
 

 

Nano-Photonic Systems Incorporating Single  

III-V Semiconductor Quantum Dots 

 

Qingqing DUAN 

 

 

 

 

 

 

 

Submitted for the degree of Doctor of Philosophy 

Department of Physics and Astronomy 

The University of Sheffield 

August 2019 

 



ii 

 

 

 

 

 

 

 

 

Dedicated to my daughter Hermione, my partner and my parents. 

 

 

 

 

 

 



iii 

 

 

Abstract 

This thesis focuses on III-V semiconductors single quantum dot properties and on-chip 

optical cavities, which are potential building blocks for integrated quantum optical 

circuits. 

A fundamental investigation of electron and nuclear spin properties in GaAs/AlGaAs 

nanohole-filled droplet epitaxial dots is performed using photoluminescence and 

photoluminescence excitation spectroscopy. A close-to-zero electron g-factor for such 

QDs is revealed, opening up a potential route for independent control of on-chip QD spin 

qubits by electrodes. Optical manipulation of the nuclear spin is achieved with an efficient 

dynamic nuclear polarization degree as large as 65%. The internal structural properties 

of this type of quantum dots is investigated using nuclear magnetic resonance 

spectroscopy, revealing the direction and magnitude of strain. Nuclear spin relaxation 

times of such dots are measured with values over 500 s, indicating a stable nuclear spin 

bath. 

Numerical simulations, theoretical model calculations and experimental investigations 

are applied to on-chip photonic crystal molecules, demonstrating a continuous and 

simple route to tune the coupling strength and mode symmetry of the coupled states 

using end-hole displacement. This demonstration opens up the possibility of new studies 

of fundamental phenomena such as spontaneous symmetry breaking, long distance 

radiative coupling and superradiant effects. 

Narrow notch filtering and the Purcell enhancement of a single QD emission are achieved 

in waveguide-coupled ring resonator devices. Mode structures and transmission spectra 

are measured using photoluminescence spectroscopy measurements. Whispering gallery 

mode ring resonators provide a possible route to on-chip filtering and optical switching.  
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Chapter 1 

    

Introduction 

 

1.1        Outline and Scope of this Thesis 

This thesis focusses on a number of quantum dots (QDs) and photonic cavities that are 

relevant to the potential building blocks for integrated quantum optical circuits. 

    It starts with a chapter that introduces the fabrication of QDs, general physical 

properties of QDs, basic concept of cavity quantum electrodynamics (cQED) and cavity-

cavity interaction in III-V semiconductors. 

    Following the introduction chapter, Chapter 2 contains the details of the 

computational methods (Finite Difference Time Domain (FDTD) and Guided Mode 

Expansion (GME)) used to perform the simulations presented in subsequent chapters.  

    In Chapter 3, fabrication processes and experimental characterization methods of the 

photonic crystal L3 cavity and ring-resonator are presented in detail. The confocal 

spectroscopic setup used to characterize the nanohole-filled droplet epitaxial (NFDE) 

QDs is also introduced. 

  Chapter 4 presents the experimental investigations on electron and nuclear spin 

properties of nanohole-filled droplet epitaxial (NFDE) QDs grown by in situ etching and 

nanohole in-filling. Vanishing electron g factors (g < 0.05) and optical manipulation of 

the nuclear spin environment are demonstrated. The strain of QDs, revealed by nuclear 
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magnetic resonance (NMR) spectroscopy, is nearly three orders of magnitude smaller 

than in self-assembled dots. 

    Chapter 5 explores the cavity-cavity interaction in a photonic-molecule system by 

tuning the coupling strength and mode symmetry by end-hole displacement. Simulation 

results have been performed using FDTD and GME methods.  A theoretical model has 

been built to calculate and explain the mode splitting and symmetry exchange. 

Experimental results have been carried out and are in good agreement with both 

simulation results and theoretical analysis.  

    Chapter 6 presents the application of whispering gallery mode (WGM) ring resonators 

on spectra filtering. The mode structure and transmission of waveguide-coupled micro 

ring resonators have been characterized using photoluminescence spectroscopy, 

revealing ultra-narrow notches filtering effect and Purcell enhancement of a single QD.  

    Chapter 7 provides a summary of all the chapters and a proposal for potential future 

work. 

 

1.2        Growth of semiconductor quantum dots 

Self-assembled quantum dots are used throughout the work presented in this thesis as 

they exhibit excellent atom-like optical properties and controllability, which makes 

them ideal candidates for quantum optics experiments. They can also be used as an 

internal light source when excited by an external laser or pumped electrically. In this 

section, the growth mechanism of QDs will be briefly discussed. 

    Growth approaches of semiconductor quantum dots have been studied since the end 

of the 1980s. The most popular and commonly used techniques for growth of high 

quality QDs are those based on self-assembly growth [1]. Particularly, the Stranski-

Krastanow (SK) growth mode [2], a bottom-up approach, is an efficient mechanism to 

create nanostructures with a narrow bandgap and low defect density. The InAs QDs 

used in Chapter 5 and 6 are produced via molecular beam epitaxy (MBE) [3] based on 

the SK growth mechanism, during which crystalline layers of InAs are deposited on a 

GaAs substrate along the [100] plane. Due to the lattice-mismatch between the two 
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materials (~7%) and a critical thickness (about two monolayers) of the InAs, 3 

dimensional (3D) islands form, as illustrated in Figure 1.1. 

 

 

Figure 1.1: Illustration of the structure of an InAs/GaAs QD. 

In addition to the SK growth mechanism, other approaches for QD fabrication, such as 

thickness fluctuations in quantum wells [4, 5], combination of SK growth and in situ 

etching [6-8], and droplet epitaxy [9-13] etc, open up the opportunity to produce 

advanced QDs with distinct properties (strong confinement, large optical efficiency, high 

spatial symmetry, and so on), which is not possible by the SK growth mode alone.  

The experimental results presented in Chapter 4 are obtained on NFDE QDs formed 

by the droplet epitaxy technique. The NFDE QD sample is grown using solid source 

molecular beam epitaxy (MBE). As illustrated in the schematic picture of the fabrication 

processes (Figure 1.2), 11 monolayers of Ga are deposited on the GaAs (blue layer) 

buffer at 520 ◦C, forming Ga droplets (red dot) by lattice-mismatch. When the droplets 

are annealed under As flux, nanoholes with their edges exhibiting moundlike structures 
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along [1̅10] form due to As dissolution and Ga diffusion [6, 67]. A 7 nm of  Al0.44Ga0.56As 

layer (orange color) is then deposited on the top of nanoholes and form the bottom 

barrier. GaAs quantum dots are formed after the deposition of a 3.5 nm GaAs layer and 

a 112 nm Al0.33Ga0.67As layer due to the bandgap of the surrounding material is greater 

than that of the QD material. The cap layer consists of GaAs with a thickness of 20 nm.  

 

Figure 1.2: Schematic illustration of the nanohole-filled droplet epitaxy quantum dots 

formation (a)-(f). Blue colour is for GaAs. Red colour represents the Ga droplet. Green 

arrows indicate the As flux. Orange colour is the Al0.44Ga0.56As layer. The dashed black 

circles indicate the dot regions, which are formed due to their unique strain properties 

and the narrowing of the neighboring QWs. A schematic cross-section structure of the 

studied QDs in this work is shown in (f), based on the reported AFM studies (see 

reference [22] in chapter 4).  
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1.3        Physical properties of self-assembled quantum dots 

1.3.1      Density of States 

 

Figure 1.3: Comparison of the density of states D(E) and band structures of bulk material, 

quantum wells, quantum wires and quantum dots. 

 

   Quantum wells, wires and dots are structures that confine particles with 1, 2 and 3 

dimensional potential wells, respectively. As the length of confining dimensions 

becomes comparable to or smaller than the corresponding thermal wavelength, 

particles display quantum confinement behavior, which is characterized by the changes 

in the density of states. As illustrated in Figure 1.3, the density of states D(E) of a 

semiconductor crystal changes when reducing its dimensionality from bulk to quantum 

dot. Since a quantum dot is a structure with 3D confinement, electrons in a quantum dot 
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occupy discrete energy levels, characterized by a series of delta-functions in the density 

of states D(E). This discrete level structure resembles that of an atom, providing ideal 

candidates for implementing a qubit. 

 

1.3.2        Band Structure 

In this section, a brief introduction of the energy level structure of electrons (holes) 

confined in QDs is given. Generally, the electronic structure in momentum space (k-

space) of a material changes from a continuous band structure (continuous dispersion) 

to discrete energy levels as dimensionality reduces from 3D to 0D, as illustrated at the 

bottom of Figure 1.3. In bulk III-V semiconductors such as InAs and GaAs, the 

conduction band originates from s orbitals of the constituent atoms [14] whilst the 

valence band has dominant p-like nature with a small hybridization of d orbitals [15]. 

Therefore, electrons in the conduction band of a III-V semiconductor have an s-like 

wavefunction with zero orbital angular momentum (L = 0). The total angular 

momentum J=L+S, where S is the spin angular momentum. For an electron, |S| = Se = 1/2. 

As a result, the total angular momentum of the electron is J = Se = 1/2. Two projections 

of the spin are possible along the z-axis (mes,z = ±1/2) corresponding to the spin up and 

spin down (|↑〉 and |↓〉) state of the electron. 

However, for holes in the valence band of a III-V semiconductor, the configuration of 

angular momentum is more complex. The dominant p-like wavefunction gives an orbital 

angular momentum for holes of |L| = lh = 1 [110, 111]. Thus the eigenvalues of total 

angular momentum J are |L−S|=1/2 and |L+S|=3/2. These two eigenvalues give rise to 

two bands containing Jz = ±1/2 (for J=1/2) and Jz = ±3/2, ±1/2 (for J=3/2), respectively. 

The J=1/2 band corresponds to the low-lying energy band resulting from the spin-orbit 

splitting (∆) which is around 0.1 to 0.5 eV for typical III-V semiconductors [16]. For the 

holes in the J = 3/2 band, those with Jz = mhhj,z = ±3/2 are heavy holes (HHs) whilst those 

with Jz = mlhj,z = ±1/2 are light holes (LHs). The HH and LH bands are degenerate at the 

Γ point of a bulk semiconductor (as schematically shown in Figure 1.4). However, this 

degeneracy is lifted when the symmetry of the system is broken (e.g. present of different 

quantum confinement energies and strain). 
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Figure 1.4: Illustration of the typical band structure of a III-V semiconductor. The 

conduction band (blue) contains a single band which is split from the valence band by 

the bandgap (Eg). The valence band (red) contains three bands, the Heavy Hole (HH), 

Light Hole (LH) and Split-Off (SO) bands. The SO band is split from the other bands by 

the spin-orbit splitting (∆). At k = 0 (Γ point) the HH and LH bands are degenerate 

however they split with increasing k. 

 

     As mentioned above, carriers in a QD occupy discrete energy levels due to the 3 

dimensional quantum confinement. Taking an InGaAs QD as an example, the band gap 

of InGaAs is smaller than that of GaAs. This leads to 3D quantum confinement and thus 

the discrete density of states and atomic energy levels illustrated in Figure 1.3. For a QD 

prepared using SK growth technique, the confinement potential may be well 

approximated by a parabolic confinement potential. This results in a 2D-harmonic-

oscillator-like energy spectrum for the QD [17–19], as schematically shown in Figure 1.5. 

The height of a SK growth QD is generally much smaller than the diameter of their base 
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leading to stronger confinement of carriers along the vertical axis. As a result, the in-

plane orbital structure with circularly symmetric harmonic wavefunctions [19, 20] 

resembles the spherically symmetrical orbitals found in atomic physics (s, p, d, f...) 

(although shells don’t have the same angular momentum), and thus the electronic levels 

in a SK QD are denoted using s, p, d, f…(see Figure 1.5). In symmetric dots, selection rules 

only allow valence band electrons to be excited to the conduction band shell with the 

same label (excluding a weakly allowed s → d transition) [20, 21]. In asymmetric QDs, 

this selection rule may be eased due to shell mixing [20, 21]. 

 

 

Figure 1.5: Discrete electronic structure of a QD with s, p, and d shells occupied by 

carriers. Electron spin up and down are labeled as ↑ and ↓, respectively. The spin up and 

down states of holes are denoted by ⇑ and ⇓, respectively. Each shell may contain more 

than one pair of electron and hole with opposite spins. The energy spacing of the 

conduction band shells is significantly larger than those in the valence band for typical 

InGaAs self-assembled QDs [22]. The difference of electron spin (Se = ±
1

2
) and hole spin 

(Sh = ∓
1

2
) is ∆𝑆 = ±1for the s-shell bright exciton states, highlighted in red regions. The 

LH and SO bands are ignored for the purposes of this figure. 
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1.3.3        Bright Excitons and Dark Excitons 

In semiconductors, an exciton is a hydrogen-like quasiparticle consisting of a bound pair 

of an electron and a hole. It releases its energy via electron-hole recombination, 

governed by the selection rules. During a radiative recombination transition process of 

an exciton, the difference of the spins between the electron and hole in the exciton must 

be ±1. The exciton with electron spin and hole spin satisfying the optical selection rules 

is called a bright exciton, which emits a photon when it recombines. When the electron 

spin and hole spin of an exciton are unable to satisfy the selection rules, the direct 

recombination of exciton is forbidden; as a result, no photon emission can be observed. 

This type of exciton is referred to as the dark exciton (optically forbidden exciton) and 

usually has a long lifetime. In a QD, bright and dark excitons can be formed due to the 

Coulomb interaction and the different electron-hole spin combination. As illustrated in 

Figure 1.5, bright exciton states (ΔS = ±1 , highlighted in red region) have opposite 

electron/hole spins. However, dark excitons (ΔS = ±2) correspond to electron-hole 

pairs with the same spins. In QDs, the exchange interaction may couple the bright and 

dark states [23], resulting in an increase of the oscillator strength for the dark exciton, 

which can be observed in photoluminescence spectra [23-25]. In Chapter 3, dark and 

bright excitons will be discussed with reference to experimental results. 

 

1.3.4        Hyperfine Interactions 

For a typical InGaAs QD prepared by the SK growth technique, the QD itself comprises 

~106 nuclei. The nuclear spin bath, which is usually described by an effective magnetic 

fields known as the Overhauser field, interacts with the carriers in the QD via the 

hyperfine interaction [26-28]. In turn, a single nuclear spin also experiences a hyperfine 

interaction from the confined carrier with the corresponding effective field known as 

the Knight field [27–29]. 

   The average magnitude of the random Overhauser field in a typical InGaAs QDs has 

been found to be around 30 mT [30-32] at zero external magnetic field. This effective 

magnetic field fluctuates in time with a measured standard deviation of 14 mT [31]. 

Since the fluctuation time of the Overhauser field is usually much longer than the 
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lifetime of the carriers [30], it can be considered as a quasi-static field during the carrier 

lifetime [33]. However, when repeating a measurement, the carriers in a QD experience 

different magnetic fields and hence different precession frequencies each time, resulting 

in dephasing [34]. The time-dependent Overhauser field also induces the emission 

linewidth broadening for QDs if the measurement is slow relative to the nuclear spin 

dynamics [30, 35]. 

 

1.4        Quantum Dots in Magnetic Fields 

When applying a magnetic field B to a quantum dot, magnetic field induced level 

splitting due to the opposite signs of mj for the two s-shell electrons and holes occurs. 

The splitting is determined by 

                                                        E Z
i = g i μ B B                                                                     (1.1) 

with gi being the Landeé g-factor for the carrier or exciton denoted by the index i (e → 

electron, h → hole, X → neutral exciton) and μB being the Bohr magneton. As the value of 

gi contains a factor of mj, the measured hole g-factor evaluated according to the Zeeman 

splitting includes an additional factor of 3 compared to the electron, allowing the hole 

(mj = ±3/2) to be regarded as having a pseudospin of ±1/2. Since the exciton is a quasi-

particle of combined electron and hole, its g-factor is defined as gX = gh − ge. In addition 

to Zeeman effect, a quadratic diamagnetic shift is also observed for the neutral exciton 

[36–39]. This effect shifts the exciton luminescence to higher energy in magnetic field 

irrespective of spin. Hence the total energy shift of an exciton in a magnetic field may be 

described by 

                                                     ∆E = γ1B + γ2B2                                                                                              (1.2)  

with γ2 being the diamagnetic coefficient and γ1 = Sz gX μB/2. 

 

1.5          Quantum dot-cavities interaction 
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1.5.1        Typical Cavities 

In recent decades, various optical microcavities that can couple to QDs have been 

developed. As the exciton emission from MBE-grown QDs is generally sharp, optical 

cavities with small mode volume and high quality factor are needed for achieving 

efficient QD-cavity coupling. Photonic Crystal Cavities (PCCs) are one type of ideal 

candidates to satisfy these crucial condition of coupling. Artificial PCCs are fabricated by 

patterning a periodic structure from two materials with different refractive index. This 

creates a structure analogous to a crystalline lattice for electrons, resulting in a photonic 

band structure for light similar to the electronic band structure of semiconductors. The 

destructive interference of light due to the periodic refractive index difference results in 

a gap opening in the photonic band structure. By manipulating the periodicity, the 

photonic band gap may be tuned. Similar to the localized electronic states induced by a 

defect in crystalline lattices, when a defect is introduced into the photonic crystal, the 

propagation of photons with energies falling within the band gap will be heavily 

suppressed, forming localized optical cavity modes in the defect region. 

    In the III-V semiconductors used in this work, PCCs are formed by EBL etching of air 

holes in the semiconductor material. As this method only produces a 2D PCC, the sample 

beneath the cavity is also etched away to produce an air-clad slab with confinement in 

this axis arising from total internal reflection (TIR) at the slab-air interfaces. Two 

common types of PCCs are illustrated in Figure 1.6 ((a) and (b)), known as H1 and L3 

cavities, where 1 and 3 holes are respectively omitted from a PhC slab. One of the 

advantages of photonic crystal structures is that it is relatively easy to engineer in-plane 

emission for optical circuit devices. 

   Micro-ring (Figure 1.6(c)) and Micro-disk (Figure 1.6(d)) cavities are formed from a 

ring (and a disk) of etched semiconductor attached to the wafer by a thin pedestal. 

Optical confinement is provided by TIR in all three directions, resulting in Whispering 

Gallery Modes (WGMs) with high quality factor. A drawback of micro-ring and micro-

disk cavities is that the emission direction is not well-defined, this may be overcome by 

fabricating waveguides close to the disk but at the cost of reduced Q-factor. 

