A multidimensional approach towards studying recurrent *Clostridium difficile* infection

Daniel Simon Pickering

Submitted in accordance with the requirements for the degree of Doctor of Philosophy

> The University of Leeds Leeds Institute of Medical Research School of Medicine

> > April, 2019

The candidate confirms that the work submitted is his own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The jointly authored publications are referenced (1) (2) & (3) and the contributed work is summarised below;

- CHILTON, C. H., PICKERING, D. S. & FREEMAN, J. 2017. Microbiological factors affecting *Clostridium difficile* recurrence. *Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases.* (Thesis introduction)
- PICKERING, D. S., VERNON, J. J., FREEMAN, J., WILCOX, M. H. & CHILTON, C. H. 2018. Investigating the effect of supplementation on *Clostridium difficile* spore recovery in two solid agars. *Anaerobe, 50, 38-43*. (Thesis Chapter 3A)
- PICKERING, D. S., WILCOX, M. H. & CHILTON, C. H. 2018. Biofilmderived spores of *Clostridioides (Clostridium) difficile* exhibit increased thermotolerance compared to planktonic spores. *Anaerobe*, 54, 169-171. (Thesis Chapter 3B)

In reference (1) author contributions were as follows; drafting of manuscript (C.H.C, D.S.P, J.F), manuscript revision (C.H.C, J.F), corresponding author (J.F). Sections originally drafted by D.S.P have been utilised in the introductory chapter of this thesis.

Table 3.2.1, Figure 3.3.1, 3.3.7 & 3.3.8 are published in reference (2). Data, methodology and ideas from the manuscript are also incorporated into this thesis. Author contributions were as follows; study conception and design (D.S.P, J.J.V, M.H.W, J.F,C.H.C), acquisition of data (D.S.P & J.J.V), analysis and interpretation of data (D.S.P & J.J.V), drafting of manuscript (D.S.P), manuscript revision (J.F, C.H.C & M.H.W).

Figures 3.7.2 & 3.7.3 are published in reference (3). Data, methodology and ideas from the manuscript are also incorporated into this thesis. In this publication the author contributions were as follows; study conception and design (D.S.P, M.H.W,C.H.C), acquisition of data (D.S.P), analysis and interpretation of data (D.S.P), drafting of manuscript (D.S.P), manuscript revision (C.H.C & M.H.W).

In thesis Chapter 2, statistical analysis was carried out by Professor Robert West, Leeds Institute of Health Sciences, University of Leeds. In thesis Chapter 3B, Figure 3.7.3 was obtained by Mr Martin Fuller, Astbury Centre for Structural Molecular Biology, University of Leeds.

In Chapter 4B, mass spectrometry (LC-MS/MS) and subsequent peptide/protein identification with MaxQuant/Andromeda was performed by Dr Alexandre Zougman, Clinical and Biomedical Proteomics Group, University of Leeds. In addition, I would like to acknowledge the Healthcare Associated Infection Research Group for setting up and maintaining the in vitro gut models.

The right of Daniel Simon Pickering to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

© 2019 The University of Leeds and Daniel Simon Pickering

Acknowledgements

Embarking on a PhD is initially a daunting experience. Despite the seemingly endless months of experimentation, perpetual writing and training, this has been far and away the most enjoyable period of my life thus far. This is in no small part down to the university, department and individuals that have surrounded me for the past 3 years. It has been a privilege to work with such a large number of talented and passionate individuals and I am truly grateful to the University of Leeds for giving me the opportunity.

First and foremost, I want to thank my supervisor, Dr. Caroline Chilton. Our discussions and your continued support have had the biggest impact on the work presented in this thesis. You have an infectious passion for science and you have allowed me to develop and mature into an independent researcher. I would also particularly like to thank Professor Mark Wilcox, for giving me the opportunity to work in his department and for his role as part of my supervisory team. Additionally, I would like to acknowledge the support I received from Kerrie Davies, who was vital to my success in navigating the ethical approval process.

I will miss everybody from the Healthcare Associated Infection Research Group, but particularly my co-author and friend, Jonathan Vernon. I hope and expect that our friendship will continue well into the future.

Finally, I could not have done this without the support of my parents and girlfriend. When times are hard you lift me up and remind me of what is truly important.

iv

Abstract

Clostridium difficile infection (CDI) is an infection of the gastrointestinal tract causing symptoms ranging from mild diarrhoea to life-threatening toxic megacolon. Between 10-30% of patients suffer a recurrent episode (rCDI) after an initial episode. Some patients develop multiple recurrent episodes, leading to unpleasant cycles of disease and antimicrobial therapy. This thesis utilises a multidimensional approach to study rCDI.

In Chapter 2, previously generated clinical data is used to assess the effect of treatment delay on two outcomes; diarrhoeal duration and risk of recurrence. It was hypothesised that delays initiating treatment result in increased symptom duration and recurrence risk. Logistic regression models highlighted treatment delay has no significant effect on diarrhoeal duration or recurrence risk. The only significant variable associated with risk of recurrence was previous CDI (P<0.001). These findings suggest clinicians should not be overly concerned by treatment delays in mild/moderate CDI. In Chapter 3, the germination and thermotolerance properties of five strains of *C. difficile* spores were investigated. In the nosocomial environment spores may be reingested by the patient, germinate and initiate fulminant disease. Additionally, spores can persist in the gastrointestinal tract and germinate in response to stimulatory cues. *C. difficile* spore recovery was optimised by using variety of media and supplements. The ribotype (RT) 078 strain germinated more efficiently in the absence of additional supplementation. RT 027/078 strains were more thermotolerant. Intrinsic differences in

spore germination characteristics between clades could facilitate the increased ability of some strains to cause rCDI.

In Chapter 4, an *in vitro* gut model was used to simulate rCDI. Previous research has characterised changes in the microbiota that occur in response to antibiotics. In this study a metaproteomic approach was utilised to study the overarching metabolic

processes occurring during simulated rCDI. Although dysbiosis was evident, the

metaproteome remained fairly constant throughout simulated infection.

Table of Contents

Acknowledgementsiv			
Abstractv			
Table o	of Con	tents	.vii
Table o	of Figu	Ires	xi
Table o	of Tab	les	.xv
List of	Abbre	eviations	xvi
Chapte	r 1 - lı	ntroduction	1
1.1	Histo	ory & Presentation	1
1.2	Epide	emiology	2
1.3	Pathe	ogenicity	4
1.4	Recu	irrence	6
1.5	Risk	Factors	.10
1	.5.1	Potential <i>C. difficile</i> reservoirs	.13
1	.5.2	Treatment	.14
1.6	Study	y aims	.30
Chapte	r 2 – 1	Freatment Delay and CDI	.33
2.1	Intro	duction	.33
2.2	Meth	ods	.34
2	.2.1	Study overview	.34
2	.2.2	Participants and protocols	.34
2	.2.3	Ethics	.35
2	.2.4	Microbiological methods	.35
2	.2.5	Statistical analysis	.36
2.3	Resu	Ilts	.39
2	.3.1	Patient cohort characteristics	.39
2	.3.2	Symptom duration analysis	.42
2	.3.3	Recurrence analysis	.45
2	.3.4	Ribotype distribution	.46
2.4	Discu	ussion	.48
Chapte	r 3 A	- Spore Germination and Recovery	.53
3.1	Back	ground & Rationale	.53
3	.1.1	Germination mechanism	.54

3	8.1.2	Bile acids	56
3	8.1.3	Amino acids	58
3	8.1.4	Non-germinant receptor germinants	60
3	8.1.5	Optimising C. difficile recovery	60
3.2	Metho	ods	62
3	8.2.1	Production of Spores	62
3	3.2.2	Phase Contrast Microscopy	62
3	3.2.3	Spore Recovery on Solid Media	63
3	8.2.4	Spore Germination in Broths	63
3	8.2.5	Agar-incorporated minimum inhibitory concentration (MIC) testing	67
3	8.2.6	Minimum Inhibitory Concentration (MIC) Testing in Microbro 67	ths
3	3.2.7	C. difficile spore desiccation	67
3	3.2.8	Statistical analysis	71
3.3	Resu	Its	71
Э	8.3.1	Spore Recovery on Solid Media	71
3	3.3.2	Spore Broth Pilot Study	74
3	3.3.3	Spore Germination in Broths	76
3	8.3.4	<i>C. difficile</i> germination in the presence and absence of additional supplementation	80
3	3.3.5	Minimum Inhibitory Concentration (MIC) Testing	83
3	3.3.6	C. difficile spore desiccation	86
3.4	Discu	ussion	89
3	8.4.1	Recovery of <i>C. difficile</i> on solid agar	89
З	8.4.2	Germination of <i>C. difficile</i> in broths	92
3	8.4.3	The inhibitory nature of L-amino acids	95
3	8.4.4	Desiccation of <i>C. difficile</i> spores	97
Chapte	er 3 B -	- Heat treatment of <i>Clostridium difficile</i> spores1	00
3.5	Back	ground & Rationale1	00
3	8.5.1	Superdormancy1	03
3	8.5.2	Biofilms1	04
3.6	Metho	ods1	06
3	8.6.1	Production of spores1	06
3	8.6.2	Transmission electron microscopy (TEM)1	07
З	8.6.3	Heat Treatment in PBS for 60 minutes1	07
З	8.6.4	Heat Treatment Prior to Broth Inoculation1	80

		3.6.5	Reversibility of Spore Heat Treatment	108
		3.6.6	Statistical Analysis	108
	3.7	Resu	ılts	109
	;	3.7.1	Heat Treatment in PBS for 60 minutes	109
	:	3.7.2	Transmission Electron Microscopy	115
		3.7.3	Heat Treatment Prior to Broth Inoculation	116
	;	3.7.4	Reversibility of Spore Heat Treatment	120
	3.8	Disc	ussion	122
		3.8.1	Heat Treatment in PBS	122
	÷	3.8.2	Heat Treatment Prior to Broth Inoculation	127
	3.9	Cond	clusion	128
Ch	napto	er 4 A	 Proteomics in an in vitro Clostridium difficile gut me 	odel
	•			130
	4.1			130
	4	4.1.1	Proteornics approaches	107
	4	4.1.2	C difficile in vitre gut model	100
	4.0	4.1.3 /n.//i	tro Cut Modele	140
	4.2	111 VI 4 O 4		140
	10	4.2.1 Ouoi	Methods	140
	4.3	Quai	Methode	145
	4	4.J.I 4.2.2	Regulta	140
		H.J.Z		140
	4.4		Oughtification of Brotain from the in vitre Cut Model Ver	194 oolo
	2	4.4.1	154	5612
	4	4.4.2	Isolation of Secreted Proteins from Gut Model Microorga 155	nisms
Ch	napto	er 4 B	– rCDI Gut Models	157
	4.5	Meth	ods	157
	4	4.5.1	Metaproteomic Analysis	163
	4.6	Resu	ults	167
	4	4.6.1	Model E – Multiple spore prep doses	167
	4	4.6.2	Model F – Single spore prep dose	171
	4	4.6.3	Model G – FMT	176
	4	4.6.4	Overall Taxonomic analysis	181
	4	4.6.5	Overall Functional analysis	184
	4.7	Disc	ussion	186

Chapter 5 - Conclusions193		
References		
Appendix A - Research Study Protocol 233		
A.1 Research Study Protocol - Substudy		
A.2 Research Study Protocol - Original study		
Appendix B - Media used for bacterial culture and enumeration 274		
B.1 Solid agar		
B.1.1 Nutrient agar 274		
B.1.2 MacConkey agar274		
B.1.3 Kanamycin aesculin azide agar		
B.1.4 Fastidious anaerobe agar275		
B.1.5 Bile aesculin agar276		
B.1.6 LAMVAB agar		
B.1.7 Beerens agar 277		
B.1.8 CCEYL agar		
B.1.9 BHI agar		
B.2 Broth		
B.2.1 Minimal media 279		
B.2.2 Gut model media 279		
Appendix C - Table of Proteins		

Table of Figures

Figure 1.1.1. Areas of study in this thesis and their relation to recurrent <i>C</i> . <i>difficile</i> infection (rCDI)
Figure 2.2.1. The work flow used in statistical analysis for the clinical study
Figure 2.3.1. (a) & (b). Histograms showing the distribution of the study variable
Figure 2.3.2. Duration of symptoms plotted against duration of symptom pre-
treatment on a scatter graph (n = 122)
Figure 2.3.3. The frequency of PCR ribotypes (RTs) isolated from stool of patients in the study population
Figure 3.1.1. Ultrastructural representation of a Clostridium difficile spore 55
Figure 3.1.2. Glycine molecule, showing alkyl chain skeleton, amine group and hydroxyl groups. Diagram obtained from ChemDraw ®
Figure 3.2.1. An overview of the methodology used in solid agarexperiments
Figure 3.2.2. An overview of the methodology used in this study for broth experiments. 66
Figure 3.2.3. The desiccator used to age C. difficile spores
Figure 3.2.4. An overview of the methodology used to enumerated desiccated spores directly on to solid agar
Figure 3.2.5. An overview of the methodology used to enumerate desiccatedspores after 90 minutes broth incubation
Figure 3.3.1. Mean (± SE) spore recovery of spores of five <i>C. difficile</i> strainsinoculated on to a variety of solid agars
Figure 3.3.2. Spore pilot study75
Figure 3.3.3. Mean (± SE) TVC and spore counts of five <i>C. difficile</i> strains of differing ribotypes (001, 015, 020, 027 & 078) germinated in two different broths (BHI & Schaedler) in the presence of different germinants (lysozyme (L), taurocholate (TC) & glycine (GLY))

Figure 3.3.4. Phase contrast data for spores of five C. difficile strains of different ribotypes (001, 015, 020, 027 & 078) of C. difficile incubated for 90 minutes in two broths (BHI & Schaedler) in the presence of a range of Figure 3.3.5. Mean (± SE) TVC and spore counts of three C. difficile strains of differing ribotypes (001, 027 & 078) germinated in two broths (BHI & BHI(S)). Figure 3.3.6. Phase contrast data for spores of three C. difficile strains of differing ribotypes (001, 027 & 078) incubated for 24 hours in two broths (BHI Figure 3.3.7. MIC testing of spores of five C. difficile strains of differing ribotypes (001, 015, 020, 027 & 078) in BHI containing increasing Figure 3.3.8. Mean (± SE) growth of five C. difficile strains of differing ribotypes (001, 015, 020, 027 & 078) in BHI containing increasing concentrations (0, 1, 2, 3 & 4%) of one of three amino acids (glycine, L-Figure 3.3.9. Mean (± SE) recovery of desiccated spores of four C. difficile strains of differing ribotypes (001, 015, 020 & 078) on three solid agars Figure 3.3.10. Germination of desiccated spores of four C. difficile strains of differing ribotypes (001, 015, 020 & 078) in three liquid media (BHI, BHI(L) & Figure 3.7.1. Spore recovery of five C. difficile strains of differing ribotypes (001, 015, 020, 027 & 078) heated for 60 minutes at 70/80 ° C..... 111 Figure 3.7.2. Mean (± SE) spore recovery of five C. difficile strains of differing ribotypes (001, 015, 020, 027 & 078) heated for 60 minutes at 80 ° C 114 Figure 3.7.3. Transmission electron microscopy (TEM) images (1000 X magnification) of biofilm produced spores (A) and planktonic produced C. difficile RT 027 spores (B)..... 115 Figure 3.7.4. Mean (± SE) TVC and spore counts of five C. difficile strains of differing ribotypes (001, 015, 020, 027 & 078) incubated for 90 minutes in BHI supplemented with 0.1 % taurocholate/ 0.4 % glycine...... 118

Figure 3.7.5. Percentage (\pm SE) of phase dark spores (PD), phase bright spores (PB) and vegetative cells (VC) of five *C. difficile* strains of differing

ribotypes (001, 015, 020, 027 & 078) incubated for 90 minutes in BHI
Figure 3.7.6. Mean (± SE) TVC and spore counts of five <i>C. difficile</i> strains of differing ribotypes (001, 015, 020, 027 & 078) incubated for 24 hours in BHI
supplemented with 0.1 % taurocholate/ 0.4 % glycine
Figure 4.1.1. An overview of the different proteomic approaches
Figure 4.2.1. C. difficile in vitro gut model. 144
Figure 4.3.1. Mean (\pm SE) absorbance readings for protein standards of 10, 20, 40, 60, 80 and 125 µg/ml of bovine serum albumin (BSA) 149
Figure 4.3.2. Protein gel electrophoresis of proteins precipitated from Vessels1, 2, & 3 of the <i>in vitro</i> gut model
Figure 4.3.3. Mean (± SE) recovery of obligate populations (total anaerobes, <i>Bacteroides</i> , Bifidobacterium) facultative populations (facultative anaerobes, Lactobacilli, Enterococci, Enterobacteriaceae) and spores (total spores) before, immediately following and 2h post-centrifugation of gut model fluid
Figure 4.3.4. Mean (± SE) absorbance reading for protein standards of 0.2, 0.4 0.6, 0.8, 1.0 & 1.2 mg/ml of bovine serum albumin (BSA)
Figure 4.5.1. Overviews of the timeline for the E, F & G in vitro C. difficile gut models 159
Figure 4.5.2. An overview of the methodology used to produce, isolate andanalyse in vitro gut model microbial proteins
Figure 4.5.3. Methodology used for the taxonomic and functional analysis ofMaxQuant output.165
Figure 4.6.1. Anaerobe counts for Model E over the duration of the model simulating CDI
Figure 4.6.2. Facultative anaerobe counts for Model E over the duration of the model simulating CDI
Figure 4.6.3. Anaerobe counts for Model F over the duration of the model simulating CDI
Figure 4.6.4. Facultative anaerobe counts for Model F over the duration of the model simulating CDI
Figure 4.6.5. Anaerobe counts for Model G over the duration of the model simulating CDI

Figure 4.6.6. Facultative anaerobe counts for Model G over the duration	of the	
model simulating CDI	180	
Figure 4.6.7. Tryptic peptides assignment using UniPept	183	
Figure 4.6.8. Functional annotation of proteins using the 'pathway' function of		
UniProtKB/SwissProt	185	

Table of Tables

Table 2.3.1. Demographics of patients enrolled in the clinical study
Table 2.3.2. Coefficients entered in the multiple regression model for assessing theeffect of duration of diarrhoea pre-treatment on symptom duration
Table 2.3.3 . Coefficients entered in the logistic regression model for assessing effect ofduration of diarrhoea pre-treatment on recurrence
Table 3.2.1. Solid agar plates utilised in C. difficile spore recovery experiments 63
Table 3.2.2. Range of broths utilised in C. difficile spore germination experiments 65
Table 3.7.1. The model used to fit the data shown in Fig 3.7.1 (spore heat brothexperiments in PBS) with the corresponding r ² correlation coefficient value
Table 4.3.1. The different growth media utilised in bacterial identification andenumeration from gut model sampling
Table 4.3.2. Mean (± SE) protein concentrations from Vessels 1, 2 & 3 of the gut model
Table 4.5.1. Samples taken from models E, F & G of the C. difficile gut models 161
Table 4.5.2. An example of MaxQuant Excel output

List of Abbreviations

CDI	Clostridium difficile infection
AAD	Antibiotic associated diarrhoea
ANOVA	Analysis of variance
ВНІ	Brain heart infusion
BSA	Bovine serum albumin
СВА	Columbia blood agar
CCEY	Cycloserine-cefoxitine egg yolk
CCEYL	Cycloserine-cefoxitine egg yolk lysozyme
CCFA	Cycloserine-cefoxitin fructose agar
CD	Clostridium difficile
CDRN	Clostridium difficile ribotyping network
CDT	Clostridium difficile binary toxin
CFU	Colony forming units
СТАВ	Cetyl trimethylammonium bromide
DDSA	Dodecenylsuccinic anhydride
DMP-30	2,4,6-Tris(dimethylaminomethyl)phenol
DNA	Deoxyribonucleic acid
DPA	Dipicolinic acid
ESI	Electrospray ionisation
FASP	Filter-aided sample preparation
FDR	False discovery rate

FMT	Faecal microbiota transplantation
GPMDB	Global proteome machine database
HPLC	High performance liquid chromatography
HT	Heat treated
IBD	Inflammatory bowel disease
iST	inStage-Tip method
iST	In-Stage tip method
LC-MS/MS	Liquid chromatography- tandem mass spectrometry
LFQ	Label free quantification
LLOD	Lower limit of detection
MAb	Monoclonal antibody
MALDI-MS	Matrix-assisted laser desorption/ionisation
MIC	Minimum inhibitory concentration
MLVA	Multiple locus variable tandem repeat analysis
MOPS	3-(N-morpholino)propanesulfonic acid
NAP1	North American pulsed-field gel electrophoresis type 1
NCBI	National centre for biotechnology information
NHT	Non-heat treated
PB	Phase bright
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction

PD	Phase dark
PDB	Protein data bank
PMC	Pseudomembranous colitis
PPI	Proton pump inhibitor
QDS	Quater die sumendum; four times daily
rCDI	Recurrent Clostridium difficile infection
REA	Restriction endonuclease analysis
RM-ANOVA	Repeated measures analysis of variance
RNA	Ribonucleic acid
RPM	Revolutions per minute
RT	Ribotype
RU	Relative units
SCFA	Short chain fatty acid
SDS	Sodium dodecyl sulphate
SDS-PAGE	Sodium dodecyl sulphate - polyacrylamide gel electrophoresis
SE	Standard error
ST3	Single-pot solid-phase-enhanced sample preparation
STrap	Suspension trapping method
TOF	Time-of-flight
TSA	Tryptone soy agar
TVC	Total viable count
WBC	White blood cells

WGS

Whole genome sequencing

Chapter 1 - Introduction

1.1 History & Presentation

Clostridium difficile is an anaerobic Gram-positive, spore forming bacillus first isolated from the stool of an infant in 1935, originally being known as "*Bacillus difficilis*" (1). A possible case of *Clostridium difficile* infection (CDI) was reported in 1892 in a patient who developed diarrhoea after gastric surgery. Interestingly, the patient received a local antiseptic (boric acid) prior to surgery (2). The increased association of pseudomembranous colitis (PMC) with antibiotic treatment led to further work trying to identify the aetiological agent (3). Work in the 1970s led to the conclusion that a clostridial species present in the stool samples of four patients with PMC was responsible for the cytotoxicity observed in tissue culture (4, 5). This was further validated in hamster models. *C. difficile* was finally identified in 1978 as the agent responsible for PMC; a toxigenic strain was isolated from a patient previously treated with clindamycin (6). *C. difficile* toxin has subsequently found to be neutralised by the actions of a *Clostridium sordellii* antitoxin, which is commonly used as a control in cell cytotoxicity assays (7).

In the 1980s, environmental contamination and transmission of *C. difficile* within the nosocomial environment was investigated due to the increasing incidence of CDI. McFarland et al showed that 21 % of 311 patients culture negative at admission to a single ward in an American hospital acquired *C. difficile* during hospitalisation (8). *C. difficile* was also found on 59 % of the staff caring for culture positive patients. Since then, many infection control measures have been implemented to decrease the incidence of CDI, including patient isolation, staff gowning/gloving, improved hand hygiene, environmental decontamination and antimicrobial stewardship (reducing use of high-risk CDI antibiotics)(9).

CDI varies in presentation with mild diarrhoea being common, *C. difficile* has long been identified as the main aetiological agent of PMC, a rarer and far more serious

complication of the disease (3). PMC can develop into toxic megacolon, often considered a surgical emergency, with fatality rates quoted between 38-80% (10). CDI is defined by the occurrence of symptoms (typically diarrhoea) in addition to one of the following; detection of stool toxin, toxigenic *C. difficile* or colonoscopic evidence of PMC (9). CDI rates have been suggested to be over-reported when methods that detect the organism (e.g. nucleic acid amplification tests for toxin gene), as opposed to those that target free faecal toxin, are utilised for diagnostic stool testing (11). Toxin detection methods potentially differentiate between active CDI and asymptomatic colonisation of the organism, and this is now reflected in the recommendation for multi-step algorithms in diagnostic stool testing (9, 12).

CDI is a major healthcare burden, causing significant morbidity and mortality. The latest figures from the Office of National Statistics indicate that *C. difficile* rates in England and Wales are declining since 2008, with fewer death certificates mentioning CDI (13). The case fatality rate (30 day all-cause mortality) has decreased from 26.3 % in 2007/8 to 15.2 % in 2017/18 in England (14). This is likely due to the changing distribution of *C. difficile* ribotypes and interventions emphasising antimicrobial stewardship. CDI is still a major problem; one Scottish study reported the average cost of caring for an inpatient with CDI was £7500 compared to £2800 for non-CDI case matched controls (15, 16). Treatment costs associated with CDI are related to ICU treatment, non-specialised hospital ward stays, diagnostic testing, CDI antibiotics and the implementation of infection control measures. This is not to mention the economic costs associated with decreased patient productivity (17).

1.2 Epidemiology

CDI was regarded as a primarily nosocomial pathogen in the 1990s, occurring rarely, particularly in the community. However, in the 2000s marked increases in CDIs were observed in some settings, driven often by outbreaks of the highly virulent restriction endonuclease type B1, pulse field gel electrophoresis NAP1, PCR ribotype (RT) 027

strain (B1/NAP1/027), for example in North America and Europe (18). The UK experienced an 027 outbreak at the Stoke-Mandeville hospital in 2003/2004 with 174 cases; CDI was a contributing factor to 19 deaths (19). CDI severity was also increasing, coinciding with the 027 strain outbreaks (20-22). Thereafter, cases of CDI in the UK have declined from 55,498 cases in 2007/2008 to 13,361 in 2013/2014 (23). *C. difficile* is still a burden on the healthcare system with 12,480 cases reported in the UK between April 2016 and March 2017(24). The proportion of cases assignable to the 027 ribotype has fallen since 2008, with an increase in the proportion of CDI attributable to other ribotypes (25). One ribotype is usually responsible for outbreaks, with increased antibiotic resistance being vital to the success of the strain in causing disease (26).

There have been a number of factors proposed to have contributed to the emergence of the RT 027 and RT 078 strains in recent years. The prescribing practices and emergence of resistance to antimicrobial agents have been suggested as contributors to the rise of epidemic strains. In the US, clindamycin resistance was found in a strain responsible for an outbreak in four hospitals (27). Antibiotic stewardship and the reduced use of fluoroquinolones in the UK coincided with a reduction in the proportion of infections ascribed to the 027 strain (28, 29). Two 027 lineages have been described (FQR1 and FQR2) both of which acquired a gyrA mutation encoding fluoroguinolone resistance (30). Comparable stewardship measures have not been implemented in the US, where numbers of CDIs continue to increase, with a substantial proportion still due to the B1/NAP1/027 strain (31, 32). RT 106 is now the most commonly isolated strain in CDI in the US (33). More recently, dietary trehalose has been postulated to play a role in the rise of the RT 027 and RT 078 strains (34). Eight RT 027 and three RT 078 strains were found to exhibit improved growth in response to low concentrations of trehalose, an effect not observed in other ribotypes. In a CDI mouse model, mortality was greater in trehalose treated mice versus the control (34). The rise of the RT 027

and RT 078 strains is likely multifactorial, depending on factors including, but not limited to, fluoroquinolone use.

Community-acquired CDI is now being reported with greater frequency; there is evidence suggesting community-acquired CDI is somewhat underreported (35). In one study in the Netherlands, 18 % of community cases were found to be patients under 20 (36). This is likely due to a lack of clinical suspicion in the community setting; particularly in patients under the age of 65. In one American population study, 41% of CDI cases were found to be in the community (37). The median age of CDI patients in the community was younger (50 vs 72) and severe CDI was less likely (20 % vs. 31 %). One case control study found that in community cases, approximately a third of patients had not been hospitalised or taken an antibiotic course in the previous month (38). Having contact with a child younger than two was associated with CDI (P = 0.02) (38). More recently, Fawley et al have demonstrated the similarity in ribotype diversity between community and hospital associated CDI, although 027 was found to dominate in healthcare settings (P = 0.02)(39).

1.3 Pathogenicity

C. difficile produces up to three major toxins, which are responsible for the symptoms observed in CDI. The most studied toxins are the enterotoxin A and cytotoxin B, monoglucosyltransferases that activate pro-inflammatory signalling pathways leading to cell death of colonocytes (40). The genes responsible for toxin A/B production, *tcdA* and *tcdB* are located on the *C. difficile* pathogenicity locus, PaLoc. *C. difficile* strains are differentiated into 'toxinotypes' based on variation in the pathogenicity locus, PaLoc. Strains are compared to the reference strain VPI10463 (41).

The role of each toxin has long been debated, with earlier papers suggesting virulence attributable to toxin A alone, with *tcdB- tcdA+* mutants producing fulminant disease in hamster models (42). However, contrasting results have validated the role of toxin B in disease, with work suggesting toxin B alone can cause disease; increasing numbers of

tcdA- tcdB+ clinical strains have been isolated from patients (40). The use of a novel gene knockout system (ClosTron) to produce isogenic mutants found both toxins could produce *in vitro* cytotoxicity, which translated to disease in an *in vivo* hamster model (43). Knockout of both genes created an avirulent strain. Both toxins are important and should be considered in the virulence of *C. difficile*. It should also be noted that differences in toxin A/B exist and have been utilised in the identification of different *C. difficile* strains. Faecal toxin A/B levels have been correlated with clinical severity in one study (44). Patients with severe disease were found to have significantly higher faecal toxin levels. In Canada, an 027 strain (toxinotype III) responsible for outbreaks of severe disease was found to have *in vitro* production of toxins A/B 16 and 23 % higher than a collection of toxinotype 0 strains (22).

The PaLoc pathogenicity locus also contains three regulators, *tcdR* (positive regulator), *tcdC* (negative regulator) and *tcdE*, as well as the toxin A/B genes. Initially the importance of these regulatory genes was overlooked, but recent work has suggested the presence of a truncated TcdC protein leads to increased toxin production and in vitro cell toxicity (45). The clinical importance of this finding is unclear. A strain with a partial *tcdC* deletion was isolated in 84.1 % of patients in an outbreak in Quebec (20). However, a cohort study studying 199 CDI patient isolates found no association between clinical severity of CDI and the presence of the *tcdC* deletion (46). This lack of association is supported by other clinical studies to date (47, 48).

However, the picture is complicated by the presence of another more recently discovered toxin. Some *C. difficile* strains also produce a binary toxin (CDT), an actin specific ADP-ribosyltransferase, encoded by the *cdtA* and *cdtB* genes (18), outside the PaLoc locus. This toxin was first discovered in 1988 by Popoff et al (49). Binary toxins are a well-recognised group within the Clostridial family, with homologous toxins produced by a number of species including *Clostridium perfringens* and *Clostridium botulinum* (50, 51). The toxin is made up of two independent subunits, the enzymatic portion (CDTa) and the component responsible for membrane binding (CDTb)(52).

Once bound, CDTa allows the cytosolic transit of CDTb, which disrupts the organisation of the cell cytoskeleton (52). The role of CDT toxin in disease is unclear, but the importance of this toxin is highlighted by a cohort of CDI patients infected with a ribotype 033 strain that produces CDT in the absence of toxin A/B (53). More recently a prospective multicentre study illustrated infection with binary toxin positive strains is associated with increased all-cause mortality (54).

1.4 Recurrence

Recurrent CDI (rCDI) occurs in approximately 25 % of patients after successful treatment with metronidazole or vancomycin (55). Patients may experience multiple recurrences, requiring repeated cycles of antimicrobial therapy. This is a major patient burden and healthcare cost. The reasons for recurrence are largely uncertain, with some evidence indicating that long-term changes in indigenous populations secondary to antibiotic use are responsible (56). Faecal microbiota transplantation (FMT), otherwise known as faecal bacteriotherapy, has been recognised for several years as an alternative treatment for rCDI. Superior cure rates compared to vancomycin have been established (57). It is hypothesised restoration of a normal gut flora can prevent reestablishment of CDI in the gut.

Other research has focused on the pathogen itself, with some *C. difficile* ribotypes being documented more commonly in rCDI (58). It has been recognised that germination of *C. difficile* spores is dependent on a number of factors, most notably factors in the environment. The discovery and investigation of "superdormant spores" in *Bacillus* species (59, 60) generates new questions about possible superdormancy in *C. difficile*. *Bacillus* subtilis is well characterised and is used as a model organism to investigate spore biology (61). Superdormant spores could persist in the environment and increase the risk of future reinfection. The morphology and sporulation pathways of *B. subtilis* and *C. difficile* have been shown to be very different (62). *C. difficile* spores

have a germination-specific protease receptor, CspC (63), compared with *B.subtilis* that possesses three main germinant receptors, GerA, GerB and GerK (60).

Recurrence of *Clostridium difficile* infection can occur within two contexts; the recrudescence of *C. difficile* spores persisting in the gut (relapse), or reinfection with spores obtained from the environment (reinfection). Differentiating between the two is challenging without further detailed analysis. Some evidence suggests a mixed picture, with 33 % of recurrence attributable to different strains in one study (64). This picture is further complicated by a proportion of patients harbouring mixed infection with distinct *C. difficile* genotypes. Varying rates for recurrence due to relapse have been reported in the literature, with relapse accounting for rates of ~52-88 % in recurrent CDI (65, 66). The greatest risk of recurrence due to relapse is during the first 14 days after successful treatment (67); greater time periods between initial and recurrent episodes are associated with reinfection (68, 69). One study found the median time to a recurrent episode of CDI was 26 vs 67.5 days (relapse vs reinfection) (69). Differentiation between relapse and reinfection can be challenging, however, the identification of reinfection within the nosocomial environment has important infection control implications.

The use of PCR ribotyping has been hypothesised to lack the discriminatory power required to detect reinfection with isolates genotypically similar to the original infecting strain; several smaller studies using more discriminatory techniques suggested reinfection accounting for ~50 % of cases of recurrence (65, 67). It had been previously hypothesised that relapse may have been overestimated due to the use of less discriminatory identification methods. However, one group comparing whole genome sequencing (WGS) to PCR- based ribotyping in rCDI samples found consistency between the results obtained. The majority of isolates causing relapse identified by PCR ribotyping were within two single nucleotide variations of one another when compared pairwise using WGS (70). Despite these findings, it was still concluded that WGS is superior in discrimination between relapse and reinfection in CDI.

The increased presence of certain ribotypes in recurrent disease is increasingly being documented. Several studies have shown restriction-endonuclease (REA) B1 strains to be a risk factor for recurrence (58, 71, 72). Analysing CDI cases from 82 patients using multi-locus variable number tandem repeat analysis (MLVA), initial infection with the hypervirulent strain 027/B1/NAP1 was identified as a statistically significant risk factor for relapse (P = 0.008) (68). This highlights not only an association of RT 027 strains with recurrence, but recurrence due to relapsing disease. One suggestion for this association could be increased sporulation in RT 027 isolates; increasing the potential number of spores produced during infection within the host. Some work initially tried to support this notion, but was limited by the small number of isolates tested (73). More comprehensive work has since provided further evidence of hypervirulent RT 027 strains sporulating earlier and more extensively (74), although all of the above experiments were *in vitro*, limiting the conclusions that can be drawn.

Increased frequency of other ribotypes has also been documented in the case of relapse. RT 001 strains were found in 36 % (9/26) of relapsing patients in one Swedish study (75). RT 001 strains are endemic and frequently encountered in Eastern Europe (76). Interestingly, by comparing hospitalised patient data the same study theorised an increased nosocomial transmission rate of RT 001. This reinforces the notion that strains implicated in relapsing disease (RT 001, 027) (68, 75) could have enhanced sporulation, thereby increasing spore levels in the host and the environment. However, in Korea, a country with low RT 027 incidence, RT 017 and RT 018 strains were associated with the highest rates of relapse in one study (69). Hypervirulence (as has been postulated for RT027 strains) does not account for the high relapse rates observed; RT 017 and RT 018 strains have not been implicated thus far in severe CDI. A comparative assessment of these strains in relation to clinical outcome needs to be carried out. Although strains may be associated with increased relapse rates, it is imperative to consider the demographic of a population in which this is occurring, as

regional differences in prescribing and initial infection demographics may have a bearing on recurrent CDI.

In the case of recrudescent disease, spores must remain in the host gut and proliferate in response to favourable conditions. It has been demonstrated that C. difficile vegetative cells can adhere to Caco-2 cells and extracellular proteins in vitro (77). Contemporary work has also described spore adherence to Caco-2 cells, and has also identified the two potential proteins responsible for this interaction (78). Additionally, in C. difficile spores bound to Caco-2, HeLa and HT-29 cells, no significant germination was observed (79). This concurs with the current evidence on germination that spores germinate favourably in response to bile salts. The presence of human colonic epithelial cells alone is not necessarily sufficient. Previous work has demonstrated the persistence of two different morphotypes of C. difficile spores produced from one culture (80). These two morphotypes were present in both biofilm and planktonic cultures. The spores from biofilm cultures were found on average to have a thinner exosporium compared to spores from planktonic cultures. It is reasonable to speculate that spores produced in biofilms may have different properties from those produced from planktonic cells, thereby altering the ability of spores to attach to host cells. Although these experiments are *in vitro*, they suggest a potential mechanism of recurrence whereby spores could be capable of prolonged attachment in the gut.

Although research has focused on the pathogen, host factors should not be ignored in the context of recurrence. It has been shown previously that a strong immunological response to toxin A in initial CDI reduces the chances a recurrent episode (81). Approximately 60 % of the populations have serum IgG and IgA active against toxin A, but only 2 % of the population are carriers (82). An antitoxin A vaccine trialled in 3 rCDI patients produced statistically significant serum IgG levels and prevented recurrence in all patients up to 22 months after (83). Low levels of serum antitoxin A and antitoxin B have been associated with increased risk of recurrent disease (84). These studies suggest that an inadequate response to initial CDI predispose to recurrent disease. If

high risk patients are identified at an early stage, steps may be taken (for instance, careful antibiotic selection) to reduce the risk of rCDI. It could be the case that susceptibility to CDI and subsequent rCDI may begin in childhood; a recent study found high levels of toxin A/B antibodies in the sera of colonised infants (85).

One group characterised C-reactive protein (CRP) levels in response to initial and recurrent episodes of *C. difficile*; their findings suggest patients suffering a relapse produce statistically significantly lower levels of CRP in their first episode of CDI than those suffering reinfection with a different strain (86). It may be that in patients with a reduced immunological response against initial CDI, a failure in producing immunological memory predisposes to future infection with the same strain. Interestingly, it has been shown that commensal clostridia are able to modify and manipulate the host innate immune system; germ-free deficient mice have a reduced number of IgA-producing cells compared to those treated with commenal clostridia (87-89). As well as the importance of the host immune response to *C. difficile* in predicting rCDI, other species may modulate the immune response, providing a potential explanation for the efficacy of faecal microbiota transplantation. Future work focusing on the immunological component of infection could serve to provide clinicians with diagnostic tools capable of predicting the risk of recurrent CDI.

1.5 Risk Factors

The greatest risk factor for initial episodes of CDI is the use of antibiotics. Hamster models conducted in various research groups revealed this role in 1978 (3, 5). Later investigation has proved supportive of this conclusion, with a broad range of antibiotic classes provoking CDI in hamsters carrying *C. difficile* (5, 90). Clindamycin, an antibiotic commonly used currently to simulate CDI in various *in vivo* and *in vitro* (91, 92) experiments was found early on to have a prolonged tendency compared to other antibiotics to cause CDI. This has been replicated in more recent work investigating gut microbial population changes after antibiotic administration (93). A meta-analysis

performed in 1998 conclusively associated antibiotics with risk of CDI (94). A mechanism for *C. difficile* proliferation after antibiotic instillation has been hypothesised; microflora disturbances secondary to antibiotic usage allow *C. difficile* spores to germinate. Due to disruption of the existing populations, colonisation resistance to *C. difficile* is lost and vegetative cells are able to proliferate.

Fluoroquinolones have been identified as high-risk antibiotics in predisposing to CDI, with a range of other classes constituting an intermediate risk (95). As such, clinical guidelines now recommend clinicians consider restricting the use of fluoroquinolones, clindamycin, and cephalosporin use (9). Different classes of antibiotics have been found to differentially affect bacterial gut populations, with some antibiotics being low risk (e.g. gentamicin) because of little activity against anaerobes. In contrast, the fluoroquinolone enrofloxacin is associated with changes in 32 different bacteria groups (96, 97). Interestingly, one study found that antibiotic instillation in mice (kanamycin, clindamycin, cefoperazone, vancomycin) was associated with a decrease in Lachnospiraceae and Ruminococcaceae family organisms; concurrent metabolomics revealed a decrease in the abundance of secondary bile acids, which are inhibitory to C. difficile (98). Buffie et al have demonstrated that Clostridium scindens is protective against CDI in mice due to its function; 7α -hydroxylation of primary to secondary bile acids (93). Antibiotics may predispose to CDI by their differential effects on the gut microbiota; different families are likely to be involved in dissimilar functional and metabolic functions.

Another well recognised risk factor for CDI is advanced age. CDI rates were 13 times greater in patients over the age of 65 vs patients in the 18-44 age range in 2011 in the US (31, 99). Older patients are more likely to suffer from other diseases and the association between age and CDI incidence is still statistically significant when confounders are accounted for. It is unsurprising that advanced age is a risk factor for CDI, the microbiome changes throughout human life, with an overall reduction in the Shannon diversity, an index used to measure diversity within a bacterial community.

When compared with a younger population (30-60), older populations (70-100) have a stepwise increase decade by decade in the proportion of Proteobacteria phylum organisms, as well as an increased proportion of Bacteroidetes (100). However, large scale studies assessing the effect of ageing on the microbiome of populations from multiple demographics and locations have not been performed. As well as differences in the microbiome, older individuals generally have an impaired immune response and potentially lower levels of circulating antibodies against *C. difficile* (101).

Diet is factor that has recently been considered in the pathogenesis of CDI. Zackular et al used a mouse model to infer the detrimental effect of high concentrations of zinc (1,000 mg/kg) on the diversity of the gut microbiome (102). In addition, a high zinc diet caused an increase in colonic inflammation and increased toxin titres in CDI (102). Dietary zinc binds to the protein calprotectin, a protective protein that sequesters metals away from pathogens (103). Higher titres of calprotectin have been associated with an increased severity of CDI (104, 105). These findings are isolated and must be confirmed by more reliable study types. But it is unsurprising diet influences the microbiome; individuals can be identified as having a 'Western' lifestyle with high reliability on their gut microbiota alone (106). Diet is likely to be a factor influencing the structure of the human gut microbiome.

In terms of risk factors for rCDI, a 2015 systematic review and meta-analysis combined the findings of 33 eligible multivariate studies to elucidate relative risks (RR); age \geq 65 years (RR 1.63), additional antibiotic during follow up (RR 1.76), PPI use (RR 1.58) and renal insufficiency (RR 1.59) (107). Risk factors were only included in this systematic analysis if they were present in 3 or more of the studies included in the analysis. Other risk factors could therefore play a tangible role in rCDI. The multifactorial nature of disease in individuals is further reflected in the inability of a model constructed from 150 variables to correctly predict disease recurrence (108).

Having had a previous episode of recurrent disease significantly increases your risk of having a further recurrence, with two or more recurrences doubling the risk (101).

Repeated cycles of antibiotics will lead to a prolonged dysbiosis and predispose individuals to rCDI through loss of colonisation resistance. As with initial CDI, rCDI risk factors are likely to be multifactorial; a small study in humans found rCDI patients have elevated primary bile acid levels in stool compared to initial CDI and controls (109). Although meta-analyses have been performed providing estimates of risk, high levels of bias and confounding still exist in in the evidence base used to generate measures of risk (99).

1.5.1 Potential *C. difficile* reservoirs

The source of the pathogen in community acquired CDI is unclear, but a number of potential reservoirs have been identified, including animals, the environment and food. *C. difficile* has been isolated from domesticated pets and their living spaces (110-112), horses, camels, donkeys, poultry and pigs (113). RT 078 strains have been isolated from pigs with high prevalence (80 %) (113, 114). Recently, Knetsch et al (2018) used whole genome phylogeny analysis to highlight high levels of geographical clustering between human and animal derived RT 078 strains, with evidence of bidirectional (animal to human and vice versa) and international transmission (115). This is an important study indicative of the transmission of the highly pathogenic RT 078 when compared with the hypervirulent RT 027 (116). The prevalence of infection with a RT 078 strain has increased, particularly in the Netherlands but also in the UK since the mid-2000s (114).

Within the food industry *C. difficile* spores have been isolated from a variety of meat products, cooked and uncooked, including ground beef, chicken, chorizo, sausage and pork (117-119). Although many studies have not assessed overall spore burden within meats, 20-60 spores/g have been reported previously (120). One study found a greater prevalence of *C. difficile* in 'ready-to-eat' meats (47.8 %) when compared to

uncooked meats (40.0 %)(117). Sub lethal heat shock has also been found to 'select' for the RT 078 (121).

In addition to the isolation of *C. difficile* directly from food, one Western Australian study isolated *C. difficile* from 26.7 % of gardening products (fertilisers and soil conditioners) with 45.9 % of isolates demonstrating toxigenicity (122). The same group also found a high prevalence of *C. difficile* (~30 %) on root vegetables from farmers markets and retail stores in Western Australia, half of which were toxigenic strains (123). In a French study, salads were also found to be a source of *C. difficile*. *C. difficile* has also been isolated from swimming pools, lawns and soils (124, 125).

The potential interplay between food and animals is highlighted by the finding of *C*. *difficile* in food consumed by pets (126-128). However, toxigenic *C. difficile* was only isolated from one sample (1/25) compared to a 20 % rate for *C. perfringens* (5/25) in one study (128). The use of fertilisers in the production of food produce also highlights the 'crossover' and interplay between two identified reservoirs. Although *C. difficile* has been isolated from animals and food products, both cooked and uncooked, further work is required to demonstrate the relevance of these reservoirs in clinical disease in humans. As well as the non-human reservoirs identified above, a substantial percentage (~0-15%) of the human population are asymptomatic carriers of *C. difficile* (129-132). Clearly interplay and crossover exists between the reservoirs identified previously and the asymptomatic carriage of *C. difficile* in the human population.

To summarise, *C. difficile* is increasingly becoming a pathogen of concern in the community. In the case of reinfection, it is possible some or all of the reservoirs discussed could be implicated in rCDI. The isolation of *C. difficile* from cooked meats suggests further detailed investigation of the effects of heat on *C. difficile* spores is required.

1.5.2 Treatment

1.5.2.1 Antibiotics

Antibiotics are the standard treatment of choice for CDI, with vancomycin and metronidazole emerging as first line antibiotics in the 1980s (133). Comparable rates of disease resolution in first episodes of mild CDI are observed (98 % vancomycin vs 90 % metronidazole)(134). However, recent studies have established the inferiority of metronidazole vs vancomycin in clinical success of treatment of CDI (P = 0.02, 72.7 % vs 81.1 %) (134, 135). Historically, metronidazole has been used as a first line agent in more moderate disease with vancomycin being reserved for more severe disease. The same therapeutic agent was prescribed in the case of a recurrent episode (136). Based on an evaluation of the evidence, clinical guidelines now recommend the use of vancomycin or fidaxomicin over metronidazole in a first case of CDI (9). In the case of recurrent episodes, vancomycin tapering/pulse therapy is recommended in the UK (9) (137). This consideration is informed by the superiority of tapered and pulsed doses of vancomycin in treating rCDI (101). However, it should be noted the evidence base is weaker than in the case of recommendations made for initial episodes. Using pulsed or tapered fidaxomicin dosing regimens has also proved to be successful; reducing C. difficile and toxin levels in an in vitro gut model, perhaps reducing the potential for recurrence (91). All fidaxomicin regimes were sufficient to resolve CDI. In the EXTEND clinical study extended-pulsed fidaxomicin therapy was superior to vancomycin for reducing recurrence (138).

Fidaxomicin, a macrocyclic narrow spectrum antibiotic previously known as OPT-80, has emerged more recently as a new drug for CDI. Preliminary activity against 207 *C. difficile* strains *in vitro* was observed in 2004 (139), and in recent times fidaxomicin has demonstrated non-inferiority to vancomycin in clinical trials in the USA and also in Europe (140). The main advantage of fidaxomicin treatment has been the reduced incidence of recurrent disease. Microbiota disturbances produced by fidaxomicin are of a reduced magnitude than those produced by vancomycin; particularly reductions in *Bacteroides* and *Prevotella* genera organisms (141). Vancomycin has a greater effect on the diversity of the microbiome resulting in a less diverse microbiota compared to

the use of fidaxomicin. The importance of the spared species and their significance in recurrent CDI is the focus of ongoing research. It is hypothesised the reduced microbiota disturbance promoted by fidaxomicin administration is responsible for the decreased rates of recurrence observed. Although fidaxomicin decreases recurrence rates, it is more expensive than the alternatives; however, a study in Canada estimated each recurrence avoided cost \$13,202 (142).

Other antibacterial agents that have been and continue to be studied for the treatment of CDI include ramoplanin, teicoplanin, rifaximin, ridinilazole, nitrazoxanide, fusidic acid and rifampin (143). Antibacterial agents that reduce the incidence of recurrent episodes are of particular interest. Ramoplanin is a glycolipodepsipeptide antibiotic that binds lipid II, thus preventing the formation of the cell wall. In 2004, a phase II trial found rates of disease resolution to be comparable between vancomycin and ramoplanin treated patients (84 % vs 86 %), with similar rates of recurrence. Due to the study being open-label and harbouring a small n size, superiority of ramoplanin to vancomycin could not be established. This data suggest that ramoplanin may not be suitable in preventing recurrences. In vivo and in vitro observations support the efficacy of ramoplanin, which has been found to be comparable to vancomycin in CDI resolution in both hamster models and an in vitro gut model (144). Importantly ramoplanin appeared to reduce spore shedding and decreased the recovery of spores from stool when compared to vancomycin treatment. This phenomenon was recreated in 2015; C. difficile spores exposed to 300 µg/ml ramoplanin showed no outgrowth when plated on solid agar (145). Reduced spore load and recovery provide a feasible mechanism for recurrence reduction, as is the case in fidaxomicin. Ramoplanin is yet to be evaluated in phase III trials. Furthermore, ramoplanin derivatives have been isolated from other members of the Actinomycetales order of bacteria; ramoplanin is produced by Actinoplanes sp. ATCC 33076 (146). The closely related teicoplanin has been found to be helpful in severe refractory CDI (147) and has previously been found to be associated with reduced recurrence rates when compared with metronidazole, fusidic
acid and vancomycin (148). These compounds could be more efficacious than ramoplanin in treating CDI; reducing the incidence of recurrence.

Several drugs in the rifamycin class have been investigated for their potential benefits in rCDI, including rifaximin, rifampin and rifalazil. Rifamycins bind to prokaryotic DNAdependent RNA polymerase with high affinity, preventing RNA synthesis. Due to the nature of this inhibitory mechanism, levels of resistance are high and as such rifamycins are often used in combination with other antibiotics. Spontaneous mutations in the rpoB gene (ribosomal polymerase gene) occur readily, mediating resistance. In a retrospective analysis 53 % (17/35) of rCDI patients had no recurrence 12 weeks after rifaximin therapy after routine metronidazole/vancomycin treatment (149). In an earlier study, 7 out of 8 women who had previously suffered 4-8 rCDI episodes suffered no further relapses after a two week course of rifaximin immediately following vancomycin (150). Perhaps the most concerning discovery of this small study is the high rifaximin MIC encountered in the patient who required a second round of rifaximin therapy. Rifaximin has also been used as a first line agent in a prospective small open label study; of the 8 patients who completed the study all were clinically cured and 7 were free of recurrence up to 162 days post-CDI (151). The largest study to date compared rifaximin vs placebo as a chaser therapy in a randomised, blinded pilot study enrolling 68 patients (152). Patients given rifaximin experienced a decreased recurrence rate (15 %) vs the placebo (31 %). Although promising, due to the lack of larger clinical trials and the possibility of resistance, rifamycins such as rifaximin cannot currently be recommended as a first line or chaser therapy for rCDI.

Oxazolidinones are another class of antibiotics that have shown promise in treating CDI and preventing recurrence. This class of antibiotics exert their antimicrobial effects by binding to the 50S subunit of the bacterial ribosome and preventing protein synthesis. The oxazolidinone antibiotic cadazolid has been demonstrated to be highly active against 100 *C. difficile* isolates including 30 epidemic strains; cadazolid also proved to be effective in treating simulated CDI in an *in vitro* gut model, with no signs of

recurrence (153). A phase II randomised, double-blind study including 84 first recurrence patients also illustrated the clinical non-inferiority of cadazolid to vancomycin in the treatment of CDI/rCDI (154). In addition, cadazolid treated patients harboured lower recurrence rates vs vancomycin (18.2 to 25.0 % versus 50 %). However, a statement by Actelion indicated cadazolid reached the primary endpoint (resolution of disease) in IMPACT 1 but not in IMPACT 2 (155). Both IMPACT 1 and IMPACT 2 were phase III clinical trials. Due to cadazolid not reaching its primary endpoint, its continued development is unlikely (156).

One of the most promising agents in development is ridinilazole. Ridinilazole (SMT19969) is a small molecule antibiotic with a very narrow spectrum of activity (157, 158). The mechanism of action is not fully understood, but one study found cell division ceased on exposure to ridinilazole (159). The same study also found ridinilazole significantly reduced levels of both toxin A and toxin B at sub-MIC concentrations. In a phase II trial (CoDIFy) recruiting 100 patients, recurrence rates were 14% for patients treated with ridinilazole compared to 35 % in the vancomycin group (160). Ridinilazole was also superior to vancomycin for sustained clinical cure. The antibiotic has also been found to be well tolerated with adverse events reported to be mild in severity (161). The high tolerability, narrow spectrum of action, efficacy in reducing recurrence and low systemic absorption make this a promising potential treatment. Phase III studies are planned to commence in 2019.

1.5.2.2 Faecal microbiota transplantation

FMT has been documented as a treatment since the 1950s for pseudomembranous colitis (162), and is increasingly being evaluated as a CDI treatment, particularly for patients exhibiting persistent rCDI. FMT alongside antimicrobial therapy is now recommended by European guidelines for the treatment of non-responsive rCDI (163). A wide variety of administration protocols have been utilised; FMT infuses donor faeces either by nasogastric tube, colonoscopy or enema into the patient's gastrointestinal

tract with the aim of reconstituting the patient's microflora. Antibiotics have wide ranging detrimental effects on the gut microflora, which is believed to interrupt the 'colonisation resistance' of the host to pathogens such as *C. difficile*. It is believed FMT reconstitutes the patient's gut with a 'healthy' microflora from a donor. When 4 patients with rCDI treated with FMT were followed up for 84 days, 16s-rRNA sequencing highlighted the similarity of patient and donor microbiome immediately after FMT (164). Pre-FMT samples were found to have high levels of Proteobacteria and low levels of Firmicutes and Bacteroidetes phyla organisms. Interestingly both donor and recipient microbiome profiles diverged significantly over the long term. These results are limited by the low number of patients in the study and the lack of diversity in donors; all patients received FMT samples from the same donor.

Although FMT had been identified as a promising treatment for rCDI, up until 2011, systematic reviews found there were no randomised controlled studies available comparing FMT to other treatments (165, 166). Before 2012, ~13 different studies had studied FMT as a treatment for rCDI (64), with cure rates ranging from 81-100 %. Since 2012, two randomised control trials have been carried out to assess FMT for treatment of rCDI. The FECAL study was carried out in 2013, and involved randomly assigning patients to three treatment arms; vancomycin treatment followed by bowel lavage and duodenal infusion of donor faeces, vancomycin with bowel lavage, and vancomycin alone (57). Eighty-one percent of patients had disease resolution in the duodenal infusion group vs. 31 % and 23 % in the other groups, respectively. Although promising, this study was open label, had a fairly low number of participants and also excluded a number of groups from the study. The results of the second randomised trial were published in 2016; a double-blind, randomised control trial comparing autologous stool FMT (n = 24) to donor stool FMT (n=22) in for treatment of rCDI (167). Overall, resolution of rCDI occurred in 91% of patients treated with donor faeces and 63% with their own. There were big differences in resolution rates of rCDI between sites for autologous FMT, with one site reporting 90 %. It is unclear why recycling a

patient's own stool via FMT could be curative for rCDI. Nevertheless, both of these randomised control studies support the use of FMT for treatment of rCDI.

A systematic review found that differences did exist between the different methods of transplant instillation; lower GI instillation had a resolution rate of 89-96 % vs 76 % in upper GI infusion (168). There were also differences in resolution observed between transplants prepared with different diluents (saline, water, milk) and in different volumes. A statistically significant difference in efficacy has been demonstrated between colonoscopy and nasogastric tube administration in an open label randomised trial (169). However, it should be noted that this trial only involved 10 patients in each arm and larger clinical trials are necessary.

The changes associated with antibiotics may be associated with a loss of metabolic function in the microbiota. One study found that when comparing pre-FMT stool samples to post-FMT and donor stool samples not only was there a statistically significant decrease in the Shannon diversity index, but a significant shift in the bile acid profile (170). The same group later confirmed this associated with *in vitro* studies; 10 *C. difficile* clinical isolates failed to germinate and outgrow in the same bile acid profile environment as the post-FMT stool samples (171). Distinct differences in the bile acid profiles of patients presenting with an initial case of CDI and rCDI have also been investigated; a study involving 60 patients (20 CDI, 19 rCDI, 21 controls) managed to distinguish CDI from rCDI patients correctly 84.2 % of the time (109) based on deoxycholate: glycursodeoxycholate stool ratios alone.

These studies illustrate a potential metabolic mechanism for the efficacy of FMT, 7α hydroxylation of primary bile acids into inhibitory secondary bile acids. However, this model is too simplistic as some primary bile acids are inhibitory to spore germination (e.g. chenodeoxycholate) and some secondary bile acids are stimulatory to spore germination (e.g. deoxycholate). In normal healthy patients chenodeoxycholate is metabolised to another inhibitory bile acid, lithocholate. In antibiotic treated patients 7α hydroxylating species such as *C. scindens* may be absent, and chenodeoxycholate is

more rapidly taken up by colonocytes than cholate, ensuring a higher ratio of cholate:chenodeoxycholate favouring germination (172). More recently taurocholate mediated germination (0.1 %) been shown to be significantly different in a number of clinical strains in the presence secondary bile acids; there are almost certainly differences between the response of different strains (173). These results should be considered carefully, as they are from *in vitro* work.

The creation of a donor bank of frozen faeces could be a viable option in the future (Openbiome)(174). This would make FMT available for clinicians in their practice; currently, outside of the US/Canada, FMT is not widely available. One study assessing the viability of faeces frozen with 10 % glycerol for 6 months found no statistically significant decrease of six bacterial groups (Bifidobacteria, E. coli, total coliforms, Lactobacilli, total anaerobic bacteria, total aerobes), and stools frozen for >2 months were used to clinically cure 16 patients (175). The same study also underlined that faeces frozen in minimally nutritious conditions (saline alone) suffers microbial degradation over time. Only 16 patients were included in this study and there was no comparator. Other open label studies supported these findings; with an overall cure rate of ~90 % achieved (169, 176). Interestingly, clinical cure was also observed in 3 children; the majority of studies only include adults. The aforementioned studies were small pilot studies; the conclusions were quite limited due to low n size, no comparators and no blinding. More recently, a double-blinded, randomised clinical trial compared fresh and frozen faeces by enema for treating rCDI (177). Non-inferiority of frozen faeces for clinical cure was observed (83.5 % for the frozen FMT group and 85.1 % fresh faeces) indicating the feasibility of frozen faeces for FMT.

However, FMT should be used only with considerable deliberation. Clearly, colonoscopy can only be carried out by a trained physician, and there is a small risk of perforation and bowel injury. In addition, although donor faeces are screened for infectious diseases, there is still a small transmission risk. The role of the microbiota in gastrointestinal diseases and autoimmune disease is increasingly being appreciated

(178) and donors should not suffer from these ailments (179). Transplantation of a 'normal' individual's microbiota into a patient could still represent a risk. A fundamental and thorough understanding of the interactions in the gut is absent and needs further investigation. In the future it may be possible for targeted therapy rather than the 'shotgun' approach of FMT. For example, same species strains from donor and recipient have been found to coexist, but new species do not readily establish themselves in the recipient gut microbiome (180). Detailed strain specific knowledge of donor and recipient could allow targeted therapy for establishment of desirable populations.

FMT is clearly an exciting and promising therapy for rCDI, but it is not appropriate for the vast majority of patients. Microbiota-host interactions are still not fully understood, and a risk of prospective problems such as metabolic syndrome, cancer and cardiovascular risk in recipients is recognised. These considerations manifest in clinical guidelines, where FMT is indicated only in cases where appropriate antibiotic regimens have failed in 3 or more cases (9).

1.5.2.3 Probiotics

The term probiotic was introduced in 1965 by Lilly & Stillwell to describe protozoan stimulatory molecules (181). The first instance of its contemporary usage was by Parker in 1974 to describe growth enhancement in animals by microbial supplementation (182). A historical definition of probiotic was devised in 1991 by Fuller; "A live microbial feed supplement which beneficially affects the host animal by improving its microbial balance" (183). This definition has some weaknesses, notably what an improvement in 'microbial balance' actually entails. In contemporary microbiology the term 'probiotic' has become somewhat controversial, particularly regarding ethical implications in the food industry. There are widespread misconceptions by the public due to the manufacturing of supplements that have exploited the term probiotic. This has led to extensive discussion and deliberation by an international expert panel on what is admissible as being labelled a 'probiotic' and what

is not (184). In addition, a 2016 systematic review of seven randomised control trials found no significant differences in diversity of microbiota of healthy adults supplemented with probiotics compared to placebo (185). Although no conclusive evidence exists which demonstrates a beneficial effect of probiotics on healthy patients, this does not discount probiotics being effective in the context of CDI.

A number of species have been investigated in the prevention of antibiotic associated diarrhoea (AAD) including *Lactobacillus, Bifidobacterium, Enterococcus, Bacillus and Saccharomyces* species. A systematic review and meta-analysis of 63 randomised control trials found a relative risk ratio for AAD of 0.52 in patients treated with a probiotic during concurrent antibiotic therapy (186). Although this indicates a beneficial effect of probiotics on diarrhoea prevention, many of the studies included in the analysis used different strains of the same species; varying formulations and patients were often on different antibiotic disrupted gut have been illustrated in a mouse model; different *Lactobacillus* strains were more effective at rebuilding a diverse microbiome (187). More research is required to individually elucidate the efficacy of each strain used.

The inhibition of *in vitro C. difficile* growth by other microorganisms was reported in the 1980s (188). When the term probiotic is applied to *C. difficile*, it is generally considered to describe populations that could; a) decrease the risk of developing CDI in antibiotic induced dysbiosis, b) treat the underlying *C. difficile* infection or c) decrease the risk of a recurrent episode. In the case of a) and c), the probiotic strains may counteract the deleterious effects of antibiotics on the gut microflora and restore colonisation resistance. In the case of b) any probiotic strains would be assumed to have an inhibitory effect on some aspect of the *C. difficile* life cycle. In 2005, a meta-analysis investigating the use of probiotics in the treatment or prevention of CDI found no substantial evidence for probiotic use, possibly due a low number of eligible studies and a high level of methodological heterogeneity (189). However, a more recent larger

meta-analysis (26 randomised control trials included) found that adjuvant probiotic therapy significantly decreased the risks of both AAD and CDI by 45.8 and 60.5 % respectively (190). This is in accordance with a previous meta-analysis in 2013 which found a 64 % CDI reduction in adults and children (191). The timing of administration has also been investigated with metaregression analysis of 19 studies finding a decreasing efficacy of probiotics the longer probiotic administration is delayed from antibiotic treatment onset (192). However, all of the cited studies suffer from the same methodological flaw; primarily that they analyse studies using a wide range of different species and strains. Further work is required to elucidate important species and at what dose and duration they are efficacious in the prevention of CDI.

The mechanism of action of probiotics is unclear, particularly as different species and strains have been used. Different mechanisms could exist for the different species used. The strain used in a probiotic is important, different subspecies of *Lactobacillus* have shown varying efficacy in the prevention of AAD. The PLACIDE study, a randomised, double-blind placebo controlled trial found no effect of a mixture of *Lactobacillus* and *Bifidobacterium* strains (two strains of *Lactobacillus acidophilus, Bifidobacterium bifidum* and *Bifidobacterium lactis*) on prevention of AAD or CDI (193). On the other hand, this study only investigated a few species and strains, and cannot be extrapolated to discount other species/strains. One group illustrated in a mouse model that some *Lactobacillus* strains offered protection through their high fructooligosaccharide metabolism and cell adhesion properties (187). Efficacious probiotics increase the diversity of the microbiota and consequently increase the production of antimicrobial short chain fatty acids (SCFAs) which potentiates protection against pathogenic species and fosters a diverse microbiota.

Pre-inoculation twice daily for two days with 10⁷ vegetative cells of a non-toxigenic strain of *C. difficile* (CD37) successfully prevented CDI in mice with a hypervirulent 027 (UK6) (194). This study had a low n (10) and was carried out in mice so it is unclear how relatable this is to human patients. *Bifidobacterium longum* ATCC15707 inhibited

C. difficile growth *in vitro* and *in vivo*; mice receiving live cells of *B. longum* had a 70 % survival rate vs 40 % in the case of CDI (195). *Bifidobacterium longum* produces a range of acids including lactate, acetate and formate and in *in vitro* experiments pH was deemed responsible for the inhibition of *C. difficile* growth. The non-pathogenic yeast *Saccharomyces boulardii* has also been investigated a probiotic for CDI; in 1999 the proteolytic cleavage of toxin A/B by an *S. boulardii* protease was discovered (196). Other mechanisms include colonic receptor destruction. In a double-blind randomised control trial, *S. boulardii* administration alongside vancomycin produced a recurrence rate of 16.7 % (3/18) vs 50 % (7/14) for vancomycin alone (P = 0.05)(197).

As well as the administration of live vegetative organisms, there is increasing interest in the administration of spore preparations. Spore preparations avoid the negative stigma of FMT and also circumvent the unpleasant side effects of FMT such as 'faecal belching'. Spores also have an increased ability to survive the low pH inherent in the stomach, in contrast to vegetative cells (198, 199). Stomach acid acts as a barrier to bacterial entry and colonisation of the gastrointestinal tract (200). It is hypothesised ingested spores germinate and reconstitute the gastrointestinal tract in vegetative form, as in FMT. Recently, a novel spore preparation called SER-109 containing Firmicutes organisms was produced from 7 healthy donors (201). A group of 30 rCDI patients (mean previous rCDI episodes = 3) were treated with either a dose of $\sim 1.9 \times 10^9$ on two days or 1.1x10⁸ spores on one day after successful antibiotic treatment of CDI. After 8 weeks follow-up, 86.7 % of patients experienced no recurrence. Unfortunately, this work had major limitations; a lack of a suitable placebo arm and the open label design of the study limit its impact. SER-109 failed to show efficacy in the phase II ECOSPOR[™] study (202), probably because of issues concerning use of a suboptimal CDI diagnosis method and a single rather than repeat dose of SER-109, but is now undergoing phase III testing after modification. The initial study does provide further evidence that spore preparations could be a feasible alternative to FMT in the future for rCDI.

The literature discussed suggests a role for probiotics in the prevention of initial CDI. Probiotics could not be recommended for all patients on antibiotics until further work is carried out elucidating effective species and dosage. In addition, there is a scarcity of literature regarding the use of probiotics in rCDI. The use of prophylactic antibiotics is not recommended under current clinical guidelines due to the low quality and scarcity of literature (9).

1.5.2.4 Alternatives

The efficacy of treatments including antimicrobials, probiotics and FMT are primarily due to their effects on the microbial composition of the gut. This is achieved by rectifying dysbiosis by reconstituting the microbiota with FMT or probiotics. However, CDI and rCDI are mediated through the injurious actions of toxins on the large colon. As such, a number of alternative therapies targeting the toxins themselves have been investigated and some have shown limited success.

Direct neutralisation of the toxins has become an avenue of exploration. The manufacture of monoclonal antibodies (MAbs) directed against the *C. difficile* toxins has become of increasing interest; by blocking the actions of toxins disease cannot recur. Three-thousand non-CDI human sera samples were tested for activity against toxins A/B; 8 samples showed activity. B cells were isolated and the variable region of the produced IgG was cloned and used to produce recombinant MAbs (203). Three different antibodies were manufactured (2 anti-toxin B, 1 anti-toxin A) and administered alone and in combination, protecting against mortality 100% in a hamster model when used in combination. However, the MAbs offered no protection alone or in combination when used against a more hypervirulent strain. Clearly, rodent models of CDI are limited in scope; hamsters are exquisitely sensitive to toxigenic strains of *C. difficile* and disease does not mirror that in humans. As well as targeting the toxin, some work has shown a median decrease in recurrence of 2 days in hamsters treated with an anti-spore immunoglobulin Y (chicken derived) (204), highlighting the potential for antibodies targeting other components necessary to rCDI.

The effects of two MAbs (anti-toxin A - MK3415) (anti-toxin B – MK6072) on the immune response in human colonocytes and peripheral blood monocytes has been investigated. Both MAbs reduced the production of the proinflammatory cytokines TNF- α and IL-1 β in monocytes (205), providing evidence that MAbs can reduce the innate immune response and conceivably reduce disease severity and mortality. Although this therapy shows promise, some strains of hypervirulent *C. difficile* produce an antigenically variable form of toxin (206). Further studies are required to elucidate toxin variability, and the widespread feasibility of clinical use of MAbs, considering this. It is unclear how long circulating antibodies could protect against disease, which is of particular importance in rCDI. Over time levels of artificially administered antibodies may drop, reducing their effectiveness in the case of recurrent disease. One toxin A neutralising antibody (CDA1) failed to significantly reduce recurrence rates in a phase II study (207). On the other hand, MK6072 (now renamed bezlotoxumab) has shown suitability for further investigation (67).

The monoclonal antibody bezlotoxumab has shown particular promise for rCDI in humans, with two phase III trials (MODIFY I & II) showing the superiority of bezlotoxumab alongside antimicrobial therapy over a placebo in preventing recurrence (16 % [61 of 383] vs. 28 % [109 of 395] in MODIFY I & 15 % [58 of 390] vs. 26 % [97 of 378] in MODIFY II) with 2655 patients enrolled (208). A subsequent post-hoc analysis found a significant decrease in CDI-related readmissions (-53.4 % relative difference) in the bezlotoxumab treated group (209). The dose-dependent neutralisation of toxins A/B by a combination of bezlotoxumab-actoxumab was previously described in mouse models of CDI (210); however, the MODIFY studies showed actoxumab to have no significant effect on recurrence. Bezlotoxumab is now indicated as an adjuvant to antibiotic therapy in patients at high risk of recurrence (9, 208).

In animal models, the vaccination of hosts against toxins A/B has been shown to protect against CDI. The patient immune response to toxins A/B has long been presented as protecting against recurrence and severe disease; one study found

higher serum IgG and faecal IgA levels in patients with a single episode of CDI versus rCDI patients (211). Indeed, more recently studies on human sera have elucidated that higher sera IgA/IgG levels directed against TcdA/TcdB are associated with a lower risk of recurrent disease (84). Vaccinating against C. difficile toxins thereby developing higher sera antibody titres against tcdA/B could be a useful strategy in decreasing disease severity. Immunisation of hamsters against TcdA/TcdB was carried out in 1995, with intranasal, intraperitoneal and subcutaneous immunisation of inactivated toxin A/B toxoid offering 100 % protection against death and 40% protection against diarrhoea (212). Interestingly, the route of immunisation caused significantly different outcomes; hamsters vaccinated rectally or intragastrically experienced no protection against death, even after accounting for inactivation of the vaccine by acid/protease degradation. High antibody responses correlated to protection against severe disease, as noted in previous human studies. Vaccination against other antigenic components of C. difficile is also feasible, facilitating an immune response against the pathogen itself. Bacterial spores are one potential vehicle of foreign antigen carriage. Spore-based vaccines have been shown to elicit systemic and local immune responses (213), Potecki et al have managed to express the C. difficile flagella protein FliD alongside the adjuvant, human IL-2 (214).

Non-antibody therapies targeting toxins A/B have also shown limited success. Five toxin-binding agents have been identified and their mechanisms described; cholestyramine, colestipol, tolevamer, and calcium aluminosilicate (215, 216). Oral cholestyramine has been used in the past and is described in a limited number of case studies (217, 218) for long term control of rCDI, but the evidence is inadequate to recommend its use. Cholestyramine is not recommended in the UK (137) or Europe (163) for the treatment of CDI or recurrent episodes. Like cholestyramine, colestipol binds the *C. difficile* toxins and has theoretical use in managing rCDI. Unfortunately, the one clinical study to date showed no difference in the toxin levels in patients' faeces when treated with colestipol (219). No further studies have investigated this agent.

Tolevamer is a toxin binding anionic polymer (216). In initial work using hamsters, tolevamer was found to be 80-fold more effective than cholestyramine in blocking the permeability inducing actions of toxin A in the ileum (220), by binding covalently to the toxin. A phase II study of 289 patients found tolevamer to be non-inferior to vancomycin in reaching diarrhoea resolution (221). In phase III trials, tolevamer proved to be inferior to vancomycin and metronidazole in achieving clinical cure (44.2 % vs 77.2 % vs 81.1 %)(135). Of note, the human gut model (which will be used in my experimental studies) correctly predicted that tolevamer would not be efficacious in humans (222). The complex calcium aluminosilicate uniform particle size nonswelling M-1 (CAS UPSN M-1) was described in 2015 and has shown binding affinity to toxin A/B at concentrations matching those found in the stools of CDI patients. Currently the evidence for non-antibiotic toxin binding resins such as those described is not sufficient to recommend their use in the treatment of rCDI. Clinical studies are required for agents such as calcium aluminosilicate their safety profile and efficacy. It is realistic to expect that the discovery of such agents will continue into the future.

In addition to toxin binding agents, some other therapies have been investigated for preventing rCDI. Non-toxigenic *C. difficile* spores have been studied as a method of preventing infection. It is believed non-toxigenic strains of *C. difficile* can fill the same niche in the gastrointestinal tract as toxigenic strains; outcompeting them but without producing disease-causing toxin. In a phase II clinical trial, *C. difficile* M3 non-toxigenic spores were administered in two doses for 7 days (10^4 (n = 43) & 10^7 / day (n = 44)) in initial or recurrent CDI patients alongside regular treatment (223). Recurrence occurred in 5% (2/43) of patients treated with the higher 10^7 / day dose of spores vs 30 % (13/43) in placebo treated patients. Although these results are promising, colonisation by the M3 spores did not occur in all patients (69 %) and a higher level of recurrence (31 %) was reported in patients who were not successfully colonised. Furthermore, horizontal gene transfer between a toxigenic strain and 3 non-toxigenic strains of *C. difficile* has been observed to take place *in vitro* (224). It is likely that this could occur in in patients,

providing a further limitation for the use of non-toxigenic *C. difficile* spores as an rCDI treatment.

In addition to producing narrow spectrum antibiotics, research has focused on producing compounds that ameliorate the microbiota disturbances produced by antibiotic treatment. The β -lactams are commonly prescribed broad-spectrum antibiotics; ceftriaxone is a well-known example associated with CDI risk (95). Intravenously administered antibiotics have previously been found to be excreted in bile into the gastrointestinal tract (225). SYN-004 (ribaxamase) is a β -lactamase designed to degrade systemically administered β -lactams entering the gut, hydrolysing the amide bond of the β -lactam ring (226, 227). In phase 1 trials SYN-004 was shown to have low systematic absorption and adverse event severity comparable to the placebo group (228). A phase IIa study illustrated the degradation of biliary excreted ceftriaxone by SYN-004 and validated the previously reported safety profile (229). DAV132 is a product devised to ameliorate the deleterious effects on the gut microbiota of commonly prescribed oral antibiotics including fluoroquinolones and cephalosporins. DAV132 differentially releases an adsorbent (activated charcoal) on reaching the distal colon that selectively adsorbs any free antibiotic (230). A clinical study including 44 healthy human volunteers found that when DAV132 was administered alongside moxifloxacin, exposure of the microbiota in the large intestine to the antibiotic was reduced by 99% (231). Trials of DAV132 involving patients at risk of C. difficile are still to be undertaken. The results of these studies are promising; DAV132 is suitable for co-administration with oral antibiotics absorbed in the small intestine. Protecting the gut microbiota against disruption will reduce the risk of initial CDI and ultimately also rCDI

1.6 Study aims

This study sought to use a number of approaches to investigate rCDI. Several different approaches were exploited to evaluate contributory factors in the development of rCDI. Firstly, a pilot study using data generated from a previously ethically approved clinical

study evaluated the effect of treatment delay on symptom duration and recurrence rates in CDI. The results from this pilot study could inform future clinical practice in treatment of CDI.

Secondly, the behaviour of *C. difficile* spores in response to a number of conditions was evaluated. The effect of changing germinant conditions, heat and environmental ageing on *C. difficile* spore recovery and outgrowth was assessed. The findings of this work could illuminate the role of environmental spores in causing recurrent disease in a variety of environments. In the nosocomial environment, inadequate disinfection could allow spores to persist in the environment, potentially altering their germination efficiency. In the food industry, insufficient heat treatment of products could allow the acquisition of *C. difficile* spores and cause disease in the community.

Finally, using a previously successful *in vitro* gut model to simulate rCDI, this study sought to optimise a proteomic methodology for use alongside traditional culture-based methods. Metaproteomics within the gut model provides extra information about the metabolic ecological niche associated with antibiotic instillation and FMT.

Clinical pilot study (Chapter 1)

- Does later treatment increase the risk of later recurrence?

Spores (Chapters 2A/B)

- Is food potentially a source of rCDI in the community?

- Are "superdormant" spores important in the case of recrudescent disease or reinfection from the environment?

rCD^{Metaproteomics} (Chapter 3A/B)

- Are there bacterial metaproteomic 'profiles' associated with increased risk of rCDI?

- Are some bacterial metabolic processes protective against rCDI?

Figure 1.1.1. Areas of study in the thesis and their relation to recurrent C.

difficile infection (rCDI).

Chapter 2 – Treatment Delay and CDI

2.1 Introduction

The clinical symptoms of *Clostridium difficile* infection (CDI) are mediated through the action of secreted bacterial toxins (43). Toxins act on the mucosal epithelium of the gastrointestinal tract causing oedema, inflammation and diarrhoea, and in severe cases, colonic perforation and death (42). Severe dehydration can also lead to hypokalaemia, hypotension and metabolic acidosis. The aims of antibiotic treatment of CDI are to infection, theoretically reducing the risk of recurrence. It is hypothesised that earlier treatment will reduce bacterial and toxin load. Reducing toxin production at an earlier stage could reduce the duration of symptoms, decrease mortality and the risk of recurrence.

Several studies have attempted to outline the reasons for delay in treating patients with CDI, but none has looked at the impact this delay might have on patient outcomes (137, 232, 233). Delays in providing stool sampling kits to patients were found to increase time to treatment (232); incorrect labelling of samples had the same effect. Delays in diagnosis may lead to inappropriate empirical therapy in mild/moderate CDI (233). This is not an issue for severe disease where clinical suspicion facilitates immediate management in the absence of laboratory results. The introduction of inhouse toxin testing significantly decreased the time to diagnosis and subsequent treatment in one study (233). In-house stool culture was utilised before the introduction of toxin testing. Although delayed treatment has not been associated with an increased risk of complications in CDI (234), no study has directly assessed the effect of treatment delay on symptom duration or recurrence risk.

The primary aim of this study was to investigate the effect of treatment delay on CDI symptom duration and recurrence. It was hypothesised that patients who experienced a delay in treatment initiation for CDI would suffer greater symptom duration (days of

diarrhoea) and an increased risk of recurrence. It is hypothesised that earlier treatment will reduce the amount of toxin and spores produced. Reducing toxin levels will reduce colonic inflammation and reported symptoms. Reducing spore levels could lead to a reduced risk of recurrence due to decreased adherence of spores in the gut (in the case of recrudescent disease) and a smaller number of environmental spores (in the case of relapsing disease). To test these hypotheses, patient data generated from a previous clinical trial were statistically analysed.

2.2 Methods

2.2.1 Study overview

This was a retrospective, non-interventional, survival analysis of the impact of treatment delay on outcomes in inpatients diagnosed with CDI between January 2015 and December 2016. Patient data for this study were generated from a previously ethically approved study (REC reference number 14/NW/1398, Clinicaltrials.gov identifier NCT02461901). Patients were recruited from four sites across the UK; Leeds Teaching Hospitals NHS Trust (n = 202), St George's Healthcare NHS Trust (n = 18), Bradford Royal Infirmary (n = 27) and Guy's and St Thomas' NHS Foundation Trust (n = 7). A complete study protocol for the original study can be found in Appendix A; information most relevant to my current study is documented below.

2.2.2 Participants and protocols

The database consisted of information collected from patients (n = 254) who consented to take part in the original study. Patients with CDI were identified by the detection of toxin (cell cytotoxin assay) in stool samples submitted for laboratory testing. Patients within a positive toxin result were considered eligible for the study. Adult patients (18-100 y/o) suffering a first or recurrent episode of CDI treated with metronidazole, vancomycin or fidaxomicin were recruited. CDI was defined as the presence of diarrhoea (\geq 3 unformed stools in 24 hours over the previous 7 days) with a positive cytotoxin assay result. Patients treated with fidaxomicin in the three months prior to admission were

ineligible for recruitment; a detailed account of inclusion and exclusion criteria can be found in Appendix A, A.1.

Patients were asked how many days of diarrhoea were experienced prior to diagnosis and treatment. Whilst patients were admitted the number of daily episodes of diarrhoea were documented. Markers of CDI severity were recorded (max total WBCs, serum creatinine levels, radiological/clinical evidence of colitis and temperature >38.5 ° C). Severe CDI was defined by the presence of one or both of the following at admission; WBC count >15x10⁹/l or creatinine rise >50 % of baseline. These criteria were chosen based on evidence highlighting the association between elevated WBC, serum creatinine and mortality (8). The primary endpoint of the study was the duration of symptoms (diarrhoea), measured in days following treatment initiation. Symptom resolution was defined as <3 episodes of diarrhoea per day for 48 hours after treatment initiation. The secondary endpoint was recurrence of infection (up to 28 days after treatment completion).

2.2.3 Ethics

The current study received ethical approval prior to commencement (North East -Newcastle & North Tyneside 1 Research Ethics Committee, REC Reference 18/NE/0054).

2.2.4 Microbiological methods

All sample processing for the original study was carried out at LTHT in a category 2 laboratory. Cell cytotoxin assay was performed to test for toxin in stool samples. Vero cells were prepared as previously described by Crowther (235). Twenty-mililitres of Dulbecoo's Modified Eagles Medium (DMEM) (Sigma) supplemented with newborn calf serum (50 ml) (Gibco, Paisley, UK), antibiotic/antimycotic solution (5 ml)(Sigma) and Lglutamine (5 ml)(Sigma) was used to culture vero cells (African Green Monkey Kidney Cells, ECACC 84113001) in a flat bottom tissue culture flask. Flasks were incubated at 37° C in 5 % CO₂. When Vero cells formed confluent monolayers (confirmed by microscopy; Olympus UK Ltd, Middlesex, UK) the monolayer was harvested by removal of DMEM and rinsing with 1 ml of Hanks Balanced Salt Solution (HBSS) (Sigma) containing trypsin-EDTA (0.25 g/ L) (Sigma). Subsequently, 6 ml of HBSS-EDTA was added to the flask and incubated for 10 minutes at 37° C at 5 % CO₂. After the cells no longer adhered to the flask, further passage was achieved by diluting the HBSS-EDTA cell mixture (1:20) in DMEM in a 96F microtiter tray (Nunc). Vero cells were harvested (160 μ l) and inoculated into wells to which antitoxin would later be added. To other wells trypsinised Vero cells (180 μ l) were added. Trays were incubated for 2 days in 5 % CO₂ at 37° C. Sample supernatant and positive controls were serially diluted 10-fold in PBS to 10⁻⁵. The positive control was produced from a 48 hour culture of *C. difficile* grown in BHI broth. Serial dilutions were transferred to trays containing Vero cell monolayers. *Clostridium sordellii* antitoxin (Prolab Diagnostics, Neston, UK) neutralised the cytotoxic effects and ensured specificity of cell rounding to *C. difficile*. A positive test was indicated by rounding of ~80 % of the Vero cells.

Polymerase chain reaction (PCR) ribotyping of isolates was carried out by the *Clostridium difficile* ribotyping network (CDRN) using a previously described protocol (236, 237). PCR product analysis was carried out using the ABI-PRISM 313xl automated sequencer and fragment analysis system, a 16 capillary 36cm array with POP-7 separation matrix (Life Technologies, Paisley, UK) and a GeneScan 600 LIZ as an internal marker. Fluorescent signals were imported into BioNumerics v.7.1 (Applied Maths, Sint-Martens-Latem, Belgium) and fragments sized using GeneMapper v.4.0 (Applied Biosystems, Life Technologies, Grand Island, NY). PCR ribotype band cluster analysis was performed using the DICE similarity coefficient. UPMGA dendrograms were used to represent relationships within BioNumerics v.7.1. Band profiles were identified by comparison with the CDRN reference library.

2.2.5 Statistical analysis

Statistical analysis was carried out in Rstudio by Professor Robert West, University of Leeds. Variables included in statistical analysis included patient age, sex, duration of symptoms prior to treatment initiation, CDI severity, presence of prescribed concomitant antibiotics and treatment group (vancomycin, metronidazole or fidaxomicin). Interrogation of the dataset was not permissible prior to gaining ethical approval; initially a survival analysis was planned to measure the effect of duration of diarrhoea pre-treatment (days) on duration of symptoms. As censoring was not prevalent within the dataset, a multiple linear regression model was used for symptom duration analysis. Univariate (Pearson's chi squared tests) and multivariate linear regression analyses were used to identify factors associated with symptom duration and recurrence. Where log transformations were employed, the raw value had 1 added prior to transformation to avoid taking the logarithm of 0. The following potentially confounding variables were included in the models; age, sex, gender, CDI severity, presence of prescribed concomitant antibiotics, previous CDI episodes and treatment arm (vancomycin, metronidazole or fidaxomicin).

Where data for confounding variables were missing (concomitant antibiotics, previous CDI), patients were either removed from the analysis, or if a large quantity of data was missing (severity) a separate 'missing' variable category was created alongside severe and non-severe.

Figure 2.2.1. The work flow used in statistical analysis for the clinical study. Patients were removed from analysis if study variable or outcome variable data were missing. Three patients were also removed from analysis due to missing data on confounding variables (previous CDI, presence of concomitant antibiotics). Data from a subpopulation of 160 patients were used for analysis relating to recurrence and 119 patients for symptom duration analysis.

2.3 Results

2.3.1 Patient cohort characteristics

Patient demographics were comparable between the cohorts included in statistical analysis for both arms (Table 2.3.1). The median (range) age of the study population was 77(21-96), 50 % of patients were male. CDI was classed as severe in 49 % of the patients. Eleven (6.4 %) patients died during the study. Vancomycin was the most commonly prescribed antibiotic, used in 44 % of cases. This is probably reflecting the changing attitude of clinicians to metronidazole, given its decreased efficacy compared with vancomycin, at least in severe disease (135, 238, 239). Most patients (66 %) in the study population were receiving concomitant antibiotics at the time of CDI diagnosis. The median duration of diarrhoea pre-treatment was 3 days (Table 2.3.1. & Fig 2.3.2 (a)). Approximately half (51 %) of the patients reported having pre-treatment duration of diarrhoea of 3 days or less.

Darationio (in				
		Study	Symptom	Recurrence
		population	duration	subpopulation
		(n = 170)	subpopulation	(n = 160)
			(n = 119)	
Variables				
Age (years)	Median (range)	77 (21-96)	79 (23-96)	77 (21-96)
Sex	Male (n, %)	85, 50	58, 48	81, 50
	Female (n, %)	85, 50	61, 52	79, 50
CDI severity	Severe (n, %)	65, 49	45, 50	60, 50
	Non-severe (n, %)	69, 51	44, 50	60, 50
Concomitant antibiotics	Yes (n, %)	112, 66	81, 69	104, 65
	No (n, %)	58, 34	38, 32	56, 35
Treatment arm	Vancomycin (n, %)	74, 44	53, 43	69, 43
	Metronidazole (n, %)	51, 30	36, 31	46, 29
	Fidaxomicin (n, %)	48, 26	31, 26	45, 28
Duration of diarrhoea pre- treatment (days)	Median (range)	3 (0-60)	3 (0-60)	3 (0-60)
Outcomes				
Symptom duration (days)	Median (range)		1 (0-9)	
Recurrence	Yes (n, %)			12, 7
	No (n, %)			148, 93

Table 2.3.1. Demographics of patients enrolled in the study. Overall demographics of the subpopulations used in statistical analysis are shown. Durations (in days) are reported the nearest whole number.

Figure 2.3.1 (a) & (b). Histograms showing the distribution of the study variable (a; duration of diarrhoea pre-treatment) and one of the outcome variables (b; symptom duration). In (a) each bar represents the frequency for 5 days (0-5, 5-10, etc). In (b) each bar represents the frequency for 1 day (0-1, 1-2, etc). Both distributions show positive skew.

2.3.2 Symptom duration analysis

The median symptom duration reported for the 119-patient cohort after starting antibiotic therapy was 1 day, 49 % of patients reported having 0 days of symptom duration (Table 2.3.1 & Fig 2.3.2). When a least squares regression line was fitted to a scatter graph of symptom duration plotted against days of diarrhoea pre-treatment, there was limited evidence of a small positive correlation. However, this fit might be misleading due to the presence of high leverage outliers; to avoid this issue, data for both study and outcome variables were log-transformed (Fig 2.3.2). The least squares regression line for the transformed data demonstrated a negligible relationship between duration of diarrhoea pre-treatment and symptom duration.

For completeness, a multiple regression model incorporated confounding variables as well as the study and outcome variable used in initial analysis. This model indicated no significant association between any of the potential risk factors (treatment group, duration of pre-treatment diarrhoea, CDI severity, age. concomitant antibiotic, previous CDI) and symptom duration (Table 2.3.2).

Duration of diarrhoea pre-treatment/ days

Table 2.3.2. Coefficients entered in the multiple regression model for assessing effect of duration of diarrhoea pre-treatment on symptom duration; there is no statistical evidence of association between ln(duration of diarrhoea + 1) and any of the potential risk factors (treatment group, severity, concomitant antibiotics, age, gender, previous CDI).

Coefficients	Estimate	Std. error	t value	P value
In (duration of diarrhoea+1)	0.06	0.09	0.71	0.48
Treatment group (vancomycin)	-0.11	0.18	-0.60	0.55
Treatment group (metronidazole)	-0.13	0.16	-0.77	0.44
Severe (no)	0.14	0.17	0.78	0.43
Severe (yes)	0.25	0.17	1.45	0.15
Concomitant antibiotics (yes)	-0.1	0.14	-0.67	0.50
Age	0.00	0.00	-0.81	0.42
Gender (male)	-0.04	0.13	-0.3	0.77
Previous CDI (yes)	0.16	0.20	0.81	0.42

2.3.3 Recurrence analysis

Recurrence occurred in 11/160 (7 %) patients included in the analysis. There was no significant association between duration of diarrhoea pre-treatment and recurrence ($X^2 = 0.62$, df = 1, P = 0.43). A logistic regression model found that having a previous episode of CDI was the only predictive risk factor for recurrent CDI from those included (duration of diarrhoea pre-treatment, severity, concomitant antibiotics, age, gender, previous CDI) (Table 2.3.3). This association was highly significant (P < 0.001).

Table 2.3.3. Coefficients entered in the logistic regression model for assessing effect of duration of diarrhoea pre-treatment on recurrence; previous CDI is the only variable predictive of future recurrence; P< 0.001 ***.

Coefficients	Estimate	Std. error	z value	P value
Duration of diarrhoea pre-treatment	-0.02	-0.02	0.06	0.76
Severe (no)	0.30	1.06	0.27	0.79
Severe (yes)	1.00	1.05	0.96	0.34
Concomitant antibiotics (yes)	-0.42	0.84	-0.50	0.62
Age	0.01	0.03	0.36	0.72
Gender (male)	1.09	0.85	1.28	0.20
Previous CDI (yes)	3.50	0.80	4.35	<mark><0.001***</mark>

2.3.4 Ribotype distribution

RT was not included as a variable in either of the models due to the heterogeneity and low number of each RT (Fig 2.3.3). *C. difficile* strains of 34 different PCR RTs were isolated from stool of the study population. A high degree of heterogeneity was observed; RT 002 accounted for more than 10 % of isolates (14.3 %). RT 014, RT 015 and RT 078 strains accounted for 9.6 % of isolates each. Only one RT 027 strain was isolated. Strains of more than one RT were isolated from 6 (3.5 %) patients in the study population.

isolated from the stool of more than 10% of patients with CDI. The isolation of more than one strain of different RTs occurred in 6 (3.5%) patients.

2.4 Discussion

This study corroborates the previously reported observation that patients experiencing their second (or more) episode of CDI are more likely to suffer relapse than those suffering a first episode. Interestingly, treatment delay had no significant effect on either of the outcome measures; symptom duration and recurrence (Tables 2.3.2 & 2.3.3). Delayed treatment having no significant association with symptom duration is surprising. It was hypothesised that prompt treatment would reduce bacterial load and reduce toxin levels; toxin A and B are pro-inflammatory and responsible for colonocyte death, with both toxins being recognised as important to CDI pathology (43).

Faecal toxin levels have been associated with increased disease and symptom severity, including increased diarrhoeal frequency (11, 44, 240). Some studies have suggested treatment with vancomycin/metronidazole has no effect on toxin A/B production and actually instigates increased spore production (241, 242). In the current study, treatment arm (fidaxomicin, metronidazole or vancomycin) was not significantly associated with symptom duration. Fidaxomicin has been found to repress toxin A and B levels both clinically and *in vitro*, in contrast to vancomycin that repressed both toxins at the midpoint, but lost this effect thereafter (243). The clinical study was relatively small (n =34) and open label, limiting statistical power. Due to the toxin-repressing effects of fidaxomicin, it was theorised that fidaxomicin treatment would have led to a reduced duration of symptoms in the current study. A recent study suggests increased binary toxin (CDT) levels are associated with CDI severity, but this was a cross-sectional study with a small n size (244). Fidaxomicin has not been found to repress levels of the CDT toxin. Disease severity was also not associated with symptom duration.

Detailed comorbidity data were not collected as part of the original study; the clinical markers used for CDI severity could have been influenced by concurrent disease and

infection. The majority of patients in the study were receiving concomitant antibiotic therapy (Table 2.3.1). Forty-nine percent of the 119 cases used in symptom duration analysis were reported to have symptom duration of 0 days after treatment initiation. The criteria used to dictate symptom resolution may have been inappropriate; in some patients, increased diarrhoeal frequency recurred after an initial period of symptom resolution. More likely, the low threshold for stool sampling combined with the high sensitivity of the cell cytotoxin assay allowed the detection of a large number of mild cases of CDI (245). The data for duration of diarrhoea pre-treatment were collected from medical notes, stool charts and patient discussions. A substantial proportion of patients in the study reported long durations of diarrhoea preceding treatment (up to 60 days pre-treatment) (Fig 2.3.2). These diarrhoeal episodes are unlikely to be related to CDI and could be more indicative of chronic disease (e.g. irritable bowel syndrome). However, the majority of patients in this study reported 0 days of diarrhoea prior to antibiotic therapy (Fig 2.3.2). This is counterintuitive given one of the inclusion criteria for the original study (>3 unformed stools in 24 hours over the previous 7 days). One explanation for this is that diarrhoea in mild CDI cases largely resolved before treatment initiation. This indicates that treatment may not be required in some mild cases of CDI.

There was no statistically significant evidence of an association between treatment delay and risk of future recurrence (Table 2.3.3). Interestingly, this study validates previous findings that having one or more recurrence of CDI is a strong predictor of further future recurrence. Fidaxomicin has been extensively associated with a reduced incidence of recurrence, as demonstrated recently by two randomised control trials (246). Fidaxomicin also completely inhibited sporulation *in vitro* in stationary phase vegetative cells of two strains of *C. difficile* at 1/4x MIC, an effect not observed with vancomycin, metronidazole or control (247). In addition, spores treated with 200 mg/L fidaxomicin for one hour prior to incubation in broth failed to outgrow into vegetative

cells after 48 hours (248) potentially reducing the risk of recrudescent (recurrent) disease.

As discussed previously, the possible effects of fidaxomicin on toxin A/B levels in relation to recurrence should not be ignored. Tolevamer is a non-antibiotic drug that initially showed promise in treating CDI. The mechanism of action is not bactericidal; it is a toxin binding anionic polymer (216). Although it was found to be inferior to vancomycin and metronidazole in phase III clinical trials (135), it did show a decrease in recurrence rates in patients who observed clinical cure on the drug. This suggests that removal of toxin A/B may not be sufficient for clinical cure, but could reduce the risk of recurrent CDI. Based on the evidence above, fidaxomicin is suggested to have several mechanisms whereby recurrence risk is reduced. On the contrary, the current study finds no association between treatment arm and risk of recurrence. This could be a limitation of the small sample size. In any event, the finding that recurrence is strongly associated with previous CDI is important. In future clinical policy may wish to concentrate on prevention of initial infection as a strategy to reduce recurrence.

The recurrence rate for patients in the recurrence analysis was low at 7 % (Table 2.3.1). One possible explanation for this is the successful antimicrobial stewardship programmes employed in the UK; the epidemiology of *C. difficile* infection has changed considerably, with RT 027 strains no longer being the dominant ribotype (25, 28) (Fig 2.3.4). A number of studies, including randomised control trials have previously found infection with RT 027 strains to be significantly associated with recurrence (58, 68, 71, 72, 249). It has been suggested RT 027 strains may have accelerated sporulation; increasing number of spores produced during infection. A number of *in vitro* studies have supported this notion (73, 74). Only one case of infection with RT 027 was identified in the current study and no PCR ribotype dominated infection. RT 001, 017 and 018 have previously been associated with recurrent disease in Sweden and Korea respectively (69, 75). These associations are not as strong as those described for RT 027 strains and the wide distribution of infection amongst different PCR ribotypes is

likely to minimise any potential effect in the current study.Perhaps more likely, the low levels of recurrence in this study may highlight the fact that many of the patients deemed to have CDI were in fact suffering from transient diarrhoea of an unrelated cause. If this is the case, some of the patients reporting diarrhoea could not have a recurrence, as they were not suffering from an initial episode.

A number of studies have investigated the reasons for delay in treatment for CDI. In one cohort late and improper specimen collection were identified as a major source of delay in treatment initiation (232). Importantly, all 22 physicians interviewed in this study admitted the decision to start empirical treatment was influenced by whether or not they expected results to be available within 6 hours. Clinical guidelines recommend diagnostic confirmation of *C. difficile* before treatment initiation, but due to recognised delays in testing diarrhoea, clinical suspicion is also considered suitable to start treatment (137). These issues were highlighted previously and measures put into place to reduce these delays (233). Research has looked at trying to decrease these delays in diagnosis and treatment by use of different strategies such as algorithms and policy changes, likely to accelerate the placement of appropriate infection control measures and reduce nosocomial transmission. The results of the current study suggest further strategies should focus on prevention of CDI, with rapid diagnosis and treatment providing little tangible benefit in relation to symptom duration and future risk of recurrence.

This study had a number of limitations. The original study was not powered for this sub analysis. In future work, a bespoke trial designed for the specific hypotheses formulated in this study would have more power. It would also allow the collection of more relevant patient information. In particular, a more robust inclusion criteria whereby patients with evidence of CDI can be identified would be beneficial. In this study, it is likely a large number of the patients reporting transient diarrhoea did not have CDI, but diarrhoea of an unrelated aetiology. More detailed information on patient comorbidities would allow differentiation between transient diarrhoea and true CDI.

Patient data from the original cohort of 254 had to be filtered due to missing values for both study (duration of diarrhoea prior to treatment) and outcome variables (relapse, symptom duration) further reducing the power of the study and potentially introducing systematic bias. Patients were only followed up for 28 days after finishing treatment, the majority of relapses occur within 8 weeks after initial infection (83 %) (66). Although the majority of relapses occur in the first 14 days after successful treatment (67), patients may have suffered recurrent disease, due to reinfection or relapse, after this 28 day window. More detailed information on patient comorbidities would have allowed the calculation of a Charlson score, allowing inclusion of comorbidity data in the statistical analysis. This would also increase confidence in the designation of severity; the clinical markers used could be altered in response to disease unrelated to CDI.

In summary, this study found no association between any of the risk factors and symptom duration in CDI. This suggests clinicians should not be too concerned about delays in diagnosis unless severe disease is suspected. When recurrence risk was assessed the only factor predictive of CDI recurrence was previous CDI. Larger studies will need to be carried out with a greater number of patients and improved data collection; the current study was limited by the low study population size and insufficient data collection. It is a possibility that the liberal inclusion criteria used in the study identified patients who were not suffering from diarrhoea due to CDI, but were experiencing transient diarrhoea from an unrelated cause.

<u>Finance</u>

This study was funded by the University of Leeds. The original study (Clinicaltrials.gov identifier NCT02461901) was funded by Astellas Pharmaceuticals.
Chapter 3 A – Spore Germination and Recovery

3.1 Background & Rationale

C. difficile spores play a vital role in the transmission of CDI. Recurrent CDI is an umbrella term encompassing two different mechanisms; recurrent disease due to recrudescence of *C. difficile* spores persisting in the gut (relapse), or reinfection with the same or different strain. Varying rates of relapse and reinfection have been documented, with relapse accounting for ~52-88 % of recurrence (65, 66, 250). In both the case of relapse and reinfection, spores play an important role. Reinfection occurs due to the ingestion of *C. difficile* spores from the patient's environmental surroundings, which can occur with the same or a different strain. In the contrasting scenario of relapsing disease, recrudescent *C. difficile* spores retained within the gut lumen germinate and outgrow successfully in response to cues in the gut. Spores are metabolically dormant, environmentally robust and are the main mode of transmission of *C. difficile*.

The response of *C. difficile* spores to being left in the environment for extended periods of time (environmental ageing) is of interest from both scientific and clinical perspectives. Spores persist in the environment for extended periods of time and are resistant to traditional cleaning agents, which is problematic in a hospital environment. Spores left in the environment for extended periods of time could have a greater likelihood of becoming superdormant. "Superdormant" spores are those described as failing to germinate in response to the typical germinants, but still remaining in a viable state (59). Comparison of hospital and laboratory cleaning agents suggests only chlorine-releasing agents are effective at decontamination of spore contaminated surfaces (251). It was appreciated early on in the 1980s that carriage of *C. difficile* spores on hospital workers may be contributing to the high levels of new infection (252). Reducing spore loads in the environment in hospitals is an important strategy for combatting the incidence of rCDI. The discovery of potential 'superdormant' spores

creates yet more difficulty. In the laboratory spore activation by heat treatment can be utilised to induce germination of spores (253), but this is not possible on the wards. Novel strategies have been trialled to induce germination, for instance germination solution sprays (254). The use of such sprays could reduce the need for more corrosive detergents such as chlorine-based agents and peracetic acid, but are not feasible in a hospital setting.

Spores are vital in the context of CDI, and the recent discovery of superdormant spores raises issues particularly relevant to rCDI. Spores retained in the gut could be responsible for recrudescent disease (relapse). Reinfection can occur by ingestion of superdormant spores from the external environment.

3.1.1 Germination mechanism

Spore germination is a complex process, ultimately resulting in a proliferative vegetative population. The ultrastructure of the *C. difficile* spore is multifaceted and consists of numerous peptidoglycan and proteinaceous layers including the germ cell wall, coat and exosporium surrounding a central Ca²⁺-dipicolinate (DPA) core (255). High levels of Ca²⁺-DPA contribute to sustaining dormancy.

Figure 3.1.1. Ultrastructural representation of a *Clostridium difficile* spore; i (core), ii (inner membrane), iii (germ cell wall), iv (cortex), v (outer membrane), vi (cortex) & vii (exosporium). Figure adapted from Paredes-Sabja et al (2011).

The germination of spores can be measured by detecting a reduction in the optical density of a spore suspension that occurs simultaneously with the release of Ca²⁺-DPA from the core (250). In contrast to *B. subtilis*, the spore coat must be hydrolysed prior to Ca²⁺-DPA release in *C. difficile* spores (256). Germination begins when a molecule, termed a germinant, interacts with the homologs of the GerA, GerB and GerK germinant receptors commonly recognised in *Bacillus* and other *Clostridia* (257). Spores of *C. difficile* are receptive to a different spectrum of germinants to both Bacilli and other Clostridia. The receptor involved has been identified as CspC, a bile acid binding protein (63). Upon binding of the germinant to CspC a sequence of proteolytic reactions is initiated, resulting in the cleavage of pro-SleC to SleC, a cortex hydrolase (255), which consequently hydrolyses the cortex. Initially it was believed that binding of germinants to CspC was stimulatory; increasing binding would lead to increased SleC formation and cortex hydrolysis. Recent research has shown an inverse correlation between CspC levels and germination rates (r²=0.81) (258). It is postulated CspC

activates CspB, but CspB is unable to cleave pro-SleC unless GerS is present. The concluding stage of germination is the release of a vegetative cell from the ruptured spore coat/exosporium. Further work is required to elucidate these interactions and refine the model currently proposed for *C. difficile* spore germination.

Recently it has been discovered that the pseudoprotease domain CspA and its fusion to CspB is highly significant in regulation of the germination cascade, with a nonsense mutation in *cspBA* reducing the efficiency of *C. difficile* spores to germinate (255). CspBA is cleaved by YabG to form CspA and CspB, CspB is responsible for the cleavage of pro-SleC to the active SleC. Additionally, CD0311, a protein named GerG has found to be important in the germination process. GerG mutants are found to require 10-times the levels of germinant to initiate germination, and it has been shown that lower levels of CspC receptors are present in these mutants (259). It is believed GerG has an important role in the incorporation of CspA, CspB and CspC into the spore. GerG has been suggested to be a novel target for therapeutics, potentially decreasing spore germination and the risk of recurrence. This is highly speculative and requires more research.

Germination is a tightly regulated and complex process. The homology of this system to other members of the Peptostreptococcaceae rather than Clostridiceceae family is in accordance with the genomic data regarding reclassification of *C. difficile* to the Peptostreptococcaceae family (260).

3.1.2 Bile acids

The germination of C. *difficile* spores is strongly dependent on environmental cues and has been found to be altered in response to bile acids. In general, primary bile acids are stimulatory to germination and secondary bile acids are inhibitory. However, there are some exceptions. Ratios of primary: secondary bile acids along the gastrointestinal tract could alter in response to environmental insult, facilitating *C. difficile* spore germination. The primary bile acids are cholate, chenodeoxycholate, taurocholate and glycocholate. Derivative secondary bile acids include deoxycholate. Previously, 0.1 %

taurocholate saturated BHIS (supplemented brain heart infusion) plates showed a 10^5 increase in recovery compared to controls (261). Early on, it was documented the concentration and purity of the taurocholate preparations tested *in vitro* was important; higher concentrations of sodium taurocholate inhibited vegetative cell division (262). Initially, the mechanism of taurocholate-induced germination was unclear, but kinetic data alluded to a sequential receptor based process involving glycine (263). Taurocholate is now routinely used to germinate *C. difficile* spores.

The primary bile acid chenodeoxycholate is inhibitory to spore germination; incubation of spores with 0.1 % chenodeoxycholate produced a 0.006 % recovery rate, compared to 0.024 % with an equal 0.1 % mixture of cholate: chenodeoxycholate (264). Further work indicated chenodeoxycholate derivatives are produced by 7 α -hydroxylation, a process carried out by *Clostridium scindens*, considered in recent times to be a protective species in the microbiome (93, 264). Other work found chenodeoxycholate to be stimulatory at 1-10 mmol/l to *C. difficile* germination, but also noted higher levels of sodium taurocholate (>100 mmol/l) to be inhibitory (265).

Human bile acid perfusion studies have indicated a ~9-fold increase in the absorption in the large intestine of chenodeoxycholate compared with cholate (266). This creates a favourable environment for spore germination. Only single formulations were perfused, ignoring any *in vivo* interactions between different bile acids. Experiments using a mouse model also suggest a role for bile acids in germination of *C. difficile* spores. Caecal extracts from antibiotic-treated mice produced colony formation levels in *C. difficile* spores 50-65 times higher than from untreated mouse tissue (267). This effect was lost when bile-acid binding cholestyramine was added to extracts. The study concluded that increased ratio of primary: secondary bile acids in antibiotic treated samples are responsible for the increase in CFU observed. However, there is no discussion of the relative concentrations of individual primary bile acids. More recent mice metabolomics data had a similar finding; a relative increase of primary bile acids

in antibiotic treated 'CDI susceptible' mice (268). The two studies used different antibiotics to simulate CDI conditions (clindamycin vs. cefoperazone).

3.1.3 Amino acids

The amino acid glycine has been found to be a vital co-germinant; its inclusion with taurocholate is a standard approach for maximising germination of *C. difficile* spores. Glycine was utilised early on (1966) to increase germination of *Clostridium botulinum* along with cysteine (269). Subsequently, the germination of *C. difficile* spores has been improved using glycine with taurocholate (261, 265). The binding and functional groups involved in the substrate-receptor interaction have been mapped by adding 30 glycine derivatives to taurocholate treated spores and documenting germination rates (270). The chemical manipulations targeted singular modifications in the carboxy/amine groups or the alkyl chain of the glycine molecule (Fig 3.1.2).

Figure 3.1.2. Glycine molecule, showing alkyl chain skeleton, amine group and hydroxyl groups. Diagram obtained from ChemDraw®

By creating a derivative library, the authors were able to deduce that both the intact carboxylate and amine groups are necessary for recognition by the germinant receptor, as modifications of these groups produces a substantial decrease in germination rates. The size of the methylene bridge between the functional groups does not appear to

affect germination levels. Although glycine is the most explored and widely understood amino acid used for *C. difficile* germination optimisation, this study provides evidence of other amino acids for instance β -alanine being equally as effective at initiating germination in *C. difficile*. One study identified an 80 % increase in germination rates on addition of histidine (0.4 %) to taurocholate (0.1 %) with glycine (0.4 %)(271). Lphenylalanine has been found to be as effective as glycine, which is surprising given the initial hypothesis that the germinant receptor would not be able to accommodate aromatic groups due to size (270). Multiple binding sites have been suggested, but there is currently no evidence to support this. Unlike L-phenylalanine, histidine (0.4 %) added to taurocholate (0.1 %) without glycine did not produce an increase in germination; both L-phenylalanine and histidine are aromatic amino acids.

Recent developments (2018) have elucidated the hierarchical nature of amino acid recognition in *C. difficile* spores. Shrestha & Sorg investigated the efficacy of various amino acids (including D- alanine, D-serine & D-lysine) as co-germinants to taurocholate (272). Glycine was found to be the most effective germinant, but importantly all amino acids were stimulatory to spore germination to some extent at 37° C. Interestingly, the author proposed that glycine being the smallest amino acid could contribute to its effectiveness; small molecules can more easily reach the spore cortex. These findings are congruent with those of Howerton et al (270), with aromatic residues being less effective. Nevertheless, the mechanism of co-germinant binding is still unknown; it is unclear whether signalling is mediated through a single receptor responsive to all amino acids or numerous receptors for each individual amino acid.

Additionally, the role of calcium in spore germination has been investigated. Calcium has been found to have a critical role in the activation of SIeC, the cortex hydrolase. When spores were incubated with taurocholate, glycine and EGTA (a calcium chelator) germination was completely inhibited at all concentrations vs. taurocholate/ glycine alone (273). It is hypothesised that individuals deficient in calcium absorption are at an increased risk of CDI due to the stimulatory effects of superfluous intestinal calcium on

germination. This provides a potential mechanism for the association of protein pump inhibitors (PPIs) with CDI. This risk may be amplified by the observation that the cell membrane interactions of toxin A in binding to colonic cells is mediated by free calcium ions (274).

3.1.4 Non-germinant receptor germinants

In addition to germinant receptor-derived germination, other factors have been identified as facilitating increased recovery of *C. difficile* spores. In 2000 it was found that incorporation of 5 mg/l of lysozyme into CCEY (without egg yolk) agar significantly increased the recovery of *C. difficile* from environmental swabs compared to CCEY (24 % vs 11 %, P = 0.004) (275). This observation has been made previously with increased recovery rates (10-47 %) observed in four strains recovered by sodium thioglycollate-lysozyme treatment after heat treatment of bacterial suspensions at 90°C for 10 minutes (276). Pre-treatment with thioglycollate was not associated with increased recovery rates. Lysozyme could be the mediator of germination in these instances and not thioglycollate pre-treatment. One hypothesis is that lysozyme mediates germination directly by enzymatically degrading the spore cortex. The above study (276) also found 0.1 % taurocholate addition did not permit recovery of spores subjected to the same heat treatment. This is not surprising considering the more recent work indicating the importance of glycine as a co-germinant.

3.1.5 **Optimising** *C. difficile* recovery

Different solid media are used according to individual requirements for *C. difficile* recovery. The appropriateness of a culture medium for *C. difficile* will depend on a number of factors. Firstly, a medium must allow the germination and proliferation of *C. difficile* spores. In order for substantial germination to take place, stimulatory germinants must be present. The growth of other species must be suppressed by the medium. CCEYL (cycloserine-cefoxitine, egg yolk and lysozyme) is a selective medium most suitable for recovering *C. difficile* from faecal samples, and has recently been shown to be the most sensitive and cost-efficient medium for isolating *C. difficile* from

stool samples when compared to cycloserine-cefoxitin fructose agar (CCFA), tryptone soy agar (TSA) and ChromeID agar (277). Five-percent lysozyme was incorporated due to evidence suggesting the increased recovery of environmental spores treated with lysozyme (275). CDRN (*C. difficile* ribotyping network) use CCEYL (without egg yolk) to isolate *C. difficile* from faeces due to the bacteriostatic action of cycloserinecefoxitin (39).

BHI agar (brain heart infusion) is used by the majority of research labs working with *C*. *difficile*. Often taurocholate is incorporated (a primary bile acid) alongside glycine. CCEYL also contains an unknown quantity of the primary bile acid cholate in its ingredients. BHI is suited to pure culture of *C. difficile*, due to its non-selectivity (278). It is unclear which conditions are optimal for spore recovery. Although primary bile acids and amino acids are known to be important for inducing spore germination in *C. difficile*, a direct comparison of CCEYL and supplemented BHI has not been performed.

Although the importance of germinants and amino acids has been discussed in the context of germination, one study found germination will occur spontaneously in the absence of germinants in a subpopulation of spores (279). This could be important in experiments utilising spores that have been aged or left for extended periods of time in the environment. Over time, a small population of spores are likely to spontaneously germinate, decreasing spore numbers.

There were a number of aims for this study. Firstly, conditions optimal to *C. difficile* spore recovery and outgrowth in liquid and on solid media were explored. *C. difficile* germination and growth was assessed in two solid media and two liquid media with the incorporation of different combinations and concentrations of germinants. Additionally, this study highlighted the inhibitory nature of high concentrations of L-amino acids on *C. difficile* vegetative growth. Five strains of different ribotypes were grown in broths with increasing concentrations of 3 amino acids (glycine, L-phenylalanine and L-histidine). Finally, the phenomenon of superdormancy was explored; spores were left in a

homemade desiccator for an extended period (6 months) to simulate environmental ageing. It was hypothesised that environmental ageing would affect the ability of spores to germinate in the presence of germinants.

3.2 Methods

3.2.1 Production of Spores

Spores of five PCR ribotypes (RT 001,015,020, 027 & 078) of *C. difficile* were prepared as previously described (248). Briefly, 100 µl of a spore preparation was spread on to Brazier's CCEYL agar (Oxoid, UK) and grown anaerobically for 5 days in a Don Whitley A95 anaerobic workstation. Growth was harvested and streaked on to 10 Columbia Blood Agar (CBA) plates. CBA agar plate growth was removed through swabbing after 10 days of anaerobic incubation and suspended in 4 ml of 50 % ethanol to kill vegetative cells. Spore stocks were serially diluted in phosphate-buffered saline (PBS)(BioVision, USA) and enumerated on CCEYL agar.

All experiments were carried out in triplicate and all spores were fresh (<30 days old) unless otherwise stated. In all experiments agar plates were incubated anaerobically at 37° C and counts of colony forming units (CFU) were carried out 48 hours post-inoculation.

3.2.2 Phase Contrast Microscopy

Slides were prepared by spreading 50 µl of spore suspension uniformly over a microscope slide and drying aerobically for 30 minutes at 50° C. Slides were overlaid with 50 µl of Wilkins-Chalgren agar and dried for a further hour. Phase bright spores, phase dark spores and vegetative cells were visualised in ten fields of view and counted on a phase contrast microscope at 1000 X magnification. All entities were counted in each field of view. In broth experiments one slide was prepared per biological replicate (broth). Phase dark spores indicate those that have germinated, phase bright spores have not germinated, and vegetative cells are the product of spore germination and outgrowth.

3.2.3 Spore Recovery on Solid Media

Spore suspensions were serially diluted (10-fold) in PBS to 10⁻⁹. Twenty-microlitres of each dilution was spread on to a range of solid agar plates (Table 3.2.1). Media (BHI (Oxoid, UK) and CCEY (LabM)) was prepared in house according to manufacturer's instructions (see Appendix B, B.1.8 & B.1.9). In the case of additive preparation, taurocholate and glycine (Oxoid, UK) were added prior to autoclaving, lysozyme was added subsequently. Spores of five *C. difficile* ribotypes were utilised. An overview of the methodology can be seen in Fig 3.2.1.

Table 3.2.1. Solid agar plates utilised in *C. difficile* spore recovery experiments.Media types and additives are shown

Media	Additional Additives
BHI	Nil
	5% lysozyme
	0.1% taurocholate, 0.4% glycine
	1% taurocholate, 0.8% glycine
	1% taurocholate, 4% glycine
CCEY	Nil
	5% lysozyme
	0.1% taurocholate, 0.4% glycine
	1% taurocholate, 0.8% glycine
	1% taurocholate. 4% glycine

3.2.4 Spore Germination in Broths

Broths of 4.95 ml were prepared in glass Wassermans, autoclaved and pre-reduced overnight in an anaerobic chamber. Media (BHI and Schaedler (Oxoid, UK)) was prepared in house according to manufacturer's instructions (see Appendix B, B.2). All broths were carried out in biological duplicate unless otherwise stated. Broths utilised can be seen below (Table 3.2.2). At time point 0 phase contrast microscopy was carried out on spore suspensions. Subsequently, 50 μ l of spore suspension was aliquoted and incubated anaerobically in broth for 90 minutes. At 90 minutes, 20 μ l of broth was removed and serially diluted in PBS to 10⁻⁷ in technical triplicate. For spore enumeration, broth (100 μ l) was aliquoted into 100 μ l of 100 % ethanol and after an hour serially diluted in PBS to 10⁻⁴. Twenty-microlitres of each dilution were aliquoted on to CCEYL agar. In addition, 500 μ l of broth was removed and centrifuged at 9500 g for 1 minute. The supernatant was removed and spores were resuspended in 50 μ l of PBS, which was spread on to a slide for phase contrast microscopy. An overview of the methodology can be seen in Fig 3.2.3.

Broth	Additional Additives
BHI	Nil
	5 % lysozyme
	0.1 % taurocholate, 0.4 % glycine
	0.1 % taurocholate, 0.4 % histidine
	0.1 % taurocholate, 0.4 % glycine, 0.4 % histidine
	1% taurocholate, 4% glycine
Schaedler	Nil
	5 % lysozyme
	0.1 % taurocholate, 0.4 % glycine
	1 % taurocholate, 4 % glycine
	1 % taurocholate, 4 % glycine

Table 3.2.2 Range of broths utilised in *C. difficile* spore germination experiments.Broth types and additives are shown.

Figure 3.2.1. An overview of the methodology used in solid agar experiments.

