890 0.6450
relu 0.8590 0.8710 0.8990 0.8050 0.8820 0.8780 0.8730
|z|2 0.8540 0.8520 0.8970 0.6050 0.6600 0.6250 0.6590
|z| 0.8690 0.8990 0.9060 0.7850 0.8170 0.8490 0.8540

Q6:
Yes/No Questions

identity 0.8500 0.8490 0.8550 0.8480 0.8520 0.8480 0.8510
tanh 0.8080 0.8400 0.8820 0.8420 0.8470 0.8520 0.8500
relu 0.8470 0.8530 0.8510 0.8490 0.8540 0.8500 0.8530
|z|2 0.8480 0.8520 0.8530 0.8480 0.8470 0.8510 0.8530
|z| 0.8470 0.8490 0.8540 0.8470 0.8520 0.8580 0.8590

Q7:Counting

identity 0.8480 0.8510 0.8720 0.8270 0.8290 0.8590 0.8870
tanh 0.8250 0.8420 0.8650 0.8040 0.8050 0.8050 0.8110
relu 0.8220 0.8660 0.8400 0.8410 0.8130 0.8570 0.8370
|z|2 0.8140 0.8200 0.8200 0.8000 0.8030 0.8040 0.8110
|z| 0.8390 0.8720 0.8730 0.8270 0.8500 0.8470 0.8330

Q8:
Lists/Sets

identity 0.7740 0.7810 0.7740 0.7700 0.7700 0.7710 0.7730
tanh 0.7520 0.7650 0.7780 0.7360 0.7630 0.7620 0.7550
relu 0.7700 0.7770 0.7760 0.7660 0.7700 0.7750 0.7770
|z|2 0.7760 0.7740 0.7820 0.7660 0.7540 0.7650 0.7660
|z| 0.7770 0.7880 0.7840 0.7690 0.7740 0.7750 0.7740

Continued on next page

84 Complex-Valued Word Representations Chapter 4

Table 4.4 - Continued from previous page
� �

bAbI
task

Activation
function

φ
m� = 16 m� = 32 m� = 64 m� = 8 m� = 16 m� = 21 m� = 24

Q9:
Simple Negation

identity 0.8410 0.8760 0.9050 0.8580 0.8750 0.9130 0.8890
tanh 0.6420 0.8210 0.8460 0.7880 0.7280 0.7590 0.8070
relu 0.8850 0.9000 0.9430 0.8050 0.8410 0.8960 0.9150
|z|2 0.8740 0.8520 0.9130 0.8300 0.8260 0.8360 0.8390
|z| 0.8300 0.8950 0.9420 0.8110 0.8600 0.9050 0.8650

Q10:
Indefinite

Knowledge

identity 0.8830 0.9050 0.9240 0.8560 0.8930 0.9040 0.9230
tanh 0.4930 0.7100 0.9010 0.7360 0.5120 0.7430 0.7490
relu 0.8130 0.8640 0.7930 0.8430 0.8770 0.9030 0.8780
|z|2 0.8220 0.9060 0.8700 0.7490 0.7210 0.7420 0.7530
|z| 0.8190 0.9310 0.9300 0.7490 0.8720 0.8800 0.8940

Q11:
Basic

Co-Reference

identity 0.6980 0.6990 0.7060 0.6920 0.6920 0.7010 0.7040
tanh 0.6600 0.7000 0.7110 0.6990 0.7090 0.7030 0.7060
relu 0.7310 0.9390 0.9610 0.6960 0.6970 0.7090 0.7070
|z|2 0.7040 0.7020 0.7470 0.6890 0.6830 0.6970 0.9030
|z| 0.6960 0.7070 0.7100 0.6970 0.6860 0.6910 0.7070

Q12:
Conjunction

identity 0.7160 0.7120 0.7140 0.7140 0.7130 0.7130 0.7130
tanh 0.7120 0.7120 0.7120 0.7130 0.7130 0.7130 0.7140
relu 0.7120 0.7140 0.7150 0.7120 0.7130 0.7150 0.7170
|z|2 0.7110 0.7120 0.7140 0.7020 0.7090 0.7140 0.7140
|z| 0.7130 0.7130 0.7140 0.7110 0.7120 0.7130 0.7160

Q13:
Compound

Co-Reference

identity 0.9320 0.9320 0.9330 0.9330 0.9330 0.9320 0.9330
tanh 0.9330 0.9320 0.9330 0.9330 0.9320 0.9320 0.9320
relu 0.9330 0.9370 0.9340 0.9330 0.9330 0.9330 0.9340
|z|2 0.9320 0.9330 0.9330 0.9320 0.9320 0.9320 0.9330
|z| 0.9330 0.9330 0.9340 0.9320 0.9320 0.9320 0.9330

Q14:
Time

Reasoning

identity 0.4730 0.4710 0.5090 0.4950 0.4950 0.4980 0.4990
tanh 0.4140 0.4620 0.4820 0.4150 0.4730 0.4600 0.4810
relu 0.4830 0.4600 0.4680 0.4820 0.4960 0.4970 0.4860
|z|2 0.4640 0.4820 0.4870 0.4080 0.4510 0.4570 0.4650
|z| 0.4780 0.4900 0.4800 0.3980 0.4670 0.4560 0.4550

Q15:
Basic

Deduction

identity 0.5960 0.5930 0.5950 0.5980 0.5990 0.6000 0.5990
tanh 0.5780 0.5810 0.5930 0.6000 0.6030 0.5970 0.6020
relu 0.5930 0.5940 0.5980 0.5960 0.6080 0.6060 0.5970
|z|2 0.6000 0.5940 0.6010 0.5730 0.5990 0.5950 0.5920
|z| 0.5980 0.5910 0.6000 0.5980 0.6010 0.5960 0.5950

Q16:
Basic

Induction

identity 0.5220 0.5210 0.5200 0.5160 0.5210 0.5180 0.5150
tanh 0.5070 0.5110 0.5190 0.5200 0.5190 0.5180 0.5150
relu 0.5150 0.5160 0.5200 0.5130 0.5160 0.5160 0.5250
|z|2 0.5140 0.5140 0.5150 0.4810 0.5100 0.5150 0.5120
|z| 0.5140 0.5200 0.5250 0.5060 0.5170 0.5220 0.5240

Q17:
Positional
Reasoning

identity 0.6330 0.6390 0.6380 0.6490 0.6410 0.6310 0.6390
tanh 0.6270 0.6340 0.6290 0.6450 0.6360 0.6390 0.6390
relu 0.6360 0.6360 0.6340 0.6350 0.6530 0.6560 0.6530
|z|2 0.6360 0.6340 0.6320 0.6360 0.6320 0.6430 0.6350

Continued on next page

Section 4.4 Memory Networks 85

Table 4.4 - Continued from previous page
� �

bAbI
task

Activation
function

φ
m� = 16 m� = 32 m� = 64 m� = 8 m� = 16 m� = 21 m� = 24

|z| 0.6380 0.6350 0.6380 0.6310 0.6340 0.6320 0.6350

Q18:
Size

Reasoning

identity 0.9290 0.9290 0.9390 0.9360 0.9310 0.9290 0.9330
tanh 0.9270 0.9300 0.9280 0.9110 0.9250 0.9200 0.9230
relu 0.9360 0.9300 0.9350 0.9340 0.9290 0.9280 0.9300
|z|2 0.9300 0.9250 0.9240 0.9370 0.9280 0.9260 0.9260
|z| 0.9290 0.9310 0.9290 0.9270 0.9280 0.9290 0.9300

Q19:
Path

Finding

identity 0.1260 0.1260 0.1250 0.1370 0.1370 0.1350 0.1390
tanh 0.1160 0.1170 0.1260 0.1310 0.1290 0.1280 0.1360
relu 0.1210 0.1180 0.1830 0.1360 0.1300 0.1380 0.1310
|z|2 0.1370 0.1270 0.1170 0.1320 0.1390 0.1280 0.1310
|z| 0.1250 0.1230 0.1290 0.1310 0.1250 0.1320 0.1290

Q20:
Agent’s

Motivations

identity 0.9870 0.9890 0.9880 0.9870 0.9890 0.9890 0.9880
tanh 0.9870 0.9880 0.9880 0.9580 0.9630 0.9650 0.9700
relu 0.9880 0.9870 0.9880 0.9860 0.9870 0.9860 0.9880
|z|2 0.9890 0.9880 0.9880 0.9580 0.9880 0.9870 0.9830
|z| 0.9880 0.9890 0.9890 0.9860 0.9880 0.9860 0.9860

A memory network type is considered to solve a sub task if its test accuracy is ≥ 0.95 or

higher in the best effort experiment. A network type (real-valued or complex-valued) is con-

sidered to outperform the other if a) at least one network of its type shows the same or better

performance than a larger network of the other type; or b) if every network of a type shows

better performance than the similarly sized network(s) of the other type. With these conditions

preference was given to smaller networks over larger networks with equal performance. We com-

pared the maximum performance achieved amongst all activation functions. We considered each

network size separately. Our findings are:

Q1 - Single Supporting Fact: Both model types solve the sub task very well. Real net-

works significantly outperform complex networks, because they require significantly fewer

parameters to achieve significantly higher accuracy.

Q2 - Two Supporting Facts: Real and complex do not solve the sub task. Real networks

outperform complex networks, because they require fewer parameter to achieve better ac-

curacy.

Q3 - Three Supporting Facts: Real and complex networks do not solve the sub task.

Complex networks outperform real networks, because they require fewer parameters to

achieve a similar accuracy as real networks.

Q4 - Two Arg. Relations: Real and complex networks solve the task very well. Complex

networks outperform real networks, because they require fewer parameters and achieve

slightly higher accuracy.

86 Complex-Valued Word Representations Chapter 4

Q5 - Three Arg. Relations: Real and complex networks do not solve the sub task. Real

networks outperform complex networks, because they require fewer parameters for better

accuracy.

Q6 - Yes/No Question: Real and complex networks solve the sub task. Complex networks

outperform real networks, because they require fewer parameters. Only significantly larger

real networks outperform complex networks.

Q7 - Counting: Real and complex networks do not solve the sub task. Complex networks

outperform real networks, because they require fewer parameters to achieve a improved

accuracy.

Q8 - Lists/Sets: Real and complex networks do not solve the sub task. Real networks out-

perform complex networks, because they require fewer parameters to achieve a improved

accuracy.

Q9 - Simple Negation: Real and complex networks solve the sub task. Complex networks

outperform real networks, because similarly sized complex networks achieve higher ac-

curacy (m� = 32,m� = 21). Only significantly larger real networks outperform complex

networks.

Q10 - Indefinite Knowledge: Real and complex networks solve the sub task. Real net-

works outperform complex networks, because they require fewer parameter to achieve

higher accuracy.

Q11 - Basic Co-Reference: Real and complex networks solve the sub task very well. Real

networks significantly outperform complex networks, because they require fewer paramet-

ers to achieve significantly higher accuracy.

Q12 - Conjunction: Real and complex networks solve the sub task very well. Complex

networks outperform real networks, because they require fewer parameters to achieve same

accuracy and higher accuracy with more parameters.

Q13 - Compound Co-Reference: Real and complex networks solve the sub task very

well. Real networks outperform complex networks, because they require fewer parameters

to achieve higher accuracy.

Q14 - Time Reasoning: Real and complex networks do not solve the sub task. Com-

plex networks outperform real networks, because they require fewer parameters to achieve

higher accuracy.

Q15 - Basic Deduction: Real and complex networks do not solve the sub task. Com-

plex networks outperform real networks, because they require fewer parameters to achieve

higher accuracy.

Section 4.5 Quantum-Inspired Models of Language 87

Q16 - Basic Induction: Real and complex networks do not solve the sub task. Complex

networks outperform real networks, because they require fewer parameters to achieve the

same accuracy.

Q17 - Positional Reasoning: Complex and real solve the sub task very well. Complex

networks outperform real networks, because they require fewer parameter to achieve higher

accuracy.

Q18 - Size Reasoning: Complex and real networks do not solve the sub task. Complex net-

works outperform real networks, because they require fewer parameters to achieve slightly

higher accuracy.

Q19 - Path Finding: Complex and real networks do not solve the sub task. Complex

networks outperform real networks, because they require fewer parameters for slightly

improved accuracy. Significantly larger real networks outperform complex networks.

Q20 - Agent’s Motivations: Complex and real networks solve the sub task. Complex and

real networks perform similarly with a similar number of parameters.

Of the 20 considered bAbI tasks the architecture in both in real and complex version solves

the same 10 sub tasks. We found that in 7 sub tasks real-valued networks outperform the

complex-valued networks (Q1, Q2, Q5, Q8, Q10, Q11, Q13). In one task both types perform

similarly well (Q20). In 12 tasks the complex-valued network outperform the real-valued net-

works (Q3, Q4, Q6, Q7, Q9, Q12, Q14, Q15, Q16, Q17, Q18, Q19). In most cases complex

memory networks use significantly fewer parameters. We also acknowledge that the performance

improvements from the real to complex-valued memory networks are often small and inconsist-

ent. This is the case in the sub tasks Q3, Q4, Q12, Q13, Q16. We found that our complex-valued

memory network outperforms the real-valued memory network mainly in logic and reasoning

tasks.

4.5 Quantum-Inspired Models of Language

Quantum theory is defined as the mathematical framework to describe physical phenomena.

Quantum theory offers a geometrical and probabilistic interpretation of complex-valued vectors.

These notions have always been important in Computational Semantics. Semantic spaces have

been spanned by facilitating the output of probabilistic generative models or factorisation meth-

ods. With this historical development of Computational Semantics, Quantum Theory motivates

new types of semantic spaces. There have been a number of different approaches in the past to

establish semantic quantum states in Computational Semantics. In recent literature we observe

encouraging results in quantum-inspired language modelling [92, 98].

88 Complex-Valued Word Representations Chapter 4

Quantum-inspired semantic spaces commonly satisfy a number of properties. They are usu-

ally complex Hilbert spaces in which vectors satisfy a probability amplitude constraint
∑
|z j|

2 =∑k
j=0 p(z j|ψ) = 1 and in which the bases 〈βi|β j〉 = 0,∀β j, βi ∈ B are orthogonal to each other.

Classical semantic spaces often satisfy similar properties. However, instead of the probability

amplitude, they apply another probabilistic constraint
∑k

j=0 z j = 1. This is mostly the case if they

have been generated by probabilistic models. Their bases also satisfy the orthogonal constraint

depending. The fundamental difference between quantum-inspired spaces and classical spaces is

the use of complex representations, the type of probabilistic constraint and the operations used.

In this section we discuss the postulates, notation and properties of Quantum Theory and their

relation to Computational Semantics. These postulates are the fundamental axioms that serve as

premises within this area. We derive a quantum-inspired framework of semantic spaces. To

transfer the concept of interference we chose the basis for our quantum states to be learnable or

fixed statistical features. Interference of semantic quantum states is equivalent to composition and

an implicit disambiguation. The process of measurement is equivalent to interpreting meaning

within a context. Evolution is used to prepare word states for word compositions. We test two

quantum-inspired instances on similarity judgment tasks of individual words and compositions.

Quantum-inspired Machine Learning should not be confused with the area of Quantum Ma-

chine Learning. Quantum-inspired models respect some or all of the constraints that are used to

model natural phenomena when designing models. In contrast Quantum Machine Learning aims

to use these natural phenomena in computational methods to accelerate the learning process and

pattern recognition using quantum computers [119].

4.5.1 Quantum States

The central object in quantum theory is a quantum state. The state of a closed quantum system

is described by a complex vector �n. Commonly, quantum states are presented as linear com-

bination of their basis states |βi〉 ∈ B with complex coefficients z j ∈ �. The coefficients satisfy∑n
j |z j|

2 = 1. A state can be interpreted as a probability distribution over the elements of B. In

Dirac’s notation a column vector representation of a quantum state, is called ket (Equation 4.15).

Its counterpart, a row vector representation, is called a bra (Equation 4.16). Hence, Dirac’s nota-

tion is sometimes called the Bra-Ket notation. The bra is the complex conjugate of a ket. The

conjugate transpose of a matrix A† = (Ā)T is annotated with the dagger symbol. If a matrix A is

Hermitian, or self-adjoint, it is its own conjugate transpose A = A†.

|φ〉 =

n∑
j=1

z j |β j〉 =



z1

z2

...

zn


(4.15)

Section 4.5 Quantum-Inspired Models of Language 89

〈φ| = |φ〉† =

n∑
j=1

z̄ j |β j〉 =

[
z̄1 z̄2 . . . z̄n

]
(4.16)

The linear combination captures superposition of quantum systems. Superposition describes

a system that is simultaneously in different, distinguishable basis states. On measurement the

state can be found in one of its basis states. The squared magnitude of the coefficient |zi|
2 of

an associated basis |βi〉 returns the probability to find the quantum state in that basis state at the

moment of measurement. A state is defined by its complex coefficients z j = |z j|eiθ j = r j(cos(θ j)+

i sin(θ j)). While the magnitudes |z j| = r j determine the probability distribution, the phases θ j

participate in compositions.

Quantum states can be classified as pure or mixed states. A pure state is exactly one possible

state of a quantum system, and it can be represented by a single ket. A pure state is an exactly

known distribution over the basis. A mixed state is a statistical ensemble of several pure states

from the same state space. A mixed state defines a distribution over a set of distributions with the

same basis.

Any state of quantum system, pure or mixed, can be displayed with a density matrix ρ. The

density matrix for a pure state is formed by the outer product of its vector representation (Equa-

tion 4.17). Generally, a density matrix is a weighted mixture of pure states (Equation 4.18). The

probabilities pi of a pure state are used as weights. The weightings for the pure states satisfy∑
i pi = 1. One can determine whether a state is pure by computing the trace of the density

matrix. If the trace tr(ρ2) = 1, the state ρ is a pure state and if tr(ρ2) < 1 the state ρ is a mixed

state.

ρ = |φ〉 〈φ| (4.17)

ρ =
∑

j

p j |φ〉 j 〈φ| j (4.18)

The density matrix is hermitian A = A†, positive semi-definite x̄ρx ≥ 0, of trace one
∑n

i |zi|
2 =∑n

i ρii = 1 and of infinite dimensional n.

We propose semantic quantum states represented by |w〉 for individual words without a con-

text. We also propose to use density matrices ρw as a generalised semantic representation for

words within contexts, phrases and sentences. Consequently, words are represented by pure

states and phrases are represented by mixed states. We will discuss this proposal further in Sec-

tion 4.5.7.

The orthogonal bases |βi〉 ∈ B used to span the semantic space represent semantic features.

They may originate from observable variables, factorisation or generative models. Hence, poly-

semy is captured as superposition of the semantic basics. Consequently, we interpret the eigen-

90 Complex-Valued Word Representations Chapter 4

states of the density matrix as possible unambiguous meanings or concepts. Let the basis states

be the topic vectors topic j of a latent topic model method. The words w and v can be described

by the states |w〉 and |v〉:

|w〉 =

n∑
j

a jeiθ j |topic j〉 =

n∑
j

|topic j〉 〈topic j|w〉 (4.19)

with a jeiθ j = 〈topic j|w〉.

|v〉 =

n∑
j

b jeiφ j |topic j〉 =

n∑
j

|topic j〉 〈topic j|v〉 (4.20)

with b jeiφ j = 〈topic j|v〉.

The probability of words being generated by the j-th topic follows the squared amplitude

(complex absolute, magnitude or length).

| 〈topic j|w〉 |2 = |a jeiθ j |2 = p(w|topic j)

and

〈topic j|v〉 = |b jeiφ j |2 = p(v|topic j)

(4.21)

4.5.2 Interference

In this section we will define interference from the perspective of classical mechanics and quantum

mechanics. We explain the quantum interference based on the double slit experiment. Eventually,

we will discuss its relation to semantic quantum states.

Interference is a physical phenomenon which occurs if two or more waves overlap. It de-

scribes the displacement or difference of overlapping wave amplitudes. The total wave amplitude

resulting from two or more constituent waves at any point in time is the sum of the displacement

of its constituent’s amplitudes at that point in time. Interference is called constructive, if the con-

stituent’s phases are the same or similar. It is destructive interference, if the phases are opposing.

We require the phase and the amplitude of a wave to define their interference. We can consider

waves as a linear combination of non-interfering waves. The wave is a superposition of simpler

individual waves. In quantum mechanics the wave amplitudes have a probabilistic interpretation.

Interference of constituent waves affect the probability distribution over its constituent waves by

changing the amplitude’s height.

Quantum interference is easily demonstrated by the double slit experiment. This experiment

also illustrates the wave-particle duality of photons or electrons. In the double slit experiment

a source emits photons or electron waves (e.g. a light source or a electron gun) onto a non-

penetrable screen or wall with two parallel slits. Behind the slit screen an absorbing backstop

captures the photons or electrons (Figure 4.5.2).