    Micropillar cavities shown in Figure 1.6(e) are fabricated by etching the wafer with 

Distributed Bragg Reflector (DBR) mirror [40] layers into micro-cylinders protruding 
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from the sample with TIR providing 2D confinement. The DBR mirror layers provide the 

final dimension of confinement. Similar to that of a Vertical Cavity Surface Emitting 

Laser (VCSEL) device [41], the emission of the micropillar is well-defined along the pillar 

axis which allows efficient optical pumping and collection. However, this can be easily 

applied to a circuit device where in-plane emission is required. 

 

 

Figure 1.6: Schematics of the main types of optical microcavity. The H1 (a) and L3 PCCs 

(b) comprise a suspended membrane surrounded by air. The H1 PCC (a) is formed by 

omitting a single air hole from the lattice. For the L3 PCCs (b), three air holes in a line 

are omitted. The micro-ring and micro-disk cavity (c and d) consist of an etched ring 

(disk) of semiconductor supported by a thin pedestal. A micropillar cavity (e) comprises 

a cylindrical pillar with DBR layers at the top and bottom. 
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1.5.2        Quality Factor of Cavity 

One of the most important parameters characterizing an optical microcavity is the 

quality factor Q. It is a crucial parameter for achieving both Purcell enhancement and 

strong exciton-photon coupling. The Q factor is defined as the inverse loss rate from the 

cavity, and can be expressed as 

                                                         𝑄 = 𝜆/∆𝜆                                                          (1.3) 

or                

                                                                             𝑄 = 𝜔/∆𝜔,                                                        (1.4) 

where 𝜆  and 𝜔  are the resonant wavelength and the angular resonant frequency, 

respectively; ∆𝜆  and ∆𝜔  are the full width at half maximum (FWHM). Due to the 

limitation of calculating ∆𝜆  or ∆𝜔 , it is unfeasible to use Eq. (1.3) or (1.4) for high Q 

calculations. Based on the definition of Q factor, another common expression for Q can 

be written as     

                                  𝑄 = 𝜔(
𝑒𝑛𝑔𝑒𝑟𝑦 𝑠𝑡𝑜𝑟𝑒𝑑

𝑝𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑠
) ,                                     (1.5) 

where 𝜔 is the angular frequency when the stored energy and power loss are measured.  

The definitions are equivalent in the high Q limit, a regime in which Q may be considered 

approximately equal to the number of oscillations required for the system’s energy to 

drop to e−2π of its former energy without further excitation [42]. 

   An exponentially decaying intensity I (t) = I (0) e−t/τ corresponds to an amplitude A (t) = A 

(0) e−t/2τ . Fourier transforming A (t) yields a Lorentzian line shape [43]: 

                                                                  𝐿(𝜔) =
𝜏−1

2𝜋

1

(𝜔−𝜔0)2+(𝜏−1/2)2
                                     (1.6) 

It is then clear that the full width at half maximum ∆𝜔 = 𝜏−1, and thus  

                                                                          𝑄 = 𝜔𝜏 = 𝜔𝜅                                                                  (1.7) 

with 𝜅 =
1

𝜏𝑐𝑎𝑣
 (𝜏𝑐𝑎𝑣 is the cavity photon lifetime) being the photon decay rate. Table 1 

shows typical values of the mode volume (Vm) and Q factor for five of the most common 

types of semiconductor optical microcavity. The parameter Q/Vm is also calculated as 

this represents a figure of merit for the strength of interaction between a cavity and a 

QD (see Section 1.5.3). As can be seen in Table 1, the PhC cavities have significantly 
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smaller mode volume. This allows them to couple to the QD with a much stronger 

coupling strength (see Section 1.5.3). This, together with the in-plane geometry makes 

PCCs the most attractive cavities for the circuit architecture. 

 

 

Table 1: Table of state-of-the-art mode volumes (Vm) and Q-factors for a number of 

common semiconductor optical microcavity implementations [44]. 

 

1.5.3        Basic Concept of Cavity QED 

 

 

Figure 1.7: Schematic picture of a coupled cavity-QD system. The system is characterized 

by parameters g, 𝜅 and γ.  Coupling strength between the cavity photons and the QD is 

described by g. The rate of leakage from the cavity mode is represented by 𝜅, and γ is a 

rate incorporating both decay and dephasing of the QD state. 
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Cavity Quantum Electrodynamics (cQED) is the research field focusing on the 

interactions between a quantum emitter and an optical cavity. The light-matter 

interaction is enhanced when a quantum emitter is placed in the light field, confined in 

an optical cavity. Over the past decades, cQED has been widely studied, and important 

predictions of quantum optics have been experimentally verified using atom-cavity 

coupling system [45]. As a solid state implementation of cQED, in the semiconductor QD-

cavity coupling systems, microcavities fabricated using lithographic technique can be 

far smaller than those used in atomic experiments, allowing them to be easily 

incorporated onto a single chip. 

    Furthermore, useful effects such as brighter and more indistinguishable single photon 

sources, enhancement of weaker emission channels such as LA phonon-assisted 

emission [46-49] and ultrafast optical switching [50–52], have been developed using 

semiconductor QD-microcavity coupling systems [53, 54]. In this section the basic 

concepts of cQED are given. 

     For a coupled QD-cavity system, two parameters of the optical cavity define the 

performance coupling system [230]. The first one is the Q factor discussed in Section 

1.5.2. The second one is the mode volume Vm which is defined by Eq (1.8) [55, 56]: 

                                   𝑉𝑚 =
∫𝑑3𝑟𝜖(𝑟)|𝐸(𝑟)|2

𝑚𝑎𝑥{𝜖(𝑟)|𝐸(𝑟)|2}
                                    (1.8) 

Here 𝜖 is the relative permittivity and E is the amplitude of the electric field. 

With these two parameters, the coherent coupling strength g of the QD-cavity system is 

then given by Eq (1.9): 

                                                 𝑔 = 1
ℏ
√
ℏ𝜔
2𝑉𝑚
𝜇                                           (1.9) 

where μ is the dipole moment of the QD and it is assumed that the QD is placed at the 

maximum of the light field 𝜖(𝑟)|𝐸(𝑟)|2. These parameters are illustrated in Figure 1.7. 

According to the coupling strength, different operation regimes of the cQED system can 

be defined. 
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    In the weak coupling regime of a QD-cavity coupling system, the incoherent decay 

processes, such as cavity losses (κ) or QD decay and dephasing (γ), are dominant. Hence 

the definition of weak coupling is: 

                                                                𝑔≪𝜅,𝛾                                              (1.10) 

In this regime, the Purcell effect [55], where the spontaneous emission rate is either 

enhanced or suppressed by the cavity depending on the cavity-QD detuning, is expected. 

This phenomenon is well-observed in QD-cavity systems [57–59] and has been widely 

used in developing highly efficient single [60] and entangled [61] photon sources. If the 

cavity is resonant with a QD in the center of the cavity mode, the Purcell factor (𝐹𝑃) can 

be defined as: 

                                                            𝐹𝑃 =
3

4𝜋2
(
𝜆𝑐
𝑛
)
3
(
𝑄
𝑉𝑚
)                                            (1.11) 

where λc is the cavity wavelength and n is the refractive index of the cavity material. 

     In the strong coupling regime of a QD-cavity coupling system, the coherent interaction 

between the QD and the cavity field is dominant: 

                                               𝑔≫ 𝜅,𝛾                                                      (1.12) 

In this regime of coupling, vacuum Rabi oscillations [62] in the time domain with 

population coherently oscillating between the QD and the cavity field can be observed. 

In the frequency domain this is characterized by the splitting of peaks corresponding to 

hybrid light-matter states (polariton states) with a splitting of ΩR = 2g. The figure of 

merit for a strongly coupled system is the ratio Q/√Vm. Higher quality factor Q reduces 

the cavity loss rate κ and smaller mode volumes (Vm) increase the coupling strength g. 

 

1.5.4        Inter-Cavity Coupling 

As discussed in the previous sections, photonic crystal cavities are the preferential 

choices for the cQED systems in a circuit-style optical chip due to their high Q factor, 

small mode volume and nanofabrication compatibility. Furthermore, complex 

structures such as arrays of photonic crystal cavities can also be achieved. If quantum 
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dots are placed at/close to cavity centres, the coupling between the cavities might allow 

them to form building blocks for a scalable quantum photonic network. In this section, 

the photonic aspect of inter-cavity coupling of two L3 PCCs is briefly discussed (see 

Chapter 5 for detailed simulation and experimental results). 

   When two or more PCCs on the same membrane are separated by air holes while in 

close proximity to each other, they couple to each other. The air holes act as a potential 

barrier and the eigen modes of the coupled system replace the individual modes of each 

cavity. Here, in the configuration of a dual cavity system, the resultant eigensolutions 

are the odd and even combinations of the individual cavity mode. The system behaves 

as a two-level system described by a matrix Hamiltonian 

                                                             𝐻 = (
𝐸1 J
J∗ 𝐸2

)                                              (1.13) 

Where  J represents the coupling strength, depending on barrier width and height. The 

eigen values of the coupled system are: 

                                           𝐸± =
1

2
{(𝐸1 +𝐸2) ± √(𝐸1 −𝐸2)2 + 4|J|2}                           (1.14) 

indicating an on resonance splitting of 2J. 

   When two PCCs are far apart, their coupling can be induced through a waveguide that 

couples to both cavities (cavity A and cavity B) in the system, as discussed in Section 5.8. 

In this configuration, the Hamiltonian of the system can be written as: 

                                                   𝐻 =

(

 
 

𝜔𝑐 0 𝜎1 𝜎2 ⋯

0 𝜔𝑐 Δ1 Δ2 ⋯

𝜎1
∗

𝜎2
∗

⋮

Δ1
∗

Δ2
∗

⋮

𝜔1 0 ⋯
0 𝜔2 ⋯

⋮ ⋮ ⋱ )

 
 
,                                 (1.15) 

where 𝜔𝑐 is the frequency of cavity mode, 𝜔1 is the frequency of FP mode (labeled as 

Mode 1) in waveguide, 𝜔2 is the frequency of FP mode (labeled as Mode 2) in waveguide. 

𝜎1 and 𝜎2 indicate that cavity A interacts with Mode 1 and Mode 2, respectively.  Δ1(Δ2) 

is generated by the interaction between cavity B and Mode 1 (Mode 2). 
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     The solutions for the inter-cavity coupling system are: 

                                           (𝜔𝑐 + ∑
|𝜎𝑖|

2

𝜔−𝜔𝑖
𝑖 )ϕ𝐴 + ∑

𝜎𝑖Δ𝑖
∗

𝜔−𝜔𝑖
𝑖 ϕ𝐵 = 𝜔ϕ𝐴,                         (1.16) 

                                           (𝜔𝑐 + ∑
|𝜎𝑖|

2

𝜔−𝜔𝑖
𝑖 )ϕ𝐵 + ∑

𝜎𝑖
∗∆𝑖

𝜔−𝜔𝑖
𝑖 ϕ𝐴 = 𝜔ϕ𝐵,                         (1.17) 

where ϕA (ϕB) is the amplitude in cavity A (B). ∑
|𝜎𝑖|

2

𝜔−𝜔𝑖
𝑖  is the self-energy term which 

shifts and broadens the cavity energy. ∑
𝜎𝑖Δ𝑖

∗

𝜔−𝜔𝑖
𝑖  and ∑

𝜎𝑖
∗∆𝑖

𝜔−𝜔𝑖
𝑖  are the coupling terms.  
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Chapter 2  

 

Simulation Methods 

The computational results of the devices presented in this thesis were calculated using 

finite-different time-domain (FDTD) and guided mode expansion (GME). This chapter 

begins with the general principles of FDTD simulations accompanied by discussing the 

accuracy and the computational cost of accurate calculating. In this chapter, a thorough 

explanation of GME is introduced along with a discussion of the advantages and 

accuracy comparing with FDTD method.     

 

2.1       Finite Different Time Domain (FDTD) 

Finite difference time domain (FDTD) (also known as Yee’s method) is a primary 

numerical analysis method for modelling the propagation of electromagnetic waves [1]. 

It utilises centred finite difference approximations [2] to the grids in space and time for 

each electric and magnetic field vector component in the time-dependent Maxwell’s 

equations. As it is a time-domain method, its modelling range covers from visible light 

through microwaves to ultralow-frequency, which is conducive to applications where a 

broadband result is desired or the resonant frequencies are not known exactly. The 

computation time of FDTD solutions is linearly related to the number of the spatial grids.  
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2.1.1   Principle of Operation 

There are multiple software application to implement the FDTD method, such as MEEP, 

Lumerical Mode Solutions, Lumerical FDTD and so on, but central to each method are 

the Maxwell-Faraday equation and Ampere’s circuital law in differential form [3]: 

                                                                  

f

t

t

Β
Ε

D
Η J

                                                   (2.1) 

Where 𝚮 and 𝚬 are the macroscopic magnetic and electric fields, respectively. J𝐟 is the 

electric free current density. The relations between magnetizing field 𝚮 and the 

magnetic field 𝚩, as well as the displacement D and the electric field 𝚬 can be specified 

by [3]:  
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ε
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D Ε

                                                           (2.2) 

where μ is the permeability and ε the permittivity of the material. Three scalar 

equivalent component (x, y, and z) equations can be obtained from Eq. (2.1) and (2.2).  
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The simulation domain is composed of cubic cells as shown in Fig. 2.1. The 

magnetic fields (blue arrows) are recorded through the faces of each cubic cell 
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and the electric field (red arrows) along the edge of the cube as illustrated in 

Figure 2.1.  

 

 

Figure 2.1: Schematic illustration of a standard cubic cell (Yee’s cell) used in FDTD, 

where the magnetic and electric filed vector components are distributed as the blue and 

red arrows, respectively.          

 

         In order to obtain the numerical solution of the differential equations, finite 

difference methods [2] are introduced. The principle is to replace the derivatives 

occurring in the differential equation by finite differences that approximate them as 

shown in Figure 2.2 and Eq. (2.6).  
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  Figure 2.2: Illustration of the second-order accurate central difference formula. 

df(a)

da
= f'(a) ≅

f(a+𝛥a)−f(a−𝛥a)

2𝛥a
                                         (2.5) 

The derivatives in Eq. (2.6) can then be represented by finite-differences and the scalar 

equivalent component equations are improved, as the following expression for the X 

component [4].  

εx(𝑖, 𝑗, 𝑘)
E𝑥
𝑛+1(𝑖, 𝑗, 𝑘)− E𝑥

𝑛(𝑖, 𝑗, 𝑘)

𝛥t
= 

H𝑧
𝑛+0.5(𝑖,𝑗,𝑘)−H𝑧
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The electric and magnetic field can be computed as follows: 

E𝑥
𝑛+1(𝑖, 𝑗, 𝑘) = 

E𝑥
𝑛(𝑖, 𝑗, 𝑘) −
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where the electric fields at time instant n +1  are calculated by the electric field at time 

constant n  and the magnetic fields at time constant n + 0.5 ; the magnetic fields at time 

constant n + 0.5  are calculated by the magnetic fields at time constant n - 0.5  and the 

electric fields at time constant n. The calculations of electric and magnetic fields form 

the FDTD algorithm as explained schematically in Figure 2.3. 
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              Figure 2.3: Schematic diagram of the Leap-frog algorithm of FDTD. 

 

2.1.2        Grid and Step Size Considerations 

In actual simulations, the lattice cells, filled with a weighted intermediate dielectric 

constant, must be gridded sufficiently finely to resolve both the smallest geometrical 

feature and the smallest electromagnetic wavelength. In this thesis, the grid and step 
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size are carefully designed for the air holes. In simulations, the circular shape of the air 

holes is approximated by the grid. It must be ensured that the approximation is the same 

for each hole, and is as close to a circle as possible. 

 

 

Figure 2.4: Air holes are approximated by different grid and step sizes. Uniform (a) and 

non-uniform (c) approximations correspond to identical approximately circular shapes 

(b) and random shapes (d), respectively. 

 

2.1.3        Boundary Conditions 

When considering the finite nature of the spatially gridded cells and the solutions to 

partial differential equations, it is essential to apply artificial boundary conditions at the 

edge of the simulation area to limit the computation. There are three main kinds of 

boundary conditions: absorbing [5], metallic [6] and periodic [7]. In this thesis, all the 

FDTD and varFDTD simulations have been carried out by applying perfectly matched 

layers (PML), artificial absorbing layers for Maxwell’s equations. The key property of the 

PML is that the electromagnetic waves from the interior of the simulation region are 

strongly absorbed at the interface without reflecting them back into the interior. PML 

works very well in most cases and is widely used, but there are a few limitations such as 
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small numerical reflections for discretized wave equation [8], or unavoidable reflections 

(or even exponential growth) in ‘left-handed’ negative index metamatericals [9].  

 

 

 
Figure 2.5: Plan view (a) and cross section views ((b), (c)) of the simulated photonic 

crystal single L3 cavity. Boundary conditions are applied in the red rectangle region. 

Light blue cylinders are the periodic air holes with refractive index n = 1. Green and blue 

colours indicate the anti-symmetric and symmetric boundary conditions, respectively. 

The actual simulation region is only 1/8 of the whole structure.  
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     Additionally, based on the symmetric shape of the simulated structure, mirror and 

rotational symmetry constraints can be applied along the principle axes, reducing the 

simulation time excessively. A typical example can be found in Figure 2.5, where the 

red rectangle region represents the actual simulation area with different views.  

 

2.1.4         “2.5D” FDTD 

As discussed above, FDTD is one of the most accurate and versatile methods for 

modelling the propagation of the electromagnetic waves. However, due to the high 

resolution grid and step size, large computational domains and long solution times are 

required. Devices with thin and long features, like wires, are difficult to simulate in FDTD 

due to the excessively large computational domain, making it difficult to model large 

integrated optical components efficiently. Alternatively, the varFDTD method [10] in 

MODE Solutions offers a way in which a fine grid along the Z-direction is not required 

and assumptions about an optical axis, structure geometry, or the materials are not 

necessary to make. The varFDTD method provides the best trade-off between 

simulation accuracy and speed: sufficiently accuracy and versatility to that of 3D FDTD, 

whilst only requiring the modelling time and memory of a 2D planar FDTD 

simulation.  Here, in section 5.7 of this thesis, the varFDTD method was applied to 

simulate the large structures with photonic crystal cavities and waveguides. In order to 

get the accurate results, it is necessary to obtain the effective index.  

 

2.2        Guided Mode Expansion (GME) 

Guided mode expansion (GEM) is a novel approach to simulate the electromagnetic 

waves in patterned membrane photonic crystals, whose energies and fields can be found 

by a set of basis states from the unpatterned slab. The GME method is a highly 

specialised technique and offers strong benefits compared with FDTD. 
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2.2.1       Basic Configuration of GME 

As discussed in Section 1.5.1, photonic crystal cavities fabricated by patterning a 

periodic structure on the unpatterned slab with different refractive index, combine the 

features of the 2D photonic crystals and slab waveguides, indicating the electromagnetic 

fields can be treated as a combination of 2D plane waves in XY directions and guided 

modes along the Z direction. 