Figure 3.2.2. An overview of the methodology used in this study for broth experiments. TVC represents total viable counts

3.2.5 Agar-incorporated minimum inhibitory concentration (MIC) testing

The minimum inhibitory concentration (MIC) for glycine and taurocholate was tested both alone an in combination (4:1 ratio) against *C. difficile* strains of five ribotypes (001, 015, 020, 027, 078). An agar-incorporation MIC methodology was utilised that has been used previously by Baines et al (280). Test compounds were weighed out in doubling concentrations and added to individual aliquots of Wilkins-Chalgren anaerobe agar or CCEY agar. CCEY agar was supplemented with 2 % lysed, defibrinated horse blood. *C. difficile* vegetative populations were grown up overnight in Schaedler's broth in an anaerobic cabinet. Both spore and vegetative (1:10 dilution of 24-hour Schaedler's broth culture) populations of the five *C. difficile* strains were inoculated (~10⁴ cells) on to glycine/taurocholate incorporated agar. Inhibition of growth was assessed after anaerobic incubation at 37° C for 48 hours, where the lowest concentration at which visible *C. difficile* growth was inhibited was recorded as the MIC.

3.2.6 Minimum Inhibitory Concentration (MIC) Testing in Microbroths

BHI broths with increasing concentrations (1, 2, 3, 4 %) of three amino acids (glycine, L-histidine, L-phenylalanine) were prepared and 180 μ I was aliquoted into a 96-well plate. Twenty-microlitres of spore solution (~5x10⁵/ml) were aliquoted into each well at time point 0; five strains of different ribotypes were utilised (001, 015, 020, 027, 078). At 0, 24- and 48-hours absorbance readings were determined at 595 nm in a Tecan Infinite 200 Pro reader at 20° C and under 1 atm of pressure. Negative controls were prepared for each concentration, and the absorbance for the blanks was subtracted from the absorbance of the inoculated wells to determine an accurate absorbance reading based on growth alone. All wells were prepared in triplicate.

3.2.7 C. difficile spore desiccation

One day old (1 ml) spores of four ribotypes (001, 015, 020 & 078) were aliquoted into Eppendorfs in biological triplicate and left in a homemade desiccator (Fig 3.2.3). At the

0, 3- and 6-month time points spores were resuspended in the appropriate volume of PBS and enumerated by serial dilution (10⁻⁵) on a range of solid media (CCEY, CCEYL and BHI (0.1 % taurocholate, 0.4 % glycine)). At the stated time points, 20 µl of spores were transferred to 180 µl of three different broths (BHI, BHI (5 % lysozyme) & BHI (0.1% taurocholate, 0.4 % glycine)) in biological triplicate. After 3 hours incubation, spores and TVCs were enumerated by serial dilution (10⁻⁵) on CCEYL agar as previously documented. CCEYL plates were incubated anaerobically for 48 hours. An overview of the methodology for the desiccation experiments can be found in Fig 3.2.4 & Fig 3.2.5.

Figure 3.2.3. The desiccator used to age *C. difficile* spores. The desiccator consisted of an air tight container filled with silica crystals to remove moisture from the air. Silica crystals in dehydrated form are blue but become red after hydration.

Figure 3.2.4. An overview of the methodology used to enumerate desiccated spores directly on to solid agar. Spores were enumerated on three agars; CCEY, CCEYL & BHI. BHI was supplemented with 0.1 % taurocholate and 0.4 % glycine (BHI(S)). This diagram represents sampling for one ribotype. Four strains of differing ribotypes were utilised in total (001, 015,020 & 078). Spores were enumerated at 0, 3, & 6 months.

Figure 3.2.5. An overview of the methodology used to enumerate desiccated spores after 90 minutes broth incubation. Spores were incubated in three different broths; BHI, BHI(L) & BHI(S). BHI was supplemented with 5 % lysozyme (BHI(L)) or 0.1 % taurocholate 0.4 % glycine (BHI(S)). After incubation spore and TVC counts were enumerated on CCEYL agar. This diagram represents sampling for one ribotype. Four strains of differing ribotypes were utilised in total (001, 015 020, & 078). Spores were incubated in broths at 0, 3 & 6 months.

3.2.8 Statistical analysis

Statistical analysis was carried out in on IBM SPSS Statistics 22. Prior to statistical analyses data was assessed for normality and homogeneity of variance between groups. Data normality was assessed using histograms and Kolmogorov-Smirnov tests. Homogeneity of variance was assessed using Levene's test; in the case of significant differences in variance between groups Welch's ANOVA was utilised. All means are reported with standard error of the mean (SE). A statistical significant. \bar{x} represents the mean of several specified ribotypes. Individual details of statistical analysis are found with each experiment.

3.3 Results

3.3.1 Spore Recovery on Solid Media

Spore recovery varied considerably between different media types (Fig 3.3.1). In the absence of supplementation, recovery was ~1 log₁₀CFU/ml greater on CCEY vs BHI media (range = $0.1 - 2.4 \log 10$ CFU/ml). The increased recovery of spores on CCEY vs BHI was observed in all but the RT 078 strain (P > 0.05). Greatest spore recovery was achieved in CCEY ($\overline{x} = 8.20 \pm 0.03 \log 10$ CFU/ml), CCEYL ($\overline{x} = 8.26 \pm 0.05 \log_{10}$ CFU/ml) and BHI supplemented with taurocholate ($\overline{x} = 8.25 \pm 0.06 \log_{10}$ CFU/ml). The incorporation of 5% lysozyme had no substantial effect on the recovery of spores in either media (CCEY $\overline{x} = 8.20 \pm 0.03 vs 8.26 \pm 0.04 \log_{10}$ CFU/ml, BHI $\overline{x} = 7.28 \pm 0.20 \log_{10}$ CFU/ml vs 7.10 $\pm 0.18 \log_{10}$ CFU/ml) (P > 0.05). In BHI, supplementation with taurocholate (0.1 % or 1 %) significantly increased the recovery of spores by on average ~1 log_{10}CFU/ml (range = $0 - 2.7 \log_{10}$ CFU/mL). Differences were observed between strains; the RT 001 strain showed a very highly significant increase (5.80 \pm 0.13 log_{10}CFU/ml vs 8.45 \pm 0.08 log_{10}CFU/ml) (P<0.001), in contrast to the negligible

difference observed for the RT 078 strain (7.95 \pm 0.05 log₁₀CFU/ml vs 8.03 \pm 0.04 log₁₀CFU/ml) (P>0.05). On the contrary, taurocholate supplementation alone had no substantial effect on the recovery of spores on CCEY media ($\overline{x} = 8.20 \pm 0.03$ log₁₀CFU/ml vs 8.29 \pm 0.05 log₁₀CFU/ml).

Incorporation of 4 % glycine alongside taurocholate caused a marked reduction in spore recovery to below the lower limit of detection (1.22 $log_{10}CFU/ml$) in both CCEY and BHI. Lower concentrations of glycine (0.4 % & 0.8 %) had no substantial effect on recovery in BHI, but in CCEY this decreased ~3 $log_{10}CFU/ml$ and ~6 $log_{10}CFU/ml$, respectively.

using Welch's ANOVA with Games-Howell multiple comparisons. Statistically significant differences (P<0.05) are highlighted with *, very highly significant differences (P<0.001) with ***.

3.3.2 Spore Broth Pilot Study

RT 027 spore numbers showed a time dependent decrease (Fig 3.3.2), decreasing ~1log from 30 to 90 minutes ($6.25 \pm 0.02 \log_{10}$ CFU/ml vs 5.10 ± 0.03 \log_{10} CFU/ml; P< 0.001), indicating spore germination. Total viable counts (TVCs) remained relatively stable between the 30- and 90-minute mark ($7.02 \pm 0.03 \log_{10}$ CFU/ml vs 7.06 ± 0.01 \log_{10} CFU/ml; P < 0.05). Spore numbers continued to decrease after 90 minutes at a reduced rate; spore numbers decreased from 5.10 ± 0.03 \log_{10} CFU/ml to 4.87 ± 0.04 \log_{10} CFU/ml after 120 minutes.

3.3.3 Spore Germination in Broths

Spore germination was induced by the inclusion of taurocholate and glycine at either concentration utilised (0.1 % taurocholate/ 0.4 % glycine, 1 % taurocholate/ 4 % glycine) (Fig 3.3.3). In BHI, spore levels were significantly lower (~2 log₁₀CFU/ml) in taurocholate supplemented broths ($\overline{x} = 4.32 \pm 0.05 \log_{10}$ CFU/ml and 4.20 ± 0.07 \log_{10} CFU/ml) vs 5 % lysozyme (\overline{x} = 6.38 ± 0.06 \log_{10} CFU/ml) and non-supplemented (\overline{x} = $6.43 \pm 0.06 \log_{10}$ CFU/ml; P<0.001) BHI broths. Incorporation of lysozyme did not appear to have a substantial effect on the germination of spores. Total viable counts were comparable between all of the BHI broths at 90 minutes (range; $\overline{x} = 6.69 \pm 0.09$ log_{10} CFU/ml – 6.75 ± 0.09 log_{10}CFU/ml). In addition, germination of spores in Schaedler broth was comparable to BHI, with similar levels of spore decrease in taurocholate supplemented ($\overline{x} = 4.22 \pm 0.05 \log_{10}$ CFU/ml vs 4.26 $\pm 0.05 \log_{10}$ CFU/ml) lysozyme supplemented ($\overline{x} = 6.27 \pm 0.06 \log_{10} CFU/ml vs 6.39 \pm 0.06 \log_{10} CFU/ml$; P>0.05) and non-supplemented broths ($\overline{x} = 6.28 \pm 0.06 \log_{10}$ CFU/ml vs 6.43 ± 0.06 log_{10} CFU/ml; P> 0.05). There was no significant difference between total viable counts in any of the Schaedler broths at 90 minutes (range; $\overline{x} = 6.67 \pm 0.10 \log_{10}$ CFU/ml – $6.70 \pm 0.06 \log_{10}$ CFU/ml; P = 0.97).

Phase contrast microscopy showed that in broths supplemented with taurocholate and glycine, phase dark spores predominated after 90 minutes were (Fig 3.3.4). At the zero-time point, the RT 078 strain contained a majority of phase dark spores compared with phase bright spores in both BHI and Schaedlers ($\overline{x} = 76.40 \pm 2.00 \%$ vs 7.45 ± 1.00 %; P< 0.001). In non-supplemented BHI broths, after 90 minutes incubation, phase bright spores were more prevalent than phase dark spores or vegetative cells in four of the strains (001, 015, 020 & 027) ($\overline{x} = 70.7 \pm 11.2 \%$ vs 18.0 ± 8.3 % vs 11.4 ± 10.1 %). In contrast, in both sets of supplemented BHI broths, phase dark spores were the predominant entity in all five strains with minimal levels of phase bright spores (<3 %). Vegetative populations made up a minority of the identified entities in all broths

(range = 9.2% - 30.1%). The trends observed in BHI were also seen in Schaedler broths.

Media

Figure 3.3.3. Mean (± SE) TVC and spore counts of five *C. difficile* strains of different ribotypes (001, 015, 020, 027 & 078) germinated in two different broths (BHI & SCH) in the presence of different germinants lysozyme (L), taurocholate (TC) & glycine (GLY). (L) indicates broths supplemented with lysozyme. 0.1 %/1 % indicates the taurocholate concentration, glycine concentrations were four times that of taurocholate (0.4 %/4 %). Broths were incubated for 90 minutes, after which aliquots were serially diluted in PBS to obtain total viable counts. One set of aliquots was ethanol shocked to obtain spore levels. TVC and spore counts for each broth at the 90-minute time point are presented in adjacent columns (e.g. BHI TVC, BHI Spores). Broths were carried out in biological duplicate and processed in technical triplicate. One-way ANOVA with Tukey's multiple comparisons was used for statistical analysis. Very highly significant findings (P< 0.001) are highlighted with ***.

Figure 3.3.4. Phase contrast data for spores of five *C. difficile* strains of differing ribotypes (001, 015, 020, 027 & 078) incubated for 90 minutes in two broths (BHI & SCH) in the presence of a range of germinants (lysozyme (L), taurocholate (TC) & glycine (GLY). (L) indicates broths supplemented with lysozyme. 0.1 %/1 % indicates the taurocholate concentration, glycine concentrations were four times that of taurocholate (0.4 %/4 %).. Data represents the mean (\pm SE) of entities read from duplicate slides in 10 fields of view. One-way ANOVA was used for statistical analysis. Very highly significant differences (P<0.001) are highlighted with ***.

3.3.4 *C. difficile* germination in the presence and absence of additional supplementation

After 24 hours of incubation, spore counts were lower in the BHI(S) broths compared to BHI alone ($\bar{x} = 3.79 \pm 0.12 \log_{10}$ CFU/ml vs 5.08 ± 0.21 log₁₀CFU/ml; P< 0.001) (Fig 3.3.5). Over the first 6 hours of incubation, a gradual increase in TVC to reach peak numbers was observed in the supplemented BHI broth ($\bar{x} = 6.46 \pm 0.02 \log_{10}$ CFU/ml, 6.92 ± 0.09 log₁₀CFU/ml, 7.57 ± 0.16 log₁₀CFU/ml; P< 0.01). In contrast, the non-supplemented BHI broth took the whole 24-hour period to reach peak recorded TVC levels ($\bar{x} = 6.43 \pm 0.03 \log_{10}$ CFU/ml vs 7.95 ± 0.08 log₁₀CFU/ml; P< 0.001).

Spore numbers decreased significantly in both supplemented and non-supplemented broths after 3 hours but to different extents ($\bar{x} = 5.97 \pm 0.10 \log_{10}CFU/ml$ vs $4.04 \pm 0.07 \log_{10}CFU/ml$ & $6.04 \pm 0.08 \log_{10}CFU/ml$ vs $5.33 \pm 0.29 \log_{10}CFU/ml$; P < 0.05). RT 078 showed considerable germination of spores after 3 hours in the non-supplemented broth compared with RT 001 and RT 027 ($3.72 \pm 0.06 \log_{10}CFU/ml$ vs $6.13 \pm 0.13 \log_{10}CFU/ml$; P < 0.001). At the equivalent time point all three strains (001, 027 & 078) showed similar levels of germination in the supplemented broth ($\bar{x} = 4.04 \pm 0.07 \log_{10}CFU/ml$). Although very significant, spore numbers at 0 vs 24 hours were only slightly lower in RT 001 and RT 027 when incubated in the non-supplemented BHI broth ($\bar{x} = 6.15 \pm 0.11 \log_{10}CFU/ml$ vs $5.70 \pm 0.05 \log_{10}CFU/ml$; P < 0.001). This contrasts with RT 078, which showed a ~2 log_{10}CFU/ml drop after 24 hours ($5.84 \pm 0.06 \log_{10}CFU/ml$ vs $3.85 \pm 0.04 \log_{10}CFU/ml$; P < 0.001).

3, 6, & 24-hour post-inoculation and enumerated by serial dilution on CCEYL agar. One set of aliquots were shocked in 50 % difficile germinated in two broths (BHI & BHI(S)). BHI(S) is supplemented with 0.1 % taurocholate. Aliquots were taken at 0, ethanol for 1 hour to kill vegetative cells and enumerate spore populations. Broths were carried out in biological duplicate and serially dilutions in technical triplicate. Welch's independent T tests were used to compare groups (BHI vs BHI(S)) at Figure 3.3.5. Mean (± SE) TVC and spore counts of three *C. difficile* strains of differing ribotypes (001, 027 & 078) of *C*. different time points. Very highly significant (P < 0.001) differences are highlighted by ***.

81

was centrifuged, resuspended in 50 µl of minimal media and dried for 30 minutes. Subsequently slides were overlaid with 70 ul of Wilkins-Chalgren agar. Subsequently phase contrast microscopy was carried out and phase bright spores, phase dark Figure 3.3.6. Phase contrast data for spores of three C. difficile strains of differing ribotypes (001,027 & 078) incubated for spores and vegetative cells were counted. Broths were carried out in biological duplicate; data represents the mean (± SE) 24 hours in two broths (BHI & BHI(S)). BHI(S) was supplemented with 0.1 % taurocholate. At 0, 3 & 6 hours, 500 µl of broth of entities read from duplicate slides (1 slide per broth) in 10 fields of view. Slides for BHI(S) at the 6-hour time point were unreadable due to large numbers of vegetative cells.

3.3.5 Minimum Inhibitory Concentration (MIC) Testing

3.3.5.1 Agar-incorporated minimum inhibitory concentration testing

The MIC value for glycine was the same for all the strains utilised; 2% (20 g/L) (Fig 3.3.7). MIC values were equivalent in vegetative compared to spore populations (data not shown). The inhibition was observed independently in glycine alone and in combination with taurocholate.

C. difficile PCR ribotype

Figure 3.3.7. MIC testing of spores of five *C. difficile* strains of differing PCR ribotypes (001, 015, 020, 027 & 078) against increasing concentrations of glycine (0, 1.5, 2.0 & 2.5 %). Growth was substantially inhibited in all strains at a glycine concentration of 2.0 %.

3.3.5.2 Minimum inhibitory concentrations testing in microbroths

At the highest concentration of amino acid (3%), growth of *C. difficile* was completely inhibited by all three amino acids (glycine, L-histidine & L-phenylalanine) (Fig 3.3.8). Lphenylalanine exerted the most potent effect against microbial growth, with growth being very significantly inhibited at a concentration of 1 % (P< 0.001). Glycine inhibited growth at 2 % (P< 0.001) and L-histidine was the least potent of the three amino acids, with concentrations of 3 % required (P< 0.001).

Concentration

Figure 3.3.8. Mean (± SE) growth of five *C. difficile* strains of differing ribotypes (001, 015, 020, 027 & 078) in BHI containing increasing concentrations (0, 1, 2, 3, & 4%) of one of three amino acids (glycine, L-histidine, L-phenylalanine). Absorbance readings (595 nm) shown are at 0- and 24-hours post-spore inoculation. At higher concentrations of amino acids, growth is inhibited. One-way ANOVA with Tukey's multiple comparisons was used for statistical analysis. Very highly significant findings (P<0.001) are highlighted with ***.

3.3.6 C. difficile spore desiccation

A statistically significant decrease in spore recovery was observed on solid agar when the mean recovery of all five ribotypes was compared between the 0 and 6 month time points (P< 0.01) (Fig 3.3.9). Spore recovery dropped in BHI(S) ($8.78 \pm 0.12\log_{10}$ CFU/ml vs 8.61 ± 0.13log₁₀CFU/ml), CCEY ($8.75 \pm 0.13 \log_{10}$ CFU/ml vs 8.58 ± 0.16log₁₀CFU/ml) and CCEYL ($8.75 \pm 0.13 \log_{10}$ CFU/ml vs 8.63 ± 0.12 log₁₀CFU/ml) over the sixth month desiccation period. There was no difference in recovery between the three different solid media at any of the time points.

Decreased TVCs were observed in desiccated spores incubated in BHI and BHI(L) broths comparing the 0- and 6-month time period (Fig 3.3.10). At 6 months, BHI TVC counts had decreased from $7.73 \pm 0.02 \log_{10}$ CFU/mI to $7.37 \pm 0.02 \log_{10}$ CFU/mI (P< 0.001) and $7.71 \pm 0.03 \log_{10}$ CFU/mI to $7.41 \pm 0.01 \log_{10}$ CFU/mI (P< 0.001) in BHI(L). A similar time-dependent decrease in spores was observed in these broths. The same decrease in TVC was not observed in BHI(S) broths, but a significant decrease in spore numbers was seen at the 6-month time period (5.44 \pm 0.05 log₁₀CFU/mI vs 4.64 \pm 0.03 log₁₀CFU/mI) (P< 0.001).

Figure 3.3.9. Mean (± SE) recovery of desiccated spores of four *C. difficile* strains of differing ribotypes (001, 015, 020, 078) on three solid agars (BHI(S), CCEY & CCEYL). Spores were resuspended and recovered on solid agar at 0, 3 & 6 months. decrease in recovery from 0 to 6 months. L= lysozyme, S = 0.1% taurocholate, 0.4% glycine. Statistical analysis included RM-ANOVA with Tukey's multiple comparisons. Highly significant (P< 0.01) differences are highlighted by ** and very Experiment was carried out in biological and technical triplicate. Spores of all ribotypes show a small but significant highly significant (P< 0.001) differences by ***.

0.4% glycine. Statistical analysis included RM-ANOVA with Tukey's multiple comparisons. Very highly significant 078) in three liquid media (BHI, BHI(L) & BHI(S)). Mean (± SE) TVC and spore values are represented. Broths were carried out in biological triplicate and processed in technical triplicate. L= lysozyme, S = 0.1% taurocholate, Figure 3.3.10. Germination of desiccated spores of four *C. difficile* strains of differing ribotypes (001, 015, 020, (P< 0.001) differences are highlighted by ***.
3.4 Discussion

3.4.1 Recovery of *C. difficile* on solid agar

A variety of supplementation regimens were implemented in two solid media in order to optimise recovery in *C. difficile* spores of five *C. difficile* strains, with extensive variation in recovery observed (Fig 3.3.1). CCEY and BHI were chosen due to their popularity as media in culturing *C. difficile*. CCEY (cefoxitin-cycloserine egg yolk) agar has been used by clinical laboratories to isolate *C. difficile* from stool samples; this has been validated as a low-cost and highly sensitive medium for isolation of *C. difficile* (277) . Cycloserine (an antibiotic active against Gram-negative species) and cefoxitin (selective for enterococci and *C. difficile*) help to eliminate the background gut flora (278). Supplemented BHI (brain-heart infusion) is regularly used for sub culturing *C. difficile* spores. It has been established that the primary bile acids, including cholate, glycocholate and taurocholate contribute to increasing the germination efficiency of *C. difficile* spores (62, 270); up to 10^5 greater in some studies (261). The experimental evidence formed the basis for including this combination (taurocholate & glycine) in the current work.

Taurocholate supplementation increased spore recovery on BHI but not on CCEY

Taurocholate supplementation increased recovery in BHI by ~1 log (Fig 3.3.1). The additional inclusion of glycine did not increase spore recovery further. Inclusion of taurocholate at either concentration had no significant effect on the recovery of spores on CCEY. The inherent presence of cholate, a primary bile acid stimulatory to *C. difficile* germination in CCEY may explain the lack of effect of taurocholate inclusion. It should be noted that the lowest concentration of taurocholate used in this study was 0.1 %, but lower concentrations (0.05 %) have been found to be equally effective in some studies (281). The addition of glycine did not increase recovery further in BHI

supplemented with taurocholate (8.3 vs 8.2 log₁₀CFU/ml). It is hypothesised that BHI inherently contains a source of glycine sufficient to support the action of taurocholate in stimulating germination. Additional supplementation of glycine could be considered superfluous to requirements. Optimal concentrations for germination ranged between ~0.07-0.7 % for five identified amino acid co-germinants in one study (282). Although higher glycine concentrations increase the rate of germination, overall levels of germination are unlikely to be affected after sufficient time has passed to allow germination (263).

Inter-strain variation in response to the addition of germinants was seen. RT 027 and RT 078 recovery increased to a lesser extent compared to other strains when 0.1 % taurocholate was added to non-supplemented media. Germination in the absence of taurocholate of a RT 078 strain (M120) has been found previously in studies investigating spore germination (173). On the contrary, in this study 078 recovery was ~0.5 log₁₀CFU/ml higher in BHI plates supplemented with 1 % taurocholate and 0.8 % glycine; suggesting that germination may be more tightly regulated in RT 078 and require more glycine participation.

Remarkably, one study found that strains associated with more severe disease had impaired germination in the presence of taurocholate alone (271). This suggests some strains may have a highly regulated germination mechanism whereby spores only germinate in the most favourable of conditions. Previously it has been found that some strains will germinate in BHI alone in the absence of taurocholate. This phenomenon did not appear to be RT dependent, suggesting germinate in the absence of taurocholate has been questioned in recent work by Bhattacharjee et al (258). Different strains were found to have dissimilar affinities for taurocholate. Bile acids are present in blood and could be present in animal products such as media. Germination of spores may be mediated by a high affinity for taurocholate at low concentrations. This provides a potential explanation for why RT 078 germinated in the apparent absence of

taurocholate. The question still remains as to why RT 078 required greater concentrations of glycine to optimise germination.

Higher concentrations of glycine were inhibitory to C. difficile

In the case of higher concentrations of germinants (1 % taurocholate, 4 % glycine) spore recovery was inhibited to below the lower level of detection (Fig 3.3.1). A level of inhibition was also visible in CCEY plates supplemented with lower concentrations, but not in BHI. Initially taurocholate supplementation alone was not included in the experiment; leading to the hypothesis that inhibition could be due to the increased levels of primary bile acids in the media. As taurocholate and other primary bile acids have been found to be inhibitory to a range of other species (284), it was hypothesised higher concentrations could be toxic to *C. difficile*. The disparity between CCEY and BHI could be explained by the presence of cholate in CCEY, producing a higher concentration of inhibitory primary bile acid.

To investigate this hypothesis, taurocholate was included alone in the absence of glycine. The hypothesis was rejected due to spore recovery returning to normal levels. This led to a new hypothesis; glycine was the inhibitory agent in the media. Decreased levels of glycine were chosen (0.8%) in addition to the previously utilised combination (0.1 % taurocholate/ 0.4 % glycine & 1 % taurocholate, 4 % glycine) and in CCEY recovery increased slightly to above the LLOD (1.22 log₁₀CFU/ml) supporting the inhibitory role of glycine. Glycine was explored further in order to determine its inhibitory nature. Spore recovered was not inhibited in BHI media supplemented with 0.8 % glycine. This is likely due to the differing composition of the two media; CCEY may inherently contain larger concentrations of glycine, negating the requirement of supplementation to observe inhibition.

In summary, this work indicates the comparability of two solid media commonly used in *C. difficile* research for spore recovery; supplemented BHI and CCEY/CCEYL. Although CCEY and CCEYL recovery was comparable, CCEYL was used preferentially

in subsequent experiments for spore recovery due to being readily available. Additionally, the inhibitory nature of glycine has been identified. The nature of inhibition was unknown, and further work is required to elucidate the mechanism.

3.4.2 Germination of *C. difficile* in broths

The germination of *C. difficile* was investigated in liquid media, with the same germinants and similar concentrations to those used in solid agar recovery experiments (Fig 3.3.3). It was hypothesised recovery would be greatest in broths supplemented with taurocholate and glycine. An initial spore pilot study using one strain (027) in 0.1 % taurocholate/ 0.4 % glycine supplemented broths was carried out to evaluate appropriate time-scales for sampling (Fig 3.3.2). At 90 minutes substantial germination was evident; spore numbers decreased by ~1 log₁₀CFU/ml from the 60-minute mark and the ratio between TVC and spores increased. Sampling at 90 minutes was chosen for future experiments, as levels of germination were substantial and this allowed time for processing the broths without further significant germination.

Taurocholate and glycine are necessary for optimal germination of *C. difficile*

Germination was greatest in the presence of taurocholate and glycine; increasing concentrations above 0.1 % taurocholate/ 0.4 % glycine had no additional effect (Fig 3.3.3). Schaedler and BHI were comparable for germinating spores in liquid media. Spores incubated in 5 % lysozyme did not show any additional germination compared to non-supplemented media, as observed in the agar experiment. The spores used in this experiment were pure and in large numbers, providing a potential explanation. The lack of activity compared to traditional germinants (taurocholate & glycine) does question the legitimacy of lysozyme as a germinant. Based on the contradictory relationship between the literature and this dataset (275, 276, 285), the activity of lysozyme as a germinant could be limited to situations where small numbers of spores are present, particularly in the case of recovery from environmental specimens. Lysozyme was used alone without cogerminants, which is another consideration.

Contrary to what was observed on solid agar, the higher concentration of glycine (4 %) appeared to have no substantial effect on spore recovery in broths. This supports the conclusions made previously that glycine acts on vegetative *C. difficile* cells. Ninety-minutes in the broths is sufficient to elicit germination in the spores, but a large proliferative population will take longer to develop. This notion is supported by the phase contrast microscopy data; the majority (~75 %) of entities being identified in supplemented broths were phase dark spores and a minority vegetative cells (~20 %) at 90 minutes (Fig 3.3.4). Spores transition from phase bright spores to phase dark spores upon germination (286). Following broth incubation spores were removed and streaked on to CCEYL, a medium free from high concentrations of glycine. This medium will allow vegetative cells to proliferative.

RT 078 presented with different germination characteristics

RT 078 showed some unanticipated characteristics. At the zero-hour time point the phase contrast data were different to that of the other strains (Fig 3.3.4). Most of the entities identified were phase-dark spores. There are several explanations; firstly, RT 078 spores may germinate more readily than other spores when left on the bench in 50 % ethanol. Work has shown that *C. difficile* spores will germinate in both anaerobic and aerobic environments. One would expect substantial biological decay over time, which has not been observed in the literature. RT 078 spores could have a divergent spore coat with different optical properties than those of other strains. In theory, this would allow identification of phase dark spores in the absence of germination. This seems highly unlikely given that phase bright spores were observed, albeit in small numbers. The mostly likely explanation is based on how the slides were processed. RT 078 spores may have germinated during the 50° C slide drying stage. This is the most likely explanation given the incongruity between the phase contrast data and the broth enumeration, where germination appeared comparable with the other strains.

C. difficile spores will germinate in the absence of additional

supplementation

When *C. difficile* spores of three RTs (001, 027 & 078) were incubated for 24 hours in BHI and BHI(S), germination occurred more rapidly in the supplemented broths (Fig 3.3.5). The spores still germinated in BHI alone, but at a slower rate. At the end of incubation spore levels were ~1 log₁₀CFU/ml higher in non-supplemented BHI than in BHI(S). A vegetative population was present in both sets of broths, suggesting a minority of spores were germinating in the absence of supplementation. At the 0-time point, it would be expected spore and TVC numbers would be similar due to lack of germination. Spore germination began immediately in RT 001 in supplemented broths, with a substantial drop in spore numbers. The same trend was seen in RT 078; RT 027 took 3 hours to begin germination. Most strikingly, RT 078 germinated immediately in the absence of supplementation.

Previously a RT 027 strain was found to have increased germination in 0.1% taurocholate compared to a RT 106 and a RT 078 strain (287). Strains associated with severe CDI and recurrence were also found to have increased germination efficiencies. It might be the case that hypervirulent RT 027 strains associated with recurrence have a highly regulated germination cascade allowing the greatest chance of outgrowth. The lack of requirement for high concentrations of taurocholate in RT 078 may illustrate divergent epidemiology; with non-human animals being identified as a potential major reservoir (288).

Previous studies have identified strains that appear to germinate in the absence of stimulatory germinants and in the presence of inhibitory bile acids such as chenodeoxycholate (283). Bhattacharjee et al suggested that media derived from animal products contain a small amount of stimulatory bile acids (258). In the cited study, strains appeared to be germinating in the absence of germinants; the CspC germinant receptors had a higher affinity for stimulatory versus inhibitory bile acids. These strains can germinate in lower concentrations of stimulatory bile acids, without additional supplementation. In addition, RT 078 showed a decreased response to

lower levels of primary bile acids, which could be important in the case of recrudescent disease.

Lysozyme did not increase spore recovery in either media

Lysozyme has been considered a *C. difficile* spore germinant for several decades (285), with other studies elucidating its value in recovering environmentally aged and heat treated spores (275, 276). While lysozyme is generally bactericidal, vegetative *C. difficile* is highly resistant (289) possibly due to variants in the peptidoglycan wall (290). However, in this study no beneficial effects of recovery on spores were observed in the presence of lysozyme. Conversely, in one strain (078) the addition of lysozyme in BHI appeared to inhibit recovery to some degree. However, this phenomenon was not seen when the same strain was grown on CCEYL. This could indicate an unidentified mechanism but is likely an artefact; there is no logical reason lysozyme would inhibit the growth of RT 078 on BHI(L) agar, but not CCEYL.

Spores incubated in 5% lysozyme did not show any substantial germination additional to that observed in non-supplemented media (Fig 3.3.3). This is in accordance to the results seen on solid agar (Fig 3.3.1). The equivalent explanation can be given for this being contrary to what is observed in the literature. The spores used in this experiment were pure and in large numbers. However, the lack of any activity compared to the traditional germinants (taurocholate & glycine) does question the legitimacy of lysozyme as a germinant. Based on the contradictory relationship between the literature (275, 276, 285) and this dataset, the use of lysozyme could be limited to situations where small numbers of spores are present, particularly in the case of recovery from environmental specimens. It may also be considered that lysozyme was used alone in the current study; it could act as a co-germinant.

3.4.3 The inhibitory nature of L-amino acids

Further investigation of the inhibitory nature of glycine was required. Previously, high concentrations of glycine (4 %) had been shown to be inhibitory to *C. difficile* recovered

on solid agar. It was necessary to use a gold-standard methodology of agarincorporated minimum inhibitory concentration testing to elucidate this interaction further. Two scenarios were possible, glycine could be inhibitory to spore germination or to vegetative cell proliferation. It was unclear whether this inhibition was unique to glycine.

Glycine was inhibitory to C. difficile proliferation

Both spore and vegetative populations were inoculated on plates with increasing concentrations of glycine and taurocholate. Agar-incorporated MIC testing with glycine illustrated the inhibitory nature of glycine at 2.5 % in all five strains tested (Fig 3.3.7). This inhibition was seen in both vegetative and spore populations, supporting the conclusions made previously that glycine acts on vegetative C. difficile cell proliferation. Glycine has been historically reported as being inhibitory to other bacterial species, including *E.coli* (291), and the role of glycine has more recently been evaluated due to its penicillin synergism in *H. pylori* eradication (292). It has even been investigated in dentistry as a replacement for sodium bicarbonate in airbrushing dental appliances (293). The mechanism of glycine inhibition is thought to involve the replacement of Dalanine residues in tetrapeptides responsible for cell wall linkage in the bacterial cell wall (294). These tetrapeptides hold together the glycan strands, and changes to the terminal amino acid D-alanine result in defective linkage. It has also been observed that the D-alanine substitution proposed can be induced by amino acids other than glycine, for instance D-threonine, D-valine, D-leucine and D-methionine (295, 296). It is unclear if this mechanism could account for the inhibition seen in C. difficile.

The picture is further complicated by the microbroth MIC results (Fig 3.3.8). In addition to glycine two other amino acids, L-phenylalanine and L-histidine, exhibit inhibitory properties against *C. difficile* growth. Previously, amino acids have been found to be suppressive on the production of toxins A and B in one *C. difficile* strain (297). L-amino acids are ubiquitous in nature, and their inhibitory nature has not been reported

previously. One explanation rests on the observation that the peptidoglycan cell wall is different in C. difficile; extensive levels of 3-3 cross linkage catalysed by L, Dtranspeptidation are present in contrast to the 4-3 cross links produced by D,Dtranspeptidation in other bacteria (298). It seems feasible amino acid substitutions at higher concentrations could be possible. Another potential solution rests with recent work documenting the presence of a C. difficile alanine racemase on spores (299). Alanine racemases are embedded on the spore coat of many spore forming bacteria, and it is believed they facilitate the conversion of L-alanine to its enantiomer D-alanine. Interestingly, the same work found the racemase would also accommodate L-serine and its subsequent conversion (299). It is theoretically possible other such racemases exist, or the currently identified racemases can accommodate additional L-amino acids. This seems plausible and would form the basis for a possible mechanism for explaining the inhibition seen in this work. Racemase activity could lead to L-D isomer conversion, and as stated previously a potential mechanism of D-amino acid inhibition exists that could explain the inhibition seen in this study. At present, the mechanism remains unidentified and warrants further investigation.

3.4.4 **Desiccation of** *C. difficile* **spores**

Spores exhibited a significant time-dependent decrease in recovery

When spores of four ribotypes (001, 015, 020 & 078) were pelleted and left in a homemade desiccator for 6 months, a decrease in spore recovery was observed on both solid agar (BHI, CCEY, CCEYL) (Fig 3.3.9) and when spores were incubated in broths (BHI, BHI(L), BHI(S)) (Fig 3.3.10). However, in the case of spore recovery on solid agar there was no significant difference in spore recovery on the agars used. It has been suggested that environmentally aged or distressed spores may require additional germinants such as lysozyme to optimise *C. difficile* spore recovery (275), with ageing suggested to induce spore "superdormacy". Although spore recovery was found to decrease over the 6-month time period, the use of 5 % lysozyme did not

mitigate this drop suggesting no role for superdormancy. The previous study highlighting a role for lysozyme was recovering small numbers of *C. difficile* spores from environmental samples (275). At 3 and 6 months, a small but visible amount of spore pellet was not amenable to resuspension in PBS despite vigorous vortexing and manual homogenisation; perhaps accounting for the observed drop in spore recovery.

Spore germination efficiency appeared to increase after 6 months of desiccation

There was a ~1 log decrease in spore numbers at 6 months compared to the 0-month time point (Fig 3.3.10). No corresponding decrease in TVC was observed. One hypothesis is that this represents an increased germination efficiency of the spores at the 6 month time point. Previous work studying three strains observed that R20291 exhibited increased germination efficiency after incubation at room temperature in PBS for 4 months (300), however, the opposite effect was observed in two other strains (M120 (PCR ribotype 078) and DK1 (unidentified PCR ribotype). The author suggested R20291 spores could be exhibiting decreased superdormancy in response to age, the reverse occurring in M120 and DK1 spores. Thus, increased spore germination efficiency with age has been observed previously. It is hard to reconcile these findings; the current study did not include a RT 027 strain and increased spore germination efficiency is reported in all four strains used. Desiccation was also used in contrast to storage in PBS, and it is conceivable that dry storage could have a considerable effect on the spore exosporium and consequently the spore germinant response.

Superdormancy is of importance in rCDI for several reasons. Recurrence can occur within two contexts; relapse and reinfection. In a patient who has not suffered a previous episode of CDI, ingestion of spores may facilitate disease. Superdormant spores with an increased germination efficiency will outgrow more rapidly, producing more spores. The additional spores produced are likely to adhere to the colonic epithelium and increase the risk of relapsing disease in the future. The same scenario of increased germination of superdormant *C. difficile* spores could occur in patients

who reingest spores from the environment, facilitating initial infection or reinfection. The findings presented in this thesis at least support the hypothesis that spores of some strains may exhibit increased germination efficiency when 'environmentally aged'.

Conclusion

C. difficile spores can be recovered optimally on solid agar using non-supplemented CCEY or BHI supplemented with 0.1 % taurocholate. Additional amino acid supplementation does not appear to be necessary. Germination of C. difficile is optimised in broths by using the same combination; taurocholate appears to be the important prerequisite for optimal recovery. Lysozyme is not an effective germinant when used on large numbers of laboratory prepared pure spores. Glycine and two other amino acids, L-phenylalanine and L-histidine were inhibitory to C. difficile growth. The mechanism remains unidentified, but several hypotheses have been suggested. Although interesting, it is unlikely that this phenomenon could be translated into a clinical context due to difficulty in reaching therapeutic amino acid levels in the host. Desiccation for 6 months (mimicking environmental ageing) revealed an increase in the germination efficiency of spores. This could be of importance in the case of rCDI, where ingestion of environmental spores leads to recurrence due to reinfection. One of the most remarkable findings of this study highlights the divergent germination characteristics of a RT 078 strain. This effect was observed when the strain was recovered on solid agar and cultured in liquid media. Although experiments utilising more RT 078 strains would strengthen these conclusions, it is feasible that the ability of RT 078 to germinate in less selective conditions could explain its epidemiological prevalence.

Chapter 3 B – Heat treatment of *Clostridium difficile* spores

3.5 Background & Rationale

Bacterial spores have a high resistance to the damaging effects of heat. The effect of heat on bacterial spores is of concern for two reasons. Spores of several spore-formers (*B. subtilis, C. perfringens*) have been reported to be 'activated' in response to sub lethal heat treatment (301-303). The administration of heat at sub-lethal levels is usually administered between 60-75° C for ~30 minutes. In one study *C. difficile* germination was found to be increased by ~30 % in environmentally aged spores in response to sub lethal heat treatment (253). The same effect was not observed in freshly produced spores. Other studies have also failed to 'heat activate' freshly produced *C. difficile* spores (304, 305). A number of different temperatures and durations have been utilised in trying to optimise *C. difficile* germination, but no consensus exists (254, 261).

The survival of clostridia spores at high temperatures is a concern in food processing. Species of clinical concern include *C. difficile*, *C. botulinum* and *C. perfringens*. The importance of heat resistance has been documented in the case of *C. perfringens* food poisoning; spores of foodborne chromosomal CPE (chromosomal enterotoxin gene) carrying isolates display increased heat resistance versus non-foodborne plasmid CPE carrying isolates, allowing these spores to survive and cause human disease (306). *C. perfringens* spores are particularly resistant to heat treatment; spores are able to survive temperatures exceeding 100° C for short periods of time (307). The detrimental effect of heat on microorganisms has been evaluated by the calculation of *D* and *Z* values (308-310). The time taken for a 90 % (1 log) reduction in numbers is defined as the *D*-value; the *Z*-value denotes the temperature increase required to decrease the *D*-value by a magnitude of ten (i.e. a 10-fold decrease in the time taken for a reduction of 90 % reduction in numbers). The *D*-value at 100 ° C for *C. perfringens* has been

reported at between 16-21 minutes and a D-value of 55 minutes at 85° C (311, 312). *C. perfringens* spores were also found to exhibit higher thermal tolerance in response to prior sublethal heat treatment (311).

Since the 1980s the effects of heat on *C. difficile* have been studied (276). The heat resistance of *C. difficile* spores has been investigated, with some strains being shown to resist high temperatures (90° C) for more than 10 minutes (313). One study illustrated that *C. difficile* spores can survive extended heating at 71° C, a recommended minimum cooking temperatures (253). Viable spores of 20 clinical strains were isolated after heating at 71° C for two hours (314). The current guidelines for reheating food in the UK recommend a temperature of 82 °C, below that required for the complete inactivation of *C. perfringens* spores (315). This is of lesser importance in *C. difficile*, due to the discovery of lower *D* values vs other Clostridia (*C. botulinum, C. perfringens*) (314). Although not fully appreciated, foodborne transmission of *C. difficile* is possible and has been evaluated using thermal death models (316).

The survival of *C. difficile* spores has been investigated in media other than phosphate-buffered saline. One study compared the recovery of spores (four *C. difficile* strains) after heat treatment at several temperatures for 10 minutes in peptone water or fresh pork. Higher *D*-values were observed in the pork heated spores, suggesting the environmental conditions and surrounding matrix could be buffering the heat and subsequently protecting the spores (316). This phenomenon has been replicated in other work (253). In addition, research using *B. cereus* indicates that matrix could have altered the ability of the spore to recover subsequent to heat treatment (317). Many of the reported *D*-values for *C. difficile* spores use only one medium, leading to a potential underestimation of heat resistance. This is of importance in the food industry, where higher temperatures than those reported in the literature are required in the case of sterilisation of meat products.

Community acquired CDI accounted for ~32 % of cases in the United States in 2013 and whole genome sequencing has been used to recognise a lack of a clear transmission pathway in a substantial number of CDI cases in the UK (318, 319). Food could serve as one of a number of environmental reservoirs for *C. difficile*, including soil, nosocomial surfaces, swimming pools and the household (124). *C. difficile* has been isolated from a number of cooked meats and food products as well as raw meat products (118, 119). In addition to being present in uncooked meat products such as poultry, *C. difficile* spores have been isolated from raw 'ready to eat' vegetables in France (320). However, only 2.9 % of samples (3/104) contained toxigenic *C. difficile*. Conversely, the contamination of 26.8 % (22/82) of fertilisers with *C. difficile* illustrates a possible mechanism of foodborne contamination in Western Australia (122). Further work by the same group found a ~15 % contamination rate with toxigenic *C. difficile* in root vegetables commonly sold in retail stores and farmers markets (123).

The thermal tolerance of *C. difficile* spores could potentially account for the transmission of spores to patients through food. However, whilst food could serve as a *C. difficile* reservoir and facilitate asymptomatic carriage in the community, a 2016 prospective study found *C. difficile* in only 0.2 % of hospital food (910 samples, 149 patients), with neither patient receiving the food becoming colonised (321). It is unlikely that foodborne *C. difficile* plays a large role in nosocomial acquisition, but it should be noted different practices and food preparation techniques are likely to be present in the UK.

In summary, food is a possible reservoir of *C. difficile*. In the nosocomial environment, food is unlikely to be a major source of CDI and subsequent potential recurrences. Although no transmission has been demonstrated and no outbreaks are attributable to foodborne CDI (288) , food may present a possible route of transmission, particularly in the community setting. As the majority of recurrence due to relapse occurs within 14 days of the initial episode (67), any recurrent episodes attributable to food are likely to be due to reinfection, potentially in the community. In the case of reinfection, patients

must be ingesting *C. difficile* spores from a source and food is one of many potential reservoirs.

3.5.1 Superdormancy

Heat treatment of C. difficile spores has also become of interest due to the observed effects of heat on spore germination and outgrowth. The phenomenon of 'superdormancy' was first recognised in *Bacillus subtilis* (59), and the mechanisms have since been discovered to be similar in other Bacillus species including Bacillus cereus and Bacillus megaterium (322). Superdormancy is a phenomenon in which a small percentage of spores will fail to germinate in contrast to the vast majority. Germination of these spores can take weeks or months and often requires nongerminant-receptor based germinants, or a heterogenous mixture suggesting superdormant spores require additional 'signals' to initiate germination. In 2009 a nutrient exhaustion method was used by Ghosh et al. to produce and purify superdormant spores of *B. subtilis* and *B. megaterium* (59), and a negative association between germinant receptor numbers per spore and production of superdormant spores was identified. Genetic differences did not account for superdormancy. In one study C. difficile spores aged for > 20 weeks showed an increase in germination efficiency compared to freshly produced spores when they were heated to 65° C or 71° C for 30 minutes (253). Heat activation has been described for spores of several species including Bacillus megaterium (323), Bacillus anthracis (324), Bacillus subtilis (325), Clostridium perfringens (326) and Clostridium botulinum (327). Conversely, Wang et al. found heating spores of two strains of C. difficile at 65° C for 30 minutes did not stimulate germination in C. difficile (304). Only two C. difficile strains were used, and the isolates were from RTs of limited clinical significance (RT 060 & RT 031). Deng et al (2017) found spore recovery to drop ~1 log after 3 months of storage in PBS (328). However, one of the three strains demonstrated increased recovery after this storage period, demonstrating a loss of superdormancy. Taken together, these findings

suggest superdormancy may be not only be strain dependent, but condition dependent.

Nevertheless, these findings are congruent with those of Rodriguez-Palacios et al. (253), suggesting sub-lethal heat activation has no beneficial effect on the germination efficiency of freshly produced *C. difficile* spores. However, the finding that aged spores germinated more efficiently when heated at sub-lethal temperatures suggests the possibility of 'superdormant' spores of *C. difficile* that are reactivated by the effects of sub-lethal heat.

Should superdormancy exist in *C. difficile* spores, it may play a role in recurrent disease. After successful treatment of a first episode of CDI, *C. difficile* spores could persist in the patient's gastrointestinal tract, posing no immediate risk. As the healthy microflora reconstitutes, the gut becomes more nutrient rich including the production of germinants. This could provide a niche for the germination and outgrowth of superdormant spores, which require a greater array of germinants. More controlled germination would also give superdormant spores an advantage over non-superdormant spores in causing later disease. More highly regulated germination would allow outgrowing into an environment only in peak optimal conditions. It would also render the 'activate to eradicate' germination solutions for *C. difficile* spore eradication in the nosocomial environmental implausible (254).

To conclude, superdormant spores may be important in the context of rCDI for several reasons. Superdormant spores are more likely to persist in the gut of patients who have had a first episode of CDI; which could later result in recrudescent disease. In addition, sub-lethal heating could also 'reactivate' superdormant spores, which is of importance in the case of potential foodborne transmission.

3.5.2 Biofilms

C. difficile forms biofilms in the gastrointestinal tract, serving as a potential reservoir of spores. Many of the proteins associated with maximal biofilm formation such as the flagella, Cwp84, and LuxS have been identified as virulence factors (329).

The existence of two morphotypes of *C. difficile* spores has been investigated in previous work (80). Both spores produced within biofilms and by sporulating planktonic

cultures have been found to exhibit two morphotypes of spores; a 'thin-exosporium' or 'thick-exosporium' appearance. However, when spores from biofilm and sporulating cultures were compared, biofilm-produced 'thin-exosporium''spores were found to have a thinner exosporium. In addition, the two morphotypes appeared in a different ratio to that in spores produced by planktonic culture. It is unclear what role if any the differences in biofilm produced spores could have on recurrence. Further work will need to be carried out investigating the attachment and persistence of these spores in the gastrointestinal tract, using a wider variety of strains. Data on the germination efficiencies and response to heat treatment would also serve to understand their role more completely.

Curiously, one study found an inverse association between possessing an appendix and rCDI risk (330). Eleven variables were retrospectively analysed in the case of 254 patients with CDI. The study was limited by its retrospective nature and data was only obtained from one centre. Nevertheless, the appendix is an important site of biofilm activity and is rich in lymphoid tissue, a prerequisite for immune function. A separate study of 509 patients with CDI found a statistically significant increase in colectomy amongst CDI patients who had previously had an appendicectomy (330). It is hypothesised that the absence of an appendix allows more pervasive biofilm formation by *C. difficile*, leading to a greater chance of recurrence due to persistence. In a recent study, the importance of biofilms in CDI has been highlighted by the finding that fidaxomicin has a greater ability to penetrate biofilms, coating spores (248) and killing vegetative cells (331). Given the decreased recurrence rates observed with fidaxomicin treatment, spores produced within biofilms may be an important target in preventing rCDI.

In this work it is hypothesised that spores of different RTs have intrinsic differences in their resistance to heat. In addition, it is theorised that environmentally aged spores germinate in response to heat, thereby 'reactivating'. Finally, it is hypothesised that

spores produced on solid agar are more heat resistant than those produced in liquid media, complementing the findings of the existing literature.

3.6 Methods

All strains used were clinical isolates obtained from the *Clostridium difficile* ribotyping network (CDRN). All experiments were carried out in biological duplicate (different spore preparations) and technical triplicate (each biological replicate processed in triplicate) unless otherwise stated. Spore viability was assessed by recovery on CCEYL agar. CCEYL agar is comparable to BHI supplemented with taurocholate for recovery of *C. difficile* spores (38). CCEYL inherently contains cholate, a stimulatory bile acid comparable to taurocholate. Lysozyme was incorporated into CCEY due to previous efficacy in recovering heat-treated spores and clinical isolates (21, 40).

3.6.1 **Production of spores**

3.6.1.1 Spores produced on solid media

Spores were produced as outlined in the germination experiments of Chapter 3A.

3.6.1.2 Spores produced in liquid media

Spores of five PCR RTs (001, 015, 020, 027 & 078) were produced as follows; ~5x10⁸ spores were aliquoted into 500 ml of BHI (supplemented with 0.1 % taurocholate) and incubated anaerobically for 10 days. For all ribotypes, both biofilm-derived and planktonically-derived spore populations were produced. For production of spores in planktonic culture flasks were continuously shaken at 0.5 g for the duration of incubation.

After 10 days, the contents were centrifuged at 3750 g. The spores were purified using a modified protocol utilising HistoDenzTM (Sigma-Aldrich) as previously described (261). Briefly, the pellet was resuspended in 400 μ l of 20 % HistoDenzTM and layered on to 500 μ l of 50 % HistoDenzTM. The solution was centrifuged at 15000 g for 15 minutes, after which the supernatant containing vegetative cells and cell debris was carefully

removed. The pellet was washed three times in PBS and resuspended in 1 ml of PBS. Spores were checked for purity by phase contrast microscopy.

3.6.2 Transmission electron microscopy (TEM)

Sample processing and image acquisition for TEM was carried out by Mr Martin Fuller of the Astbury Biostructure Laboratory, University of Leeds.

Planktonic and biofilm produced spores of RT 027 were visualised by TEM. Spores were fixed with 2.5 % glutaraldehyde in 0.1 M phosphate buffer for 150 minutes. Two subsequent washes in 0.1 M phosphate buffer were performed. Osmium tetroxide (1 %) was used to stain samples overnight. Sample dehydration was performed by incubation with an ascending alcohol series (20, 40, 60, 80, 100 %). Each step lasted 60 minutes. These steps were performed in Eppendorf tubes, with samples centrifuged and resuspended after each stage.

Spores were embedded in an epoxy resin (AGAR Araldite CY212, Essex, UK) using an accelerator (DMP30, Sigma Aldrich, Dorset, UK) and hardener (DDSA, Sigma Aldrich, Dorset, UK) and left overnight to polymerise at 60° C (332). Samples were cut into thin sections (~80-100 nm) using an ultramicrotome (Reichert Jung Ultracut E) which were picked up on 3.05 mm copper grids. Grids were stained with saturated uranyl acetate (120 minutes) and Reynolds lead citrate (30 minutes). Samples were visualised at a maximum of 10000X direct magnification in the bright field setting on a JEOL JEM1400 TEM (Jeol, London, UK) at 120 kV. Images were taken on an AMT 1k CCD (AMT, Suffolk, UK) using AMTv602 software

3.6.3 Heat Treatment in PBS for 60 minutes

Fifty-microlitres of spore suspension were aliquoted into 450 µl of PBS in an Eppendorf. The final concentration of spores for heating was ~ 2x10⁷ spores/ ml. Eppendorfs were transferred to a heat plate and heated for 1 hour aerobically under 1 atm of pressure. Heating at 50, 60, 70 and 80° C was performed. At time points 0, 15, 30, 45 and 60 minutes. Twenty-microlitre aliquots were removed and serially diluted in

PBS in a 96-well plate. Twenty-microlitres of the appropriate dilution were streaked on to CCEYL agar.

3.6.4 Heat Treatment Prior to Broth Inoculation

Fifty-microlitres of spore suspension were aliquoted into 950 μ l of PBS and heated at 50, 60, 70 or 80 ° C for 10 minutes aerobically on a heat plate. The final concentration of spores for heating was ~10⁷ spores/ ml. This concentration was in accordance with previous work (333, 334). Subsequently the contents were transferred into a 4 ml BHI broth to produce a final volume of 5 ml (0.1 % taurocholate, 0.4 % glycine). Broths were incubated anaerobically for 90 minutes under 1 atm of pressure. At 90 minutes, 20 μ l of broth was removed and serially diluted in PBS to 10⁻⁷ in technical triplicate. One hundred microlitres of broth was aliquoted into 100 μ l of 100 % ethanol and after an hour serially diluted in PBS to 10⁻⁴. Twenty-microlitres of each dilution were aliquoted on to CCEYL agar. In addition, 500 μ l of broth was removed and centrifuged at 9500 g for 1 minute. The supernatant was removed and spores were resuspended in 50 μ l of PBS, which was spread on to a slide for phase contrast microscopy. A zero time point aliquot was included for phase contrast microscopy.

3.6.5 Reversibility of Spore Heat Treatment

Fifty-microlitres of spore suspension were aliquoted into 950 μ l of PBS and heated at 50, 60, 70 or 80° C for 10 minutes on a heat plate. The final concentration of spores for heating was ~10⁷ spores/ ml. Subsequently the contents were transferred into a 4 ml BHI broth to produce a final volume of 5 ml (0.1 % taurocholate, 0.4 % glycine). At 24 and 48 hours, 20 μ l of broth was removed and serially diluted in PBS to 10⁻⁷ in technical triplicate. One hundred microlitres of broth was aliquoted into 100 μ l of 100 % ethanol and after an hour serially diluted in PBS to 10⁻⁴. Twenty-microlitres of each dilution were aliquoted on to CCEYL agar.

3.6.6 Statistical Analysis

Statistical analysis was carried out by IBM SPSS version 22. Data normality was assessed visually by histograms and statistically with Kolmogorov-Smirnov tests. Homogeneity of variance between groups was assessed using Levene's test. If the assumption of homogeneity was violated, Welch's ANOVA was utilised. x̄ represents the mean of two or more specified ribotypes. All means are reported with the standard error of the mean (SEM). P values <0.05 were considered significant, <0.01 highly significant and <0.001 very highly significant.

For PBS heat treatment experiments, curves were added to the data using the GInaFiT software (335). Due to the non-log-linear nature of spore inactivation observed, calculation of *D* and *Z*-values was not performed.

3.7 Results

3.7.1 Heat Treatment in PBS for 60 minutes

3.7.1.1 Spores produced on solid agar

Heat treatment at 80° C was inhibitory to recovery in all five of the strains used (Fig 3.7.1). Spore recovery dropped significantly after 15 minutes for all of the strains (P<0.001) and continued to decrease substantially for the next 15 minutes in all but the 001 and 078 strain. The minimum level of spore recovery was reached after 15 minutes in 001, no further substantial decrease was observed. In the 078 strain, spore recovery dropped only marginally after a further 15 minutes of heating (4.88 ± 0.06 log₁₀CFU/ml vs 4.70 ± 0.07 log₁₀CFU/ml; P<0.001). After the 30-minute time point spore viability recovery stabilised in all strains except the 078. In the 078-strain spore recovery increased at 45 minutes vs the 30-minute time point (4.40 ± 0.07 log₁₀CFU/ml vs 5.17 ± 0.04 log₁₀CFU/ml; P<0.001). Two of the strains (015 & 020) exhibited a greater overall decrease in spore recovery ($\bar{x} = 7.46 \pm 0.03 \log_{10}$ CFU/ml vs 4.18 ± 0.04 log₁₀CFU/ml; P<0.001) over the 60-minute time period. The other three strains (001, 027 & 078) exhibited a smaller decrease in spore recovery ($\bar{x} = 7.58 \pm 0.05 \log_{10}$ CFU/ml vs 5.09 ±

0.04 \log_{10} CFU/ml; P< 0.001). All of the strains exhibited log-linear with tailing inactivation kinetics when heated at 80° C (336).

At 70° C, four of the strains (RTs 001, 015, 020 & 027) showed a ~2 log₁₀CFU/ml decrease in spore recovery after 60 minutes of heating ($\bar{x} = 7.47 \pm 0.04 \log_{10}$ CFU/ml vs 5.32 ± 0.06 log₁₀CFU/ml; P< 0.001). RT 078 showed a very highly statistically significant decrease after 60 minutes, but of a smaller magnitude than the other four strains (7.59 ± 0.04 log₁₀CFU/ml vs 7.31 ± 0.01 log₁₀CFU/ml; P< 0.001) (data not shown). Decreases in spore recovery were strain-dependent in regard to time; after 15 minutes of heat treatment four strains showed no substantial decrease in spore recovery (RTs 001, 020, 027 & 078). In contrast, spore recovery decreased significantly in RT 015 after only 15 minutes of heating at 70° C (7.55 ± 0.03 log₁₀CFU/ml vs 5.65 ± 0.03 log₁₀CFU/ml; P< 0.001). In contrast, RT 027 took 45 minutes for a significant decrease in spore recovery to occur (7.69 ± 0.03 log₁₀CFU/ml vs 6.59 ± 0.03 log₁₀CFU/ml).In contrast to 80° C, spore heat inactivation at 70° C corresponded to a number of different models dependent on strain (Table 3.7.1); sigmoidal (336), biphasic (337) and linear with shoulder (336).

At 50 and 60° C, all of the strains except the 078 showed no significant decreases in spore recovery across the 60-minute time period ($\bar{x} = 7.49 \pm 0.03 \log_{10}$ CFU/ml vs 7.48 $\pm 0.03 \log_{10}$ CFU/ml; P = 0.96). RT 078 showed a similar decrease to that observed at 70° C when heated for 60 minutes at 60° C, with spore recovery decreasing significantly (7.57 $\pm 0.03 \log_{10}$ CFU/ml vs 7.30 $\pm 0.06 \log_{10}$ CFU/ml ;P<0.01). When heated for the same time period at 50° C, an even greater decrease in recovery was observed (7.59 $\pm 0.07 \log_{10}$ CFU/ml vs 6.13 $\pm 0.05 \log_{10}$ CFU/ml; P<0.001).

Time (minutes)

Figure 3.7.1. Spore recovery of five *C. difficile* strains of differing ribotypes (001, 015, 020, 027 & 078) of *C. difficile* heated for 60 minutes at 70 or 80° C. Spores were enumerated at 0, 15, 30, 45 & 60 minutes. Experiments were carried out in biological duplicate and processed in technical triplicate. Spore recovery was compared between time points using RM-ANOVA with Tukey's multiple comparisons. Statistically significant results (P< 0.05) are highlighted by *, highly significant (P < 0.01) by ** and very highly significant (P< 0.001) by ***. Curves of best fit were fitted using the GlnaFiT Excel add-in. The models fitted included linear with shoulder, sigmoidal and biphasic (Table 3.7.1). The lower limit of detection for this experiment was 1.52 log_{10} CFU/ml.

Table 3.7.1. The model used to fit the data shown in Figure 3.7.1 (spore heat broth experiments in PBS) with the corresponding r^2 correlation coefficient value (2 decimal places). Data for the 078 strain at 70° C was not modelled using GlnaFiT software due to the small difference in recovery over 60 minutes observed (7.59 ± 0.04 log₁₀CFU/ml vs 7.31 ± 0.01 log₁₀CFU/ml). Model derivations are referenced in brackets.

	Temperature/ ° C			
	70		80	
Ribotype	Model	r ²	Model	r²
001	Sigmoidal (336)	0.98	Linear with tailing (336)	0.99
015	Biphasic (337)	0.97	Linear with tailing	0.98
020	Sigmoidal	0.98	Linear with tailing	0.99
027	Linear with shoulder	0.98	Linear with tailing	0.96
078	N/A	N/A	Linear with tailing	0.94

3.7.1.2 Spores produced in liquid media

Significant decreases in spore recovery were observed in all spores tested after 60 minutes of 80° C heat treatment (Fig 3.7.2). Biofilm spores exhibited greater viability at the 60-minute time point versus planktonic produced spores ($\bar{x} = 5.62 \pm 0.07$ vs 4.49 ± $0.05\log_{10}$ CFU/ml; P< 0.001). The greatest decrease in spore viability in both biofilm and planktonic spores was present after 15 minutes ($\bar{x} = 7.47 \pm 0.02$ vs 5.79 ± 0.07log₁₀CFU/ml & 7.42 ± 0.08 vs 4.96 ± 0.10log₁₀CFU/ml; P< 0.001). A gradual decline in spore recovery was observed in planktonic spores of RT 020 and RT 027 between 15 and 60 minutes $(4.69 \pm 0.02 \text{ vs } 4.47 \pm 0.03 \log_{10} \text{CFU/ml} \& 4.45 \pm 0.04 \text{ vs } 4.$ $13 \pm 0.02\log_{10}$ CFU/ml). In contrast, biofilm spores of three strains (020, 027 & 078) showed no significant difference in spore recovery at 15 vs 60 minutes ($\bar{x} = 5.72 \pm 0.09$ vs $5.68 \pm 0.08\log_{10}$ CFU/ml; P = 0.73). The most heat resistant spores of any type were RT 078 biofilm spores (6.18 \pm 0.03 vs \bar{x} = 4.90 \pm 0.08log₁₀CFU/ml; P< 0.001). Planktonic RT 078 spores were also more heat resistant than planktonic spores of other strains (4.84 \pm 0.06 vs \bar{x} = 4.38 \pm 0.20log₁₀CFU/ml; P<0.001). No difference in recovery was observed at any time point in spores at temperatures lower than 80° C (50, 60, 70° C) (data not shown).

60 minutes at 80° C. Both biofilm and planktonic culture produced spores are present. Spores were enumerated at 0, significant (P< 0.001) by ***.The ⁺ symbol is used for biofilm derived spores, * for planktonic culture derived spores. Figure 3.7.2. Mean (± SE) spore recovery of four *C. difficile* strains of differing ribotypes (001, 020, 027 & 078) heated for 15, 30 & 60 minutes. Experiments were carried out in biological duplicate and processed in technical triplicate. Statistically significant (P< 0.05) results are highlighted by *, highly significant (P< 0.01) by ** and very highly Spore recovery was compared between time points using RM-ANOVA with Tukey's multiple comparisons. The lower limit of detection for this experiment was 1.52 log₁₀CFU/ml

3.7.2 Transmission Electron Microscopy

Endospores were observed in both biofilm and planktonic culture produced samples (Fig 3.7.3). Two morphotypes of spore with differing exosporium sizes were observed in both sets of spores. In addition, detached exosporium was visible in in both samples.

Figure 3.7.3. Transmission electron microscopy (TEM) images (1000X magnification) of biofilm produced spores (A) and planktonic culture produced *C. difficile* RT 027 spores (B). Both sets were produced from the 027 strain used previously in this study. Two spore morphotypes are visible in both; thick-exosporium spores are designated by red arrows, thin-exosporium morphotype spores by blue arrows. Detached exosporium was visible in micrographs of both samples (white arrows). Higher magnification (10000X) example images of thick (C) and thinexosporium (D) spores are presented.

3.7.3 Heat Treatment Prior to Broth Inoculation

After aerobic heat treatment, spores were aliquoted into BHI containing taurocholate to induce germination. The sensitivity of vegetative cells to ethanol allowed the differentiation between non-germinating spores and germinating/vegetative cells. The difference between total viable counts and spores indicates the number of spores that have germinated. Spore recovery was inhibited to differing extents after heating for 10 minutes at 70 and 80° C (Fig 3.7.4). In contrast, comparable TVC and spore counts to the control were observed at the 90-minute time point after spores were heated at 50 and 60 ° C ((TVC; $\hat{x} = 6.63 \pm 0.08 \log_{10}$ CFU/ml vs $6.63 \pm 0.06 \log_{10}$ CFU/ml vs $6.68 \pm 0.06 \log_{10}$ CFU/ml; P>0.05). On average spore counts were ~3 log₁₀CFU/ml lower than TVC in 50 and 60° C heat treated and control broths. TVC and spore counts were similar to heat treatment at 50 and 60° C in three strains heated at 70° C (001, 015, 020). In contrast, when RT 027 and RT 078 were heated at 70 ° C, spore counts were higher compared to the other strains (5.48 ± 0.04 log₁₀CFU/ml & 4.78 ± 0.05 log₁₀CFU/ml vs $\hat{x} = 3.76 \pm 0.05 \log_{10}$ CFU/ml).

When spores were heated at 80° C, RT 027 and RT 078 exhibited lower TVC (\bar{x} =4.05 ± 0.05 log₁₀CFU/ml vs 4.80 ± 0.12 log₁₀CFU/ml; P< 0.001) and spore counts (3.56 ± 0.13 log₁₀CFU/ml vs 4.69 ± 0.14 log₁₀CFU/ml; P<0.001) compared with the other strains. At 80° C TVC and spore counts were comparable (\bar{x} = 4.50 ± 0.10 vs 4.24 ± 0.14 log₁₀CFU/ml; P = 0.14), indicating spores accounted for the majority of enumerated entities.

Phase contrast microscopy revealed a very highly significant increase in visualised phase bright spores in 80° C heat treated spores vs the control ($\bar{x} = 82.7 \pm 1.1$ % vs 0.8 ± 0.3 %; P< 0.001) (Fig 3.7.5). Results were comparable between control and 50 and 60 ° C treated spores in all strains; most entities identified were phase dark (germinated) spores ($\bar{x} = 81.8 \pm 1.3$ %, 83.2 ± 1.3 %, and 84.9 ± 1.1 %). At 70 ° C interstrain variation was observed; RT 027 and RT 078 showed similar levels of phase bright and phase dark spores ($\bar{x} = 50.6 \pm 2.1$ % vs 39.9 ± 1.8 %), the other strains (001, 015 & 020) showed results consistent with the control (x = 0.3 \pm 0.2 % vs 85.4 \pm 1.1

%).

078) incubated for 90 minutes in BHI supplemented with 0.1% taurocholate/ 0.4% glycine. Spores were heat treated at (P< 0.001) differences are highlighted with ***. Missing data (078 zero counts) is due to bacterial culture failure. The 50, 60, 70 or 80° C for 10 minutes prior to broth inoculation. TVC/spore counts are also included from the zero time Figure 3.7.4 Mean(± SE) TVC and spore counts of five *C. difficile* strains of differing ribotypes (001, 015, 020, 027 & point and from a control broth. Broths were carried out in biological duplicate and technical triplicate. TVC counts were compared using Welch's ANOVA with post-hoc Games-Howell multiple comparisons. Very highly significant lower limit of detection for this experiment was 1.52 log₁₀CFU/ml

3.7.4 Reversibility of Spore Heat Treatment

When newly produced (<14 days old) spores were heat treated prior to broth inoculation, an increased vegetative population was observed at 24 hours vs the nonheat-treated control (Fig 3.7.6). This difference was very highly significant in three of the strains (001, 027, 078) ($\bar{x} = 7.40 \pm 0.03 \log_{10}$ CFU/ml vs 6.45 ± 0.04 log₁₀CFU/ml; P< 0.001). This observation was also significant in RT 015 and RT 020, but to a lesser extent ($\bar{x} = 7.62 \pm 0.03 \log_{10}$ CFU/ml vs 7.45 ± 0.04 log₁₀CFU/ml; P< 0.05).

An increased vegetative population at 24 hours was also present when old (<12 weeks old) spores were heated prior to broth incubation (Fig 3.7.6). A very highly significant increase in TVCs was observed in heat-treated broths of all strains when compared to non-heat-treated spores (7.81 \pm 0.06 log₁₀CFU/ml vs 6.76 \pm 0.08 log₁₀CFU/ml; P< 0.001).

The trend exists in both new and old spores, but differences between time points in individual ribotypes existed. Vegetative populations only increased marginally in RT 015 and RT 020 in response to heat in new spores ($\bar{x} = 7.61 \pm 0.03 \log_{10}$ CFU/ml vs 7.45 ± 0.05 log₁₀CFU/ml). However, a greater increase occurred in old heat-treated spores ($\bar{x} = 7.60 \pm 0.03 \log_{10}$ CFU/ml vs 6.33 ± 0.04 log₁₀CFU/ml). The old non-heat-treated spores of RT 015 and RT 020 produced a smaller vegetative population in contrast to new spores. Spores of the other three strains (RTs 001, 027 & 078) exhibited similar behaviour independent of age.

Figure 3.7.6. Mean (± SE) TVC and spore counts of five *C. difficile* strains of differing ribotypes (001, 015, 020, 027 & 078) 24 hours post-broth inoculation. Both new spores (< 14 days old) and old spores (> 12 weeks old) were utilised. Heat treated spores (HT) were heated for 10 minutes at 80° C, non-heat treated (NHT) received no treatment. A trend towards increased TVCs in heat treated samples was present. Broths were carried out in biological duplicate and technical triplicate. TVC means were compared using two-tailed paired T tests. Highly significant (P < 0.01) findings are highlighted by ** and very highly significant (P < 0.001) by ***. The lower limit of detection for this experiment was 1.52 log₁₀CFU/ml.

3.8 Discussion

3.8.1 Heat Treatment in PBS

C. difficile spore heat inactivation is not adequately modelled by log-linear kinetics

When spores were heated in PBS for 60 minutes, substantial variation was observed (Fig 3.7.1). The differences observed were mainly strain-dependent; the observed trends were consistent between different temperatures. Fifty and 60° C heat treatment had no significant effect on four of the utilised strains (001, 015, 020 & 027). However, at higher temperatures heat began to have a substantial effect on spore recovery. Three of the strains (RTs 015, 020, and 027) took 0, 15 and 30 minutes respectively for spore recovery to decrease at 70° C. If the time delay was due to a 'lag phase' such as the Eppendorfs getting up to temperature, the same delay would be expected in all strains. The heat took an additional 30 minutes to influence RT 027 compared to RT 015 strain at 70° C.

Traditionally, thermal inactivation of microorganisms has been illustrated using loglinear kinetic models, based on the assumption of a homogeneous population, sharing the same intrinsic heat resistance (338). Implicit in this model is the recognition of a single-system that is responsible for heat resistance. This approach is particularly prevalent in food microbiology and food safety, where it is possible to easily calculate *D*-values and *Z*-values. The *D*-value is defined as the time taken for a 90% (or 1log) reduction in numbers from the starting population, the *Z*-value is the temperature increase required to decrease the *D*-value by a magnitude of ten. In fact, this method is still being used to evaluate thermal resistance in *C. difficile* spores (253, 316). Deviations from this model have been recognised even since the 1970s, although this recognition has not translated into studies concerning *C. difficile*. In this study, 70° C and 80° C heat curves were not adequately modelled using log-linear kinetics. In order to accurately assess and model the thermal inactivation of *C. difficile* spores, a number of different survival curves were used to describe the data (335).

GInaFit is a software that incorporates 9 different survival curves; linear, linear with tailing, sigmoidal, linear with shoulder, biphasic, concave, biphasic with shoulder and convex curves (335). The mathematic models derived by Geeraerd et al. are beyond the scope of the current study, but are based on empirical datasets. In this study, the largest interstrain difference in recovery occurred at 70° C. The survival curve at 70° C for two of the strains (001 & 020) was best illustrated by the fitting of a sigmoidal curve, for RT 027 a linear with shoulder curve, and for RT 078 a linear model (Fig 3.7.1 & Table 3.7.1). Previously, differing heat inactivation kinetics and thermal resistance values have been discovered when comparing 39 different strains of *B. cereus* (339). Differing heat resistances have also been documented when comparing two strains of *C. botulinum* (340).

It has been hypothesised that during the 'shoulder' phase in these curves, a protective surrounding ensures the survival of the spores by buffering the deleterious effects of heat (335). Once this protective matrix is destroyed/inactivated by sufficient heating, log-linear heat inactivation of spores resumes. The spores used in this experiment were not purified; it is plausible that proteinaceous cellular debris (in the form of dead vegetative cells) acted as a protective matrix. However, it is still unclear why some of the strains have a prolonged period of buffering, for example the 027 strain. Other reasons for the presence of a shoulder in thermal inactivation curves have been proposed; clumping, the inability of bacteria to continually synthesise protective proteins over time and the cumulative damaging effect of heating over a sustained period (336, 341). *C. difficile* spores are metabolically dormant; the synthesis of heat shock proteins is irrelevant. Cetyl trimethylammonium bromide (CTAB) and sonication have previously been used in this study to try and prevent spore clumping, with minimal success (data not shown). The diverse aggregative properties of spores of different *C. difficile* strains could be responsible for the differing resistances earlier in heating.

In addition, 'tailing' was observed in some strains at 70° C (Fig 3.7.1). Tailing has been discussed since the 1970s (337), and its presence is not surprising in *C. difficile* spores given it has been demonstrated to occur in spores of other species (342, 343).

Intrastrain variability is a possible mechanism by which tailing occurs; a subpopulation of spores are maintained due to their higher intrinsic heat resistance. Spore clumping was found to increase in *Bacillus licheniformis* spores after 20 minutes of heat treatment, suggesting spore clumping could be involved in the tailing discussed. In addition, spore surfaces became more hydrophobic after heat treatment (343). It should be noted that the subpopulation of spores persisting in the 'tail' of the curve account for less than 0.1 % of the starting inoculum.

At 80° C the thermal death curve for all strains was more typical and spore recovery began to decrease as soon as heat treatment began. The greater thermal resistances of RT 027 and RT 078 at 80° C found in our study are concordant with the findings of recent work (121, 334). After initial screening, Rodriguez-Palacios et al (121) used a multinomial logistic regression model to suggest the increased thermal resistance of a RT 078 compared to two other strains when spores were heated in meat. Although interesting, a larger sample size of ribotypes will be required to test this association. Interstrain variability in C. difficile is something that has been observed previously in the literature as early as 1985 (313). However, the reason for these differences is largely unknown. Dipicolinic acid (DPA) is responsible for maintaining a dehydrated core and is important in wet-heat resistance in B. subtilis (344). SpoVA is an ion transporter responsible for the transport of DPA into the core in Clostridium perfringens; spoVA mutants have a loss of wet-heat resistance as well as impaired germination (345). Foodborne *B. subtilis* strains harbouring the spoVA^{2mob} operon were found to have increased heat activation requirements compared to non-foodborne strains (346); high heat resistance is attributed to this operon (347). More recently, the importance of DPA has been highlighted in C. difficile spoVAC and dpaAB mutants. DpaAB is the gene from which an enzyme responsible for DPA synthesis is
synthesised. Both sets of mutants showed statistically significant decreases in wet-heat resistance at temperatures above 50° C versus the wild-type (348). It is likely that natural heterogeneity exists in different *C. difficile* strains of the levels of proteins responsible for DPA synthesis and transport. On the contrary, Rose et al showed that in *B. subtilis* wet-heat resistance is probably dependent on factors other than just spore DPA content (349). This is likely true for *C. difficile*.

The cortex has also been suggested to play a role in heat resistance. The cortex serves in an osmoregulatory capacity, expanding to accommodate superfluous water, reducing spore water content (350). Rao et al discovered that decoated *B. cereus, B megaterium and B. subtilis* spores had comparable heat resistances to wild-type spores, suggesting reduced heat resistance was not due to the loss of the cortex, but rather the loss of vital germination proteins (351). These studies have not been replicated in *C. difficile*, but one study found that conditions of high osmolarity permitted cortex degradation, but not DPA release in germinating *C. difficile* spores (352).

RT 078 exhibits different behaviour to all the other strains at 50° C. A number of potential mechanisms have been proposed to explain differences in spore heat resistance, including core DPA content, enzymes responsible for DPA transport, and enzymatic degradation at high temperatures (344, 348). None of these factors seem to address this RT 078-specific phenomenon. Previously, RT 078 has been found to be phylogenetically dissimilar and highly divergent from other *C. difficile* strains based on lineage (30). Based on the data it is plausible that in addition to the previously discussed mechanisms, RT 078 possesses another mechanism of heat resistance that 50° C heat treatment inhibits.

The differences between our work and that of others in evaluating thermal resistance can be attributed to a number of causes. Notably, the method of *C. difficile* spore production differs considerably (253, 276, 313, 316, 348), with a variety of solid and liquid media being utilised to produce the *C. difficile* spores. Spores produced in liquid media in both *Alicyclobacillus acidoterrestris* (353) and *Bacillus subtilis* (349) have

been found to have a lower thermal resistance than their counterparts produced on solid agar.

Biofilm produced C. difficile spores are more heat-resistant

After 60 minutes, the viability of biofilm produced spores was ~1 \log_{10} CFU/ml higher than spores produced in planktonic culture (Fig 3.7.2). In addition, all of the spores produced in liquid media were more heat resistant than those produced on solid agar, which does not conform to the findings of the aforementioned studies (349, 353).

Transmission electron microscopy showed the presence of thin and thick-exosporium spores in both samples (Fig 3.7.3). These observations were made previously in the R20291 strain (80). Despite purification of spores by HistoDenz[™], detached exosporium was present in both samples. It is possible that an increased presence of exosporium/extracellular matrix in the biofilm produced spores could result in a more heat-resistant population. One study also found that C. difficile spores produced in biofilms spores began to accumulate a surrounding 'shroud' that attached to the spore after 7-14 days of incubation (354). This 'layer' was found to consist of dead cellular debris, and it is hypothesised C. difficile spores accumulate this layer after mother cell lysis (354). In addition, spores were found to be less responsive to germinants and exhibited decreased germination. If the increased heat resistance of biofilm produced spores is due to an extracellular matrix/ shroud or an intrinsic spore property, biofilm spores in non-laboratory conditions are likely to retain this resistance. Biofilm produced spores are still likely to exhibit increased heat resistance in non-laboratory scenarios. On the other hand, in the first 15 minutes of 80° C heat treatment biofilm spores exhibited log-linear inactivation kinetics. Previously, it has been suggested the 'shoulder' seen in some heat inactivation models is due to an extracellular matrix buffering the effects of heat (341).

Unfortunately, the processing of other strains used in this study was not practicable due to insufficient resources. In addition, no quantitative measure of exosporium size or

spore morphotype number was possible. Further work providing quantitative measurements and exploring a range of ribotypes is needed to strengthen conclusions. Despite these limitations, this study supports the existence of two distinct *C. difficile* spore morphotypes. Building on previous work, it is suggested biofilm produced *C. difficile* spores are more environmentally robust and could exhibit increased levels of superdormancy in addition to increased heat resistance (354).

3.8.2 Heat Treatment Prior to Broth Inoculation

80° C heat treatment inhibited initial outgrowth but promoted later outgrowth

Both freshly produced (<7 days old) and environmentally aged (>3 months old) were heat treated prior to broth inoculation (Fig 3.7.4). Initially this experiment was performed to assess the immediate effect of heat on spore recovery and outgrowth (90minute incubation times), but the longer term effects of heat on spore recovery were also documented (24 and 48 hour incubation times). In both new and old spores, the same trends were observed. When spores were heat treated and left for 90 minutes, spore outgrowth was inhibited compared to heat treatment at lower temperatures and the control. Both TVCs and spore counts decreased, indicating a global decrease in spore recovery. On the other hand, when spores were left for a longer time period, at 24 hours the heat-treated samples contained higher levels of vegetative cells and comparable levels of spores to non-heat treated samples (Fig 3.7.6).

Initially these results appear inconsistent, if heat is inhibiting spore germination at an early stage, it is unclear why a more rapidly growing vegetative population is present at a later point. One study also observed that heat treatment at 85° C decreased recovery, but this was due to an impairment of vegetative growth and not germination (253). This is in accordance in the current study, where spores were able to revert to vegetative growth. It could be hypothesised the heat treatment causes a greater number of spores to germinate, but there is an initial lag in outgrowth due to the heat treatment. Contrarily, the phase contrast data illustrates a shift from the predominance

of phase dark spores at 70° C to phase bright spores at 80° C, indicating an inhibition of the transition from phase bright to phase dark i.e. germination (Fig 3.7.5).

Heat activation has commonly been used as a strategy to increase spore germination in *B. subtilis* (301) and more recently *C. difficile* in older spores. The previously cited study also found that aged spores (>20 weeks old) exhibited increased recovery (30 % increase) in response to heat treatment at 63° C vs freshly produced spores (253). In the current study, both newly produced and environmentally aged spores demonstrated increased outgrowth in response to heat treatment, albeit in producing a proliferative vegetative population. Heat is suggested to mediate its stimulatory effects by inducing germinant receptor conformational changes. An absence of inner membrane bound germinant receptors in *C. difficile* spores is proposed to explain the lack of effect of heat (62, 355). This hypothesis is consistent with work demonstrating heat has no activation effect on germinant-receptor independent germination in *B. subtilis* (356, 357). Although the results of the current study suggest heat has an effect on the outgrowth and subsequent proliferation of new and old *C. difficile* spore populations, this effect is not necessarily mediated through spore germination directly. The results are therefore not contradictory to those cited above.

3.9 Conclusion

To summarise, 80° C heat treatment appears to have an initial inhibitory effect on spore recovery and outgrowth, which then reverts, with a more rapidly proliferating vegetative population being produced. This effect is seen independently of spore age, at least up to 3 months. The log-linear inactivation kinetics typically described in microbial heat decay experiments was not observed in this study. A range of kinetic inactivation models were fitted to the data dependent on strain and temperature (70/80 ° C), consistent with other work (339, 340).

Spore heat resistance differed between spores produced on solid agar (CCEYL) and those produced in liquid media (supplemented BHI). Contrary to the findings of

previous studies (349, 353), spores produced in liquid media were more heat resistant. Biofilm spores appear to have a greater capacity for withstanding heat than spores produced in planktonic culture, but this effect needs further exploration. The findings of this work illustrate that heat 'activates' spores in a way not previously observed. Although spores are initially inhibited by the injurious effects of heat treatment, vegetative population proliferation is promoted at a later time point, independent of spore age.

At recommended cooking temperatures, spores can persist in food and even reactivate, providing a potential *C. difficile* reservoir for community acquired CDI. This is particularly important in the case of biofilm-produced spores, which exhibit increased thermal resistance. Although the majority of spores were inactivated temporarily by 80° C heat treatment, a subpopulation persisted. Spores present in food prior to cooking may survive the cooking process and potentially cause initial or recurrent CDI. Combined with the findings of chapter 3A, superdormant spores may be able to survive minimum recommended cooking temperatures and exhibit increased germination efficiency when ingested into the bile-rich gastrointestinal tract. Conversely, it seems unlikely that spores could be present in food after cooking unless they persisted the cooking process.

Chapter 4 A – Proteomics in an in vitro Clostridium difficile gut model

4.1 Background & Rationale

Research fields such as proteomics, metabolomics and transcriptomics are becoming increasingly important in the investigation of the human microbiome. Comprehensive sequencing studies investigating the composition of the human microbiome have been very successful, mapping a total of 3.3 million bacterial genes (358). Metagenomic studies have identified the potential major biosynthetic functions of the gut, with genes responsible for methane production, carbohydrate metabolism and vitamin biosynthesis recognised (359). These studies are useful in identifying constituent differences between microbiomes, but do not quantify the expression of genes within the ecosystem and overall functionality. The human microbiota provides important functions in the host including nutrient processing (360), priming of the immune system (361), and defence against pathogens (362). Consequently, potential relationships between microbial metabolism and human disease are increasingly being recognised.

Metabolomics and proteomics are increasingly being investigated and represent an important step in characterising the human gastrointestinal tract in health and disease. One well documented use of metabolomics is the analysis of short chain fatty acids (SCFAs) such as propionate and butyrate. SCFAs are produced by the fermentation of fibre in the human gastrointestinal tract by several bacterial species (363). Defects in this process have been associated with a number of diseases, for instance IBD (363), and SCFAs are suggested to influence diabetic control in type 2 diabetes (364). Currently, literature is available linking varying diseases with the metabolic products of the microbiota. However, reported studies are largely inferential, as causality is difficult to establish without time consuming and potentially unethical longitudinal studies.

Proteomics is used to quantify total gene translation products (365). By integrating this data with metagenomics and metatranscriptomics data, additional information about the functions carried out by the microbiota is obtained. Metaproteomics has advantages over metagenomics alone; the gene products obtained can be from dead, dormant or living cells and measurement of gene expression is lacking. The 'metaproteome' refers to the complex set of proteins expressed and produced by a microbial ecosystem. Historically, proteomics has involved the extraction and separation of proteins using gel electrophoresis. This method is limited in its ability to discriminate and separate proteins in highly heterogenous mixtures such as those produced by the human gut microbiota. In 2009 high throughput sequencing (liquid chromatography followed by tandem mass spectrometry) was used for the first time on two faecal samples from monozygotic twins in investigating the metaproteome (366), which was found to consist of proteins predominantly obtained from Bacteroidetes and Firmicutes organisms. Analogous approaches are now routinely used in defining complex ecosystems. As expected, the spectra obtained mapped predominantly to Bacteroides and Firmicutes organism proteins.

Proteomics-based approaches have been used for a number of purposes in investigating *C. difficile*. One study used SDS-PAGE and mass spectrometry to separate and identify 42 *C. difficile* cell wall proteins that were immunoreactive, giving a deeper understanding of the pathogenesis and subsequent immune response to CDI (367). The changes exhibited in the proteome of Caco-2 cells in response to toxin A have also been investigated. Using LC-MS/MS and SILAC, incubation of cells with toxin A for 24 hours caused a significant difference in the expression of cytoskeletal proteins, underlining the rearrangement of cell microarchitecture and the loss of tight cell-cell junctions (368). LC-MS/MS has also proved useful in quantifying the changes in protein expression in strain CD630 heated at 41° C vs 37° C (369). However, it should be noted that the above work used single strains, which means there is a reasonable possibility that inter-strain differences have been missed.

The hypervirulence of some strains has also been investigated in the context of proteomics, protein expression quantified in response to osmotic shock and nutrient shift revealed increased response coordination of gene networks in two hypervirulent strains vs two historically prevalent, non-hypervirulent strains (370). This study elucidates a potential mechanism for the hypervirulence of some strains, in comparison to the descriptive information gained in metagenomics studies. Furthermore, this study highlighted the heterogeneity in protein expression in isolates grown in different media, an observation that has been validated in other work (371), thus providing a possible explanation for differences seen in heat resistance, germination and outgrowth of spores grown on different media (327, 349, 353, 371). The unique nature of the *C. difficile* spore coat has likewise been highlighted by the finding of 29 unique spore proteins (333). Proteomics is beginning to be used successfully as a tool for probing an explaining some of the behavioural differences observed between *C. difficile* strains.

4.1.1 Proteomics approaches

Two approaches are employed in proteomics; top-down proteomics or bottom-up proteomics. In top-down proteomics, complete proteins are analysed in contrast to bottom-up proteomics whereby proteolytic digestion is employed and the resulting peptide fragments are analysed. Both approaches have advantages and weaknesses which will be discussed.

Historically in top-down proteomics 2D electrophoresis has been utilised. After electrophoresis, bands are excised, proteolysed and subsequently analysed by mass spectrometry. This approach has had limited success, being able to interrogate hundreds of mouse brain proteins (in this case by MALDI-MS), representing a low percentage of the total proteome (372). Unfortunately this method favours the detection of highly abundant soluble proteins, and is not adequate to detect membrane bound proteins (373). It should also be noted some of the literature has taken issue with this methodology as being described as 'top-down' due to the proteolysis step prior to mass spectrometry (374). Rather than using gel electrophoresis, proteins can be ionised directly in the mass spectrometer, advantageous due to the possible detection of posttranslational modifications, which is not possible in bottom-up proteomics. However, the use of top-down approaches has commonly been limited to simple mixtures of proteins, and for peptides larger than 50 kDa, fragmentation sequencing becomes difficult (375). Due to the large size of protein ions, the ionisation, fragmentation and separation stages can be difficult to achieve in top-down proteomics (376)

Bottom-up proteomics is the most widely used approach in MS workflows in contemporary proteomics research. In general, proteins are cleaved into peptide fragments by enzymatic digestion prior to MS analysis, usually by trypsin. Gel electrophoresis can be used prior to MS analysis, or the total protein mixture can be proteolysed known as 'shotgun proteomics' (376). As stated previously, one of the difficulties in bottom-up proteomics is solubilising all proteins regardless of their hydrophobicity. Traditionally, SDS-PAGE has been used to separate proteins followed by proteolysis and mass spectrometry. In-solution digestion has also been utilised, but detergents are required and can interfere with later proteolytic cleavage and must be removed prior to analysis (377). A quick, inexpensive and efficient method of sample preparation that is free from the solubilisation issues of gel electrophoresis is required. A number of gel-free protein preparation methods have been described in the literature, including filter-aided sample preparation (FASP), in-StageTip method (iST), single-pot solid-phase-enhanced sample preparation (ST3) and the suspension trapping method (STrap). One study found all of these methods to be comparable in terms of performance when starting with 20 µg of protein extract, but the precision of FASP fell drastically when the amount of starting material was decreased to 10 µg (378).

FASP is a method described in 2009 by Wisniewski et al (379). In summary, samples are solubilised in SDS, concentrated, retained and subsequently processed in the molecular weight cut off filter or 'reactor'. This method allows the removal of detergents and is inexpensive. Several studies have modified the FASP protocol, increasing

peptide retention and decreasing throughput times (380, 381). Notably, in 2014 Zougman et al developed the 'STrap method', capable of quicker processing times and avoids the temperamental nature of the membrane filters used in the FASP method (377). In this method, the acidified-protein mixture is added to a methanolic solution in an S-tip. A fine particulate protein suspension is created, which is amenable to trypsinisation. The suspension is trapped in the quartz filtration material of the tip. The contaminating solution is removed; the protein is trypsinised and subsequently eluted and concentrated in the C_{18} filter ready for MS. The iST method also uses an S-tip as its basis, but does not require solvents or SDS; strong cation exchange resins are used for peptide separation (382).

In addition to top-down and bottom-up proteomics, some research has tried to use a hybrid approach of 'middle-down' proteomics. In these workflows proteases such as Asp-N and Glu-C are utilised to produce medium sized peptide fragments. The advantage of this approach is the increased proteome coverage in medium sized proteins (3.0 kDa < MW < 10 kDa)(383). An overview of the three approaches can be viewed below (Fig 4.1.1).

Figure 4.1.1. An overview of the different proteomic approaches. Bottom-up and middle-down approaches utilise proteolysis prior to fragment separation and MS analysis. Top-down approaches do not use proteolysis prior to MS analysis. At the separation and MS stages different instruments can be used, but the principles remain the same. Mass spectrometry-based methods are now used routinely in the identification of complex protein mixtures. There are a wide variety of methodologies utilised, depending on the sample being investigated. Any mass spectrometer consists of three vital components, an ion source (ionises the analytes), a mass analyser (measures the mass: charge ratio of incoming ions) and a detector (identifies the number of ions of a particular m/z ratio)(384).

There are two main approaches to ionisation; electrospray ionisation (ESI)(385) and matrix assisted laser desorption/ionisation (MALDI)(386). ESI is routinely coupled to liquid chromatography separation techniques such as HPLC and is only possible in the case of a liquid matrix. ESI is the preferred method for the analysis of complex mixtures; it is most often coupled with other mass spectrometry tools in the case of large-scale bacterial proteomics studies. On the other hand, MALDI uses laser pulses to produce ions from a crystalline matrix and is preferred for simple protein mixtures. MALDI is routinely coupled to time-of-flight (TOF) analysers for the identification of microorganisms in microbiology (387). The ionisation source must be coupled to an analyser of which several types. In its simplest form, an ion trap is anything that uses magnetic or electric fields to trap charged particles. Historically, three different ion traps have been described into which all instruments fall; Paul trap, Penning trap and the Kingdon trap.

A number of different configurations exist including linear ion traps, quadrupole and Fourier transform ion cyclotrons (FT-MS)(384). In most contemporary instruments these analysers can be combined to overcome individual limitations. The orbitrap is an example of a FT-MS instrument and is a Kingdon trap. Orbitraps are a relatively newly developed tool and have the advantage of being able to discern ions of close m/z ratios (388). It consists of an outer and inner electrode; ions are injected into the trap from a C-trap. The ions move around the inner electrode both axially and horizontally; part of

the outer electrode can detect the movement of the ions and use the Fourier transformation to convert this to a mass spectrum.

4.1.2 Peptide/Protein Identification

Undoubtedly the most important step in metaproteomics is database selection. In general, there are three options; public reference, matched or 'pseudo'-metagenomic databases (389). A matched database utilises synchronised metagenomics, identifying the species present within a sample and thereby eliminating superfluous sequences from the metaproteomic analysis. In contrast, reference databases may contain sequences not present in the sample. Unfortunately, there is no way to discern which species are present within a sample. As metagenomics is expensive 16s-rRNA sequencing can be utilised alongside metaproteomics to produce a 'pseudo'-metagenome that contains only reference database sequences of relevant species (365, 366, 390).

A variety of public reference databases exist. Some of the most commonly used databases include UniProt, ENSEMBL (392), NCBI RefSeq (393) and UniRef(394) (395).UniProt has two sections; UniProtKB/SwissProt and UniProtKB/trEMBL (391). UniProtKB/SwissProt is manually curated and of a high quality, sequences are non-redundant. In contrast, UniProtKB/trEMBL is automatically annotated, containing possible redundant sequences and potentially hypothetical proteins. The UniRef database is different from the above in that it clusters all fragments with more than 11 residues into one entry. In practice, this means that peptides that match to more than one organism will be combined in the same entry (396). UniRef is a useful database for family classification and inference of functional groups. However, clustering related sequences is not necessarily desirable when conducting large scale gut microbiota studies.

In addition to the selection of a database, a search algorithm is needed to implement the matching of spectrum with theoretical peptides. For tandem MS data, database

sequences are *in silico* digested during analysis; the resulting theoretical spectra are compared to the experimentally derived spectra. A number of different search algorithms are available for matching spectra to peptides, the most common being Mascot and SEQUEST (397). Another prominent example is X! Tandem (398). More recently, the Andromeda search engine has gained popularity, probably due to being open source and user friendly for non-specialists (399). Andromeda is a search engine implemented in the MaxQuant software suite. Like Mascot, Andromeda uses a probability-based approach to match theoretical sequences to mass spectra (400).

After peptide identification, the next step is protein inference. Protein inference presents another challenge due to the existence of 'degenerate' peptides. Degenerate peptides are shared between proteins in differing species (401, 402). Many of these identifications can be erroneous, particularly if a non-specific public database is being used. Many proteomics packages will report proteins in groups according to shared peptides, with journals requiring that only the first protein identification (with the most peptide matches) be reported in publications in line with the rule of parsimony (403).

4.1.3 *C. difficile in vitro* gut model

The *in vitro* gut model presents a unique opportunity to simulate CDI and subsequent recurrence. It has been utilised extensively (91, 92, 153, 404). In general terms, the *in vitro* gut model has been used to evaluate the efficacy of antibiotic agents in the initiation or treatment of CDI, assessing the effects on both *C. difficile* and the normal flora. Traditionally, a series of selective solid agars have been utilised to monitor bacterial populations over time. Microbial culture offers an easy and relatively inexpensive method of elucidation of a wide range of bacterial populations over a prolonged period. However, in recent years molecular techniques have superseded traditional culture-based methods in extending our knowledge of the diverse microbial community along the gastrointestinal tract. Although sequencing based approaches are powerful, metagenomics has been found to overlook minor populations thus systematically decreasing the observed population diversity (405). In order to maximise

knowledge about phylogenetic and functional aspects of a microbial community, both culture and sequence-based technologies should be combined to mitigate the weaknesses of one another (406). This approach has been highlighted previously, where ~90 'unculturable' species were isolated with a culture based approach (407).

A novel approach to the *in vitro* gut model would be the combination of traditional culture-based approaches with metaproteomics. Combining the two might give useful insight into microbiological factors that predispose to rCDI. Metaproteomics can be seen as a bridge between culture based and metagenomic approaches to the gut microbiota. In the context of rCDI and the in vitro gut model, culture based and metagenomics approaches can be combined for a greater appreciation of microbiota dynamic throughout disease. However, metaproteomics has the added ability of potentially identifying the overarching metabolic niche created during infection by antibiotics. Metabolic processes performed by particular groups of bacteria could create an environment suitable for C. difficile proliferation. Although host factors are absent in the *in vitro* gut model, studies have shown that some species of bacteria may modulate host immune function. Of particular interest Bifidobacterium longum DJ010A and Bacteroides fragilis YCH46 were found to produce peptides (FR-17 & LR-17) that modulate IL-22 induction, a cytokine important in promoting the integrity of the gut epithelium and protecting against pathogens such as C. difficile (408). A database containing over 300 million peptide entries (Mechanism of Action of the Human Microbiome (MAHMI)) now exists to try and identify the immunoregulatory functions of proteins secreted by the gut microbiota (409).

Adopting a proteomics approach within the *in vitro* gut model presents a number of technical challenges. The proteinaceous nature of the media feeding the model means samples cannot be taken directly for LC-MS/MS analysis; media peptides are contaminants. In addition, the bacterially produced proteins could be at such low concentrations that instruments used for LC-MS/MS are not sufficiently sensitive for

peptide identification. As well as the experimental difficulties encountered, microbial metaproteomics is still a field in its infancy. A variety of approaches exist for accurately aligning peptide sequences for protein identification. A diverse range of databases are utilised and this has been found to have a substantial influence on the results of metaproteomic studies (390).

Chapter 4A investigated a methodology for isolating secreted bacterial proteins from *in vitro* gut model populations. The baseline protein levels in Vessels 1, 2 and 3 were determined by acetone precipitation and Bradford assay. Vessels 1, 2 and 3 of the gut model simulated the changing conditions encountered down the gastrointestinal tract. Subsequently a minimal media method was devised to isolate and concentrate bacterial proteins. Bacterial viability using this method was validated. Chapter 4B utilised this novel methodology to isolate bacterial proteins from different stages of simulated *C. difficile* infection in three recurrence gut models. Bacterial proteins were analysed by mass spectrometry using a bottom-up proteomics approach. The taxonomic and functional alterations in the metaproteome at each stage of infection were presented.

4.2 In Vitro Gut Models

4.2.1 Methods

The *in vitro* gut model used in these experiments is a triple-stage chemostat model (Fig 4.2.1). The maintenance and setting up of the *in vitro* gut model has been extensively described previously (235). It consists of three glass Vessels (Soham Scientific, Ely, UK) connected in a Weir cascade based on that of MacFarlane et al (410). The volumes of Vessels 1, 2 and 3 are 280 ml, 300 ml and 300 ml respectively. A circulated heated water bath (Grant Instruments, Cambridgeshire, UK) connected to a jacketed system allowed Vessels to be kept at 37° C. The system was kept anaerobic by a continuous source of oxygen free nitrogen in all Vessels. The Vessels were kept at pH levels reflective of the increasing alkalinity of the gastrointestinal tract; 5.5 (\pm 0.2), 6.2

(\pm 0.2), 6.8 (\pm 0.2) and pH was monitored by probes (P200 chemotrode, Hamilton, USA) and maintained by the addition of sodium hydroxide/ hydrochloric acid, administered by a controller unit (Biosolo, Brighton Systems, UK). A peristaltic pump was used to top feed a complex growth medium through the Weir cascade; a flow rate of 13.2 ml/h was achieved.

Populations of various microorganisms were monitored daily by the use of a range of selective media (Table 4.2.1).

4.2.1.1 Gut Model Preparation

Pooled faecal emulsion (150 ml) was added to each of the gut model Vessels. Growth media was added to fill Vessel 1 to ~280 ml, after which pumping of media through the Weir cascade was initiated. Faeces were obtained from three healthy donors. Antimicrobial therapy in the previous 2 months was an exclusion criterion for donation. Samples were transported in an anaerobic zip lock bag (Benton Dickinson, Sparks, MD, USA) within 12 hours for storage in an anaerobic cabinet. Donor faeces were screened for *C. difficile* prior to use by anaerobic incubation for 48 hours in duplicate on CCEYL. Samples positive for *C. difficile* were not utilised in models. Emulsions were prepared by the suspension of 10 % w/v faeces in pre-reduced PBS. A smooth slurry was created by emulsification of the suspension in a stomacher (Stomacher Lab-Blender 400, Borolabs, Aldermaston, UK). The slurry was passed through a muslin cloth (Bigger Trading Limited, Watford, UK). Pooled faecal emulsions were flash frozen in liquid nitrogen and stored at -80° C as previously described (175). The use of the same donor faeces increased homogeneity between the three models used in the study.

4.2.1.2 Gut Model Media Preparation

Gut model media was prepared in 2 L Büchner flasks. The complex media (for ingredients see Appendix B, B.2.2) was sterilised by autoclaving (Priorclave, London, UK) at 123° C for 15 minutes. After sterilisation, 5 mg/L resazurin (Sigma Aldrich) and

0.4 g/L glucose were added to the media through a 0.22 μ m filter syringe (Merck Millipore, Feltham, UK).

4.2.1.3 Bacterial Population Enumeration

A range of organisms were enumerated on selective and non-selective agars (Table 4.2.1). A full list of ingredients and agars can be found in Appendix B, B.1. From each vessel of the gut model 1 ml of fluid was removed from the outlet port. Gut model fluid was serially diluted in pre-reduced peptone water (Oxoid, Basingstoke, UK) to 10⁻⁷. Four appropriate dilutions were spread on to quarter plates in technical triplicate. Both facultative and strict anaerobic populations were enumerated. Strict anaerobes were incubated in an anaerobic chamber; facultative anaerobes (aerobes) were incubated aerobically at 37° C. for 48 hours. *C. difficile* spore counts were obtained by diluting gut model fluid in a 1:1 ratio in 100 % ethanol. After 1-hour spores were serially diluted and incubated on agar as described above.

After 48 hours of incubation, bacterial colonies were identified and counts were transformed to log₁₀CFU/ml by multiplying by 50 and 10[×], where X is the logarithmic dilution factor. In the case of uncertainty regarding bacterial colony identification, MALDI-TOF was utilised as a second means of identification.

4.2.1.4 Cytotoxicity assay

Vero cells were prepared as previously described by Crowther (235). Twenty-mililitres of Dulbecoo's Modified Eagles Medium (DMEM) (Sigma) supplemented with newborn calf serum (50 ml) (Gibco, Paisley, UK), antibiotic/antimycotic solution (5 ml)(Sigma) and L-glutamine (5 ml)(Sigma) was used to culture vero cells (African Green Monkey Kidney Cells, ECACC 84113001) in a flat bottom tissue culture flask. Flasks were incubated at 37° C in 5 % CO₂.

When Vero cells formed confluent monolayers (confirmed by microscopy; Olympus UK Ltd, Middlesex, UK) the monolayer was harvested by removal of DMEM and rinsing with 1 ml of Hanks Balanced Salt Solution (HBSS) (Sigma) containing trypsin-EDTA (0.25 g/L) (Sigma). Subsequently, 6 ml of HBSS-EDTA was added to the flask and incubated for 10 minutes at 37° C at 5 % CO2. After the cells no longer adhered to the flask, further passage was achieved by diluting the HBSS-EDTA cell mixture (1:20) in DMEM in a 96F microtiter tray (Nunc). Vero cells were harvested (160 µl) and inoculated into wells to which antitoxin would later be added. To other wells trypsinised Vero cells (180 μ l) were added. Trays were incubated for 2 days in 5 % CO₂ at 37° C. Sample supernatant and positive controls were serially diluted 10-fold in PBS to 10⁻⁵. The positive control was produced from a 48 hour culture of *C. difficile* grown in BHI broth. Serial dilutions were transferred to trays containing Vero cell monolayers. Clostridium sordellii antitoxin (Prolab Diagnostics, Neston, UK) neutralised the cytotoxic effects and ensured specificity of cell rounding to C. difficile. A positive test was indicated by rounding of ~80 % of the Vero cells. Cytotoxin quantity (in relative units; RU) was assigned based on the greatest dilution a positive test was observed (i.e. 10⁻⁵ $+ve = 5 RU, 10^{-1} +ve = 1 RU$.

4.2.1.5 *C. difficile* spore production

Spores of *Clostridium difficile* strain 210 (PCR ribotype 027) were prepared as previously described (333). *C. difficile* spores were incubated in BHI broth anaerobically at 37° C for 6 days preceding overnight benchtop aerobic incubation. Growth was harvested by incubation with PBS supplemented with 10 mg/ml lysozyme at 37° C overnight and subsequent centrifugation. Samples were resuspended in PBS supplemented with 20 ng/ml protease K and 200 nM EDTA to digest cellular debris. Sucrose gradient centrifugation was used to separate vegetative cells/cellular debris from spores. Spores were washed twice before resuspension in 30 ml PBS. After enumeration spore concentrations were adjusted to ~10⁷ spores/ml.

Figure 4.2.1. *C. difficile in vitro* gut model. Vessels 1 (V1), 2 (V2) & 3 (V3) are highlighted. They simulate the changing conditions encountered along the gastrointestinal tract. *Image taken by the Healthcare Associated Infection Research Group.*

4.3 Quantification of Protein from the *in vitro* Gut Model Vessels

4.3.1 Methods

4.3.1.1 Acetone Protein Precipitation

One-millilitre aliquots were taken from Vessel 1, 2 and 3 of the gut model. Samples were centrifuged at 9500 g for 10 minutes and the supernatant filter sterilised through a 0.22 µm filter and transferred to a sterile tube. Four volumes of chilled (-20° C) 80 % acetone were added to the supernatant and the sample was left overnight at -20° C. Subsequently the samples were centrifuged at 9500 g for 10 minutes to produce a protein pellet. The pellet was stored at -80° C until required.

4.3.1.2 Bradford Assay

The Bradford assay was performed using the protocol from Bio Basic Inc. Protein standards of 10, 20, 40, 60, 80, 100 and 125 µg/ml were prepared using Bovine Serum Albumin (BSA) (Sigma Aldrich, UK). Briefly, 1 ml of Bradford Reagent (BioBasic, UK) (linear range 10-150 µg/ml) was added to 100 µl of protein standard, vortexed and incubated at room temperature for 10 minutes. One-millilitre was transferred to a microcuvette and read at 595 nm in a Thermoscientific Genesys 20[™] spectrophotometer. Absorbance values were plotted against protein standards to produce a standard curve.

4.3.1.3 Isolation of Secreted Proteins from Gut Model Microorganisms4.3.1.4 Minimal Media Resuspension Method

On two consecutive days three 1 ml aliquots were taken from Vessel 3 of the gut model. Enumeration of gut flora on selective media (Table 4.3.1; full list of media ingredients in Appendix B, B.2.2) was carried out immediately on the first 1 ml aliquot. The remaining aliquots were centrifuged at 9500 g for 1 minute and the resulting supernatant was discarded. Bacterial pellets were washed three times and resuspended by using a loop and vigorous vortexing in 1 ml of minimal media. One aliquot was sampled immediately after washing and the remaining aliquot was sampled after anaerobic incubation for 1 hour. All agar plates for bacterial enumeration were incubated anaerobically in triplicate for 48 hours post-inoculation.

<u>Media</u>	Media Selectivity
Nutrient agar (NA)	Facultative anaerobes/ aerobes
MacConkey agar (MAC)	Enterobacteriaceae
Kanamycin aesculin azide agar (KAA);	Enterococcus sp.
Fastidious anaerobe agar (FAA); 5 % horse blood	Anaerobes
Fastidious anaerobe agar (FAA)	Spore Counts
Bacteroides bile aesculin agar (BBE);	Bacteroides sp.
LAMVAB agar	Lactobacillus sp.
Beerens agar (BEER)	Bifidobacterium sp.

Table 4.3.1 The different growth media utilised in bacterial identification and enumeration from gut model sampling.

4.3.1.5 **Protein Quantification and Concentration**

Samples of 15ml were taken from Vessel 3 of the *in vitro* gut model. Samples were divided into 15 Eppendorf tubes and centrifuged for 1 minute at 9500 g. The minimal media resuspension method was utilised as previously described. After 2 hours anaerobic incubation the Eppendorfs were removed and centrifuged at 9500 g for 1 minute. Subsequently the supernatant was filter sterilised through a 0.22 µm filter and stored at 4° C until required.

Supernatants were concentrated using Amicon Ultra-15 spin concentrators (MWCO 3 kDA). Samples were centrifuged at 11400 g for 60 minutes in a Beckman Coulter X12 centrifuge. The filtrate was discarded and the retentate stored in a sterile Eppendorf at 4° C. Further validation of protein concentration was carried out by Bradford Assay. Alfa Aesar Bradford Reagent was utilised (linear range 100-1500 µg/ml). Protein standards of 200, 400, 600, 800, 1000 and 1200 µg were prepared using BSA (Sigma Aldrich, UK). Briefly, 3 ml of Bradford Reagent was added to 100 µl of concentrated sample in a microcuvette and incubated at room temperature for 10 minutes. Microcuvettes were read at 595 nm in a Thermoscientific Genesys 20[™] spectrophotometer. Absorbance values were plotted against protein standards to produce a standard curve.

To further characterise and validate the presence of bacterially secreted proteins; SDS-PAGE was carried out in NuPAGE[™] Novex[™] 4-12 % Bis-Tris Protein Gels. Sixteenmicrolitres of NuPAGE® LDS Sample Buffer was added to 4 µl of sample and subsequently heated at 100° C for 20 minutes. Twenty-microlitres of each sample was loaded into each well, with SeeBlue® Plus2 being used as a protein standard. Gels were run at 200V for 50 minutes, using NuPAGE® MOPS SDS Running Buffer. After 50 minutes, the gel was removed and washed three times for 10 minutes in sterile deionised water. Gels were stained for 1 hour with SimplyBlue[™] SafeStain, after which

stain was removed and one further wash in sterile deionised water was carried out to

minimise background staining.

4.3.2 Results

4.3.2.1 Bradford Assay

A statistically significant increase in protein concentrations occurred from Vessel 1 to

Vessel 3 of the gut model (19.8 \pm 1.6 vs 69.0 \pm 0.6 μ g/ml) (P < 0.05) (Table 4.3.2).

Protein concentrations were calculated using the equation of the standard curve (y =

0.0014x) plotted for BSA standards (Fig 4.3.1).

Table 4.3.2. Mean (\pm SE) protein concentrations from Vessels 1, 2 & 3 of the gut model. Values represent the results of triplicate experiments. Groups were compared using the Kruskal-Wallis H test with post-hoc multiple comparisons. Statistically significant differences (P< 0.05) are highlighted using *. Statistically significant differences in protein concentrations between vessels 1 and 3 were observed.

4.3.2.2 SDS-PAGE

The presence of a variety of protein bands could be identified in samples originating from Vessels 2 and 3 of the gut model, but not in Vessel 1 (Fig 4.3.2). No protein bands were observed for Vessel 1 samples. Decreased visual band intensity was observed in samples from Vessels 2 and 3 compared to the protein ladder.

Figure 4.3.2. Protein gel electrophoresis of proteins precipitated from gut fluid from Vessels 1, 2 & 3 of the in vitro gut model. V1 = Vessel 1, V2 = Vessel 2, V3 = Vessel 3. Low levels of banding can be seen in Vessels 2 & 3 lanes, but not in Vessel 1.

4.3.2.3 Isolation of Secreted Proteins from Gut Model Microorganisms

4.3.2.4 Minimal Media Resuspension Method

Centrifugation and resuspension in minimal media had no significant effect on the majority of groups recovered on selective media between any of the utilised time points (Fig 4.3.3). Total anaerobe numbers remained constant pre-centrifugation and 2h post-centrifugation (8.68 \pm 0.11 log₁₀CFU/ml vs 8.71 \pm 0.02 log₁₀CFU/ml). Significant differences occurred due to centrifugation and/or incubation in the Enterococci and total spore groups. Enterococci recovery increased from pre-centrifugation to 2h post-centrifugation (6.03 \pm 0.14 log₁₀CFU/ml vs 6.67 \pm 0.04 log₁₀CFu/ml) (P < 0.001). In contrast, a significant decrease in total spore counts was detected across the three treatment groups (before, immediately following and 2 hours post-centrifugation), (3.97 \pm 0.19 log₁₀CFU/ml vs 2.89 \pm 0.05 log₁₀CFU/ml) (P < 0.05). All other organisms showed stable counts across all three treatments with no substantial variation.

incubated for 10 minutes. After 10 minutes absorbance was read at 595 nm. Protein standards were prepared and read in triplicate. A linear standard line of best fit with the equation y = 0.346x was fit to the data. This equation was used to determine the approximate concentration of protein in spin filter concentrated samples.

4.4 Discussion

4.4.1 Quantification of Protein from the *in vitro* Gut Model Vessels

The Bradford assay and gel electrophoresis highlighted the presence of substantial levels of protein in all three Vessels of the gut model. Although counterintuitive, the Bradford assay indicated an increase in protein levels from Vessel 1 to Vessel 3. Initially it was hypothesised protein levels would decrease from Vessel 1 to Vessel 3, due to the uptake of media proteins by the bacterial populations. There are possible explanations as to why this occurred. It is likely that bacteria are using up the peptides in the media to produce more complex proteins. These proteins bind with greater affinity to the Coomassie blue dye; Coomassie blue interacts primarily with arginine and to a lesser extent aromatic residues (411). In addition, the increasing alkalinity across the gut model from Vessel 1 to Vessel 3 could have affected the binding of the acidic dye.

Although the presence of protein was highlighted in the gut model Vessels, these absolute values are unlikely to be accurate. The optimal method for producing a standard curve is against standards of the isolated protein you are quantifying. This was not feasible due to the heterogeneous nature of the gut model protein. BSA was used, and its use as a standard has been questioned by the proteomic field with protein underestimations long reported (412). Additionally, although acetone precipitation is effective, 100 % precipitation is not achievable; concentrations are likely to be underestimated. All these factors could have impacted on the reported measurements and are acknowledged.

In summary, these experiments demonstrate the viability of isolating proteins from the gut model Vessels. However, to isolate bacterially produced peptides and avoid media contaminants, another methodology is required.

4.4.2 Isolation of Secreted Proteins from Gut Model Microorganisms

Isolation of bacterial populations from the gut model fluid by repeated washing steps and resuspension removed the media contaminants. The minimal media utilised (M9 salts solution) for bacterial resuspension contained no peptides but allows the survival of bacteria due to glucose availability. By isolating bacteria and removing the contaminating gut model media, the bacteria can respire whilst still producing proteins. If the process by which bacteria are isolated is not bactericidal, it could be an effective strategy for isolating bacterial proteins at various points during simulated rCDI infection.

When the effect of centrifugation and subsequent resuspension and incubation in minimal media was assessed, most cultured groups were not significantly affected. However, spore populations were found to decrease significantly in response. Spore germination during the incubation period is the most plausible explanation for this decrease; the greatest decrease in spore recovery was observed in the samples incubated for 2 hours anaerobically. The statistically significant increase observed in Enterococci is more difficult to account for. Unavoidably, samples were processed aerobically during the centrifugation and resuspension steps during this optimisation process. It is possible that the death of strict anaerobes created a niche that the facultative anaerobic Enterococci could utilise to their advantage, thereby dividing and becoming a more prominent population. However, these data highlight the feasibility of using the minimal media resuspension for bacterial protein isolation; the methodology is not detrimental to bacterial cell viability.

In addition to assessing the effect of the minimal media resuspension method on cell viability, concentration and quantification of protein levels were necessary prior to LC-MS/MS. In this instance, a 3 kDa membrane spin concentrator was utilised. The 3 kDa cut-off was chosen due to the heterogeneous nature of the proteins produced; a more selective filter would have systematically removed any smaller peptides. If this method identified important groups of similar proteins associated with rCDI a more selective

filter with a higher molecular weight cut off (MWCO) could be utilised. Concentration of ~15 ml of supernatant produced ~500 μ l of supernatant with a concentration of ~500 μ g/ml of protein. Approximately 250 μ g of protein is ample for downstream LC-MS/MS.

In this study a minimal media resuspension method has been optimised for isolation of bacterial proteins from the *in vitro* gut model. It successfully removes the peptide impurities associated with media and permits bacterial cell viability. Additionally, concentration of protein by spin centrifugation produces a total protein weight of approximately 250 µg. As such, this methodology can be carried forward for produce subsequent samples for LC-MS/MS analysis.

Chapter 4 B – rCDI Gut Models

4.5 Methods

Samples for analysis were taken from three gut models (E, F & G), the running of which was funded by Seres Therapeutics. The current study was not directly financially supported by Seres Therapeutics. The models were seeded initially with the same donor faeces.

Sixteen-millilitres of gut model fluid was taken from Vessel 3 of models E, F and G. This was divided into eight 2 ml aliquots in Eppendorfs. All processing was undertaken anaerobically at 37° C. Eppendorfs were centrifuged for 1 minute at 9500 g. The supernatant was discarded and the pellet resuspended in 2 ml of PBS by loop homogenisation and vortexing. The washing step was repeated three times. After the final resuspension step the Eppendorfs were incubated for two hours. After incubation the supernatant was filter sterilised through a 0.22 μ m filter syringe. After sterilisation the supernatant (~16 ml per model) was concentrated in an Amicon Ultra-15 3 kDa spin filter by centrifugation at 11400 g for 60 minutes in a Beckman Coulter X12 centrifuge. The filtrate was discarded and the retentate stored at 4° C.

Samples were taken to Dr Alexandre Zougman at the University of Leeds for processing and subsequent LC-MS/MS by the STRap method (377). The S-tip was comprised of a combination of QM-A (Whatman), MK360 and Empore C₁₈ (3M) plugs in a pipette tip. Membranes were placed in the pipette tip using 1/16' PEEK tubing (1535, Upchurch Scientific). The O-tube consisted of a 1.5 ml microcentrifuge tube (Sarstedt) with an artificially punctured lid. The S-tip was inserted in to the O-tube and 120 μ l of 90 % methanol, 100 mM Tris/HCI was added to the S-tip. After 1 minute 2 μ l of 12.15 % phosphoric acid solution (in H₂O) was added to 18 μ l of the sample. The sample was added to the S-tip and centrifuged for 2 minutes at 2800 g. The filtrate was discarded and 70 μ l 90% methanol, 100 mM Tris/HCI was added before a further centrifugation step for 45 seconds at 2800 g. Thirty-microlitres of 50 mM ammonium bicarbonate solution (in H₂O) was added and the contents centrifuged for 30 seconds at 2800 g. Twenty-two microliters of 0.033 μ g/µl trypsin (V5111, Promega) and incubated for 60 minutes at 47° C in a heat block (PHMT, Grant). After incubation, the S-tip was removed from the spin-unit and 50 µl of 50 mM ammonium bicarbonate solution (in H₂O) was added. The spin-unit was centrifuged for 60 seconds at 2300 g. One-hundred microliters of 0.5% trifluoroacetic acid (in H₂O) was added to the S-tip and centrifuged for 90 seconds at 2500 g. The S-tip was then placed in a fresh O-tube and 80 µl of 70 % acetonitrile, 0.5 % formic acid (in H₂O) was added and centrifuged for 5 seconds at 2500 g. After 30 seconds a further centrifugation of 1 minute at 2500 g was undertaken. The eluate was concentrated in a SpeedVac to a final volume of 5 – 12 µl. If required, the concentrated peptides were diluated to the required volume with 0.2 % formic acid (in H₂O).

A schematic outlining the time scales and treatments involved in each of the three gut models (E, F & G) is outlined in Figure 4.5.1. A table of samples taken is shown (Table 4.5.1)An overview of the optimised methodology utilised for these set of experiments can be also seen below in Figure 4.5.2.