Section 4.5 Quantum-Inspired Models of Language 91

Figure 4.7: Double slit experiment [7].

The electrons pass as particles either through slit 1 or slit 2. Let E1 be the event that the

particle passes through slit 1 and E2 be the event the particle passes through the 2. The probability

p(E1) and probability p(E2) must add up to one:

p(E1) + p(E2) = 1 (4.22)

Classical Mechanics suggests that the absorbed electrons create a pattern consisting of two

parallel slits (with slightly defused edges) on the backstop. However, in a real-world experiment

the pattern which can be observed on the backstop is an interference pattern (Figure 4.5.2).This

behaviour is usually attributed to waves, not to particles. The interference pattern suggests that

electrons possess both particle and wave properties.

We can describe the pattern on the backstop in terms of their paths. We interpret the emitted

electrons as waves with given probability amplitudes. The emitted electron wave passes through

the two slits simultaneously. The wave on the other side of the screen can be describe in terms

of two sub waves. Let the amplitude α = aeiθ describe the wave which passes through the slit 1

and the amplitude β = beiφ describe that which passes through the slit 2. The waves corresponds

to events E1 and E2. Their probability for the electron to pass through the slits p(E1) and p(E2)

is given in terms of the amplitudes (Equations 4.23 and 4.24). This is summarised by the Born
rule. It states that the probability of events is given as the squared magnitude of the probability

92 Complex-Valued Word Representations Chapter 4

amplitude of the complex number corresponding to the (sub) wave.

p(E1) = |α|2 = |aeiθ|2 (4.23)

p(E2) = |β|2 = |beiφ|2 (4.24)

Together the probabilities have to satisfy the law of total probability (Equation 4.22), so that

|aeiθ|2 + |beiφ|2 = 1. So let the event E12 be the event of an electron hitting the backstop at any

point passing through any of the two slits. From a classical perspective the two probabilities

p(E1) + p(E2) should add up to the probability p(E12). This would be equivalent of the electrons

forming a pattern of two parallel slits and would violate the wave properties. From a quantum

perspective the probabilities do not simply add up: p(E12) , p(E1) + p(E2) = |α|2 + |β|2

The two sub waves α and β interfere with each other on the other side of the slit screen.

The new resulting wave amplitude γ describes the probability. Mathematically, α and β are

summed up first and then the probability is derived. The probability p(E12) is given by the

squared magnitude of the total probability amplitude γ:

p(E12) = |γ|2 = |α + β|2 = |aeiθ + beiφ|2 = 1 (4.25)

The interfering amplitudes α = aeiθ and β = beiφ describe the total probability amplitude γ.

It is in superposition of the two partial waves or the two slits. The total probability amplitude γ

is given with:

γ = aeiθ + beiφ (4.26)

The probability for the event E12 which may occur by two distinct events E1 and E2 the

interference term is as follows:

p(E12) = |γ|2 = |α + β|2

= (aeiθ + beiφ)(aeiθ + beiφ)∗

= (aeiθ + beiφ)(ae−iθ + be−iφ)

= a2ei(θ−θ) + abei(θ−φ) + abei(φ−θ) + b2ei(φ−φ)

= a2 + b2 + ab(ei(θ−φ) + ei(φ−θ))

= a2 + b2 + ab(ei(θ−φ) + e−i(θ−φ))

(4.27)

Euler’s formula eiθ+eiφ = cos(θ)+ i sin(θ)+cos(φ)+ i sin(φ) and |eiθ+eiφ|2 = (eiθ+eiφ)(e−iθ+

e−iφ) = 2 + 2 cos(θ − φ) makes this mathematically clearer:

p(E12) = |γ|2 = a2 + b2 + 2ab cos(θ − φ) (4.28)

Section 4.5 Quantum-Inspired Models of Language 93

The first term a2 + b2 expresses the classical probability, but the second interference term

2ab cos(θ − φ) expresses the interaction.

The only plausible interpretation of our observation is that the emitted electron travels through

both slits simultaneously and interferes with itself behind the slit screen. The interaction with

itself creates the interference pattern on the backstop. Hence, the superposition is a necessary to

create the pattern. If we observe a single electron, it indeed only passes through one of slits and

hits the backstop. By observing the particle the superposition collapses and the interference with

itself does not occur.

Orthogonality is an important property of the superposition. Two basis states given as vectors

are orthogonal if their inner product 〈βi|β j〉 = 0. To have distinguishable outcomes the basis

vectors need to be orthogonal. Moreover, the Born rule implies:

p(β j|ψ) = | 〈β j|ψ〉 |
2 (4.29)

Often it is the case that we cannot say that a quantum state is in a specific state |ψ〉 with

absolute certainty, but that the system is in one of many states {|ψi〉} each with the probability pi.

If we know that a state is a specific superposition the state is a pure state. If we have to express

the state of a quantum system or particle statistically, the state is a mixed state. We can express

this in a density matrix ρ with a probability distribution {pi = p(|ψi〉)} over a set of states {|ψi〉} :

ρ =

n∑
i=1

pi |ψi〉 〈ψi| (4.30)

Interference does also appear in the representation of density matrices ρ. For a statistical

ensemble ρ with a set of pure states {|ψi〉} weighted with a probability distribution {pi = p(|ψi〉)}

and
∑n

i=0 pi = 1 (Equation 4.31) the interference between pure states is expressed by the off-

diagonal terms. These elements are often referred to as coherences.

ρ =

n∑
i=1

pi |ψi〉 〈ψi|

=

n∑
i=1

pi



|zi
1|

2 zi
1z̄2

i . . . zi
1z̄k

i

z2z̄1
i |zi

2|
2

...
. . .

zi
k z̄1

i |zi
k |

2


=



∑
i pi|zi

1|
2 ∑

i pizi
1z̄2

i . . .
∑

i pizi
1z̄k

i∑
i piz2z̄1

i ∑
i pi|zi

2|
2

...
. . .∑

i pizi
k z̄1

i ∑
wi

pi|zi
k |

2


(4.31)

Omitting the weighting pi the entries ρxy contribute the interference of x-th and y-th basis of

94 Complex-Valued Word Representations Chapter 4

all pure states contributing to this ensemble.

ρxy =
∑

i

zi
xz̄y

i (4.32)

Let us consider Lagrange’s identity for real numbers [120]:

(n∑
j=1

a jb j
)2

=
(n∑

j=1

(a j)2)(n∑
j=1

(b j)2) − n−1∑
i=1

n∑
k=i+1

(aibk − akbi)2

=

n∑
j=1

(a j)2(b j)2 + 2
n−1∑
i=1

n∑
k=i+1

aibiakbk

(4.33)

and a rewritten Lagrange’s identity for complex numbers:

∣∣∣ n∑
j=1

a jb j

∣∣∣2 =
(n∑

j=1

|a j|
2)(n∑

j=1

|b j|
2) − n∑

i<k

|aib∗k − akb∗i |
2 (4.34)

Lagrange’s identity for complex numbers show the interference that appears on the off-

diagonal terms of the density matrix ρ. We use Lagrange’s identity for the entries ρxy and set

a j = zi
x and b j = z̄y

i for any quantum state. Again we can identify the term for classical probab-

ility and interference.

We propose interference to model implicit word disambiguation in word compositions such

as phrases and sentences. Similar to photons or electrons which have properties of waves and

particles, compositions and words have semantic and syntactical properties. These properties

define a word’s behaviour in interactions and the results of these interactions.

Meaning can be ambiguous as compositions and words can have multiple meanings. Indi-

vidual word meaning can be expressed probabilistically as a superposition of concepts, topics

or context words. If these superpositional representations are composed and interact in word

compositions, their meanings interfere with each other. Certain concepts or topics are enforced

(constructive interference), others cancel each other out (destructive interference). The particip-

ating words are disambiguated by and within their context. A semantic interference pattern can

be observed on the backstop. It is defined by the syntactic properties of the word composition.

This can be achieved by selecting relative phases of participating words appropriately.

Consider the word bank as an example. It has multiple meanings represented by concepts or

topics: a) financial institute or b) land alongside a river or lake. As long as we do not observe bank

within word composition it is in a superposition. It can be described as a distribution over these

concepts. Observing the word bank without a context does not allow us the infer its meaning.

We might be able to say that is more often used as the financial institute than to describe the land

alongside a river, but we can not be completely sure. Its meaning is uncertain. If we compose it

with the word clerk to form the compound noun bank clerk, the concept of the financial institute

Section 4.5 Quantum-Inspired Models of Language 95

is reinforced. The concept related to land alongside a river is cancelled out. If we interpret

bank within this composition, we will observe the concept of the financial institute with much

higher probability than any alternative meaning. We find that the syntactic structure as well as

the constituent words are important to decide which concept is reinforced and which cancelled

out. Word sense disambiguation follows a similar principle as interference.

Interference is also capable of modelling commutativity and non-commutativity. Phase shifts

can be used to prepare the word representation according to the compositions structure. It is

present where the meaning is the same, but syntax differs (e.g. Bob works in a factory and Bob is

a factory worker). Generally, language lacks commutativity. Compositions where the structure

stays the same (Bob likes Mary and Mary likes Bob). The relative phases can model these cases

by altering the direction depending on the structure.

4.5.3 State Spaces

Quantum states are elements of a complex Hilbert spaceHn. A Hilbert space is a complete vector

space with a linearly independent basis and an inner product structure. A vector space is called

complete if it does not have any ‘missing‘ vectors. This is the case if any sequence of vectors

(Cauchy sequence) that become arbitrarily close to each other converges to another element in

the vector space. The basis vectors of a quantum space represent the possible observable states

of a quantum system. The basis vectors are required to be orthonormal in order to represent

distinguishable outcomes. Non-orthogonal basis states can not reliably be distinguished [121].

Orthonormality is satisfied if their norm || |β〉 || = 1 and their pairwise inner product 〈βi|β j = 0〉.

Note that 〈φ|φ〉 = 1, due to the law of total probability.

〈φ|ψ〉 = 〈φ| |ψ〉 = 〈φ|ψ〉 =

[
z̄1 z̄2 . . . z̄n

]


x1

x2

...

xn


(4.35)

Any quantum-inspired semantic space is a complex Hilbert space which is spanned by or-

thonormal concepts or topics. It contains semantic quantum states and provides a inner product

structure. The inner product is a generalisation of the dot product and allows us to define dis-

tances within a vector spaces. Both are frequently used as a measure of semantic similarity

in semantic vector spaces. We propose to use the inner product structure analogous to the dot

product as a semantic measure between complex-valued representations within a Hilbert space.

96 Complex-Valued Word Representations Chapter 4

4.5.4 Evolution

When a closed quantum system changes, a unitary linear operator U is applied onto the original

state [121]. The evolution of a quantum system is described by a unitary transformation (Equa-

tion 4.36). The unitary operator preserves the structure and probabilistic properties of the state

vectors. A unitary transformation is reversible. A unitary matrix is a complex-valued squared

matrix if its conjugate transpose is its inverse: U† = U−1 → U†U = I.

U |φ〉 = |φ〉′ (4.36)

This postulate is often used to prepare quantum states for composition or computation. States

are often prepared by shifting the basis states into a superposition using a Hadamard operator H

(Equation 4.37).

H =
1
√

2

1 1

1 −1

 (4.37)

The phase shift operator Rθ is an essential operator. It allows shifting phases without affecting

amplitudes. The entries eiθ implement the shifts of corresponding bases (Equation 4.38). The

example shifts the phase of first basis state |β1〉 to eiθ |1〉 and does not affect the basis |β2〉.

Rθ =

1 0

0 eiθ

 (4.38)

The operators Rθ and H are defined for tensors of rank two. We propose the unitary evolu-

tion as a generalised preparation step for complex-valued semantic representations. Further, its

definition can be used as a constraint in neural architectures.

4.5.5 Composition

In order to compose n quantum systems their composite state space is the tensor product of the

components’ Hilbert spaces (Equation 4.39). The size of the composite state grows exponentially

with the number of systems.

H1 ⊗H2 ⊗H3 ⊗ . . .Hn =
(
(H1 ⊗H2) ⊗H3

)
⊗ . . .Hn (4.39)

The simplest composite states are the tensor products of pure quantum states |ψ〉 and |φ〉

(Equations 4.40 and 4.41). The tensor product of two vectors is equal to the left Kronecker

product.

Section 4.5 Quantum-Inspired Models of Language 97

|ψ〉A ⊗ |φ〉B = (
n∑

i=1

ai |αi〉) ⊗ (
m∑

j=1

bi |β j〉) =

n∑
i=1

m∑
j=1

aibi |αi〉 |β j〉 =

n∑
i=1

m∑
j=1

aibi |αiβ j〉

(4.40)

|ψ〉A ⊗ |φ〉B =

a1

a2

 ⊗
b1

b2

 =



a1b1

a1b2

a2b1

a2b2


(4.41)

Composition of two mixed quantum states ρA and ρB are more complex and computationally

expensive (Equation 4.42).

ρA⊗ρB =



a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann


⊗



b11 b12 . . . b1m

b21 b22 . . . b2m

...
...

. . .
...

bm1 bm2 . . . bmm


=



a11ρB a12ρB . . . a1nρB

a21ρB a22ρB . . . a2nρB

...
...

. . .
...

an1ρB an2ρB . . . annρB


(4.42)

with

ai jρB =



ai jb11 ai jb12 . . . ai jb1m

ai jb21 ai jb22 . . . ai jb2m

...
...

. . .
...

ai jbm1 ai jbm2 . . . ai jbmm


(4.43)

We suggest to compose quantum-inspired semantic spaces in order to analyse the relationship

between two sets of embeddings. These can originate from different methods, modalities, corpora

or languages. The combinatorial nature of the composition postulate allows us theoretically to

consider all possible meanings over semantic spaces. However, computationally this structure is

expensive to implement.

4.5.6 Measurements

Measurements in a quantum mechanics are not deterministic, but statistical. We present the

measurement postulate formally by introducing two kinds of measurements: projective measure-

ments (or von Neumann measurements) and positive operator-valued measurements (POVM).

The measurement postulate is closely related to evolution, since any measurement acts on the

98 Complex-Valued Word Representations Chapter 4

state space. Generally, it maps a state |ψ〉 to new state |ψ′〉 by applying one or more measurement

operators:

M |ψ〉 = |ψ′〉with |ψ〉 , |ψ′〉 ∈ H (4.44)

4.5.6.1 Projective Measurement

In Quantum Mechanics a projective measurement is characterised by a measurable physical prop-

erty of a quantum state (e.g. position, translational momentum, orbital angular momentum, spin,

total angular momentum, energy). It is represented by a Hermitian operator, also called an ob-

servable A. Mathematically, a projective measurement is an orthogonal projection into an eigen-

space V j of the observable A. Therefore, the observable has a decomposition which is a linear

combination of projectors P j :

A =
∑

j

λ jP j =
∑

j

λ j |a j〉 〈a j| (4.45)

The coefficients λ j are eigenvalues of an observable A and correspond to possible outcomes

which may or may not occur after the measurement. The eigenvectors (or eigenstates) |a j〉 span

the subspace V j in which we are projecting the measured quantum state. A single specific out-

come λ j occurs with the probability p(λ j):

p(λ j) = 〈ψ| P j |ψ〉 = 〈ψ|a j〉 〈a j|ψ〉 = | 〈ψ|a j〉 |
2 (4.46)

using the projector P j = |a j〉 〈a j|, an idempotent (self-adjoint) P j = P2
j operator. This corresponds

to the Born rule (Section 4.5.2).

The expectation value 〈A〉 of an observable A of a state |ψ〉 is defined as:

〈A〉 =
∑

j

λ j p(λ j) =
∑

j

λ j 〈ψ| P j |ψ〉

= 〈ψ|
(∑

j

λ jP j
)
|ψ〉 = 〈ψ| A |ψ〉

(4.47)

After the measurement the state |ψ〉 is left in a new state |ψ′〉:

|ψ′〉 =
P j |ψ〉√
〈ψ| P j |ψ〉

=
P j |ψ〉√

p(a j)
(4.48)

Intuitively, the probabilities of possible outcomes have to sum to 1:
∑

j p(λ j) = 〈ψ| P j |ψ〉 = 1.

The set of projectors {P j} has to satisfy the completeness relation:∑
j

P j = I (4.49)

Section 4.5 Quantum-Inspired Models of Language 99

Previous equations have all considered an arbitrary pure state |ψ〉. However, projective meas-

urements behave similarly on mixed states ρ. Given a mixed state ρ =
∑

i pi |φi〉 〈φi| the probab-

ility of an observable A to be a specific eigenvalue λ j of A is given with:

p(λ j) =
∑

i

pi 〈φi| |a j〉 〈a j| |φi〉

=
∑

i

piTr(|φi〉 〈φi| P j)

= Tr(
∑

i

pi |φi〉 〈φi| P j)

= Tr(ρP j)

(4.50)

The expectation value of the observable 〈A〉 for a mixed state ρ =
∑

i pi |φi〉 〈φi| is defined as:

〈A〉 =
∑

i

pi 〈φi| A |φi〉

=
∑

i

piTr(|φi〉 〈φi| A)

= Tr(
∑

i

pi |φi〉 〈φi| A)

= Tr(ρA)

(4.51)

After measurement the system is left in the state ρ′j :

ρ′j =
P jρP†j

tr(P†j P jρ)
=

P jρP j

Tr(P jρ)
(4.52)

Equation 4.52 describes the state of a sub-ensemble. The complete ensemble (or statistical

state) is described as follows:

ρ′ =
∑

j

p(λ j)ρ′j

=
∑

j

Tr(P jρ)
P jρP j

tr(P jρ)

=
∑

j

P jρP j

=
∑

j

P jρP†j

(4.53)

The operators P j of a projective measurement satisfy completeness relation, orthogonality,
idempotence and they are Hermitian. Making a measure in a basis |ai〉 is equal to making a

projective measurement. It projects a quantum state |ψ〉 with a projector P j = |a j〉 〈a j| into a

100 Complex-Valued Word Representations Chapter 4

subspace of the state space H . For this the eigenstates |a j〉 of the observable A the basis states

|e j〉 = |x j〉 of the Hilbert space H are implicitly chosen. If we now consider the state after the

measurement, pure |ψ′〉 or mixed ρ′ , we see that physical measurements result in an information

loss. From a mathematical perspective, this is due to the projection into an eigenspace of the

observable A. Physically, the state collapses. Superposition information is irreversibly lost, since

the measurement apparatus itself interacts with the measured quantum system as a new system.

The system we want to measure has lost its coherence. This process of losing information is

called decoherence.

4.5.6.2 Positive Operator-Valued Measurements

In general, any measurement is characterised by a set of Hermitian measurement operators {M j}.

Since they are Hermitian, the operators are there own complex conjugate transpose M j = M†j .

The set of measurement operators satisfies the completeness relation (Equation 4.54), so that the

probabilities p(j) of all possible outcomes sum to 1.∑
j

M†j M j = I (4.54)

The index j corresponds to the possible outcomes. The probability p(j) that j occurs upon

measurement is given with:

p(j) = 〈ψ|M†j M j |ψ〉 (4.55)

A system’s state |ψ′〉, after the measurement with a specific M j, is given with:

|ψ′〉 =
M j |ψ〉√
〈ψ|M†j M j |ψ〉

(4.56)

The probability p(j) in terms of a mixed state ρ =
∑

i pi |φi〉 〈φi| is given with:

p(j) =
∑

i

pi 〈φi|M
†

j M j |φi〉

=
∑

i

piTr(|φi〉 〈φi|M
†

j M j)

= Tr(
∑

i

pi |φi〉 〈φi|M
†

j M j)

= Tr(M†j M jρ)

(4.57)

Applying a measurement operator M j on a mixed state ρ leaves the system in a new state ρ′j:

ρ′j =
M jρM†j

Tr(M†j M jρ)
(4.58)

Section 4.5 Quantum-Inspired Models of Language 101

The complete ensemble after the measurement is given with a state ρ′ :

ρ′ =
∑

j

p(j)ρ′j

=
∑

j

Tr(M†j M jρ)
M jρM†j

Tr(M†j M jρ)

=
∑

j

M jρM†j

(4.59)

POVMs allow more freedom of choice for the basis of the measurement operators M j. If

the linear operators P j are idempotent P2
j = P j. This property makes the operator a projector.