 

2.2.2       General Eigen Value Problem 

The differential forms of Maxwell’s equation for the magnetic field 𝚮 can be written as: 

∇ × (𝜂∇ × 𝚮) =
𝜔2

𝑐2
𝚮                                           (2.10) 

with the transversality condition    

                                                                           ∇ ∙ 𝚮 = 0                                                 (2.11) 

 Membrane patterning is introduced as the inverse of dielectric constant, 𝜂 → 𝜂0 + 𝜂̃: 

∇ × ((𝜂0 + 𝜂̃)∇ × 𝚮) =
𝜔2

𝑐2
𝚮                                          (2.12) 

The form of expanding magnetic field in a set of basis states, 𝚮 → ∑ 𝛼𝑛𝐺𝚮𝑛𝐺𝑛𝐺 , can be 

given by [11] 

∑𝛼𝑛𝐺
𝑛,𝐺

∇ × (𝜂0∇ ×𝚮𝑛𝐺)+∑𝛼𝑛𝐺
𝑛,𝐺

∇ × (𝜂̃∇ × 𝚮𝑛𝐺) = 𝜔
2∑𝛼𝑛𝐺𝚮𝑛𝐺
𝑛,𝐺

,         (2.13) 

where  𝑛  represents the mode order and 𝐺  is the reciprocal lattice vector. Once the 

magnetic field is obtained, the electric field is calculated as  

𝑖
𝑐

𝜔
𝜂∇ × 𝚮 = 𝐄                                                      (2.14) 
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The final eigenvalue equation can be expressed as Eq. (2.15) after a series of 

orthonormalization and rearranging, where K is the Bloch vector chosen from the first 

Brillouin zone. 

 

∑ 𝐾𝑛𝐺,𝑛′𝐺′𝛼𝑛′𝐺′𝑛′,𝐺′
= (𝜔𝑛𝐺

2 −𝜔2)𝛼𝑛𝐺                                  (2.15)      

                                

2.2.3    Advantages of GME Method 

The GME method is an approximation since the basis set of the guided modes of the 

effective waveguide is not complete (leaky modes are not included). However, the 

numerical effort is comparable to that of a 2D plane-wave calculation when a few guided 

modes are sufficient. The guided and quasi-guided photonic modes can be obtained 

without introducing any artificial layer (eg. PML) in the vertical direction, so it is very 

efficient and useful for design and parameter optimization.  

 

2.3    Comparison with FDTD Method 

Due to the approximation and the neglected leaky modes, it is essential to know the 

accuracy of GME method. The comparison between GME and FDTD has been performed 

on the same configuration, where two photonic crystal cavities are placed as shown in 

Figure 5.2(a). The energy differences between the anti-bonding and bonding modes are 

simulated and plotted in Figure 2.6, where red dots and blue triangles represent the 

results using GME and FDTD methods, respectively. Good agreement can be observed 

and demonstrate the subsequent results in Chapter 5 are reliable. 
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Figure 2.6: The comparison between GME and FDTD has been performed on the same 

configuration, where two photonic crystal cavities are placed as shown in Figure 5.2(a). 

The energy differences between the anti-bonding and bonding modes are simulated and 

plotted. Red dots and blue triangles are the results using GME and FDTD methods, 

respectively. Good agreement can be observed.  
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Chapter 3  

 

Experimental Methods 

 

In this chapter, the experimental methods used to characterise the NFDE dots and 

photonic devices presented in this thesis will be outlined. Firstly, fabrication of the 

photonic crystal devices used in this thesis is briefly presented. Following this, the 

experimental measurement details for photonic samples will be described. Finally, the 

experimental setup for exploring spin properties of the nanohole-filled droplet-epitaxial 

(NFDE) QDs will be presented.  

 
3.1    Fabrication of the Photonic Crystal L3 Cavities and Ring-Resonators 

The photonic crystal L3 cavities and ring-resonators used in this thesis were prepared 

by bottom-up epitaxial growth and top-down lithographic techniques. In the growth 

processes, 1 μm layer of Al0.6Ga0.4As is deposited on the GaAs substrate as a sacrificial 

layer, above which a 70 nm of GaAs layer is then deposited and forms the bottom barrier. 

A single layer of InAs QDs are formed before being capped with a 70 nm layer of GaAs 

as the top barrier. Typically, the principle of fabrication is to confine a single optical 

mode in the barrier slab with a height of h=λ/2n, where 𝑛 is the refractive index of the 

barrier material. Additionally, the thickness of the sacrificial layer is chosen to protect 

the optical modes from the perturbation of the substrate. Here, the refractive index of 
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GaAs at 4K is  𝑛 = 3.4  so that the central wavelength of the ensemble QD emission 

spectrum can be designed and tuned by the barrier slab height as λ=2n*h. Wafers are 

normally characterized before fabrication into specified devices, such as photonic 

crystal cavities. The desired pattern of the photonic devices are defined by electron 

beam lithography (EBL) [1-3] and subsequent etching [4, 5] techniques.  

 

3.2    Photoluminescence Spectroscopy of Photonic Devices 

Photoluminescence (PL) is a process where electron-hole pairs formed under optical 

excitation recombine, emitting photons. Quantum dots can be used to emit light under 

optical excitation. All experiments in this thesis were carried out using optical excitation, 

including non-resonant excitation for photonic devices and resonant scanning for NFDE 

QDs.  

     In a typical micro PL setup, as shown in Figure 3.2, the laser passes through a series 

of polarization optics and incidents on a beam splitter (BS). One exit path (green dotted 

line) leads to the objective lens focusing the laser onto the sample. The PL signal 

(magenta dotted line) is then collected by the same objective lens passing through 

another exit of the same beam splitter into the polarization optics and the detection 

apparatus. The PL measurements for photonic crystal L3 cavities are in typical 

configuration as described above, while the basic configuration for ring resonator 

transmission measurements is slightly different. The key to perform selective excitation 

and collection of light from different regions of the sample whilst making certain of good 

isolation between the two is using a confocal microscopy setup based on the 

experimental configuration, as shown in Figure 3.2.    
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Figure 3.2: A photo of the equipment (a): green and orange lines indicate the excitation 

light paths; dashed magenta lines are for the collection path. Simplified schematic 

diagram of the experimental configuration for photoluminescence measurements of 

photonic devices (b).  

       

    Single mode optical fibres are used to couple the laser to/from the sample, on which 

a diffraction-limited laser spot of 1μm diameter is produced by the guiding core, 

working as the pinhole required for confocal microscopy. This guarantees the light 

coupled with fibres is only from/ to a spatially specified spot on the sample so that the 

transmission measurements through the sample can be performed by separating the 
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two spots. Figure 3.2 (a) shows a photo of the equipment, where the green and magenta 

lines indicate the excitation light path 1 and path 2, respectively. Excitation and 

collection spots can be lined up individually by rotating the mirrors in the excitation 

(green/orange lines) and collection (magenta lines) light path, respectively. The non-

resonant excitation for photonic crystal L3 cavities and ring resonators were 

implemented using a diode laser (808nm wavelength) and a He:Ne laser (633nm 

wavelength), respectively. A 0.75 m and a 0.55 m single spectrometer (Acton 

Spectrometer from Princeton Instrument) were used to detect the PL signals by a liquid 

nitrogen cooled charge coupled device (CCD). The highest resolution of the 

spectrometer is approximately 20 𝜇𝑒𝑉. 

      Due to the requirement of quick exchange of samples, photonic devices were 

mounted on the cold finger of a continuous flow cryostat with a reasonable degree of 

stability. A picture of the cryostat is provided in Figure 3.3, where the sample is mounted 

on a copper cold finger which is in thermal contact with an external heat exchanger and 

the sample contained within the evacuated chamber. Liquid helium is pumped through 

the heat exchanger to cool the sample down to 4-10 K. On top of the sample chamber, an 

optical window allows optical access to focus on the sample. Micrometer driven manual 

translation stages were fixed under the cryostat to provide the movement around the 

sample and focus control.  

 

Figure 3.3: Photograph of the cryostat used for PL measurements. 
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     The vibration of the system is mainly caused by the helium pump, and generally the 

system will maintain the alignment with the incident light for about an hour. As a result, 

a more stable system is required for long exposure measurements. However, for the 

purpose of fast characterisation and short exposure measurement, the flow cryostat is 

an ideal option. 

 

3.3        Characterization of NFDE QDs 

The NFDE QDs sample is held in a liquid helium bath cryostat where the temperature is 

down to 4.2 K and the superconducting magnet provides the magnetic field. The bath 

cryostat system used in this thesis is schematically illustrated in Figure 3.4.  

The main framework of the bath cryostat is supported by a low-loss liquid helium 

Dewar. The outer and inner vacuum jackets are both pumped to suppress the thermal 

conduction and convection. Liquid nitrogen is filled between the outer and inner 

vacuum jackets as another insulating layer. The liquid nitrogen jacket serves as a pre-

cooler, protecting the liquid helium from being warmed up (reduce the waste of liquid 

helium), and absorbs the radiation and heat from the room temperature environment. 

All these insulating “jackets” ensure a very low loss rate of liquid helium bath cryostat 

system, which can remain stable for up to several days.   

The superconducting magnet [6], made up with superconducting wires, is assembled 

in the bottom of the bath cryostat. Magnetic fields are achieved by immersion of a 

superconducting magnet in the liquid helium bath when the magnet is powered by 

current source. A uniform magnetic field up to 10 T can be reached. Magnetic fields 

applied in this thesis were in the Faraday geometry, along the sample growth axis. 

Cryogenic temperatures for the sample chamber are achieved by immersing a home-

made evacuated tube in a Dewar filled with liquid helium at 4.2K . A small amount of 

helium gas is the medium to achieve the thermal equilibrium in the insert tube. Within 

the insert tube is a home-made optical cage system, where the sample is mounted on a 

3D piezoelectric stack which moves the sample and controls the focus. An aspheric lens 

is fixed above the sample for focusing the incident light to a spot of 1μm diameter. 

The aberration effects of the aspheric lens are reduced by two achromatic doublets 
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mounted along the cage length [7]. On the top of the insert tube is an optical imaging 

system, which contains an optics board and optical components, leading the optical 

access to the sample via the optical window on the top of the insert tube.  

 

 

Figure 3.4: Schematic illustration of a liquid helium bath cryostat with superconducting 

magnet, integrated optics and piezoelectric stack. The optical imaging system mounted 

on the top of the cryostat can be found in Figure 3.5. 

 

    The measurements of PL, dynamic nuclear polarization (DNP), nuclear magnetic 

resonance (NMR) and nuclear spin decay, presented in Chapter 4, have been carried out 

on single dots at low temperature using a confocal spectroscopic setup as schematically 

illustrated in Figure 3.4 and 3.5. Polarization of the incident laser and the detected signal 

can be tuned by polarization optics. Two laser beams are introduced as pump and prob.  
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Pump-probe experimental method are used through all the measurements in Chapter 4. 

Details will be presented in Chapter 4. 

 

 

 

 
Figure 3.5: Simplified schematic diagram of the experimental configuration for 

measurements of photoluminescence (PL), dynamic nuclear polarization (DNP), nuclear 

magnetic resonance (NMR) and nuclear spin decay on NFDE single dots. Excitation and 

collection spots can be lined up individually by rotating the mirrors in the excitation and 

collection light paths, allowing the inter-dot DNP process experiment in Chapter 4. 
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Chapter 4  

 

Vanishing electron g factor and long-lived nuclear 

spin polarization in weakly strained nanohole-

filled GaAs/AlGaAs 

 

4.1        Introduction 

In the past three decades, electronic spin in semiconductors and their nanostructures, 

such as quantum dots (QDs), has attracted much attention as it is promising for 

applications in quantum computation [1-6]. For a semiconductor QD, spin injection and 

its coherent manipulation can be easily achieved by optical or electrical pumping, 

making it compatible with the modern optoelectronic integration circuits. Moreover, 

due to the three-dimensional (3D) confinement, the spin-orbit relaxation effects is 

suppressed and thus longer spin coherence time is expected. The main factor that limits 

the electron or hole spin coherence time in a QD is the hyperfine interaction with the 

nuclear spin environment [1, 6-8]. Therefore, further increase of spin coherence time of 

carriers in a QD, which is crucial for single spin qubit manipulation, requires an extra 

control over nuclear spin bath. This extra control can be achieved by maximizing 

polarization of 104–105 nuclei in a single QD to form well-defined nuclear spin states, 

and thus suppress the effects caused by nuclear field fluctuations [9-13]. In addition to 
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the hyperfine coupling, strain-induced quadrupolar effects also have an impact on 

electron spin decoherence [14, 15]. Consequently, a high-quality QD system, where 

nuclear quadrupolar effects are minimized, is highly desirable. 

      The coherent control of carrier spin in a semiconductor QD using resonant ultrafast 

laser pulses [3-5] has been demonstrated. However, the scalability of this technique is 

still demanding. Alternatively, spin rotation can be controlled by manipulating its 

coupling to the external magnetic field or electrically modulating the g-factor [16-18], 

which relies on the tunability of the g-factor (especially the sign of the g-factor).  

       Self-assembled InGaAs/GaAs QDs, formed by the Stranski-Krastanow (SK) growth 

mode, have been one of the major QD systems for spintronics over decades because of 

their excellent optical qualities. For a long period of time, it was not achievable by the 

monolayer-fluctuation grown GaAs/AlGaAs dots. The recent development of the droplet 

epitaxial (DE) growth technique, in particular, nanohole-filled droplet epitaxy (NFDE) 

(dots are formed by in situ etching and nanohole in-filling), provides GaAs QDs with 

strong quantum confinement and excellent optical properties [19-22]. Meanwhile, these 

dots exhibit high symmetries which are unattainable in self-assembled dots [23]. The 

combination of high crystalline and optical qualities make NFDE QDs ideal candidates 

for polarization entanglement and photon induced spin manipulation [24]. Although the 

NFDE QDs have shown their high efficiency in the study of rubidium atoms and a 

quantum dot interface [25, 26], the spin properties of the carriers in such systems 

remain to be explored. 

      In this chapter, photoluminescence (PL) and nuclear magnetic resonance (NMR) 

spectroscopy are used to study the spin properties of the NFDE grown GaAs/AlGaAs QDs, 

including the single charge spins and the nuclear spin matrix. 

Magnetophotoluminescence measurements reveal close-to-zero electron g-factor for 

the NFDE QDs. Efficient dynamic nuclear polarization (DNP) as large as 65% is also 

demonstrated.  

       In order to measure the residual strain in the NFDE grown QDs, radio-frequency (RF) 

excitation was applied in the NMR experiments and a strain as small as <0.02% was 

revealed. Two subgroups of ensemble QDs with compressive and tensile strain along the 

growth axis were investigated, corresponding to those formed in the nanoholes and at 
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the rims of the nanoholes, respectively. In such QDs, small quadrupolar effects (~ 20 

kHz) was observed due to the small strain, resulting in a large increase of the electron 

spin coherence time [14, 15]. Although the residual strain is relatively small, it is 

sufficiently large to induce stable nuclear spin matrix with a relaxation time >500 s. 

These results suggest that the NFDE QDs can be excellent candidates for spin qubit 

manipulation as decoherence effects from the nuclear spin environment can be largely 

minimized. 

4.2         Samples and Techniques 

As illustrated in Section 1.2, the NFDE QDs sample was grown using solid source 

molecular beam epitaxy (MBE), and GaAs quantum dots are formed after deposition of 

Ga, Al0.44Ga0.56As and GaAs in a specific order. The sample was mounted on a 3D piezo 

stage in the liquid helium bath cryostat with a superconducting magnet as described in 

Section 3.3. Magnetic fields up to 10 T applied in this experiment were in Faraday 

geometry, along the sample growth axis. All the measurements, including typical 

photoluminescence (PL), dynamic nuclear polarization (DNP), nuclear magnetic 

resonance (NMR) and nuclear spin decay, were performed on single dots at low 

temperature  T ∼ 4.2 K  using a confocal spectroscopic setup. The laser beam can be 

focussed to a ∼ 1 μm  spot. The polarization degree of the nuclear spins can be 

determined by measuring the Overhauser shifts of the excitonic peaks in the PL spectra 

of QDs. More details about the nuclear spin polarization and the NMR spectroscopy 

method [27] will described in this chapter. 

4.3        Experimental Results 

A typical wide range PL spectrum obtained under non-resonant excitation (E = 1.69 eV) 

with magnetic field Bz = 6 T is presented in Figure 4.1. Quantum well (QW) emission can 

be identified at E = 1.67 eV. Two spectral distributions of QD emission at E = 1.58 eV and 

at E = 1.63 eV are denoted as type A dots and type B dots, respectively. This chapter 

investigates various aspects of the spin properties based on type A and B dots (the origin 

of these two types of QDs will also be discussed). Typically, PL emission from 5–10 dots 

within the excitation spot of ∼ 1μm2 can be observed in the experiments. Although this 
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density is too high to reliably distinguish individual dots, it is sufficiently low to identify 

and interpret hyperfine spectral structures.  

 

 

Figure 4.1: A wide range low-temperature photoluminescence spectrum indicates 

emission from two different types of quantum dots (A and B) and the quantum well 

under nonresonant excitation (E = 1.96 eV) with magnetic field Bz = 6T. 

 

4.3.1      Magnetic Properties of Single Charges: Close-to-Zero Electron g Factors 

As described in Section 1.3.3, in semiconductors, an exciton is a hydrogen-like 

quasiparticle consisting of a bound pair of electron and hole. It releases its energy via 

electron-hole recombination, governed by the selection rules. The exciton with electron 

spin (up ↑ or down ↓) and hole spin (up ⇑ or down ⇓) satisfying the optical selection 

rules is called a bright exciton, which emits a photon during recombination. When the 

electron spin and hole spin of an exciton do not satisfy the selection rules, spin of one 

component (electron or hole) flips (or relaxes) before the recombination and energy is 

released via photon emission; however, no emission can be observed in spectra. This 

type of exciton is referred as the dark exciton (optically forbidden exciton) and usually 

has long life time. Due to the non-ideal symmetry in QDs, the exchange interaction 

couples the bright and dark states [28]. As a result, the dark states gain small oscillator 

strength and can be observed in the photoluminescence spectra [28-30].  
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 A series of PL spectra of QD B1 obtained under different magnetic field
z

B with low 

excitation power Pexc = 200 nW are presented in Figure 4.2. The emission from excitons 

can be observed in Figure 4.2(a), where the two main brightest peaks indicate 

(where the hole spin is ⇓ and the electron is ↑) and    bright excitons. The green and 

magenta spectra correspond to linear polarizations at Bz = 0. The black diamonds and 

green triangles correspond to the weak peaks from dark excitons  and  , 

respectively. At  Bz = 3 T , the emission of the  dark exciton is enhanced in  

polarization due to the mixing with  bright exciton. 

