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This thesis concerns the study of two flavours of duality that appear in stable homotopy
theory and their equivariant reformulations. Concretely, we look at the Gorenstein duality
framework introduced by Dwyer, Greenlees and lyengar in [17] and the more classical notion
of Anderson duality introduced by Anderson in [1]. We study examples of ring spectra that
exhibit these duality phenomena, both non-equivariantly and equivariantly, coming from the
ring spectra of topological modular forms. Along the way, connecting the work of [29],
[52] and [35], we make contact with Serre duality phenomena that arise in derived algebraic
geometry and record an unexpected interlace of Anderson, Gorenstein and Serre duality.
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Introduction

Equivariant Duality and Topological Modular Forms

The Gorenstein duality framework, introduced by Dwyer, Greenlees and lyengar in [17], can
be seen as a vast generalization of the notion of a Gorenstein ring from classical commutative
algebra to the algebra of ring spectra. One of the main contributions of this framework is that
it provides a unifying language which allows one to view a number of dualities in homotopy
theory such as Poincaré duality for manifolds, Gorenstein duality for commutative rings,
Benson-Carlson duality for cohomology rings of finite groups and Poincaré duality for groups
as instances of a single phenomenon. Gorenstein duality was explored in a non-equivariant
context in [17] and [29] and equivariantly in the case of G = C5 in [27]. In this thesis we
set up an equivariant reformulation of the framework which allows one to study Gorenstein
duality for commutative ring G-spectra where G is an arbitrary finite group.

We also recall the more familiar notion of Anderson duality. Introduced in [1] by Ander-
son in his study of universal coefficient theorems for K-theory, this duality was explored
non-equivariantly in [63] and [29] and equivariantly in [59], [32] and [35]. In [29], a pe-
culiar relationship between Gorenstein duality for a connective ring spectrum and Anderson
self-duality for its non-connective counterpart is recorded — Gorenstein duality implies auto-
matically Anderson self-duality and the converse holds under some connectivity conditions.

A rich source of ring G-spectra which exhibit equivariant Anderson self-duality and Gorenstein
duality are the ring spectra of topological modular forms with level n structure. These are
commutative ring spectra that arise as the global sections of a certain sheaf 0P on the
moduli stacks of elliptic curves with level n structure M;j(n), or their Deligne-Mumford
compactifications M (n), and they come in three variants distinguished by the peculiar
capitalization of their names.

TMF, (n) & Ot

Tmf;(n) % O™P(

tmf;(n) = Tmf;(n)(0).
In [52] Meier studies the non-equivariant Anderson self-duality picture for the non-connective
ring spectra Tmf;(n). He shows that Tmf;(n) is Anderson self-dual if and only if the moduli

stack M (n) has Serre duality with a dualizing sheaf of a very specific form and establishes a
link between duality phenomena in stable homotopy theory and derived algebraic geometry.
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We look at the complementing story of Gorenstein duality for the connective ring spectra
tmfi(n). These can be constructed as genuine ring (Z/n)*-spectra and are thus natural
candidates for equivariant Gorenstein duality, so we ask the following question.

Question Does tmf;(n) exhibit equivariant Gorenstein duality?
As a first approximation we look at the non-equivariant picture where we have a complete

answer given by the following theorem.

Theorem A. The ring spectrum tmfy(n) has non-equivariant Gorenstein duality if and only
ifn € {1,...,8,11,14,15} or potentially n = 23 with non-equivariant Gorenstein duality
shifts a as follows.

n 1 2 3| 4| 5| 6] 7| 8| 11| 14| 15|23
a|—22|-14|-10| -8|—-6|—-6|—-4|—-4|-2|-2|-2] 0

Equivariantly much less is known and computations are considerably more difficult. Equiv-
ariant Gorenstein duality implies non-equivariant Gorenstein duality and therefore the list of
ring spectra that could exhibit the duality equivariantly is the one from Theorem A. Levels
1 and 2 are not interesting equivariantly as the group acting is the trivial group. Topological
modular forms with level 3 structure were studied equivariantly by Hill and Meier in [35] and
by Greenlees and Meier in [27]. This leaves levels 4 and 6 as the natural candidates to look
at next and in this thesis we obtain the following results.

Theorem B. The ring Cy-spectrum tmfy(4) is Gorenstein of shift « = —5 — 30.
Conjecture C. tmf;(4) has equivariant Gorenstein duality with shift « = —7 — 0.
Theorem D. The ring Cy-spectrum tmf,(6) is Gorenstein of shift « = —4 — 20.

Conjecture E. tmf(6) has equivariant Gorenstein duality with shift « = —6.

Overview

We now give a bird's eye view of the structure of the thesis.

Chapter 1 collects the necessary background material on equivariant stable homotopy theory.
We set up a black box version of the category of ring GG-spectra using the language of co-
categories and describe a number of computational techniques available for recovering the
RO(G)-graded homotopy type of a G-spectrum such as the homotopy fixed point spectral
sequence, the Tate square and a strategy specific to the case of G = (4 called the iterated
Tate argument.

Chapter 2 contains a blitz introduction to the language of stacks along with a description
of the moduli stacks of elliptic curves with level structure and the moduli stack of formal
groups which make an appearance later in the document.

13



Chapter 3 contains the equivariant reformulations of the Gorenstein duality framework and
makes up the heart of this thesis.

Chapter 4 recalls the classical definition of modular forms in number theory and describes two
methods that can be used to identify the (Z/n)*-action on the graded ring of modular forms
with respect to the congruence subgroup I'1(n), the Tate normal form and the Eisenstein
methods.

Chapter 5 introduces the main objects of study, the ring spectra of topological modular
forms with level structure. We sketch the definitions and collect the relevant properties with
emphasis on the equivariant structure of the objects.

Chapter 6 contains the calculations of two toys examples which potentially exhibit Gorenstein
duality in an equivariant sense, namely the ring spectra of topological modular forms with
level 4 and level 6 structure leading to Theorem B and D and Conjectures C and E above.

Chapter 7 concludes with an outline of the future directions. We record a couple of questions
which were partially explored in the thesis and report on their current progress.

Finally, in Appendix A, we provide a summary of the duality picture for the ring spectra of
topological modular forms.

Cellg(r) ~ X%"

R~ YR

HO(X,F) = HY (X, F¥ @ w®™ ™)V
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Chapter 1
Background

In this chapter we collect the necessary background material on equivariant stable homotopy
theory. Along the way we introduce a number of conventions and fix the notation that will
be in force throughout the rest of the document.

We begin with an overview of the theory of arithmetic fracture squares in the context of
a presentable, stable, symmetric monoidal co-category in Section 1.2. In Section 1.3 we
introduce the category of G-spectra as the symmetric monoidal oo-category associated to
the symmetric monoidal model category of orthogonal G-spectra. Mackey functors and
the various fixed points functors of G-spectra are recalled in Section 1.4 and Section 1.5,
respectively followed by a definition of strongly even G-spectra and a discussion on real Real
orientations in Section 1.6. In the last three sections of this chapter we describe several
computational techniques that are available in the category of G-spectra. We look at the
homotopy fixed points spectral sequence in Section 1.7 and the Tate square in Section 1.8.
Finally, in Section 1.9 we introduce the iterated Tate argument, a strategy for recovering
the RO(C})-graded homotopy type of a connective ring Cy-spectrum where Cj is the cyclic
group of order 4.

1.1. Conventions and notation

Throughout the document G will always denote a finite group. The theory of G-spectra can
be developed for an arbitrary compact Lie group and in the setting of (G-spaces things work
equally well for any topological group, but we will not need this level of generality. In all of
the examples we encounter G will be finite.

We write Top; for the category with objects all compactly generated weak Hausdorff topo-
logical spaces equipped with a G-action and with morphisms all G-equivariant maps. The
category of pointed compactly generated weak Hausdorff topological spaces equipped with a
G-action (fixing the basepoint) and basepoint preserving G-equivariant maps will be denoted
by Top¢ .. If we want to convert an unpointed G-space X into a pointed one we take the
disjoint union of X and a G-fixed basepoint and denote the result by X .

We will use the theory of co-categories as developed in [44] and the theory of symmetric
monoidal oo-categories and rings and modules in them developed in [43] as a black box
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CHAPTER 1. BACKGROUND 16

and simply collect the necessary results referring to [44] and [43] for the full details. Some
of the key points for choosing the framework of symmetric monoidal oco-categories are the
following. Suppose C is a symmetric monoidal co-category.

» The homotopy category of C is an ordinary symmetric monoidal category, see [43,
Remark 2.1.2.20] and [30, Remark 4.28].

= One can make sense of strictly commutative ring objects in C and their associated
theory, see [43, Definition 2.1.3.1 and Chapter 3].

» Given a strictly commutative ring object R in C one can construct the category of
modules over R which is again a symmetric monoidal category, see [43, Section 3.3
and Section 3.4].

1.2. Arithmetic fracture squares

We start by recalling the bare bones of the theory of arithmetic fracture squares following
[48, Part 1]. We will apply these constructions to the category of G-spectra introduced in
Section 1.3.9 below and to the category of modules over a ring G-spectrum in Section 3.2
of Chapter 3. We work under the following hypotheses.

Hypotheses 1.2.1. Let (C,®,1) be a presentable, symmetric monoidal, stable co-category
such that the monoidal product commutes with arbitrary colimits in each variable. Let A be
an associative algebra object in C and suppose that

1. the unit 1 is a compact object,
2. C is generated as a localizing subcategory by a set of dualizable objects,

3. A is dualizable.

We identify three full subcategories of C, the subcategories of A-null, A-complete and A-
cellular objects, and a certain cartesian square which allows one to assemble any object in C
from its A-complete and A-null parts.

Definition 1.2.2. An object X of C is called
(i) A-null if Home(A, X) ~ ,
(ii) A-complete if for every A-null Y we have Home (Y, X) ~ .

We write AN and CA<°™P for the full subcategories of C spanned by the A-null and
A-complete objects, respectively.

Definition 1.2.3. A morphism X — Y in C is called an A-equivalence if the induced map
Hom¢ (A, X) — Home(A,Y) is an equivalence.
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Definition 1.2.4. An object X of C is called A-cellular if for every A-null Y we have
Home(X,Y) ~ *. Equivalently, X is A-cellular, if for every A-equivalence Y — Z the
induced map Home(X,Y) — Home (X, Z) is an equivalence. We write C4-!! for the full
subcategory of C spanned by the A-cellular objects.

Our interest in these subcategories of C is motivated by the following results.

Lemma 1.2.5. There exist functors denoted Null 4, (—)Q and Cell 4, called A-nullification,
A-completion and A-cellularization, fitting in a diagram of adjunctions

CA—comp

Al
Cell 4 Null 4
C

A-cell A-null
CA-ce C nu’

where the unlabelled functors are the relevant inclusions and the labelled functors are their
left or right adjoints following the convention that the left adjoint is written on the left or
on the top of the right adjoint.

Proof. See the discussion before [48, Definition 2.19] as well as [48, Definition 3.10] and
[48, Construction 3.2]. O

Corollary 1.2.6. For every object X in C we have a cofibre sequence

Cell4(X) — X — Null4(X). (1.1)

Lemma 1.2.7. For every object X in C there exits a cartesian square

X —— Nully(X)

l - | (1.2)

(X)4 — Nulla((X)}),
called the A-arithmetic fracture square of X.

Proof. See [48, Construction 3.16, Proposition 3.18]. O

1.3. The category of G-spectra

We continue with a minimalistic, oo-categorical introduction to the category of GG-spectra
following [48, Section 5]. In our exposition we intentionally try to be as model agnostic
as possible and concentrate on the characteristic features of the objects and constructions.
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When we have to resort to a specific model of G-spectra we will use the category of orthogonal
G-spectra of Mandell and May [46] which we recall below.

We start with a brief discussion on how one can associate a (symmetric monoidal) co-category
to any (symmetric monoidal) model category. Let M be a model category and let M€ denote
the full subcategory of M spanned by the cofibrant objects. Write N: Cat — sSet for the
ordinary nerve functor.

Definition 1.3.1 ([43, Definition 1.3.4.15]). Define the underlying co-category of the model
category M to be the oo-category N(M¢)[W 1], where on the left we mean localization in
the oo-categorical sense.

Example 1.3.2. The category Top. can be equipped with a model structure where a map
X — Y is a weak equivalence (respectively a fibration) if and only if X — YH js a weak
equivalence (respectively a Serre fibration) of spaces for each subgroup H < G. Define the
oo-category of G-spaces S as the underlying co-category of Topg.

Suppose now that (M, ®, 1) is a symmetric monoidal model category, i.e. a closed symmetric
monoidal category equipped with a model structure such that the pushout-product axiom is
satisfied. The subcategory M€ inherits a symmetric monoidal structure and moreover, since
the class of weak equivalences W in M€ is stable under tensoring with objects of M€, the
underlying oo-category N(M¢)[W 1] of M inherits a symmetric monoidal structure.

Definition 1.3.3 ([43, Example 4.1.7.6]). Define the underlying symmetric monoidal co-
category of the symmetric monoidal model category M to be the symmetric monoidal
oo-category N(M)[W1].

Note that this construction is functorial. If (M,®,1,() and (N,®,1x) are symmetric
monoidal model categories and F': M — N is a symmetric monoidal left Quillen functor,
then by the universal properties of localization F' induces a symmetric monoidal functor
between the underlying symmetric monoidal co-categories of M and V.

Example 1.3.4. The category Topg, . is a symmetric monoidal model category with a model
structure defined by detecting weak equivalences and fibrations on fixed points for subgroups
H < G and monoidal product given by the smash product of pointed G-spaces. Define
the symmetric monoidal oo-category of pointed G-spaces Sq « as the underlying symmetric
monoidal oo-category of Topg, .

To define the category of (G-spectra as an oo-category we look at one particular classical
model of G-spectra, namely the category of orthogonal G-spectra of Mandell and May [46].
This is a closed symmetric monoidal category that can be equipped with a model structure,
called the stable model structure, making it into a closed symmetric monoidal model category.
We give a short overview of the model following [33, Appendix A.2].

Write Topg,« for the category with objects G-spaces and morphisms all continuous, but
not necessarily equivariant, maps. This is a closed symmetric monoidal category enriched
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in Topg; . For G-spaces X and Y the space of morphisms from X to Y in Topg . is a
G-space with G acting by conjugation and we have the relation

Hompop, ., (X,Y)" ~ Homrop,, (X,Y).

Let V and W be real orthogonal representations of G. We write O(V) for the orthogonal
group of non-equivariant linear isometries of V' and O(V, W) for the Stiefel manifold of linear
isometric embeddings of V into W.

Definition 1.3.5 ([33, Definition A.10]). Let I be the category where
= objects are all finite dimensional real orthogonal representations of Gz, and

= morphisms are given by the Thom space of the complementary bundle W — V' over
oV, W)

I6(V, W) & Thom(O(V, W): W — V).

Definition 1.3.6 ([33, Definition A.13]). An orthogonal G-spectrum X is a functor

X: Ig — Topg -

We write Spcérth for the category of orthogonal GG-spectra. If we unpack the definitions we

see that an orthogonal G-spectrum X consists of a collection of G-spaces { Xy} for each
finite dimensional real orthogonal representation V' of G and for each V' — W an equivariant
map S~V A Xy, — Xy compatible with the composition in I and varying continuously
inV — W.

Definition 1.3.7 ([33, Definition 2.14]). Let X be an orthogonal G-spectrum, k be an
integer and H be a subgroup of G. The H-equivariant k-th homotopy group of X is the

group
H

def .
mH(X) € colimys g i1 (Xv),
where the colimit is taken over the partially ordered set of real orthogonal representations V'
of G such that V > —Fk. The partially ordered set of representations of GG is a class and one
must check that this colimit exists. For details see the discussion after [33, Definition 2.16].

Definition 1.3.8 ([33, Definition 2.17]). A map of orthogonal G-spectra is called a stable
weak equivalence if it induces an isomorphism of homotopy groups 77,? for all k € Z and all
H<G.

The stable weak equivalences participate as the weak equivalence in a model structure on
Sp°Grth called the stable model structure defined in [46, Chapter Ill]. As mentioned earlier, the
category of orthogonal GG-spectra equipped with this model is a closed symmetric monoidal
model category.

We can now define the oo-category of G-spectra.
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Definition 1.3.9 ([48, Definition 5.10]). The symmetric monoidal co-category of G-spectra
is the underlying symmetric monoidal oco-category of Sp‘érth which we denote by Sp,. We
write A for the monoidal product and S for the unit (the sphere spectrum). Given G-spectra

X and Y we write FI(X,Y) for the internal Hom object or function spectrum in Sp.

Proposition 1.3.10 ([48, Proposition 5.14]). Let H < G be a subgroup. There is a sym-
metric monoidal colimit preserving functor called restriction

res : Spg — Spy

which admits a left adjoint indfl, called induction, and a right adjoint coindg called coin-
duction. Moreover, there is a natural equivalence

ind% ~ coind% .

1.4. Mackey functors

The homotopy groups of a G-spectrum exhibit a structure much richer than that of an
abelian group, namely they form a Mackey functor. We recall this notion below by looking
and comparing two definitions of Mackey functors.

Definition 1.4.1. The Burnside category of GG is defined as the full subcategory Be of Spa
spanned by the objects X°X for X a finite G-set.

An equivalent and more concrete description of the Burnside category can be given in terms
of the category of spans of the category Setg“ of finite G-sets and G-equivariant maps.
Definition 1.4.2. Let C be a category with all finite limits and colimits. Define Span(C),
the category of spans of C, to be the category with objects the objects of C and morphisms
equivalence classes of diagrams of the form X < A — Y called spans where two spans
X+ A—Y and X «+ B — Y are equivalent if there is an isomorphism A =, B such that
the diagram
A

7N

X = Y

Nl

B

commutes. Composition is defined by taking pullback, given spans X +— A — Y and
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Y < B — Z their composition is

%
NN

Observe that Homgp,an(c) (X,Y) is an abelian monoid under the operation which takes spans
X<+ A—Y and X + B — Y tothespan X < A[[B — Y. To turn Span(C) into an
additive category we let Span™(C) denote the preadditive completion of Span(C), i.e.

def
HOInSpaLnjL ©) (X, Y) = K(HomSpan(C) (X7 Y))

where K(—) on the right denotes the Grothendieck group completion.
Definition 1.4.3. Define the Burnside category of G as

Be % Spant (Setfin).

It is a classical statement that Definition 1.4.1 and Definition 1.4.3 are equivalent.
Proposition 1.4.4. Let ZNS’G and Bg be as above. Then the categories Wo(gg) and Bg are
equivalent.

Proof. See [50, Chapter XIX, Section 3]. O

We are now ready to give the first definition of a Mackey functor.
Definition 1.4.5. A Mackey functor is an additive contravariant functor B — Ab from

the Burnside category of G to the category of abelian groups.

We write Mackq for the category of Mackey functors and natural transformations between
them. Individual Mackey functors will be denoted by underlined letters like M. From the
definition above it is clear that the category Mack¢ is an abelian category.

Example 1.4.6. As a first simple but important example of a Mackey functor we look at
the Burnside Mackey functor A defined as the functor represented by the G-orbit G /G, i.e.

A(-) = Homg,, (—, G/G).

Its value on an orbit G/H can be identified with the classical Burnside ring A(H) of H.

We can equip the category Mackg with a closed symmetric monoidal structure as follows.
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Definition 1.4.7. Let M and N be Mackey functors and define their box product, denoted
MTON, by the left Kan extension

Be x Bo “255 Abx Ab =25 Ab.

— X — ”,’,—”’
l - MON

Ba -

Given a Mackey functor M the functor —[JM has a right adjoint Hompgack, (—, M) which
is the internal Hom object in Mackg.

Theorem 1.4.8. The category Mackg is a closed symmetric monoidal category with product
given by U1, unit the Burnside Mackey functor and internal Hom object as above.

A more algebraic description of Mackey functors is given by Dress in [15]. Recall that the
orbit category of G is the full subcategory O¢ of Top; on the objects G/H.