Projectors can be applied multiple times without the measurement outcome changing and they

are their own complex conjugate transpose. Moreover, this projection is orthogonal. A projection

is orthogonal if and only if the projectors are hermitian A = A†. Unlike the operators P j for a

projective measurement, the operators M j for a POVM do not have to satisfy orthogonality and

idempotence. For a POVM measurement it is sufficient that the operators are positive and satisfy

the completeness relation. Projective measurements are POVMs, due to their orthogonality and

idempotence P j = M j:

M†j M j = M jM j = (M j)2 = M j = P j (4.60)

Quantum mechanical observations are not necessarily intuitive, since the act of observing

causes the state to collapse. We propose the measurement postulate as the process of interpret-

ing a word’s meaning within a context. An isolated word representation is polysemous and is

therefore ambiguous. In context, however, a word loses this property or at least the uncertainty

is reduced. In an optimal case exactly one meaning is reinforced and all other possible meanings

reduced by the context. Using the eigenvectors of the polysemous representation, we can con-

struct a set of measurement operators. This allows us to measure word states towards a certain

meaning. The state after measurement is the disambiguated word within a context. The act of

understanding a word within its context is the act of measurement. However, to understand a

meaning and reconstruct all possible meanings, we will have to measure it multiple times.

We propose projective measurements as tools to investigate and compare the meaning spaces

of words, phrases, sentences or even documents. The projective measurements project the state

into semantic sub spaces derived from another phrase. We assume the other phrase to be an

observable. This may provide us with possibilities to detect paraphrases or semantically similar

documents.

102 Complex-Valued Word Representations Chapter 4

4.5.7 Quantum-Inspired Semantic Framework

There have been many approaches to formalise quantum-inspired Semantic Spaces. Some take

a theoretical perspective and study semantic spaces themselves [122, 123]. Others take more

practical approach. Since we have formalised our framework, strongly related work has been

published [95, 124, 125]. Our approach differs to previous attempts in the semantic interpretation

of quantum theoretic principles and their consequences. Most recently, there have been very

similar approaches published. They also rely on density matrices as semantic representations to

capture word polysemy in pure states and compositions as mixed states [126, 117].

We generalise Semantic Spaces and operations acting on semantic representations and spaces.

Our framework allows us to transfer properties and metrics from Quantum Mechanics to lan-

guage. Entropy can be used as a metric for syntactic complexity of phrases, Hilbert spaces allow

us to define semantic similarity by the inner product and eigenvectors represent distinguishable

meanings or concepts. Measurement operators created using eigenvectors interpret semantic

density matrices. We use topic j in our definitions to denote learned semantic features. They

may originate from classical latent topic models, but may also be learned entirely in constrained

embedding layers.

Our generalised framework represents words as pure and phrases as mixed states in the same

semantic space. Both are defined by a statistical ensemble as density matrix. This allows us to

interpret mathematical properties of density matrices and its use in Quantum Mechanics from a

semantic perspective.

We represent words w by a pure state |w〉 (Equation 4.61) or with their corresponding density

matrix ρw (Equation 4.62). Syntactical information are captured in relative phases θ j and the

semantic information by the magnitude |z j| of complex coefficients z j = |z j|eiθ j .

|w〉 =

k∑
j

z j |topic j〉 =

k∑
j

√
p(w|topic j)eiθ j |topic j〉 (4.61)

For an arbitrary word representation as pure state |w〉 the corresponding density matrix ρw is

defined as:

ρw = |w〉 〈w| =


z1

. . .

zk


[
z̄1 ... z̄k

]
=



|z1|
2 z1z̄2 . . . z1z̄k

z2z̄1 |z2|
2

...
. . .

zk z̄1 |zk |
2


(4.62)

The density matrix of size k × k where k is the number of features. A phrase or sentence

of length s given with a sequence S of words wi can be expressed as mixed state ρp of the

Section 4.5 Quantum-Inspired Models of Language 103

contributing word states (Equation 4.63). The meaning of the sentence is a weighted sum (a

statistical ensemble) of the possible meanings of the contributing words. Each element of a

phrase is prepared by a unitary evolution and weighted into an ensemble represented by a mixed

state.

ρS =
∑
wi∈S

pi |wi〉 〈wi|

=
∑
wi∈S

piρwi

=
∑
wi∈S

pi



|zi
1|

2 zi
1z̄2

i . . . zi
1z̄k

i

z2z̄1
i |zi

2|
2

...
. . .

zi
k z̄1

i |zi
k |

2



=



∑
i pi|zi

1|
2 ∑

i pizi
1z̄2

i . . .
∑

i pizi
1z̄k

i∑
i piz2z̄1

i ∑
i pi|zi

2|
2

...
. . .∑

i pizi
k z̄1

i ∑
wi

pi|zi
k |

2



(4.63)

with
∑s

i=0 pi = 1. The resulting compositional density matrix ρS captures information of clas-

sical probabilities on its diagonal. The off-diagonal elements capture non-classical information

as interference terms.

This framework gives us the freedom to represent words and compositions of arbitrary length

s with the same dimensioned representation. The framework uses weighted addition with pre-

ceding state evolution in order to compose words of arbitrary length. The word representations

are prepared or weighted according to the syntactical structure in S or a specific task. Further,

we are able to use various tools to analyse and compare their meaning. The relative phases can

be derived for the composition structure.

With this framework, many properties and tools developed to analyse quantum mechanical

systems can be used for the semantic and syntactic analysis of words and sentences:

The inner product structure (Equation 4.35) of the Hilbert space describes a semantic distance

between the pure states of two words w and v given as |w〉 and |v〉. As the generalisation of the

dot product, we can use this to identify semantic clusters within the semantic state space.

The Von Neumann entropy is widely used in Quantum Information Theory. It is a measure

for the mixedness or randomness of a statistical ensemble (Equation 4.64).

S (ρ) = −tr
(
ρ ln(ρ)

)
(4.64)

104 Complex-Valued Word Representations Chapter 4

If the state ρ is written with its eigenvectors |ψi〉 and the corresponding eigenvalues λi ρ =∑
i λi |ψi〉 〈ψi| the computation simplifies to Equation 4.65.

S (ρ) = −
∑

i

λi ln(λi) (4.65)

We note that the entropy S (ρ) = 0 if ρ is a pure state. The maximal entropy of a mixed state

ρ is S (ρ) = ln(k). In our framework entropy is a measure for syntactic complexity and semantic

interaction. Entropy not only allows us to compare sentences semantically, but also to quantify

semantic interaction within a sentence caused by its structure.

Eigenvectors of density matrices allow us to represent the density matrix as a mixture of

its eigenvectors and eigenvalues. Within our framework the eigenvectors can be interpreted as

the fundamental meanings of sentences, phrases or words. We are able to semantically com-

pare sentences or phrases of different lengths. Eigenvalues and eigenvectors have the following

properties:

• While the k eigenvalues of any density matrix are real, the corresponding eigenvectors may

be complex.

• There exist an complex orthonormal basis such that all off-diagonal elements (coherences)

are 0, since ρ is Hermitian.

• Eigenvectors are orthogonal for distinct eigenvalues, since ρ is Hermitian.

• Any finite density operator can be diagonalised by a unitary matrix, since ρ is Hermitian

(finite-dimensional spectral-theorem).

• Any finite density operator has k linearly independent eigenvectors, since ρ is Hermitian

and its eigenvalues are distinct.

Due to the finite-dimensional spectral theorem, we can find eigenvalues and eigenvectors by

decomposing:

ρ = UΛŪ (4.66)

with U being a unitary matrix containing orthogonal eigenvectors as columns and Λ being a

diagonal matrix containing only real eigenvalues. Furthermore, we can use the Gram-Schmidt

procedure to find an orthonormal basis for the complete state space using the eigenvectors. This

way we are able to compare the meanings of sentences or phrases of different lengths. This

comparison could be achieved by pairwise calculation of the cosine similarity.

The measurement postulate using projective measurement or POVM (Section 4.5.6) allows

us to use the eigenstates for semantic analysis of sentences. Since we interpret a density matrix’s

eigenvectors as fundamental meanings, we are able to measure these eigenvectors and calculate

Section 4.5 Quantum-Inspired Models of Language 105

their probabilities. We construct a projective measurement from the eigenvectors of a density

matrix and can conduct measurements of meaning for phrases or words. The information of ei-

genvectors also helps us to discover word disambiguation. Formulating projective measurements

based on the word’s eigenvectors and conducting measurements on the phrase state we can dis-

cover the natural disambiguation in the composition. The act of measurement is the linguistic

equivalent of understanding within a context. The eigenvectors of the density matrix will be

linearly independent, so that we can interpret them as truly distinct meanings.

An alternative is to construct observables A, B from two phrases ρA, ρB and measure the ob-

servable A on the quantum state ρB and the observable B on the quantum state ρA. With these

procedures we can discover mutual meanings or decide over the semantic similarity of phrases

of different length.

If we construct a POVM measurement or a projective measurement using the word repres-

entations used in a composition, then measure the compositional state and analyse the state after

the measurement we are able to make statements of word disambiguation of a specific word. We

can facilitate this model to achieve paraphrase detection and other evaluation tasks. We construct

a measurement operator for a POVM measurement using the isolated word states of a paraphrase

and measure the mixed state of the sentence which we want to test for this specific paraphrase.

While we can use the inner product of two semantic states |w〉 and |v〉 of two words w and v, the

semantic measurement of an observable A interprets the disambiguated meaning of the compos-

ition vw with respect to an eigenvector of the entire semantic space, word or phrase.

Overall, our approach allows us to intuitively interpret eigenvectors, entropy and inner products

directly to properties of words and word compositions. We consider them as tools and methods

for semantic and syntactic analysis.

4.5.8 Semantic Spaces

In this subsection we present different models of language inspired by previous work in Com-

putational Semantics. These models are simple instances of our framework. We translate the

real-valued Simple Semantic Space and the Simple Topic Space into our quantum-inspired se-

mantic framework using pure states.

4.5.8.1 Simple Semantic Space

Simple Semantic Spaces follow the distributional hypothesis. Words are represented by vectors

containing measures derived from co-occurrence statistics. Co-occurrence is defined using a con-

text window of a size c. Each dimension of a target word vector w ∈ V corresponds to a possible

context word v ∈ V , such that n = |V |. The vectors span the vector space Rn. The necessary

counts are directly extracted from the corpus. Previous research has also shown that modern

neural models used to learn general-purpose embeddings achieve this by applying factorisation

106 Complex-Valued Word Representations Chapter 4

methods on these types of measures [18]. Hence, we use Pointwise Mutual Information (PMI)

of various scaling. The Simple Semantic Space and the different variants serve as baselines. We

also show the performance compositional similarity judgments.

PMI is a measure of association widely used in Computational Semantics. It is based on

co-occurrence and word appearance statistics. For two words w and v PMI is defined as shown

in Equation 4.67.

pmi(w, v) = log
(p(w, v)

p(w)p(v)
)

(4.67)

We refer to the variants of PMI as pmia, pmib and pmic. All of them are based directly on

the co-occurrence frequency f (w, v) of a context word v with a target word w. Our variants of the

PMI pmia, pmib, pmic (Equations 4.68, 4.69, 4.70) differ in scaling or collection procedure (i.e.

how sums are extracted from the statistics).

pmia(w, v) = log(1 +
p(w, v)

p(w)p(v)
)

= log(1 +

f (w,v)
N

f (w)
N

f (v)
N

)

= log(1 +

f (w,v)
N

f (w) f (v)
N2

)

= log(1 +
f (w, v)N
f (w) f (v)

)

(4.68)

pmib(w, v) = log(
p(w, v)

p(w)p(v)
)

= log(
f (w,v)

N
f (w)
N

f (v)
N

)

= log(
f (w,v)

N
f (w) f (v)

N2

)

= log(
f (w, v)N
f (w) f (v)

)

(4.69)

Section 4.5 Quantum-Inspired Models of Language 107

pmic(w, v) = log(
p(w, v)

p(w)p(v)
)

= log(
f (w,v)

M
f ′(w)

M
f ′(v)
M

)

= log(
f (w,v)

M
f ′(w) f ′(v)

M2

)

= log(
f (w, v)M
f ′(w) f ′(v)

)

(4.70)

with f (w) =
∑

v∈V f (w, v) and N =
∑

w∈V f (w) so that that p(w, v) =
f (w,v)

N and p(x) =
f (x)
N .

Also f ′(w) given as the frequencies of word w in the corpus and M =
∑

w∈V f ′(w), so that

p(w, v) =
f ′(w,v)

M and p(x) =
f ′(x)
M .

Our first baseline uses the raw frequency counts, so that a word w is represented by a vector

containing counts of context words v j (Equation 4.71). The entries v j correspond to frequencies

f (w, v j) being the word v j within the context of w.

w =

[
f (w, v1) . . . f (w, vn)

]
(4.71)

Another strong baseline is achieved by normalising the counts to probabilities, thus the vector

is of unit length |w| = 1. Entries v j correspond to the probability p(w, v j) =
f (w,v j)

f (w) that the word

v j appears within the context of a target word w.

w =

[
p(w, v1) . . . p(w, vn)

]
(4.72)

Other baseline embeddings use the PMI scoring functions presented above:

w =

[
pmia(w, v1) . . . pmia(w, vn)

]
(4.73)

with entries w j = pmia(w, v j) = log
(
1 +

p(w,v j)
p(w)p(v j)

)
= log

(
1 +

f (w,v j)N
f (w j) f (v j)

)
.

w =

[
pmib(w, v1) . . . pmib(w, vn)

]
(4.74)

with entries w j = pmib(w, v j) = log
(p(w,v j)

p(w)p(v j)
)

= log
(f (w,v j)N

f (w) f (v j)
)
.

w =

[
pmic(w, v1) . . . pmic(w, vn)

]
(4.75)

with entries w j = pmic(w, v j) = log
(p(w,v j)

p(w)p(v j)
)

= log
(f (w,v j)M

f ′(w) f ′(v j)
)
.

108 Complex-Valued Word Representations Chapter 4

4.5.8.2 Simple Semantic Quantum Space

Generally, we define the Simple Semantic Quantum Space as Hilbert Space consisting of word

quantum states {|w〉}. They are defined as a linear combination of orthonormal basis states |v j〉

which represent PMI score with the context words v j.

Each complex coefficient z j = x + iy = r jeiθ j satisfies
∑

v j∈V |z j|
2 = 1. The relative phases

θ j and the amplitude r j are learned by a model or set to be a corpus metric or statistic. In this

instance of our semantic quantum framework the coefficients indicate the probabilities or scores

to find the word |w〉 in context with |v j〉 upon measurement. A word w is represented with a

quantum state |w〉 (Equation 4.76).

w =
∑
v j∈V

z j |v j〉 =
∑
v j∈V

r jeiθ j |v j〉 (4.76)

Phases can be imposed by applying a phase shift operator Rθ onto a word representation |w〉

(Equation 4.77). The phase shift is parametrised by a vector of relative phases θ.

w′ = Rθw =



eiθ1 0 . . . 0

0 eiθ2

...
. . .

0 eiθn


w (4.77)

We create a quantum state from co-occurrence statistics by normalising the counts. To satisfy

the a quantum state, we compute the square root of the coefficients. A word representation |w〉 is

given with:

|w〉 =
∑
v j∈V

√
f (w, v j)
N

|v〉 =
∑
v j∈V

√
p(w, v j) |v j〉 (4.78)

We use the L1-norm defined with a norm N =
∑

v j∈V f (w, v j).

Other variants of the PMI pmi(w, v) normalise the score to npmi(w, v). The computed scores

are within the interval [−1,+1] (Equation 4.79). The npmi score is −1 if there is total anti-

correlation, 0 if there is no correlation and +1 if there is total positive correlation [127].

npmi(w, v) =
pmi(w, v)
− log(p(w, v))

(4.79)

Our other variants make use of the normalised variants of PMI. For the case that npmi(w, v j)

results in negative numbers, the score is simply considered as a complex number with a phase of

π, otherwise 0.

|w〉 =
1
N

∑
v j∈V

npmix(w, v j) |v j〉 (4.80)

Section 4.5 Quantum-Inspired Models of Language 109

The factor 1
N

is a normalisation factor to impose the constraint
∑

v j∈V |z j|
2 = 1 on a quantum

state. So far we have used our Simple Semantic Quantum state only with phases of 0 or π and,

therefore, the entries are of the same or opposing phases. We extend our approach using the

normalised pointwise mutual information to define the phase θ j = cos−1(npmi(w, v j)) for each

complex coefficient.

|w〉 =
1
N

∑
v j∈V

|npmix(w, v j)|ei
(
cos−1(npmix(w,v j))

)
|v j〉 =

1
N

∑
v j∈V

c |v j〉 (4.81)

The occurrence and co-occurrence statistics derived from the corpus contain limited inform-

ation about the possible composition without explicitly taking syntactical structure into account.

4.5.8.3 Simple Topic Quantum Space

We define a Simple Topic Quantum Space as a quantum embedding of the Simple Topic Space.

In the Simple Topic Quantum Space we use topics from a latent topic model as basis states

|topic j〉. Each basis has corresponding complex coefficients t j = x + iy = r jeiθ j which satisfy∑
topic j∈V |t j|

2 = 1. The probability p(topic j| |w〉) = p(w|topic j) = |t j|
2 expresses the probability

of the word w to be generated by the j-th topic. A word w is defined with a quantum state |w〉

(Equation 4.82).

|w〉 =
∑
t j∈T

t j |v j〉 =
∑
v j∈V

√
p(w|topic j)eiθ j |v j〉 (4.82)

4.5.9 Experiments

Our experiments focus on two important properties in semantic spaces. Semantic similarity and

compositionality. In the past there have been a number of considerations of compositionality

in vector-based semantic spaces [128]. They focus on combining vector representation of words

into various composition types like compound noun, adjective-noun, verb-object or subject-verb-

object [3, 129, 130]. We continued this work for quantum-inspired models as their natural exten-

sion.

Table 4.5 shows the performance of the different models in the semantic similarity and re-

latedness task for words. For a more detailed comparison between classical and quantum-inspired

models, we allow the composition of pointwise addition ⊕ and pointwise multiplication �. Both

have been found to be strong baselines [3]. We compare complex-valued npmix models and

complex-valued npmix phase models to their real-valued pmix counterparts. Note that while the

npmix models do not explicitly define a phase, they still have direction. They can be negative or

positive, hence their phase is either 0 or π. We report the performance of the unprocessed count

vectors (raw) or the normalised probabilities as representations.

110 Complex-Valued Word Representations Chapter 4

We found that complex-valued Simple Semantic Quantum Spaces outperform their real-

valued Simple Semantic Spaces in word similarity and word relatedness judgments. All quantum

models show improved correlation of similarity (SimLex-999) and relatedness judgement (Word-

Sim353) compared to their real-valued baselines. Exceptions are phase models using npmib and

npmic. Another comparison between the quantum-like models using equal phases (npmia, npmib, npmic)

and models using NPMI information for their phases (npmia phases, npmib phases, npmic phases)

shows that NPMI phase information decrease the performance. Especially for npmib phases,

npmic phases the performance drops significantly.

Table 4.5: Semantic similarity computed by the inner product of word representations evaluated
using WordSim353 [1] and SimLex999 [2]. Results given in Spearman correlation ρ calculated
by averaging over participant correlation. Arrows ↑, ↓, • indicate the performance compared to
model’s direct baseline.

WordSim353 SimLex999
Simple Semantic Space

- raw 0.03421 -0.0473
- probability 0.31530 0.13979
- pmia 0.42813 0.18239
- pmib 0.35153 0.21168
- pmic 0.38594 0.16174

Simple Semantic Quantum Space
- normalised probability amplitude 0.44581 ↑ 0.22998 ↑
- npmia 0.47046 ↑ 0.21569 ↑
- npmib 0.39408 ↑ 0.23467 ↑
- npmic 0.39702 ↑ 0.17132 ↑
- npmia phases 0.46913 ↑ 0.21521 ↑
- npmib phases 0.17549 ↓ 0.08304 ↓
- npmic phases 0.30796 ↓ 0.12289 ↓

Simple Topic Space
- 50 topics 0.18855 0.19004
- 200 topics 0.18164 0.21271

Simple Topic Quantum Space
- 50 topics 0.19819 ↑ 0.20179 ↑
- 200 topics 0.18637 ↑ 0.18499 ↓

Table 4.6 shows the results of simple composition using pointwise addition ⊕. Using this

composition function is of particular interest, since interference occurs in the complex addition.

Generally, we found that the quantum-inspired embeddings outperform the classical baselines

in all composition types under addition. Quantum embeddings using npmia and npmia phases

perform best for compound nouns and adjective-nouns. For verb-object and subject-verb-object

Section 4.5 Quantum-Inspired Models of Language 111

Table 4.6: Semantic similarity computed by the magnitude of the inner product between the rep-
resentations of compound nouns, adjective-noun, verb-object and subject-verb-object composi-
tion under addition using data sets from Mitchell and Lapata [3] and Grefenstette and Sadrzadeh
[4]. Results given in Spearman correlation ρ calculated by averaging over participant correlation.
↑, ↓, • indicate the performance compared to model’s baseline.