Figure 4.5.1. Overviews of the timeline for the E, F & G *in vitro C. difficile* recurrence gut models. The graphs show the daily average total viable counts of *C. difficile* (spores & vegetative cells) and toxin levels in the three models. All the models underwent an adjustment 'steady state' period (i) prior to the establishment of a *C. difficile* reservoir (ii). Two doses of RT 027 *C. difficile* spores (1.7 x 10⁷ spores/ml) were added 7 days apart to establish a reservoir. *C. difficile* infection was induced by a 7-day course of clindamycin (iii) (33.9 mg/L Q.D.S). Simulated CDI (iv) was treated with vancomycin (v) (125 mg/L Q.D.S) for 7 days. After treatment each model received an additional treatment (vi); three 10 ml spore prep (SER-109) doses (model E), a single 10 ml spore prep (SER-109) preparation (model F) or simulated faecal microbiota transplantation (model G). In the proceeding period (vii) model F was the only model for recurrence to take place.
Table 1.5.1. Samples taken from models E, F, & G of the *C. difficile* gut models. Stage of infection is presented with the model day. Roman numerals correspond to Figure 3.2.1. Intotal, 15 samples were taken for MS analysis; 3 from steady state (E, F, G), 3 from the dysbiotic niche created by clindamycin (E, F, G), 3 from during CDI (E, F, G), 2 from after vancomycin treatment (F, G), 1 from after multiple (3) spore prep infusions (E) 1 from after FMT (G) & 1 rCDI sample (F). Recurrence of CDI occurred in one model (F). Where samples are absent (E – CDI, F – post-spore prep) this is due to inadequate protein concentrations

Model(s)	Stage of Infection	Model day
E,F,G	Steady state (ii) - first dose <i>C. difficile</i> spores	30
E,F,G	Last day of Clindamycin instillation (iii)	42
F,G	CDI (iv)	57
E,F	CDI (iv) (E), last day of vancomycin dosing (v) (F)	65
G	+3 days from last day of vancomycin dosing (v) (G),	70
G	+4 days from FMT (vi) (G)	74
E	Last day of vancomycin dosing (vi) (E)	77
E	Post-spore prep (vi)	87
F	rCDI (vii)	95

media. After 2 hours anaerobic incubation in minimal media, the supernatant was sterilised and concentrated. secreted proteins. Briefly, gut model fluid was separated into Eppendorfs and washed three times in minimal The concentrated supernatant was prepared for LC-MS/MS by the STrap method.

4.5.1 Metaproteomic Analysis

Peptide identification and protein assignment were obtained by searching mass spectra against the manually curated UniProtKB/SwissProt complete bacterial database in MaxQuant version 1.6.1.0. The algorithm incorporated into MaxQuant was used for these purposes (Andromeda). The following parameters were employed in MaxQuant; a MS scan mass tolerance of 7 ppm, a fragment mass tolerance for MS/MS of 0.5 Da, protein N-terminal acetylation, oxidation of methionine and carbamidomethylation of cysteine were set as variable modifications. The maximum false discovery rate (FDR) for proteins/peptides was set at 0.1.

An overview of metaproteomic analysis can be seen below (Fig 4.5.3). For taxonomic analysis, the tryptic peptides were analysed by the MetaProteomics analysis module in Unipept 3.3.5. Unipept taxonomically assigns peptides based on a lowest common ancestor approach. Isoleucine and leucine were equated, duplicate peptides were removed and the advanced missed cleavage handling function was applied. For functional analysis of proteins, in line with the rule of parsimony, only the first protein from each assigned protein group was taken for functional analysis. It is possible for unique peptides to match to more than one protein, particularly in different organisms. As such, protein groups (proteins sharing the same peptides) can contain more than one protein ID (Table 4.5.2). As a rule of parsimony, only the first protein ID with the highest indication is reported. This is in accordance with Molecular & Cellular Proteomics guidelines (403). However, a full table of reported protein groups can be found in Appendix C. Protein function was allocated using the UniProtKB/SwissProt database.

This workflow is based on the work of Tanca et al (413).

4.5.1.1 Culture on selective media

As detailed previously, selected bacterial populations were enumerated throughout the duration of the gut models. On days microbial culture data was absent, data from the proceeding nearest day were utilised. In this instance the day of the model is indicated for transparency. For detailed gut model methodologies refer to 4.2.1.

Figure 4.5.3. Methodology used for the taxonomic and functional analysis of MaxQuant output. The Andromeda search engine was used to match mass spectra to the UniProtKB/SwissProt bacterial database. The tryptic peptide list was used to assign peptide taxonomy based on a lowest common ancestor (LCA) approach in UniPept 3.3.5. The first inferred protein from each MaxQuant output group was used for functional annotation of proteins in UniProtKB/SwissProt.

- W - W -	a group are or peptides unique to that group. sequence covered by the identified peptides. ule of parsimony, only the first protein (e.g. F a group are ordered according to the number he presence of all the peptides within a samp	Mol.weigh 22983 in / of peptide le. This m	t indicates the mole 44) in the group is to is, the presence of t ethodology was util	the percentage of the theoretic scular weight of the theoretic aken for further analysis. As he first protein can theoretic ised for functional annotati	cal protein. As a proteins within cally account for on of proteins.
	Α	ပ	D	Т	D
	Protein IDs	Peptides	Unique peptides	Sequence coverage [%]	Mol. weight [kDa]
2	P24295	31	31	73.3	49.295
m	Q042T5	31	7	76.8	43.677
4	P22983;Q92HI8;Q4ULI7;Q1RH78;Q9ZD55;	27	27	47.3	96.653
9	Q74JU6	33	10	77.3	43.664
9	Q042F2	25	3	63.3	43.043
2	Q042F4;C0Ql43;B4U9X7;O32513;C4XLR9	18		54.4	46.91

intensity, Q- scores) have been collapsed. Multiple proteins may be present in the same group (for example, cell A4). Proteins in the same group are identified by the same number of peptides or less. Unique peptides (column D) indicate the number of nentides unique to that aroun. Sequence coverage indicates the percentage of the theoretical protein Table 4.5.2. An example of MaxQuant Excel output. Columns documenting evidence for peptide assignment (LFQ

4.6 Results

4.6.1 Model E – Multiple spore prep doses

579 bacterial tryptic peptides were identified in steady state. Peptides were assigned to Firmicutes (13.0 %), Bacteroidetes (0.9 %), Actinobacteria (41.1 %) and Proteobacteria (2.5 %). The majority of peptides could not be assigned below the Bacteria LCA level (60.0 %). The steady state sample corresponds to day 30 of the gut model. At day 30 of the model, high levels of anaerobes were reported (Fig 4.6.1); total anaerobes (8.74 \pm 0.14 log₁₀CFU/ml) ,Clostridia (7.45 \pm 0.05 log₁₀CFU/ml), Bifidobacteria (7.26 \pm 0.04 log₁₀CFU/ml). Substantially lower levels of *B. fragilis* were reported (5.50 log₁₀CFU/ml) and high levels of anaerobes, low levels of Enterococci (5.13 \pm 0.08 log₁₀CFU/ml) and high levels of and Lactobacilli (7.26 \pm 0.04 log₁₀CFU/ml) were reported (Fig 4.6.2). Lactose-fermenting Enterobacteriaceae (LFAs) were enumerated at 6.61 \pm 0.02 log₁₀CFU/ml.

At the end of clindamycin exposure, 773 tryptic peptides were identified. An increase in the proportion of proteins assigned to the Proteobacteria (28.2 %) and Firmicutes phyla (24.3 %) steady state was observed. A large decrease in the proportion of Actinobacteria assignments was observed (0.1 vs 41.1 %). 47.0 % of peptides could not be distinguished further below the Bacteria superkingdom. This proteomics sample was taken on day 42 of the gut model. On day 42 reductions in strict anaerobes, Clostridia (7.45 \pm 0.05 vs 3.57 \pm 0.04 log₁₀CFU/ml) and Bifidobacteria (7.26 \pm 0.04 vs below the LLOD) were observed vs day 30 (steady state). *B. fragilis* populations were not altered substantially by clindamycin exposure (5.50 vs 5.49 \pm 0.03 log₁₀CFU/ml). Populations of the facultative anaerobic Lactobacilli and Enterococci were comparable to steady state. In contrast, a substantial increase in lactose-fermenting Enterobacteriaceae (6.61 \pm 0.02 vs 8.38 \pm 0.10 log₁₀CFU/ml) was evident.

The sample corresponding to day 65 was taken towards the end of CDI. Peak *C. difficile* TVC counts ($4.75 \pm 0.05 \log_{10}$ CFU/ml) occurred on day 64 with peak toxin levels (3 relative units) following on day 66 (Fig 4.5.1). A total of 646 bacterial tryptic peptides were assigned. The proportion of protein identifications decreased from Firmicutes (19.5 vs 24.3 %) and Proteobacteria (13.6 vs 28.2 %) phyla organisms vs post-clindamycin. The proportion of Bacteroidetes identifications increased to 12.7 %. 53.4 % of peptides could not be distinguished below the Bacteria superkingdom level. Compared to post-clindamycin the number of strict anaerobes identified by culture increased substantially (8.54 ± 0.03 vs 9.17 ± 0.01 log₁₀CFU/ml), with increases in *B.fragilis* (5.47 ± 0.03 vs 8.18 ± 0.07 log₁₀CFU/ml) and Clostridial (3.57 ± 0.04 vs 6.50 ± 0.06 log₁₀CFU/ml) populations. Interestingly, although Bifidobacteria populations increased in to the earlier stages of CDI (days 46-64) to a maximum (5.00 ± 0.01 log₁₀CFU/ml), by day 65 Bifidobacteria populations were undetectable. In contrast, facultative anaerobic levels decreased (8.56 ± 0.07 vs 7.78 ± 0.06 log₁₀CFU/ml), with a corresponding decrease in lactose-fermenting Enterobacteriaceae (8.38 ± 0.04 vs 7.40 ± 0.02 log₁₀CFU/ml). *E. faecalis* numbers increased ~10-fold (5.21 ± 0.10 vs 6.18 ± 0.08 log₁₀CFU/ml) whilst Lactobacilli numbers remained comparable to postclindamycin levels (7.32 ± 0.04 vs 7.60 ± 0.25 log₁₀CFU/ml).

Although a post-vancomycin sample was produced for model E, protein concentrations were too low for LC-MS/MS even after concentration (<30 μ g/ml).

In the sample produced after multiple doses of an undefined spore prep, 470 tryptic peptides were processed and assigned as follows; Firmicutes (19.4 %), Bacteroidetes (20.9 %), Actinobacteria (0.4 %) and Proteobacteria (12.3 %). 47.0 % of peptides could not be distinguished further below the Bacteria superkingdom level. This sample corresponds to day 87 of the model.

4.6.2 Model F – Single spore prep dose

476 peptides were assigned from the LC-MS/MS sample from steady state. The identified peptides were from Firmicutes (25.9 %) Actinobacteria (10.5 %), Bacteroidetes (7.8 %) and Proteobacteria (17.4 %) phyla. Thirty-eight percent of peptides could not be assigned below the Bacteria superkingdom level. This sample corresponds to day 30 of the model. At day 30 culture revealed total strict anaerobe levels of $8.88 \pm 0.08 \log_{10}$ CFU/ml with levels of *B.fragilis* (6.60 log₁₀CFU/ml), Bifidobacteria (8.83 ± 0.06 log₁₀CFU/ml) and Clostridia (7.88 ± 0.08 log₁₀CFU/ml), respectively (Fig 4.6.3. On day 29, total levels of facultative anaerobes were enumerated at 7.52 ± 0.02 log₁₀CFU/ml) with populations of lactose-fermenting Enterobacteriacae (7.77 ± 0.01 log₁₀CFU/ml), Enterococci (5.82 ± 0.01 log₁₀CFU/ml) and Lactobacilli (8.12 ± 0.01 log₁₀CFU/ ml) (Fig 4.6.4).

At the end of clindamycin exposure, 771 peptides were identified. A decrease in the proportion of proteins assigned to the Proteobacteria phylum vs steady state was observed (13.7 vs 17.4 %) as well as in Firmicutes (13.7 vs 25.9 %))and Actinobacteria (10.5 vs 0.3 %) assignments. Interestingly, Bacteroidetes assignments increased (18.3 vs 7.8 %). 53.8 % of peptides could not be distinguished below the Bacteria superkingdom level. This sample corresponds to day 42 of the model. Microbial culture revealed a total strict anaerobe population of $8.98 \pm 0.03 \log_{10}$ CFU/ml, with comparable levels of *B.fragilis* (6.60 vs 6.72 ± 0.03 log₁₀CFU/ml) but decreased levels of Bifidobacteria (8.83 ± 0.06 log₁₀CFU/ml vs below LLOD) and Clostridia (7.88 ± 0.08 vs 3.41 ± 0.03 log₁₀CFU/ml) compared to steady state. Total facultative anaerobes increased vs steady (7.52 ± 0.02 vs 8.19 ± 0.02 log₁₀CFU/ml), with similar levels of lactose-fermenting Enterobacteriaceae (7.77 ± 0.01 vs 8.05 ± 0.04 log₁₀CFU/ml), increased levels of Enterococci (5.82 ± 0.02 vs 6.92 ± 0.01 log₁₀CFU/ml) and a considerable reduction in Lactobacilli (8.12 ± 0.10 vs 5.85 ± 0.05 log₁₀CFU/ml).

A total of 367 peptides were identified during CDI. The proportion of peptide assignments increased from Firmicutes (42.0 vs 13.7 %). Bacteroidetes (7.4 vs 18.3 %) and Proteobacteria (5.7 vs 13.7 %) proportions dropped vs post-clindamycin. 43.9 % of peptides could not be distinguished below the Bacteria superkingdom level. This sample corresponds to day 57 of the model. Toxin detection began at day 47, with peak toxin detected at days 51 and 56 (Fig 4.5.1) and the highest *C. difficile* TVC counts at day 50 (Fig 4.5.1). When compared to the post-clindamycin sample, microbial culture revealed an increase in total strict anaerobes (8.93 ± 0.07 vs 9.33 ± 0.07 log₁₀CFU/ml) with similar levels of Bacteroidetes (6.92 ± 0.08 vs 7.22 ± 0.01 log₁₀CFU/ml) and Clostridia (6.12 ± 0.10 vs 6.00 ± 0.14 log₁₀CFU/ml), but a substantial increase in Bifidobacterium from below the LLOD (<LLOD vs 5.37 ± 0.30 log₁₀CFU/ml).

In the post-vancomycin sample, 594 peptides were identified; Firmicutes (8.9 %), Bacteroidetes (1.9 %), Actinobacteria (0.0 %) and Proteobacteria (42.1 %). The proportion of all phyla decreaed compared to Proteobacteria. 46.0 % of peptides could not be distinguished below the Bacteria superkingdom level. The sample was taken on day 65 of the model. A decrease in total strict anaerobes (9.33 \pm 0.07 vs 8.53 \pm 0.03 log₁₀CFU/ml) was observed compared to the sample taken during CDI, with >2.5 log decreases in Bifidobacteria (5.37 \pm 0.30 log₁₀CFU/ml vs <LLOD), Bacteroidetes (7.22 \pm 0.01 log₁₀CFU/ml vs <LLOD) and Clostridia (6.00 \pm 0.14 vs 3.37 \pm 0.30 log₁₀CFU/ml). Despite combination of several samples, protein levels in Vessel 3 of model F were too low even after spin concentration. Therefore, no results are available for this time point. In the sample taken after recurrence, 363 peptides were identified; Firmicutes (56.2 %), Bacteroidetes (1.1 %), Actinobacteria (3.3 %) and Proteobacteria (4.7 %). 34.7 % of peptides could not be distinguished below the Bacteria superkingdom level. This sample was taken on the last day of the model (day 95). The recurrence of CDI is illustrated by the high levels of *C. difficile* vegetative cells on day 80 and the corresponding peak toxin levels on day 84. The increased level of *C. difficile* vegetative cells compared to spores is indicative of germination.

4.6.3 Model G – FMT

453 peptides were identified from the LC-MS/MS sample from steady state. The identified peptides were assigned to Firmicutes (33.8 %) Actinobacteria (8.6%), Bacteroidetes (7.3 %) and Proteobacteria (13.2 %) phyla organisms. 37.1% of peptides could not be distinguished below the Bacteria superkingdom level. The steady state sample was taken on day 30 of the model. Microbial culture revealed high levels of total strict anaerobes (9.16 ± 0.05 log₁₀CFU/ml), with substantial populations of Bacteroidetes (7.67 log₁₀CFU/ml), Bifidobacteria (6.90 ± 0.04 log₁₀CFU/ml) and Clostridia (8.18 ± 0.21 log₁₀CFU/ml) (Fig 4.6.5). Total facultative anaerobes were enumerated at 8.11 ± 0.05 log₁₀CFU/ml, with considerable levels of lactose-fermenting Enterobacteriaceae (7.77 ± 0.03 log₁₀CFU/ml), Enterococci (5.73 ± 0.15 log₁₀CFU/ml) and Lactobacilli (7.15 ± 0.07 log₁₀CFU/ml) (Fig 4.6.6)

At the end of clindamycin exposure, 443 peptides groups were identified. An increase in the proportion of proteins assigned to the Proteobacteria phylum (21.7 vs 13.2 %) vs steady state was observed. The proportion of assignments to other groups decreased when compared to steady state; Firmicutes (19.6 vs 33.8 %), Actinobacteria (0.0 vs 8.6 %) and Bacteroidetes (2.3 vs 7.3 %). 55.8 % of peptides could not be distinguished below the Bacteria superkingdom level. The post-clindamycin sample was taken on day 45 of the model. On day 44, compared to day 30 (steady state) total strict anaerobe levels decreased (9.16 ± 0.05 vs 8.62 ± 0.10 log₁₀CFU/ml) with reductions in Bifidobacteria (6.90 ± 0.04 log₁₀CFU/ml vs <LLOD) and Clostridia (8.18 ± 0.21 vs 5.82 ± 0.10 log₁₀CFU/ml) observed. In contrast, total facultative anaerobes were comparable (8.11 ± 0.05 vs 8.23 ± 0.06 log₁₀CFU/ml), with similar levels of lactose-fermenting Enterobacteriaceae (7.77 ± 0.03 vs 7.73 ± 0.10 log₁₀CFU/ml), Enterococci (5.73 ± 0.15 vs 5.62 ± 0.09 log₁₀CFU/ml) and Lactobacilli (7.15 ± 0.07 vs 7.43 ± 0.09 log₁₀CFU/ml) vs steady state.

A total of 594 peptides were assigned from the sample taken from during CDI. The proportion of peptide assignments increased from Firmicutes (31.7 vs 19.6 %) Bacteroidetes (9.1 vs 2.3 %) and Actinobacteria (0.0 vs 0.7 %) phyla organisms vs the post-clindamycin sample. The proportion of Proteobacteria phylum peptide assignments decreased (15.5 vs 21.7 %). 41.0 % of peptides could not be distinguished below the Bacteria superkingdom level. The sample for CDI was taken on day 57. Compared to day 44 (post-clindamycin), total strict anaerobe populations were higher (8.62 ± 0.10 vs 9.14 ± 0.14 log₁₀CFU/ml) with increased levels of Bacteroidetes (7.59 ± 0.02 vs 7.87 ± 0.10 log₁₀CFU/ml) and Bifidobacteria (<LLOD vs 5.83 ± 0.05 log₁₀CFU/ml), and comparable levels of Clostridia (5.82 ± 0.10 vs 5.52 log₁₀CFU/ml) on day 56. In contrast, over the same time period total facultative anaerobes decreased (8.23 ± 0.06 vs 7.32 ± 0.02log₁₀ CFU/ml), with reductions in lactose-fermenting Enterobacteriaceae (7.73 ± 0.10 vs 6.63 ± 0.02 log₁₀CFU/ml) and increases in Enterococci (5.62 ± 0.09 vs 6.53 ± 0.04 log₁₀CFU/ml). Lactobacilli populations remained comparable to post-clindamycin (7.43 ± 0.09 vs 7.49 ± 0.02 log₁₀CFU/ml).

In the post-vancomycin sample, 594 peptides were identified and assigned. Decreases in assignment of peptides occurred in all but the Proteobacteria phyla (42.1 vs 15.5 %); Firmicutes (8.9 vs 31.7 %), Bacteroidetes (1.9 vs 9.1 %) and Actinobacteria (0.0 vs 0.7 %). 46.0 % of peptides could not be assigned to a lower level than the Bacteria superkingdom. This sample was taken on day 70 of the model. Compared to CDI, a small decrease in total strict anaerobes was observed (9.14 ± 0.14 vs 8.62 ± 0.01 log₁₀CFU/ml) when cells were cultured on selective media. Bacteroidetes (7.87 ± 0.10 log₁₀CFU/ml vs <LLOD) and Bifidobacteria (5.83 ± 0.05 log₁₀CFU/ml vs <LLOD) numbers both dropped below the LLOD, Clostridia numbers decreased marginally (5.52 vs 5.22 log₁₀CFU/ml). In contrast, total facultative anaerobes increased ~2.5 log₁₀CFU/ml, with substantial increases in lactose-fermenting Enterobacteriaceae (6.38 ± 0.02 vs 8.91 ± 0.03 log₁₀CFU/ml)) and Lactobacilli (7.49 ± 0.02 vs 9.15 ± 0.05 log_{10} CFU/ml). Enterococci populations decreased (6.53 ± 0.04 vs 3.92 ± 0.10 log_{10} CFU/ml).

In the post-FMT sample, 179 peptides were identified and assigned; Firmicutes (56.2 %), Bacteroidetes(1.1 %), Actinobacteria (3.3 %) and Proteobacteria (4.7 %). 34.7 % of peptides could not be assigned to a lower level than the Bacteria superkingdom. This sample was taken on day 74 of the model.

4.6.4 Overall Taxonomic analysis

The taxonomic assignment of tryptic peptides from all stages of infection in all three models are visualised below (Fig 4.6.7). 1289 tryptic bacterial peptides were assigned from all 3 model samples in steady state. Peptides were assigned to Firmicutes (24.2 \pm 6.1 %), Bacteroidetes (5.3 \pm 2.2 %), Actinobacteria (20.1 \pm 10.5 %) and Proteobacteria (11.0 \pm 4.5 %). A large percentage of peptides could not be assigned below the Bacteria LCA level (39.1 \pm 1.6 %).

At the end of clindamycin exposure, 1369 bacterial tryptic peptides were analysed. An increase in the proportion of proteins assigned to the Proteobacteria ($21.2 \pm 4.2 \%$) was observed and a substantial decrease in the proportion of Actinobacteria peptides ($0.1 \pm 0.1 \%$). Levels of Firmicutes ($19.2 \pm 3.1 \%$) and Bacteroidetes ($6.9 \pm 5.7 \%$) assignments were comparable to steady state. $52.2 \pm 2.7 \%$ of peptides could not be assigned below the Bacteria superkingdom.

CDI is demonstrated by the presence of high toxin in all three models after the end of clindamycin exposure (Fig 4.5.1). In samples taking during CDI, a total of 990 bacterial tryptic peptides were analysed. Compared to post-clindamycin, more peptides were assigned to Firmicutes ($31.1 \pm 6.5 \%$) and less to Proteobacteria ($11.6 \pm 3.0 \%$) phyla organisms. Actinobacteria ($0.5 \pm 0.2 \%$) and Bacteroidetes ($9.7 \pm 1.6 \%$) assignments were comparable. $46.1 \pm 3.7 \%$ of peptides could not be assigned below the Bacteria superkingdom.

At the end of vancomycin treatment, 876 bacterial peptides were analysed. Only the results from two samples are presented (models F & G) as the sample from model E failed LC-MS/MS due to low protein concentration. Compared to CDI samples, a decrease in Firmicutes (15.7 \pm 6.8 %) and Bacteroides (1.2 \pm 0.8 %) assignments were observed. Proteobacteria assignments increased substantially (39.3 \pm 2.9 %). 43.0 \pm 3.0 % of peptides could not be assigned below the Bacteria superkingdom.

Compared with the post-vancomycin samples, the sample proceeding multiple spore doses (model E) had substantially increased levels of Bacteroidetes (20.9 %) assigned peptides. Proteobacteria assignments were substantially decreased (12.3 %) whilst Firmicutes (19.4 %) and Actinobacteria (0.4 %) assignments were comparable with post-vancomycin. 47.0 % of peptides could not be assigned below the Bacteria superkingdom. In comparison, the post-FMT sample had increased levels of Firmicutes (59.0 %), with low levels of Bacteroidetes (1.7 %), Actinobacteria (0.6 %) and Proteobacteria (5.6 %) assignments. Interestingly, the sample taken late in recurrence (model F) had a similar profile; Firmicutes (56.2 %), Bacteroidetes (1.1 %), Actinobacteria (3.3 %) and Proteobacteria (4.7 %). However, at the class level a greater proportion of peptides were assigned to clostridia (77.4 %) in the post-FMT sample compared to the rCDI sample (45.1 %). Bacilli assignment accounted for the remaining peptides. Levels of peptides unassigned below the Bacteria level were also similar between the post-FMT and rCDI samples (33.0, 34.7 %).

4.6.5 Overall Functional analysis

The functional assignment of proteins to metabolic pathways can be seen below (Fig 4.6.8). The dominant metabolic processes in all models throughout all stages of simulated infection were carbohydrate degradation, carbohydrate biosynthesis and amino acid biosynthesis. The overall metabolic profile of the models is not changing substantially over time with an obvious trend. However, in model G clindamycin exposure caused proteins involved in carbohydrate degradation/biosynthesis to decrease from 73.5 % of the total to 56.5 %. At the end of recurrence, 62.5 % of isolated proteins were involved in carbohydrate degradation/biosynthesis compared to 51.2 % following vancomycin treatment. Interestingly, proteins involved in antibiotic biosynthesis were only present in post-vancomycin samples.

with Molecular & Cellular Proteomics guidelines, only the first protein from each group were utilised for functional UniProtKB/SwissProt database in MaxQuant/Andromeda. According to the rule of parsimony, and in accordance Figure 4.6.8. Functional annotation of proteins using the 'pathway' function of UniProtKB/SwissProt. Peptide identification and protein inference were achieved by searching mass spectra against the bacterial annotation. Data from three in vitro gut models (E,F,G) at various stages of infection are shown.

4.7 Discussion

The metaproteome varied considerably between different models and time points (Fig 4.6.7). Despite using the same frozen faecal material to seed the models, the metaproteome differed considerably between models in steady state. Using frozen faeces for FMT proved non-inferior to fresh faeces in resolving rCDI in a double-blind randomised control trial (177). In model E there was a high abundance of Actinobacteria and lower levels of Firmicutes and Bacteroidetes peptides compared to models F. This is in accordance with culture data documenting high levels of Bifidobacteria (7.26 \pm 0.04 log₁₀CFU/ml) and low levels of *B.fragilis* group organisms (5.50 log₁₀CFU/ml) (Fig 4.6.1). Models G and F appear to be more consistent with previous data illustrating human faeces to be dominated by Firmicutes and Bacteroidetes phyla organisms, with low levels of Proteobacteria (414) (Fig 4.6.7). In experiments using Drosophila melanogaster (415, 416) and Caenorhabditis elegans (416, 417) to study gut colonisation it was highlighted that initial gut bacterial colonisation is stochastic like a 'lottery'; different outcomes can arise from the same starting inoculum. Some bacterial species may have a greater chance of colonisation due to their ability to persist in the gut and resist displacement from ingested microbes (415-417). Although the *in vitro* gut model has no immune component or external bacterial displacement, the stochastic nature of colonisation may account for differences between models in steady state. The high levels of Proteobacteria identifications in steady state are consistent with previous gut model data where substantial numbers of lactose-fermenting Enterobacteriaceae were isolated (91, 92, 286, 404). The initial faecal processing required for seeding of the models exposes faecal bacterial populations to a brief aerobic period. In addition, sampling leads to transient oxygenation of the gut model Vessels, potentially accounting for the increased Proteobacteria presence.

After clindamycin treatment, the number of Actinobacteria assignments decreased substantially in all the models, most notably in model E (Fig 4.6.7). These findings are consistent with culture data where Bifidobacteria levels dropped substantially (≤ 5 log₁₀CFU/ml) to below the lower limit of detection in all three models (Figs 4.6.2, 4.6.4, 4.6.6). Bifidobacteria species are particularly susceptible to clindamycin as illustrated by MIC testing in a wide range of species (418). A trend of increased Proteobacteria assignments was observed. This is expected due to the sensitivity of a range of anaerobes to clindamycin including streptococci, pneumococci, staphylococci and B.fragilis. In contrast clindamycin has practically no activity against the facultatively anaerobic organisms. As well as various classes of Proteobacteria, clindamycin also has no activity against some Firmicutes such as enterococci (419). In mice models, a single dose of clindamycin was found to induce Enterobacteriaceae predominance in conjunction with an overall decreased biodiversity as demonstrated by 16s-rRNA sequencing (420). Interestingly, Bacteroidetes assignments increased proportionally in model F. This coincided with decreased levels of Firmicutes peptides; coinciding with substantial drops in both clostridia (7.88 \pm 0.08 vs 3.41 \pm 0.03 log₁₀CFU/ml) and Lactobacilli (8.12 \pm 0.10 vs 5.85 \pm 0.05 log₁₀CFU/ml) on culture media (Fig 4.6.3). The increased proportion of Bacteroidetes peptide assignments can be accounted for by the overall reduction in Firmicutes organisms, as demonstrated by the culture data. It is unclear why *B. fragilis* numbers remained relatively unaffected by clindamycin, but reduced susceptibility to clindamycin has been documented in 21.2 % of faecal isolates previously (421). In model E, the relative increase in Firmicutes peptide assignments can be accounted for by the drastic reductions in Bifidobacteria. The differences between the models after clindamycin exposure are likely due in part to variable initial steady state populations.

After the cessation of clindamycin, high *C. difficile* toxin levels in all three models were indicative of CDI (Fig 4.5.1). The end of antibiotic pressure allowed the recovery of Bacteroidetes, Firmicutes and Actinobacteria organisms as exemplified by increased

peptide assignments. The recovery of Firmicutes and Bacteroidetes organisms during CDI and the subsequent dominance of Proteobacteria (entirely Gammaproteobacteria) after vancomycin treatment raises questions; vancomycin treatment could be precipitating rCDI by its deleterious effects.

Recurrent CDI only occurred in model F, as illustrated by high *C. difficile* TVCs and toxin on day 78 (Fig 4.5.1). It should be noted *C. difficile* TVC counts increased to ~2 \log_{10} CFU/ml above spore levels prior to the end of model E. Despite the absence of toxin, recurrence might have occurred if the model had been left for a longer time period. In contrast, model G showed no signs of resurgence in *C. difficile* vegetative populations. Interestingly the metaproteomic composition of the post-FMT (model G) and post-multiple spore dose (E) samples were substantially different; model E was dominated by Bacteroidetes peptides compared to the high levels of Firmicutes peptide assignments observed in model G (Fig 4.6.7).

One would not expect the spore preparation to directly increase levels of Bacteroidetes phyla organisms as they are non-spore formers. Specific Firmicutes assignments in model E were a mixture of bacilli and clostridia contrasting with the dominance of clostridia in model G. Culture data shows higher levels of *B. fragilis* group organisms in model G and clostridia levels ~3 log₁₀CFU/ml higher than in model E. These results are concordant with previous studies documenting an increase in Clostridium species as a result of FMT (164). One study by Wang et al found that prior to recurrence, patients had a paucity of *Lachnospiraceae* and *Ruminococcaceae* family organisms in their gut compared to patients who did not suffer a further recurrence (422). Interestingly, the metaproteomes of the post-FMT sample and the sample taken from late in rCDI from model F are comparable. Despite this, culture data for the rCDI sample demonstrate lower levels of clostridia and *B. fragilis* group organisms compared with post-FMT.

The success of both FMT and the unknown spore preparation illustrates the underlying complexity of achieving colonisation resistance against *C. difficile*. A number of

mechanisms have been suggested; out competition by other bacterial species, community regulation by bacteriophage competition, production of specific antimicrobial compounds and production of unfavourable metabolic substrates (for example, short-chain fatty acids)(423, 424). The primary mechanism of efficacy for FMT remains unclear and is likely to be multifactorial (424). Previous work has demonstrated the efficacy of *C. scindens* in preventing *C. difficile* infection in mice due to an ability to convert primary to secondary bile acids (93, 172). Short-chain fatty acids (butyrate, acetate, and propionate) have very recently been shown to be upregulated after FMT for rCDI in humans (425). Interestingly, one publication illustrates a paradoxical increase in levels of SCFAs in rCDI compared to after FMT transplant in 10 patients (426). Some bacteria are known to produce bacteriocins that are inhibitory to *C. difficile* growth. An example of this is thuricin CD, a post-translationally modified bacteriocin produced by *Bacillus thuringiensis* (427). A combination of mechanisms is assumed to underlie colonisation resistance; a notion supported by the data in this study.

Functional analysis illustrated a large percentage of proteins were involved in carbohydrate metabolism (Fig 4.6.8). This was true for all stages of each gut model. Previous human metaproteome work has shown that proteins involved in carbohydrate metabolism are isolated in greater abundance than would be expected from corresponding metagenomics data (366). In addition, another study presented concordant data highlighting a stable set of ~1000 peptides in faecal samples collected from three human individuals over a 12 month period (428). A stable 'core' accounting for ~10 % of peptides was associated with carbohydrate metabolism/degradation was present, supportive of the functional data presented in the current study. On the other hand, it is plausible that bacterial resuspension in a minimal media containing only glucose as an energy source created an artificial environment that altered bacterial metabolism. In contrast to metagenomics work suggesting an increased abundance of

genes involved in particular metabolic pathways, the current study suggests the overall functional processes of the microbiome remain undisturbed by antibiotics (429).

There are limitations in this study that could be addressed in future work. Initially, this study sought to characterise the secreted proteins from gut model bacterial populations. Cell disruption due to repeated centrifugation and resuspension in processing is a limitation, but centrifugation cannot be avoided. A methodology that removes proteinaceous media, allows continued bacterial metabolism whilst also facilitating supernatant isolation and concentration is impracticable. Bead-beating, freeze-thawing and cell lysis are routinely used to characterise the metaproteome in bacteria, including spores (430-432). Bead-beading facilitates the mechanical disruption and fragmentation of the bacterial cell wall, allowing the release of the cytosolic contents. If bead-beating had been utilised in the current study, a larger number of proteins could have been identified. However, it is probable that the increased kinetic energy inherent in bead-beating protocols could lead to extensive cell wall fragmentation. Cell wall proteins do not reflect the metabolic activity of a cell and could distort results without extensive filtering in analysis.

The UniProtKB/SwissProt database was used to generate the tryptic peptide list necessary for taxonomic analysis. In the original methodology of Tanca et al, the much larger UniProtKB/trEMBL database was utilised (413). UniProtKB/trEMBL has ~200X the number of sequences present in UniProtKB/SwissProt (433). This difference is accounted for by the fact UniProtKB/SwissProt is manually annotated, focuses on protein annotation from 'model organisms' and is non-redundant. Non-redundancy in this sense is defined by one record accounting for all protein sequences produced from one gene in one species (434). This is in contrast to UniProtKB/trEMBL where different protein isoforms are stored in different entries despite being produced by the same gene in the same species (433). The higher quality of UniProtKB/SwissProt makes it

suitable for functional analysis. Despite being of lower quality, UniProtKB/trEMBL would have generated a much larger and more representative tryptic peptide list.

The use of such a large database in MaxQuant (~10 gb) was impracticable in the current study due to vast running times and lack of computational power. Multiple processing nodes (a computer cluster) would be necessary and large databases still pose problems with controlling the FDR (390, 435). Additionally, although the LCA approach devised in UniPept is robust, peptides can be largely conserved between different species. This creates many peptides that cannot be discriminated below the bacteria superkingdom as illustrated in Fig 4.6.8. Metaproteomes may appear to be similar (for instance in model E; CDI and post- multiple spore prep samples), but this could be purely due to a lack of taxonomic discrimination below the phylum level. Despite these limitations, the taxonomic analysis presented in this study is likely to be representative in proportion to the true populations. Variations in taxonomic assignment between samples correlated well with the culture data. The problems outlined are inherent in gut metaproteomic studies.

In summary, this chapter presents the optimisation and deployment of a novel methodology for evaluating the metaproteome of the gut microbiota communities within an *in vitro* model of *C. difficile* infection. Studying the active metabolic components of bacterial populations circumvents some of the limitations inherent in culture-based and metagenomics-based approaches. Although additional biological replicates would have been beneficial, this work highlights the complex nature of colonisation resistance and suggests a holistic approach to preventing rCDI should be considered rather than focussing on the relevance of any single species. Antibiotic instillation did not substantially alter the overall metabolic profile of the microbiome. Vancomycin treatment substantially increased the metaproteomic representation of Proteobacteria, underlying the paradoxical notion of treating CDI with antibiotics. As well as highlighting

relevant findings, this methodology provides a springboard that can be built upon in

future experiments.

Chapter 5 - Conclusions

rCDI is still a major problem for health systems, with up to 35 % of patients suffering at least one recurrence after an initial episode (65, 208, 436). Patients suffering from rCDI are at increased risk of developing further recurrences, potentially leading to a cycle of intractable recurrent disease. This thesis employs a multidimensional approach to studying the factors important in rCDI. Firstly, statistical methods are employed to assess the effect of treatment delay on risk of recurrence in a clinical data set produced from a previous study. This could inform future clinical practice in CDI. Secondly, the optimal germination conditions for *C. difficile* are investigated to elucidate the conditions necessary in the host. The effects of heat on *C. difficile* spores were also studied, as food is a potential reservoir of *C. difficile* spores necessary for rCDI. Finally, a novel metaproteomic approach was utilised in a previously validated *in vitro* gut model to study the overarching metabolic processes inherent during simulated CDI.

In Chapter 2, a statistical analysis was carried out to assess the effect of treatment delay on *C. difficile* recurrence and symptom duration. Previously it has been shown that delays in treatment initiation exist due to obtaining and processing faecal samples (233). Symptom duration had no correlation with any of the variables inputted into the analysis, including time to treatment. Unsurprisingly, recurrence was significantly associated with previous CDI. To the author's knowledge this is the first-time treatment delay has been assessed in relation to rCDI. These data suggest that in mild CDI, clinicians need not be overly concerned if delays in initiating treatment occur; there was no significant correlation between treatment delay and either of the two outcome variables (recurrence and symptom duration).

In a large proportion of cases diarrhoea was found to have resolved by the time that treatment was initiated. It could be the case that the inclusion criteria in this study were too liberal, identifying transient episodes of diarrhoea before a positive diagnostic sample for CDI was obtained. These transient episodes are unlikely to be CDI, but

rather due to comorbidities commonly experienced by patients in the older population. In contrast to the findings of other studies, no difference in recurrence rates were observed between different treatment arms. In line with earlier data, ribotype distribution was varied with no ribotype accounting for a majority of infections (25). The original study was not powered for the analysis carried out in this thesis which weakens the reliability of any conclusions. More detailed data collection on concomitant antibiotics and Charlson scores would be beneficial and increase the reliability of the results. Larger studies need to be carried out with greater patient numbers and comprehensive data collection to confirm these findings. These results highlight the complex aetiology of disease with patient, environmental and microbial factors contributing. Reducing delays in treatment initiation is unlikely to significantly decrease recurrence rates, but the limitations of this study should be considered; if patients with 'transient' diarrhoea were not included in any future it could affect the risk of recurrence.

In Chapter 3A, the conditions necessary for spore germination were investigated. rCDI can be due to germination of persistent spores in the gastrointestinal tract (relapse) or by ingestion of spores from the environment (reinfection). This chapter sought to investigate the conditions necessary for optimal germination of *C. difficile* spores *in vitro*, gaining an insight into those necessary in the host and also informing future practice in *C. difficile* experimentation. *C. difficile* spores were also left for an extended period of time in a desiccator to simulate environmental ageing. Superdormant spores obtained from the hospital environment may exhibit altered germination characteristics, potentially increasing or decreasing the risk of rCDI. Ingested superdormant spores may increase the risk of both recrudescent and relapsing disease. In recrudescent disease, superdormant spores exhibit an increased rate of germination, producing a rapidly proliferative population. Theoretically spore numbers increase, and spores are able to adhere to the colonic epithelium (78), increasing the risk of subsequent outgrowth and recurrent disease. In the case of relapsing disease, the increased levels

of spore numbers will lead to increased environmental decontamination and an increased risk of reingestion.

This study highlights the comparability of CCEY to supplemented BHI in the recovery of *C. difficile* spores. Although a number of media have been previously compared (277, 281), supplemented BHI is routinely used in *C. difficile* germination experiments (62, 261, 272, 282). CCEY has the added advantage of inhibiting other bacterial species. In addition, for the first time the inhibitory nature of high concentrations of three amino acids on *C. difficile* spore germination is shown. The high concentrations used in this study are unlikely to be achievable in the human gastrointestinal tract. However, the paradoxical inhibition of spore germination at high concentrations of glycine, a stimulatory 'co-germinant' at lower concentrations is of scientific interest. Further investigation beyond the current thesis may yield novel insights into the germination machinery in *C. difficile* spores. Further work should assess the nature of the inhibition of the inhibition discribed in this study, using a wider variety of amino acids. Molecular characterisation of the inhibition will allow the development of targeted therapeutics that can arrest the growth of planktonic *C. difficile*.

After incubation in a homemade desiccator for 6 months, increased germination efficiency in broths was observed in all four RTs used. *C. difficile* spores present in a hospital environment due for a prolonged period of time due to poor decontamination methods may exhibit a similar alteration in germination characteristics. As suggested previously, an increased germination propensity could result in an increased ability to proliferate in the gastrointestinal tract if ingested. Further work utilising a wider array of strains, time points and conditions would be beneficial in testing this hypothesis. Environmentally ageing spores and subsequent observation of behaviour in the presence of germinants and colonic human cell lines could be an avenue of exploration in the future. Although altered germination characteristics after ambient storage have been observed previously, the current study attempted to accelerate this process. A wider range of recovery media (solid and liquid) were utilised, thereby eliminating the

need for lysozyme. Lysozyme has only shown efficacy in inducing cell outgrowth when small numbers of environmental spores were encountered (275).

In Chapter 3B, the effects of wet heat on *C. difficile* spore recovery and germination are documented. The direct effect of continuous heat (up to 60 minutes) on spore recovery was examined. 'Heat activation' has been discussed in the literature, with some research failing to find such an effect in *C. difficile* spores (121, 253, 316, 325). The current study documents the transient and persisting effects of heat on the germination of *C. difficile* spores. *C. difficile* spores have been found in a range of foods, sub-lethal heat treatment may lead to their persistence in food (123, 126, 320, 321). Spores exhibiting increased germination efficiency in response to heat may germinate more efficiently in the gastrointestinal tract, leading to an increased risk of clinical disease, contributing to rCDI. In recrudescent disease, the increased spore load produced by a more rapidly proliferative population will increase the adherence of spores to the colonic epithelium, increasing the risk of recurrent disease.

RT 027 and RT 078 demonstrated increased resistance to heat at higher temperatures (70/80° C). If foodborne *C. difficile* spores are heated at high temperatures, RT 027 and RT 078 spores may be more likely to survive. If food is indeed a significant reservoir for *C. difficile* spores, differences in thermal resistance between clades could allow some RTs to survive and proliferate, hence allowing a greater propensity to cause rCDI. In particular, RT 078 was able to germinate more efficiently at lower concentrations of germinants. In an otherwise healthy individual, RT 078 *C. difficile* spores could be ingested in food. After ingestion, the lower germinant requirements allow the rapid germination and outgrowth of RT 078 spores. The high spore number facilitates adherence to the colonic epithelium. After successful antimicrobial treatment, spores are able to persist in the gastrointestinal tract and increase the risk of recurrent infection.

Heating for 10 minutes before broth incubation allowed the effect of heat on germination at various time points to be assessed. Previously heat has been
hypothesised to 'activate' spores and increase germination (253, 301, 324, 325). In the current study heat did not significantly increase the initial rate of germination but did produce a larger proliferative vegetative population at 24 hours. *C. difficile* spores may resist the deleterious effects of initial heat treatment and subsequently produce a larger bacterial population. Germination rates were also found to be increased in some of the strains in 'old' spores compared to newly produced spores. The mechanisms behind this phenomenon are not clear and require elaboration. These findings reinforce the idea that *C. difficile* spores aged in the environment may exhibit altered germination characteristics when reingested. Increased proliferation in the gastrointestinal tract may produce increased levels of spores, increasing epithelial adherence in the gut and enabling subsequent recurrent infection. Further work should utilise a wider range of strains. The clinical effects of differences in germination between spores of different ages could be observed in the simulated gut model utilised in this thesis.

In Chapter 4A, a methodology was devised to separate and concentrate secreted proteins from bacterial populations in an *in vitro* gut model. Proteins were successfully concentrated and validated; the majority of proteins were cytosolic, indicating spillage of cystolic bacterial cell contents into the solution during processing. The author still believes this to be a useful methodology as bead-beating would have led to a higher number of cell wall protein identifications in addition to those identified in this study. These cell wall proteins would not be reflective of the cytoplasmic proteins important in cell metabolism. This is the first time a metaproteomic approach has been adopted in the *in vitro* gut model described (91, 92, 153). In future work, the effect on peptide identification of protocols involving bead-beating and/or cell lysis should be compared to the methodology presented here. This was not achievable within the current thesis due to the high costs associated with mass spectrometry, decreased costs may allow this in future. The methodology described was taken forward to investigate the overarching metabolic processes and taxonomic shifts in different stages of simulated rCDI.

In Chapter 4B, the devised methodology was used to assess the effect of antibiotic therapy, FMT and unknown spore prep on the taxonomy and functionality of the microbiome in simulated infection. Interestingly, even at the zero-time point variations in phyla abundance were noted. However, some common trends were observed. The relative abundance of Proteobacteria phyla organisms increased in response to both clindamycin and vancomycin. The metabolic processes occurring remained relatively constant across all time points. During CDI, levels of Firmicutes and Bacteroidetes phyla organisms increased. As suggested in Chapter 2, it could be possible that vancomycin treatment is actually precipitating recurrence by producing a more severe and prolonged dysbiosis. This is strengthened by the fact that both FMT and the unknown spore prep prevented recurrence. Although different in composition, both FMT and the multiple spore prep increased the levels of Firmicutes and/or Bacteroidetes phyla organisms.

The culture data were largely complementary to the metaproteomics data. In particular, antibiotic treatment was associated with reductions in the numbers of Clostridia and Bacilli. An increase in the number of lactose-fermenting Enterobacteriaceae was observed. In contrast, the FMT treatment was found to increase levels of *B. fragilis*, which has previously been found to prevent CDI in a mice model (437). The unknown spore preparation produced increased levels of both Clostridia and Bacteroides organisms. *C. scindens* has been extensively associated with a reduced risk of infection (170, 438). The divergent nature of the alterations produced by the FMT and spore preparation highlight the multifactorial nature of colonisation resistance. Further work should consider the microbiome of the gastrointestinal tract as a functional unit, rather than a taxonomic unit. This study provides the first step in utilising such an approach in a previously validated *in vitro* gut model.

In summary, this thesis approaches the problem of rCDI with a multidimensional approach. In all three approaches the complex interplay between different factors in the onset of recurrent disease is highlighted. In Chapter 2, host factors and approaches to

198

treatment are investigated. The findings of this chapter should encourage larger analyses to assess the effect of treatment delay on recurrence risk. In Chapter 3, *C. difficile* spores and factors involved in their germination are examined. Food as a potential reservoir for *C. difficile* should be taken seriously; the stimulatory effects of heat in aged spores should try to be recreated in other media including food. In Chapter 4, the functionality of the microbiome in different stages of simulated infection is investigated. The metaproteomic approach utilised in this thesis can be used in future gut models.

References

- 1. Hall, I.C. and O'Toole, E. Intestinal flora in new-born infants with a description of a new pathogenic anaerobe, *Bacillus difficilis*. *American Journal of Diseases of Children*. 1935, **49**(2), pp.390-402.
- 2. Finney, J.M.T. Classic articles in colonic and rectal surgery -Gastroenterostomy for cicatrizing ulcer of the pylorus (Reprinted). *Diseases of the Colon & Rectum.* 1986, **29**(3), pp.218-221.
- 3. Larson, H.E., Price, A.B., Honour, P. and Borriello, S.P. *Clostridium difficile* and aetiology of pseudomembranous colitis

The Lancet. 1978, 311(8073), pp.1063-1066.

- 4. Bartlett, J.G., Chang, T.W., Gurwith, M., Gorbach, S.L. and Onderdonk, A.B. Antibiotic-associated pseudomembranous colitis due to toxinproducing Clostridia. *New England Journal of Medicine.* 1978, **298**(10), pp.531-534.
- 5. Bartlett, J.G., Chang, T.W., Moon, N. and Onderdonk, A.B. Antibioticinduced lethal enterocolitis in hamsters: studies with eleven agents and evidence to support the pathogenic role of toxin-producing Clostridia. *Am J Vet Res.* 1978, **39**(9), pp.1525-1530.
- George, W.L., Goldstein, E.J.C., Sutter, V.L., Ludwig, S.L. and Finegold, S.M. Etiology of antimicrobial-agent-associated colitis. *Lancet.* 1978, 1(8068), pp.802-803.
- 7. Maniar, A.C., Williams, T.W. and Hammond, G.W. Detection of *Clostridium difficile* toxin in various tissue culture monolayers. *Journal of Clinical Microbiology.* 1987, **25**(10), pp.1999-2000.
- 8. McFarland, L.V., Mulligan, M.E., Kwok, R.Y.Y. and Stamm, W.E. Nosocomial acquisition of *Clostridium difficile* infection. *New England Journal of Medicine.* 1989, **320**(4), pp.204-210.
- McDonald, L.C., Gerding, D.N., Johnson, S., Bakken, J.S., Carroll, K.C., Coffin, S.E., Dubberke, E.R., Garey, K.W., Gould, C.V., Kelly, C., Loo, V., Shaklee Sammons, J., Sandora, T.J. and Wilcox, M.H. Clinical Practice Guidelines for *Clostridium difficile* Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). *Clinical Infectious Diseases*. 2018, pp.cix1085-cix1085.
- 10. Sayedy, L., Kothari, D. and Richards, R.J. Toxic megacolon associated *Clostridium difficile* colitis. *World journal of gastrointestinal endoscopy.* 2010, **2**(8), pp.293-297.
- Planche, T.D., Davies, K.A., Coen, P.G., Finney, J.M., Monahan, I.M., Morris, K.A., O'Connor, L., Oakley, S.J., Pope, C.F., Wren, M.W., Shetty, N.P., Crook, D.W. and Wilcox, M.H. Differences in outcome according to *Clostridium difficile* testing method: a prospective multicentre diagnostic validation study of *C difficile* infection. *Lancet Infect Dis.* 2013, **13**(11), pp.936-945.
- Davies, K., Davis, G., Barbut, F., Eckert, C., Petrosillo, N. and Wilcox, M.H. Variability in testing policies and impact on reported *Clostridium difficile* infection rates: results from the pilot Longitudinal European *Clostridium difficile* Infection Diagnosis surveillance study (LuCID). *Eur J Clin Microbiol Infect Dis.* 2016, **35**(12), pp.1949-1956.

- 13. Office For National Statistics. *Deaths involving Clostridium difficile.* [Online]. 2017. [Accessed]. Available from: <u>https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsand</u> <u>marriages/deaths/datasets/deathsinvolvingclostridiumdifficilereferencetab</u> <u>les</u>
- 14. Public Health England. *MRSA*, *MSSA*, *Gram-negative bacteraemia and CDI: 30-day all-cause fatality* 2018.
- 15. Leonard, A., Robertson, C., Pan, J., Ford, I., McCowan, C., Walker, A. et al,. Clinical outcomes following hospitalization with *Clostridium difficile*. In: *ECCMID*, *Vienna*. 2017.
- Davies, K., Freeman, J. and Mayor, S. Update on *Clostridium difficile* from the European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Vienna, Austria, April 22 2013;25, 2017. *Journal of Hospital Infection.* 2018, **98**(1), pp.1-3.
- Heimann, S.M., Cruz Aguilar, M.R., Mellinghof, S. and Vehreschild, M.J.G.T. Economic burden and cost-effective management of *Clostridium difficile* infections. *Médecine et Maladies Infectieuses*. 2018, 48(1), pp.23-29.
- 18. Kuijper, E.J., Coignard, B., Tull, P., Esgcd and Ecdc. Emergence of *Clostridium difficile*-associated disease in North America and Europe. *Clinical Microbiology and Infection.* 2006, **12**, pp.2-18.
- 19. Commission for Healthcare Audit and Inspection. *Investigation into outbreaks of Clostridium difficile at Stoke Mandeville Hospital, Buckinghamshire Hospitals NHS Trust.* 2006.
- Loo, V.G., Poirier, L., Miller, M.A., Oughton, M., Libman, M.D., Michaud, S., Bourgault, A.M., Nguyen, T., Frenette, C., Kelly, M., Vibien, A., Brassard, P., Fenn, S., Dewar, K., Hudson, T.J., Horn, R., Rene, P., Monczak, Y. and Dascal, A. A predominantly clonal multi-institutional outbreak of *Clostridium difficile*-associated diarrhea with high morbidity and mortality. *New England Journal of Medicine*. 2005, **353**(23), pp.2442-2449.
- McDonald, L.C., Killgore, G.E., Thompson, A., Owens, R.C., Kazakova, S.V., Sambol, S.P., Johnson, S. and Gerding, D.N. An epidemic, toxin gene-variant strain of *Clostridium difficile*. *New England Journal of Medicine*. 2005, **353**(23), pp.2433-2441.
- 22. Warny, M., Pepin, J., Fang, A., Killgore, G., Thompson, A., Brazier, J., Frost, E. and McDonald, L.C. Toxin production by an emerging strain of *Clostridium difficile* associated with outbreaks of severe disease in North America and Europe. *Lancet.* 2005, **366**(9491), pp.1079-1084.
- 23. PHE. *MRSA*, *MSSA* and *E.* coli bacteraemia and *C.* difficile infection: annual epidemiological commentary. Public Health England, July 2015.
- 24. Public Health England. C. difficile infections: quarterly counts by acute trust and CCG, and financial year counts and rates by acute trust and CCG, up to financial year 2016 to 2017. [Press release]. 2017. Available
- 25. Public Health England. Clostridium difficile Ribotyping Network (CDRN) for England and Northern Ireland Biennial Report (2013-2015). 2016.
- Freeman, J., Vernon, J., Pilling, S., Morris, K., Nicholson, S., Shearman, S., Longshaw, C. and Wilcox, M.H. The ClosER study: results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent *Clostridium difficile* ribotypes, 2011-2014. *Clin Microbiol Infect.* 2018, **24**(7), pp.724-731.

- Johnson, S., Samore, M.H., Farrow, K.A., Killgore, G.E., Tenover, F.C., Lyras, D., Rood, J.I., DeGirolami, P., Baltch, A.L., Rafferty, M.E., Pear, S.M. and Gerding, D.N. Epidemics of diarrhea caused by a clindamycinresistant strain of *Clostridium difficile* in four hospitals. *New England Journal of Medicine.* 1999, **341**(22), pp.1645-1651.
- Wilcox, M.H., Shetty, N., Fawley, W.N., Shemko, M., Coen, P., Birtles, A., Cairns, M., Curran, M.D., Dodgson, K.J., Green, S.M., Hardy, K.J., Hawkey, P.M., Magee, J.G., Sails, A.D. and Wren, M.W.D. Changing Epidemiology of *Clostridium difficile* Infection Following the Introduction of a National Ribotyping-Based Surveillance Scheme in England. *Clinical Infectious Diseases.* 2012, **55**(8), pp.1056-1063.
- Dingle, K.E., Didelot, X., Quan, T.P., Eyre, D.W., Stoesser, N., Golubchik, T., Harding, R.M., Wilson, D.J., Griffiths, D., Vaughan, A., Finney, J.M., Wyllie, D.H., Oakley, S.J., Fawley, W.N., Freeman, J., Morris, K., Martin, J., Howard, P., Gorbach, S., Goldstein, E.J.C., Citron, D.M., Hopkins, S., Hope, R., Johnson, A.P., Wilcox, M.H., Peto, T.E.A., Walker, A.S. and Crook, D.W. Effects of control interventions on *Clostridium difficile* infection in England: an observational study. *Lancet Infect Dis.* 2017, **17**(4), pp.411-421.
- He, M., Sebaihia, M., Lawley, T.D., Stabler, R.A., Dawson, L.F., Martin, M.J., Holt, K.E., Seth-Smith, H.M.B., Quail, M.A., Rance, R., Brooks, K., Churcher, C., Harris, D., Bentley, S.D., Burrows, C., Clark, L., Corton, C., Murray, V., Rose, G., Thurston, S., van Tonder, A., Walker, D., Wren, B.W., Dougan, G. and Parkhill, J. Evolutionary dynamics of *Clostridium difficile* over short and long time scales. *Proceedings of the National Academy of Sciences of the United States of America.* 2010, **107**(16), pp.7527-7532.
- Lessa, F.C., Mu, Y., Bamberg, W.M., Beldavs, Z.G., Dumyati, G.K., Dunn, J.R., Farley, M.M., Holzbauer, S.M., Meek, J.I., Phipps, E.C., Wilson, L.E., Winston, L.G., Cohen, J.A., Limbago, B.M., Fridkin, S.K., Gerding, D.N. and McDonald, L.C. Burden of *Clostridium difficile* Infection in the United States. *New England Journal of Medicine.* 2015, **372**(9), pp.825-834.
- 32. Donskey, C.J. Fluoroquinolone restriction to control fluoroquinoloneresistant *Clostridium difficile*. *Lancet Infectious Diseases*. 2017, **17**(4), pp.353-354.
- 33. Kociolek, L.K., Ozer, E.A., Gerding, D.N., Hecht, D.W., Patel, S.J. and Hauser, A.R. Whole-genome analysis reveals the evolution and transmission of an MDR DH/NAP11/106 *Clostridium difficile* clone in a paediatric hospital. *J Antimicrob Chemother.* 2018, **73**(5), pp.1222-1229.
- Collins, J., Robinson, C., Danhof, H., Knetsch, C.W., van Leeuwen, H.C., Lawley, T.D., Auchtung, J.M. and Britton, R.A. Dietary trehalose enhances virulence of epidemic *Clostridium difficile*. *Nature*. 2018, 553(7688), pp.291-+.
- 35. Alcala, L., Martin, A., Marin, M., Sanchez-Somolinos, M., Catalan, P., Pelaez, T. and Bouza, E. The undiagnosed cases of *Clostridium difficile* infection in a whole nation: where is the problem? *Clin Microbiol Infect.* 2012, **18**(7), pp.E204-213.
- Bauer, M.P., Veenendaal, D., Verhoef, L., Bloembergen, P., van Dissel, J.T. and Kuijper, E.J. Clinical and microbiological characteristics of community-onset *Clostridium difficile* infection in The Netherlands. *Clinical Microbiology and Infection.* 2009, **15**(12), pp.1087-1092.

- Khanna, S., Pardi, D.S., Aronson, S.L., Kammer, P.P., Orenstein, R., St Sauver, J.L., Harmsen, W.S. and Zinsmeister, A.R. The Epidemiology of Community-Acquired *Clostridium difficile* Infection: A Population-Based Study. *American Journal of Gastroenterology*. 2012, **107**(1), pp.89-95.
- 38. Wilcox, M.H., Mooney, L., Bendall, R., Settle, C.D. and Fawley, W.N. A case-control study of community-associated *Clostridium difficile* infection. *Journal of Antimicrobial Chemotherapy.* 2008, **62**(2), pp.388-396.
- Fawley, W.N., Davies, K.A., Morris, T., Parnell, P., Howe, R., Wilcox, M.H. Enhanced surveillance of *Clostridium difficile* infection occurring outside hospital, England, 2011 to 2013. *Eurosurveillance*. 2016, **21**(29), pp.48-57.
- 40. Lyras, D., O'Connor, J.R., Howarth, P.M., Sambol, S.P., Carter, G.P., Phumoonna, T., Poon, R., Adams, V., Vedantam, G., Johnson, S., Gerding, D.N. and Rood, J.I. Toxin B is essential for virulence of *Clostridium difficile*. *Nature*. 2009, **458**(7242), pp.1176-1181.
- 41. Rupnik, M. and Janezic, S. An Update on *Clostridium difficile* Toxinotyping. *Journal of Clinical Microbiology*. 2016, **54**(1), pp.13-18.
- 42. Voth, D.E. and Ballard, J.D. *Clostridium difficile* toxins: mechanism of action and role in disease. *Clin Microbiol Rev.* 2005, **18**(2), pp.247-263.
- 43. Kuehne, S.A., Cartman, S.T., Heap, J.T., Kelly, M.L., Cockayne, A. and Minton, N.P. The role of toxin A and toxin B in *Clostridium difficile* infection. *Nature.* 2010, **467**(7316), pp.711-713.
- Akerlund, T., Svenungsson, B., Lagergren, A. and Burman, L.G. Correlation of disease severity with fecal toxin levels in patients with *Clostridium difficile*-associated diarrhea and distribution of PCR ribotypes and toxin yields in vitro of corresponding isolates. *J Clin Microbiol.* 2006, 44(2), pp.353-358.
- 45. Spigaglia, P. and Mastrantonio, P. Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among *Clostridium difficile* clinical isolates. *Journal of Clinical Microbiology.* 2002, **40**(9), pp.3470-3475.
- Tschudin-Sutter, S., Braissant, O., Erb, S., Stranden, A., Bonkat, G., Frei, R. and Widmer, A.F. Growth Patterns of *Clostridium difficile* -Correlations with Strains, Binary Toxin and Disease Severity: A Prospective Cohort Study. *Plos One.* 2016, **11**(9), p.10.
- 47. Goldenberg, S.D. and French, G.L. Lack of association of tcdC type and binary toxin status with disease severity and outcome in toxigenic *Clostridium difficile. Journal of Infection.* 2011, **62**(5), pp.355-362.
- 48. Verdoorn, B.P., Orenstein, R., Rosenblatt, J.E., Sloan, L.M., Schleck, C.D., Harmsen, W.S., Nyre, L.M. and Patel, R. High prevalence of tcdC deletion-carrying *Clostridium difficile* and lack of association with disease severity. *Diagn Microbiol Infect Dis.* 2010, **66**(1), pp.24-28.
- 49. Popoff, M.R. and Boquet, P. Clostridium-Spiroform toxin is a binary toxin which ADP-ribosylates cellular actin. *Biochemical and Biophysical Research Communications.* 1988, **152**(3), pp.1361-1368.
- 50. Petit, L., Gibert, M. and Popoff, M.R. *Clostridium perfringens*: toxinotype and genotype. *Trends in Microbiology.* 1999, **7**(3), pp.104-110.
- 51. Hatheway, C.L. Toxigenic Clostridia. *Clin Microbiol Rev.* 1990, **3**(1), pp.66-98.
- 52. Goncalves, C., Decre, D., Barbut, F., Burghoffer, B. and Petit, J.C. Prevalence and characterization of a binary toxin (actin-specific ADP-

ribosyltransferase) from *Clostridium difficile*. *Journal of Clinical Microbiology*. 2004, **42**(5), pp.1933-1939.

- Eckert, C., Emirian, A., Le Monnier, A., Cathala, L., De Montclos, H., Goret, J., Berger, P., Petit, A., De Chevigny, A., Jean-Pierre, H., Nebbad, B., Camiade, S., Meckenstock, R., Lalande, V., Marchandin, H. and Barbut, F. Prevalence and pathogenicity of binary toxin–positive *Clostridium difficile* strains that do not produce toxins A and B. *New Microbes and New Infections*. 2015, **3**, pp.12-17.
- 54. Berry, C.E., Davies, K.A., Owens, D.W. and Wilcox, M.H. Is there a relationship between the presence of the binary toxin genes in *Clostridium difficile* strains and the severity of C. difficile infection (CDI)? *Eur J Clin Microbiol Infect Dis.* 2017, **36**(12), pp.2405-2415.
- 55. Zilberberg, M.D., Reske, K., Olsen, M., Yan, Y. and Dubberke, E.R. Risk factors for recurrent *Clostridium difficile* infection (CDI) hospitalization among hospitalized patients with an initial CDI episode: a retrospective cohort study. *BMC Infectious Diseases.* 2014, **14**(1), pp.1-8.
- 56. Chang, J.Y., Antonopoulos, D.A., Kalra, A., Tonelli, A., Khalife, W.T., Schmidt, T.M. and Young, V.B. Decreased diversity of the fecal microbiome in recurrent *Clostridium difficile*-associated diarrhea. *Journal of Infectious Diseases*. 2008, **197**(3), pp.435-438.
- 57. van Nood, E., Dijkgraaf, M.G.W. and Keller, J.J. Duodenal Infusion of Feces for Recurrent *Clostridium difficile*. *New England Journal of Medicine*. 2013, **368**(22), pp.2145-2145.
- 58. Richardson, C., Kim, P., Lee, C., Bersenas, A. and Weese, J.S. Comparison of *Clostridium difficile* isolates from individuals with recurrent and single episode of infection. *Anaerobe.* 2015, **33**, pp.105-108.
- 59. Ghosh, S. and Setlow, P. Isolation and Characterization of Superdormant Spores of Bacillus Species. *Journal of Bacteriology.* 2009, **191**(6), pp.1787-1797.
- 60. Chen, Y., Ray, W.K., Helm, R.F., Melville, S.B. and Popham, D.L. Levels of Germination Proteins in *Bacillus subtilis* Dormant, Superdormant, and Germinating Spores. *Plos One.* 2014, **9**(4), p.10.
- 61. Michna, R.H., Commichau, F.M., Tödter, D., Zschiedrich, C.P. and Stülke, J. SubtiWiki–a database for the model organism *Bacillus subtilis* that links pathway, interaction and expression information. *Nucleic Acids Research.* 2014, **42**(Database issue), pp.D692-D698.
- 62. Paredes-Sabja, D., Shen, A. and Sorg, J.A. *Clostridium difficile* spore biology: sporulation, germination, and spore structural proteins. *Trends Microbiol.* 2014, **22**(7), pp.406-416.
- 63. Francis, M.B., Allen, C.A., Shrestha, R. and Sorg, J.A. Bile Acid Recognition by the *Clostridium difficile* Germinant Receptor, CspC, Is Important for Establishing Infection. *Plos Pathogens.* 2013, **9**(5), p.9.
- Bakken, J.S., Borody, T., Brandt, L.J., Brill, J.V., Demarco, D.C., Franzos, M.A., Kelly, C., Khoruts, A., Louie, T., Martinelli, L.P., Moore, T.A., Russell, G., Surawicz, C. Treating *Clostridium difficile* Infection With Fecal Microbiota Transplantation. *Clinical Gastroenterology and Hepatology*. 2011, 9(12), pp.1044-1049.
- 65. Barbut, F., Richard, A., Hamadi, K., Chomette, V., Burghoffer, B. and Petit, J.C. Epidemiology of recurrences or reinfections of *Clostridium difficile*-associated diarrhea. *Journal of Clinical Microbiology*. 2000, **38**(6), pp.2386-2388.

- Kamboj, M., Khosa, P., Kaltsas, A., Babady, N.E., Son, C. and Sepkowitz, K.A. Relapse versus reinfection: surveillance of *Clostridium difficile* infection. *Clinical Infectious Diseases*. 2011, **53**(10), pp.1003-1006.
- 67. Wilcox, M.H., Fawley, W.N., Settle, C.D. and Davidson, A. Recurrence of symptoms in *Clostridium difficile* infection relapse or reinfection? *Journal of Hospital Infection.* 1998, **38**(2), pp.93-100.
- Marsh, J.W., Arora, R., Schlackman, J.L., Shutt, K.A., Curry, S.R. and Harrison, L.H. Association of Relapse of *Clostridium difficile* Disease with BI/NAP1/027. *Journal of Clinical Microbiology*. 2012, **50**(12), pp.4078-4082.
- 69. Kim, J., Seo, M.R., Kang, J.O., Kim, Y., Hong, S.P. and Pai, H. Clinical characteristics of relapses and re-infections in *Clostridium difficile* infection. *Clinical Microbiology and Infection.* 2014, **20**(11), pp.1198-1204.
- 70. Mac Aogain, M., Moloney, G., Kilkenny, S., Kelleher, M., Kelleghan, M., Boyle, B. and Rogers, T.R. Whole-genome sequencing improves discrimination of relapse from reinfection and identifies transmission events among patients with recurrent *Clostridium difficile* infections. *Journal of Hospital Infection.* 2015, **90**(2), pp.108-116.
- 71. Figueroa, I., Johnson, S., Sambol, S.P., Goldstein, E.J., Citron, D.M. and Gerding, D.N. Relapse versus reinfection: recurrent *Clostridium difficile* infection following treatment with fidaxomicin or vancomycin. *Clinical Infectious Diseases.* 2012, **55 Suppl 2**, pp.S104-109.
- 72. Eyre, D.W., Walker, A.S., Griffiths, D., Wilcox, M.H., Wyllie, D.H., Dingle, K.E., Crook, D.W. and Peto, T.E. *Clostridium difficile* mixed infection and reinfection. *Journal of Clinical Microbiology.* 2012, **50**(1), pp.142-144.
- Akerlund, T., Persson, I., Unemo, M., Noren, T., Svenungsson, B., Wullt, M. and Burman, L.G. Increased sporulation rate of epidemic *Clostridium difficile* type 027/NAP1. *Journal of Clinical Microbiology*. 2008, **46**(4), pp.1530-1533.
- Merrigan, M., Venugopal, A., Mallozzi, M., Roxas, B., Viswanathan, V.K., Johnson, S., Gerding, D.N. and Vedantam, G. Human Hypervirulent *Clostridium difficile* Strains Exhibit Increased Sporulation as Well as Robust Toxin Production. *Journal of Bacteriology.* 2010, **192**(19), pp.4904-4911.
- 75. Magnusson, C., Wullt, M., Lofgren, S., Iveroth, P., Akerlund, T. and Matussek, A. Ribotyping of *Clostridium difficile* strains associated with nosocomial transmission and relapses in a Swedish County. *Apmis.* 2013, **121**(2), pp.153-157.
- 76. Freeman, J., Vernon, J., Morris, K., Nicholson, S., Todhunter, S., Longshaw, C. and Wilcox, M.H. Pan-European longitudinal surveillance of antibiotic resistance among prevalent *Clostridium difficile* ribotypes. *Clinical Microbiology and Infection.* 2015, **21**(3), pp.248.e249-248.e216.
- 77. Cerquetti, M., Serafino, A., Sebastianelli, A. and Mastrantonio, P. Binding of *Clostridium difficile* to Caco-2 epithelial cell line and to extracellular matrix proteins. *FEMS Immunology & Medical Microbiology.* 2002, **32**(3), pp.211-218.
- Paredes-Sabja, D. and Sarker, M.R. Adherence of *Clostridium difficile* spores to Caco-2 cells in culture. *Journal of Medical Microbiology*. 2012, 61(Pt 9), pp.1208-1218.

- 79. Paredes-Sabja, D. and Sarker, M.R. Germination response of spores of the pathogenic bacterium *Clostridium perfringens* and *Clostridium difficile* to cultured human epithelial cells. *Anaerobe.* 2011, **17**(2), pp.78-84.
- 80. Pizarro-Guajardo, M., Calderon-Romero, P. and Paredes-Sabja, D. Ultrastructure Variability of the Exosporium Layer of *Clostridium difficile* Spores from Sporulating Cultures and Biofilms. *Appl Environ Microbiol.* 2016, **82**(19), pp.5892-5898.
- 81. Kyne, L., Warny, M., Qamar, A. and Kelly, C.P. Association between antibody response to toxin A and protection against recurrent *Clostridium difficile* diarrhoea. *Lancet.* 2001, **357**(9251), pp.189-193.
- 82. Giannasca, P.J. and Warny, M. Active and passive immunization against *Clostridium difficile* diarrhea and colitis (Reprinted from 22(7)848 Feb 17 2004). *Vaccine*. 2004, **22**, pp.848-856.
- Sougioultzis, S., Kyne, L., Drudy, D., Keates, S., Maroo, S., Pothoulakis, C., Giannasca, P.J., Lee, C.K., Warny, M., Monath, T.P. and Kelly, C.P. *Clostridium difficile* toxoid vaccine in recurrent C-difficile-associated diarrhea. *Gastroenterology.* 2005, **128**(3), pp.764-770.
- 84. Bauer, M.P., Nibbering, P.H., Poxton, I.R., Kuijper, E.J. and van Dissel, J.T. Humoral immune response as predictor of recurrence in *Clostridium difficile* infection. *Clinical Microbiology and Infection.* 2014, **20**(12), pp.1323-1328.
- 85. Kociolek, L.K., Espinosa, R.O., Gerding, D.N., Hauser, A.R., Ozer, E.A., Budz, M., Balaji, A., Chen, X., Tanz, R.R., Yalcinkaya, N., Conner, M.E., Savidge, T. and Kelly, C.P. Natural *Clostridioides difficile* toxin immunization in colonized infants. *Clin Infect Dis.* 2019.
- 86. Chen, K., d'Arc, S., Setty, N., Bamford, K., Fairweather, N. and Tyrrell-Price, J. In recurrent C. difficile, the CRP response to the primary *C. difficile* infection predicts whether the same strain or a different strain will cause a second infection. *Digestive Diseases & Sciences.* 2013, **58**(6), pp.1683-1688.
- 87. Lopetuso, L.R., Scaldaferri, F., Petito, V. and Gasbarrini, A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. *Gut Pathog.* 2013, **5**(1), p.23.
- 88. Itoh, K. and Mitsuoka, T. Characterization of clostridia isolated from faeces of limited flora mice and their effect on caecal size when associated with germ-free mice. *Lab Anim.* 1985, **19**(2), pp.111-118.
- 89. Bibbo, S., Lopetuso, L.R., Ianiro, G., Di Rienzo, T., Gasbarrini, A. and Cammarota, G. Role of Microbiota and Innate Immunity in Recurrent *Clostridium difficile* Infection. *Journal of Immunology Research.* 2014, p.8.
- 90. Larson, H.E. and Borriello, S.P. Quantitative study of antibiotic-induced susceptibility to *Clostridium difficile* enterocecitis in hamsters. *Antimicrobial Agents and Chemotherapy.* 1990, **34**(7), pp.1348-1353.
- 91. Chilton, C.H., Crowther, G.S., Todhunter, S.L., Ashwin, H., Longshaw, C.M., Karas, A. and Wilcox, M.H. Efficacy of alternative fidaxomicin dosing regimens for treatment of simulated *Clostridium difficile* infection in an in vitro human gut model. *J Antimicrob Chemother.* 2015, **70**(9), pp.2598-2607.
- 92. Chilton, C.H., Freeman, J., Crowther, G.S., Todhunter, S.L. and Wilcox, M.H. Effectiveness of a short (4 day) course of oritavancin in the treatment of simulated *Clostridium difficile* infection using a human gut

model. Journal of Antimicrobial Chemotherapy. 2012, **67**(10), pp.2434-2437.

- Buffie, C.G., Bucci, V., Stein, R.R., McKenney, P.T., Ling, L., Gobourne, A., No, D., Liu, H., Kinnebrew, M., Viale, A., Littmann, E., van den Brink, M.R., Jenq, R.R., Taur, Y., Sander, C., Cross, J.R., Toussaint, N.C., Xavier, J.B. and Pamer, E.G. Precision microbiome reconstitution restores bile acid mediated resistance to *Clostridium difficile*. *Nature*. 2015, **517**(7533), pp.205-208.
- 94. Bignardi, G.E. Risk factors for *Clostridium difficile* infection. *J Hosp Infect.* 1998, **40**(1), pp.1-15.
- 95. Pepin, J., Saheb, N., Coulombe, M.A., Alary, M.E., Corriveau, M.P., Authier, S., Leblanc, M., Rivard, G., Bettez, M., Primeau, V., Nguyen, M., Jacob, C.E. and Lanthier, L. Emergence of fluoroquinolones as the predominant risk factor for *Clostridium difficile*-associated diarrhea: A cohort study during an epidemic in Quebec. *Clinical Infectious Diseases*. 2005, **41**(9), pp.1254-1260.
- 96. Chen, T., Li, S. and Wei, H. Antibiotic Resistance Capability of Cultured Human Colonic Microbiota Growing in a Chemostat Model. *Applied Biochemistry and Biotechnology.* 2014, **173**(3), pp.765-774.
- 97. Ferrer, M., Méndez-García, C., Rojo, D., Barbas, C. and Moya, A. Antibiotic use and microbiome function. *Biochemical Pharmacology*. 2017, **134**, pp.114-126.
- 98. Theriot, C.M., Bowman, A.A. and Young, V.B. Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for *Clostridium difficile* Spore Germination and Outgrowth in the Large Intestine. *Msphere.* 2016, **1**(1).
- 99. Eze, P., Balsells, E., Kyaw, M.H. and Nair, H. Risk factors for *Clostridium difficile* infections an overview of the evidence base and challenges in data synthesis. *Journal of Global Health.* 2017, **7**(1), p.010417.
- Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., Xiao, J.-z., Abe, F. and Osawa, R. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. *Bmc Microbiology.* 2016, **16**, p.90.
- McFarland, L.V., Elmer, G.W. and Surawicz, C.M. Breaking the cycle: Treatment strategies for 163 cases of recurrent *Clostridium difficile* disease. *American Journal of Gastroenterology*. 2002, **97**(7), pp.1769-1775.
- 102. Zackular, J.P., Moore, J.L., Jordan, A.T., Juttukonda, L.J., Noto, M.J., Nicholson, M.R., Crews, J.D., Semler, M.W., Zhang, Y., Ware, L.B., Washington, M.K., Chazin, W.J., Caprioli, R.M. and Skaar, E.P. Dietary zinc alters the microbiota and decreases resistance to *Clostridium difficile* infection. *Nature Medicine*. 2016, **22**(11), pp.1330-1334.
- 103. Wakeman, C.A., Moore, J.L., Noto, M.J., Zhang, Y.F., Singleton, M.D., Prentice, B.M., Gilston, B.A., Doster, R.S., Gaddy, J.A., Chazin, W.J., Caprioli, R.M. and Skaar, E.P. The innate immune protein calprotectin promotes *Pseudomonas aeruginosa* and *Staphylococcus aureus* interaction. *Nature Communications.* 2016, **7**, p.12.
- 104. Kim, J., Kim, H., Oh, H.J., Kim, H.S., Hwang, Y.J., Yong, D., Jeong, S.H. and Lee, K. Fecal Calprotectin Level Reflects the Severity of *Clostridium difficile* Infection. *Annals of Laboratory Medicine.* 2017, **37**(1), pp.53-57.
- 105. Peretz, A., Tkhawkho, L., Pastukh, N., Brodsky, D., Halevi, C.N. and Nitzan, O. Correlation between fecal calprotectin levels, disease severity

and the hypervirulent ribotype 027 strain in patients with *Clostridium difficile* infection. *BMC Infectious Diseases.* 2016, **16**, p.5.

- 106. Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R.N., Anokhin, A.P., Heath, A.C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J.G., Lozupone, C.A., Lauber, C., Clemente, J.C., Knights, D., Knight, R. and Gordon, J.I. Human gut microbiome viewed across age and geography. *Nature.* 2012, **486**(7402), pp.222-227.
- Deshpande, A., Pasupuleti, V., Thota, P., Pant, C., Rolston, D.D.K., Hernandez, A.V., Donskey, C.J. and Fraser, T.G. Risk Factors for Recurrent *Clostridium difficile* Infection: A Systematic Review and Meta-Analysis. *Infection Control and Hospital Epidemiology*. 2015, **36**(4), pp.452-460.
- Escobar, G.J., Baker, J.M., Kipnis, P., Greene, J.D., Mast, T.C., Gupta, S.B., Cossrow, N., Mehta, V., Liu, V. and Dubberke, E.R. Prediction of Recurrent *Clostridium Difficile* Infection Using Comprehensive Electronic Medical Records in an Integrated Healthcare Delivery System. *Infection Control and Hospital Epidemiology*. 2017, **38**(10), pp.1196-1203.
- Allegretti, J.R., Kearney, S., Li, N., Bogart, E., Bullock, K., Gerber, G.K., Bry, L., Clish, C.B., Alm, E. and Korzenik, J.R. Recurrent *Clostridium difficile* infection associates with distinct bile acid and microbiome profiles. *Alimentary Pharmacology & Therapeutics*. 2016, **43**(11), pp.1142-1153.
- 110. Songer, J.G. Clostridial enteric diseases of domestic animals. *Clin Microbiol Rev.* 1996, **9**(2), pp.216-234.
- 111. Hirsh, D.C., Biberstein, E.L. and Jang, S.S. Obligate anaerobes in clinical veterinary practice. *Journal of Clinical Microbiology.* 1979, **10**(2), pp.188-191.
- 112. Alvarez-Perez, S., Blanco, J.L., Harmanus, C., Kuijper, E.J. and Garcia, M.E. Prevalence and characteristics of *Clostridium perfringens* and *Clostridium difficile* in dogs and cats attended in diverse veterinary clinics from the Madrid region. *Anaerobe.* 2017, **48**, pp.47-55.
- Keel, K., Brazier, J.S., Post, K.W., Weese, S. and Songer, J.G. Prevalence of PCR ribotypes among *Clostridium difficile* isolates from pigs, calves, and other species. *Journal of Clinical Microbiology.* 2007, 45(6), pp.1963-1964.
- 114. Goorhuis, A., Bakker, D., Corver, J., Debast, S.B., Harmanus, C., Notermans, D.W., Bergwerff, A.A., Dekker, F.W. and Kuijper, E.J. Emergence of *Clostridium difficile* infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. *Clinical Infectious Diseases.* 2008, **47**(9), pp.1162-1170.
- 115. Knetsch, C.W., Kumar, N., Forster, S.C., Connor, T.R., Browne, H.P., Harmanus, C., Sanders, I.M., Harris, S.R., Turner, L., Morris, T., Perry, M., Miyajima, F., Roberts, P., Pirmohamed, M., Songer, J.G., Weese, J.S., Indra, A., Corver, J., Rupnik, M., Wren, B.W., Riley, T.V., Kuijper, E.J. and Lawley, T.D. Zoonotic Transfer of *Clostridium difficile* Harboring Antimicrobial Resistance between Farm Animals and Humans. *Journal of Clinical Microbiology.* 2018, **56**(3), p.8.
- 116. Walker, A.S., Eyre, D.W., Wyllie, D.H., Dingle, K.E., Griffiths, D., Shine, B., Oakley, S., O'Connor, L., Finney, J., Vaughan, A., Crook, D.W., Wilcox, M.H., Peto, T.E.A. and Infect Oxfordshire Res Database, I.O. Relationship Between Bacterial Strain Type, Host Biomarkers, and

Mortality in *Clostridium difficile* Infection. *Clinical Infectious Diseases.* 2013, **56**(11), pp.1589-1600.

- 117. Songer, J.G., Trinh, H.T., Killgore, G.E., Thompson, A.D., McDonald, L.C. and Limbago, B.M. *Clostridium difficile* in Retail Meat Products, USA, 2007. *Emerging Infectious Diseases*. 2009, **15**(5), pp.819-821.
- 118. Rodriguez-Palacios, A., Staempfli, H.R., Duffield, T. and Weese, J.S. *Clostridium difficile* in retail ground meat, Canada. *Emerging Infectious Diseases*. 2007, **13**(3), pp.485-487.
- 119. Weese, J.S., Reid-Smith, R.J., Avery, B.P. and Rousseau, J. Detection and characterization of *Clostridium difficile* in retail chicken. *Letters in Applied Microbiology.* 2010, **50**(4), pp.362-365.
- 120. Weese, J.S., Avery, B.P., Rousseau, J. and Reid-Smith, R.J. Detection and Enumeration of *Clostridium difficile* Spores in Retail Beef and Pork. *Appl Environ Microbiol.* 2009, **75**(15), pp.5009-5011.
- 121. Rodriguez-Palacios, A., Ilic, S. and LeJeune, J.T. Subboiling Moist Heat Favors the Selection of Enteric Pathogen *Clostridium difficile* PCR Ribotype 078 Spores in Food. *Canadian Journal of Infectious Diseases & Medical Microbiology*. 2016, p.8.
- 122. Lim, S.-C., Moono, P. and Riley, T.V. *Clostridium difficile* found in gardening products: innocent bystander or the cause of community-acquired C. difficile infection through contamination of foods and environments? In: *The Australian Society for Microbiology Annual Scientific Meeting, July 2016, Australia.* 2016.
- 123. Lim, S.C., Foster, N.F., Elliott, B. and Riley, T.V. High prevalence of *Clostridium difficile* on retail root vegetables, Western Australia. *Journal of applied microbiology.* 2018, **124**(2), pp.585-590.
- 124. AlSaif, N. and Brazier, J.S. The distribution of *Clostridium difficile* in the environment of South Wales. *Journal of Medical Microbiology*. 1996, **45**(2), pp.133-137.
- 125. Moono, P., Lim, S.C. and Riley, T.V. High prevalence of toxigenic *Clostridium difficile* in public space lawns in Western Australia. *Scientific Reports.* 2017, **7**, p.7.
- 126. Gould, L.H. and Limbago, B. *Clostridium difficile* in Food and Domestic Animals: A New Foodborne Pathogen? *Clinical Infectious Diseases*. 2010, **51**(5), pp.577-582.
- 127. Broda, D.M., DeLacy, K.M., Bell, R.G., Braggins, T.J. and Cook, R.L. Psychrotrophic Clostridium spp associated with 'blown pack' spoilage of chilled vacuum-packed red meats and dog rolls in gas-impermeable plastic casings. *International Journal of Food Microbiology.* 1996, **29**(2-3), pp.335-352.
- 128. Weese, J.S., Rousseau, J. and Arroyo, L. Bacteriological evaluation of commercial canine and feline raw diets. *Canadian Veterinary Journal-Revue Veterinaire Canadienne.* 2005, **46**(6), pp.513-516.
- 129. Galdys, A.L., Nelson, J.S., Shutt, K.A., Schlackman, J.L., Pakstis, D.L., Pasculle, A.W., Marsh, J.W., Harrison, L.H. and Curry, S.R. Prevalence and Duration of Asymptomatic *Clostridium difficile* Carriage among Healthy Subjects in Pittsburgh, Pennsylvania. *Journal of Clinical Microbiology*. 2014, **52**(7), pp.2406-2409.
- 130. Viscidi, R., Willey, S. and Bartlett, J.G. Isolation rates and toxigenic potential of *Clostridium difficile* isolates from various patient populations. *Gastroenterology.* 1981, **81**(1), pp.5-9.

- 131. Ozaki, E., Kato, H., Kita, H., Karasawa, T., Maegawa, T., Koino, Y., Matsumoto, K., Takada, T., Nomoto, K., Tanaka, R. and Nakamura, S. *Clostridium difficile* colonization in healthy adults: transient colonization and correlation with enterococcal colonization. *Journal of Medical Microbiology*. 2004, **53**(Pt 2), pp.167-172.
- Furuya-Kanamori, L., Marquess, J., Yakob, L., Riley, T.V., Paterson, D.L., Foster, N.F., Huber, C.A. and Clements, A.C.A. Asymptomatic *Clostridium difficile* colonization: epidemiology and clinical implications. *BMC Infectious Diseases*. 2015, **15**, p.516.
- 133. George, W.L., Rolfe, R.D. and Finegold, S.M. Treatment and prevention of antimicrobial agent-induced colitis and diarrhea. *Gastroenterology*. 1980, **79**(2), pp.366-372.
- 134. Zar, F.A., Bakkanagari, S.R., Moorthi, K.M.L.S.T. and Davis, M.B. A Comparison of Vancomycin and Metronidazole for the Treatment of *Clostridium difficile*–Associated Diarrhea, Stratified by Disease Severity. *Clinical Infectious Diseases.* 2007, **45**(3), pp.302-307.
- Johnson, S., Louie, T.J., Gerding, D.N., Cornely, O.A., Chasan-Taber, S., Fitts, D., Gelone, S.P., Broom, C. and Davidson, D.M. Vancomycin, metronidazole, or tolevamer for *Clostridium difficile* infection: results from two multinational, randomized, controlled trials. *Clin Infect Dis.* 2014, 59(3), pp.345-354.
- 136. Cohen, S.H., Gerding, D.N., Johnson, S., Kelly, C.P., Loo, V.G., McDonald, L.C., Pepin, J. and Wilcox, M.H. Clinical Practice Guidelines for *Clostridium difficile* Infection in Adults: 2010 Update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). *Infection Control and Hospital Epidemiology*. 2010, **31**(5), pp.431-455.
- 137. Public Health England. Updated guidance on the management and treatment of Clostridium difficile infection. Public Health England, 2013.
- 138. Guery, B., Menichetti, F., Anttila, V.J., Adomakoh, N., Aguado, J.M., Bisnauthsing, K., Georgopali, A., Goldenberg, S.D., Karas, A., Kazeem, G., Longshaw, C., Palacios-Fabrega, J.A., Cornely, O.A. and Vehreschild, M. Extended-pulsed fidaxomicin versus vancomycin for *Clostridium difficile* infection in patients 60 years and older (EXTEND): a randomised, controlled, open-label, phase 3b/4 trial. *Lancet Infect Dis.* 2018, **18**(3), pp.296-307.
- 139. Ackermann, G., Loffler, B., Adler, D. and Rodloff, A.C. In vitro activity of OPT-80 against *Clostridium difficile*. *Antimicrobial Agents and Chemotherapy*. 2004, **48**(6), pp.2280-2282.
- Cornely, O.A., Crook, D.W., Esposito, R., Poirier, A., Somero, M.S., Weiss, K., Sears, P., Gorbach, S. Fidaxomicin versus vancomycin for infection with *Clostridium difficile* in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial. *Lancet Infectious Diseases*. 2012, **12**(4), pp.281-289.
- 141. Louie, T.J., Cannon, K., Byrne, B., Emery, J., Ward, L., Eyben, M. and Krulicki, W. Fidaxomicin Preserves the Intestinal Microbiome During and After Treatment of *Clostridium difficile* Infection (CDI) and Reduces Both Toxin Reexpression and Recurrence of CDI. *Clinical Infectious Diseases*. 2012, **55**, pp.S132-S142.
- 142. Wagner, M., Lavoie, L. and Goetghebeur, M. Clinical and economic consequences of vancomycin and fidaxomicin for the treatment of

Clostridium difficile infection in Canada. *Canadian Journal of Infectious Diseases & Medical Microbiology.* 2014, **25**(2), pp.87-94.

- 143. Hedge, D.D., Strain, J.D., Heins, J.R. and Farver, D.K. New advances in the treatment of *Clostridium difficile* infection (CDI). *Ther Clin Risk Manag.* 2008, **4**(5), pp.949-964.
- 144. Freeman, J., Baines, S.D., Jabes, D. and Wilcox, M.H. Comparison of the efficacy of ramoplanin and vancomycin in both *in vitro* and *in vivo* models of clindamycin-induced *Clostridium difficile* infection. *Journal of Antimicrobial Chemotherapy.* 2005, **56**(4), pp.717-725.
- 145. Kraus, C.N., Lyerly, M.W. and Carman, R.J. Ambush of *Clostridium difficile* Spores by Ramoplanin: Activity in an *In Vitro* Model. *Antimicrobial Agents and Chemotherapy.* 2015, **59**(5), pp.2525-2530.
- 146. de la Cruz, M., González, I., Parish, C.A., Onishi, R., Tormo, J.R., Martín, J., Peláez, F., Zink, D., El Aouad, N., Reyes, F., Genilloud, O. and Vicente, F. Production of Ramoplanin and Ramoplanin Analogs by Actinomycetes. *Frontiers in Microbiology.* 2017, 8, p.343.
- 147. Popovic, N., Korac, M., Nesic, Z., Milosevic, B., Urosevic, A., Jevtovic, D., Pelemis, M., Delic, D., Prostran, M. and Milosevic, I. Oral teicoplanin for successful treatment of severe refractory *Clostridium difficile* infection. *Journal of Infection in Developing Countries.* 2015, **9**(10), pp.1062-1067.
- 148. Wenisch, C., Parschalk, B., Hasenhundl, M., Hirschl, A.M. and Graninger, W. Comparison of vancomycin, teicoplanin, metronidazole, and fusidic acid for the treatment of *Clostridium difficile*-associated diarrhea. *Clinical Infectious Diseases*. 1996, **22**(5), pp.813-818.
- 149. Mattila, E., Arkkila, P., Mattila, P.S., Tarkka, E., Tissari, P. and Anttila, V.J. Rifaximin in the treatment of recurrent *Clostridium difficile* infection. *Alimentary Pharmacology & Therapeutics.* 2013, **37**(1), pp.122-128.
- 150. Johnson, S., Schriever, C., Galang, M., Kelly, C.P. and Gerding, D.N. Interruption of recurrent *Clostridium difficile* - Associated diarrhea episodes by serial therapy with vancomycin and rifaximin. *Clinical Infectious Diseases.* 2007, **44**(6), pp.846-848.
- 151. Rubin, D.T., Sohi, S., Glathar, M., Thomas, T., Yadron, N. and Surma, B.L. Rifaximin Is Effective for the Treatment of *Clostridium difficile*— Associated Diarrhea: Results of an Open-Label Pilot Study. *Gastroenterology Research and Practice*. 2011, **2011**, p.106978.
- 152. Garey, K.W., Ghantoji, S.S., Shah, D.N., Habib, M., Arora, V., Jiang, Z.D. and DuPont, H.L. A randomized, double-blind, placebo-controlled pilot study to assess the ability of rifaximin to prevent recurrent diarrhoea in patients with *Clostridium difficile* infection. *Journal of Antimicrobial Chemotherapy.* 2011, **66**(12), pp.2850-2855.
- 153. Chilton, C.H., Crowther, G.S., Baines, S.D., Todhunter, S.L., Freeman, J., Locher, H.H., Athanasiou, A. and Wilcox, M.H. *In vitro* activity of cadazolid against clinically relevant *Clostridium difficile* isolates and in an *in vitro* gut model of *C. difficile* infection. *Journal of Antimicrobial Chemotherapy.* 2014, **69**(3), pp.697-705.
- 154. Louie, T., Nord, C.E., Talbot, G.H., Wilcox, M., Gerding, D.N., Buitrago, M., Kracker, H., Charef, P. and Cornely, O.A. Multicenter, Double-Blind, Randomized, Phase 2 Study Evaluating the Novel Antibiotic Cadazolid in Patients with *Clostridium difficile* Infection. *Antimicrobial Agents and Chemotherapy.* 2015, **59**(10), pp.6266-6273.
- 155. Actelion Ltd. Actelion provides an update on the Phase III IMPACT program with cadazolid in CDAD. [Press release]. 2017.

- 156. Gerding, D.N., Cornely, O.A., Grill, S., Kracker, H., Marrast, A.C., Nord, C.E., Talbot, G.H., Buitrago, M., Gheorghe Diaconescu, I., Murta de Oliveira, C., Preotescu, L., Pullman, J., Louie, T.J. and Wilcox, M.H. Cadazolid for the treatment of *Clostridium difficile* infection: results of two double-blind, placebo-controlled, non-inferiority, randomised phase 3 trials. *The Lancet Infectious Diseases.* 2019.
- 157. Martin, J. and Wilcox, M. New and emerging therapies for *Clostridium difficile* infection. *Curr Opin Infect Dis.* 2016, **29**(6), pp.546-554.
- 158. Goldstein, E.J.C., Citron, D.M. and Tyrrell, K.L. Comparative In Vitro Activities of SMT19969, a New Antimicrobial Agent, against 162 Strains from 35 Less Frequently Recovered Intestinal Clostridium Species: Implications for *Clostridium difficile* Recurrence. *Antimicrobial Agents and Chemotherapy.* 2014, **58**(2), pp.1187-1191.
- Basseres, E., Endres, B.T., Khaleduzzaman, M., Miraftabi, F., Alam, M.J., Vickers, R.J. and Garey, K.W. Impact on toxin production and cell morphology in *Clostridium difficile* by ridinilazole (SMT19969), a novel treatment for *C. difficile* infection. *J Antimicrob Chemother.* 2016, **71**(5), pp.1245-1251.
- Vickers, R.J., Tillotson, G.S., Nathan, R., Hazan, S., Pullman, J., Lucasti, C., Deck, K., Yacyshyn, B., Maliakkal, B., Pesant, Y., Tejura, B., Roblin, D., Gerding, D.N., Wilcox, M.H., Bhan, A., Campbell, W., Chopra, T., Deck, K., Golan, Y., Gordon, I., Kamepalli, R., Khanna, S., Lee, C., Lucasti, C., Maliakkal, B., Minang, I., Mullane, K., Nathan, R., Oughton, M., Pesant, Y., Phillips, J., Pullman, J., Riska, P., Schrock, C., Siegel, J., Steinberg, A., Talan, D., Tamang, S., Tan, M., Weiss, K., Wang, C., Yacyshyn, B., Young, J.-A. and Zenilman, J. Efficacy and safety of ridinilazole compared with vancomycin for the treatment of *Clostridium difficile* infection: a phase 2, randomised, double-blind, active-controlled, non-inferiority study. *The Lancet Infectious Diseases*. 2017, **17**(7), pp.735-744.
- 161. Vickers, R., Robinson, N., Best, E., Echols, R., Tillotson, G. and Wilcox, M. A randomised phase 1 study to investigate safety, pharmacokinetics and impact on gut microbiota following single and multiple oral doses in healthy male subjects of SMT19969, a novel agent for *Clostridium difficile* infections. *BMC Infect Dis.* 2015, **15**, p.91.
- Eiseman, B., Silen, W., Bascom, G.S. and Kauvar, A.J. Fecal enema as an adjunct in the treatment of pseudomembranous colitis. *Surgery.* 1958, 44(5), pp.854-859.
- 163. Debast, S.B., Bauer, M.P., Kuijper, E.J. and Comm. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for *Clostridium difficile* infection. *Clinical Microbiology and Infection*. 2014, **20**, pp.1-26.
- 164. Weingarden, A., Gonzalez, A., Vazquez-Baeza, Y., Weiss, S., Humphry, G., Berg-Lyons, D., Knights, D., Unno, T., Bobr, A., Kang, J., Khoruts, A., Knight, R. and Sadowsky, M.J. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent *Clostridium difficile* infection. *Microbiome*. 2015, **3**, p.8.
- 165. Guo, B., Harstall, C., Louie, T., van Zanten, S.V. and Dieleman, L.A. Systematic review: faecal transplantation for the treatment of *Clostridium difficile*-associated disease. *Alimentary Pharmacology & Therapeutics*. 2012, **35**(8), pp.865-875.

- Gough, E., Shaikh, H. and Manges, A.R. Systematic Review of Intestinal Microbiota Transplantation (Fecal Bacteriotherapy) for Recurrent *Clostridium difficile* Infection. *Clinical Infectious Diseases.* 2011, **53**(10), pp.994-1002.
- 167. Kelly, C.R., Khoruts, A., Staley, C., Sadowsky, M.J., Abd, M., Alani, M., Bakow, B., Curran, P., McKenney, J., Tisch, A., Reinert, S.E., Machan, J.T. and Brandt, L.J. Effect of Fecal Microbiota Transplantation on Recurrence in Multiply Recurrent *Clostridium difficile* Infection. *Annals of Internal Medicine*. 2016, **165**(9), pp.609-616.
- 168. Gough, E., Shaikh, H. and Manges, A.R. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent *Clostridium difficile* infection. *Clin Infect Dis.* 2011, **53**(10), pp.994-1002.
- Youngster, I., Sauk, J., Pindar, C., Wilson, R.G., Kaplan, J.L., Smith, M.B., Alm, E.J., Gevers, D., Russell, G.H. and Hohmann, E.L. Fecal Microbiota Transplant for Relapsing *Clostridium difficile* Infection Using a Frozen Inoculum From Unrelated Donors: A Randomized, Open-Label, Controlled Pilot Study. *Clinical Infectious Diseases*. 2014, **58**(11), pp.1515-1522.
- 170. Weingarden, A.R., Chen, C., Bobr, A., Yao, D., Lu, Y.W., Nelson, V.M., Sadowsky, M.J. and Khoruts, A. Microbiota transplantation restores normal fecal bile acid composition in recurrent *Clostridium difficile* infection. *American Journal of Physiology-Gastrointestinal and Liver Physiology.* 2014, **306**(4), pp.G310-G319.
- 171. Weingarden, A.R., Dosa, P.I., DeWinter, E., Steer, C.J., Shaughnessy, M.K., Johnson, J.R., Khoruts, A. and Sadowsky, M.J. Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control *Clostridium difficile* Germination and Growth. *Plos One.* 2016, **11**(1).
- 172. Sorg, J.A. and Sonenshein, A.L. Inhibiting the Initiation of *Clostridium difficile* Spore Germination using Analogs of Chenodeoxycholic Acid, a Bile Acid. *Journal of Bacteriology.* 2010, **192**(19), pp.4983-4990.
- Thanissery, R., Winston, J.A. and Theriot, C.M. Inhibition of spore germination, growth, and toxin activity of clinically relevant *C. difficile* strains by gut microbiota derived secondary bile acids. *Anaerobe.* 2017, 45, pp.86-100.
- 174. Kazerouni, A., Burgess, J., Burns, L.J. and Wein, L.M. Optimal screening and donor management in a public stool bank. *Microbiome.* 2015, **3**, pp.75-75.
- 175. Costello, S.P., Conlon, M.A., Vuaran, M.S., Roberts-Thomson, I.C. and Andrews, J.M. Faecal microbiota transplant for recurrent *Clostridium difficile* infection using long-term frozen stool is effective: clinical efficacy and bacterial viability data. *Alimentary Pharmacology & Therapeutics*. 2015, **42**(8), pp.1011-1018.
- 176. Youngster, I., Russell, G.H., Pindar, C., Ziv-Baran, T., Sauk, J. and Hohmann, E.L. Oral, Capsulized, Frozen Fecal Microbiota Transplantation for Relapsing *Clostridium difficile* Infection. *Jama-Journal* of the American Medical Association. 2014, **312**(17), pp.1772-1778.
- 177. Lee, C.H., Steiner, T., Petrof, E.O., Smieja, M., Roscoe, D., Nematallah, A., Weese, J.S., Collins, S., Moayyedi, P., Crowther, M., Ropeleski, M.J., Jayaratne, P., Higgins, D., Li, Y.F., Rau, N.V. and Kim, P.T. Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent *Clostridium difficile* Infection A

Randomized Clinical Trial. *Jama-Journal of the American Medical Association.* 2016, **315**(2), pp.142-149.

- 178. Morgan, X.C., Tickle, T.L., Sokol, H., Gevers, D., Devaney, K.L., Ward, D.V., Reyes, J.A., Shah, S.A., LeLeiko, N., Snapper, S.B., Bousvaros, A., Korzenik, J., Sands, B.E., Xavier, R.J. and Huttenhower, C. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. *Genome Biology*. 2012, **13**(9), p.18.
- 179. van Nood, E., Speelman, P., Nieuwdorp, M. and Keller, J. Fecal microbiota transplantation: facts and controversies. *Current Opinion in Gastroenterology.* 2014, **30**(1), pp.34-39.
- Li, S.S., Zhu, A., Benes, V., Costea, P.I., Hercog, R., Hildebrand, F., Huerta-Cepas, J., Nieuwdorp, M., Salojarvi, J., Voigt, A.Y., Zeller, G., Sunagawa, S., de Vos, W.M. and Bork, P. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. *Science*. 2016, **352**(6285), pp.586-589.
- 181. Lilly, D.M. and Stillwell, R.H. Probiotics: growth-promoting factors produced by microorganisms. *Science*. 1965, **147**(3659), pp.747-748.
- 182. Parker, R.B. Probiotics, the other half of the antibiotics story. *Animal Nutrition Health.* 1974, **29**, pp.4–8.
- 183. Fuller, R. Probiotics in human medicine. *Gut.* 1991, **32**(4), pp.439-442.
- 184. Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C. and Sanders, M.E. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. *Nature Reviews Gastroenterology & Hepatology.* 2014, **11**(8), pp.506-514.
- 185. Kristensen, N.B., Bryrup, T., Allin, K.H., Nielsen, T., Hansen, T.H. and Pedersen, O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials0. *Genome Medicine*. 2016, **8**, p.11.
- 186. Hempel, S., Newberry, S.J., Maher, A.R., Wang, Z., Miles, J.N.V., Shanman, R., Johnsen, B. and Shekelle, P.G. Probiotics for the Prevention and Treatment of Antibiotic-Associated Diarrhea A Systematic Review and Meta-analysis. *Jama-Journal of the American Medical Association.* 2012, **307**(18), pp.1959-1969.
- 187. Shi, Y., Zhai, Q.X., Li, D.Y., Mao, B.Y., Liu, X.M., Zhao, J.X., Zhang, H. and Chen, W. Restoration of cefixime-induced gut microbiota changes by Lactobacillus cocktails and fructooligosaccharides in a mouse model. *Microbiological Research.* 2017, **200**, pp.14-24.
- 188. Borriello, S.P. The application of bacterial antagonism in the prevention and treatment of *Clostridium difficile* infection in the gut. *Anaerobes Today.* 1988, pp.195-202.
- Dendukuri, N., Costa, V., McGregor, M. and Brophy, J.M. Probiotic therapy for the prevention and treatment of *Clostridium difficile*associated diarrhea: a systematic review (vol 173, pg 167-170, 2005). *Canadian Medical Association Journal*. 2005, **173**(4), pp.345-345.
- 190. Lau, C.S. and Chamberlain, R.S. Probiotics Are Effective At Preventing *Clostridium difficile*-Associated Diarrhea in Both Adult and Pediatric Populations: A Meta-Analysis. *Gastroenterology.* 2015, **148**(4), pp.S333-S334.
- 191. Goldenberg, J.Z., Ma, S.S.Y., Saxton, J.D., Martzen, M.R., Vandvik, P.O., Thorlund, K., Guyatt, G.H. and Johnston, B.C. Probiotics for the

prevention of *Clostridium difficile*-associated diarrhea in adults and children. *Cochrane Database of Systematic Reviews.* 2013, (5), p.152.

- 192. Shen, N.T., Maw, A., Tmanova, L.L., Pino, A., Ancy, K., Crawford, C.V., Simon, M.S. and Evans, A.T. Timely Use of Probiotics in Hospitalized Adults Prevents *Clostridium difficile* Infection: A Systematic Review With Meta-Regression Analysis. *Gastroenterology.* 2017, **152**(8), pp.1889-1900.
- 193. Allen, S.J., Wareham, K., Wang, D.L., Bradley, C., Hutchings, H., Harris, W., Dhar, A., Brown, H., Foden, A., Gravenor, M.B. and Mack, D. Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and *Clostridium difficile* diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial. *Lancet.* 2013, **382**(9900), pp.1249-1257.
- 194. Zhang, K.S., Zhao, S., Wang, Y.K., Zhu, X.J., Shen, H., Chen, Y.G. and Sun, X.M. The non-toxigenic *Clostridium difficile* CD37 protects mice against infection with a BI/NAP1/027 type of *C. difficile* strain. *Anaerobe*. 2015, **36**, pp.49-52.
- 195. Yun, B., Song, M., Park, D.J. and Oh, S. Beneficial Effect of Bifidobacterium longum ATCC 15707 on Survival Rate of Clostridium difficile Infection in Mice. Korean Journal for Food Science of Animal Resources. 2017, 37(3), pp.368-375.
- Castagliuolo, I., Riegler, M.F., Valenick, L., LaMont, J.T. and Pothoulakis, C. Saccharomyces boulardii protease inhibits the effects of *Clostridium difficile* toxins A and B in human colonic mucosa. *Infection and Immunity*. 1999, **67**(1), pp.302-307.
- 197. Surawicz, C.M., McFarland, L.V., Greenberg, R.N., Rubin, M., Fekety, R., Mulligan, M.E., Garcia, R.J., Brandmarker, S., Bowen, K., Borjal, D. and Elmer, G.W. The search for a better treatment for recurrent *Clostridium difficile* disease: Use of high-dose vancomycin combined with *Saccharomyces boulardii. Clinical Infectious Diseases.* 2000, **31**(4), pp.1012-1017.
- 198. Clavel, T., Carlin, F., Lairon, D., Nguyen-The, C. and Schmitt, P. Survival of *Bacillus cereus* spores and vegetative cells in acid media simulating human stomach. *J Appl Microbiol.* 2004, **97**(1), pp.214-219.
- 199. Berthold-Pluta, A., Pluta, A., Molska, I. and Dolega, E. Study on the survival of *Bacillus cereus* in media simulating the human stomach environment. *Medycyna Weterynaryjna.* 2014, **70**(7), pp.437-441.
- Tennant, S.M., Hartland, E.L., Phumoonna, T., Lyras, D., Rood, J.I., Robins-Browne, R.M. and van Driel, I.R. Influence of Gastric Acid on Susceptibility to Infection with Ingested Bacterial Pathogens. *Infection and Immunity.* 2008, **76**(2), pp.639-645.
- Khanna, S., Pardi, D.S., Kelly, C.R., Kraft, C.S., Dhere, T., Henn, M.R., Lombardo, M.-J., Vulic, M., Ohsumi, T., Winkler, J., Pindar, C., McGovern, B.H., Pomerantz, R.J., Aunins, J.G., Cook, D.N. and Hohmann, E.L. A Novel Microbiome Therapeutic Increases Gut Microbial Diversity and Prevents Recurrent *Clostridium difficile* Infection. *The Journal of infectious diseases.* 2016, **214**(2), pp.173-181.
- 202. Seres Therapeutics. Seres Therapeutics Announces Key Findings from SER-109 Phase 2 Study Analyses. [Press release]. 2017.
- 203. Anosova, N.G., Cole, L.E., Li, L., Zhang, J.R., Brown, A.M., Mundle, S., Zhang, J.X., Ray, S., Ma, F.Q., Garrone, P., Bertraminelli, N., Kleanthous, H. and Anderson, S.F. A Combination of Three Fully Human

Toxin A- and Toxin B-Specific Monoclonal Antibodies Protects against Challenge with Highly Virulent Epidemic Strains of *Clostridium difficile* in the Hamster Model. *Clinical and Vaccine Immunology.* 2015, **22**(7), pp.711-725.

- 204. Pizarro-Guajardo, M., Diaz-Gonzalez, F., Alvarez-Lobos, M. and Paredes-Sabja, D. Characterization of Chicken IgY Specific to *Clostridium difficile* R20291 Spores and the Effect of Oral Administration in Mouse Models of Initiation and Recurrent Disease. *Frontiers in Cellular and Infection Microbiology*. 2017, **7**, p.16.
- 205. Koon, H.W., Shih, D.Q., Hing, T.C., Yoo, J.H., Ho, S., Chen, X., Kelly, C.P., Targan, S.R. and Pothoulakis, C. Human Monoclonal Antibodies against *Clostridium difficile* Toxins A and B Inhibit Inflammatory and Histologic Responses to the Toxins in Human Colon and Peripheral Blood Monocytes. *Antimicrobial Agents and Chemotherapy.* 2013, **57**(7), pp.3214-3223.
- 206. Lanis, J.M., Heinlen, L.D., James, J.A. and Ballard, J.D. *Clostridium difficile* 027/BI/NAP1 Encodes a Hypertoxic and Antigenically Variable Form of TcdB. *Plos Pathogens.* 2013, **9**(8), p.11.
- Leav, B.A., Blair, B., Leney, M., Knauber, M., Reilly, C., Lowy, I., Gerding, D.N., Kelly, C.P., Katchar, K., Baxter, R., Ambrosino, D. and Molrine, D. Serum anti-toxin B antibody correlates with protection from recurrent *Clostridium difficile* infection (CDI). *Vaccine.* 2010, **28**(4), pp.965-969.
- 208. Wilcox, M.H., Gerding, D.N., Poxton, I.R., Kelly, C., Nathan, R., Birch, T., Cornely, O.A., Rahav, G., Bouza, E., Lee, C., Jenkin, G., Jensen, W., Kim, Y.S., Yoshida, J., Gabryelski, L., Pedley, A., Eves, K., Tipping, R., Guris, D., Kartsonis, N., Dorr, M.B. Bezlotoxumab for Prevention of Recurrent *Clostridium difficile* Infection. *New England Journal of Medicine*. 2017, **376**(4), pp.305-317.
- 209. Prabhu, V.S., Cornely, O.A., Golan, Y., Dubberke, E.R., Heimann, S.M., Hanson, M.E., Liao, J., Pedley, A., Dorr, M.B. and Marcella, S. Thirty-Day Readmissions in Hospitalized Patients Who Received Bezlotoxumab With Antibacterial Drug Treatment for *Clostridium difficile* Infection. *Clinical Infectious Diseases.* 2017, 65(7), pp.1218-1221.
- 210. Yang, Z.Y., Ramsey, J., Hamza, T., Zhang, Y.R., Li, S., Yfantis, H.G., Lee, D., Hernandez, L.D., Seghezzi, W., Furneisen, J.M., Davis, N.M., Therien, A.G. and Feng, H.P. Mechanisms of Protection against *Clostridium difficile* Infection by the Monoclonal Antitoxin Antibodies Actoxumab and Bezlotoxumab. *Infection and Immunity.* 2015, **83**(2), pp.822-831.
- 211. Warny, M., Vaerman, J.P., Avesani, V. and Delmee, M. Human antibody response to *Clostridium difficile* toxin A in relation to clinical course of infection. *Infection and Immunity.* 1994, **62**(2), pp.384-389.
- 212. Torres, J.F., Lyerly, D.M., Hill, J.E. and Monath, T.P. Evaluation of formalin-inactivated *Clostridium difficile* vaccines administered by parenteral and mucosal routes of immunization in hamsters. *Infection and Immunity.* 1995, **63**(12), pp.4619-4627.
- 213. Barnes, A.G.C., Cerovic, V., Hobson, P.S. and Klavinskis, L.S. *Bacillus subtilis* spores: A novel microparticle adjuvant which can instruct a balanced Th1 and Th2 immune response to specific antigen. *European Journal of Immunology.* 2007, **37**(6), pp.1538-1547.

- 214. Potocki, W., Negri, A., Peszynska-Sularz, G., Hinc, K., Obuchowski, M. and Iwanicki, A. The combination of recombinant and non-recombinant *Bacillus subtilis* spore display technology for presentation of antigen and adjuvant on single spore. *Microbial Cell Factories*. 2017, **16**, p.11.
- 215. Sturino, J.M., Pokusaeva, K. and Carpenter, R. Effective Sequestration of *Clostridium difficile* Protein Toxins by Calcium Aluminosilicate. *Antimicrobial Agents and Chemotherapy.* 2015, **59**(12), pp.7178-7183.
- 216. Weiss, K. Toxin-binding treatment for *Clostridium difficile*: a review including reports of studies with tolevamer. *Int J Antimicrob Agents*. 2009, **33**(1), pp.4-7.
- 217. Moncino, M.D. and Falletta, J.M. Multiple relapses of *Clostridium difficile* associated diarrhea in a cancer patient- successful control with long-term cholestyramine therapy. *American Journal of Pediatric Hematology Oncology.* 1992, **14**(4), pp.361-364.
- 218. Kunimoto, D. and Thomson, A.B.R. Recurrent *Clostridium difficile* colitis responding to Cholestyramine. *Digestion.* 1986, **33**(4), pp.225-228.
- Mogg, G.A.G., George, R.H., Youngs, D., Johnson, M., Thompson, H., Burdon, D.W. and Keighley, M.R.B. Randomized controlled trial of colestipol in antibiotic associated colitis. *British Journal of Surgery.* 1982, 69(3), pp.137-139.
- 220. Kurtz, C.B., Cannon, E.P., Brezzani, A., Pitruzzello, M., Dinardo, C., Rinard, E., Acheson, D.W.K., Fitzpatrick, R., Kelly, P., Shackett, K., Papoulis, A.T., Goddard, P.J., Barker, R.H., Palace, G.P. and Klinger, J.D. GT160-246, a toxin binding polymer for treatment of *Clostridium difficile* colitis. *Antimicrobial Agents and Chemotherapy.* 2001, **45**(8), pp.2340-2347.
- 221. Louie, T.J., Peppe, J., Watt, C.K., Johnson, D., Mohammed, R., Dow, G., Weiss, K., Simon, S., John, J.F., Garber, G., Chasan-Taber, S., Davidson, D.M. Tolevamer, a novel nonantibiotic polymer, compared with vancomycin in the treatment of mild to moderately severe *Clostridium difficile* - Associated diarrhea. *Clinical Infectious Diseases*. 2006, **43**(4), pp.411-420.
- 222. Baines, S.D., Freeman, J. and Wilcox, M.H. Tolevamer is not efficacious in the neutralization of cytotoxin in a human gut model of *Clostridium difficile* infection. *Antimicrob Agents Chemother.* 2009, **53**(5), pp.2202-2204.
- 223. Gerding, D.N., Meyer, T., Lee, C., Cohen, S.H., Murthy, U.K., Poirier, A., Van Schooneveld, T.C., Pardi, D.S., Ramos, A., Barron, M.A., Chen, H.Z. and Villano, S. Administration of Spores of Nontoxigenic *Clostridium difficile* Strain M3 for Prevention of Recurrent *C. difficile* Infection A Randomized Clinical Trial. *Jama-Journal of the American Medical Association.* 2015, **313**(17), pp.1719-1727.
- 224. Brouwer, M.S.M., Roberts, A.P., Hussain, H., Williams, R.J., Allan, E. and Mullany, P. Horizontal gene transfer converts non-toxigenic *Clostridium difficile* strains into toxin producers. *Nature Communications*. 2013, **4**, p.6.
- 225. Karachalios, G. and Charalabopoulos, K. Biliary excretion of antimicrobial drugs. *Chemotherapy.* 2002, **48**(6), pp.280-297.
- 226. Deshpande, A.D., Baheti, K.G. and Chatterjee, N.R. Degradation of betalactam antibiotics. *Current Science*. 2004, **87**(12), pp.1684-1695.
- 227. Bristol, A., Hubert, S., Hofmann, F. and Baer, H. Formulation development of SYN-004 (ribaxamase) oral solid dosage form, a beta-

lactamase to prevent intravenous antibiotic-associated dysbiosis of the colon. *Int J Pharm.* 2017, **534**(1-2), pp.25-34.

- 228. Roberts, T., Kokai-Kun, J.F., Coughlin, O., Lopez, B.V., Whalen, H., Bristol, J.A., Hubert, S., Longstreth, J., Lasseter, K. and Sliman, J. Tolerability and Pharmacokinetics of SYN-004, an Orally Administered beta-Lactamase for the Prevention of *Clostridium difficile*-Associated Disease and Antibiotic-Associated Diarrhea, in Two Phase 1 Studies. *Clin Drug Investig.* 2016, **36**(9), pp.725-734.
- Kokai-Kun, J.F., Roberts, T., Coughlin, O., Sicard, E., Rufiange, M., Fedorak, R., Carter, C., Adams, M.H., Longstreth, J., Whalen, H. and Sliman, J. The Oral β-Lactamase SYN-004 (Ribaxamase) Degrades Ceftriaxone Excreted into the Intestine in Phase 2a Clinical Studies. *Antimicrobial Agents and Chemotherapy.* 2017, 61(3), pp.e02197-02116.
- 230. de Gunzburg, J., Ducher, A., Modess, C., Wegner, D., Oswald, S., Dressman, J., Augustin, V., Feger, C., Andremont, A., Weitschies, W. and Siegmund, W. Targeted adsorption of molecules in the colon with the novel adsorbent-based medicinal product, DAV132: A proof of concept study in healthy subjects. *J Clin Pharmacol.* 2015, **55**(1), pp.10-16.
- de Gunzburg, J., Ghozlane, A., Ducher, A., Le Chatelier, E., Duval, X., Ruppe, E., Armand-Lefevre, L., Sablier-Gallis, F., Burdet, C., Alavoine, L., Chachaty, E., Augustin, V., Varastet, M., Levenez, F., Kennedy, S., Pons, N., Mentre, F. and Andremont, A. Protection of the Human Gut Microbiome From Antibiotics. *J Infect Dis.* 2018, **217**(4), pp.628-636.
- 232. Kundrapu, S., Jury, L.A., Sitzlar, B., Sunkesula, V.C.K., Sethi, A.K. and Donskey, C.J. Easily Modified Factors Contribute to Delays in Diagnosis of *Clostridium difficile* Infection: a Cohort Study and Intervention. *Journal of Clinical Microbiology*. 2013, **51**(7), pp.2365-2370.
- 233. Frenz, M.B. and McIntyre, A.S. Reducing delays in the diagnosis and treatment of *Clostridium difficile* diarrhoea. *Qjm-an International Journal of Medicine*. 2003, **96**(8), pp.579-582.
- 234. Manek, K., Williams, V., Callery, S. and Daneman, N. Reducing the risk of severe complications among patients with *Clostridium difficile* infection. *Canadian Journal of Gastroenterology.* 2011, **25**(7), pp.368-372.
- 235. Crowther, G.S. Development and Characterisation of an in vitro Human Gut Model to Study the Biofilm Mode of Growth of Clostridium difficile and the Indigenous Gut Microbiota. Doctor of Philosophy thesis, University of Leeds, 2013.
- Salazar, C.L., Reyes, C., Atehortua, S., Sierra, P., Correa, M.M., Paredes-Sabja, D., Best, E., Fawley, W.N., Wilcox, M. and González, Á. Molecular, microbiological and clinical characterization of *Clostridium difficile* isolates from tertiary care hospitals in Colombia. *Plos One.* 2017, **12**(9), p.e0184689.
- 237. Fawley, W.N., Knetsch, C.W., MacCannell, D.R., Harmanus, C., Du, T., Mulvey, M.R., Paulick, A., Anderson, L., Kuijper, E.J. and Wilcox, M.H. Development and Validation of an Internationally-Standardized, High-Resolution Capillary Gel-Based Electrophoresis PCR-Ribotyping Protocol for *Clostridium difficile*. *Plos One.* 2015, **10**(2), p.e0118150.
- 238. Kuijper, E.J. and Wilcox, M.H. Decreased Effectiveness of Metronidazole for the Treatment of *Clostridium difficile* Infection? *Clinical Infectious Diseases*. 2008, **47**(1), pp.63-65.