Definition 1.4.9. A Mackey functor is a pair of additive functors (M,, M*) from the orbit
category of GG to the category of abelian groups. The functor M, is covariant, M* is
contravariant and they have the same object function which we denote by M. The two
functors take pullback diagrams in Og of the form

to commutative squares

M
M(y) =% m
Remark. Because any finite G-set can be written as a disjoint union of orbits of the form

G/H and Mackey functors are additive, a Mackey functor M is completely determined by
its values M (G/H) on orbits.

To translate between the two definitions, suppose we are given a Mackey functor M in terms
of Definition 1.4.5. We can define a pair of functors, one covariant and one contravari-
ant, from the orbit category to the Burnside category by restricting to spans of the form
X< X 5Yand X « Y = Y. Composing these functors with M we obtain functors
M*: OF — Aband M, : Og — Ab.
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Definition 1.4.10. Let M be a Mackey functor and K < H are subgroups of G. The maps
rest € v (G/H — G/K),
il €M (G/K — G/H)
are called restriction and transfer maps, respectively.

Example 1.4.11. Consider Z as a Z|G]|-module with a trivial G-action. Define the constant
Mackey functor at Z

Z: ng — Ab
G/H — Z.

All restriction maps are necessarily the identity and for K < H the transfer map tr%: 7 — 7
is multiplication by |H/K|.

Example 1.4.12. Let M be a Z[G]-module. Define the fixed point Mackey functor of M
by

M: ng—>Ab
G/H — M7,

The restriction maps are given by inclusion of fixed points and for K < H the transfer map
trg: ME — MH js given by the formula

where Wi (K') denotes the Weyl group Ny (K)/K.
Example 1.4.13. Let X be a G-spectrum and n be an integer. Consider the functor
(7(X): BE — Ab

G/H — 7t (X).

This is a Mackey functor called the homotopy Mackey functor of X.

A common way of spelling out explicitly the data of a Mackey functor M is a Lewis diagram,
introduced in [42]. We place the value of M at G/G on the top and the value of M on
G /e on the bottom of the diagram. Thus the restriction maps are going downwards and the
transfers maps are going upwards. We illustrate this with a few examples.

Example 1.4.14. Let G = C5. Consider the Mackey functors Z, Z* and Z_ defined as
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follows.
M(Cy/Cs) zZ Z 0
res</ ,>tr Id< ,>2 2< />1 O< ,>O
M(Cy/e) z 7 zZ
YRR VIRVARY
5 —
M Z z: Z

Construction 1.4.15. We end this section with two constructions.

(1) Let M be a Mackey functor. One can define an Eilenberg-MacLane G-spectrum H M
associated to M which, by analogue with its non-equivariant counterpart, is characterized
by

M ifi=0

0  otherwise.

m(HM) = {

(2) Let I be an injective abelian group and M be a Mackey functor. Consider the functor
Di(M): BE — Ab defined by

Di(M)(G/H) = Homz(M(G/H),I)).

Using Dress's definition one can check that this is again a Mackey functor. We write Dy
for the duality functor Dy: Macks — Mackg sending a Mackey functor M to Dj(M).

1.5. Fixed points functors

There are three types of fixed points functors on G-spectra, the categorical, homotopy and
geometric fixed points, that will all be relevant for us later. We review the corresponding
definitions and properties still following [48].

The category of G-spectra is a presentable, symmetric monoidal, stable co-category and as
such receives a canonical symmetric monoidal, colimit-preserving functor from the category
Sp, see [43, Corollary 1.4.2.23], which we denote by ¢.: Sp — Spg.

Definition 1.5.1 ([48, Definition 6.2]). The functor ¢, has a lax symmetric monoidal right
adjoint
(=): Spg — Sp

called categorical fixed points. More generally, for H a subgroup of GG, we can define the
categorical H-fixed points as the composition

res(; ()"
Spe — Spy —— Sp,
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which we again denote by (—)%.

Proposition 1.5.2 ([48, Section 6.2]). The categorical fixed points functor has the following
properties.

(1) (—)% is lax symmetric monoidal.

(2) (=)¢ commutes with colimits.

The categorical fixed points functor does not have the properties that one might expect
or want by analogy with the fixed points of G-spaces. For example it does not in general
commute with smash products or suspensions. A better behaved fixed points functor and in
particular one that is symmetric monoidal and commutes with suspensions and the formation
of Thom spectra is the geometric fixed points functor. In order to define it we need the notion
of a family of subgroups of G.

Definition 1.5.3. A family of subgroups of GG is a collection F of subgroups closed under
passage to conjugates and subgroups.

Examples 1.5.4. Some examples of families of subgroups of G are:
= The trivial family {e}.
= The family ‘P of all proper subgroups of G.
= The family F(p) of p-subgroups of G.
= The family F(V') of subgroups of G such that VH = 0 for a G-representation V.

= The family F[N] of subgroups of G which do not contain a given normal subgroup N
of G.

To any family F of subgroups of G we can associate a universal G-space EF and a pointed
G-space EF fitting into a cofibre sequence

EF, - S" - EF
and characterized up to a weak equivalence by
EFH _ * ifHG]-" BFH _ S ifHeF
() otherwise x  otherwise.

Given a family F we write Ax for the commutative ring G-spectrum

def

Ar < [ F(G/H, S0

HeF
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The category of G-spectra together with the ring G-spectrum A r satisfy Hypotheses 1.2.1
and we can therefore apply the theory of arithmetic fracture squares to form the subcate-
gories of Ax-null, Ar-complete and A r-cellular objects. Furthermore, we can describe the
localization, nullification and cellularization functors explicitly.

Proposition 1.5.5. Let X be a G-spectrum.
(1) The Ax-nullification of X is given by

Nulla, (X) = EF A X.

(2) The Ax-completion of X is given by

(3) The Ar-cellularization of X is given by

Celly, (X) = EFy A X.
Proof. Parts (1) and (2) are [48, Proposition 6.5]. Part (3) is [48, Proposition 6.6]. O

We can now define the geometric fixed points functor. Let P be the family of all proper
subgroups of G.

Definition 1.5.6 ([48, Definition 6.12]). Define the geometric fixed points functor ® as

the composition

Null _\G
SpG A7D Spép—null g SpG ( ) Sp

More generally, for H a subgroup of GG, we define the geometric H-fixed points functor as
the composition
resg oH
Spg — Spy — Sp,
which we again denote by ®%.
Proposition 1.5.7 ([48, Section 6.2]). The geometric fixed points functor has the following
properties.

(1) ®F(L®A) ~ £®AC for a G-space A.
(2) ®F is symmetric monoidal.

(3) ®¢ commutes with filtered colimits.

Remark. Both the geometric and the categorical fixed points functors detect weak equiva-
lences in the category of GG-spectra in the sense that a map f: X — Y of G-spectra is a
weak equivalence if and only if f&, respectively ®“(f) is a weak equivalence in Sp.



CHAPTER 1. BACKGROUND 27

We end the section with a short digression on connective covers. Recall that there is an
adjunction between the oo-categories of spectra Sp and connective spectra Sps

L
Sp>o — Sp,

with left adjoint given by the inclusion and right adjoint given by the connective cover.
The usual connective cover of a spectrum Y is given by the composition Y (0) = t7>¢Y.
The G-spectra we study later in this document arise as the output of a derived algebraic
geometry machine and come as naive G-spectra. We promote them to genuine GG-spectra
by taking the associated cofree construction, i.e. for a naive G-spectrum X we look at
X" = F(EG,,X). Given such a cofree object there are two equally natural ways to
construct its equivariant connective cover. We can either first promote X and then take its
equivariant connective cover or we can take its non-equivariant connective cover, promote
and then take equivariant connective cover again. The following argument shows that the
two constructions are equivalent.

Lemma 1.5.8. Let X be a naive G-spectrum. Then the spectra X"(0) and (X (0))"(0) are

equivalent.

Proof. It suffices to check the claim on fixed points. Right adjoints commute with homotopy
limits and so for all subgroups H of G we have an equivalence

T50(XM) = (r50 X))

Taking homotopy fixed points is a homotopy limit and homotopy limits in connective spectra
are computed by first including into spectra, computing the homotopy limit there and then
taking connective cover. The target of the map above is therefore 75 (t7>0 X )"# . Applying
L we get the desired equivalence

XM 0) — X (0)M1(0).

1.6. Strongly even GG-spectra and Real orientations

Let pg and pg denote the regular and reduced regular representation of G, respectively.
Definition 1.6.1. A G-spectrum X is called even if

(i) m541(X) =0 and

(i) il (X)=0foralle# H <G and k € Z.
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X is called strongly even if, in addition, all of the restriction maps

Thps (X) = (11 (X))

are isomorphisms.

Specializing this definition to the case of G = C5 we recover the notion of even and strongly
even Cy-spectra introduced by Hill and Meier in [35] and explored in [27] and [52]. In this
case we can also characterize strongly even C-spectra in the following equivalent ways.

Proposition 1.6.2 ([52, Proposition 6.8]). For a Co-spectrum X the following conditions
are equivalent.

(1) X is strongly even,
(2) 7% (X)=0for0<i<3,

*p02 —1
(3) The odd slices Pgﬁfll (X) in the slice spectral sequence of X are zero and the even slices
P2 (X) are equivalent to %72 Hro,(X).

The following propositions are due to Meier.

H
*PH

Proposition 1.6.3. Let X be a GG-spectrum such that
H <G. Then X ~ 0.

(X) = 0 for all subgroups

Proof. We will prove this by induction on the size of the group. The case of |G| = 1 is
clear. Thus, assume that X' ~ 0 for every proper subgroup H < G and that 7T*GpG (X)=0.
The representation sphere S?¢ has a finite cellular filtration C, with Cyp = S° and cofibre
sequences G/H, — C; — C;11, where H is a proper subgroup of G. As XH ~ 0 for all

proper subgroups, we see that 7T§G (X) 27§ (X) and thus 78 (X) = ﬂgc (X)=0 O

Proposition 1.6.4. A map between strongly even G-spectra is an equivalence if and only if
it is an equivalence of the underlying spectra.

Proof. Let f: X — Y be an underlying equivalence of strongly even G-spectra. Automati-
cally, f induces an isomorphism on all homotopy groups of the form 7rf,2H for H a subgroup
of G. Furthermore, we have that wg{(cof(f)) = 0 for all subgroups H < G and thus
cof (f) ~ * by Proposition 1.6.4. O

Examples 1.6.5. We list some examples of strongly even Cs-spectra.
(1) kR or K-theory with reality, see [27, Section 11] and [21, Corollary 3.5].
(2) MR or real bordism, see [38, Theorem 4.11].

(3) tmf1(3) or topological modular forms with level 3 structure, see [35, Corrolary 4.17] or
[27, Corollary 4.6].
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Next, we recall the notion of a Real orientation. Let G = (5 and write p for the real regular
representation of Cy. Consider the spaces CP" and CP™ as pointed Cy-spaces with CP? as
a basepoint and action given by complex conjugation and fix an isomorphism S” = CP!.

Definition 1.6.6. Let X be a homotopy commutative ring Co-spectrum. A Real orientation
for X is a class z € X/, (CP>) = [CP>, 5 A X]° restricting to the class in X{, (CP') =
[CP!, SP A X]¢? corresponding to the unit 1 € [S?, X]“2 = [SP, SP A X]°2 under the chosen
isomorphism S” = CP!

X?, (CP>) —— X7, (CP') = [5°, 5P A X2

r+— e=1.

Theorem 1.6.7 ([38, Theorem 2.25]). Real orientations of ring Co-spectra X are in one to
one correspondence with homotopy classes of ring Cy-spectra maps MR — X.

Lemma 1.6.8 ([35, Lemma 3.3]). Let X be an even Cy-spectrum. Then X is Real orientable.

1.7. The homotopy fixed points spectral sequence

A fundamental computational technique in the category of G-spectra is the homotopy fixed
points spectral sequence. We introduce its RO(G)-graded version in full generality below
and then describe certain simplifications which occur in the case of G = (Cs.

Let X be a G-spectrum. The RO(G)-graded homotopy fixed points spectral sequence has
FEs-page given by
Ey* = H*(G,m§(X AS™*)) = n§_, (XM,
and differentials of the form
d: Es,V N Es+i,V71
i Ly i :

Let now G = C3 and suppose that X is even with 75, (X) flat over Z and Cy acting on
75, (X) via (=1)". Let V. = (t — r) + ro be a Ca-representation. The E, page of the
RO(C5)-graded homotopy fixed point spectral sequence then takes the form

ESUTITTT = 5Oy, (X A STy
= H*(Cy, mf(X) @ sgn®")
—7r2*(X) [ ,a]/2a

C
- x"),

=T —s+r(oc—1) (

where |u| = (0,2 — 20), |a|] = (1, —0), and m2,(X) is isomorphic to the group 7§,,(X), but
shifted in degree (0,np). The differentials in Adams grading are of the form

. s, (t—s—r)+ro s+i,(t—s—r—1)+ro
di: E; — E; .
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We end this section by recalling the notion of a regular homotopy fixed point spectral se-
quence introduced by Meier in [52]. Recall that a complex orientation on a ring spectrum

R provides elements v; € my(an_1)(RR) well-defined modulo (2,v1,...,v,). Now if R is real
oriented we obtain elements v, in the Ea-term of the RO(C)-graded homotopy fixed point
spectral sequence of R that are well-defined modulo (2,71, ...,7,).

Let X be an even real oriented commutative ring Cs-spectrum. Assume that the homotopy
groups of X are 2-local, torsion-free and that C acts on 7§, (X) as (—1)".

Definition 1.7.1 ([52, Definition 6.1]). We say that X has a regular homotopy fixed points
spectral sequence if

(i) m2.(X) consists of permanent cycles,

— 2" =15

(i) the element u?" survives to the Eyn+2_1-page and doni2_q(u?") Unt1,

(iii) if dgnt2_1(u?"™v) = 0 for some odd number m and some ¥ € ma,(X), then the
element 42" is already a permanent cycle.

The following proposition is useful in checking whether a ring Cs-spectrum has a regular
homotopy fixed point spectral sequence.

Proposition 1.7.2 ([52, Proposition 6.5]). Let f: X — Y be a map of homotopy com-
mutative ring Cy-spectra with Cy-action as above. Assume that the homotopy fixed points
spectral sequence of the target Y is regular and that the map

7o (X)/ (2,01, ...,v) = 7(Y)/ (2,01, ..., v5)
is injective for all i > 0 and that vy, is either zero or a non zero divisor in
m5,.(X)/ (2,01, ..., vk—1)
for all k. Then the homotopy fixed points spectral sequence of X is regular as well.

Example 1.7.3. The ring Cy-spectrum of real bordism MR has a regular homotopy fixed
point spectral sequence. See [38] or [27, Appendix].

1.8. The Tate square

In this section we identify a construction in the category of G-spectra known as the Tate
square, first introduced in [26], as an incarnation of the arithmetic fracture square (1.2). Let
F be a family of subgroups of G and let Ar denote the commutative ring G-spectrum

Ar =[] F(G/H,5°).
HeF
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Recall the cofibre sequence (1.1) and the identification of the Ax-nullification and Az-
cellularization functors in Proposition 1.5.5

CeHA]_.(X) — X — NuHAF(X)

- -

EF.NX X EFAX.

The projection map EF, — S° induces a map of G-spectra
X=F(S°,X)5 F(EF,,X)

and smashing this map with the bottom cofibre sequence we obtain the diagram

XANEF, X XNEF

la Ald l& l&/\ld

F(EF.,,X)\NEF, —— F(EF,,X) —— F(EF.,X)\NEF.
Notation 1.8.1. We will use the following (generalized Scandinavian) notation for the var-
ious spectra in the diagram above.
» F(X)h =X AEFy and F(X)ne = (F(X)n)C,
F(X)" = F(EF:,X) and F(X)h¢ = (F(X"))C,
= F(X)! = F(F,,X)AEF and F(X)¢ = (F(X)")“,
F(X)® =X AEF and F(X)9Y = (F(X)9)“.

= If F =P is the family of all proper subgroups of G we will write X® = X A EP and
(X)P¢ =% (X) = (X*)7.

Using this notation we can rewrite the diagram in a more compact form.

F(X)n X F(X)°

| | |

F(X)p —— F(X) —— F(X).

Specializing to the family 7 = {e} we find that E{e} ~ EG and we get the classical Tate
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diagram, see [26] and [21].

X ANEG, X X ANEG

JE Ald Ja le/\ld

F(EG.,X)NEG, — F(EG,,X) —— F(EG,,X) A EG.
Notation 1.8.2. There is a shorthand notation and terminology for the various spectra
present in the diagram above known as the Scandinavian notation.

» Xy = X AEG, is the free G-spectrum associated to X . It can be seen as a spectrum
level analogue of the construction which associates to a based G-space a new based
(G-space whose action is free away from the basepoint.

» X" = F(EG,,X) is the geometric completion of X .
= X!=F(EG,X)AEG is the Tate G-spectrum associated to X.

= X© = X A EG is the singular G-spectrum associated to X. It is a spectrum level
analogue of the construction which associates to a based G-space a new based G-space
which has the same fixed points as the original one for non-trivial subgroups of G' and
is non-equivariantly contractible.

Taking categorical G-fixed points we write
= Xng = (Xn)C,
- X6 = (XM)G,
» X9 = (XYY and
= X9¢ =0%X = (X°)°.

The Tate diagram can be again displayed in the following compact form.

X, X X®
X, Xh Xt

1.9. The iterated Tate argument

We end the chapter with a description of a procedure for recovering the full RO(C})-graded
homotopy groups of a ring Cy-spectrum, where Cy is the cyclic group of order 4. A number
of simplifications which occur in this case allow an approach where a threefold application of
the Tate square, consisting of two RO(C)-graded and one RO(C}y)-graded computations,
recovers the full RO(Cjy)-graded homotopy information. The argument was designed to
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attack the computation of the homotopy groups of the ring Cy-spectrum tmf;(5) which we
introduce in Section 5.1. We have made partial progress in the form of recovering the full
RO(C5)-graded homotopy groups of tmf;(5). The computation is still a work in progress
and is not included in this document.

Let G = Cy, H = C5 and write @ = G/H for the quotient also isomorphic to Cy. Write
o for the sign representation of Cs or of Cy and « for the natural one-dimensional complex
representation of Cy. Let ¢, v, a, a® = o~ ! denote the irreducible complex representations
of Cy, all of dimension 1 and let 1,0,V denote the irreducible real representations of Cjy
of dimensions 1,1 and 2, respectively. The iterated Tate argument relies on a number of

auxiliary facts and observations which we collect below.

Observations 1.9.1. By an observation we mean a statement which is trivial for not neces-
sarily obvious reasons.

(1) EP ~ EQ ~ §%7 ~ §®(a+a),

(2) EG ~ E[D H] ~ §®,

(3) 7e(®F(X)) = mE((X A EP)Y) = 7l (X AN EP).
(

4) The complexifications of the three real representations are ¢,a?, o+ a~!. As represen-
tations over R the four complex irreducible representations are 2, V. 20, V.

(5) S« ~ 5% and this is a (GG-homeomorphism of based G-spaces.
(6) We can write RO(G) =Z & Za @ Zo.
(7) The RO(G)-graded homotopy groups of the ring G-spectrum X A EP are given by

7§ (X)[ =, 1]

)
Qg Qg

78(X A EP) @ Z[at!, at]

o 7 a

7¢(2% (X)) ® Z[aE!, aF.

o '

1%

(X N EP)

12

12

Lemma 1.9.2. Let X be a G-spectrum. We have the following equivalences

X® =X ANEP ~infS(0% (X)) A EP,

X® = X AEG ~inf§ (2" (X)) A EG.