Addition ⊕ compound nouns adjective-noun verb-object subject-verb-object
Simple Semantic Space

- raw 0.36077 0.17974 0.16809 0.07917
- probability 0.21503 0.18284 0.28605 0.03632
- pmia 0.40721 0.32530 0.27142 0.09379
- pmib 0.36488 0.23312 0.35151 0.20141
- pmic 0.37561 0.31964 0.24611 0.15315

Simple Semantic Quantum Space
- probability amplitude 0.39218 ↑ 0.33889 ↑ 0.37040 ↑ 0.15391 ↑
- npmia 0.41134 ↑ 0.35581 ↑ 0.29824 ↑ 0.19314 ↑
- npmib 0.30764 ↓ 0.27678 ↑ 0.37964 ↑ 0.19701 ↓
- npmic 0.39089 ↑ 0.33133 ↑ 0.25356 ↑ 0.20179 ↑
- npmia phases 0.41076 ↑ 0.35290 ↑ 0.29784 ↑ 0.19299 ↑
- npmib phases 0.13381 ↓ 0.09962 ↓ 0.18731 ↓ 0.09017 ↓
- npmic phases 0.34003 ↓ 0.27044 ↓ 0.25741 ↑ 0.16839 ↑

Simple Topic Space
- 50 topics 0.52060 0.42080 0.36657 0.15481
- 200 topics 0.57235 0.27311 0.34206 0.27679

Simple Topic Quantum Space
- 50 topics 0.57860 ↑ 0.42313 ↑ 0.41405 ↑ 0.15701 ↑
- 200 topics 0.60321 ↑ 0.31530 ↑ 0.38048 ↑ 0.27058 ↓

the quantum-inspired npmib and npmic perform best. They outperform the classical baselines

significantly. The quantum topic models derived from topic representations by Komninos and

Manandhar [131] show improved correlation in similarity judgement tasks for compound nouns,

adjective-nouns and verb-object composition over their classical representations. Other variants

of the quantum semantic spaces npmib, npmib phases and npmic phases show more mixed res-

ults. They improve the correlation for some composition types, but decrease the performance

for others. We note that judgements for verb-object and subject-verb-object compositions benefit

from npmic phases, but decrease with npmib phases. In comparison to their real-valued baselines

as well as their non-phase variants, only the npmic phase model improves in verb-subject com-

position. Other variants do not change the performance or have a detrimental effect.

Table 4.7 shows the results of simple composition using pointwise multiplication �. Under

multiplication the phases do not have an impact on the magnitudes within the composition, since

112 Complex-Valued Word Representations Chapter 4

Table 4.7: Semantic similarity computed by the the magnitude of the inner product between the
representations of compound nouns, adjective-noun, verb-object and subject-verb-object com-
position under multiplication using data sets from Mitchell and Lapata [3] and Grefenstette and
Sadrzadeh [4]. Results given in Spearman correlation ρ calculated by averaging over participant
correlation. ↑, ↓, • indicate the performance compared to model’s direct baseline.

multiplication � compound nouns adjective-noun verb-object subject-verb-object
Simple Semantic Space

- raw 0.19044 0.21046 0.24326 -0.09030
- probability 0.12331 -0.00601 0.16559 -0.00890
- pmia 0.42101 0.39442 0.33030 0.28821
- pmib 0.11449 0.26109 0.31260 0.21638
- pmic 0.31189 0.31192 0.3382 0.10721

Simple Semantic Quantum Space
- probability amplitude 0.17910 ↑ 0.04940 ↑ 0.13845 ↓ -0.03053 ↑
- npmia 0.44925 ↑ 0.36386 ↓ 0.31745 ↓ 0.30894 ↑
- npmib 0.12294 ↑ 0.26838 ↑ 0.31402 ↓ 0.25201 ↑
- npmic 0.36540 ↑ 0.32566 ↑ 0.35660 ↑ 0.12088 ↑
- npmia phases 0.44254 ↑ 0.36115 ↓ 0.31173 ↓ 0.30737 ↑
- npmib phases 0.15310 ↑ 0.15356 ↓ 0.25943 ↓ 0.10894 ↓
- npmic phases 0.33706 ↑ 0.30690 ↓ 0.30242 ↓ 0.09078 ↓

Simple Topic Space
- 50 topics 0.51571 0.23729 0.16304 0.02042
- 200 topics 0.36820 -0.01494 0.25912 0.03226

Simple Topic Quantum Space
- 50 topics 0.52973 ↑ 0.24142 ↑ 0.17898 ↑ 0.03236 ↑
- 200 topics 0.40309 ↑ -0.01800 ↓ 0.26000 ↓ 0.01534 ↓

the relative phases are added and the amplitudes are multiplied. However, the phase of the com-

position representation is still important for the similarity judgments, because it computes the

inner product.

Generally, we note that the quantum embeddings also outperform the classical baselines in

all composition types under multiplication. For compound nouns, adjective-noun and subject-

verb-object composition, the quantum variants npmia and npmia phases perform best. They

outperform their baselines significantly. For verb-object and subject-verb-object compositions

npmib and npmic perform best. They outperform their baselines significantly as well. Under

multiplication the Quantum Topic Spaces outperform the Simple Semantic Spaces consistently.

Comparing the phase variants to their equal-phase models, we observe that manually set phases

have either no effect or a detrimental effect on the performance.

Overall, the best results in compositional similarity of both functions are achieved by the

Section 4.6 Discussion 113

quantum embedding with k = 200 topics under addition. These are followed by multiplication

in models npmia and npmia phase spaces for compound noun, adjective-noun and for subject-

verb-object. For verb-object composition the second best is npmib under addition. Comparing

the two composition functions the best results under multiplication composition outperform the

best results under addition. This is also true for the baselines. The Simple Topic Space and the

Simple Topic Quantum Space with 50 and 200 topics perform in all compositions significantly

better under addition as composition. For the lexical similarity evaluation the npmia and npmia
phases achieve the best results.

We found that quantum-inspired representations improve the performance in similarity judg-

ments of words, compound nouns, adjective-noun, verb-object and subject-verb-object composi-

tions. We found that the probability amplitude baselines outperforms some pmi-based real-valued

baselines in compositions.

We also found that the performance improvements between the real-valued topic model and

the quantum-inspired topic model are not as significant as those observed in the Simple Semantic

(Quantum) Spaces.

We observe that manually chosen phases have no effect or have a detrimental effect on the

performance if compared with both the real-valued baseline and their non-phase quantum repres-

entation. The effects of interference depend on the composition type.

4.6 Discussion

4.6.1 Neural Language Modelling

In section 4.3 we present complex-valued LSTM and embeddings for language modelling.

We found that exchanging the recurrence and embedding matrix with complex-valued ver-

sion does not improve perplexity scores. In fact, the performance is significantly worse, because

optimisation towards a local minimum on the complex domain is more difficult. The explicit

encoding of positional information as phase or slot embeddings also performs worse than the

baseline. This may be explainable by the fact that the real-valued baseline already extracts po-

sitional information, because LSTMs are order-aware. Frequency-based models which apply a

transformation to the real-valued embeddings outperform the baseline. This indicates that fre-

quency information which are computed over the entire input sequence is beneficial to prime the

recurrence towards correct output sequences.

We found that larger language models become unstable in their training process. Changing

the activation functions and adding gradient norm clipping improved stability, but did not solve

the problem.

We are limited by the small size of the chosen corpus and the limited training steps we used in

for our experiment. The Penn-Tree-Bank corpus is comparatively small. More recent literature

114 Complex-Valued Word Representations Chapter 4

found that language models tend to improve performance on vast and diverse corpora. They also

require significantly more training steps than we assumed. Furthermore, the significantly worse

results compared to results reported in existing literature indicate that hyperparameter tuning is

exceptionally important for language modelling. Our intention was to avoid additional measures

(e.g. batch normalisation) or excessive hyperparameter tuning to receive a fair comparison.

Future work should include the change to larger corpora and more training steps. Examples

are to wiki-text corpora [132]. The activation function should be changed and stabilising methods

should be introduced. Weight or batch normalisation are necessary to train larger networks in the

complex setting.

4.6.2 Memory Networks

In Section 4.4 we present a simplified memory network architecture for a comparison between

real-valued and complex-valued architectures. We tested it in different sizes on the bAbI QA data

set using various activation functions.

We found that over the entire data set the complex-valued neural networks outperform the real

networks more often. We attribute this to the increased expressibility of complex-valued neural

networks and embeddings. We acknowledge that the performance improvements are small, but

complex-valued neural networks tend to require fewer parameters for similar or slightly better

performance.

We observe that complex-valued neural networks perform well in logic and reasoning tasks.

They perform less well in short dependencies and co-referencing. We conclude that the increased

expressibility allows the network to approximate logic operations more efficiently. This is also

supported by the fact that complex-valued neurons are known to be superior in the approximation

of logic functions (e.g the XOR function) [22, 120, 110]. The required information are available

in the data itself which the memory network needs to extract from natural language. Even without

explicit incentives, the model learns to encode logic into the word embeddings. A decision for or

against using complex numbers should be based on the task.

The memory network embeds real-valued data into the complex plane. However, it is unclear

what type of information is encoded to improve performance in these tasks. Previous work uses

similar principles to exploit learning links for knowledge graph completion [101, 26, 133, 102].

We assume that complex-valued embeddings contain features to provide the network with the

ability to learn logic functions in a probabilistic way.

Our findings are limited by the data set choice and architecture. The bAbI data set consists

of simple toy questions. More complex questions will most likely require more elaborate archi-

tectures like periodic memory networks. However, we chose this data set as a benchmark task to

show the validity of the complex-valued approach to question answering.

Future work should include experiments on more complex questions.

Section 4.6 Discussion 115

4.6.3 Quantum-Inspired Models of Language

In Section 4.5 we have described a quantum-inspired framework for languages. We found three

underlying (mathematical) differences between existing Simple Semantic Spaces and Quantum-

inspired Semantic Spaces:

1. Complex-valued � representations instead of real-valued representations �

2. Probability: The squared magnitude (probability amplitudes) have to sum to one
∑n

j=0 |z j|
2

3. Geometrical: The bases e need to be pairwise orthogonal 〈e j|ei〉 = 0

Together they define a semantic space as a complex-valued Hilbert space. We conclude

that Quantum-inspired semantic spaces are a useful extension. The introduced constraints al-

low straightforward interpretation of axioms and postulates.

In our related experiments we found that quantum-inspired representations improve the per-

formance in similarity judgments of words, compound nouns, adjective-noun, verb-object and

subject-verb-object compositions. The reason for this are scaling effects as a result of applying

the probability amplitude constraint. This is supported by the observation that the probability

amplitude baselines already outperform pmi-based real-valued baselines in compositions. An-

other supporting finding is that the performance improvements between the real-valued topic

model and the quantum-inspired topic model are not as significant as those observed in the

Simple Semantic (Quantum) Spaces. The scaling that leads to the improved correlations for

Simple Semantic Quantum Spaces has already been implemented in the training of topic models.

In our framework and experiments we show that interference is a powerful principle to model

interaction between two representations. We found that manually chosen phases have no effect or

are more likely have a detrimental effect on the performance. This becomes clearer if we compare

the models that include phases with both the real-valued baseline and their non-phase quantum

representation. Modelling interference manually is difficult. If the phases are chosen incorrectly,

the interference will decrease the overall performance. It then becomes another source of noise.

Hence, particular care is required when designing interference. Since it is difficult to identify

tasks that naturally benefit from an interference pattern, we suggest adapting loss functions to

explicitly take phases into account.

We also observe that the effects of interference depend on the composition type and the level

of comparison. We observe that npmi phase models have positive effects on word comparisons

and verb-object phrases. This suggests that it is necessary to prepare semantic representations

to be used in compositions. Our framework suggests to use unitary matrices to evolve semantic

quantum states before they are used in word compositions.

The limitations of our experiments are similar to classical distributional models. Firstly, we

assume that the distributional hypothesis is true and the meaning of a word is indeed given by

its context. Our composition results depend on the quality of statistics and the topic embeddings

116 Complex-Valued Word Representations Chapter 4

computed. Both heavily depend on the size of the corpus. However, we have used a large

concatenated corpus of Gigaword and Wikipedia. Moreover, we have manually selected features

to represent word context (counts, probability, pmi and npmi). While these have shown to be

good predictors, they are not fine tuned for the tasks. Levy et al. [18] suggests, however, that

existing neural approaches learn similar features. They learn to apply factorisation methods on

matrices containing co-occurrence counts or similar metrics.

This work shows that quantum-inspired representations of language are an interesting topic,

but require more care to create productive interference. Future work on these models should

include learned phases which are explicitly promoted in the loss. We found manually defined

phases and completely free phases to be detrimental to the overall performance. In this thesis we

focus mainly on the first constraint which replaces real numbers with complex numbers. This

increases the model’s expressibility. Existing literature considers Neural Language models that

learn quantum-inspired semantic representations directly while satisfying one or more of the

presented constraints. We suggest building on our framework and derive representations in the

complex plane using neural networks. Layers should have unitary weight matrices, apply weight

normalisation or batch normalisation between the layers in order to enforce the probability amp-

litude constraints and improve the stability of the learning process. Measurement and evolution

operators should be learned in tandem for different compositions in the same semantic space.

We showed that we can use complex-valued neural networks to learn complex-valued rep-

resentations of words. Quantum-inspired models of language form a subclass of complex-valued

representations. They are further constrained due to their probabilistic and geometrical interpret-

ation. However, a problem of learning word embeddings with complex-valued neural networks

is that they are unstable. We found generalisations of existing methods (i.e. gradient clipping and

norming) to stabilise the training to be beneficial for complex-valued neural networks. We also

found that the constraints of quantum theory may improve the performance of word embeddings.

We may be able to combine these findings to improve the training stability and the perform-

ance of word embeddings. We can achieve this by moving towards a neural network design that

respects the quantum-inspired framework presented in Section 4.5:

• Apply an adapted Batch Normalisation to force each embedding to be quantum state.

• Apply unitary constraints onto weight matrices of layers. A fully-connected layer or per-

ceptron consequentially implements quantum evolution with a non-linearity. Without the

non-linearity we do not need to another Batch Normalisation to normalise the output to be

a quantum state, since unitary multiplication conserves the norm.

• Apply gradient normalisation and clipping to further stabilise the training process.

In addition, quantum theoretic postulates within neural networks will stabilise the network in

consideration of the vanishing gradient problem.

Section 4.7 Conclusion 117

4.7 Conclusion

In this chapter we investigate the use of complex-valued neural networks for representation learn-

ing of written natural language.

We found that frequency-based language learning outperforms real-valued baselines. Posi-

tional or freely learnable embeddings do not improve perplexity scores. Complex-valued embed-

dings support question answering tasks that require logic and reasoning, since complex-valued

neurons are superior in their expressibility of logic functions. We also found quantum-inspired

Semantic Spaces based on statistic outperform classical Semantic Spaces in similarity tasks.

Phase models can improve performance in similarity tasks, but interference should be explicitly

modelled and learned by the model.

Our contributions are embedding methods for words to receive position and frequency-based

word representations trainable using language models and usable in down-stream NLP tasks. We

showed complex-valued memory networks used in QA which perform better or similarly in the

majority of bAbI tasks. We generalised a complex and quantum-inspired model of language. We

experimentally showed the use of quantum-inspired Semantic Spaces based on npmi.

In answer to our second research questions: ‘Does encoding additional positional or fre-

quency information in imaginary parts or phases improve the performance in sequence-based

language processing tasks?‘ Similar to complex-valued classification tasks, learning complex-

valued embeddings without explicitly adding further information does not improve the perform-

ance in language modelling. Positional information also do not improve the performance of

order-aware models. Adding frequency information, however, improves the perplexity scores.

We also achieved a similar or slightly improved performance with fewer parameters for Question

answering even without integrating frequencies. This is mainly the case for tasks which require

logic and reasoning due to the increased expressibility of complex-valued embeddings.

To answer our third research question: ‘What advantages and differences are there in us-

ing quantum-inspired models of language compared to non-quantum complex-valued models of

language?‘ Quantum-inspired models of language enforce additional constraints on the repres-

entations. Literature suggests that the use of related approaches (such as batch norms, weight

norms or gradient norms) improve the training stability of complex-valued neural networks. We

can confirm this for complex-valued neural networks and representations across our experiments.

We can also report improved performance in similarity judgements tasks, due to enforcement of

the constraints. However, interference is difficult to model manually and should be automatic-

ally learned. It can be promoted in the loss function and model design. Our Simple Quantum

Semantic Spaces achieve slightly improved similarity judgments for individual words and word

compositions. We conclude that quantum-inspired models of language are a valuable approach

model language.

In Chapter 3 we advised applying complex-valued neural networks on transformed or embed-

118 Complex-Valued Word Representations Chapter 4

ded data. Alternatively, the model can be encouraged to use the increased expressibility with an

adapted training objective. In this chapter we have attempted transformations and embeddings,

but ignored the possibility of an altered loss function. We found that once real-valued data is

embedded or transformed into the complex plane, some tasks (i.e. logic-based bAbI tasks or

language modelling) do not require the changed objective functions. Instead they require stabil-

isation of the learning process.

Our findings in this chapter motivate the next chapters in different ways. The presented

Quantum-inspired framework of language (Section 4.5.7) facilitates both geometrical and prob-

abilistic interpretations. The constraints improve the stability of the training process in complex-

valued neural networks. Hence, we use gradient norming and gradient clipping in this and future

chapters to stabilise the training. Our findings also suggest that frequency-based representations

should further be investigated (presented in Section 4.3 and 4.4), since they support similar per-

formance by models with fewer parameters or improved performance by similar-sized models.

In the next chapter we use transformations and frequency representations inside neural networks

to process signal data rather than real-valued textual data.

CHAPTER 5

Speech Recognition with Complex-Valued Neural Networks

In this chapter we use frequency information to weigh representation outside of the frequency do-

main by designing a spectral approach to Automatic Speech Recognition (ASR). We also develop

a novel dataset for phonetic transcription in this chapter called Babble.

We use the generalised attention to derive two novel self-attention mechanisms. Further,

we use these attention mechanisms to create the Spectral Transformer architecture. Inspired by

previous work it requires neither recurrence nor convolutions, simplifies preprocessing for speech

recognition and compromises between time and frequency resolution.

Due to their ability to represent frequencies, which is explained in Chapter 1, complex num-

bers lend themselves very well to sound and speech processing. Chapter 2 presented the Fourier

transformation, Convolution Theorem and a generalised attention framework. We apply the Four-

ier transformation and the Convolution Theorem to create a novel architecture that learns in the

frequency domain. In this chapter we instantiate spectral attention and spectral scaled attention

from our attention framework. Chapter 3 showed us that real-valued models show an upper per-

formance bound for real-valued classification. However, the findings from Chapter 4 showed

that transforming real-valued data into frequency-based representations may improve perform-

ance and may allow smaller model size.

5.1 Introduction

Sequence Transduction or sequence-to-sequence tasks involve converting input sequences x of

length n to output sequences y of length m. Like many other tasks, Sequence Transduction has

119

120 Speech Recognition with Complex-Valued Neural Networks Chapter 5

benefited from developments in DL. Modern accomplishments in Machine Translation, Signal

Transcription or Image Generation tasks were made possible with Neural Sequence Transducers.

However, Automatic Speech Recognition (ASR) still posses a number of challenges:

• Varying types of target labels used by models make them incomparable. Target labels may

be acoustic like phonemes, symbolic like characters or graphemes, or semantic like words

or word pieces.

• Multiple correct transcriptions of the same input (audio signal)

• Differing source and target modality

• Non-standard speakers

• Multiple speakers

• Noisy environments or unclear speech

• Long dependencies within very long inputs

• Inputs and outputs with drastically differing lengths

In the past these challenges have been approached with varying success by combining models

trained towards new objectives or by extensive pre- and post-processing. Our approach is to adapt

the attention mechanism and the transformer architecture to the complex plane. We overcome

the alignment problem with a complex-valued self-attention mechanisms using frequency-based

representations. Signals and other long sequences can be taken into account with an approach

that implicitly learns a reduced frequency representation.

5.2 Related Literature

In this review we focus on Automatic Speech Recognition. We present current and frequent

solutions to problems in speech-related processing tasks. Each challenge was approached with

a number of changes to the neural architecture, the pre- and post-processing and the object-

ive. Architectures used can be categorised into two main groups: the encoder-classifier and the

encoder-decoder architecture. One of the most important alterations of Sequence Transduction

architectures is the extension with an attention mechanism.

5.2.1 Speech Processing

Dissimilar source and target modalities require implicitly or explicitly learned acoustic and lan-

guage features together. While the acoustic features are directly extracted from the audio input

signal, features over the written language need to be extracted from the targets transcription.

Section 5.2 Related Literature 121

Acoustic ASR transducers have been extended with explicit language models [134, 135, 136].