      PL energies of bright (full symbols) and dark (open symbols) exciton peaks extracted 

from the spectra in Figure 4.2(a) are fitted by solid lines in Figure 4.2(b). The fitting are 

performed using the following equations:          

Eb = E0 + [κ+ κ(1)Bz]Bz
2 +

1

2
𝛿0 ±

1

2
√𝛿b

2 + 𝜇B
2[g

h
+ g

h

(1)
Bz − g

e
]2Bz

2,           (4.1) 

Ed = E0 + [κ+ κ(1)Bz]Bz
2 −

1

2
𝛿0 ±

1

2
𝜇B[gh

+ g
h

(1)
Bz+g

e
]Bz,                                 (4.2) 

where Eb represents the energy of bright excitons, Ed represents dark excitons, E0 is the 

QD bandgap energy, 
0

 is the splitting between bright and dark exciton doublets, 
b

is 

the fine-structure splitting of bright exciton (dark exciton splitting is neglected), ge is 

the g-factor of electron, gh is the g-factor of hole, κ is the diamagnetic shift and 
B

is the 

Bohr magneton. κ(1) and  g
h

(1)
are the corrections for diamagnetic shift and hole g-factor, 

respectively.  
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Figure 4.2: Magnetophotoluminescence measurements of NFDE quantum dots. 

(a)Magnetic field dependence of PL emission from bright and dark excitons in dot B1 

with an excitation power of Pexc = 200 nW. The green and magenta spectra correspond 

to linear polarizations at Bz = 0.  Blue and red lines correspond to spectra recorded 

under 𝜎−and  𝜎+polarization, respectively. The black diamonds and green triangles 

indicate the PL emission from dark quantum dots. (b) Energies of the bright (full red and 

blue symbols) and dark (open black and green symbols) exciton peaks from (a). The 

data are fitted by solid lines using Eq. (4.1) and Eq. (4.2) .     

 

      The accuracy of fitting the experimental data measured for QD B1 can be obtained 

by examining the fitting residuals. Here, the residuals, plotted in Figure 4.3, are the 

difference between experimental data from Figure 4.2 and theoretical calculations using 

Eq. (4.1). Symbols in Figure 4.3 (a) are the residuals of fitting where magnetic-field-

dependent corrections for diamagnetic shift and hole g-factor are set as κ(1) = 0 and 

g
h

(1)
= 0 in Eq.(4.1), respectively. The systematic errors are prominent and with a value 

of ∼ ±50 μeV. The importance of adding the magnetic-field-dependent corrections to 
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diamagnetic shift and hole g-factor should be noticed. In Figure 4.3 (b), the systematic 

errors drop to ∼ ±20 μeV by introducing κ(1) as a fitting variable while keeping g
h

(1)
=

0. It is also obvious that the excitons with parallel hole spin but antiparallel electron spin 

have the same signs of fitting residuals (red squares   and black diamonds  ; blue 

circles   and green triangles  ); the excitons with antiparallel hole spin and 

parallel/antiparallel electron spin have the opposite signs of fitting residuals (red 

squares   and green triangles   /blue circles  ). The remaining systematic 

errors caused by hole spin can be further eliminated by setting magnetic-field-

dependent corrections for hole g-factor as a fitting variable. Fitting residuals are 

reduced to < ±10 μeV suggesting that the systematic errors are eliminated effectively 

by fitting with variable diamagnetic shift corrections κ(1)  and hole g-factor 

corrections g
h

(1)
, see in Figure 4.3 (c). 
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Figure 4.3: Fitting residuls, the difference between experimental data from Figure 4.2 

and theoretical calculations using Eq.(4.1) and Eq.(4.2), show the accuracy of fitting 

process for all excitons as a function of magnetic field. (a) A huge systematic error of ∼

±50 μeV results from fitting without linear corrections ( κ(1) = 0,g
h

(1)
= 0). (b) The 

systematic errors drop to ∼ ±20 μeV by introducing diamagnetic shift correction 1( )
κ  as 

a variable while keep g
h

(1)
= 0. (c) Fitting residuals (< ±10 μeV), achieved by setting 

diamagnetic shift correction κ(1) and hole g-factor correction g
h

(1)
 as variables, are 

within the accuracy.   
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     Electron g-factor values for QD B1 are obtained from the fitting, where ge ≈ 0.054 ±

0.041 with κ(1) = 0, g
h

(1)
= 0; ge ≈ 0.053 ± 0.023 with g

h

(1)
= 0 and κ(1)  as a variable; 

ge ≈ 0.052 ± 0.009 with both κ(1) and g
h

(1)
 as variables. It can be seen that the values of 

ge are similar including and excluding κ(1) and g
h

(1)
, but systematic errors are further 

reduced by using magnetic-field-dependent corrections as fitting variables. The other 

fitting parameters for QD B1, derived from fitting with κ(1) and g
h

(1)
 as variables, are as 

following:  E0 = 1.631143 ± 4 × 10
−6 eV ,  𝛿0 = 122 ± 3 μeV  ,  𝛿b = 12.7 ±

13.2 μeV  ,  κ = 21.2 ± 0.3 μeV T−2 ,  κ(1) = − 0.35 ± 0.03 μeV T−3 , gh = 0.86 ± 0.04 

and g
h

(1)
= 0.031 ± 0.004 1

T
 . Similar magneto-PL measurements (Figure 4.4(a)-(h)) 

and fitting procedures (Figure 4.5(a)-(j)) have been performed for a set of individual 

QDs from the same sample. Figure 4.4(a)-(d) are the magnetic field dependences of PL 

emissions from bright and dark excitons in QDs under + excitation with an excitation 

power of Pexc = 200 nW. While Figure 4.4(e)-(h) are under − excitation.  From these 

spectra with high signal/noise ratio and the fittings, A and B type QDs can be well 

distinguished as their corresponding bandgap energy E0, g-factors are very different. In 

Figure 4.4, QD42L and QD56 are type A QDs (E0~1.58 eV (~785 nm)); QD42S-a, QD42S-

b and QD50 are type B QDs (E0~1.63 eV (~760 nm)). In order to show clearly the 

different g-factors for these two types of QDs, the electron and hole g-factors of type A 

QDs (black squares) and type B QDs (red triangles) were extracted and plotted in Figure 

4.6. 

    The electron and hole g-factors of QDs in type A (black squares) and QDs type B (red 

triangles) are extracted and plotted in Figure 4.4 (a). Unexpectedly, for type B QDs, the 

values of electron g-factor are close to zero with an average value of g
e
≈ +0.05. In 

typical GaAs/AlGaAs quantum dots, formed by natural fluctuation of the quantum well 

width, the average value of electron g-factor is an order of magnitude lager [31]. 

Electron g-factor values for QDs of type A are also small with a negative value of  g
e
≈

−0.1 [48]. 
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Fig. 4.4 Magneto-PL measurements of a set of individual A and B type QDs on the same 

sample. (a)-(d) and (e)-(h) are the magnetic field dependences of PL emissions from 

bright and dark excitons in QDs under +and − excitation, respectively. Black and red 

curves correspond to spectra recorded under −and +polarization, respectively. 
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Figure 4.5: Energies of the bright (purple and blue symbols) and dark (brown and 

green symbols) exciton peaks from Figure 4.4 (a)-(h), fitted by solid lines using Eq. 

(4.1) and Eq. (4.2). 
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Figure 4.6: The electron and hole Lande g-factors (a) and the diamagnetic shifts κ (b) for 

A type of QDs (black squares) and B type of QDs (red triangles) are extracted from the 

fitting in Figure 4.2(b) and Figure 4.5. All the QDs are from the same piece of sample. 

            Figure 4.6 (b) shows the diamagnetic shift κ versus QD bandgap energies E0for 

the same QDs as in Figure 4.6 (a). As is reported, for natural GaAs/AlGaAs QDs and DE-

grown GaAs/AlGaAs dots (obtained by crystallization of Ga droplets), the values of the 

diamagnetic shift κ are ∼ 10 μeV T−2 and ∼ 4 − 8 μeV T−2, respectively. However, for 

both type A and B QDs, the values of the diamagnetic shift κ  are between 17 and 

24 μeV T−2, which is larger than the reported ones [20, 29]. Larger diamagnetic shifts, 

for the studied NFDE QDs, are usually ascribed to the larger lateral dimensions [32]: a 

typical nanohole size ( 65nm [22]) is larger than the droplet size ( 40nm [33]) in DE-

grown dots.  Large lateral sizes lead to large dimensions of the wave functions in the 

NFDE dots, implying that the orbital angular momentum is significant.  

Due to the large lateral size, the results, derived from extensive studies on g-factors in 

GaAs/AlGaAs quantum wells, can be applied directly to NFDE dots. Agreement between 

the small g
e
 values obtained from QDs A (B) emitting at E = 1.58 eV  (E = 1.63 eV ) and 

the dependence of  g
e

 on quantum well ground-state energy can be expected. 

Particularly, in QDs of type B, when g
e
 is very close to zero, the derived QD bandgap 
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energy is E0 = 1.62 eV , which matches the observed band-gap energy in quantum wells 

with 𝑔
𝑒,∥
≈ 0 [48].  

 

4.3.2           Optical Dynamic Nuclear Polarization (DNP) 

Since the electron spin system is coupled to the nuclear spin environment through the 

hyperfine interaction, angular momentum is transferred from one to the other. In 

addition, the nuclear spins interact with the environment, resulting in a dynamical 

equilibrium. In order to understand more about the properties of nuclear spin system 

and establish a net nuclear polarization, circularly polarized excitation and PL emission 

analysis are used for manipulating and monitoring the spin polarization of the nuclei in 

a single QD. Nuclear spin polarization can be detected by measuring the electronic 

energy shift of the QD emission line due to the polarized nuclei, referred to as the 

Overhauser Shift (EOHS). Electron Zeeman splitting in a single QD can be induced by both 

external magnetic fields and nuclear magnetic fields (referred to as Overhauser field). 

The total electron Zeeman splitting of the emission lines can be written as: 

ΔΕ𝑧 = geμB
(Bext+Bnuc)                        (4.3) 

where ge  is the electron g-factor, 𝜇B  is the Bohr magneton, Bext  and  Bnuc  are the 

magnetic field projection along the z-axis due to the external magnetic field and spin 

polarized nuclei, respectively. 

        When excited by linearly polarized light, electrons in the QD are in a superposition 

of spin up  and spin down  , leading to zero Overhauser field (Bnuc = 0). The total 

electron Zeeman splitting thus amounts to: 

ΔΕ𝑧,𝑙𝑖𝑛 = geμBBext                                 (4.4) 

      Thus, the deviation of Eq.(4.3) and Eq.(4.4) gives a direct measure of the Overhauser 

shift EOHS and the effective nuclear magnetic fields Bnuc.  

EOHS = ΔEZ,𝜎± − ΔEZ,lin = geμBBnuc           (4.5) 
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     Alternatively, EOHS can be calculated without measuring ΔΕ𝑧,𝑙𝑖𝑛 in external magnetic 

field. Circularly polarized pump laser (𝜎+ or  𝜎− excitation) is used to polarize the nuclei. 

Electrons are excited by the linearly polarized probe laser after a sufficient time delay. 

The electronic energy shift of the QD emission line due to the polarized nuclei is detected. 

EOHS is extracted from the changing of splitting (Eq. (4.6) as explained in Figure 4.7. 

                                                                EOHS =
ΔEZ,𝜎+−ΔEZ,𝜎−

2
                                                       (4.6) 

 

 

Figure 4.7: Schematic diagram showing how the Overhauser shift can be determined by 

using a pump-probe experimental method. ΔEZ,𝜎+  is the splitting under 𝜎+  polarized 

pump laser (red solid spectrum); ΔEZ,𝜎− is the splitting under 𝜎− polarized pump laser 

(green dashed spectrum). The blue spectrum indicates the typical Zeeman splitting 

under external magnetic field without the impact from the effective nuclear field. EOHS 

is extracted from the change of the splitting ΔEZ,𝜎+ − ΔEZ,𝜎− . 

 

      The maximum Overhauser shift, reported in natural GaAs QDs with 60.1%/39.1% 

abundance of  69 71
Ga / Ga  is
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corresponding isotopic hyperfine coupling constants, depending on the value of the 
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electron Bloch function, with a nuclear spin I=
3

2
. The degree of nuclear spin polarization 

is defined as OHS

N max

OHS

E
=

E
, where 

N
 is in the range of 1 1,   . 

Since the Overhauser shift is the physical quantity used to estimate the degree of 

nuclear spin polarization, it is essential to experimentally measure the EOHS induced in 

QDs. The measurements of nuclear magnetic resonance (NMR), dynamic nuclear 

polarization (DNP), and nuclear spin decay, presented in this chapter, are performed by 

“pump-probe” experimental method [27, 34]. Every single spectrum is the result of a 

few pump-probe cycles; and a linearly polarized laser, referred as the erase laser, is 

applied to create depolarized nuclear spins before each pump-probe cycle (see Figure 

4.8). The 𝑡𝑒𝑟𝑎𝑠𝑒  is kept at 3.5 s in this measurement. Circularly polarized optical 

excitation with a high power pump pulse can be used to dynamically polarize the nuclear 

spins in the QD. The optical excitation power is 500 μW, which is 10 times more than the 

saturation power of the ground-state emission. In order to build a saturated and steady 

nuclear polarization state initially, the duration of pumping 𝑡𝑝𝑢𝑚𝑝 should be sufficiently 

long to induce DNP. The nuclear spin buildup time 𝑡𝑏𝑢𝑖𝑙𝑑𝑢𝑝  can be revealed using 

exponential fitting in Figure 4.8; whereas the pump duration applied in the 

measurements is 5-7 s, which is much longer than the 𝑡𝑏𝑢𝑖𝑙𝑑𝑢𝑝 and almost maximizes the 

degree of nuclear spin polarization. In earlier reports, the time to build up nuclear spin 

were: few milliseconds in self-assembled GaAs/InAs dots under applied magnetic field 

B = 0-1 T [35, 36]; few seconds in GaAs/AlGaAs fluctuation dots at B = 1-2 T [37, 38]; 

and few seconds in InP/GaInP when the applied magnetic field was over 2 T [30]. The 

nuclear spin buildup time presented in this study (in NFDE GaAs/AlGaAs QDs) is similar 

to the one reported in droplet epitaxial grown GaAs/AlAs QDs (𝑡𝑏𝑢𝑖𝑙𝑑𝑢𝑝 = 600 ms at B = 

2.5 T) [19].    
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Figure 4.8: Establishment of the optically induced nuclear spin polarization dynamics. 

The Overhauser shift EOHS of QD depends on the pump pulse duration (𝑡𝑝𝑢𝑚𝑝) under σ+ 

(red open circles) and σ− (blue solid circles) polarization at B = 6 T. Each red or blue 

data point is extracted from a spectrum obtained during one erase-pump-probe cycle 

(𝑡𝑐𝑦𝑐𝑙𝑒) shown in the inset.  The solid curves are the exponential fitting of the data points. 

The red and blue dashed lines indicate nuclear spin buildup times 790 ms and 590 ms 

for σ+and σ− pumping, respectively. 

 

In III-V compounds, GaAs in particular, the nuclear spin relaxation time T1 is on the 

order of 1,000 s for Ga and As at a low temperature ~4 K [39]; while the typical T1-time 

of electron in QDs can be extended up to 1 s in a moderate magnetic field due to the spin-

orbit interaction [40]. A time delay ∆𝑡, sufficiently longer than electron T1, should be 

introduced before the optical probe process. The probe pulse is linearly polarized, which 

can cause the nuclear depolarization. In order to keep the probe-induced nuclear 

depolarization degree within 3%, probe pulse duration 𝑡𝑝𝑟𝑜𝑏𝑒 varies with individual QD, 
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and probe excitation power should be sufficiently low. Here, in the measurements, 

probe duration is fixed at 𝑡𝑝𝑟𝑜𝑏𝑒 = 50 𝑚𝑠 and probe excitation power is 0.2-0.3 times of 

the saturation power of the ground-state emission. To keep depolarization duration 

𝑡𝑒𝑟𝑎𝑠𝑒   and probe duration 𝑡𝑝𝑟𝑜𝑏𝑒   constant in the pump-probe cycles, the duration of 

pump process varies (5-7 s, as mentioned above). 

 

 

Figure 4.9: (a) Wide range PL spectrum showing the quantum well (QW), QD A2 and QD 

B2 emission under non-resonant excitation E = 1.96 eV; (b) Photoluminescence 

excitation (PLE) measurements are performed on QD A2. PL emission intensity of QD 

A2 are measured as a function of the excitation laser 𝐸𝑙𝑎𝑠𝑒𝑟 under 𝜎+ (red line) and 𝜎− 

(blue line) excitation.  

 

     In order to investigate the dynamic nuclear polarization (DNP) of NFDE QDs, optical 

pumping has been applied to the dependence of the excitation laser energy. Figure 4.9(a) 

shows a wide range PL spectrum, where QD A2, QD B2 and QW emissions can be 

identified clearly under nonresonant excitation with laser excitation energy 𝐸𝑙𝑎𝑠𝑒𝑟  = 

1.96 eV, excitation power P = 100 nW, and magnetic field B = 6 T. Photoluminescence 

excitation (PLE) is a specific and useful experimental tool for investigating the energy 
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level structure of the material. The energy of the excitation is varied while the 

luminescence is detected at the typical emission energy of the QD being studied in the 

PLE measurements.  A typical photoluminescence excitation (PLE) spectrum is plotted 

in Figure 4.9(b). The PL intensity of QD A2 was detected by CCD with a fixed energy of 

1.585 eV (ground state energy of QD A2) when the excitation laser was scanning from 

1.57 to 1.75 eV. Both of the 𝜎+ (red line) and 𝜎− (blue line) circular polarizations were 

applied for excitation at low optical power of 2 uW. Peaks can be observed in the region 

of 1.59 – 1.61 eV, which is ~25 meV above the energy of ground state (E = 1.585 eV). In 

PLE spectra, peaks often represent absorption lines of the material; here, these peaks 

are ascribed to the excited states of QD A2. As discussed in the previous section, the large 

lateral size causes some QW-like properties with 3D confinement effects. High density 

of energy levels of the excited states can be expected, resulting in a continuous broad 

background. 