- 239. Stevens, V.W., Nelson, R.E., Schwab-Daugherty, E.M. and et al. Comparative effectiveness of vancomycin and metronidazole for the prevention of recurrence and death in patients with *Clostridium difficile* infection. *Jama Internal Medicine*. 2017, **177**(4), pp.546-553.
- Polage, C.R., Chin, D.L., Leslie, J.L., Tang, J., Cohen, S.H. and Solnick, J.V. Outcomes in patients tested for *Clostridium difficile* toxins. *Diagn Microbiol Infect Dis.* 2012, **74**(4), pp.369-373.
- 241. Mathur, T., Kumar, M., Barman, T.K., RamKumar, G., Kalia, V., Singhal, S., Raj, V.S., Upadhyay, D.J., Das, B. and Bhatnagar, P.K. Activity of RBx 11760, a novel biaryl oxazolidinone, against *Clostridium difficile*. *Journal of Antimicrobial Chemotherapy*. 2011, **66**(5), pp.1087-1095.
- 242. Aldape, M.J., Heeney, D.D., Bryant, A.E. and Stevens, D.L. Tigecycline suppresses toxin A and B production and sporulation in *Clostridium difficile*. *Journal of Antimicrobial Chemotherapy*. 2015, **70**(1), pp.153-159.
- 243. Thabit, A.K., Alam, M.J., Khaleduzzaman, M., Garey, K.W. and Nicolau, D.P. A pilot study to assess bacterial and toxin reduction in patients with *Clostridium difficile* infection given fidaxomicin or vancomycin. *Annals of Clinical Microbiology and Antimicrobials.* 2016, **15**, p.7.
- 244. Cohen, N.A., Miller, T., Na'aminh, W., Hod, K., Adler, A., Cohen, D., Guzner-Gur, H., Santo, E., Halpern, Z., Carmeli, Y. and Maharshak, N. *Clostridium Difficile* Fecal Toxin Level is Associated with Disease Severity and Prognosis. *Gastroenterology.* 2017, **152**(5), p.S339.
- 245. Musher, D.M., Manhas, A., Jain, P., Nuila, F., Waqar, A., Logan, N., Marino, B. and Graviss, E.A. Detection of *Clostridium difficile* toxin: comparison of enzyme immunoassay results with results obtained by cytotoxicity assay. *J Clin Microbiol.* 2007, **45**(8), pp.2737-2739.
- 246. Crook, D.W., Walker, A.S., Kean, Y., Weiss, K., Cornely, O.A., Miller, M.A., Esposito, R., Louie, T.J., Stoesser, N.E., Young, B.C., Angus, B.J., Gorbach, S.L. and Peto, T.E. Fidaxomicin versus vancomycin for *Clostridium difficile* infection: meta-analysis of pivotal randomized controlled trials. *Clin Infect Dis.* 2012, **55 Suppl 2**, pp.S93-103.
- 247. Babakhani, F., Bouillaut, L., Gomez, A., Sears, P., Nguyen, L. and Sonenshein, A.L. Fidaxomicin Inhibits Spore Production in *Clostridium difficile*. *Clinical Infectious Diseases*. 2012, **55**, pp.S162-S169.
- Chilton, C.H., Crowther, G.S., Ashwin, H., Longshaw, C.M. and Wilcox, M.H. Association of Fidaxomicin with *C. difficile* Spores: Effects of Persistence on Subsequent Spore Recovery, Outgrowth and Toxin Production. *Plos One.* 2016, **11**(8), p.13.
- 249. Petrella, L.A., Sambol, S.P., Cheknis, A., Nagaro, K., Kean, Y., Sears, P.S., Babakhani, F., Johnson, S. and Gerding, D.N. Decreased cure and increased recurrence rates for *Clostridium difficile* infection caused by the epidemic *C. difficile* BI strain. *Clin Infect Dis.* 2012, **55**(3), pp.351-357.
- 250. Setlow, P. Spore germination. *Curr Opin Microbiol.* 2003, **6**(6), pp.550-556.
- 251. Vohra, P. and Poxton, I.R. Efficacy of decontaminants and disinfectants against *Clostridium difficile*. *Journal of Medical Microbiology*. 2011, **60**(8), pp.1218-1224.
- Fekety, R., Kim, K.-H., Brown, D., Batts, D.H., Cudmore, M. and Silva Jr, J. Epidemiology of antibiotic-associated colitis: Isolation of *Clostridium difficile* from the hospital environment. *The American Journal of Medicine.* 1981, **70**(4), pp.906-908.

- 253. Rodriguez-Palacios, A. and LeJeune, J.T. Moist-Heat Resistance, Spore Aging, and Superdormancy in *Clostridium difficile*. *Appl Environ Microbiol.* 2011, **77**(9), pp.3085-3091.
- 254. Nerandzic, M.M. and Donskey, C.J. Activate to eradicate: inhibition of *Clostridium difficile* spore outgrowth by the synergistic effects of osmotic activation and nisin. *Plos One.* 2013, **8**(1), p.e54740.
- 255. Kevorkian, Y., Shirley, D.J. and Shen, A. Regulation of *Clostridium difficile* spore germination by the CspA pseudoprotease domain. *Biochimie.* 2016, **122**, pp.243-254.
- 256. Francis, M.B., Allen, C.A. and Sorg, J.A. Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during *Clostridium difficile* Spore Germination. *Journal of Bacteriology.* 2015, **197**(14), pp.2276-2283.
- 257. Hudson, K.D., Corfe, B.M., Kemp, E.H., Feavers, I.M., Coote, P.J. and Moir, A. Localization of GerAA and GerAC germination proteins in the *Bacillus subtilis* spore. *Journal of Bacteriology*. 2001, **183**(14), pp.4317-4322.
- 258. Bhattacharjee, D., Francis, M.B., Ding, X.C., McAllister, K.N., Shrestha, R. and Sorg, J.A. Reexamining the Germination Phenotypes of Several *Clostridium difficile* Strains Suggests Another Role for the CspC Germinant Receptor. *Journal of Bacteriology*. 2016, **198**(5), pp.777-786.
- 259. Donnelly, M.L., Li, W., Li, Y.Q., Hinkel, L., Setlow, P. and Shen, A. A *Clostridium difficile*-Specific, Gel-Forming Protein Required for Optimal Spore Germination. *Mbio.* 2017, **8**(1), p.17.
- 260. Yutin, N. and Galperin, M.Y. A genomic update on clostridial phylogeny: Gram-negative spore-formers and other misplaced clostridia. *Environmental microbiology.* 2013, **15**(10), pp.2631-2641.
- 261. Sorg, J.A. and Sonenshein, A.L. Bile salts and glycine as cogerminants for *Clostridium difficile* spores. *Journal of Bacteriology.* 2008, **190**(7), pp.2505-2512.
- 262. Wilson, K.H. Efficiency of various bile-salt preparations for stimulation of *Clostridium difficile* spore germination. *Journal of Clinical Microbiology*. 1983, **18**(4), pp.1017-1019.
- 263. Ramirez, N., Liggins, M. and Abel-Santos, E. Kinetic Evidence for the Presence of Putative Germination Receptors in *Clostridium difficile* Spores. *Journal of Bacteriology.* 2010, **192**(16), pp.4215-4222.
- Sorg, J.A. and Sonenshein, A.L. Chenodeoxycholate Is an Inhibitor of *Clostridium difficile* Spore Germination. *Journal of Bacteriology*. 2009, 191(3), pp.1115-1117.
- Wheeldon, L.J., Worthington, T., Hilton, A., Elliott, T.S.J. and Lambert, P.A. Physical and chemical factors influencing the germination of *Clostridium difficile* spores. *Journal of applied microbiology.* 2008, 105(6), pp.2223-2230.
- Mekhjian, H.S., Phillips, S.F. and Hofmann, A.F. Colonic absorption of unconjugated bile acids: perfusion studies in man. *Dig Dis Sci.* 1979, 24(7), pp.545-550.
- 267. Giel, J.L., Sorg, J.A., Sonenshein, A.L. and Zhu, J. Metabolism of Bile Salts in Mice Influences Spore Germination in *Clostridium difficile*. *Plos One.* 2010, **5**(1), p.7.
- 268. Theriot, C.M., Koenigsknecht, M.J., Carlson, P.E., Hatton, G.E., Nelson, A.M., Li, B., Huffnagle, G.B., Li, J.Z. and Young, V.B. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase

susceptibility to *Clostridium difficile* infection. *Nature Communications.* 2014, **5**, p.10.

- Ward, B.Q. and Carroll, B.J. Spore germination and vegetative growth of *Clostridium botulinum* type E in synthetic media. *Can J Microbiol.* 1966, 12(6), pp.1145-1156.
- 270. Howerton, A., Ramirez, N. and Abel-Santos, E. Mapping Interactions between Germinants and *Clostridium difficile* Spores. *Journal of Bacteriology.* 2011, **193**(1), pp.274-282.
- Carlson, P.E., Kaiser, A.M., McColm, S.A., Bauer, J.M., Young, V.B., Aronoff, D.M. and Hanna, P.C. Variation in germination of *Clostridium difficile* clinical isolates correlates to disease severity. *Anaerobe.* 2015, 33, pp.64-70.
- 272. Shrestha, R. and Sorg, J.A. Hierarchical recognition of amino acid cogerminants during *Clostridioides difficile* spore germination. *Anaerobe*. 2017, **49**, pp.41-47.
- 273. Kochan, T.J., Somers, M.J., Kaiser, A.M., Shoshiev, M.S., Hagan, A.K., Hastie, J.L., Giordano, N.P., Smith, A.D., Schubert, A.M., Carlson, P.E., Jr. and Hanna, P.C. Intestinal calcium and bile salts facilitate germination of *Clostridium difficile* spores. *Plos Pathogens.* 2017, **13**(7), p.e1006443.
- 274. Demarest, S.J., Salbato, J., Elia, M., Zhong, J.P., Morrow, T., Holland, T., Kline, K., Woodnutt, G., Kimmel, B.E. and Hansen, G. Structural characterization of the cell wall binding domains of *Clostridium difficile* toxins A and B; Evidence that Ca2+ plays a role in toxin A cell surface association. *Journal of Molecular Biology*. 2005, **346**(5), pp.1197-1206.
- Wilcox, M.H., Fawley, W.N. and Parnell, P. Value of lysozyme agar incorporation and alkaline thioglycollate exposure for the environmental recovery of *Clostridium difficile*. *Journal of Hospital Infection*. 2000, **44**(1), pp.65-69.
- 276. Kamiya, S., Yamakawa, K., Ogura, H. and Nakamura, S. Recovery of spores of *Clostridium difficile* altered by heat or alkali. *Journal of Medical Microbiology.* 1989, **28**(3), pp.217-221.
- Lister, M., Stevenson, E., Heeg, D., Minton, N.P. and Kuehne, S.A. Comparison of culture based methods for the isolation of *Clostridium difficile* from stool samples in a research setting. *Anaerobe.* 2014, 28, pp.226-229.
- 278. Edwards, A.N., Suarez, J.M. and McBride, S.M. Culturing and Maintaining *Clostridium difficile* in an Anaerobic Environment. *Jove-Journal of Visualized Experiments.* 2013, (79), p.8.
- 279. Kevorkian, Y. and Shen, A. Revisiting the role of Csp family proteins in regulating *Clostridium difficile* spore germination. J Bacteriol. 2017 Oct 17;199(22).
- Baines, S.D., O'Connor, R., Freeman, J., Fawley, W.N., Harmanus, C., Mastrantonio, P., Kuijper, E.J. and Wilcox, M.H. Emergence of reduced susceptibility to metronidazole in *Clostridium difficile*. *Journal of Antimicrobial Chemotherapy*. 2008, **62**(5), pp.1046-1052.
- Nerandzic, M.M. and Donskey, C.J. Effective and Reduced-Cost Modified Selective Medium for Isolation of *Clostridium difficile*. *Journal of Clinical Microbiology*. 2009, **47**(2), pp.397-400.
- Wheeldon, L.J., Worthington, T. and Lambert, P.A. Histidine acts as a co-germinant with glycine and taurocholate for *Clostridium difficile* spores. *J Appl Microbiol.* 2011, **110**(4), pp.987-994.

- 283. Heeg, D., Burns, D.A., Cartman, S.T. and Minton, N.P. Spores of *Clostridium difficile* Clinical Isolates Display a Diverse Germination Response to Bile Salts. *Plos One.* 2012, **7**(2), p.9.
- 284. Begley, M., Gahan, C.G.M. and Hill, C. The interaction between bacteria and bile. *Fems Microbiology Reviews.* 2005, **29**(4), pp.625-651.
- 285. Ionesco, H. Initiation of germination from *Clostridium difficile* spores by lysozyme. *Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie D.* 1978, **287**(6), pp.659-661.
- 286. Chilton, C.H., Freeman, J., Baines, S.D., Crowther, G.S., Nicholson, S. and Wilcox, M.H. Evaluation of the effect of oritavancin on *Clostridium difficile* spore germination, outgrowth and recovery. *Journal of Antimicrobial Chemotherapy.* 2013, **68**(9), pp.2078-2082.
- Moore, P., Kyne, L., Martin, A. and Solomon, K. Germination efficiency of clinical *Clostridium difficile* spores and correlation with ribotype, disease severity and therapy failure. *Journal of Medical Microbiology.* 2013, 62, pp.1405-1413.
- 288. Hensgens, M.P.M., Keessen, E.C., Squire, M.M., Riley, T.V., Koene, M.G.J., de Boer, E., Lipman, L.J.A., Kuijper, E.J. *Clostridium difficile* infection in the community: a zoonotic disease? *Clinical Microbiology and Infection.* 2012, **18**(7), pp.635-645.
- 289. Ho, T.D. and Ellermeier, C.D. PrsW Is Required for Colonization, Resistance to Antimicrobial Peptides, and Expression of Extracytoplasmic Function sigma Factors in *Clostridium difficile*. *Infection and Immunity*. 2011, **79**(8), pp.3229-3238.
- 290. Boneca, I.G., Dussurget, O., Cabanes, D., Nahori, M.A., Sousa, S., Lecuit, M., Psylinakis, E., Bouriotis, V., Hugot, J.P., Giovannini, M., Coyle, A., Bertin, J., Namane, A., Rousselle, J.C., Cayet, N., Prevost, M.C., Balloy, V., Chignard, M., Philpottt, D.J., Cossart, P. and Girardin, S.E. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. *Proceedings of the National Academy of Sciences of the United States of America*. 2007, **104**(3), pp.997-1002.
- 291. Hishinuma, F., Izaki, K. and Takahashi, H. Effects of Glycine and d-Amino Acids on Growth of Various Microorganisms. *Agricultural and Biological Chemistry.* 1969, **33**(11), pp.1577-1586.
- Minami, M., Ando, T., Hashikawa, S.N., Torii, K., Hasegawa, T., Israel, D.A., Ina, K., Kusugami, K., Goto, H. and Ohta, M. Effect of glycine on *Helicobacter pylori* in vitro. *Antimicrob Agents Chemother.* 2004, **48**(10), pp.3782-3788.
- 293. Cochis, A., Fini, M., Carrassi, A., Migliario, M., Visai, L. and Rimondini, L. Effect of air polishing with glycine powder on titanium abutment surfaces. *Clinical Oral Implants Research.* 2013, **24**(8), pp.904-909.
- 294. Hammes, W., Schleife.Kh and Kandler, O. Mode of action of glycine on biosynthesis of peptidoglycan. *Journal of Bacteriology.* 1973, **116**(2), pp.1029-1053.
- 295. Trippen, B., Hammes, W.P., Schleifer, K.H. and Kandler, O. Mode of action of D-amino acids on the biosynthesis of peptidoglycan *Arch Microbiol.* 1976, **109**(3), pp.247-261.
- 296. Caparros, M., Pisabarro, A.G. and de Pedro, M.A. Effect of D-amino acids on structure and synthesis of peptidoglycan in *Escherichia coli*. *J Bacteriol*. 1992, **174**(17), pp.5549-5559.

- 297. Karlsson, S., Burman, L.G. and Akerlund, T. Suppression of toxin production in *Clostridium difficile* VPI 10463 by amino acids. *Microbiology-Uk.* 1999, **145**, pp.1683-1693.
- Peltier, J., Courtin, P., El Meouche, I., Lemee, L., Chapot-Chartier, M.P. and Pons, J.L. *Clostridium difficile* Has an Original Peptidoglycan Structure with a High Level of N-Acetylglucosamine Deacetylation and Mainly 3-3 Cross-links. *Journal of Biological Chemistry*. 2011, 286(33), pp.29053-29062.
- 299. Shrestha, R., Lockless, S.W. and Sorg, J.A. A *Clostridium difficile* alanine racemase affects spore germination and accommodates serine as a substrate. 2017, **292**(25), pp.10735-10742.
- 300. Deng, K., Plaza-Garrido, A., Torres, J.A. and Paredes-Sabja, D. Survival of *Clostridium difficile* spores at low temperatures. *Food Microbiology*. 2015, **46**, pp.218-221.
- Luu, S., Cruz-Mora, J., Setlow, B., Feeherry, F.E., Doona, C.J. and Setlow, P. The Effects of Heat Activation on Bacillus Spore Germination, with Nutrients or under High Pressure, with or without Various Germination Proteins. *Appl Environ Microbiol.* 2015, **81**(8), pp.2927-2938.
- 302. Setlow, P. Germination of spores of Bacillus species: what we know and do not know. *J Bacteriol.* 2014, **196**(7), pp.1297-1305.
- 303. Wang G., Zhang P., Paredes-Sabja D., Green C., Setlow P., Sarker M.R. and Li Y.-Q. Analysis of the germination of individual *Clostridium perfringens* spores and its heterogeneity. *Journal of applied microbiology*. 2011, **111**(5), pp.1212-1223.
- 304. Wang, S., Shen, A., Setlow, P. and Li, Y.Q. Characterization of the Dynamic Germination of Individual *Clostridium difficile* Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy. *Journal of Bacteriology.* 2015, **197**(14), pp.2361-2373.
- 305. Dembek, M., Stabler, R.A., Witney, A.A., Wren, B.W. and Fairweather, N.F. Transcriptional Analysis of Temporal Gene Expression in Germinating *Clostridium difficile* 630 Endospores. *Plos One.* 2013, **8**(5), p.12.
- 306. Sarker, M.R., Shivers, R.P., Sparks, S.G., Juneja, V.K. and McClane, B.A. Comparative experiments to examine the effects of heating on vegetative cells and spores of *Clostridium perfringens* isolates carrying plasmid genes versus chromosomal enterotoxin genes. *Appl Environ Microbiol.* 2000, **66**(8), pp.3234-3240.
- 307. Byrne, B., Dunne, G. and Bolton, D.J. Thermal inactivation of *Bacillus cereus* and *Clostridium perfringens* vegetative cells and spores in pork luncheon roll. *Food Microbiology*. 2006, **23**(8), pp.803-808.
- 308. Michels, M.J.M. and Visser, F.M.W. Occurence and thermoresistance of spores of psychrophilic and psychrotrophic aerobic spore-formers in soil and foods. *Journal of Applied Bacteriology.* 1976, **41**(1), pp.1-11.
- 309. Brown, K.L. Control of bacterial spores. *Br Med Bull.* 2000, **56**(1), pp.158-171.
- 310. Scheldeman, P., Herman, L., Foster, S. and Heyndrickx, M. *Bacillus sporothermodurans* and other highly heat-resistant spore formers in milk. *J Appl Microbiol.* 2006, **101**(3), pp.542-555.
- 311. Juneja, V.K., Novak, J.S., Huang, L.H. and Eblen, B.S. Increased thermotolerance of *Clostridium perfringens* spores following sublethal heat shock. *Food Control.* 2003, **14**(3), pp.163-168.

- 312. Heredia, N.L., Garcia, G.A., Luevanos, R., Labbe, R.G. and GarciaAlvarado, J.S. Elevation of the heat resistance of vegetative cells and spores of *Clostridium perfringens* type A by sublethal heat shock. *Journal of Food Protection.* 1997, **60**(8), pp.998-1000.
- 313. Nakamura, S., Yamakawa, K., Izumi, J., Nakashio, S. and Nishida, S. Geminability and heat-resistance of spores of *Clostridium difficile* strains. *Microbiology and Immunology.* 1985, **29**(2), pp.113-118.
- Rodriguez-Palacios, A., Reid-Smith, R.J., Staempfli, H.R. and Weese, J.S. *Clostridium difficile* survives minimal temperature recommended for cooking ground meats. *Anaerobe.* 2010, **16**(5), pp.540-542.
- 315. Foods Standards Agency. *Guidance on Temperature Control* Legislation in the United Kingdom. 2016.
- 316. Redondo-Solano, M., Burson, D.E. and Thippareddi, H. Thermal Resistance of *Clostridium difficile* Spores in Peptone Water and Pork Meat. *Journal of Food Protection.* 2016, **79**(9), pp.1468-1474.
- 317. Warda, A.K., Tempelaars, M.H., Abee, T. and Groot, M.N.N. Recovery of Heat Treated *Bacillus cereus* Spores Is Affected by Matrix Composition and Factors with Putative Functions in Damage Repair. *Frontiers in Microbiology.* 2016, **7**, p.10.
- 318. Lessa, F.C. Community-associated *Clostridium difficile* infection: how real is it? *Anaerobe.* 2013, **24**, pp.121-123.
- Eyre, D.W., Cule, M.L., Wilson, D.J., Griffiths, D., Vaughan, A., O'Connor, L., Ip, C.L.C., Golubchik, T., Batty, E.M., Finney, J.M., Wyllie, D.H., Didelot, X., Piazza, P., Bowden, R., Dingle, K.E., Harding, R.M., Crook, D.W., Wilcox, M.H., Peto, T.E.A. and Walker, A.S. Diverse Sources of C. difficile Infection Identified on Whole-Genome Sequencing. *The New England journal of medicine.* 2013, **369**(13), p.10.1056/NEJMoa1216064.
- 320. Eckert, C., Burghoffer, B. and Barbut, F. Contamination of ready-to-eat raw vegetables with *Clostridium difficile* in France. *Journal of Medical Microbiology.* 2013, **62**, pp.1435-1438.
- 321. Kwon, J.H., Lanzas, C., Reske, K.A., Hink, T., Seiler, S.M., Bommarito, K.M., Burnham, C.A.D. and Dubberke, E.R. An Evaluation of Food as a Potential Source for *Clostridium difficile* Acquisition in Hospitalized Patients. *Infection Control and Hospital Epidemiology*. 2016, **37**(12), pp.1401-1407.
- 322. Ghosh, S. and Setlow, P. The preparation, germination properties and stability of superdormant spores of *Bacillus cereus*. *Journal of applied microbiology*. 2010, **108**(2), pp.582-590.
- 323. Levinson, H.S. and Hyatt, M.T. Effects of temperature on activation, germination, and outgrowth of *Bacillus megaterium* spores. *J Bacteriol.* 1970, **101**(1), pp.58-64.
- 324. Turnbull, P.C., Frawley, D.A. and Bull, R.L. Heat activation/shock temperatures for *Bacillus anthracis* spores and the issue of spore plate counts versus true numbers of spores. *J Microbiol Methods.* 2007, 68(2), pp.353-357.
- 325. Ghosh, S., Zhang, P.F., Li, Y.Q. and Setlow, P. Superdormant Spores of Bacillus Species Have Elevated Wet-Heat Resistance and Temperature Requirements for Heat Activation. *Journal of Bacteriology.* 2009, 191(18), pp.5584-5591.

- 326. Paredes-Sabja, D., Torres, J.A., Setlow, P. and Sarker, M.R. *Clostridium perfringens* spore germination: characterization of germinants and their receptors. *J Bacteriol.* 2008, **190**(4), pp.1190-1201.
- 327. Montville, T.J. Effect of plating medium on heat activation requirement of *Clostridium botulinum* spores. *Appl Environ Microbiol.* 1981, **42**(4), pp.734-736.
- 328. Deng, K., Talukdar, P.K., Sarker, M.R., Paredes-Sabja, D. and Torres, J.A. Survival of *Clostridium difficile* spores at low water activity. *Food Microbiology.* 2017, **65**, pp.274-278.
- 329. Dapa, T., Leuzzi, R., Ng, Y.K., Baban, S.T., Adamo, R., Kuehne, S.A., Scarselli, M., Minton, N.P., Serruto, D. and Unnikrishnan, M. Multiple Factors Modulate Biofilm Formation by the Anaerobic Pathogen *Clostridium difficile. Journal of Bacteriology.* 2013, **195**(3), pp.545-555.
- 330. Im, G.Y., Modayil, R.J., Lin, C.T., Geier, S.J., Katz, D.S., Feuerman, M. and Grendell, J.H. The Appendix May Protect Against *Clostridium difficile* Recurrence. *Clinical Gastroenterology and Hepatology.* 2011, 9(12), pp.1072-1077.
- James, G.A., Chesnel, L., Boegli, L., Pulcini, E.D., Fisher, S. and Stewart, P.S. Analysis of *Clostridium difficile* biofilms: imaging and antimicrobial treatment. *Journal of Antimicrobial Chemotherapy*. 2018, 73(1), pp.102-108.
- 332. Luft, J.H. Improvements in epoxy resin embedding methods. *J Biophys Biochem Cytol.* 1961, **9**, pp.409-414.
- Lawley, T.D., Croucher, N.J., Yu, L., Clare, S., Sebaihia, M., Goulding, D., Pickard, D.J., Parkhill, J., Choudhary, J. and Dougan, G. Proteomic and Genomic Characterization of Highly Infectious *Clostridium difficile* 630 Spores. *Journal of Bacteriology*. 2009, **191**(17), pp.5377-5386.
- 334. Edwards, A.N., Karim, S.T., Pascual, R.A., Jowhar, L.M., Anderson, S.E. and McBride, S.M. Chemical and Stress Resistances of *Clostridium difficile* Spores and Vegetative Cells. *Frontiers in Microbiology.* 2016, 7, p.13.
- 335. Geeraerd, A.H., Valdramidis, V. and Van Impe, J.F. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. *International Journal of Food Microbiology*. 2005, **102**(1), pp.95-105.
- 336. Geeraerd, A.H., Herremans, C.H. and Van Impe, J.F. Structural model requirements to describe microbial inactivation during a mild heat treatment. *International Journal of Food Microbiology*. 2000, **59**(3), pp.185-209.
- 337. Cerf, O. Tailing of survival curves of bacterial spores. *Journal of Applied Bacteriology.* 1977, **42**(1), pp.1-19.
- Cole, M.B., Davies, K.W., Munro, G., Holyoak, C.D. and Kilsby, D.C. A vitalistic model to describe the thermal inactivation of *Listeria* monocytogenes. Journal of Industrial Microbiology. 1993, **12**(3), pp.232-239.
- 339. Luu-Thi, H., Khadka, D.B. and Michiels, C.W. Thermal inactivation parameters of spores from different phylogenetic groups of *Bacillus cereus*. *International Journal of Food Microbiology*. 2014, **189**, pp.183-188.
- 340. Kort, R., O'Brien, A.C., van Stokkum, I.H., Oomes, S.J., Crielaard, W., Hellingwerf, K.J. and Brul, S. Assessment of heat resistance of bacterial spores from food product isolates by fluorescence monitoring of

dipicolinic acid release. *Appl Environ Microbiol.* 2005, **71**(7), pp.3556-3564.

- 341. Bevilacqua, A., Speranza, B., Sinigaglia, M. and Corbo, M.R. A Focus on the Death Kinetics in Predictive Microbiology: Benefits and Limits of the Most Important Models and Some Tools Dealing with Their Application in Foods. *Foods.* 2015, **4**(4), pp.565-580.
- 342. Wang, B.S., Li, B.S., Zeng, Q.X., Huang, J., Ruan, Z., Zhu, Z.W. and Li, L. Inactivation kinetics and reduction of *Bacillus coagulans* spores by the combination of high pressure and moderate heat. *Journal of Food Process Engineering*. 2009, **32**(5), pp.692-708.
- 343. Furukawa, S., Narisawa, N., Watanabe, T., Kawarai, T., Myozen, K., Okazaki, S., Ogihara, H. and Yamasaki, M. Formation of the spore clumps during heat treatment increases the heat resistance of bacterial spores. *International Journal of Food Microbiology*. 2005, **102**(1), pp.107-111.
- Paidhungat, M., Setlow, B., Driks, A. and Setlow, P. Characterization of spores of *Bacillus subtilis* which lack dipicolinic acid. *J Bacteriol.* 2000, 182(19), pp.5505-5512.
- 345. Paredes-Sabja, D., Setlow, B., Setlow, P. and Sarker, M.R. Characterization of *Clostridium perfringens* spores that lack spoVA proteins and dipicolinic acid. *Journal of Bacteriology.* 2008, **190**(13), pp.4648-4659.
- 346. Krawczyk, A.O., de Jong, A., Omony, J., Holsappel, S., Wells-Bennik, M.H., Kuipers, O.P. and Eijlander, R.T. Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific spoVA(2mob) Operon in Foodborne Strains of *Bacillus subtilis*. *Appl Environ Microbiol*. 2017, **83**(7).
- 347. Berendsen, E.M., Boekhorst, J., Kuipers, O.P. and Wells-Bennik, M.H.J. A mobile genetic element profoundly increases heat resistance of bacterial spores. *Isme Journal.* 2016, **10**(11), pp.2633-2642.
- 348. Donnelly, M.L., Fimlaid, K.A. and Shen, A. Characterization of *Clostridium difficile* Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase. *Journal of Bacteriology.* 2016, **198**(11), pp.1694-1707.
- 349. Rose, R., Setlow, B., Monroe, A., Mallozzi, M., Driks, A. and Setlow, P. Comparison of the properties of *Bacillus subtilis* spores made in liquid or on agar plates. *Journal of applied microbiology.* 2007, **103**(3), pp.691-699.
- 350. Gould, G.W. and Dring, G.J. Mechanisms of Spore Heat Resistance. In: Rose, A.H. and Tempest, D.W. eds. *Advances in Microbial Physiology*. Academic Press, 1974, pp.137-164.
- 351. Rao, L., Liao, X. and Setlow, P. Bacillus spore wet heat resistance and evidence for the role of an expanded osmoregulatory spore cortex. *Letters in Applied Microbiology.* 2016, **63**(4), pp.247-253.
- 352. Francis, M.B. and Sorg, J.A. Dipicolinic Acid Release by Germinating *Clostridium difficile* Spores Occurs through a Mechanosensing Mechanism. *Msphere.* 2016, **1**(6), p.13.
- 353. Molva, C. and Baysal, A.H. Effect of sporulation medium on wet-heat resistance and structure of *Alicyclobacillus acidoterrestris* DSM 3922-type strain spores and modeling of the inactivation kinetics in apple juice. *International Journal of Food Microbiology.* 2014, **189**, pp.82-88.

- 354. Semenyuk, E.G., Laning, M.L., Foley, J., Johnston, P.F., Knight, K.L., Gerding, D.N. and Driks, A. Spore Formation and Toxin Production in *Clostridium difficile* Biofilms. *Plos One.* 2014, **9**(1), p.14.
- Setlow, P., Wang, S.W. and Li, Y.Q. Germination of Spores of the Orders Bacillales and Clostridiales. In: Gottesman, S. ed. *Annual Review of Microbiology, Vol 71*. Palo Alto: Annual Reviews, 2017, pp.459-477.
- 356. Wang, S.W., Setlow, P. and Li, Y.Q. Slow Leakage of Ca-Dipicolinic Acid from Individual Bacillus Spores during Initiation of Spore Germination. *Journal of Bacteriology*. 2015, **197**(6), pp.1095-1103.
- 357. Wang, S.W., Faeder, J.R., Setlow, P. and Li, Y.Q. Memory of Germinant Stimuli in Bacterial Spores. *Mbio.* 2015, **6**(6), p.10.
- 358. Qin, J.J., Li, R.Q., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D.R., Li, J.H., Xu, J.M., Li, S.C., Li, D.F., Cao, J.J., Wang, B., Liang, H.Q., Zheng, H.S., Xie, Y.L., Tap, J., Lepage, P., Bertalan, M., Batto, J.M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H.B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H.M., Yu, C., Li, S.T., Jian, M., Zhou, Y., Li, Y.R., Zhang, X.Q., Li, S.G., Qin, N., Yang, H.M., Wang, J., Brunak, S., Dore, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Bork, P., Ehrlich, S.D., Wang, J. and Meta, H.I.T.C. A human gut microbial gene catalogue established by metagenomic sequencing. *Nature*. 2010, **464**(7285), pp.59-U70.
- 359. Gill, S.R., Pop, M., DeBoy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M. and Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. *Science.* 2006, **312**(5778), pp.1355-1359.
- 360. Valdes, A.M., Walter, J., Segal, E. and Spector, T.D. Role of the gut microbiota in nutrition and health. 2018, **361**, p.k2179.
- 361. Bengmark, S. Gut microbiota, immune development and function. *Pharmacol Res.* 2013, **69**(1), pp.87-113.
- 362. Lawley, T.D. and Walker, A.W. Intestinal colonization resistance. *Immunology.* 2013, **138**(1), pp.1-11.
- 363. Gilbert, J.A., Quinn, R.A., Debelius, J., Xu, Z.J.Z., Morton, J., Garg, N., Jansson, J.K., Dorrestein, P.C. and Knight, R. Microbiome-wide association studies link dynamic microbial consortia to disease. *Nature*. 2016, **535**(7610), pp.94-103.
- 364. Puertollano, E., Kolida, S. and Yaqoob, P. Biological significance of short-chain fatty acid metabolism by the intestinal microbiome. *Current Opinion in Clinical Nutrition and Metabolic Care.* 2014, **17**(2), pp.139-144.
- 365. Xiong, W., Abraham, P.E., Li, Z., Pan, C. and Hettich, R.L. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. *Proteomics.* 2015, **15**.
- 366. Verberkmoes, N.C., Russell, A.L., Shah, M., Godzik, A., Rosenquist, M., Halfvarson, J., Lefsrud, M.G., Apajalahti, J., Tysk, C., Hettich, R.L. and Jansson, J.K. Shotgun metaproteomics of the human distal gut microbiota. *Isme Journal.* 2009, **3**(2), pp.179-189.
- 367. Wright, A., Drudy, D., Kyne, L., Brown, K. and Fairweather, N.F. Immunoreactive cell wall proteins of *Clostridium difficile* identified by human sera. *Journal of Medical Microbiology.* 2008, **57**(6), pp.750-756.
- 368. Zeiser, J., Gerhard, R., Just, I. and Pich, A. Substrate Specificity of Clostridial Glucosylating Toxins and Their Function on Colonocytes

Analyzed by Proteomics Techniques. *Journal of Proteome Research.* 2013, **12**(4), pp.1604-1618.

- Jain, S., Graham, C., Graham, R.L.J., McMullan, G. and Ternan, N.G. Quantitative Proteomic Analysis of the Heat Stress Response in *Clostridium difficile* Strain 630. *Journal of Proteome Research.* 2011, 10(9), pp.3880-3890.
- 370. Chen, J.W., Scaria, J., Mao, C.H., Sobra, B., Zhang, S., Lawley, T. and Chang, Y.F. Proteomic Comparison of Historic and Recently Emerged Hypervirulent *Clostridium difficile* Strains. *Journal of Proteome Research*. 2013, **12**(3), pp.1151-1161.
- 371. Otto, A., Maass, S., Lassek, C., Becher, D., Hecker, M., Riedel, K. and Sievers, S. The protein inventory of *Clostridium difficile* grown in complex and minimal medium. *Proteomics Clinical Applications.* 2016, **10**(9-10), pp.1068-1072.
- 372. Gauss, C., Kalkum, M., Lowe, M., Lehrach, H. and Klose, J. Analysis of the mouse proteome. (I) - Brain proteins: Separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation. *Electrophoresis.* 1999, **20**(3), pp.575-600.
- 373. Resing, K.A. and Ahn, N.G. Proteomics strategies for protein identification. *FEBS Letters.* 2005, **579**(4), pp.885-889.
- 374. Wehr, T. Top-down versus bottom-up approaches in proteomics. *Lc Gc North America.* 2006, **24**(9), pp.1004-1010.
- 375. Loo, J.A., Krull, I.S. and Rathore, A. The Current and Future State of Top-Down Protein Sequencing by ESI-Tandem Mass Spectrometry. *Lc Gc North America.* 2016, **34**(7), pp.492-499.
- 376. Zhang, Y.Y., Fonslow, B.R., Shan, B., Baek, M.C. and Yates, J.R. Protein Analysis by Shotgun/Bottom-up Proteomics. *Chemical Reviews*. 2013, **113**(4), pp.2343-2394.
- 377. Zougman, A., Selby, P.J. and Banks, R.E. Suspension trapping (STrap) sample preparation method for bottom-up proteomics analysis. *Proteomics.* 2014, **14**(9), pp.1006-1000.
- 378. Sielaff, M., Kuharev, J., Bohn, T., Hahlbrock, J., Bopp, T., Tenzer, S. and Distler, U. Evaluation of FASP, SP3, and iST Protocols for Proteomic Sample Preparation in the Low Microgram Range. *Journal of Proteome Research.* 2017.
- 379. Wisniewski, J.R., Zougman, A., Nagaraj, N. and Mann, M. Universal sample preparation method for proteome analysis. *Nature Methods.* 2009, **6**(5), pp.359-U360.
- 380. Potriquet, J., Laohaviroj, M., Bethony, J.M. and Mulvenna, J. A modified FASP protocol for high-throughput preparation of protein samples for mass spectrometry. *Plos One.* 2017, **12**(7), p.e0175967.
- Erde, J., Loo, R.R.O. and Loo, J.A. Enhanced FASP (eFASP) to Increase Proteome Coverage and Sample Recovery for Quantitative Proteomic Experiments. *Journal of Proteome Research.* 2014, **13**(4), pp.1885-1895.
- 382. Kulak, N.A., Pichler, G., Paron, I., Nagaraj, N. and Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. *Nat Meth.* 2014, **11**(3), pp.319-324.
- Cristobal, A., Marino, F., Post, H., van den Toorn, H.W.P., Mohammed, S. and Heck, A.J.R. Toward an Optimized Workflow for Middle-Down Proteomics. *Analytical chemistry*. 2017, **89**(6), pp.3318-3325.

- 384. Aebersold, R. and Mann, M. Mass spectrometry-based proteomics. *Nature.* 2003, **422**(6928), pp.198-207.
- 385. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F. and Whitehouse, C.M. Electrospray ionization for mass spectrometry of large biomolecules. *Science.* 1989, **246**(4926), pp.64-71.
- Karas, M. and Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. *Analytical chemistry*. 1988, 60(20), pp.2299-2301.
- Singhal, N., Kumar, M., Kanaujia, P.K. and Virdi, J.S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. *Frontiers in Microbiology*. 2015, 6, p.791.
- Zubarev, R.A. and Makarov, A. Orbitrap Mass Spectrometry. Analytical chemistry. 2013, 85(11), pp.5288-5296.
- 389. Lee, P.Y., Chin, S.F., Neoh, H.M. and Jamal, R. Metaproteomic analysis of human gut microbiota: where are we heading? *Journal of Biomedical Science.* 2017, **24**, p.8.
- 390. Tanca, A., Palomba, A., Fraumene, C., Pagnozzi, D., Manghina, V., Deligios, M., Muth, T., Rapp, E., Martens, L., Addis, M.F. and Uzzau, S. The impact of sequence database choice on metaproteomic results in gut microbiota studies. *Microbiome.* 2016, **4**(1), p.51.
- 391. Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H.Z., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O'Donovan, C., Redaschi, N. and Yeh, L.S.L. UniProt: the Universal Protein knowledgebase. *Nucleic Acids Research.* 2004, **32**, pp.D115-D119.
- 392. Yates, A. and Akanni, W. Ensembl 2016. 2016, 44(D1), pp.D710-716.
- 393. Pruitt, K.D., Tatusova, T. and Maglott, D.R. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. *Nucleic Acids Res.* 2005, **33**(Database issue), pp.D501-504.
- 394. Suzek, B.E., Huang, H., McGarvey, P., Mazumder, R. and Wu, C.H. UniRef: comprehensive and non-redundant UniProt reference clusters. *Bioinformatics.* 2007, **23**(10), pp.1282-1288.
- 395. Muth, T., Renard, B.Y. and Martens, L. Metaproteomic data analysis at a glance: advances in computational microbial community proteomics. *Expert Review of Proteomics.* 2016, **13**(8), pp.757-769.
- 396. Suzek, B.E., Wang, Y.Q., Huang, H.Z., McGarvey, P.B., Wu, C.H. and UniProt, C. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. *Bioinformatics*. 2015, **31**(6), pp.926-932.
- 397. Eng, J.K., Mccormack, A.L. and Yates, J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. *J Amer Soc Mass Spec.* 1994, **5**.
- Fenyö, D. and Beavis, R.C. A Method for Assessing the Statistical Significance of Mass Spectrometry-Based Protein Identifications Using General Scoring Schemes. *Analytical chemistry.* 2003, **75**(4), pp.768-774.
- 399. Verheggen, K., Ræder, H., Berven, F.S., Martens, L., Barsnes, H. and Vaudel, M. Anatomy and evolution of database search engines—a central component of mass spectrometry based proteomic workflows. *Mass Spectrom Rev. 2017 Sep 13. doi: 10.1002/mas.21543.*

- 400. Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V. and Mann, M. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. *Journal of Proteome Research.* 2011, **10**(4), pp.1794-1805.
- 401. Palomba, A. *Development of new technologies to study gut microbiomes*. PhD thesis, University of Sassari.
- 402. Muth, T., Benndorf, D., Reichl, U., Rapp, E. and Martens, L. Searching for a needle in a stack of needles: challenges in metaproteomics data analysis. *Molecular Biosystems.* 2013, **9**(4), pp.578-585.
- 403. Bradshaw, R.A., Burlingame, A.L., Carr, S. and Aebersold, R. Reporting protein identification data: the next generation of guidelines. *Mol Cell Proteomics.* 2006, **5**(5), pp.787-788.
- 404. Chilton, C.H., Crowther, G.S., Freeman, J., Todhunter, S.L., Nicholson, S., Longshaw, C.M. and Wilcox, M.H. Successful treatment of simulated *Clostridium difficile* infection in a human gut model by fidaxomicin first line and after vancomycin or metronidazole failure. *Journal of Antimicrobial Chemotherapy.* 2014, **69**(2), pp.451-462.
- 405. Sankar, S.A., Lagier, J.C., Pontarotti, P., Raoult, D. and Fournier, P.E. The human gut microbiome, a taxonomic conundrum. *Systematic and Applied Microbiology*. 2015, **38**(4), pp.276-286.
- 406. Walker, A.W., Duncan, S.H., Louis, P. and Flint, H.J. Phylogeny, culturing, and metagenomics of the human gut microbiota. *Trends Microbiol.* 2014, **22**(5), pp.267-274.
- 407. Browne, H.P., Forster, S.C., Anonye, B.O., Kumar, N., Neville, B.A., Stares, M.D., Goulding, D. and Lawley, T.D. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. *Nature.* 2016, **533**(7604), pp.543-546.
- 408. Hidalgo-Cantabrana, C., Moro-García, M.A., Blanco-Míguez, A., Fdez-Riverola, F., Lourenço, A., Alonso-Arias, R. and Sánchez, B. In Silico Screening of the Human Gut Metaproteome Identifies Th17-Promoting Peptides Encrypted in Proteins of Commensal Bacteria. *Frontiers in Microbiology.* 2017, **8**, p.1726.
- 409. Blanco-Miguez, A., Gutierrez-Jacome, A., Fdez-Riverola, F., Lourenco, A. and Sanchez, B. MAHMI database: a comprehensive MetaHit-based resource for the study of the mechanism of action of the human microbiota. *Database (Oxford).* 2017, **2017**.
- 410. Macfarlane, G.T., Macfarlane, S. and Gibson, G.R. Validation of a Three-Stage Compound Continuous Culture System for Investigating the Effect of Retention Time on the Ecology and Metabolism of Bacteria in the Human Colon. *Microbial Ecology.* 1998, **35**(2), pp.180-187.
- 411. Chevalier, F. Standard Dyes for Total Protein Staining in Gel-Based Proteomic Analysis. *Materials.* 2010, **3**(10), pp.4784-4792.
- 412. Stoscheck, C.M. Quantitation of protein. *Methods Enzymol.* 1990, **182**, pp.50-68.
- Tanca, A., Palomba, A., Deligios, M., Cubeddu, T., Fraumene, C., Biosa, G., Pagnozzi, D., Addis, M.F. and Uzzau, S. Evaluating the Impact of Different Sequence Databases on Metaproteome Analysis: Insights from a Lab-Assembled Microbial Mixture. *Plos One.* 2013, 8(12), p.14.
- 414. Ottman, N., Smidt, H., de Vos, W.M. and Belzer, C. The function of our microbiota: who is out there and what do they do? *Frontiers in Cellular and Infection Microbiology.* 2012, **2**, p.11.

- 415. Obadia, B., Güvener, Z.T., Zhang, V., Ceja-Navarro, J.A., Brodie, E.L., Ja, W.W. and Ludington, W.B. Probabilistic Invasion Underlies Natural Gut Microbiome Stability. *Current Biology.* 2017, **27**(13), pp.1999-2006.e1998.
- 416. Lazzaro, B.P. and Fox, G.M. Host–Microbe Interactions: Winning the Colonization Lottery. *Current Biology.* 2017, **27**(13), pp.R642-R644.
- 417. Vega, N.M. and Gore, J. Stochastic assembly produces heterogeneous communities in the *Caenorhabditis elegans* intestine. *Plos Biology.* 2017, **15**(3), p.e2000633.
- 418. Moubareck, C., Gavini, F., Vaugien, L., Butel, M.J. and Doucet-Populaire, F. Antimicrobial susceptibility of bifidobacteria. *Journal of Antimicrobial Chemotherapy.* 2005, **55**(1), pp.38-44.
- 419. Smieja, M. Current indications for the use of clindamycin: A critical review. *The Canadian journal of infectious diseases = Journal canadien des maladies infectieuses.* 1998, **9**(1), pp.22-28.
- 420. Buffie, C.G., Jarchum, I., Equinda, M., Lipuma, L., Gobourne, A., Viale, A., Ubeda, C., Xavier, J. and Pamer, E.G. Profound Alterations of Intestinal Microbiota following a Single Dose of Clindamycin Results in Sustained Susceptibility to *Clostridium difficile*-Induced Colitis. *Infection and Immunity*. 2012, **80**(1), pp.62-73.
- 421. Sydenham, T.V., Jensen, B.H., Petersen, A.M., Krogfelt, K.A. and Justesen, U.S. Antimicrobial resistance in the *Bacteroides fragilis* group in faecal microbiota from healthy Danish children. *International Journal of Antimicrobial Agents*. 2017, **49**(5), pp.573-578.
- 422. Wang, G., Li, E., Mesbah, Z., Zhao, L., Kozlov, A. and Antharam, V. Alterations in the Gut Microbiome in Recurrent *Clostridium difficile* Infection. *Open Forum Infectious Diseases.* 2014, **1**(Suppl 1), pp.S1-S1.
- Kelly, C.R., Kahn, S., Kashyap, P., Laine, L., Rubin, D., Atreja, A., Moore, T. and Wu, G. Update on Fecal Microbiota Transplantation 2015: Indications, Methodologies, Mechanisms, and Outlook. *Gastroenterology.* 2015, **149**(1), pp.223-237.
- 424. Baktash, A., Terveer, E.M., Zwittink, R.D., Hornung, B.V.H., Corver, J., Kuijper, E.J. and Smits, W.K. Mechanistic Insights in the Success of Fecal Microbiota Transplants for the Treatment of *Clostridium difficile* Infections. *Frontiers in Microbiology.* 2018, **9**(1242).
- 425. Seekatz, A.M., Theriot, C.M., Rao, K., Chang, Y.-M., Freeman, A.E., Kao, J.Y. and Young, V.B. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent *Clostridium difficile* infection. *Anaerobe.* 2018.
- 426. Brown, J.R., Flemer, B., Joyce, S.A., Zulquernain, A., Sheehan, D., Shanahan, F. and O'Toole, P.W. Changes in microbiota composition, bile and fatty acid metabolism, in successful faecal microbiota transplantation for *Clostridioides difficile* infection. *BMC Gastroenterol.* 2018, **18**(1), p.131.
- 427. Rea, M.C., Sit, C.S., Clayton, E., O'Connor, P.M., Whittal, R.M., Zheng, J., Vederas, J.C., Ross, R.P. and Hill, C. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against *Clostridium difficile*. *Proceedings of the National Academy of Sciences of the United States of America*. 2010, **107**(20), pp.9352-9357.
- 428. Kolmeder, C.A., Been, M.M., Nikkilä, J., Ritamo, I., Mättö, J., Valmu, L., Salojärvi, J., Palva, A., Salonen, A. and Vos, W.M. Comparative metaproteomics and diversity analysis of human intestinal microbiota

testifies for its temporal stability and expression of core functions. *Plos One.* 2012, **7**.

- 429. Pérez-Cobas, A.E., Artacho, A., Ott, S.J., Moya, A., Gosalbes, M.J. and Latorre, A. Structural and functional changes in the gut microbiota associated to *Clostridium difficile* infection. *Frontiers in Microbiology*. 2014, **5**(335).
- 430. Tanca, A., Palomba, A., Pisanu, S., Deligios, M., Fraumene, C., Manghina, V., Pagnozzi, D., Addis, M.F. and Uzzau, S. A straightforward and efficient analytical pipeline for metaproteome characterization. *Microbiome.* 2014, **2**, p.16.
- 431. Kaiser, B.L.D., Wunschel, D.S., Sydor, M.A., Warner, M.G., Wahl, K.L. and Hutchison, J.R. Improved proteomic analysis following trichloroacetic acid extraction of *Bacillus anthracis* spore proteins. *J Microbiol Methods.* 2015, **118**, pp.18-24.
- 432. Wu, J., Zhu, J.H., Yin, H.D., Liu, X.H., An, M.R., Pudlo, N.A., Martens, E.C., Chen, G.Y. and Lubman, D.M. Development of an Integrated Pipeline for Profiling Microbial Proteins from Mouse Fecal Samples by LC-MS/MS. *Journal of Proteome Research.* 2016, **15**(10), pp.3635-3642.
- 433. EMBL-EBI. UniProtKB/TrEMBL Protein Database Statistics. 2017.
- 434. EMBL-EBI. UniProtKB/SwissProt Protein Database Statistics. 2017.
- 435. Zhang, X., Ning, Z., Mayne, J., Moore, J.I., Li, J., Butcher, J., Deeke, S.A., Chen, R., Chiang, C.-K., Wen, M., Mack, D., Stintzi, A. and Figeys, D. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota. *Microbiome.* 2016, 4.
- 436. Cornely, O.A., Miller, M.A., Louie, T.J., Crook, D.W. and Gorbach, S.L. Treatment of first recurrence of *Clostridium difficile* infection: fidaxomicin versus vancomycin. *Clin Infect Dis.* 2012, **55 Suppl 2**, pp.S154-161.
- Deng, H., Yang, S., Zhang, Y., Qian, K., Zhang, Z., Liu, Y., Wang, Y., Bai, Y., Fan, H., Zhao, X. and Zhi, F. *Bacteroides fragilis* Prevents *Clostridium difficile* Infection in a Mouse Model by Restoring Gut Barrier and Microbiome Regulation. *Frontiers in Microbiology.* 2018, **9**, pp.2976-2976.
- 438. Winston, J.A. and Theriot, C.M. Impact of microbial derived secondary bile acids on colonization resistance against *Clostridium difficile* in the gastrointestinal tract. *Anaerobe.* 2016, **41**, pp.44-50.
Appendix A

A.1 Research Study Protocol - Substudy

Short Title: Does treatment delay affect symptom duration in CDI?

Full Title: Does delay in treatment initiation have an effect on duration of diarrhoea or future recurrence risk in *Clostridium difficile* infection (CDI)?

Version 1.2. 2/1/2018

Study Personnel:

Principal Investigator

Mr Daniel Pickering

PhD Student

Department of Microbiology

Old Medical School

Thoresby Place

Leeds, LS1 3EX

Tel: 01133928665

E-mail: umdsp@leeds.ac.uk

Educational Supervisors;

Professor Mark Wilcox Consultant/Clinical Lead for Microbiology (Leeds Teaching Hospitals NHS Trust) Professor of Medical Microbiology (University of Leeds) Lead on *C. difficile* infection (Public Health England) Department of Microbiology Old Medical School Thoresby Place Leeds, LS1 3EX Tel: 0113 3926818 E-mail: mark.wilcox@nhs.net Dr Caroline Chilton Academic Fellow University of Leeds Department of Microbiology Old Medical School Thoresby Place Leeds, LS1 3EX E-mail: c.h.chilton@leeds.ac.uk

Dr Jonathan Sandoe Consultant Medical Microbiologist Associate Professor of Medical Microbiology (University of Leeds) Department of Microbiology Old Medical School Thoresby Place Leeds, LS1 3EX Tel: 0113 3922893 E-mail: jonathan.sandoe@nhs.net

Statistician:

Professor Robert West Worsley Building Leeds Institute of Health Sciences Faculty of Medicine and Health University of Leeds Tel: 0113 343 2735 Email; R.M.West@leeds.ac.uk

Study summary:

Introduction: Clostridium difficile infection (CDI) is treated with three antibiotics; metronidazole, vancomycin or fidaxomicin. The most commonly reported symptom in CDI is diarrhoea (≥3 unformed stools/ day). Delays in treatment initiation can occur for a number of reasons. In mild cases of CDI, delays in diagnostic testing can lead to a delay in the patient receiving treatment. Although a small number of studies have been carried out assessing the reasons for treatment delay, no studies to date have assessed the impact of treatment delay on the duration of symptoms in patients, or the risk of future recurrence. This study aims to investigate the effect of treatment delay on two outcomes; symptom duration and disease recurrence.

<u>Methods:</u> This is a retrospective, non-interventional study performing analyses on data already collected as part of a previously ethically approved study (REC reference number 14/NW/1398, Clinicaltrials.gov identifier NCT02461901). The primary endpoint is the duration of symptoms, measured in days previous to treatment. The secondary endpoints are mortality (up to 30 days following treatment initiation) and recurrence of infection (up to 28 days after treatment completion). Using the database, Kaplan-Meier log-rank tests will be performed and a Cox regression model using the following variables will be analysed; patient age; sex, duration of symptoms prior to treatment initiation, disease severity score, modified comorbidity score and antimicrobial agents used for therapy. The database will be anonymised to the principal investigator by removal of patient identifiable information.

236

Introduction:

Clostridium difficile is a pathogen that causes potentially life-threatening diarrhoea. CDI can result in pseudomembranous colitis and subsequent toxic megacolon, a surgical emergency that carries a high risk of mortality (10). Varying morality rates have been reported for toxic megacolon (38-80%)(10). *C. difficile* is still a major burden on the healthcare system, there were 12,480 cases reported in the UK between April 2016 and March 2017(24). In addition, a significant proportion of patients (~25%)(55) who are successfully treated for an initial episode of CDI will have at least one recurrent episode. A small number of patients will suffer from multiple recurrences, leading to increased hospitalisation and antibiotic administration.

The clinical symptoms of CDI are mediated through the action of secreted bacterial toxins (43). Toxins act on the mucosal epithelium of the gastrointestinal tract causing oedema, inflammation and diarrhoea, and in severe cases, colonic perforation and death (42). Severe dehydration can also lead to hypokalaemia, hypotension and metabolic acidosis. We hypothesise that treating CDI at an earlier stage of infection could reduce the duration of symptoms, decrease mortality and the risk of recurrence.

Several studies have attempted to outline the reasons for delay in treating patients with CDI, but none have looked at the impact this delay might have on patient outcomes (137, 232, 233).

The primary aim of this study is to investigate the effect of treatment delay on duration of diarrhoea. The secondary aims are to investigate its impact on recurrence of disease and mortality.

Hypotheses:

- Delayed treatment initiation results in an increased time to resolution of diarrhoea in CDI.
- Delayed treatment initiation in CDI results in an increased risk of future recurrent disease.

Study aim and objectives:

<u>Aims:</u>

• To determine the effect of treatment delay on symptom duration and recurrence rates in CDI.

Objectives:

- To evaluate how time to treatment (in days) impacts on the duration of diarrhoea in patients with CDI.
- To evaluate how time to treatment (in days) impacts on the future risk of recurrence in patients with CDI.

Study end points:

Primary endpoint:

 The duration of symptoms, measured as the time from initiation of therapy to resolution of diarrhoea. Resolution of diarrhea was defined as <3 stools per day (Bristol stool chart T5-T7).

Secondary endpoints:

- Mortality (all cause, within the period from initiation of therapy to 30 days following therapy).
- Recurrence of CDI, up to day 28 after completion of treatment (defined as recurrence of diarrhoea with further toxin positive stool sample).

Study design:

A retrospective, observational, non-interventional study.

Study locations:

. Data from the original study (REC reference number 14/NW/1398, Clinicaltrials.gov identifier NCT02461901) was generated from the following centres;

Three UK teaching hospital centres:

- Leeds Teaching Hospitals NHS Trust (LTHT)
- Bradford Royal Infirmary
- St George's Healthcare NHS Trust (SGHT)

The analysis of this data for the current study will be carried out at the University of Leeds.

Ethics:

This study will use patient data already generated from a previous study;REC reference number 14/NW/1398, Clinicaltrials.gov identifier NCT02461901. The original database is pseudonymised, using patient study identifiers, and is under the custody of the project coordinator (Mrs Kerrie Davies). All patient identifiable information will be removed from the dataset, by Kerrie Davies, before supply for this current study. Therefore the dataset for this study will be fully anonymised to the principal investigator. Due to the retrospective nature of this study, no additional patient recruitment is necessary and no additional patient data will be collected.

Patient identification, inclusion and exclusion criteria:

Identification of participants:

The nature of this study means that no new patient recruitment is necessary; the study data have already been generated from the previous study (n = 254).

(The recruitment process of the original study NCT02461901 was;

Research nurses at each centre used the microbiology laboratory information system to identify positive *C. difficile* toxin results (tested by cell cytotoxin assay) in routine stool samples from in-patients at their hospital(s) who were aged \geq 18 years old.)

Inclusion criteria:

All participants with a full set of relevant study data from the original study will be included (NCT02461901).

(The inclusion criteria for the original study (NCT02461901) are outlined below;

- The presence of diarrhoea, defined as three or more episodes of unformed stools (Bristol stool type 5-7) in 24 hours at any point in the last 7 days
- Prescribed CDI-specific treatment (fidaxomicin, oral vancomycin or metronidazole))

Exclusion criteria:

Nil – there are no exclusion criteria for this study.

(Exclusion criteria for the original study (NCT02461901) were as follows;

- The patient's clinical care team believes it would be inappropriate to include him or her, e.g. to avoid disturbing a terminally ill patient
- In a patient on vancomycin or metronidazole, treatment with fidaxomicin within the previous 3 months (given evidence that fidaxomicin may persist in the gut after treatment (248)
- In a patient on fidaxomicin, treatment with greater than 24 hours of metronidazole or vancomycin immediately prior to starting fidaxomicin

In the skin swab and faecal sample sub-study, patients unable/unwilling to give informed consent and with no opportunity to obtain consultee approval
In the skin swab and faecal sample sub-study, patients who are non-English speakers (unless a member of hospital staff is available to act as a translator)

Patient recruitment and consent:

Details of the patient recruitment in the original study can be found in the adjoined protocol for the original study NCT0246190 (Appendix A).

No additional recruitment or consent is planned for the present study, which is justified in the following section. At the time of recruitment, patients did not consent for their data to be used within the remits of the current study. As it would not be practicable for retrospective consent to be taken for the purposes of the current study, and the Declaration of Helsinki (statement 32) states that ethical approval may be considered in "exceptional situations where consent would be impossible or impracticable to obtain for such research", we hope to be able to undertake this additional analysis without additional consent. Additionally, this study does not require the generation of any new data and poses no significant risk of harm to patients who were part of the original study.

Patient withdrawal from the study:

All patient data generated from the original study will be included in answering the central research questions in this study. Patients will therefore be unable to withdraw.

In the original study (NCT02461901) for patients who withdrew for any reason, data collected up to the point of withdrawal was included in the final analysis. If an enrolled patient was switched from either metronidazole or vancomycinto fidaxomicin, after receiving more than 24 hours of either metronidazole or vancomycin he/she was withdrawn from the study, but data collected to that point was be included in the analysis. Enrolled patients who received any fidaxomicin before being switched to metronidazole or vancomycin, were excluded. Patients who were switched between metronidazole and vancomycin, or simultaneous prescribed both agents, remained in the study.

Sample size calculation:

The sample size is opportunistic, based on the number of patients recruited to the original study NCT0246190. A post-hoc analysis will be undertaken to determine the

statistical power of the estimates. It is not possible to interrogate the data before ethical approval is obtained, but a guide to the power for statistical analysis is guided by the following consideration. The patients might be split by delay into two groups: those treated within 3 days and those with a delay of more than 3 days. We anticipate around 76 patient (30%) in the first group and 178 in the second. The duration of symptoms will have a skewed distribution which might be transformed to normality (perhaps a log transformation). In that case the sample size of 76 + 178 provides 80% power to detect a standardised difference of 0.386 and 90% power a difference of 0.446. The power will be reduced a little by adjustment for confounders but increase by the use of survival analysis which can take the treatment delay to be a continuous variable. Overall therefore we anticipate that this study should have sufficient power to provide robust clinical findings for appropriate effect sizes.

Study duration:

The study will be carried out over the remaining duration of the principal investigator's Doctor of Philosophy degree (1/12/2017 - 01/10/2019).

Data collection:

No additional data collection will be carried out in this study. Statistical analysis will be carried out on an already existing database from a previous ethically approved study NCT02461901. The original database is pseudonymised, using patient study identifiers, and is under the custody of the project coordinator (Mrs Kerrie Davies). All patient identifiable information has been removed from the dataset, by Kerrie Davies, before supply for this current study. The principal investigator does not have access to the link-back information tying a patient to their study identifier. The data will therefore be anonymised to the principal investigator.

Data storage and transfer:

Patient confidentiality will be preserved throughout the study; the database from the original study will be anonymised to the principal investigator. There will be no way for the principal investigator to access any patient information in the original database. The anonymised database will be kept on a secure password protected server at the University of Leeds. Data will be transferred to the statistician for analysis on an encrypted USB memory stick.

Data generated for the present study will be stored for the remaining duration of the principal investigator's Doctor of Philosophy degree (1/10/2019). After this date data will no longer be available to the principal investigator.

Statistical analysis:

A survival analysis will be used to measure the effect of duration of symptoms prior to initiation of therapy (days) on duration of symptoms, mortality and relapse. Analyses to be included are Kaplan-Meier with log-rank tests and either a Cox regression model (should a proportional hazards assumption be valid) or an accelerated time model. The following potentially confounding variables will be included in the model; age, sex, CDI severity score, comorbidity score, treatment arm (vancomycin/metronidazole or fidaxomicin) and site.

Project Management:

Mr Daniel Pickering will be the Principal investigator for the study. Throughout this study he will be under the supervision of Professor Mark Wilcox, Mrs Kerrie Davies and Dr Jonathan Sandoe, all of whom have previously been involved in managing numerous, large national and international research studies.

Reporting/Publication:

The study results will be submitted for publication as oral or poster presentations at international conferences of microbiology/infectious diseases and then in peer reviewed scientific journals.

Finance:

The project is being funded by the University of Leeds as part of a PhD degree.

The original study was funded by Astellas Pharma Europe Ltd; permission has been granted for the data to be used for the purposes of the current study.

A.2 Research Study Protocol – Original Study

Short Title: Does fidaxomicin therapy reduce spread of Clostridium difficile?

Full Title: Does using fidaxomicinto treat *Clostridium difficile* infection (CDI) reduce the recovery of *C. difficile* from patients' faeces, skin and their immediate environment, compared to treatment with vancomycin or metronidazole?

Version 10.4, 26/09/2017

Study Personnel:

Chief Investigator (and Principle Investigator at Leeds Teaching Hospitals NHS Trust)

Professor Mark Wilcox Consultant/Clinical Lead for Microbiology (Leeds Teaching Hospitals NHS Trust) Professor of Medical Microbiology (University of Leeds) Lead on *C. difficile* infection (Public Health England) Department of Microbiology Old Medical School Thoresby Place Leeds, LS1 3EX Tel: 0113 3926818 E-mail: mark.wilcox@nhs.net

Principle Investigator (St George's Healthcare NHS Trust):

Dr Timothy Planche Senior Lecturer and Honorary Consultant/Clinical Lead for Medical Microbiology Department of Microbiology St George's Healthcare NHS Trust Blackshaw Road Tooting London, SW17 0QT Tel: 020 8725 2683 E-mail: <u>tplanche@</u>sgul_ac.uk

Principle Investigator (Bradford Teaching Hospitals NHS Foundation Trust):

Dr Phil Stanley

Consultant in Infectious Diseases, Director of Infection Prevention and Control

Bradford Royal Infirmary,

Duckworth Lane,

Bradford, BD9 6RJ

Tel: 01274 364049

E-mail: philip.stanley@bthft.nhs.uk

Principle Investigator (Guy's and St Thomas' NHS Foundation Trust):

Dr Simon Goldenberg Consultant Medical Microbiologist Honorary Senior Lecturer (King's College London) St Thomas' Hospital Westminster Bridge Road London, SE1 7EH Tel: 020 7188 3152 Email: simon.goldenberg@gstt.nhs.uk

Co-investigator (Leeds Teaching Hospitals NHS Trust):

Dr Jonathan Sandoe Consultant Medical Microbiologist Associate Professor of Medical Microbiology (University of Leeds) Department of Microbiology Old Medical School Thoresby Place Leeds, LS1 3EX Tel: 0113 3922893 E-mail: jonathan.sandoe@nhs.net

Study Co-ordinator (until 31/08/2016):

- Dr Damian Mawer
- Research Fellow
- Department of Microbiology
- Old Medical School
- Thoresby Place
- Leeds, LS1 3EX
- Tel: 0113 3926818
- E-mail: damian.mawer@nhs.net

Study Co-ordinator (from 01/09/2016):

Mrs Kerrie Davies

Clinical Scientist

Visiting Research Fellow (University of Leeds)

Department of Microbiology

Old Medical School

Thoresby Place

Leeds, LS1 3EX

Tel: 0113 3928663

E-mail: kerrie.davies@nhs.net

Statisticians:

Dr Sarah Walker

Oxford Biomedical Research Centre

Microbiology, Level 6

John Radcliffe Hospital

Headley Way

Oxford, OX3 9DU

Tel: 01865 851180

Email: sarah.walker@ndm.ox.ac.uk

Study summary:

Introduction: Current infection control measures for *Clostridium difficile* infection (CDI) focus on the isolation of symptomatic patients, along with environmental decontamination, to prevent secondary cases through the ingestion of spores by vulnerable individuals. Despite these efforts, onward transmission is still seen. Clinical and *in vitro* studies have shown that fidaxomicin produces a greater and more prolonged reduction in *C. difficile* spore counts, in the faeces of patients with CDI, than vancomycin. This study aims to investigate whether there is also a difference in contamination of the surrounding environment and on the skin of CDI patients treated with fidaxomicin compared to vancomycin or metronidazole, as this could influence the risk of onward transmission.

Methods: This is a prospective, observational study to be carried out in two teaching hospital NHS trusts. The co-primary endpoints are the presence of environmental and skin contamination with C. difficile spores during and following treatment for CDI. Secondary endpoints are C. difficile spore counts in patient faeces and absolute spore counts from skin swabs. As no consent is required for environmental screening, all hospital patients with CDI (aged ≥16) during the study period will have swabs of their environment taken following diagnosis, every 2-3 days during treatment, at the end of treatment and on days 7, 14 and 28 post treatment. To achieve appropriate statistical power, informed consent (or consultee approval in those lacking capacity) needs to be obtained from 100 hospital patients with CDI (comprising 40 receiving fidaxomicin and 60 receiving vancomycin or metronidazole) for skin swab and faecal sampling across the two study centres. Skin swabbing will take place at the same time as environmental sampling; stool samples will be collected as close as possible to these dates. All sampling will cease early if the patient is discharged. Data on relevant demographic factors, comorbidities and clinical markers of severe CDI will be collected from medical records.

The flow-diagram in Appendix 1 further outlines the study method.

250

Introduction:

Clostridium difficile is a spore forming Gram positive bacillus. Its spores are resistant to many disinfectants and can survive for prolonged periods in the environment ¹. It is estimated that patients with *C. difficile* infection (CDI) excrete between 1×10^4 and 1×10^7 of *C. difficile* per gram of faeces ². Numerous studies have shown that the environment around CDI cases is frequently contaminated with spores ³⁻⁵, in part due to aerosolisation of the organism during each episode of diarrhoea ⁶. This contamination may be sustained by the fact that patients often continue to shed spores for a considerable time, even after their symptoms have resolved ⁷. It is contact with these spores in the environment that is the likely source for secondary cases of CDI in hospital settings ⁸. For these reasons, prompt isolation of symptomatic cases and adequate environmental decontamination are two central recommendations for preventing onward transmission of *C. difficile* ^{9,10}.

In 2011/12, the American and European regulatory authorities approved the use of a novel macrocyclic antibiotic, fidaxomicin, for the treatment of CDI ^{11,12}. This followed the publication of two large, phase 3 clinical trials, which showed that fidaxomicin was non-inferior to vancomycin in the initial clinical cure of CDI ^{13,14}. Of note, there were significantly fewer recurrences among patients receiving fidaxomicin (26% for vancomycin vs 14% for fidaxomicin). This is an important finding as treatment with metronidazole or vancomycin is associated with a recurrence rate of approximately 20% ¹⁵.

The mechanism by which fidaxomicin prevents recurrences of CDI is unclear, but could be related to one or more of the following. *In vitro*, fidaxomicin has been shown to inhibit the outgrowth of *C. difficile* spores, possibly due to its ability to adhere to the spore coat ¹⁶. In an artificial gut model of CDI, fidaxomicin achieved an intraluminal concentration that was well above the minimum inhibitory concentration for *C. difficile* and these levels were sustained for at least three weeks after it is instilled, perhaps due to sequestration within biofilms ¹². In a Phase II clinical study, fidaxomicin treated patients had a significantly lower mean spore count at day 11-18 post treatment, compared to those who had received vancomycin (3.1 log₁₀ CFU/g of faeces versus 5.4 log₁₀ CFU/g, respectively) ¹⁷. This study also showed that the drug is relatively sparing of other gut microflora ¹⁷.

251

Given that fidaxomicin reduces spore counts in the faeces of treated patients and inhibits spore outgrowth, it can be postulated that there may be less contamination with *C. difficile* on the skin of patients and in the surrounding environment, both during treatment and in the period immediately afterwards, when patients often continue to shed spores. If it is the case, treatment with fidaxomicin may help reduce onward transmission of *C. difficile* to other patients.

Hypotheses:

1. Treatment of CDI with fidaxomicin results in lower rates of recovery of *C. difficile* from patient's faeces, skin and the immediate environment, compared to treatment with either vancomycin or metronidazole.

Study aim and objectives:

<u>Aims:</u>

• To determine if there is a difference in *C. difficile* shedding and contamination of the skin and immediate environment, between CDI patients treated with fidaxomicin and those treated with either vancomycin or metronidazole.

Objectives:

- To measure rates of contamination with *C*.*difficile* spores in the immediate environment around CDI patients, both during and after treatment with fidaxomicin, vancomycin or metronidazole.
- To measure rates and absolute levels of contamination with *C. difficile* spores on the skin of CDI patients both during and after treatment with fidaxomicin, vancomycin or metronidazole.
- To measure the concentration of *C. difficile* spores in the faeces of CDI patients both during and after treatment with fidaxomicin, vancomycin or metronidazole
- To measure the concentration of fidaxomicin, vancomycin and metronidazole in faecal samples during and after treatment
- For all of these parameters, to investigate how they change with time during and after CDI treatment

Study end points:

Co-Primary endpoints:

- The presence of environmental contamination with *C. difficile* spores during and following treatment with fidaxomicin, vancomycin or metronidazole.
- The presence of skin contamination with *C. difficile* spores during and following treatment with fidaxomicin, vancomycin or metronidazole.

Secondary endpoints:

- *C.difficile* spore counts in the faeces of CDI patients before, during and after treatment with fidaxomicin, vancomycin or metronidazole.
- Total *C. difficile* spore counts from skin swab samples during and following treatment with fidaxomicin, vancomycin or metronidazole.

Study design:

A prospective, observational study.

Study locations:

Two UK teaching hospital centres:

- Leeds Teaching Hospitals NHS Trust (LTHT)
- St George's Healthcare NHS Trust (SGHT)

Study blinding:

Laboratory staff will be blinded to the CDI-specific drug treatment that each patient is on.

Patient identification, inclusion and exclusion criteria:

Identification of potential subjects:

Research nurses at each centre will use the microbiology laboratory information system to identify positive *C. difficile* toxin results (tested by cell cytotoxin assay) in routine stool samples from in-patients at their hospital(s) who are aged \geq 18 years old.

Inclusion criteria:

Study staff will then confirm (using medical records) if the patient meets the criteria for inclusion in the study. These are:

- The presence of diarrhoea, defined as three or more episodes of unformed stools (Bristol stool type 5-7) in 24 hours at any point in the last 7 days
- Prescribed CDI-specific treatment (fidaxomicin, oral vancomycin or metronidazole)

Exclusion criteria:

- The patient's clinical care team believes it would be inappropriate to include him or her, e.g. to avoid disturbing a terminally ill patient
- In a patient on vancomycin or metronidazole, treatment with fidaxomicin within the previous 3 months (given evidence that fidaxomicin may persist in the gut after treatment ¹⁶)
- In a patient on fidaxomicin, treatment with greater than 24 hours of metronidazole or vancomycin immediately prior to starting fidaxomicin
- In the skin swab and faecal sample sub-study, patients unable/unwilling to give informed consent and with no opportunity to obtain consultee approval
- In the skin swab and faecal sample sub-study, patients who are non-English speakers (unless a member of hospital staff is available to act as a translator)

Patient recruitment and consent:

In keeping with other environmental studies informed consent will not be obtained for sampling of the hospital environment around treated-CDI cases and the collection of a limited amount of associated patient information ¹⁸. All patients who meet the inclusion criteria will therefore be included in this aspect of the study. Patient-identifiable records

254

will only be accessed by a member of the patient's care team (a research nurse or doctor working for the Microbiology department, which provide diagnostic services). In addition data will be anonymised before analysis and the study will have no influence on patient care.

Skin swabbing and additional stool sampling represent interventions not usually performed on CDI cases. Informed consent will therefore be sought from all CDI patients for these interventions and the collection of related patient-identifiable data. Each patient who meets the inclusion criteria will be approached by a research nurse or doctor within 24 hours of the diagnosis (extending up to 72 hours if the diagnosis is made at the weekend). During the initial visit, the research nurse or doctor will explain of all aspects of the study, including the consent process, and provide a patient information leaflet (PIL). The PIL will also describe the study, what the patient is being asked to provide consent for, and how he/she can communicate again with the study team. The information provided about the study will include its aims, methods, funding, anticipated benefits, withdrawing from the study and the potential negative consequences of involvement (e.g. inconvenience of having stool and skin swab sampling). It will be made clear that the study will not influence care and that environmental swabbing will not require consent. Non-English speaking patients will be included only if a member of staff is available to act as a translator.

The first set of environmental swabs will also be taken during the initial visit.

Patients will not be asked to give consent at the first visit. Unless they have declined to be involved the research nurse or doctor will return, at the earliest the following day, to answer any questions that the patient has and to obtain their consent, if given. Patients will still be included if they consent to either skin swabbing or faecal sample collection, but not both.

The research nurses and doctor will be trained in Good Clinical Practice and the assessment of mental capacity In line with the Mental Capacity Act (2005) all patients will be assumed to have capacity to consent for the study, unless there is evidence that they do not. Assessment of capacity will be done primarily by direct discussion with the patient. If needed, the research doctor or nurse will also discuss the issue with the clinical team and review the medical notes for relevant factors.

Inclusion of Incapacitated Adults:

Advanced age is a well-recognised risk factor for CDI, which therefore disproportionately affects the elderly, particularly those in hospital ¹⁹. In this group, delirium causing mental incapacity (due to acute illness or underlying chronic disease), occurs in 14-56% ²⁰. To exclude those patients who lack capacity to provide informed consent, from a study aiming to improve the management of CDI, would threaten the validity of the results and their applicability to patient care more generally. Furthermore, this study involves neither invasive tests nor risk to the patient. The planned interventions (skin swabbing and stool sample collection) should cause minimal inconvenience. Therefore patients who lack mental capacity (as defined by the Mental Capacity Act 2005) should be included if consultee approval can be obtained.

Having identified that a patient lacks capacity, the research nurse or doctor will approach any relative or friend who is visiting at that time. If there is no one present, they will make three attempts to contact, by telephone, the relatives/close friends whose details are on the hospital next of kin form. If the relative/close friend, when contacted, declines to act as a personal consultee he/she will be asked to suggest another individual who might be willing to take on the responsibility.

If a relative/close friend agrees to act as a personal consultee, the research team member will arrange a time to meet in person, preferably the same day. At that meeting they will explain the role and responsibility of a personal consultee, discuss the study and go through the written information, including the form that personal consultees need to sign. If the relative or friend does not attend, the research team member will attempt to meet him/her on up to two further occasions.

If no personal consultee is available, or it has not been possible to meet with a potential consultee, by the start of day 3 of a patient's CDI treatment a nominated consultee will be approached. This is to ensure that a skin swab set can be taken within the first 3 days of treatment, as per the schedule outlined below (pages17-18), For this study the consultant in charge of the patient's care will be approached to act as a nominated consultee, as he/she will have no connection with the project. He/she will be sent a copy of the protocol and PIL by email, and will then meet with a member of the research team to go through consultee form if he/she is satisfied that it is appropriate for the patient to participate in the study.

256

Whenever possible conversations regarding consultee approval will take place in the presence of the patient, to ensure he/she is involved in the process and does not actively decline to participate in the study.

As capacity can fluctuate it will be reassessed by the research nurse or doctor at each study visit. If a subject who initially lacked mental capacity regains it during the study, he/she will be informed of the study and their involvement though consultee approval. He/she will be asked to give informed consent if he/she wants to remain in the trial. If he/she wishes to withdraw from the trial, no further trial related procedures will be performed, but data to that point will be used in analysis. Data from any patient who dies before regaining capacity (but for whom there was consultee approval for involvement) will be included in analysis.

If a patient looses capacity during the study consultee approval will be sought for their continued involvement, following the process outlined above.

Original consent and consultee approval forms will be held by the research team. Copies will be given to the patient/consultee and also filed in the patient's notes, along with a PIL so that the clinical team can contact the research team if needed.

Patient withdrawal from the study:

Any patient (or consultee for those who lack capacity) will be free to refuse participation in all or any part of the trial, at any time and for any reason, without affecting their treatment. However, if a patient decides to withdraw from the study, data collected up to the point of withdrawal from the study will be included in the final analysis. This will be made clear during the initial visit by the research nurse and in the PIL.

All sampling and data collection will cease if the patient is discharged from hospital or dies before the end of their planned involvement in the study. Data collected up to the point of discharge will be included in the analysis. If an enrolled patient is switched from either metronidazole or vancomycinto fidaxomicin, after receiving more than 24 hours of either metronidazole or vancomycin he/she will be withdrawn from the study, but data collected to that point will be included in the analysis. Enrolled patients who have received any fidaxomicin before being switched to metronidazole or vancomycin, will be excluded. Patients who are switched between metronidazole and vancomycin, or simultaneous prescribed both agents, will remain in the study.

Sample size calculation:

Primary endpoints:

The co-primary endpoints of the study are skin and environmental contamination. These two outcomes have been chosen as they are considered of equal importance in this study. Whilst it could be argued that there might be a relationship between patient skin contamination and subsequent environmental contamination, each of the two outcomes is likely to be sufficiently influenced by different variables to allow them to be considered independent from one another. For example, only environmental contamination will be affected by different surface materials, cleaning products and procedures, and by *C. difficile* spore contamination by different patients (who may have contaminated the ward before the study period, given the ability of spores to persist long term). As these outcomes are being considered independent from each other, no adjustment to the alpha value has been made when performing power calculations.

For skin contamination, assuming patients contribute 4 samples at approximate 2-3 day intervals through to the end of treatment, and that with metronidazole/vancomycin, the proportions with recoverable *C. difficile* are approximately 90%, 75%, 60% and 45% following Sethi et al ⁷, then including a total of 60 patients treated with vancomycin/metronidazole and 40 patients treated with fidaxomicin (approximate anticipated ratio) would provide >80% power to detect a 50% faster decline in colonisation (OR(fidaxomicin vs vancomycin/metronidazole)=0.5; two-sided alpha=0.05), assuming 5% and 10% drop-out at the third and fourth time points respectively. Recruitment would continue until at least 40 fidaxomicin patients have been included, or until a total of 100 patients have been included, whichever occurs first, in order to ensure that a reasonable number with fidaxomicin are included whilst retaining sufficient power.

Summary data as of June 2016 indicate that the proportion of enrolled patients receiving fidaxomicin is 32% rather than 40% as anticipated, and further that missing samples are more common (percentage with the first four samples is approximately 35%, 70%, 70% and 60%, vs predicted 100%, 100%, 95%, 90%; a much larger proportion than expected are missing their baseline sample in particular). To retain the same power to detect the same difference in decline in colonisation above, using these revised proportions receiving fidaxomicin and providing samples, requires the sample size to be increased to **120 patients**, of whom at least 38 would be expected to be receiving fidaxomicin.

The environment of all CDI cases during the study period will be sampled. It is anticipated that 50% of patients will consent to skin and stool sampling. Therefore, if the study aims to recruit at least 100 patients to this latter group, environmental samples will be obtained from a total of at least 200 CDI cases overall. This number will provide >80% power to detect a 33% faster decline in environmental contamination (OR (fidaxomicin vs vancomycin/metronidazole) =0.67; two-sided alpha=0.05).

Secondary endpoints:

Skin contamination is a binary outcome variable, and therefore power to detect differences between fidaxomicin and vancomycin/metronidazole would be expected to be higher for the continuous secondary outcomes of skin and faecal spore counts.

Study duration:

From April to September 2014 there were approximately 140 cases of CDI in patients aged \geq 18 years old across the two hospital trusts involved in the study. We estimate that 10% of these patients meet the exclusion criteria, 10% do not receive treatment, and that CDI rates may be falling by up to 20% annually. Making these allowances we anticipate approximately 170 patients will be recruited into the environmental sampling arm of the study in 12 months. If 50% of these patients consent to skin swabbing and faecal sample collection we estimate that it will take approximately 15 months to recruit the 100 patients required in this arm of the study.

At the beginning of March 2016 a decision was made to extend study recruitment until the end of December 2016 on the basis of both slower than anticipated recruitment to the environmental sampling arm and only approximately 1/3 of these patients consenting to skin swabbing and faecal sample collection. A timeline for the study can be found in Appendix 2.

Data collection:

The following patient data will be collected by a research nurse or doctor using standardised case report forms (CRF), one for patient identifiable information and one for clinical data. It will be obtained from medical and nursing records, the microbiology laboratory information system, discussion with the patient and his or her nursing/medical team. The clinical data CRF will be updated at each patient visit.

- 1. Patient demographics:
 - a. Name
 - b. Date of birth (as a second identifier; only age, which is not considered identifiable, will be used in the analysis)
 - c. Sex
 - d. Dates of admission and discharge
 - e. Specialty (at time of diagnosis and any subsequent changes)
 - f. Ward (at time of diagnosis and any subsequent moves)
- 2. Patient medical history:
 - a. Number and dates of previous episodes of CDI
 - b. History of any gastrointestinal disease
 - c. History of immunosuppression (defined as the presence of one or more of the following: acquired immune deficiency syndrome (AIDS), solid organ or haematopoietic stem cell transplant, neutropenia, immunosuppressive drug or systemic corticosteroid for >1 month, corticosteroid >10mg or cytotoxic chemotherapy in the last 2 months)
 - d. Presence of faecal incontinence (during CDI episode)
- 3. Patient medication (during CDI episode):
 - a. Antimicrobials
 - b. Chemotherapy
 - c. Peristaltic agents
 - d. Enteral feeding

- e. Laxatives
- f. Proton pump inhibitors
- 4. CDI episode:
 - a. Duration of diarrhoea (days)
 - b. Daily frequency of diarrhoea
 - c. Antimicrobial treatment (drug, dose and duration)
 - CDI severity markers at onset of episode (as defined by Department of Health criteria ²¹):
 - i. temperature above 38.5 (within 48 hours before/after diagnosis)
 - ii. clinical or radiological evidence of colitis or toxic megacolon (clinical = abdominal pain/tenderness/distension or absent bowel sounds; radiological = imaging report by consultant radiologist documenting colitis/toxic megacolon)
 - iii. total white cell count (x10⁹/L; within 48 hours before/after diagnosis, if available)
 - iv. serum creatinine (µmol/L; within 48 hours before/after diagnosis, if available)

Note no additional diagnostic tests will be done as a part of this protocol. The results of tests done for clinical purposes will be recorded.

- e. Recurrence of CDI (up to day 28 after completion of treatment; defined as recurrence of diarrhoea with further toxin positive stool sample)
- 5. Diagnostic stool sampling:
 - a. Date of collection of C. difficile toxin positive stool collection
 - b. Date of C. difficile toxin positive stool result
 - c. Results of any other investigations performed on the stool sample
- 6. In environmental study:
 - a. Ward hygiene (decontamination practice for CDI cases (cleaning frequency, disinfectant used), time between cleaning and sample collection)
 - b. Presence of CDI outbreak on the ward
 - c. Environmental sampling (sites sampled and day (of CDI episode) sampling performed)
- 7. In skin swab and stool sample study:
 - a. Stool sampling (collection date(s) of further stool samples and Bristol stool type)
 - Patient skin sampling (sites sampled and day (of CDI episode) sampling performed)

- c. Patient bathing (time between bathing and skin sampling in hours)
- d. Patient hand washing (time between hand washing and hand swabbing in hours)

Data storage and transfer:

Patient confidentiality will be preserved throughout the study. Each patient will be assigned a unique study number at enrolment to allow data to be anonymised. The only staff members who will have access to the data before it is anonymised are the research nurses and doctors, who are NHS employees and part of the direct care team.

One CRF will be used to collect patient-identifiable data. This will also link participants to their unique study number. The number will be the only identifier used on a separate CRF for collecting clinical data, on the electronic database, on study samples and in the analysis of results.

Consent and consultee approval forms will be kept with CRFs in a locked cabinet in secure offices of the Microbiology Department at each study site. Electronic data held at each study site will be kept on a password-protected database that will be hosted on encrypted servers within the NHS firewall. It will be backed up daily.

Patient identifiable data will be kept for 6-12 months after the study ends. All other study data will be kept for 10 years. The end of the study is defined as the date of collection of the last sample set from the final patient recruited.

Data transfer between study sites will be required for analysis. Only anonymised data will be transferred via password protected, secure email accounts. These will be accessed from computers that are within the NHS firewall, thus ensuring that the data remains encrypted during transfer.

Environmental sampling (all patients):

Environmental sampling will be performed before treatment (if feasible, or a soon as possible after it has started) then every 2-3 days during treatment. Samples will also be collected on the day treatment ends, and at days 7 ± 3 days, 14 ± 3 days and 28 ± 5 days thereafter. Sampling will not continue if a patient dies or leaves hospital before their study participation is due to end.

Samples will be obtained by a research nurse or doctor using a flocked swab (Copan, Brescia, Italy) moistened with sterile water. The researcher will wear sterile gloves whilst doing the sampling. Used swabs will be labelled with the patient's study number, sample site and date, and then transported to the laboratory.

Environmental surfaces to be tested are as follows:

- Bed rail
- Bedside table
- Call bell
- Commode/toilet seat
- Floor area (parallel to right hand bed edge at level of the bottom wheel)

A 5 x 20cm² area of flat surfaces will be measured out and swabbed, whilst the entire surface of the call bell will be included. A 13.3cm length of the bed rail will be measured and the entire surface area swabbed. All study team members who collect environmental swabs will receive training to ensure sampling is standardised.

In the laboratory, samples will be culture to detect the presence of *C. difficile* spores. Isolates will then undergo ribotyping (see laboratory manual v3.0, 28/1/15).

Skin sampling (consented patients):

Patient's skin surfaces will be sampled on the same days as their environment (see above). Sampling will be done by a research nurse or doctor wearing gloves (which will be changed between sampling each site). The areas to be included are ⁷:

- Groin (right hand side)
- Lower abdomen (defined as the area directly below the umbilicus)
- Dominant hand

Sites will be sampled using a flocked swab (pre-moistened with 1ml sterile water). A 5 $\times 20$ cm² area of the groin and abdomen will be sampled (marked out using a template), whilst the whole of the patient's dominant hand will be swabbed. Used swabs will be transported to the lab in a sterile container labelled with the patient's study number. All study team members who collect skin samples will receive training to ensure sampling is standardised. In the laboratory samples will be culture for *C. difficile* spores (both their presence and absolute number) and isolates will be ribotyped. Detailed information can be found in the laboratory manual v3.0, 28/1/15.

Faecal sampling (consented patients):

The initial stool sample with a positive test for *C. difficile* toxin will be cultured to provide pre-treatment spore levels. Further stool samples will then be collected every 2-3 days during treatment, at the end of treatment, and at 7 ± 3 days, 14 ± 3 days and 28 ± 5 days after treatment has been completed. To preserve their dignity, patients who can toilet independently will be asked if they wish to collect the sample themselves. Those who decline to collect their own samples or who require assistance with toileting will have them collected by ward nursing staff. All samples will be submitted to the microbiology laboratory using a study-specific collection pot and proforma. Research nurses will ensure there is a supply of these on the ward, pre-labelled with the patient's study number, and will remind patients/nursing staff on days when samples are to be collected.

In the laboratory faecal samples will be processed to measure the concentration of *C. difficile* spores they contain. In consenting patients who are not taking other antimicrobials they will also be processed for the concentration of fidaxomicin, vancomycin or metronidazole. Detailed information can be found in the laboratory manual v3.0, 28/1/15.

The initial stool sample with a positive test for *C. difficile* toxin will also be required from patients in the environmental arm of the study. A portion of this sample will be cultured for *C. difficile* which will then undergo ribotyping and, if necessary, multiple locus variable number tandem repeat (MLVA) analysis, to allow comparison with any *C. difficile* isolates obtained from the patient's environment. Consent will not be requested for using the samples as these typing methods form part of standard Infection Control practice in hospitals for controlling CDI. Members of the research team will use limited personal data in order to identify the stool samples in the microbiology laboratory. Those accessing this data and the samples will be employees of the microbiology department and therefore members of the clinical care team providing diagnostic services to the patient.

Sample storage:

Anonymised environmental and skin swab samples will be stored at 5°C until testing. A portion of the faecal sample will be frozen at -20°C within 2 hours of receipt for antibiotic concentration testing. The remainder will be stored at 5°C. Refrigerators and freezers will be located within the Departments of Microbiology at Leeds General Infirmary and St George's Hospital. In accordance with the Human Tissue Act 2004 these samples will be destroyed at the end of the study. *C. difficile* isolates will be stored at -20°C in nutrient broth with 10% glycerol.

Statistical analysis:

For comparisons between treatment with fidaxomicin or vancomycin/metronidazole, any patient who does not receive one of the antibiotics for at least 48 hours will be excluded from the final analysis.

In patients receiving fidaxomicin/vancomycin/metronidazole for >=48 h, the following outcomes will be compared between fidaxomicin and vancomycin/metronidazole treatment groups over time:

- Percentage of skin samples that are positive for *C. difficile* spores
- Percentage of environmental samples that are positive for *C. difficile* spores
- *C. difficile* total spore counts in skin samples

• C. difficile spore counts in faecal samples

All total spore counts will be log10 transformed for normality. For each outcome, means (+/- standard error of the mean) or percentages (+/- 95% confidence intervals) as relevant will be calculated in each group at each time point (based on observed values) and plotted to describe the impact of time. The treatment groups will be compared using methods which adjust for the repeated measures nature of the data. The primary analysis will use generalised estimating equations (binomial response, logit link, independent correlation structure) and will include a categorical factor to test for differences at each time point through to the end of treatment, based on a global test of difference. This test does not make any assumptions about the relationship between time and each outcome in each treatment group, and, for example, can accommodate a small difference which widens and then narrows again, or a simple difference in rate of change over time. If the global test for difference reaches statistical significance (p<0.05), then pairwise tests comparing treatment groups will be conducted at each time point to quantify the duration of differences in contamination rates between groups. If the descriptive analysis suggests that a linear time effect is plausible, models also fitting a constant slope (linear function of time) in each treatment group will also be fitted as this analysis will provide more power if the underlying model is not misspecified. In this situation, secondary analyses will also consider different models for the data, specifically mixed or random effects models.

Primary analyses will restrict to the period over which treatment is given, because this will typically be 10 days in all patients (regardless of treatment group) and sampling should be fairly complete during this period as patients will likely remain in hospital. Secondary analyses will include all observed time points; of note, if fidaxomicin reduces recurrence, fewer post-treatment observations might be expected in this group as patients may be more likely to be discharged. Time to last sample will be compared between randomised groups to explore the potential for this type of selection bias using Kaplan-Meier and log-rank tests.

Baseline characteristics will be compared between fidaxomicin and vancomycin/metronidazole groups. Because the study is non-randomised, there is the potential for confounding to influence the comparisons of primary and secondary outcomes described above. It is acknowledged, for example, that differences in environmental cleaning protocols between study centres may introduce inter-site

variations. Therefore analyses will also be conducted adjusting for effects of any baseline characteristics that may differ between the treatment groups (using a less strict criteria of p<0.1 to ensure that moderate confounding is not influencing results), allowing effects of baseline factors both on the initial t=0 measurement, and the measurements at subsequent timepoints.

Project management:

Professor Mark Wilcox will be the Chief Investigator and the Principle Investigator at LTHT. Dr Tim Planche will be the Principle Investigator at SGHT. Both of these individuals have previously been involved in managing numerous, large national and international research studies. A research registrar based at LTHT will co-ordinate the day to day running of the study. Microbiology research nurses at each centre will recruit patients, collect environmental and skin samples, co-ordinate the collection of stool samples, complete CRFs and input the data from them on to the electronic database. Processing of samples will be performed at LTHT by research laboratory staff.

The study will comply with the principles of Good Clinical Practice, the Mental Capacity Act (2005), the Data Protection Act (1998) and NHS research governance.

Reporting:

This is an observational study. Results will be reported to the sponsor but not to clinicians. A summary sheet of the study outcomes will be available for study participants if requested.

Publication:

The study results will be submitted for publication as oral or poster presentations at international conferences of microbiology/infectious diseases and then in peer reviewed scientific journals. All patient data in any publications will be fully anonymised.

Finance:

The project is being funded by Astellas Pharma Europe Ltd.
References:

- Leggett MJ, McDonnell G, Denyer SP, Setlow P, Maillard JY. Bacterial spore structures and their protective role in biocide resistance, J Appl Microbiol. 2012;113:485-498.
- 2. Mulligan ME, Rolfe RD, Finegold SM, Goerge WL. Contamination of a hospital environment by *Clostridium difficile*. Curr Microbiol. 1979;3:173-175.
- McFarland LV, Mulligan ME, Kwok RY, Stam WE. Nosocomial acquisition of Clostridium difficile infection. N Engl J Med. 1989;320:204-210.
- Samore MH, Venkataraman L, DeGirolami PC, Arbeit RD, Karchmer AW. Clinical and molecular epidemiology of sporadic and clustered cases of nosocomial *Clostridium difficile* diarrhea. Am J Med. 1996;100:32-40.
- Riggs MM, Sethi AK, Zabarsky TF, Eckstein EC, Jump RL, Donskey CJ. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic *Clostridium difficile* strains among long-term care facility residents. Clin Infect Dis. 2007;45:992-998.
- Best EL, Fawley WN, Parnell P, Wilcox MH. The potential for airborne dispersal of *Clostridium difficile* from symptomatic patients. Clin Infect Dis. 2010;50:1450-1457.
- Sethi AK, Al-Nassir WN, Nerandzic MM, Bobulsky GS, Donskey CJ. Persistence of skin contamination and environmental shedding of *Clostridium difficile* during and after treatment of *C. difficile* infection. Infect Control Hosp Epidemiol. 2010;31:21-27.
- Vonberg RP, Kuijper EJ, Wilcox MH et al. Infection control measures to limit the spread of *Clostridium difficile*. Clin Microbiol Infect. 2008;14 (Suppl 5):2-20. Johnson S. Recurrent *Clostridium difficile* infection: a review of risk factors, treatments and outcomes. J Infect. 2009;58:403-410.
- 9. Department of Health. Clostridium difficile infection: how to deal with the problem. Available at:

http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1232006607827. [Accessed 27th May 2013].

- Cohen SH, Derding DN, Johnson S et al. Clinical practice guidelines for *Clostridium difficile* infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hospital Epidemiol. 2010;31:431-455.
- Optimer Pharmaceuticals. Optimer Pharmaceuticals and Astellas Receive Positive Opinion from CHMP for European Approval of DIFICID [™]. Available at: <u>http://www.reuters.com/article/2011/09/23/idUS113165+23-Sep-</u> <u>2011+PRN20110923</u>. [Accessed 13th June 2013].
- 12. Louie TJ, Miller MA, Mullane KM et al. Fidaxomicin versus vancomycin for *Clostridium difficile* infection. N Engl J Med. 2011;364:422-431.
- Cornely OA, Crook DW, Esposito R et al. Fidaxomicin versus vancomycin for infection with *Clostridium difficile* in Europe, Canada and the USA: a doubleblind, non-inferiority, randomised controlled trial. Lancet Infect Dis. 2012;12:281-289.
- Louie T, Emery J, Krulicki W et al. OPT-80 eliminates *Clostridium difficile* and is sparing of Bateroides species during treatment of *C. difficile* infection. Antimicrob Agent Chemother. 2009;53:261-263.
- 15. Federal Drug Administration. FDA approves treatment for *Clostridium difficile* infection. Available at: <u>http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm257024.</u> <u>htm</u>. [Accessed 13th June 2013].
- 16. Chilton CH, Crowther GS, Todhunter SL, Nicholson S, Longshaw C, Wilcox MH. Fidaxomicin persistent in an *in-vitro* human gut model and on *Clostridium difficile* spores. Poster session presented at: ECCMID 2013. 23rd European Congress of Clinical Microbiology and Infectious Diseases; 2013 Apr 27-30; Berlin.

- Allen CA, Babakhani F, Sears P, Nguyen L, Sorg JA. Both fidaxomicin and vancomycin inhibit outgrowth of *Clostridium difficile* spores. Antimicrob Agents Chemother. 2013;57:664-667.
- 18. Wilson APR, Smyth D, Moore G et al. The impact of enhanced cleaning within the intensive care unit on contamination of the near-patient environment with hospital pathogens: a randomized crossover study in critical care units in two hospitals. Crit Care Med. 2011;39:651-658.
- 19. Johnson S. Recurrent *Clostridium difficile* infection: a review of risk factors, treatments and outcomes. J Hosp Infect. 2009;58:403-410.
- 20. Alvarez Fernandez B, Formiga F, Gomez R. Delerium in hospitalised older persons: review. J Nutr Health Aging. 2008;12:246-251.
- 21. Public Health England. Updated guidance on the management and treatment of *Clostridium difficile* infection. Available at: <u>http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317138914904</u>. [Accessed 24th July 2013].

Appendix 2: Study timeline

Study phase	Set up	Start of	Complete	Analysis and
		recruitment	recruitment	write up
Timescale	Dec 2014	Jan 2015	December	March 2017
(completion date)			2016	

Appendix B Media used for bacterial culture and incubation

B.1 Solid agar

All media were prepared according to manufacturer's instructions unless otherwise instructed, before being autoclaved at 121° C for 15 minutes. The reagents and media prepared have been reported previously (235).

B.1.1 Nutrient agar (CM0003, Oxoid)

Ingredients	g/ litre
`Lab-Lemco' powder	1.0
Agar	15.0
Peptone	5.0
Sodium chloride	5.0
Yeast extract	2.0

B.1.2 MacConkey agar (CM0115, Oxoid)

Ingredients	g/ litre
Agar	15.0
Bile salts no.3	1.5
Crystal violet	0.01
Lactose	10.0
Neutral red	0.03
Peptone	20.0
Sodium chloride	5.0

B.1.3 Kanamycin aesculin azide agar (CM0591, Oxoid)

The following were added in addition to the agar base; 10 mg/L nalidixic acid, 10 mg/L aztreonam, 20 mg/L kanamycin and 1 mg/L lincomycin.

Ingredients	g/ litre
Aesculin	1.0
Agar	10.0
Ferric ammonium citrate	0.5
Mix for streptococci	0.6
Sodium azide	0.15
Sodium chloride	5.0
Sodium citrate	1.0
Starch	0.6
Tryptone	18.0
Yeast extract	5.0

B.1.4 Fastidious anaerobe agar (LAB090, LabM)

Ingredients	g/ litre
Agar	12.0
Arginine	1.0
Ferric pyrophosphate	0.3
Glucose	1.0
Haemin	0.005
L-cysteine HCI	0.4
Peptone mix	23.0
Sodium bicarbonate	0.4
Sodium chloride	5.0
Sodium pyruvate	1.0
Sodium succinate	0.5
Starch	1.0
Vitamin K	0.004

The following were added in addition to the agar base; 5 % horse blood.

B.1.5 Bile aesculin agar (CM888, Oxoid)

The following were added in addition to the agar base; 2 % haemin and 0.002 % vitamin K1.

Ingredients	g/ litre
Peptone	14.0
Bile salts	15.0
Ferric citrate	0.5
Aesculin	1.0
Agar	14.0

B.1.6 LAMVAB Agar

LAMVAB agar was prepared by mixing two solutions (X + Y). Solution X (500 ml) was prepared with 104.4 g/L MRS Broth (CM359, Oxoid), supplemented with 0.5 g/L cysteine hydrochloride (C1276, Sigma).

MRS Broth

Ingredients	g/ litre
Dipotassium hydrogen phosphate	2.0
Glucose	20.0
Lab-Lemco powder	8.0
Magnesium sulphate 4H ₂ 0	0.05
Magnesium sulphate 7H ₂ 0	0.2
Peptone	10.0
Sodium acetate	5.0

Sorbitan mono-oleate	1 ml
Triammonium citrate	2.0
Yeast extract	4.0

Solution X (500 ml) was 40 g/L Agar technical 3 (LP0013, Sigma).

After autoclaving, solution X + Y were mixed and 1ml vancomycin (V2002, Sigma) was added. The pH of the solution was adjusted to 5.0 +/- 0.1 using 4 M HCl (Sigma).

B.1.7 Beerens Agar

The following were added in addition to the Columbia agar base; 5 g/L glucose (G7528, Sigma), 0.5 g/L cysteine HCI (C1276, Sigma). After heating the mixture to 100° C it was cooled to 55° C, subsequent to which 5 ml/L propionic acid (P1386, Sigma) was added to adjust the mixture to pH 5.

Columbia agar base

Ingredients	g/ litre
Agar	10.0
Sodium chloride	5.0
Special peptone	23.0
Starch	1.0

B.1.8 CCEYL Agar (LAB 160, LabM)

The following were added in addition to the agar base; 8 mg/L cefoxitin & 250 mg/L cycloserine (X093, LabM), 2 % lysed horse blood (BHB400, E & O) and 5 mg/L lysozyme (L6876, Sigma).

Ingredients	g/ litre
Agar	10.0
Gelatin peptone	10.0
Glucose	1.0
Haemin	0.005
L-arginine	1.0
Menadione	0.0005
Sodium chloride	5.0
Sodium pyruvate	1.0
Tryptone	10.0
Yeast extract	5.0

B.1.9 BHI Agar (Oxoid)

Ingredients	g/ litre
Agar	10.0
Beef heart infusion solids	5.0
Brain infusion solids	12.5
Disodium phosphate	2.5
Glucose	2.0
Proteose peptone	10.0
Sodium chloride	5.0

B.2 Broth

BHI and CCEYL broth have the same ingredients as their agar counterparts, minus the addition of agar.