Proof. We will do the case of G = (5 and for the proof we will resort to the model of
orthogonal G-spectra described in Definition 1.3.6. Note that
EP ~ ECy ~ 57,

We want to show that
X A S ~ infC2(dC2 (X)) A §°°. (1.3)
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Any Ca-spectrum Y has a canonical homotopy presentation of the form
Y ~ hocolimy, Ekakp,

where p denotes the regular representation of Cy and Y, denotes the kp-th level of the
spectrum Y. The geometric fixed points functor ®“2(—) commutes with suspension and
homotopy colimits so we get

dY2(Y) =~ & (hocolimy, TV}, A S°7)
. —kpyC:
~ hocolimy X ”Yk[f
and thus (®“2(Y)), = YkaQ. Inflating a non-equivariant spectrum Z to a Ca-spectrum gives

at level kp
infec2(Z)kp =7 N Gke.

Now back to the question. At level kp, the right hand side of (1.3) looks like
(infC2 (D2 (X)) A S (kp) =~ (B2 (X)) A SFT A 57
~ X (kp)©2 A Sk A 50
~ X (kp)©2 A 8%,

We have an obvious map to the kp-th level of the left hand side of (1.3)
X,f; A S®7 5 Xy, NS>
and this map is a weak equivalence as can been seen by checking on fixed points. O

Lemma 1.9.3 ([27, Lemma 11.2]). Let X be a Cy-spectrum which is non-equivariantly
connective and such that the map X2 — X"C2 s a connective cover. Then the map
X®C2 5 X*C2 s also a connective cover.

The iterated Tate argument proceeds in three phases.

Phase 1. Consider the Tate square for the H-spectrum res% (X)

res@(X) —— (res$(X))?®

l |

(resfj (X)) —— (resfj(X))".

(a) Bottom left corner: using the H-action on m¢(res% (X)) we run the RO(H)-graded
HFPSS for (res%(X))" to recover wf((resg(X))h) and we remember the Q-action on

o ((res(X)P).
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(b) Bottom right corner: we invert a, in 74 ((res%(X))") to recover 74 ((res$;(X))") and
we remember the Q-action on w7 ((res%(X))!).
(c) Top right corner: we use Lemma 1.9.3 to recover Wf((resg(X))q)). The homotopy of

(res%(X))? is a,-periodic in the sense that

o (resi (X))®) 2wl (res (X)) @ Z[ag] = 75(@ (X)) ® Zlaz ],

so we get ¢(®H (X)) and we have remembered the Q-action on this ring along the way.

Phase 2. Consider the Tate square for the Q-spectrum & (X)

oH(X) —— (27(X))?
(@ (X)) — (27 (X))

(a) Bottom left corner: from Phase 1 we know 7¢(®(X)) and the Q-action on it, so we
run the RO(Q)-graded HFPSS for (& (X))" to recover Wi((@H(X))h).

(b) Bottom right corner: we invert a, in wg((CIDH(X))h) to recover W?{((@H(X))t).

(c) Top right corner: we use Lemma 1.9.3 to recover ﬂg((@H(X))cb). Alternatively, if the

homotopy of ®“(X) is accessible, the RO(Q)-graded homotopy groups of (& (X))?®
are completely determined by the homotopy groups of ®(X) as

2 (@7 (X))?) = 72(®"(X) A EP)
>~ r¢((dH (X)) A EP)9)
= 75 (82 (27 (X))
= 7¢(8%(X))

and

T3 ((@7(X))?) = ¢ (" (X) A EP)
3@ ()]

T2 ((27(X))*?) ® Zag]
g (2€(X)) ® Zlag].

12

I

I

(d) Top left corner: the Tate square is a homotopy pullback square of rings, so we recover
QepH
75 (@7 (X)).
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Phase 3. Consider the Tate square for the G-spectrum X

X — X©

L]

Xt — X',
(a) Top right corner: we can rewrite it as
X® =X A EG ~infg(®" (X)) A EG.
Observe that

_ 1 _
TS (X AEG) = ﬂ'i(X)[a—} =~ 78 (X ANEG) ® Z[aE]

07

and

78,0 (X A BG) 2 75, (inf§(@" (X)) A EG)
2(2" (x)).

12

The ring wg(CI)H(X)) was recovered in Phase 2, so we can compute the RO(G)-graded
homotopy groups of X© as

T%(X9) = 7§ (07 (X)) ® Z[aZ).
(b) Bottom left corner: we determine the G-action on 7¢(X) and run the RO(G)-graded
HFPSS for X" to recover Wf,(Xh).

(c) Bottom right corner: we invert a, in 75 (X") to recover 7§ (X?).

(d) Top left corner: the Tate square is a homotopy pullback square of rings, so we recover
G
% (X).
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Stacks

In this chapter we collect the necessary background material on stacks. Although not central
to this thesis the language of stacks is required to outline the construction of the basic
objects of study and we take the time and space to introduce things in sufficient detail.

We begin with a brief review of Grothendieck topologies and sites and introduce the Zariski,
étale and fpqc topologies on the category of schemes in Section 2.1. In Section 2.2 we
introduce stacks as categories fibred in groupoids and look at a number of examples of
stacks that we will encounter later. Sheaves on stacks and the category of quasi-coherent
sheaves on a stack are defined in Section 2.3 followed by a short discussion on coarse moduli
spaces in Section 2.4. In Sections 2.5 and 2.6 we introduce the main examples of stacks
we are interested in, the moduli stack of elliptic curves and its variations, the moduli stacks
of elliptic curves with level structure, and the moduli stack of formal groups. We end the
chapter with a digression on derived algebraic geometry in Section 2.7.

2.1. Grothendieck topologies

Given a scheme S we write Sch/g for the category of S-schemes or schemes over S. There
are several Grothendieck topologies that one can equip the category of schemes with and
each of them restricts to a Grothendieck topology on the category of S-schemes. We are
interested in the Zariski, étale and fpqc topologies which we introduce in detail below.

Recall the notions of an unramified, étale and fpgc morphism of schemes. Let R be a local
ring and write mp for its maximal ideal and kg for its residue field. A morphism of local
rings f: R — S is a morphism of rings such that f(mg) C mg.

Definition 2.1.1. A morphism of local rings f: R — S is called

(i) unramified if f(mpr)S = mg and kg is a finite separable extension of kg,
(i) étale if f is flat and unramified.
Definition 2.1.2. A morphism of schemes f: X — Y is called

(i) unramified at a point © € X (respectively étale at a point x € X) if the morphism of
stalks f#: Oy f(,) = Ox o is unramified (respectively étale) and

37



CHAPTER 2. STACKS 38

(ii) unramified (respectively étale) if it is unramified (respectively étale) at every point.

Definition 2.1.3. A morphism of schemes f: X — Y is called fpqgc if it is faithfully flat
and quasi-compact.

Next, recall the notion of a Grothendieck topology on a category.

Definition 2.1.4 ([61, Tag 03NF]). A Grothendieck topology on a category C is a set of
families of morphisms {X; — X},c; for each object X in C, called coverings of X, such
that the following conditions are satisfied.

(i) f Y — X is an isomorphism, then the set {Y — X} is a covering.

(ii) If {X; — X}ier is a covering and Y — X is any morphism in C, then for all i € I the
fibre product X; x x Y exists in C and the family {X; xx Y — Y },cs is a covering.

(iii) If {X; — X} is a covering and for all i € I we are given a covering {X;; = X;}je,,
then the family
{Xij = Xtierjes
is a covering.

A category C equipped with a Grothendieck topology is called a site.

As mentioned above, we are interested in the Zariski, étale and fpgc Grothendieck topologies
on the category of schemes. A covering of a scheme X in each of these topologies is a family
{fi: Xi; = X}ier of morphisms which are jointly surjective in the sense that

X = fi(x)
i€l
and such that each f; is
= an open immersion in the Zariski topology zar,
= étale in the étale topology ét and
= fpqgc in the fpqc topology fpqc.

When we want to emphasize the Grothendieck topology being used we will decorate the
category of schemes with a superscript and write Sch®", Sch® or SchfP4 for the category of
schemes equipped with the Zariski, étale and fpqc topology, respectively.

Remarks. Any Zariski covering is étale and any étale covering is fpqc, thus, in the order of
increasingly finer topologies, we have the chain of inclusions

zar C ét C fpqc.

These topologies are examples of subcanonical topologies meaning that all representable
presheaves on the site Sch”, where 7 € {zar,ét,fpqc}, are already sheaves. The fpqc
topology is the finest topology of the three and hence any presheaf satisfying the sheaf
condition for the fpqc topology will be a sheaf in the étale and Zariski sites.
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2.2. Categories fibred in groupoids and stacks

We follow the appendix of [65] and introduce stacks as categories fibred in groupoids satis-
fying descent. [58, Chapter 4] and [53, Chapter 1] have also been invaluable references in
putting together this section.

The notion of a stack can be defined with respect to an arbitrary site C in the sense of
Definition 2.1.4. For the purposes of this document we restrict the exposition to stacks over
the site Sch /g of S-schemes equipped with the Zariski, étale or fpqc topology.

We assume that a base scheme S has been fixed and we suppress it from the terminology.

Definition 2.2.1 ([65, Definition 7.1]). A category fibred in groupoids over S is a category
X together with a functor px: X — Sch/g such that the following conditions are satisfied.

(i) Given a morphism f: X — Y in Sch/g and an object 1 in X’ such that px(n) =Y
there exist a morphism ¢: & — 7 such that px(¢) = f

£ty x
. s
x Lsy Schyg

(i) If ¢: & — ¢ and ¥: n — ¢ are morphisms in X and h: px(§) — px(n) is a morphism
in Sch g such that px (1) o h = px(¢) there exits a unique morphism x: § — 7 in X
such that Y ox = ¢ and px(x) = h

&' ,,,,,,,,, ;”,X, ,,,,,,,, S n X
X /
C px
px(§) " pa(n) Schyg .
px(9) px ()
PX(C)

If X is a category fibred in groupoids and X is a scheme we write X'(X) for the fibre over
X, i.e. the category whose objects are objects £ of X’ such that py(§) = X and whose
morphisms are morphisms ¢ in X such that px(¢) = Id.

Remarks. A couple of remarks are in order. Axiom (ii) implies that the object &, whose
existence is postulated by (i), is unique up to a canonical isomorphism. It should be thought
of as the pullback of 1 along f and we denote it by f*n. Another consequence of (ii) is
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that a morphism ¢ in X" is an isomorphism if and only if px(¢) is. In particular, X(X) is a
groupoid.

Definition 2.2.2. A morphism of categories fibred in groupoids from X to ) is a functor
f: X = Y such that the diagram

X % y
SCh/S

commutes.

Example 2.2.3. Let X': (Sch,5)°? — Set be a contravariant functor. We can think of X
as a category fibred in groupoids as follows. As a category X has objects pairs (X, ) where
X is a scheme and £ is an element of X(X). Morphisms are of the form ¢: (X,&) — (Y, n)
where ¢: X — Y is a morphism of schemes such that X (¢)(n) = . The functor py is
defined as

px: X —— SCh/S

¢ (X,8) = (V,n) —— ¢: X =Y.
Example 2.2.4. As a follow up of the example above let X be an scheme. Then X defines

a contravariant functor Homga, ¢(—>X): (Sch,g)% — Set and therefore a category fibred
in groupoids which we, by abuse of notation, will also denote by X.

We now give the definition of a stack as a category fibred in groupoids satisfying descent
over the site Schg where 7 € {zar, ét, fpqc}.

Definition 2.2.5 ([61, Tag 026B]). Let X be a category fibred in groupoids. A descent
datum (X, ¢i;) in X relative to a covering {X; — X}icr in Sch;S consists of an object
& € X(X;) for each i € I and isomorphisms

¢ij: §j|Xi><XXJ — gi’XiXXXj

in X(X; xx X) for each pair (i, j) € I? satisfying the cocycle condition. A descent datum
(X, ¢ij) relative to a covering {X; — X }icr is called effective if there exists an object £ in
X (X)) together with isomorphisms 1);: £|x, — & such that

Qbij = (¢i|Xi><XXj) © (¢j|Xi><XXj)_1-

Definition 2.2.6 ([65, Definition 7.3]). A category fibred in groupoids X is called a stack
if the following conditions are satisfied.
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(i) For any scheme X and any two objects &; and & in X(X) the presheaf

Isomx (§1,€2): (Schj )" —— Set

f: Y >X+— ISOHIX(Y)(f*fl,f*fQ)

is a sheaf on the site Sch;X.

(i) For any covering {X; — X},.; in Sch)y any descent datum in X' relative to this
covering is effective.

Definition 2.2.7 ([65, Definition 7.4]). A morphism of stacks is a morphism of the underlying
categories fibred in groupoids.

We can form fibred products of stacks.

Definition 2.2.8 ([65, Definition 7.9]). Let

X
Jn
f2
X ——Y
be a diagram of categories fibred in groupoids. Define the fibre product X} xy X5 as follows.
The objects of X; xy Xy are triples (£1,&2, ), where & € X; and px,(&1) = pa,(&2)
and a: fi1(&1) — f2(&2) is a morphism in Y such that py(a) = Id. A morphism from

(&1,&2, ) to (m1,m2,B) is a pair (p1, ¢2), where ¢;: & — n; is a morphism in X; such that

P (91) = pay(¢2) and B o fi(¢1) = fa(d2) o a. The functor px,xy,x, is given by the
composition
Xl Xy XQ — Xl — SCh/S.

Example 2.2.9. The category fibred in groupoids from Example 2.2.4 is a stack.

An important example of a stack and one that we will encounter later is the quotient stack.

Definition 2.2.10. Let G be a finite group and X a scheme with a G-action. Define the
quotient stack [X /G| to be the category fibred in groupoids with objects triples (P, B, f),
where P — B a principal G-bundle, f: P — X a G-equivariant morphisms and with
morphisms cartesian diagrams of the form

p-4,p
[

B —— B
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compatible with the morphisms to X. The functor px/q is defined as

puygy[XVCH‘gggﬁ des
(P,B,F) —— B
(f,9): (E,p,e) = (E',p',e) —— f: S —= 5.
Example 2.2.11. Let R be a commutative ring and let A% denote n-dimensional affine

space over R. Given positive integers ay,...,a,, we define the weighted projective stack
Pr(ag,...,a,) to be the quotient stack

def
Prlag,...,an) = [(A%Jrl —{0})/Gy,].
The action of the multiplicative group on A% is given as follows. The morphism of rings

Z[t,t 71 @ Rlto, ..., tn] < R[to, ..., tn)
@t it

induces a morphism of schemes
n+1 n+1
Gm x AT — AR
and the G,,-action is given by restricting this morphism to A%’Ll —{0}.

We now proceed towards the definition of a Deligne-Mumford stacks. First, we need the
notion of a representable morphism.

Definition 2.2.12 ([65, Definition 7.11]). Let f: X — ) be a morphism of stacks. We
say that f is representable if given any scheme X and any morphism g: X — ) the fibre
product

XXy X — X

by

is a scheme.

The notion of a representable morphism allows us to transfer properties of morphisms of
schemes to morphisms of stacks. Let P be some property of morphisms of schemes which
is stable under base change and local on the target in the sense that if {Y; — Y},cs is a
covering and f: X — Y is a morphism of schemes then

f has property P < Y; xx X — Y; has property P for all ¢ € I.
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Definition 2.2.13. A representable morphism of stacks X — ) has property P if given any
scheme X and any morphism X — ) the induced morphism of schemes X xy X — X has
property P.

If X is a stack we write Ay: X = X x X for the diagonal morphism.

Definition 2.2.14 ([65, Definition 7.14]). A Deligne-Mumford stack is a stack X" such that
(i) the diagonal morphism Ay is representable, quasi-compact and separated,

(i) there exists a scheme U and an étale surjective morphism U — X called an atlas.

Remark. The first condition above can be motivated by the following observation, see [65,
Proposition 7.13] for a proof. Let X be a stack. Then the diagonal morphism Ay is
representable if and only if every morphism X — X with X a scheme is representable.

Example 2.2.15. The weighted projective stack Pg(ag,...,a,) of Example 2.2.11 is a
Deligne-Mumford stack if and only if all of the a; are invertible in R. See [54, Section 2].
We now briefly look at properties of stacks and properties of morphisms of stacks.

Definition 2.2.16. A morphism X — ) of Deligne-Mumford stacks is called an open
(respectively closed) embedding if it is representable and has property P where P is the
property of being an open (respectively closed) embedding.

Definition 2.2.17 ([61, Tag 04YM]). Let X be a Deligne-Mumford stack. A substack of
X is a morphism of stacks )V — X which is represented by an embedding of schemes. A
substack ) is called open or closed if the morphism ) — X" is an open or closed embedding.

Let P be a property of schemes. We say that P is local in the topology T € {zar, ét, fpqc},
if for every covering {X; — X };ecr in Schig we have that

X has property P < X; has property P for all i € I.

Example 2.2.18. Examples of properties of schemes local in the étale topology are the
properties of being regular, locally noetherian, locally of finite type, quasi-compact, proper.

Definition 2.2.19. Let P be a property of schemes local in the étale topology and X’ be a
Deligne-Mumford stack. Then X has property P if there exists a surjective étale morphism
X — X with a X a scheme having property P.

2.3. Sheaves on stacks

In this section we review the notion of a sheaf on a Deligne-Mumford stack and introduce
the category of quasi-coherent sheaves on a stack.
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Definition 2.3.1 ([65, Definition 7.18]). Let X be a Deligne-Mumford stack. A quasi-
coherent sheaf F on X consists of the following data.

(i) For each open U — X a quasi-coherent sheaf Fi; on U.

(ii) For each pair of opens U and V' and a diagram
v—1 v
X

an isomorphism ay: Fy — f*Fy. The isomorphisms oy are required to satisfy the
cocycle condition, i.e. given atlases U, V and W and a commutative diagram

U*H/*H/V

Nl

we have N
Qgof = Qf Of*ag: ]:U — ( f) fW f ( *fw)

A coherent sheaf on X is a quasi-coherent sheaf F such that all iy are coherent.

Definition 2.3.2. Let F and G be quasi-coherent sheaves on a Deligne-Mumford stack X'.
A morphism f: F — G is a collection of morphisms fi;: Fy — Gy for each atlas U — X
compatible with the isomorphisms a;-.

We write QCoh(X') for the category of quasi-coherent sheaves on a Deligne-Mumford stack
X. This is an abelian category with the category of coherent sheaves, denoted by Coh(X),
being an abelian subcategory.

Example 2.3.3. Let X be a Deligne-Mumford stack. The structure sheaf Oy of X is defined
by (Ox)u = Oy for any atlas U — X.

Example 2.3.4. Let R be a commutative ring and let A%, denote n-dimensional affine space
over R. The category of quasi-coherent modules on [A%H /G| is equivalent to the category
of graded R|ty,...,t,|-modules. Let m be an integer. If M is a graded module write M[m]
for the graded module M shifted by m, i.e. M[m]; = M,,+. Consider now Rlty, ..., t,] as
a graded module over itself, then R[to, . .. ,t,][m] corresponds to a line bundle on [A%;t! /G,y,]
and we denote its restriction to Pgr(ao, ..., an) by O(m). See also [54, Section 2].

Definition 2.3.5. Let f: X — ) be a morphism of Deligne-Mumford stacks. Let U — X
and V' — ) be atlases and let 7 € QCoh()) and G € QCoh(X). Define

(i) the inverse image of F along f by (f~1(F))u o Fray,
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(ii) the pullback of F along f by (f*(F))u def Frw) ®oy Ox,

(iii) the pushforward of G along f by (f.(G))v def lim gy y Fv

2.4. Coarse moduli spaces

Definition 2.4.1. Let X be a Deligne-Mumford stack. A coarse moduli space of X is a
scheme X together with a morphism f: X — X such that

(i) f is initial among all morphisms from X’ to schemes,

(i) f induces a bijection on my(X (Spec(k))) — mo(X (Spec(k))) for every algebraically
closed field k, where 7y denotes the set of isomorphism classes.

The existence of coarse moduli spaces is guaranteed for many Deligne-Mumford stacks by
the following theorem.

Theorem 2.4.2 ([41], [57, Theorem 11.1.2]). Let X" be locally noetherian separated Deligne-
Mumford stack. Then X has a coarse moduli space f: X — X. Moreover, X is separated
if X is separated and the morphism f is proper and quasi-affine.