    Additional to PLE spectroscopy, the nuclear polarization 𝐸𝑂𝐻𝑆  is recorded as a 

function of the energy of the excitation laser 𝐸𝑙𝑎𝑠𝑒𝑟 in Figure 5.0. The red and blue lines 

show the Overhauser shift measured on QD A2 under 𝜎+  and 𝜎−  polarized optical 

excitation, respectively. The measurements were performed by the “pump-probe” 

techniques as described above with an excitation power of 500 μW. It can be seen that 

DNP emerges as the 𝐸𝑙𝑎𝑠𝑒𝑟 is over the bandgap of QD A2. The highest 𝐸𝑂𝐻𝑆 value of 70 

μeV can be achieved at 𝐸𝑙𝑎𝑠𝑒𝑟 = 1.675 eV, corresponding to the QW states. Sharp peaks, 

observed between 1.585-1.60 eV, reflects circularly and resonant pumping of either the 

ground state or excited states of QD A2. This mechanism has been studied in self-

assembled QDs [41, 42]. Similar to the PLE spectrum in Figure 4.9 (b), a nearly 

continuum spectrum between 1.61-1.63 eV is attributed to the excited stated due to the 

large lateral dimensions of the NFDE QDs. In the region of 1.63-1.66 eV, a series of sharp 

peaks is observed, where both PL and PLE signal of type B QDs show correlated peaks. 

Particularly, the peaks produced by QD B2 at 1.63 eV under resonantly optical excitation, 

indicates that DNP in type A dot can be induced by type B dot under optical excitation. 

Previous studies have not reported this mechanism, which is such a unique property of 

NFDE QDs. 
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Figure 4.10: (a) Wide range PL spectrum showing the quantum well (QW), QD A2 and 

QD B2 emission under nonresonant excitation E = 1.96 eV as shown in Figure 4.9(a); (b) 

Overhauser shift measured on QD A2and QD B2 as a function of the energy of excitation 

laser 𝐸𝑙𝑎𝑠𝑒𝑟 . Red and blue lines are for QD A2 under 𝜎+ and 𝜎− excitation, respectively; 

green and magenta lines are for QD B2 under 𝜎+ and 𝜎− excitation, respectively. 
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Figure 4.11: Higher resolution photoluminescence spectra focusing on QD B2, B3 and 

A2. (a) PL spectrum of QD B2. (b) DNP measurement of QD A2 when 𝐸𝑙𝑎𝑠𝑒𝑟 is scanned 

close to the resonance of QD B2 by low power excitation. (c) PLE spectra of QD A2: a 

close-up of Figure 4.8(b). 
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     In order to understand more details about the inter-dot DNP process, higher 

resolution spectroscopy has been performed focusing around the ground state of QD B2. 

PL spectrum of QD B2 can be found in Figure 4.11(a). DNP measurement of QD A2 was 

detected when 𝐸𝑙𝑎𝑠𝑒𝑟 is scanned close to the resonance of QD B2 by low power excitation 

as shown in Figure 4.11(b). Black dashed lines in Figure 4.11 point direct 

correspondences between the peaks in the DNP (Figure 4.11(b)) and PLE (Figure 

4.11(c)) spectra, indicating that the DNP in QD A2 is induced by the resonant optical 

electron-hole injection mechanism. A doublet occurs near 1.632 eV in both of the DNP 

and PLE spectra due to the Zeeman effect under circularly polarized excitation and 

external magnetic field (B = 6 T). However, there is a small mismatch: the PL peaks of 

QD B2 in Figure 4.11(a) are red-shifted by 150 μeV comparing with the corresponding 

DNP and PLE peaks in Figure 4.11(b) and (c). This red-shift can be a result of Coulomb 

shift [43]. In PL measurements, the existing exciton in QD A2 interacts with the exciton 

tunneling from QD B2, resulting in a red-shift of the ground-state emission of QD B2. By 

contrast, in PLE measurements of QD A2, ground-state exciton emission of QD A2 is 

measured and photon absorption in QD B2 happens when there is no exciton occupying 

in QD A2. Under resonant excitation, an exciton generated in QD B2 can tunnel into QD 

A2 and recombine. The PLE peak in Figure 4.11(c) is a result of the exciton 

recombination. During the process of exciton tunneling or recombining, the spin of the 

exciton electron from QD B2 can be exchanged with nuclei in QD A2, leading to a DNP 

peak in Figure 4.11(b). 

      As can be noticed obviously, prominent DNP and PLE doublets are observed at 1.630 

eV in Figure 4.11(b) and (c), respectively. However, there is no PL emission in Figure 

4.11(a) to relate to them. In order to understand this phenomenon, assume that a QD, 

denoted as QD B3, exists and has a much greater tunneling rate than QD B2. Therefore, 

excitons from QD B3 tunnel into QD A2 before electrons and holes can recombine in QD 

B3, resulting in an enhancement of the PL and DNP in QD A2 while a suppression of PL 

emission in QD B3. 

       Additionally, the same measurements (DNP) have been performed on QD B2 (green 

line for sigma plus and magenta line for sigma plus excitation).  However, there is no 

Overhauser shift detected in QD B2 when exciting QD A2 due to the band structure of 
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type A and B dots. Based on the above spectral analysis of Figure 4.11 and the previous 

AFM studies [22], a most likely schematic cross-section structure of the sample and the 

corresponding band structure are displayed in Figure 4.12(a) [49] and (b), respectively. 

QDs of type A are formed as nanohole filling, while the “mounds” are formed at the edge 

of the nanohole, creating 3D confinement in additional spots, defined as QDs B. The 

potential well of QD B type is much shallower than that in type A dots, and thus the 

excitons generated in QD B under resonant excitation can tunnel into QD A and 

recombine (This process results in a PLE peak in Figure 4.11(c)). Furthermore, it is also 

possible that the exciton electron can exchange its spin with a nucleus either during 

exciton tunneling into QD A or during recombination in QD A (this results in a DNP peak 

in Figure 4.11(b)). The above analysis also suggests that the nuclear spin diffusion 

between dots can be neglected and the DNP in QD of type A can be induced by another 

QD of type B using optical excitation, which has not been reported in previous studies 

and can be unique to the NFDE QDs.  

 

 

Figure 4.12 (a) Schematic diagram of sample cross section and formation of type A QDs 

and type B QDs [22,49]; (b) Schematic energy band structure of type A QD and type B 

QD. 

 
        In order to investigate the reproducibility of DNP in NFDE QDs, a series of pump-

probe measurements were performed on several dots from the same sample. The 

results presented in Figure 4.13 show contour maps of Overhauser shift in the 

parameter space of excitation laser power and magnetic field for QD A7 under 𝜎+ and 
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𝜎− excitation. A cw pump laser at 1.642 eV is used to build up the nuclear spin by tuning 

in resonance with a type B dot. At high powers (P > 10 μW), DNP can be produced in a 

wide range of external magnetic fields for both 𝜎+  and 𝜎−  excitation. The maximum 

Overhauser shifts achieved for this dot is 65 μeV at B = 8-9 T under 𝜎+ excitation, while 

-55 μeV at B = 3 T under 𝜎− excitation. 

 

 

Figure 4.13: 3D contour plots of the Overhauser shift EOHS as excitation power 𝑃𝑒𝑥𝑐 and 

magnetic field 𝐵𝑧 vary under 𝜎+ (a) and 𝜎− (b) excitation for QD A7. The colour scheme 

bar on the top of each plot is a depiction of the corresponding scale of  EOHS. 

 
    As can be noticed obviously in Figure 4.13(a), under high magnetic field B = 9 T, a 

significant Overhauser shift with a value of 50 μeV is detected even when the 𝜎+ 

excitation power is down to 50 nW. Such low-power DNP has been ascribed to the 

recombination of the long-lived dark excitons via second-order process involving a 

nuclear spin flip in neutral QDs in other materials according to previous report [29, 44]. 

By contrast, there is no low-power DNP under 𝜎−  excitation, and the maximum 

Overhauser shift appears at B = 3 T. In Figure 4.13, it is found that the DNP can be 

induced efficiently at magnetic field Bz as small as 0.5 T.  

     After examining several other dots on the same sample, a net, well reproduced results 

can be achieved similarly as those presented in Figure 4.9 and Figure 4.10. DNP via 
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optical pumping the QW states and DNP via tunneling from type B dots to type A dots 

are larger than that induced via pumping type A dots resonantly, with values of 85 μeV 

and 50 μeV, respectively. However, interdot tunneling mechanism provides a selective 

way to control the nuclear polarization in QDs individually, while the nuclei in all dots 

can be polarized under nonresonant pumping as long as the dots are covered by the 

laser spot. The key factor of governing the DNP process is to make the electron-nuclear 

spin flip-flop inefficient by keeping exciton the Zeeman energy much larger than the 

nuclear Zeeman energy.  

 

4.3.3          Nuclear Magnetic Resonance (NMR) Spectroscopy: Probing Quantum  

                    Dot Internal Structure 

According to quantum mechanics, nuclear spin “ 𝐼 ” represents the total angular 

momentum of a nucleus and depends on the mass number (A). Half-integer spins result 

from odd mass numbers; while integer spins correspond to even mass numbers. Nuclear 

spin angular momentum exists in 2 ∗ 𝐼 + 1 distinct quantum states possessing different 

orientations in an externally applied static magnetic field. The spin projections parallel 

to the field has values m running from −𝐼  to 𝐼  in steps of unity. Here, in this 

measurement, for 75
As  spin 𝐼 =

3

2
, m takes the values −

3

2
, −

1

2
, +

1

2
, +

3

2
 (see Figure 4.14).  

 

Figure 4.14: Energy levels for a 75
As nuclear spin of 𝐼 =

3

2
 in a magnetic field B.  
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     Nuclear spins can be polarized (aligned) based on the ability to induce efficient and 

large DNP as discussed in previous measurements. Nuclear magnetic moment, arising 

from the spin of the nuclei, is in the same direction as nuclear spin and proportional to 

the angular momentum of a nucleus. When placed in an external magnetic field, the 

nuclear magnetic moment can move like a gyroscope with a certain frequency around 

the external magnetic field. Such motion is called Larmor precession. The frequency of 

the precession is referred to as Larmor frequency, determined by external magnetic 

field, nuclear magnetic moment, and the angle between them. The angle formed by 

external magnetic field and nuclear magnetic moment directions depends on the 

magnetic quantum number 𝑚. The energy level of the 𝑚𝑡ℎ state is  

 Em=− γmℏB                                                          (4.7) 

Where γ is the nuclear magnetogyric ration and γ=
gIe

2mp
  (gI is the nuclear g-factor; mP is 

the mass of proton). So the energy difference between adjacent states is given by 

∆E=γℏB                                                                 (4.8) 

According to Einstein relation ∆E=ℏ𝜔, transitions occurs when the applied radiation has 

an angular frequency 𝜔 of 

𝜔 = 𝛾B.                                                               (4.9) 

    The resonance transition condition, Eq. (4.9), indicates 𝛾 is an important constant. It 

varies for different nuclei. Usually, the perturbation inducing transitions in NMR lies in 

the RF (radio-frequency) range (106-109 Hz.) 

     NMR measurements are performed using “pump-probe” technique (similar to the 

method discussed in Section 4.3.2) with a radio frequency (RF) pulse introduced 

between the pump and probe duration. RF pulse differs for different nuclei. The 

Overhauser shift, induced by transitions between the spin states, can be detect by probe 

spectrum. Here, in this experiment, the duration of the RF probe is about 150 ms.               

      Nuclear magnetic resonance spectroscopy is a powerful spectroscopic tool for 

investigating the local magnetic field induced by transitions between the nuclear spin 

states. NMR spectra is a well-resolved, analytically tractable, highly predictable and 

unique method to identify small molecules, providing specific information about the 
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reaction states, structure of the material, dynamics, monomolecular organic compounds, 

and chemical environment of molecules [45]. However, any nucleus with a non-

spherical charge distribution has a nuclear electric quadrupole moment. Energy levels 

split by a magnetic field are shifted unequally due to the quadruple moment interacts 

with local electric field gradient (EFG) created by the non-uniform distribution of 

electron density or/and the bonding environment of the nuclei, see in Figure 4.15. In 

analogy with NMR, a perturbation of nuclear quadrupole energy levels occurs when an 

oscillating RF electromagnetic radiation is applied whose frequency closely matches the 

procession frequency. The quadrupolar shift, due to the transitions between the 

quadrupole energy levels, can be expected in the measurements. NMR investigations in 

semiconductor nanostructures are restricted largely by the quadrupole-induced broad 

spectra.  

 

 

Figure 4.15: Energy levels for a 75
As nuclear spin of 𝐼 =

3

2
 in a magnetic field B and the 

local electric field gradient (EFG) created by the non-uniform distribution of electron 

density or/and the bonding environment of the nuclei. 
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Figure 4.16: A close-up of the sample mount inside the cryostat. The multi-layer copper 

coil (the hole in the middle of the coil is ~ 0.4 mm) is soldered to a coaxial cable and 

placed close to the sample to provide the RF excitation in NMR measurements.  

 

   As shown in Figure 4.16, the sample is fixed on an aluminium mount and can be 

controlled by a set of three spatial dimensional piezo stages. The multi-layer copper coil 

(the hole in the middle of the coil is ~ 0.4 mm) is soldered to a coaxial cable and placed 

close to the sample to provide the RF excitation in NMR measurements. The RF 

excitation itself is created by a waveform generator and passed through an RF amplifier 

before reaching the coil. In order to study the structural properties of the QD, an 

optically detected “inverse” NMR spectroscopy method, developed by Dr. Evgeny 

Chekhovich, is utilised. The improvement of the “inverse” NMR, based on the typical 

NMR measurements, is that a continuum broadband RF excitation replaces the FR pulse. 

The excitation RF in “inverse” NMR contains a gap with a width 𝑓𝑔𝑎𝑝 (see Figure 4.17(b)), 

which is selected to balance the signal amplitude and the spectral resolution. Full details 

about the inverse NMR method can be found in the reference [27]. 
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Figure 4.17: Schematic diagram of the radiofrequency excitation spectra for the typical 

saturation spectroscopy method (a) and the improved ‘inverse’ spectroscopy (b).  

      

As can be noticed, the radiofrequency excitation spectrum in Figure 4.17(b) is the 

inversion of that in Figure 4.17(a). Narrow-band and broadband excitation is the main 

difference between the typical saturation spectroscopy (Figure 4.17(a)) and ‘inverse’ 

spectroscopy (Figure 4.17(b)). The effect of excitation on the population probability 𝑃𝐼𝑚  

is significant. The population distribution follows the Boltzman distribution [27] under 

narrow-band excitation, while under the ‘inverse’ broadband excitation, the population 

probabilities of the nuclear spin levels can be built to enhance the transitions in the 

nuclear spectra corresponding to the spin states coupled by the RF field [ 27].  The RF 

pulse duration in this measurement was 1.2 s long and fgap = 400 kHz. 

The nuclear spin polarization (quantified by the total Overhauser shift EOHS) includes 

contributions from all the isotopes within the QD (Al, Ga, As and Ga). The contributions 

can be separated individually by selectively depolarizing each isotope after fully build 

up the optical DNP. Resonant RF excitation measurements were performed to erase the 

polarization of As at B = 6 T in this work. The NMR spectra of the 75
As  isotope for QDs 

A4 and QDs B4 are shown in Figure 4.18(a) and (b), respectively. The NMR signal is 

detected optically and is the subtraction between the total Overhauser shift EOHS  and 

the Overhauser shift EOHS(rf)  measured with RF depolarizing the 75
As  isotope.  Red 

dotted lines and blue solid lines are measured under 𝜎+  and 𝜎−  optical nuclear spin 

pumping, respectively. Sharp central peak dominating in both Figure 4.18(a) and (b) 
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corresponds to the central transitions (CTs) between nuclear spin −
1

2
⟷+

1

2
. 

Quadrupolar shift transitions, defined as satellite transitions (STs), are expected to be 

measured as discussed above. The two STs correspond to nuclear spin +
1

2
⟷+

3

2
 and 

−
3

2
⟷−

1

2
 , shifting from CT by +𝜈𝑄  and −𝜈𝑄 , respectively. The nonzero quadrupolar 

shift 𝜈𝑄 (sidebands) indicates the existence of shear elastic strain [19] although lattice 

mismatch is not expected in GaAs/AlGaAs structures. Asymmetric STs can be observed 

in QD A4 and QD B4 under 𝜎+ optical pumping. 

 

 

Figure 4.18: Nuclear magnetic resonance spectra of 75
As  nuclei in QD A4 (a) and QD B4 

(b) under 𝜎+(red dotted line) and 𝜎−  (blue solid line) optical pumping. The central 

transition (CT) is observed at  𝜈 ≈ 43.91 MHz . The satellite transitions (STs) are 

separated from the CT by the strain=induced quadrupolar shift ±𝜈𝑄. 

        

An increment of the NMR signal for the low-frequency ST of QD A4 and high-frequency 

ST of QD B4 can be noted due to the enhancement of the −
3

2
⟷−

1

2
  ST by sigma plus 

light [27], which suggests that QD A4 and QD B4 have opposite signs of the quadrupolar 

shifts (𝜈𝑄). Figure 4.19 reveals systematic quadrupolar shift values of several individual 

dots: positive 𝜈𝑄 ~ +20 kHz for type A QDs and negative 𝜈𝑄~ -10 kHz for type B QDs, 

corresponding to the black squares and red rectangles, respectively. The linewidth at 
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half maximum of ST (∆𝜈𝑄), reflecting the inhomogeneous distribution of 𝜈𝑄 in the dot, 

varies in a range of 10-20 kHz. The average 𝜈𝑄 in self-assembled dots has been reported 

as ~ 1.15 MHz, which is almost three orders of magnitude larger than in NFDE dots.  

 

 

Figure 4.19: The linewidths at half maximum of STs versus the corresponding 

quadrupolar shifts for A (back open squares) and B (red open triangles) type of QDs. 

 
In general, quadrupolar shifts, induced by the shear strain rather than isotropic 

hydrostatic strain, are related to the orientations configuration of the strain tensor axes 

and the magnetic field. Here, as the experimental configuration is Faraday geometry and 

samples are planar QD structures, the dominant contribution to the quadrupolar shifts 

origins from the uniaxial strain with its main axis parallel to magnetic field (along Oz). 