B.2.1 Minimal Media

Minimal media was used for incubating gut model bacterial populations. All ingredients were added prior to autoclaving except glucose, calcium chloride and magnesium sulphate which were dissolved in dH20 and sterilised through a $0.22 \mu m$ syringe filter. After autoclaving, 200ml of 5X minimal salts solution was transferred to 800ml of sterile distilled H₂O, producing a solution with the following concentration of ingredients;

Ingredients	g/ litre
Ammonium chloride	1.3
Calcium chloride	0.01
Glucose	0.7
Magnesium sulphate	0.2
Potassium dihydrogenphosphate	3.8
Sodium chloride	0.6
Sodium phosphate 5H ₂ 0	16.0

B.2.2 Gut Model Vessel Media

Ingredients	Manufacturer	g/ litre
Arabinogalactan	Sigma	1.0
Bile salts no.3	Sigma	0.5
Calcium chloride	Sigma	0.01
Cysteine HCI	Sigma	0.5
Di-potassium monohydrogen phosphate	AnalR	0.04
Glucose	Sigma	0.4
Haemin	Sigma	0.005
Magnesium sulphate	Sigma	0.01
Pectin	Oxoid	2.0
Peptone water	Oxoid	2.0
Potassium dihydrogen phosphate	Sigma	0.04

Sodium chloride	Sigma	0.1
Sodium hydrogen carbonate	Sigma	2.0
Starch	Fisher	3.0
Tween 80	Sigma	2.0 mL/ L
Vitamin K	Sigma	10 ul/L
Yeast extract	Oxoid	2.0

Appendix C Table of Proteins

		Mol.
Protein IDs	Fasta headers	[kDa]
	>sp P24295 DHE2_CLOSY	49.295
	NAD-specific glutamate	
	dehydrogenase OS=Clostridium	
D24205	symbiosum GN=gdh PE=1	
P24295		13 677
	Flongation factor Tu	43.077
	OS=Lactobacillus gasseri (strain	
	ATCC 33323 / DSM 20243 /	
	JCM 1131 / NCIMB 11718 /	
Q042T5	AM63) GN=tuf PE=3 SV=2	
	>sp P22983 PPDK_CLOSY	96.653
	Pyruvate, phosphate dikinase	
P22983;Q92H18;Q4UL17;Q1RH78;	CN-ppdK PE-1 SV-5	
Q92D33,Q00WF2,Q39754	Spl074.IU6/EFTULAC.IO	43 664
	Elongation factor Tu	-0.00-
	OS=Lactobacillus johnsonii	
	(strain CNCM I-12250 / La1 /	
Q74JU6	NCC 533) GN=tuf PE=3 SV=1	
	>sp Q042F2 PGK_LACGA	43.043
	Phosphoglycerate kinase	
	ATCC 22222 / DSM 20242 /	
	ICM 1131 / NCIMB 11718 /	
Q042F2	AM63) $GN=pak PE=3 SV=1$	
	>sp Q042F4 ENO2_LACGA	46.91
	Enolase 2 OS=Lactobacillus	
	gasseri (strain ATCC 33323 /	
	DSM 20243 / JCM 1131 /	
Q042F4;C0QI43;B4U9X7;O32513;	NCIMB 11/18 / AM63)	
C4ALR9	SINECTION PEET SVET	76 9/17
Q046C7·Q74I 90·Q1GBM0·Q1WVA	Flongation factor G	10.341
0;Q9ZEU4;Q6YQV9;Q2NJ19;B3QZ	OS=Lactobacillus gasseri (strain	
H4;Q9Z9L7;Q5WLR5;Q250N5;B8G	ATCC 33323 / DSM 20243 /	
1W3;Q8CQ82;Q6GJC1;Q6GBU0;Q	JCM 1131 / NCIMB 11718 /	
5HRK5;Q5HIC8;Q4L3K8;Q2YSB4;	AM63) GN=fusA PE=3	
Q2G0N1;Q2FJ93;P68791;P68790;	SV=1;>sp Q74L90 EFG_LACJO	
460E 10:451041:022000:0401/57	Elongation factor G	
AOUEJ9, ADIUA I, U83969, U49V57,	05=Lactobacilius Johnsonii	

Q88XY8;Q03PV4;Q11QB0;B3EUF 3	(strain CNCM I-12250 / La1 / NCC 533) GN	
	>sp Q042F3 TPIS_LACGA	27.294
	Triosephosphate isomerase	
	OS=Lactobacillus gasseri (strain	
	ATCC 33323 / DSM 20243 /	
	JCM 1131 / NCIMB 11718 /	
Q042F3	AM63) GN=tpiA PE=3 SV=1	
	>sp P62413 PGK_LACJO	43.018
	Phosphoglycerate kinase	
	OS=Lactobacillus johnsonii	
DC0440	(strain CNCM I-12250 / La1 /	
P02413		25.070
	>Sp P02052 LDH1_LACJOL-	35.079
	(strain CNCM I-12250 / L a1 /	
P62052	NCC 533) GN=ldh1 PE=3 SV=1	
1 02002	>splC472R9IFFTU_FUBF2	43 997
	Elongation factor Tu	101001
	OS=Eubacterium eligens (strain	
	ATCC 27750 / VPI C15-48)	
C4Z2R9;Q1GP97	GN=tuf PE=3 SV=1	
	>sp Q74K79 TPIS_LACJO	27.338
	Triosephosphate isomerase	
	OS=Lactobacillus johnsonii	
	(strain CNCM I-12250 / La1 /	
Q74K79	NCC 533) GN=tpiA PE=3 SV=1	
	>sp Q043Z5 ENO1_LACGA	46.652
	Enolase 1 OS=Lactobacillus	
	gasseri (strain ATCC 33323 /	
	DSM 20243 / JCM 1131 /	
004275	NCIMB 11/18 / AM63)	
Q043Z5		47.460
	250/F 19413/DAIF_CLOSV Bile	47.409
	OS-Clostridium scindens (strain	
	ICM 10418 / VPI 12708)	
P19413	GN=baiF PF=1 SV=3	
	>splQ74K78lENO1 LACJO	47.071
	Enolase 1 OS=Lactobacillus	
	johnsonii (strain CNCM I-12250 /	
	La1 / NCC 533) GN=eno1 PE=3	
Q74K78	SV=1	
	>sp Q74IV0 ENO3_LACJO	46.633
	Enolase 3 OS=Lactobacillus	
	johnsonii (strain CNCM I-12250 /	
07411/0	La1 / NCC 533) GN=eno3 PE=3	
Q74IVU		70.004
	SplAo 1 ANJEFG_LACH4	70.821
	OS-Lactobacillus belyotique	
	OO-Lactobacinus neivelicus (strain DPC 4571) GN-fue	
Α8ΥΧΚ3	PF=3 SV=1	
	>splA9KR74IFFTU LACP7	43 856
	Elongation factor Tu	10.000
A9KRZ4	OS=Lachnoclostridium	

	phytofermentans (strain ATCC 700394 / DSM 18823 / ISDg) GN=tuf PE=3 SV=1	
	>splQ5FMJ3 GPMA_LACAC	26.525
	2,3-bisphosphoglycerate-	
	dependent phosphoglycerate	
	mutase OS=Lactobacillus	
	acidophilus (strain ATCC	
	700396 / NCK56 / N2 / NCFM)	
Q5FMJ3	GN=gpmA PE=3 SV=1	
	>sp Q5FM92 EFG_LACAC	76.853
	CS-Lactobacillus acidophilus	
	(strain ATCC 700396 / NCK56 /	
	N2 / NCFM) GN=fusA PF=3	
Q5FM92	SV=1	
	>sp P32370 BAIH_CLOSV	72.029
	NADH-dependent flavin	
	oxidoreductase OS=Clostridium	
	scindens (strain JCM 10418 /	
Dooozo	VPI 12708) GN=baiH PE=3	
P32370		26 520
	Spip 19337 BAIA2_CLOSV	20.538
	ester 3-debydrogenase 2	
	OS=Clostridium scindens (strain	
	JCM 10418 / VPI 12708)	
P19337	GN=baiA2 PE=1 SV=1	
	>sp Q74LL9 GPMA1_LACJO	26.608
	2,3-bisphosphoglycerate-	
	dependent phosphoglycerate	
	mutase 1 OS=Lactobacillus	
	johnsonii (strain CNCM I-12250 /	
074110	La1 / NCC 533) GN=gpmA1	
		27 770
	>SpirSuguilLDHD_LACHE D-	31.119
	OS=L actobacillus helveticus	
P30901	PE=1 SV=2	
	>sp P07914 BAIA1_CLOSV	26.657
	3alpha-hydroxy bile acid-CoA-	
	ester 3-dehydrogenase 1/3	
	OS=Clostridium scindens (strain	
D07044	JCM 10418 / VPI 12708)	
PU/914		40.000
	>splQU2102 EF1U_PSEAB	43.369
	OS-Pseudomonas aeruginosa	
:A5EX84:Q0AIJ7:Q0AF46:A1W//D	(strain UCBPP-PA14) GN=tuf1	
6;A1WVC4;Q83ES6:A9NAK7:A9K	PE=1	
D33;Q981F7;A1B002;Q92GW4:Q8	SV=1;>sp P09591 EFTU PSEA	
KTA6;Q8KTA3;Q8KTA1;Q8KT99;Q	E Elongation factor Tu	
8KT97;Q8KT95;P48865;P0A3B0;P	OS=Pseudomonas aeruginosa	
0A3A9;C4K2I2;C3PPA9;B0BUR2;A	(strain ATCC 15692 / DSM	
8GT71;A8F2E9;Q9P9Q9;Q877P8;	22644 / CIP 104116 / JCM	
Q81ZS3;Q6FF97;Q31IY4;Q4FQG6	14847 / LMG 12228 / 1C / PRS	
;Q1Q8P2;Q7UMZ0	1	

	>sp Q5FL50 PGK_LACAC Phosphoglycerate kinase OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=pgk PE=3	42.818
Q5FL50	SV=1	07 500
Q5FL49	>sp Q5FL49 TPIS_LACAC Triosephosphate isomerase OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=tpiA PE=3 SV=1	27.502
	>sp Q5FKM6 ENO_LACAC Enolase OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=eno PE=3 SV=1;>sp A8YUV4 ENO_LACH 4 Enolase OS=Lactobacillus helveticus (strain DPC 4571) CN=ono PE=2 SV=1	46.625
	>sp Q02H55 CH60_PSEAB 60	57.085
Q02H55;P30718;B7UZG3;A6VB57; Q8GBB4;Q1I5E2;Q88N55;B1J3K5; A5W8M6;B0KFQ2;A4XYM0;A4VP8 2;Q4K764;Q87X14;Q4ZP20;Q48EI 5;P48216;O33500;Q2SDG0;Q8RIT 7;Q8PPZ1;Q8PD23;Q5GUT1;Q4U ZA7;Q3BY61;Q2NY29;B2SJG4;B0 RN52;C5BP08;B3DZP5	kDa chaperonin OS=Pseudomonas aeruginosa (strain UCBPP-PA14) GN=groL PE=3 SV=1;>sp P30718 CH60_PSEA E 60 kDa chaperonin OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / P	
A6LPP6;P18906	>sp A6LPP6 EFTU_CLOB8 Elongation factor Tu OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=tuf1 PE=3 SV=1	43.623
O189R2	>sp Q189R2 FTHS_PEPD6 Formatetetrahydrofolate ligase OS=Peptoclostridium difficile (strain 630) GN=fbs PE=3 SV=1	59.985
	<pre>>sp Q5FKR8 EFTU_LACAC Elongation factor Tu OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / No NO NO</pre>	43.579
Q1GB26;Q04BH1;O32756;Q8GIZ5	N2 / NCFM) GN=tuf PE=3 SV=1 >sp Q1GB26 PGK_LACDA Phosphoglycerate kinase OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=pgk PE=3 SV=1;>sp Q04BH1 PGK LACD	42.711
;Q03UX8	B Phosphoglycerate kinase	

	OS=Lactobacillus delbrueckii	
	SUD	57 205
8:046 IZ0:00IZI I3:B0CEZ1:4ZI0W		57.395
5.A2C4I2.08Y078.07TUS4.07TU		
44·Q7TTX1·Q3M704·Q3AZK3·Q3A		
HM4:Q2JUN7:Q2JL43:Q10WQ4:P		
22879;P12834;A7ZCV2;A7GZ43;A		
5GNA9;A2C6Z6;A2BYG1;Q8DMD4		
;Q7TV93;Q5HTP2;Q318V6;O6928		
9;O50323;A8G6T6;A8FMS6;A7H2	>sp C4Z3R4 CH60_EUBE2 60	
F8;A3PES4;A2BT10;A1W0K4;A0R	kDa chaperonin	
NU3;Q93GW2;A6Q2B4;A5GV53;Q	OS=Eubacterium eligens (strain	
	AICC 277507 VPI C15-48)	
	Sin=giol FE=3.5V=1 ScolO0431/21PEKA LACGA	34 206
	ATP-dependent 6-	54.230
	phosphofructokinase	
	OS=Lactobacillus gasseri (strain	
	ATCC 33323 / DSM 20243 /	
	JCM 1131 / NCIMB 11718 /	
	AM63) GN=pfkA PE=3	
	SV=1;>sp Q74JM8 PFKA_LACJ	
	O ATP-dependent 6-	
00431/2:074 IM8	(strai	
		46 015
	NAD-specific glutamate	10.010
	dehydrogenase	
	OS=Clostridioides difficile	
P27346	GN=gluD PE=3 SV=1	
	>sp A8YUE4 TPIS_LACH4	27.611
	Triosephosphate isomerase	
	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=tpiA	
A010E4,Q001H4		12 834
	Phosphoalycerate kinase	42.034
	OS=Lactobacillus helveticus	
A8YUE3;B2GAL8;B2UKW8;B1MW	(strain DPC 4571) GN=pgk	
69	PE=3 SV=1	
	>sp Q8XFP8 EFTU_CLOPE	43.557
	Elongation factor Tu	
	OS=Clostridium perfringens	
	(strain 13 / Type A) GN=tutA	
	$P1 = 1, > Sp(QU + VINU[EF + U_CLU]$	
	OS=Clostridium perfringens	
	(strain ATCC 13124 / DSM 756 /	
Q8XFP8;Q0TMN0;Q0SQC8;Q877L	JCM 1290 / NCIMB 6125 /	
9;A5N4N1	NCTC 8237 / Type A) GN	
	>sp Q9I3D1 DLDH2_PSEAE	50.164
	Dihydrolipoyl dehydrogenase	
	OS=Pseudomonas aeruginosa	
Q9I3D1;P14218;P18925;P31052	(strain ATCC 15692 / DSM	

		1
	22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=lpdG PE=1 SV=1;>sp P14218 DLDH_PSEF L Dihydrolipoyl dehydrogenase OS=Pseudomonas fluor	
		42 574
	Elongation factor Tu OS=Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai (strain 56601) GN=tuf PE=3	43.574
Q9XD38;Q72NF9;Q055E6;Q04PT6	SV=1;>sp Q72NF9 EFTU_LEPI C Elongation factor Tu OS=Leptospira interrogans serogroup Icterohaemorrhagiae serovar copenh	
	>splQ93GB7 TPIS_LACDL	27.481
Q93GB7;Q7VC41;B0S1G9;Q898R 2	Triosephosphate isomerase OS=Lactobacillus delbrueckii subsp. lactis GN=tpiA PE=1 SV=1	
Q74K31	>sp Q74K31 G6PI_LACJO Glucose-6-phosphate isomerase OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=pgi PE=3 SV=1	49.91
Q18AR0:P45362	>sp Q18AR0 THLA_PEPD6 Acetyl-CoA acetyltransferase OS=Peptoclostridium difficile (strain 630) GN=thIA PE=1 SV=1	40.86
0042K0	>sp Q042K0 G6PI_LACGA Glucose-6-phosphate isomerase OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=pgi PE=3 SV=1	49.856
PTCIIII	<pre>>sp B7GU46 EFTU_BIFLS Elongation factor Tu OS=Bifidobacterium longum subsp. infantis (strain ATCC 15697 / DSM 20088 / JCM 1222 / NCTC 11817 / S12) GN=tuf DE=2 SV-1</pre>	43.879
Q8A414;Q9PP01;Q5HUM7;B9KD7 9;A8FLY1;A7H3B9;A1VZR5;A4IRZ 2;Q7MQ03	>sp Q8A414 PCKA_BACTN Phosphoenolpyruvate carboxykinase (ATP) OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=pckA PE=3 SV=1	59.163
B2G6R2;A5VJ92	>sp B2G6R2 EFTU_LACRJ Elongation factor Tu OS=Lactobacillus reuteri (strain JCM 1112) GN=tuf PE=3	43.432

	SV=1;>sp A5VJ92 EFTU_LACR D Elongation factor Tu OS=Lactobacillus reuteri (strain DSM 20016) GN=tuf PE=3 SV=1	
B2UYA3;B2TIG8	>sp B2UYA3 RPOB_CLOBA DNA-directed RNA polymerase subunit beta OS=Clostridium botulinum (strain Alaska E43 / Type E3) GN=rpoB PE=3 SV=1;>sp B2TIG8 RPOB_CLOB B DNA-directed RNA polymerase subunit beta OS=Clostridium botulinum (strain Eklund 17B / Type B) GN=	139.57
A6LPQ4;Q0TMN8;Q0SQD6;P0C2E 7;Q890N4;Q250P0;B8G1V8;Q3A9 Q7;Q2RFN9;A4J103;B0TC48;A5D 5I2;C1FMV9;B1IGG2;A7FZ77;A5I7 L4;B9DYA1;A7GJ82;A5N4N9;B1K SN3;Q97EG9;C3KVQ9;A0PXT8;A6 TWJ0;Q67JT3;A3DIZ4;Q8R7U6;B0 KCJ2;B0K5G8;Q18CF1;Q2JX64;Q 2JJ19;Q9RQZ7;Q46J22;A2C4N2;Q 7VA29;A9BCH6;Q7V5P1;Q7V006; Q7U8K4;Q3AZA4;Q3AHX5;Q318Q 7;Q0I7L7;A8G6Y6;A5GVF3;A5GN H3;A3PEX4;A2C6S8;A2BYL1;A2B T61;Q110H1;P77965;P59643;Q73J J7;Q8F0S2;Q72UA8;Q054E2;Q04 QI9;Q9KK59;B0SSI4;B0SAG1	>sp A6LPQ4 RPOB_CLOB8 DNA-directed RNA polymerase subunit beta OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpoB PE=3 SV=1;>sp Q0TMN8 RPOB_CLO P1 DNA-directed RNA polymerase subunit beta OS=Clostridium perfringens (strain ATCC 13124 / DSM	138.83
O32755;P58072	>sp O32755 G3P_LACDE Glyceraldehyde-3-phosphate dehydrogenase OS=Lactobacillus delbrueckii subsp. bulgaricus GN=gap PE=3 SV=1	36.564
B9MQG5:A4XI30	>sp B9MQG5 RPOB_CALBD DNA-directed RNA polymerase subunit beta OS=Caldicellulosiruptor bescii (strain ATCC BAA-1888 / DSM 6725 / Z-1320) GN=rpoB PE=3 SV=1;>sp A4XI30 RPOB_CALS 8 DNA-directed RNA polymerase subunit beta OS=Caldicellulosiruptor saccharolyticu	138.42
D00D00	>sp B2GBC2 EFTU_LACF3 Elongation factor Tu OS=Lactobacillus fermentum (strain NBRC 3956 / LMG	43.474
B2GBC2	18251) GN=tut PE=3 SV=1 >sp A8MLD2 RPOB_ALKOO DNA directed RNA polymoreae	139.08
A8MLD2	subunit beta OS=Alkaliphilus	

	oremlandii (strain OhILAs)	
		12.29
	Flongation factor Tu	43.20
	OS=Lactobacillus delbrueckii	
	subsp. bulgaricus (strain ATCC	
	11842 / DŠM 20081 / JCM 1002	
	/ NBRC 13953 / NCIMB 11778)	
	GN=tuf PE=3	
	SV=1;>sp Q04B37 EFTU_LACD	
	B Elongation factor I u	
01C 400:004P27	US=Lactobacilius delbrueckii	
QTGAQ0,Q04B37	SUDSP.	75 806
	Elongation factor G	13.090
	OS=Peptoclostridium difficile	
	(strain 630) GN=fusA PE=3	
Q18CF4	SV=1	
	>sp P42480 EFTU_PAROE	43.038
	Elongation factor Tu	
	OS=Parahymenobacter	
P42480;A0M326;Q11Q98	ocellatus GN=tut PE=3 SV=1	70.44
B8151N7,Q8D7V4,Q67J00,Q92715, 08V421:071\N/B8:01K7K7:B8DAV		70.44
6.A0AL Y9.06ML182.02SSW9.08E		
TY5:Q8E3E7:Q8DXS7:Q5XDW4:Q		
48VB6;Q3JZB5;Q2RFP4;Q1JNH7;		
Q1JIM6;Q1J8I4;P69948;P69946;P		
0DA85;P0DA84;C0MF25;C0M937;	>sp B8I5N7 EFG_CLOCE	
B9DVS2;B5XJR1;B4U0V9;A5D5I7;	Elongation factor G	
A2RCI2;Q5M2M6;Q5LY21;Q04MH	OS=Clostridium cellulolyticum	
7;Q03IS1;P64023;P64022;C1CPE5	(strain ATCC 35319 / DSM 5812	
0.85E615.8219 10.811870.8841186	PE_3	
·A4\/YX6·A4\/SN3·A3COM2·A8M5	SV=1:>spl08DVV/4IEEG_STRM	
32:A4XBP9:A9B746:A7NR66:A5U	U Elongation factor G	
SJ2;B9LJC8;B8G6S9;A9WH62;Q8	OS=Streptococcus mutans	
KAG9;Q3B6G4;B4S5N0;B3QR64;B	serotype c (strain ATCC 700610	
3EP64;A4SCQ6;Q1AU26	/ UA159) GN=fusA PE=3 S	
	>sp A9KRZ3 EFG_LACP7	78.188
	Elongation factor G	
	DS=Lacnnoclostridium	
	700304 / DSM 18823 / ISDa)	
8:A3PV95:A1UBL0	GN=fusA PE=3 SV=1	
	>sp Q47JA5 EFTU DECAR	43.161
	Elongation factor Tu	
	OS=Dechloromonas aromatica	
	(strain RCB) GN=tuf1 PE=3	
Q47JA5		40.000
	>sp Q2GFN6 EFIU_EHRCR	43.386
	OS-Ehrlichia chaffeensis (strain	
	ATCC CRL-10679 / Arkansas)	
	GN=tuf1 PE=3	
Q2GFN6;Q5FCW3;Q5HAS0;Q5FF	SV=1;>sp Q5FCW3 EFTUL_EH	
E6;Q3YRK7;Q5PBH1	RRW Putative elongation factor	

	Tu-like protein OS=Ehrlichia	
	ruminantium (strain	
	Welgevonden)	
		42.004
	>splQ21SF0[EF101_RHOF1	42.991
	Elongation factor I u 1	
	OS=Rhodoferax ferrireducens	
	(strain ATCC BAA-621 / DSM	
	15236 / T118) GN=tuf1 PE=3	
	SV=1:>splQ21RV6 EETU2_RH	
	OFT Flongation factor Tu 2	
	OF T Elongation racion ru 2	
	(strain ATCC BAA-621 / DSM	
Q21SF0;Q21RV6	15236 / 1118) GN=tut2	
	>sp Q18CE4 EFTU_PEPD6	44.026
	Elongation factor Tu	
	OS=Peptoclostridium difficile	
	(strain 630) GN=tuf1 PF=3	
018CE4	SV=1	
	SOLARKS MICHED LACEZED	57 062
	/ Sopration 101100_LACE / 00	57.002
	OS=Lachnoclostridium	
	phytofermentans (strain ATCC	
	700394 / DSM 18823 / ISDg)	
A9KSJ1	GN=groL PE=3 SV=1	
	>splQ8G756IRS6 BIFLO 30S	11.174
	ribosomal protein S6	
	OS-Bifidobacterium longum	
	(stroip NCC 2705) CN-rpsE	
000750		
Q8G756		10.000
	>splQ8G5B7 EFTU_BIFLO	43.936
	Elongation factor Tu	
	OS=Bifidobacterium longum	
	(strain NCC 2705) GN=tuf PE=3	
	SV=1:>splB3DT29lEFTU BIFL	
	D Flongation factor Tu	
	OS-Bifidobacterium longum	
	(strain D IO10A) GN_tuf PE_2	
	(Strain DJOTOA) GIN=tur FE=3	
200001,001/28		10.01
		46.34
	Enolase US=Lactobacillus	
	delbrueckii subsp. bulgaricus	
	(strain ATCC 11842 / DSM	
	20081 / JCM 1002 / NBRC	
	13953 / NCIMB 11778) GN=eno	
	PF=3	
	B Enclose OS-L established	
	deibrueckii subsp. bulgaricus	
Q1G959;Q049Y3	(strain ATCC BAA-	
	>sp P34038 KPYK_LACDE	62.919
	Pyruvate kinase	
	OS=Lactobacillus delbrueckii	
	subsp. bulgaricus GN=pvk PE=1	
P34038	SV=3	
		37 040
P26207	lactate debudrogenase	01.040
1 20231	aciale dellyddydlase	

	OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=ldhA PE=1 SV=3	
	>splC4Z5P8IUXAC_EUBE2	53,929
	Uronate isomerase	00.020
	OS=Eubacterium eligens (strain	
	ATCC 27750 / VPI C15-48)	
C475P8	GN=uxaC PE=3 SV=1	
012010	>splQ64MV/4IPCKA_BACER	59 027
	Phosphoenolpyruvate	00.02.
	carboxykinase (ATP)	
	OS=Bacteroides fragilis (strain	
	YCH46) GN=pckA PE=3	
	SV=1:>splQ5L7N5IPCKA BAC	
	FN Phosphoenolpyruvate	
	carboxykinase (ATP)	
	OS=Bacteroides fragilis (strain	
	ATCC 25285 / DSM 2151 / JCM	
Q64MV4:Q5L7N5	11019 / NCTC 93	
	>spIA6LFQ4IPCKA PARD8	58.959
	Phosphoenolpyruvate	
	carboxykinase (ATP)	
	OS=Parabacteroides distasonis	
	(strain ATCC 8503 / DSM 20701	
	/ CIP 104284 / JCM 5825 /	
	NCTC 11152) GN=pckA PE=3	
A6LFQ4	SV=1	
Q03AK4;B3WCW7;Q3A578;Q8GR		47.086
70;Q8DTS9;Q9XDS7;Q97QS2;Q8		
DPS0;Q5M561;Q5M0M5;Q04KG2;	>sp Q03AK4 ENO_LACP3	
Q03LI0;C1CRM6;C1CKJ0;C1CEB3	Enolase OS=Lactobacillus	
;C1C7C0;B8ZPW9;B5E4P1;B2IPX	paracasei (strain ATCC 334 /	
8;B1IBR3;A8AY46;A3CMA7;Q5XD	BCRC 17002 / CIP 107868 /	
01;Q48UF7;Q3K2B2;Q1JML5;Q1J	KCTC 3260 / NRRL B-441)	
HQ6;Q1JCN8;Q1J7I5;P69951;P69	GN=eno PE=3	
949;P64081;P64080;P0DA95;P0D	SV=1;>sp B3WCW7 ENO_LAC	
A94;C0MH89;C0M6K5;B9DRR9;B5	CB Enolase OS=Lactobacillus	
XKM7;B4U2B8;A4W2T1;A2RFE3;	casei (strain BL23) GN=eno	
Q8RP81	PE=3 SV=1	
	>sp Q8A0W0 MDH_BACTN	32.763
	Malate dehydrogenase	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q8A0W0;Q25QU7;A5FHP3		40.007
	>spiQU3AK6 PGK_LACP3	42.237
	Phosphoglycerate kinase	
	(strain ATCC 334 / BCRC 17002	
	/ CIP 10/868 / KCTC 3260 /	
	NKKL B-441) GN=pgk PE=3	
	SV=1:>splB3WCW5IPGK_LAC	

	OS=Lactobacillus casei (strain	
	BL23) GN=PGK PE=3 SV=1	57 407
	<pre>>SplQU3519 CH00_LACF3 00</pre>	57.427
	OS-I actobacillus paracasei	
0035V0·032847·B3W0W7·01W/S	(strain ATCC 334 / BCRC 17002	
W0:088YM5:038YR7:09AME7:08	/ CIP 107868 / KCTC 3260 /	
CX22:08CX00:03.IX00:C0MES3:	NRRI B-441) GN =grol PE=3	
C0M7S3 [·] B4U081 [·] B9DW28 [·] Q2JKV	SV=1:>spl032847ICH60 AC7	
7:Q5M670:Q5M1M9:Q03MK3:Q2J	E 60 kDa chaperonin	
XD4;Q8NZ56;Q5X9L8;P69883;P0D	OS=Lactobacillus zeae	
A23;P0DA22;A2RGR1;Q48R03;Q1	GN=groL PE=3	
JJL5;Q1JEL5;Q1J9G4;Q1J4D1;Q3	SV=1;>sp B3W9W7 CH60_LAC	
AUZ9	СВ	
	>sp Q9KJV3 PTHP_LACCA	9.2534
	Phosphocarrier protein HPr	
	OS=Lactobacillus casei	
Q9KJV3;P0A439;P0A438	GN=ptsH PE=1 SV=1	
	>splQ9KJ23 CH60_LACJO 60	57.517
	kDa chaperonin	
	OS=Lactobacilius jonnsonii	
	(SITAILI CINCIMI-122307 LaT7)	
	SV = 2:>spl0045081CH60 LAC	
	GA 60 kDa chaperonin	
	OS=I actobacillus gasseri (strain	
	ATCC 33323 / DSM 20243 /	
	JCM 1131 / NCIMB 11718 /	
Q9KJ23;Q045Q8	AM63) GN=g	
	>sp Q5L890 EFTU_BACFN	43.58
	Elongation factor Tu	
	OS=Bacteroides fragilis (strain	
	ATCC 25285 / DSM 2151 / JCM	
	11019 / NCIC 9343) GN=tuf	
	SV=1;>SP P33165 EF1U_BACF	
	R Elongation factor Tu	
O51 800-P33165	VCH46) CN-tuf PE-3 SV-1	
	$\sim 1000000000000000000000000000000000000$	43 563
	Flongation factor Tu	-0.000
	OS=Bacteroides vulgatus (strain	
	ATCC 8482 / DSM 1447 / JCM	
	5826 / NBRC 14291 / NCTC	
	11154) GN=tuf PE=3	
	SV=1;>sp B2RL52 EFTU_POR	
	G3 Elongation factor Tu	
	OS=Porphyromonas gingivalis	
	(strain ATCC 33277 / DSM	
A6KYK9;B2RL52	20709/C	40.000
	>spjQ8RQP4 DHE4_COREF	48.962
	INADP-specific glutamate	
	OS-Connebactorium officiana	
	O_{0} (strain DSM $1/5/10$ / VS- $21/1$ / A L	
	12310 / JCM 11189 / NRRC	
Q8RQP4:P31026	100395) GN=adh PE=3	
	·····	

	SV=2;>sp P31026 DHE4_COR	
	GL NADP-specific glutamate	
	dehydrogenase	
	OS=Corynebacterium glutam	
	>sp A6LE88 EFTU PARD8	43.61
	Elongation factor Tu	
	OS=Parabacteroides distasonis	
	(strain ATCC 8503 / DSM 20701	
	/ CID 104284 / ICM 5825 /	
	NOTO 11152) ON tot DE 2	
	NCTC TT52) GN= $[UIPE=3]$	
A6LE88;Q8A463;P42474		40.005
	Splaupx11EFTU_CLONN	43.095
	Elongation factor Tu	
	OS=Clostridium novyi (strain	
A0PXT1	NT) GN=tuf1 PE=3 SV=1	
	>sp Q9Z9L6 EFTU_BACHD	43.383
	Elongation factor Tu	
	OS=Bacillus halodurans (strain	
	ATCC BAA-125 / DSM 18197 /	
	FERM 7344 / JCM 9153 / C-	
Q9Z9L6	125) GN=tuf PE=3 SV=1	
	>SDIP11221IOPRI PSFAF	8.8348
	Major outer membrane	0.0070
	lipoprotein OS-Pseudomonas	
	actuainees (strain ATCC 15602	
	/ DSM 22644 / CIP 104116 /	
	JCM 14847 / LMG 12228 / 1C /	
D / / 00 /	PRS 101 / PAO1) GN=opri	
P11221	PE=3 SV=1	
	>sp P07515 PTHP_ENTFA	9.3205
	Phosphocarrier protein HPr	
	OS=Enterococcus faecalis	
	(strain ATCC 700802 / V583)	
	GN=ptsH PE=1	
	SV=2;>sp Q9ZAD9 PTHP_LAC	
	LC Phosphocarrier protein HPr	
	OS=Lactococcus lactis subsp.	
P07515 Q97AD9 007125	cremoris GN=ptsH PE=3 SV=1	
	SSDIA1LISI 2IEETLI2 BARRK	42 786
	Elongation factor Tu 2	72.100
	Ω	
	(otroip ATCC 25695 / KC592)	
	(Sitalli A + UC 30000 / KC003)	
	SV=1;>SPIA1USU1 EFIU1_BA	
	KBK Elongation factor I u 1	
	OS=Bartonella bacilliformis	
	(strain A I CC 35685 / KC583)	
A1USL2;A1USC1	GN=tuf1 PE=3 SV=1	
Q1QN33;B6JET0;Q89J81;Q6N4T4;	>sp Q1QN33 EFG_NITHX	75.693
Q3SSW9;Q2IXR3;Q211E5;Q134S6	Elongation factor G	
;Q07KL5;B3QBY3;A5ELN0;B8IS82	OS=Nitrobacter hamburgensis	
;B8ELG6;B7L0Q8;B2IK59;B1ZLK1:	(strain DSM 10229 / NCIMB	
B1LWS3;B0UHX2:A9W4P8:A8IAT	13809 / X14) GN=fusA PE=3	
3;A7IFX8;Q9A3K4:B8H414:B4R8L	SV=1;>sp B6JET0IEFG OLICO	
3:B0SUQ6:Q2JJ93:Q5LMR4:Q160	Elongation factor G	
Y3·A8I M45·O28I IM/8·O1GK42·O8	$\Omega S = \Omega ligotropha$	
FX10.D755//.D/7225.OV/02.0	carboxidovorane (strain ATCC	
EA13, F10044, F41000, WONWD3, WO	Carboxiuovorans (Strain ATCC	

FZB9;B0CH35;A9IW31;Q11HP9;Q 92QH2;Q8UE15;Q1MIE4;P70782; C3MAX7;B9JVN4;B9JDS6;B5ZYT2 ;A6U856;Q3J5S5;B9KL88;A1B023	49405 / DSM 1227 / KCTC 32145 / OM5) GN=fusA	
Q1MPT8	>sp Q1MPT8 EFTU_LAWIP Elongation factor Tu OS=Lawsonia intracellularis (strain PHE/MN1-00) GN=tuf PE=3 SV=1	43.589
Q02TT1;B7V467;A6UYU5;Q9I636; C0ZZZ0;Q1B860;O32913;B8ZSN3; B2HSY2;A3Q0E7;A1UGU7;A0PSI5 ;Q73ZQ2;A1T9P9;A0QGM8;B1MB 69;A4TAC4;P9WK17;P9WK16;P0A 5J5;C1APB4;A5U3K4;A1KJP9;Q98 DK4;B9JG75;Q937W7;Q92TA4;Q2 KE51;Q1MNB0;B5ZVA2;B3PWJ0; Q9AE55;C3MBD2;A6UEL4;Q88QX 8;Q88AB2;Q4K4S5;Q3K5N4;O051 37;Q5YWU1;B9JXY6;Q9KB03;Q8Y IR3;Q8FZ50;Q57BM8;Q2YRK5;C0 RES0;B2S793;A9WWC9;A9M752; A6WYD2;A5VS09;Q8UJ85	>sp Q02TT1 MASZ_PSEAB Malate synthase G OS=Pseudomonas aeruginosa (strain UCBPP-PA14) GN=glcB PE=3 SV=1;>sp B7V467 MASZ_PSEA 8 Malate synthase G OS=Pseudomonas aeruginosa (strain LESB58) GN=glcB PE=3 SV=1;>sp A6UYU5 MASZ_PSE A7 Malate synthase G OS=Pseudomon	78.631
P42475	>sp P42475 EFTU_FIBSS Elongation factor Tu OS=Fibrobacter succinogenes (strain ATCC 19169 / S85) GN=tuf1 PE=3 SV=2	43.286
O66131;Q9WX53;Q81GZ2;Q6HMD 5;Q63EX2;Q5L091;C5DA06;C3LC Y4;C1EKE4;B9IT52;B7JCV9;B7IKB 1;B7HYU3;B7HG04;A9VI58;A0RA P3;Q8R8J4;B0K754;B0K643;Q9KD W8;Q893Q3;Q3AB25;A6TKR6;Q8 ENK7;Q1WVJ0;A8MG11;P18157	>sp O66131 GLPK_THETH Glycerol kinase OS=Thermus thermophilus GN=glpK PE=1 SV=1;>sp Q9WX53 GLPK_THE AQ Glycerol kinase OS=Thermus aquaticus GN=glpK PE=1 SV=1;>sp Q81GZ2 GLPK_BAC CR Glycerol kinase OS=Bacillus cereus (strain ATCC 14579 / DSM 31 / JCM 2152 / N	54.836
A9KJL3	 >sp A9KJL3 RPOC_LACP7 DNA-directed RNA polymerase subunit beta OS=Lachnoclostridium phytofermentans (strain ATCC 700394 / DSM 18823 / ISDg) GN=rpoC PE=3 SV=1 	140.84
A8YUS2	>sp A8YUS2 EFTU_LACH4 Elongation factor Tu OS=Lactobacillus helveticus (strain DPC 4571) GN=tuf PE=3 SV=1	43.566
A7HBL7	>sp A7HBL7 EFTU_ANADF Elongation factor Tu OS=Anaeromyxobacter sp. (strain Fw109-5) GN=tuf1 PE=3 SV=1	43.397

	>sp Q9I0K4 ACEA_PSEAE	58.886
	Isocitrate lyase	
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=PA2634 PE=1	
Q9I0K4	SV=1	
	>sp Q8G3Z7 IF1_BIFLO	8.3777
	Translation initiation factor IF-1	
	OS=Bifidobacterium longum	
	(strain NCC 2705) GN=infA	
	PE=3	
	SV=1:>splA1A091IIF1 BIFAA	
	Translation initiation factor IF-1	
	OS=Bifidobacterium	
	adolescentis (strain ATCC	
	15703 / DSM 20083 / NCTC	
Q8G377-A1A091	11814 / F194	
	>spl074LB6IRL31B_LAC_IO	9 3815
	50S ribosomal protein I 31 type	0.0010
	B OS=Lactobacillus iobnsonii	
	(strain CNCM I-12250 / La1 /	
	NCC 533 $CN=rpmE2 PE=3$	
	SV_{-1}	
Q/4LD0,Q040F1,Q3WD51,Q9K0L Q·O8EM58·O71W/N0·D0A486·D0A4	$SV = 1, SP[Q040F1] RESTD_LAC$	
	type P OS-L estabasillus gessori	
	(atrain ATCC 22222 / DSM	
4C49,QU3410,D3VVAR0,Q30V50,A	(Strain ATCC 33323 / DSW	
UALINS		44.055
	<pre>>SplQ74L70 RS0_LACJO 303</pre>	14.000
	OS=Laciobacilius johnsonii	
	NUC 533) GIN=IPSH $PE=3$	
	SV=1,>SP Q046B2 RS8_LACGA	
	305 ribosomal protein 58	
	OS=Lactobacillus gasseri (strain	
0741 70 00 40 00	ATCC 33323 / DSM 20243 /	
Q74L76;Q046B2	JCM 1131 / NCIMB 11718	10.101
	>splQ74K59 GLMM_LACJO	49.164
	Phosphoglucosamine mutase	
	(strain CNCM I-12250 / La1 /	
	NCC 533) GN=gImM PE=3	
	SV=2;>sp Q042H3 GLMM_LAC	
	GA Phosphoglucosamine	
	mutase OS=Lactobacillus	
	gasseri (strain ATCC 33323 /	
	DSM 20243 / JCM 1131 /	
Q74K59;Q042H3	NCIMB 11	
	>splQ74JY1 FTSZ_LACJO Cell	48.861
	division protein FtsZ	
	OS=Lactobacillus johnsonii	
	(strain CNCM I-12250 / La1 /	
Q74JY1	NCC 533) GN=ftsZ PE=3 SV=1	
	>sp Q74JD5 PPAC_LACJO	34.232
Q74JD5;Q5FK05;Q043J4;A8YVH1	Probable manganese-	

	dependent inorganic pyrophosphatase OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=ppaC PE=3 SV=1;>sp Q5FK05 PPAC_LAC AC Probable manganese- dependent inorganic pyrophosphatase OS=Lactobacillus ac	
Q06700	>sp Q06700 GCDA_ACIFV Glutaconyl-CoA decarboxylase subunit alpha OS=Acidaminococcus fermentans (strain ATCC 25085 / DSM 20731 / VR4) GN=gcdA PE=1 SV=1	64.346
Q046B1;Q74L75;Q63Q26;Q62GM0 ;Q3SLN4;Q3JMS8;Q39KF2;Q2SU4 2;Q1BRW3;Q13TI5;Q0BJ31;B4E5 D5;B2T736;B2JI50;B1YRP4;B1JU3 7;B0TLZ7;A9ADK8;A4JAQ5;A3Q99 7;A3P098;A3NEG4;A3MRW9;A2S7 J1;A1V888;A0K3P0;Q8XV27;Q5P3 17;Q2L270;B3PK52;A9IHT3;A6T3I 9	>sp Q046B1 RL6_LACGA 50S ribosomal protein L6 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=rpIF PE=3 SV=1;>sp Q74L75 RL6_LACJO 50S ribosomal protein L6 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / N	19.366
Q046A5:Q74L69	>sp Q046A5 KAD_LACGA Adenylate kinase OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=adk PE=3 SV=1;>sp Q74L69 KAD_LACJO Adenylate kinase OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=adk PE	24.228
Q045X9	>sp Q045X9 SYE_LACGA GlutamatetRNA ligase OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=gltX PE=3 SV=1	57.11
	>sp Q044A9 DNAK_LACGA Chaperone protein DnaK OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=dnaK PE=3 SV=1;>sp Q74IT6 DNAK_LACJ O Chaperone protein DnaK OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 /	66.911
Q044A9;Q74IT6	NCC >sp P62415 PGK_MYCMS	44.414
P62415	Phosphoglycerate kinase	

	OS=Mycoplasma mycoides	
	subsp. mycoides SC (strain	
	PG1) GN=pgk PE=3 SV=1	
	>sp P19412 BAIE_CLOSV Bile	19.533
	acid 7-alpha dehydratase	
	OS=Clostridium scindens (strain	
	JCM 10418 / VPI 12708)	
P19412	GN=baiE PE=1 SV=1	
O32765:Q8CMZ0:Q5HL31:Q8NUM		35.111
9.06GDK1.06G674.05HCV0.02Y	>spl032765ILDH_LACHE L-	
W/F6·O2G1V5·O2FDO7·P99119·P6	lactate debydrogenase	
5258 POC71 I6: A7X6V1: A61 IAV2: A6	OS-I actobacillus belveticus	
OK80: VEIV/27:002D77:050645	CN = Idc Obdc III ds Helvelicus	
QR09,A51W27,Q05D27,Q59045		46 600
	>sp D/GIK2 EINO_DIFL3	40.023
	Enolase OS=Bilidobacterium	
	longum subsp. Infantis (strain	
	ATCC 15697 / DSM 20088 /	
	JCM 1222 / NCTC 11817 / S12)	
B7GTK2	GN=eno PE=3 SV=1	
B0KC73;B9MQ10;A8AWW6;A4XH		43.302
T8;A3CNY4;Q8DT23;A3DHM4;Q38		
YF8;C0MCM1;C0M9M7;B4U228;Q		
7NHG0;B9DSM6;Q97RN9;Q8DQH	>sp B0KC73 METK_THEP3 S-	
0;Q0AXL1;Q04LE0;C1CQM2;C1CJ	adenosylmethionine synthase	
L0;C1CDB0;C1C6A5;B8ZNB7;B5E	OS=Thermoanaerobacter	
364;B2INE5;B1IAT8;A4W351;A4V	pseudethanolicus (strain ATCC	
WU8:Q5M434:Q5LZI0:Q99Z77:Q8	33223 / 39E) GN=metK PE=3	
P0G6:Q8E5Y0:Q8E0A3:Q5XBJ6:Q	SV=1:>splB9MQ10IMETK CAL	
48SU7:Q3K1M7:Q1JL80:Q1JGA1:	BD S-adenosylmethionine	
Q1.IB36;Q1.I626;P0DE55;P0DE54;	synthase	
B5XM14 A2RE06 09CEE0 002WN	OS=Caldicellulosiruptor bescii	
8-A2RN40-08DK88-B1XPB0-B7KF	(strain ATCC BAA-1888 / DSM	
F5:O3MF32:B8HWM0	6725 / 7-1	
	SSDIA8YW74IRTPR I ACH4	83 182
	Adenosylcobalamin-dependent	00.102
	ribonucleoside-triphosphate	
	roductoco OS-L actobacillus	
	helyoticus (strain DDC 4571)	
A 0.V/A/7 4	CNL the D DE 2 CV 4	
Aot W/4	GN=IIPR PE=3 SV=1	00 75 4
	>Sp A81VR9 RS2_LACH4 305	28.754
	ribosomai protein 52	
	OS=Lactobacilius neiveticus	
	(strain DPC 4571) GN=rpsB	
	Sv=1;>splQ5FJM3 RS2_LACA	
	C 30S ribosomal protein S2	
	OS=Lactobacillus acidophilus	
	(strain ATCC 700396 / NCK56 /	
	N2 / NCFM) GN=rpsB PE=3	
A8YVR9;Q5FJM3	SV=1	
	>sp A8YV22 PFKA_LACH4	34.334
	ATP-dependent 6-	
	phosphofructokinase	
	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=pfkA	
	PE=3	
A8YV22;Q5FKG6:Q836R3	SV=1;>sp Q5FKG6 PFKA LAC	

	AC ATD demonster C	
	AC ATP-dependent 6-	
	phosphotructokinase	
	OS=Lactobacillus acidophilus	
	(strain ATCC 700396 / NCK56 /	
	N2 / NCFM) GN=pfk	
	>splA3DHP0IVATA_CLOTH V-	65 363
	type ATP synthase alpha chain	00.000
	OS-Clostridium thormosollum	
	(stroip ATCC 27405 / DSM 1227	
	(SITAILI ATCC 27405 / DSWI 1237	
	/ NBRC 103400 / NCIMB 10682	
	/ NRRL B-4536 / VPI 7372)	
	GN=atpA PE=3	
	SV=1;>sp Q184E7 VATA_PEPD	
	6 V-type ATP synthase alpha	
A3DHP0;Q184E7	chain OS=Peptoclostridiu	
	>splA1A143IENO BIFAA	46.48
	Enclase OS=Bifidobacterium	10.10
	adolescentis (strain ATCC	
	15702 / DOM 20002 / NOTO	
	11814 / E194a) GN=eno PE=3	
ATA143;B8D119		
	>sp A1A011 EFTU_BIFAA	44.105
	Elongation factor Tu	
	OS=Bifidobacterium	
A1A0T1;B8DTV7;P09953;C5CC66;	adolescentis (strain ATCC	
C5C0J3;B8HD11;A9WSW5;A1R8U	15703 / DSM 20083 / NCTC	
9:A0JZ88:B1ZPC5:B0RB36:A5CU	11814 / E194a) GN=tuf PE=3	
B6	SV=1	
	>splP94598IDHE3 BACTN	49 016
	Glutamate debydrogenase	10.010
	thetaioteomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
P94598;P95544	GN=gdhA PE=3 SV=2	
O66214;Q7MAZ7;A1SXK4;A1ST72	>sp O66214 CH60_RAOOR 60	56.361
;A6VWY0;B0VSP5;Q6F8P6;B7I618	kDa chaperonin (Fragment)	
;B7GY36;B0VDR6;A3M836;B2HXB	OS=Raoultella ornithinolytica	
6	GN=groL PE=3 SV=1	
	>splB5Y368lCH60 KLEP3 60	57.125
	kDa chaperonin OS=Klebsiella	
	pneumoniae (strain 342)	
	GN=arol PE=3	
	SV-1-SOLAETHERICHED KIED	
	7.60 kDa chaparanin	
	subsp. pneumoniae (strain	
	ATCC 700721 / MGH 78578)	
	GN=groL PE=3	
	SV=1;>sp O66026 CH60_KLEP	
B5Y368;A6TH53;O66026	N 60 k	
	>sp Q039K9 EFTU_LACP3	43.573
	Elongation factor Tu	
	OS=Lactobacillus paracasei	
	(strain ATCC 334 / BCRC 17002	
	/ CIP 107868 / KCTC 3260 /	
0030K0.B3W/E38	NRRI B- $1/1$ CN_tuf DE_2	
	$(1) (1) = 0^{-1} + 1 $ $(0) = (0) = (0) = (0) = 0$	

[]
	CB Elongation factor Tu	
	OS=Lactobacillus casei (strain	
	BL23) GN=tuf PE=3 SV=1	
	>sp 066218 CH60_PANAN 60	56.816
	kDa chaperonin (Fragment)	
	OS=Pantoea ananas GN=groL	
O66218	PE=3 SV=1	
	>sp O66212 CH60_RAOPL 60	56.654
	kDa chaperonin (Fragment)	
	GN-arol PE-3	
	SV=1.>sp A8AMQ6 CH60 CITK	
	8 60 kDa chaperonin	
	OS=Citrobacter koseri (strain	
O66212;A8AMQ6;A8G8S7;Q1C0Y	ATCC BAA-895 / CDC 4225-83 /	
0;Q8ZIY3;Q66FD5;Q1CED4;B2K1	SGSC4696) GN=groL PE=3	
Y4;B1JMR1;A9QYQ1;A7FN01;A4T	SV=1;>sp A8G8S7 CH60_SER	
RR0;P48219;A1JIP3	P5 60 kDa chaper	40,000
	>splQ881H3 ENU1_LACPL	48.029
	plantarum (strain ATCC BAA-	
	793 / NCIMB 8826 / WCFS1)	
Q88YH3;Q7UIR2	GN=eno1 PE=3 SV=1	
	>sp A7MKI5 EFTU_CROS8	43.204
	Elongation factor Tu	
	OS=Cronobacter sakazakii	
A/MKI5;Q83JC4;Q5PIW4;Q5/H/6;	(strain ATCC BAA-894) GN=tuf1	
05.49MHG0.01R5Y2.01R514.00	L Flongation factor Tu	
TCC0:Q0TA85:P0CE48:P0CE47:P	OS=Shigella flexneri GN=tufA	
0A6N3;P0A6N2;B1IVA7;B1IPW0;A	PE=3	
8A779;A8A5E6;A7ZSL4;A1AIF3;A1	SV=3;>sp Q5PIW4 EFTU_SALP	
AGM6;Q0SZX8;A7ZUJ2;A1JS52;A	A Elongation factor Tu	
4SHU2;B0TM14;A8GYW2	OS=Salmonella paratyphi	
	>sp Q64P62 MDH_BACFR	32.676
	Malate denydrogenase	
	YCH46) GN=mdh PE=3	
	SV=1;>sp Q5L8Z8 MDH BACF	
	N Malate dehydrogenase	
	OS=Bacteroides fragilis (strain	
	ATCC 25285 / DSM 2151 / JCM	
004000 051 070	11019 / NCTC 9343) GN=mdh	
		159.6
	DNA-directed RNA polymerase	100.0
	subunit beta OS=Bacteroides	
	fragilis (strain YCH46) GN=rpoC PE=3	
	SV=1;>sp Q5L898 RPOC_BAC	
Q64NJ8;Q5L898;A6GYT9;B1ZPB7;	FN DNA-directed RNA	
B3E164;Q2S1Q6;B3QQS1;B3QYL	polymerase subunit beta	
5;B8G4U8;A7NJM0;B9LL90;A9WH	OS=Bacteroides fragilis (strain	
TT;A5USK6;A9B6J1;U33431;A8Z5	ATCC 25285 / DSM 2151 / JCM	
12		

B2GAI0;Q03H05;Q04E64;B2G5X7; A5VIE9;Q9WYX6;Q9EZV1;B1L8Y8	>sp B2GAI0 CH60_LACF3 60 kDa chaperonin OS=Lactobacillus fermentum (strain NBRC 3956 / LMG 18251) GN=groL PE=3 SV=1;>sp Q03H05 CH60_PEDP A 60 kDa chaperonin OS=Pediococcus pentosaceus	56.856
;A7HNA3;A5IJR6;Q2RL13;B7IFA6; A8F401;A6LJ30;Q1AXU6;Q5SLM2; P61490	(strain ATCC 25745 / CCUG 21536 / LMG 10740 / 183-1w) GN=groL PE=3 SV=1;>	
Q9KKF0;Q18CT5;Q47LP1;A0LR17 ;A8LYN0;A4X1K4;O33659;A1SNU 4;P0CY97;P0CY96;Q2JFC5;B8E1 A9;B5YDR9;A9WN14;Q2J4P8;Q0R B64;A0LRS7;Q0RQ25;Q0RBS5	>sp Q9KKF0 CH60_CLODI 60 kDa chaperonin OS=Clostridioides difficile GN=groL PE=3 SV=1;>sp Q18CT5 CH60_PEP D6 60 kDa chaperonin OS=Peptoclostridium difficile (strain 630) GN=groL PE=3 SV=1	57.676
Q8R7U7	>sp Q8R7U7 RPOC_CALS4 DNA-directed RNA polymerase subunit beta OS=Caldanaerobacter subterraneus subsp. tengcongensis (strain DSM 15242 / JCM 11007 / NBRC 100824 / MB4) GN=rpoC PE=3 SV=1	133.28
B1YEP6	>sp B1YEP6 CH60_EXIS2 60 kDa chaperonin OS=Exiguobacterium sibiricum (strain DSM 17290 / JCM 13490 / 255-15) GN=groL PE=3 SV=1	57.875
A8EZL8	>sp A8EZL8 EFTU_RICCK Elongation factor Tu OS=Rickettsia canadensis (strain McKiel) GN=tuf PE=3 SV=1	42.864
Q9PPW7;B5ZC32;B1AJG4;Q7NAV	>sp Q9PPW7 EFG_UREPA Elongation factor G OS=Ureaplasma parvum serovar 3 (strain ATCC 700970) GN=fusA PE=3 SV=1;>sp B5ZC32 EFG_UREU 1 Elongation factor G OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=fusA PE=3 SV=1;>sp B1A,IG4 EFG_UREP	76.429
Q932F8;Q8CQ84;Q6GJC6;Q6GBU 5;Q5HRL0;Q5HID3;Q4L3K3;Q49V 52;Q2YSB9;Q2FJ98;P60279;P602 78;P47768;A8YZP0;A7WYW7;A6T Z19;A6QEJ4;A5IQ96;B9DKV0	 >sp Q932F8 RPOB_STAAM DNA-directed RNA polymerase subunit beta OS=Staphylococcus aureus (strain Mu50 / ATCC 700699) GN=rpoB PE=3 SV=1;>sp Q8CQ84 RPOB_STA 	133.24

	ES DNA-directed RNA	
	polymerase subunit beta	
	US=Staphylococcus epidermidis	
	(strain ATCC 12228) GN=rpoB	
	Р	
	>sp Q8VT58 CH60_STRGN 60	56.769
	kDa chaperonin	
	OS=Streptococcus gordonii	
	GN-grol PE-3	
	$SV = 1, >SP[QORJZU]CHOU_STRA$	
	P 60 KDa chaperonin	
	OS=Streptococcus anginosus	
Q8V158;Q8KJ20;Q8KJ18;Q8KJ16;	GN=groL PE=3	
Q04IQ3;P0A336;P0A335;C1CTD6;	SV=1;>sp Q8KJ18 CH60_STRC	
C1CML7;C1CGD7;C1C9H6;B8ZNK	V 60 kDa chaperonin	
9;B5E223;B2ILZ5;B1I8B2;A8AZE1;	OS=Streptococcus constellatus	
A3CKI1;Q93EU6;Q8CWW6	GN=groL PE=3 SV=1	
	>splQ88YH5 PGK LACPL	42.796
	Phosphoglycerate kinase	
	OS=Lactobacillus plantarum	
	(strain ATCC BAA-793 / NCIMB	
	8826 / WCES1) GN-pak PE-3	
	SV_{-1}	
		26.00
	>splQoGilolG3P1_STAAR	30.20
	Glyceraldenyde-3-phosphate	
	dehydrogenase 1	
	OS=Staphylococcus aureus	
	(strain MRSA252) GN=gapA1	
	PE=1	
	SV=1;>sp Q6GB58 G3P1_STA	
	AS Glyceraldehyde-3-phosphate	
	dehydrogenase 1	
	OS=Staphylococcus aureus	
Q6GIL8:Q6GB58:Q5HHP5:P99136	(strain MSSA476) GN=gapA1	
:P0A038:P0A037:P0A036	PE=3 SV=1:>spl	
	>splQ67KB8lCH60_SYMTH 60	57 897
	kDa chaperonin	07.007
	OS-Symbiobacterium	
	thormonbilum (strain T / IAM	
OCZKBO		
	14003) GIN=GIOL PE=3 SV=1	50.050
	>splQ60024 CH60_1HEBR 60	58.059
	kDa chaperonin	
	OS=Thermoanaerobacter	
	brockii GN=groL PE=1	
	SV=2;>sp B0KBR3 CH60_THE	
	P3 60 kDa chaperonin	
	OS=Thermoanaerobacter	
	pseudethanolicus (strain ATCC	
	33223 / 39E) GN=aroL PE=3	
	SV=1;>sp B0K3P6ICH60 THEP	
Q60024:B0KBR3:B0K3P6	X 60 kDa chaperonin OS=Th	
		40 300
	Glucose-6-phosphate isomeroso	-J.JZZ
	OS-Lactobacillus paragassi	
	(atrain ATCC 224 / DCDC 47000	
	(Strain ATUC 334 / BURU 17002	
QU3A55;B3WDCU;QU3QV7;QU3Z9	/ CIP 10/868 / KCTC 3260 /	
	NKKL B-441) GN=001 PE=3	

	SV=1;>sp B3WDC0 G6PI_LAC	
	CB Glucose-6-phosphate	
	isomerase OS=Lactobacillus	
	casei (strain BL23) GN	
	>splC4K4F8IEETU_HAMD5	43 486
	Elongation factor Tu	10.100
	OS-Hamiltonalla defense	
0.4/(450	subsp. Acynnosiphon pisum	
C4K4F8	(strain 5AT) GN=tur PE=3 SV=1	
	>sp B9MQH0 EFG_CALBD	77.22
	Elongation factor G	
	OS=Caldicellulosiruptor bescii	
	(strain ATCC BAA-1888 / DSM	
	6725 / Z-1320) GN=fusA PE=3	
	SV=1:>spIA4XI36IEFG_CALS8	
	Elongation factor G	
	OS-Caldicellulosiruptor	
	saccharolyticus (strain ATCC	
POMOHO: A 4X126	A2404 / DSM 2002 / ToPT 6221)	
		400.05
	>splaomild3kPOC_ALKOO	132.05
	DNA-directed RNA polymerase	
	subunit beta OS=Alkaliphilus	
	oremlandii (strain OhILAs)	
	GN=rpoC PE=3	
	SV=1;>sp B0S2E5 RPOC_FINM	
	2 DNA-directed RNA	
	polymerase subunit beta	
	OS=Finegoldia magna (strain	
	ATCC 29328) GN=rpoC PE=3	
	SV-2	
A0MED3, D002E3		79 277
	SplAcesslerg_FARDo	10.377
	Elongation lactor G	
	US=Parabacteroides distasonis	
	(strain ATCC 8503 / DSM 20701	
	/ CIP 104284 / JCM 5825 /	
	NCTC 11152) GN=fusA PE=3	
A6LEJ3	SV=1	
	>sp A6L903 MDH_PARD8	32.848
	Malate dehydrogenase	
	OS=Parabacteroides distasonis	
	(strain ATCC 8503 / DSM 20701	
	/ CIP 104284 / JCM 5825 /	
	NCTC 11152) GN-mdb PE-3	
A 6L 002	SV_{-1}	
A02903		151 20
		154.50
	DINA-directed RINA polymerase	
	subunit beta US=Pseudomonas	
	aeruginosa (strain ATCC 15692	
	/ DSM 22644 / CIP 104116 /	
	JCM 14847 / LMG 12228 / 1C /	
	PRS 101 / PAO1) GN=rpoC	
	PE=3	
Q9HWC9;Q02T86:A6UZI2:A4VHM	SV=1;>sp Q02T86 RPOC PSE	
4:A4XZ96:Q889X7:Q4ZMN8:Q4K5	AB DNA-directed RNA	
27·048D30·03K5Y2·C3K2Y2	polymerase subunit	
		21 062
	ribooomal protoin 1.25	21.902
	housomal protein L25	

OS=PSeud011163 adrights adrights adrights (strain ATOCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LIMG 12228 / 1C / PRS 101 / PAO1) GN=rplY PE=3 SV=1;>splQ02G03 RL25_PSEA B 505 ribosomal protein L25 OS=Pseudomonas aeruginosa >splQ9HVA2 LIVC_PSEAE Action 125 OS=Pseudomonas aeruginosa aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=livC PE=1 SV=1:splQ02FX9;B7V1A6;A6VCE SV=1:splQ02FX9;B7V1A6;A6VCE SV=1:splQ02FX9;B7V1A6;A6VCE SV=1 OgHVA2;Q02FX9;B7V1A6;A6VCE SV=1 SSP[Q9H36]MAJE_PSEAE B Keto-acid reductoisomerase (NADP(+)) O S=SPQ300700000000 S=SPQ30507[CH60_LACAC 60 Kistain ATCC 10396 / NCK56 / N2 / NCFM) GN=groL PE=3 SV=1 Q9HI36 SV=2 SSP[Q80307]CH60_LACAC 60 N2 / NCFM) GN=groL PE=3 SV=1 Q8G3N6			
(strain ATCC 1992/15W) 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=rplY PE=3 SV=1;sep[Q02G03]RL25_PSEA B 505 ribosomal protein L25 OS=Pseudomonas aeruginosa >sep[Q9HVA2][LVC_PSEAE (NADP(+)) OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 09HVA2;Q02FX9;B7V1A6;A6VCE 7;A4VPI6;C1DFH7;Q7WCP6;Q7W 566;Q7VZU4;Q2KWH7;A9IGJ3 (NADP(+)) O SepIQ9H136[MAJE_PSEAE SepIQ9H136[MAJE_PSEAE 10.91 Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 70396 / NCK56 / N2 / NCFM) GN=group Q9H136 SV=1 SepIQ83067[CH60_LACAC 60 N2 / NCFM) GN=group E=3 Q9H136 SV=2 Q9H036 Q9H136 SV=2 <td></td> <td>OS=Pseudomonas aeruginosa</td> <td></td>		OS=Pseudomonas aeruginosa	
22647 / CiP 104116 / JCM 14847 / LiNG 12228 / IC / PRS 101 / PAO1) GN=rplY PE=3 SV=1;splQ02G03]RL25_PSEA B 505 ribosomal protein L25 OS=Pseudomonas aeruginosa sepIQ9HVA2/ILVC_PSEAE Ketol-acid reductoisomerase (NADP(+)) OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=ivC PE=1 Q9HVA2;Q02FX9;B7V1A6;A6VCE Sv=1;sepIQ02FX9[LVC_PSEA Ketol-acid reductoisomerase (NADP(+)) OS Ses[Q9H136]MAJE_PSEAE Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM H4847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=1 SV=1 Q9H136 SV=1 Q9H136 SV=1 Q9H136 SV=1 Q9H136 SV=1 Q9H136 SV=2 SP[Q80307]CH60_LACAC 60 <tr< td=""><td></td><td></td><td></td></tr<>			
14847 / LMG 1228 / 1C / PKS 101 / PAO1 / GN-cplY PE-3 SV=1;>splQ02G03(RL25_PSEA B 505 ribosomal protein L25 OS-Pseudomonas aeruginosa >splQ09HVA2[L/C_PSEAE Astorna (NADP(+)) OS-Pseudomonas (NADP(+)) OS-Pseudomonas (NADP(+)) OS-Pseudomonas (NADP(+)) OS-Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JSM 10 / PAO1) GN-livC PE=1 Q9HVA2;Q02FX9;B7V1A6;A6VCE Sketo-acid reductoisomerase (NADP(+)) O SegQ02FX9;B7V1A6;A6VCE Sketo-acid reductoisomerase (NADP(+)) O SegQ02FX9;B7V1A6;A6VCE SegQ02FX9;B7V1A6;A6VCE SegQ02FX9;B7V1A6;A6VCE SegQ02FX0;EVFA;GEQ SegQ02FX0;EVFA;GEQ SegQ02FX0;EVFA;GEQ SegQ02FX0;EVFA;GEQ SegQ02FX0;EVFA;GEQ SegQ02FX0;EVFA;GEQ SegQ02FX0;EVFA;GEQ SegQ02FX0;EVFA;GEQ Q9H136 SV=1 Q9H136 SV=1 Ses		22644 / CIP 104116 / JCM	
101 / PAO1) GN=rpt Y PE-3 SV=1:>splQ202603[RL25_PSEA B 50S ribosomal protein L25 OS=Pseudomonas aeruginosa 36.424 x=plQ3PMVA2[LVC_PSEA Ketol-acid reductoisomerase (NADP(+)) OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=ilvC PE=1 36.424 Q9HVA2:Q02FX9:B7V1A6;A6VCE 7;A4VPI6;C1DFH7;Q7WCP6;Q7W 566;Q7VZU4;Q2KWH7;A9IGJ3 SV=1;>splQ02FX9ILVC_PSEA B Ketol-acid reductoisomerase (NADP(+)) O 19.091 S9P(29H18G)MAJE_PSEAE Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=1 99HI36 19.091 Q9HI36 SV=1 >splQ3G07[CH60_LACAC 60 KDa chaperonin OS=Lactobacillus acidophilus (strain ATCC 70396 / NCK56 / N2 / NCFM) GN=groL PE=3 SV=2 57.82 KD3 Q93G07 SV=2 >splQ3B07[CH60_LACAC 60 KDa chaperonin OS=Lactobacillus acidophilus (strain ATCC 70396 / NCK56 / N2 / NCFM) GN=groL PE=3 SV=1 58.262 Inosine-5-monophosphate dehydrogenase OS=Bit/dobactrium longum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=guaB PE=3 SV=1 49.846 Gucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pg1 PE=3 SV=1;>splQ3BVF1[G6PL_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus askei subs; sakei (strain 23K) GN=tufA PE=3 SV=1;>splQ3BD27[EFTU_VIBPA Elongation factor TU 1 OS=Vibrio vulnificus (strain R1;A7MXE4 43.152 VE1;splQ3BD27[EFTU_VIBPA Elongation factor TU 1 OS=Vibrio vulnificus (strain DS=Vibrio vulnificus (strain DS=Vibrio vulnificus (strain DS=Vibrio vulnificus (strain DS=Vibrio vulnificus (strain DS=Vibrio vulnificus (strai		14847 / LMG 12228 / 1C / PRS	
SV=1;>splQ02G03[RL25_PSEA B 50S ribosomal protein L25 36.424 Ket0-acid reductoisomerase (NADP(+)) OS=Pseudomonas aeruginosa (strain ATCC 15692 36.424 VMDP(+)) OS=Pseudomonas aeruginosa (strain ATCC 15692 36.424 Q9HVA2[Q02FX9;B7V1A6;A6VCE 7:A4VPI6:C1DFH7;07WCP6;07W SV=1;>splQ02FX9]ILVC_PSEA B Ket0-acid reductoisomerase (NADP(+)) O 19.091 S66;Q7VZU4;Q2KWH7;A9IGJ3 SsplQ9H136[MAJE_PSEAE Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=1 19.091 Q9H136 Sv=1 ssplQ39136[IMDH_BIFLO In CS=Pseudomonas aeruginosa (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=groL PE=3 19.091 Q9H136 Sv=1 ssplQ39307[CH60_LACAC 60 KDa chaperonin OS=Lactobacillus acidophilus (strain NCC 2700396 / NCK56 / N2 / NCFM) GN=groL PE=3 58.262 Q93G07 SV=2 ssplQ8308[IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain NCC 2705] GN=guaB 58.262 Q863N6 PE=3 SV=1 ssplQ88WF1;Q1WUR2;Q3X 49.846 Q88UI4;Q38WF1;Q1WUR2;Q3X SV=1;splQ38WF1[G6P1_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus sakei (strain 23K) GN=tufA PE=3 SV=1;splQ8D27;Q8DQ7;Q4MG 43.152 Q877T5;Q8DD27;Q8DQ7;Q7MG R1;A7MKE4 SV=1;splQ8D27]EFTU1_VIB 43.152		101 / PAO1) GN=rplY PE=3	
B 50S ribosomal protein L25OS=Pseudomonas aeruginosa>sp[Q9HVA2 LVC_PSEAE(NADP(+)) OS=Pseudomonas(NADP(+)) OS=Pseudomonasaeruginosa (strain ATCC 15692/ DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=iivC PE=1Q9HVA2;Q02FX9;B7V1A6;A6VCE7;A4VPI6;C1DFH7;Q7WCP6;Q7W566;Q7VZU4;Q2KWH7;A9IGJ3566;Q7VZU4;Q2KWH7;A9IGJ3(NADP(+)) OSsp[Q9HI36]MALE_PSEAE(NADP(+)) OSsp[Q9HI36]MALE_PSEAE(11 / PAO1) GN=invC PE=1Q9HI36Q9HI36Q9HI36Q9HI36Q9HI36Sup 2Q9G07Sup 2Ssp[Q93007]CH60_LACAC 60 KDa chaperonin OS=Lactobacillus acidophilus (strain ATCC 7005) GN=guaB PE=3 SV=1Q9G07Q9G07Q9G07Sup 2Ssp[Q830N6]IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Lactobacillus plantarum (strain ATCC 7005) GN=guaB PE=3 SV=1Q8G3N6PE=3 SV=1SV=1;>sp[Q380H](G6PL_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC CBA-733 / NCIMB B8226 / WCFS1 J GN-pgi PE=3 SV=1;>sp[Q380PT16]GPL_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subs; sakei (strain 23K) GN=pgi PE=3 SV=1Sp[Q877T5]C48DD27;Q8DC47;Q47MG R1;A7MXE4Q877T5;Q8DD27;Q8DC47;Q47MG R1;A7MXE4Q877T5;Q8DD27;Q8DC47;Q47MG R1;A7MXE4Q877T5;Q4DD27;Q8DC47;Q47MG R1;A7MXE4Q877T5;Q4DD27;Q8DC47;Q47MG R1;A7MXE4Q877T5;Q4DD27;Q8DC47;Q47MG R1;A7MXE4Q87		SV=1;>sp Q02G03 RL25_PSEA	
OS=Pseudomonas aeruginosa 36.424 >sp[Q9HVA2]ILVC_PSEAE 36.424 Ketol-acid reductoisomerase (NADP(+)) OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=iivC PE=1 98.000 Q9HVA2;Q02FX9;B7V1A6;A6VCE SV=1>sp[Q02FX9]ILVC_PSEA 98.000 7;A4VPI6;C1DFH7;Q7WCP6;Q7W Sketol-acid reductoisomerase (NADP(+)) O 19.091 566;Q7VZU4;Q2KWH7;A9IGJ3 Netol-acid reductoisomerase (Strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1] GN=hcpA PE=1 19.091 Q9HI36 SV=1 >sp[Q93G07]CH60_LACAC 60 KDa chaperonin OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM] GN=group PE=3 58.262 Q93G07 SV=2 >sp[Q8G3N6]IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain NCC 2705] GN=guaB 58.262 Q8G3N6 PE=3 SV=1 >sp[Q88UI4]G6P1_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus paintarum (strain ATCC BAA-793 / NCIMB 8826 / WCF51] GN=pig PE=3 SV=1;sp[Q88UI4]G6P1_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus sakei subs. sakei (strain 28K) GN=pig PE=3 SV=1 43.152 Q877T5;Q8DD27;Q8DC47;Q7MG R1;A7MKE4 SV=1>sp[Q8D27]EFTU1_VIB VU Elongation factor Tu 1 43.152		B 50S ribosomal protein L25	
>sp[Q9HVA2 ILVC_PSEAE Ketol-acid reductoisomerase (NADP(+)) OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=iiVC PE=136.424Q9HVA2;Q02FX9;B7V1A6;A6VCE 7;A4VPI6;C1DFH7;Q7WCP6;Q7W 566;Q7VZU4;Q2KWH7;A9IGJ3SV=1>sp[Q9D2FX9]ILVC_PSEA B Ketol-acid reductoisomerase (NADP(+)) O S=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=ibCP PE=119.091Q9HI36Svp[Q9HI36]MAJE_PSEAE Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=119.091Q9HI36SV=1spp[Q93G07[CH60_LACAC 60 KDa chaperonin OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=groL PE=3 SV=258.262Q93G07SV=2spp[Q8306][MDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain ATCC 2705) GN=guaB PE=3 SV=149.846Q863N6PE=3 SV=1spp[Q88UH[G6P1_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=143.842Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5SGIucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=143.152Q877T5;Q8DD27;Q8DCQ7;Q7MG R1;A7MXE4SV=1:spQ203D27[EFTU_VIBPA SV=1;spQ203D27[EFTU_VIBPA SV=1;sspQ203D27[EFTU_VIBPA SV=1;sspQ203D27[EFTU_VIBPA SV=1;sspQ203D27[EFTU_VIBPA SV=1;sspQ203D27[EFTU_VIBPA SV=1;sspQ203D27[EFTU_VIBPA SV=1;sspQ203D27[EFTU_VIBPA SV=1;sspQ203D27[EFTU_VIBPA SV=1;sspQ203D27[EFTU_VIBPA SV=1;sspQ203D2		OS=Pseudomonas aeruginosa	
Ketol-acid reductoisomerase (NADP(+)) OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=iivC PE=1Q9HVA2;Q02FX9;B7V1A6;A6VCE 7;A4VPI6;C1DFH7;Q7WCP6;Q7W 566;Q7VZU4;Q2KWH7;A9IGJ3SyslQ9HQ2FX9]ILVC_PSEA B Ketol-acid reductoisomerase (NADP(+)) O19.091 Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=1 Sy=119.091 Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=1 Sy=119.091 Major exported protein OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / NZ / NCFM] GN=groL PE=3 Sy=158.262 SSEQ 		>splQ9HVA2IILVC_PSEAE	36.424
(NADP(+)) OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22844 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=livC PE=1Q9HVA2;Q02FX9;B7V1A6;A6VCE 7;A4VPI6;C1DFH7;Q7WCP6;Q7WSV=1;>sp Q02FX9 ILVC_PSEA B Ketol-acid reductoisomerase (NADP(+)) OS66;Q7VZU4;Q2KWH7;A9IGJ3SV=1;>sp Q9H136 MAJE_PSEAE Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=1 SV=119.091Q9HI36SV=1Sp Q9I3G07 CH60_LACAC 60 kDa chaperonin OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / NZ / NCFM) GN=groL PE=3 SV=258.262 Inosine-5-monophosphate dehydrogenase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB B8226 / WCFS1) GN=guaB PE=3 SV=158.262 49.846Q8G3N6PE=3 SV=1 SV=1;>sp Q38WF1 G6P1_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=149.846 43.152 Elongation factor Tu OS=Vibrio parahaem0yticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27;Q8DCQ7;Q7MG R1;A7MXE443.152		Ketol-acid reductoisomerase	
Q9HVA2;Q02FX9;B7V1A6;A6VCE (JCM1474)/LMG12228/1C/ PRS101/PAO1) GN=livC PE=1Q9HVA2;Q02FX9;B7V1A6;A6VCE (JCM14847/LMG12228/1C/ PRS101/PAO1) GN=livC PE=1Q9HVA2;Q02FX9;B7V1A6;A6VCE (MADP(+)) OS66;Q7VZU4;Q2KWH7;A9IGJ3S66;Q7VZU4;Q2KWH7;A9IGJ3S9[Q9H136]MAJE_PSEAE Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692/DSM 22664/CIP 104116/JCM 14847/LMG 12228/1C/PRS 101/PAO1) GN=hcpA PE=1Q9HI36SV=1Q9HI36SV=1Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2SV=1SV=		(NADP(+)) OS - Pseudomonas	
ablog in Surain // DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=iivC PE=1Q9HVA2;Q02FX9;B7V1A6;A6VCESV=1;>sp[Q02FX9]ILVC_PSEA B Ketol-acid reductoisomerase (NADP(+)) O566;Q7VZU4;Q2KWH7;A9IGJ3Sv=1;>sp[Q9H136]MAJE_PSEAE Major exported protein QS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=1 Sv=1Q9HI36SV=129HI36SV=1Sep[Q93G07]CH60_LACAC 60 kDa chaperonin QS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=groL PE=3 Sv=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q8G3N6PE=3 SV=1Q8G3N6PE=3 SV=1Q8G3N6PE=3 SV=1Q8UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5Ssp[Q8G14][GP1_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=rg16E1_JCNQ82UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5Sp[Q82TT5][EFTU_VIBPA Elongation factor Tu OS=Vibrio parhaem0/ticus serotype O3;K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1:>sp[Q8DD27;Q8DCQ7;Q7MG R1;A7MXE443.152		aeruginosa (strain ATCC 15692	
Additional and the intervent of the inter		/ DSM 22644 / CID 104116 /	
John 14447/Livits 12226/10/ PRS 101 / PAO1) GN=livC PE=1 SV=1;>splQ02FX9 ILVC_PSEA B Ketol-acid reductoisomerase (NADP(+)) O566;Q7VZU4;Q2KWH7;A9IGJ3Stelo-acid reductoisomerase (NADP(+)) O566;Q7VZU4;Q2KWH7;A9IGJ3SsplQ9H136[MAJE_PSEAE Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 22644 / CIP 104116 / JCM 289[093G07]CH60_LACAC 60 SV=157.82 57.82 SV=1Q9HI36SV=1 >splQ93G07[CH60_LACAC 60 N2 / NCFM) GN=groL PE=3 SV=157.82 SS.262Q93G07SV=2SsplQ8G3N6[IMDH_BIFLO Inosine-5-moophosphate dehydrogenase OS=Bifidobacterium longum (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=guaB PE=3 SV=158.262Q8G3N6PE=3 SV=1SsplQ88UI4[G6PI_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=guaB SSV=149.846Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5Silucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=gip PE=3 SV=143.152 Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1,>splQ8D27[EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain SV=1;>splQ8DD27,Q8DCQ7;Q7MG R1;A7MXE443.152		/ DSIVI 22044 / CIF 104110 /	
PRS 101 / PAO1) GN=INC PE=1Q9HVA2;Q02FX9;B7V1A6;A6VCE 7;A4VPI6;C1DFH7;Q7WCP6;Q7WSV=1;>sp[Q02FX9]ILVC_PSEA B Ketol-acid reductoisomerase (NADP(+)) O566;Q7VZU4;Q2KWH7;A9IGJ3SV=1;>sp[Q9HI36]MAJE_PSEAE Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=1Q9HI36SV=1Q9HI36SV=1Q9HI36SV=2Q9HI36SV=2Q9G307SV=2Q9G307SV=2Q9G3N6PE=3 SV=1Q8G3N6PE=3 SV=1Q8G3N6PE=3 SV=1Q8G3N6SV=2Q8G3N6SV=2Q8G3N6PE=3 SV=1Q8UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5Ssp[Q88UI4[G6P1_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=143.152 Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp[Q8DD27;Q8DCQ7;Q7MG R1;A7MXE443.152			
Q9HVA2;Q02FX9;B7V1A6;A6VCE 7;A4VPI6;C1DFH7;Q7WCP6;Q7W 566;Q7VZU4;Q2KWH7;A9IGJ3PFE=1 SPIQ9HI36[MAJE_PSEAE Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 148477 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=1 SV=119.091Q9HI36SV=1Svel57.82Q9HI36SV=2SPIQ93G07[CH60_LACAC 60 kDa chaperonin OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=groL PE=358.262Q93G07SV=2SSPIQ8G3N6[IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifdobacterium longum (strain NCC 2705) GN=guaB PE=3 SV=158.262Q863N6PE=3 SV=1SSPIQ88UI4[G6PI_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=gu3 GN715;Q8DD27;Q8DCQ7;Q7MG Q877T5;Q8DD27;Q8DCQ7;Q7MG R1;A7MXE443.152		PRS 101 / PAO1) GN=IIVC	
C9HVA2;Q02FX9;B7V1A6;A6VCE SV=1;>sp[Q02FX9][LVC_PSEA 7;A4VPI6;C1DFH7;Q7WCP6;Q7W B Ketol-acid reductoisomerase 566;Q7VZU4;Q2KWH7;A9IGJ3 (NADP(+)) O Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=1 Q9HI36 SV=1 Q9HI36 SV=1 Q9HI36 SV=1 Q9HI36 SV=2 Q93G07 SV=2 Ssp[Q83N6 IMDH_BIFLO Inosine-5-monophosphate dehydrogenase 58.262 Q93G07 SV=2 Q8G3N6 PE=3 SV=1 Q8G3N6 PE=3 SV=1 Q8G3N6 SUS=1, catobacillus plantarum (strain ATCC BAA-793 / NCIMB 826 / WCF3) GN=pgi PE=3 SV=1 Q88UI4;Q38WF1;Q1WUR2;Q83X			
7;A4VPI6;C1DFH7;Q7WCP6;Q7W B Ketol-acid reductoisomerase (NADP(+)) O (NADP(+))	Q9HVA2;Q02FX9;B7V1A6;A6VCE	SV=1;>sp Q02FX9 ILVC_PSEA	
566;Q7VZU4;Q2KWH7;A9IGJ3 (NADP(+)) O >splQ9HI36 MAJE_PSEAE 19.091 >splQ9HI36 MAJE_PSEAE 19.091 Mäjor exported protein OS=Pseudomonas aeruginosa QS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM Q2644 / CIP 104116 / JCM 144847 / LMG 12228 / IC / PRS Q9HI36 SV=1 Q9HI36 SV=1 Q9HI36 SV=1 Q9HI36 SV=1 Q9HI36 SV=2 Q93G07 SV=2 Q93G07 SV=2 Q93G07 SV=2 Q93G07 SV=2 SPIQ8G3N6 IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum Q8G3N6 PE=3 SV=1 SV=1 >splQ88UI4[G6PI_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pigi PE=3 SV=1;>splQ38WF1[G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pig28WF1[G8PL_VE38X GN=pig28VF1 M3;B2G649	7;A4VPI6;C1DFH7;Q7WCP6;Q7W	B Ketol-acid reductoisomerase	
>sp Q9HI36 MAJE_PSEAE 19.091 Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=1 Q9HI36 SV=1 Q9HI36 SV=1 Q9HI36 SV=1 Q9G3G07 SV=2 Q93G07 SV=2 Q863N6 PE=3 SV=1 Svap Q8G3N6 IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Lactobacillus plantarum Q863N6 PE=3 SV=1 Q863N6 PE=3 SV=1 Sv=1;>sp Q88U14 G6PI_LACPL 49.846 Glucose-6-phosphate isomerase OS=Lactobacillus Q88U14;Q38WF1;Q1WUR2;Q83X Sakei subsp. sakei	566;Q7VZU4;Q2KWH7;A9IGJ3	(NADP(+)) O	
Major exported protein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=1Q9HI36SV=1Q9HI36SV=1Q9G3G07SV=1Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Sp[Q8G3N6]IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain ATCC 2705) GN=guaB PE=3 SV=158.262Q8G3N6PE=3 SV=1Q8G3N6SS=2actobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1;>sp[Q88WF1]G6P1_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=143.152Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5SP[Q87TT5]EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp]Q8DD27;Q8DCQ7;Q7MG NUE Iongation factor Tu 1 OS=Vibrio vulnificus (strain43.152		>sp Q9HI36 MAJE_PSEAE	19.091
OS=Pseudomonas aeruginosa (strain ATCC 16692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=1Q9HI36SV=1>sp[Q93G07]CH60_LACAC 60 kDa chaperonin OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=groL PE=3 SV=257.82Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2Q93G07SV=2<		Major exported protein	
(strain ATCC 15692 / DŠM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hcpA PE=1 SV=1Q9HI36SV=1Q9HI36SV=1SV=1>sp Q93G07 CH60_LACAC 60 kDa chaperonin OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=groL PE=357.82Q93G07SV=2Q93G07SV=2Q93G07SV=2SSP Q8G3N6 IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain NCC 2705) GN=guaB PE=3 SV=158.262Q8G3N6PE=3 SV=1Q8G3N6PE=3 SV=1Q8BUI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5SGlucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=149.846Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5SGlucose-fuctors GN=pgi PE=3 SV=143.152Q877T5;Q8DD27;Q8DCQ7;Q7MG R1;A7MXE4VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain SV=1)-splQ8DD27[EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain43.152		OS=Pseudomonas aeruginosa	
22644 / CIP 104116 / JCM14847 / LMG 12228 / 1C / PRS101 / PAO1) GN=hcpA PE=1SV=1>splQ93G07[CH60_LACAC 60KDa chaperoninOS=Lactobacillus acidophilus(strain ATCC 700396 / NCK56 / N2 / NCFM) GN=groL PE=3Q93G07SV=2Q93G07SV=2Q93G07SV=2SplQ8G3N6[IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain NCC 2705) GN=guaBQ8G3N6PE=3 SV=1SplQ88UI4[G6P1_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus S Glucose-6-phosphate isomerase OS=Lactobacillus S SQL827T5[EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>splQ8D27[EFTU1_VIB VI Elongation factor Tu 1 OS=Vibrio vulnificus (strain QSV=1;>splQ8D27[EFTU1_VIB VI Elongation factor Tu 1 OS=Vibrio vulnificus (strain43.152		(strain ATCC 15692 / DSM	
Q9HI36 Q9HI36 Q9HI36 SV=1 Ssp[Q93G07]CH60_LACAC 60 kDa chaperonin OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=groL PE=3 Q93G07 SV=2 Ssp[Q8G3N6 IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain NCC 2705) GN=guaB PE=3 SV=1 Ssp[Q8BUI4]G6PI_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1 SV=1 Sp[Q88WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5 Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5 Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5 Q87TT5;Q8DD27;Q8DCQ7;Q7MG R1;A7MXE4 Q87TT5;Q8DD27;Q8DCQ7;Q7MG R1;A7MXE4 Q87VT5;Q8DD27;Q8DCQ7;Q7MG R1;A7MXE4 Q87VT5;Q8DD27;Q8DCQ7;Q7MG R1;A7MXE4 SV=1;Sp[Q8DD27]EFTU_VIBPA L0220649;A5VIL5 C02207 C022		22644 / CIP 104116 / JCM	
Q9HI36 Q9HI36 SV=1 Ssp[Q93G07 CH60_LACAC 60 KDa chaperonin OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=groL PE=3 Q93G07 SV=2 Ssp[Q8G3N6 IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain NCC 2705) GN=guaB PE=3 SV=1 Ssp[Q88UI4 G6PI_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=gi PE=3 SV=1 SV=1;>sp[Q38WF1 G6PI_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=gi PE=3 SV=1;>sp[Q38WF1 G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=gi PE=3 SV=1 Ssp[Q877T5]EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp[Q8DD27]EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain		14847 / I MG 12228 / 1C / PRS	
Q9HI36SV=1Q9HI36SV=1>sp[Q93G07]CH60_LACAC 60 kDa chaperonin OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=groL PE=3 SV=257.82Q93G07SV=2Q93G07SV=2>sp[Q8G3N6 IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain NCC 2705) GN=guaB PE=3 SV=158.262Q8G3N6PE=3 SV=1Q8G3N6PE=3 SV=1Q8G3N6SSIQ88UI4[G6PI_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=ggi PE=3 SV=149.846Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5GN=pgi PE=3 SV=1Q88UI4;Q38WF1;Q1WUR2;Q83X GN=pgi PE=3 SV=1Ssp[Q877T5]EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=turA PE=3 SV=1;>sp[Q8DD27]EFTU1_VIB Q877T5;Q8DD27;Q8DCQ7;Q7MG R1;A7MXE443.152		101 / PAO1) GN=bcpA PE=1	
Q801130>sp[Q93G07]CH60_LACAC 60 KDa chaperonin OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=groL PE=3 SV=257.82Q93G07SV=2Q93G07SV=2Q93G07SV=2Ssp[Q8G3N6]IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain NCC 2705) GN=guaB PE=3 SV=158.262Q8G3N6PE=3 SV=1Q8G3N6PE=3 SV=1Q8G3N6PE=3 SV=1Q8G3N6SV=1:>sp[Q88UI4]G6P1_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=ggi PE=3 SV=1:>sp[Q38WF1]G6P1_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=ggi PE=3 SV=149.846Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5SGlucose-6-phosphate isomerase OS=Lactobacillus Sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=143.152Q877T5;Q8DD27;Q8DCQ7;Q7MG R1;A7MXE4VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain43.152		SV_{-1}	
Q8G3N6 PE=3 SV=1 Q8G3N6 PE=3 SV=1 Q8G3N6 PE=3 SV=1 Q8BUI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5 GN=Q82X Q877T5;Q8DD27;Q8DCQ7;Q7MG Q877T5;Q8DD27;Q8DCQ7;Q7MG Q877T5;Q8DD27;Q8DCQ7;Q7MG Q8-U Comparison of the sector of the s			57 92
Dat ChaperoniniOS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=groL PE=3 SV=2Q93G07SV=2>sp[Q8G3N6 IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain NCC 2705) GN=guaB PE=3 SV=158.262Q8G3N6PE=3 SV=1Q8G3N6PE=3 SV=1Q8G3N6SS=262 PE=3 SV=1Q8G3N6SV=2Q8G3N6SS=262 PE=3 SV=1Q8G3N6SS=262 PE=3 SV=1Q8BUI4(G6PI_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1;>sp[Q88WF1;G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5SGN=pgi PE=3 SV=1Q88UI4;Q38WF1;Q1WUR2;Q83X GN=pgi PE=3 SV=143.152Q877T5[EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp[Q8D27][EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strainQ877T5;Q8DD27;Q8DCQ7;Q7MG R1;A7MXE4VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain		<pre>>spl@95007[C1100_LACAC 00</pre>	57.02
Q93G07 SV=2 Sp[Q8G3N6 IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain NCC 2705) GN=guaB PE=3 SV=1 Ssp[Q8BUI4 G6PI_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1;>sp[Q88WF1;GPI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1;>sp[Q88WF1;GPI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1 A3.152 Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp[Q877T5;Q8DD27;Q8DCQ7;Q7MG R1;A7MXE4 Q8=Vibrio vulnificus (strain 2)			
Q93G07SV=2Q93G07SV=2>sp Q8G3N6 IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain NCC 2705) GN=guaB PE=3 SV=158.262Q8G3N6PE=3 SV=1Q8G3N6PE=3 SV=1Q8G3N6>sp Q88UI4 G6PI_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1;>sp Q38WF1 G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus SGlucose-6-phosphate isomerase OS=Lactobacillus SAE SV=1;>sp Q38WF1 G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus Sakei (strain 23K) GN=pgi PE=3 SV=143.152Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5>sp Q877T5 EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain43.152			
Q93G07N2 / NCFM) GN=groL PE=3 SV=2Q93G07SV=2>splQ8G3N6 IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain NCC 2705) GN=guaB PE=3 SV=158.262Q8G3N6PE=3 SV=1Q8G3N6PE=3 SV=1Q8G3N6SplQ88UI4 G6PI_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1;>splQ38WF1 G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus S S S Glucose-6-phosphate isomerase OS=Lactobacillus S S S S S S S S S S S S S S S S S S S		(Strain ATCC 700396 / NCK56 /	
Q93G07SV=2>sp Q8G3N6 IMDH_BIFLO Inosine-5-monophosphate dehydrogenase OS=Bifidobacterium longum (strain NCC 2705) GN=guaB PE=3 SV=158.262Q8G3N6PE=3 SV=149.846Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1;>sp Q38WF1 G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=149.846Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5GN=pgi PE=3 SV=143.152Sp Q87TT5 EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain43.152	000007	N2 / NCFM) GN=groL PE=3	
>sp[Q8G3N6]IMDH_BIFLO58.262Inosine-5-monophosphatedehydrogenaseOS=Bifidobacterium longum(strain NCC 2705) GN=guaBQ8G3N6PE=3 SV=1>sp[Q88UI4]G6PI_LACPL49.846Glucose-6-phosphate isomeraseOS=Lactobacillus plantarum(strain ATCC BAA-793 / NCIMB8826 / WCFS1) GN=pgi PE=3SV=1;>sp[Q38WF1]G6PI_LACSS Glucose-6-phosphates SV=1;>sp[Q38WF1]G6PI_LACSS Glucose-6-phosphateg88UI4;Q38WF1;Q1WUR2;Q83Xsakei subsp. sakei (strain 23K)M3;B2G649;A5VIL5GN=pgi PE=3 SV=1>sp[Q877T5]EFTU_VIBPA43.152Elongation factor Tu OS=Vibrioparahaemolyticus serotypeO3:K6 (strain RIMD 2210633)GN=tufA PE=3SV=1;>sp[Q8DD27]EFTU1_VIBVU Elongation factor Tu 1Q877T5;Q8DD27;Q8DCQ7;Q7MGVU Elongation factor Tu 1R1;A7MXE4OS=Vibrio vulnificus (strain	Q93G07	SV=2	
Inosine-5-monophosphate dehydrogenaseInosine-5-monophosphate dehydrogenaseQ8G3N6OS=Bifidobacterium longum (strain NCC 2705) GN=guaBPE=3 SV=149.846Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1;>sp Q38WF1 G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei (strain 23K)Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5GN=pgi PE=3 SV=1Sv=1;>sp Q877T5 EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain		>sp Q8G3N6 IMDH_BIFLO	58.262
dehydrogenaseQ8G3N6OS=Bifidobacterium longum (strain NCC 2705) GN=guaB PE=3 SV=1>sp Q88UI4 G6PI_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1;>sp Q38WF1 G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5>sp Q877T5 EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain		Inosine-5-monophosphate	
Q8G3N6OS=Bifidobacterium longum (strain NCC 2705) GN=guaB PE=3 SV=128G3N6PE=3 SV=1>sp Q88UI4 G6PI_LACPL Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1;>sp Q38WF1 G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5A9.846 GN=pgi PE=3 SV=1A88UI4;Q38WF1;Q1WUR2;Q83X GN=pgi PE=3 SV=1A3.152 Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain		dehydrogenase	
Q8G3N6(strain NCC 2705) GN=guaB PE=3 SV=1Q8G3N6PE=3 SV=1>sp Q88UI4 G6PI_LACPL49.846Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1;>sp Q38WF1 G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5>sp Q877T5 EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain		OS=Bifidobacterium longum	
Q8G3N6PE=3 SV=1>sp Q88UI4 G6PI_LACPL49.846Glucose-6-phosphate isomeraseOS=Lactobacillus plantarum(strain ATCC BAA-793 / NCIMB8826 / WCFS1) GN=pgi PE=3SV=1;>sp Q38WF1 G6PI_LACSSV=1;>sp Q38WF1 G6PI_LACSS Glucose-6-phosphateisomerase OS=Lactobacillusaskei subsp. sakei (strain 23K)GN=pgi PE=3 SV=1Sp Q877T5 EFTU_VIBPA43.152Elongation factor Tu OS=Vibrioparahaemolyticus serotypeO3:K6 (strain RIMD 2210633)GN=tufA PE=3SV=1;>sp Q8DD27 EFTU1_VIBQ877T5;Q8DD27;Q8DCQ7;Q7MGR1;A7MXE4OS=Vibrio vulnificus (strain		(strain NCC 2705) GN=guaB	
>sp Q88UI4 G6PI_LACPL49.846Glucose-6-phosphate isomeraseOS=Lactobacillus plantarum(strain ATCC BAA-793 / NCIMB8826 / WCFS1) GN=pgi PE=38826 / WCFS1) GN=pgi PE=3SV=1;>sp Q38WF1 G6PI_LACSS SU=1;>sp Q38WF1 G6PI_LACSS Glucose-6-phosphateisomerase OS=Lactobacillussakei subsp. sakei (strain 23K)M3;B2G649;A5VIL5GN=pgi PE=3 SV=1Sp Q877T5 EFTU_VIBPA43.152Elongation factor Tu OS=Vibrioparahaemolyticus serotypeO3:K6 (strain RIMD 2210633)GN=tufA PE=3SV=1;>sp Q8DD27 EFTU1_VIBVU Elongation factor Tu 1Q877T5;Q8DD27;Q8DCQ7;Q7MGVU Elongation factor Tu 1R1;A7MXE4OS=Vibrio vulnificus (strain	Q8G3N6	PE=3 SV=1	
Glucose-6-phosphate isomerase OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1;>sp Q38WF1 G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=143.152Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5>sp Q877T5 EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain43.152		>sp Q88UI4 G6PI_LACPL	49.846
OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1;>sp Q38WF1 G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1>sp Q877T5 EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain		Glucose-6-phosphate isomerase	
(strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=pgi PE=3 SV=1;>sp Q38WF1 G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1>sp Q877T5 EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain		OS=Lactobacillus plantarum	
8826 / WCFS1) GN=pgi PE=3 SV=1;>sp Q38WF1 G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1>sp Q877T5 EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain		(strain ATCC BAA-793 / NCIMB	
SV=1;>sp Q38WF1 G6PI_LACS S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1M3;B2G649;A5VIL5SP Q877T5 EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain		8826 / WCFS1) GN=pai PE=3	
Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5S Glucose-6-phosphate isomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1>splQ877T5 EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>splQ8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain43.152		SV=1:>splQ38WF1IG6PL LACS	
Q88UI4;Q38WF1;Q1WUR2;Q83Xisomerase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1M3;B2G649;A5VIL5SSP Q877T5 EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain		S Glucose-6-phosphate	
Q88UI4;Q38WF1;Q1WUR2;Q83X M3;B2G649;A5VIL5sakei subsp. sakei (strain 23K) GN=pgi PE=3 SV=1>sp Q877T5 EFTU_VIBPA Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain43.152 43.152		isomerase OS=Lactobacillus	
M3;B2G649;A5VIL5GN=pgi PE=3 SV=1Signer Subsp. saker (strain 25k)SN=pgi PE=3 SV=1Signer Signer		sakei subsp. sakei (strain 23K)	
M3,B20043,A3VIL3GN-pgi r L-3 3V-1>sp Q877T5 EFTU_VIBPA43.152Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB43.152Q877T5;Q8DD27;Q8DCQ7;Q7MG R1;A7MXE4VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain43.152	M3·B2C6/Q·A5\/II 5	GN-pai PE-3 SV-1	
>splQo7715]EFT0_VIBPA43.152Elongation factor Tu OS=Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>splQ8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain	1013,020049,A31123		10 150
Elongation factor Tu OS=vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) GN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain		Spluor 10 EFTU_VIBPA	43.192
paranaemolyticus serotypeO3:K6 (strain RIMD 2210633)GN=tufA PE=3SV=1;>sp Q8DD27 EFTU1_VIBVU Elongation factor Tu 1R1;A7MXE4OS=Vibrio vulnificus (strain			
O3:K6 (strain RIMD 2210633)GN=tufA PE=3SV=1;>sp Q8DD27 EFTU1_VIBQ877T5;Q8DD27;Q8DCQ7;Q7MGVU Elongation factor Tu 1R1;A7MXE4OS=Vibrio vulnificus (strain		paranaemolyticus serotype	
Q877T5;Q8DD27;Q8DCQ7;Q7MGGN=tufA PE=3 SV=1;>sp Q8DD27 EFTU1_VIB VU Elongation factor Tu 1 OS=Vibrio vulnificus (strain		03:K6 (strain RIMD 2210633)	
Q877T5;Q8DD27;Q8DCQ7;Q7MGSV=1;>sp Q8DD27 EFTU1_VIBQ877T5;Q8DD27;Q8DCQ7;Q7MGVU Elongation factor Tu 1R1;A7MXE4OS=Vibrio vulnificus (strain		GN=tutA PE=3	
Q877T5;Q8DD27;Q8DCQ7;Q7MGVU Elongation factor Tu 1R1;A7MXE4OS=Vibrio vulnificus (strain		SV=1;>sp Q8DD27 EFTU1_VIB	
R1;A7MXE4 OS=Vibrio vulnificus (strain	Q877T5;Q8DD27;Q8DCQ7;Q7MG	VU Elongation factor Tu 1	
	R1;A7MXE4	OS=Vibrio vulnificus (strain	

	CMCP6) GN=tuf1 PE=3 SV=2;>sp Q8DCQ7 EFTU2_VIB VU Elongati	
Q81VT2;Q814C4;Q73F98;Q6HPR0 ;Q63H92;C3P9Q3;C3LJ80;C1ET37 ;B9IZJ2;B7JKB7;B7IT17;B7HQU2;	>sp Q81VT2 EFTU_BACAN Elongation factor Tu OS=Bacillus anthracis GN=tuf PE=3 SV=1;>sp Q814C4 EFTU_BAC CR Elongation factor Tu OS=Bacillus cereus (strain ATCC 14579 / DSM 31 / JCM 2152 / NBRC 15305 / NCIMB 9373 / NRRL B-3711) GN=tuf	42.938
B7HJ46;A0R8H8;A9VP75	PE=3 SV=1;>sp Q73F98 EFTU	
Q6D7E3;C6DCF6;A8GBA2;A4W89 7;Q3Z455;Q32IH0;Q324G4;Q0T6Y 5;P62710;B7LK04;B2TUY6;Q0TJU 6;P62709;P62708;P62707;C4ZXS6 ;B7ULM8;B7NNH7;B7N9Z7;B7MP N9;B7MGL2;B7M6B8;B7LAF6;B6I7 Q9;B5YRF2;B1X786;B1LM46;B1IX Y1;A7ZY11;A7ZJD0;A1A8Z8;B2S1 01;A1R083;B5RQ00;B5RMK4;B4E ST0;Q929G8;Q8Y571;Q71XG0;C1 KXG0;B8DFA5;A0AKV8;Q7VR80; Q492W5;A6LUA1;C6E639;B5EC38 ;Q732Z5;Q97FJ6;Q81DD2;Q737X5 ;Q6KSL4;Q6HIL9;Q63B92;C3PAW 8;C3LIE5;C1EUQ5;B9J102;B7JPK 2;B7IX37;B7HS46;B7H7P4;A7GPN 5;A1WDX2;A0RE96;Q8KFC8;Q74 CR0;Q3B5J2;Q3AU60;Q39V40;Q2 1YW0;C5CWV9;B9MEZ2;B3QPN8; B3EFK8;B1Y3R5;A4SDM0;A1WBJ 3;A1TTW5;A1BE55;Q6NJL2;Q6MJ P3;Q660L2;Q0SMJ5;Q01YD0;O51 602;C4LLD4;C0QV47;B7J2L3;B5Y 7Q7;B3DZZ7;Q8R7C8;Q82TU0;Q6 AAU8;C4K389;B4SE10;B3QVL0;B1 GZZ1;A1K9B9;Q8FSH0;C5BEL3;Q 2Y9Z7;B0KBW9;B0K4E2;Q4JSW4	>sp Q6D7E3 GPMA_PECAS 2,3-bisphosphoglycerate- dependent phosphoglycerate mutase OS=Pectobacterium atrosepticum (strain SCRI 1043 / ATCC BAA-672) GN=gpmA PE=3 SV=1;>sp C6DCF6 GPMA_PEC CP 2,3-bisphosphoglycerate- dependent phosphoglycerate mutase OS=Pectobacte	28.423
Q6ACZ0	>sp Q6ACZ0 EFTU_LEIXX Elongation factor Tu OS=Leifsonia xyli subsp. xyli (strain CTCB07) GN=tuf PE=3 SV=1	43.394
Q67Q63;A0Q880;Q662C3;Q0SNS 0;Q5NIE5;Q2A1W9;Q14JU8;Q0BK K9;B2SF32;A7NE12;A4IW85	 >sp Q67Q63 GLPK_SYMTH Glycerol kinase OS=Symbiobacterium thermophilum (strain T / IAM 14863) GN=glpK PE=3 SV=1;>sp A0Q880 GLPK_FRAT N Glycerol kinase OS=Francisella tularensis subsp. novicida (strain U112) GN=glpK PE=3 	54.499

	SV=1:>splQ662C3IGLPK_BOR	
	BP Glycerol ki	
	>sp Q59309 G3P CLOPA	36.078
	Glyceraldehyde-3-phosphate	
	dehydrogenase OS=Clostridium	
	pasteurianum GN=gap PE=1	
	SV=1;>sp O52631 G3P CLOAB	
	Glyceraldehyde-3-phosphate	
	dehydrogenase OS=Clostridium	
	acetobutylicum (strain ATCC	
	824 / DSM 792 / JCM 1419 /	
Q59309;O52631	LMG 5710 / VKM B-	
	>sp Q3A6R2 EFTU1_PELCD	43.586
	Elongation factor Tu 1	
	OS=Pelobacter carbinolicus	
	(strain DSM 2380 / NBRC	
	103641 / GraBd1) GN=tuf1	
	PE=3	
	SV=1;>sp Q3A6P9 EFTU2_PEL	
	CD Elongation factor Tu 2	
	OS=Pelobacter carbinolicus	
	(strain DSM 2380 / NBRC	
Q3A6R2;Q3A6P9;P50065	103641 / GraBd1) GN=tuf2 PE	
	>sp Q30X04 RPOC_DESAG	154.09
	DNA-directed RNA polymerase	
	subunit beta OS=Desulfovibrio	
	alaskensis (strain G20)	
	SV=1;>SP Q1MPW9 RPOC_LA	
	WIP DINA-directed RINA	
	(strain DHE/MNI1 00) CN-rpsC	
	(STATILE FREZIVINT-00) GIN=100C	
Q307.04,Q110FW9		12 025
	Spigz Azgier To_NTMO	42.920
	OS-Nitrosospira multiformis	
	(strain ATCC 25196 / NCIMB	
	11849 / C 71 GN = tuf 1 PE = 3	
027479	SV=1	
	>splQ2NWR5IRPOC_SODGM	155 49
	DNA-directed RNA polymerase	
	subunit beta OS=Sodalis	
	glossinidius (strain morsitans)	
Q2NWR5	GN=rpoC PE=3 SV=1	
	>sp Q2LQ86 RPOC SYNAS	153.99
	DNA-directed RNA polymerase	
	subunit beta OS=Syntrophus	
	aciditrophicus (strain SB)	
	GN=rpoC PE=3	
	SV=1;>sp Q1Q8Q0 RPOC_PSY	
	CK DNA-directed RNA	
	polymerase subunit beta	
	OS=Psychrobacter	
Q2LQ86;Q1Q8Q0;Q4FQH4;A5WH	cryohalolentis (strain K5)	
34	GN=rpoC PE=3 SV=1;>sp Q4F	
	>splQ1WSY0IENO LACS1	48.052
--	--	--------
	Enolase OS=Lactobacillus	
	salivarius (strain UCC118)	
Q1WSY0	GN=eno PE=3 SV=1	
	>sp Q0WD32 IMDH_YERPE	51.824
	Inosine-5-monophosphate	
	dehydrogenase OS=Yersinia	
Q0WD32	pestis GN=guaB PE=3 SV=1	
	>sp Q046D1 RPOC_LACGA	136.37
	DNA-directed RNA polymerase	
	subunit beta OS=Lactobacillus	
	gasseri (strain ATCC 33323 /	
	DSM 20243 / JCM 1131 /	
	NCIMB 11718 / AM63)	
	GN=rpoC PE=3	
	SV=1;>sp Q/4L94 RPOC_LACJ	
	O DNA-directed RNA	
Q040D1,Q74L94,D2G015,A5VLL3,	ρ polymerase subunit beta	
BZGDX6		26.070
	Triosephosphate isomerase	20.979
	OS-Lactobacillus paracasei	
	(strain ATCC 334 / BCRC 17002	
	/ CIP 107868 / KCTC 3260 /	
	NRRI B-441) $GN=tpiA PE=3$	
	SV=1:>sp B3WCW6 TPIS LAC	
	CB Triosephosphate isomerase	
	OS=Lactobacillus casei (strain	
Q03AK5;B3WCW6	BL23) GN=tpiA P	
	>sp P94316 DHE2 BACFR	48.39
	NAD-specific glutamate	
	dehydrogenase OS=Bacteroides	
	fragilis (strain YCH46) GN=gdhB	
P94316	PE=2 SV=2	
	>sp P0ADG9 IMDH_SHIFL	52.022
P0ADG9;P0ADG8;P0ADG7;Q9L6B	Inosine-5-monophosphate	
7;P44334;P49058;Q9ZL14;P56088;	dehydrogenase OS=Shigella	
Q9KGN8;Q8NY70;Q8CMQ7;Q6GJ	flexneri GN=guaB PE=3	
Q7;Q6GC82;Q5HRX2;Q5HIQ7;Q4	SV=1;>sp P0ADG8 IMDH_ECO	
L385;Q49UU8;Q2YVL6;Q2G0Y7;Q	57 Inosine-5-monophosphate	
2FJM6;P99106;P65169;P31002;Q5	denydrogenase US=Escherichia	
C0H7, F0C0H0, Q0KC004, O50510, O0KH22, O71111, 2, D21970	SV=1,>Sp FUADG7 IIVIDH_ECO	
Q9K133,Q70JL3,F21079		57 629
	<pre>>SPIC00324 CH00_LACHE 00</pre>	57.050
	OS-I actobacillus belveticus	
	GN=arol PF=3	
	SV=1:>splA8YTH8ICH60 LACH	
	4 60 kDa chaperonin	
	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=aroL	
O68324;A8YTH8	PE=3 SV=1	
	>sp C4Z0Q6 PCKA_EUBE2	58.996
	Phosphoenolpyruvate	
	carboxykinase (ATP)	

	ATCC 27750 / \/PL C15-48)	
	$CN = nck \Lambda PE = 3 SV = 1$	
	$\sum_{n=1}^{n} R_{2} R_{2$	11 956
	Elengetion factor Tu	44.000
	Contractor Tu	
DZK004		
B7K834	(7424) GN=tut PE=3 SV=1	47 70
	>sp B2GAM0 ENO_LACF3	47.79
	Enolase OS=Lactobacillus	
	fermentum (strain NBRC 3956 /	
	LMG 18251) GN=eno PE=3	
	SV=1;>sp Q03GW5 ENO_PED	
	PA Enolase OS=Pediococcus	
	pentosaceus (strain ATCC	
	25745 / CCUG 21536 / LMG	
	10740 / 183-1w) GN=eno PE=3	
B2GAM0;Q03GW5	SV=1	
	>sp B1HMZ1 EFG_LYSSC	76.432
	Elongation factor G	
	OS=Lysinibacillus sphaericus	
	(strain C3-41) GN=fusA PE=3	
B1HMZ1	SV=1	
	>splB0RB35IEFG CLAMS	77.46
	Flongation factor G	
	OS=Clavibacter michiganensis	
	subsp. sepedonicus (strain	
	1000000000000000000000000000000000000	
	$CN_{fuc} \Delta DE_{2}$	
	SV=1,>SP AOCUB7 EFG_CLAW	
	3 Elongation factor G	
	OS=Clavibacter michiganensis	
BURB35;A5CUB7	subsp. michiganensi	
	>sp B0CCD0 EFTU_ACAM1	44.773
	Elongation factor I u	
	OS=Acaryochloris marina (strain	
	MBIC 11017) GN=tuf PE=3	
B0CCD0	SV=1	
	>sp A8YXJ9 RPOC_LACH4	135.72
	DNA-directed RNA polymerase	
	subunit beta OS=Lactobacillus	
	helveticus (strain DPC 4571)	
A8YXJ9;Q1GBM4;Q04C21	GN=rpoC PE=3 SV=1	
	>sp A6KYK3 RPOB BACV8	142.48
	DNA-directed RNA polymerase	
	subunit beta OS=Bacteroides	
	vulgatus (strain ATCC 8482 /	
	DSM 1447 / JCM 5826 / NBRC	
	14291 / NCTC 11154) GN=rpoB	
	PE=3	
	SV=1->SDIA6I F81IRPOR PAR	
	D8 DNA-directed RNA	
Δ6KYK3·Δ6L E81·07MY27·B2DL 45	nolymerase subunit beta	
$-\Omega E_{2}X_{8} \land A C = 0 + Q I W \land Z I , D Z = U_{2} \land A M_{2} X_{0}$	OS-Darabactoroidae di	
		110 15
	DNA directed DNA national	140.15
	DINA-UITECIEU KINA POlymerase	
2;F42079;Q3W5C9;P22704;B7KK7		
8;87JWQ8;82J199;P74177;80JSN	US=Bifidobacterium	

9;Q2JQT5;Q2JJ18;B1WP07;A9BC H5;Q7V5P2;Q7V007;Q7U8K3;Q55 346;Q3AZA3;Q3AHX6;Q318Q8;Q0 I7L8;P42076;A8G6Y5;A5GVF1;A3 PEX3;A2C6S9;A2BYL0;A2BT60;Q 46J23;A2C4N1;Q55085;Q110H2;Q 3ZX00;Q3Z8V3;A5FRK6;Q4FLL3;B 2UQY1;B0TX11;Q5NID1;Q2A1M8; Q14JT4;Q0BKC6;B2SFD7;A4IWA0 ;A0Q866;B4U738;Q9X6Y2;B1GZ76	adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=rpoC PE=3 SV=1	
Q9PMC8;Q5HSP5;A8FNK1;A7H5	>sp Q9PMC8 Y1541_CAMJE UPF0271 protein Cj1541 OS=Campylobacter jejuni subsp. jejuni serotype O:2 (strain ATCC 700819 / NCTC 11168) GN=Cj1541 PE=3 SV=1;>sp Q5HSP5 Y1712_CA MJR UPF0271 protein CJE1712 OS=Campylobacter jejuni (strain RM1221) GN=CJE1712 PE=3	28.084
Q9I4Z4	>sp Q9I4Z4 PAL_PSEAE Peptidoglycan-associated lipoprotein OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=pal PE=3 SV=1	17.925
Q9HYR9	>sp Q9HYR9 CLPP2_PSEAE ATP-dependent Clp protease proteolytic subunit 2 OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=clpP2 PE=3 SV=1	22.142
Q8RHF4;A6LJS5;A7HLZ4;Q8R7L3 ;B0KC36;B0K5A5;Q2RM91;P2116 4	>sp Q8RHF4 FTHS_FUSNN Formatetetrahydrofolate ligase OS=Fusobacterium nucleatum subsp. nucleatum (strain ATCC 25586 / CIP 101130 / JCM 8532 / LMG 13131) GN=fhs PE=3 SV=1;>sp A6LJS5 FTHS_THEM 4 Formatetetrahydrofolate ligase OS=Thermosipho melanesiensis	58.32
Q8RCE4;Q03VI4;B1N092;Q03AU4 ;B3WCC9	>sp Q8RCE4 METK_CALS4 S- adenosylmethionine synthase OS=Caldanaerobacter subterraneus subsp. tengcongensis (strain DSM 15242 / JCM 11007 / NBRC 100824 / MB4) GN=metK PE=3 SV=1;>sp Q03VI4 METK_LEUM M S-adenosylmethionine	43.46

	synthase OS=Leuconostoc	
	mesenteroides	
	>sp Q8G759 RL9_BIFLO 50S	15.445
	ribosomal protein L9	
	(strain NCC 2705) CN-roll	
	PE=3	
	SV=1;>sp B7GTS5 RL9_BIFLS	
	50S ribosomal protein L9	
	OS=Bifidobacterium longum	
	subsp. infantis (strain ATCC	
	15697 / DSM 20088 / JCM 1222	
Q89739,B79133,B3D042	>epl0865101V1209 BIFLO	47 605
	UPE0210 protein BI 1209	47.005
	OS=Bifidobacterium longum	
	(strain NCC 2705) GN=BL1209	
	PE=3	
	SV=1;>sp B7GUH2 Y2054_BIFL	
	S UPF0210 protein	
	Blon_2054/BLIJ_2131	
	OS=Bifidobacterium longum	
	subsp. Infantis (strain ATCC	
Q8G510;B7G0H2;B3D1E6;A1A32	15697 / DSM 20088 / JCM 1222	
		76 /33
	GlycinetRNA ligase beta	70.400
	subunit OS=Bradyrhizobium	
	diazoefficiens (strain JCM 10833	
	/ IAM 13628 / NBRC 14792 /	
	USDA 110) GN=glyS PE=3	
Q89S69	SV=1	
	>sp Q84BU4 DNAK_LACAC	66.323
	Chaperone protein DnaK	
	OS=Lactobacilius acidophilus	
	N2 / NCEM) GN-dpak PE-3	
Q84BU4	SV=1	
	>splQ833I9IPGK_ENTFA	42,397
	Phosphoglycerate kinase	
	OS=Enterococcus faecalis	
	(strain ATCC 700802 / V583)	
	GN=pgk PE=3	
	SV=1;>sp Q8R965 PGK_CALS4	
	Phosphoglycerate kinase	
	sublemaneus subsp.	
	15242 / ICM 11007 / NRRC	
Q833I9:Q8R965:B3QLX7	10082	
	>sp Q74M28 RS6 LACJO 30S	11.57
	ribosomal protein S6	
	OS=Lactobacillus johnsonii	
	(strain CNCM I-12250 / La1 /	
	NCC 533) GN=rpsF PE=3	
0741400:004750	SV=1;>sp Q047E8 RS6_LACGA	
Q741V128;Q047E8	305 ribosomai protein 56	

	OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 /	
	>splQ74L27ISYF_LAC.IO	57 094
	GlutamatetRNA ligase	07.001
	OS=Lactobacillus johnsonii	
	(strain CNCM I-12250 / La1 /	
Q74L27	NCC 533) GN=gltX PE=3 SV=1	
	>sp Q74KS1 SYL_LACJO	92.334
	LeucinetRNA ligase	
	(strain CNCM I-12250 / L a1 /	
	NCC 533) GN=leuS PE=3	
	SV=1;>sp Q045L5 SYL LACGA	
	LeucinetRNA ligase	
	OS=Lactobacillus gasseri (strain	
	ATCC 33323 / DSM 20243 /	
	JCM 1131 / NCIMB 11718 /	
Q74KS1;Q045L5;Q5FIP3;A8YWU4		70.44
	>SplQ74IC0 STI_LACJO	73.41
	OS=I actobacillus iobnsonii	
	(strain CNCM I-12250 / La1 /	
	NCC 533) GN=thrS PE=3	
	SV=1;>sp Q041U6 SYT_LACG	
	A ThreoninetRNA ligase	
	OS=Lactobacillus gasseri (strain	
074100-0044140	ATCC 33323 / DSM 20243 /	
Q74IC0;Q04106		50 077
	Glutamyl-tRNA(Gln)	52.211
	amidotransferase subunit A	
	OS=Lactobacillus johnsonii	
	(strain CNCM I-12250 / La1 /	
	NCC 533) GN=gatA PE=3	
	SV=1;>sp Q041K5 GATA_LAC	
	GA Glutamyl-tRNA(Gln)	
	amidotransferase subunit A	
	>splQ6MMS8IRIMP_BDEBA	19.552
	Ribosome maturation factor	
	RimP OS=Bdellovibrio	
	bacteriovorus (strain ATCC	
	15356 / DSM 50701 / NCIB	
0.01.01.000	9529 / HD100) GN=rimP PE=3	
Q6MMS8		40,405
	>>plyoAF00[EF1U1_DESP3 Elongation factor Tu 1	43.425
	OS=Desulfotalea psychrophila	
	(strain LSv54 / DSM 12343)	
Q6AP86	GN=tuf1 PE=3 SV=1	
	>sp Q6A6N4 RL29_PROAC	8.885
	50S ribosomal protein L29	
	OS=Propionibacterium acnes	
OCACN4	(strain KPA171202 / DSM	
QbAbIN4	T6379) GN=rpmC PE=3 SV=1	

	>sp Q5XDW3 G3P_STRP6 Glyceraldehyde-3-phosphate dehydrogenase OS=Streptococcus pyogenes serotype M6 (strain ATCC BAA- 946 / MGAS10394) GN=gap PE=1 SV=3;>sp P68777 G3P_STRP8 Glyceraldehyde-3-phosphate	35.942
Q5XDW3;P68777;P0DB19;P0DB1 8;P0C0G7;P0C0G6	dehydrogenase OS=Streptococcus pyogenes serotype M18 (str	00.005
Q5N0G7;Q31LF9;Q6N976;B3Q8J5 ;Q2ITA9;Q20ZU5;Q13B10;A5W384	>sp Q5N0G7 PHK_SYNP6 Probable phosphoketolase OS=Synechococcus sp. (strain ATCC 27144 / PCC 6301 / SAUG 1402/1) GN=syc2013_c PE=3 SV=1;>sp Q31LF9 PHK_SYNE7 Probable phosphoketolase OS=Synechococcus elongatus (strain PCC 7942) GN=Synpcc7942_2080 PE=3 SV=1;>	89.025
	>sp Q5FMX8 RTPR_LACAC Adenosylcobalamin-dependent ribonucleoside-triphosphate reductase OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCEM)	83.52
Q5FMX8;Q03PB4	GN=rtpR PE=3 SV=1	
Q5FM77;A8YXL9;Q1GBK4;Q04C0 1;Q38US5	>sp Q5FM77 RS8_LACAC 30S ribosomal protein S8 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpsH PE=3 SV=1;>sp A8YXL9 RS8_LACH4 30S ribosomal protein S8 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpsH PE=3 SV=1	14.532
Q5FM12;Q74L08;Q045V5;A8YTF2; Q03ST6	>sp Q5FM12 RL7_LACAC 50S ribosomal protein L7/L12 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIL PE=3 SV=1;>sp Q74L08 RL7_LACJO 50S ribosomal protein L7/L12 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=	12.493
Q5FJM5	>sp Q5FJM5 PYRH_LACAC Uridylate kinase OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=pyrH PE=3 SV=1	25.832

	>sp Q5FJG2 EFP2_LACAC Elongation factor P 2 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=efp2 PE=3	20.862
Q5FJG2;Q74IL7	SV=1	
Q59636;Q02RW1;B7UWI4;A6V0V6	>sp Q59636 NDK_PSEAE Nucleoside diphosphate kinase OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=ndk PE=3 SV=2;>sp Q02RW1 NDK_PSEA B Nucleoside diphosphate kinase OS=Beaudomonae aorug	15.592
,CTDE01,A4A130,A4VINA3		25.000
Q59199:P52694	Glyceraldehyde-3-phosphate dehydrogenase OS=Bacteroides fragilis (strain YCH46) GN=gap PE=3 SV=2;>sp P52694 G3P_RALSO Glyceraldehyde-3-phosphate dehydrogenase OS=Ralstonia solanacearum (strain GMI1000) GN=gapA PE=3 SV=2	55.002
	Spl059112/GCTB_ACIEV	29 166
Q59112	Glutaconate CoA-transferase subunit B OS=Acidaminococcus fermentans (strain ATCC 25085 / DSM 20731 / VR4) GN=gctB PE=1 SV=3	
Q4JT41;C4LL63;Q8FS84;Q6NJD5;	>sp Q4JT41 EFTU_CORJK Elongation factor Tu OS=Corynebacterium jeikeium (strain K411) GN=tuf PE=3 SV=1;>sp C4LL63 EFTU_CORK 4 Elongation factor Tu OS=Corynebacterium kroppenstedtii (strain DSM 44385 / JCM 11950 / CIP 105744 / CCUG 35717) GN=tuf	43.914
Q38US0;Q034Z1;Q74L81;Q5FM82 ;Q1GBL0;Q04C07;A8YXL3;A4WVK 0:48LM65	>sp Q38US0 RL29_LACSS 50S ribosomal protein L29 OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=rpmC PE=3 SV=1;>sp Q034Z1 RL29_LACP 3 50S ribosomal protein L29 OS=Lactobacillus paracasei (strain ATCC 334 / BCRC 17002 / CIP 107868 / KCTC 3260 / NRPL B-44	7.6568
		48.63
Q1GAP9;Q04B36	Trigger factor OS=Lactobacillus delbrueckii subsp. bulgaricus	-0.0J

	(strain ATCC 11842 / DSM	
	20081 / JCM 1002 / NBRC	
	13953 / NCIMB 11778) GN=tig	
	PE=3	
	SV=1:>SDIQ04B36ITIG LACOB	
	Trigger factor OS-Lactobacillus	
	delbrueckii subsp. bulgaricus (st	
		20.420
	>SplQ100Q311304_FEFD0	29.129
	OPF0271 protein CD030_13640	
040000	(Strain 630) GN=CD630_13840	
Q18BQ3		44.470
	>sp Q0AUH8 EFTU1_SYNVVV	44.179
	Elongation factor 1 u 1	
	OS=Syntrophomonas wolfei	
	subsp. wolfei (strain DSM 2245B	
	/ Goettingen) GN=tuf1 PE=3	
	SV=1;>sp Q0AUG3 EFTU2_SY	
	NWW Elongation factor Tu 2	
	OS=Syntrophomonas wolfei	
	subsp. wolfei (strain DSM 2245B	
Q0AUH8;Q0AUG3	/ Goettingen) GN=t	
	>sp Q044C7 RRF_LACGA	20.358
	Ribosome-recycling factor	
	OS=Lactobacillus gasseri (strain	
	ATCC 33323 / DSM 20243 /	
	JCM 1131 / NCIMB 11718 /	
Q044C7	AM63) GN=frr PE=3 SV=1	
	/	
	>sp Q042I3 Y1276_LACGA	26.562
	>sp Q042I3 Y1276_LACGA Probable transcriptional	26.562
	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276	26.562
	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain	26.562
	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 /	26.562
	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 /	26.562
	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS 1276 PE=3	26.562
	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904 LACJO	26.562
	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional	26.562
Q042I3;P62037	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L	26.562
Q042I3;P62037	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU	26.562
Q042I3;P62037	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport	26.562 41.963
Q042I3;P62037	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK	26.562 41.963
Q042I3;P62037	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans	26.562 41.963
_Q042I3;P62037	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans serotype c (strain ATCC 700610	26.562 41.963
Q042I3;P62037	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) GN=msmK PE=3	26.562 41.963
Q042I3;P62037	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) GN=msmK PE=3 SV=1;>sp P94360IMSMX BAC	26.562 41.963
_Q042I3;P62037	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) GN=msmK PE=3 SV=1;>sp P94360 MSMX_BAC SU Maltodextrin import ATP-	26.562 41.963
Q042I3;P62037	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) GN=msmK PE=3 SV=1;>sp P94360 MSMX_BAC SU Maltodextrin import ATP- binding protein MsmX	26.562 41.963
Q042I3;P62037 Q00752:P94360:Q32151	 >sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) GN=msmK PE=3 SV=1;>sp P94360 MSMX_BAC SU Maltodextrin import ATP- binding protein MsmX OS=Bacillus subtilis (strai 	26.562 41.963
Q042I3;P62037 Q00752;P94360;O32151	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) GN=msmK PE=3 SV=1;>sp P94360 MSMX_BAC SU Maltodextrin import ATP- binding protein MsmX OS=Bacillus subtilis (strai >splP62053ll DH2_LAC.IO_L	26.562 41.963
Q042I3;P62037 Q00752;P94360;O32151	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) GN=msmK PE=3 SV=1;>sp P94360 MSMX_BAC SU Maltodextrin import ATP- binding protein MsmX OS=Bacillus subtilis (strai >sp P62053 LDH2_LACJO L- lactate dehydrogenase 2	26.562 41.963 33.283
Q042I3;P62037 Q00752;P94360;O32151	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) GN=msmK PE=3 SV=1;>sp P94360 MSMX_BAC SU Maltodextrin import ATP- binding protein MsmX OS=Bacillus subtilis (strai >sp P62053 LDH2_LACJO L- lactate dehydrogenase 2 OS=L actobacillus iobnsonii	26.562 41.963 33.283
_Q042I3;P62037 	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) GN=msmK PE=3 SV=1;>sp P94360 MSMX_BAC SU Maltodextrin import ATP- binding protein MsmX OS=Bacillus subtilis (strai >sp P62053 LDH2_LACJO L- lactate dehydrogenase 2 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 /	26.562 41.963 33.283
Q042I3;P62037 Q00752;P94360;O32151	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) GN=msmK PE=3 SV=1;>sp P94360 MSMX_BAC SU Maltodextrin import ATP- binding protein MsmX OS=Bacillus subtilis (strai >sp P62053 LDH2_LACJO L- lactate dehydrogenase 2 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=ldb2 PE=3	26.562 41.963 33.283
Q042I3;P62037 Q00752;P94360;O32151	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) GN=msmK PE=3 SV=1;>sp P94360 MSMX_BAC SU Maltodextrin import ATP- binding protein MsmX OS=Bacillus subtilis (strai >sp P62053 LDH2_LACJO L- lactate dehydrogenase 2 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=Idh2 PE=3 SV=1;>sp P59390 DH2_LACD	26.562 41.963 33.283
Q042I3;P62037 Q00752;P94360;O32151	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) GN=msmK PE=3 SV=1;>sp P94360 MSMX_BAC SU Maltodextrin import ATP- binding protein MsmX OS=Bacillus subtilis (strai >sp P62053 LDH2_LACJO L- lactate dehydrogenase 2 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=Idh2 PE=3 SV=1;>sp P59390 LDH2_LACP L Lactate dehydrogenase 2	26.562 41.963 33.283
Q042I3;P62037 Q00752;P94360;O32151	>sp Q042I3 Y1276_LACGA Probable transcriptional regulatory protein LGAS_1276 OS=Lactobacillus gasseri (strain ATCC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=LGAS_1276 PE=3 SV=1;>sp P62037 Y904_LACJO Probable transcriptional regulatory protein L >sp Q00752 MSMK_STRMU Multiple sugar-binding transport ATP-binding protein MsmK OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) GN=msmK PE=3 SV=1;>sp P94360 MSMX_BAC SU Maltodextrin import ATP- binding protein MsmX OS=Bacillus subtilis (strai >sp P62053 LDH2_LACJO L- lactate dehydrogenase 2 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=Idh2 PE=3 SV=1;>sp P59390 LDH2_LACP L L-lactate dehydrogenase 2 OS=Lactobacillus plontarum	26.562 41.963 33.283

	(strain ATCC BAA-793 / NCIMB	
		07.007
	>sp P59159 GPMA_BIFLO 2,3-	27.605
	bisphosphoglycerate-dependent	
	phosphoglycerate mutase	
	OS=Bifidobacterium longum	
	(strain NCC 2705) GN-gpmA	
	SV=1,>SP D/GUR/ GPIVIA_DIP	
	LS 2,3-bisphosphoglycerate-	
	dependent phosphoglycerate	
	mutase OS=Bifidobacterium	
P59159;B7GUR7;B3DQI6;Q5YP50	longum subsp. i	
	>splP53641ISODF_PSEAE	21.351
	Superoxide dismutase [Fe]	
	OS-Pseudomonas aeruginosa	
	(otroin ATCC 15602 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=sodB PE=3	
	SV=3;>sp Q88PD5 SODF PSE	
	PK Superoxide dismutase [Fe]	
P53641 088PD5 P09223	OS=Pseudomonas putida (st	
	SepIP52042IACDS CLOAB	11 386
	Agyl CoA dobydrogopogo, short	41.500
	Acyl-COA dellydiogenase, short-	
	chain specific US=Clostinatum	
	acetobutylicum (strain ATCC	
	824 / DSM 792 / JCM 1419 /	
	LMG 5710 / VKM B-1787)	
P52042	GN=bcd PE=1 SV=1	
	>sp P45364 HBD CLODI 3-	30.667
	hvdroxybutyryl-CoA	
	dehydrogenase	
	OS-Clostridioides difficile	
D45264		
P40304		0.0404
	>SPIP41791 EUTM_SALTY	9.8424
	Ethanolamine utilization protein	
	EutM OS=Salmonella	
	typhimurium (strain LT2 /	
	SGSC1412 / ATCC 700720)	
	GN=eutM PE=3	
	SV=1:>splP0ABF5IEUTM ECO	
	L6 Ethanolamine utilization	
	protein EutMOS-Escharichia	
P41791;PUABE5;PUABE4	ATCC 700928	
	>sp P19410 BAICD_CLOSV	70.273
	Probable oxidoreductase BaiCD	
	OS=Clostridium scindens (strain	
	JCM 10418 / VPI 12708)	
P19410	GN=baiCD PE=3 SV=2	
	SplP11569HGDA ACIEV (R)-	53 896
	2-bydroxyalutaryl_CoA	00.000
	dobudratace subunit alaba	
	US=Acidaminococcus	

	UPF0210 protein	
	EUBREC_1565	
	OS=Agathobacter rectalis (strain	
	17463 / KCTC 5835 / VPI 0990)	
	GN=EUBREC 1565 PE=3	
C4Z987	SV=1	
	>sp C4Z2T8 RL29_EUBE2 50S	7.5736
	ribosomal protein L29	
	OS=Eubacterium eligens (strain	
	GN-rpmC PE-3	
	SV=1:>sp A9KJ 6 RL29 LACP7	
	50S ribosomal protein L29	
	OS=Lachnoclostridium	
	phytofermentans (strain ATCC	
	700394 / DSM 18823 / ISDg)	
	SDEPHOP SDB917K0FFG NALIPA	77 727
	Elongation factor G OS=Nautilia	
	profundicola (strain ATCC BAA-	
	1463 / DSM 18972 / AmH)	
B9L7K0	GN=fusA PE=3 SV=1	50.000
	>sp B8CM45 GLPK_SHEPW	53.932
	piezotolerans (strain WP3 / JCM	
	13877) GN=glpK PE=3	
	SV=1;>sp A8H995 GLPK_SHEP	
	A Glycerol kinase	
	OS=Shewanella pealeana	
	(strain AICC 700345 / ANG -	
Bocimao, Aonggo	Soll GN=gipk FE=3 SV=1	41 895
	Phosphoglycerate kinase	41.000
	OS=Bifidobacterium longum	
	subsp. infantis (strain ATCC	
	15697 / DSM 20088 / JCM 1222	
	/ NCTC 11817 / S12) GN=pgk	
	SV=1:>splQ8G6D6IPGK_BIFLO	
	Phosphoglycerate kinase	
	OS=Bifidobacterium longum	
B7GQU7;Q8G6D6;B3DRV9	(strain NCC 2705) G	10.55
	>sp B7GNG8 RL7_BIFLS 50S	13.22
	OS-Bifidobacterium longum	
	subsp. infantis (strain ATCC.	
	15697 / DSM 20088 / JCM 1222	
	/ NCTC 11817 / S12) GN=rpIL	
B7GNG8	PE=3 SV=1	
	>sp B3PME9 EFG_MYCA5	77.77
B3DMEQ	Elongation factor G	
DOFINES		