For this purpose a prediction network embeds the input elements into a dense representation and

attempts to model the acoustic input elements based on the previous textual outputs. Training

the language and acoustic features in tandem allows the model to benefit from word or character

predictions [135, 137, 138]. Other models only implicitly include a language model (or can be

extended with one) [139, 140]. Another solutions is to learn acoustic word embeddings which

are not embedded in a semantic space, but in an acoustic space [66]. Acoustic embeddings of

similar sounding words are close together.

Speech transcription of non-standard speakers requires learning closer to the acoustic sig-

nal. This can be achieved with phonetic or grapheme-based approaches rather than word or word

piece approaches. Non-standard speakers include children or infants, non-native speakers, speak-

ers with strong accents or speakers with dialects [141, 99, 100, 142]. Training examples to learn

necessary features are often significantly under-represented in existing data sets. A solution to

this problem is to pre-train models on large standard-speaker data set and fine tune on specifically

curated data sets. Most existing approaches also use characters, graphemes or phonemes as target

labels.

Multiple speakers require additional, mostly frequency-based, speaker separation. DL mod-

els for speaker separation need to overcome arbitrary permutations of an unknown number of

speakers in a long input signal. The output for this related task is a mask over the original input

signal, similar to a segmentation mask. The mask extracts various sources. Recently, success-

ful DL approaches like Deep Clustering or Attractor Networks have been proposed [143]. An

attractor network creates masks by estimating attractor points using an embedding layer from

a bidirectional multi-cell LSTM. The input signal is represented by the log spectral amplitudes

of the Short-Time Discrete Fourier Transformation (STDFT). In the training phase ideal masks

are used as an additional input to the network. In the inference stage these are replaced with a

K-means standard mask.

Noisy environments or unclear speech are enhanced to sharpen speech and denoise the signal

[144, 25, 145, 146]. Speech enhancement is a separate task to speech recognition with the goal to

increase the speech intelligibility. It may include the algorithmic removal of noise, restoration or

normalisation of the input signal. Most neural networks are trained to optimise MSE (Equation

2.54) between a clean signal and corrupted or directly use Short-Time Objective Intelligibility

(STOI) [147] as a target evaluation metric. Deep learning architectures proposed for this task

include MLPs with heavy preprocessing [144, 145] or fully convolutional networks (FCN) [146].

Complex-valued MLPs may be a useful addition to this problem.

For a comparison of speech recognition models it is necessary to choose a combination of

metrics. Accuracy (acc) and label error rates (LER) express the quality of transcriptions [148].

Label error rates are defined by the edit distance (number of deletions, inserts and substitutions)

in relation the sequence length N (Equation 5.1) while accuracy is defined as the ratio between

122 Speech Recognition with Complex-Valued Neural Networks Chapter 5

correctly predicted (True Positives and True Negatives) and predicted labels (True Positives, True

Negatives, False Positives, False Negatives) (Equation 5.2). Another metric often used is the top-

K accuracy which considers a label to be correctly predicted if it is one of the k most likely labels

returned by the model (Equation 5.3).

LER =
edits

length of target sequence
=

EDIT (y, ỹ)
N

(5.1)

acc =
correct predictions
total predictions

=
T P + T N

T P + T N + FP + FN
(5.2)

acctop−k =
correct predictions within k most likely classes

total predictions
(5.3)

To be able to process the very long inputs, a preprocessing step with significant dimensional-

ity reduction is necessary, alternatively, the model requires learning directly from the time signal.

Popular frequency-based solutions use Short-Time Discrete Fourier Transformation (STDFT).

STDFT applies a window function (e.g. Hamming function) and computes the Discrete Four-

ier Transformation (DFT) on the windowed snippet. Often frequencies with low amplitude are

simply discarded. Alternatives may rely on the Hartley Transform [149] or Discrete Cosine

Transformation (DCT) [150]. They return real-valued representation instead of complex trans-

formations. In both cases this achieves a dimensionality reduction while compromising between

frequency and time resolution. This principle also underlies Mel-Frequency Cepstrum Coeffi-

cient (MFCC) representations which have been frequently used for Speech Processing. MFCC

representations are computed with the following steps [151]:

1. Windowing of time signals into a sequence of (overlapping) frames

2. Apply Discrete Fourier Transformation to receive complex-valued frequency representa-

tion of the window (STDFT)

3. Map the powers of the spectrum obtained above onto the mel scale, using triangular over-

lapping windows.

4. Compute logs of the powers at each of the mel frequencies.

5. Compute discrete cosine transform of the list of mel log powers, as if it were a signal.

6. MFCC fingerprint consisting of the amplitudes of the resulting spectrum.

MFCC and other preprocessing use fixed window functions that are equivalent to manually-

defined feature extraction. In end-to-end approaches, however, convolutions can implicitly learn

to extract features from the original time signal or a preprocessed representation [152, 31]. To

increase the receptive field, convolutions are replaced with dilated convolutions [152].

Section 5.2 Related Literature 123

Inputs and outputs with drastically differing lengths make it necessary to learn alignments

between the input and output sequence. To learn these alignments the model requires time posi-

tional information. We lose these time relevant signals when moving a signal into the frequency

domain. Hence, a compromise between time and frequency resolution needs to be found. This

can be achieved with the principle of STDFT and MFCC described above. Wavelets naturally

offer this compromise between time and frequency resolution [153, 49]. Another approach uses

positional embeddings [154, 155]. They usually extend model architectures that by design do

not take order into account, due to order invariant operations. Combining positional embeddings

with frequency representations can give us the best possible frequency-time resolution.

Switching from a cross entropy objective to a Connectionist Temporal Classification (CTC)

criterion [148, 156] encourages alignment learning. In contrast to CTC type training (Equation

5.4), cross entropy considers each element of the output sequence independently and assumes

that the input is already segmented according to the output. CTC attempts to implicitly learn

the alignment between an input x ∈ LM of length M and a shorter output sequence y ∈ LT of a

(symbol) vocabulary L of length T by taking unsegmented inputs into account. The output is a

conditional probability distribution over the set of all possible transcription sequences. It extends

the vocabulary with a 〈blank〉 symbol L ∪ {〈blank〉}. It also adds a reduction step which removes

multiple symbols and blank symbols in the model’s output. This reduction step is formally a

mapping B : (L ∪ {〈blank〉})≥T → LT for a model output sequence ỹ.

p(ỹ|x) =
∑

π∈B−1(ỹ)

p(π|x),

p(π|x) = ΠT
t=1ỹk

t

(5.4)

with an individual label π ∈ (L∪ {〈blank〉}) from the extended vocabulary. The probability of

observing label k at time step t is given by ỹk
t . The CTC objective is a maximum log likelihood

estimation which maximises the log probabilities of the target labels. Equation 5.5 is to be

minimised.

Jθ = −
∑
∀(x,y)

ln(p(y|x)) (5.5)

A further developed variant of the CTC criterion is the Auto Segmentation (ASG) criterion.

ASG refrains from adding a blank symbol and does not use normalised scores at nodes and

transitions. It does not use a global normalisation factor, but it relies on a duration model as

transition scores [157].

Multiple correct transcriptions of speech necessitate scoring potential outputs. Usually the

decision for an output label π is made by selecting the highest probability for each step in an

output sequence of length T :

124 Speech Recognition with Complex-Valued Neural Networks Chapter 5

Table 5.1: Types of attention.

Query q Keys k Values v
input sequence or
states or outputs
(n × k)

=

input sequence or
states or outputs
(n × k)

=

input sequence or
states or outputs
(n × k)

current input step
(1 × k)

,
input sequence or
states or outputs
(n × k)

=

input sequence or
states or outputs
(n × k)

hidden state,
single fixed
vector task or
encoder (1 × k)

,
input sequence or
states or outputs
(n × k)

=

input sequence or
states or outputs
(n × k)

current input step
(1 × k)

,
encoder output
(m × k)

, encoder (m × k)

πt = argmax(p(ỹt |x)) (5.6)

The last layer may output a distribution p(ỹ|x) over the labels l ∈ L, but does not consider

the predicted sequence. Beam search is applied as part of decoders to find the best possible

transcription sequence [158]. A beam search with k beams keeps track of the k most likely

outputs. With every output step, the next label in each of the beams is generated. The most likely

outputs become the output at time step t in each beam. After all beams have been terminated, the

most likely sequence is selected.

The most important development in Sequence Transduction has been attention. Initially used

in image processing, attention was introduced as a memory-access and selection mechanism in

sequence tasks. Attention and self-attention have frequently been used to improve performance

in sequence-to-sequence problems, not only in conjunction with memory networks [82, 84, 83,

139, 81, 67]. Attention weighs the elements of sequences or interim representations (values) by

scoring the relationship between a query and keys representing the values. Keys and values can

be hidden outputs, states, extracted features or other learned representations. Throughout existing

literature there are many different types of attention and their use depends on the performed task.

These mainly differ in their choice of query, keys and values (Table 5.1).

Attention allows a neural network to assign elements of a sequence varying task-specific

importance. Often these weights are used to compute a single weighted average representation

of a sequence. Some approaches, however, use attention to weigh each element of a sequence

without averaging or as additional features in the next layer. In ASR models various types of

attention have been successfully used [159, 140, 138, 160]. Further improvement of the attention

mechanism has resulted in the development a new architecture type: the transformer network

Section 5.2 Related Literature 125

[154]. We present further details of this architecture in later sections.

Modern ASR sequence transducers either use an encoder-classifier (Figure 5.1) or an encoder-

decoder architectures (Figure 5.2). Encoder-classifiers encode input sequences into a sequence

of dense representations of reduced dimensionality and classify each state according to its target

labels. Instead of classifying the state directly, an encoder-decoder architecture decodes the en-

coded state (sequence) into a new target modality. ASR models are mostly trained using cross

entropy, a CTC or ASG criterion targetting characters, phonemes or words [161].

Figure 5.1: Encoder-classifier architecture for Automatic Speech Recognition. Attention and
preprocessing blocks are optional.

Encoders are often multi-layer recurrent neural networks that use preceding convolutional

and pooling layers for feature extraction [139, 136, 31]. Few architectures are able to learn dir-

ectly from the waveform [152, 31]. Most architectures, however, preprocess the input signal

to a frequency-based representation like MFCC or Mel-frequency filter banks [135, 162, 163].

Decoders usually consist of an optional attention mechanism and recurrent neural networks with

a classifier [139, 162, 140, 164, 138]. Many models add optional convolutional networks and

beam search. Decoders often rely on attention mechanisms to attend to the encoder’s output se-

quence or state sequence [139, 140, 136, 137, 138, 164, 163]. They can also be extended with

language models [140, 136, 138]. Existing literature found that bidirectional RNNs outperform

unidirectional approaches in both encoders and decoders [135, 139, 140, 136]. There is a grow-

ing number of less computationally intensive, fully convolutional variants. These convolutional

126 Speech Recognition with Complex-Valued Neural Networks Chapter 5

Figure 5.2: Encoder-decoder architecture for Automatic Speech Recognition. Attention and
preprocessing blocks are optional.

approaches are mostly trained towards the ASG criterion and are able to learn directly from the

time signal [165, 152, 155, 161, 166, 31].

5.3 Spectral Self-Attention

We use the definitions of complex-valued attention to derive two novel multi-head self-attentions

specifically for speech processing tasks. They differ in the choice of queries Q, keys K and values

V and in consequence what they return. Let X ∈ �n×d be the frequency representation consisting

of n windows each of length d samples in the time domain. The original time signal is X and

PPE describes a positional embedding.

Fully Spectral Self-Attention:

Q = K = V = pooling(F (X) + iPPE)) (5.7)

Section 5.4 Spectral Transformers 127

This type of attention returns complex representations, since the values V are themselves

complex frequency bins.

Spectral-Scaled Self-Attention

Q = K = F (X + PPE) (5.8)

This type of attention returns real representations, since the values V are windowed time

signals.

5.4 Spectral Transformers

Transformer networks completely replace recurrent neural networks and convolutions with multi-

head attention. They are capable of attending to the entire sequence at once and thus have no need

to store information in hidden states or other memories. Transformers do not provide a memory

in the sense of other attention-based models, since they do not store any information. Information

does not persist over multiple examples or batches. Instead the transformer focuses directly to

the input or computed representations. The attention mechanism reduces the distance between

input and output to a constant allowing the network to learn long-term dependencies which eases

learning alignments. Figure 5.3 shows the original architecture presented by Vaswani et al. [154]

which can be used for sequence-to-sequence tasks.

We propose to adapt this architecture to use the spectral self-attention by replacing the MHA

block with a spectral MHA. This necessitates a few changes to the transformer. We also propose

to use of the (Short-Time) Discrete Fourier Transformation (Equation 2.11) on the input to allow

learning in the frequency domain. The Convolution Theorem simplifies the computation of a

convolution to an element-wise multiplication �:

F (f ∗ g) = F (f) � F (g) (5.9)

and

F (X ∗ K) = F (X) � F (K) (5.10)

Although, it requires padding of the kernel K to the same size of the input sequence X, this

trick is being used to allow faster computation. Practically, this is used for large kernels. After

padding, the DFT is applied to move an input into the frequency domain, before computing

the element-wise multiplication, followed by the Inverse Discrete Fourier Transformation F −1

(IDFT) to transform it back into the time domain. If the entire learning process is moved into

the complex plane, we do not need to apply padding or the IDFT for every example. After ap-

plying the DFT on the input, the model learns frequency kernels implicitly. This further reduces

128 Speech Recognition with Complex-Valued Neural Networks Chapter 5

Figure 5.3: Real-valued transformer architecture for speech recognition.

the computational complexity. Complex-valued frequency kernels practically scale the mag-

nitude and shift the phase. We are able to interpret a fully-connected layer as an unconstrained

transformation. Pooling applied in the frequency domain extends the idea of frequency binning

resulting from the transformation itself. The disadvantage of this approach is that we loose any

temporal or positional information, due to the Fourier Transformation. A compromise can be

found with the SDFT. Applying a window function first to create a sequence or frame and then

computing the DFT on the windows allows the network to also have a relative order in the time

domain.

For our complex-valued transformers we use the Convolution Theorem to allow the trans-

former to learn kernels within the frequency domain. We replace the original attention with

our multi-head spectral self-attention defined above. Using spectral attention in the frequency

domain enables a network to learn filters which select frequencies from a representation by res-

caling amplitudes of the frequency bins. This procedure is often used to denoise various signals.

Our preprocessing block consists of STDFT outputting complex-valued frames in the frequency

Section 5.5 Babble 129

domain. We also use element-wise multiplication and pooling. This is used instead of input

projection before the MHA. We propose a magnitude-based pooling over the frequency bins (di-

mension d) after the DFTs reduce the dimensionality of the individual frames. We test two pool-

ing functions for this purpose: average magnitude pooling (Equation 2.28) and max magnitude

pooling (Equation 2.29). Striding and pool size are hyper parameters.

Another adapted building block in transformers are positional embeddings. To improve per-

formance we perform positional phase shifts. They are equivalent to shifting the spectral repres-

entation of a window based on its position within the signal. The Positional Phase Embedding
(PPE) is given by:

PPEpos =

[
p1 . . . pd

]
,

p j = ei pos
100002 j/d = cos

pos
100002 j/d + i sin

pos
100002 j/d

(5.11)

We can now construct transformers in the frequency domain. We refer to a complex-valued

transformer that uses STDFT, positional phase shift, pooling and element-wise multiplication as

a Fully Spectral Transformer (FST). The FST also exchanges real-valued weights with complex-

valued weights. The real-valued transformer that applies FT onto keys and queries only to com-

puted spectral attention weights is referred to as Spectral-Scaled Transformer (SST). The weights

in the SST stay real-valued. The FST is shown in Figure 5.4 and the SST is shown in Figure 5.5. It

is important to note that the FST also requires classifiers and norms to be able to handle complex

values.

To fully show the validity of this approach we suggest Speech Recognition (e.g. [19]) and

Phonetic Transcription experiments.

5.5 Babble

We present a novel data set for phonetic transcription of infant vocalisations called Babble.

Babble1 was developed as a collaboration between the departments of Linguistics, Electronic

Engineering, Music and Computer Science at the University of York. The database of utterances

and babble was created to develop Machine Learning tools for Linguists and to investigate speech

development in infants and toddlers. We hope to inspire new tools and approaches for both Lin-

guists and Machine Learning experts working in Automatic Speech Recognition (ASR). Recent

developments have resulted in methods that are capable of recognising subtle phonetic differ-

ences in speech of non-standard speakers [138, 166, 161, 149]. Further research in this particular

aspect of ASR promises to improve results with accents and dialects.

Babble is a data set of 11 hours of audio recordings and over 160,000 phonetic annotations.

The candidate’s contribution is the statistical analysis of the collected and annotated data, creation

1Version 0.9.0

130 Speech Recognition with Complex-Valued Neural Networks Chapter 5

Figure 5.4: Fully Spectral Transformer architecture. Values V are frequency domain representa-
tions.

Section 5.5 Babble 131

Figure 5.5: Spectral-Scaled Transformer architecture. Values V are time domain representations.

132 Speech Recognition with Complex-Valued Neural Networks Chapter 5

of data splits and baseline models.

Additional (technical) information about the dataset are provided in the Appendix A.

5.5.1 Data Collection

The data was recorded in 27 session with 59 child participants as part of a project lead by M. M.

Vihman (Department of Language and Linguistic Science, University of York), R. A. DePaolis

(Department of Communications Sciences and Disorders, James Madison University) and T.

Keren-Portnoy (Department of Language and Linguistic Science, University of York). From this

raw data relevant sequences of utterances were manually cut out and trimmed. Very distorted or

noisy sequences were discarded for further processing. After cleaning we received approximately

30,572 audio sequences of varying length. Figure 5.6 shows the duration of all audio recordings

in a histogram.

Figure 5.6: Durations of trimmed audio recordings.

All audio files contain monaural (single channel) sound stored as .wav files with a sampling

rate of 48kHz. Overall there are 658 minutes of trimmed audio recordings. The shortest audio

sub sequence is 0.008 seconds long (382 samples), the longest is 8.309 seconds long (398,854

samples).

5.5.2 International Phonetic Alphabet

The International Phonetic Alphabet (IPA) is a standardised system used to represent spoken

language [167]. Each of the trimmed sequences were manually transcribed by 5 trained research

assistants. Due to the nature of the collected data, not every IPA symbol is used or may be used

Section 5.5 Babble 133

very infrequently. Table 1 presents all symbols and their counts of appearance. Figure 5.5.2

shows the symbol histogram across the data set.

Figure 5.7: Symbol histogram of all used IPA symbols.

We extended the IPA with the following symbols to encode further information in the tran-

scription:

• Spaces or underscores are used to annotate a break in speaking/babbling to improve human

readability of the transcription. Systems do not have to predict them . They are filtered out

when the data set is created.

• Round brackets or parenthesis are used for indistinguishable utterances (e.g. whispering).

Our vocabulary has been extended with this symbol. Depending on the sub task these

should be predicted by a model.

We provide a machine- and human-readable overview of the entire IPA (including unused

symbols) with ipa.csv.

5.5.3 Tasks

We define seven sub tasks of varying difficulty. The first three tasks are transcription tasks (b1 to

b3) which use all available IPA (full ipa). The following three tasks (b4 to b6) are transcription

tasks that exclude certain symbols from the transcription (simplified ipa). The last sub task (b7) is

a binary classification task which requires the system to decide if an utterance constitutes babble.

A recording is considered as babble if it has at least a vowel in combination with a consonant. If

an invalidating symbol or no such combination is in the recording it is marked as non-babble

134 Speech Recognition with Complex-Valued Neural Networks Chapter 5

1. Task b1: Transcription of child utterances with all available IPA symbols including unclear

utterances (e.g. mumbled or not clearly identifiable) and noisy environments. Annotations

within parentheses transcribe unclear utterances. Parentheses and all symbols are to be

transcribed by the system. Column full ipa contains the target annotations.

2. Task b2: Transcription of child utterances with all available IPA symbols including unclear

utterances (e.g. mumbled or not clearly identifiable) and noisy environments. Parentheses

marking unclear utterances are removed, however, the symbols within the parentheses are

to be transcribed by the system. Column full ipa no brackets contains the target annota-

tions.

3. Task b3: Transcription of child utterances with all available IPA symbols without unclear

annotations. Parentheses and their contents are removed. This sub task still includes noisy

environments. Column full ipa no unclear contains the target annotations.

4. Task b4: Transcription of child utterances with a simplified set of IPA symbols includ-

ing unclear utterances (e.g. mumbled or not clearly identifiable) and noisy environments.

Parentheses and symbols are to be transcribed by the system. The simplified set of IPA

symbols excludes diacritics, suprasegmentals, tones, word accents and IPA symbols cat-

egorised as Other Symbols. Column simplified ipa contains the target annotations.

5. Task b5: Transcription of child utterances with a simplified set of IPA symbols includ-

ing unclear utterances (e.g. mumbled or not clearly identifiable) and noisy environments.