2.5. The moduli stack of elliptic curves and friends

In this section we introduce the moduli stack of elliptic curves and its variations, the moduli
stacks of elliptic curves with level structure. These play a central role in the definition of the
ring spectra of topological modular forms in Chapter 5. We follow [55].

Definition 2.5.1. Let k be an algebraically closed field. An elliptic curve over k is a connected
smooth proper curve E of genus 1 together with a chosen k-point e € E(Spec(k)).

Definition 2.5.2. Let S be a scheme. An elliptic curve over S is a smooth proper morphism
p: B — S of schemes equipped with a section e: S — FE such that every geometric fibre of
E is an elliptic curve, i.e. for any morphism f: Spec(k) — E, with k an algebraically closed
field, the pullback of E is an elliptic curve.

Definition 2.5.3. Let (E,p,e) and (E',p',€’) be elliptic curves over schemes S and 5,
respectively. A morphism of elliptic curves is a pair

(f,9): (E,p,e) = (E',p,e)
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consisting of morphisms of schemes f: S — S’ and g: E — E’ such that goe =€’ o f and
such that the diagram

is cartesian.

We connect the definition of an elliptic curve above with the more classical notion of an
elliptic curve defined by a WeierstraB equation in the following lemma.

Lemma 2.5.4 ([55, Lemma 4.3]). Let R be a commutative ring and let E denote the closed
subscheme of P4

Proj(R[z,y, 2]) /(%2 + a1zyz + asyz® = 23 + aox?z + agz2® + ag2).
Then E is an elliptic curve over Spec(R) if the discriminant
A = —b2bg — 8b3 — 272 + babybg
is invertible in R, where

by = a% + 4as

by = 2a4 + ajas

bg = a% + 4ag

bg = a%a(; + 4asag — araszay + CLQCL% — a?l
Definition 2.5.5. Define the moduli stack of elliptic curves M, to be the category fibred
in groupoids over Schgpec(z) With objects of the form (S, (E,p,e)) where S is a scheme

and (E,p,e) an elliptic curve over S and with morphisms the morphisms of elliptic curves.

The functor pay,, is defined as

PMey Meit —— Schyspec(z)
(S, (E,p,e)) —— S
(f,9): (E,p,e) = (E',p,e) —— [: S = 5.

Theorem 2.5.6 ([55, Theorem 3.2]). M,y is a stack in the fpqc, and thus in the étale,
topology on Sch gpec(z)-

In the definitions below n is always assumed to be invertible on S. For an elliptic curve £
we write E[n](S) for the n-torsion points of E.
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Definition 2.5.7. Define the stacks Mg(n), Mi(n) and M(n) as the categories fibred in
groupoids whose fibre at a scheme S is

Mo(n)(S) Cl:e{{ Elliptic curves E over S with chosen cyclic subgroup H C E of order n },

My (n)(S) d:ac{ Elliptic curves E over S with chosen point P € E(S) of exact order n },
M(n)(S) d:ac{ Elliptic curves F over S with chosen isomorphism (Z/n)* = E[n](S) }.

We will also consider the compactification M,y of the moduli stack M,y;. In the compact-
ification we allow not only smooth elliptic curves, but also generalized elliptic curves. A
generalized elliptic curve over an algebraically closed field is either a smooth elliptic curve
or a Néron n-gon. These are obtained by gluing n copies of P! and identifying (i, 00) with
(i +1,0) for all 7. See [12, Section II.1] for precise definitions. The compactified versions
Mo(n), Mi(n) and M(n) are defined as the normalization of M,y in Mg(n), Mi(n) and
M(n), respectively, see [12, p. IV.3].

2.6. The moduli stack of formal groups

In this section we introduce another example of a stack, the moduli stack of formal groups.
This stack will make an appearance when we discuss derived stacks in the next section and
will play a central role in the definition of the ring spectra of topological modular forms in
Chapter 5. We follow [53, Section 2.8].

Informally, the moduli stack of formal groups M ¢, is the category fibred in groupoids whose
fibre at an affine scheme Spec(R) is the groupoid of one dimensional commutative formal
groups over R and isomorphisms between them. We recall the definitions of the various
ingredients below.

Definition 2.6.1. A formal scheme over S is a contravariant functor (Sch/g)°® — Set
that is a filtered colimit of representable functors HomSCh/s(—,X) for X an S-scheme. We
write fSch /g for the functor category of formal schemes over S and natural transformations
between them.

The cartesian product in the category Fun((Sch/g)°P,Set) restricts to a product in the
category of formal schemes over S which we denote by xg. This allows us to talk about
group objects in the category fSch /g.

Definition 2.6.2. An abstract formal group over S is a commutative group object in fSch 5.

Example 2.6.3. Let R be a commutative ring and I C R be an ideal. Form the colimit

Spf(R) %f colim,, Spec(R/I™).
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This is a formal scheme called the formal spectrum of R.

Definition 2.6.4. Let R be a commutative ring. A commutative formal group law over R
is a power series ' € R[[z,y]] such that

(i) F(z,y) =z + y + terms of higher degree,
(i) F(z,y) = F(y, ),
(iii) F(z, F(y,2)) = F(F(z,9), 2).

Consider now the ring R[[z]]. The formal spectrum Spf R[[x]] = colim,, Spec R[z]|/x" is a
formal scheme. Let F' be a formal group law over R. Then F' induces a morphism

Spr[[QJH X Spec(R) Spf R[[y]] = SprHijyHa

given by sending x to y, which defines an abstract formal group over R. Here the ideal of
R][x,y]] that we consider is the augmentation ideal I = (z,y).

Definition 2.6.5. A 1-dimensional commutative formal group over S is an abstract formal
group F' in the sense of Definition 2.6.2 which Zariski locally is isomorphic to an abstract
formal group coming from a formal group law.

Definition 2.6.6. The moduli stack of formal groups is the category fibred in groupoids
M4 whose fibre at an affine scheme Spec(R) is

M4(Spec(R)) def {Formal groups over R and isomorphisms}.

2.7. Derived stacks

The moduli stack of elliptic curves and its variations, the moduli stacks of elliptic curves
with level structure, are examples of (even periodic) derived stacks, i.e. stacks equipped
with an even periodic enhancement. We review this notion below to set up the stage for the
definition of the ring spectra of topological modular forms in Chapter 5. We follow [47].

Let X be a Deligne-Mumford stack equipped with a flat map & — M, to the moduli stack
of formal groups and write X2fflat for the affine flat site of X'. The assignment

xaftflat __ fhomology theories}

Spec(R) — X — MU*(—) QMU, R

defines a presheaf of homology theories on X which we denote by O?\S’m.



CHAPTER 2. STACKS 49

Definition 2.7.1 ([47, Definition 2.5]). An even periodic enhancement X of X is a sheaf
OB?p of even periodic commutative ring spectra on the affine étale site X2"¢t that extends
the presheaf (’)Rﬁ’m in the sense that

CAlg(Sp)
E— ]
Aaffet {homology theories} .

hom
OX

Even periodic enhancements are examples of (even periodic) derived stacks.

Definition 2.7.2 ([47, Definition 2.6]). A derived stack is a pair X = (X, O%P) where X is an

ordinary Deligne-Mumford stack X and (’)E?p is a sheaf of commutative ring spectra on A2t

together with an isomorphism mo(O%") 22 Ox. Here m;(O%P) is the sheaf U +— m;(O%P(U)).

Furthermore, we require that m((’)g‘;p) is quasi-coherent as an O y-module. The derived stack

X is called even periodic if w = mo(O%P) is a line bundle such that

mi(O%P) = 0 for i odd
and multiplication induces isomorphisms

Tok(O%P) @ 1oy (O%P) = o1y (OFP) for k1 € Z.

Let X = (X, Of;p) be a derived stack. For a commutative ring spectrum R we write R-mod
for the category of modules over R.

Definition 2.7.3 ([47, Definition 2.9]). Define the category of quasi-coherent sheaves on X

as the limit de
€ . to
QCoh(%) = Specl(llr%r)lﬁ.l’ 0P (Spec(R))-mod,

where Spec(R) — X ranges over all étale morphisms from affine schemes into X'.

Definition 2.7.4. Let F be a quasi-coherent sheaf on X. Define the global sections of F

as the limit
INEa lim F(Spec(R)).
Spec(R)— X e xaff.ét

Theorem 2.7.5 ([47, Theorem 1.4]). There is a categorical equivalence

QCoh(X) ~ I'(X, 0%P)-mod.

Let F be a quasi-coherent sheaf on X and let k£ be an integer. The assignment

x2fet ., CRing
Spec(R) — X — 7, (F(Spec(R))
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defines a quasi-coherent sheaf 7;(F) on the ordinary stack X. The homotopy groups 7 (F)
will be of interest to us for the following reason.

Construction 2.7.6 ([14, Chapter 5]). There is a spectral sequence, called the descent
spectral sequence, with E5 page given by

Est = H* (X, m(F)) = m_s([(X, F)).
In particular, taking F = O%P and letting R = I'(X, O%P) we get

E5 = H (X, m(w®?)) = m_s(R).



Chapter 3
Equivariant Duality

This chapter comprises the heart of the thesis. We set up an equivariant generalization of
the Gorenstein duality framework introduced by Dwyer, Greenlees and lyengar in [17] and
explored non-equivariantly by Greenlees and Stojanoska in [29] and equivariantly by Greenlees
and Meier in [27]. The framework allows one to view a number of dualities such as

= Poincaré duality for manifolds,

Gorenstein duality for commutative rings,
= Benson-Carlson duality for cohomology rings of finite groups,
= Poincaré duality for groups

as instances of a single phenomenon. In the course of the chapter we introduce all of the
ingredients in the following, at this stage provisional, definition of equivariant Gorenstein
duality.

Definition. A map R — k of non-equivariantly commutative ring G-spectra is said to have
Gorenstein duality of shift « € RO(G) if there is an equivalence of R-modules

l

Cellg(R) =~ s T.
—~—

k-cellularization of R representation suspension Matlis lift of k

We start by discussing the equivariant generalizations of Brown-Comenetz and Anderson
duality in Section 3.1. Both of these phenomena have been studied extensively in classical
stable homotopy theory. Our interest in them lies in the fact that the Anderson dual of
a connective non-equivariantly commutative ring G-spectrum will provide an example of a
Matlis lift and will thus make sense of the right hand side in the provisional definition above.
In Section 3.2 we look at the notions of cellularization and nullification in the category of
modules over a ring G-spectrum. We then set up a form of Morita theory in Section 3.3 and
define and characterize Matlis lifts in Section 3.4. With all ingredients at hand we define
equivariant Gorenstein duality in Section 3.6. The algebraic models for cellularization and
nullification and the arising local cohomology spectral sequence are examined in Sections 3.7
and 3.8. In Section 3.9 we trace the relations between Anderson and Gorenstein duality.

51
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We extend the notational conventions introduced in Chapter 1 by adopting the following
somewhat suggestive notation:

= Non-connective ring G-spectra will be denoted by upper-case bold letters like R.
= Connective ring G-spectra will be denoted by lower-case bold letters like r.

If R is a ring G-spectrum we write R-mod¢ for the category of left R-modules. All unspec-
ified modules will be left modules. Given a map f: S — R of ring G-spectra we denote the
restriction of scalars functor from R-modules to S-modules by f*. It has both left and right
adjoints
fi
R-modg - f* > S-modg

%
I+

given by the induction fi(—) = — ®g R and coinduction f,(—) = Homg(R, —) functors,
respectively. When the map f is implicit from the context we write Mﬂg for the coinduced
R-module Homg(R, M). We also often omit the restriction of scalars functor f* from the
notation.

3.1. Equivariant Brown-Comenetz and Anderson duality

In this section we look at an equivariant generalization of Brown-Comenetz and Anderson du-
ality first introduced in [8]. Anderson duality has been studied extensively non-equivariantly,
see [63], [32] and equivariantly in [59], [35] and [52].

Let S — R be a map of commutative ring G-spectra and T, — 7%(S) — 7&(R) be maps
of graded commutative rings. We do not require that T} is the homotopy of a commutative
ring G-spectrum and we often take S to be the sphere G-spectrum S° or R. Recall from
Section 1.4 that given an injective abelian group I we write Dj for the duality functor

D;: Mackg — Mackg
M — (X — Homy(M(X),I)).

Now take an injective T,-module J. The functor

R-modg — grAb
X — Homrp, (7%,(X), J)

is exact and therefore, by the Brown representability theorem, is represented by an R-module
JR = J% in the sense that for any R-module X we have

(X, JRRY = Homy, (7%, (X), J).
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Definition 3.1.1. We call J% the Brown-Comenetz J-dual of R. More generally, given an
R-module M we define the Brown-Comenetz J-dual of M by the equation

JM = M Homg (M, JR).

It then follows that
(X, JMBC = Homy, (7. (X ®@r M), J).

Proposition 3.1.2. The Brown-Comenetz dual enjoys the following properties.

(1) The homotopy groups of Jz% are completely determined by the definition

ﬂ-*G(‘]Z]%) = HOIIIT* (ﬂ-g* (R)a J)

(2) If M is a Mackey functor and I is an injective abelian group, then

HM
I~ HDp(M).

(3) Given S — R and T\, — 7&(S) — 7% (R), we have

Jr =~ (JE NS

(4) and
(R
(I ¢ ))fr{g(R) ~ Ji.

Proof. Property (1) follows from the definition. To show (2) we first need to understand
the homotopy Mackey functors E*(J%) of the Brown-Comenetz dual. Let X vary over
G/H4 ANY for a fixed Y. We then have

(G/H AY, JRLC Homy, (v€,(G/Hy AY), J)

- ;

[V, res§ (JR)L Homy, (n,(Y), J)

—3%

and so the value of 7, (JJ) at G/H, is given by

m (JR)G/H) E al (JR) = [R,res§ (JR)RH = Homy, (v, (R), J).

To describe the restriction and induction maps suppose that we are given subgroups K < H
of G and let pgz G/K — G/H denote the projection map. We can identify the restriction
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map from H to K from the diagram

R,G

[G/H AY,JR], == Homy, (7% (G/HL NY),J)

lres%Z(pg)* lHomT* ((Pf)++)

R,G

[G/KL AY,JR]. " == Homq, (7%,(G/K4 AY), J)

and similarly for the induction map. Part (2) is now immediate. Both the left and the right
hand side have homotopy Mackey functors concentrated in degree 0 where we have

mo(Iy M) (G/H.) = Homg (nfl (HM), I)
= Homy, (M (G/H,), )
= mo(HD(M))(G/H.).

Properties (3) and (4) can be checked on the homotopy groups where the claims are verified
by direct computations. For (3) we compute

(X, JRIRC = Homy, (29, (X), J)
= [X, J3 8¢
= [X,Homs(R, J3 )|*¢
= [X7 (JJS“* )ﬂg]Rﬁ;'

Analogously for (4) we have

(X, (17, )R] = Homeg ) (vE.(X), 7 ™)
= Hom ) (n%, (X), Homr, (¢ (R), 7))
= Homg, (7%, (X), J)
= [X, JRRC.

d

Example 3.1.3. Let A be a finite group and write H A for the associated Eilenberg-MacLane
spectrum. Then the Brown-Comenetz Q/Z-dual of HA is HA* ~ HA, i.e. Eilenberg-
MacLane spectra are Brown-Comenetz self-dual.

Next we discuss the equivariant generalization of Anderson duality. This was explored by
Ricka in [59] and Hill and Meier in [35]. Let again S — R be a map of commutative ring
G-spectra, let T, — 7&(S) — 7¢(R) be maps of graded commutative rings and suppose
that we are given an arbitrary T,-module L of injective dimension 1 together with an injective
resolution

0—-L—Jy—J  —0.
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Definition 3.1.4. We define L%, the Anderson L-dual of R, as

def
LR = L} S fib((Jo)T — (JO)TF).

Analogously to the Brown-Comenetz case, given an R-module M we define the Anderson
L-dual of M by the equation

LM = LY € Homg (M, LE).

One can show that this does not depend on the choice of the injective resolution.

Proposition 3.1.5. The Anderson dual enjoys the following properties.

(1) The homotopy groups of Li¥ lie in a short exact sequence of RO(G)-graded homotopy
Mackey functors

0 — Exth (r_y_1(R),L) = 7y (L) — Homr, (7_y, (R), L) — 0.

(2) If M is a Mackey functor with M (G/H) projective for all H < G, then

Ly ~ HD(M).

(3) Given S — R and T\, — 7&(S) — 7% (R), we have
LY, ~ (L3 )0§,

(4) and
¢ (R
(LA ( ))WR*G(R) ~ L.

Proof. The proof is analogous to the corresponding statement about Brown-Comenetz duals.

O]

Comment. One reason to be interested in Anderson self-duality is that it leads to universal
coefficient sequences relating homology and cohomology. Let F and X be G-spectra and
let A be an abelian group. We have a short exact sequence

0 — BExty(E_y_1(X),A) = (A®)Y(X) = Homgz(E_y(X), A) = 0.

where V is a G-representation. If E is Anderson self-dual in the sense that A is equivalent
to a suspension of E this sequence implies a universal coefficient theorem. See [40].

We give a number of examples, both non-equivariant and equivariant, of Anderson self-dual
spectra. In all of the cases below S = S° and T, = Z concentrated in degree zero.
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Example 3.1.6. The ring spectra KO and KU of periodic real and complex K-theory are
Anderson self-dual with shifts 2 and 4 respectively

ZKY ~ 22KU,
750 ~ 4 KO.

Example 3.1.7. The ring spectrum Tmf of topological modular forms has been shown by
Stojanoska in [63] and [62] to be Anderson self-dual with shift 21

7Tt ~ 928 g

Example 3.1.8. Let G = Cy and let HZ be the Eilenberg-MacLane spectrum associated to
the constant Mackey functor concentrated at Z. It is shown in [27, Lemma 3.1] that

ZHL ~ 272017,

More generally, let G be a cyclic group of any order and write € for the trivial one dimensional
complex representation of G and « for a faithful one dimensional complex representation of
G. Then, see [27, Remark 3.2], one has

7ZHLZ ~ ye—a g7,

3.2. Cellularization and nullification

In this section we apply the theory of arithmetic fracture squares introduced in Section 1.2
to discuss the notions of cellularization and nullification in the category of modules over a
ring G-spectrum. Our exposition is a mixture of [17], [3] and [48].

A permanent ingredient from here onwards will be a map R — k of ring G-spectra. We write
E for the endomorphism ring spectrum Homg (k, k) and modg-€ for the category of right
E-modules. The case we are mostly interested in is where R is connective, k is Hmy(R), the
Eilenberg-MacLane spectrum associated to the 0-th homotopy Mackey functor of R, and
the map R — k is obtained by killing homotopy groups. The notation should remind the
reader of the classical commutative algebra situation where one has a commutative local ring
R with maximal ideal mg and residue field kg and the map R — kg is reduction modulo
the maximal ideal.

The category R-modg of modules over a ring G-spectrum is a presentable, symmetric
monoidal, stable co-category and satisfies Hypotheses 1.2.1. Applying the theory from Sec-
tion 1.2 to R-modg and the R-module k we get the subcategories R—modl(‘;'”“”, R—modlgmmp
and R—modlgce” of k-null, k-complete and k-cellular R-modules, respectively. For an R-
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module M we have a k-arithmetic fracture square

M —————— (M)

| |

Nullg (M) —— Nullk((M)})
and a cofibre sequence
Cellg(M) — M — Nully (M) (3.1)

separating M into a k-cellular part and a k-null part.

Definition 3.2.1. A non-empty full subcategory of R-modg is called thick if it is closed
under finite colimits, retracts and desuspensions. A thick subcategory is called localizing if
in addition it is closed under filtered colimits.

Given a collection of objects C in R-modg we write Thickg(C), respectively Locg(C), for
the smallest thick, respectively localizing, subcategory of R-modg containing the objects
G/H4 N X where H is a subgroup of G and X is an element of C.

Definition 3.2.2. Let M and N be R-modules. We say that
(i) M is finitely built from N if M is in Thickg(N) and that
(i) M is built from N if M is in Locg(N).