	(strain 158L3-1) GN=fusA PE=3	
		12 11
	Spidserosjerio_Cherb	43.11
	phaeobacteroides (strain BS1)	
	GN=tuf PE=3	
	SV=1;>sp Q3B6G3 EFTU_CHL	
	L7 Elongation factor Tu	
	OS=Chlorobium luteolum (strain	
	DSM 273 / 2530) GN=tuf PE=3	
	SV=1:>splB4S5M9IEFTU_PRO	
B3EP63:Q3B6G3:B4S5M9	A2 Elongation factor Tu OS	
		76 77
	Elongation factor G	10.11
	OS-Lactobacillus routori (strain	
	D Flow potions (astrong)	
	D Elongation factor G	
	US=Lactobacillus reuteri (strain	
	DSM 20016) GN=fusA PE=3	
B2G8Y0;A5VLK8	SV=1	
	>sp B1KTJ6 TPIS_CLOBM	27.337
	Triosephosphate isomerase	
	OS=Clostridium botulinum	
	(strain Loch Maree / Type A3)	
	GN=tpiA PE=3	
	SV=1:>splB1IDB7ITPIS CLOB	
	K Triosephosphate isomerase	
	OS=Clostridium botulinum	
	(strain Okra / Type B1) GN-toiA	
	SV-1:> cplA7C0V1ITPIS CLOB	
BIRT50, BIIDB7, ATG911, ATFQINO		26 771
	SplAskQosliLVC_LACF7	30.771
	(NADP(+))	
	US=Lachnoclostridium	
	phytotermentans (strain ATCC	
	700394 / DSM 18823 / ISDg)	
	GN=ilvC PE=3	
	SV=1;>sp Q9PHN5 ILVC_CAMJ	
	E Ketol-acid reductoisomerase	
A9KQ65;Q9PHN5;Q5HVD9;A8FL5	(NADP(+)) OS=Campylobacter	
3;A1VYZ2	jejuni subsp. jejuni ser	
	>sp A8YVR7 PYRH LACH4	25.857
	Uridylate kinase	
	OS=Lactobacillus helveticus	
A8YVR7.074IR8.01G9N8.004914	(strain DPC 4571) GN=pyrH	
-0.044C8	PF=3 SV=1	
		65.7
	Chaperone protein Drak	05.7
	(strain DDC 4574) ON deal	
A8Y1D2;A9NEI5;B1YGS7;A8F960;	>sp A8YID2 SYE_LACH4	57.621
A7Z0L4;Q839V7;Q81VV3;Q81J61;	GlutamatetRNA ligase	
Q73FB9:Q6HPT0:Q65PD0:Q63HB	OS=Lactobacillus helveticus	

2;A9VNA0;A7GJZ9;A0R8F9;Q38Y Y5;Q1WSS4;Q03E40;Q88YY0;Q03 5R5;B3WA39;B2GAB3;Q1G8Y5;Q 048S3;O86083;P22250;Q1AU10;Q 4UME8;A8GPB2;A8EY39;A5FZX8; Q68WB4;Q9ZCT8;Q0BTZ0;B3CST 4;A5CD02;Q9CDZ7;Q02W76;A2R NK5;A4W496;Q0C1A6;Q8EU02;P2 2249;A4IJG6;Q5L431;Q92F38;Q8Y AB3;Q724H5;A0AF36;Q03SU7;Q0 4GX5;Q03ZR1;B1MWU1;Q73R87; Q92H06;B0BUL7;A8GT27;A8F2B0	(strain DPC 4571) GN=gltX PE=3 SV=1	
A6LR06	>sp A6LR06 TPIS_CLOB8 Triosephosphate isomerase OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=tpiA PE=3 SV=1	26.894
A5V9S7	>sp A5V9S7 SECA_SPHWW Protein translocase subunit SecA OS=Sphingomonas wittichii (strain RW1 / DSM 6014 / JCM 10273) GN=secA PE=3 SV=1	102.11
A5EED4	>sp A5EED4 SYGB_BRASB GlycinetRNA ligase beta subunit OS=Bradyrhizobium sp. (strain BTAi1 / ATCC BAA-1182) GN=glyS PE=3 SV=1	76.575
A1A3P5;Q8G6W1;B3DNP9;B7GT4 7;B8DT62;A6WFV7;Q6AC76;Q6F1 49;P05646;Q8RH05;B1YKS9;Q81L S2;Q818E9;Q730M1;Q6HDK7;Q63 4M7;C3P8M0;C3L5R7;C1ESK8;B9 IY81;B7JN39;B7IYG7;B7HPL3;B7H CU0;A9VHU1;A7GT08;A0RIT3;P0 CY99;P0CY98;B1VMF3;Q54215;Q 05558;A1SPX5;Q82EX9;A0K1L3;B 2GGP0;B8H6Q1;C5C3P2;Q30Q10; B6YRF7;Q2VYT1	>sp A1A3P5 DNAK_BIFAA Chaperone protein DnaK OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=dnaK PE=3 SV=1;>sp Q8G6W1 DNAK_BIF LO Chaperone protein DnaK OS=Bifidobacterium longum (strain NCC 2705) GN=dnaK PE=3 SV=1;>	66.839
A1A317;Q8G514;B7GUG7;B3DTE 2;A6W5T0;A0JZ93;A1R8V4;Q0RR T0;A8LC64;Q47LI5;Q6A6K6;Q9L0 L0;Q82DQ5;Q5YQP4;Q5YPE0;Q4J T32;A4FPP3;Q8NT26;A4QBG2;A1 SEK1;A1T4J2;Q0SFB3;C4LL71;C1 AYV9;C0ZVQ6;Q50388;P60281;Q8 FS97;Q1BDF0;A3PV78;A1UBJ3;A 4T1P4;Q73SE4;P60280;A9WSY0; A0QL49;B2HSJ3;A0PM24;A5U052; P9WGY9;P9WGY8;P30760;P0A68 1;B8ZSC7;A1KGE7;Q2JF15;Q93GF 2;P59642;B0RB25;A5CUC7;Q6AC X5;Q9L637;A0LRL3;B1VES1	>sp A1A317 RPOB_BIFAA DNA-directed RNA polymerase subunit beta OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=rpoB PE=3 SV=2;>sp Q8G514 RPOB_BIFL O DNA-directed RNA polymerase subunit beta OS=Bifidobacterium longum (131.48
A1A1I2	>sp A1A1I2 RRF_BIFAA Ribosome-recycling factor OS=Bifidobacterium adolescentis (strain ATCC	20.154

15703 / DSM 20083 / NCTC 11814 / E194a) GN=frr PE=3 SV=1 >splA1A033]RL7_BIFAA 50S fibosomal protein L7/L12 QS=Bifdobacterium adolescentis (strain ATCC 11814 / E194a) GN=rplL PE=3 SV=1;se)Q86443]RL7_BIFLO SV=1;se)Q86443[RL7_BIFLO SS=Bifdobacterium longum (strain NCC 2705) GN=rplL P SSP[30206443]RBDVY5;B3DPX4 (strain NCC 2705) GN=rplL P SSIQBA753]PGK_BACTN Phosphoglycerate kinase QS=Bateroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A6P8 GN=gat PE=3 SV=1 >splQ8A6P8[CH60_BACTN 60 KB22K4 QBA6P8 GN=gat PE=3 SV=1 SSIQBA3 Suggessetroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A6P8 GN=gat PE=3 SV=1 Suggessetroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC			
11814 / E194a) GN=frr PE=3 SV=1 >sp A1A033 RL7_BIFAA 50S ribosomal protein L7/L12 OS=Bifdobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=rplL PE=3 SV=1:splQ86443 RL7_BIFLO 50S ribosomal protein L7/L12 OS=Bifdobacterium A1A033;Q8G443;B8DVY5;B3DPX4 (strain NCC 2705) GN=rplL P >splQ8A753;Q7MU77 GN=pgk PE=3 SV=1 >splQ8A753;Q7MU77 GN=pgk PE=3 SV=1 SelQ8A6P8 CH60_BACTN 60 Kba chaperonin Q8A6P8 GN=pgk PE=3 SV=1 Sep[Q8A753;Q7MU77 GN=gacHeroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8A6P8 GN=gacHeroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8A6P8 GN=gacHeroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) <td></td> <td>15703 / DSM 20083 / NCTC</td> <td></td>		15703 / DSM 20083 / NCTC	
SV=1		11814 / E194a) GN=frr PE=3	
>sp A1A033 RL7_BIFAA 50S 13.249 Nibosomal protein L7/L12 0S=Bifdobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=mpiL PE=3 SV=1;>splQ86443 RL7_BIFLO SOS-Bifdobacterium longum (strain NCC 2705) GN=mpiL P >splQ8A753;Q7MU77 SplQ8A753]PGK_BACTN Phosphoglycerate kinase 0S=Bacteroides Unstant of thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=pgk PE=3 SV=1 Q8A753;Q7MU77 SsplQ8A753 SUB_BACTN 60 Kba chaperonin CS=Bacteroides Uba chaperonin SsplQ8A753 SUB_BACTN 60 Q8A6P8 GN=rgic Net Sign ATCC Q8A6P8 GN=rgic Net Sign AT		SV=1	
At A033;Q8G443;B8DVY5;B3DPX4 At A033;Q8G443;B8DVF1,B3DPX4 At A033;Q8G443;B8DVF1,B3DPX4 At A033;Q8G443;B8DVF1,B3DPX4 At A033;Q8G443;B8DVF1,B482 Q8A6P8 At A05 At A		>splA1A033IRL7_BIFAA 50S	13 249
G8JZS4 G9JZS4 G8JZS4 G9JZS4 G9JZZ G9JZ G9JZ G9JZ G9JZ G9JZ G9JZ G9J		ribosomal protein 17/112	101210
Alabescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=rplL PE=3 SV=1;>splQ8d443;RL7_BIFLO 50S ribosomal protein L7/L12 OS=Bifdobacterium longum A1A033;Q8G443;B8DVY5;B3DPX4 (strain NCC 2705) GN=rplL P >splQ8A753]PCK_BACTN Phosphoglycerate kinase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A753;Q7MU77 GN=pgk PE=3 SV=1 >splQ8A6P8[CH60_BACTN 60 KDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A6P8 GN=groL PE=3 SV=1 >splQ8A6P8[GH60_BACTN 60 KDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A6P8 GN=groL PE=3 SV=1 >splQ8A8[JSB_BACTN Glucan 1,4=jpha=glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8JZS4 GN=susB PE=1 SV=1 >splQ8A8L4]SERC_BACTN GN=susB PE=1 SV=1 >splQ8A8L4]SERC_BACTN 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8JZS4 GN=susB PE=1 SV=1 >splQ8A8L4]SERC_BACTN 77.587 Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=susC PE=3 SV=1 >splQ8A474[EFG_BACTN 77.587 Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>splQ6AHK6[EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain VCH46) GN=fusA PE=3 SV=1;>splQ6AHK6[EFG_BACF] SV=1;>splQ6AHK6[EFG_BACF] SV=1;>splQ6AHK6[EFG_BACF] SV=1;>splQ6AHK6[EFG_BACF] SV=1;>splQ6AHK6[EFG_BACF] SV=			
Adoescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=rpiL PE=3 SV=1;>splQ86443]RL7_BIFLO 50S ribosomal protein L7/L12 OS=Bifidobacterium longum (strain NCC 2705) GN=rpiL P >splQ8A753]PGK_BACTN Phosphoglycerate kinase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A753;Q7MU77 GN=pgk PE=3 SV=1 >splQ8A6P8[CH60_BACTN 60 KDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A6P8 GN=groL PE=3 SV=1 SeplQ8A6P8[CH60_BACTN 60 KDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A6P8 GN=groL PE=3 SV=1 SeplQ8A6EN GN=groL PE=3 SV=1 SeplQ8A8L4[SERC_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=susB PE=1 SV=1 SeplQ8A8L4[SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=susB PE=1 SV=1 SeplQ8A8L4] GN=sucP FE=3 SV=1 SeplQ8A8L4] GN=sucP FE=3 SV=1 SeplQ8A8L4] GN=sucP FE=3 SV=1 SeplQ8A8L4] GN=sucP FE=3 SV=1 SeplQ8A74[EFG_BACTN Flongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1 SeplQ8A474[EFG_BACTN Flongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1 SV=1;seplQ64NK6[EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46] GN=fusA PE=3 SV=1;seplQ64 SV=1;seplQ64NK6[EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46] GN=fusA PE=3 SV=1;seplQ64NK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46] GN=fusA PE=3 SV=1;seplQ65 SV=1;sep			
15703 / DSM 20083 / NCTC 11814 / E194a) GN-EnplL PE-3 SV=1;>splQ8G443]RL7_BIFLO S0S ribosomal protein L7/L12 OS-Bifdobacterium longum A1A033;Q8G443;B8DVY5;B3DPX4 Strain NCC 2705) GN=rplL P >splQ8A753]PGK_BACTN Phosphoglycerate kinase OS-Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A753;Q7MU77 GN=pgk PE=3 SV=1 >splQ8A6P8(CH60_BACTN 60 KDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A6P8 GN=grup PE=3 SV=1 SupG8JZS4 SUSB_BACTN GN=grup FE=3 SV=1 SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8JZS4 GN=susB PE=1 SV=1 SusB OS G8JZS4 GN=suctorides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC <td></td> <td>adolescentis (strain ATCC</td> <td></td>		adolescentis (strain ATCC	
11814 / E194a) GN=rplL PE=3 SV=1;>sp Q80443]RL7_BIFLO 50S ribosomal protein L7/L12 OS=Bifidobacterium longumA1A033;Q8G443;B8DVY5;B3DPX4(strain NCC 2705) GN=rplL P>sp[Q8A753]PGK_BACTN Phosphoglycerate kinase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)45.026Q8A753;Q7MU77GN=pgk PE=3 SV=1Q8A753;Q7MU77Sp[Q8A66P8 CH60_BACTN 60 kDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)58.202Q8A6P8GN=groL PE=3 SV=1Q8A6P8GN=groL PE=3 SV=1Sp[Q8A8L4]SUSB_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)84.377G8JZS4GN=susB PE=1 SV=1Sp[Q8A8L4]SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)39.434Q8A8L4GN=serC PE=3 SV=139.434Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)39.434Q8A8L4GN=serC PE=3 SV=1SP[Q8A474]EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)77.587Q8A8L4GN=serC PE=3 SV=1SV=1;>sp[Q6A474]EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)77.587Q8A8L4GN=serC PE=3 SV=1SV=1;>sp[Q6A474]EFG_BACFN Elongation factor G OS=Bacteroide		15703 / DSM 20083 / NCTC	
SV=1;>sp Q8G443]RL7_BIFLO 50S ribosomal protein L7/L12 OS=Bifdobacterium longum (strain NCC 2705) GN=rplL P A1A033;Q8G443;B8DVY5;B3DPX4 (strain NCC 2705) GN=rplL P >splQ8A753]PGK_BACTN Phosphoglycerate kinase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) 45.026 Q8A753;Q7MU77 GN=pgk PE=3 SV=1 58.202 Q8A753;Q7MU77 SplQ8A6P8[CH6_BACTN 60 KDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) 58.202 Q8A6P8 GN=ggt PE=3 SV=1 84.377 Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) 84.377 G8JZS4 GN=sgut PE=1 SV=1 39.434 Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) 39.434 Q8A8L4 GN=serC PE=3 SV=1 39.434 Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) 39.434 Q8A8L4 GN=serC PE=3 SV=1 77.587 Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) 77.587 Q8A8L4 GN=suce PE=3 SV=1 SV=1 SV=1 SV=1 SV=1 SV=1 SV=1 SV=1		11814 / E194a) GN=rpIL PE=3	
50S ribosomal protein L7/L12 OS=Bifidobacterium longum (strain NCC 2705) GN=rplL PA1A033;Q8G443;B8DVY5;B3DPX4>sp[Q8A753]PGK_BACTN Phosphoglycerate kinase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=pgk PE=3 SV=145.026 Phosphoglycerate kinase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8A6P858.202 KDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8A6P858.202 KDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8JZS484.377 Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8JZS484.377 Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=susB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=susP (DSA474]EFG_BACTN R Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=susP (DSA474]EFG_BACF R Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=susP (DSA474		SV=1:>splQ8G443IRL7 BIFLO	
A1A033;Q8G443;B8DVY5;B3DPX4 (strain NCC 2705) GN=rpIL P >spiQ8A753;PGK_BACTN + 5.026 Phosphoglycerate kinase OS=Bacteroides 0582 / E50 / VPI-5482) (Strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) 08A753;Q7MU77 GN=pgk PE=3 SV=1 >spiQ8A6P8(Ch60_BACTN 60 kDa chaperonin 58.202 08A6P8 GN=rgk PE=3 SV=1 08A6P8 GN=rgic Network 6BJZS4 SBIG8JZS4[SUSB_BACTN 6BJZS4 GN=susB PE=1 Sep[Q8A8L4]SERC_BACTN 84.377 Glucan 1.4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=susB PE=1 G8JZS4 GN=susB PE=1 Sep[Q8A474]EFG_BACTN 39.434 Phosphoserine amintoransferase OS=Bacteroides Shellos2 / E50 / VPI-5482) GN=sus PE=3 SV=1 SSP[Q8A		50S ribosomal protein 1 7/1 12	
A1A033;Q8G443;B8DVY5;B3DPX4 (strain NCC 2705) GN=rplL P >splQ8A753;PGK_BACTN Phosphoglycerate kinase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A753;Q7MU77 GN=pgk PE=3 SV=1 >splQ8A6P8(CH60_BACTN 60 kDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A6P8 GN=groL PE=3 SV=1 >splQ8A2S4 SUSB_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8JZS4 GN=susB PE=1 SV=1 SsplQ8A8L4 SERC_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8JZS4 GN=susB PE=1 SV=1 SsplQ8A8L4 SERC_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=susB PE=1 SV=1 SsplQ8A474 EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA / D		OS-Bifidobacterium longum	
ATRAUSS, 0303443, BODVT5, B3DPX4 (Statil NCC 2705) GN=PIL P spiQ8A753) QRX BACTS, WA 45.026 Phosphoglycerate kinase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A753; Q7MU77 GN=pg RE=3 SV=1 SpiQ8A6P8(CH60_BACTN 60 kDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A6P8 GN=grup LP=3 SV=1 SpiQ8A254 SUSB_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=grup LP=3 SV=1 SpiQ8A8L4 SERC_BACTN GN=susB PE=1 SV=1 SpiQ8A8L4 SERC_BACTN 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A8L4 GN=serC PE=3 SV=1 SpiQ8A474 EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A8L4 GN=serC PE=3 SV=1 SpiQ8A474 EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=1 SpiQ8A474 EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=1 SpiQ8A474 EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=1 SpiQ8A474 EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=1 SV=1; SpiQ64NK6 EFG_BACF R Elongation factor G OS=Bacteroides SV=1; SpiQ8ANK6; OSL8A7;A6KYJ7 SV=1; SpiQ8A SV=1; SpiQ8ASV2;A6L7P7;Q97FP8;Q8XI54; Q0TNS1;20SQS9 OS=Bacteroides		(strain NCC 2705) CN roll D	
 ssp(Q8A/53)PGR_BACTN 45.026 Phosphoglycerate kinase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A753;Q7MU77 GN=pgk PE=3 SV=1 >sp(Q8A6P8)CH60_BACTN 60 KDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A6P8 GN=groL PE=3 SV=1 >sp(G8JZS4 SUSB_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8JZS4 GN=susB PE=1 SV=1 >sp(Q8A8L4]SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A8L4 GN=susC PE=3 SV=1 >sp(Q8A474]EFG_BACTN GN=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A8L4 GN=susA PE=3 SV=1 >sp(Q8A474]EFG_BACTN GN=fusA PE=3 SV=1>.sp(Q64NK6]EFG_BACFR R Elongation factor G OS=Bacteroides fragilis (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1>.sp(Q64NK6]EFG_BACFR R Elongation factor G OS=Bacteroides fragilis (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1>.sp(Q64NK6]EFG_BACFR R Elongation factor G OS=Bacteroides fragilis (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 /	ATA033,Q0G443,D0DV15,D3DPA4	(Strain NCC 2705) GN=IPIL P	15.000
Phosphoglycerate kinase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)Q8A753;Q7MU77GN=pgk PE=3 SV=1Q8A753;Q7MU77GN=pgk PE=3 SV=1>splQ8A6P8]CH60_BACTN 60 kDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)58.202Q8A6P8GN=groL PE=3 SV=1Q8A6P8GN=groL PE=3 SV=1Q8A6P8GN=groL PE=3 SV=1SplG8JZS4 SUSB_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)84.377G8JZS4GN=susB PE=1 SV=1G8JZS4GN=susB PE=1 SV=1SplQ8A8L4 SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)39.434Q8A8L4GN=sucP E=3 SV=1SplQ8A814!FG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)77.587Q8A8L4GN=sucP E=3 SV=1SV=1,>splQ8A474!EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=1usA PE=3 SV=1,>splQ64NK6]EFG_BACFF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) (SA=TUSA PE=3 SV=1,>splQ548.89Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Glucose-6-phosphate isomerase Q0TNS1;Q0SQS948.89		>sp Q8A753 PGK_BACTN	45.026
OS=Bacteroidesthetaiotaomicron (strain ATCC29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)Q8A753;Q7MU77GN=pgk PE=3 SV=1>splQ8A6P8 CH60_BACTN 6058.202kDa chaperoninSS=BacteroidesUBA753;Q7MU77SS=202Q8A6P8GN=groL PE=3 SV=1Q8A6P8GN=groL PE=3 SV=1Sep[Q8JZS4 SUSB_BACTN84.377Glucan 1,4-alpha-glucosidaseSusB OS=Bacteroidesthetaiotaomicron (strain ATCC29148 / DSM 2079 / NCTCQ8A6P8GN=groL PE=3 SV=1Sep[Q8A74]SUSB_BACTN84.377Glucan 1,4-alpha-glucosidaseSusB OS=Bacteroidesthetaiotaomicron (strain ATCC29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)GN=susB PE=1 SV=1Sep[Q8A84L4]SERC_BACTN39.434PhosphoserineaminotransferaseOS=Bacteroidesthetaiotaomicron (strain ATCC29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)Q8A8L4GN=serC PE=3 SV=1Sep[Q8A474]EFG_BACTN77.587Elongation factor GOS=BacteroidesGN=susA PE=3SV=1,>sp]Q8A474[EFG_BACTNGN=fusA PE=3SV=1,>sp]Q64NK6]EFG_BACFRR Elongation factor GOS=BacteroidesGN=fusA PE=3SV=1,>sp]Q8A5W2]G6PI_BACTNQ8A5W2;A6L7P7;Q97FP8;Q8XI54;Glucose-6-phosphate isomeraseQ8A5W2;A6L7P7;Q97FP8;Q8XI54;Glucose-6-phosphate isomeraseQ8A5W2;A6L7P7;Q97FP8;Q8XI54;SV=1,>sp]Q8A5W2]G6PI_BACTN48.89Glucose-6-phosphate isomeraseQ8A5W2;A6L7P7;Q97FP8;Q8XI54;SV=1,>		Phosphoglycerate kinase	
thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)Q8A753;Q7MU77GN=pgk PE=3 SV=1>splQ8A6P8 CH60_BACTN 60 kDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)58.202Q8A6P8GN=groL PE=3 SV=1Q8A6P8GN=groL PE=3 SV=1SplQ8A8L4 SERC_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)G8JZS4GN=susB PE=1 SV=1SplQ8A8L4 SERC_BACTN Phosphoserine arminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)Q8A8L4GN=serC PE=3 SV=1SplQ8A474 EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)Q8A8L4GN=serC PE=3 SV=1SV=1;>splQ6A474 EFG_BACTN Elongation factor G OS=BacteroidesGN=fusA PE=3 SV=1;>splQ64NK6 EFG_BACFR R Elongation factor G OS=Bacteroides thetaiotamicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>splQ64NK6 EFG_BACFR R Elongation factor G OS=BacteroidesQ8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>splQ84 SV=1;>splQ84 SV=1;>splQ84 SV=1;2splQ5Q8A5W2;A6L7P7;Q97FP8;Q8XI54; GUNS9Q8-Bactero		OS=Bacteroides	
29148 / DSM 2079 / NCTC Q8A753;Q7MU77 GN=pgk PE=3 SV=1 Ssp[Q8A6P8]CH60_BACTN 60 kDa chaperonin OS=Bacteroides 58.202 Q8A6P8 GN=groLP64382) 58.202 Q8A6P8 GN=groLPE=3 SV=1 59.202 Q8A6P8 GN=groLPE=3 SV=1 84.377 Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides 84.377 Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides 84.377 GBJZS4 GN=susB PE=1 SV=1 Sp[Q8A8L4]SERC_BACTN 84.377 G8JZS4 GN=susB PE=1 SV=1 Sp[Q8A8L4]SERC_BACTN 39.434 Phosphoserine aminotransferase 39.434 OS=Bacteroides 10582 / E50 / VPI-5482) Q8A8L4 GN=surG PE=3 SV=1 Sp[Q8A8L4]SERC_BACTN 39.434 Phosphoserine aminotransferase 0S=Bacteroides Q8A8L4 GN=serC PE=3 SV=1 39.434 Q8A8L4 GN=serC PE=3 SV=1 77.587 Q8A8L4 GN=serC PE=3 SV=1 77.587 Q8A8L4 GN=serC PE=3 SV=1 77.587 Q8A8L4 GN=surG AP74 EFG_BACTN 77.587		thetaiotaomicron (strain ATCC	
Definition the colspan="2">Definition the colspan="2" Definition the colspan="2" Definition the colsp		29148 / DSM 2079 / NCTC	
Q8A753;Q7MU77 GN=pgk PE=3 SV=1 >sp Q8A6P8 CH60_BACTN 60 KDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) 58.202 Q8A6P8 GN=groL PE=3 SV=1 84.377 Q8A6P8 GN=groL PE=3 SV=1 84.377 Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 84.377 G8JZS4 GN=susB PE=1 SV=1 84.377 G8JZS4 GN=susB PE=1 SV=1 39.434 Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) 39.434 Q8A8L4 GN=serC PE=3 SV=1 39.434 Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) 77.587 Q8A8L4 GN=serC PE=3 SV=1 75.87 Q8A8L4 GN=serC PE=3 SV=1 75.87 Q8A8L4 GN=serC PE=3 SV=1 77.587 GN=fusA PE=3 SV=1;>sp]Q64NK6;GEACTN R Elongation factor G OS=Bacteroides 77.58		10582 / E50 / \/PI-5482\	
Q8A4745,Q47H077 GIN=pgk PE=3 SV=1 >splQ8A6P8 CH60_BACTN 60 58.202 kDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A6P8 GN=groL PE=3 SV=1 84.377 Q8A6P8 GN=groL PE=3 SV=1 84.377 Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=groL PE=3 SV=1 G8JZS4 GN=susB DS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) 39.434 Phosphoserine aminotransferase OS=Bacteroides 39.434 Phosphoserine aminotransferase OS=Bacteroides 10582 / E50 / VPI-5482) 39.434 Q8A8L4 GN=serC PE=3 SV=1 39.434 SPIQ8A74]EFG_BACTN 39.434 Q8A8L4 GN=serC PE=3 SV=1 39.434 SPIQ8A74]EFG_BACTN 39.434 Q8A8L4 GN=serC PE=3 SV=1 39.434 SPIQ8A74]EFG_BACTN 77.587 Q8A8L4 GN=serC PE=3 SV=1 SPIQ8A6474]EFG_BACTN 77.587 GIUCS2-650 / VPI-5482) GN=serC PE=3 SV=1 SPIQ8A6474]EFG_BA		$CN_{nak} DE_{2} SV_{-1}$	
Sep[Q8A6P8]CH60_BACTN 60 KDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=groL PE=3 SV=1 Sep[G8JZS4]SUSB_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=susB PE=1 SV=1 Sep[Q8A8L4]SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=susB PE=1 SV=1 Sep[Q8A8L4]SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A8L4 GN=serC PE=3 SV=1 Sep[Q8A474]EFG_BACTN Flongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=suce relase GN=suce relase SV=1 Sep[Q8A474]EFG_BACTN Flongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>sp[Q64NK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>sp[Q8A5W2]G6PI_BACTN SV=1;>sp[Q8A5W2]G6PI_BACTN SV=1;>sp[Q8A5W2]G6PI_BACTN SV=1;>sp[Q8A5W2]G6PI_BACTN SV=1;>sp[Q8A5W2]G6PI_BACTN 48.89 Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Glucose-6-phosphate isomerase OS=Bacteroides			50.000
KDa chaperonin OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=groL PE=3 SV=1Q8A6P8GN=groL PE=3 SV=1SpjG8JZS4 SUSB_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)84.377G8JZS4GN=susB PE=1 SV=1G8JZS4GN=susB PE=1 SV=1SpjQ8A8L4 SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)39.434Q8A8L4GN=susC PE=3 SV=1SpjQ8A8L4 SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=1SpjQ8A8L4GN=serC PE=3 SV=1SpjQ8A474 EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>spjQ64NK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>spjQ64 SV=1;>spjQ64NK6]EFG_BACFN SV=1;>spjQ64SW2;A6L7P7;Q97FP8;Q8XI54; GNEscteroides48.89		>spiQ8A6P8 CH60_BACIN 60	58.202
OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)Q8A6P8GN=groL PE=3 SV=1Q8A6P8Susgrol PE=3 SV=1Sep[G8JZS4]SUSB_BACTN Glucan 1,4-alpha-glucosidase Susgrol OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)84.377G8JZS4GN=susgrefactorides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)39.434G8JZS4GN=susgrefactorides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)39.434G8JZS4GN=susgrefactorides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)39.434Q8A8L4GN=serC PE=3 SV=139.434Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)77.587GN=serC PE=3 SV=1>sp[Q8A474]EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>sp[Q64NK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>sp[Q64NK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>sp[Q64NK6]EFG_BACTN Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Glucose-6-phosphate isomerase48.89Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Glucose-6-phosphate isomerase OS=Bacteroides48.89		kDa chaperonin	
thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)Q8A6P8GN=groL PE=3 SV=1>sp[G8JZS4 SUSB_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)84.377G8JZS4GN=susB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)39.434G8JZS4GN=susB PE=1 SV=1>sp[Q8A8L4]SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)39.434Q8A8L4GN=susC PE=3 SV=1Q8A8L4GN=serC PE=3 SV=1Sp[Q8A474]EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=1Q8A8L4GN=serC PE=3 SV=1Sp[Q8A474]EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>sp[Q64NK6]EFG_BACFR R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>sp[Q64NK6]EFG_BACFR R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>sp[Q64SW2]G6PI_BACTN SV=1;>sp[Q84SW2]G6PI_BACTN Q8A5W2;A6L7P7;Q97FP8;Q8XI54; GN=bacteroides OS=Bacteroides48.89		OS=Bacteroides	
29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=groL PE=3 SV=1 >sp[G8JZS4 SUSB_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8JZS4 GN=susB PE=1 SV=1 >sp[Q8A8L4 SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A8L4 GN=susD PE=1 SV=1 >sp[Q8A8L4]SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A8L4 GN=serC PE=3 SV=1 >sp[Q8A474]EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>sp[Q64NK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>sp[Q8A474;Q64NK6;Q5L8A7;A6KYJ7 SV=1;>sp[Q8A5W2]G6PI_BACTN SV=1;>sp[Q8A5W2]G6PI_SACTN SV=1;>sp[Q8A5W2]G6PI_SACTN SV=1;>sp[Q8A5W2]G6PI		thetaiotaomicron (strain ATCC	
Q8A6P810582 / E50 / VPI-5482) GN=groL PE=3 SV=184.377SplC8JZS4 SUSB_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)84.377G8JZS4GN=susB PE=1 SV=1SplQ8A8L4 SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)39.434Q8A8L4GN=susB PE=1 SV=1SplQ8A8L4 SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 10582 / E50 / VPI-5482)39.434Q8A8L4GN=serC PE=3 SV=1SplQ8A474 EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)77.587GN=fusA PE=3 SV=1;>splQ6ANK6 EFG_BACFN R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>splQ6ANK6 EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=348.89Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>splQ8A5W2[G6PI_BACTN SV=1;>splQ8A5W2[G6PI_BACTN Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Glucose-6-phosphate isomerase OS=Bacteroides48.89		29148 / DSM 2079 / NCTC	
Q8A6P8GN=groL PE=3 SV=1Sp[G8JZS4]SUSB_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)84.377G8JZS4GN=susB PE=1 SV=139.434Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)39.434Q8A8L4GN=susC PE=3 SV=139.434Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=177.587Q8A8L4GN=serC PE=3 SV=177.587Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=177.587Q8A8L4GN=serC PE=3 SV=177.587Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>sp Q6AlK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH40) GN=fusA PE=3 Ssp[Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Glucose-6-phosphate isomerase Q0TN51;Q0SQS948.89		10582 / E50 / VPI-5482)	
AddressStaplG8JZS4[SUSB_BACTN Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)84.377G8JZS4GN=susB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)39.434G8JZS4GN=susB PE=1 SV=139.434Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)39.434Q8A8L4GN=serC PE=3 SV=139.434Q8A8L4GN=serC PE=3 SV=177.587Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=377.587Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=377.587Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=377.587Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q64NK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=388/2Q8A5W2;A6L7P7;Q97FP8;Q8XI54; QUTN51;Q0SQS9SBacteroides48.89Q8A5W2;A6L7P7;Q97FP8;Q8XI54; QUTN51;Q0SQS9SB48.89	08A6P8	GN=arol PE=3.SV=1	
Glucan 1,4-alpha-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8JZS4 GN=susB PE=1 SV=1 >sp[Q8A8L4]SERC_BACTN 39.434 Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A8L4 GN=serC PE=3 SV=1 >sp[Q8A474]EFG_BACTN 77.587 Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=1 Ssp[Q8A474]EFG_BACTN 77.587 Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>sp[Q64NK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>sp[Q85W2]G6PI_BACTN 48.89 Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Glucose-6-phosphate isomerase Q0TN51;Q0SQS9 OS=Bacteroides			04 277
Glucan 1,4-aipna-glucosidase SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) G8JZS4 GN=susB PE=1 SV=1 >sp Q8A8L4 SERC_BACTN 39.434 Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A8L4 GN=serC PE=3 SV=1 >sp Q8A474 EFG_BACTN 77.587 Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A8L4 GN=serC PE=3 SV=1 >sp Q8A474 EFG_BACTN 77.587 Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>sp Q64NK6 EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>sp Q6A5W2 G6PI_BACTN 48.89 Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Glucose-6-phosphate isomerase Q0TN51;Q0SQS9 OS=Bacteroides		>SplGoJZ34JSU3B_BACTN	04.377
SusB OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=susB PE=1 SV=1 >sp Q8A8L4 SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A8L4 GN=serC PE=3 SV=1 >sp Q8A474 EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=1 >sp Q8A474 EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>sp Q64NK6 EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>sp Q8A5W2 G6PI_BACTN 48.89 Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Glucose-6-phosphate isomerase Q0TN51;Q0SQS9 OS=Bacteroides		Glucan 1,4-alpha-glucosidase	
thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)G8JZS4GN=susB PE=1 SV=1>splQ8A8L4 SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=139.434Q8A8L4GN=serC PE=3 SV=1Q8A8L4GN=serC PE=3 SV=1SplQ8A474 EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=1Q8A8L4GN=serC PE=3 SV=1Q8A8L4SS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>splQ64NK6]EFG_BACF R Elongation factor G OS=Bacteroides free GN=fusA PE=3 SV=1;>splQ64NK6]EFG_BACF R Elongation factor G OS=Bacteroides free SBacteroides free SS=Bacteroides free SBacteroides free SS=Bacteroides free SS=Bacteroides48.89Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9SS=Bacteroides48.89		SusB OS=Bacteroides	
29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=susB PE=1 SV=1 >sp Q8A8L4 SERC_BACTN Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) Q8A8L4 GN=surce PE=3 SV=1 28A8L4 GN=serC PE=3 SV=1 28A8L4 GN=serC PE=3 SV=1 28A8L4 GN=serC PE=3 SV=1 Sp Q8A474 EFG_BACTN 77.587 Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>sp Q64NK6 EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>sp Q45 Q8A474;Q64NK6;Q5L8A7;A6KYJ7 SV=1;>sp Q5 Ssp Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Glucose-6-phosphate isomerase Q0TN51;Q0SQS9 OS=Bacteroides		thetaiotaomicron (strain ATCC	
10582 / E50 / VPI-5482) GN=susB PE=1 SV=1G8JZS4GN=susB PE=1 SV=1>sp Q8A8L4 SERC_BACTN39.434Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)39.434Q8A8L4GN=serC PE=3 SV=1Q8A8L4GN=serC PE=3 SV=1Sp Q8A474 EFG_BACTN77.587Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=sacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;sp]Q64NK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;sp]Q64SW2[G6PI_BACTN48.89Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;sp]Q6548.89Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Glucose-6-phosphate isomerase OS=Bacteroides48.89		29148 / DSM 2079 / NCTC	
G8JZS4GN=susB PE=1 SV=139.434>sp Q8A8L4 SERC_BACTN39.434Phosphoserine aminotransferase39.434Phosphoserine aminotransferase39.434Q8A8L4OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)4Q8A8L4GN=serC PE=3 SV=1Sp Q8A474 EFG_BACTN77.587Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)77.587Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)4GN=fusA PE=3 SV=1;>sp Q64NK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=34Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q548.89Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9OS=Bacteroides48.89		10582 / E50 / VPI-5482)	
Sp Q8A8L4 SERC_BACTN39.434Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=139.434Q8A8L4GN=serCondes Sep Q8A474 EFG_BACTN77.587Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=sacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>sp Q64NK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>sp Q64NK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>sp Q8548.89Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q848.89Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9GIucose-6-phosphate isomerase OS=Bacteroides48.89	G8JZS4	GN=susB PE=1 SV=1	
Poplacific2_HoLINO_BINGTIN00.1441Phosphoserine aminotransferase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=1Q8A8L4GN=serC PE=3 SV=1>sp Q8A474 EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>sp Q64NK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>sp Q64NK6]EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 SV=1;>sp Q8A5W2]G6PI_BACTNQ8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS948.89		SSDIO8A8I 4ISERC BACTN	39 4 34
Principilosentine aminotransferaseaminotransferaseOS=BacteroidesOS=Bacteroidesthetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)ATCCQ8A8L4GN=serC PE=3 SV=1Page 201SsplQ8A474 EFG_BACTN Elongation factor G OS=Bacteroides77.587Elongation factor G OS=BacteroidesOS=Bacteroidesthetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3ATCC SV=1;>splQ64NK6 EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>splQ5SV=1;>splQ8A5W2 G6PI_BACTN SV=1;>splQ8A5W2 G6PI_BACTN SV=1;2splQ5Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9GN=fusA PE=3 SSBacteroides48.89		Phosphosorino	00.404
animotransferaseOS=Bacteroidesthetaiotaomicron (strain ATCC29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)Q8A8L4GN=serC PE=3 SV=1>splQ8A474 EFG_BACTNFlongation factor GOS=Bacteroidesthetaiotaomicron (strain ATCC29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)GN=serC PE=3 SV=1SplQ8A474 EFG_BACTN77.587Elongation factor GOS=Bacteroidesthetaiotaomicron (strain ATCC29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)GN=fusA PE=3SV=1;>splQ64NK6 EFG_BACFR Elongation factor GOS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>splQ5>splQ8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9OS=Bacteroides		eminetronoforeae	
OS=Bacteroidesthetaiotaomicron (strain ATCC29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)Q8A8L4GN=serC PE=3 SV=1>sp Q8A474 EFG_BACTN77.587Elongation factor GOS=Bacteroidesthetaiotaomicron (strain ATCC29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)GN=serC PE=3SV=1;>sp Q8AV74 EFG_BACFR Elongation factor GOS=Bacteroides fragilis (strainYCH46) GN=fusA PE=3SV=1;>sp Q64NK6 EFG_BACFR Elongation factor GOS=Bacteroides fragilis (strainYCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q8Q8A5W2;A6L7P7;Q97FP8;Q8XI54;Q0TN51;Q0SQS9OS=Bacteroides		aminotransferase	
thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=serC PE=3 SV=1Q8A8L4GN=serC PE=3 SV=1>sp Q8A474 EFG_BACTN Elongation factor G OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>sp Q64NK6 EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q64 SV=1;>sp Q64 SV=1; <sp q5< td="">48.89 SPQ8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Glucose-6-phosphate isomerase OS=Bacteroides48.89 SP</sp q5<>		US=Bacteroides	
29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)Q8A8L4GN=serC PE=3 SV=1>sp Q8A474 EFG_BACTNFlongation factor GOS=Bacteroidesthetaiotaomicron (strain ATCC)29148 / DSM 2079 / NCTC29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)GN=fusA PE=3SV=1;>sp Q64NK6 EFG_BACFR Elongation factor GOS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Q8-5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Call And		thetaiotaomicron (strain ATCC	
Q8A8L4 10582 / E50 / VPI-5482) Image: Constant of the system of the sys		29148 / DSM 2079 / NCTC	
Q8A8L4GN=serC PE=3 SV=1>sp Q8A474 EFG_BACTN77.587Elongation factor GOS=Bacteroidesthetaiotaomicron (strain ATCC29148 / DSM 2079 / NCTC29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)GN=fusA PE=3SV=1;>sp Q64NK6 EFG_BACFR Elongation factor GOS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q5Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Glucose-6-phosphate isomerase OS=Bacteroides		10582 / E50 / VPI-5482)	
>sp Q8A474 EFG_BACTN77.587Elongation factor GOS=BacteroidesUSE	Q8A8L4	GN=serC PE=3 SV=1	
Coppedition factor GCoppedition factor GElongation factor GOS=Bacteroidesthetaiotaomicron (strain ATCC29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)GN=fusA PE=3SV=1;>sp Q64NK6 EFG_BACFR Elongation factor GOS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q5>sp Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Glucose-6-phosphate isomerase OS=Bacteroides		>splQ8A474IEEG_BACTN	77 587
Clongation factor GOS=Bacteroidesthetaiotaomicron (strain ATCC29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)GN=fusA PE=3SV=1;>sp Q64NK6 EFG_BACFR Elongation factor GOS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q5SP Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Glucose-6-phosphate isomerase OS=Bacteroides		Flongation factor G	
OS=Bacteroidesthetaiotaomicron (strain ATCC29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)GN=fusA PE=3SV=1;>sp Q64NK6 EFG_BACFR Elongation factor GOS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q5SP Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9QS=Bacteroides		OS-Bactoroidos	
Inetaiotaomicron (strain ATCC29148 / DSM 2079 / NCTC10582 / E50 / VPI-5482)GN=fusA PE=3SV=1;>sp Q64NK6 EFG_BACFR Elongation factor GOS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q5SP Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Glucose-6-phosphate isomerase OS=Bacteroides			
29148 / DSM 2079 / NC1C 10582 / E50 / VPI-5482) GN=fusA PE=3 SV=1;>sp Q64NK6 EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3 Q8A474;Q64NK6;Q5L8A7;A6KYJ7 SV=1;>sp Q5 SV=1;>sp Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9		thetalotaomicron (strain ATCC	
10582 / E50 / VPI-5482)GN=fusA PE=3SV=1;>sp Q64NK6 EFG_BACFR Elongation factor GOS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q528A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Glucose-6-phosphate isomerase OS=Bacteroides		29148 / DSM 2079 / NCTC	
GN=fusA PE=3SV=1;>sp Q64NK6 EFG_BACFR Elongation factor GOS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q5>sp Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Glucose-6-phosphate isomerase OS=Bacteroides		10582 / E50 / VPI-5482)	
SV=1;>sp Q64NK6 EFG_BACF R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q5Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Glucose-6-phosphate isomerase OS=Bacteroides		GN=fusA PE=3	
R Elongation factor G OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q5Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Glucose-6-phosphate isomerase OS=Bacteroides		SV=1;>sp Q64NK6IEFG BACF	
OS=Bacteroides fragilis (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q5Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Glucose-6-phosphate isomerase OS=Bacteroides		R Elongation factor G	
OS-Dacteroides fragins (strain YCH46) GN=fusA PE=3Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q5Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Ssp Q8A5W2 G6PI_BACTN Glucose-6-phosphate isomerase OS=Bacteroides		OS-Bacteroides fragilis (strain	
Q8A474;Q64NK6;Q5L8A7;A6KYJ7SV=1;>sp Q5Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9Sp Q8A5W2 G6P1_BACTN Glucose-6-phosphate isomerase OS=Bacteroides		VCH46) GN-fueA DE-2	
Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Q0TN51;Q0SQS9SV=1;>SP Q5V=1;>SP Q8A5W2 G6PI_BACTN Glucose-6-phosphate isomerase OS=Bacteroides48.89		P(-1) = P(-1)	
>sp Q8A5W2 G6PI_BACTN48.89Q8A5W2;A6L7P7;Q97FP8;Q8XI54;Glucose-6-phosphate isomeraseQ0TN51;Q0SQS9OS=Bacteroides	QOA4/4;QO4NNO;QOLOA/;AOKYJ/		10.00
Q8A5W2;A6L7P7;Q97FP8;Q8XI54; Glucose-6-phosphate isomerase Q0TN51;Q0SQS9 OS=Bacteroides	•	>splQ8A5W2 G6PI_BACTN	48.89
Q0TN51;Q0SQS9 OS=Bacteroides	Q8A5W2;A6L7P7;Q97FP8;Q8XI54;	Glucose-6-phosphate isomerase	
	Q0TN51;Q0SQS9	OS=Bacteroides	

	thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=pgi PE=1 SV=1	
P31242;A6TGU6;Q56850;A1JRU8; A8GKC3;Q8ZAS9;Q664X6;Q1CNR 7;Q1CC20;A7FDH5;A4TH46;Q7N9 87;A7MPN7;Q8Z1T9;Q5PKZ7;B5B JV4;B4TQP9;B4TDL4;B4T1S6	>sp P31242 LAMB_KLEPN Maltoporin OS=Klebsiella pneumoniae GN=lamB PE=3 SV=1;>sp A6TGU6 LAMB2_KL EP7 Maltoporin 2 OS=Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 700721 / MGH 78578) GN=lamB2 PE=3 SV=1	47.804
Q88VE0	>sp Q88VE0 EFTU_LACPL Elongation factor Tu OS=Lactobacillus plantarum (strain ATCC BAA-793 / NCIMB 8826 / WCFS1) GN=tuf PE=3 SV=1	43.377
P18815	>sp P18815 MALE_KLEAE Maltose-binding periplasmic protein OS=Klebsiella aerogenes GN=malE PE=3 SV=1	43.136
	>sp P0AEY0 MALE_ECO57 Maltose-binding periplasmic protein OS=Escherichia coli O157:H7 GN=malE PE=1 SV=1;>sp P0AEX9 MALE_ECO LI Maltose-binding periplasmic protein OS=Escherichia coli (strain K12) GN=malE PE=1 SV=1	43.387
P0AE10,F0AEA9	>sp B2VL84 CH60_ERWT9 60 kDa chaperonin OS=Erwinia tasmaniensis (strain DSM 17950 / CIP 109463 / Et1/99) GN=groL	57.374
A6LQ87	>sp A6LQ87 CH60_CLOB8 60 kDa chaperonin OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=groL PE=3 SV=1	57.553
	>sp A6L5A6 SERC_BACV8 Phosphoserine aminotransferase OS=Bacteroides vulgatus (strain ATCC 8482 / DSM 1447 / JCM 5826 / NBRC 14291 / NCTC	39.555
A6L5A6	11154) GN=serC PE=3 SV=1	27.004
P24017	Outer membrane protein A OS=Klebsiella pneumoniae GN=ompA PE=1 SV=2	37.061
P19576	>sp P19576 MALE_SALTY Maltose-binding periplasmic protein OS=Salmonella	43.18

	typhimurium (strain LT2 / SGSC1412 / ATCC 700720)	
	>sp P07206 PULA_KLEPN	118.1
DOZOG	pneumoniae GN=pulA PE=1	
P07206		57.92
	kDa chaperonin OS=Clostridium	57.02
	botulinum (strain Alaska E43 /	
	Type E3) GN=groL PE=3	
	SV=1;>sp B2TIX0 CH60_CLOB	
	B 60 kDa chaperonin	
	OS=Clostridium botulinum	
B2UZ02-B2TIX0	GN-arol PE-3 SV-1	
	SplA6L2X7IDNAK BACV8	68 354
	Chaperone protein DnaK	00.001
	OS=Bacteroides vulgatus (strain	
	ATCC 8482 / DSM 1447 / JCM	
	5826 / NBRC 14291 / NCTC	
A6L2X7		50 151
	kDa chaperonin OS=Clostridium	56.151
A0Q2T1:P48212:B9MLY9:A4XJ09:	novvi (strain NT) GN=groL PE=3	
Q7MAE3	SV=1	
	>sp Q64UR4 SERC_BACFR	39.196
	Phosphoserine	
	aminotransferase	
	SV=1 >splQ51 DN9ISERC BAC	
	FN Phosphoserine	
	aminotransferase	
	OS=Bacteroides fragilis (strain	
	ATCC 25285 / DSM 2151 / JCM	
	11019 / NCTC 9343) GN=SerC	
	>splQ64PM7lG6PL BACER	48 749
	Glucose-6-phosphate isomerase	1011 10
	OS=Bacteroides fragilis (strain	
	YCH46) GN=pgi PE=3	
	SV=1;>sp Q5L9E3 G6PI_BACF	
	N Glucose-o-phosphate	
	fragilis (strain ATCC 25285 /	
	DSM 2151 / JCM 11019 / NCTC	
Q64PM7;Q5L9E3	9343) GN=pgi PE=3 SV=1	
	>sp P0ABK6 CYSK_ECO57	34.489
	Cysteine synthase A	
	US=ESCNERICHIA COII U15/:H/	
	$S_{=0}$	
	LI Cysteine synthase A	
	OS=Escherichia coli (strain K12)	
P0ABK6:P0ABK5	GN=cvsK PE=1 SV=2	

	>sp P0A1E4 CYSK_SALTI	34.535
	Cysteine synthase A	
	OS=Salmonella typhi GN=cvsK	
	PE=3	
	SV=2:>splP0A1E3ICYSK_SALT	
	Y Cysteine synthase A	
	Ω S-Salmonella typhimurium	
	(strain LT2 / SCSC1412 / ATCC	
	(SITAIN LTZ/ SGSC 1412/ ATCC 200720) CN avek DE 1 SV 2	
PUATE4;PUATE3;P57171;Q8KA48	700720) GIN=CYSK PE=1 SV=2	
	>sp A6LPQ8 EFG_CLOB8	75.866
	Elongation factor G	
	OS=Clostridium beijerinckii	
	(strain ATCC 51743 / NCIMB	
A6LPQ8	8052) GN=fusA PE=3 SV=1	
	>sp Q8AAP2 SYT_BACTN	74.552
	ThreoninetRNA ligase	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / \/PL5482\	
	ON_{+} = 00 / VFI-0402)	
QOAAFZ,AOL/J/		70.007
	>spiQ8A4N6 PNP_BACTN	78.367
	Polyribonucleotide	
	nucleotidyltransferase	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
	GN=pnp PE=3	
Q8A4N6;Q64N73;Q5L7Z7;Q7MW7	SV=1;>splQ64N73 PNP BACF	
9:B2RIW6:B6YRB0:Q3APY4:B4SD	R Polvribonucleotide	
X4 [·] O3B2E2 [·] B3OM09 [·] A1BDY1 [·] O8K	nucleotidyltransferase	
BY3·B4S5G5·B3EH06	Ω S=Bacteroides fragi	
D10,D40000,D021100		35 807
	Elengation factor To	55.637
	CS Restaraides	
	thetalotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482) GN=tsf	
Q8A0Z3	PE=3 SV=1	
	>sp Q8A004 PUR7_BACTN	35.765
	Phosphoribosylaminoimidazole-	
	succinocarboxamide synthase	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
	GN=purC PE=3	
	SV=1:>splQ64XV7IPUR7 BAC	
	FR	
	Phosphoribosylaminoimidazole-	
	succinocarboxam	
		58 /66
	kDa chanaranin OS-Clastridium	50.400
	totopi (otroip Mossochusette /	
Q891G4;Q24QE3;B8FN17	EDD) GIN=GROL PE=3 SV=1	

	SepID24748IC3D CITED	31 /77
	Chycoroldobydo 3 phosphato	51.477
	debudrogenege (Fragment)	
D24749		
P24748		00.004
	>splQ8A002[TPIS_BACTN	26.801
	I riosephosphate isomerase	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q8A0U2	GN=tpiA PE=3 SV=1	
	>sp Q89Z05 ENO_BACTN	46.158
	Enolase OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q89Z05	GN=eno PE=3 SV=1	
	>splQ64VP2ISYT_BACFR	74,405
	ThreoninetRNA ligase	
	OS-Bacteroides fragilis (strain	
	VCH46) GN-thrS PE-3	
	N Throoping tPNA ligace	
	N Theorineikina ligase	
	ATCC 25265 / DSW 2151 / JCW	
	11019 / 10010 9343) GN=000000000000000000000000000000000000	
0,QTTUK3,A0GT22,A3FP01		20.205
	>Sp P24164 G3P_KLEPN	32.305
	Giyceraidenyde-3-phosphate	
	dehydrogenase (Fragment)	
	OS=Klebsiella pneumoniae	
P24164	GN=gap PE=3 SV=2	
	>sp P0AE11 AHPC_SHIFL Alkyl	20.761
	hydroperoxide reductase C	
	OS=Shigella flexneri GN=ahpC	
	PE=3	
	SV=2;>sp P0AE10 AHPC_ECO	
	57 Alkyl hydroperoxide	
	reductase C OS=Escherichia	
	coli O157:H7 GN=ahpC PE=3	
	SV=2;>sp P0AE09 AHPC_ECO	
	L6 Alkyl hydroperoxide	
P0AE11;P0AE10;P0AE09;P0AE08	reductase C OS=Escher	
	>sp P0A252 AHPC_SALTI Alkyl	20.747
	hydroperoxide reductase C	
	OS=Salmonella typhi GN=ahpC	
	PE=3	
	SV=2;>sp P0A251 AHPC_SALT	
	Y Alkyl hydroperoxide reductase	
	C OS=Salmonella typhimurium	
	(strain LT2 / SGSC1412 / ATCC	
P0A252;P0A251	700720) GN=ahpC PE=1 SV=2	
· · · · ·	>sp P09373 PFLB_ECOLI	85.356
	Formate acetvltransferase 1	
	OS=Escherichia coli (strain K12)	
P09373;P42632	GN=pfIB PE=1 SV=2	

		440.00
	>sp P0/811 PULA_KLEAE	119.33
D07911		
F 07 01 1	SV-1 SeDIO83023IPCKA SELRU	50 705
	Phosphoenolpyruvate	39.703
	carboxykinase (ATP)	
	OS-Selenomonas ruminantium	
083023·001554·B0UWS7·A6V/KV/4	GN=pckA PE=3 SV=1	
	>splB4EXE2ICH60_PROMH 60	57 651
	kDa chaperonin OS=Proteus	01.001
	mirabilis (strain HI4320)	
B4EXE2	GN=groL PE=3 SV=1	
	>splB0TVL3ICH60_SHEHH 60	57.302
	kDa chaperonin OS=Shewanella	000
	halifaxensis (strain HAW-EB4)	
	GN=groL PE=3	
	SV=1;>sp A8H8W3 CH60_SHE	
	PA 60 kDa chaperonin	
	OS=Shewanella pealeana	
	(strain ATCC 700345 / ANG-	
	SQ1) GN=groL PE=3	
B0TVL3;A8H8W3;A8FQY1;B8CID3	SV=1;>sp A8FQY1 CH60_SHE	
;B1KIR6;Q8KIX0;Q07WX7	SH 60 kDa chaperonin OS	
A8AQM8;B2VK36;C4K4F9;Q8ZJB3		77.459
;Q664R6;Q1CCT8;Q1C2U0;B2K5N		
5;B1JIV5;A9R462;A7FNN9;A4TGY		
6;C4LBU4;Q7NQF0;Q7N9B2;Q7V		
NA2;Q057A1;Q492B1;C1DAR4;A5		
CXN7;Q8D3H2;P59451;Q72Cl3;A1		
/MH42;C5CP58;A45UV8;A1AVJ/;		
131G7,Q12GA4,A25LG0,A257H3,		
R8D0\/0.B8D852.B0MB70.A1M20		
4:046WE0:050565:08XV10:01112		
4,Q4000E0,O50505,Q50010,Q1E12		
S1'B7GYM8'B2HI IO4'B0VTG3'B0		
V8Y3 A3M306 Q1MPS9 B8DN94 Q		
4FLL6:Q30Z38:Q3SLQ2:Q47.JA6:Q	>splA8AQM8IEFG CITK8	
1H4P0:A1KB30:Q9KUZ7:Q8EK71	Elongation factor G	
Q605A9;Q5E8B9;Q12SW2:Q0I0A8	OS=Citrobacter koseri (strain	
;Q0HNU0;Q089Q7;Q21RV5:B1Y7	ATCC BAA-895 / CDC 4225-83 /	
G9;B1XSP8;Q13UU8;Q15YA7:A4G	SGSC4696) GN=fusA PE=3	
9U1;Q7W455;Q2KV83:Q7WFL2	SV=1	
	>sp A6KXA0 CH60 BACV8 60	58.143
	kDa chaperonin	
	OS=Bacteroides vulgatus (strain	
	ATCC 8482 / DSM 1447 / JCM	
	5826 / NBRC 14291 / NCTC	
A6KXA0	11154) GN=groL PE=3 SV=1	
Q9HWD2;Q4K530;A4XZ93;Q88QN	>sp Q9HWD2 EFG1_PSEAE	77.784
8;Q4ZMP1;Q48D33;C3K2X9;A8Z6I	Elongation factor G 1	
6;A7GZJ4;Q5NHX0;Q2A5H2;Q14J	OS=Pseudomonas aeruginosa	

ZT6;A0Q4I1;B0U0Z1Control (Control)Control (Control)Control (Control)22644 / CIP 104116 / JCM14847 / LMG 12228 / 1C / PRS101 / PAO1) GN=fusA PE=1SV=1;>splQ4K530 EFG_PSEF5Elongation factor GQ8XJW5;Q0TPW7;Q0SSI2;A7GGL4;A7FWQ7;A5I557;Q97QA8;C1CE2;88ZK31;B5E552;B1ICC9;A0PZC6;B2UWY4;B2TP91;B1KXT6;B1IJM8;Q08636;A8AUJ7;A3CK48;Q72J72;Q56403;B8CZG8;B0K8E8;B0K5J0;Q9A1Q3;Q8P2U6;Q5XE50;Q48VL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1J85;P0DA07;P0DA06;B5XJH3;A2RC97;Q896K4;Q891P1;Q834X9C97;Q896K4;Q891P1;Q834X9C98KNX9;O5LG64;A6L3M9;B844I1C8KNX9;O5LG64;A6L3M9;B844I1Q8KNX9;O5LG64;A6L3M9;B844I1C8KNX9;O5LG64;A6L3M9;B844I1C8KNX9;O5LG64;A6L3M9;B844I1C8KNX9;O5LG64;A6L3M9;B844I1
2019,100,111,000,000,000,000,000,000,000,
19047 / Edito 12207 107 1760101 / PAO1) GN=fusA PE=1SV=1;>sp Q4K530 EFG_PSEF5Elongation factor GOS=Pseudomonas fluorescens(strain A>sp Q8XJW5 VATA_CLOPE V-Q8XJW5;Q0TPW7;Q0SSI2;A7GGL4;A7FWQ7;A5I557;Q97QA8;C1CES2;B8ZK31;B5E552;B1ICC9;A0PZC6;B2UWY4;B2TP91;B1KXT6;B1IJM8;Q08636;A8AUJ7;A3CK48;Q72J72;Q56403;B8CZG8;B0K8E8;B0K5J0;Q9A1Q3;Q8P2U6;Q5XE50;Q48VL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1Jperfringens (strain ATCC 13124// JSM 756 / JCM 1290 / NCIMBRC97;Q896K4;Q891P1;Q834X96125 />sp Q8KNX9[ENO_BACFREnolase OS=Bacteroides fragilis(strain ATCC 25285 /DSM 2151 / JCM 11019 / NCTC9343) GN=eno PE=3SV=1;>sp Q5LG64[ENO_BACFN Enolase OS=Bacteroidesfragilis (strain ATCC 25285 /DSM 2151 / JCM 11019 / NCTC9343) GN=eno PE=3SV=1;>sp A6L3M9[ENO_BACVA8 Enolase OS=Bacteroides8 Facilis (strain ATCC 25285 /DSM 2151 / JCM 11019 / NCTC9343) GN=eno PE=3SV=1;>sp A6L3M9[ENO_BACVA8 Enolase OS=Bacteroidesfragilis (strain ATCC 25285 /DSM 2151 / JCM 11019 / NCTC9343) GN=eno PE=3SV=1;>sp A6L3M9[ENO_BACV8 Enolase OS=Bacteroidesfragilis (strain ATCC 25285 /DSM 2151 / JCM 11019 / NCTC9343) GN=eno PE=3SV=1;>sp A6L3M9[ENO_BACV8 Enolase OS=Bacteroides fragilis (strain ATCC 25285 /SV=1;>sp A6L3M9[ENO_BACV8 Enolase OS=Ba
Northe for the formation of the distribution of the distri
OV 1/35pl@=R500jE110_10E110 Elongation factor G OS=Pseudomonas fluorescens (strain A >splQ8XJW5jVATA_CLOPE V- Q8XJW5;Q0TPW7;Q0SSI2;A7GGL type ATP synthase alpha chain 4;A7FWQ7;A5l557;Q97QA8;C1CE OS=Clostridium perfringens S2;B8ZK31;B5E552;B1ICC9;A0PZ (strain 13 / Type A) GN=atpA C6;B2UWY4;B2TP91;B1KXT6;B1IJ PE=3 M8;Q08636;A8AUJ7;A3CK48;Q72J SV=1;>splQ0TPW7 VATA_CLO 72;Q56403;B8CZG8;B0K8E8;B0K5 P1 V-type ATP synthase alpha J0;Q9A1Q3;Q8P2U6;Q5XE50;Q48 chain OS=Clostridium VL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1J perfringens (strain ATCC 13124 /S5;P0DA07;P0DA06;B5XJH3;A2 / DSM 756 / JCM 1290 / NCIMB RC97;Q896K4;Q891P1;Q834X9 6125 / >splQ8KNX9[EN0_BACFR 46.403 Enolase OS=Bacteroides fragilis (strain YCH46) GN=eno PE=3 SV=1;>splQ5LG64 EN0_BACF SV=1;>splQ5LG64 EN0_BACF DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>splA6L3M9 EN0_BACV SV=1;>splA6L3M9 EN0_BACV 8 Enolase OS=Bacteroides rule
Litingation ration GOS=Pseudomonas fluorescens (strain AQ8XJW5;Q0TPW7;Q0SSI2;A7GGL 4;A7FWQ7;A5l557;Q97QA8;C1CEQ8XJW5;Q0TPW7;Q0SSI2;A7GGL (strain 13 / Type A) GN=atpA OS=Clostridium perfringens (strain 13 / Type A) GN=atpAC6;B2UWY4;B2TP91;B1KXT6;B1IJ PE=3M8;Q08636;A8AUJ7;A3CK48;Q72J 72;Q56403;B8CZG8;B0K8E8;B0K5 J0;Q9A1Q3;Q8P2U6;Q5XE50;Q48 VL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1J 8S5;P0DA07;P0DA06;B5XJH3;A2 RC97;Q896K4;Q891P1;Q834X9VL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1J 8S5;P0DA07;P0DA06;B5XJH3;A2 RC97;Q896K4;Q891P1;Q834X9SV=1;>sp Q8KNX9 ENO_BACFR Enolase OS=Bacteroides fragilis (strain YCH46) GN=eno PE=3 SV=1;>sp Q5LG64 ENO_BACF N Enolase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 1101 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9]ENO_BACV ASV=1;>sp A6L3M9]ENO_BACVQ8KNX9;O5LG64;A6I 3M9;B8H4111
OBEP Seduction as indicescens (strain AQ8XJW5;Q0TPW7;Q0SSI2;A7GGL 4;A7FWQ7;A5I557;Q97QA8;C1CE>sp Q8XJW5 VATA_CLOPE V- type ATP synthase alpha chain OS=Clostridium perfringens (strain 13 / Type A) GN=atpA64.872Y282K31;B5E552;B1ICC9;A0PZ C6;B2UWY4;B2TP91;B1KXT6;B1IJ 72;Q56403;B8CZG8;B0K8E8;B0K5 J0;Q9A1Q3;Q8P2U6;Q5XE50;Q48 VL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1J RC97;Q896K4;Q891P1;Q834X9V=3;>sp Q0TPW7 VATA_CLO P1 V-type ATP synthase alpha chain OS=Clostridium perfringens (strain ATCC 13124 / DSM 756 / JCM 1290 / NCIMB 6125 /46.403VL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1J RC97;Q896K4;Q891P1;Q834X9>sp Q8KNX9 ENO_BACFR Enolase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV A S Enolase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV A S Enolase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV
(Strain AQ8XJW5;Q0TPW7;Q0SSI2;A7GGL 4;A7FWQ7;A5I557;Q97QA8;C1CE S2;B8ZK31;B5E552;B1ICC9;A0PZ (6;B2UWY4;B2TP91;B1KXT6;B1IJ) M8;Q08636;A8AUJ7;A3CK48;Q72J 72;Q56403;B8CZG8;B0K8E8;B0K5 J0;Q9A1Q3;Q8P2U6;Q5XE50;Q48 VL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1J RC97;Q896K4;Q891P1;Q834X9SV=1;>sp Q0TPW7 VATA_CLO P1 V-type ATP synthase alpha chain OS=Clostridium perfringens (strain ATCC 13124 / DSM 756 / JCM 1290 / NCIMB 6125 /46.403RC97;Q896K4;Q891P1;Q834X9>sp Q8KNX9 ENO_BACFR Enolase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV A Enolase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV A Enolase OS=Bacteroides yu46.403
Q8XJW5;Q0TPW7;Q0SSI2;A7GGL 4;A7FWQ7;A5I557;Q97QA8;C1CE S2;B8ZK31;B5E552;B1ICC9;A0PZ C6;B2UWY4;B2TP91;B1KXT6;B1IJ M8;Q08636;A8AUJ7;A3CK48;Q72J 72;Q56403;B8CZG8;B0K8E8;B0K5 J0;Q9A1Q3;Q8P2U6;Q5XE50;Q48 VL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1J 8S5;P0DA07;P0DA06;B5XJH3;A2 RC97;Q896K4;Q891P1;Q834X9SV=1;>sp Q0TPW7 VATA_CLO P1 V-type ATP synthase alpha chain OS=Clostridium perfringens (strain ATCC 13124 / DSM 756 / JCM 1290 / NCIMB 6125 / sp Q8KNX9 ENO_BACFR Enolase OS=Bacteroides fragilis (strain YCH46) GN=eno PE=3 SV=1;>sp Q5LG64 ENO_BACF N Enolase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV O8KNX9:O5L G64:A6L 3M9:B8I4111 O8KNX9:O5L G64:A6L 3M9:B8I4111
4;A7FWQ7;A5I557;Q97QA8;C1CEOS=Clostridium perfringens52;B8ZK31;B5E552;B1ICC9;A0PZ(strain 13 / Type A) GN=atpAC6;B2UWY4;B2TP91;B1KXT6;B1IJPE=3M8;Q08636;A8AUJ7;A3CK48;Q72JSV=1;>sp Q0TPW7 VATA_CLO72;Q56403;B8CZG8;B0K8E8;B0K5P1 V-type ATP synthase alphaJ0;Q9A1Q3;Q8P2U6;Q5XE50;Q48Chain OS=ClostridiumVL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1Jperfringens (strain ATCC 13124/ DSM 756 / JCM 1290 / NCIMB6125 /RC97;Q896K4;Q891P1;Q834X96125 /SV=1;>sp Q8KNX9 ENO_BACFR46.403Enolase OS=Bacteroides fragilisstrain ATCC 25285 /DSM 2151 / JCM 11019 / NCTC9343) GN=eno PE=3SV=1;>sp A6L3M9 ENO_BACV8 Enolase OS=Bacteroides yu
4,A7FWQ1,A3i557,Q97QA8,CTCE 03=Clostinuum periningens S2;B8ZK31;B5E552;B1ICC9;A0PZ (strain 13 / Type A) GN=atpA C6;B2UWY4;B2TP91;B1KXT6;B1IJ PE=3 M8;Q08636;A8AUJ7;A3CK48;Q72J SV=1;>sp Q0TPW7 VATA_CLO 72;Q56403;B8CZG8;B0K8E8;B0K5 P1 V-type ATP synthase alpha J0;Q9A1Q3;Q8P2U6;Q5XE50;Q48 Chain OS=Clostridium VL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1J perfringens (strain ATCC 13124 /DSM 756 / JCM 1290 / NCIMB 6125 / RC97;Q896K4;Q891P1;Q834X9 6125 / >sp Q8KNX9 ENO_BACFR 46.403 Enolase OS=Bacteroides fragilis (strain YCH46) GN=eno PE=3 SV=1;>sp Q5LG64 ENO_BACFR N Enolase OS=Bacteroides Fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV 8 Enolase OS=Bacteroides strain 3 / TC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV 8 Enolase OS=Bacteroides vul
S2,B62K31,B3232,B11CC9,A0F2(strain 1371ype A) GN=atpAC6;B2UWY4;B2TP91;B1KXT6;B1IJPE=3M8;Q08636;A8AUJ7;A3CK48;Q72JSV=1;>sp Q0TPW7 VATA_CLO72;Q56403;B8CZG8;B0K8E8;B0K5SV=1;>sp Q0TPW7 VATA_CLOJ0;Q9A1Q3;Q8P2U6;Q5XE50;Q48P1 V-type ATP synthase alphachain OS=Clostridiumperfringens (strain ATCC 13124VL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1Jperfringens (strain ATCC 131248S5;P0DA07;P0DA06;B5XJH3;A2/ DSM 756 / JCM 1290 / NCIMBRC97;Q896K4;Q891P1;Q834X96125 />sp Q8KNX9 ENO_BACFR46.403Enolase OS=Bacteroides fragilis(strain YCH46) GN=eno PE=3SV=1;>sp Q5LG64 ENO_BACFN Enolase OS=Bacteroidesfragilis (strain ATCC 25285 /DSM 2151 / JCM 11019 / NCTC9343) GN=eno PE=3SV=1;>sp A6L3M9 ENO_BACV8 Enolase OS=Bacteroides yuSV=1;>sp A6L3M9 ENO_BACV
C6,B20W14,B2TF91,BTKX10,BTIJPE=3M8;Q08636;A8AUJ7;A3CK48;Q72JSV=1;>sp Q0TPW7 VATA_CLO72;Q56403;B8CZG8;B0K8E8;B0K5SV=1;>sp Q0TPW7 VATA_CLOJ0;Q9A1Q3;Q8P2U6;Q5XE50;Q48P1 V-type ATP synthase alphachain OS=Clostridiumperfringens (strain ATCC 13124VL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1Jperfringens (strain ATCC 131248S5;P0DA07;P0DA06;B5XJH3;A2/ DSM 756 / JCM 1290 / NCIMBRC97;Q896K4;Q891P1;Q834X96125 />sp Q8KNX9 ENO_BACFR46.403Enolase OS=Bacteroides fragilis(strain YCH46) GN=eno PE=3SV=1;>sp Q5LG64 ENO_BACFN Enolase OS=Bacteroidesfragilis (strain ATCC 25285 /DSM 2151 / JCM 11019 / NCTC9343) GN=eno PE=3SV=1;>sp A6L3M9 ENO_BACVSKNX9:O5LG64:A6L3M9:B8I4U118 Enolase OS=Bacteroides yu
Mis,Q03036,A0A037,A3CK48,Q723 SV=1,>sp Q01FW7 VATA_CLO 72;Q56403;B8CZG8;B0K8E8;B0K5 P1 V-type ATP synthase alpha J0;Q9A1Q3;Q8P2U6;Q5XE50;Q48 P1 V-type ATP synthase alpha VL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1J perfringens (strain ATCC 13124 8S5;P0DA07;P0DA06;B5XJH3;A2 / DSM 756 / JCM 1290 / NCIMB RC97;Q896K4;Q891P1;Q834X9 6125 / >sp Q8KNX9 ENO_BACFR 46.403 Enolase OS=Bacteroides fragilis (strain YCH46) GN=eno PE=3 SV=1;>sp Q5LG64 ENO_BACF N Enolase OS=Bacteroides Mis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV 8 Enolase OS=Bacteroides yu SV=1;>sp A6L3M9 ENO_BACV
72,030403,0802206,00X826,00X826,00X82 PTV-type ATP Synthase alpha chain OS=Clostridium perfringens (strain ATCC 13124 / DSM 756 / JCM 1290 / NCIMB 6125 / 855;P0DA07;P0DA06;B5XJH3;A2 RC97;Q896K4;Q891P1;Q834X9 / DSM 756 / JCM 1290 / NCIMB 6125 / >sp Q8KNX9 EN0_BACFR Enolase OS=Bacteroides fragilis (strain YCH46) GN=eno PE=3 SV=1;>sp Q5LG64 EN0_BACF N Enolase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 EN0_BACV 08KNX9:05LG64:A6L3M9:B8I4U1 8 Enolase OS=Bacteroides yu
30,09A103,06P200,03AE30,046 Chain OS=Clostinuum VL3;Q1JNS8;Q1JIX5;Q1JDX0;Q1J perfringens (strain ATCC 13124 8S5;P0DA07;P0DA06;B5XJH3;A2 / DSM 756 / JCM 1290 / NCIMB 6125 / 6125 / >sp Q8KNX9 ENO_BACFR 46.403 Enolase OS=Bacteroides fragilis (strain YCH46) GN=eno PE=3 SV=1;>sp Q5LG64 ENO_BACF N Enolase OS=Bacteroides Fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV SV=1;>sp A6L3M9 ENO_BACV 8 Enolase OS=Bacteroides vu
VL3,QTJNS6,QTJNS6,QTJNS6,QTJNS6,QTJDA0,QTJ permingens (strain ATCC T3124 8S5;P0DA07;P0DA06;B5XJH3;A2 / DSM 756 / JCM 1290 / NCIMB 6125 / 6125 / >sp Q8KNX9 ENO_BACFR 46.403 Enolase OS=Bacteroides fragilis (strain YCH46) GN=eno PE=3 SV=1;>sp Q5LG64 ENO_BACF N Enolase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV SV=1;>sp A6L3M9 ENO_BACV 8 Enolase OS=Bacteroides vu
855,P0DA07;P0DA06;B5XJH3;A2 7 DSM 7567 JCM 12907 NCIMB RC97;Q896K4;Q891P1;Q834X9 6125 / >sp Q8KNX9 ENO_BACFR 46.403 Enolase OS=Bacteroides fragilis (strain YCH46) GN=eno PE=3 SV=1;>sp Q5LG64 ENO_BACF N Enolase OS=Bacteroides N Enolase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV 8 Enolase OS=Bacteroides vu
NC97,0090K4,0091F1,0034X9 01257 >sp Q8KNX9 ENO_BACFR 46.403 Enolase OS=Bacteroides fragilis (strain YCH46) GN=eno PE=3 SV=1;>sp Q5LG64 ENO_BACF N Enolase OS=Bacteroides Fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV 8 Enolase OS=Bacteroides vu
SpigorinA9jENO_BACFR 46.403 Enolase OS=Bacteroides fragilis (strain YCH46) GN=eno PE=3 SV=1;>spiQ5LG64 ENO_BACF N Enolase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>spiA6L3M9/ENO_BACV 8 Enolase OS=Bacteroides vu
(strain YCH46) GN=eno PE=3 SV=1;>sp Q5LG64 ENO_BACF N Enolase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV 8 Enolase OS=Bacteroides vu
SV=1;>sp Q5LG64 ENO_BACF N Enolase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV 8 Enolase OS=Bacteroides vu
N Enolase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV 8 Enolase OS=Bacteroides vu
ragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV 8 Enolase OS=Bacteroides vu
DSM 2151 / JCM 11019 / NCTC 9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV 8 Enolase OS=Bacteroides vu
08KNX9:05LG64:A6L3M9:B8I4U1 8 Epolase OS=Bacteroides vu
9343) GN=eno PE=3 SV=1;>sp A6L3M9 ENO_BACV 08KNX9:05LG64:A6L3M9:B8l4Ll1 8 Epolase OS=Bacteroides vu
08KNX9:05LG64:A6L3M9:B8l4Ll1 8 Epolase OS=Bacteroides vu
>SP Q8ABB0 HIS1_BACTNATP 31.333
US=Dacierolides
29140 / DOIVI 20/9 / NOTO 10592 / E50 / \/DI 5492\
10302 / E30 / VPI-3402)
>splQoAD33 1230_DACTIN 75.203
ruidiive yiucusaliilile-o-
priospirale dealitilitase-like
OS-Bactaroidas
thetaiotaomicron (strain ATCC
10582 / E50 / \/DI_5/82\
084B53 GN_RT_0258 PE_3 SV_1
Schloso Shield 2001 E-50V-1
IsoleucinetRNA linase
OS-Bacteroides
thetaiotaomicron (strain ATCC
29148 / DSM 2079 / NCTC
10582 / E50 / \/PI-5482\
Q8A9K9·Q64U07·Q5I CU8 GN=ileS PE=3 SV=1
sni0849.10111XAR_BACTN 53.962
Altronate oxidoreductase
OS-Ractaroidas
thetaiotaomicron (strain ATCC
Q8A9J0:A6L4U5 29148 / DSM 2079 / NCTC

	10582 / E50 / VPI-5482)	
		70 400
	>spiQ8A9B8 HTPG_BACTN	78.430
	OS-Rectoroides	
	thetaiotaomicron (strain ATCC	
	10582 / E50 / \/PL5482)	
	GN=htpGPE=3	
	SV=1:>splQ5I CH4IHTPG BAC	
	FN Chaperone protein HtpG	
Q8A9B8:Q5LCH4:P0CJ84:E1WNR	OS=Bacteroides fragilis (strain	
6	ATCC 25285 / DSM 2151 /	
	>sp Q8A4A2 RPOA_BACTN	37.448
	DNA-directed RNA polymerase	
	subunit alpha OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
	GN=rpoA PE=3	
	SV=1;>sp Q64NN5 RPOA_BAC	
	FR DNA-directed RNA	
Q8A4A2;Q64NN5;Q5L8D6;A6KYH	polymerase subunit alpha	
0	US=Bacteroides fr	40.070
	>splQ8A468 RL7_BACTN 50S	12.679
	ribosomai protein L7/L12	
	thetaioteomicron (strain ATCC	
	10582 / E50 / \/PL5482)	
	GN=roll PE=3	
	SV=1 >splQ64N.I6IRL7 BACER	
	50S ribosomal protein 1 7/1 12	
Q8A468:Q64NJ6:Q5L896:A6KYK4:	OS=Bacteroides fragilis (strain	
Q11QA4;Q15YB2;A6LE82	YCH46) GN=rpl	
	>sp Q8A1D5 PYRE_BACTN	23.453
	Orotate	
	phosphoribosyltransferase	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
	SV=1;>SP Q04217 P1KE_BACF	
	nonulale	
	OS-Bacteroides fracilis (etrain V	
		55 870
	Bifunctional purine biosynthesis	55.015
	protein PurH OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q8A155	GN=purH PE=3 SV=1	
	>sp Q88YE7 GLMS_LACPL	65.466
	Glutaminefructose-6-	
Q88YE7	phosphate aminotransferase	

	lie en erizio el OC de estate e sillus	
	[isomerizing] OS=Lactobacillus	
	plantarum (strain ATCC BAA-	
	793 / NCIMB 8826 / WCFS1)	
	GN=glmS PE=3 SV=2	
	>splQ64U78IGI YA BACER	46 857
	Serine	101001
	bydrowymothyltropoforooo	
	nyuroxymeuryiransierase	
	OS=Bacteroides fragilis (strain	
	YCH46) GN=glyA PE=3	
	SV=1;>sp Q5LD58 GLYA_BAC	
	FN Serine	
	hydroxymethyltransferase	
	OS-Bacteroides fragilis (strain	
	ATCC 25285 / DSM 2151 / ICM	
	A100 25265 / DSIVI 2151 / JCIVI	
Q64U78;Q5LD58;Q8A957;A6L5K3;	11019 / NCTC 9343) GN=giyA	
Q/MXW0;B2RGR2	PE=3	
	>sp Q64P83 TPIS_BACFR	26.593
	Triosephosphate isomerase	
	OS=Bacteroides fragilis (strain	
	YCH46) GN=tpiA PF=3	
	SV=1 SDIO5 923 TPIS BACE	
	N Triosophosphoto icomoroso	
	OS=Bacteroides fragilis (strain	
	ATCC 25285 / DSM 2151 / JCM	
	11019 / NCTC 9343) GN=tpiA	
Q64P83;Q5L923;A6KXL2	PE=3 SV=1	
	>splQ64P30 EFTS BACFR	36.014
	Elongation factor Ts	
	OS-Bacteroides fragilis (strain	
	VCH46) CN-tef DE-2	
	SV=1,>SPIQSLOVVOIEF15_DAC	
	FIN Elongation factor 1s	
	OS=Bacteroides fragilis (strain	
	ATCC 25285 / DSM 2151 / JCM	
	11019 / NCTC 9343) GN=tsf	
Q64P30:Q5L8W8:A6LHM8	PE=3 SV=1	
	>splQ5L9Q6IDAPDH_BACEN	32 327
	Meso-diaminonimelate D-	02:02:
	dobudrogonaso OS-Postoroidas	
	Tragilis (strain ATCC 25285 /	
	DSM 2151 / JCM 11019 / NCTC	
Q5L9Q6	9343) GN=ddh PE=1 SV=1	
	>sp Q1WU83 EFTU_LACS1	43.273
	Elongation factor Tu	
	OS=Lactobacillus salivarius	
	(strain LICC118) GN-tuf PE-3	
01///183		
		47.075
	>spiQU3SL5 ENU_LACBA	41.615
	Enolase OS=Lactobacillus	
	brevis (strain ATCC 367 / JCM	
Q03SL5	1170) GN=eno PE=3 SV=1	
	>sp P24016 OMPA_CITFR	25.663
	Outer membrane protein A	
	(Fragment) OS=Citrobacter	
P24016	freundii GN-omnA DE-2 SV-1	
		00.005
P. (a a a a	>SPIP12267FM3_KLEPN	20.695
P12267	Fimbrial subunit type 3	

	OS=Klebsiella pneumoniae	
	GN=mrkA PE=3 SV=1	
	>sp P02938 LPP_SERMA Major	8.2391
	outer membrane lipoprotein	
	OS=Serratia marcescens	
	GN=lpp PE=3	
	SV=1;>sp Q8XFI1 LPP1_SALT	
	Major outer membrane	
P02938;Q8XFI1;Q7CQN4;Q5PH64	lipoprotein 1 OS=Salmonella	
;P69780;P69778;P69777;P69776;	typni GN=ipp1 PE=3	
	SV=1,>SP Q7CQN4 LPP1_SAL	
0,Q00A23,F02939,Q3FN03,Q02FF	lipoprotoin 1 OS-Solmono	
9		66 8/1
	Chaperone protein Dnak	00.041
	OS=Clostridium botulinum	
	(strain 657 / Type Ba4)	
	GN=dnaK PE=3	
	SV=1;>sp C1FVU0 DNAK CLO	
	BJ Chaperone protein DnaK	
	OS=Clostridium botulinum	
C3L3G7;C1FVU0;B1KZN7;B1ILM3;	(strain Kyoto / Type A2)	
A7GHH6;A7FXL5;A5I640;B9E041;	GN=dnaK PE=3	
A5N6M2;Q0TNS7;Q0SRE3;P2682	SV=1;>sp B1KZN7 DNAK_CLO	
3;Q892R0	BM Chaperone	
	>sp A6LTP1 SYD_CLOB8	68.01
	AspartatetRNA ligase	
	OS=Clostridium beijerinckii	
	(strain ATCC 51743 / NCIMB	
	8052) GN=asp5 PE=3	
	SV=1,>SP B2V351 STD_CLOBA	
	AspanaleIRNA ligase	
	(strain Alaska E43 / Type E3)	
	GN=aspS PE=3	
A6LTP1:B2V351:B2TN05	SV=1:>splB2TN05ISYD C	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$>$ sp A6L9S2 SYT_PARD8	74,917
	ThreoninetRNA ligase	
	OS=Parabacteroides distasonis	
	(strain ATCC 8503 / DSM 20701	
	/ CIP 104284 / JCM 5825 /	
	NCTC 11152) GN=thrS PE=3	
A6L9S2	SV=1	
	>sp Q9I5Z0 METK_PSEAE S-	42.709
	adenosylmethionine synthase	
	US=Pseudomonas aeruginosa	
	22044 / UIF 104110 / JUNI 14847 / LMC 12228 / 10 / DDS	
	19047 / LIVIG 12220 / IC / PRO 101 / PAO1) GN-matk PE-2	
	SV=1:>spl002TI 9IMETK PSF	
Q9I5Z0:Q02TL9:B7V4D3·A6UZ09·	AB S-adenosylmethionine	
C1DKE3	synthase OS=Pseudomonas ae	
Q9HVN5;Q889C2;Q88Q71:Q9JYQ	>sp Q9HVN5 CLPB_PSEAE	95.004
8;Q9JTP9;Q7NWN7;Q7V2A3;Q82	Chaperone protein ClpB	
SD8;Q9CB26;Q73T66;P9WPD1;P9	OS=Pseudomonas aeruginosa	
WPD0;P63287;Q73IE4;Q9RA63;Q	(strain ATCC 15692 / DSM	

72IK9;Q8DEV2;Q7MNK1;Q8EBE6; Q9A9T4;Q9PGC1;Q8PHQ4;Q8P6A 0;Q87AX8;Q8XZR0;Q7U637;Q7VB L0;Q7WHB6;Q7W9E6;Q7VYV6;Q7 V8B1;Q929G7;Q8Y570;Q81GM5;Q 71XF9;G2K265;Q9CFF3;Q88VX7; O68185;Q98G96;Q92MK7;Q831Y7 ;Q99VB5;Q8NXE7;Q8CPT5;Q7A6 G6;Q6GIB2;Q6GAV1;Q5HQI5;Q5H HB0;Q7CU92;Q8KA87;Q8EW28;P 47597;P75247;Q7NAZ3;Q9S5Z2;Q 9CI09;P35594;Q8EU05;Q8CQ88;Q 5HRM8;Q99W78;Q8NXY8;Q7A797 ;Q6GJE4;Q6GBW3;Q2YSD6;Q2G0 P5;Q2FJB5;P0C281;Q49V34;Q4L3 I4;P9WPC9;P9WPC8;P24428;P0A 523;A0R574;Q6NF05;Q9RVI3;Q8F M94;P53532;Q7X2S8;Q6MIV0;Q9Z 6E4;Q92JK8;Q4UN57;Q1RGR1;Q7 3K92;Q8F509;Q72QU2;Q97KG0;Q 82EU9;Q8DJ40;Q7NFE9;P74361; O87444;Q8YJ91;Q7CEG6;P53533; O83110;Q89UL2;Q6N1H2;Q8YUL9 ;Q7UM33;Q8G4X4;P74459;O3167 3;P37571	22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=clpB PE=3 SV=1	
Q8ZKP7;Q8Z2Y2;Q5PJE0;Q57HD 6;B5RF90;B5QX14;B5FPS9;B5F0		26.916
R2;B5BJJ8;B4TPU2;B4TCL7;B4T0 S7;A9MZG8;Q7X222;Q3YV59;Q32 A84;Q31U71;Q0SZA9;P0A861;B7L VC6;B2TVR1;Q1R3Z9;Q0TAE5;P0 A860;P0A859;P0A858;B7NU88;B7 NFL6;B7MI51;B7M6X0;B6I4R2;B5 YZ57;B1XB85;B1LNM2;B1IVG0;A8 A724;A7ZUD3;A1AI95;Q8ZJK9;Q6 6GA1;Q1CD40;Q1C2A4;B2JZB1;B 1JQ90;A9R6B0;A8GLA8;A7FCW8; A4TSA1;A1JHZ7;Q6CZ81;Q2NQX 4;B2VF53;B4F161	>sp Q8ZKP7 TPIS_SALTY Triosephosphate isomerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=tpiA PE=3 SV=1;>sp Q8Z2Y2 TPIS_SALTI Triosephosphate isomerase OS=Salmonella typhi GN=tpiA PE=3 SV=1;>sp Q5PJE0 TPIS_SALP A Triosephosphate is	
	>sp Q8XJ28 SYD_CLOPE AspartatetRNA ligase OS=Clostridium perfringens (strain 13 / Type A) GN=aspS PE=3 SV=1;>sp Q0TP28 SYD_CLOP 1 AspartatetRNA ligase OS=Clostridium perfringens (strain ATCC 13124 / DSM 756 /	68.025
Q8XJ28;Q0TP28;Q0SRP8	JCM 1290 / NCIMB 6125 / NCTC 8237 / Type A)	
	>sp Q8AA75 PYRG_BACTN CTP synthase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	59.864
Q8AA75	GN=pyrG PE=3 SV=1	

	>sp Q8A9E3 SYD_BACTN	66.563
	AspartatetRNA ligase	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPL-5482)	
	$CN_{con} = DE_{con}^{-2}$	
	SV=1;>sp A6LBU6 SYD_PARD	
	8 AspartatetRNA ligase	
Q8A9E3;A6LBU6;A6L585;Q64TQ1;	OS=Parabacteroides distasonis	
Q5LCK2;Q7MXM0;B2RHE0	(strain ATCC 8503 / DSM 207	
	>splQ8A469IRPOB_BACTN	142.49
	DNA-directed RNA polymerase	
	subunit both OS -Bactoroidas	
	theteisteenisteen (strain ATCC	
	thetalotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
	GN=rpoB PE=3	
	SV=1;>sp Q64NJ7 RPOB BAC	
	FR DNA-directed RNA	
	polymerase subunit beta	
	OS-Bactoroidos frag	
Q0A409,Q04NJ7,Q3L097,Q11QA3		20.200
	>splQ8A1E9IAOTC_BACTN N-	36.382
	acetylornithine	
	carbamoyltransferase	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
O8A1E9	GN=argEPE=1 SV=1	
	ScolO8A0B51KD1112 BACTN 4-	33.05
	dooxy L throa 5 hoxasulasa	00.00
	ueoxy-L-inteo-J-inexosulose-	
	uronale keloi-isomerase z	
	OS=Bacteroides	
	OS=Bacteroides thetaiotaomicron (strain ATCC	
	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC	
	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482)	
Q8A0B5	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2	
Q8A0B5	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >splQ81VE1ICH60_BACAN 60	57,431
Q8A0B5	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus	57.431
Q8A0B5	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=grol_PE=3	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7:C3PA)(1:C3) 507:C1EUP1:P0.14U	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1::sp Q72EP0 CH60_PAC	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V QG8;A7GKG0;Q5L3E6;Q07201;C5	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain ATCC 10987 / NRS 248)	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V QG8;A7GKG0;Q5L3E6;Q07201;C5 D4F4;A4IJV3;P26209;Q8VV84;Q9	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain ATCC 10987 / NRS 248) GN=groL PE=3	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V QG8;A7GKG0;Q5L3E6;Q07201;C5 D4F4;A4IJV3;P26209;Q8VV84;Q9 AGE6;Q929V0;Q71XU6;C1KX21;B	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain ATCC 10987 / NRS 248) GN=groL PE=3 SV=2;>sp Q6HPC7 CH60_BAC	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V QG8;A7GKG0;Q5L3E6;Q07201;C5 D4F4;A4IJV3;P26209;Q8VV84;Q9 AGE6;Q929V0;Q71XU6;C1KX21;B 8DH59;A0AKH5;Q65MZ8;A8FAG3;	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain ATCC 10987 / NRS 248) GN=groL PE=3 SV=2;>sp Q6HPC7 CH60_BAC HK 60 kDa chaperonin	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V QG8;A7GKG0;Q5L3E6;Q07201;C5 D4F4;A4IJV3;P26209;Q8VV84;Q9 AGE6;Q929V0;Q71XU6;C1KX21;B 8DH59;A0AKH5;Q65MZ8;A8FAG3; A7Z207;P28598:Q0C0T0	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain ATCC 10987 / NRS 248) GN=groL PE=3 SV=2;>sp Q6HPC7 CH60_BAC HK 60 kDa chaperonin OS=Bacillus thuringiensis sub	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V QG8;A7GKG0;Q5L3E6;Q07201;C5 D4F4;A4IJV3;P26209;Q8VV84;Q9 AGE6;Q929V0;Q71XU6;C1KX21;B 8DH59;A0AKH5;Q65MZ8;A8FAG3; A7Z207;P28598;Q0C0T0	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain ATCC 10987 / NRS 248) GN=groL PE=3 SV=2;>sp Q6HPC7 CH60_BAC HK 60 kDa chaperonin OS=Bacillus thuringiensis sub >sp Q81K75 G6PL_BACAN	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V QG8;A7GKG0;Q5L3E6;Q07201;C5 D4F4;A4IJV3;P26209;Q8VV84;Q9 AGE6;Q929V0;Q71XU6;C1KX21;B 8DH59;A0AKH5;Q65MZ8;A8FAG3; A7Z207;P28598;Q0C0T0	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain ATCC 10987 / NRS 248) GN=groL PE=3 SV=2;>sp Q6HPC7 CH60_BAC HK 60 kDa chaperonin OS=Bacillus thuringiensis sub >sp Q81K75 G6PI_BACAN Clucosa-6-phosebata incomprese	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V QG8;A7GKG0;Q5L3E6;Q07201;C5 D4F4;A4IJV3;P26209;Q8VV84;Q9 AGE6;Q929V0;Q71XU6;C1KX21;B 8DH59;A0AKH5;Q65MZ8;A8FAG3; A7Z207;P28598;Q0C0T0	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain ATCC 10987 / NRS 248) GN=groL PE=3 SV=2;>sp Q6HPC7 CH60_BAC HK 60 kDa chaperonin OS=Bacillus thuringiensis sub >sp Q81K75 G6PI_BACAN Glucose-6-phosphate isomerase	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V QG8;A7GKG0;Q5L3E6;Q07201;C5 D4F4;A4IJV3;P26209;Q8VV84;Q9 AGE6;Q929V0;Q71XU6;C1KX21;B 8DH59;A0AKH5;Q65MZ8;A8FAG3; A7Z207;P28598;Q0C0T0	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain ATCC 10987 / NRS 248) GN=groL PE=3 SV=2;>sp Q6HPC7 CH60_BAC HK 60 kDa chaperonin OS=Bacillus thuringiensis sub >sp Q81K75 G6PI_BACAN Glucose-6-phosphate isomerase OS=Bacillus anthracis GN=pgi	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V QG8;A7GKG0;Q5L3E6;Q07201;C5 D4F4;A4IJV3;P26209;Q8VV84;Q9 AGE6;Q929V0;Q71XU6;C1KX21;B 8DH59;A0AKH5;Q65MZ8;A8FAG3; A7Z207;P28598;Q0C0T0 Q81K75;Q816G0;Q72YI4;Q6HC08; Q632G4;B7JDF6;B7IMR7;B7HTY6;	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain ATCC 10987 / NRS 248) GN=groL PE=3 SV=2;>sp Q6HPC7 CH60_BAC HK 60 kDa chaperonin OS=Bacillus thuringiensis sub >sp Q81K75 G6PI_BACAN Glucose-6-phosphate isomerase OS=Bacillus anthracis GN=pgi PE=1	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V QG8;A7GKG0;Q5L3E6;Q07201;C5 D4F4;A4IJV3;P26209;Q8VV84;Q9 AGE6;Q929V0;Q71XU6;C1KX21;B 8DH59;A0AKH5;Q65MZ8;A8FAG3; A7Z207;P28598;Q0C0T0 Q81K75;Q816G0;Q72YI4;Q6HC08; Q632G4;B7JDF6;B7IMR7;B7HTY6; B7HBD4;A6TN07;A0RK94;P13376;	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain ATCC 10987 / NRS 248) GN=groL PE=3 SV=2;>sp Q6HPC7 CH60_BAC HK 60 kDa chaperonin OS=Bacillus thuringiensis sub >sp Q81K75 G6PI_BACAN Glucose-6-phosphate isomerase OS=Bacillus anthracis GN=pgi PE=1 SV=1;>sp Q816G0 G6PI_BACC	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V QG8;A7GKG0;Q5L3E6;Q07201;C5 D4F4;A4IJV3;P26209;Q8VV84;Q9 AGE6;Q929V0;Q71XU6;C1KX21;B 8DH59;A0AKH5;Q65MZ8;A8FAG3; A7Z207;P28598;Q0C0T0 Q81K75;Q816G0;Q72YI4;Q6HC08; Q632G4;B7JDF6;B7IMR7;B7HTY6; B7HBD4;A6TN07;A0RK94;P13376; A6L8C4;Q5KVS7;P13375;A4ISB8;	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain ATCC 10987 / NRS 248) GN=groL PE=3 SV=2;>sp Q6HPC7 CH60_BAC HK 60 kDa chaperonin OS=Bacillus thuringiensis sub >sp Q81K75 G6PI_BACAN Glucose-6-phosphate isomerase OS=Bacillus anthracis GN=pgi PE=1 SV=1;>sp Q816G0 G6PI_BACC R Glucose-6-phosphate	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V QG8;A7GKG0;Q5L3E6;Q07201;C5 D4F4;A4IJV3;P26209;Q8VV84;Q9 AGE6;Q929V0;Q71XU6;C1KX21;B 8DH59;A0AKH5;Q65MZ8;A8FAG3; A7Z207;P28598;Q0C0T0 Q81K75;Q816G0;Q72YI4;Q6HC08; Q632G4;B7JDF6;B7IMR7;B7HTY6; B7HBD4;A6TN07;A0RK94;P13376; A6L8C4;Q5KVS7;P13375;A4ISB8; Q180C9;A9VMW5;A7GUA6;Q8R92	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain ATCC 10987 / NRS 248) GN=groL PE=3 SV=2;>sp Q6HPC7 CH60_BAC HK 60 kDa chaperonin OS=Bacillus thuringiensis sub >sp Q81K75 G6PI_BACAN Glucose-6-phosphate isomerase OS=Bacillus anthracis GN=pgi PE=1 SV=1;>sp Q816G0 G6PI_BACC R Glucose-6-phosphate isomerase OS=Bacillus cereus	57.431
Q8A0B5 Q81VE1;Q73ER9;Q6HPC7;Q63GV 7;C3PAV1;C3L507;C1EUB1;B9J1H 2;B7JM60;B7HS05;A0R8W4;Q814 B0;B7H4Q7;Q4MPR6;B7IUT0;A9V QG8;A7GKG0;Q5L3E6;Q07201;C5 D4F4;A4IJV3;P26209;Q8VV84;Q9 AGE6;Q929V0;Q71XU6;C1KX21;B 8DH59;A0AKH5;Q65MZ8;A8FAG3; A7Z207;P28598;Q0C0T0 Q81K75;Q816G0;Q72YI4;Q6HC08; Q632G4;B7JDF6;B7IMR7;B7HTY6; B7HBD4;A6TN07;A0RK94;P13376; A6L8C4;Q5KVS7;P13375;A4ISB8; Q180C9;A9VMW5;A7GUA6;Q8R92 4:Q5WDX0	OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=kdul2 PE=3 SV=2 >sp Q81VE1 CH60_BACAN 60 kDa chaperonin OS=Bacillus anthracis GN=groL PE=3 SV=1;>sp Q73ER9 CH60_BAC C1 60 kDa chaperonin OS=Bacillus cereus (strain ATCC 10987 / NRS 248) GN=groL PE=3 SV=2;>sp Q6HPC7 CH60_BAC HK 60 kDa chaperonin OS=Bacillus thuringiensis sub >sp Q81K75 G6PI_BACAN Glucose-6-phosphate isomerase OS=Bacillus anthracis GN=pgi PE=1 SV=1;>sp Q816G0 G6PI_BACC R Glucose-6-phosphate isomerase OS=Bacillus cereus (strain ATCC 14579 / DSM 31 /	57.431

	JCM 2152 / NBRC 15305 / NCIMB 9373 / NRRL B-3711) GN=pgi PE=3 SV	
	>sp Q7CQ01 CLPB_SALTY	95.436
	Chaperone protein ClpB	
	OS=Salmonella typhimurium	
	(strain LT2 / SGSC1412 / ATCC	
	700720) GN=clpB PE=3	
	SV=1;>sp Q7AMH5 CLPB_SAL	
	TI Chaperone protein ClpB	
070004 074145	OS=Salmonella typhi GN=clpB	
Q7CQ01;Q7AMH5		05.040
	SPIQ74X11 CLPB_YERPE	95.643
	OS-Versinia pestis CN-clpB	
	SV=2:>splQ9CKC0ICLPB_PAS	
	MU Chaperone protein ClpB	
	OS=Pasteurella multocida	
	(strain Pm70) GN=clpB PE=3	
Q74X11;Q9CKC0;P44403;Q6LMY0	SV=1;>sp P44403 CLPB_HAEI	
;Q7VNH1;Q83F55;Q9KU18;Q87S6	N Chaperone protein ClpB	
3	OS=Haemophilus influenzae (
	>sp Q71WX1 ENO_LISMF	46.486
	Enolase OS=Listeria	
	(atrain E2265) CN-and DE-2	
	SV_{-1}	
	Enclase OS=Listeria innocua	
	serovar 6a (strain ATCC BAA-	
	680 / CLIP 11262) GN=eno	
	PE=3	
Q71WX1;P64075;P64074;C1KY94;	SV=1;>sp P64074 ENO_LISMO	
B8DDA1;A0ALD9	Enolase OS=Listeria mono	
	>sp Q65W89 EFG_MANSM	77.226
	Elongation factor G	
	OS=Mannheimia	
065W/89	NIDELODE) GINEIUSA PEES	
Q001100	>splQ64XP2INAGB_BACER	29 895
	Glucosamine-6-phosphate	_0.000
	deaminase OS=Bacteroides	
	fragilis (strain YCH46) GN=nagB	
	PE=3	
	SV=1;>sp Q5LGU0 NAGB_BAC	
	FN Glucosamine-6-phosphate	
	deaminase US=Bacteroides	
	Iragilis (strain ATCC 25285 /	
	9343) GN=nagR	
,	>splQ64U74IPYRB_BACFR	35,577
	Aspartate carbamovltransferase	00.077
	OS=Bacteroides fragilis (strain	
	YCH46) GN=pyrB PE=3	
Q64U74;Q5LD54;A6L5J9;Q8A9S3;	SV=1;>sp Q5LD54 PYRB_BAC	
Q7MX58	FN Aspartate	

	carbamoyltransferase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=pyrB PE=3 S	
	>sp Q5F541 CH60_NEIG1 60 kDa chaperonin OS=Neisseria	57.35
	gonorrhoeae (strain ATCC	
	PE=3	
	SV=1;>sp P57006 CH60_NEIM	
	OS=Neisseria meningitidis	
Q5F541;P57006;P48215;P42385;P	serogroup A / serotype 4A	
Q2KXZ3;A9I685;C5CPP8	SV=1;>sp P48215 CH60_N	
	>sp Q03YI2 EFTU_LEUMM	43.371
	OS=Leuconostoc	
	mesenteroides subsp.	
	8293 / NCDO 523) GN=tuf PE=3	
	SV=1;>sp B1MY04 EFTU_LEU	
	OS=Leuconostoc citreum (strain	
Q03YI2;B1MY04	KM20) GN=tuf PE=3 SV=1	57.044
	kDa chaperonin	57.044
	OS=Actinobacillus	
	PE=3	
	SV=3;>sp B3H1P4 CH60_ACTP	
	7 60 kDa chaperonin OS=Actinobacillus	
	pleuropneumoniae serotype 7	
P94166:B3H1P4:B0BPV1:A3N120:	(strain AP76) GN=grol PE=3 SV=1:>splB0BPV1/CH60 ACTP	
P31294	J 60 kDa chaperonin OS=Ac	0.5.50.4
	>sp P63286 CLPB_ECOL6 Chaperone protein ClpB	95.584
	OS=Escherichia coli O6:H1	
	(strain CF1073/ATCC 700928/ UPEC) GN=clpB PE=3	
	SV=1;>sp P63285 CLPB_ECO5	
	7 Chaperone protein CIPB OS=Escherichia coli O157:H7	
	GN=clpB PE=3	
Po3286;Po3285;Po3284;Q/UBW5; Q7N788	Sv=1;>spjP63284jCLPB_ECOL	
	>sp P56512 LDH1_LACPL L-	34.205
	iactate denydrogenase 1 OS=Lactobacillus plantarum	
	(strain ATCC BAA-793 / NCIMB	
	8826 / WCFS1) GN=Idh1 PE=3 SV=2;>splP565111LDH LACPE	
P56512;P56511	L-lactate dehydrogenase	

	OS=Lactobacillus pentosus GN=ldh PE=1 SV=1	
	>spIP0CJ83IFTN BACFR	18.064
	Bacterial non-heme ferritin	10.001
	OS-Bacteroides fragilis (strain	
	SV=1;>splE100550 F110_BACF	
	6 Bacterial non-heme ferritin	
	OS=Bacteroides fragilis (strain	
P0CJ83;E1WS50	638R) GN=ftnA PE=2 SV=1	
	>sp P0A9Q8 ADHE_ECO57	96.126
	Aldehvde-alcohol	
	dehydrogenase OS=Escherichia	
	coli O157·H7 GN=adhE PE=3	
	SV_{-2}	
	U Aldebyde elected	
	LI Aldenyde-alconol	
	COII (Strain K12) GN=adhE PE=1	
P0A9Q8;P0A9Q7	SV=2	
	>sp P09146 OMPA_KLEAE	37.575
	Outer membrane protein A	
	OS=Klebsiella aerogenes	
P09146	GN=ompA PE=3 SV=1	
		128.04
	Pyruvato flavodovin	120.04
	ryidaraduataaa QC Klahaialla	
Dagaga	pneumoniae GN=nitJ PE=3	
P03833	SV=2	
	>sp P00343 LDH_LACCA L-	35.53
	lactate dehydrogenase	
	OS=Lactobacillus casei GN=ldh	
P00343;Q01462;P04034	PE=1 SV=3	
. ,	>splO86428IILVE PSEAE	34.084
	Branched-chain-amino-acid	
	aminotransferase	
	OS-Pseudomonas aeruginosa	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=ilvE PE=1	
O86428	SV=2	
	>sp O09460 PCKA_ANASU	58.642
	Phosphoenolpyruvate	
	carboxykinase (ATP)	
	OS=Anaerobiospirillum	
	succiniciproducens GN-nekA	
000460		
009400		50.050
	>SPIC4ZBL1 PCKA_AGARV	59.052
	Phosphoenolpyruvate	
	carboxykinase (ATP)	
	OS=Agathobacter rectalis (strain	
	ATCC 33656 / DSM 3377 / JCM	
	17463 / KCTC 5835 / VPI 0990)	
C47BI 1	GN=pckA PF=3 SV=1	
		77 /12
	Polyribonuclootido	11.412
	nucleotidvitransterase	

	OS=Clostridium botulinum	
	(strain 657 / Type Ba4) GN=pnp	
	SV=1;>splC1FS53 PNP_CLOBJ	
	Polyribonucleotide	
	nucleotidyltransferase	
	OS=Clostridium botulinum	
	(strain Kyoto / Type A2)	
	GN=pnp PE=3 SV	
	>sp B7NS00 LAMB_ECO7I	49.928
	Maltoporin OS=Escherichia coli	
	O7:K1 (strain IAI39 / ExPEC)	
	GN=lamB PE=3	
B7NS00;B1LPK1;Q83IP5;Q3YUU9;	SV=1;>sp B1LPK1 LAMB_ECO	
Q0SXQ2;Q8CVI4;Q1R3Q0;Q0TA2	SM Maltoporin OS=Escherichia	
5;P02943;C5A130;B7UPJ7;B7NFY	coli (strain SMS-3-5 / SECEC)	
0;B7N2P4;B7MJ27;B7M7U8;B7LA	GN=lamB PE=3	
Y3;B6I5Q0;B1XC35;B1IUL5;A8A7	SV=1;>sp Q83IP5 LAMB_SHIFL	
D6;A7ZUQ8;A1AIL4;Q8X5W7;B5Z	Maltoporin OS=Shigella flexneri	
177;B7LL09	GN=lam	
	>sp B7NDU8 EFG_ECOLU	77.638
	Elongation factor G	
	OS=Escherichia coli	
B7NDU8;Q83JC3;Q3YWT2;Q32B2	O17:K52:H18 (strain UMN026 /	
6;Q31VU9;Q0SZX7;B7LS46;B2U2	ExPEC) GN=fusA PE=3	
U7;Q1R5U3;Q0TCB9;P0A6N0;P0A	SV=1;>sp Q83JC3 EFG_SHIFL	
6M9;P0A6M8;C4ZUJ5;B7UK50;B7	Elongation factor G OS=Shigella	
NLP5;B7N0X6;B7MCV5;B7M1P1;B	flexneri GN=fusA PE=3	
7L4L1;B6l240;B5YTP7;B1X6J0;B1	SV=3;>sp Q3YWT2 EFG_SHIS	
LHE0;B1IPV9;A8A5E7;A7ZSL5;A1	S Elongation factor G	
AGM7	OS=Shigella sonnei (
	>sp B5Y242 DNAK_KLEP3	69.149
	Chaperone protein DnaK	
	OS=Klebsiella pneumoniae	
	(strain 342) GN=dnaK PE=3	
	SV=1;>sp A6T4F4 DNAK_KLEP	
B5Y242;A6T4F4;Q8Z9R1;Q5PDJ5;	7 Chaperone protein DnaK	
Q57TP3;Q56073;C0Q4F3;B5RF08;	OS=Klebsiella pneumoniae	
B5R5I2;B5FHA6;B5F6Y8;B5BLH8;	subsp. pneumoniae (strain	
B4TVZ5;B4TIB4;B4T6D6;A9MXI2;	ATCC 700721 / MGH 78578)	
A9MR77;A7MIK5;Q2NVZ1;Q1LST3	GN=dnaK PE=3	
;C4K3l6	SV=1;>sp Q8Z9R1 DNAK_	
	>sp B5Y1K1 EFTS_KLEP3	30.45
	Elongation factor Ts	
	OS=Klebsiella pneumoniae	
	(strain 342) GN=tsf PE=3	
	SV=1;>sp A6T4X2 EFTS_KLEP	
	7 Elongation factor Ts	
	OS=Klebsiella pneumoniae	
	subsp. pneumoniae (strain	
	ATCC 700721 / MGH 78578)	
B5Y1K1;A6T4X2	GN=tsf PE=3 SV=1	
	SCALESHIDOLOCKA ACTO7	59.426
	>spidsi i delle citta_ACTE i	
	Phosphoenolpyruvate	
	Phosphoenolpyruvate carboxykinase (ATP)	
B3H1D9;B0BP80;A3N0G0;B8F4W	Phosphoenolpyruvate carboxykinase (ATP) OS=Actinobacillus	

	(strain AP76) GN=pckA PE=3	
	SV=1:>splB0BP80IPCKA_ACT	
	carboxykinase (ATP)	
	OS=Actinobacillus	
	pleuropneumoniae serotype 3	
	(strain	
		12 527
	spibzo i Aziker_ceoba 505	12.557
	ribosomai protein L7/L12	
	OS=Clostridium botulinum	
	(strain Alaska E43 / Type E3)	
	GN=rplL PE=3	
	SV=1 splB2TIG7IRI 7 CLOBB	
	50S ribosomal protein L7/L12	
	(strain Eklund 17B / Type B)	
B2UYA2;B2TIG7	GN=rpIL PE=3 SV=1	
	>sp B2UY23 PGK_CLOBA	42.471
	Phosphoglycerate kinase	
	OS=Clostridium botulinum	
	(otroin Alocko E42 / Typo E2)	
	(3) (3)	
	GN=pgk PE=3	
	SV=1;>sp B2TPX4 PGK_CLOB	
	B Phosphoglycerate kinase	
	OS=Clostridium botulinum	
	(strain Eklund 17B / Type B)	
B2LIY23·B2TPX4	GN=nak PE=3 SV=1	
		E1 001
	>SPIDZUWISIVAID_CLUDA V-	51.001
	type ATP synthase beta chain	
	OS=Clostridium botulinum	
	(strain Alaska E43 / Type E3)	
	GN=atpB PE=3	
	SV=1:>splB2TP90IVATB_CLOB	
	B V-type ATP synthase beta	
	chain OS-Clostridium botulinum	
	(strain CS=Clostinuluiti botullinuiti	
	(strain Ekiuno 1787 Type B)	
B2UWY3;B2TP90	GN=atpB PE=3 SV=1	
	>sp A7MKJ6 EFG_CROS8	77.679
	Elongation factor G	
	OS=Čronobacter sakazakii	
	(strain ATCC BAA-894)	
AZMK IG	$GN_{fus} \Lambda PE_3 SV_1$	
		00.040
	>>plaolrny rint_rakuo	02.UIX
	Polyribonucleotide	
	nucleotidyltransferase	
	OS=Parabacteroides distasonis	
	(strain ATCC 8503 / DSM 20701	
	/ CIP 104284 / JCM 5825 /	
	NCTC 11152) GN=nnn PE=3	
A6I FK9	SV=1	
		60 400
		09.432
	Chaperone protein Dhak	
	OS=Enterobacter sp. (strain	
A4W6D5	638) GN=dnaK PE=3 SV=1	
	>sp A1AST1 CH60_PELPD 60	58.844
	kDa chaperonin OS=Pelobacter	
A1AST1	propionicus (strain DSM 2379 /	

	NBRC 103807 / OttBd1)	
	GN=arol PE=3 SV=1	
	>splQ9ZML6IDXR_HELP.J 1-	40,154
	deoxy-D-xylulose 5-phosphate	
	reductoisomerase	
	OS=Helicobacter pylori (strain	
	J99 / ATCC 700824) GN=dxr	
Q9ZML6	PE=3 SV=1	
	>sp Q9Z6B9 TPIS ENTCL	26.913
	Triosephosphate isomerase	
	OS=Enterobacter cloacae	
	GN=tpiA PE=3	
	SV=1;>sp A4WG77 TPIS_ENT3	
	8 Triosephosphate isomerase	
	OS=Enterobacter sp. (strain	
Q9Z6B9;A4WG77	638) GN=tpiA PE=3 SV=1	
	>sp Q9XCB1 DNAK_RHOMR	70.2
	Chaperone protein DnaK	
	OS=Rhodothermus marinus	
Q9XCB1	GN=dnaK PE=3 SV=1	
	>sp Q9I589 CBPD_PSEAE	41.916
	Chitin-binding protein CbpD	
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 10 / PRS	
	101 / PAO1) GN=C0pD PE=1	
	SV=1,>SP QU2111 CBPD_PSEA	
001580:002111	OS-Psoudomonas aprugi	
Q91569,Q02111		00 1/7
	Aconitate hydratase A	33.147
	OS-Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=acnA PE=3	
Q9I3F5:Q8ZP52:P37032:P25516	SV=1	
	>splQ9I3D2IODO2 PSEAE	42.887
	Dihydrolipoyllysine-residue	
	succinyltransferase component	
	of 2-oxoglutarate	
	dehydrogenase complex	
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
Q9I3D2;Q92J43;Q68XI8;P20708;Q	101 / PAO1) GN=sucB PE=3	
92DY4;Q4UKI7;P52993	SV=1	
	>spjQ9HZQ8jLAP_PSEAE	57.511
	Aminopeptidase	
	US=Pseudomonas aeruginosa	
	22044 / UIF 104110 / JUNI 1/8/7 / I MC 10009 / 10 / DDS	
	14047 / LIVIG 12220 / IC / FRS 101 / PAO1) CN-lan PE-1	
	S_{-1} S	
	UV-1,2002FA21LAF_FOEAD	

	Aminopeptidase	
	OS=Pseudomonas aeruginosa	
	(strain UCBPP-PA14) GN=I	
	>sp Q9HZJ2 FADB_PSEAE	76.953
	Fatty acid oxidation complex	
	subunit alpha	
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
Q9HZJ2:Q02PH8:B7UYR6:A6V382	14847 / LMG 12228 / 1C / PRS	
:B1J5A5:A4XSM8:Q9AHY3:Q93Q1	101 / PAO1) GN=fadB PE=3	
2:Q88L02:Q4KFC4:Q3K9D8:Q1I7D	SV=1:>splQ02PH8IFADB_PSE	
4:P28793:C3K613:B0KH74:A5W6H	AB Fatty acid oxidation complex	
0:Q87ZB2:Q4ZRA0:Q48GW3	subun	
,,,,,,	>splQ9F166IPTHP_BACTI	9 2384
	Phosphocarrier protein HPr	0.200
	OS=Bacillus thuringiensis	
	subsp. israelensis GN=ntsH	
O9F166	PE-1 SV-1	
	SOLOGCKRAIPCKA PASMU	58 870
	Phosphoenolovruvate	50.075
	carboxykinase (ATP)	
	OS-Pasteurella multocida	
	(strain Pm70) GN-nckA PE-3	
OOCKRA	S_{-1}	
	SV-1 Spl094E2/IRPRV_BACER	27 177
	Transcriptional regulatory	21.111
	protein RprV OS-Bacteroides	
	fragilis (strain VCH46) GN-rorV	
OQAE24	$PE_{-3} SV_{-2}$	
	SediO980V7IDNAK MVCPU	65 52
	Chaperone protein Dnak	00.02
	OS-Mycoplasma pulmonis	
	(strain LIAB CTIP) GN-dnak	
$ 098 0 \forall 7 $	PE-3 SV-1	
	>splQ97D83IRRBR2_CLOAB	20 107
	Reverse rubrerythrin-2	20.107
	OS=Clostridium acetobutylicum	
	(strain ATCC 824 / DSM 792 /	
	ICM 1419 / I MG 5710 / VKM B-	
	1787) GN=rbr3B PF=1	
	SV=1 >splQ97D82lRRBR1 Cl	
	OAB Reverse rubrerythrin-1	
	OS=Clostridium acetobutylicum	
097083-097082	(strain ATCC 824 / DSM	
	>splQ927A3ITAL1 LISIN	23 154
Q927A3:Q8Y3T8:Q71W21:Q9K6F	Probable transaldolase 1	
4;A8FIE1;A7Z9T0:Q8CX76:Q5KUG	OS=Listeria innocua serovar 6a	
6;Q24ML5;C5D9P4:B8FZ81:A4ITL	(strain ATCC BAA-680 / CLIP	
5;Q899F3;Q81V33:Q81HW6:Q73D	11262) GN=tal1 PE=3	
H4;Q6HNE4;Q63FX6;B1YEL0:A7G	SV=1;>sp Q8Y3T8 TAL1 LISM	
LA6;Q5WB47;C3KTY4;C1FL18:B1	O Probable transaldolase 1	
L010;B1IJR0;A9KPQ3:A7GCY3:A7	OS=Listeria monocvtogenes	
FTH1;A5I1C9;Q81MY9;Q81B21:P1	serovar 1/2a (strain ATCC BAA-	
9669	679 / EGD-e) GN=tal1 P	
Q8ZJ87;Q7MYH5;Q664U6;Q5PK1	>sp Q8ZJ87 RPOA_YERPE	36.508
0;Q57J56;Q3YWW4;Q32B56;Q31V	DNA-directed RNA polymerase	