Parentheses marking unclear utterances are removed, however, the symbols within the par-

entheses are to be transcribed by the system. The simplified set of IPA symbols excludes

diacritics, suprasegmentals, tones, word accents and IPA symbols categorised as Other

Symbols. The column simplified ipa no brackets contains the target annotations.

6. Task b6: Transcription of child utterances with all available IPA symbols without unclear

annotations. Parentheses and their contents are removed. This sub task still contains noisy

environments that are to be ignored. The simplified set of IPA symbols excludes diacritics,

suprasegmentals, tones, word accents and IPA symbols categorised as Other Symbols. The

column simplified ipa no unclear contains the target annotations.

7. Task b7: Binary classification of child utterances as babble or non-babble. The system

needs to decide if a recording contains babble or not. A recording is marked as babble if

it has at least a vowel (a) that is not invalidated by being unvoiced and (b) in combination

with a consonant. Either in the order of consonant-vowel or in the opposite order. If an

invalidating symbol or no such combination is in the recording it is marked as non-babble.

The column babble contains the binary label.

Section 5.5 Babble 135

5.5.4 Training, Validation and Test

For each sub task the data set was partitioned into train (80%), validation (10%) and test (10%)

sets. The tasks uses fixed splits to allow a reliable comparison of models. Mixtures of data splits

should not be used. We do not partition based on the participants. Data points of children that

appear in the training set can also appear in the test and validation set. Individual samples in the

training set do not appear in the test or validation set. Similarly the test and validation sets are

completely distinct.

While many data sets partition based on audio files, Babble is partitioned based on the tar-

get symbols. Each distinct partition approximates the symbol distribution. Figure 5.5.2 shows

Babble’s symbol frequency. However, this overall distribution changes depending on the task.

For example in task b3 parentheses and their contents are removed. Therefore, the training, val-

idation and test sets are created to approximate the new symbol distribution according to the

selected column. For the binary classification task the validation and test subsets have same

number of positive and negative samples.

Another important aspect is the frequency of each individual target symbol. To be able

provide sufficient training and testing examples for a each symbol, we have excluded all data

points with target sequences containing an infrequent symbol. A symbol is infrequent, if it ap-

pears fewer than 10 times in the selected task column. As a consequence each task defines a

subset view and data points used may be different.

5.5.5 Baselines

We report baselines of transformer networks in Table 5.2 in two different model sizes: small, and

large. Transformer networks introduced by Vaswani et al. [154] are DL architectures based on

multi-head-attention. They do not require convolutions or recurrent layers. Due to the attention

mechanism they can learn patterns and dependencies in a very long input. In many sequence-to-

sequence tasks (e.g. translation) they show state-of-art results [154, 85]. We normalised them

to adapt for volume differences between audio signals. We then computed a Mel-Frequency

Ceptrum Coefficient (MFCC) fingerprint of the audio input. While we provide the original

(trimmed) audio recordings, we also provide program code for the preprocessing. For further

information on the offline preprocessing and its parameters please refer the T2T code repository.

We trained each model for 250, 000 training steps each with a batch size b = 2, 100, 000. We

followed the same training routine for all models as described in Vaswani et al. [154] including

warm-up phases. Table 5.3 shows the hyper parameters and the number of trainable parameters

for each baseline model.

136 Speech Recognition with Complex-Valued Neural Networks Chapter 5

Table 5.2: Baseline accuracy on the seven sub tasks (b1 to b7).

Sub task Transformer-Small Transformer-Large
b1 0.2178 0.4224
b2 0.4201 0.4437
b3 0.4654 0.4622
b4 0.4696 0.4204
b5 0.3445 0.3739
b6 0.3861 0.3902
b7 0.6285 0.6285

Table 5.3: Overview of the baseline’s hyper parameters.

Transformer-Small Transformer-Large
Attention-Heads 2 2

Hidden Size 256 384
Filter Size 1024 1536

Encoder Layers 4 6
Decoder Layers 2 4
Feed-Forward CNN (9 × 9) CNN (9 × 9)

5.6 Conclusion

In this chapter we introduced Babble, a new data set for the phonetic transcription of infant

vocalisations to the Machine Learning community. We provide 30,500 audio files containing

close to 11 hours of audio recordings of child speech and babble. We hope that this new task

can improve tools for researchers and practitioners within Linguistics and also improve existing

speech recognition approaches with added phonetic transcription.

The findings and contributions of this chapter are theoretical. Empirical proof for the validity

of the approach is needed and is not contained in this chapter. We used the general framework

of attention and Convolution Theorem (Chapter 2) to develop spectral attention, spectral trans-

formers and methods to learn convolution kernels directly in frequency domain.

We found learning in the frequency domain provides theoretical advantages for speech re-

cognition tasks. The computational complexity of convolutions is reduced, since the operation

simplifies to an element-wise multiplication which does not require padding and inverse DFTs.

Moreover, using spectral attention to scale frequency bins enables the network to select fre-

quencies. This should increase the reliability in speech-related tasks. We have also found that

transformers require a large number of training steps to achieve appropriate results. This is the

Section 5.6 Conclusion 137

case in their real-valued and complex-valued settings.

The contributions in this chapter are the spectral attention mechanism, the spectral trans-

former architectures and methods to learn in the frequency domain like pooling and convolutions.

The attention mechanism can be used in both complex-valued and real-valued architectures. It is

a drop-in alternative to existing attention mechanisms. Speech Recognition and Phonetic Tran-

scription experiments are needed to empirically show the value of spectral transformers and at-

tention.

In response to our research question: ‘Can we move the entire neural model into the fre-

quency domain to improve speech transcription and simplify computation?‘ The answer is to this

question is yes. The Convolution Theorem allows us to compute convolutions in the frequency

domain as element-wise multiplications with a large (potentially padded) kernel. However, this

is a trade-off between computational complexity and the number of parameters in the model.

To address this problem we suggest frequency-based pooling. Spectral attention mechanisms

provide a method of selecting frequencies and filter unused frequencies. The proposed methods

of learning frequency representations or learning within the frequency domain can be considered

to be part of Spectral Deep Learning.

CHAPTER 6

Conclusion

This thesis focuses on Natural Language Processing solved with complex-valued Deep Learn-

ing. It focuses on modelling compositional language from a semantic and phonetic perspective.

Complex-valued neural networks and their training methods have long been proposed. Despite

their predisposition for Speech Processing very few attempts have been made to apply them to

speech and phonetic transcription. Even fewer attempts to process written language. This thesis

attempts to close this gap in the literature and give a wide contextual overview of its application

in the field of NLP.

6.1 Findings

We find that complex neural networks are a valuable addition to DL and NLP. Even though

they are outperformed by real-valued networks in real-valued classification task, they are useful

for when the data is transformed to the complex domain. This can be achieved with frequency

transformations. They can also be used to learn entirely within the frequency domain which

leads to improved computational complexity. Moreover, they can be used for semantic models

of language. Frequency-based embeddings and quantum-inspired models with a probabilistic

and geometrical interpretation allow their application to language modelling. Complex data

representations can facilitate the introduced structure in order to solve a problem using fewer

parameters. These smaller neural networks come at the cost of more computationally intensive

training. This can be observed in language tasks involving long dependencies. Complex-valued

transformations and embedding also allow us to encode additional information compared to real-

138

Section 6.1 Findings 139

valued embeddings using extended dimensionality. However, we acknowledge the difficulty of

initialisation and training. Training of complex-valued neural networks is unstable and requires

various methods to improve stability. In our experiments batch normalisation and gradient clip-

ping have demonstrated improvements to the training stability. However, enforcing constraints

from quantum theory we can also stabilize the training process.

We return to our research questions from Chapter 1.2 and answer them with the findings from

this thesis:

• Does the use of complex-valued neural networks improve accuracy in classification
tasks by increasing the model’s expressibility?

We did not observe performance improvements in the classification of real-valued input

data directly. When real-valued data is used as an input into a complex-valued MLP, the

real and imaginary parts of the weights convergence together. The complex-valued logits

of the last layer are simply scaling the output. These logits are then mapped to a probability

distribution over the classes. A complex-valued MLP or CNN can, therefore, at best per-

form on-par with its real-valued counterpart on real-valued classification tasks. However,

it is more likely to perform worse, due to its initialisation and approximation error. The

extended expressibility does not allow the network to learn useful information if they are

not explicitly encoded or encouraged. We suggest that embeddings or transformations of

real-valued data into the complex domain are required. Complex-valued input data requires

complex-valued neural networks, since the noise is distributed in the complex plane.

• Does encoding additional positional or frequency information in imaginary parts or
phases improve the performance in sequence-based language processing tasks?

Similar to complex-valued classification tasks, learning complex-valued embeddings without

explicitly adding further information does not improve the performance in language mod-

elling. Positional information do also not improve the performance of order-aware mod-

els. Integrating frequency information into embeddings, however, improves the perplexity

scores. We also achieved a similar or slightly improved performance with fewer paramet-

ers for Question answering even without integrating frequencies. This is mainly the case

for tasks which require logic and reasoning, due to their increased expressibility.

• What advantages and differences are there in using quantum-inspired models of lan-
guage compared to non-quantum complex-valued models of language?

Quantum-inspired models of language enforce additional constraints on the representa-

tions. Literature suggests that the use of related approaches (such as batch norms, weight

norms or gradient norms) improve the training stability of complex-valued neural net-

works. We can confirm this for complex-valued neural networks and representations across

our experiments. We can also report improved performance in similarity judgements tasks,

140 Conclusion Chapter 6

due to enforcement of the constraints. However, interference is difficult to model manually

and should be automatically learned. It can be promoted in the loss function and model

design. Our Simple Quantum Semantic Spaces achieve slightly improved similarity judg-

ments for individual words and word compositions. We conclude that quantum-inspired

models of language are a valuable approach model language.

• Can we move the entire neural model into the frequency domain to improve speech
transcription and simplify computation?

Yes, the Convolution Theorem allows us to compute convolutions in the frequency domain

as element-wise multiplications with a large (potentially padded) kernel. However, this is

a trade-off between computational complexity and the number of parameters in the model.

To address this problem we suggest frequency-based pooling. Spectral attention mechan-

isms provide a way of selecting frequencies and filter unused frequencies. The proposed

methods of learning frequency representations or learning within the frequency domain can

be considered to be part of Spectral Deep Learning. The experimental results are pending.

In conclusion, complex numbers have advantages over real numbers in that they can reduce

the number of parameters needed, allow frequency based representation and allow additional

information to be encoded. However, they require particular care when designing the architecture

e.g. choosing activation and loss functions to guarantee training stability. If it is known that there

is no need to express additional information, real numbers may be preferentially used. Complex

numbers are incredibly powerful tools, however, issues of stability mean that it can be difficult to

design training which consistently performs in a reliable way. As improvements in normalisation

and training are made, it is possible that the use of complex numbers in neural networks may

become more mainstream.

6.2 Future Work

Our research has shown the validity of applying complex-valued neural networks to Natural

Language tasks. Learning word embeddings and frequency representations of spoken or written

language improves performance while reducing the parameters required. However, we found the

training process to be unstable, due to various types of singularities. Future work should aim to

improve complex-valued neural networks in general or find novel applications outlined below.

6.2.1 Improving Complex-valued Neural Networks

Future research should focus on stabilising the training process of complex-valued neural net-

works. This may be achieved by using novel optimisers, weights constraints, training methods

or activation functions.

Section 6.2 Future Work 141

Optimisers developed specifically for complex-valued neural networks should be able to re-

cover from breaking points, bad initialisations and singularities. Another approach would be to

avoid singularities in the training process and the initialisations. This requires identifying differ-

ent kinds of singularities, keeping a history of and the ability to discover valid optimisation paths.

Novel optimisers would improve future and existing work on complex-valued neural networks.

Furthermore, they would be directly applicable to real-valued neural networks. These analytic

insights may inspire new ways of training real-valued neural networks.

In this work we used straight-forward generalisations of gradient clipping and weight initial-

isations. Gradient clipping improves the behaviour around singularities. Other useful gradient-

based improvements may include gradient scaling and norming. Initialisations allow optimisers

to find local minima easier. Normalisation-based methods may also be used to improve training.

These include weight normalisation and batch normalisation. For example, normalising weight

matrices to be unitary reduces the effects of vanishing gradients [111]. Additionally, they stabilise

the training by preserving matrix norms across layers. Particularly, quantum-inspired constraints

are interesting, since they support a geometrical and probabilistic interpretation of representations

and matrices while implementing normalisation. However, generalisation of existing methods re-

quire more investigation to understand their consequences on the complex plane.

Another approach to improve stability is to change the architecture design. As we know

holomorphic activation functions are not an option, due to Liouville’s theorem. Hence, func-

tions which include ‘simpler‘ singularities need to be developed and investigated in-depth. This

requires an experimental and analytic approach.

6.2.2 Applications

There are many applications that could benefit from complex-valued representations and hypo-

theses.

In this work we have investigated the fundamentals of Frequency Domain Learning. New ap-

plications for this use of complex-valued neural networks may be Image Processing or electronic

Signal Processing. Further experiments are needed to determine the validity of the approach in

these contexts.

Future research should also examine Embedding Learning. Complex-valued embeddings

allow further information and complex interaction to be stored. Words are considered to be inter-

acting semantic signals that are in a superposition of multiple meanings. In a quantum-inspired

setting these are represented as quantum states. By learning phases we learn an interference

pattern between two or more embeddings. Our frequency-based and quantum-inspired word

embeddings show promising results. Future work should particularly focus on learning either

frequency representations or learn within a quantum-inspired setting. Our Quantum-inspired

framework of languages naturally supports the use of weight constraints, weight and batch norm-

142 Conclusion Chapter 6

alisation. Future research should focus on larger corpora and more complex question answering

tasks.

For new applications, however, we may need novel loss functions J : � → � that promote

learning of specific phases or imaginary parts.

Appendices

A Babble

This part of the appendix contains (technical) details to the Babble dataset presented in Section

5.5.

A.1 Symbol Overview

Table 1: Overview of IPA symbols and their usage in the Babble dataset.

ID Hex-

Code

Name Category Simple

IPA?

Count

101 0x0070 voiceless bilabial plosive consonants (pulm.) Yes 1983

102 0x0062 voiced bilabial plosive consonants (pulm.) Yes 5343

103 0x0074 voiceless dental/alveolar plosive consonants (pulm.) Yes 3912

104 0x0064 voiced dental/alveolar plosive consonants (pulm.) Yes 9691

107 0x0063 voiceless palatal plosive consonants (pulm.) Yes 21

108 0x025F voiced palatal plosive consonants (pulm.) Yes 18

109 0x006B voiceless velar plosive consonants (pulm.) Yes 1873

110 0x0261 voiced velar plosive consonants (pulm.) Yes 3308

111 0x0071 voiceless uvular plosive consonants (pulm.) Yes 69

112 0x0262 voiced uvular plosive consonants (pulm.) Yes 37

143

144 Conclusion Chapter 6

ID Hex-

Code

Name Category Simple

IPA?

Count

113 0x0294 glottal plosive consonants (pulm.) Yes 6059

114 0x006D voiced bilabial nasal consonants (pulm.) Yes 4970

115 0x0271 voiced labiodental nasal consonants (pulm.) Yes 26

116 0x006E voiced dental/alveolar nasal consonants (pulm.) Yes 4629

117 0x0273 voiced retroflex nasal consonants (pulm.) Yes 28

118 0x0272 voiced palatal nasal consonants (pulm.) Yes 38

119 0x014B voiced velar nasal consonants (pulm.) Yes 1755

121 0x0299 voiced bilabial trill consonants (pulm.) Yes 567

122 0x0072 voiced dental/alveolar trill consonants (pulm.) Yes 112

123 0x0280 voiced uvular trill consonants (pulm.) Yes 36

124 0x027E voiced dental/alveolar tap consonants (pulm.) Yes 14

126 0x0278 voiceless bilabial fricative consonants (pulm.) Yes 890

127 0x03B2 voiced bilabial fricative consonants (pulm.) Yes 749

128 0x0066 voiceless labiodental fricative consonants (pulm.) Yes 434

129 0x0076 voiced labiodental fricative consonants (pulm.) Yes 813

130 0x03B8 voiceless dental fricative consonants (pulm.) Yes 600

131 0x00F0 voiced dental fricative consonants (pulm.) Yes 554

132 0x0073 voiceless alveolar fricative consonants (pulm.) Yes 1333

133 0x007A voiced alveolar fricative consonants (pulm.) Yes 970

134 0x0283 voiceless postalveolar fricative consonants (pulm.) Yes 548

135 0x0292 voiced postalveolar fricative consonants (pulm.) Yes 330

136 0x0282 voiceless retroflex fricative consonants (pulm.) Yes 23

138 0x00E7 voiceless palatal fricative consonants (pulm.) Yes 592

139 0x029D voiced palatal fricative consonants (pulm.) Yes 44

140 0x0078 voiceless velar fricative consonants (pulm.) Yes 777

141 0x0263 voiced velar fricative consonants (pulm.) Yes 267

143 0x0281 voiced uvular fricative consonants (pulm.) Yes 37

146 0x0068 voiceless glottal fricative consonants (pulm.) Yes 3960

147 0x0266 voiced glottal fricative consonants (pulm.) Yes 14

Section A Babble 145

ID Hex-

Code

Name Category Simple

IPA?

Count

148 0x026C voiceless dental/alveolar lateral fric-

ative

consonants (pulm.) Yes 161

149 0x026E voiced dental/alveolar lateral fricative consonants (pulm.) Yes 19

151 0x0279 voiced dental/alveolar approximant consonants (pulm.) Yes 1682

153 0x006A voiced palatal approximant consonants (pulm.) Yes 3119

155 0x006C voiced dental/alveolar lateral approx-

imant

consonants (pulm.) Yes 1484

170 0x0077 voiced labial-velar approximant other symbols No 2500

176 0x0298 bilabial click consonants (non-

pulm.)

Yes 547

178 0x01C3 (post) alveolar click consonants (non-

pulm.)

Yes 472

179 0x01C2 palatoalveolar click consonants (non-

pulm.)

Yes 80

209 0x026B velarized voiced dental/alveolar lat-

eral approximant

consonants (pulm.) Yes 335

211 0x02A6 voiceless dental/alveolar affricate additional symbols Yes 145

212 0x02A3 voiced alveolar affricate additional symbols Yes 80

213 0x02A7 voiceless postalveolar affricate additional symbols Yes 314

214 0x02A4 voiced postalveolar affricate additional symbols Yes 443

301 0x0069 close front unrounded vowel vowels Yes 2861

302 0x0065 close-mid front unrounded vowel vowels Yes 2491

303 0x025B open-mid front unrounded vowel vowels Yes 6625

304 0x0061 open front unrounded vowel vowels Yes 9291

305 0x0251 open back unrounded vowel vowels Yes 714

306 0x0254 open-mid back rounded vowel vowels Yes 1481

307 0x006F close-mid back rounded vowel vowels Yes 189

308 0x0075 close back rounded vowel vowels Yes 1386

309 0x0079 close front rounded vowel vowels Yes 20

311 0x0153 open-mid front rounded vowel vowels Yes 22

313 0x0252 open back rounded vowel vowels Yes 1180

146 Conclusion Chapter 6

ID Hex-

Code

Name Category Simple

IPA?

Count

314 0x028C open-mid back unrounded vowel vowels Yes 1477

318 0x0289 close central rounded vowel vowels Yes 455

319 0x026A near-close near-front unrounded

vowel

vowels Yes 10726

321 0x028A near-close near-back rounded vowel vowels Yes 4991

322 0x0259 mid central vowel vowels Yes 15078

324 0x0250 near-open central vowel vowels Yes 11

325 0x00E6 near-open front unrounded vowel vowels Yes 2002

326 0x025C open-mid central unrounded vowel vowels Yes 1114

401 0x02BC ejective consonants (non-

pulm.)

Yes 34

404 0x02B0 aspirated diacritics No 5291

405 0x0324 breathy voiced diacritics No 15

406 0x0330 creaky voiced diacritics No 263

407 0x033C linguolabial diacritics No 81

408 0x032A dental diacritics No 34

410 0x033B laminal diacritics No 3293

420 0x02B7 labialized diacritics No 383

421 0x02B2 palatalized diacritics No 126

424 0x0303 nasalized diacritics No 175

425 0x207F nasal release diacritics No 36

427 0x031A no audible release diacritics No 97

431 0x0329 syllabic diacritics No 461

501 0x02C8 primary stress suprasegmentals No 279

503 0x02D0 long suprasegmentals No 15931

504 0x02D1 half-long suprasegmentals No 30

506 0x002E syllable break suprasegmentals No 24

Section A Babble 147

A.2 Structure

This data set is delivered in two zip files: babble speech.zip contains all files and directory struc-

ture needed. This includes a problem definition for T2T which also automatically downloads and

unpacks the second file containing audio data, babble speech data.zip.