The strain is normally characterized with 𝜖𝑏 = 𝜖𝑧𝑧 −
𝜖𝑥𝑥+𝜖𝑦𝑦

2
. When 𝜖𝑏 > 0 , a tensile 

strain is along the direction of magnetic field (𝜖𝑧𝑧 > 0), but the compressive strain is 

perpendicular to the magnetic field (𝜖𝑥𝑥 < 0, 𝜖𝑦𝑦 < 0). The quadrupolar shift induced 

by this deformation amounts to 

𝜈𝑄 =
3𝑒𝑄𝑆11𝜖𝑏
2ℎ𝐼(2𝐼−1)

,                                                            (4.10) 

where h is the Planck’s constant, 𝐼 is the spin of 75
As  nuclei, 𝑒 is the charge of electron, 
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𝑄 is the quadrupolar moment of 75
As  nuclei (~0.31 × 10−28 m2), and 𝑆11 is the gradient 

elastic tensor of 75
As  in bulk GaAs (|𝑆11| ≈ 3.9 × 10

22 Vm−2) with undefined sign [50]. 

Accordingly, the strain distribution in QDs can be derived from the ST linewidth ∆𝜈𝑄 and 

the average strain can be worked out by the average quadrupolar shift  𝜈𝑄: 

                                                                𝜖𝑏 =
2𝜈𝑄ℎ𝐼(2𝐼−1)

3𝑒𝑄𝑆11
.                                                             (4.11) 

As discussed in Section 4.3.1, the studied NFDE QDs have large lateral sizes. 

Comparing with previous investigations on disk-shaped self-assembled InGaAs/GaAs 

QDs (large lateral sizes), the results of studies on 𝜈𝑄 for 75
As  and the tensile strain 𝜖𝑏 

are applicable to NFDE dots. 𝜈𝑄 is negative (𝜈𝑄 < 0) and 𝜖𝑏 is positive (𝜖𝑏 > 0) in disk-

shaped self-assembled InGaAs/GaAs QDs [51], indicating 𝑆11 < 0 (sign convention by 

Eq. (4.11)). Applying 𝑆11 < 0 (𝑆11 ≈ −3.9 × 10
22 Vm−2) to GaAs/AlGaAs NFDE QDs for 

the sign convention on 𝜈𝑄. Although the GaAs lattice constant is slightly smaller than 

that of AlGaAs (contrary to InGaAs/GaAs pair), 𝜖𝑏 can be roughly estimated according 

to disk-shaped dots. In A type of GaAs/AlGaAs QDs, positive 𝜈𝑄  (𝜈𝑄 ≈ +19 kHz) was 

measured and 𝜖𝑏 < 0  was derived from Eq. (4.11) with a value of -0.0014%, 

corresponding to a compressive deformation along the magnetic field. However, in B 

type of QDs ( 𝜈𝑄 ≈ −10 kHz , 𝑆11 ≈ −3.9 × 10
22 Vm−2 ), an anomalous positive  𝜖𝑏 

(+0.007%) was estimated, corresponding to a tensile strain along Oz in the structure 

[51]. 

    More interestingly, for the type A QDs, the values of 𝜖𝑏 are all distinctly negative whist 

for the type B QDs, their 𝜖𝑏 are all distinctly positive. This implies that the wavefunction 

overlap between the excitons in type A and B QDs is small [27], and it is consistent with 

our previous deduction basing on the analysis of DNP measurements that the origin and 

structure of these types of QDs is different. 
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Figure 4.20: Schematic diagram of the strain profile for A type of QDs and B type of QDs. 

Black arrows indicate the direction of strain, deduced from the NMR spectra in Figure 

4.16(a) and (b). 

     

    As discussed above, the cross sectional structure of the QDs is shown in Figure 4.12(a) 

and in Figure 4.20. Type A QDs are located in the nanohole whilst type B QDs form 

outside the moundlike edge of the nanohole due to the 3D confinement. The tensile 

strain along Oz observed in type B QDs is induced by the “sloped” AlGaAs barriers 

applying stretching force along Oz axis on the GaAs layer, whilst resulting in a 

compressive in-plane deformation, as illustrated by the arrows in Figure 4.20. For type 

A QDs, as they are located in the nanoholes, AlGaAs barriers stretch the GaAs layer in the 

horizontal plane inducing compressive strain along Oz (𝜖𝑏 < 0).  

 

4.3.4      Long Nuclear Spin Relaxation Times 

Nuclear spin relaxation in III-V compounds has been studied in detail by NMR 

measurements. Relaxation is the conversion from a non-equilibrium population (excited 

state) to a normal population (ground state), describing how signals deteriorate with 

time. The processes of relaxation in the dynamics of a spin system involve the 

interactions of the spin dipoles with their environment (spin-lattice) and with 

themselves (spin-spin). Time constant 𝑇1 , known as spin-lattice relaxation time, 

characterizes the rate where the longitudinal (parallel to the B field) component of the 
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magnetization restores exponentially towards the thermodynamic equilibrium. Spin-

spin relaxation time, known as 𝑇2 , characterizes the signal decay of the transverse 

component of the magnetization. The lifetime of nuclear spin states in QDs are limited 

by the relaxation time by paramagnetic impurities, quadrupolar relaxation, charge 

fluctuations in the dots or in nearby dots and nuclear spin diffusion. In order to 

investigate the relaxation time in NFDE QDs, a set of measurements was performed by 

pump-wait-probe protocol. Figure 4.21 schematically shows the experiment cycle of the 

pump-wait-probe, where 𝑡𝑝𝑢𝑚𝑝 is the excitation time of the circularly polarized pump 

laser, 𝑡𝑝𝑟𝑜𝑏𝑒 is the detection time of the PL signals under probe laser, and ∆𝑡 is the delay 

(dark waiting time) between pump and probe. The dark waiting time ∆𝑡  is varied 

keeping the other parameters constant.  

 

 

 
Figure 4.21: Schematic diagram of the experiment cycle of pump-wait-probe. 𝑡𝑝𝑢𝑚𝑝 is 

the excitation time of the circularly polarized pump laser; 𝑡𝑝𝑟𝑜𝑏𝑒 is the detection time of 

the PL signals under probe laser; and ∆𝑡 is the delay (dark waiting time) between pump 

and probe. 

      

     The dependence of Overhauser shift on ∆𝑡  is presented in Figure 4.22 for two 

individual QDs. The red open circles from QD A6 and blue full circles from QD B6 were 

measured under sigma plus and sigma minus excitation, respectively. The relaxation 

time 𝑇1 can be obtained by the exponential fits (the red and blue solid lines in Figure 

4.20): 𝑇1 = 7800 s for QD A6 and 𝑇1 = 4900 s for QD B6. As can be noticed in the dotted 

circles, some experimental data points and the exponential decay fitting diverge 
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significantly. Such deviation is caused by nuclear spin diffusion. These points were 

measured after all the other points with very long ∆𝑡  (>1000 s). After repeated 

excitation of circularly polarized light with the same helicity, the nuclei in the 

surrounding environment of the QD are polarized, restraining the spin diffusion [45] 

and extending the relaxation time 𝑇1. 

 

 

Figure 4.22: Decay dynamics of the nuclear spin polarization in the dark measured by 

using pump-wait-probe protocol. Overhauser shift is detected with various pump-probe 

delay ∆𝑡 for QD A6 (red open circles) and QD B6 (blue full circles) under 𝜎+ and  𝜎− 

excitation, respectively. The solid lines fit exponentially to the data revealing 𝑇1 = 7800 

s and 𝑇1 = 4900 s for QD A6 and B6, respectively. The highlighted data within circles 

were recorded after keeping the QD in the dark for durations >1000 s and fitted by 

dashed lines, revealing a much shorter decay time due to the reduction of nuclear spin 

diffusion effect on the subsequent pump-probe cycle with 𝑇′1 = 860 s and 𝑇1 = 640 s for 

QD A6 and B6, respectively. 
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      In natural GaAs/AlGaAs QDs, all the nuclear spin transitions are degenerate, allowing 

a nuclear spin state 𝐼 =
3

2
 to flip into a 𝐼 =

1

2
 state and transferring the excess 

polarization to adjacent spin. By contrast, such a process would be suppressed due to 

the energy mismatch in NFDE QDs, reducing the spin exchange rate and slowing down 

the propagation of nuclear spin polarization into the AlGaAs barrier. As a result, the 

lifetime of the nuclear spin magnetization in QDs can be increased. 

 

4.4      Summary 

In conclusion, electron and nuclear spin properties of in situ nanohole-filled droplet 

epitaxial (NFDE) quantum dots have been explored. The close-to-zero electron g-factor 

for such QDs is revealed, which offers a potential route to independent control of QD 

spin qubits by electrodes. Optical manipulation of the nuclear spin bath is achieved with 

an efficient dynamic nuclear polarization degree as large as 65%. NMR (nuclear 

magnetic resonance) spectroscopy reveals the internal structural properties of NFDE 

quantum dots, together with the direction and magnitude of strain. The nuclear spin 

system of NFDE dots demonstrate a very long nuclear spin lifetimes, which are 

comparable to those reported previously in self-assembled InP [52] and InGaAs [53] 

dots. 
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Chapter 5 

 

Tuning the Coupling Strength and Mode 

Symmetry of Photonic-Molecules Using End-Hole 

Displacement 

 

5.1     Introduction 

Coupled photonic crystal (PhC) microcavities, also known as “photonic molecules” due 

to their molecular-bond-like optical mode bonding and anti-bonding, have attracted 

much attention lately for their unique properties such as optical analogue of 

superradiance [1,2], electromagnetically induced transparency [3-5] and their potential 

application in quantum computational devices containing quantum emitters [6-8]. In 

photonic nanostructures, photonic cavities are key components because photons can be 

trapped and stored in cavities and interactions with various gain and nonlinear media 

such as QDs can be induced. For this attractive potential, tuning of the coupling strength 

and symmetry of the optical modes is essential. Various factors affecting the coupling 

strength between two resonators have been studied, such as the cavity-cavity distance 

[9], the pumping location [10], and the cavity geometries [11]. Due to the high optical 
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quality factor and small modal volume, L3 cavities have been explored extensively ever 

since Yoshihiro Akahane et al reported their silicon-based two-dimensional photonic-

crystal nanocavity with ultra-high Q factor [12]. Varying the numbers of air holes that 

separate two L3 cavities can digitally shift the mode splitting, however, a continuous 

tuning of the coupling is preferable. Although elaborate barrier engineering has been 

carried out to continuously tailor the coupling strength and sign of coupled L3 cavities 

in the ГM and ΓΚ direction [11], a simple but efficient tuning technique is yet to be 

demonstrated for the coupled systems along the line of missing holes. 

     In this chapter, investigations on energy splitting, quality factor and electric field 

distribution of the fundamental modes of coupled L3 photonic crystal cavities have been 

carried out using Lumerical FDTD (introduced in Section 2.1) and GME (discussed in 

Section 2.2) methods. A continuous variation of the energy splitting with the end-hole 

shift of the cavity is calculated, together with a large tuning range and symmetry-

reversible bonding and anti-bonding states. The calculations agree well with optical 

spectroscopic measurements using cavity-coupled QD emitters. Combining the fine 

control of localized mode symmetry demonstrated here with optical nonlinearities 

opens up the possibility of new studies of fundamental phenomena such as spontaneous 

symmetry breaking [13, 14], Josephson oscillations [15, 16] and optical self-trapping [16, 

17].  

 

5.2     Single Photonic Crystal L3 Cavity 

As one of the most important PhC microcavity types, the L3 defect photonic crystal 

resonator consists of a PhC membrane with a line of three missing holes in the centre. A 

typical photonic crystal L3 cavity, noting the end-hole with red circles, is shown in 

Figure 5.1(a), where the insert indicates the end-hole shifts from the original position 

by a distance S. The central wavelength of the cavity mode is located at 899.115 nm with 

a calculated Q factor of 97,000. |𝐸|2 profile (c), Ex (d) and Ey (e) represent the electric 

field distributions of the simulated cavity mode corresponding to the yellow rectangle 

region in (a). 
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Figure 5.1: A typical photonic crystal L3 cavity (a), noting the end-hole with red circles. 

The insert in (a) indicates the end-hole shifts from the original position by a distance S. 

The central wavelength of the cavity mode is located at 899.115 nm with a Q factor of 

97,000 (b). |𝐸|2 profile (c), Ex (d) and Ey (e) represent the electric field distributions of 

the simulated cavity mode corresponding to the yellow rectangle region in (a). 

 

5.3      Simulation Results of Photonic-Molecules 

The photonic molecule, shown in Figure 5.2(a), is a two dimensional hexagonal lattice 

of air holes (refractive index n=1) with lattice constant a=240 nm, depth d=140 nm, fill 

factor r=0.29*a with variable end-hole displacement. It has been demonstrated that, by 

shifting the position of the two end holes of a single L3 cavity, the envelope function of 

field distribution for the fundamental mode can be tailored, and a much higher quality 

factor of the cavity mode can be achieved [10]. In the case of two coupled L3 cavities, 

wavefunction modification induced by the end-hole shift results in a variation of cavity 

coupling, and can be used to tune the L3 cavity coupling.  
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Figure 5.2. (a)Schematic of the photonic molecule. Red holes represent the end holes of 

the two coupled L3 cavities. (b) The split states of the coupled L3 cavities separated by 

3 air holes. The black-dot curve is the bonding mode (even parity) and the red-square 

curve shows the antibonding mode (odd parity). (c) Simulated Ex  and Ey  field 

distributions of the higher energy mode modes and (d) lower energy mode with the end 

hole shift of 0.16*a; (e) Simulated Ex  and Ey  field distributions of the higher energy 

mode and (f) lower energy mode with the end hole shift of 0.34*a. 
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     Figure 5.2(b) shows the calculated energies of the split fundamental modes of parallel 

L3 cavities separated by 3 air holes and coupled along the line of missing holes for 

different end-hole shifts. The simulated Ex  and Ey  field distributions of the coupled 

modes are shown in Figure 5.2(c), (d), (e) and (f), corresponding to the split energy 

states in Figure 5.2(b) labelled as c, d for the higher and lower energy states with end 

hole shift of 0.16*a, and e, f for the higher and lower energy states with end hole shift of 

0.34*a. Following the terminology of quantum mechanics, the parity of the coupling 

states can be clearly identified from those field distributions, where the photonic 

molecular state with even (symmetric) parity is defined as the bonding (B) state and it 

corresponds to the ground state in the case of positive coupling; the photonic molecular 

state with odd (asymmetric) parity is defined as the antibonding (AB) state and is 

associated to the excited state if the coupling is positive coupling [18]. In other words, 

the state with its Ey component at the centre of the coupled cavities having the same 

sign is attributed to the bonding states, and the states with opposite sign of Ey 

component at the cavity centre is attributed to anti-bonding modes. By this definition, c 

and f states (all the states shown by the red-dot curve in Figure 5.2(b)) are B modes with 

even parity, whilst d and e states (all the states shown by the black-dot curve in Figure 

5.2 (b)) are AB modes with odd parity, as shown in Figure 5.2(c)-(f). 

It is obvious from Figure 5.2 (b) that the energies of the split fundamental modes 

depend strongly on the position of the end holes (red holes in Figure 5.2 (a)). For an end 

hole shift smaller than 0.23a, the energies of both B mode and AB mode decrease slowly 

as the displacement of the end-holes increase; with further increasing the end hole shift 

from 0.23*a, these two modes approach degeneracy at 1.382 eV with end hole shift of 

0.256*a. When the end-hole shift is larger than 0.256*a, the mode splits again and mode 

ordering is reversed, i.e. the B mode is the ground state and the AB mode becomes the 

excited state, due to oscillations in the coupling matrix element. With end-hole shift 

larger than 0.256*a, the energy of AB mode increases sharply, while the energy of B 

mode grows steadily. 
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Figure 5.3: End-hole shift dependence of B-AB mode energy splitting (a) and Q factors 

for B mode and AB mode (b). 

 

The energy splitting ΔE, corresponding to the absolute value of the subtraction 

between B mode and AB mode, can be increased by more than one order of magnitude 

when tune end-hole shift as displayed in Figure 5.3(a). The minimum splitting appears 

at 0.256*a. Figure 5.3(b) shows the end hole shift dependence of the quality factors for 

the B mode and the AB mode. The Q factor reaches the maxima (over 100000) at 0.20*a 

and 0.17*a for B and AB mode, respectively. 

 

5.4      Theoretical Model Comparison with FDTD Simulation 

In order to understand better the susceptibility of the bonding-antibonding splitting 

(BAB) to the end-hole displacement, it is instructive to start with a simple perturbation 

theory calculation of the coupling between two L3 cavities following the model of 

coupling in quantum systems.  

    The eigenvalue equation for the magnetic field H is calculated: 

𝜵 × (𝜂𝜵 × 𝐇) = ω2𝐇                                           (5.1) 

where ( ) r  is the inverse of the permittivity ( ) r  and 𝜔 is the frequency. 
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To solve the perturbation theory calculation, a basis of the eigen-modes of two isolated 

L3 cavities is chosen carefully. The two isolated cavities are located at the positions 

within the lattice of the actual cavities, called 
1

H and
2

H . Similarly, the   function is 

divided into two parts: 
1 12

( ) ( ) ( )   r r r , where 
1
( ) r  presents the single isolated 

cavity (cavity 1) in the photonic crystal and the perturbation part 
12

( ) r  is the 

correction to this because of the presence of another cavity (cavity 2).                                 

                         𝛁 × [(𝜂1 + 𝜂̃12)𝛁 × 𝐇1] = ω1
2𝐇1 + 𝛁 × (𝜂̃12𝛁 × 𝐇1) 

∫ 𝑑3r H1(r) ∙ 𝛁 × (𝜂(r)𝛁 ×H1(r)) = 𝜔1
2 + ∫ 𝑑3r H1(r) ∙ 𝛁 × (𝜂̃12(r)𝛁 × H1(r)) 

= 𝜔1
2 + 𝑉11                                                             (5.2) 

where                     

             
      𝑉11 = ∫ 𝑑

3r H1(r) ∙ 𝛁 × (𝜂̃12(r)𝛁 × H1(r))

= −𝜔1
2∫ 𝑑3r D1(r) ∙ D2(r)𝜂̃12(r)

.                                (5.3) 

Similarly                        

      ∫ 𝑑3r H2(r) ∙ 𝛁 × (𝜂(r)𝛁 ×H1(r)) = 𝜔1
2𝑆12 + 𝑉12,                      (5.4) 

where                                     

      𝑉12 = −𝜔1𝜔2∫ 𝑑
3r D2(r) ∙ D1(r)𝜂̃12(r).                                   (5.5) 

So equation E1 = ω1
2 needs to be solved 

                           (
𝐸1 + 𝑉11 𝐸1𝑆12 + 𝑉12
𝐸2𝑆12 + 𝑉21 𝐸2 + 𝑉22

) (
𝛼
𝛽) = (

1 𝑆12
𝑆12 1

) (
𝛼
𝛽).                     (5.6) 

The BAB splitting is then given by 

                                                       ΔBAB =
2𝑉12

1−𝑆12
2 −

2𝑆12

1−𝑆12
2 𝑉11                                            (5.7) 

     The contribution arising from the non-orthogonality of the basis states 
1

H and 
2

H  

can be negligible for the parameters considered here (
11 12
V V and 

12
1S ), the 

second term in Eq. (5.7) is very small. Therefore, the BAB splitting ΔBAB  can be 

simplified as  
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 ΔBAB = 2𝑉12 = −2𝜔0
2∫ 𝑑3r D1(r) ∙ D2(r)𝜂̃12(r)                   (5.8)                           

Assuming the two cavities are identical, 
0

  is the isolated mode frequency. The second 

identity follows from applying the divergence theorem and using Maxwell’s equations 

to convert the magnetic fields
1

H  and
2

H  to the corresponding electric displacement 

fields 
1

D  and
2

D . Based on the theoretical derivation, the BAB splitting has been 

calculated using Eq. (5.8), for various values of the end-hole displacement, in the same 

structure as shown in Figure 5.2(a), with three holes between two cavities. The result 

can be found in Figure 5.4, which indicates the theoretical calculation (red circles) and 

FDTD simulation (blue squares) are in good agreement.   