Y1;Q1CCW8;Q1C2X1;Q0T007;P0 A7Z9;P0A7Z8;P0A7Z7;A8GKH3;A8 AQJ0;A7MPF8;A7FNL0;A6TEU8;A 4WFA3;A4TH15;A1JS01;Q1R637; Q0TCG6;P0A7Z6;P0A7Z5;P0A7Z4 ;A8A5A0;A7ZSI4;A1AGI6;Q6CZZ5; Q2NQP7;Q9S0Q8;Q8EK47;Q12ST 4;Q01080;Q0HNR2;Q089M9;C4L7V 5;A6WHV3;A4YBV8;A4SSY1;A3Q9 A7;A3DA47;A1S243;A1RED9;A0K RP9;A0KF45;Q4QM97;P43737;A5 UHV5;A5UDS2;Q5E889;B6EPU9;B 5FGE1;Q9KP08;Q8DE63;Q87SZ0; Q7MPG4;C3LRN3;B7VLD2;A7N0H 8;A5F572;Q1LTB3;A1T0B7;P7496 3;Q6LV91;P57566;Q7VKF8;Q65Q Y0;P57941;A6VLL3;O69232;P5945	subunit alpha OS=Yersinia pestis GN=rpoA PE=3 SV=1;>sp Q7MYH5 RPOA_PH OLL DNA-directed RNA polymerase subunit alpha OS=Photorhabdus luminescens subsp. laumondii (strain DSM 15139 / CIP 105565 / TT01) GN=rpoA	
5	>sp Q8ZIL4 CARB_YERPE Carbamoyl-phosphate synthase	118.24
Q8ZIL4;P63738;Q8Z9L7;P14846;Q	GN=carB PE=3 SV=3;>sp P63738 CARB_SHIF L Carbamoyl-phosphate synthase large chain OS=Shigella flexneri GN=carB PE=3 SV_2; aplO270 7 CABB_SALT	
87WP4;Q8RSS3;Q9JXW8;Q9JW0 2;Q59599;Q87EB8	I Carbamoyl-phosphate synthase lar	
	>sp Q8Z7N9 NQOR_SALTI NAD(P)H dehydrogenase (quinone) OS=Salmonella typhi GN=STY1155 PE=3 SV=3;>sp B5R6H0 NQOR_SAL G2 NAD(P)H dehydrogenase (quinone) OS=Salmonella gallinarum (strain 287/91 /	20.837
Q8Z7N9;B5R6H0;B5R056;B5FR47 ;B5F202;B4TSN0;B4TEP2;B4T2V2 ;A9N6R4;A9MH45;Q5PG91;B5BB G6;Q8ZQ40;C0Q886	NCTC 13346) GN=SG1008 PE=3 SV=1;>sp B5R056 NQOR_SAL EP NAD(P)H deh	
08X7.10	>sp Q8XZJ0 EFTS_RALSO Elongation factor Ts OS=Ralstonia solanacearum (strain GMI1000) GN=tsf PE=3	31.134
Q8XL57	>sp Q8XL57 PFKA2_CLOPE ATP-dependent 6- phosphofructokinase 2 OS=Clostridium perfringens (strain 13 / Type A) GN=pfkA2 PE=3 SV=1	39.514
Q8XJ32;Q0TP32;Q0SRQ2;Q8EM7	>sp Q8XJ32 GLYA_CLOPE	45.188
N3;Q88UT5;Q831F9;Q6GEW2;Q6 G7J7;Q6F211;Q5HMB0;Q5HE87;Q	hydroxymethyltransferase OS=Clostridium perfringens	

49Z60;Q2YUJ1;Q2FWE5;Q2FF15; P99091;P66804;P66803;A8YY80;A 7X4V7;A6U3J8;A6QIV7;A5IUQ8;Q 6MS85;Q2ST43;Q9CHW7;Q031D7 ;A2RIS0;Q5M4W1;Q5M0B4;Q03L7 7;Q1WTR3;Q99ZP1;Q8P122;Q8E5 C6;Q8DZM7;Q5XC65;Q3K122;P0D F71;P0DF70;B5XLJ2;A2REH5;C0 MF11;C0M6L7;B9DS48;B4U313;Q 48TK6;Q1JLP8;Q1JGU8;Q1JBR5; Q1J6L7	(strain 13 / Type A) GN=glyA PE=3 SV=1;>sp Q0TP32 GLYA_CLO P1 Serine hydroxymethyltransferase OS=Clostridium perfringens (strain ATCC 13124 / DSM 756 / JCM 1290 / NCIMB 6125 /	
Q8XHJ2;Q0TMG2;Q0SQ60;Q8R75 1;B2UXS5;B2TI06;B0KBF4;B0K46 0;Q97E91;C3KWA2;C1FNF2;B1KT E8;B1IH03;A7GJE0;A7FPK3;A5I7S 1;A5N4I4;A0PXK7	>sp Q8XHJ2 SP5G_CLOPE Putative septation protein SpoVG OS=Clostridium perfringens (strain 13 / Type A) GN=spoVG PE=3 SV=1;>sp Q0TMG2 SP5G_CLO P1 Putative septation protein SpoVG OS=Clostridium perfringens (strain ATCC 13124 / DSM 756 / JCM 1290 / NCIMB 6125	10.299
Q8XH44	>sp Q8XH44 SSB_CLOPE Single-stranded DNA-binding protein OS=Clostridium perfringens (strain 13 / Type A) GN=ssb PE=3 SV=1	16.023
Q8R967;B5RRF1;B5RLS2;Q0SNH 5;O51312;B7J1R2;B2S044;Q661T 0	>sp Q8R967 ENO_CALS4 Enolase OS=Caldanaerobacter subterraneus subsp. tengcongensis (strain DSM 15242 / JCM 11007 / NBRC 100824 / MB4) GN=eno PE=3 SV=1;>sp B5RRF1 ENO_BORR A Enolase OS=Borrelia recurrentis (strain A1) GN=eno PE=3 SV=1;>sp B5RLS2 ENO_BORD L En	46.296
	>sp Q8KCH7 TPIS_CHLTE Triosephosphate isomerase OS=Chlorobium tepidum (strain ATCC 49652 / DSM 12025 / NBRC 103806 / TLS) GN=tpiA	25.956
	>sp Q8CVW1 OMPC_ECOL6 Outer membrane protein C OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 /	41.225
Q8AAW1;A6L2R5	 SP Q8AAW1 ARAA_BACTN L- arabinose isomerase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / NCTC 10582 / E50 / VPI-5482) GN=araA PE=3 	57.174

	SV=1:>sp A6L2R5 ARAA BAC	
	V8 L-arabinose isomerase	
	OS=Bacteroides vulgatus (strain	
	ATCC 8482 / DSM 1447 / JC	
	>sp Q8A9X8 HCP BACTN	59.839
	Hydroxylamine reductase	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q8A9X8	GN=hcp PE=3 SV=1	
	>sp Q8A9J2 UXAC_BACTN	54.316
	Uronate isomerase	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
	GN=uxaC PE=3	
	SV=2;>sp A6L4U4 UXAC_BAC	
	V8 Uronate isomerase	
	OS=Bacteroides vulgatus (strain	
	ATCC 8482 / DSM 1447 / JCM	
Q8A9J2;A6L4U4;B3PBK5;B1ZP77	5826 /	
	>sp Q8A6P7 CH10_BACTN 10	9.6602
	kDa chaperonin	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
	GN=groS PE=3	
	SV=1;>sp Q64QU1 CH10_BAC	
	FR 10 kDa chaperonin	
Q8A6P7;Q64QU1;Q5LAF5;A6KXA	OS=Bacteroides fragilis (strain	
1;Q052X8;Q04S02;P61437;P61436	YCH46) GN=groS PE=3	
;B0SKU1;B0SCB9	SV=1;>sp Q5LA	
	>sp Q8A624 PFKA2_BACTN	35.257
	ATP-dependent 6-	
	phosphofructokinase 2	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q8A624	GN=pfkA2 PE=3 SV=1	
	>sp Q8A608 ILVD_BACTN	64.045
	Dihydroxy-acid dehydratase	
	US=Bacteroides	
	thetalotaomicron (strain AICC	
	29148 / DSM 2079 / NCTC	
	10382 / E50 / VPI-5482)	
		40.005
	>spiQ8A525 GUAA2_BACTN	48.285
	Fulative GIVIP Synthase	
	[giutamine-nyurolyzing] z	
	thetaioteomicron (strain ATCC	
QOADZD,QUAWZZ,BIZNB4	29140/DON12079/NUTU	

	10582 / E50 / VPI-5482)	
	GN=guaA2 PE=5 SV=1	
Q8A407;Q64MT2;Q83A77;B6J6H1;		52.739
B6J3R0;A9KD88;Q9ZNA5;P28183;		
O50562;Q5NR48;Q2G6T1;B8IPU4;	>sp Q8A407 SAHH_BACTN	
B7KSJ4;B1ZLX0;B0UM37;A9VYP7	Adenosylhomocysteinase	
;Q6N2N5;B3QJT3;Q8KEG8;Q3B53	OS=Bacteroides	
2;Q3AQC2;Q2IZR1;Q13AQ5;B4SD	thetaiotaomicron (strain ATCC	
43;B3QMF5;B3EDY3;A4SF77;A1B	29148 / DSM 2079 / NCTC	
EZ2;Q1GWT5;C6C1F4;Q89HP6;A	10582 / E50 / VPI-5482)	
5ENA7;A0A087WNH6;Q01VU1;Q7	GN=ahcY PE=3	
2EH1;Q30VVL8;B8DR41;A1VFZ7;Q	SV=1;>sp Q64M12 SAHH_BAC	
9PEJ1;Q8PP84;Q8PCH5;Q87E18;	FR Adenosylhomocysteinase	
	US=Bacteroides fragilis (strain	
N6;B2I7N4;B0U232	YCH46) GN=ancy PE=3 SV=	55.000
	SplQ8A2F4 SYC_BACTN	55.996
	CysteinetRNA ligase	
	thetaioteomicron (strain ATCC	
	10582 / E50 / V/PI-5482)	
08A2F4	GN=cvsSPE=3SV=1	
		8 4763
	carrier protein OS=Bacteroides	0.4700
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q8A2E6	GN=acpP PE=3 SV=1	
	>sp Q8A287 GPMI_BACTN 2,3-	55.645
	bisphosphoglycerate-	
	independent phosphoglycerate	
	mutase OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q8A287	GN=gpmI PE=3 SV=1	
	>sp Q8A1G8 ACKA_BACTN	43.34
	Acetate kinase OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
094109	10582 / E50 / VPI-5482)	
	SONORATONS OF T	111 11
	TonB-dependent receptor Succ	111.14
	OS-Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q8A1G1	GN=susC PE=1 SV=1	
	>splQ8A1G0ISUSA BACTN	71,183
	Neopullulanase SusA	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q8A1G0	GN=susA PE=3 SV=1	

	SSDIO8A015IL PXZ_BACTN	51.6
	Bifunctional enzyme LnxC/Eab7	51.0
	OS-Bacteroides	
	thetaioteomicron (strain ATCC	
	29140 / DSIVI 2079 / NCTC	
004045	10582 / E50 / VPI-5482)	
Q8A015	GN=IpxC/fabZ PE=3 SV=1	
	>sp Q84F10 DPS_KLEPN DNA	18.752
	protection during starvation	
	protein OS=Klebsiella	
	pneumoniae GN=dps PE=3	
	SV=1;>sp B5XYT2 DPS_KLEP3	
	DNA protection during starvation	
	protein OS=Klebsiella	
	pneumoniae (strain 342)	
	GN=dps PE=3	
	SV=1 >splA6T6Q6IDPS_KLEP7	
	DNA protection	
	Spl083N78ICLPB_TROW/8	77 781
	Chaperone protein Clop	11.101
	OS-Tropheruma white lei (strain	
	10008/27 GN=CIPB PE=3	
	SV=1;>splQ83FI1[CLPB_1ROW	
	I Chaperone protein ClpB	
Q83N78;Q83F11;Q8RHQ8;Q7VQF	OS=Tropheryma whipplei (strain	
3;Q826F2	Twist) GN=clpB PE=3 SV=1	
	>sp Q82K46 SYP1_STRAW	61.193
	ProlinetRNA ligase 1	
	OS=Streptomyces avermitilis	
	(strain ATCC 31267 / DSM	
	46492 / JCM 5070 / NBRC	
	14893 / NCIMB 12804 / NRRL	
	8165 / MA-4680) GN=proS1	
	PE=3	
	SV=1:>splB1VYP2ISYP STRG	
	G ProlinetRNA ligase	
	OS=Streptomyces griseus	
082K46·B1\/YP2	subsp	
	SSDIQ82.1K7IDNILL STRAW	80 422
	DNA ligase OS-Streptomyces	00.422
	avormitilis (strain ATCC 31267 /	
	DOM 46402 / ICM 5070 / NDDC	
	14893 / NUIMB 12804 / NKKL	
000 11/7	8165 / MA-4680) GN=ligA PE=3	
Q82JK7	SV=1	
	>sp Q7MYB3 TPIS_PHOLL	26.808
	I riosephosphate isomerase	
	OS=Photorhabdus luminescens	
	subsp. laumondii (strain DSM	
	15139 / CIP 105565 / TT01)	
Q7MYB3	GN=tpiA PE=3 SV=1	
Q6Y1R6;Q6XZR0;Q3Z3X3;Q32I91;	>sp Q6Y1R6 DPS_PROHU	18.722
Q323Y1;P0ABT4;B7LMB6;B2TVB6	DNA protection during starvation	
;Q1REB2;Q0TJN6;P0ABT3;P0ABT	protein OS=Proteus hauseri	
2;C4ZXY4;B7UM08:B7NNP4:B7NA	GN=dps PE=3	
B2;B7MQR6;B7MGS0:B7M787:B7	SV=1;>sp Q6XZR0 DPS KLUC	
LC95:B6I7W9:B5YSA4·B1X7F2·B1	R DNA protection during	
LMA4;B1IXF6;A7ZY70;A7ZJM7;Q8 FJM0;Q8XF78;Q84FI1;Q7CQV9;Q 5PG12;Q57RC9;C0PX17;B5R797; B5QXT6;B5FP96;B5F0B0;B5BBZ6; B4TQX5;B4TC86;B4T089;A9MST4 ;A9MIS0;A8GBU5;Q84AP1;Q84AP 0;Q6D3H7;C6DEE2;A1JU34	starvation protein OS=Kluyvera cryocrescens GN=dps PE=3 SV=1;>sp Q3Z3X3 DPS_SHISS DNA protection during starvation	
--	---	--------
Q6NCX8;B3Q978	>sp Q6NCX8 DAPB_RHOPA 4- hydroxy-tetrahydrodipicolinate reductase OS=Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) GN=dapB PE=3 SV=1;>sp B3Q978 DAPB_RHO PT 4-hydroxy- tetrahydrodipicolinate reductase OS=Rhodopseudomonas palustris (strain TIE-1) GN=	27.783
064PS6:051 918:461 3E7	>sp Q64PS6 ILVD_BACFR Dihydroxy-acid dehydratase OS=Bacteroides fragilis (strain YCH46) GN=ilvD PE=3 SV=1;>sp Q5L918 ILVD_BACFN Dihydroxy-acid dehydratase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=ilvD PE=3 SV=1:>sp	64.37
064MX8:05L708	 >sp Q64MX8 SYR_BACFR ArgininetRNA ligase OS=Bacteroides fragilis (strain YCH46) GN=argS PE=3 SV=1;>sp Q5L7Q8 SYR_BACF N ArgininetRNA ligase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 9343) GN=argS PE=3 SV=1 	66.759
Q5PGJ4;Q57R48;Q3Z3N6;Q32E03 ;Q323L9;Q0T8P2;P69227;P69226; P69225;A9N7Y7;A9MI00;A8AIJ9;A 7MEQ6;A6T6Y1;Q1RE30;Q0TJG6; P69224;P69223;P69222;A7ZYI7;A 7ZJV1;Q8D2W3;Q7VR35;Q6LT12; Q6D3U1;Q66CK8;Q492S0;Q480P2 ;Q2NTZ7;Q1CGE2;Q1CA94;Q0A8 P2;P65115;P65114;A8GCD9;A7FJ Z1;A4W8Q8;A4TN38;A1JMD0	>sp Q5PGJ4 IF1_SALPA Translation initiation factor IF-1 OS=Salmonella paratyphi A (strain ATCC 9150 / SARB42) GN=infA PE=3 SV=1;>sp Q57R48 IF1_SALCH Translation initiation factor IF-1 OS=Salmonella choleraesuis (strain SC-B67) GN=infA PE=3 SV=1;>sp Q3Z3N6	8.2816
Q5PD74;Q57T28;Q3Z5H8;Q32JS9 ;Q325W0;P0A6Q9;P0A110;P0A1H9 ;C0Q6K3;B7LW77;B5Y1J1;B5RHG 5;B5R419;B5FJ27;B5F8U1;B5BAN 7;B4TYE0;B4TK55;B4SV09;B2U32 3;A9N0T0;A9MPI1;A6T4Y2;A4W6S 5;Q0TLF3;P0A6Q8;P0A6Q7;P0A6 Q6;C4ZRS2;B7UJ81;B7NIE2;B7N8 47;B7MP40;B7MBG1;B7M1Y3;B7L	>sp Q5PD74 FABZ_SALPA 3- hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ OS=Salmonella paratyphi A (strain ATCC 9150 / SARB42) GN=fabZ PE=3 SV=1;>sp Q57T28 FABZ_SALC H 3-hydroxyacyl-[acyl-carrier- protein] dehydratase FabZ	16.999

GP2;B6HZF4;B5Z0F9;B1XD49;B1L GY2;B1IQG1;A7ZWC6;A7ZHS0;B2	OS=Salmonella choleraesuis (stra	
VHX7;A7MI19	SONOSPD621EETS SALDA	30 386
	Elongation factor Ts	50.500
	OS=Salmonella paratyphi A	
	(strain ATCC 9150 / SARB42)	
	GN=tsf PE=3	
	SV=1;>SP Q57138 EF15_SALC	
Q5PD62:Q57T38:P64053:P64052:	OS=Salmonella choleraesuis	
B5RHF5;B5R3I3;B5FJ17;B5F8T1;	(strain SC-B67) GN=tsf PE=3	
B5BAM7;B4TXS2;B4TK45;B4SUZ9	SV=2;>sp P64053 EFTS_SALTI	
;A8ALC0	Elongation factor	00.050
	SPIQ5L8L6 CLPP_BACEN	22.858
	proteolytic subunit	
	OS=Bacteroides fragilis (strain	
	ATCC 25285 / DSM 2151 / JCM	
	11019 / NCTC 9343) GN=clpP	
	N ATP-dependent Clp protease	
	proteolytic subunit	
Q5L8L6;Q8A129;Q64NW2	OS=Bacteroides thetai	
	>sp Q5FM65 RPOA_LACAC	34.956
	DNA-directed RNA polymerase	
	subunit alpha OS=Lactobacillus	
	700396 / NCK56 / N2 / NCFM)	
	GN=rpoA PE=3	
	SV=1;>sp A8YXN0 RPOA_LAC	
	H4 DNA-directed RNA	
	polymerase subunit alpha	
Q5EM65-A8YXN0	(strain DPC	
	>sp Q51567 SUCD_PSEAE	30.266
	SuccinateCoA ligase [ADP-	
	forming] subunit alpha	
	OS=Pseudomonas aeruginosa	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
Q51567;Q9AKE1;Q92I22;O08371;	101 / PAO1) GN=sucD PE=1	
P45102	SV=2	07.070
	>sp Q49314 RPOA_BLOPB DNA-directed PNA polymorpas	37.072
	subunit alpha OS=Blochmannia	
	pennsylvanicus (strain BPEN)	
Q493I4	GN=rpoA PE=3 SV=1	
	>sp Q48473 OMPC_KLEPN	39.663
	Outer membrane protein C	
Q48473 P0A264 P0A263 P21420	GN=mpC PF=1 SV=1	
	>splQ47VD0IPCKA_COLP3	59.306
	Phosphoenolpyruvate	
Q47VD0	carboxykinase (ATP)	

	OC Colucilia povebroz throad	
	OS=Colwellia psychrerythraea	
	(strain 34H / ATCC BAA-681)	
	GN=pckA PE=3 SV=1	
Q3Z5I8;Q32JT9;Q325X0;Q0T839;		30.423
P0A6P4;B7LWA9;B2U313;Q1RG1		
9;Q0TLG3;P0A6P3;P0A6P2;P0A6		
P1;C4ZRR2;B7UIL5;B7NID1;B7N8		
37;B7MP30;B7MBF1;B7M1B0;B7L		
GN1:B6HZE4:B5Z0E9:B1XD39:B1		
LGX2:B1IQH1:A7ZWB6:A7ZHR0:A		
8GIE5:06D8E2:C6DAI4:B2VE09:B		
7IH86:A7H.II3:B0SM65:B0SDN6:A		
87TM1:08RA22:B8DSA5:02I TO6		
FRG4;A4J5ZZ;Q7TVT3;Q7TUA9;Q		
31BC3;QUIAN8;P74070;B1XQQ0;A		
9BAS8;A8G4D2;A3PCG2;A2CA99;		
A2BW76;A2BQP0;Q7U794;Q3AXJ		
0;Q2IMM0;Q116Q3;B8J9V0;B4UM		
B7;A7H715;A5GLD9;Q3AKA4;Q5N		
1Q1;Q31K58;B0S185;B0C074;B0J		
TL3;Q2JLB2;B8HXK3;Q2JQK3;B8		
CQ84;B1KNU2;A8FY41;A3QGA2;		
Q8EGH4;Q12NY6;Q0HT63;Q0HG		
V6;Q085E1;P61330;B8E7R5;B0TP		
82;A9KUK6;A6WLA7;A4Y544;A3D		
2K6:A1S4P1:A1RLM6:A0KZ22:Q8		
ZH65:Q667J0:Q1CFE7:Q1CAN4:C		
5BHB7:B2JZ33:B1JQG1:A9R395:A		
7FFH0:A4TI 91:A1.JP81:B7K735:Q		
8CPG8:050XS1:05HPT4:04I 5/9		
$\cdot 0.49 \times 42 \cdot 0.9 \text{K} = 64 \cdot 0.8 \text{N} = 76 \cdot 0.6 \text{GH}$		
H8:06G9\/6:065 L18:05HGH4:02V		
YI 1.02E723.02EHI1.000171.06/0		
54-BOERD7-A972T9-A9EDR4-A774		
S1.47X1N5.46U176.46CCE7.45IS		
51,A7A1N5,A00170,A0QGF7,A515		
;Q6HEY9;Q636K0;C3P5M8;C3L7A		
1;C1EP50;C0ZF65;B9IVB5;B7JJA4		
;B/IUI5;B7HLF9;B7HDU9;B1HQZ1		
;A9VT64;A7GRF6;A0RHJ9;Q8DIA3		
;A5FZ68;Q8XJQ7;Q3A396;Q0TPQ	>sp Q3Z5I8 EFTS_SHISS	
4;Q0SSC1;B2V4F5;B2TJ41;Q67PB	Elongation factor Ts	
6;A6Q584;B9E1I9;B7KZG1;B1ZLB	OS=Shigella sonnei (strain	
6;A9W4G4;A5N829;A0Q0R9;Q9X5	Ss046) GN=tsf PE=3	
E8;Q92Q54;C3MBQ3;C3L0D2;C1F	SV=1;>sp Q32JT9 EFTS_SHID	
SK4;B9L8B2;B8IQY5;B6ISV0;B1K	S Elongation factor Ts	
WM4;B1II65;B0UCS1;A8I464;A7IN	OS=Shigella dysenteriae	
R5;A7GG22;A7FPZ7:A6U8K3:A5I4	serotype 1 (strain Sd197)	
L2:Q2K8Y6:Q2G8K9:Q1MH53:Q1	GN=tsf PE=3	
GRQ1:B5ZN84·B3PYP3·B1I TO7·O	SV=1:>splQ325X0IFFTS_SHIB	
97E60.092.IE4.07PAI 9.068XV/6	S Flongation factor Ts	
$O4IIND7 O1RH00 C4K1 \Delta 1 C3PM$	OS-Shigel	
	00-oniger	

C3;B0BW39;A8GUK0;A8GQP8;A8 GM33;A8F0J0;A8EXF1;B8EKA0;Q 2W4C4;Q8YMY3;Q3MBF4;B2J6U8		
,P80700 Q3AC47	>sp Q3AC47 ACKA_CARHZ Acetate kinase OS=Carboxydothermus hydrogenoformans (strain ATCC BAA-161 / DSM 6008 / Z-2901) GN=ackA PE=3 SV=1	43.868
Q31WI5;Q0T0X4;P0A7A1;Q8XD03 ;Q0TDT0;P0A7A0;P0A799;B1IT77; A7ZR34;A1AFB0;Q3YXU6;Q32BY 6;A8A466;Q4QN23;P43726;A5UH3 0;A5U9X0;P57973;Q65W08;A6VL R3;B3H222;B0BQI3;A3N1Q1;B4E UH8;A8GIV0;Q8DCA0;Q87LL1;Q7 MHL1;Q8GF87;Q7N7Z5;C4LE53;A 4SRF1;A0KGD3;B8GP44;C1DKE9; Q9I5Y4;Q02TL3;B7V4D9;A6UZ15; P0C6Q3;A5F9G2;Q9PF55;Q8PHB 2;Q8P5Z4;Q87AH8;Q5GXA2;Q4U Y23;Q3BPW7;Q2P0F7;B4STV2;B2 SI21;B2FSF3;B0RPF1;Q12QA3;Q3 SMD2;Q1GZ23;A1U543;A7MTQ1; A4XPG4;Q3K5F2;Q88D64;Q88AK 3;Q48CH7;Q113Y0;B1J302;B0KLY 7;A5W9Z6;Q5E7Q9;B6EMW2;B5F 9T5;Q0VL87;Q2SLS9;Q8K9B3;Q3I LL7;P62418;Q6FB08;B7I501;B7H3 N8;B2HZB6;B0VMX3;B0VD03;A3M 4X6;Q7VRG3	>sp Q31WI5 PGK_SHIBS Phosphoglycerate kinase OS=Shigella boydii serotype 4 (strain Sb227) GN=pgk PE=3 SV=1;>sp Q0T0X4 PGK_SHIF8 Phosphoglycerate kinase OS=Shigella flexneri serotype 5b (strain 8401) GN=pgk PE=3 SV=1;>sp P0A7A1 PGK_SHIFL Phosphoglycerate ki	41.118
Q317B9	>sp Q317B9 PURA_DESAG Adenylosuccinate synthetase OS=Desulfovibrio alaskensis (strain G20) GN=purA PE=3 SV=1	46.375
Q2NQI3	>sp Q2NQI3 PCKA_SODGM Phosphoenolpyruvate carboxykinase (ATP) OS=Sodalis glossinidius (strain morsitans) GN=pckA PE=3 SV=1	59.266
Q2JFH9;Q0RRS4;A8LC59;A8EXK 1;Q9PJV6;Q824G0;Q5L6S5;Q3KL R3;Q253F1;O84444;B0BC74;B0B8 09;Q8KTB7;Q8KTB0;A8GV17;A8F 0P0;Q1RHC3;Q92J93;Q8KTC1;Q8 KTB9;Q8KTB8;Q8KTB6;Q8KTB4;Q 8KTB2;Q8KTA8;P41084;C4K1P6;C 3PMH0;B0BWA2;A8GQV7	>sp Q2JFH9 EFG_FRACC Elongation factor G OS=Frankia casuarinae (strain DSM 45818 / CECT 9043 / Ccl3) GN=fusA PE=3 SV=1;>sp Q0RRS4 EFG_FRAA A Elongation factor G OS=Frankia alni (strain ACN14a) GN=fusA PE=3 SV=1;>sp A8LC59 EFG_FRAS N Elongation factor G OS=Fr >sp Q0TMS5 RPOA_CLOP1 DNA-directed RNA polymerase	76.734 35.176

	perfringens (strain ATCC 13124 / DSM 756 / JCM 1290 / NCIMB 6125 / NCTC 8237 / Type A) GN=rpoA PE=3 SV=1;>sp Q0SQH3 RPOA_CLO PS DNA-directed RNA polymerase subunit alpha OS=Clost	
Q07064;Q1WTW0;B2IC30;Q97EB3 ;Q8XHL4;Q5XZD9;Q59925;Q0TMI 3;Q0SQ82;P13419;B8I3S9;B2UXU 5;B2TI29;A6LPL1;A3DI22;Q1GE26 ;Q160C2;Q92AD2;Q8Y624;Q71YD 9;C1KWH6;B8DDM6;A0AJY2;A5W I04	>sp Q07064 FTHS_CLOCY Formatetetrahydrofolate ligase OS=Clostridium cylindrosporum GN=fhs PE=3 SV=1;>sp Q1WTW0 FTHS_LAC S1 Formatetetrahydrofolate ligase OS=Lactobacillus salivarius (strain UCC118) GN=fhs PE=3 SV=1;>sp B2IC30 FTHS_BEII9 Formatetetrahy	59.096
Q04FQ4	>sp Q04FQ4 EFTU_OENOB Elongation factor Tu OS=Oenococcus oeni (strain ATCC BAA-331 / PSU-1) GN=tuf PE=3 SV=1	43.624
Q035Y8;O32846;B3W9W8	>sp Q035Y8 CH10_LACP3 10 kDa chaperonin OS=Lactobacillus paracasei (strain ATCC 334 / BCRC 17002 / CIP 107868 / KCTC 3260 / NRRL B-441) GN=groS PE=3 SV=1;>sp O32846 CH10_LACZ E 10 kDa chaperonin OS=Lactobacillus zeae GN=groS PE=3 SV=1;>sp B3W9W8 CH10_LAC CB	10.039
Q035A9;B3WAJ2;Q839D9;Q38UT7 ;Q88XW0;Q1WSB6;Q04ML1;P667 09;P66708;Q9CDY3;Q8DS36;Q5M 2D9;Q5LXT7;Q03IH7;Q02W51;A8 AZJ9;A2RNM7;Q8CRI4;Q71WH2; Q6GEK9;Q6G797;Q65P79;Q5WLN 5;Q5L3R2;Q5HM25;Q5HDY4;Q4L8 88;Q49ZE2;Q2YYM2;Q2FW32;Q2 FER5;Q04G60;Q03ZM0;Q03EE2;P 66707;P66706;P66705;P66700;P6 6699;O50634;C1KZF5;C0ZIK7;B9E 9L7;B8DB34;B2G8V2;A8F9B2;A7Z 0R5;A7X5C4;A6QJ66;A5VLH9;A4I JL4;A0ALU2;B2A4Q0;A6TWF3;Q0 AUK9;Q03PY3;A8MLG9;P20429	>sp Q035A9 RPOA_LACP3 DNA-directed RNA polymerase subunit alpha OS=Lactobacillus paracasei (strain ATCC 334 / BCRC 17002 / CIP 107868 / KCTC 3260 / NRRL B-441) GN=rpoA PE=3 SV=1;>sp B3WAJ2 RPOA_LAC CB DNA-directed RNA polymerase subunit alpha OS=Lactobacill	34.758
Q034X8;B3WAM2;Q04ED6;Q73IX 7;Q3AW54;Q1D777;C0R543;Q748 Y8;Q2RQV7;Q31PV4;P18667;Q2S 909;Q03ZQ2;B1MW21;Q5QWB4	>sp Q034X8 EFG_LACP3 Elongation factor G OS=Lactobacillus paracasei (strain ATCC 334 / BCRC 17002 / CIP 107868 / KCTC 3260 / NRRL B-441) GN=fusA PE=3	76.819

Q02UU0	SV=1;>sp B3WAM2 EFG_LACC B Elongation factor G OS=Lactobacillus casei (strain BL23) GN=fusA PE=3 SV=1;>sp Q >sp Q02UU0 AHPC_PSEAB Alkyl hydroperoxide reductase C OS=Pseudomonas aeruginosa (strain UCBPP-PA14) GN=ahpC PE=1 SV=1	20.541
Q02T55;O52760;A6UZL3;Q8L2F8; A4VHQ5;B3PK62;Q88QL1;Q889U 6;Q4ZMR8;Q4K557;Q48D61;Q3K6 12;Q1IFU1;A5VXS2;A4XZ65;Q5P3 07;A1KB01;B1Y7M9;Q3IJI6;Q21M 33;Q488Y8;Q15X48;Q057C9;A3N3 82;Q5ZYL8;Q5X834;Q5WZI7;A5IH P1;Q7VQC3;Q1R0F0;B8GV33;Q2 S937;A1TYM2;Q47J77;Q63Q37;Q 62GN1;Q3JMT9;Q39KE1;Q2SU53; Q1BRX4;Q13TJ6;Q0BJ20;B4E5E6; B2T725;B2JI39;B1YRQ5;B1JU48;A 9ADL9;A6T3H8;A4JAR6;A4G9R3; A3P087;A3NEF3;A3MRY0;A2S7K2 ;A1V877;A0K3Q1;A1AVM5;Q8XV3 8;Q46WG9;Q1LI63;Q0K645;B3R7 E3;B2UEJ3;B1XSS7;A4SUY6;Q83 EQ2;B6J5F7;B6J238;A9NAZ5;A9K D06;Q7NQH7;C1DAU3;Q8D1Y8;Q 605D7;Q5F5V2;P66704;P66703;A1 SXW8;A1KRJ9;Q2L238;Q1H4L2;P 0A4E7;P0A4E6;P0A4E5;A9IHR6;Q 31IV8;Q01137;Q21QP9;Q12G77;C 5CQ75;Q5QXV8;B9MBW2;A1WK9 2;A1W333;A1VJ40;A1TJU2;Q0ABF 0;Q3J8T8;A1WV97;A9BRX5;A2SL D1;Q2YAX2;Q6F7T7;Q4FUD1;Q1 QDG1;B7IA14;B7GW27;B2HZ83;B 0VQU3;B0V6U7;A5WCL4;A3M959	>sp Q02T55 RPOA_PSEAB DNA-directed RNA polymerase subunit alpha OS=Pseudomonas aeruginosa (strain UCBPP-PA14) GN=rpoA PE=3 SV=1;>sp O52760 RPOA_PSE AE DNA-directed RNA polymerase subunit alpha OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 1	36.649
	>sp Q02QC9 PPBH_PSEAB Alkaline phosphatase H OS=Pseudomonas aeruginosa (strain UCBPP-PA14) GN=phoA PE=1 SV=1;>sp P35483 PPBH_PSEA E Alkaline phosphatase H OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM	50.392
Q02QC9;P35483	14847 / LMG 12228 / 1C / P >sp Q02DZ3 PSTS_PSEAB Phosphate-binding protein PstS OS=Pseudomonas aeruginosa (strain UCBPP-PA14) GN=pstS PE=1 SV=1;>sp P0DMR4 PSTS_PSE Al Phosphate-binding protein	34.473

	PstS OS=Pseudomonas	
	aeruginosa GN=pstS PE=1	
	SV=1 >splG3XDA8IPSTS PSF	
	AE Phosphate-binding pr	
		50.057
	>SPIP77983 KPYK1_SALTY	50.657
	Pyruvate kinase I	
	OS=Salmonella typhimurium	
	(strain LT2 / SGSC1/12 / ATCC	
	(300700) CN mult DE 2	
	700720) GN=pykF PE=3	
	SV=2;>sp Q8Z6K2 KPYK1_SAL	
	TI Pyruvate kinase I	
	OS=Salmonella typhi GN=pykF	
	PE-3	
	SV=1,>SPIPUADOZIKPTKI_EC	
P77983;Q8Z6K2;P0AD62;P0AD61;	O57 Pyruvate kinase I	
O30853	OS=Escherichi	
	>splP76015IDHAK_ECOLI	38 215
	PEP-dependent	00.210
	dinydroxyacetone kinase,	
	dihydroxyacetone-binding	
	subunit DhaK OS=Escherichia	
	coli (strain K12) GN=dhaK PE=1	
P76015	$S_{1/-2}$	
F70015		04.000
	>spip75089jALF_MYCPN	31.068
	Fructose-bisphosphate aldolase	
	OS=Mycoplasma pneumoniae	
	(strain ATCC 29342 / M129)	
P75089	GN = fba PE = 3 SV = 1	
175005		04 774
	>SPIP53638 SODF_BACER	21.771
	Superoxide dismutase [Fe]	
	OS=Bacteroides fragilis (strain	
P53638	YCH46) GN=sodB PE=3 SV=2	
	SepIP520/11HBD CLOAB 3-	30 582
	bydrowybutyryl CoA	00.002
	dehydrogenase OS=Clostridium	
	acetobutylicum (strain ATCC	
	824 / DSM 792 / JCM 1419 /	
	LMG 5710 / VKM B-1787)	
D52044	$CN_{bbd} DE_{1} SV_{2}$	
F J2041		44.04
	>spiP45359iiHLA_CLOAB	41.24
	Acetyl-CoA acetyltransferase	
	OS=Clostridium acetobutylicum	
	(strain ATCC 824 / DSM 792 /	
	ICM 1/10 / I MG 5710 / \/KM P	
	1/0/) GN=thia PE=1	
	SV=1;>sp Q8CQN7 THLA_STA	
	ES Probable acetyl-CoA	
	acvltransferase	
P45359.08C0N7.05H907.P45855	OS-Staphylococcus epidermidis	
·D76461	(stroi	
,F/0401	เรแล	
P38100;O67869;Q9RWK0;Q5SKN		117.33
1;P96495;Q1IWM0;C1CXR4;Q9KP	>sp P38100 CARB PSEAE	
H9:Q8K9Z7:Q8DEM2:Q87SF3:Q7	Carbamovl-phosphate synthase	
	large chain OS-Pseudomonas	
F150;Q9VVZZ1;Q9A4D6;B9KB91;B	aeruginosa (strain ATCC 15692	
1L8T8;A5IJL8;O50236;Q8YIC2;Q8	/ DSM 22644 / CIP 104116 /	
11DE0.08E7 13.002P74.008187	JCM 14847 / LMG 12228 / 1C /	

[]
	PRS 101 / PAO1) GN=CarbPF=3 SV=3	
	>splP33109IASPA_SERMA	52.543
	Aspartate ammonia-lyase	
	OS=Serratia marcescens	
P33109	GN=aspA PE=3 SV=1	
	>sp P27302 TKT1_ECOLI	72.211
	Transketolase 1	
P27302;Q87LK8;Q7MDD4;Q5DZP	OS=Escherichia coli (strain K12)	
0;Q5E7R1;Q9KLW7;Q9KUP2		60 202
	>sp P23047 DPPA_ECOLI Periplasmic dipentide transport	00.293
	protein OS=Escherichia coli	
	(strain K12) GN=dppA PE=1	
P23847	SV=1	
	>sp P21179 CATE_ECOLI	84.162
	Catalase HPII OS=Escherichia	
D04470	coli (strain K12) GN=katE PE=1	
P21179		100.04
	SppP19543[NIFJ_ENTAG	128.24
	oxidoreductase	
	OS=Enterobacter agglomerans	
P19543	GN=nifJ PE=3 SV=3	
	>sp P17584 DHD2_LACPA D-2-	36.893
	hydroxyisocaproate	
	dehydrogenase	
	OS=Lactobacillus paracasei	
P17584		00 707
	>Sp P17215 LIVJ_SALTY	38.787
	OS-Salmonella typhimurium	
	(strain LT2 / SGSC1412 / ATCC	
	700720) GN=livJ PE=1	
	SV=1;>sp P25399 LIVJ_CITFR	
	Leu/IIe/Val-binding protein	
	OS=Citrobacter freundii GN=livJ	
D47045 D05000 D04 D00 D04 D07		
P17215;P25399;P0AD98;P0AD97;	SV=1;>SP PUAD98 LIVJ_ECO57	
		9 1193
	Phosphocarrier protein HPr	0.1100
P16481;P0AA09;P0AA08;P0AA07;	OS=Klebsiella pneumoniae	
P0AA06;P0AA05;P0AA04	GN=ptsH PE=3 SV=1	
	>sp P14407 FUMB_ECOLI	60.105
	Fumarate hydratase class I,	
	anaerobic US=Escherichia coli	
P14407	(STAIN K IZ) GIN=TUMB PE=1	
	SV-2 SSDIP13794IPORF PSFAF	37 630
	Outer membrane porin F	01.000
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
D40704	101 / PAO1) GN=oprF PE=1	
P13794	SV=1	

P0DJO6;12BAK7;P04845	>sp P0DJO6 OMPA_SHIBL Outer membrane protein A (Fragment) OS=Shimwellia blattae GN=ompA PE=3 SV=1;>sp I2BAK7 OMPA_SHIB C Outer membrane protein A OS=Shimwellia blattae (strain ATCC 29907 / DSM 4481 / JCM 1650 / NBRC 105725 / CDC 9005-74) GN=ompA PE=3 SV=1;>	25.917
P0ADB3;P0ADB2;P0ADB1	>sp P0ADB3 OSME_SHIFL Osmotically-inducible putative lipoprotein OsmE OS=Shigella flexneri GN=osmE PE=3 SV=1;>sp P0ADB2 OSME_ECO 57 Osmotically-inducible putative lipoprotein OsmE OS=Escherichia coli O157:H7 GN=osmE PE=3 SV=1;>sp P0ADB1 OSME_ECO LI Osmotical	12.021
P0AC40;Q8XDS0;P0AC39;P0AC3 8;P44324;P07346	>sp P0AC40 ASPA_SHIFL Aspartate ammonia-lyase OS=Shigella flexneri GN=aspA PE=3 SV=1;>sp Q8XDS0 ASPA_ECO 57 Aspartate ammonia-lyase OS=Escherichia coli O157:H7 GN=aspA PE=3 SV=2;>sp P0AC39 ASPA_ECO L6 Aspartate ammonia-lyase OS=Escherichia coli O6:H1 (strain	52.356
P0AA30;P0AA29;P0AA28;P0AA27; P0AA26;P0AA25;P52233	>sp P0AA30 THIO_SHIFL Thioredoxin 1 OS=Shigella flexneri GN=trxA PE=3 SV=2;>sp P0AA29 THIO_SALTI Thioredoxin 1 OS=Salmonella typhi GN=trxA PE=1 SV=2;>sp P0AA28 THIO_SALT Y Thioredoxin 1 OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=trxA	11.806
P0A914;P0A913;P0A912	>sp P0A914 PAL_SHIFL Peptidoglycan-associated lipoprotein OS=Shigella flexneri GN=pal PE=3 SV=1;>sp P0A913 PAL_ECO57 Peptidoglycan-associated lipoprotein OS=Escherichia coli O157:H7 GN=pal PE=3 SV=1;>sp P0A912 PAL_ECOLI Peptidoglycan-associated lipoprotein	18.824

		57 102
	>SpipuA330/CH002_IHEVL00	57.102
	kDa chaperonin 2	
	OS=Thermosynechococcus	
	vulcanus GN=groL2 PE=3	
	SV=1;>sp P0A337 CH602_THE	
	EB 60 kDa chaperonin 2	
	OS=Thermosynechococcus	
	elongatus (strain BP-1)	
P04338·P04337	GN-arol 2 PE-3 SV-1	
1 0/1000,1 0/1001		21 209
	>spipuazrojour_salii	21.300
	Superoxide dismutase [Fe]	
	OS=Salmonella typhi GN=sodB	
	PE=3	
	SV=2;>sp P0A2F4 SODF_SALT	
	Y Superoxide dismutase [Fe]	
	OS=Salmonella typhimurium	
	(strain LT2 / SGSC1412 / ATCC	
	700720) GN-codB BE-2	
	(100720) GN=S00B FE=3	
PUAZF5;PUAZF4;PUAGD6;PUAGD	SV=2;>spipuagd6jSODF_SHIF	
5;P0AGD4;P0AGD3	L Superoxide dismuta	
	>sp P0A2C6 RBSB_SALTI	30.962
	Ribose import binding protein	
	RbsB OS=Salmonella typhi	
	GN=rbsB PE=3	
	SV=1:>splP0A2C5IRBSB_SALT	
	V Ribose import binding protein	
	Phop OS-Solmonollo	
	RDSD US=Saimonella	
	typnimurium (strain L127	
	SGSC1412 / ATCC 700720)	
P0A2C6;P0A2C5	GN=rbsB PE=1 SV=1	
	>sp P0A1V7 KPRS_SALTI	34.216
	Ribose-phosphate	
	pyrophosphokinase	
	OS=Salmonella typhi GN=prs	
	PF=3	
	$SV = 2, > SP F UA V U (A F A S_SALT)$	
	r Ribose-phosphate	
	pyrophosphokinase	
P0A1V7;P0A1V6;P0A719;P0A718;	OS=Salmonella typhimurium	
P0A717;Q8ZEY2;Q7N590;Q1LTH2	(strain LT2 / SGSC1412 / ATCC	
;P57266;Q7VR76;Q8DFF5;Q87RN	700720) GN=prs PE=1	
8;Q7MMZ1;Q8K9X2;P59512;Q9CP	SV=2:>sp P0A719 KPRS ECO5	
22:Q8EAQ9:Q7VL55	7 Ri	
		40 368
	Outer membrane protein C	10.000
	OS-Ecohorichia adi (strain $K12$)	
	SV=1;>sp Q8XE41 OMPC_ECO	
	57 Outer membrane protein C	
	OS=Escherichia coli O157:H7	
P06996;Q8XE41	GN=ompC PE=3 SV=1	
·	>splP06959IODP2_ECOLI	66.095
	Dibydrolipovllysine-residue	20.000
	acetultransferase component of	
	nurunoto debudro sosso	
Baaasa	pyruvate dehydrogenase	

	(strain K12) GN=aceF PE=1 SV=3	
	>sp P02925 RBSB_ECOLI Ribose import binding protein RbsB OS=Escherichia coli (strain K12) GN=rbsB PE=1	30.95
P02925;P44737	SV=1	
P02924	>sp P02924 ARAF_ECOLI L- arabinose-binding periplasmic protein OS=Escherichia coli (strain K12) GN=araF PE=1 SV=2	35.54
P00363:P20922	>sp P00363 FRDA_ECOLI Fumarate reductase flavoprotein subunit OS=Escherichia coli (strain K12) GN=frdA PE=1 SV=3;>sp P20922 FRDA_PROV U Fumarate reductase flavoprotein subunit OS=Proteus vulgaris GN=frdA PE=3 SV=1	65.971
	>sp O83553 PFP_TREPA Pyrophosphatefructose 6- phosphate 1- phosphotransferase OS=Treponema pallidum (strain	62.426
O83553	Nichols) GN=pfp PE=1 SV=1	
008420-008458-045482	division protein FtsZ OS=Enterococcus faecalis (strain ATCC 700802 / V583) GN=ftsZ PE=3 SV=2;>sp O08458 FTSZ_ENTH R Cell division protein FtsZ OS=Enterococcus hirae GN=ftsZ PE=3 SV=2;>sp P45482 FTSZ_NOSS 1 Coll division protein Etc	
008439,008438,F43482	SepIB8 1/481SAT DESDA	/6 012
B8.1448	Sulfate adenylyltransferase OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM 6949) GN=sat PE=3 SV=1	40.312
	>sp B7NMG6 PCKA_ECO7I	59.615
B7NMG6;B7NE08;B7N136;B7MDM 9;B1LHK1;A1AGS9;Q83J96;Q3YW M2;Q31VN1;B2U3L1;Q8FCU4;Q0T C64;P22259;C4ZUQ8;B7UKA7;B7 M1V7;B7L4T1;B6I2W3;B1X750;B1I P62;A8A5L1;A7ZST1;Q0SZR5;Q8 X733;B5YTV3;Q32AL7;B7LSA4;Q6 LLS2;Q87TE1;Q5E1X3;B5FCE7;Q 9KNK0;C3LSG5;A5F4Q4;B7VHF2; B6EGP7;Q8DDS6	Phosphoenolpyruvate carboxykinase (ATP) OS=Escherichia coli O7:K1 (strain IAI39 / ExPEC) GN=pckA PE=3 SV=1;>sp B7NE08 PCKA_ECO LU Phosphoenolpyruvate carboxykinase (ATP) OS=Escherichia coli O17:K52:H18 (strain UMN026 / ExPEC) GN=pckA P_	
B7LUY6;Q8FF10;Q0TEQ9;B7UH1	>sp B7LUY6 GRCA_ESCF3	14.268
8;B7NRN5;B7N6H0;B7MIR4;B1LP 92;A1AEA9;Q32CU0;Q8XFE0;Q7C	Autonomous glycyl radical cofactor OS=Escherichia	

Q05;Q5PLH7;Q57L55;Q3YYT6;Q3 1XQ5;C0PVZ1;B5RD61;B5QTW0; B5FRD8;B5F227;B5BAR8;B4TS28; B4TE27;B4T289;B2TYK2;A9N0W4 ;A9MGW0;A8AD08;A4WDE8;P680 67;P68066;C4ZYK2;B7MYL2;B7M8 J4;B7LDH2;B6I5F4;B5Z153;B1XB Q6;B1IVP8;A8A391;A7ZQ24;Q9CP H6;Q83K21;Q6D209;Q65VN1;Q4Q PM7;Q0T1S7;Q0I272;P44455;P18 953;C6DC10;C5BAK4;B8F6C4;B0 UWA8;A8GI38;A7MH19;A6VLV5;A 5UFJ0;A5UBC1;A1JKI9;Q7VMC2; B3H0M3;B0BTB3;A3MZ79;Q8DEP 5;Q87SC7;Q7MNR2;A7MS83;Q8Z D84;Q667T8;Q1CKF7;Q1C569;B4 F057;B2VED1;B2KA62;B1JRB2;A9 R3Y7;A7FFS5;A4TKZ1	fergusonii (strain ATCC 35469 / DSM 13698 / CDC 0568-73) GN=grcA PE=3 SV=1;>sp Q8FF10 GRCA_ECO L6 Autonomous glycyl radical cofactor OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 7009	
B5XY03;A4W5E0;Q8ZAS2;Q664W 9;Q1CNS4;Q1CC27;B2K4Y6;B1JJ M7;A9R536;A7FDG8;A4TH39;A1J RV9;B3GY24;B0BQ77;A3N1E1;Q6 D022;Q2NR04;C6DFP4;B2VKB1;Q 7MZB4;A8GKD1;Q9CNL2;C5B6Z1; Q4QL07;P44312;A5UED2;A5UCG 6;A1SRS5;Q7VNR9;B8F632;Q2RQ 51;B4EYR8;Q65TC2;Q0I3C7;B0U UD4;Q6LM51;Q5E847;B7VI73;B6E LK8;B5EGI2;A7MSY9;Q1LU73	>sp B5XY03 G6PI_KLEP3 Glucose-6-phosphate isomerase OS=Klebsiella pneumoniae (strain 342) GN=pgi PE=3 SV=1	61.297
B5XXP0	<pre>>sp B5XXP0 NQOR_KLEP3 NAD(P)H dehydrogenase (quinone) OS=Klebsiella pneumoniae (strain 342) GN=KPK 3530 PE=3 SV=1</pre>	20.895
B5XUB8	>sp B5XUB8 PGK_KLEP3 Phosphoglycerate kinase OS=Klebsiella pneumoniae (strain 342) GN=pgk PE=3 SV=1	41.091
B5XNF9;A6TCJ1	>sp B5XNF9 GRCA_KLEP3 Autonomous glycyl radical cofactor OS=Klebsiella pneumoniae (strain 342) GN=grcA PE=3 SV=1;>sp A6TCJ1 GRCA_KLE P7 Autonomous glycyl radical cofactor OS=Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 700721 / MGH 78578) GN=grcA PE	14.243
B2V2I5:B2TI 77	>sp B2V2I5 DNAK_CLOBA Chaperone protein DnaK OS=Clostridium botulinum (strain Alaska E43 / Type E3) GN=dnaK PE=3 SV=1:>sp B2TLZ7IDNAK_CLO	65.82

	BB Chaperone protein DnaK OS=Clostridium botulinum (strain Eklund 17B / Type B) GN=dnaK PE=3 SV=1	
	>sp B2UZ05 GUAA_CLOBA GMP synthase [glutamine- hydrolyzing] OS=Clostridium botulinum (strain Alaska E43 / Type E3) GN=guaA PE=3 SV=1;>sp B2TIX3 GUAA_CLOB B GMP synthase [glutamine- hydrolyzing] OS=Clostridium	56.882
;C4Z3X1;A7FYP0;A5I720;A0Q2S8	Type B) GN=guaA PE=	
B2KAX0	>sp B2KAX0 DNAK_ELUMP Chaperone protein DnaK OS=Elusimicrobium minutum (strain Pei191) GN=dnaK PE=3 SV=1	66.365
	 >sp B2G669 ARCA_LACRJ Arginine deiminase OS=Lactobacillus reuteri (strain JCM 1112) GN=arcA PE=3 SV=1;>sp A5VIN9 ARCA_LACR D Arginine deiminase OS=Lactobacillus reuteri (strain DSM 20016) GN=arcA PE=3 	46.242
B2G653: 45\/IM0	>sp B2G653 OTC_LACRJ Ornithine carbamoyltransferase OS=Lactobacillus reuteri (strain JCM 1112) GN=arcB PE=3 SV=1;>sp A5VIM0 OTC_LACR D Ornithine carbamoyltransferase OS=Lactobacillus reuteri (strain DSM 20016) GN=arcB PE=3 SV=1	37.559
B0UQS5	>sp B0UQS5 GLSA_METS4 Glutaminase OS=Methylobacterium sp. (strain 4-46) GN=glsA PE=3 SV=1	33.331
А9НК37	>sp A9HK37 CH601_GLUDA 60 kDa chaperonin 1 OS=Gluconacetobacter diazotrophicus (strain ATCC 49037 / DSM 5601 / PAI5) GN=groL1 PE=3 SV=1	57.917
A8AIW9;A4W8F0;A7MEY6	>sp A8AIW9 DPS_CITK8 DNA protection during starvation protein OS=Citrobacter koseri (strain ATCC BAA-895 / CDC 4225-83 / SGSC4696) GN=dps PE=3 SV=1;>sp A4W8F0 DPS_ENT3 8 DNA protection during	18.706

	starvation protein	
	OS=Enterobacter sp. (strain	
	638) GN=dps PE=3 S	
	>sp A7NIK8 CH601 ROSCS 60	58.586
	kDa chaperonin 1	
	OS-Roseiflexus castenbolzii	
	(strain DSM 13041 / HLO8)	
	CN arol 1 DE 2	
	SV=1;>sp A5VUS2 CH6U2_RUS	
	S1 60 kDa chaperonin 2	
	OS=Roseiflexus sp. (strain RS-	
	1) GN=groL2 PE=3	
	SV=1;>sp A9B6A4 CH60_HERA	
A7NIK8;A5V0S2;A9B6A4	2 60 kDa chaperonin OS=He	
, , ,	>splA7MJQ4IPGK_CROS8	41.277
	Phosphoglycerate kinase	
	OS-Cronobacter sakazakii	
	(etrain ATCC BAA_804) GN-pak	
	DE_2 21/_1	
		77 555
	>spla/gguulene_clobl	11.555
	Polyribonucleotide	
	nucleotidyltransferase	
	OS=Clostridium botulinum	
	(strain Langeland / NCTC 10281	
A7GG00	/ Type F) GN=pnp PE=3 SV=1	
	>splA6TCA1IDAPA KLEP7 4-	31.162
	hydroxy-tetrahydrodipicolinate	
	synthase OS=Klebsiella	
	pneumoniae subsp	
	pricumoniae (strain ATCC	
0,Q3FL31,D3DD10,D41R02,D7LR	(100/21)/(100 - 100/0)	
G3;A7MP70;Q31274;Q32D87;Q31		
Y13;Q01239;P0A6L3;B21XQ4;P63	SV=1;>sp A9MHQ2 DAPA_SAL	
944;P63943;P0A6L2;B7NQL6;B7M	AR 4-hydroxy-	
YB7;B7M7I1;B7LCL6;B6I548;B5Z0	tetrahydrodipicolinate synthase	
15;B1LNC8;B1IWI1;A8A2X1;A7ZP	OS=Salmonella arizonae (strain	
S4;B2VE56	ATC	
	>sp A6M1Y8 GLPK CLOB8	55.547
	Glycerol kinase OS=Clostridium	
	beijerinckij (strain ATCC 51743 /	
	NCIMB 8052) GN=alpK PE=3	
A6M1Y8·B2\/358·B2TN12	SV=1	
		44 086
	Sorino	JU06.FF
	budrow mothyltronoforcos	
	(strain ATCC 51743 / NCIMB	
	8052) GN=glyA PE=3	
	SV=1;>sp A9KSH6 GLYA_LAC	
	P7 Serine	
	hydroxymethyltransferase	
A6LUK9;A9KSH6;Q8F6A0:Q72PY2	OS=Lachnoclostridium	
;Q04ZF5;Q04R46:A4W0W9:A4VU	phytofermentans (strain ATCC	
M9	700394 / DSM 18823	
	SSDIAGI SROIPNIP CLOBS	76 981
	Polyribonucleotido	10.301
AULORU, DZV4MO, DZIJOI, QOV/FU8	nucleolluyillansierase	

	OS=Clostridium beijerinckii	
	(strain ATCC 51743 / NCIMB	
	8052) GN=pnp PE=3	
	SV=1;>sp B2V4H5 PNP CLOB	
	A Polvribonucleotide	
	nucleotidyltransferase	
	OS-Clostridium botulinum	
	(strain Alaska E42 / Typa E	
		44.077
	>SpIA6LRU5IPGK_CLOB8	41.877
A6LR05;A0PYP1;C1FQW3;B11DB6	Phosphoglycerate kinase	
;A/G9Y0;A/FQN/;A5HYC0;A5CY	OS=Clostridium beijerinckii	
N8;Q3B116;A4SH15;C3KYR4;B9E	(strain ATCC 51743 / NCIMB	
6B4;A5N2N8;Q181T8	8052) GN=pgk PE=3 SV=1	
	>sp A6LA97 PYRB_PARD8	35.1
	Aspartate carbamoyltransferase	
	OS=Parabacteroides distasonis	
	(strain ATCC 8503 / DSM 20701	
	/ CIP 10/28/ / ICM 5825 /	
	10 - 20 - 700 = 700 = 00207	
A GL A 0 7	$P(V_1) = P(V_1)$	
Αυίατ		50.040
	>splA6L1V8 LEUC_BACV8 3-	50.046
	isopropylmalate dehydratase	
	large subunit OS=Bacteroides	
	vulgatus (strain ATCC 8482 /	
	DSM 1447 / JCM 5826 / NBRC	
	14291 / NCTC 11154) GN=leuC	
	PE=3	
	SV=1 >splQ8A6I 7II FUC BACT	
	N 3-isopropylmalate	
	debydratase large subunit	
AULIVO,QOAULI		07.061
	Splactico (STA_DACVO	97.201
	AlaninetRINA ligase	
	OS=Bacteroides vulgatus (strain	
	ATCC 8482 / DSM 1447 / JCM	
	5826 / NBRC 14291 / NCTC	
	11154) GN=alaS PE=3	
	SV=1;>sp Q8A0M6 SYA_BACT	
	N AlaninetRNA ligase	
	N AlaninetRNA ligase OS=Bacteroides	
A6L1L8:Q8A0M6:Q64YB4:Q5LHE6	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC	
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 :B0S104:A4XKP4:A5UY81	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 /	
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 /	36.21
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazolo	36.21
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazole-	36.21
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazole- succinocarboxamide synthase	36.21
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazole- succinocarboxamide synthase OS=Flavobacterium	36.21
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazole- succinocarboxamide synthase OS=Flavobacterium psychrophilum (strain JIP02/86 /	36.21
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazole- succinocarboxamide synthase OS=Flavobacterium psychrophilum (strain JIP02/86 / ATCC 49511) GN=purC PE=3	36.21
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81 A6GYJ4	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazole- succinocarboxamide synthase OS=Flavobacterium psychrophilum (strain JIP02/86 / ATCC 49511) GN=purC PE=3 SV=1	36.21
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81 A6GYJ4	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazole- succinocarboxamide synthase OS=Flavobacterium psychrophilum (strain JIP02/86 / ATCC 49511) GN=purC PE=3 SV=1 >sp A1TTM6 SYS_ACIAC	36.21
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81 A6GYJ4	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazole- succinocarboxamide synthase OS=Flavobacterium psychrophilum (strain JIP02/86 / ATCC 49511) GN=purC PE=3 SV=1 >sp A1TTM6 SYS_ACIAC SerinetRNA ligase	36.21 48.487
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81 A6GYJ4	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazole- succinocarboxamide synthase OS=Flavobacterium psychrophilum (strain JIP02/86 / ATCC 49511) GN=purC PE=3 SV=1 >sp A1TTM6 SYS_ACIAC SerinetRNA ligase OS=Acidovorax citrulli (strain	36.21 48.487
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81 A6GYJ4	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazole- succinocarboxamide synthase OS=Flavobacterium psychrophilum (strain JIP02/86 / ATCC 49511) GN=purC PE=3 SV=1 >sp A1TTM6 SYS_ACIAC SerinetRNA ligase OS=Acidovorax citrulli (strain AAC00-1) GN=serS PE=3 SV=1	36.21
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81 A6GYJ4 A1TTM6	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazole- succinocarboxamide synthase OS=Flavobacterium psychrophilum (strain JIP02/86 / ATCC 49511) GN=purC PE=3 SV=1 >sp A1TTM6 SYS_ACIAC SerinetRNA ligase OS=Acidovorax citrulli (strain AAC00-1) GN=serS PE=3 SV=1 >sp A0QWW2 G3P_MYCS2	36.21 48.487 35.947
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81 A6GYJ4 A1TTM6	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazole- succinocarboxamide synthase OS=Flavobacterium psychrophilum (strain JIP02/86 / ATCC 49511) GN=purC PE=3 SV=1 >sp A1TTM6 SYS_ACIAC SerinetRNA ligase OS=Acidovorax citrulli (strain AAC00-1) GN=serS PE=3 SV=1 >sp A0QWW2 G3P_MYCS2 Glyceraldebyde-3-phosphate	36.21 48.487 35.947
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81 A6GYJ4 A1TTM6	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazole- succinocarboxamide synthase OS=Flavobacterium psychrophilum (strain JIP02/86 / ATCC 49511) GN=purC PE=3 SV=1 >sp A1TTM6 SYS_ACIAC SerinetRNA ligase OS=Acidovorax citrulli (strain AAC00-1) GN=serS PE=3 SV=1 >sp A0QWW2 G3P_MYCS2 Glyceraldehyde-3-phosphate	36.21 48.487 35.947
A6L1L8;Q8A0M6;Q64YB4;Q5LHE6 ;B0S104;A4XKP4;A5UY81 A6GYJ4 A1TTM6	N AlaninetRNA ligase OS=Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / >sp A6GYJ4 PUR7_FLAPJ Phosphoribosylaminoimidazole- succinocarboxamide synthase OS=Flavobacterium psychrophilum (strain JIP02/86 / ATCC 49511) GN=purC PE=3 SV=1 >sp A1TTM6 SYS_ACIAC SerinetRNA ligase OS=Acidovorax citrulli (strain AAC00-1) GN=serS PE=3 SV=1 >sp A0QWW2 G3P_MYCS2 Glyceraldehyde-3-phosphate dehydrogenase OS=Mvasbacterium amagmetic	36.21 48.487 35.947

	(strain ATCC 700084 /	
	mc(2)155) GN=gapA PE=1	
	SV=1	
	>sp A0L8B0 HTPG_MAGMM	72.967
	Chaperone protein HtpG	
	OS=Magnetococcus marinus	
	(strain ATCC BAA-1437 / JCM	
	17883 / MC-1) GN=htpG PE=3	
A0L8B0	SV=1	
	>sp V3TQ67 FRDA_SERS3	66.096
	Fumarate reductase flavoprotein	
	subunit OS=Serratia sp. (strain	
	ATCC 39006) GN=frdA PE=1	
V3TQ67	SV=1	
	>sp T2G6Z9 APRA_DESGI	74.879
	Adenylylsulfate reductase	
	subunit alpha OS=Desulfovibrio	
T2G6Z9	gigas GN=aprA PE=1 SV=1	
	>sp Q9ZKQ6 Y944_HELPJ	13.4
	RutC family protein jhp_0879	
	OS=Helicobacter pylori (strain	
	J99 / ATCC 700824)	
	$GN=Jnp_0879$ PE=3	
	SV=1;>sp 025598 Y944_HELP	
	Y Ruto family protein HP_0944	
	US=Helicobacter pylori (strain	
007k06.025509	AICC 700392720095)	
Q92KQ0,025596		40.40
	NADD specific dutamate	49.49
	debydrogopaso	
	OS-Helicobacter pylori (strain	
	199 / ATCC 700824) GN-adbA	
	DE-3	
	SV-1	
	V NADP-specific dutamate	
	dehydrogenase	
	OS=Helicobacter pylori (strain	
	ATCC 700392 / 26695)	
Q97KD8·P55990	GN=adhAPE=3SV=	
	>splQ9ZFV8IMAO2_SALTY	82.321
	NADP-dependent malic enzyme	
	OS=Salmonella typhimurium	
	(strain LT2 / SGSC1412 / ATCC	
Q9ZFV8	700720) GN=maeB PE=3 SV=2	
	>sp Q9ZF60 GLTI_SALTY	33.402
	Glutamate/aspartate import	
	solute-binding protein	
	OS=Salmonella typhimurium	
	(strain LT2 / SGSC1412 / ATCC	
Q9ZF60	700720) GN=gltI PE=3 SV=3	
	>sp Q9ZF44 PUR2_LACLA	44.288
	Phosphoribosylamineglycine	
	ligase OS=Lactococcus lactis	
	subsp. lactis (strain IL1403)	
Q9ZF44;Q6ACE6;Q92AP4;Q8Y6C	GN=purD PE=3	
6;Q71YQ4;Q9KF52;P12039	SV=2;>sp Q6ACE6 PUR2_LEIX	

	X Phosphoribosylamineglycine	
	ligase OS=Leifsonia xyli subsp.	
	xyli (strain CTCB07) GN=purD	
	PE=3 SV=1;>sp Q9	
Q9ZF28;Q9ZF25;A4WEY3;Q3YX7		98.094
3;Q32BG5;B7LR37;B2U207;Q9ZF3	>sp Q9ZF28 IF2_KLEOX	
1;Q8Z3H7;Q5PLB0;Q57JH9;C0PZ	Translation initiation factor IF-2	
54:B5REN6:B5QZV8:B5FI13:B5F6	OS=Klebsiella oxytoca GN=infB	
T8:B5BGJ5:B4TWD8:B4TJ06:B4T6	PE=3	
78:A9N732:A9MP36:A8AQ58:B5X	SV=1 >splQ9ZE25IIE2 ENTCL	
SX4:A6TEI7:01R6H0:00TCI 11:P5	Translation initiation factor IE-2	
9587 P0 A 706 P0 A 705 C / 7 S O 0 B 7	OS-Enterobacter cloacae	
	CN-infR DE-2	
	GN=IIIBFE=3 GV=1: on $AAVEV2IE2$ ENT29	
	$5V = 1, >Sp A4VV = 1S IF2_ENTSO$	
5Y 558; B1XGY0; B1LFS0; B11QV3; A	I ranslation initiation factor IF-2	
8A4Y4;A7ZS65;A1AG73	OS=Ent	
	>splQ924H7 HTRA_LACHE	42.646
	Serine protease Do-like HtrA	
	OS=Lactobacillus helveticus	
Q9Z4H7	GN=htrA PE=3 SV=2	
Q9XCA1;B5XTI2;A6TFL4;A4W527;		34.965
Q83PP2;Q5PC05;Q3YVY3;Q329N	>sp Q9XCA1 HLDD_KLEPN	
6;Q31V04;Q0SYE8;P67913;P6791	ADP-L-glycero-D-manno-	
2:B7LVH8:B5RGG8:B5R5E3:B5FLI	heptose-6-epimerase	
8:B5EXC5:B5BHZ3:B4TZW1:B4T9	OS=Klebsiella pneumoniae	
A3:B4SXC1:B2U5D7:A9MVL2:A9M	GN=hldD PE=3	
KQ6:A7MQ91:Q8FCA0:Q1R4X2:Q	SV=2:>splB5XTI2 HLDD_KLEP	
0TBI8:P67911:P67910:C47XI 1:B7	3 ADP-I - alvcero-D-manno-	
	bentose-6-enimerase	
7MEI2:P7M4A5:P7I 745:P6I2 10:P5	OS-Klobsiella proumoniae	
VM/C0.D1V052.D117U2.A0A602.A7	(stroin 242) CN-bldD DE-2	
	SV=1,>SP A61FL4 HLDD_KLEP	
0Q1V2;A8ARK8;B4F132;B1LK58	7 ADP-L-g	00.04
	>sp Q9X6N0 DSBA_SALT	22.91
	Thiol:disulfide interchange	
	protein DsbA OS=Salmonella	
	typhi GN=dsbA PE=3	
	SV=1;>sp P0A2I0 DSBA_SALE	
	N Thiol:disulfide interchange	
	protein DsbA OS=Salmonella	
	enteritidis GN=dsbA PE=3	
	SV=1;>sp P0A2H9 DSBA SALT	
Q9X6N0;P0A2I0;P0A2H9	Y Thiol:disulfide interchand	
	>splQ9WY52IPFKA THEMA	34,487
	ATP-dependent 6-	•
	phosphofructokinase	
	OS=Thermotoga maritima	
	(strain ATCC /3580 / MSB8 /	
	DSM 3100 / ICM 1000)	
	$CN = nfk \Lambda DE = 1$	
	OV=1,>SPIDENOKEIPTKA_IHE	
	nin AIP-dependent 6-	
	pnospnotructokinase	
;A8MLYU;A5IKL2;Q8D1X6;Q9L9E3	US=I hermotoga neapolitana	
;QU3KB7	(strain ATCC 49049 / DS	
	>splQ9S508 PHZB2_PSEAE	19.027
Q9S508;Q02L47;O69753;Q51788	Phenazine biosynthesis protein	

aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=phzB2 PE=1 SV=1;>splQ02L47 PHZB2_PSE AB Phenazine biosynthesis protein PhzB 34.62 ATP-dependent 6- phosphortuctokinase 34.62 ATP-dependent 6- phosphortuctokinase 34.62 QSRWN1 PE=3 Q9RWN1 PE=3 SV=7;splB2C49 Stossonal protein L11 OS=Ureaplasm ureatylicum serovar 3 (strain ATCC 700970) GN=rplK PE=3 Q9PL96;B5ZC49;B1AJI2 Sv=1;splB2C49 RL11_UREU 1 50S ribosomal protein L11 OS=Ureaplasm ureatylicum serovar 10 (strain ATCC 33699 / Western) GN=rplK PE=3 Q9PL96;G82Z6;Q3E7EKA6; GS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 Q9PL96;Q82282 SV=1;splQ2282 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3		PhzB 2 OS=Pseudomonas	
Application Application Application Application Application Application Application Application Application Application Application Application Application Application Application Application		aeruginosa (strain ATCC 15692	
JDM 14947 / LMG 12228 / 1C / PRS 101 / PAO1) GN=phzB2 PE=1 JDM 14947 / LMG 12228 / 1C / PRS 101 / PAO1) GN=phzB2 SV=1;>splQ02L47 PHZB2_PSE AB Phenazine biosynthesis protein PhzB 34.62 ATP-dependent 6- phosphofructokinase OS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM 16871 / LMG 4051 / NBC 15346 / NCIMB 9279 / R1 / VKM P1422) GN=plKA 34.62 Q9RWN1 PF=3 SV=2 > SeplQ9REU4[CH60_BIFAA 60 KDa chaperonin OS=Bifdobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=groL PE=3 56.247 Syr2 >splQ9PEU9[RL11_UREPA 16.336 56.247 OS=Bifdobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=groL PE=3 16.336 Syr1;splB5ZC49[RL11_UREPA 50S ribosomal protein L11 OS=Ureaplasma ureatyltcum serovar 10 (strain ATCC 700970) GN=rplK PE=3 SV=1;splB5ZC49[RL11_UREU 1 50S ribosomal protein L11 OS=Ureaplasma ureatyltcum serovar 10 (strain ATCC 33699 / Western) GN=rplK PE=3 SV=1;splB2 21.068 Q9PU9;B5ZC49;B1AJI2 SsplQ9PL96[HT];S,CHLMU Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 21.068 Q9PL86;Q82282 SV=1 ;splQ92282]H3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 70.844 SV=1;splQ82282]H3_CHLCV Translation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1 ;splQ92326[THLC_SALTY Phosphomethylpyimidine synthase OS=Salmonella ty		/ DSM 22644 / CIP 104116 /	
Odmi 14947 / PA01) GM=pzB2 PRS 101 / PA01) GM=pzB2 PE=1 SV=1:>splQ02L47 PHZB2_PSE AB Phenazine biosynthesis protein PhzB >splQ9RWN1 PFKA_DEIRA ATP-dependent 6- phosphofructokinase QS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM 16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422) GN=pfkA PE=3 SV=2 >splQ9REU4[CH60_BIFAA 60 KDS=binobacterium adolescentis (strain ATCC 058-Bitiobacterium adolescentis (strain ATCC 058-Bitiobacterium adolescentis (strain ATCC 700970) GN=rpik PE=3 SV=1:>splBSZC49;B1AJI2 SV=1:>splBSZC49;B1AJI2 SV=1:>splQ9PL96[IF3_CHLMU Translation initiation factor IF-3 QS=Chlamydophila caviae (Strain APIC) GN=rpik PE=3 SV=1:>splQ9PL28[IF3_CHLVU Q9PPU9;B5ZC49;B1AJI2 SV=1:>splQ9P228[IF3_CHLVU Q9PPU9;B5ZC49;B1AJI2 SV=1:>splQ822B2[IF3_CHLCV Translation initi		1000022044700000000000000000000000000000	
PFE-1 SV=1;>sp[Q02L47]PHZB2_PSE AB Phenazine biosynthesis protein PhzB 34.62 Sep[Q9RWN1]PFKA_DEIRA ATP-dependent 6- phosphofructokinase QS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM 16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422) GN=pfkA 34.62 Q9RWN1 PE=3 SV=2 >sp[Q9REU4]CH60_BIFAA 60 KDa chaperonin QS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=groL PE=3 SV=3 56.247 Q9REU4;Q93M78;B8DTZ2;Q9EY7 6;Q8G879;B7GPR8;B3DPK4;Q9KI 57;Q9KI/71 Ssp[Q9PPU9]RL11_UREPA 50S ribosomal protein L11 QS=Ureaplasma parvum serovar 3 (strain ATCC 700970) GN=rpIK PE=3 SV=1;sp[B5ZC49]RL11_UREU 1 50S ribosomal protein L11 QS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rpIK PE=3 SV=1;sp[B2C49]RL11_UREU 1 50S ribosomal protein L11 QS=Chamydia muridarum (strain MOPh / Nigg) GN=infC PE=3 SV=1;sp[Q822B2]IF3_CHLMU Translation initiation factor IF-3 QS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1;sp[Q822B2]IF3_CHLCV Translation initiation factor IF-3 QS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1;sp[Q82326]THIC_SALTI Phosphomethylpyrimidine synthase QS=Salmonella typhimurum (strain IT2 / Phosphomethylpyrimidine synthase QS=Salmonella typhi 70.844		DDC 101 (DAO1) CN =====	
PFE1 SV=1:>splQ02L47 PHZB2_PSE AB Phenazine biosynthesis protein PhZB34.62SsplQ9RVN1 PFKA_DEIRA ATP-dependent 6- phosphofructokinase OS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM 16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422) GN=pfkA34.62Q9RWN1PE=3 SV=22Q9REU4;Q93M78;B8DTZ2;Q9F7 6;Q8G879;B7GPR8;B3DPK4,Q9K1 57;Q9KI71>splQ9REU4 CH60_BIFAA 60 kDa chaperonin OS=Bifdobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=groL PE=3 SV=316.336G9PEU9;B52C49;B1AJI2Sv=1seplQ9PPU9;RL1_UREU 1 505 ribosomal protein L11 OS=Ureaplasma urealyticum serovar 10 (strain ATCC 700970) GN=rpIK PE=3 SV=1:>splQ9PL86[IF3_CHLMU Translation initiation factor IF-3 OS=Chlamydophila caviae (strain MOPh / Nigg) GN=infC PE=3 SV=121.068Q9PL86;Q822B2SV=1>splQ9L917[THIC_SALTY Phosphomethylpyrimidine SGSC1412 / ATCC 700720) GN=rthC PE=3 SV=170.844Q9L86;Q822B2SV=1>splQ9L917[THIC_SALTY Phosphomethylpyrimidine Synthase OS=Salmonella typhimurum (strain MCP / Nigg) GN=infC PE=3 SV=170.844SPUPE9;B7T,ST3FMKS SFMS7:B7NK7:B7NKS7:B7NK57:B7NK6 SFMS7:B7NK57:B7NK5SV=170.844SPUPE9;B7T;B1LW06;B1IUQ 3;A8A744,A7ZUK9;A1AIG5SV=1SSL207102 SV=1SPUFE9;B7H1/C_SALTI Phosphomethylpyrimidine synthase OS=Salmonella typ		PRS 101 / PAOT) GN=pn2B2	
SV=1;>sp[Q3EU47]PH2E2_PSE AB Phenazine biosynthesis protein PhzB34.62ATP-dependent 6- phosphofructokinase OS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM 16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422] GN=pfkA34.62Q9RWN1PE=3 SV=2>sp[Q9REU4]CH60_BIFAA 60 KDa chaperonin OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 15703 / DSM 20083 / NCTC 1505 ribosomal protein L11 OS=Ureaplasma parvum serovar 10 (strain ATCC 33699 / Western) GN=rpIK PE=3 SV=1;>sp[B2C49]RL11_UREU 1 505 ribosomal protein L11 OS=Chlamydophila caviae (strain MOPn / Nigg) GN=infC PE=3 SV=1;>sp[Q42B2]IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=121.068Q9PL86(Q822B2 Q9PL86(RE3247,B31U0 3;Q0SY06;C022S6;B7LUK8;B5XY E4:B5FQK9;B5F1H7;B517MRC SV=1;>sp[Q422326]THIC_SALTI Phosphomethylpyrimidine synthase OS=Salmonella typhimum (strain IT2 / N0K6;A9MHD6;A6TG01;03K6X9; GN=thi			
AB Phenazine biosynthesis protein PhzB >splQ9RWN1 PFKA_DEIRA ATP-dependent 6- phosphorfuctokinase OS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM 16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422) GN=pfKA PE=3 SV=2 >splQ9REU4;Q93M78;B8DTZ2;Q9Y7 G;Q8GB79;B7GPR8;B3DPK4;Q9K1 57;Q9KI71 SylQ9REU4;Q93M78;B8DTZ2;Q9Y7 G;Q8GB79;B7GPR8;B3DPK4;Q9K1 57;Q9KI71 SylQ9PU9;R5ZC49;B1AJI2 Q9PPU9;B5ZC49;B1AJI2 Q9PPU9;B5ZC49;B1AJI2 Q9PPU9;B5ZC49;B1AJI2 Q9PPU9;B5ZC49;B1AJI2 Q9PPU9;B5ZC49;B1AJI2 Q9PL86;G822B2 Q9PL86;G822B2 Q9PL86;C82B2 Q9PL86;C82B		SV=1;>sp Q02L47 PHZB2_PSE	
protein PhzB ssplQ9RWN1 PFKA_DEIRA 34.62 ATP-dependent 6- phosphofructokinase 34.62 QS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM 16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422) GN=pfkA 5 Q9RWN1 PE=3 SV=2 5 Q9RUV1 PE=3 SV=2 5 Q9RUV1 PE=3 SV=2 5 Q9RUV1 SsplQ9REU4(CH60_BIFAA 60 KDa chaperonin QS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 56.247 Q9REU4:Q93M78;B8DTZ2;Q9EY7 15703 / DSM 20083 / NCTC 16.336 SV=3 Sv=3 505 ribosomal protein L11 OS=Ureaplasma parvum serovar 3 (strain ATCC 700970) GN=rplK PE=3 16.336 SV=1;>splQ9PPU9;RL11_UREU 1 505 ribosomal protein L11 OS=Ureaplasma parvum serovar 10 (strain ATCC 700970) GN=rplK PE=3 21.068 Q9PU9;B5ZC49;B1AJI2 SV=1;>splB5C49 RL11_UREU 1 505 ribosomal protein L11 21.068 Q9PU9;B5ZC49;B1AJI2 SV=1;>splQ822B2 IF3_CHLK0V Translation initiation factor IF-3 OS=Chlamydia muridarum (strain GPIC) GN=infC PE=3 70.844 Q9PL86;Q822B2 SV=1 SV=1 29 Q9PL86;G822B2 SV=1 70.844 splQ9L97/THIC_SALTY Phosphomethylpyrimidine synthase OS=Salmonella typhimurium (strain LT2 / SV=1;>splQ8230[THI		AB Phenazine biosynthesis	
>sp[Q9RWN1 PFKA_DEIRA ATP-dependent 6- phosphofructokinase OS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM 16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422) GN=pfkA PE=3 SV=234.62Q9RWN1PE=3 SV=2Svel2Q9REU4;Q93M78;B8DT22;Q9EY7 6;Q8G879;B7GPR8;B3DPK4;Q9K1 57;Q9KI71Svel356.247Q9REU4;Q93M78;B8DT22;Q9EY7 6;Q8G879;B7GPR8;B3DPK4;Q9K1 57;Q9KI7115703 / DSM 20083 / NCTC 11814 / E194a) GN=groL PE=3 SV=316.336SV=3>sp[Q9PPU9]RL11_UREPA 50S ribosomal protein L11 OS=Ureaplasma parvum serovar 10 (strain ATCC 700970) GN=rpIK PE=3 SV=1:>sp]B5ZC49[RL11_UREU 1 50S ribosomal protein L11 OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rpIK PE=3 SV=1:>sp[Q9PL9[IF3_CHLMU Translation initiation factor IF-3 OS=Chlamydpina caviae (strain MOPn / Nigg) GN=infC PE=3 SV=1:>sp[Q9PL86[IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydpina caviae (strain GPIC) GN=infC PE=3 SV=1:>sp[Q9L917[THIC_SALTY Phosphomethylpyrimidine synthase OS=Salmonella typhimurum (strain LT2 / SOGSC1412 / ATCC 700720) GR=F1/R91K37:B71T5:B7MRC GN=thiC PE=3 SV=1:>sp[Q9L917[THIC_SALTY Phosphomethylpyrimidine synthase OS=Salmonella typhimurum (strain LT2 / SGSC1412 / ATCC 700720) GR=S77;00TA71;P30136;C5A0T5; GN=thiC PE=370.844 SSC112/SALT1 Phosphomethylpyrimidine synthase OS=Salmonella typhimurum (strain LT2 / SV=1:>sp[Q9L917[THIC_SALTY Phosphomethylpyrimidine synthase OS=Salmonella typhimurum (strain LT2 / SSGSC1412 / ATCC 700720) GN=thiC PE=370.844 SSC1412 / ATCC 700720) GN=thiC PE=3Q9PL86;Q822B2SV=1 SSV=1 SSD209;B1XBZ7;B1LNU6;B1NUQ SNM2326[THIC_PAIL5]SV=1 SSD232		protein PhzB	
ATP-dependent 6- phosphofructokinase OS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM 16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422) GN=pfkA PE=3 SV=2 Q9RWN1 PE=3 SV=2 Q9RWN1 PE=3 SV=2 Q9RUV1 Ssp[Q9REU4]CH60_BIFAA 60 KDa chaperonin OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=groL PE=3 SV=2 56.247 Q9REU4;Q93M78;B8DTZ2;Q9EY7 6;Q8G879;B7GPR8;B3DPK4;Q9KI 57;Q9KI71 15703 / DSM 20083 / NCTC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=groL PE=3 SV=3 16.336 SV=3 SV=43 SV=43 16.336 G9REU4;Q93M78;B8DTZ2;Q9EY7 6;Q8G879;B7GPR8;B3DPK4;Q9KI 11814 / E194a) GN=groL PE=3 SV=1>sp[G9PPU9]RL11_UREPA 50S ribosomal protein L11 OS=Ureaplasma parvum serovar 3 (strain ATCC 700970) GN=rplK PE=3 SV=1;>sp[B5ZC49]RL11_UREU 1 50S ribosomal protein L11 OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rplK PE=3 SV=1;>sp[Q9PL86]IF3_CHLMU Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1;>sp[Q9L917]THIC_SALTY Phosphomethylpyrimidine synthase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) Q8FB77;Q0TA71;P30136;C5A0T5; GN=thiC PE=1 SV=1;>sp[Q82282[THC_SALTI Phosphomethylpyrimidine synthase OS=Salmonella typhimurium enditapprimidine synthase OS=Salmonella typhi synthase OS=Salmonella typhi synthase OS=Salmonella typhi synthase OS=Salmonella typhi Q9PL86;WBZF17;B1LN06;B1IUQ 3;C8A744;A7ZUK9;A1AIG5 SV=1;>sp[Q8226]THC_SALTI Phosphomethylpyrimidine		>sp Q9RWN1 PFKA_DEIRA	34.62
phosphofructokinase OS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM 16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422) GN=pfkA Q9RWN1 PE=3 SV=2 >sp[Q9REU4)CH60_BIFAA 60 KDa chaperonin OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=groL PE=3 SV=3 56.247 Q9REU4;Q93M78;B8DTZ2;Q9EY7 6;Q8G879;B7GPR8;B3DPK4;Q9KI 57;Q9KI71 15703 / DSM 20083 / NCTC 11814 / E194a) GN=groL PE=3 SV=3 16.336 SV=3 sp[Q9PPU9]RL11_UREPA 50S ribosomal protein L11 OS=Ureaplasma parvum serovar 3 (strain ATCC 700970) GN=rpIK PE=3 SV=1;>sp[B5ZC49;BL11_UREU 1 50S ribosomal protein L11 OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rpIK PE=3 SV=1;>sp[Q9PL86[F3_CHLMU Translation initiation factor IF-3 OS=Chlamyda muridarum (strain GPIC) GN=infC PE=3 SV=1;>sp[Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1;>sp[Q9L96]F17HIC_SALTY Phosphomethylpyrimidine ynthase OS=Salmonella typhimurium (strain LT2 / NOK6;A9MHD6;A8TGQ1;Q8X6X9; GSC1412 / ATCC 700720) GN=F1/SPTNS7;B7NFT5;B7MRC 0;B7MIY0;B7M7Q3;B7LA8;B61KS 5;B5Z090;B1XBZ7;B1LNU6;B1UQ 3;A8A794;A7ZUK9;A1AIG5 70.844		ATP-dependent 6-	
OS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM 16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422) GN=ptkA PE=3 SV=2 O9RWN1 PE=3 SV=2 >splQ9REU4(CH60_BIFAA 60 kDa chaperonin OS=Bifdobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 6;Q86879;B7GPR8;B3DPK4;Q9KI 57;Q9KI71 56.247 kDa chaperonin OS=Bifdobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 15703 / DSM 20083 / NCTC 15703 / DSM 20083 / NCTC 15703 / DSM 20083 / NCTC 6;Q86879;B7GPR8;B3DPK4;Q9KI 11814 / E194a) GN=groL PE=3 SV=3 16.336 50S ribosomal protein L11 OS=Ureaplasma parvum serovar 3 (strain ATCC 700970) GN=rplK PE=3 SV=1;>splB2C49;B1AJI2 16.336 50S ribosomal protein L11 OS=Ureaplasma parvum serovar 10 (strain ATCC 700970) GN=rplK PE=3 SV=1;>splB 16.336 50S ribosomal protein L11 OS=Ureaplasma parvum serovar 10 (strain ATCC 70369 / Western) GN=rplK PE=3 SV=1;>splB 21.068 Translation initiation factor IF-3 OS=Chlamydghila caviae (strain GPIC) GN=infC PE=3 SV=1;>splQ822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydghila caviae (strain GPIC) GN=infC PE=3 SV=1; SV=1;>splQ822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydghila caviae (strain GPIC) GN=infC PE=3 SV=1 SV=1 SV=1 SV=1 SV=1 SV=1 SV=1 SV=1		phosphofructokinase	
(strain ATCC 13939 / DSM 20539 / JCM 16871 / LMG 4051 /NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422) GN=pfkA PE=3 SV=2 >sp Q9REU4 CH60_BIFAA 60 kDa chaperonin QS=Bifidobacterium adolescentis (strain ATCC 03=Bifidobacterium adolescentis (strain ATCC 57;Q9KI71 Sv=3 Sv=3 Sv=3 Sv=3 Sv=3 Sv=3 Sv=3 Sv=3 Sv=1:>sp Q9PPU9 RL11_UREPA 50S ribosomal protein L11 OS=Ureaplasma parvum serovar 3 (strain ATCC 700970) GN=rplK PE=3 SV=1:>sp B5ZC49 RL11_UREU 1 50S ribosomal protein L11 OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rplK PE=3 Q9PPU9;B5ZC49;B1AJI2 SV=1:>sp Q9PL86 IF3_CHLMU Translation initiation factor IF-3 OS=Chlamyda muridarum (strain MOPn / Nigg) GN=infC PE=3 Q9PL86;Q822B2 SV=1 Q9PL86;Q822B2 SV=1 Q9PL86;Q822B2 SV=1 Q9PL86;Q822B2 SV=1 Q9L917;QR2326;Q83PB8;Q5PKA6; Q57H61;Q3YU20;Q32AG7;Q31U0 3;Q0SY06;C0Q2S6;B7LHK8;B5XY splQ9L917[THIC_SALTY Phosphomethylpyrimidine synthase OS=Salmonella typhimurium (strain LT2 / NOK6;A9MHD6;A6TGQ1;Q8X6X9; GSC1412 / ATCC 700720) 70.844 Q8FB77;007A71;P3036;C5A075; B7UPE9;B7NRS7;B		OS=Deinococcus radiodurans	
20539 / JCM 16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422) GN=pfkA Q9RWN1 PE=3 SV=2 >splQ9REU4]CH60_BIFAA 60 kDa chaperonin OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 6;Q8G879;B7GPR8;B3DPK4;Q9KI 57;Q9KI71 56.247 SV=3 1814 / E194a) GN=groL PE=3 SV=3 16.336 SV=3 splQ9PPU9]RL11_UREPA 50S ribosomal protein L11 OS=Ureaplasma parvum serovar 3 (strain ATCC 700970) GN=rplK PE=3 SV=1;>splB5ZC49]RL11_UREU 1 50S ribosomal protein L11 OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Weestern) GN=rplK PE=3 SV=1;>splB5ZC49;B1AJI2 21.068 Q9PPU9;B5ZC49;B1AJI2 >splQ9PL86]IF3_CHLMU Translation initiation factor IF-3 OS=Chlamydia muridarum (strain MoPn / Nigg) GN=infC PE=3 SV=1 21.068 Q9PL86;Q822B2 SV=1 21.068 Q9PL86;Q822B2 SV=1 70.844 Q9PL86;Q822B2 SV=1 70.844 <t< td=""><td></td><td>(strain ATCC 13939 / DSM</td><td></td></t<>		(strain ATCC 13939 / DSM	
/ NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422) GN=pfkA Q9RWN1 PE=3 SV=2 >sp[Q9REU4;Q93M78;B8DTZ2;Q9EY7 56.247 6;Q8G879;B7GPR8;B3DPK4;Q9KI 15703 / DSM 20083 / NCTC 57;Q9KI71 15703 / DSM 20083 / NCTC S7;Q9KI71 15703 / DSM 20083 / NCTC S7;Q9KI71 16.336 SV=3 sp[Q9PPU9]RL11_UREPA S0S ribosomal protein L11 OS=Ureaplasma parvum serovar 3 (strain ATCC 700970) GN=rplK PE=3 SV=1;>sp[B5ZC49]RL11_UREU SV=1;>sp[B5ZC49;B1AJI2 SV=1;>sp[B 20PPU9;B5ZC49;B1AJI2 SV=1;>sp[B SV=1;>sp[Q9PL86][F3_CHLMU 21.068 Translation initiation factor IF-3 OS=Chlamydophila caviae 21.068 Q9PPU9;B5ZC49;B1AJI2 SV=1;>sp[Q9L96][F3_CHLMU 21.068 SV=1;>sp[Q9L96][F3_CHLMU 21.068 Q9PL86;Q822B2 SV=1 21.068 Q9PL86;Q822B2 SV=1 70.844 Q9L917;Q82326;Q83PB8;Q5PKA6; G3CNG70471;P30136;C5A0T5; SV=1 70.844 SQU917;Q82326;Q83PB8;Q5PKA6; G3C1412 / ATCC 700720) SGSC1412 / ATCC 700720) 70.844 SQBFD77;00TA71;P3013;6;C5A0T5; SV=1		20539 / JCM 16871 / LMG 4051	
R1 / VKM B-1422) GN=pfkA PE=3 SV=2 >splQ9RWN1 >splQ9REU4 CH60_BIFAA 60 kDa chaperonin OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 15703 / DSM 20083 / NCTC 16005 ribosomal protein L11 0S=Ureaplasma urealyticum serovar 10 (strain ATCC 7007070) GS=Chlamyda muridarum (strain MOPn / Nigg) GN=infC PE=3 SV=1 16.336 Q9PL86;Q822B2 SV=1 21.068 21.068 Q9PL86;Q822B2 SV=1 21.068 21.068 Q9PL86;Q822B2 SV=1 21.068 21.068 Q9PL86;Q822B2 SV=1 70.844 21.068 Q9PL86;Q822B2 SV=1 21.068 21.068 Q9PL86;Q822B2 SV=1 70.844 21.068 Q9PL86;Q822B2 SV=1 SSC1412 / ATCC 700720) 21.068 Q9PL86;Q822B2		/ NBRC 15346 / NCIMB 9279 /	
Q9RWN1 PE=3 SV=2 >sp]Q9REU4]CH60_BIFAA 60 KDa chaperonin OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 6;Q8G879;B7GPR8;B3DPK4;Q9KI 57;Q9KI71 56.247 Q9REU4;Q93M78;B8DTZ2;Q9EY7 6;Q8G879;B7GPR8;B3DPK4;Q9KI 57;Q9KI71 15703 / DSM 20083 / NCTC 15703 / DSM 20083 / NCTC 18114 / E194a) GN=groL PE=3 SV=3 16.336 SV=3 >sp]Q9PPU9]RL11_UREPA 50S ribosomal protein L11 OS=Ureaplasma parvum serovar 3 (strain ATCC 700970) GN=rpIK PE=3 SV=1;>sp]BSZC49]RL11_UREU 1 50S ribosomal protein L11 OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rpIK PE=3 SV=1;>sp]B 21.068 Q9PPU9;B5ZC49;B1AJI2 Sv=1;>sp]B SSP]Q9PL86[JF3_CHLMU Translation initiation factor IF-3 OS=Chlamydia muridarum (strain MoPn / Nigg) GN=infC PE=3 SV=1;>sp]Q822B2]IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1 21.068 Q9PL86;Q822B2 SV=1 SSP]Q9L917[THIC_SALTY Phosphomethylpyrimidine synthase OS=Salmonella typhimurium (strain LT2 / NOK6;A9MHD6;A6TGQ1;Q8X63; SGSC1412 / ATCC 700720) Q8FB77;Q0TA71;P30136;C5A0T5; B7UPE9;B7NRS7;B7NFT5;B7MRC 0;B7MIY0;B7M7Q3;B7LA88;B6I5K 5;B5Z09;B1XBZ7;B1LNU6;B1LWQ 3;A8A794;A7ZUK9;A1AIG5 70.844		R1 / VKM B-1422) GN=pfkA	
JostinitionJostinitionSoliditySoliditySoliditySoliditySoliditySoliditySoliditySoliditySolidityQ9REU4;Q93M78;B8DTZ2;Q9EY715703 / DSM 20083 / NCTC11814 / E194a) GN=groL PE=3S7;Q9KI71Sv=3SV=3SylgSylgSylgSoliditySylgSoliditySolidity <td< td=""><td>Q9RWN1</td><td>PE=3 SV=2</td><td></td></td<>	Q9RWN1	PE=3 SV=2	
Openetics (protection)Openetics (protection)Openetics (protection)Q9REU4;Q93M78;B8DTZ2;Q9EY7(308237);B7GPR8;B3DPK4;Q9KI15733 / DSM 20083 / NCTC6;Q8G879;B7GPR8;B3DPK4;Q9KI11814 / E194a) GN=groL PE=316.33657;Q9KI71>sp[Q9PPU9]RL11_UREPA16.33657;Q9KI71>sp[Q9PPU9]RL11_UREPA16.33650S ribosomal protein L11OS=Ureaplasma parvum serovar 3 (strain ATCC 700970)16.376GN=rplK PE=3SV=1;>sp[B5ZC49]RL11_UREU150S ribosomal protein L11OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rplK PE=321.068Q9PPU9;B5ZC49;B1AJI2SV=1;>sp[B21.068SV=1;>sp[B>sp[Q9PL86]IF3_CHLMU Translation initiation factor IF-3 OS=Chlamydia muridarum (strain MOPn / Nigg) GN=infC PE=321.068Q9L917;Q8Z326;Q83PB8;Q5PKA6; S7H61;Q3YU20;Q32AG7;Q31U0 3;Q0SY06;COQ2S6;B7LUK8;B5XY E4;B5FQK9;B5F1H7;B5BR3;B4T QK4;B4TCT3;B4T0Z6;B2TW11;A9 NOK6;A9MHD6;A6TGQ1;Q8X639; GR=thic PE=1SSI-11 SGSC1412 / ATCC 700720) GN=thic PE=3Q9L917;Q8Z326;Q83PB8;Q5PKA6; S7H215;B7MRC Q3FMY0;B7M7Q3;B7LA88;B615K S;B52009;B1XBZ7;B7L85;B7MRC Q3FMY0;B1XBZ7;B1LNU6;B1IUQ 3;Q8Y06;C1412 / ATCC 700720)70.844SPICPE9;B7NRS7;B7NF5;B7MRC S7H15;B7MRC S7H1848;B615K Synthase OS=Salmonella typhi 3;A8A794;A7ZUK9;A1AIG5GN=thic PE=3		>splQ9REU4ICH60_BIEAA.60	56 247
Note dispersive OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=groL PE=3 SV=337;Q9KI71SV=3>sp[Q9PPU9]RL11_UREPA 50S ribosomal protein L11 OS=Ureaplasma parvum serovar 3 (strain ATCC 700970) GN=rplK PE=3 SV=1;>sp[B5ZC49]RL11_UREU 1 50S ribosomal protein L11 OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rplK PE=3 SV=1;>sp[BQ9PPU9;B5ZC49;B1AJI2SV=1;>sp[B209PPU9;B5ZC49;B1AJI2SV=1;>sp[B209PPU9;B5ZC49;B1AJI2SV=1;>sp[B209PL86;Q822B2SV=1;>sp[Q9PL86]IF3_CHLMU Translation initiation factor IF-3 OS=Chlamydphila caviae (strain GPIC) GN=infC PE=3 SV=1;>sp[Q9L9I7]THIC_SALTY Phosphomethylpyrimidine synthase OS=Salmonella typhimurium (strain LT2 / N0K6;A9MHD6;A6TGQ1;Q8X6X9; SGSC1412 / ATCC 700720) Q8FB77;Q0TA71;P30136;C5A0T5; B7UPE9;B7MRS7;B7NFT5;B7MRC Q9TAT2;P3NR7Q3;B7LA88;B615K Syntase OS=Salmonella typhi 3;Q8A794;A7ZUK9;A1AIG570.844		kDa chaperonin	00.2 17
ODENDINGENEMANT adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 15703 / DSM 20083 / NCTC 1580 / NCTC Solution in the interval of the interval o		OS-Bifidobacterium	
Q9REU4;Q93M78;B8DTZ2;Q9EY7 15703 / DSM 20083 / NCTC 6;Q8G879;B7GPR8;B3DPK4;Q9KI 15703 / DSM 20083 / NCTC 57;Q9KI71 1814 / E194a) GN=groL PE=3 SV=3 >sp]Q9PPU9 RL11_UREPA 50S ribosomal protein L11 OS=Ureaplasma parvum Servar 3 (strain ATCC 700970) GN=rplK PE=3 SV=1;>sp]B5ZC49 RL11_UREU 150S ribosomal protein L11 OS=Ureaplasma urealyticum serovar 3 (strain ATCC 33699 / Western) GN=rplK PE=3 SV=1;>sp]B5ZC49;B1AJI2 SV=1;>sp]Q9PL86][F3_CHLMU Translation initiation factor IF-3 OS=Chlamyda muridarum (strain GPIC) GN=infC PE=3 SV=1;>sp]Q822B2][F3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1 SV=1 Q9L86;Q822B2 SV=1 Q9L917;Q8Z326;Q83PB8;Q5PKA6; SS=QQ9L917]THIC_SALTY Q3QSY06;C0Q2S6;B7LUK8;B5XY Phosphomethylpyrimidine Synthase OS=Salmonella typhimurum (strain LT2 / Q9K4842T3;B4T0Z6;B2TW11;A9 SV=1 Q9L967;Q1X077;P30136;C5A0T5; SV=1:>sp[Q8226]THIC_SALTY Phosphomethylpyrimidine synthase OS=Salmonell		adolescentis (strain ATCC	
Gastages B3DPK4;Q3KI 11814 / E194a) GN=goL PE=3 57;Q9KI71 SV=3 16.336 SygQPPU9 RL11_UREPA 16.336 50S ribosomal protein L11 OS=Ureaplasma parvum serovar 3 (strain ATCC 700970) GN=rplK PE=3 SV=1:>splB5ZC49 RL11_UREU 150S ribosomal protein L11 OS=Ureaplasma urealyticum serovar 3 (strain ATCC 33699 / Western) GN=rplK PE=3 SV=1:>splB2 Q9PPU9;B5ZC49;B1AJI2 SV=1:>splQ9PL86 IF3_CHLMU Translation initiation factor IF-3 OS=Chlamydia muridarum (strain MOPn / Nigg) GN=infC PE=3 SV=1:>splQ822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1 SV=1 Q9PL86;Q822B2 SV=1 Q9PL86		15703 / DSM 20083 / NCTC	
Operation Style Style Style 57;Q9KI71 SV=3 16.336 Syp[Q9PPU9]RL11_UREPA 16.336 50S ribosomal protein L11 OS=Ureaplasma parvum Serovar 3 (strain ATCC 700970) GN=rpIK PE=3 SV=1;>sp[B5ZC49]RL11_UREU 150S ribosomal protein L11 OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rpIK PE=3 SV=1;>sp[B Q9PPU9;B5ZC49;B1AJI2 SV=1;>sp[Q9PL86]IF3_CHLMU Translation initiation factor IF-3 OS=Chlamyda muridarum (strain MoPn / Nigg) GN=infC PE=3 SV=1;>sp[Q82282]IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1;>sp[Q9L917]THIC_SALTY Phosphomethylpyrimidine Q9L917;Q8Z326;Q83PB8;Q5PKA6; >sp[Q9L917]THIC_SALTY Q5+G00226;B7LUK8;B5XY Phosphomethylpyrimidine Q4;B5FQ49;B5F1H7;B5BJR3;B4T Synthase OS=Salmonella Q4;B4TCT3;B4T026;B2TW11;A9 SGSC1412 / ATCC 700720) Q8FB77;Q0TA71;P30136;C5A0T5; GN=thic PE=1 B7/W19;B7M7Q3;B7LA83;B6I5K Synthase OS=Salmonella Yphimu	6:08G879:B7GPR8:B3DPK4:09KI	11814 / E194a) GN-arol PE-3	
Srj.Q3PPU9]RL11_UREPA16.336>splQ9PPU9]RL11_UREPA16.33650S ribosomal protein L11OS=Ureaplasma parvum serovar 3 (strain ATCC 700970) GN=rplK PE=316.336SV=1;>splB5ZC49]RL11_UREU150S ribosomal protein L11OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rplK PE=321.068Q9PPU9;B5ZC49;B1AJI2SV=1;>splBSV=1;>splBSV=1;>splBQ9PPU9;B5ZC49;B1AJI2SV=1;>splBSV=1;>splQ9PL86[IF3_CHLMU21.068Translation initiation factor IF-3 OS=Chlamydia muridarum (strain MoPn / Nigg) GN=infC PE=321.068SV=1;>splQ822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=170.844Q9PL86;Q822B2SV=170.844Q57H61;Q3YUZ0;Q32AG7;Q31U0 3;Q0SY06;C0Q2S6;B7LUK8;B5XY Phosphomethylpyrimidine synthase OS=Salmonella typhimurium (strain LT2 / typhimurium (strain LT2 / typhimurium (strain LT2 / typhimurium (strain LT2 / N0K6;A9MHD6;A6TGQ1;Q8X6X9; SGSC1412 / ATCC 700720) Q8FB77;Q0TA71;P30136;C5A0T5; GN=thiC PE=170.841FUPE9;B7NRS7;B7NF5;B7MRC SJB27;B1LNU6;B1IUQ 3;A8A794;A7ZUK9;A1AIG5SV=1SV=1;SsplQ82326]THIC_SALTI Phosphomethylpyrimidine synthase OS=Salmonella typhi 3;A8A794;A7ZUK9;A1AIG5SV=1	57.09KI71	SV-3	
Spipes Provide		SV-0	16 336
OS=Ureaplasma parvum serovar 3 (strain ATCC 700970) GN=rplK PE=3 SV=1;>sp B5ZC49 RL11_UREU 1 50S ribosomal protein L11 OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rplK PE=3 SV=1;>sp BQ9PPU9;B5ZC49;B1AJI2SV=1;>sp BQ9PPU9;B5ZC49;B1AJI2SV=1;>sp BZ09PL86;Q822B2SV=1;>sp Q9PL86]IF3_CHLMU Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=121.068Q9PL86;Q822B2SV=1;>sp Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9FL86;Q822B2SV=170.844Q9FL86;Q822B2SV=170.844Q9FL86;Q822B2SV=170.844Q9FL86;Q822B2SV=170.844Q9FL86;Q822B2SV=170.844Q9FL86;Q822B2SV=170.844Q9FL86;Q822B2SV=1S0Q9FL86;Q822B2SU=170.844Q9FL86;Q822B2SU=1S0Q9FL86;Q822B2SU=1S0Q9FL86;Q822B2SU=1S0Q9FL86;Q822B2SU=1S0Q9FL86;Q822B2SU=1S0Q9FL86;Q822B2SU=1S0Q9FL86;Q822B2SU=1S0Q9FL86;Q822B2SU=1S0Q9FL86;Q822B2SU=1S0Q9FL86;Q822B2SU=1S0Q9FL86;Q82B2SU=1S0Q9FL86;Q82B2S0S		50S ribosomal protein L 11	10.550
Q9PPU9;B5ZC49;B1AJI2SV=1;>sp B5ZC49 RL11_UREU 1 50S ribosomal protein L11 OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rplK PE=3 SV=1;>sp B21.068Q9PPU9;B5ZC49;B1AJI2SV=1;>sp B21.068Q9PPU9;B5ZC49;B1AJI2SV=1;>sp B21.068Curreaplasma urealyticum serovar 10 (strain MoPn / Nigg) GN=infC PE=3 SV=1;>sp Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydai muridarum (strain GPIC) GN=infC PE=3 SV=1;>sp Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=170.844Q9PL86;Q822B2SV=170.844Q9L917;Q8Z326;Q83PB8;Q5PKA6; Q57H61;Q3YUZ0;Q32AG7;Q31U0 3;Q0SY06;C0Q2S6;B7LUK8;B5XY Phosphomethylpyrimidine synthase OS=Salmonella typhimurium (strain LT2 / NoK6;A9MHD6;A6TGQ1;Q8X6X9; GSC1412 / ATCC 700720) Q8FB77;Q0TA71;P30136;C5A0T5; GN=thiC PE=1 B7UPE9;B7NRS7;B7NFT5;B7MRC SV=1;>sp[Q8Z326]THIC_SALTI Phosphomethylpyrimidine Synthase OS=Salmonella typhimurium SV=1;>sp[Q8Z326]THIC_SALTI Phosphomethylpyrimidine Synthase OS=Salmonella typhimurium SV=1;>sp[Q8Z326]THIC_SALTI Phosphomethylpyrimidine SV=1;>sp[Q8Z326]THIC_SALTI Phosphomethylpyrimidine SV=1;>sp[Q8Z326]THIC_SALTI Phosphomethylpyrimidine Synthase OS=Salmonella typhimurium (strain LT2 / SV=1;>sp[Q8Z326]THIC_SALTI Phosphomethylpyrimidine Synthase OS=Salmonella typhimurium Synthase OS=Salmonella typhimurium synthase OS=Salmonella typhimurium synthase OS=Salmonella typhimurium synthase OS=Salmonella typhimurium synthase OS=Salmonella typhimurium synthase OS=Salmonella typhimurium synthase OS=Salmonella typhimurium synthase OS=Salmonella typhimurium synthase OS=Salmone		OS-Ureaplasma panum	
GN=rplK PE=3 GN=rplK PE=3 SV=1;>splB5ZC49 RL11_UREU 1 50S ribosomal protein L11 OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rplK PE=3 SV=1;>splBQ9PPU9;B5ZC49;B1AJI2SV=1;>splB209PL9;B5ZC49;B1AJI2SV=1;>splB209PL86 IF3_CHLMU Translation initiation factor IF-3 OS=Chlamyda muridarum (strain MOPn / Nigg) GN=infC PE=3 SV=1;>splQ822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=1209L86;Q822B2SV=121003SSC1412 / ATCC 700720)3;Q0SY06;C0Q2S6;B7LUK8;B5XYPhosphomethylpyrimidine4;B4TCT3;B4T0Z6;B2TW1;A9SSC1412 / ATCC 700720)Q8FB77;Q0TA71;P30136;C5A0T5;GN=thiC PE=1B7UPE9;B7NRS7;B7NFT5;B7MRC C);B7MIY0;B7M7Q3;B7LA88;B615KPhosphomethylpyrimidine5;B52090;B1XBZ7;B1LNU6;B1IUQ 3;A8A794;A7ZUK9;A1AIG5GN=thiC PE=3		corovar 3 (strain ATCC 700070)	
GN=IpIn FE=3SV=1;>sp B5ZC49 RL11_UREU1 50S ribosomal protein L11OS=Ureaplasma urealyticumserovar 10 (strain ATCC 33699 / Western) GN=rpIK PE=3Q9PPU9;B5ZC49;B1AJI2SV=1;>sp BSV=1;>sp B>sp Q9PL86 IF3_CHLMUTranslation initiation factor IF-3 OS=Chlamydia muridarum (strain MoPn / Nigg) GN=infC PE=3 SV=1;>sp Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1Q9PL86;Q822B2SSQ9PL86;Q822B2SV=1Q9PL86;Q822B2SSQ9PL86;Q822B2SSQ9PL86;Q822B2SSQ9PL86;Q822B2SSQ9PL86;Q822B2SSQ9PL86;Q822B2SSQ9PL86;Q822B2SSQ9PL86;Q822B2SSQ9PL86;Q822B2SSQ9PL86;Q822B2SSQ9PL86;Q822B2SSQ9PL86;Q82326;B7LK8;B5 </td <td></td> <td>CN-rolk DE-2</td> <td></td>		CN-rolk DE-2	
SV=1,>sp BS2C49;R11_ORE01 50S ribosomal protein L11OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rplK PE=3Q9PPU9;B5ZC49;B1AJI2SV=1;>sp B209PL86;Q82249;B1AJI2>sp Q9PL86 IF3_CHLMU Translation initiation factor IF-3 OS=Chlamydia muridarum (strain MOPn / Nigg) GN=infC PE=321.068Q9PL86;Q822B2SV=1;>sp Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SSC1412 / ATCC 700720)70.844Q9PL86;Q822B2SGSC1412 / ATCC 700720)70.844Q8FB7;Q0TA71;P30136;C5A0T5;GN=thiC PE=1B7UPE9;B7NR57;B7NFT5;B7MRC C);B7MIY0;B7M7Q3;B7LA88;B615KSV=1;>sp Q82326 THIC_SALTI Phosphomethylpyrimidine synthase OS=Salmonella typhi3;A8A794;A7ZUK9;A1AIG5GN=thiC PE=350			
Q9PPU9;B5ZC49;B1AJI2SV=1;>sp BQ9PPU9;B5ZC49;B1AJI2>Vestern) GN=rplK PE=3 SV=1;>sp B21.068SV=1;>sp Q9PL86 IF3_CHLMU Translation initiation factor IF-3 OS=Chlamydia muridarum (strain MoPn / Nigg) GN=infC PE=3 SV=1;>sp Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=121.068Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q9PL86;Q822B2SV=170.844Q57H61;Q3YUZ0;Q32AG7;Q31U0 3;Q0SY06;C0Q2S6;B7LUK8;B5XY E4;B5FQK9;B5F1H7;B5BJR3;B4T QK4;B4TCT3;B4T0Z6;B2TWI1;A9 N0K6;A9MHD6;A6TGQ1;Q8X6X9; Q8FB77;Q0TA71;P30136;C5A0T5; B7UPE9;B7NRS7;B7NFT5;B7MRC O;B7MIY0;B7M7Q3;B7LA88;B6I5K Sis5Z090;B1XBZ7;B1LNU6;B1IUQ synthase OS=Salmonella typhi Synthase OS=Salmonella typhi		1 50° ribosomol protoin 11	
OS=Ureaplasma urealyticum serovar 10 (strain ATCC 33699 / Western) GN=rplK PE=3 SV=1;>sp B21.068Q9PPU9;B5ZC49;B1AJI2>sp[Q9PL86]IF3_CHLMU Translation initiation factor IF-3 OS=Chlamydia muridarum (strain MoPn / Nigg) GN=infC PE=3 SV=1;>sp[Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=121.068Q9PL86;Q822B2SV=1;>sp[Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=170.844Q9L86;Q822B2SV=170.844Q9L917;Q8Z326;Q83PB8;Q5PKA6; Q57H61;Q3YUZ0;Q32AG7;Q31U0 3;Q0SY06;C0Q2S6;B7LUK8;B5XY E4;B5FQK9;B5F1H7;B5BJR3;B4T QK4;B4TCT3;B4T0Z6;B2TW11;A9 N0K6;A9MHD6;A6TGQ1;Q8X6X9; Q8FB77;Q0TA71;P30136;C5A0T5; B7UPE9;B7NRC7;B7NFT5;B7MRC O;B7MIY0;B7M7Q3;B7LA88;B6I5K Sib5Z090;B1XBZ7;B1LNU6;B1IUQ S;A8A794;A7ZUK9;A1AIG570.844		1 505 hbosomai protein LTT	
serovar 10 (strain ATCC 33699 / Western) GN=rplK PE=3 SV=1;>sp]BQ9PPU9;B5ZC49;B1AJI2SV=1;>sp]B21.068rranslation initiation factor IF-3 OS=Chlamydia muridarum (strain MOPn / Nigg) GN=infC PE=3 SV=1;>sp]Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=121.068Q9PL86;Q822B2SV=10Q9PL86;Q822B2SV=1Q9L917;Q8Z326;Q83PB8;Q5PKA6; Q57H61;Q3YUZ0;Q32AG7;Q31U0 3;Q0SY06;C0Q2S6;B7LUK8;B5XY E4;B5FQK9;B5F1H7;B5BJR3;B4T QK4;B4TCT3;B4T026;B2TW11;A9 N0K6;A9MHD6;A6TGQ1;Q8X6X9; B7UPE9;B7NRS7;B7NFT5;B7MRC B7UPE9;B7NRS7;B7NFT5;B7MRC B7UPE9;B7NRS7;B7NFT5;B7MRC B7UPE9;B7NRS7;B7NFT5;B7MRC B7UPE9;B7NRS7;B7NFT5;B7MRC B7UPE9;B7NRS7;B7NFT5;B7MRC B7UPE9;B7NRS7;B7NFT5;B7MRC B7UPE9;B7NRS7;B7NFT5;B7MRC B7UPE9;B7NRS7;B7LA88;B6I5K Fhosphomethylpyrimidine Synthase OS=Salmonella typhimurium Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethylpyrimidine Syl=1;>sp]Q8Z326]THIC_SALTI Phosphomethy		OS=Oreaplasma urealyticum	
Q9PPU9;B5ZC49;B1AJI2 SV=1;>sp B 21.068 SV=1;>sp Q9PL86]IF3_CHLMU 21.068 21.068 Translation initiation factor IF-3 OS=Chlamydia muridarum 21.068 (strain MoPn / Nigg) GN=infC PE=3 SV=1;>sp Q822B2 IF3_CHLCV VTranslation initiation factor IF-3 OS=Chlamydophila caviae 30 (strain GPIC) GN=infC PE=3 SV=1 70.844 Q9L86;Q822B2 SV=1 70.844 Q9L917;Q8Z326;Q83PB8;Q5PKA6; SV=1 70.844 Q57H61;Q3YUZ0;Q32AG7;Q31U0 >sp Q9L917 THIC_SALTY 70.844 3;Q0SY06;C0Q2S6;B7LUK8;B5XY Phosphomethylpyrimidine 59 QK4;B4TCT3;B4T026;B2TWI1;A9 synthase OS=Salmonella 1 QK4;B4TCT3;B4T026;B2TWI1;A9 SGSC1412 / ATCC 700720) 3 Q8FB77;Q0TA71;P30136;C5A0T5; GN=thiC PE=1 5 B7UPE9;B7NRS7;B7NFT5;B7MRC SV=1;>sp Q8Z326 THIC_SALTI 1 0;B7MIY0;B7M7Q3;B7LA88;B6I5K Phosphomethylpyrimidine 5 5;B52090;B1XBZ7;B1LNU6;B1IUQ synthase OS=Salmonella typhi 3;A8A794;A7ZUK9;A1AIG5 GN=thiC PE=3		Serovar 10 (strain ATCC 336997	
Q9PP09;B52C49;B1AJI2 SV=1;>sp B >sp Q9PL86 IF3_CHLMU 21.068 Translation initiation factor IF-3 OS=Chlamydia muridarum OS=Chlamydia muridarum (strain MoPn / Nigg) GN=infC PE=3 SV=1;>sp Q822B2 IF3_CHLCV SV=1;>sp Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 Q9PL86;Q822B2 SV=1 Q9L917;Q8Z326;Q83PB8;Q5PKA6; 70.844 Q57H61;Q3YUZ0;Q32AG7;Q31U0 >sp Q9L9I7 THIC_SALTY 3;Q0SY06;C0Q2S6;B7LUK8;B5XY Phosphomethylpyrimidine E4;B5FQK9;B5F1H7;B5BJR3;B4T synthase OS=Salmonella QK4;B4TCT3;B4T0Z6;B2TWI1;A9 SGSC1412 / ATCC 700720) Q8FB77;Q0TA71;P30136;C5A0T5; GN=thiC PE=1 B7UPE9;B7NRS7;B7NFT5;B7MRC SV=1;>sp Q8Z326 THIC_SALTI 0;B7MIY0;B7M7Q3;B7LA88;B6l5K Phosphomethylpyrimidine 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ synthase OS=Salmonella typhi 3;A8A794;A7ZUK9;A1AIG5 GN=thiC PE=3		Western) GN=rpik PE=3	
>sp Q9PL86 IF3_CHLMU21.068Translation initiation factor IF-3 OS=Chlamydia muridarum (strain MoPn / Nigg) GN=infC PE=3 SV=1;>sp Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1Q9PL86;Q822B2SV=1Q9PL86;Q822B2SV=1Q9PL86;Q822B2SV=1Q9PL86;Q822B2SV=1Q9L917;Q8Z326;Q83PB8;Q5PKA6; Q57H61;Q3YUZ0;Q32AG7;Q31U0 3;Q0SY06;C0Q2S6;B7LUK8;B5XY E4;B5FQK9;B5F1H7;B5BJR3;B4T QK4;B4TCT3;B4T0Z6;B2TW11;A9 N0K6;A9MHD6;A6TGQ1;Q8X6X9; Q8FB77;Q0TA71;P30136;C5A0T5; B7UPE9;B7NRS7;B7NFT5;B7MRC O;B7MIY0;B7M7Q3;B7LA88;B615K 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ 3;A8A794;A7ZUK9;A1AIG570.844	Q9PPU9;B5ZC49;B1AJI2	SV=1;>sp B	
Iranslation initiation factor IF-3 OS=Chlamydia muridarum (strain MoPn / Nigg) GN=infC PE=3 SV=1;>sp Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1Q9PL86;Q822B2SV=1Q9PL86;Q822B2SV=1Q9L917;Q8Z326;Q83PB8;Q5PKA6; Q57H61;Q3YUZ0;Q32AG7;Q31U0 3;Q0SY06;C0Q2S6;B7LUK8;B5XY E4;B5FQK9;B5F1H7;B5BJR3;B4T QK4;B4TCT3;B4T0Z6;B2TWI1;A9 N0K6;A9MHD6;A6TGQ1;Q8X6X9; Q8FB77;Q0TA71;P30136;C5A0T5; B7UPE9;B7NRS7;B7NFT5;B7MRC O;B7MIY0;B7M7Q3;B7LA88;B6I5K 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ 3;A8A794;A7ZUK9;A1AIG570.844		>splQ9PL86 IF3_CHLMU	21.068
OS=Chlamydia muridarum (strain MoPn / Nigg) GN=infC PE=3 SV=1;>sp Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1Q9PL86;Q822B2SV=1Q9PL86;Q822B2SV=1Q9L917;Q8Z326;Q83PB8;Q5PKA6; Q57H61;Q3YUZ0;Q32AG7;Q31U0 3;Q0SY06;C0Q2S6;B7LUK8;B5XY E4;B5FQK9;B5F1H7;B5BJR3;B4T QK4;B4TCT3;B4T0Z6;B2TW11;A9 N0K6;A9MHD6;A6TGQ1;Q8X6X9; Q8FB77;Q0TA71;P30136;C5A0T5; B7UPE9;B7NRS7;B7NFT5;B7MRC O;B7MIY0;B7M7Q3;B7LA88;B6I5K S;B5Z090;B1XBZ7;B1LNU6;B1IUQ 3;A8A794;A7ZUK9;A1AIG570.844		I ranslation initiation factor IF-3	
(strain MoPn / Nigg) GN=infC PE=3 SV=1;>sp Q822B2 IF3_CHLCV Translation initiation factor IF-3 		OS=Chlamydia muridarum	
PE=3 SV=1;>sp Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1Q9PL86;Q822B2SV=1Q9L9I7;Q8Z326;Q83PB8;Q5PKA6; Q57H61;Q3YUZ0;Q32AG7;Q31U0 3;Q0SY06;C0Q2S6;B7LUK8;B5XY E4;B5FQK9;B5F1H7;B5BJR3;B4T QK4;B4TCT3;B4T0Z6;B2TWI1;A9 N0K6;A9MHD6;A6TGQ1;Q8X6X9; Q8FB77;Q0TA71;P30136;C5A0T5; B7UPE9;B7NRS7;B7NFT5;B7MRC O;B7MIY0;B7M7Q3;B7LA88;B6I5K 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ 3;A8A794;A7ZUK9;A1AIG570.844		(strain MoPn / Nigg) GN=infC	
SV=1;>sp Q822B2 IF3_CHLCV Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3 SV=1Q9PL86;Q822B2SV=1Q9L917;Q8Z326;Q83PB8;Q5PKA6; Q57H61;Q3YUZ0;Q32AG7;Q31U0 3;Q0SY06;C0Q2S6;B7LUK8;B5XY E4;B5FQK9;B5F1H7;B5BJR3;B4T QK4;B4TCT3;B4T0Z6;B2TWI1;A9 N0K6;A9MHD6;A6TGQ1;Q8X6X9; Q8FB77;Q0TA71;P30136;C5A0T5; B7UPE9;B7NRS7;B7NFT5;B7MRC O;B7MIY0;B7M7Q3;B7LA88;B6I5K 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ 3;A8A794;A7ZUK9;A1AIG570.844		PE=3	
Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3Q9PL86;Q822B2SV=1Q9L917;Q8Z326;Q83PB8;Q5PKA6; Q57H61;Q3YUZ0;Q32AG7;Q31U0 3;Q0SY06;C0Q2S6;B7LUK8;B5XY E4;B5FQK9;B5F1H7;B5BJR3;B4T QK4;B4TCT3;B4T0Z6;B2TW11;A9 N0K6;A9MHD6;A6TGQ1;Q8X6X9; Q8FB77;Q0TA71;P30136;C5A0T5; B7UPE9;B7NRS7;B7NFT5;B7MRC O;B7MIY0;B7M7Q3;B7LA88;B6I5K 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ 3;A8A794;A7ZUK9;A1AIG570.844Translation initiation factor IF-3 OS=Chlamydophila caviae (strain GPIC) GN=infC PE=370.844Total Content>sp Q9L9I7 THIC_SALTY Phosphomethylpyrimidine synthase OS=Salmonella GN=thiC PE=170.844		SV=1;>sp Q822B2 IF3_CHLCV	
OS=Chlamydophila caviae (strain GPIC) GN=infC PE=3Q9PL86;Q822B2SV=1Q9L9I7;Q8Z326;Q83PB8;Q5PKA6; Q57H61;Q3YUZ0;Q32AG7;Q31U0>sp Q9L9I7 THIC_SALTY3;Q0SY06;C0Q2S6;B7LUK8;B5XY E4;B5FQK9;B5F1H7;B5BJR3;B4TPhosphomethylpyrimidine synthase OS=SalmonellaQK4;B4TCT3;B4T0Z6;B2TWI1;A9 N0K6;A9MHD6;A6TGQ1;Q8X6X9; B7UPE9;B7NRS7;B7NFT5;B7MRCSGSC1412 / ATCC 700720) GN=thiC PE=1B7UPE9;B7NRS7;B7NFT5;B7MRC 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ 3;A8A794;A7ZUK9;A1AIG5SV=1;>sp Q8Z326 THIC_SALTI GN=thiC PE=3		Translation initiation factor IF-3	
(strain GPIC) GN=infC PE=3 Q9PL86;Q822B2 SV=1 Q9L9I7;Q8Z326;Q83PB8;Q5PKA6; 70.844 Q57H61;Q3YUZ0;Q32AG7;Q31U0 >sp Q9L9I7 THIC_SALTY 3;Q0SY06;C0Q2S6;B7LUK8;B5XY Phosphomethylpyrimidine E4;B5FQK9;B5F1H7;B5BJR3;B4T synthase OS=Salmonella QK4;B4TCT3;B4T0Z6;B2TWI1;A9 typhimurium (strain LT2 / N0K6;A9MHD6;A6TGQ1;Q8X6X9; SGSC1412 / ATCC 700720) Q8FB77;Q0TA71;P30136;C5A0T5; GN=thiC PE=1 B7UPE9;B7NRS7;B7NFT5;B7MRC SV=1;>sp Q8Z326 THIC_SALTI 0;B7MIY0;B7M7Q3;B7LA88;B6I5K Phosphomethylpyrimidine 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ synthase OS=Salmonella typhi 3;A8A794;A7ZUK9;A1AIG5 GN=thiC PE=3		OS=Chlamydophila caviae	
Q9PL86;Q822B2 SV=1 Q9L9I7;Q8Z326;Q83PB8;Q5PKA6; 70.844 Q57H61;Q3YUZ0;Q32AG7;Q31U0 >sp Q9L9I7 THIC_SALTY 3;Q0SY06;C0Q2S6;B7LUK8;B5XY Phosphomethylpyrimidine E4;B5FQK9;B5F1H7;B5BJR3;B4T synthase OS=Salmonella QK4;B4TCT3;B4T0Z6;B2TWI1;A9 typhimurium (strain LT2 / N0K6;A9MHD6;A6TGQ1;Q8X6X9; SGSC1412 / ATCC 700720) Q8FB77;Q0TA71;P30136;C5A0T5; GN=thiC PE=1 B7UPE9;B7NRS7;B7NFT5;B7MRC SV=1;>sp Q8Z326 THIC_SALTI 0;B7MIY0;B7M7Q3;B7LA88;B6I5K Phosphomethylpyrimidine 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ synthase OS=Salmonella typhi 3;A8A794;A7ZUK9;A1AIG5 GN=thiC PE=3		(strain GPIC) GN=infC PE=3	
Q9L9I7;Q8Z326;Q83PB8;Q5PKA6; 70.844 Q57H61;Q3YUZ0;Q32AG7;Q31U0 >sp Q9L9I7 THIC_SALTY 3;Q0SY06;C0Q2S6;B7LUK8;B5XY Phosphomethylpyrimidine E4;B5FQK9;B5F1H7;B5BJR3;B4T synthase OS=Salmonella QK4;B4TCT3;B4T0Z6;B2TWI1;A9 typhimurium (strain LT2 / N0K6;A9MHD6;A6TGQ1;Q8X6X9; SGSC1412 / ATCC 700720) Q8FB77;Q0TA71;P30136;C5A0T5; GN=thiC PE=1 B7UPE9;B7NRS7;B7NFT5;B7MRC SV=1;>sp Q8Z326 THIC_SALTI 0;B7MIY0;B7M7Q3;B7LA88;B6I5K Phosphomethylpyrimidine 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ synthase OS=Salmonella typhi 3;A8A794;A7ZUK9;A1AIG5 GN=thiC PE=3	Q9PL86;Q822B2	SV=1	
Q57H61;Q3YUZ0;Q32AG7;Q31U0>sp Q9L9I7 THIC_SALTY3;Q0SY06;C0Q2S6;B7LUK8;B5XYPhosphomethylpyrimidineE4;B5FQK9;B5F1H7;B5BJR3;B4Tsynthase OS=SalmonellaQK4;B4TCT3;B4T0Z6;B2TWI1;A9typhimurium (strain LT2 /N0K6;A9MHD6;A6TGQ1;Q8X6X9;SGSC1412 / ATCC 700720)Q8FB77;Q0TA71;P30136;C5A0T5;GN=thiC PE=1B7UPE9;B7NRS7;B7NFT5;B7MRCSV=1;>sp Q8Z326 THIC_SALTI0;B7MIY0;B7M7Q3;B7LA88;B6I5KPhosphomethylpyrimidine5;B5Z090;B1XBZ7;B1LNU6;B1IUQsynthase OS=Salmonella typhi3;A8A794;A7ZUK9;A1AIG5GN=thiC PE=3	Q9L9I7;Q8Z326;Q83PB8;Q5PKA6;		70.844
3;Q0SY06;C0Q2S6;B7LUK8;B5XYPhosphomethylpyrimidineE4;B5FQK9;B5F1H7;B5BJR3;B4Tsynthase OS=SalmonellaQK4;B4TCT3;B4T0Z6;B2TW11;A9typhimurium (strain LT2 /N0K6;A9MHD6;A6TGQ1;Q8X6X9;SGSC1412 / ATCC 700720)Q8FB77;Q0TA71;P30136;C5A0T5;GN=thiC PE=1B7UPE9;B7NRS7;B7NFT5;B7MRCSV=1;>sp Q8Z326 THIC_SALTI0;B7MIY0;B7M7Q3;B7LA88;B6I5KPhosphomethylpyrimidine5;B5Z090;B1XBZ7;B1LNU6;B1IUQsynthase OS=Salmonella typhi3;A8A794;A7ZUK9;A1AIG5GN=thiC PE=3	Q57H61;Q3YUZ0;Q32AG7;Q31U0	>sp Q9L9I7 THIC_SALTY	
E4;B5FQK9;B5F1H7;B5BJR3;B4T synthase OS=Salmonella QK4;B4TCT3;B4T0Z6;B2TW11;A9 typhimurium (strain LT2 / N0K6;A9MHD6;A6TGQ1;Q8X6X9; SGSC1412 / ATCC 700720) Q8FB77;Q0TA71;P30136;C5A0T5; GN=thiC PE=1 B7UPE9;B7NRS7;B7NFT5;B7MRC SV=1;>sp Q8Z326 THIC_SALTI 0;B7MIY0;B7M7Q3;B7LA88;B6I5K Phosphomethylpyrimidine 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ synthase OS=Salmonella typhi 3;A8A794;A7ZUK9;A1AIG5 GN=thiC PE=3	3;Q0SY06;C0Q2S6;B7LUK8;B5XY	Phosphomethylpyrimidine	
QK4;B4TCT3;B4T0Z6;B2TWI1;A9 typhimurium (strain LT2 / N0K6;A9MHD6;A6TGQ1;Q8X6X9; SGSC1412 / ATCC 700720) Q8FB77;Q0TA71;P30136;C5A0T5; GN=thiC PE=1 B7UPE9;B7NRS7;B7NFT5;B7MRC SV=1;>sp Q8Z326 THIC_SALTI 0;B7MIY0;B7M7Q3;B7LA88;B6I5K Phosphomethylpyrimidine 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ synthase OS=Salmonella typhi 3;A8A794;A7ZUK9;A1AIG5 GN=thiC PE=3	E4;B5FQK9;B5F1H7;B5BJR3;B4T	synthase OS=Salmonella	
N0K6;A9MHD6;A6TGQ1;Q8X6X9; SGSC1412 / ATCC 700720) Q8FB77;Q0TA71;P30136;C5A0T5; GN=thiC PE=1 B7UPE9;B7NRS7;B7NFT5;B7MRC SV=1;>sp Q8Z326 THIC_SALTI 0;B7MIY0;B7M7Q3;B7LA88;B6I5K Phosphomethylpyrimidine 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ synthase OS=Salmonella typhi 3;A8A794;A7ZUK9;A1AIG5 GN=thiC PE=3	QK4;B4TCT3;B4T0Z6;B2TWI1;A9	typhimurium (strain LT2 /	
Q8FB77;Q0TA71;P30136;C5A0T5; GN=thiC PE=1 B7UPE9;B7NRS7;B7NFT5;B7MRC SV=1;>sp Q8Z326 THIC_SALTI 0;B7MIY0;B7M7Q3;B7LA88;B6I5K Phosphomethylpyrimidine 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ synthase OS=Salmonella typhi 3;A8A794;A7ZUK9;A1AIG5 GN=thiC PE=3	N0K6;A9MHD6;A6TGQ1;Q8X6X9;	SGSC1412 / ATCC 700720)	
B7UPE9;B7NRS7;B7NFT5;B7MRCSV=1;>sp Q8Z326 THIC_SALTI0;B7MIY0;B7M7Q3;B7LA88;B6I5KPhosphomethylpyrimidine5;B5Z090;B1XBZ7;B1LNU6;B1IUQsynthase OS=Salmonella typhi3;A8A794;A7ZUK9;A1AIG5GN=thiC PE=3	Q8FB77;Q0TA71;P30136;C5A0T5;	GN=thiC PE=1	
0;B7MIY0;B7M7Q3;B7LA88;B6I5K 5;B5Z090;B1XBZ7;B1LNU6;B1IUQ 3;A8A794;A7ZUK9;A1AIG5 Phosphomethylpyrimidine synthase OS=Salmonella typhi GN=thiC PE=3	B7UPE9;B7NRS7;B7NFT5;B7MRC	SV=1;>sp Q8Z326 THIC_SALTI	
5;B5Z090;B1XBZ7;B1LNU6;B1IUQ synthase OS=Salmonella typhi 3;A8A794;A7ZUK9;A1AIG5 GN=thiC PE=3	0;B7MIY0;B7M7Q3;B7LA88;B6I5K	Phosphomethylpyrimidine	
3;A8A794;A7ZUK9;A1AIG5 GN=thiC PE=3	5;B5Z090;B1XBZ7;B1LNU6;B1IUQ	synthase OS=Salmonella typhi	
	3;A8A794;A7ZUK9;A1AIG5	GN=thiC PE=3	