This data archive contains the audio data as .wav-files. We provide the audio as original

recording. The expert transcriptions for each audio file are saved in the main babble.csv file. The

file is the main entry point to create further sub tasks and contains information for each of the

audio files:

• identifier: Identifier of the data point and audio file is composed of meta information:

(child id)(session id)[OK|PO] − (seq id) (1)

• file path: relative path to the audio data (.wav-file)

• child id: child participant identifier

• session id: session identifier

• seq id: Sequence identifier within a recording session

• duration sec: length of the audio signal in seconds

• length samples: length of the audio signal in number of samples (i.e.

• the length of the array when loaded)

• full ipa, full ipa no brackets, full ipa no unclear, simplified ipa, simplified ipa no brackets,

simplified ipa no unclear are transcription annotations Tasks b1, b2, b3, b4, b5, b6. See

Section 5.5.3 for further information.

• babble: Binary label that indicates if a sequence is considered babble (True, 1) or non-

babble (False, 0). Used for binary classification in Task b7. See section 5.5.3 for further

information.

148 Conclusion Chapter 6

Our packaged files unzip into the following directory structure:
babble

data

C01

C02

...

experiments

tasks

babble.task1.index.txt

babble.task1.test.csv

babble.task1.train.csv

babble.task1.valid.csv

...

t2t data

scripts

speech transcription babble.py

babble check.py

babble.csv

README

t2t babble task1 transformer small

t2t babble task1 transformer medium

t2t babble task1 transformer large

...

t2t babble test

The main file contains the following sub directories:

• data contains all necessary audio files sorted by participants. Their file names are the

identifiers described above.

• experiments is the default destination path for all outputs of training using the provided

scripts. Each script stores training checkpoints, graph meta data, decoding examples and

other training- and evaluation-related data in an automatically created sub directory.

• t2t data is the default destination for t2t-datagen’s binary Tensorflow DataRecords. Babble’s

raw data will be preprocessed, normalised, encoded and then stored into sub directories of

this folder. t2t-trainer will train the model with the binary data in that folder.

• scripts contains all necessary custom scripts to run a T2T model on the Babble data set.

This directory needs to be defined as usr dir when running t2t binaries.

• tasks contains the pre-defined training, validation and test partitions (data splits), indices

and vocabularies for each sub task of Babble. These files are used by the problem definition

to generate the binary data for training, validation and test. Each line in a partition .csv file

contains the relative path to an audio file and its target transcription or label.

Section A Babble 149

The tasks directory contains the three partitions with the following naming convention:

babble.task(1 to 6).(train | test | valid).csv (2)

The partition files can be used with other frameworks for preprocessing or model training.

They are comma-separated files with two columns:

(relative path to audio file), (binary label |target sequence of symbols) (3)

Since not every software supports handling IPA symbols by default, we also provided pre-

coded version using indices. Indices (.index.txt) and vocabulary files (.voc.txt) are provided for

the transcription tasks. Indices can be used to encode a target sequences from symbols to IDs or

decode model outputs from IDs to symbols. In fact, by default the given index files are used by

other scripts. Note that the index 0 is reserved for padding 〈pad〉 and the index 1 is reserved
for unknown symbols 〈unk〉 in a sequence. The vocabulary file shows counts of each symbol

within the task.

A.3 Scripts and Usage

We provide our baselines scripts as a first entry point to run other models and recreate our

baselines:

• t2t babble test - example usage script using T2T (similar to baseline scripts but smaller

and simpler)

• t2t babble task* transformer small - baseline script to train a small transformer using T2T

• t2t babble task* transformer medium - baseline script to train a medium transformer using

T2T

• t2t babble task* transformer large - baseline script to train a large transformer using T2T

These baseline scripts require a Python 3.5+ installation and the following packages:

• Numpy

• SciPy

• TensorFlow 1.12

• Tensor2Tensor 1.12

Assuming that you have a working Python 3.5+ environment, use the commands pip3 install

numpy scipy tensorflow tensor2tensor (or with CUDA GPUs pip3 install numpy scipy tensorflow-

gpu tensor2tensor) to install the required Python packages. Once the software requirements are

150 Conclusion Chapter 6

installed move the Babble directory, change rights of the scripts to executable and test your

installation using the t2t babble test script. This will train a very small transformer with few

training steps. The required directory structure will be generated automatically.

The directory scripts contains the T2T problem definition and further utility functions. The

definition implements two separate T2T problems babble transcription and babble classification.

babble transcription is the definition used for the first six transcription sub tasks. It uses original

symbols as targets and encodes them in the data generation phase using the index file. When us-

ing this definition it requires the user to specify the task id between 1 and 6. babble classification

implements an additional 7-th classification sub task. Practically, this definition uses 4 classes:

〈pad〉, 〈unk〉, True (T), False (F)). In both cases the encoding can be changed by swapping out

the corresponding index file with a custom version. babble precoded are already encoded and

does not require the encoding step, but decoding needs to be done manually.

Since we have followed the T2T interfaces for our implementations, further baselines can

easily be added by changing baseline scripts in order to train different model types. To add

new models, implement the T2T model interface12. We recommend copying the python module

containing the T2T model implementation (model sub class with @registry.register model dec-

orator) into the script directory. Add an import statement into the init .py and adapt a baseline

script according to your model. Make sure that the hyper parameters and the flag –data dir are

correct. The –usr dir flag needs to point to the script directory containing the data set definition

speech transcription babble.py and your own model definition. T2T also provides a large num-

ber of pre-defined models. Use t2t-trainer –registry help to output an overview of ready-to-use

models.

1https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/models
2https://github.com/tensorflow/tensor2tensor

https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/models
https://github.com/tensorflow/tensor2tensor

Bibliography

[1] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Ruppin,

“Placing search in context: The concept revisited,” ACM Transactions on Information

Systems, vol. 20, no. 1, pp. 116–131, January 2002.

[2] F. Hill, R. Reichart, and A. Korhonen, “Simlex-999: Evaluating semantic models with

(genuine) similarity estimation,” CoRR, vol. abs/1408.3456, 2014.

[3] J. Mitchell and M. Lapata, “Composition in distributional models of semantics,” Cognitive

Science, vol. 34, no. 8, pp. 1388–1439, 2010.

[4] E. Grefenstette and M. Sadrzadeh, “Experimental support for a categorical compositional

distributional model of meaning,” in Proceedings of the Conference on Empirical Methods

in Natural Language Processing, ser. EMNLP ’11. Stroudsburg, PA, USA: Association

for Computational Linguistics, 2011, pp. 1394–1404.

[5] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regularization,”

CoRR, vol. abs/1409.2329, 2014. [Online]. Available: http://arxiv.org/abs/1409.2329

[6] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-to-end memory networks,”

CoRR, vol. abs/1503.08895, 2015.

[7] R. Feynman, R. Leighton, and M. Sands, “The Feynman Lectures on Physics,” Boston,

1963.

[8] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,

Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,

S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,

K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,

M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine

learning on heterogeneous systems,” 2015, software available from tensorflow.org.

151

http://arxiv.org/abs/1409.2329

152 BIBLIOGRAPHY

[Online]. Available: https://www.tensorflow.org/

[9] Theano Development Team, “Theano: A Python framework for fast computation of

mathematical expressions,” arXiv e-prints, vol. abs/1605.02688, May 2016. [Online].

Available: http://arxiv.org/abs/1605.02688

[10] F. Chollet et al., “Keras,” https://keras.io, 2015.

[11] A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A. N. Gomez, S. Gouws, L. Jones, L. Kaiser,

N. Kalchbrenner, N. Parmar, R. Sepassi, N. Shazeer, and J. Uszkoreit, “Tensor2tensor for

neural machine translation,” CoRR, vol. abs/1803.07416, 2018.

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to docu-

ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[13] D. D. Lewis, “Reuters-21578 text categorization test collection.”

[14] A. Krizhevsky, V. Nair, and G. Hinton, “Learning multiple layers of features from tiny

images,” 2009.

[15] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 23, pp. 146–162, 1954.

[16] G. Frege, Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen

Denkens. Halle, Germany: Halle a/S: Verlag von Louis Nebert, 1879.

[17] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” CoRR, vol. abs/1410.3916,

2014.

[18] O. Levy, Y. Goldberg, and I. Dagan, “Improving distributional similarity with lessons

learned from word embeddings,” Transactions of the Association for Computational Lin-

guistics, vol. 3, pp. 211–225, 2015.

[19] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An ASR corpus based

on public domain audio books,” in ICASSP. IEEE, 2015, pp. 5206–5210.

[20] T. Nitta, “The computational power of complex-valued neuron,” in Artificial Neural Net-

works and Neural Information Processing - ICANN/ICONIP 2003. Berlin, Heidelberg:

Springer Verlag, 2003, pp. 993–1000.

[21] I. Aizenberg, Complex-Valued Neural Networks with Multi-Valued Neurons. Springer

Publishing Company, Incorporated, 2016.

[22] A. Hirose, “Nature of complex number and complex-valued neural networks,” Frontiers of

Electrical and Electronic Engineering in China, vol. 6, no. 1, pp. 171–180, March 2011.

[23] ——, Complex-Valued Neural Networks: Advances and Applications, May 2013.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computing, vol. 9,

no. 8, pp. 1735–1780, Nov. 1997.

[25] L. Drude, B. Raj, and R. Häb-Umbach, “On the appropriateness of complex-valued neural

networks for speech enhancement,” in Interspeech, 2016.

[26] A. M. Sarroff, V. Shepardson, and M. A. Casey, “Learning representations using complex-

valued nets,” CoRR, vol. abs/1511.06351, 2015.

[27] C. Trabelsi, S. Subramanian, N. Rostamzadeh, S. Mehri, D. Serdyuk, J. F. Santos, Y. Ben-

https://www.tensorflow.org/
http://arxiv.org/abs/1605.02688
https://keras.io

BIBLIOGRAPHY 153

gio, and C. Pal, “Deep complex networks,” 2017.

[28] A. M. Sarroff, “Complex neural networks for audio,” May 2018.

[29] H.-S. Choi, J. Kim, J. Huh, A. Kim, J.-W. Ha, and K. Lee, “Phase-aware speech enhance-

ment with deep complex u-net,” in International Conference on Learning Representations,

2019.

[30] T. Parcollet, Y. Zhang, M. Morchid, C. Trabelsi, G. Linars, R. De Mori, and Y. Bengio,

“Quaternion convolutional neural networks for end-to-end automatic speech recognition,”

06 2018.

[31] N. Zeghidour, N. Usunier, G. Synnaeve, R. Collobert, and E. Dupoux, “End-to-end speech

recognition from the raw waveform,” in Interspeech 2018, ser. Proceedings of Interspeech

2018, Hyderabad, India, Sep 2018.

[32] Y. Kuroe, M. Yoshida, and T. Mori, “On activation functions for complex-valued neural

networks: Existence of energy functions,” in Proceedings of the 2003 Joint International

Conference on Artificial Neural Networks and Neural Information Processing, ser. IC-

ANN/ICONIP’03. Berlin, Heidelberg: Springer-Verlag, 2003, pp. 985–992.

[33] S. Scardapane, S. V. Vaerenbergh, A. Hussain, and A. Uncini, “Complex-valued neural

networks with non-parametric activation functions,” CoRR, vol. abs/1802.08026, 2018.

[34] D. Xu, H. Zhang, and L. Liu, “Convergence analysis of three classes of split-complex

gradient algorithms for complex-valued recurrent neural networks,” Neural Computation,

vol. 22, no. 10, pp. 2655–2677, 2010, pMID: 20608871.

[35] A. Hirose, “Complex-valued neural networks: The merits and their origins,” in 2009 In-

ternational Joint Conference on Neural Networks, June 2009, pp. 1237–1244.

[36] N. Qian”, “On the momentum term in gradient descent learning algorithms,” Neural Net-

works, vol. 12, no. 1, pp. 145 – 151, 1999.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol.

abs/1412.6980, 2014.

[38] T. L. Clarke, “Generalization of neural networks to the complex plane,” in 1990 IJCNN

International Joint Conference on Neural Networks, June 1990, pp. 435–440 vol.2.

[39] N. Benvenuto and F. Piazza, “On the complex backpropagation algorithm,” IEEE Trans-

actions on Signal Processing, vol. 40, no. 4, pp. 967–969, Apr 1992.

[40] G. M. Georgiou and C. Koutsougeras, “Complex domain backpropagation,” IEEE Trans-

actions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 39, no. 5,

pp. 330–334, May 1992.

[41] T. Nitta, “A back-propagation algorithm for complex numbered neural networks,” in Pro-

ceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Ja-

pan), vol. 2, Oct 1993, pp. 1649–1652 vol.2.

[42] I. Aizenberg, “’multiple-valued threshold logic’ translated by claudio moraga,” 1977.

[43] N. N. Aizenberg and I. N. Aizenberg, “Cnn based on multi-valued neuron as a model of as-

154 BIBLIOGRAPHY

sociative memory for grey scale images,” in CNNA ’92 Proceedings Second International

Workshop on Cellular Neural Networks and Their Applications, Oct 1992, pp. 36–41.

[44] I. Aizenberg and C. Moraga, “Multilayer feedforward neural network based on multi-

valued neurons (mlmvn) and a backpropagation learning algorithm,” Soft Computing,

vol. 11, no. 2, pp. 169–183, Jan 2007.

[45] T. Parcollet, M. Ravanelli, M. Morchid, G. Linarès, C. Trabelsi, R. D. Mori, and Y. Bengio,

“Quaternion recurrent neural networks,” CoRR, vol. abs/1806.04418, 2018.

[46] C. J. Gaudet and A. S. Maida, “Deep quaternion networks,” in 2018 International Joint

Conference on Neural Networks (IJCNN), July 2018, pp. 1–8.

[47] D.-C. Park and T.-K. J. Jeong, “Complex-bilinear recurrent neural network for equaliza-

tion of a digital satellite channel,” IEEE Transactions on Neural Networks, vol. 13, no. 3,

pp. 711–725, May 2002.

[48] S. Goh, M. Chen, D. Popovi, K. Aihara, D. Obradovic, and D. Mandic, “Complex-valued

forecasting of wind profile,” Renewable Energy, vol. 31, no. 11, pp. 1733–1750, 2006.

[49] Y. Özbay, “A new approach to detection of ecg arrhythmias: Complex discrete wavelet

transform based complex valued artificial neural network,” Journal of Medical Systems,

vol. 33, no. 6, p. 435, Sep 2008.

[50] A. B. Suksmono and A. Hirose, “Adaptive noise reduction of insar images based on a

complex-valued mrf model and its application t o phase unwrapping problem,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 40, no. 3, pp. 699–709, March

2002.

[51] M. Ceylan, Y. Ozbay, O. Nuri, U. An, and E. Yildirim, “A novel method for lung segment-

ation on chest ct images: Complex-valued artificial neural network with complex wavelet

transform,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 18, 07

2010.

[52] A. Rahman Abdul Ghani, A. Y. H. Al Nuaimi, F. Amin, and K. Murase, “Classification of

skeletal wireframe representation of hand gesture using complex-valued neural network,”

Neural Processing Letters, vol. 42, 08 2014.

[53] J. Bruna, S. Chintala, Y. LeCun, S. Piantino, A. Szlam, and M. Tygert, “A theoretical

argument for complex-valued convolutional networks,” CoRR, vol. abs/1503.03438, 2015.

[54] N. Guberman, “On complex valued convolutional neural networks,” CoRR, vol.

abs/1602.09046, 2016.

[55] C. A. Popa, “Complex-valued convolutional neural networks for real-valued image classi-

fication,” in 2017 International Joint Conference on Neural Networks (IJCNN), May 2017,

pp. 816–822.

[56] R. Haensch and O. Hellwich, “Complex-valued convolutional neural networks for object

detection in polsar data,” in 8th European Conference on Synthetic Aperture Radar, June

2010, pp. 1–4.

BIBLIOGRAPHY 155

[57] H.-G. Zimmermann, A. Minin, and V. Kusherbaeva, “Comparison of the complex val-

ued and real valued neural networks trained with gradient descent and random search

algorithms,” in ESANN, 2011.

[58] T. Nitta, “Learning dynamics of the complex-valued neural network in the neighborhood

of singular points,” Journal of Computer and Communications, vol. 2, no. 1, pp. 27–32,

2014.

[59] S. Ramasamy, S. Suresh, N. Sundararajan, and H. Kim, “A fully complex-valued radial

basis function classifier for real-valued classification problems,” Neurocomputing, vol. 78,

no. 1, pp. 104 – 110, 2012, selected papers from the 8th International Symposium on

Neural Networks (ISNN 2011).

[60] Z. Zhang, H. Wang, F. Xu, and Y. Q. Jin, “Complex-valued convolutional neural net-

work and its application in polarimetric sar image classification,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 55, no. 12, pp. 7177–7188, Dec 2017.

[61] S. Sonoda and N. Murata, “Neural network with unbounded activation functions is univer-

sal approximator,” Applied and Computational Harmonic Analysis, 5 2015.

[62] S. K. Kumar, “On weight initialization in deep neural networks,” CoRR, vol.

abs/1704.08863, 2017.

[63] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in Proceedings of the Thirteenth International Conference on Artificial Intel-

ligence and Statistics, ser. Proceedings of Machine Learning Research, Y. W. Teh and

M. Titterington, Eds., vol. 9. Chia Laguna Resort, Sardinia, Italy: PMLR, 13–15 May

2010, pp. 249–256.

[64] H. Narasimhan, “Learning with complex loss functions and constraints,” in Proceedings

of the Twenty-First International Conference on Artificial Intelligence and Statistics, ser.

Proceedings of Machine Learning Research, A. Storkey and F. Perez-Cruz, Eds., vol. 84.

Playa Blanca, Lanzarote, Canary Islands: PMLR, 09–11 Apr 2018, pp. 1646–1654.

[65] T. Mikolov, M. Karafit, L. Burget, J. Cernock, and S. Khudanpur, “Recurrent neural net-

work based language model,” in Interspeech. ISCA, 2010, pp. 1045–1048.

[66] S. Bengio and G. Heigold, “Word embeddings for speech recognition,” in Interspeech,

2014.

[67] X. Liu, Y. Shen, K. Duh, and J. Gao, “Stochastic answer networks for machine reading

comprehension,” CoRR, vol. abs/1712.03556, 2017.

[68] D. Q. Nguyen, “An overview of embedding models of entities and relationships for know-

ledge base completion,” CoRR, vol. abs/1703.08098, 2017.

[69] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach. Learn. Res.,

vol. 3, pp. 993–1022, March 2003.

[70] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “Indexing

by latent semantic analysis,” Journal of the American Society for Information Science,

156 BIBLIOGRAPHY

vol. 41, no. 6, pp. 391–407, 1990.

[71] H. Xu, G. Qi, J. Li, M. Wang, K. Xu, and H. Gao, “Fine-grained image classification

by visual-semantic embedding,” in Proceedings of the Twenty-Seventh International Joint

Conference on Artificial Intelligence, IJCAI-18. International Joint Conferences on Ar-

tificial Intelligence Organization, 7 2018, pp. 1043–1049.

[72] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new

perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35,

no. 8, pp. 1798–1828, Aug 2013.

[73] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. A. Ranzato, and T. Mikolov,

“Devise: A deep visual-semantic embedding model,” in Advances in Neural Information

Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.

Weinberger, Eds. Curran Associates, Inc., 2013, pp. 2121–2129.

[74] Y. Zhang, D. Song, P. Zhang, P. Wang, J. Li, X. Li, and B. Wang, “A quantum-inspired

multimodal sentiment analysis framework,” Theoretical Computer Science, vol. 752, pp.

21–40, December 2018.

[75] T. Mikolov, “Statistical language models based on neural networks,” 2012.

[76] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representa-

tions of words and phrases and their compositionality,” in Advances in Neural Information

Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.

Weinberger, Eds. Curran Associates, Inc., 2013, pp. 3111–3119.

[77] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word representa-

tion,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP). Association for Computational Linguistics, 2014, pp. 1532–1543.

[78] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix factorization,”

in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling,

C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014,

pp. 2177–2185.

[79] O. Melamud, J. Goldberger, and I. Dagan, “context2vec: Learning generic context embed-

ding with bidirectional lstm,” in Proceedings of The 20th SIGNLL Conference on Compu-

tational Natural Language Learning. Association for Computational Linguistics, 2016,

pp. 51–61.

[80] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer,

“Deep contextualized word representations,” in Proc. of NAACL, 2018.

[81] G. Salton, R. Ross, and J. Kelleher, “Attentive language models,” in Proceedings of

the Eighth International Joint Conference on Natural Language Processing (Volume 1:

Long Papers). Asian Federation of Natural Language Processing, 2017, pp. 441–450.

[Online]. Available: http://aclweb.org/anthology/I17-1045

[82] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to

http://aclweb.org/anthology/I17-1045

BIBLIOGRAPHY 157

align and translate,” CoRR, vol. abs/1409.0473, 2014.