 

 

Figure 5.4:  Mode splitting, ΔBAB , for a double cavity structure with three holes 

separation, as determined by simulations of the full structure (blue points and lines) and 

evaluation of the matrix element  𝑉12 in Eq.(5.2) (red). The lines are a guide to the eye. 

     The sensitivity of the BAB splitting to small changes in the structure can be explained 

by the form of matrix element in Eq. (5.6). 
12

  is the perturbation of the lattice 
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corresponding to the addition of the other cavity (cavity 2), so it is only non-zero at the 

locations of the three holes which are removed to make this cavity and on either side of 

the shifted end holes. That is, inside the circles and crescents shown in Figure 5.5, where 

the black dotted rectangle in (a) indicates the region being simulated in (b).  

 

Figure 5.5: (a) Schematic of the photonic molecule as in Figure 5.2(a). The dotted black 

rectangle indicates the region being calculated. (b) shows the real part of 𝐃𝟏 ∙ 𝐃𝟐, as a 

colour scale, in the region of the second cavity for a plane bisecting the slab. The other 

cavity would be off the figure to the left. 
12

 is non-zero only inside the three central 

circles, which correspond to the holes removed to produce the cavity, and the pairs of 

crescents at either end, where the holes are shifted. The significant changes to 𝐃𝟏 ∙ 𝐃𝟐 

in these zones, when the end-hole shift is carried, explains the large effect on the BAB 

splitting. 

    The three central black circles correspond to the holes removed to produce the cavity, 

and the pairs of black circles at either end of the black rectangle point out the original 

position of the end holes while red circles present the shifted holes. Figure 5.5(b) shows 
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the real part of 𝐃𝟏 ∙ 𝐃𝟐 ; and the colour scale on the right side of the figure gives the value 

of 𝐃𝟏 ∙ 𝐃𝟐, in the plane of the centre of the slab, for the region around these holes. It can 

be seen that the relevant part of this, inside the circles and crescents, varies significantly 

with the end-hole shift, suggesting that the splitting is determined only by the values of 

the fields in these small regions, even though the overall effect on the single cavity is just 

a slight change in the strength of the confinement along the axis of the cavity.  

 

5.5      Dependence on Cavity Separations 

In order to verify the effectiveness of this tuning method, simulations for coupling L3 

cavities with different cavity centre separation (cavities separated by different numbers 

of holes) have been carried out. The end-hole shift dependence of the B-AB mode 

splitting for different cavity separations can be found in Figure 5.6, where the tendencies 

of the mode splitting for different cavity separations are similar. Symmetry exchange 

and level crossing occur at certain end-hole shifts. Particularly, for the case of cavities 

separated by 4 holes, the B-AB modes cross and parity exchange twice (at 0.20a and 

0.37a). Such a multiple level crossing and parity exchange may occur to coupling 

systems with different cavity separations if the end hole shift is large enough (limited 

by the photonic lattice constant a).  
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Figure 5.6: End-hole shift dependence of the modes splitting for different cavity 

separations. 

 

     Similarly, the B-AB mode splitting, using Eq. (5.8), for various values of the end-hole 

shift in structures with different cavity separations, have been calculated. The 

comparisons between the FDTD simulation results and theoretical model calculations 

have been made for 4, 5 and 6 holes separation configuration in Figure 5.7. The results 

are all in good agreement.  
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Figure 5.7: Mode splitting, ΔBAB , for a double cavity structure with different hole 

separations, determined by simulations of the full structure (blue points and lines) and 

evaluation of the matrix element 𝑉12in Eq. (5.5) (red). The lines are a guide to the eye. 
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5.6         Experimental Results 

5.6.1      Sample Details 

The simulation and theoretical model studied in Section 5.3 indicate that the 3 holes 

separation configuration offers the largest control of the coupling. Photonic molecules 

with 3 holes between two L3 cavities were fabricated by Dr. Davis Vaitiekus using 

electron beam lithography on a 140 nm GaAs membrane containing a single layer of InAs 

quantum dots (the same procedures presented in Section 3.1). The density of the dots is 

low enough for further investigation on single quantum dot coupling to cavities. A ~1 

μm AlGaAs sacrifice layer was between the GaAs membrane and Si substrate. HF acid 

was used to remove the AlGaAs sacrificial layer. The duration of underetch was vital as 

the HF acid needs to remove the material in the position of air holes forming periodic 

arrays. An overview SEM image of a photonic molecule device is shown in Figure 5.8. In 

order to confine the light strongly, air holes should be fabricated over at least 2 μm 

distance away from the cavity in X and Y directions.  

 

 

    Figure 5.8: An overview SEM image of a photonic molecule device. 
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     Photonic molecules were prepared with different end-hole shifts (from 0.10*a to 

0.40*a), and the same a (lattice constant), d (lattice thickness), and r (hole radius) 

parameters used in the simulation. Two typical scanning electron microscope images of 

the devices, with different end-hole displacement S1 and S2, showing the precise control 

of fabrication, are presented in Figure 5.9(a) and (b), respectively.  

 

 

Figure 5.9: Typical SEM images of the coupling L3 cavities with different end-hole shifts 

S1 and S2, showing the precise control of fabrication. 

 

5.6.2       PL Characterisation of Photonic-Molecules 

Photoluminescence spectroscopic (PL) measurements were carried out by exciting the 

dots, which act as an internal light source within the photonic molecule. The HeNe laser 

operating at 633 nm was focused to a ~ 1 μm spot using a microscope objective lens 

with numerical aperture NA = 0.5. The samples were mounted in a helium flow cryostat 

(discussed in Section 3.2), at a temperature of 4 K. Excitation and collection take place 

on the same position of the device, roughly at the centre of the photonic molecules.   
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     The splitting of the fundamental mode observed in the PL measurements is shown in 

the waterfall plot (Figure 5.10(a)), corresponding to the end-hole shift from 0.09*a  to 

0.39*a. The energies of the PL peaks are extracted and plotted in Figure 5.10 (b), where 

the blue dots show the higher energy mode component of the splitting and the green 

squares are the lower energy mode. The black and red curves are the theoretical results 

with a=245 nm and r=0.265*a using the simulation method described in Section 5.3. 

Good agreement can be found between the experimental results and guided mode 

expansion (GME) calculations. 
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Figure 5.10: (a) Waterfall plot of PL spectra of the photonic molecules with different 

end-hole shift from 0.09*a to 0.39*a. (b) Energies extracted from the peaks in (a) (green 

and blue dots) and guided mode expansion (GME) calculated results (red and black 

lines). Parameters for sample fabrication: a=245 nm and r=0.265*a. 
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     For further comparison, devices with varying lattice constant a and hole radius r were 

fabricated and characterized. The end-hole shift dependences of the B-AB splitting for 3 

groups of devices are presented in Figure 5.11. Experimental results of samples with 

a=243 nm, r=0.253*a (a), a=241 nm, r=0.26*a (b), and a=240 nm, r=0.256*a (c) showing 

significant mode splitting tuning and parity exchange at certain end-hole shift values, as 

predicted by the GME simulation shown in Figure 5.11(d). 

 

 

Figure 5.11: (a)-(c) Experimental results of end-hole shift dependences of the S-AS 

splitting for 3 groups of devices and (d) GME simulation results for comparison. 
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5.7       Waveguide Induced Strong Coupling between Distant L3 Cavities 

When individual cavities are coupled, they must be placed close to each other within the 

range of a few wavelengths [19, 20] due to the evanescent fields of each cavity extend 

just a few wavelengths. The photonic molecule device studied above contains two L3 

cavities coupled directly through several separated air holes. However, with this spatial 

limitation, photonic cavities can only couple to the geometrically adjacent cavities. The 

architecture of the system and the on-demand control of the coupling states are severely 

restricted. Strong coupling between distant photonic nanocavities and its dynamic 

control have been realized theoretical and experimentally in Si material [21] based on 

the established fabrication techniques and high Q factors in Si photonic nanocavities. 

However, in III-V semiconductors, due to the fabrication limitation and relatively low Q 

factors, it is yet to be demonstrated. Here, in the following work, preliminary simulation 

results on strong coupling between distant L3 cavities in GaAs make it possible to break 

the current spatial limitation and also provide the potential to realize the next-

generation photonic circuits.   

In order to couple these distant cavities, a waveguide serving as a “bridge” between 

the cavities need to be introduced. Based on the extensive studies and good 

understandings of L3 cavities, a pair of L3 cavities was chosen to be connected indirectly 

through a photonic waveguide. The calculated structure is shown in Figure 5.12.  

 

 

Figure 5.12: Calculated structure based on a photonic crystal waveguide induced L3 

cavities device with a lattice constant 𝛼 of 250 nm. 
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As indicated in Figure 5.12, the distance between the two L3 cavities (center-to-center) 

is set as 32*a (8 μm). A waveguide (length, 8 μm), consisting of a row of missing air holes, 

is introduced under the cavities and separated by 4 rows of air holes away from the 

cavities. As the end of waveguide is terminated by air holes, standing waves exist 

forming FP modes in the waveguide. The free spectral range (FSR) between the FP 

waveguide modes can be calculated by the length of the waveguide and the group 

velocity of photons. In the simulation, photons in the L3 cavity can couple to the FP 

waveguide modes if the cavity mode coincides with any of the FP waveguide modes 

within the coupling bandwidth. As a consequence, the formation of strong coupling 

between the distant cavities would be impossible due to the substantial leakage of 

photons from cavities to the waveguide. Therefore, it is essential to design the coupling 

bandwidth of cavity modes to be much smaller than the FSR of the FP waveguide modes, 

and avoid the photons in individual cavities leaking out to the FP waveguide modes. The 

coupling between distant cavities can still occur indirectly via the forced oscillation of 

the FP waveguide modes. Strong coupling of the cavity modes can happen due to the 

cavities having the same resonant wavelength and when the photon leakage is 

suppressed substantially.  

In order to confirm the coupling between distant L3 photonic cavities numerically, 

varFDTD simulations have been carried out. As discussed in Section 2.3, the varFDTD 

method provides best trade-off between simulation accuracy and speed: sufficiently 

accuracy and versatility to that of 3D FDTD, while only needs the modelling time and 

memory of a 2D planar FDTD simulation. The key to varFDTD method is to use the right 

effective refractive index. Here, after a series of calculations, n=2.85 has been picked. 

Firstly, photonic modes of the simulated structures, were calculated by exciting the 

system with a wide-spectrum pulse in the spectral/frequency domain.  The results in 

Figure 5.13 show several FP waveguide modes, labeled as WG1, WG2 and WG3. Red 

peaks labeled as S and AS represent the symmetric and asymmetric mode, respectively. 

Only the denoted FP waveguide modes (WG1, WG2, WG3) were observed when 

calculating without cavities. S and AS peaks correspond to the cavity modes, which split 

into two peaks, indicating the strong coupling between the distant photonic L3 cavities.  
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Figure 5.13: Resonant spectra of the simulated structure. Red peaks, resulting from 

strong coupling between the distant L3 cavities, are labeled as S and AS representing the 

symmetric and asymmetric mode, respectively. Blue peals, labled as WG1, WG2 and 

WG3, are the FP waveguide modes.  

 

To confirm the splittings are due to the strong coupling, S and AS peaks were 

monitored in time-domain simulations, where cavity A was excited by a single pulse 

with the frequency width covered both S and AS modes. Figure 5.14 shows the 

calculated time evolution of the photon energy in cavity A (black curves) and cavity B 

(red curves). Rabi oscillation is clearly observed as the cavities exchange photons 

periodically. Additionally, snapshops of the electric field distribution within the cavities, 

corresponding to the time evolution investigation, are shown in Figure 5.15. These 

preliminary results clearly imply that strong coupling between the distant GaAs 

photonic cavities is possible. 
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Figure 5.14: Time evolution of the simulated light energy in cavity A (black curve) and 

cavity B (red curve). Rabi oscillation is clearly observed as the cavities exchange photons 

periodically. 
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Figure 5.15: Snapshots of the simulated electric field distribution correspond to the time 

evolution performed in Figure 5.14. 

 

5.8      Summary 

In conclusion, key properties such as energy splitting, quality factor and electric field 

distribution of the fundamental modes of coupled L3 photonic crystal cavities have been 

studied by performing numerical simulations (FDTD) and developing a theoretical 

model. A continuous variation of the energy splitting with the end-hole displacement of 

the cavity, together with a large tuning range and symmetry-reversible bonding and 

anti-bonding states, have been revealed by numerical simulation and theoretical 

modeling. Continuous tuning of the coupling strength has been demonstrated 

experimentally and agrees well with the theoretical calculations. Further work in 

demonstration of symmetry exchange of localized modes can be carried out by a far-

field analysis of the angular emission pattern. Preliminary simulation results for future 

investigations of waveguide induced strong coupling between distance L3 cavities have 

also been presented, opening up a potential way to form coupled states on-chip and to 

realize the next-generation photonic circuits for quantum information processing. 
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Chapter 6     

 

Waveguide-Coupled Ring Resonators for On-Chip 

Spectral Filtering Applications 

 

6.1        Introduction 

Semiconductor quantum dots (QDs) in whispering gallery mode resonators (WGMs) 

have been intensively explored as they possess many advantages for quantum photonic 

applications [1-4]. Previous studies have shown effects such as spontaneous emission 

enhancement (Purcell effect) [5, 6], QD-based deterministic bright single photon 

emission [1, 4, 7], lasing [8, 9] and Rabi oscillation [10, 11] etc. Besides these striking 

features of the QD-WGM coupling system, they can also be very easily integrated with 

other monolithic circuit elements [1, 12]. This makes them excellent candidates for 

applications such as optical switching using single photons [13-15] and on-chip spectral 

filtering [16-19] etc. The integrated semiconductor whispering gallery mode resonator 

family includes two types of cavities: micro-disk and micro-ring resonators. In fact, a 

ring resonator can be treated as a special type of WGM resonator transforming from a 

micro-disk with its inner part being removed. In a micro-disk, the field distribution of 

the WGMs can cover the whole micro-disk, while in a micro-ring, only the lower order 

WGMs existence between the outer and inner edges. The free spectral range (FSR), 
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governed by the first order radial modes, can be largely increased with reduced 

amplitude of the other modes, leading to a more suitable device towards on-chip 

filtering techniques using QDs.  The energy transfer efficiency of a ring resonator can be 

higher than that of a micro-disk for spectral filtering applications as the optical loss 

caused by the absorption of higher order modes can be neglected. Furthermore, 

different coupling configurations based on ring resonators can be custom designed into 

integrated optical devices, such as a filter with a flat top [20] or a reflector device [21] 

for an integrated semiconductor optical amplifier serving as a laser [22].  

   This chapter investigates the application of WGMs for on-chip spectral filtering 

applications. The mode structure and transmission spectra of ring resonators coupled 

to a single mode waveguide are studied by using “2.5D” FDTD simulations, where 

parameters are optimized to realize the filtering at QD wavelengths. The ultra-narrow 

notch filtering effect and the Purcell enhancement of single QD emission are achieved 

using transmittance and photoluminescence spectroscopy measurements. 

 

6.2          Simulation and Design of Ring Resonators 

6.2.1        WGMs Formation and Field Distribution in a Ring Resonator 

A planar optical WGM resonator is a type of device where optical modes can be almost 

perfectly trapped by optical total internal reflection (TIR) at the outer lateral interface. 

As a special resonator (not a true WGM due to additional confinement by inner surface), 

a ring resonator inherits most optical properties of WGM resonators. The modes in a 

ring resonator are confined between the outer and inner edges, which work as 

boundaries and form a potential well. Similar to the case of a microdisk resonator, the 

internal part of the modal fields of a ring resonator are also the solutions of the 2D 

Helmholtz equation in cylindrical coordinates for the radial Hz fields [23, 24]. The 

solutions for the region between inner dielectric radius Rinner fields and outer dielectric 

radius Router can be obtained as  

HΖ(r, θ) = Jm(kr)e
i(±mθ−ωt)        Rinner ≤ r ≤ Router             (6.1) 
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where  𝐽𝑚  is the 𝑚 − 𝑡ℎ  order Bessel function of the first kind, k is the propagation 

constants and m  is the number of optical periods. A schematic illustration of the 

solutions can be found in Figure 6.1, where (31,3) is the 3rd root (3rd order radial modes) 

of the 31-th order Bessel function of the first kind [12].  

 

Figure 6.1: Confined modes with different radial potential. As the ring width reduces, 

higher order radial modes are reduced until they are not observed at all, leaving just a 

single mode. 

 
      Standing waves in a ring resonator, are formed by clockwise (CW) and anti-clockwise 

(ACW) propagating modes with arbitrary phase due to the cylindrical symmetry of the 

system. A typical modal field distribution of the simulated ring resonator and the mode 

is shown in Figure 6.2 (a). A quantum dot can be located at any point along azimuthal 

axis due to the arbitrary phase. However, the overlap between QD and mode fields is 

mainly determined by the superposition configuration. Figure 6.2(b) and (c) display the 

symmetric and anti-symmetric superposition, respectively. When the QD is located in 

the symmetric (anti-symmetric) superposition, the overlap can be maximized 

(minimized).    
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Figure 6.2: (a) is the modal field distribution; (b) and (c) indicate the symmetric and 

anti-symmetric superposition, respectively.  

 
     In these FDTD simulations, the rings have smooth outer and inner boundaries, 

suggesting that the radiative losses and scattering losses are negligible. In this case, 

calculating the Q factors for the ring resonators is not practical due to the extremely long 

time to simulate the decay dynamics of the modes. 

 

6.2.2      Design of an All-Pass Filter using a Ring Resonator 

Apart from the internal part of the modal fields, there are field components existing 

outside of the outer and inner sidewalls, referred to as evanescent field. This evanescent 

field can be coupled to a nearby resonator such as a waveguide forming an all-pass filter 

device, as schematically shown in Figure 6.3. 
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Figure 6.3: Schematic of simulated structure. The spatial separation between ring 

resonator and waveguide is represented by S. 