Definition 3.2.3. An R-module M is called
(i) small if it is finitely built from R and

(ii) proxy-small if there exists an R-module K(M) such that K(M) is finitely built from
R, M is built from K(M) and K(M) is finitely built from M . The object K(M) is

called a Koszul complex associated to M.

Remark. The condition that M and K(M) can be built from one another implies that M
and K(M) generate the same localizing subcategory of R-modg;.

Definition 3.2.4. We say that a map R — k of ring G-spectra is small, respectively proxy-
small, if k is small, respectively proxy-small.

It turns out that k-cellular R-modules are exactly those which can be built out of k provided
that k is small.

Lemma 3.2.5. Suppose that k is small as an R-module. Then an R-module M is k-cellular
if and only if it is built from k.

Proof. This is a special case of [60, Theorem 3.9.3]. O
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Remark. Suppose that k is proxy-small and write K(k) for a Koszul complex of k. Then k
and K(k) give rise to equivalent categories of cellular objects, i.e.

R-modee!l ~ R—modg(k)'ce”.

Definition 3.2.6. An R-module M is said to be effectively constructible from k if the natural
map
eval: Homg(k, M) ®gk - M (3.2)

is an equivalence.

Lemma 3.2.7 ([17, Lemma 4.4]). The following are equivalent.
(1) The map (3.2) is a k-equivalence.

(2) The map (3.2) is k-cellularization.

(3) Cellx(M) is effectively constructible from k.

3.3. Morita theory

We investigate the relationship between the categories of left R-modules and right £-modules
where & still denotes the endomorphism ring Hompg (k, k). Start by observing that there is
an adjoint pair

L
R-modg % modg-€, (3.3)
where the functors are given by L(—) = — ®¢ k and R(—) = Homg (k, —). This adjunction
restricts to an adjunction between the full subcategories of k-cellular R-modules and right
E-modules. Below we show that imposing smallness conditions on k guarantees that the

counit of this adjunction is an equivalence which, in turn, will imply that all R-modules are
effectively constructible in the sense of Definition 3.2.6.

Theorem 3.3.1. Suppose that k is small as an R-module. Then the functors L. and R
induce an equivalence between the k-cellularization of R-mod¢g and the category modg-€

L
R-modce! = modg-£. (3.4)
In particular, all k-cellular R-modules are effectively constructible from k.

Proof. This is [16, Theorem 2.1] at the level of the homotopy categories or a special case of
[28, Theorem 2.7]. O

We have the following partial generalization to the proxy-small case.
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Theorem 3.3.2 ([17, Theorem 4.10]). Suppose k is proxy-small as an R-module. Then for
any R-module M the derived counit of the adjunction (3.4)

Hompg (k, M) ®e k - M

is a k-equivalence. In particular, all R-modules are effectively constructible from k.

3.4. Matlis lifts

The next ingredient we need to discuss in order to define equivariant Gorenstein duality
are Matlis lifts. We recall the relevant definitions and results from [17]. The equivariant
reformulation does not contain anything original and the upshot of this section is Lemma
3.4.7 which identifies the Anderson k-dual k¥ of a connective non-equivariantly commutative
ring G-spectrum r, where k = 7§/ (r), as a Matlis lift of k¥ for k = Hm(r). The standing
assumption is still that we are given a map R — k of ring G-spectra.

Definition 3.4.1. An R-module Zy is said to be a Matlis lift of a k-module N if
(i) there is an equivalence of k-modules Homg (k,Zx) ~ N and

(i) Zn is effectively constructible from k, i.e. the map Homg(k,Zy) ®e k — Zy is a
k-equivalence.

Remarks. Observe that if Zy is a Matlis lift of N and X is an arbitrary k-module then the
restriction of scalars-coinduction adjunction equivalence

Hompg (X, Zy) ~ Homy (X, Homg (k, Zx))
implies that there is an equivalence
HOmR(X,IN) ZHOmk(X, N) (35)

This is the crucial property of a Matlis lift. One should think of Zy as a lift of IV to an
R-module, not the obvious one coming from the map R — k, but one which allows for the
equivalence (3.5). We will say that Zx has the Matlis lifting property. Note also that if we
are given an R-module Zy satisfying (i), then its k-cellularization Celly(Zy) also satisfies (i)
and so there is no loss in generality in assuming that Zp is k-cellular. Requiring the stronger
condition (ii) allows us to enumerate Matlis lifts below.

Example 3.4.2. Let R be a commutative noetherian local ring with maximal ideal m and
residue field kr and view kr as an R module via the quotient map R — kgr. Then the
injective hull I(kr) of kr is a Matlis lift of kr. See [17, Section 7.1].

We now show that the Matlis lifts of a k-module NV are in one-to-one correspondence with
right £-module structures on N which extend the left k-module structure. Note that the
right multiplication action of k on itself gives a map k°° — £.
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Definition 3.4.3. An £-lift of a k-module N is a right £-module N such that the underlying
left k-module of N along the map k°° — £ is equivalent to N. An E-lift of N is of Matlis
type if the coevaluation map

coeval: N ~ N ®¢ Homg (k, k) — Homg (k, N ®¢ k) (3.6)
is an equivalence.

Proposition 3.4.4. There is a bijective correspondence

70 { Matlis lifts Ty of N} o {S—Iifts N of N of Matlis type}

In ? HOHlR(k,IN)
N Rg k +— N s
where 1y here means taking equivalence classes.

Proof. This is [17, Proposition 6.9]. Suppose Zy is a Matlis lift of N. Then, by definition,
N ~ Homg (k,Zy) as k-modules and the natural right £-action on Homg (k,Zx) provides
an E-lift of N. The map (3.6) is an equivalence since by assumption Zy is effectively
constructible. Conversely, suppose we are given an E-lift N of N which is of Matlis type
and let Zy = N ®¢ k. The equivalence (3.6) guarantees that Zy satisfies conditions (i) and
(i) of Definition 3.4.1. O

We will be interested in the case N = k. To find a Matlis lift Z;, then we have to
(a) define a compatible right £-module structure on k, i.e. an &-lift k of k and
(b) show that k is of Matlis type.

The resulting Matlis lift will then be of the form Z ~ k ®¢ k.

We provide a couple of propositions which allow us to recognize £-lifts of Matlis type and
thus Matlis lifts.

Proposition 3.4.5. Suppose R — k is small. Then any E-lift N of N is of Matlis type and,
consequently, Iy = N ®g k is a Matlis lift of N.

Proof. By Theorem 3.3.1 the unit of the adjunction (3.4)
coeval: N — HomR(k,N ®g k)
is an equivalence. ]

Proposition 3.4.6. Suppose R — k is proxy-small. Then n k-module N is of Matlis type if
and only if there exists an R-module M such that N ~ Hompg (k, M) as right £-modules.
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Proof. If N is an E-lift of Matlis type, then M = N ®¢ k has the desired property. The
converse follows from Theorem 3.3.2. O

Lemma 3.4.7. Let r be a connective ring G-spectrum. Let k = 7§ (r), k = Hry(r) and
take r — k to be the map obtained by killing homotopy groups. Suppose my(r)(G/H) is
projective over k for every H < G. Then k* is a Matlis lift of k¥ i.e.

Hom, (k, k) ~ H Dy,(my(r)) ~ Homy (k, k¥).

Proof. This is a corollary of Proposition 3.1.5, i.e. we have
mo(H Dy (o (r))) = Homgz(my(r), k)

and
7o (k) = Homg(my (k), ).

3.5. Gorenstein rings in commutative algebra

We recall the notion of a Gorenstein ring from commutative algebra. Let (R, m, kgr) be a
commutative local noetherian ring. The classical definition of a Gorenstein ring is that R
is of finite injective dimension over itself. One can then show that if R is Gorenstein it is
of injective dimension equal to its Krull dimension d and Exty(kg, R) is concentrated in a
single degree where it is isomorphic to kg, that is

kr ifi=d

. (3.7)
0 otherwise.

Ext%(kg, R) = {

The real reason for considering the Gorenstein condition is the duality property it implies.
Let M be an R-module and write I'y, (M) for the m-power torsion module of M defined as

def

Tn(M) = {z € M |mFz =0 for k> 0}.

By a theorem of Grothendieck one can identify the local cohomology of M with the right
derived functors R*I'y, (M).

Theorem 3.5.1 ([31]). Suppose that R is noetherian and let M be an R-module. Then
HE(R, M) = R* T (M).

Theorem 3.5.2 ([9, Theorem 3.5.8]). Suppose that R is Gorenstein and let M be a finitely
generated R-module. Then

Hi (M) = Homp(Exth (M, R), I(kg)).
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Taking M to be R the theorem above states that all local cohomology of R is concentrated
in a single degree d and there it is the injective hull of the residue field.

Corollary 3.5.3. Let M = R. Then

I(kg) ifi=d

0 otherwise.

i (R) = {

Remark. Note that if R is a kr-algebra I(kr) = I'm(Homg (R, kr)).

3.6. Equivariant Gorenstein duality

We are now ready to generalize the Gorenstein property of classical commutative rings to
ring G-spectra and give a definition of equivariant Gorenstein duality. Before we begin, we
need a reasonable substitute of the noetherian condition in the classical setting. One of the
main themes of [17] is that one can restrict attention to ring spectra which are proxy-small
in the sense of Definition 3.2.3. This allows one to develop a useful theory covering a wide
range of examples.

Let R — k be a map of non-equivariantly commutative ring G-spectra. The Gorenstein
condition for ring G-spectra is just a spectrum level version of the isomorphism (3.7).

Definition 3.6.1. We say that R — k is Gorenstein of shift & € RO(G) if there is an
equivalence of R-modules
Hompg (k,R) ~ X%k. (3.8)

Example 3.6.2. We give an elementary non-equivariant example. Let R — k be a map
of ring spectra and suppose that k ~ R/z for x € m.(R). Applying Homg(—,R) to the
cofibre sequence

PR R - R/z~k

we get that R is Gorenstein of shift « = —1 — ||
Homg (k, R) ~ 271717k,

This generalizes to the case where .(k) is the quotient of m.(R) by a regular sequence
(1,...,2n). Thenk ~ R/x; ®R --- ®r R/x, and the same argument as above shows
that R is Gorenstein of shift oo =) . (—1 — |z;|).

If R is Gorenstein of shift «, then so is its k-cellularization and therefore, without loss of
generality, we can replace R with Cellg(R) in the definition above. The Gorenstein condition
then says that Cellk(R) is, up to a shift, a Matlis lift of k

Hompg (k, Cellg(R)) ~ X%k ~ X* Homy (k, k).
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One can now ask the natural question how does Cellx(R) compare to other Matlis lifts of
k, i.e. R-modules Zy such that

Hompg (k, Zy) ~ k ~ Homy(k, k).
Given a Matlis lift Zy. of k observe that we have the following equivalences of R-modules
(3.8) (3.5)
Hompg (k,R) ~ X% ~ X% Homg(k, k) ~" Homg(k, X*Zy) .
(@) (b)

The endomorphism ring € = Endgr(k, k) acts on the right on (a) and on (b) equipping
them with the structure of right £-modules. We would like to remove the Homg (k, —) on
both sides and deduce that Cellk(r) ~ ¥X*Zy. Provided that the equivalence above is an
equivalence of right £-modules and R — k is proxy-small, the Morita theory from Section
3.3 allows us to do this.

Definition 3.6.3. We say that R — k is orientably Gorenstein of shift « € RO(G) if there
is an equivalence of right £-modules

HOmR(k, R) ~ HOmR(k, E"‘Ik).

Suppose that R — k is orientably Gorenstein of shift « and k is proxy-small as an R-module
so that, in particular, every R-module has an effectively constructible k-cellularization, i.e.

Cellk(M) ~ HOmR(k, M) ®e k.

We can apply the equivalence from the Morita theory to deduce that

Hompg (k, R) ~ Hompg (k, X%Z) modg-€
Len
Hompg (k,R) ®¢ k ~ Hompg (k, X*Zy) ®¢ k R-modg
ék is proxy-small (3.9)
Cellg(R) ~ X% Celly (Zx) R-modg
éIk is k-cellular
Cellk(R) ~ X7y R-modg.

This leads us to the central definition of this document.

Definition 3.6.4. We say that R — k has Gorenstein duality of shift o € RO(G) if there
is an equivalence of R-modules

Celly(R) ~ X°T. (3.10)
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3.7. Algebraic models for cellularization and nullification

In favourable situations one can construct explicit algebraic models of the cellularization and
nullification of an R-module leading to spectral sequences which allow actual computations.
We show that the k-cellularization of an R-module M is modelled algebraically by the
homotopical J-power torsion of M, also known as the stable Koszul complex of M, while
the k-nullification of M is given by the homotopical localization of M away from J. In both
cases J is an appropriately chosen ideal in the RO(G)-graded homotopy groups of R. In
effect, we are extending the cellularization-nullification cofibre sequence (3.1) introduced in
Section 3.2 to a diagram

Celly (M) M Nully (M)
] 2
(M) M M[JY.

In what follows M will always be an R-module. We start by looking at an algebraic model
of the k-cellularization of M given by the stable Koszul complex of M of which we give two
definitions. Suppose J C ﬁi(R) is a finitely generated ideal and let (zy,...,z,) be a set
of generators of J.

Definition 3.7.1. Define the stable Koszul complex of M with respect to the ideal J as

def 1

Ty (M) % ib(R = R[]) ©g -+ O fib(R — R[—

x1 Tn

]) ©r M. (3.11)

One can show that this depends only on the radical of the ideal J, see [25, Section 3]. There
is a second definition of the stable Koszul complex which lends itself to easier manipulation
in some cases. In the one generator case, for  an element of Wi(R), it is given as

KR () & colimy »A-DRIR /2t

where the colimit is taken over the maps X(-DIFIR /2t — ©=U#IR /211 induced by the
diagram of cofibre sequences

SR R R/

5 5 ;

pUL PRI o] : SN ) - WNAR S

Definition 3.7.2. Let x = (71,...,%,) be a sequence of elements in wg(R). Define the
stable Koszul complex of M with respect to the sequence x as

def
KJR(X; M) = /<;R(ac1) KRR - OR /ﬂZR(m'n) QR M (3.12)
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Lemma 3.7.3. Given x and J as above we have

Ly(M) ~ p=(zlttzal=ngo (x; M).

Proof. This is [25, Lemma 3.6] where the proof is done in the case of M = R and J = (z).
We reproduce the argument in a slightly expanded form for completeness. Observe that we
have an equivalence

KR(x; M) =~ colim(;, ;. 2(1*11”9”1|+"'+(1*ln)\xn‘M/(xl11, i),

From here the proof of the claim is a question of rewriting
1
', (R) =fib(R — R[-))
x

~ fib colim(R 25 £-IR)
~ colimy fib(R % £-IR)

~ colim; ¥ IR /2!

~ v g (2).

The importance of the stable Koszul complex is clear from the following lemma. Write

R/JER/z, 9r - ©r R/2n,

sometimes referred to as the unstable Koszul complex.

Lemma 3.7.4. The map I';(M) — M is R/J-cellularization in the category of R-modules.

Proof. This is an equivariant reformulation of [27, Proposition 3.8]. We have to show that
(a) T'y(M) is R/J-cellular and
(b) the map I'y(M) — M is an R/J-equivalence.

Using the second definition of the stable Koszul complex part (a) is immediate. I'j(M) is built
out of R/J and so, by Lemma 3.2.5, it is R/J-cellular. To show (b), note that it is enough
to prove the statement in the one generator case since I'y(M) =Ty, (I'(5,,.. 2,_,)(M)). So
suppose that J = (z). We want to show that the map

Homg (R/z,T;M) — Homgr (R/z, M)
is an equivalence. In fact, one can show that for arbitrary R-modules A and B the map

Homg (A/z,I';B) — Homg (A/z, B)
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is an equivalence. Using the cofibre sequence
1
I'yB— B — B[]
x
this in turn is equivalent to showing that Homg (A/z, B[1]) ~ «, but multiplication by z

vPlA 5 A A

induces an equivalence after applying Homg (—, B[%])

Homp (A/z, B[%}) s Homp (A, B%}) s Homp (5714, B[%]).

This completes the proof. O

Remark. In situations where Lemma 3.7.4 is true we will say that the k-cellularization of an
R-module M is algebraic.

In Lemma 3.4.7 we have shown that the Anderson dual of an R-module M provides an
example of a Matlis lift of M. In order to execute the last step in the definition of equivariant
Gorenstein duality, as described in the diagram 3.9, we need to ensure that this Matlis lift is
R/ J-cellular. Imposing harsh restrictions on the ideal J this holds.

Proposition 3.7.5. Let A be an abelian group. Suppose that M is a connective R-module

and let J be the ideal
J S xer(x§ (M) — 7§ (M)).

Suppose that J is radically finitely generated by a regular sequence (x1,--- ,xy,). Then the
Anderson A-dual of M is R/ J-cellular.

Proof. This automatic as R/J ~ Hry(R). See also [29, Lemma 5.1]. O

We now look at the algebraic model for the k-nullification of an R-module M. In the case
of M = R this is given by a construction known as the Cech complex of R..

Definition 3.7.6. Define the Cech complex of R by the cofibre sequence
I';(R) - R — C;(R).

For an R-module M set

We have the following corollary.

Corollary 3.7.7. The map M — M|[J~'] is R/J-nullification in the category of R-modules.
U
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Remark. We can identify the R/J-nullification procedure as a certain Bousfield localization,
namely the map M — M|[J '] is right Bousfield localization in the category R-mod¢g with
respect to the R-module Cj(R). See [25, Theorem 5.1].

Provided that we are in a situation where cellularization is algebraic we can rewrite Definition
3.6.4 of equivariant Gorenstein duality as

I';(R) ~ kR,

One should see the equivalence in this definition as the ring GG-spectrum analogue of the
classical Gorenstein duality statement of Corollary 3.5.3

HY(R) = I(kg).

The following diagram summarizes the various ingredients of the equivariant Gorenstein
duality framework discussed so far.

R—k

R — k is Gorenstein of shift a

Hompg (k, R) ~ Hompg (k, X%Zy)

L Morita theory provided k is proxy-small
Cellk(R) ~ e Ce]lk(Ik)

L The Anderson k-dual is a k-cellular Matlis lift
Cell (R) ~ 2ok

J J J UJ

L Cellularization is algebraic
I';(R) ~ 2okR

3.8. The local cohomology spectral sequence and shift
prediction

In this section we look at a local cohomology spectral sequence which arises when one has
a ring G-spectrum with an algebraic cellularization. In favourable situations this spectral
sequence collapses and can be used to both detect potential Gorenstein candidates and
predict their expected Gorenstein shift.

Let r be a connective non-equivariantly commutative ring G-spectrum, let J C Wi(r) be a
finitely generated ideal and let M be an r-module. Write k = 7§ (r), k = Hry(r) and let
r — k be the map obtained by killing homotopy groups.
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Proposition 3.8.1 ([25, Section 3]). There is a spectral sequence
Hj(n% (M) = n%/(T5(M)).
computing the homotopy groups of I'y(M) in terms of local cohomology.

Corollary 3.8.2. Suppose thatr — k has Gorenstein duality of shift . Then the equivalence
[y(r) ~ Xk°
induces a local cohomology spectral sequence
Hj-(wfi(r)) = anf{:(kzr).

O
Using the local cohomology spectral sequence we can identify potential Gorenstein candidates
via the following procedure. First, note that if r is Gorenstein, so is its rationalization. One
can also show that if r has Gorenstein duality and the coefficient ring 7¢(r) is Cohen-
Macaulay then the Hilbert series of 7¢(r) satisfies a certain functional equation. Checking

whether the Hilbert series satisfies the functional equation then imposes a condition on when
7¢(r) can be Gorenstein. We discuss these steps in more detail below.

Given a prime p we write r(;,) for the p-localization of r at p.

Proposition 3.8.3 ([22]). Suppose thatr — k is Gorenstein of some shift. Thenr,) — k)
is also Gorenstein of the same shift.

Proposition 3.8.4. Suppose that w¢(r) is Gorenstein. Then r — k is also Gorenstein.