[83] J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-networks for machine read-

ing,” CoRR, vol. abs/1601.06733, 2016.

[84] M. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural

machine translation,” CoRR, vol. abs/1508.04025, 2015.

[85] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional

transformers for language understanding,” CoRR, vol. abs/1810.04805, 2018.

[86] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models

are unsupervised multitask learners,” 2019.

[87] C. J. van Rijsbergen, The Geometry of Information Retrieval. Cambridge, England, UK:

Cambridge University Press, 2004.

[88] P. D. Bruza, K. Kitto, D. Nelson, and C. McEvoy, “Is there something quantum-like about

the human mental lexicon?” Journal of Mathematical Psychology, vol. 53, no. 5, pp.

362–377, October 2009.

[89] D. Song, M. Lalmas, K. van Rijsbergen, I. Frommholz, B. Piwowarski, J. Wang, P. Zhang,

G. Zuccon, P. D. Bruza, S. Arafat, L. Azzopardi, E. D. Buccio, A. Huertas-Rosero, Y. Hou,

M. Melucci, and S. Ruger, “How quantum theory is developing the field of information

retrieval,” in AAAI Fall Symposium on Quantum Informatics for Cognitive, Social and

Semantic Processes 2010. Arlington, Va: AAAI Press, 2010, pp. 105–108.

[90] F. A. González and J. C. Caicedo, “Quantum latent semantic analysis,” in Proceedings

of the Third International Conference on Advances in Information Retrieval Theory, ser.

ICTIR’11. Berlin, Heidelberg: Springer Science+Business Media, 2011, pp. 52–63.

[91] D. Widdows and T. Cohen, “Real, complex, and binary semantic vectors,” in Quantum

Interaction - 6th International Symposium, QI 2012, Paris, France, June 27-29, 2012,

Revised Selected Papers, 2012, pp. 24–35.

[92] A. Sordoni, J.-Y. Nie, and Y. Bengio, “Modeling term dependencies with quantum lan-

guage models for ir,” in Proceedings of the 36th International ACM SIGIR Conference on

Research and Development in Information Retrieval, ser. SIGIR ’13. New York, NY,

USA: ACM, 2013, pp. 653–662.

[93] A. Sordoni, J. He, and J.-Y. Nie, “Modeling latent topic interactions using quantum inter-

ference for information retrieval,” in Proceedings of the 22Nd ACM International Confer-

ence on Information & Knowledge Management, ser. CIKM ’13. New York, NY, USA:

ACM, 2013, pp. 1197–1200.

[94] T. Van de Cruys, T. Poibeau, and A. Korhonen, “A tensor-based factorization model se-

mantic compositionality,” in Proceedings of the NAACL-HLT 2013, ser. NAACL-HLT

2013, 2013.

[95] W. Blacoe, E. Kashefi, and M. Lapata, “A quantum-theoretic approach to distributional

semantics,” in Proceedings of the 2013 Conference of the North American Chapter of the

158 BIBLIOGRAPHY

Association for Computational Linguistics: Human Language Technologies. Association

for Computational Linguistics, 2013, pp. 847–857.

[96] A. Sordoni and J.-Y. Nie, “Looking at vector space and language models for ir using

density matrices,” in Selected Papers of the 7th International Conference on Quantum

Interaction - Volume 8369, ser. QI 2013. Berlin, Heidelberg: Springer-Verlag, 2014, pp.

147–159. [Online]. Available: https://doi.org/10.1007/978-3-642-54943-4 13

[97] M. Xie, Y. Hou, P. Zhang, J. Li, W. Li, and D. Song, “Modeling quantum entanglements

in quantum language models,” in 24th International Joint Conference on Artificial Intelli-

gence (IJCAI 2015). AAAI Press, July 2015, pp. 1362–1368.

[98] J. Li, P. Zhang, D. Song, and Y. Hou, “An adaptive contextual quantum language model,”

Physica A: Statistical Mechanics and its Applications, vol. 456, pp. 51–67, August 2016.

[99] H. Zhang and J. Ma, “Hartley spectral pooling for deep learning,” CoRR, vol.

abs/1810.04028, 2018.

[100] Q. Li, S. Uprety, B. Wang, and D. Song, “Quantum-inspired complex word embedding,”

in Proceedings of the 3rd Workshop on Representation Learning for NLP. Association

for Computational Linguistics, July 2018, pp. 50–57, hosted by the 56th Annual Meeting

of the Association for Computational Linguistics.

[101] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G. Bouchard, “Complex embeddings

for simple link prediction,” in International Conference on Machine Learning (ICML),

vol. 48, 2016, pp. 2071–2080.

[102] T. Trouillon, C. R. Dance, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, “Knowledge

graph completion via complex tensor factorization,” CoRR, vol. abs/1702.06879, 2017.

[103] M. Nickel, L. Rosasco, and T. Poggio, “Holographic embeddings of knowledge graphs,”

in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, ser. AAAI’16.

AAAI Press, 2016, pp. 1955–1961.

[104] J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 35, no. 8, pp. 1872–1886, August 2013.

[105] E. Oyallon, S. Zagoruyko, G. Huang, N. Komodakis, S. Lacoste-Julien, M. B. Blaschko,

and E. Belilovsky, “Scattering networks for hybrid representation learning,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2018.

[106] O. Rippel, J. Snoek, and R. P. Adams, “Spectral representations for convolutional neural

networks,” in Advances in Neural Information Processing Systems 28. Curran Associates,

Inc., 2015, pp. 2449–2457.

[107] M. Wolter and A. Yao, “Complex gated recurrent neural networks,” in NeurIPS, 2018.

[108] H.-G. Zimmermann, A. Minin, and V. Kusherbaeva, “Historical consistent complex valued

recurrent neural network,” in Artificial Neural Networks and Machine Learning – ICANN

2011. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 185–192.

[109] A. Minin, A. Knoll, and H.-G. Zimmermann, “Complex valued recurrent neural network:

https://doi.org/10.1007/978-3-642-54943-4_13

BIBLIOGRAPHY 159

From architecture to training,” vol. 3, 2012.

[110] H. Michel and A. Awwal, “Artificial neural networks using complex numbers and phase

encoded weights,” Applied Optics, vol. 49, no. 10, pp. B71–82, 04 2010.

[111] M. Arjovsky, A. Shah, and Y. Bengio, “Unitary evolution recurrent neural networks,”

CoRR, vol. abs/1511.06464, 2015.

[112] S. Wisdom, T. Powers, J. Hershey, J. Le Roux, and L. Atlas, “Full-capacity unitary recur-

rent neural networks,” in Advances in Neural Information Processing Systems 29, D. D.

Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates,

Inc., 2016, pp. 4880–4888.

[113] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building a large annotated corpus

of english: The penn treebank,” Computational Linguistics, vol. 19, no. 2, pp. 313–330,

June 1993.

[114] A. Kumar, O. Irsoy, J. Su, J. Bradbury, R. English, B. Pierce, P. Ondruska, I. Gulrajani,

and R. Socher, “Ask me anything: Dynamic memory networks for natural language pro-

cessing,” CoRR, vol. abs/1506.07285, 2015.

[115] X. Li and D. Roth, “Learning question classifiers,” in Proceedings of the 19th International

Conference on Computational Linguistics - Volume 1, ser. COLING ’02. Stroudsburg,

PA, USA: Association for Computational Linguistics, 2002, pp. 1–7.

[116] H. Aoki and Y. Kosugi, “An image storage system using complex-valued associative

memories,” in Proceedings 15th International Conference on Pattern Recognition. ICPR-

2000, vol. 2, Sept 2000, pp. 626–629 vol.2.

[117] P. Zhang, J. Niu, Z. Su, B. Wang, L. Ma, and D. Song, “End-to-end quantum-like lan-

guage models with application to question answering,” in 32nd AAAI Conference on Arti-

ficial Intelligence (AAAI-18). Association for the Advancement of Artificial Intelligence,

February 2018.

[118] J. Weston, A. Bordes, S. Chopra, and T. Mikolov, “Towards ai-complete question answer-

ing: A set of prerequisite toy tasks,” CoRR, vol. abs/1502.05698, 2015.

[119] P. Wittek, Quantum Machine Learning, 1st ed. Academic Press, 8 2014, vol. 1.

[120] R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable. American

Mathematical Society, 2002.

[121] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cam-

bridge University Press, 2010.

[122] S. Clark, B. Coecke, and M. Sadrzadeh, “Mathematical foundations for a compositional

distributed model of meaning,” Linguistic Analysis, vol. 36, no. 1-4, pp. 345–384, 2011,

categoryb theory mathematics for compositional distributional semantics.

[123] R. Piedeleu, D. Kartsaklis, B. Coecke, and M. Sadrzadeh, “Open system categorical

quantum semantics in natural language processing.” in CALCO, ser. LIPIcs, vol. 35.

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 270–289.

160 BIBLIOGRAPHY

[124] W. Blacoe, “Semantic composition inspired by quantum measurement,” in Proceedings of

the 8th International Conference on Quantum Interaction (QI 2014), 2014, pp. 41–53.

[125] J. R. Busemeyer and P. D. Bruza, Quantum Models of Cognition and Decision, 1st ed.

Cambridge, England, UK: Cambridge University Press, 2014.

[126] B. Wang, Q. Li, M. Melucci, and D. Song, “Semantic hilbert space for text representation

learning,” CoRR, vol. abs/1902.09802, 2019.

[127] G. Bouma, “Normalized (pointwise) mutual information in collocation extraction.”

[128] S. Reddy, D. McCarthy, and S. Manandhar, “An empirical study on compositionality in

compound nouns,” in Proceedings of 5th International Joint Conference on Natural Lan-

guage Processing (IJCNLP-2011). Chiang Mai, Thailand: Asian Federation of Natural

Language Processing, November 2011, pp. 210–218.

[129] E. Guevara, “A regression model of adjective-noun compositionality in distributional se-

mantics,” in Proceedings of the 2010 Workshop on GEometrical Models of Natural Lan-

guage Semantics, ser. GEMS ’10. Association for Computational Linguistics, 2010, pp.

33–37.

[130] E. Grefenstette, G. Dinu, Y.-Z. Zhang, M. Sadrzadeh, and M. Baroni, “Multi-step regres-

sion learning for compositional distributional semantics,” Proceedings of the 10th Inter-

national Conference on Computational Semantics (IWCS 2013), 2013.

[131] A. Komninos and S. Manandhar, “Dependency based embeddings for sentence classifica-

tion tasks,” in HLT-NAACL, 2016.

[132] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel mixture models,”

CoRR, vol. abs/1609.07843, 2016. [Online]. Available: http://arxiv.org/abs/1609.07843

[133] M. Kobayashi, “Dual-numbered hopfield neural networks,” IEEJ Transactions on Elec-

trical and Electronic Engineering, 2017.

[134] A. Graves, “Sequence transduction with recurrent neural networks,” CoRR, vol.

abs/1211.3711, 2012.

[135] A. Graves, A. rahman Mohamed, and G. Hinton, “Speech recognition with deep recurrent

neural networks,” in 2013 IEEE International Conference on Acoustics, Speech and Signal

Processing, May 2013, pp. 6645–6649.

[136] T. Hori, S. Watanabe, Y. Zhang, and W. Chan, “Advances in joint ctc-attention based end-

to-end speech recognition with a deep cnn encoder and rnn-lm,” in INTERSPEECH, 2017.

[137] E. Battenberg, J. Chen, R. Child, A. Coates, Y. Gaur, Y. Li, H. Liu, S. Satheesh, D. Seeta-

pun, A. Sriram, and Z. Zhu, “Exploring neural transducers for end-to-end speech recog-

nition,” 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU),

Dec 2017.

[138] A. Zeyer, K. Irie, R. Schlüter, and H. Ney, “Improved training of end-to-end attention

models for speech recognition,” CoRR, vol. abs/1805.03294, 2018.

[139] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A neural network for

http://arxiv.org/abs/1609.07843

BIBLIOGRAPHY 161

large vocabulary conversational speech recognition,” in 2016 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), March 2016, pp. 4960–4964.

[140] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-to-end attention-

based large vocabulary speech recognition,” in 2016 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), March 2016, pp. 4945–4949.

[141] C. Huang, T. Chen, and E. Chang, “Accent issues in large vocabulary continuous speech

recognition,” International Journal of Speech Technology, vol. 7, no. 2, pp. 141–153, Apr

2004.

[142] A. Rosenberg, S. Thomas, B. Ramabhadran, and M. Hasegawa-Johnson, “Joint modeling

of accents and acoustics for multi-accent speech recognition,” 2018.

[143] Z. Chen, Y. Luo, and N. Mesgarani, “Speaker-independent speech separation with deep

attractor network,” IEEE/ACM Transactions on Audio, Speech, and Language Processing,

vol. PP, 07 2017.

[144] A. Kumar and D. A. F. Florêncio, “Speech enhancement in multiple-noise conditions using

deep neural networks,” in INTERSPEECH, 2016.

[145] M. Kolbæk, Z.-H. Tan, and J. Jensen, “Monaural speech enhancement using deep neural

networks by maximizing a short-time objective intelligibility measure,” 2018 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5059–

5063, 2018.

[146] S.-F. Fu, T.-W. Wang, Y. Tsao, X. Lu, and H. Kawai, “End-to-end waveform utterance

enhancement for direct evaluation metrics optimization by fully convolutional neural net-

works,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26,

no. 9, pp. 1570–1584, Sep. 2018.

[147] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algorithm for intelligibility

prediction of timefrequency weighted noisy speech,” IEEE Transactions on Audio, Speech,

and Language Processing, vol. 19, no. 7, pp. 2125–2136, September 2011.

[148] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist temporal classi-

fication: Labelling unsegmented sequence data with recurrent neural networks,” in Pro-

ceedings of the 23rd International Conference on Machine Learning, ser. ICML ’06. New

York, NY, USA: ACM, 2006, pp. 369–376.

[149] Z. Zhang, A. Cristia, A. Warlaumont, and B. Schuller, “Automated classification of chil-

drens linguistic versus non-linguistic vocalisations,” in Proceedings of Interspeech 2018,

2018, pp. 2588–2592.

[150] Y. Wang, C. Xu, S. You, D. Tao, and C. Xu, “Cnnpack: Packing convolutional neural

networks in the frequency domain,” in Proceedings of the 30th International Conference

on Neural Information Processing Systems, ser. NIPS’16. USA: Curran Associates Inc.,

2016, pp. 253–261.

[151] M. Sahidullah and G. Saha, “Design, analysis and experimental evaluation of block based

162 BIBLIOGRAPHY

transformation in mfcc computation for speaker recognition,” Speech Communication,

vol. 54, no. 4, pp. 543 – 565, 2012.

[152] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,

N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw

audio,” in Arxiv, 2016. [Online]. Available: https://arxiv.org/abs/1609.03499

[153] C. Li, X. Liao, and J. Yu, “Complex-valued wavelet network,” Journal of Computer and

System Sciences, vol. 67, no. 3, pp. 623 – 632, 2003.

[154] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin, “Attention is all you need,” CoRR, vol. abs/1706.03762, 2017.

[155] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional sequence

to sequence learning,” in Proceedings of the 34th International Conference on Machine

Learning, ser. Proceedings of Machine Learning Research, vol. 70. International Con-

vention Centre, Sydney, Australia: PMLR, 06–11 Aug 2017, pp. 1243–1252.

[156] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent neural net-

works,” in Proceedings of the 31st International Conference on International Conference

on Machine Learning - Volume 32, ser. ICML’14. JMLR.org, 2014, pp. II–1764–II–1772.

[157] R. Collobert, C. Puhrsch, and G. Synnaeve, “Wav2letter: an end-to-end convnet-based

speech recognition system,” CoRR, vol. abs/1609.03193, 2016.

[158] S. Wiseman and A. M. Rush, “Sequence-to-sequence learning as beam-search optimiza-

tion,” in EMNLP, 2016.

[159] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based models

for speech recognition,” in NIPS, 2015.

[160] J. Salazar, K. Kirchhoff, and Z. Huang, “Self-attention networks for connectionist tem-

poral classification in speech recognition,” 01 2019.

[161] V. Liptchinsky, G. Synnaeve, and R. Collobert, “Letter-based speech recognition with

gated convnets,” CoRR, vol. abs/1712.09444, 2017.

[162] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper,

B. Catanzaro, Q. Cheng, G. Chen, J. Chen, J. Chen, Z. Chen, M. Chrzanowski, A. Coates,

G. Diamos, K. Ding, N. Du, E. Elsen, J. Engel, W. Fang, L. Fan, C. Fougner, L. Gao,

C. Gong, A. Hannun, T. Han, L. Johannes, B. Jiang, C. Ju, B. Jun, P. LeGresley, L. Lin,

J. Liu, Y. Liu, W. Li, X. Li, D. Ma, S. Narang, A. Ng, S. Ozair, Y. Peng, R. Prenger,

S. Qian, Z. Quan, J. Raiman, V. Rao, S. Satheesh, D. Seetapun, S. Sengupta, K. Srinet,

A. Sriram, H. Tang, L. Tang, C. Wang, J. Wang, K. Wang, Y. Wang, Z. Wang, Z. Wang,

S. Wu, L. Wei, B. Xiao, W. Xie, Y. Xie, D. Yogatama, B. Yuan, J. Zhan, and Z. Zhu,

“Deep speech 2 : End-to-end speech recognition in english and mandarin,” in Proceedings

of The 33rd International Conference on Machine Learning, ser. Proceedings of Machine

Learning Research, vol. 48. New York, New York, USA: PMLR, 20–22 Jun 2016, pp.

173–182.

https://arxiv.org/abs/1609.03499

BIBLIOGRAPHY 163

[163] C.-C. Chiu, T. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen, A. Kannan,

R. J. Weiss, K. Rao, K. Gonina, N. Jaitly, B. Li, J. Chorowski, and M. Bacchiani,

“State-of-the-art speech recognition with sequence-to-sequence models,” 2018. [Online].

Available: https://arxiv.org/pdf/1712.01769.pdf

[164] R. Prabhavalkar, K. Rao, T. N. Sainath, B. Li, L. Johnson, and N. Jaitly, “A comparison of

sequence-to-sequence models for speech recognition,” in INTERSPEECH 2017, 2017.

[165] Y. Zhang, M. Pezeshki, P. Brakel, S. Zhang, C. Laurent, Y. Bengio, and A. Courville,

“Towards end-to-end speech recognition with deep convolutional neural networks,” 09

2016, pp. 410–414.

[166] N. Zeghidour, Q. Xu, V. Liptchinsky, N. Usunier, G. Synnaeve, and R. Collobert, “Fully

convolutional speech recognition,” CoRR, vol. abs/1812.06864, 2018.

[167] I. P. Association, “International phonetic alphabet,” 2018. [Online]. Available:

http://www.internationalphoneticassociation.org/content/ipa-chart

https://arxiv.org/pdf/1712.01769.pdf
http://www.internationalphoneticassociation.org/content/ipa-chart

	List of Tables
	List of Figures
	Acknowledgements
	Declaration
	Introduction
	Context
	Research Questions
	Contributions
	Chapter Overview

	Theoretical Background
	Complex Numbers
	Transformations and Embeddings
	Multi-Layer Perceptrons
	Recurrence
	Convolutions
	Spectral Neural Networks
	Complex-Valued Attention
	Activation Functions
	Loss Function
	Training and Optimisation

	Complex-Valued Multi-layer Perceptrons for Real-Valued Classification
	Introduction
	Related Literature
	Capacity
	Experiments
	Results
	Synthetic Tasks
	Discussion
	Conclusion

	Complex-Valued Word Representations
	Introduction
	Related Literature
	Language Modelling
	Positional Slot Models
	Phase Language Model
	Frequency Language Models
	Experiments

	Memory Networks
	Experiments

	Quantum-Inspired Models of Language
	Quantum States
	Interference
	State Spaces
	Evolution
	Composition
	Measurements
	Projective Measurement
	Positive Operator-Valued Measurements

	Quantum-Inspired Semantic Framework
	Semantic Spaces
	Simple Semantic Space
	Simple Semantic Quantum Space
	Simple Topic Quantum Space

	Experiments

	Discussion
	Neural Language Modelling
	Memory Networks
	Quantum-Inspired Models of Language

	Conclusion

	Speech Recognition with Complex-Valued Neural Networks
	Introduction
	Related Literature
	Speech Processing

	Spectral Self-Attention
	Spectral Transformers
	Babble
	Data Collection
	International Phonetic Alphabet
	Tasks
	Training, Validation and Test
	Baselines

	Conclusion

	Conclusion
	Findings
	Future Work
	Improving Complex-valued Neural Networks
	Applications
	Appendices
	Babble
	Symbol Overview
	Structure
	Scripts and Usage

	Bibliography