 
      In general, the coupling strength is determined by the overlapping of the evanescent 

fields arising from the studied devices. Here, for the all-pass filter device illustrated in 

Figure 6.3, the coupling strength depends on the overlapping of the evanescent field of 

ring resonator and that of the waveguide. The efficiency of the power transfer between 

the ring resonator and waveguide is sensitive to the spatial separation S.  In addition, 

the electromagnetic field, transferred from waveguide to the ring resonator, will carry a 

phase shift of  when returning to the waveguide, resulting in destructive interference 

between the direct incoming waveguide modes and the returning resonator modes. 

Similar to the cases of an all-pass filter device consisting a microdisk and a waveguide, 

three regimes with different coupling strength: overcoupling, critical coupling, and 

undercoupling, can be achieved by varying the spatial separation S  between the ring 

resonator and the waveguide. On resonance, in the regime of undercoupling (weak 

coupling), a dominant waveguide mode can be detected as the returning WGM cavity 

mode is weak and the destructive interference is incomplete; in the regime of 

overcoupling, as the intensities of the returning WGM cavity modes are stronger than 

those of the waveguide modes, it is impossible to observe complete destructive 

interference in the transmission spectra collected at the monitor site; while in the 
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critical coupling regime, the intensities of the WGM modes and the waveguides modes 

are equal, and a complete destructive interference can be observed in the transmittance.  

     Additionally, coupling efficiency of the device is also affected by the width of 

waveguide. In order to achieve a complete destructive interference of the cavity mode 

and the waveguide mode resonating in the critical coupling regime, phase matching of 

the modes is essential, and the effective mode indices of the WGM modes and the 

waveguide modes is required to be equal.  

    In conclusion, critically coupling can be achieved by varying the width of the 

waveguide and the spatial separation between the waveguide and ring resonator. A 

minimum transmittance at resonance is reached with a waveguide width of 220 nm and 

spatial separation of 80 nm in the simulation. 

 

6.2.3       Sample Details 

Based on the discussions above, an all-pass filter sample consisting of a ring resonator 

and a waveguide was fabricated by Dr Ben Royall. SEM images in Figure 6.4 (a) and (b) 

give a side-view and a top-view of the micro-ring, respectively. An overall view of the 

whole device can be found in Figure 6.4(c).  

As described in Section 3.1, the fabrication process took place using a 140nm GaAs 

membrane, which contains a low density of self-assembled InAs QDs and a 1  μm 

sacrificial AlGaAs layer between the membrane and substrate. In order to remove the 

AlGaAs layer but leave the supporting pedestal for the ring resonator, the duration of  

HF acid underetch was carefully monitored to ensure complete removal beneath the 

waveguide and outcouplers. Outcouplers with λ/2n periods were added to the ends of 

the waveguide and designed like a grating to scatter PL emission out of the device plane. 
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Figure 6.4: (a) is a side-view SEM image of the ring resonator; (b) shows the details of 

inner and outer edge of the ring resonator; (c) is a waveguide-coupled ring resonator 

with an inner ring radius of 2  μm , ring width of 0.35 μm  and waveguide length of 

13.5 μm. 

 

6.3        Characterization of Waveguide–Coupled Ring Resonators 

Photoluminescence (PL) spectra of the device were measured by exciting the quantum 

dot (QD) ensemble in the device using a HeNe laser with a wavelength of 633 

nm. A microscope objective lens with numerical aperture of 0.5 was used to focus the 

laser beam. The samples were mounted in a cryostat system with continuum flow of 

liquid helium and an optical window, as mentioned in Section 3.2. The samples were 

cooled down to 4 K for the measurements.  

     When spectroscopically characterizing the ring resonators, the entire ensemble QDs, 

pumped by the 633 nm HeNe laser with 40 μW excitation power, was used as an internal 

broadband light source. A typical PL spectrum, obtained using the configuration 

illustrated in Figure 6.4(c), is presented in Figure 6.5.  
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Figure 6.5: PL spectrum of waveguide-coupled ring resonator with ring radius of 2 μm, 

ring width of 0.35  μm and waveguide length of 13.5  μm , measured using the 

configuration illustrated in Figure 6.4(c). 

 
The observed modes in Figure 6.5 can be identified by comparing with simulation 

results. Only the first order radial modes were observed as expected. The free spectral 

range (FSR) of ring resonator is about 15  nm . Figure 6.6 (a) shows an example PL 

spectrum of waveguide-coupled ring resonator fitted to 5 peaks corresponding to the 

modes. Coupling strength is determined by the overlapping of evanescent field of ring 

resonator and that of the waveguide, resulting in a change of the Q-factor when change 

the waveguide width or the ring-resonator-waveguide separation. Q-factors of modes of 

an ensemble of ring resonator samples can be found in Figure 6.6 (b), including from the 

sample with spectrum shown in Figure 6.6 (a). The spectral structure of the ring 

resonators is very repeatable, as shown in Figure 6.7. Due to the fabrication 

imperfection, 4 groups of devices were designed and fabricated. More than 200 devices 

with different ring-resonator-waveguide separations in each column and different 

waveguide widths in each line were measured in the same way. The maximum Q-factor 
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for the region of interest (mode around 900 nm) is achieved as high as 12,500, where 

the maximum Q-factor in this system can measured up to 50,000.  

 

Figure 6.6: (a) example PL spectrum of waveguide-coupled ring resonator fitted to 5 

peaks corresponding to the modes. (b) Q-factors of modes of an ensemble of ring 

resonator samples, including from the sample with spectrum shown in (a). 
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Figure 6.7: Statistics results of 200 devices with different ring-resonator-waveguide 

separation and waveguide width. The spectral structure of the resonators is very 

repeatable. The best Q factor achieved for the mode in the region of interest is 12500. 
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Figure 6.7: The dependence of Q-factor on ring-waveguide spatial separations, for mode 

(36,1), yielding the intrinsic Q-factor Qu = 9000. 

 
The dependence of Q-factor on ring-waveguide spatial separations (PL measurements 

on the devices with different cavity-waveguide separations whilst keeping constant 

waveguide width), for mode (36,1), are studied and analyzed in Figure 6.7, where the 

red dots are experimental data. As expected, Q-factor of the mode decreases with 

reducing cavity-waveguide separation as the coupling is enhanced for a closer 

waveguide, suggesting that a compromise between bandwidth and coupling efficiency 

has to be made for different application purposes. In general, the band width of a band-

pass device consisting of a resonator and a waveguide, is defined as the amount of 

resonant signal trapped inside the resonator. It varies for different applications. A 

smaller resonator-waveguide separation establishes a higher coupling rate but a larger 

bandwidth, resulting in a decreased Q factor. For the case of large separation, the 

interaction between ring resonator and waveguide is weak (undercoupled) and the Q 
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factor is higher, which is benefit for the sharp signal filtering applications.  

  The intrinsic (uncoupled) Q-factor is fitted by 

Q = Qu(1 − e
−2(S−S0)/τ)                                 (6.2)      

where  is the decay constant, 
u

Q is the intrinsic Q-factor, and 
0

S is the separation 

at which Q-factor equals zero. Here, for mode (36,1), the intrinsic Q-factor Qu = 9000 

extracted by Eq. (6.2) is much smaller than the simulated Q-factor (> 70,000), which can 

be attributed to scattering by the fabrication introduced roughness of the sidewalls of 

the ring resonator or waveguide in the coupling region. However, the PL emission of QD 

within the ring resonator remains visible from outcouplers and the effects of waveguide 

can be detected, suggesting that the intrinsic loss rate of the device is sufficiently low.        



 

                  Figure 6.8: Statistics of Purcell factors for 50 ring resonator devices. 

    As mentioned above, in this type of coupled ring-resonator-waveguide device, an 

ensemble of two-level emitters (QD ensemble) is incorporated within the ring resonator 
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and coupled to the WGMs. Enhanced spontaneous emission of QDs (resulting from the 

Purcell effect) or energetic level splitting (known as Rabi splitting) at resonance may be 

achieved due to QD-cavity mode coupling. The QD in ring resonator, spectrally and 

spatially coincident with the cavity modes, can be observed from the waveguides due to 

the spontaneous emission enhancement and efficient coupling of the cavity modes to 

the waveguides. In fact, such a system is a suitable candidate for the on-chip Hanbury-

Brown and Twiss (HBT) [25] experiments. In order to estimate the coupling strength of 

the QD-resonator system, Purcell factors are calculated from the experimental data in 

Figure 6.6(b). The resonant mode wavelength 𝜆𝑐 and the maximum and mean Q-factor 

are extracted from Figure 6.6(b). According to Eq. (1.8), the mode volume 𝑉𝑚  for 

different modes can be estimated by using Lumerical Mode Solutions 

(approximately10−18). Applying 𝜆𝑐, the maximum (mean) Q-factor and 𝑉𝑚 to Eq. (1.11) 

gives the maximum (mean) Purcell factors of the modes at different wavelength. As 

shown in Figure 6.8, the mean and Max Purcell factors for the region of interest (around 

900  nm ) are 7.4 and 12.4, respectively. These values are high enough for 

indistinguishable single photon emission from QDs, indicating a high quality of the 

device. 
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6.4      On-Chip Notch Filtering 

 

Figure 6.9: Measurement configuration for the transmission spectra. 

 

In a coupled WGM resonator-waveguide device, dips in the transmission spectra of 

waveguide, can be induced by the destructive interference of the cavity modes and the 

driving field. Transmission measurements are performed by exciting one outcoupler of 

the waveguide and detecting the transmittance at the other outcoupler of the waveguide, 

as illustrated in Figure 6.9. To better identify the dips, a characterization PL spectrum is 

also measured by exciting the micro ring and collecting from the same outcoupler as was 

used for the transmission measurement. Transmission spectra (blue curves) of three 

different devices are presented in Figure 6.10, where the red peaks indicate cavity 

modes of the corresponding micro ring. 
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Figure 6.10: Transmission measurements for sample A, B and C, along with PL 

characterization of cavity modes in micro ring. 
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     As can be noticed in Figure 6.10(c), dips are observed at wavelengths of 886, 889, 900, 

912 nm, along with a slight blue shift compared with their corresponding PL peaks. Dips 

at these wavelengths indicate that the phase matching condition between the WGMs of 

the ring resonator and the propagating modes of the waveguide is satisfied. In addition, 

the radial mode families can also be identified from the PL spectrum. Clear dips 

corresponding to modes (37, 1), (36, 1) and (35, 1) are detected at 890.2, 903.6, and 

917.6 nm for sample A, see in Figure 6.10 (a). Similarly, in sample B, dips appear in the 

transmission spectrum with a complex pattern, attributed to a complicated phase 

matching condition. The obvious observation of the destructive inference induced dips 

in transmission spectra indicates that the quality of the ring-resonator-waveguide 

coupling device is sufficiently high. These results also provide a potential of the device 

as an on-chip ultra-narrow band notch filter. 

 

6.5       Single QD Emission and its Purcell Enhancement 

The measurement of single QDs emission was carried under a weak laser power of 

500 nW.  Sharp emission lines of individual QDs can be observed, instead of a broad QD 

ensemble PL emission. The excitation laser spot, red dot in the inset of Figure 6.11, 

covers the coupling region of the device; while the collection spot, black dot in the inset 

of Figure 6.11, is focused on one of the outcouplers.  

   A series of PL spectra of single QDs coupled to WGMs has been taken under different 

temperatures in Figure 6.11. As reported in previous studies [7, 15], the emission 

energies of QDs are more sensitive to temperature changes than cavity modes; and QD 

emission may shift off/on resonance with the cavity mode as the temperature changes. 

In order to identify the PL peaks from different QDs and cavity modes, peak position and 

intensity versus temperature have been extracted and plotted in Figure 6.12(a) and (b), 

respectively. 
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Figure 6.11: The temperature dependence of the single QDs emission. Inset: 

measurement configuration for the single QD PL spectra. 
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Figure 6.12: Peak positions (a) and integral PL intensities (b) extracted from Figure 6.11 

as a function of the temperature.   

   An enhancement of PL intensity can be noticed at 903.8 nm when temperature goes 

up to 44 K in both Figure 6.11 and Figure 6.12. The green star curve (WGM) and black 

square curve (QD emission) cross over at 903.8 nm in Figure 6.12(a) with a factor of 12 

increment of the QD emission intensity in Figure 6.12(b), suggesting that the QD is well 
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coupled to the WGM and a clear Purcell enhancement of the spontaneous emission of 

the QD-cavity coupling system has been achieved. Additionally, the tuning range of the 

QDs can be estimated roughly by Figure 6.12(a), where the black curve shows the dot 

can be tuned by 3 nm from 4 K to 52 K.  

 

6.6      Add-Drop Filters using Ring Resonators 

 

Figure 6.13: SEM images of add-drop filter using a ring resonator.  

 

The previous sections have demonstrated the design of waveguide-coupled ring 

resonators for spectral filtering and enhanced single QD emission. However, in general 

quantum photonic circuits the QD emission may occur somewhere else in the optical 

circuit and the guided photons must be filtered before being detected on-chip. For this 

scheme, as can be found in Figure 6.13, a second waveguide is introduced to form a 

passive filter, allowing specific QD emission from elsewhere in the optical circuit to be 

transmitted.  

     As discussed in previous section, the propagating mode of waveguide coupled to the 

WGMs in the ring completes a ‘lap’ and couples to the waveguide again with a 𝜋 phase 
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shift, during which optical power is transferred from waveguide to ring and back to the 

waveguide. If a second waveguide is added as illustrated in Figure 6.13, the optical 

power is picked up from the input waveguide and dropped to the second waveguide. 

Therefore, such a device is referred to as an add-drop filter [26-28]. Unlike detecting 

notches produced by destructive interference in the transmission measurements for an 

all-pass filter, there is no interference and notches in transmission of the second 

waveguide and the transmission signals are significant at resonance. At the time of 

writing, these devices have been fabricated and are yet characterized. 

 

6.7      Summary 

In conclusion, the on-chip spectral filtering of photon emission has been explored using 

ring resonators coupled to a single mode waveguide. The device parameters were 

optimized by “2.5 d” FDTD simulations to realize the filtering at QD wavelengths. 

Narrow notch filtering effect and Purcell enhancement of a single QD have been achieved 

by performing transmission PL spectroscopy measurements. Proposals for add-drop 

filters were also presented for future work. 
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Chapter 7  

 

Conclusions and Outlooks 

 

This thesis has focused on the study of III-V semiconductor optical microcavities and 

single quantum dots, which are potential building blocks for the integrated quantum 

optical circuits. 

    Chapter 1 introduced the general properties of semiconductor quantum dots 

including the growth mechanism, electronic structure, and optical response. The general 

picture of semiconductor optical microcavities and the basic principles of cavity QED of 

coupled optical cavity-QD systems have also been presented. Following this 

introductory chapter, Chapter 2 and Chapter 3 present the details of the computational, 

fabrication and experimental methods related to this thesis. 

    In Chapter 4, single spins and the nuclear spin matrix of the GaAs/AlGaAs nanohole-

filled droplet epitaxial (NFDE) QDs are studied using PL and NMR spectroscopy. A close-

to-zero electron g-factor for the NFDE QDs are revealed by the magneto-PL 

measurements. Efficient dynamic nuclear polarization as large as 65% is also 

demonstrated. By applying radio-frequency excitation in the NMR experiments, a 

residual strain as small as <0.02% in the NFDE grown QDs is revealed. Two subgroups 

of ensemble QDs (corresponding to those formed in the nanoholes and at the rims of the 

nanoholes, respectively) with compressive and tensile strain along the growth axis were 
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investigated. In the NFDE grown QDs, small quadrupolar effects (~ 20 kHz) and thus a 

large increment of the electron spin coherence time was observed due to the small strain. 

Despite the relatively small residual strain, stable nuclear spin matrix with a relaxation 

time >500 s can be deduced. 

     The results in this chapter suggest that the NFDE QDs can be promissing candidates 

for spin qubit manipulation as decoherence effects from the nuclear spin environment 

can be largely minimized. 

     In Chapter 5, properties of coupled photonic-molecules (L3 photonic crystal cavities), 

such as energy splitting, quality factor and electric field distribution of the fundamental 

modes, have been studied using numerical FDTD and GME methods. A continuous 

variation of the energy splitting with the end-hole shift of the cavity, together with a 

large tuning range and symmetry-reversible bonding and anti-bonding states, have been 

calculated both in numerical simulation and theoretical model. The calculations agree 

well with optical spectroscopic experimental measurements. Continuous tuning of the 

coupling strength has been demonstrated experimentally, however, symmetry 

exchange via end-hole displacement is yet to be demonstrated in the experiments. A far-

field analysis of the angular emission pattern [1-4] opens up a way to experimentally 

identify the symmetry of localized modes in coupled photonic-molecules, due to the fact 

that the spatial distribution of localized modes may change from a bonding (B) state to 

an antibonding (AB) state. 

    As the position of end-hole have a significant impact on the coupling of photonic 

cavities and there is growing interest in controlling the coupling between distant 

quantum emitters in integrated photonic structures, it is worthwhile to analyze the 

radiative coupling [5, 6] and entanglement [7-9] in such a system, where two quantum 

dots are placed in a photonic-molecule (two L3 cavities) individually and their coupling 

and entanglement are tuned by the end-hole displacement. 

    Due to the ability of trapping and storing photons and the interactions with various 

gain and nonlinear media (such as quantum dots), photonic cavities are key components 

to form coupled states on-chip and to realize the next-generation photonic circuits for 

quantum information processing. Strong coupling between distant photonic 

nanocavities and its dynamical control have been demonstrated experimentally in Si 
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system [10], and the preliminary results in Section 5.7 indicate the feasibility in III-V 

semiconductors. As a potential candidate to implement quantum computation, III-V 

semiconductor quantum dots can be introduced into such a system, where the strong 

coupling between distant cavities are induced by a waveguide. Further investigations of 

long-distance superradiance and entanglement are therefore worthwhile. 

    Chapter 6 explores the application of WGMs for on-chip spectral filtering. The mode 

structure and transmission spectra of ring resonators coupled to a single mode 

waveguide have been studied by using “2.5D” FDTD simulations, where parameters are 

optimized to realize the filtering at QD wavelengths. The ultra-narrow notch filtering 

effect has been achieved and demonstrated using photoluminescence spectroscopy 

measurements. Purcell enhancement of a single QD has been revealed using 

transmittance spectroscopy. The work presented in this chapter has demonstrated a 

design for spectral filtering. Moving forwards, it will be interesting to continue 

investigation of add-drop filters using ring resonator. Furthermore, the response from 

coupled ring resonators can be custom designed into various integrated optical devices, 

such as a filter with a flat top, or a reflector device for an integrated semiconductor 

optical amplifier serving as a laser. 
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