Proof. We reproduce the argument from [19, Section 4.C]. Write k = n§(r). There is a
spectral sequence

E;’* = Extﬁs(r)(k:, e (r)) = 7 (Hom,(k,1)).
and this spectral sequence collapses to show that
7 (Homy(k,r)) = X%

for some a. The r-module k is completely characterized by its homotopy so we have that
Hom,(k,r) ~ 3°k. O

There are two situations where the local cohomology spectral sequence from Corollary 3.8.2
collapses from which we deduce that the ring 75(r) has very special properties. If 75(r) is
Cohen-Macaulay, the spectral sequence collapses to show that

Hj(r5(r)) = D mg(kY),
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where d is the Krull dimension of 7$(r). Thus the ring 7¢(r) is also Gorenstein. The
spectral sequence also collapses if 75(r) is of Cohen-Macaulay defect 1 to give a short exact
sequence

0— Hﬁ(wﬁ(r)) — Rotdre(kr) EH?il(we(r)) — 0.

*

In both cases the collapse of the spectral sequence has concrete consequences on the Hilbert
series of the ring 7¢(r) which allow us to check if r can be Gorenstein and predict the
Gorenstein shift.

Corollary 3.8.5 ([24, Theorem 6.2]). Suppose that r — k has non-equivariant Gorenstein
duality of shift a and that w¢(r) is noetherian of Krull dimension d. Let

h(t) = dim(m$(r))t*

be the Hilbert series of w&(xr). Then

(1) If 75(r) is Cohen-Macaulay it is also Gorenstein and its Hilbert series satisfies the func-
tional equation

h C) = (C1y e, (3.13)

(2) If w&(r) is almost Cohen-Macaulay it is also almost Gorenstein and its Hilbert series
satisfies the functional equation

h (1) = (D)) = ()T (1 + 1)q(), (3.14)

where

o(7) = Cometge.

We summarize the Gorenstein candidate identification and shift prediction procedure in the
following diagram.

r is Gorenstein U

Proposition 3.8.3
r(g) is Gorenstein

orientability condition

r(g) has Gorenstein duality U

Corollary 3.8.5

7 (r(0)) is (almost) Gorenstein

Corollary 3.8.5
h(t) satisfies (3.13) or (3.13)
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3.9. The Anderson-Gorenstein duality duumvirate

In this last section we make explicit a connection between Gorenstein duality for a connective
ring spectrum and Anderson self-duality for the its nullification. Let r be a commutative ring
spectrum, k = mo(r) and let k and R denote the commutative ring spectra

kdélec and

R & Nully(r).
Finally, let r — k be the map obtained by killing all higher homotopy groups. We illustrate
schematically the relationship between Anderson and Gorenstein duality in the following
diagram.

automatic
r has Gorenstein duality be—a1 R is Anderson self dual
of shift a T of shift b
W
Cellk(r) ~ X2k" conditions kR ~ PR
a=—b—1

First, we record the fact that Gorenstein duality for r — k automatically implies Anderson
self-duality for R.

Theorem 3.9.1. Suppose that r — k has non-equivariant Gorenstein duality of shift a. Then
the ring spectrum R is Anderson self-dual of shift b = —a — 1, i.e. there is an equivalence
of R-modules

kR ~ 2PR.

Proof. This is [29, Proposition 4.1]. The statement of the theorem follows immediately if
one shows that the map
e: Cellg(r) = r

is self-dual in the sense that applying Hom,(—, k*) to € we get the a-th desuspension of
€. By assumption r — k has Gorenstein duality of shift a, i.e. there is an equivalence of
r-modules Cellk(r) ~ X%k*. Thus we may use Hom, (—, 7% Cellk(r)) as the dualization.
The map ¢ then dualizes to

e*: 7% Cellk(r) ~ Homy (r, ¥ Cellk(r)) — Homy, (Cellk(r), X7 Cellg(r)) ~ X %r.

This has the universal property of k-cellularization and therefore is the suspension of €. [

Next we show that under addition connectivity and projectivity assumptions on the homotopy
groups of r, Anderson self-duality for R implies Gorenstein duality for r — k.
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Theorem 3.9.2. Suppose R. is Anderson self-dual of shift b = —a — 1 with a < —2. If
mi(r) = 0 fori > a+ 1 and m,(r) is projective over k, then r — k has non-equivariant
Gorenstein duality of shift a = —b — 1, i.e. there is an equivalence of r-modules

Celly(r) ~ Xk".

Proof. This is [29, Lemma 4.3]. By assumption R is Anderson self-dual of shift b so we have

an equivalence of R-modules
kR ~ YR,

Now apply Hom,(—, k") to the cofibre sequence

Cellg(r) = r— R (3.15)

to obtain
Homy, (Cellk(r), k") < k* < Hom, (R, k").

Recall from Section 3.1 that by definition the Anderson k-dual of the r-module R is given
by kB = Hom,(R,k"). Thus the rightmost term in the sequence above is kR ~ YR,
Suspending this sequence a = —b — 1 times we get

% Hom, (Celly (r), k¥) + 2% « LR
and taking a mapping cone we get the cofibre sequence
Yk" — ¥ Homy (Cellk(r), k") — R. (3.16)

We would like to show that this is equivalent to the original sequence (3.15). We start
by arguing that the middle term is equivalent to r. From the hypothesis it follows that
Y*Homy (Cellk(r), k*) is connective. Indeed, its homotopy groups sit in a short exact se-
quence

0 — Bxth(m_irq_1(Cellk(r)), k)
— m; (X% Homy (Celly (1), k7))
— Homy (714 (Cellk(r)), k) — 0.

By assumption for ¢ < —1 both the Ext and Hom terms vanish and we have
r ~ Rla + 2,00) >~ ¥ Hom, (Cellk(r), k")) [a + 2, 0o] ~ £ Hom, (Cellk(r), k¥).

Thus the middle term of the sequence is r. It remains to check that the map from it to R
has the universal property that the map r — Nullg(r) ~ R has. This is immediate as the
fibre ¥ ~0~1kT of this map is k-cellular and we conclude that Cell(r) ~ X%kT. O



Chapter 4
Modular Forms

In this chapter we recall the arithmetic notion of a modular form and we collect a number
of computational results necessary for Chapter 5 and Chapter 6. We start in Section 4.1 by
giving two definitions of modular forms, one analytic following [13] and one algebro-geometric
following [56]. In Section 4.2 we review the dimension formulas for computing the dimension
of the space of weight k& modular forms with respect to a congruence subgroup I' of SLy(Z).
In Section 4.3 we sketch two methods that can be used to identify the natural (Z/n)*-action
on the graded ring of modular forms with respect to the congruence subgroup I';(n).

4.1. Classical modular forms with level structure
Let H denote the complex upper half-plane. The group SLy(Z) acts transitively on H via
Mébius transformations, given v = (2%) € SLy(Z) and z € H

az+b
cz+d

Y(z) =

Definition 4.1.1. Let f be a complex valued function on the upper half-plane, let k € Z
and let v € SLy(Z). Define a new function f|[y]x: H — C by

FIIe(z) € det(y)E ez + d) 7 F ().

This is sometimes known as the slash operator.

Definition 4.1.2. Let n be a positive integer. The subgroup

T'(n) % {7 € SLy(Z) : v = <é ?) mod n} ,

of SLy(Z) is called the principal congruence subgroup of level n.

Definition 4.1.3. A subgroup I" of SLy(Z) is called a congruence subgroup if it contains
I'(n) for some positive integer n.

72
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Example 4.1.4. The groups

To(n) d:ef{7 € SLa(Z) : v = <(>; *> mod n ¢,

) o}
T'y(n) d—ef{fye SLy(Z) : v = (é D modn}

are congruence subgroups of SLa(7Z). Clearly

T'(n) C T'y(n) C To(n) C SLa(Z).

For the rest of this section let I" denote one of the subgroups I'(n), I'1(n) or I'y(n) and k
be a non-negative integer.

Definition 4.1.5. A holomorphic modular form of weight k with respect to I" is a function
f: H — C satisfying the following conditions.

(i) f is holomorphic on H,

(ii) fl[v]k = f forally €T,
(iii) f is holomorphic at the cusps.

We will write mf(I'; C) for the collection of all weight & holomorphic modular forms with
respect to I'. One can show that this is a finite dimensional vector space over C. Pointwise
multiplication of a weight £ and a weight [ modular forms produces a weight k£ + [ modular
form and we will write mf, (I"; C) for the graded commutative ring

mf,(I;C) = @ mf(T; C).

k>0

If we instead require f to be meromorphic at the cusps we get the notion of a meromorphic
modular form of weight k with respect to I'. We will write MF(I"; C) for the collection of all
weight k& meromorphic modular forms with respect to I and MF, (I"; C) for the corresponding
graded ring. Given a subring R C C one can further consider mf,(I'; R) and MF,(I'; R), the
subrings of holomorphic, respectively meromorphic, modular forms which have a g-expansion
with coefficients in R.

In Chapter 5 we will study the Hilbert series of the graded rings mf,(I'; C) and it will be
important that these rings enjoy certain finiteness properties.

Proposition 4.1.6 ([51, Theorem 5.14]). The rings mf,(I"; C) are Cohen-Macaulay.
There is another definition of modular forms of a more geometric flavour. Given an elliptic

curve p: £ — S let wg = p*QlE/S. This is known to be a line bundle on S, see [12, p. I
1.6]. Define a line bundle we;; on Mgy as follows. Given a map s: S — M,y from a scheme
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S to the moduli stack of elliptic curves let p: E — S be the corresponding elliptic curve.
We associate with (.5, s) the line bundle wg.

Let R be a Z[-]-algebra and write M(T")g for the pullback

1
MT)r = M(T) X Spec(z[L]) Spec(R).

Denote the projection M(I')) — M,y g by f and use the same name for its restriction
M(T)r = My r. Let w denote the pullback f*wey. We can define holomorphic modular
forms of weight k over R as sections of w®F

mf,(T; R) & HO(M(T) g, w®").
The line bundle w,;; extends to the compactified stack H(F) and we can also define mero-
morphic modular forms of weight k£ over R as

MF(T; R) < HO(M(T) g, w®").

4.2. Dimension formulas

Given a congruence subgroup I' one can prove a general formula for the dimension of the
weight & piece of mf,(I"; C). We include the relevant results following [13]. The dimension
formulas will be used in Chapter 5 where we compute the Hilbert series of the graded rings
mf, (T'; C) for various congruence subgroups T'.

Definition 4.2.1. Define the modular curve Y (I") as the quotient space

v() € r/m
This is a Riemann surface which can be compactified and we will write Y (T") for its com-
pactification.

The complex points of the stacks M(T") and M(T') for orbifolds and we have equivalences

M()c ~Y(T) and M(T)¢c =~ Y ().

The dimension formulas are derived by treating the modular curve Y (I') as an orbifold,
describing the subspace mf(I'; C) in terms of divisors and then applying a suitable version
of the Riemann-Roch theorem. Let g denote the genus of the modular curve Y(I') and let e
and e3 denote the number of elliptic points of Y (") with period 2 and period 3, respectively.
Finally, let eo, denote the number of cusps of Y (I').
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Theorem 4.2.2 ([13, Theorem 3.5.1]). Let k be an even integer. Then

(k—1(g— 1)+ [E]ea+ [E]es + beoe ifk>2
dimg(mfg(T;C)) =< 1 ifk=2
0 ifk <0.

A similar formula exist for the odd case. Note that if k£ is odd and I' contains the negative
identity matrix, then mf,(T;C) = 0. Let e and €' denote the number of regular and
irregular cusps of Y (I'), respectively.

Theorem 4.2.3 ([13, Theorem 3.6.1]). Let k be an odd integer. Then

dimc (mfy,(T;C)) =

(k—=1)(g—1)+ [5]es + ber + E5telr ifk >3
if k < 0.

4.3. The Tate normal form and Eisenstein methods

Let us consider the case of modular forms with respect to the congruence subgroup I'y(n).
Observe that there are two, a priori different, (Z/n)*-actions on mf,(I'1(n); C). If we take
the classical definition of modular forms, then there is a (Z/n)*-action on mf,(I';(n);C)
defined as follows. Let d € (Z/n)* and let o4 be any element of SLa(Z) such that

where d is the multiplicative inverse of d mod n. Then d acts on mf(I'1(n); C) by sending
f to flloglk- The action depends only on d and not on the choice of the matrix o4. If we
instead take the algebro-geometric definition, then by functoriality there is a (Z/n)*-action
on mf,(I'1(n); C) induced by the (Z/n)*-action on the torsion points of exact order n on
the moduli stack M;j(n). Luckily, one can show that two actions coincide. The theorem
below suggests the direction of the argument and the full details can be found [56].

Recall that elliptic curves over C can be seen as quotients C/A; with A; a lattice in C of
the form Z @& 77 and 7 € H.

Theorem 4.3.1 ([13, Theorem 1.5.1]). There is a bijective correspondence between isomor-
phism classes of pairs (E, P), where E; is an elliptic curve over C and P is a point of order
n, and points on the modular curve Y (I'y(n)) given by

mo{E: =C/A;,7 e H} == mo{T1(n)7 |7 € H}

E; «—— T'i(n)r.
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We now give a short description of two methods that can be used to determine the (Z/n)*-
action on mf,(I';(n); C).

4.3.1. The Tate normal form method

This method was outlined in [45, Proposition 3.2] and [6, Theorem 1.1.1]. Let p: E — S
be an elliptic curve over a scheme S and let P be a chosen point on F of exact order n.
Zariski locally, the elliptic curve is given by a Weierstrall equation. We can use a change of
coordinates to move the point P to (0,0) in such a way that the tangent line at P has zero
slope. The elliptic curve will then have a WeierstraB8 equation of the form

y: + a1zy + agy = 2° + asx”.

This is known as the homogeneous Tate normal form of (E, P). To illustrate the argument
suppose that n is odd and that we want to determine the action of the element [2] € (Z/n)*.
To understand this action we need to take the elliptic E with the chosen point P = (0,0)
and use a transformation to move the point [2]P to coordinates (0,0) while preserving the
shape of the WeierstraB equation. The new coefficients will tell us how [2] acts on the ring
mf,(T'1(n); C). If 2 is a primitive root modulo n, i.e. a generator of (Z/n)* this determines
the full action. Otherwise, we will need the action of other elements as well.

4.3.2. The Eisenstein method

The space mfy(I';(n); C) naturally decomposes into its subspaces of cusp forms, which we
will denote by cfi(I'1(n); C), and the corresponding quotient space

ef,(T'1 (n); ©) & mf (T (n); C)/ cf (1 (n); C),

the Eisenstein subspace. Using [13, Theorem 4.1.8] one can write an explicit basis for the
Eisenstein subspace in terms of modified Eisenstein series on which the (Z/n)*-action is de-

scribed explicitly by the multiplication with the respective character. Provided that we are in
a situation where no cusp exist forms this determines the (Z/n)*-action on mfy(I'1(n); C).



Chapter 5
Topological Modular Forms

In this chapter we switch gears from number theory to topology and we introduce the main
objects of study in the thesis, the commutative ring spectra of topological modular forms
with level structure.

The theory of topological modular forms is a fairly new and active research area in algebraic
topology with rich applications in topology and intricate connections to number theory.
The spectrum of topological modular forms is a generalized Eilenberg-Steenrod cohomology
theory that is in a precise sense the union of all elliptic cohomology theories arising from
elliptic curves. It is a homotopy theoretic refinement of the classical ring of integral modular
forms. A brief and rather sketchy definition of the spectra TMF, Tmf and tmf, following
[14], is provided below.

Recall that we write M, for the moduli stack of formal groups classifying all 1-dimensional
formal groups and their isomorphisms. Thus maps Spec(R) — My, with R a commutative
ring are in one-to-one correspondence with formal groups over R. Every complex oriented
cohomology theory gives rise to a formal group law and there is a universal one, complex
bordism theory MU. The resulting formal group law is the universal formal group law,
meaning that homomorphisms of rings MU, — R are in one-to-one correspondence with
formal group laws over R. Conversely, given a homomorphism of rings MU, — R that
classifies a formal group law over a ring R, the Landweber exact functor theorem gives an
algebraic criterion that ensures the functor X — MU,(X) ®pp, R, where X is a space,
satisfies exactness and thus yields a homology theory. The Landweber condition can also
be expressed in the language of stacks. A formal group law classified by a map MU, — R
is Landweber exact if and only if the corresponding map Spec(R) — My, is flat. We will
be interested in even periodic cohomology theories, so we will use the periodic version of
complex bordism
MP = Vpez X MU.

There is a map M — My, sending an elliptic curve to its completion at the identity and
this map is flat, see [14, Theorem 3.12]. Therefore, given any flat map Spec(R) — M,y
classifying an elliptic curve E over a ring R we get a flat map Spec(R) — M, and thus,
by the stacky version of the Landweber exact functor theorem, a homology theory. Write

7
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O™ for the resulting presheaf on the affine flat site of M,y

ohem. leflf’ﬂat — {homology theories}
Spec(R) — Mo — MP*(—) RMmP, R.

We would like to define a single universal elliptic homology theory and the standard way
to build such an object from a presheaf is to take global sections. Unfortunately, the site
of affine schemes over the moduli stack M, has no initial object and therefore no notion
of global sections. We can try to define the universal elliptic homology theory as the limit
limgreyy OM°™(U), where U is a cover of M,y;. However, the category of homology theories
is not complete and this limit does not exists. The way to remedy this is to recall that by
Brown'’s representability theorem homology theories are represented by spectra. The category
of spectra is better behaved than the category of homology theories, in particular, it has limits
and colimits. If we can show that the presheaf O"™ rigidifies to a sheaf of spectra, we can
build our desired universal object by taking a homotopy limit in the category of spectra. This
is the content of the following theorem due to Goerss-Hopkins-Miller and Lurie.

Theorem 5.0.1 (Goerss-Hopkins-Miller and Lurie). The moduli stack of elliptic curves
admits an even periodic enhancement, i.e. there is a sheaf of commutative ring spectra
QP leflf’ét — CAlg(Sp) on the affine étale site of My extending the presheaf O™,
Furthermore, this sheaf extends to the compactification M.y;.

We can now define the commutative ring spectra of topological modular forms, that come
in the following three variants characterized, among other things, by their peculiar capital-
ization.

TMF def OtoP(Mell),
Tmf def Otop (ﬂeu),

tmf % Tmf(0).

The name topological modular forms comes from the fact that the homotopy groups of these
spectra are closely connected to the classical rings of modular forms. The ring m,(TMF) is
rationally isomorphic to the ring of weakly holomorphic integral modular forms

mf, (SLy(Z; 7)) = Zca, co, AT/ (] — c& — 1728A),
and 7. (tmf) is rationally isomorphic to the subring of integral modular forms
MF,(SLo(Z); Z) = Z[cy, cg, A/ (] — c2 — 1728A).

Here the elements ¢4, cg and A have degrees 8,12 and 24 respectively.
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5.1. Topological modular forms with level structure

The above constructions have been extended to elliptic curves with level structure. Let I' be
one of I'1(n), To(n) or I'(n). The stacks M(I") are étale over M,y and we can define

TMF( )def

OP(M(T)).

In contrast, the stacks M(T") are in general not étale over M,y;. As a remedy, HiH:md
Lawson extended the sheaf O%P to the log-étale site of the compactified moduli stack M,
see [36]. The maps M(T') — M,y are log-étale and thus we can define

def

Tmf(T) £ 0P (M(T)),

tmf(T") % Tmf(I")(0).

Notation 5.1.1. When I" = T";(n) we will use the notation TMF;(n), Tmf;(n) and tmf;(n)
for TMF(T'1(n)), Tmf(I'1(n)) and tmf(I'1(n)), respectively. The appropriate changes in
decoration will be made when T is T'g(n) or I'(n).

Remark. As noted in the discussion after [35, Definition 4.1], the definition of tmf(I") above
should be considered appropriate for n > 2 if tmf(I") is even and 7¢(tmf(I")) is isomorphic
to the ring mf,(T'; Z) of integral holomorphic modular forms with respect to I". The second
condition is always true, but in general, there can be a non-trivial 7§ (tmf(I")). The first case
of this occurring in the case of Tmf;(n) is when n = 23 as shown in [10]. The significance
of the number 23 will become even greater in Section 5.4, where we look for candidates for
Gorenstein duality and Anderson self-duality among the ring spectra tmf;(n) and Tmf;(n),
respectively.

5.2. The descent spectral sequence

Recall the descent spectral sequence construction from Section 2.7 of Chapter 2. Specializing
to the derived stacks M(I") the spectral sequence takes the form

Est = H(M(T),w®"/?) = m,_(Tmf(I)).

where w = mo(O™P). The stacks M(I") are of cohomological dimension 1 and the spectral
sequence collapses at its F» page so we obtain

HO(M(I'), w
HY(M(T),w

z)  for t even
+

®L
®737)  for t odd.

m(Tmf (")) = {
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5.3. Equivariance

We now concentrate on the moduli stacks M (n) and their compactifications M (n). Recall

that M (n) classifies elliptic curves E together with a chosen point P in E of exact order

n. Sending (E, P) to (E,kP) for [k] € (Z/n)* defines an action of (Z/n)* on M;(n)

that extends to an action on the compactified stack M (n). By functoriality, this induces

an action on the global sections Tmf;(n) = O%P(M;(n)). Write G = (Z/n)* for brevity.

The sheaf OP is a sheaf on the affine étale site of M (n), but we can also view it as a
wh

( )afF ét

sheaf on the G-equivariant affine étale site M, ere coverings are families

{Ui = M (n)}iel
of G-equivariant étale morphisms U; — M (n) with U; affine. Evaluating the sheaf O%P on
such a covering would land us in the category of commutative ring spectra with a G-action
which can be though of as the functor category F'(BG,, CAlg(Sp)). We can then take the
cofree construction of the resulting ring spectrum and get a commutative ring G-spectrum.
Abusing notation we shall use O%P to denote the composition

- 7 to| F(EG —

My (n)2% 275 P(BG., CAlg(Sp)) — 5+, CAlg(Spe).
Remark. It is not clear that one gets a strict (Z/n)*-action in the co-categorical framework.
Meier argues in [52, Example 6.12] that one does get a strict (Z/2)*-action on Tmf;(n)
which suffices for the examples of level 4 and level 6 that we study. Alternatively one could
work instead with a model category framework.

In the rest of this section we examine a number of a priori unexpected equivariant properties
of the sheaf O*P and the ring G-spectra TMF;(n), Tmf;(n) and tmfy(n).

Proposition 5.3.1. Let n be square-free integer. If U — M;i(n) is a G-equivariant affine
open in My (n)", the Tate spectrum of O'P(U) vanishes, that is OtP(U)!C =~ x

Proof. This is a special case of [47, Theorem 5.10]. To apply the theorem we have to
check that the map U/G — My, is tame. This follows because the map Mo — Mg
is representable by [47, Theorem 7.2]. The map My(n) — M,y is representable provided
that n is square-free, see [11, p. 4.1.1]. Finally, U/G — Mgy(n) is also representable
as Mi(n) — Mo(n) is a G-Galois covering and U/G sits as an open immersion inside
Mi(n)/G. O

Proposition 5.3.2. Let n > 2. The map Tmfy(n) — Tmf;(n) induces an equivalence

Tmf(n)"Y ~ Tmfy(n).

Proof. This was first shown by Hill and Lawson in [36, Theorem 6.1]. An alternative proof
is given by Meier in [52, Proposition A.4]. O
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For n > 3 the ring spectra TMF;(n), Tmf;(n) and tmf;(n) have a natural Cs-action as
described in [52, Example 6.12]. One can then ask whether any of these ring Co-spectra are
strongly even in the sense of Definition 1.6.1.

Proposition 5.3.3 ([52, Example 6.12]). TMF(n) is strongly even as a ring Ca-spectrum.

The current state of affairs for the connective versions of Tmf;(n) is less satisfying with the
number 23 making yet another appearance.

Proposition 5.3.4 ([52, Example 6.13]). tmfy(n) is strongly even as a ring Cy-spectrum
for 2 < n < 23.

Another peculiar feature of the ring G-spectra of topological modular forms with I'i(n)
structure is that we can reconstruct, both equivariantly and non-equivariantly, the non-
connective spectrum Tmf;(n) from the Cech complex of its connective cover tmfy(n). Let
J denote the ideal

J E ker(x§ (tmfy (n)) — 7§ (tmf, (n))
and suppose that J is radically finitely generated by a regular sequence x = (x1,...,2,).
Proposition 5.3.5. Let f be a non-constant homogeneous polynomial in (x1,...,x,). Then
the map

tmfy (n)[f '] — Tmfy(n)[f "]

is an equivalence of G-spectra.

Proof. The proof goes as [35, Lemma 4.21]. O

Proposition 5.3.6. Let f be a non-constant homogeneous polynomial in (x1,...,x,) and
write D(f) for the nonvanishing locus of the underlying element f € H°(Mi(n),w*). Then
there is an equivalence of G-spectra

Tmf (n)[f '] = O"P(D(f)).

Proof. The proof goes as [35, Lemma 4.22]. O

Proposition 5.3.7. There is an equivalence of G-spectra

Tmf;(n) ~ Cy(tmf(n)).

Proof. This is an equivariant version of [29, Lemma 5.2]. Let us abbreviate r = tmf;(n)
and R = Tmf(n). We assume that we are in a situation where the connective cover r can
be constructed as the naive truncation of R and so we have a map /: r — R inducing a
monomorphism on homotopy groups. We will show that R has the universal property that
Cj(r) enjoys. First recall that by Propositions 5.3.5 and 5.3.6 given x € ﬂ'g(R) we have an
equivalence

R[l/x] ~r[1/z].
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Let
I'/X:I'/I‘l ®rr/x2®r"’®rr/mn

denote the unstable Koszul complex of r with respect to the set of radical generators x of
J. We have to show that R admits no r-module maps from r/x, i.e.

[r/x, R]?G = 0.

The stack M1 (n) admits a finite open cover by substacks of the form M; (n)[%} forye J
whose intersections are of the same form. By part (2) of Proposition 5.3.1 there is an
equivalence

R[1/y] = O"P(Mi(n)[1/y]).

We have assumed that ) )
HO(M; (n)[g],w@)*/z) = Wi(r[g])-

Moreover, since y acts nilpotently on r/x we have
[r/x, T[1/y]7¢ = 0.

Finally, R is built from the spectra R[%] and so

[r/x,RIY“ =0

5.4. Gorenstein candidates

We now come to the main question subject to investigation in this thesis. Recall that the
spectra tmf(n) can be constructed as genuine ring (Z/n)*- spectra and as such they are
legitimate candidates for equivariant Gorenstein duality. We ask the following question.

Question Does tmf;(n) exhibit equivariant Gorenstein duality?

Naturally, one first looks at the non-equivariant situation. A surprising fact is that there is
a finite list of levels n for which tmf;(n) exhibits the Gorenstein duality phenomenon non-
equivariantly. In [52] Meier determined a finite list of cases where the ring spectrum Tmf;(n)
is Anderson self-dual. Combining his results with [29] we see that the non-equivariant Goren-
stein duality picture for tmf;(n) is as follows.

Theorem 5.4.1. The ring spectrum tmf;(n) has non-equivariant Gorenstein duality if and
only if n € {1,...,8,11,14,15} or potentially n = 23 with non-equivariant Gorenstein
duality shifts a as follows.

n 1 2 3|1 4| 5| 6 7| 8| 11| 14| 15|23
a|—22|-14|-10|-8|—-6|—-6|—-4|—-4|-2|-2|-2] 0
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Proof. This is [52, Theorem 5.14] combined with [29, Lemma 4.3]. O

One can alternatively identify the list of potential Gorenstein candidates by studying the
Hilbert series of the rationalization of the non-equivariant homotopy groups of tmf;(n) as
described in Section 3.8 of Chapter 3. We go through this argument below to produce a list
of levels n identical to the one in Theorem 5.4.1.

First, we describe the general form of the Hilbert series of the graded ring mf,(I';(n); C).
This is a direct computation using the dimension formulas from Section 4.2 of Chapter 4.
Let g be the genus of M(T';1(n))c, let o be the number of cusps of M(I';(n))c and write
m for the dimension of the space mf;(I';(n); C) of weight 1 modular forms.

Lemma 5.4.2. The Hilbert series of the graded ring mf.(I'1(n); C) are given by

1 .
@)= ifn=1
1 e
h(g) — (=D ifn=2
(t) - 1 f -3
a—pna-m) "=
1 o
a—na=m) ifn=4

and forn > 4 by

L4+ (m—=2)t + (=2m + g + ec0)t? + (m — =)t

) = (e

O]

Now suppose tmf;(n) has non-equivariant Gorenstein duality of some shift. The correspond-
ing ring mf,(I';(n); C) is Cohen-Macaulay by Proposition 4.1.6 and therefore, by Corollary
3.8.5, its Hilbert series h(t) will satisfy one of the Gorenstein type functional equations (3.13)
or (3.14). From the shape of h(t) we see that this can happen if and only if the polynomial
in the numerator is palindromic, which is the case for n = 1,2, 3,4 and in general if

€00

l=m-—

T
m—2=-2m+ g+ cx.

There is an explicit formula for the dimension of the space of weight 1 modular forms only
when e, > 2g — 2 in which case m = £, see [13, Theorem 3.5.1]. We identify a range of
levels n where this is case using the following lemma by Mitankin.

Lemma 5.4.3. There exists an integer ng, such that for n > ng we have e, < 2g — 2.
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Proof. We can see this by looking at the difference

It is well-known that 3~ 1 = O:(n®). On the other hand, we have

(- 3p) =T p) =0

pln

Thus

for n big enough. This proves the result. O

Suppose 4 < n < ng. The Hilbert series of mf,(I';(n); C) then takes the form

14 (5 - 2)t + gt?

€oo

2
h(t) 112
We see that the numerator can be palindromic if and only if ¢ = 0,1. The modular curve
Mi(n)c is of genus 0 or 1 for a finite number of values of n and so by direct computation
we obtain the table below. In the last column we display the predicted non-equivariant
Gorenstein shift. The values of g and e, are computed using the formulae in [13, Figure
3.3, Figure 3.4]. The genus information can also be found in [39, A029937].

The detect the case of n = 23 we argue as follows. Recall from Section 4.3 of Chapter 4
that the space of weight 1 modular forms decomposes into its subspace of cusp forms and
the corresponding quotient space of Eisenstein forms

mf;(I'1(n); C) = ef 1 (I'1(n); C) & cf1(T'1(n); C).

The dimension of the Eisenstein subspace can be calculated using the dimension formulas,
see [13, Chapter 4], and is given by

dime (ef1 (' (n); €)) = 2.


https://oeis.org/A029937
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For n = 23 we get that 5o = 22 and therefore dimg(ef;(I'1(23);C)) = 11. By [10] the
dimension of the space cf;(I'1(23)) is 1 and we obtain

m = dimc¢(I'1(23);C) = 12.

Plugging this value of m into the general expression of the Hilbert series from Lemma 5.4.2
we recover the case n = 23.

Table 5.1.: Hilbert series of mf,(I'y1(n);C) for 3<n <ng, n=23and g=0,1

n| g |étxo h(t) predicted shift
1]0]1 m —22
2101 2 m —14
3107 2 m —10
47013 (l—t)%l—tz) -8
50014 L —6
60/ 4 T —6
710]6 e —4
806 L —4
111 |10 1(+13_tt+)§2 -2
4] 1] 12 1(+14_t$§2 9
151 |16 1(+16_tt+)§2 -2
23 [ 12] 22 | BIOGIOEET 0

It would be useful to have the picture in the case of T'g(n) as well. Let g denote the genus
of M(I'g(n))c and let €3 and €3 denote the number of elliptic points of M(I'g(n))c with
period 2 and period 3, respectively. Finally, let 5 be the number of cusps of M(I'g(n))c.

Lemma 5.4.4. The Hilbert series of the graded ring mf,(I'g(n); C) for n > 2 is of form

1+ (g+ex)T 4 (3g+ €2+ €3 + 2600 — 4)T?

B (1= T2)(1 - T9)

N (4g + e2 + 2e3 + 2e00 — 5)T2 + (3g + €2 + €3 + €0o — 3)T* + gT®
(1-12)(1-1) |

h(T)

where T = 2. O

Again, we see that the numerator can be palindromic if and only if g = 0 or 1. The two
cases are resolved by the table below. The values of g, €2, €3 and £ are computed using
the formulae in [13, Figure 3.3, Figure 3.4] and can also be found in [39, A001617], [39,
A000089], [39, A000086] and [39, A001616] respectively.


https://oeis.org/A001617
https://oeis.org/A000089
https://oeis.org/A000086
https://oeis.org/A001616
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Table 5.2.: Hilbert series of mf,(T'g(n);C) for n > 2 and ¢ = 0,1

n|gle|es| o h(T) predicted shift
3lojo]1] 2| R —10
4lololo] 3 ﬁ —10
5lo]2]0] 2 | R —6
6|0l0[0] 4 (11_+TT)2 —6
7lolo]2] 2 | —6
glojofo] 4 (11_?’)2 —6
9lofolo] 4 (11_+TT)2 —6
11002 &ﬁ; —2
wfijofofa| B0 2
slijofo]a] D 2
20/1[0]0] 6 Tf;)? —2
24/1]0]0] 8 % —2
27100 6 % —2
32/1/0)0] 8 1?163?){2 —2
36110012 % —2
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We now move to the equivariant picture. Equivariant Gorenstein duality implies non-
equivariant Gorenstein duality and therefore the list of tmfy(n)'s that could exhibit the
duality equivariantly is the one from Theorem 5.4.1. Levels 1 and 2 are not interesting
equivariantly as the group acting is the trivial group. The first equivariantly non-trivial cases
are levels 3,4 and 6 where the group acting is Cs. The case of n = 3 was computed by
Greenlees and Meier in [27] and we give computations for n = 4 and n = 6 in Chapter 6. In
fact, we can look at the Cs-equivariant picture for all levels n. Recall again that for n > 3
the ring spectrum tmf;(n) has a natural Ca-action as described in [52, Example 6.12]. One
can ask whether any of the tmfy(n)’s in the finite list above exhibit Cy-equivariant Goren-
stein duality. In [52] Meier refines his non-equivariant Anderson self-duality statements for
Tmf;(n) to Ca-equivariant statements. Combined with an equivariant version of Theorem
3.9.2 his results answer the Cs-equivariant Gorenstein duality question forn = 3,5,7,11, 15.
We summarize the above discussion in the following theorem.

Theorem 5.4.5. The ring Cy-spectrum tmf;(n) has equivariant Gorenstein duality if and
only if n € {3,5,7,11,15} or potentially n € {4,6,8,14,23} with equivariant Gorenstein
duality shifts § as follows.

n 3 4 5 6 718 11| 14 15|23
6| -8—20|-T7—0|—-b|—-6|-5+40|?7|—-44+20| 7| —-44+20]| 7

Proof. For n = 3 this is [27]. For n = 3,5,7,11,15 this is [52, Section 6.3]. The cases of
n =4 and n = 6 are contained in the Chapter 6. O

Studying equivariantly examples for higher n quickly becomes difficult due to the complexity
of the RO(G)-graded computations. Progress on the first non Cy-case of level 5 is reported
in Chapter 7.

5.5. The Anderson-Gorenstein-Serre duality triumvirate

We now look at yet another duality phenomenon this time coming from algebraic geometry,
namely Serre duality. In [52] Meier shows that there is an intricate connection between the
presence of Serre duality on the moduli stacks Mj(n) and Anderson self-duality of the cor-
responding ring spectra Tmf;(n) arising as the global sections of the sheaf 0P on M;(n).
Combining his results with the relation between Anderson and Gorenstein duality discussed
in Section 3.9 of Chapter 3 we formulate a context where all three duality phenomena are
interlaced.

Let Z = Z[%] and write f,, for the projection Mj(n) — M,y. Let w denote the pullback to
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Mi(n) of the line bundle we; on M.y.

W= frwen wen = o (OFP)

Mi(n) —I s M

First, we record a proposition which determines the general shape of the stacks M;(n).

Lemma 5.5.1 ([52, Proposition 2.4]). Mj(n) is a weighted projective stack for 1 < n < 4
and represented by a projective scheme over Z forn > 5.

We have the following two immediate consequences.

(i) M;i(n) has cohomological dimension 1. In other words, for any F € QCoh(Mj(n))
we have ‘
H'(My(n),F) =0 fori > 1.

1

M (n) on

(ii)

(n) has Serre duality in the sense that there exists a dualizing sheaf €2

My
Mi(n) such that for any F € QCoh(M;(n)) we have

HO(Mi(n), F) & H (M (n), FY @ Q4 )Y,

Next, we quote another result by Meier which says that for a finite number of levels n the
dualizing sheaf on the stack M (n) is of a very particular form, namely a tensor power of the

line bundle w. (Un)surprisingly, this finite list of levels n coincides with the list of Theorem
5.4.1.

Lemma 5.5.2 ([52, Proposition 5.7]). We have that Qlﬂl(n) > W% jf and only if n €
{1,...,8,11,14,15,23}.

Last, we show that whenever le is a tensor power of w, the ring spectrum Tmf;(n) is

1(n)

Anderson self-dual.

Theorem 5.5.3. We have ZT™1(") ~ ¥ Tmf|(n) as Tmf;(n)-modules if and only if b is
1 ~, H _ b—-1

odd and Qﬂl(n) = W™ withm = 5.

Proof. The case of n = 1 is contained in [63] and [62]. For n > 2 this is [52, Proposition

5.12]. Let us write R = Tmf;(n) for brevity. By Serre duality the pairing

HO(Ml(n),w‘@_i_m) ® Hl(ﬂl (n), w®i) — Hl(ml (n),w® ™ =7
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is perfect; note that all occurring groups are finitely generated Z-modules and torsion free
by [52, Lemma 5.9] and this implies that m.(R) is torsion free as well. Let D be a generator

of HY(Mj(n),w® ™) =2 7_9,,_1(R) = Z. We have an isomorphism

o

¢: mi(ZR) = Homay(7_;(R),Z).

Write § for the element in 7a,,,1(Z®) with the property that ¢(6)(D) = 1. The element §
corresponds to a R-linear map d: 2" +t1R — ZR. We obtain the following commutative

diagram
» Id
Ticom-1(R) ® 7_i(R) 224 7(ZR) @ 7 (R) 229 Homap(r—s(R),Z) ® 7—i(R)
Z.

i 5
T_om-1(R) i)

The left vertical map is a perfect pairing by Serre duality and the right vertical map is a
perfect pairing by definition. It follows that the map ¢ induces an isomorphism

8*: Wi_Qm_l(R) — Wi(ZR)

for all i and therefore ¢ is an equivalence of R-modules.

We summarize the Anderson-Gorenstein-Serre duality interlace in the following diagram.

automatic
Tmf;(n) is Anderson self dual

tmf(n) has Gorenstein duality b=—a—1
of shift a T of shift b
Celly (tmf; (n)) ~ xez»i () conditions 2T (n) ~ 328 Tmfy (n)
a=—b—1
automatic
b=2m+1

M1 (n) has Serre duality

“of shift m”
1 ~  K—m
le(n) =)



Chapter 6

Toy Examples

In this chapter we put to work the framework we have set and study two toy examples of ring
(G-spectra that could exhibit equivariant Gorenstein duality. We look at the ring Cs-spectra
of connective topological forms with level 4 and level 6 structure, respectively. These were
the natural candidates to look at after Greenlees and Meier studied the ring Co-spectrum of
topological modular forms with level 3 structure in [27]. We summarize the overall attack
strategy in the following recipe.

Strategy. Let G = (Z/n)*. To study equivariant Gorenstein duality for tmf;(n) we proceed
as follows.

(a)

Identify the moduli stack Mj(n). In the cases of interest M (n) is either a weighted
projective stack or a PL.

Calculate the non-equivariant homotopy groups of Tmf;(n) via the descent spectral
sequence.

Deduce the non-equivariant homotopy groups of tmf;(n). In the cases of interest, with
the exception of n = 23, tmf;(n) can be constructed as the naive truncation of Tmf; (n)
and so w¢(tmf;(n)) can be readily obtained from #¢(T'm f1(n)).

Identify the G-action on 7¢(tmfy(n)) via either the Tate normal form or the Eisenstein
method.

Calculate the RO(G)-graded homotopy groups of tmf;(n) via a Tate diagram argument
or the slice spectral sequence.

Provided that Wﬁ(tmfl(n)) is Gorenstein, try to obtain a Gorenstein duality statement
by checking the orientability condition.

Descend to tmfy(n).

90
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6.1. Topological modular forms with level 4 structure

Write M (4) for the moduli stack of elliptic curves with a chosen point of exact order 4 and
M (4) for its Deligne-Mumford compactification. For the sake of brevity we will write Z for
z[4].

Lemma 6.1.1 ([51, Example 2.1]). The moduli stack M (4) is a weighted projective stack
M (4) ~ Pz(1,2).
Lemma 6.1.2. The non-equivariant homotopy groups of tmf;(4) are given by
e (tmf(4)) = Zlay, as],
where |a;| = 2i.
Proof. We run the descent spectral sequence for Tmf;(4). The Es-page is given by
B3t = H* (M, (4),w®?)

and the spectral sequence converges to ¢ (Tmf(4)). The moduli stack M (4) has coho-
mological dimension 1 and so the spectral sequence collapses at the F»-page. Furthermore

M (4) has Serre duality with a dualizing sheaf Qlﬂ1(4) >~ w®=3 in the sense that

HY(My(4),F) 2 H' (M1(4), F¥ @ w®?)Y,
for any quasi-coherent sheaf F on M;(4), see [52]. Thus we can write

for ¢t even
) = HO(My(4),w® =5 )V for ¢ odd.

HO (M (4), w2
HY (M, (4), 0™

2)
41
2

7y (Tmfq(4)) = {

There are certain structural features that can be observed in the homotopy groups of Tmf(4)
as a consequence of the presence of Serre duality on the moduli stack. By Riemann-Roch
HO(M;(4),w®"%) =0 for i > 0 and so

75:(Tmf1(4)) = HY (M (4), w®") = 0,
for ¢ < 0, i.e. all negative homotopy groups of even degree vanish. Furthermore
541 (Tmf1(4)) = HO (M, (4),0%77 1Y =0,

for ¢ > —4, i.e. all positive homotopy groups of odd degree also vanish. We depict the
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structure of 7¢(Tmf(4)) in the picture below.

gtiolOojoojo|Oojo(o|olo|0ol0
HO Ojo/ooldjoglo|Ojo do
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10

The sheaf w can be identified with O(1)p,(1,2) and using [54, Proposition 2.5] we see that

Zlai,as]  fors =10
H*(Py(1,2),w®) = < Zay, as]V  for s =1
0 for s > 2

or
7¢(Tmf(4)) = Za1, as] ® X~ Z[ay, az)".

Due to the gap between 7 (Tmf;(4)) and 7%y (Tmf;(4)) we can obtain the connective
cover tmfy(4) as the naive truncation of Tmf;(4) and deduce

ﬂ':(tmfl (4)) = Z[al, ag} .

Lemma 6.1.3. C acts on 7l(tmf;(4)) by fixing az and sending a; to —a.

Proof. This is analogous to the level 3 case and follows immediately from the Tate normal
form method. O

Lemma 6.1.4. The RO(Cs)-graded equivariant homotopy groups of tmf;(4) are given by
7$2 (tmf (4)) 2 Zas, b, u*'],

where |as| =2+ 20, |b| =1+ 0 and |u| =2 — 20.

Proof. We run the RO(C5)-graded homotopy fixed points spectral sequence form tmf;(4).

Its E>-page is given by

EY(r) = HY(Cy, w5, ,(tmf1 (4) A S™7)) = 757

piro(tmf1(4)").

As the group order is invertible in the coefficient module only the H entries are non-zero
and thus we get

e (tmfy (4))2 for ¢t even

e (tmf; (4 /\S_’I‘O'C2g
7o (tmfy (4) ) {E_TE_Qﬂf(tmfl(‘l))CQ for t odd.
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We display this information in the picture below.

o-Z .
6
4
ut
2 ©®— —®
- as
o
0 b

|
[\
=®

6 -4 -2 0 2 4 6 8 10 12 14 16 1-Z

Blue lines indicate copies of the ring Z[a?, az] and red lines indicate copies of the same ring
shifted by —2. Writing this out we get

752 (tmf1 (4)) = Zag, b, utY),
where || =2+ 20, [b| = 1 + 0 and |u| = 2 — 20 as claimed. O
Corollary 6.1.5. tmfy(4) is Gorenstein of shift « = —5 — 30
Homyyg, (4)(HZ, tmf 1 (4)) ~ S HZ.

Proof. This follows from the description of the ring 7T§2 (tmfy(4)) obtained above with
Gorenstein shift calculated as o = —(|az| + |b]) — 2 = —5 — 30. O

From the shape of the RO(C5)-graded coefficients the following is immediate.

Corollary 6.1.6. tmf;(4) is strongly even. O

We next want to move on to Gorenstein duality, so let us collect the necessary ingredients.

(i) By Corollary 6.1.5 tmf;(4) is Gorenstein of shift « = —5 — 30

Homy s, (4) (HZ,tmf(4)) ~ NI,
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(i) By Lemma 3.4.7 the Anderson Z-dual of tmf;(4) is a Matlis lift of Z/Z

Homgy, 4y (HZ, 2™ W) ~ Hompz(HZ, Z"%).

(iii) By Example 3.1.8 the Anderson Z-dual of HZ is given by

ZHL ~ ¥ [,

Combining (i), (ii) and (iii) we get the following equivalences
Homypy, (4)(HZ, tmfy (4)) =~ S5 HZ ~ Homgpy, 4y (HZ, £~ 0203,

We would like to remove the Homy,,¢, (4)(HZ, —) on both sides from this equivalence. Re-
calling the discussion from Section 3.6 of Chapter 3 we can do this provided the right action
of

& = Endgpy, 4y (HZ, HZ)

on both sides of the equivalence is the same. At the moment, this is a conjecture.
Conjecture 6.1.7. There is a unique £-module structure on HZ.
Corollary 6.1.8. Provided the conjecture holds, we have the following corollaries.

(1) tmfy(4) has equivariant Gorenstein duality of shift —7 — o

Cellyz(tmf;(4)) ~ y—T—oytmf1(4)

(2) Tmf;(4) is Anderson self-dual of shift 6 + o

7 (@) ~ »6+e g (4).

We can descend to tmfy(4) and deduce that it is also Gorenstein.

Lemma 6.1.9. tmfy(4) is Gorenstein of shift a = —10.

Proof. This follows directly once we observe the right things, namely that

(1) the order of Cy is invertible in 7¢(tmf;(4)) so the HFPSS collapses (its E2-page is
concentrated in the 0-th column) giving 7¢(tmfy(4))%2 = 72 (tmf; (4)"),

(2) tmfy(4) is cofree, i.e. tmfy(4)" ~ tmfy(4).
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Combining these two facts we get

7. tmfo(4) = 7€ (tmf; (4)2)
702 (tmf (4))
7€ (tmfy (4)C?

Z[a% a2]7

1R

I

where |a?| = 4 and |ag| = 4. This is Gorenstein of shift a = —(4 +4) — 2 = —10 which
agrees with the shift predicted by the computation of the Hilbert series of mf,(I';1(4); C) in
Section 5.4 of Chapter 5. O

6.2. Topological modular forms with level 6 structure

The calculations for the case n = 6 proceed analogously. Write M (6) for the moduli stack
of elliptic curves with a chosen point of exact order 6 and M (6) for its Deligne-Mumford
compactification. The group acting on the stack is (Z/6)* = Cs. For the rest of this section
we write Z for Z[}].

Lemma 6.2.1 ([51, Example 2.5]). The moduli stack M1(6) is a projective line
M, (6) ~ P},
Lemma 6.2.2. The non-equivariant homotopy groups of tmf(6)) are given by
i (tmf1(6)) = Z[z, y],

where |z| = |y| = 2.

Proof. The proof is analogous to the level 4 case. O

Lemma 6.2.3. Cy acts on w&(tmf;(6)) by sending x to —x and y to —y.

Proof. Only the Eisenstein method is tractable here. We know that mf;(6). is generated
by two modular forms in degree 1 and that there are no cusp forms of weight 1. We write a
basis of the weight-1 Eisenstein subspace mf;(6); = £1(6); in terms of modified Eisenstein
series. Let Ag 1 be the set of triples ({1, ¢},t) such that ¢ and ¢ are primitive Dirichlet
characters modulo u and v with (0¢)(—1) = —1 and tuv | 6. Then the set

{EP* ({6, 0},1) € Aqa

gives a basis for £1(6);. There are no non-trivial primitive Dirichlet characters modulo 2 and
6 so the only possible values for ({u,v},t) are ({3,1},1) and ({3,1},2). Thus a basis of
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mfy(6); is given by the modified Eisenstein series E¥3?1:1 and E¥3%13 and the Cs-action
on the basis elements is through the character 13 (¢; is the trivial character). O

Lemma 6.2.4. The RO(Cs)-graded equivariant homotopy groups of tmf;(6) are given by
7$2 (tmfy (6)) = Z[o, w,, u™],

where |v| = |w| =14 o and |u| =2 — 20.

Proof. We run the RO(C3)-graded homotopy fixed points spectral sequence for tmfy(6).
The Es-page is given by

EYI(r) = HY(Ca, 75, (tmf1 (6) A S777)) = 72, _(tmf (6)").

p+ro

As the group order is invertible in the coefficient module only the H entries are non-zero
and thus we get

Yrre(tmf(6))¢2 for ¢t even

e(tmf (6 AS—TJCQ%
i (tmfy (6) ) {ET(ﬂi(tmfl(G)) ®6)“2  for t odd.

We display this information in the picture below.

o-Z
6
4
1 7
2 u@F ,
®-
v, .
0 :
-2 ®
—4 <2 tmf1(6)
6 -4 -2 0 2 4 6 8 10 12 14 16 1-Z

Here, blue lines indicate copies of Z[x2,3?] @ xyZ[x?,3?] and red lines indicate copies of
rZ[x?%,y?) © yZ[x?, y?]. Writing this out we get

7$2 (tmf 1 (6)) = Z[o, w, u*!],

where |0| = |w| =1+ 0 and |u| =2 — 20 as claimed. O
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Corollary 6.2.5. tmf;(6) is Gorenstein of shift « = —4 — 20

HOHLmlf1 (6) (HZ, tmf (6)) ~ 2727201{2,

Proof. This follows from the description of the ring 7'['22 (tmf;(6)) obtained above with
Gorenstein shift calculated as by o = —(|0] + |w]) —2 = —4 — 20. O

From the shape of the RO(C2)-graded coefficients the following is immediate.

Corollary 6.2.6. tmf;(6) is strongly even. O

To obtain Gorenstein duality we need to remove the Homy,¢, (6)(HZ, —) from both sides of
the equivalence

Homng, (6) (HZ, tmf (6)) ~ 542 HZ ~ Homypg, (6) (HZ, £~ Z™1(©),

We can do this provided that the right action of

& = Homyys, 6)(HZ, HZ)
action on both sides of the equivalence is the same. This is again a conjecture.
Conjecture 6.2.7. There is a unique right £-module structure on HZ.

Corollary 6.2.8. Provided the conjecture holds, we have the following corollaries.

(1) tmf;(6) has equivariant Gorenstein duality of shift —6

CellHZ(tmfl (6)) ~ E_GZtmfI(ﬁ)‘

(2) Tmf;(6) is Anderson self-dual of shift 5

7m0 ~ 525 Timf | (6).

We can descend to tmfy(6) and show that it is also Gorenstein.

Lemma 6.2.9. tmf((6) is Gorenstein of shift —6.
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Proof. Again, the HFPSS collapses as the order of Cy is invertible in 7¢(tmf;(6)) and
tmf(6) is cofree, so we get

my(tmfo(6)) 2 7% (tmf1(6)°2)

w2 (tmf1(6))

¢ (tmfy(6))°2

Zlz, xy, ]

= ZXY, Z] (xy=22),

1R

1

where | X| = |Y| = |Z| = 4. This is Gorenstein of shift a = —(|X|+|Y|+|Z|)+2+8 = —6
which agrees with the shift predicted by the computation of the Hilbert of mf,(I'1(6);C) in
Section 5.4 of Chapter 5. O



Chapter 7
Future Directions

In this final chapter we record two directions in which the author tried to further pursue the
ideas discussed so far.

The first is in line of reconstructing the Gorenstein duality picture for another entry from the
list in Theorem A. The natural candidate in order of increasing level and increasing group
size is the ring Cy-spectrum tmf;(5). We review the state of affairs on this matter in Section
7.1 below and report on the progress made so far.

The second direction which was partially explored is the computation of the (non-)equivariant
Picard groups of the ring spectra of topological modular forms present in Theorem A. We
review this in Section 7.2.

7.1. Topological modular forms with level 5 structure

Topological modular forms with a level 5 structure have been studied previously in the
literature. We summarize the relevant for us results below.

Let M (5) denote the moduli stack of elliptic curves with a chosen point of exact order 5
and write M; (5) for its Deligne-Mumford compactification. Let Z = Z[1].

Lemma 7.1.1. The moduli stack M (5) is a projective line, i.e.
M (5) = Py, = Proj(Zz, y)).
Proof. See [6] or [51, Example 2.5] for an alternative argument. O
Lemma 7.1.2 ([6]). The non-equivariant homotopy groups of tmf;(5) are given by
mi(tmfy(5)) = Zlz, y,
where |z| = |y| = 2.

Lemma 7.1.3. Cy acts on w&(tmf;(5)) by sending x toy and y to —x.
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Proof. This was first done in [6, Lemma 2.1.2]. One can give an alternative proof via the
Eisenstein method which is also tractable here. d

Behrens and Ormsby have compute the Z-graded equivariant homotopy groups of TMF(5)
in [6]. The iterated Tate argument described in Section 1.9 was specifically designed to attack
the level 5 computations. It is the hope of the author that using the results of Behrens and
Ormsby one can bootstrap the iterated Tate argument and recover the full RO(C}y)-graded
homotopy type of tmf;(5) which is a necessary ingredient in the recipe one uses to check
for Gorenstein duality. The author has made partial progress with this strategy in recovering
the full RO(C3)-graded homotopy groups of tmfy(5).

An alternative approach for attacking the level 5 computations emerged from discussions
with Meier and Zeng. In [34] Hill, Hopkins and Ravenel define a ring Cy-spectrum, denoted
there by kg, by norming up the real bordism spectrum MUg to a Cs-spectrum and then
killing a range of Cs-equivariant homotopy elements. There are strong indications that
the spectrum kjy is secretly tmfy(5) undercover. The non-equivariant and Cs-equivariant
groups of the spectra tmf; (5) and kg fully coincide and there are hints that the same is true
Cy-equivariantly. If one can show that this is indeed the case, the slice spectral sequence
computations done in [34] will allow one to predict the potential Anderson self-duality shift of
Tmf;(5), by arguments analogous to the level 3 computations of Hill and Meier in [35], and
from there the potential Gorenstein duality shift of tmf;(5). This is a work in progress.

7.2. Equivariant Picard groups

The ring spectra of topological modular forms with level structure are in addition commu-
tative rings. This allows one to consider symmetric monoidal co-categories of modules over
them which give rise to well-behaved invariants of algebraic or algebro-geometric type. One
such invariant is the Picard group and its equivariant generalization.

Let (C,®,1) be a symmetric monoidal category. Following [49], define Pic(C), the Picard
group of C, to be the group of isomorphism classes of invertible objects in C, i.e. objects
X € C such that there exits an object Y € C such that X ® Y = 1. If (C,®,1) is a
symmetric monoidal co-category there is a more fundamental invariant of C which remembers
all isomorphisms and higher isomorphisms. Define Pic(C), the Picard oo-groupoid of C, to
be the co-groupoid of invertible objects and equivalences between them. Clearly we have
mo(Pic(C)) = Pic(Ho(C)). As C is a symmetric monoidal oo-category, Pic(C) inherits the
structure of a group-like E-space and thus, by a result of Boardman-Vogt and May, there
is a connective spectrum pic(C) with Q> pic(C) ~ Pic(C). Given a ring spectrum R we can
now define the Picard group of R to be Pic(Ho(R-mod)) and the Picard space Pic(R) to
be Pic(R-mod), where R-mod denotes the co-category of R-modules. If R is in addition
commutative, then the category R-mod is even a symmetric monoidal co-category and we
define the Picard spectrum pic(R) to be pic(R-mod).
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One can add an equivariant dash to this. Let G be a finite group, R be a commutative ring
G-spectrum and write R-modg for the category of equivariant R-modules. We have the
following proposition, see [35, Section 6].

Proposition 7.2.1. If R is cofree and S — R is a faithful G-Galois extension in the sense
of Rognes then there is a monoidal equivalence Ho(S-mod) ~ Ho(R-mod¢) and therefore
Pic(S) = Pic(R-modg).

Following [35] we denote the group Pic(R-mod¢) of invertible equivariant R-modules by
Picg(R) and refer to it as the equivariant Picard group of R. This group has been computed
for the ring spectrum of topological modular forms with level 3 structure in [35].

The author would like to complete the duality story of the tmf;(n) spectra with a compu-
tation of their corresponding Picard groups. The non-equivariant Picard groups for levels 4
and 6 have been computed by the author and the equivariant computations are a work in
progress. If sufficient progress is made in the reconstruction of the level 5 picture, one can
hope to also look into the, much harder, computation of the Picard group for level 5.
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Glossary

A-arithmetic fracture square, 17
A-cellular, 17
A-cellularization, 17
A-complete, 16
A-completion, 17
A-equivalence, 16
A-null, 16
A-nullification, 17
G-spectrum

built from, 57

even, 27

finitely built from, 57

orthogonal, 19

proxy-small, 57

small, 57

strongly even, 28

Tate, 32
E-lift, 60

of Matlis type, 60
Cech complex, 66

abstract formal group, 47
Anderson dual, 55

Brown-Comenetz dual, 53
Burnside category, 21

category

fibred in groupoids, 39

of G-spectra, 20

of quasi-coherent sheaves, 49
coarse moduli space, 45
coinduction functor, 20
congruence subgroup, 72
covering, 38

descent datum, 40
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effective, 40

effectively constructible, 58
elliptic curve

over a field, 45

over a scheme, 45
even periodic

derived stack, 49

enhancement, 49

family of subgroups, 25

fibre product of stacks, 41

fixed points functor
categorical, 24
geometric, 26

formal group, 48

formal group law, 48

formal scheme, 47

formal spectrum, 48

global sections, 49
Gorenstein condition, 62
Gorenstein duality, 63
Grothendieck topology, 38

homotopy fixed points spectral
sequence
RO(G)-graded, 29
regular, 30

induction functor, 20

Koszul complex, 57
stable, 64
unstable, 65

Mackey functor, 21, 22
Burnside Mackey functor, 21
constant Mackey functor, 23



fixed point Mackey functor, 23
Matlis lift, 59
Matlis lifting property, 59
modular curve, 74
modular form, 73
moduli stack
of elliptic curves, 46
of elliptic curves with level structure,

47
moduli stack of formal groups, 48
morphism
of categories fibred in groupoids,
40

of elliptic curves, 45
of stacks, 41
representable, 42

orbit category, 22
orientably Gorenstein, 63

quasi-coherent sheaf
on a stack, 44
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Real orientation, 29
restriction functor, 20
restriction map, 23

Scandinavian notation, 32
site, 38
slash operator, 72
stable Koszul complex, 64
stack, 40
Deligne-Mumford, 43
derived, 49
quotient, 41
weighted projective, 42
subcategory
localizing, 57
thick, 57
substack, 43
closed, 43
open, 43

transfer map, 23
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