	SV-1:>enIO83PB8ITHIC SHIFT	
	Phos	
		12 077
	SPIQUEDISITIFE_SALTI	13.077
	OS=Saimonella typni GN=ylfE	
	PE=3	
	SV=1;>sp Q/CPD8 YIFE_SALI	
	Y UPF0438 protein YifE	
	OS=Salmonella typhimurium	
	(strain LT2 / SGSC1412 / ATCC	
	700720) GN=yifE PE=3	
Q9L6T3;Q7CPD8;Q5PJY9;Q57HV	SV=1;>sp Q5PJY9 YIFE_SALP	
1;P0ADN5;P0ADN4;P0ADN3;P0A	A UPF0438 protein YifE	
DN2	OS=Salm	
Q9L6L4;Q7CPD4;Q5PKQ1;Q57HM		50.17
5:C0Q3F4;B5XYG9;B5RFL5;B5Q	>splQ9L6L4 PEPQ SALTI Xaa-	
W86:B5FNX9:B5EZW1:B5BIZ1:B4	Pro dipeptidase OS=Salmonella	
TNZ2:B4TBS6:B4SZ86:A9MYB1:A	typhi GN=pepQ PE=3	
8ACZ6:A6TGM5:Q83PG0:Q3YVC0	SV=1:>splQ7CPD4IPFPQ_SAI	
·Q32A22·Q31UE2·B7I TY8·B2TV/I6	TY Xaa-Pro dipentidase	
·Q8X8I1·Q8FBI1·Q1R465·Q0T4K9	OS=Salmonella tynhimurium	
P21165 C5A021 · R7I INH5 · R7NI / 10	$(\text{strain} \mid \text{T2} / \text{SGSC1412} / \text{ATCC})$	
B7NEE8:B7N2E3:B7MHD2:B7M65	700720) GN-pepO PE-3	
0.871 0.45.861/17.85VV04.81V/K0	SV_{-1}	
B11 M33·B11/M60·A8A6//2·A771 52	PA Yaa-Pro dipontidase	
$\Delta 1 \Delta 131$	OS-Salmone	
	00-0aimene	1/ 686
		14.000
4.02VV19.022RA0.021M/09.02N		
6644.D66642.C6DIO2.C5B748.C3		
T ID9.D4T754.D3DGF9,D4199J4,D4		
	spluskurukss_vibch 305	
	nbosomai protein 59 05=vibrio	
AUIEINO, ADE 990, AUVEZ, AUIEZ, A I HJZ;		
	$0 v = 1, > S \mu Q O Z D O Z K S S _ 1 E K P$	
0,042000,0700002,070002,0700	E 303 Involutat protein 39	
	208 ribosomel n	
		57 762
	CMP synthese [dutemine	51.103
76·R5EAV1·A7MI 126·A5E2E1·O2	bydrolyzing OS-Vibria cholorea	
	serotype O1 (strain ATCC	
	30315 / El Tor Inaba N16061)	
	ON =	
	SV-1-200000000000000000000000000000000000	
	$ OV = 1, > SP QODFU7 GUAA_VIBV$	
	bydrolyzinal OS-Vibria	
C27.15110 P2.087160.087014.0	vulpificus (strain CMCP6)	
	CN-aug A DE-	
	UN=yuaA PE=	

Q5PI52;Q57LJ8;Q47WD1;Q3YZ45;		
Q3IHJ1;Q32D55;Q31XY3;Q2NS52;		
;Q0T212;Q0HX50;Q0HKV2;Q085S		
4;C5BER5;C4L8C4;C4K7H1;C0PY		
P4;B8E9T4;B8CKS4;B7LKD4;B5X		
NM4;B5RCX9;B5R569;B5FR52;B5		
T0N7:B4RV80:B4EY59:B2TXT2:B2		
K9P0;B1KLC1;B1JSB0;B0TLJ4;A9		
R7Z2;A9N218;A9MHM5;A9KWW6;		
C2·A4Y8T3·A4WD82·A4TMS8·A3Q		
CH0;A3D6V2;A1S856;A1RHR0;A1		
JKT2;A0KUK2;Q1H280;Q6LU31;Q		
13XE2;B2T5G8;B2JIA0;B1XTW6;A		
45Y52;Q39F73;Q1BHF2;Q0BE45; B4EC68:B1Y544:B1 IIIC0:4657M5		
:A4JF45:A4G4U7:A0K8B3:Q1R8M		
9;Q0TEY1;P64295;P64294;P04079		
;C4ZX82;B7UGU5;B7NQV3;B7N69		
1;B/MYD5;B/MHY8;B/M/L1;B/LC P7:B6I570:B570X6:B1X4X2:B1LN		
F9:B1IWF4:A8A313:A7ZPV1:A1AE		
43;Q1LSJ1		
	>sp Q9KPW3 FABZ_VIBCH 3-	17.278
	dehydratase FabZ OS=Vibrio	
	cholerae serotype O1 (strain	
	ATCC 39315 / El Tor Inaba	
	N16961) GN=fabZ PE=3	
	SV=1;>Sp[C3LQ21]FAB2_VIBC M 3-bydroxyacyl-[acyl-carrier-	
	protein] dehydratase FabZ	
Q9KPW3;C3LQ21;A5F629	OS=Vibrio cho	
	>sp Q9KPE9 XERD_VIBCH	34.564
	I yrosine recombinase XerD	
	(strain ATCC 39315 / El Tor	
	Inaba N16961) GN=xerD PE=3	
	SV=1	00.570
Q9KNS1;Q7MZX9;Q5PL77;Q3YUJ 2:03IEP5:0328H8:031T82:02NW/		20.576
91;Q0SXD0;Q0I4U4;P64037;P640		
36;P57811;P0A6N7;C3LS89;C0Q6		
A6;B7LLS9;B5Y354;B5R995;B5R0		
U9;B3FKK0;B3F2L4;B3BKF8;B4TS D0:B4TE84:B4T2P5:B4EYC0:B2\/	>spluskino1 EFP_VIBCH Elongation factor P OS-Vibrig	
81;B2TY23;B0UWM5;A9MFR5:A8	cholerae serotype O1 (strain	
AMQ1;A7MMC3;A6TH65;A5F4X8;	ATCC 39315 / El Tor Inaba	
Q5QVT8;Q1R3B2;Q0T9P4;P0A6N	N16961) GN=efp PE=3	
	SV=1;>sp Q/MZX9 EFP_PHOL	
MKV2:B7M8R0·B7I C03·B6I254·B5	OS=Photorhabdus luminescens	
Z2F6;B1XDQ0;B1LQG8;B1ITQ1;A	subsp. laumondii (strain DSM	
8A7P4;A7ZV18;A1AJ55	15139 / CIP 105565 / TT01)	

	>sp Q9KFI7 UXAB_BACHD	58.449
	Altronate oxidoreductase	
	ATCC BAA-125 / DSM 18197 /	
	FERM 7344 / JCM 9153 / C-	
Q9KFI7	125) GN=uxaB PE=3 SV=1	
	>sp Q9K8D2 PTHP_BACHD	9.1243
	Phosphocarrier protein HPr	
	OS=Bacillus halodurans (strain	
	ATCC BAA-125 / DSM 18197 /	
	FERM 7344 / JCM 9153 / C-	
	SV_{-1}	
	XY Phosphocarrier protein HPr	
1:Q5HH02:P99143:P23534:P0A0E	OS=Staphylococcus xylosus	
3;P0A0E2;P0A0E1	GN=ptsH PE=1 SV=1;>sp Q6GI	
	>sp Q9K7L8 G6PI_BACHD	50.428
	Glucose-6-phosphate isomerase	
	OS=Bacillus halodurans (strain	
	ATCC BAA-125 / DSM 18197 /	
	FERM 7344 / JCM 9153 / C-	
	123) GN=pgi PE=3 3V=1	40.604
	Beta sliding clamp	40.034
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=dnaN PE=1	
Q9I7C4	SV=1	
	>sp Q91/4/ HCP1_PSEAE	17.414
	aeruginosa (strain ATCC 15692	
	/ DSM 22644 / CIP 104116 /	
	JCM 14847 / LMG 12228 / 1C /	
	PRS 101 / PAO1) GN=hcp1	
Q9I747	PE=1 SV=1	
	>sp Q9I6M5 DAVD_PSEAE	51.622
	Glutarate-semialdehyde	
	denydrogenase DavD	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=davD PE=1	
Q9I6M5	SV=1	
	>sp Q9I6M4 DAVT_PSEAE 5-	45.22
	aminovalerate aminotransferase	
	Davi US=rseudomonas	
	/ DSM 22644 / CIP 104116 /	
	JCM 14847 / LMG 12228 / 1C /	
	PRS 101 / PAO1) GN=davT	
Q9I6M4;Q88RB9	PE=1 SV=1	
	>sp Q9I5Y1 ALF_PSEAE	38.573
-	Fructose-bisphosphate aldolase	
Q9I5Y1;O87796	OS=Pseudomonas aeruginosa	

	(strain ATCC 15602 / DOM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=fba PE=3	
	SV=1:>spl087796IALF PSEST	
	Fructose-bisphosphate aldolase	
	>sp Q9I2V5 ACNB_PSEAE	93.627
	Aconitate hydratase B	
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LIVIG 12228 / 1C / PRS	
	101 / PAO1) GN=acnB PE=3	
Q9I2V5	SV=1	
	>splQ9l2U2lTIG_PSEAE	48.581
	Trigger factor	
	OS-Beaudamanas aaruginasa	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
Q9I2U2;Q02KU3;B7VB77;A6V720:	101 / PAO1) GN=tig PE=3	
Q87YR5:Q4ZVM8:Q4K9.I5:Q48K7	SV=1:>splQ02KU3ITIG PSFAR	
$1 \cdot O3K0 \cdot N/8 \cdot C3 \cdot VK1 \cdot \Delta A \times T7A \cdot C1 DH$	Trigger factor	
G5;A5W636	(strain UCBPP-PA14) GN=t	
	>sp Q9HZP7 ETFA_PSEAE	31.422
	Electron transfer flavoprotein	
	subunit alpha	
	OS-Pseudomonas aeruginosa	
	(strain ATCC 15602 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=etfA PE=3	
Q9HZP7	SV=1	
	SCHOOHZPEIETER PSEAE	26 376
	Spice in transfer flavor retain	20.570
	Electron transfer havoprotein	
	subunit beta OS=Pseudomonas	
	aeruginosa (strain ATCC 15692	
	/ DSM 22644 / CIP 104116 /	
	JCM 14847 / LMG 12228 / 1C /	
	PRS $101 / PAO1$ GN-off	
		44.0.10
	>SPIQ9HZJ3 FADA_PSEAE 3-	41.643
	ketoacyl-CoA thiolase	
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / ICM	
	1404/ LIVIG 12228/ 10/ PRS	
	TUT / PAUT) GN=tadA PE=3	
	SV=1;>sp Q4ZRA1 FADA_PSE	
	U2 3-ketoacyl-CoA thiolase	
Q9HZJ3;Q4ZRA1:Q4KFC3:Q02PH	OS=Pseudomonas svringae pv	
7·A6\/383	s	
		21 0 1 2
	A solution and a solution of the solution of t	51.043
	Accivit cochizyine A carboxylase	

UR0;A4SD85;Q3A6L1;Q15VG1;B5 EAK5;Q31HH2;A1AN64;Q47XK5;A 9G853;Q8D2P4;Q7VRV0;A4SNT7; A0KLN6;Q47HQ3;Q1BM67;B4EFK 3;B3R112;B2JQF1;A9AMA4;A6V2 W2;Q3IF41;Q5QUD9;Q492H4;A6V P44;A4XVV4;Q65TC9;Q1LTA5;Q4 QJY5;P43778;A5UF50;A5UBS0;Q8 8LD9;Q1ICS2;B3H159;B1J539;B0 KF95;B0BNR1;A5W6X9;A4VKF5;A 3MZZ7;Q0I3I5;B0UU81;A4WCV0;B 2VJ00;A8GH40;A1JL77;Q9CN12;Q 8XFJ5;Q83KA2;Q7CQ41;Q668X1; Q5PCV4;Q57LY8;Q3YZP5;Q32DM 0;Q31YE2;Q1CHM2;Q1C680;Q0W DC3;Q0T2G9;B5RCJ1;B5R347;B5 FPL0;B5EZQ0;B5BCI0;B4TQA2;B4 TBN5;B4SZN8;B2TW98;B2K8H3;B 1JGI4;A9R7U5;A9N478;A9MJ59;A 8ADR3;A7FGM3;A4TM62;Q6D2N9 ;Q87YI2;Q4ZVW0;Q48L24;Q3KF15 ;Q2NSI3;A7MH52;A6TC02;Q7UHX 0;Q7N2B5;B4EZF5;C4Z8P1;Q8FF H5;Q1R996;Q0TFD0;P0A9Q6;P0A 9Q5;B1X927;B1LLS1;B1IXM6;A8A 2I5;A7ZPD1;A1ADG5	beta OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=accD PE=1 SV=1;>sp Q02PS5 ACCD_PSE AB Acetyl-coenzy	
Q9HZ71:Q9JZ44	>sp Q9HZ71 RS1_PSEAE 30S ribosomal protein S1 OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=rpsA PE=3 SV=1	61.869
Q9HXY7;Q02RB7;B7V7U3;A6V1E 3;Q4KHG5;Q3KHA1	>sp Q9HXY7 FABZ_PSEAE 3- hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=fabZ PE=1 SV=1;>sp Q02RB7 FABZ_PSE AB 3-hydroxyacyl-[acyl-car	16.773
Q9HWX5;Q02SM0;B7V7Q5;A6V04 9;Q88QH6;Q889Q6;Q1IFM0;B0KL 70;A5VXW0;A4VHT4;A4XZ35	>sp Q9HWX5 RISB_PSEAE 6,7-dimethyl-8-ribityllumazine synthase OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=ribH PE=3 SV=1;>sp Q02SM0 RISB_PSEA B 6,7-dimethyl-8-ribityllumazine syntha	16.413
Q9HV59;Q02FT2;B7V1F2;A6VCJ6; Q88DW0;Q1IF39;O87792;B1J2B3;	>sp Q9HV59 PNP_PSEAE Polyribonucleotide	75.452

BUKHX3;A5W983;Q87WQ8;Q4ZN	nucleotidyltransferase	
R6;Q48E81;Q3KI80;C3K255;A4VP	OS=Pseudomonas aeruginosa	
N6;C1DFK5;A4XYD6;Q4KIF2;B1X	(strain ATCC 15692 / DSM	
UJ5;A4SXQ7	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=pnp PE=3	
	SV=1;>sp Q02FT2 PNP_PSEA	
	B Polyribonucleotide	
	nucleotidvltransfer	
	>splQ9HV43IDNAK PSEAF	68 402
	Chaperone protein Dnak	00.402
	OS-Pseudomonas aeruginosa	
	(strain ATCC 15602 / DSM	
	22644 / CIP 104116 / ICM	
	14947 / LMC 12229 / 1C / DDS	
	14047 / LIVIG 12220 / IC / FRS	
	101 / PAUT) GIN=GINAK PE=3	
;A4VPQ5;Q4KIH1;B0KIS5;A5W9A3	SV=1;>sp Q02FR1 DNAK_PSE	
;Q8DF66;Q7MN85;B7VJW9;Q3KIA	AB Chaperone protein DnaK	
0;C3K275;A7MWW0;O87384;Q88	OS=Pseudomonas aeruginosa	
DU2;Q1IF59;Q6LS31;A1U614	(stra	
	>sp Q9HUN2 RL9_PSEAE 50S	15.532
	ribosomal protein L9	
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=rpll PE=3	
	SV=1;>sp Q02F86 RL9_PSEAB	
	50S ribosomal protein L9	
	OS=Pseudomonas aeruginosa	
Q9HUN2;Q02F86;B7V1Z5;A6VD45	(st	
· · · · ·	>sp Q9HUC8 SYR PSEAE	65.199
	ArgininetRNA ligase	
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / I MG 12228 / 1C / PRS	
	101 / PAO1 GN-argS PE-3	
	SV-1:>spl002EW6ISYR PSEA	
	B ArgininetRNA ligase	
	OS-Pseudomonas aeruginosa	
$H_2 \cap \Delta K$ $K_1 \cap \Omega \times R_3 \cap \Delta \Delta X = N_0$	(strain 1)	
Ο9HT20·O02DF4·B7\/701·Δ6\/F22·		49 / 00
$\square A K 3 \Delta 0 \cdot \square 1 2 1 7 \cdot B 1 E 1 \cdot \square 2 K A A 1 \cdot \square$		-000
3K1F6·AAY187·A8RYA·RAKDA9		
ΔΣ\Δ/2.Ω ΔΣ\Δ/2.Δ2.Ω ΔΣ\Δ/2.Δ2.Ω ΔΣ\Δ/2.Δ2.Ω ΔΣ\Δ/2.Ω ΔΔ\Δ/2.Ω ΔΔ\Δ/2.Ω ΔΔ\Δ/2.Ω ΔΔ\Δ/2.Ω ΔΔ\Δ/2.Ω ΔΔ\Δ/2.Ω ΔΔ\Δ/2.Ω Δ		
	ATD synthese subusit bete	
	ALF Synthase Suburill Dela	
A3,Q1FU33,Q411Z1,Q1ZGQU,A9B	OGER Seudomonas aeruginosa	
FU1, A23010, A100F38; A1012; A11	(SII alli ATUU 10092 / DOIVI	
J41,AZS0J0,P42400,Q03P10,Q02F	22044 / CIP 104116 / JUM	
	14847 / LIVIG 12228 / 10 / PRS	
RBU;Q13SQ2;Q0BJL5;B4EEY9;B1	101 / PAO1) GN=atpD PE=3	
YQL4;B1JSV7;A9AJG4;A4JA35;A3	SV=1;>SP Q02DF4 ATPB_PSE	
PUZU;A3NF40;A3MQJ9;A1V8T1;A0	AB ATP synthase subunit beta	
K2Y3;A6T470;A4GAG9;Q223D6	OS=Pseudomonas aeruginosa	

	>sp Q9HT18 ATPA_PSEAE	55.393
	ATP synthase subunit alpha	
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=atpA PE=3	
Q9HT18;Q02DF2;B7V793;A6VF34;	SV=1;>sp Q02DF2 ATPA_PSE	
A4Y189;A5WBV9;A4VS64;Q12GQ	AB ATP synthase subunit alpha	
2	OS=Pseudomonas aerugino	
Q9CL47;Q7VKF0;Q6CZY7;Q65QX		17.442
2;Q4QMA4;Q2NQN9;Q0I145;P443		
74;B0UX31;A7MPG7;A6VLK5;A5U		
HU8;A5UDT0;A4WFB1;A3N374;Q8		
ZJ95;Q664T8;Q5PK01;Q57J49;Q3		
YWV6;Q32B48;Q31VX3;Q1CCW1;	>sp Q9CL47 RS5_PASMU 30S	
Q1C2W4;Q0SZZ9;P0A7W6;P0A7	ribosomal protein S5	
W5;P0A7W4;A9MSY1;A9MN66;A8	OS=Pasteurella multocida	
GKI0;A8AQJ8;A7FNL7;A6TEV5:A4	(strain Pm70) GN=rpsE PE=3	
TH09;A1JS11;Q1R627;Q0TCF8:P0	SV=1;>sp Q7VKF0 RS5 HAED	
A7W3;P0A7W2;P0A7W1;B1IPZ6;A	U 30S ribosomal protein S5	
8A5A8:A7ZSJ2:A1AGJ2:Q6LV99:Q	OS=Haemophilus ducrevi (strain	
1R0F8:A1TYL4:Q5QXW2:Q5E897:	35000HP / ATCC 700724)	
B7VLE0:B6EPU2:B5FG26:Q2S929	GN=rpsE PE=3	
;Q1LTC1;A1T0C5;Q488Z6;A5EXA	SV=1;>splQ6CZY7 RS5 PECA	
1	S 30S ribosomal	
	>splQ9CHU6 6PGD_LACLA 6-	52.424
	phosphogluconate	
	dehydrogenase, decarboxylating	
	OS=Lactococcus lactis subsp.	
	lactis (strain IL1403) GN=gnd	
	PE=3	
Q9CHU6;P96789;Q931R3;Q8CP47	SV=1;>splP96789l6PGD LACL	
;Q6GGI7;Q6G954;Q5HP42;Q5HFR	M 6-phosphogluconate	
2;P63335;P63334;P21577;Q9Z8I3;	dehydrogenase, decarboxylating	
P52208;Q7VMX4;P70718;P43774;	OS=Lactococcus lactis subsp.	
O83351;P12013;P80859	cremoris (stra	
	>sp Q9CDS1 DPO1_LACLA	98.732
	DNA polymerase I	
	OS=Lactococcus lactis subsp.	
	lactis (strain IL1403) GN=polA	
	PE=3	
	SV=1;>sp P59200 DPO1_STRR	
	6 DNA polymerase I	
	OS=Streptococcus pneumoniae	
	(strain ATCC BAA-255 / R6)	
	GN=polA PE=3	
	SV=1;>sp P59199 DPO1_STRP	
Q9CDS1;P59200;P59199;O32801	N DNA polymeras	
	>sp Q9AGA6 AGLB_KLEPN 6-	49.255
	phospho-alpha-glucosidase	
	OS=Klebsiella pneumoniae	
Q9AGA6;P31450	GN=agIB PE=1 SV=1	
	>sp Q98QN2 RL27_MYCPU	9.5037
	50S ribosomal protein L27	
Q98QN2	OS=Mycoplasma pulmonis	

	(strain UAB CTIP) GN=rpmA	
	PE=3 SV=1	
	>sp Q98FG0 ISPG_RHILO 4-	44.705
	hydroxy-3-methylbut-2-en-1-yl	
	diphosphate synthase	
	(flavodoxin) OS=Rhizobium loti	
000500	(strain MAFF303099) GN=ISPG	
Q98FGU		55.25
	Altropate oxidoreductase	55.25
	OS=Clostridium acetobutylicum	
	(strain ATCC 824 / DSM 792 /	
	JCM 1419 / LMG 5710 / VKM B-	
	1787) GN=uxaB PE=3	
	SV=1;>sp O34354 UXAB_BACS	
	U Altronate oxidoreductase	
	OS=Bacillus subtilis (strain 168)	
Q97L67;O34354	GN=uxaB PE=2 SV=1	
	>splQ97H18 SSB2_CLOAB	14.98
	Single-stranded DNA-binding	
	protein 2 US=Clostinatum	
	824 / DSM 792 / ICM 1419 /	
	LMG 5710 / VKM B-1787)	
	GN=ssb2 PE=3	
	SV=1;>sp Q97CX3 SSB3 CLO	
	AB Single-stranded DNA-	
	binding protein 3	
Q97HT8;Q97CX3;Q899R2	OS=Clostridium acetobutyl	
	>sp Q93GI5 BGAL_BIFLI Beta-	77.452
	galactosidase III	
	OS=Bifidobacterium longum	
002015		
493015		52 261
	tRNA-2-methylthio-N(6)-	52.201
	dimethylallyladenosine synthase	
	OS=Rhizobium meliloti (strain	
	1021) GN=miaB PE=3	
	SV=1;>sp A6U5H0 MIAB_SINM	
	W tRNA-2-methylthio-N(6)-	
	dimethylallyladenosine synthase	
	OS=Sinorhizobium medicae	
Q92S17;A6U5H0	(strain vv SM419) GN=miaB	47.077
	>sp Q92QL0 YQGF_KHIME	17.977
	OS-Rhizohium meliloti (strain	
09201.0	1021) GN=R01309 PF=3 SV-1	
	>splQ92N73IKPRS_RHIMF	33.521
	Ribose-phosphate	00.021
	pyrophosphokinase	
	OS=Rhizobium meliloti (strain	
	1021) GN=prs PE=3	
	SV=1;>sp Q8YIG1 KPRS_BRU	
	ME Ribose-phosphate	
Q92N73;Q8YIG1;Q8UDA9;Q8FZF0	pyrophosphokinase	
;Q89DJ1	OS=Brucella melitensis biotype	

	1 (strain 16M / ATCC 23456 / NCTC 10094) GN=prs PE=3 SV=2:	
	>sp Q92CU3 NADE_LISIN NH(3)-dependent NAD(+) synthetase OS=Listeria innocua	30.485
	680 / CLIP 11262) GN=nadE PE=3	
Q92CU3;Q8Y825;Q720Y0;Q2NRT	O NH(3)-dependent NAD(+) synthetase OS=Listeria	
4;C1L207;B8DCC1;A0AHK4;A7MN W9;A4W9K3;A8AHD1	(strain ATCC BAA-679	
	>sp Q92A41 Y2081_LISIN Uncharacterized protein Lin2081 OS=Listeria innocua serovar 6a (strain ATCC BAA-680 / CLIP 11262) GN=lin2081 PE=3 SV=1;>sp Q8Y5T8 Y1967_LISM	45.476
	Lmo1967 OS=Listeria monocytogenes serovar 1/2a	
Q92A41;Q8Y5T8;P37535	(strain ATCC BAA-679	52 690
	 >spiQ92oK4[DCEC_LISIN Probable glutamate decarboxylase gamma OS=Listeria innocua serovar 6a (strain ATCC BAA-680 / CLIP 11262) GN=lin2528 PE=3 SV=1;>spiQ8Y4K4[DCEC_LISM O Probable glutamate decarboxylase gamma OS=Listeria monocytogenes 	55.009
Q928K4;Q8Y4K4	serovar 1/2a (strain	00.500
Q8ZRS8	Aconitate hydratase B OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=acnB PE=1 SV=1	93.528
Q8ZRC9;Q5PFQ2;Q57SC9;B5Y0	>sp Q8ZRC9 YAJQ_SALTY UPF0234 protein YajQ OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=yajQ PE=3 SV=2;>sp Q5PFQ2 YAJQ_SAL PA UPF0234 protein YajQ OS=Salmonella paratyphi A	18.319
W4;B5FKU0;B5EXH5;B4TMB5;B4 T9D0;B4SWS7;A9MWZ5;A8AK28; A6T5G0;Q8Z8W2;A4W797	(strain ATCC 9150 / SARB42) GN=yajQ PE=3 SV=2;>sp Q57SC9 YAJQ_	
Q8ZQX7;Q8Z8G0;Q5PCH6;Q57R Q0;C0PWA5;B5R824;B5QWC8;B5 FNB9;B5EZC1;B5BCC5;B4TPZ8;B 4TB82;B4SYN7;A9MUG8;A8AJE0; A4W844;A8GB41	>sp Q8ZQX7 NAGB_SALTY Glucosamine-6-phosphate deaminase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=nagB PE=3	29.632

	SV=1;>sp Q8Z8G0 NAGB_SAL	
	TI Glucosamine-6-phosphate	
	deaminase OS=Salmonella	
	typhi GN=nagB PE=3	
	PA GI	
	>sp Q8ZQU3 SDHA_SALTY	64.461
	Succinate dehydrogenase	
	flavoprotein subunit	
	(strain L12/SGSC1412/ATCC	
	700720) GN=sdhA PE=3	
	SV=1;>sp P0AC43 SDHA ECO	
	57 Succinate dehydrogenase	
	flavoprotein subunit	
Q8ZQU3;PUAC43;PUAC42;PUAC4	US=Escherichia coli U157:H7	
1;G4V4G6	GN=sdhA PE=3	
	>sp Q8ZQU2 SDHB_SALTY	26.733
	Succinate dehydrogenase iron-	
	sulfur subunit OS=Salmonella	
	typhimurium (stroin LT2 /	
	SGSC1412 / ATCC 700720)	
	GN=sdhB PE=3	
	SV=2;>sp P07014 SDHB ECOL	
	I Succinate dehvdrogenase iron-	
	sulfur subunit OS-Escherichia	
	ooli (otroin K12) CN-odbP D	
Q0ZQU2,F07014	COIL (SITAILLER 12) GIN=SUILD P	40.4.40
Q8ZQ15;Q8Z8C0;Q83MM7;Q5PC		46.148
N2;Q3Z464;Q324H2;Q0T6X7;B5R		
699;B5QX24;B5BC62;B2TUC6;Q1	>sp Q8ZQT5 TOLB_SALTY	
REI5 Q0T.IV4 P0A857 P0A856 P0	ProteintolB OS=Salmonella	
$\Delta 855 \cdot C 47 \cdot 1 = 5 \cdot B7 \cdot 1 \cdot $	typhimurium (strain LT2 /	
B/IN9Y9;B/IVIPINT;B/IVIFZ3;B/IVI6B	SGSC1412/ATCC700720)	
0;B7LAE7;B5YRE4;B1X6S1;B1IXY	GN=toIB PE=3	
9;A7ZJC2;Q32II1;Q57RK3;A4W88	SV=1;>sp Q8Z8C0 TOLB_SALT	
9;Q934G6;Q7N6T6;Q6D7F2;Q2NU	I ProteintolB OS=Salmonella	
14 C6DCE7 C5BEI 8 A8GB93 Q87	typhi GN=toIB PE=3	
$G71 \cdot O66D90 \cdot O1CEM9 \cdot O1CAE2 \cdot B$	S_{-1}	
A/FKQ3;A41NS8;A1JKK8		
	>sp Q8ZPV9 YEAD_SALTY	32.56
	Putative glucose-6-phosphate 1-	
	epimerase OS=Salmonella	
	epimerase OS=Salmonella	
	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)	
	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)	
Q8ZPV9	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=yeaD PE=1 SV=1	
Q8ZPV9	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=yeaD PE=1 SV=1 >sp Q8ZNW0 KPYK2_SALTY	51.387
Q8ZPV9	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=yeaD PE=1 SV=1 >sp Q8ZNW0 KPYK2_SALTY Pyruvate kinase II	51.387
Q8ZPV9	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=yeaD PE=1 SV=1 >sp Q8ZNW0 KPYK2_SALTY Pyruvate kinase II OS=Salmonella typhimurium	51.387
Q8ZPV9	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=yeaD PE=1 SV=1 >sp Q8ZNW0 KPYK2_SALTY Pyruvate kinase II OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC	51.387
Q8ZPV9	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=yeaD PE=1 SV=1 >sp Q8ZNW0 KPYK2_SALTY Pyruvate kinase II OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=pykA PE=3	51.387
Q8ZPV9	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=yeaD PE=1 SV=1 >sp Q8ZNW0 KPYK2_SALTY Pyruvate kinase II OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=pykA PE=3 SV=2::splP24500 KDV/20_ECC	51.387
Q8ZPV9	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=yeaD PE=1 SV=1 >sp Q8ZNW0 KPYK2_SALTY Pyruvate kinase II OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=pykA PE=3 SV=3;>sp P21599 KPYK2_ECO	51.387
Q8ZPV9	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=yeaD PE=1 SV=1 >sp Q8ZNW0 KPYK2_SALTY Pyruvate kinase II OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=pykA PE=3 SV=3;>sp P21599 KPYK2_ECO LI Pyruvate kinase II	51.387
Q8ZPV9	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=yeaD PE=1 SV=1 >sp Q8ZNW0 KPYK2_SALTY Pyruvate kinase II OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=pykA PE=3 SV=3;>sp P21599 KPYK2_ECO LI Pyruvate kinase II OS=Escherichia coli (strain K12)	51.387
Q8ZPV9 Q8ZNW0;P21599;Q8K9M3	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=yeaD PE=1 SV=1 >sp Q8ZNW0 KPYK2_SALTY Pyruvate kinase II OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=pykA PE=3 SV=3;>sp P21599 KPYK2_ECO LI Pyruvate kinase II OS=Escherichia coli (strain K12) GN=pykA PE=1 SV=3	51.387
Q8ZPV9 Q8ZNW0;P21599;Q8K9M3 Q8ZNN4:Q8Z5C3:Q83KH0:Q5P.14	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=yeaD PE=1 SV=1 >sp Q8ZNW0 KPYK2_SALTY Pyruvate kinase II OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=pykA PE=3 SV=3;>sp P21599 KPYK2_ECO LI Pyruvate kinase II OS=Escherichia coli (strain K12) GN=pykA PE=1 SV=3 >sp Q8ZNN4 SYM_SALTY	51.387
Q8ZPV9 Q8ZNW0;P21599;Q8K9M3 Q8ZNN4;Q8Z5C3;Q83KH0;Q5PJ4 3:Q57MI5:Q3Z096:Q32E18:Q322P4	epimerase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=yeaD PE=1 SV=1 >sp Q8ZNW0 KPYK2_SALTY Pyruvate kinase II OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=pykA PE=3 SV=3;>sp P21599 KPYK2_ECO LI Pyruvate kinase II OS=Escherichia coli (strain K12) GN=pykA PE=1 SV=3 >sp Q8ZNN4 SYM_SALTY Methionine-tRN4 liggse	51.387 76.273

;Q0T324;C0Q0Y1;B7LV75;B5XP89 ;B5RBZ5;B5R0E7;B5FMX1;B5EXZ 5;B5BE81;B4TNL2;B4T9X0;B4SXY 7;B2TVX7;A9N7I2;A9MKV0;A8AEB 2;A7MHL3;A6TBK7;Q8X7E7;Q8FF X8;Q1R9V8;Q0TFX8;P00959;C4Z SJ8;B7UFD1;B7NPL8;B7NCE4;B7 MX36;B7MEG9;B7M4V9;B7L9Y6;B 6HYV5;B5YV64;B1X7K4;B1LN54;B 1IYW7;A8A1X8;A7ZNT3;A1ACX8; Q1LT75;Q8ZG01;Q7N6J6;Q66C72 ;Q1CGU4;Q1C9T8;B4ESY6;B2JZK 3;B1JPY8;A9R2M7;A8GC37;A7FJJ 6;A4TKM9;A1JTX6;Q6D7B6;C6DC I4;B2VIF6;A4WCF6;Q2NUD0;Q0V P51	OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=metG PE=3 SV=3;>sp Q8Z5C3 SYM_SALTI MethioninetRNA ligase OS=Salmonella typhi GN=metG PE=3 SV=3;>sp Q83KH0 SYM_SHIFL MethioninetRNA ligase O	
	>sp Q8ZND6 PTA_SALTY Phosphate acetyltransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC	77.277
	(S(14)127) = (S(
Q8ZN40;Q8Z4N0;Q5PNG1;Q57LG 9;C6DBJ1;B5XNJ7;B5RD12;B5R5 A2;B5FR85;B5F1C0;B5BAW6;B4T RX5;B4TDB6;B4T0S2;A9N1X5;B2 VI32;Q6D259;A9MHJ4;A6TCF1;A4 WDB1;Q0T1Y9;P0A6C0;C0PYK7; B7LKA9;B2TXV5;Q0TEV5;P0A6B9	>sp Q8ZN40 ISCS_SALTY Cysteine desulfurase IscS OS=Salmonella typhimurium	45.092
;P0A6B8;P0A6B7;C4ZXA5;B7UGX 6;B7NRH9;B7N6B7;B7MYG3;B7MI M0;B7M7N3;B7LDC2;B6I5A2;B5Z1 04;B1XB05;B1LNI6;B1IWD1;A8A3 36;A7ZPX4;Q7N224;Q57337;Q0I1 L2;P57803;C5BEU5;B0UVL5;A7M GX8;A6VMN7;A5UGI1;A5UAA8;A8 GHY3;Q7VMA9;B8F356	(strain LT2 / SGSC1412 / ATCC 700720) GN=iscS PE=3 SV=1;>sp Q8Z4N0 ISCS_SALTI Cysteine desulfurase IscS OS=Salmonella typhi GN=iscS PE=3 SV=1;>sp Q5PNG1 ISCS_SALP A Cysteine desulfura	
087M06-P58744	>sp Q8ZM06 DKGA_SALTY 2,5-diketo-D-gluconic acid reductase A OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=dkgA PE=3 SV=1;>sp P58744 DKGA_SALT I Putative 2,5-diketo-D-gluconic acid reductase A OS=Salmonella typhi GN=dkgA PE=5 SV=2	30.995
Q8ZLM7;Q8Z1W9;Q83PZ1;Q5PIT8 ;Q57J64;Q3YWX3;Q32B63;Q31VZ 0;Q0T016;B7LRQ3;B5RH49;B5R1 E3;B5FJI2;B5F7R3;B5BGV3;B4TX B0;B4TJX7;B4SUQ8;B2VK93;A9N 8B1;A9MN80;A8GKG5;A8AQI1;Q8 ZJ79;Q7MYI2;Q664V4;Q1CCX6;Q 1C2X9;B2K504;B1JJH8;A9R927;A 7FNK2;A4TH23;A1JRZ1;Q1R646; Q0TCH5;P0A6K5;P0A6K4;P0A6K3	 >sp Q8ZLM7 DEF_SALTY Peptide deformylase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=def PE=3 SV=1;>sp Q8Z1W9 DEF_SALTI Peptide deformylase OS=Salmonella typhi GN=def PE=3 SV=1;>sp Q83PZ1 DEF_SHIFL 	19.282

;C4ZUE1;B7UK10;B7NLK6;B7NDQ 8;B7N171;B7MCQ2;B7M0Z2;B7LH Y3;B6I200;B5YT06;B1X6D9;B1LG P3;B1IQ13;A8A591;A1AGH8	Peptide deformylase OS=Shigella fle	
	>sp Q8ZLM1 RS13_SALTY 30S ribosomal protein S13 OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=rpsM PE=3 SV=3;>sp Q8Z1X6 RS13_SALTI 30S ribosomal protein S13 OS=Salmonella typhi GN=rpsM PE=3 SV=3;>sp O5PK07 RS13_SALP	13.161
4	A 30S ribosomal prot >sp Q8ZLG5 GLGB_SALTY 1,4- alpha-glucan branching enzyme GIgB OS=Salmonella typhimurium (strain LT2 / SCSC11112 / ATCC 700720)	84.274
6;Q57IT8;Q3YW93;Q32AV3;Q3PM0 6;Q57IT8;Q3YW93;Q32AV3;Q31VJ 1;Q0SZN2;A9MTV4;A9MMA0;A6T F51;A4WFL5;Q8X6X6;Q8FCR7;Q1 R5J4;Q0TC27;P07762;B1IP32;A8A 5P2;A7ZSW5;A1AGW5;O66936;A5 EPZ7;A4Z005;Q3STC2;A8AQY3	GN=glgB PE=3 SV=1;>sp Q8Z235 GLGB_SALT I 1,4-alpha-glucan branching enzyme GlgB OS=Salmonella typhi GN=glgB PE=3 SV=1;>sp Q83PV3 GLG	
Q8ZLD7;Q8Z268;P0AED4;P0AED3 ;P0AED2;P0AED1;P0AED0;Q8ZA4 9	>sp Q8ZLD7 USPA_SALTY Universal stress protein A OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspA PE=3 SV=3;>sp Q8Z268 USPA_SALT I Universal stress protein A OS=Salmonella typhi GN=uspA PE=3 SV=3;>sp P0AED4 USPA_SHIS O Universal stress	16.08
Q8ZL56;Q8Z2F0;Q5PBZ2;Q57IC9; A9MVK6;Q329P2;P59176;A4W533 ;Q8ZJN0;Q66GC2;Q1CD17;Q1C28 2;A7MID1;A7FCU8;A4TSC2;A1JH Y1	>sp Q8ZL56 GPMI_SALTY 2,3- bisphosphoglycerate- independent phosphoglycerate mutase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=gpmI PE=3 SV=1;>sp Q8Z2F0 GPMI_SALTI 2,3-bisphosphoglycerate- independent phosphoglycerate mutase OS=Salmone	56.254
Q8ZL52;Q8Z2F4;Q5PC07;Q57IC5; Q3YVY1;Q329N8;Q31V06;Q0SYE 5;P59409;C0Q1V0;B7LVH6;B5XTI 4;B5RGH0;B5R5E1;B5FLI6;B5EXC 3;B5BHZ1;B4TZV9;B4T9A1;B4SX B9;B2U5D5;A9MVL0;A9MKQ8;A8A RK6;A7MID0;A6TFL2;Q8XEJ1;Q8F CA2;Q1R4X4;Q0TBJ0;P07913;C4Z XK8;B7ULH2;B7NPC5;B7NES3;B7	>sp Q8ZL52 TDH_SALTY L- threonine 3-dehydrogenase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=tdh PE=3 SV=1;>sp Q8Z2F4 TDH_SALTI L-threonine 3-dehydrogenase OS=Salmonella typhi GN=tdh PE=3	37.212

N1S0;B7MFI0;B7M4A3;B7L742;B6I 3J6;B5YWB7;B1X950;B1LK55;B1I	SV=1;>sp Q5PC07 TDH_SALP A L-threonine 3-dehyd	
ZH4;A8A681;A7ZTH0;A1AHF3 Q8ZKW8;Q8Z9S5;Q6CYJ4;Q663Q		31.555
7;Q5PKX1;Q57HX8;Q3YVN7;Q329 S2:Q31UN3:Q1CCH4:Q1C094:Q0		
SYU3;P0ABA9;C6DJH1;C5BF39;C		
0Q2N3;B7LK78;B5XZM3;B5RFW2; B5QUS5:B5EN34:B5EYZ7:B5BIN7:		
B4TN32;B4TAX3;B4SYD2;B2TUP2		
;B2K846;B1JRN1;A9R5U0;A9MXA	>sp Q8ZKW8 ATPG_SALTY	
MX0;A7FPE1;A6TG37;A4WGF4;A	OS=Salmonella typhimurium	
4TSJ2;A1JTC7;B2VCA5;Q1R4K1;	(strain LT2 / SGSC1412 / ATCC	
6:C4ZZ11:B7UMJ8:B7NR35:B7NF	SV=1:>splQ8Z9S5IATPG YER	
49;B7N2H2;B7MGF3;B7M589;B7L	PE ATP synthase gamma chain	
880;B6I3X0;B5YXD7;B1X9W1;B1L	OS=Yersinia pestis GN=atpG PE=3	
R5;C4LDW1;Q8Z2Q5;Q7NA93;Q2 NQ87:A4STP4:A0KQX9:A8G1W6	SV=1;>sp Q6CYJ4 ATPG_PEC AS ATP synthase gamma ch	
	>sp Q8ZKQ0 LSRF_SALTY 3-	31.742
	hydroxy-5- phosphonooxypentane-2.4-	
	dione thiolase OS=Salmonella	
	typhimurium (strain LT2 /	
Q8ZKQ0;Q8Z2X9;Q7CG47;Q66EZ	GN=lsrF PE=2	
3;Q5PJE3;Q57HD9;Q1CN19;Q1C1	SV=1;>sp Q8Z2X9 LSRF_SALT	
G5:A7FMK1:A4TQL9:A1JJ51:Q0T4	phosphonooxypentane-2.4-	
L4;Q7N2D6;A6TEB4;A4WER0;Q8	dione thiolase OS=Salmonella	
XAZ1;P76143;B1XEA5;B1LF98	typhi GN=IsrF	35 949
	acetyl-gamma-glutamyl-	00.040
	phosphate reductase	
	(strain LT2 / SGSC1412 / ATCC	
	700720) GN=argC PE=1	
	SV=1;>sp Q8Z309 ARGC_SAL1	
	phosphate reductase	
Q8ZKL8;Q8Z309;Q5PK75;P59310; P57907:O8X732:P59306:P11446	OS=Salmonella typhi GN=argC PE=3 SV=1:>spl	
Q8ZK29;Q6DA52;Q5PJD4;Q57GC		54.889
3;Q3YU89;Q328S1;Q0SXK0;C6DJ	>sp Q8ZK29 AMPA_SALTY	
9L5;B5R1K2;B5FSH0;B5F465;B5B	aminopeptidase OS=Salmonella	
KS6;B4TTA0;B4TG58;B4T3M4;A9	typhimurium (strain LT2 /	
N680;A9ME I 9;A8AMA5;A6THI2;A 4WF25:Q1R274:Q0T9D1:P68768	SGSC1412 / ATCC 700720) GN=pepA PF=3	
P68767;P68766;C4ZRD1;B7UQR7;	SV=1;>sp Q6DA52 AMPA_PEC	
B7NUH4;B7NGJ2;B7MSZ3;B7MLR	AS Probable cytosol	
5,67191919;871030;8612H3;8523L 7:B1XEN9:B1LRE5:B1ISB1:A8A81	ammopepudase OS=Pectobacterium	
6;A7ZVE0;A1AJG3;Q83P64;Q31T	atrosepticum (strain SCRI 1043 /	
K2;B2VL42;B2TYY4;Q8Z116;C5BB	ATCC BAA-672) G	

Y4;Q8ZBH3;Q66F09;Q1CM01;Q1C 3R8;B2K3E9;B1JLS9;A9R5F5;A8G 978;A7FML9;A4TQP6;A1JJ31;Q7M Z27;C4LA51;Q5QY05;Q488M4;Q1 5PX4;B4F2N1;Q8DCE5;Q87LG8;Q 7MHG4;Q6LUW0;Q5E7T8;B6EMT 2;B5F9Q6;A7MSE5;Q2NR41;P0C6 E1;C3LR42;A5F5D8;A1SRZ1		
Q8ZJV8;Q8Z0U3;B5FTC5;B4TGZ9 ;Q83P02;Q3YU12;Q327L5;Q31SV 8;Q0SX30;B7LNS1;B2TZR4;Q8XB 36;Q0T8T2;P0A6L1;P0A6L0;C4ZT 63;B7UR09;B7NW61;B7NH49;B7N 2V7;B7MNI8;B7LXU3;B7LEM7;B6I 6M8;B5Z4R3;B1XFJ1;B1LEI6;B1IS 38;A8A8B0;A7ZVS4;A1AJU8;Q8D BT2;Q7MI38	 >sp Q8ZJV8 DEOC_SALTY Deoxyribose-phosphate aldolase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=deoC PE=1 SV=2;>sp Q8Z0U3 DEOC_SAL TI Deoxyribose-phosphate aldolase OS=Salmonella typhi GN=deoC PE=3 SV=2;>sp B5FTC5 DEOC_SAL DC Deoxyrib 	27.684
Q8ZJV7;Q8Z0U2;Q83P00;Q5PK20 ;Q3YU09;Q31SV5;Q0SX27;B7LNS 4;B5F527;B5BAK0;B4TU44;B4TH0 2;B4T4H3;B2TZR7;A9MRA4;A7MI G7;Q8FA51;Q0T8S9;P0ABP9;P0A BP8;C4ZT66;B7UR12;B7NW64;B7 NH52;B7N2V8;B7MNJ1;B7LXU6;B 7LEN0;B6I6N1;B5Z4R6;B1XFJ4;B 1LE19;B1IS35;A8A8B3;A7ZVS7;Q5 7G38;Q327L2;B5R2J9;B5FTC8;A9 N7E3;A8ALX7;B5Y274;A4W6A1;C 5BHJ5;Q7N930;B2VH53;B5R9V2; Q8ZIQ2;Q66EV7;Q1CMY7;Q1C16 6;B2K3J1;B1JL34;A9R046;A7FMH 2;A4TQJ0;Q9CLE6;Q4QN30;Q011 K5;P44417;B0UVM2;A5UH23;A5U 9X5;Q6D989;C6DKM0;Q59482;B8 F672;A1JJA0	>sp Q8ZJV7 DEOD_SALTY Purine nucleoside phosphorylase DeoD-type OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=deoD PE=3 SV=1;>sp Q8Z0U2 DEOD_SAL TI Purine nucleoside phosphorylase DeoD-type OS=Salmonella typhi GN=deoD PE=3 SV=1:>sp Q83P	25.978
Q8ZJG9;Q664K7;Q1CCM6;Q1C2M 9;B2K5U8;B1JI04;A9R4C2;A7FNU 8;A4TGS8	 >sp Q8ZJG9 PCKA_YERPE Phosphoenolpyruvate carboxykinase (ATP) OS=Yersinia pestis GN=pckA PE=3 SV=1;>sp Q664K7 PCKA_YER PS Phosphoenolpyruvate carboxykinase (ATP) OS=Yersinia pseudotuberculosis serotype I (strain IP32953) GN=pckA PE=3 SV=1;>sp Q1CCM6 PCKA_YE 	59.348
Q8ZIN2;Q66ET5;B2K3L5;B1JL09; A9R021;A7FME9;A1JJD0	 >sp Q8ZIN2 TAL_YERPE Transaldolase OS=Yersinia pestis GN=tal PE=3 SV=1;>sp Q66ET5 TAL_YERPS Transaldolase OS=Yersinia pseudotuberculosis serotype I (strain IP32953) GN=tal PE=3 	35.049

	SV-1: op/P2/21 5/TAL VEDDD	
	Transoldologo OC Versinia	
	Transaldolase OS= rersinia	
	pseudotuberculosis serotype	
	>sp Q8ZH40 METQ_YERPE D-	29.376
	methionine-binding lipoprotein	
	MetQ OS=Yersinia pestis	
Q8ZH40:Q8ZRN1:Q8Z992	GN=metQ PE=3 SV=1	
	>splQ8ZDX0ISYEA_YERPE	37 139
	PhenylalaninetRNA ligase	011100
	α	
	pestis GN=pneS PE=3	
	SV=1;>sp Q66925 SYFA_YERP	
	S PhenylalaninetRNA ligase	
	alpha subunit OS=Yersinia	
Q8ZDX0;Q669Z5;Q1CIG8;B2K664;	pseudotuberculosis serotype I	
B1JJ21:A9R0A4:A7FHG5:A4TIL5:	(strain IP32953) GN=pheS	
A1JML2	PE=3 SV=1:>splQ1CIG8ISYFA	
	>SDIQ87BB3IGREA_VERPE	17 778
	Transcription elongation factor	
	Grod OS-Varsinia postia	
	Grea OS= reisinia pesus	
	GN=greA PE=3	
	SV=1;>sp A9R594 GREA_YER	
	PG Transcription elongation	
	factor GreA OS=Yersinia pestis	
	bv. Antiqua (strain Angola)	
Q8ZBB3;A9R594	GN=greA PE=3 SV=1	
	>splQ8Z9I1ILEU3_SALTI 3-	39.619
	isopropylmalate dehydrogenase	00.010
	OS-Salmonella typhi GN-leuB	
	5V=1;>SP Q835P1 LEU3_5HIF	
Q8Z911;Q83SP1;Q5PDG2;Q571E7	L 3-isopropyimalate	
;Q3Z5T7;Q32K21;Q326G2;P37412	dehydrogenase OS=Shigella	
;Q8X9Z9;Q8FL76;P30125;Q1RGC	flexneri GN=leuB PE=3	
4;Q65V05;Q4QLS3;P43860;Q6LV2	SV=3;>sp Q5PDG2 LEU3_SAL	
5;Q9KP82;Q8ZIG9;Q8DEE0;Q87S	PA 3-isopropylmalate	
S8;Q7MP78;Q6D0G7;Q66EM2;Q5	dehydrogenase OS=Salmonella	
E857:Q2NVW4	par	
2001, 42.1111	SeptO8761/1SVEB SALTI	87 326
	Phonylalaning tPNA ligaco hota	07.020
	aubunit OS. Salmanalla tunhi	
	SV=1;>SP Q5PH85 SYFB_SALP	
	A PhenylalaninetRNA ligase	
	beta subunit OS=Salmonella	
	paratyphi A (strain ATCC 9150 /	
Q8Z6I4;Q5PH85;Q57PU8;P15434;	SARB42) GN=pheT PE=3	
Q8ZDX1;Q669Z6;Q2NT27;Q7N3Q	SV=1;>sp Q57PU8 SYFB SAL	
1:Q65TL3:P57859:P43820:P37984	СН	
,	>splQ876F6IDHF4_SALTI	48 557
	NADP-specific dutamate	10.007
	debudrogenase OS-Salmonalla	
	tunhi CN_adh A DE_2	
	SV=1,>SPIP151111DHE4_SAL1	
	Y INADP-specific glutamate	
	dehydrogenase OS=Salmonella	
Q8Z6F6;P15111	typhimurium (strain LT2 /	

	SGSC1412 / ATCC 700720)	
	GN=adhA PE=3 SV=2	
Q8Z320;Q5PK93;Q57H69:P06173:		150.63
C0Q2R7;B5QYD8;B5FQJ9;B5F0W		
7;B5BJQ3;B4TQJ5;B4TCS4;B4T0Y		
9;A9N0J4;A9MHF1;A8AKT9;B5XY		
F5;A6TGP0;B5RFK1;A7MQQ9;Q3		
YUZ7;Q32AF9;Q31U10;Q0SY13;P		
0A8V5;B7LUL5;B2TWH3;Q1R5V3;		
Q0TA78;P0A8V4;P0A8V3;P0A8V2;		
C5A0S7;B7UPE2;B7NRR5;B7NFS		
7;B7MRB3;B7MIX3;B7M734;B7LA		
80;B6I5J7;B5Z083;B1XBY9;B1LNT		
9;B1IUR0;A8A786;A7ZUK1;A1AIF9		
;Q2NWR6;A1JII0;C5BHE3;B4EYU	>sp Q8Z320 RPOB_SALTI	
9;Q8ZAP5;Q66FQ2;Q1CN78;Q1C1	DNA-directed RNA polymerase	
U1;B2K113;B1JJJ9;A9R0H8;A7FNI	subunit beta OS=Salmonella	
3;A4TS29;A8G8E7;Q8D233;P5714	typhi GN=rpoB PE=3	
6;B8D8J6;B8D6V0;Q1LSX7;Q7VK	SV=1;>sp Q5PK93 RPOB_SAL	
L7;Q7N9A4;Q65W41;P41184;A6V	PA DNA-directed RNA	
KC5;Q4QN33;P43738;A5UH20;A5	polymerase subunit beta	
U9X8;Q9CK91;Q0I5B7;B0URZ6;B0	OS=Salmonella paratyphi A	
BSF5;A3N325;B8F741;Q5QWA5;Q	(Strain ATCC 9150 / SARB42)	
	GIN=[POB PE=3	
		55 022
	Spigozzi ojgerk_Salmonolla	55.9ZZ
	typhi GN-glok PE-3	
4,05F0R7,0505R3,04TF07,04TC M2·B4T0T2·A9M7H4·A9MI40·A8AI	SV-3:-SentO87KP31G1 PK SAI T	
00.04/W/G72.B5XTD4.06TER2.0711	Y Glycerol kinase	
B84.032402.031164.B7111S9.B2T	OS-Salmonella typhimurium	
WC2:08EBC3:00TAD8:P0A6E4:P	(strain LT2 / SGSC1412 / ATCC	
0A6F3 C5A093 B7UNP6 B7NU81	700720) GN=glpK PE=3	
B7NFM3:B7N2R7:B7MI58:B7M6X7	SV=3:>splQ5PIS3IGLPK SALP	
:B7LA23:B5YZ64:B1XB92:B1LNM9	A Glycerol kinase	
;B1IVF3;A8A731;A7ZUE0	OS=Salmonella paratyph	
, , , ,	>splQ8Z233IGLGC_SALTI	48.435
Q8Z233;Q5PM08;Q57IU0;P05415;	Glucose-1-phosphate	
C0Q0L0;B5R395;B5F8Q2;B5BHI0;	adenylyltransferase	
B4TY87;B4T868;B4SVN3;A9MTV2	OS=Salmonella typhi GN=glgC	
;A9MMA2;A7MGF4;Q3YW95;Q32A	PE=3	
V5;Q0SZN4;P0A6V4;B7LSE1;B5X	SV=1;>sp Q5PM08 GLGC_SAL	
TQ9;B5FKF5;A4WFL3;Q1R5J6;Q0	PA Glucose-1-phosphate	
TC29;P0A6V3;P0A6V2;P0A6V1;C4	adenylyltransferase	
ZVY0;B7UKY7;B7NMJ5;B7NE40;B	OS=Salmonella paratyphi A	
7N1M2;B7MDR5;B7M2J3;B7L4W0;	(strain ATCC 9150 / SARB42)	
B6I2Z6;B5YUI6;B1X775;B1LI91;B1	GN=glgC PE=3	
IP34;A8A5P0;A7ZSW3;Q31VJ3;B2	SV=1;>sp Q57IU0 GLGC_SALC	
U4G2;A6TF49	H	
	>sp Q8Z123 OTC_SALTI	36.713
Q8Z123;Q3YU98;Q328S8;Q31TJ4;	Ornithine carbamoyltransferase	
Q08016;Q82BG8;Q66F14;Q1CM0	OS=Salmonella typhi GN=argl	
6;A/FMM5;A41QQ1;Q83IM2;Q0SX		
	Sv=3;>splQ3YU98 01C_SHISS	
	Ornithine carbamoyltransferase	
SV4;A8A810;A7ZVD3	OS=Shigella sonnei (strain	

	Ss046) GN=argl PE=3	
	SV=1;>sp Q328S8 OTC_SHIDS	
	Ornithine carbamoyltransferase	
	OS=Shigell	
	>splQ8XNH2 PFKA1 CLOPE	34.066
	ATP-dependent 6-	
	phosphofructokinase 1	
	OS-Clostridium perfringens	
	$(\text{strain } 13 / \text{Type } \Lambda) \text{ GN-pfk} \Lambda 1$	
	(S(1a)(137)) = A (S(1a)) = p(A)	
QOANHZ		07.050
	>spiQ8XKU111PIS_CLOPE	27.058
	I riosephosphate isomerase	
	OS=Clostridium perfringens	
	(strain 13 / Type A) GN=tpiA	
	PE=1	
	SV=1;>sp Q0TQY8 TPIS_CLOP	
	1 Triosephosphate isomerase	
	OS=Clostridium perfringens	
	(strain ATCC 13124 / DSM 756 /	
Q8XKU1:Q0TQY8:Q0STD6:O5263	JCM 1290 / NCIMB 6125 /	
3	NCTC 8237 /	
0		42 679
	Phosphoglycerate kinase	42.075
	Clostridium porfringene	
	(strain 42 (Turne A) ON mate	
	(strain 13 / Type A) GN=pgk	
	SV=1;>sp Q01QY7 PGK_CLOP	
	1 Phosphoglycerate kinase	
	OS=Clostridium perfringens	
	(strain ATCC 13124 / DSM 756 /	
	JCM 1290 / NCIMB 6125 /	
Q8XKU0;Q0TQY7;Q0STD5	NCTC 8237 / Type A)	
	>sp Q8XHR7 RL7_CLOPE 50S	12.535
	ribosomal protein L7/L12	
	OS=Clostridium perfringens	
	(strain 13 / Type A) GN=rplL	
	PE=3	
	SV-1:>spl00TMN7IRL7_CLOP	
	150 sibosomal protein $17/112$	
	OS-Clostridium porfringons	
	(otroin ATCC 12124 / DSM 756 /	
	NUTU 823	=
Q8XGX4;Q7CPE2;Q57HX9;Q3YV		50.283
N6;Q329S1;Q31UN2;Q0SYU4;P0A		
BB7;C0Q2N2;B7LK77;B5RFW3;B5		
QUS4;B5FN33;B5EYZ6;B4TN31;B	>sp Q8XGX4 ATPB_SALTI ATP	
4TAX2;B4SYD1;B2TUP3;A9MXA6;	synthase subunit beta	
A9MJR9;A8ACN6;Q1R4K2;Q0TAX	OS=Salmonella typhi GN=atpD	
7;P0ABB6;P0ABB5;P0ABB4;C4ZZ	PE=3	
10;B7UMJ7;B7NR34;B7NF48;B7N	SV=1;>sp Q7CPE2 ATPB_SAL	
2H1;B7MGF2;B7M588;B7L882;B6I	TY ATP synthase subunit beta	
3W9;B5YXD6;B1X9W0:B1LL59:B1I	OS=Salmonella typhimurium	
X06:A8A6J5:A7ZTU4:A1AHR4:Q5	(strain LT2 / SGSC1412 / ATCC	
PKX2:B5BIN6:C6D.IH2:Q6CY.I5:Q	700720) GN=atpD PF=3	
2NO86:C5BF40:B2\/CA4:O4ON64	$S_{1}=0.00000000000000000000000000000000000$	
$P_{13715} \Delta_{51} C V_{0} A_{51} A_{1} O_{7} A_{1} O_{7} A_{1} O_{7} O_{7} A_{1} O_{7} O_{7} A_{1} O_{7} O_$	CH ATP synthese subur	
FHOTIO,AOUATS,AOUATT,Q/NA94	OTATE Synthase Suburi	

;Q7CFM8;Q663Q8;Q1CCH5;Q1C0		
95;B4F0E7;B2K847;B1JRN2;A9R5		
19;A7FPE0;A41SJ3;A1J1C6;Q7VP		
P0;Q0I5X3;B3H2P3;B0UWG5;A3N		
2U4;A6W3S8;A8G7M8;A4S1P3;A0		
KQX8;Q9CKW1;B8F774;B0BRX2;		
Q65Q07;A6VL57;Q3IK50;Q3J6N1;		
Q5ZRA1;Q5X0P3;Q5WSG8;A5III3;		
Q60CR4;Q0VKX4;Q48AW0;Q1QS		
D0;B8GRB8;A1SBU0;Q07VU4;B8E		
DV0;A9KX06;A6WUJ0;A4YCH8;A3		
DAR4;A1RQB0;Q8E8C0;Q0HPG1;		
Q0HD79;A0L2S8;B8CVU5;B1KQ3		
4;B0TQF4;A8HAG3;A8G1W5;A3Q		
JR0;Q2S6P1;B3PIS7;C4LDW0;Q1		
2HQ1;Q89B39;B0U598;Q07232;Q7		
WEM9;Q7W3B0;Q7VU44;Q2KU36;		
A9HY42;Q21DK8;C5BKJ5;Q5NIK3;		
Q2A1I2;Q14K06;Q0BK84;B2SEY1;		
A7NEH4;A4IW24;A0Q8D9;Q83AF5		
;A9NBD0;A9KBF7;A1U7H4;Q1LTV		
4;B0TWS7;A8EV70;A7ZC37;Q1GX		
N0;Q1CSD5;Q17Y78;Q5P4E2;B1X		
SD4;A4SUT4;A1K1S2;P42470;Q8		
XU76;Q46VY0;Q1LHL0;Q0K5M7;B		
3R7L5;Q30QQ1;B9MBA3;A1W2T7;		
Q9ZK81;P55988;B6JMX2;B5Z8D0;		
Q4FQ37;Q1Q899;B9KES3		
Q8XGN7;Q7CQ50;Q5PN54;Q57M		25.089
29;Q3YZS3;Q32DQ2;Q31YH4;Q0T		
2K0;P0AFD0;C0Q040;B7LM45;B5		
RCF2;B5R308;B5FPG8;B5EZK8;B		
5BCL9;B4TPK9;B4TBJ3;B4SYZ8;B		
2TW68;A9N581;A9MJ98;C4LB32;		
Q87ZQ8;Q7N2I8;Q4ZRJ2;Q4K9T5;		
Q48H53;Q3KA62;Q2NSK0;C5B8I5;		
C3JY82;B5XNV5;B4EZC9;A8GH15		
;A8ADV2;A7MH23;A61BX3;A4WC	>sp Q8XGN7 NUOB_SAL11	
R6;Q9I0K0;Q7CJ93;Q669A1;Q1CH	NADH-quinone oxidoreductase	
Q2;Q1C6B0;Q02ND0;B7VAR4;B2K	subunit B OS=Salmonella typhi	
820;B1JGL4;A9R6L9;A6V4E8;A41	GN=nuoB PE=3	
M35;A1JLG4;Q1QS13;A7FGQ6;Q1	SV=1;>sp Q/CQ50 NUOB_SAL	
	I Y NADH-quinone	
	oxidoreductase subunit B	
;B/N5P9;B/MXW6;B/MG51;B/M5	OS=Salmonella typhimurium	
W6;B/LBP8;B6I/N/;B5YXS/;B1X8	(strain L12/SGSC1412/ATCC	
29;B1LLP0;B1IXQ5;A8A2F6;A7ZP	700720) GN=nuoB PE=3	
		04.044
	>spiQ&XEY8 GRPE_SALII	21.841
	Protein GrpE OS=Salmonella	
	SV=1;>splQ/CPZ4 GRPE_SAL	
	I Y Protein GrpE	
	(strain L12/SGSC1412/A1CC	
9;85RD90;85QUG9;85BE99;841S		
61;B41E57;B412B9;A61CM1;A4W	SV=1;>splQ5PFG9 GRPE_SAL	
DH8	PA Protein GrpE	
	OS=Salmonella paratyphi A (stra	
------------------------------	------------------------------------	--------
		47.25
	Chaparana SurA	47.20
	OS Solmonollo tunhi CN ourA	
	05=Saimonella typni GN=SurA	
	PE=3	
	SV=1;>sp Q7CR87 SURA_SAL	
	TY Chaperone SurA	
	OS=Salmonella typhimurium	
	(strain LT2 / SGSC1412 / ATCC	
Q8XEV3;Q7CR87;Q5PDE6;Q57TG	700720) GN=surA PE=3	
8:Q3Z5V6:Q32K41:Q326I0:P0ABZ	SV=1:>splQ5PDE6ISURA SAL	
9:Q1RGE4:P0ABZ8:P0ABZ7:P0AB	PA Chaperone SurA	
76	OS=Salmonella paratyphi A	
20		102 50
	Probable hypoxenthing evideon	103.59
	Yalk D. O.C. Fack arishin and	
	O157:H7 GN=xdhD PE=3	
	SV=1;>sp Q46814 XDHD_ECO	
	LI Probable hypoxanthine	
	oxidase XdhD OS=Escherichia	
	coli (strain K12) GN=xdhD PE=3	
Q8XD64;Q46814	SV=1	
	>splQ8XCJ6IG6PD EC057	55.732
	Glucose-6-phosphate 1-	
	dehydrogenase OS=Escherichia	
	coli O157 H7 GN=zwf PF=3	
	SV-1:>splP0AC54lG6PD ECO	
	16 Glucoso 6 phosphata 1	
	Lo Giucose-o-priospitale 1-	
	Coll Ob:H1 (strain CF10737	
	ATCC 700928 / UPEC) GN=zwf	
Q8XCJ6;P0AC54;P0AC53	PE=3 SV=1;>sp P0AC53 G6PD	
	>sp Q8XBT3 USPG_ECO57	15.936
	Universal stress protein G	
	OS=Escherichia coli O157:H7	
	GN=uspG PE=3	
	SV=1;>sp Q8FK07 USPG ECO	
	L6 Universal stress protein G	
	OS=Escherichia coli O6:H1	
	(strain CFT073 / ATCC 700928 /	
	UPEC) GN=uspG PE=3	
	SV=2 >sn P39177 USPG FCOL	
		10 226
	Spluon900/ACCC_ECU5/	49.330
	US=Escherichia coli U15/:H/	
	GIN=accu PE=3	
	SV=1;>sp P24182 ACCC_ECOL	
	I Biotin carboxylase	
	OS=Escherichia coli (strain K12)	
Q8X9B6;P24182	GN=accC PE=1 SV=2	
	>sp Q8X6C0 YGEW_ECO57	44.186
	Putative carbamovltransferase	
	YgeW OS=Escherichia coli	
	O157:H7 GN=vaeW PF=3	
Q8X6C0·Q8FE91·Q46803	SV=1:>splQ8FE91IVGEW_ECO	
as 1000, as LUI, a 10000		

	L6 Putative	
	carbamoyltransferase YgeW	
	OS=Escherichia coli O6:H1	
	(strain CFT073 / ATCC 700928 /	
	(JPEC) GN=vgeW PE=3	
	SV_{-1}	
		0.40.44
	>splQ80J19 SLYX_AGREC	8.1341
	Protein SlyX homolog	
	OS=Agrobacterium fabrum	
	(strain C58 / ATCC 33970)	
Q8UJ19	GN=slyX PE=3 SV=2	
	>splQ8RLE0IKITH MYCGA	25.259
	Thymidine kinase	
	OS-Mycoplasma gallisepticum	
	(strain P/low / passage 15 /	
	(Strain R(10w / passage 15 /	
Q8RLEU	cione 2)) GN=tdk PE=3 SV=2	
	>sp Q8R753 KPRS_CALS4	34.174
	Ribose-phosphate	
	pyrophosphokinase	
	OS=Caldanaerobacter	
	subterraneus subsp.	
	tengcongensis (strain DSM	
	15242 / ICM 11007 / NBRC	
	100924 / MP4) CN-pro DE-2	
	SV=1;>SP Q8KCQ2 KPRS_CHL	
	I E Ribose-phosphate	
	pyrophosphokinase	
Q8R753;Q8KCQ2;Q88Z84	OS=Chlorobium tepidu	
	>sp Q8KAH0 EFTU_CHLTE	42.899
	Elongation factor Tu	
	OS=Chlorobium tepidum (strain	
08KAH0.P42473.B4SBU5.B3EH03	ATCC 49652 / DSM 12025 /	
· \ \ \ \ C \C \ \ \ \ \ \ \ \ \ \ \ \ \	NRPC 102806 / TLS) CNL-tuf	
,A43CQ7,A15330,030340,03CGR	$\frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{1000000} = \frac{1}{10000000000000000000000000000000000$	
6;A9BHA7	PE=3 SV=1	
	>sp Q8K9G0 RS9_BUCAP 30S	14.891
	ribosomal protein S9	
	OS=Buchnera aphidicola subsp.	
	Schizaphis graminum (strain Sg)	
Q8K9G0	GN=rpsl PE=3 SV=1	
	>SDIO8GBW612S_PROFR	65 926
	Methylmalonyl-CoA	00.020
	orboyultropoforooo 400 ouburit	
	treudenreichii subsp. shermanii	
Q8GBW6	PE=1 SV=3	
	>sp Q8G863 SYDND_BIFLO	66.935
	AspartatetRNA(Asp/Asn)	
	ligase OS=Bifidobacterium	
	longum (strain NCC 2705)	
	GN-asnS PE-2	
	$O(1 - a_0) O F E = 0$	
	$SV = 1$;>SP B/GP10 SYDIND_BIF	
	LS AspartatetRNA(Asp/Asn)	
	ligase OS=Bifidobacterium	
	longum subsp. infantis (strain	
	ATCC 15697 / DSM 20088 /	
	ICM 1222	

Q8G7W9	>sp Q8G7W9 SYG_BIFLO GlycinetRNA ligase OS=Bifidobacterium longum (strain NCC 2705) GN=glyQS PE=3 SV=1	55.908
Q8G7l6;Q47lJ3;Q3lKH4;Q6A5X5	>sp Q8G7I6 G6PI_BIFLO Glucose-6-phosphate isomerase OS=Bifidobacterium longum (strain NCC 2705) GN=pgi PE=3 SV=1	62.997
Q8G7C3;B7GU03;B3DTU0	>sp Q8G7C3 GPDA_BIFLO Glycerol-3-phosphate dehydrogenase [NAD(P)+] OS=Bifidobacterium longum (strain NCC 2705) GN=gpsA PE=3 SV=1;>sp B7GU03 GPDA_BIFL S Glycerol-3-phosphate dehydrogenase [NAD(P)+] OS=Bifidobacterium longum subsp. infantis (strain ATCC 15697	34.616
086784-064947	 >sp Q8G784 GLGE_BIFLO Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase OS=Bifidobacterium longum (strain NCC 2705) GN=glgE PE=3 SV=1;>sp C6A9K7 GLGE_BIFL B Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase OS=Bifidobacterium animalis 	82.904
Q8G769;B7GTU7;B3DU31	<pre>>sp Q8G769 GATB_BIFLO Aspartyl/glutamyl- tRNA(Asn/Gln) amidotransferase subunit B OS=Bifidobacterium longum (strain NCC 2705) GN=gatB PE=3 SV=1;>sp B7GTU7 GATB_BIFL S Aspartyl/glutamyl- tRNA(Asn/Gln) amidotransferase subunit B OS=Bifidobacterium longum subsp.</pre>	55.057
Q8G6Z9	>sp Q8G6Z9 PEPD_BIFLO Dipeptidase OS=Bifidobacterium longum (strain NCC 2705) GN=pepD PE=1 SV=1	59.75
Q8G6V1;B8DVE0;Q8G6V2	>sp Q8G6V1 ILVC2_BIFLO Ketol-acid reductoisomerase (NADP(+)) 2 OS=Bifidobacterium longum (strain NCC 2705) GN=ilvC2 PE=3 SV=1	38.551

Q8G6C2;B7GR13;B3DRX5	>sp Q8G6C2 SYT_BIFLO ThreoninetRNA ligase OS=Bifidobacterium longum (strain NCC 2705) GN=thrS PE=3 SV=1;>sp B7GR13 SYT_BIFLS ThreoninetRNA ligase OS=Bifidobacterium longum subsp. infantis (strain ATCC 15697 / DSM 20088 / JCM 1222 / NCTC 11817 / S12) GN	76.834
Q8G6B1;B3DRY6	 >sp Q8G6B1 PUR9_BIFLO Bifunctional purine biosynthesis protein PurH OS=Bifidobacterium longum (strain NCC 2705) GN=purH PE=3 SV=1;>sp B3DRY6 PUR9_BIFL D Bifunctional purine biosynthesis protein PurH OS=Bifidobacterium longum (strain DJO10A) GN=purH PE=3 SV= 	58.412
Q8G5X7;Q2G6R7;Q47QN2;Q2J87 8	>sp Q8G5X7 PYRG_BIFLO CTP synthase OS=Bifidobacterium longum (strain NCC 2705) GN=pyrG PE=3 SV=1	60.982
Q8G5P4;C5CBZ4;Q6AD51;Q891G 7;Q5L3E1;B0S0S7;Q81VE0;Q73E R7;B7JM61;B7IUT1;B7H4Q8;A9V QG9;A7GKG1;Q9KF78;Q8NY69;Q 8CMQ8;Q6GJQ6;Q6GC81;Q65MU 0;Q5HRX1;Q5HIQ6;Q4L386;Q49U U9;Q2YVL5;Q2G0Y6;Q2FJM5;P99 105;P64296;B9E8Y0;B9DLM7;A8Z 0R1;A8FAH5;A7Z235;A7WY93;A6 TYP2;A6QE71;A5IPX0;Q720X7;B1 YIZ1;Q81IS3;Q6HPC6;Q63GV4;Q5 WJI0;C3PBL1;C3L508;C1EUB4;A0 R8W7;Q5FMD6;Q74LF7;Q38ZE1; Q03H14;B2G994;A5VLY3;Q92CU0 ;Q8Y822;Q88Y74;Q1WRY8;A0AH K7;Q839J8;Q8NSR1;Q8FRZ3;A4Q BV0;O52831;Q82HM9;Q73U79;P9 WMS7;P9WMS6;P60499;P0A5A2; C1AHL0;B2HDP0;A5U871;A1KP87 ;Q9L0H2;Q4JTG0;P46810;B8ZUE2 ;P29727	>sp Q8G5P4 GUAA_BIFLO GMP synthase [glutamine- hydrolyzing] OS=Bifidobacterium longum (strain NCC 2705) GN=guaA PE=3 SV=1;>sp C5CBZ4 GUAA_MIC LC GMP synthase [glutamine- hydrolyzing] OS=Micrococcus luteus (strain ATCC 4698 / DSM 20030 / JCM 1464 / NBRC 3333 /	57.865
	>sp Q8G5P2 KPRS_BIFLO Ribose-phosphate pyrophosphokinase OS=Bifidobacterium longum (strain NCC 2705) GN=prs	36.863
Q8G5P2 Q8G5F3;B3DSY6;B7GTN9;A9WQ9 1;A6WCT0	PE=3 SV=2 >sp Q8G5F3 ARLY_BIFLO Argininosuccinate lyase	53.391

	OS=Bifidobacterium longum (strain NCC 2705) GN=argH PE=3 SV=1;>sp B3DSY6 ARLY_BIFL D Argininosuccinate lyase OS=Bifidobacterium longum (strain D.IO10A) GN=argH PE=3	
	SV=1;>sp B7GTN9 ARLY_BIFL S Argininosuccinate ly	
	>sp Q8G568 LUXS_BIFLO S- ribosylhomocysteine lyase OS=Bifidobacterium longum (strain NCC 2705) GN=luxS PE=3 SV(-2): cp P7CUC1 LUXS_BIEL	18.451
Q8G568;B7GUC1;B3DT87	SV=2, SpB/GOCTLOAS_BIFL S S-ribosylhomocysteine lyase OS=Bifidobacterium longum subsp. infantis (strain ATCC 15697 / DSM 20088 / JCM 1222 / NCTC 118	
	>sp Q8G533 GLMM_BIFLO Phosphoglucosamine mutase OS=Bifidobacterium longum (strain NCC 2705) GN=glmM PE=3 SV=1;>sp B3DTC2 GLMM_BIFL D Phosphoglucosamine mutase OS=Bifidobacterium longum (strain DJO10A) GN=glmM PE=3	48.66
Q8G533;B3DTC2;B7GUF2;B8DW H9	SV=1;>sp B7GUF2 GLMM_BIFL S Phosphoglucosami	
	>sp Q8G500 LEU3_BIFLO 3- isopropylmalate dehydrogenase OS=Bifidobacterium longum (strain NCC 2705) GN=leuB PE=3 SV=1;>sp B7GUI8 LEU3_BIFLS 3-isopropylmalate dehydrogenase OS=Bifidobacterium longum subsp. infantis (strain ATCC 15697 / DSM 20088 / JCM 1222 /	37.246
Q8G500;B7GUI8;B3DTF8	/ >sp Q8G484 PYRH_BIFLO	26.619
Q8G484:A1A1I1	Uridylate kinase OS=Bifidobacterium longum (strain NCC 2705) GN=pyrH PE=3 SV=1;>sp A1A111 PYRH_BIFAA Uridylate kinase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=pyrH PE=3 SV=1	

	>splQ8G3W7ISYS BIFLO	47.956
	SerinetRNA ligase	
	OS-Bifidobacterium longum	
	(strain NCC 2705) GN-serS	
	(Strain NCC 2703) GN=Set3	
	SV=1;>SPIB/GIN83 SYS_BIFLS	
	SerinetRNA ligase	
	OS=Bifidobacterium longum	
	subsp. infantis (strain ATCC	
Q8G3W7;B7GN83;B3DQG7;A1A0	15697 / DSM 20088 / JCM 1222	
B7	/ NCTC 11817 / S12) GN=serS	
	>splQ8FMB0IPURA COREF	46.785
	Adenylosuccinate synthetase	
	Ω S=Corvnebacterium efficiens	
	(strain DSM 44540 / VS-314 / A L	
	(Strain DSW 445497 15-5147 A)	
	100395) GN=purA PE=3	
	SV=1;>sp Q6NF38 PURA_COR	
Q8FMB0;Q6NF38;Q4JXT3;B1VHT	DI Adenylosuccinate synthetase	
9;A4QHG2;Q9RHX5;Q8NM16;C3P	OS=Corynebacterium	
JK0	diphtheriae (strain ATCC	
Q8FAT5;P0A8N6;P0A8N5;Q8ZHK		57.854
5:Q8Z3X8:Q83JU6:Q6D945:Q666T	>splQ8FAT5ISYK2 ECOL6	
3.05PL 30.057K76.032BV3.031W	l vsinetRNA ligase heat	
F2:01CE16:01CB23:00T106:P283	inducible OS=Escherichia coli	
54:C6D876:C0PV12:B5RE01:B5O	O6:H1 (strain CET073 / ATCC	
YC7:B5ELIE2:B5E5C4:B5BEK5:B4	700028 / LIDEC) CN-luci LIDE-2	
	70092070FEC) GN=IyS0FE=3	
	SV=3;>SP PUA8IN0 SYK2_ECU5	
ZKUN6;B1JPH6;A9R4IM4;A9N3L6;	7 LysinetRNA ligase, neat	
A9MRI4;A8GIP4;A8AP96;A7MR65;	inducible OS=Escherichia coli	
A7FF39;A4WE42;A4TIC5;A1JPL4;	O157:H7 GN=lysU PE=3	
B2VF45;Q8XD57;P0A8N4;P0A8N3	SV=2;>sp P0A8N5 SY	
	>sp Q8F746 SUCC_LEPIN	41.89
	SuccinateCoA ligase [ADP-	
	forming] subunit beta	
	OS=Leptospira interrogans	
	serogroup Icterohaemorrhagiae	
	serovar Lai (strain 56601)	
	GN-sucC PE-3	
	$S_{-1} = S_{-1} = S$	
	$SV = 1, SP[QTZFAZ]SOCC_LEFT$	
	C SuccinaleCoA ligase [ADP-	
	forming] subunit beta	
Q8F746;Q72PA2	OS=Leptospira	
	>sp Q8ET56 GLGC_OCEIH	43.424
	Glucose-1-phosphate	
	adenylyltransferase	
	OS=Oceanobacillus iheyensis	
	(strain DSM 14371 / CIP 107618	
	JCM 11309 / KCTC 3954 /	
08FT56	HTE831) GN=alaC PE=3 SV=1	
		32 810
	Fructose-bishboshate aldolase	02.013
	ibovancia (atrain DOM 14271 /	
QU/159;P99117;P67472;A8Z3K5;A	KCTC 3954 / HTE831) GN=fda	
7X6Y6;A6U4Y6;A6QK93;A5IW31	PE=3	

	SV=1;>sp Q971N4 ALF1_CLOA	
	B Fructose-bisphosphate	
	aldolase class 1 OS=Clostridium	
	acetobuty	
	>sp Q8E7S7 RS8 STRA3 30S	14.785
	ribosomal protein S8	
	OS=Streptococcus agalactiae	
	serotype III (strain NEM316)	
	GN_rpcH DE_2	
	$3V = 1, >SP[Q3K3V3]K30_31KA1$	
	30S ribosomai protein S8	
	OS=Streptococcus agalactiae	
	serotype la (strain AICC 27591	
	/ A909 / CDC SS700) GN=rpsH	
Q8E7S7;Q3K3V5	PE	
	>sp Q8DFM0 HTPG_VIBVU	72.343
	Chaperone protein HtpG	
	OS=Vibrio vulnificus (strain	
	CMCP6) GN=htpG PF=3	
	SV=1:>splQ7MMR7IHTPG VIR	
	VY Chaperone protein HtpG	
	OS = V/ibrio vulnificus (strain	
	V 1016) CN-btpC DE-2	
	SV=2;>sp B7VII6 H1PG_VIB1L	
	Chaperone protein HtpG	
5	OS=Vibrio tas	
	>sp Q8CS54 RS4_STAES 30S	23.105
	ribosomal protein S4	
	OS=Staphylococcus epidermidis	
	(strain ATCC 12228) GN=rpsD	
	PE=3	
	SV=1:>splQ6GFY8IRS4 STAA	
	R 30S ribosomal protein S4	
08CS54 06GEY8 06G8K8 05HNI	OS=Staphylococcus aureus	
5:05HE54:04I 760:049YE2:02YT	(strain MRSA252) GN-rpsD	
H0.02EYK6.02EC18.D66561.D665		
C2,DCCCC2,AQZ2NC,AZV2C0,ACU2U		
	$5V=1,>SP Q0G0K0 K34_51AA$	
6;A6QHQ3;A5ITP2;B9DN91		10.010
	>sp Q8ABA9 HISX_BACTN	46.246
	Histidinol dehydrogenase	
	US=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
	GN=hisD PE=3	
	SV=1;>sp Q64RE7 HISX BACF	
	R Histidinol dehvdrogenase	
	OS=Bacteroides fragilis (strain	
Q8ABA9:Q64RE7:Q5I A78	YCH46) GN=hisD PF=3	
	SpIQ8AA39ISYER BACTN	90 919
	PhenylalaninetRNA ligase boto	55.515
	subunit OS-Bactoroidae	
	thotaiotaomicron (strain ATCC	
	10582 / E50 / VPI-5482)	
• • • • • • • • • • •	GN=phel PE=3	
Q8AA39;Q64T65;Q5LC76	SV=1;>sp Q64T65 SYFB_BACF	

	R PhenylalaninetRNA ligase	
	beta subunit OS=Bacteroides	
	fragil	
	>splQ8A7M7 SSB_BACTN	17.762
	Single-stranded DNA-binding	
	protein OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q8A7M7	GN=ssb PE=3 SV=1	
	>sp Q8A7B8 FOLD_BACTN	31.645
	Bifunctional protein FolD	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q8A7B8	GN=foID PE=3 SV=1	
	>sp Q8A6N4 PURA_BACTN	46.789
	Adenylosuccinate synthetase	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
	GN=purA PE=3	
	SV=1;>SP A6L1X1 PURA_BAC	
	OS-Rectorcides vulgatus (strain	
	SeptO846021AROC BACTN	30 115
	Chorismate synthase	53.115
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
	GN=aroC PE=3	
	SV=1;>sp A6L3D0 AROC_BAC	
	V8 Chorismate synthase	
	OS=Bacteroides vulgatus (strain	
	ATCC 8482 / DSM 1447 / JCM	
Q8A602;A6L3D0	58	
	>sp Q8A455 SYE_BACTN	57.733
	GlutamatetRNA ligase	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
	SV=1;>SP Q64NI3 SYE_BACFR	
407400,0041110,002000,020128,	GulamaleIKINA ligase	
$-\Delta 01 $ W (X, Q) W $(U = 1, A0 = 0, D = R = 0)$		
	$\frac{10140}{500} \text{ GN} = \text{ gill } \text{FE} = 3.5 \text{ v} = 1,$	77 646
	MethioninetRNA ligase	11.040
	OS=Bacteroides	
O8A3M1·O64MP7·O5I 7I8·A6KVR3	thetajotaomicron (strain ATCC	
:A6LFP0:Q7MXK7:B2RHF5:A0M57	29148 / DSM 2079 / NCTC	
9	10582 / E50 / VPI-5482)	
-		1

	GN=metG PE=3	
	SV=1;>sp Q64MP7 SYM_BACF	
	R MethioninetRNA ligase	
	OS=Bacteroides fragilis (strain	
	YCH46) GN=metG PF=3 SV=	
	SepiO8A1G3ISUSG BACTN	77 958
	Alpha amylaca Suc	11.330
	Alpha-alliyiase SusG	
	US=Bacteroides	
	thetalotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q8A1G3	GN=susG PE=1 SV=1	
	>sp Q8A1G2 SUSD_BACTN	62.308
	Starch-binding protein SusD	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / \/PL-5482\	
084162	$GN_{SUSD} PE_1 S_{-1}$	
		25 020
	>SPIQOATA/ARGO_DACTININ-	30.030
	acetyi-gamma-giutamyi-	
	phosphate reductase	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
	GN=argC PE=3	
	SV=1;>sp Q64YZ5 ARGC_BAC	
	FR N-acetyl-gamma-glutamyl-	
	phosphate reductase	
Q8A1A7:Q64YZ5:Q5LHZ1:A6KXY5	OS=Bacteroide	
	SSDIO8A1A2IRHAA BACTNI-	47 481
	rhamnose isomerase	101
	OS-Bacteroides	
	thetaioteomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q8A1A2	GN=rhaA PE=3 SV=1	
	>sp Q8A137 FABH2_BACTN 3-	36.978
	oxoacyl-[acyl-carrier-protein]	
	synthase 3 protein 2	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q8A137	GN=fabH2 PE=3 SV=1	
	>splQ8A135IDER_BACTN	49 722
	GTPase Der OS-Bacteroides	
	thetaiotaomicron (strain ATCC	
	20149 / DSM 2070 / NOTO	
	23140/DONIZU/3/NUTU 10592/EE0/\\DLE492\	
004425	$\frac{10002}{200} = \frac{10002}{200} = \frac{10002}{200$	
Q0A135		50.000
	>splQ8A0Z8 SYN_BACTN	53.295
	AsparaginetRNA ligase	
	OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
Q8A0Z8;Q64P24;Q5L8W2	29148 / DSM 2079 / NCTC	

	1	
	10582 / E50 / VPI-5482)	
	B AsparaginetRNA ligase	
	Ω S=Bacteroides fragilis (strain	
	YCH46) GN=asnS PE=3 SV=	
	>splQ89YZ7IPEPT BACTN	45.178
	Peptidase T OS=Bacteroides	
	thetaiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
Q89YZ7	GN=pepT PE=3 SV=1	
	>sp Q89G50 ILVC_BRADU	36.887
	Ketol-acid reductoisomerase	
	(INADP(+)) US=Bradymizobium	
	/ IAM 13628 / NBRC 14792 /	
	USDA 110) $GN=ilvC PF=3$	
	SV=1:>splQ3SQ46IILVC NITW	
	N Ketol-acid reductoisomerase	
Q89G50;Q3SQ46;Q1QJU8;Q07PJ	(NADP(+)) OS=Nitrobacter	
7;A4YZA6	winogradskyi (s	
	>sp Q89AK1 G3P_BUCBP	36.805
	Glyceraldehyde-3-phosphate	
	dehydrogenase OS=Buchnera	
	aphidicola subsp. Balzongia	
Q89AK1	PF=3 SV=1	
	>splQ89A90 CSPE_BUCBP	7.4272
	Cold shock-like protein CspE	
	OS=Buchnera aphidicola subsp.	
	Baizongia pistaciae (strain Bp)	
	GN=cspE PE=3	
	SV=3;>sp P63238 CSPE_BUCA	
	P Cold Snock-like protein CspE	
	Schizaphis graminum (strain Sg)	
Q89A90:P63238:P63237	GN=cspE PE=3	
	>splQ899D9ISYM CLOTE	73.21
	MethioninetRNA ligase	-
	OS=Clostridium tetani (strain	
	Massachusetts / E88) GN=metG	
Q899D9	PE=3 SV=1	
	>sp Q899C3 SYI_CLOTE	120.32
	IsoleucinetRINA ligase	
	Massachusetts / E88) GN-ileS	
	PE=3	
	SV=2;>sp A0Q3B0 SYI CLONN	
	IsoleucinetRNA ligase	
	OS=Clostridium novyi (strain	
	NT) GN=ileS PE=3	
	SV=1;>sp Q8XHE4 SYI_CLOPE	
Q899C3;A0Q3B0;Q8XHE4	IsoleucinetRNA ligase O	54 040
	>spiQ896K3 VAIB1_CLUIE V-	51.213
0896K3	upe ATF synthase beta chain 1 OS-Clostridium tetani (strain	

	Massachusetts / E88)	
		4.4.70
	>spiQ88YX0 RL11_LACPL 505	14.76
	ribosomal protein L11	
	OS=Lactobacillus plantarum	
	(strain ATCC BAA-793 / NCIMB	
	8826 / WCFS1) GN=rplK PE=3	
	SV=1:>splQ035U8 RL11 LACP	
	3 50S ribosomal protein L11	
Q88YX0 [.] Q035U8 [.] B3WA09 [.] Q38V0	OS=Lactobacillus paracasei	
5:01WST2:003ST9:003E48:B2GA	(strain ATCC 334 / BCRC 17002	
C_2 ·B2G5T1·A5\/IAA		
02,020011,700774		82 226
	SpiQ001D2 FFK1_LACFL	02.220
	Polyphosphate kinase	
	(strain ATCC BAA-793 / NCIMB	
	8826 / WCFS1) GN=ppk PE=3	
	SV=1;>sp Q81MN9 PPK1_BAC	
	AN Polyphosphate kinase	
	OS=Bacillus anthracis GN=ppk	
	PE=3	
	SV=1:>splQ819I5IPPK1 BACC	
Q88YD2:Q81MN9:Q819I5	R Polyphosphate kinase O	
	>splQ88XY0IRS3 ACPL 30S	24 208
	ribosomal protein S3	24.200
	OS-I actobacillus plantarum	
	(strain ATCC RAA 702 / NCIMP	
	(Strain ATCC DAA-7937 NCIVID	
	60207 WCFST) GN=IpsC PE=3	
	SV=1;>SP Q1VVS96 RS3_LACS	
	1 30S ribosomal protein S3	
	OS=Lactobacillus salivarius	
Q88XY0;Q1WS96;A5VLJ9;Q74L83	(strain UCC118) GN=rpsC PE=3	
;Q046B9	SV=1;>sp A5VLJ9 RS3	
	>sp Q88P53 OTCC_PSEPK	37.911
	Ornithine carbamoyltransferase,	
	catabolic OS=Pseudomonas	
	putida (strain ATCC 47054 /	
	DSM 6125 / NCIMB 11950 /	
	KT2440) GN=arcB PE=3	
	SV=3 >splQ936V7IOTCC PSF	
	ME Ornithine	
	carbamovitransferase catabolic	
	OS-Pseudomonas mendocina	
088P53.0036\/7.D08308	GN-arcB P	
Q00F00,Q30077,F00000		16 704
	>SPIQ033/9 FUK_SHIFL FEITIC	10.724
	uptake regulation protein	
	US=Snigelia flexneri GN=fur	
	PE=3	
	SV=1;>sp P33086 FUR_YERPE	
	Ferric uptake regulation protein	
	OS=Yersinia pestis GN=fur	
	PE=3	
Q83S79;P33086;P37736;P33117:O	SV=2;>sp P37736 FUR VIBA7	
24755;P0C6C8;A5F6G4:P45599:P	Ferric uptake regulation protein	
0A9B1:P0A9B0:P0A9A9	OS=Vibrio anguillaru	
Q83P33 Q3YUG6 Q328F6 Q31TA7	>splQ83P33IPURA_SHIFI	47 314
·00SXA5·B7LL \/0.B2TV52·01B282	Adenvlosuccinate synthetase	
	naonyioouooniale synthetase	

;Q0T9L6;P0A7D6;P0A7D5;P0A7D4 ;C4ZR54;B7UQI6;B7NTN3;B7NGB 1;B7MSJ5;B7MKY1;B7M8T7;B7LC 36;B6l281;B5Z2I3;B1XDS8;B1LQJ 7;B1IT29;A8A7S2;A7ZV47;A1AJ82 ;Q5PL58;Q57GL4;P65883;P65882; C0Q6D4;B5R9C3;B5R0P3;B5FRN 3;B5F392;B5BKI5;B4TSF7;B4TFB1 ;B4T2S2;A9N4Z1;O30549;A5WGF 9;Q9PG47;Q8PNB5;Q8PBR6;Q88 DD8;Q87B33;Q5H4F2;Q4URT6;Q3 BWF4;Q2P782;Q1I454;Q0VMF3;C 1DLQ8;B8GND3;B4SS80;B2SNJ3; B2I7V8;B1JAI0;B0U498;B0RYD5;B 0KKZ0;A5W9S5;Q8EAG5;Q12RX5 ;Q07XS1;B8CIP5;B1KIH9;B0TUV4; A8H8L8;A3QI59;A1SA65;Q9KNX8; Q8ZIV7;Q82V29;Q7MAX9;Q6LM35 ;Q66FB0;Q606N8;Q5QW95;Q3SL5 7;Q2SBC8;Q1CEG0;Q1C105;Q15Z E1;Q0AHF5;C4L9M5;C3LRR4;B4S 195;B4F271;B2K2K4;B1JMN3;A9Q YM6;A9MFN5;A8AMM3;A7FMX4;A 6VYL0;A5F534;A4TRN4;A1JIS0;C 4K3C2;A1SZK6;Q8DCU4;Q7MH07 ;Q5E2D3;P40607;Q6FCS7;Q31GN 4	OS=Shigella flexneri GN=purA PE=3 SV=1;>sp Q3YUG6 PURA_SHI SS Adenylosuccinate synthetase OS=Shigella sonnei (strain Ss046) GN=purA PE=3 SV=1;>sp Q328F6 PURA_SHID S Adenylosuccinate synthetase OS=Shigella dys	
Q83MH2;Q3Z5Y4;Q32K71;Q326J7 ;B7LVN2;B2U245;Q8XA49;Q8FLB 7;Q1RGH6;Q0TLW5;P00956;C4ZP V2;B7UI71;B7NHD0;B7N7Q0;B7M NN1;B7MAE6;B7M0C2;B7L4E8;B6 HZ21;B5YYB8;B1XBF1;B1LFV6;B1 IRE9;A7ZVX4;A7ZHB5;A1A774;A7 MIM3;B5Y235;A8ALT6;P13502;B4 F2T5	>sp Q83MH2 SYI_SHIFL IsoleucinetRNA ligase OS=Shigella flexneri GN=ileS PE=3 SV=1;>sp Q3Z5Y4 SYI_SHISS IsoleucinetRNA ligase OS=Shigella sonnei (strain Ss046) GN=ileS PE=3 SV=1;>sp Q32K71 SYI_SHIDS IsoleucinetRNA ligase OS=Shigella dysenteriae seroty	104.27
Q83LX5;Q3Z4F0;Q32IT9;Q324Q2; Q0T6Q2;B7LLH1;B5XZR2;B2TU77 ;A8AJG0;A7MQS0;A6T6A3;Q8XBN 8;Q8FJY9;Q1RER9;Q0TK31;P078 13;C4ZWC9;B7UKT2;B7NM01;B7 N9P8;B7MRS9;B7MFR5;B7M5G9; B7L9I6;B6I153;B5YQJ4;B1LL91;B1 IYG6;A7ZXR8;A7ZJ31;A1A8R7;B3 H1L1;Q87RQ0;Q9KTE6;Q6LN98;Q 5E6U8;B7VKF7;B6EIN2;B5FBK7;A 5F2X0;Q8ZQZ6;Q8Z8H5;Q6D7L6; Q65VR5;Q5PM88;Q57RS7;Q2NU U7;Q0I5C5;P57923;C6DBW8;C0P W78;B5R7Z6;B5QVP9;B5FMP4;B5 EZ89;B5BCE6;B4TPX5;B4TB51;B4 SYK7;B2VBM4;B0URM9;A9MUK3; A9MKC8;A6VMB8;Q7VM66;B0BPF 7;A3N0N2;A7MY86;A4W827	 >sp Q83LX5 SYL_SHIFL LeucinetRNA ligase OS=Shigella flexneri GN=leuS PE=3 SV=2;>sp Q3Z4F0 SYL_SHISS LeucinetRNA ligase OS=Shigella sonnei (strain Ss046) GN=leuS PE=3 SV=1;>sp Q32IT9 SYL_SHIDS LeucinetRNA ligase OS=Shigella dysenteriae serotype 1 (str 	97.25

Q83L36;Q3Z261;Q32FI6;Q321K5; Q8XE32;P59664;P07395	>sp Q83L36 SYFB_SHIFL PhenylalaninetRNA ligase beta subunit OS=Shigella flexneri GN=pheT PE=3 SV=1;>sp Q3Z261 SYFB_SHIS S PhenylalaninetRNA ligase beta subunit OS=Shigella sonnei (strain Ss046) GN=pheT PE=3 SV=1;>sp Q32FI6 SYFB_SHIDS PhenylalaninetRNA	87.41
Q83IT3;Q3YV31;Q31U45;Q0SY48; B2TWE0;Q8FBA9;Q7A978;Q1R3X 0;Q0TAB7;P13029;B1XBA8;B1LN Q3;B1IVD5;A8A750;A7ZUG1;A1AI C1;A4WG57	>sp Q83IT3 KATG_SHIFL Catalase-peroxidase OS=Shigella flexneri GN=katG PE=3 SV=4;>sp Q3YV31 KATG_SHIS S Catalase-peroxidase OS=Shigella sonnei (strain Ss046) GN=katG PE=3 SV=1;>sp Q31U45 KATG_SHIB S Catalase-peroxidase OS=Shigella boydii serotype 4 (strain S	80.088
Q83IR9;Q3YUX8;Q32AH9;Q31121 ;Q0SXZ4;B7LUJ6;B2TWJ3;A9MHC 3;A8AKS0;A6TGR3;Q8X611;Q8FB 68;Q1R5X1;Q0TA59;P15639;C5A0 U7;B7UPG1;B7NRT9;B7NFU7;B7 MRD0;B7MIZ2;B7M7R5;B7LAV3;B 6I5L8;B5Z0A3;B1XC09;B1LPG6;B 1IUP1;A7ZUM3;A1AIH7;Q8Z335;Q 5PKA9;P26978;C0Q2T8;B5XYD2; B5RFH8;B5QYG1;B5FQM1;B5F1I9 ;B5BJS5;B4TQL6;B4TDF3;B4T108 ;A9N0L8;A8A7A6;Q16CE0;Q7N95 4;Q6DAL2;Q2NWQ7;C6DHT5;B2V G81;A8G8G3;A7MJ89;Q9KV80;C4 LA41;C3LQN2;A5F3U8	>sp Q83IR9 PUR9_SHIFL Bifunctional purine biosynthesis protein PurH OS=Shigella flexneri GN=purH PE=3 SV=1;>sp Q3YUX8 PUR9_SHIS S Bifunctional purine biosynthesis protein PurH OS=Shigella sonnei (strain Ss046) GN=purH PE=3 SV=1;>sp Q32AH9 PUR9_SHID S Bifunct	57.358
Q83BM9;Q3J7V7;B6J4H5;B6IZ25; A9N8Z4;A9KBI0;A4XQK6;Q9HVT8 ;Q02GV8;B8GL95;B7V023;A6VBJ8 ;Q47JV4;A1U486;Q1GYD3	>sp Q83BM9 GATA_COXBU Glutamyl-tRNA(GIn) amidotransferase subunit A OS=Coxiella burnetii (strain RSA 493 / Nine Mile phase I) GN=gatA PE=3 SV=1;>sp Q3J7V7 GATA_NITO C Glutamyl-tRNA(GIn) amidotransferase subunit A OS=Nitrosococcus oceani (strain ATCC 19707 /	52.561
Q839E0;Q035A8;B3WAJ3;Q38UT6	>sp Q839E0 RS11_ENTFA 30S ribosomal protein S11 OS=Enterococcus faecalis (strain ATCC 700802 / V583) GN=rpsK PE=3 SV=1;>sp Q035A8 RS11_LACP 3 30S ribosomal protein S11 OS=Lactobacillus paracasei	13.713

	(atrain ATCC 224 / DCDC 47002	
	/ CIP 107868 / KCTC 3260 / NRRL	
	>sp Q821B1 ECOT_SHIFL Ecotin OS=Shigella flexneri GN=eco PE=3	18.226
Q821B1;Q3YZZ8;Q31Z32;Q0T2R6 ;B7LJV0;B2TV26;Q8XE46;Q8CVW	S Ecotin OS=Shigella sonnei (strain Ss046) GN=eco PE=3	
3;Q1R9K8;Q0TFN2;P23827;C4ZU 52;B7UFM3;B7NN20;B7N5H1;B7M XP0:B7MFC2:B7M5Q0:B7LAN3:B6	SV=1;>sp Q31Z32 ECOT_SHIB S Ecotin OS=Shigella boydii serotype 4 (strain Sb227)	
I1A7;B5YX01;B1X8A5;B1LKV6;B1I Y63;A8A271;A7ZP31	GN=eco PE=3 SV=1;>sp Q0T2R6 ECOT_SH	
Q81VQ4;Q81J18;Q73F69;Q6HPN2 ;Q63H64;A7GK47;A0R8K6	>sp Q81VQ4 RPOA_BACAN DNA-directed RNA polymerase subunit alpha OS=Bacillus anthracis GN=rpoA PE=3 SV=1;>sp Q81J18 RPOA_BAC CR DNA-directed RNA polymerase subunit alpha OS=Bacillus cereus (strain ATCC 14579 / DSM 31 / JCM 2152 / NBRC 15305 / NCIMB 9373 / NR	34.935
	>sp Q81K90 CSPD_BACAN	7.2389
	OS=Bacillus anthracis GN=cspD PE=3	
	SV=1;>sp Q816H3 CSPD_BAC CR Cold shock-like protein	
	(strain ATCC 14579 / DSM 31 / JCM 2152 / NBRC 15305 / NCIMB 9373 / NRRL B-3711)	
Q81K90;Q816H3;Q45099;P32081	GN=cspD PE=3 SV	0.7000
Q7VR21	carrier protein OS=Blochmannia floridanus GN=acpP PE=3 SV=1	0.7000
Q7VL82;A6VM31;Q6LN26;Q8ZH64 ;Q8DBF9;Q7MIG2:Q6D8E1:Q667J		25.783
1;Q5PD61;Q57T37;Q3Z5I7;Q32JT 8;Q325W9;Q2NRK9;Q1CFE9;Q1C	>sp Q7VL82 PYRH_HAEDU Uridylate kinase	
AN2;Q0T838;P65934;P65933;P0A 7F2:A8GIE4:A8AI B8:A7MGT0:A7F	OS=Haemophilus ducreyi (strain 35000HP / ATCC 700724)	
FH1;A6T4X3;A4W6R6;A4TL89;Q7	GN=pyrH PE=3	
Q12NY5;A7N1X5;A5F619;A4SQI0;	SZ Uridylate kinase	
A0KHG5;Q5QXS2;Q485G8;Q15W G1:A3QGA1:A1JP80:Q3IIX6:A1SY	OS=Actinobacillus succinogenes (strain ATCC	
W1;Q1RG18;Q0TLG2;P0A7F1;P0A	55618 / 130Z) GN=pyrH PE=3	
/F0;P0A7E9;A7ZWB7;A7ZHR1;A1 A7L5	SV=1;>sp Q6LN26 PYRH_PHO PR Uridylat	
	>sp Q7VH96 EFTS_HELHP	39.669
Q7VH96	OS=Helicobacter hepaticus	

	(strain ATCC 51449 / 3B1)	
		53 330
	Gutamata tPNA ligasa	55.520
	OS_Synoobooooun on (strain	
0711591		
Q70581		27 566
	Acthionyl tPNA	37.300
	formultransformed	
	OS-Prochlorococcus marinus	
	US=FIOCIIIOIOCOCCUS Inalinus	
0771102	MED4) CNI_fmt DE_2 SV/_1	
QTIOAS	$\frac{1}{1000} = \frac{1}{1000} = 1$	17 600
	ribosomal protoin S7	17.002
	OS-Mycoploama gallicoptioum	
	(strain D(low / pagage 15 /	
	(Strain R(IOW / passage 15 /	
		66.046
	250000000 fruetoso 6	00.940
	Giulamineiruclose-o-	
	incomprising OS Destarbable	
	[Isomenzing] US=Photomabdus	
	(atrain DSM 15120 / CID 105565	
	(Strain DSW 15139/ CIP 105565	
	/ ITUT) GIN=gim5 PE=3	
	SV=3;>SP Q82958 GLIVI5_FER	
	PE Glutaminemuclose-o-	
Q/NA97,Q02930,Q003K1		50.076
	SpiQ/N8C9/INAA_PHOLL	52.276
	US=Photomabdus iuminescens	
	15139/CIP (105005/1101)	
	SV=1;>SP A8AKE2 TNAA_CTK	
	8 Tryptophanase	
	ATCC BAA-895 / CDC 4225-83 /	
	33364090) GIN=LIIAA PE=3	26.074
\Box		20.071
7,01 EVV0,041 G20,0 IJ329,Q0U2		
AZVZ: DOVZ, QUOZ 10, COV 104, CO		
	ribosomal protoin S2	
	OS-Destorbabdue luminoscene	
	suben Journandii (strein DSM	
	13139/ CIP 103565/1101)	
2,A45100;A0KF27;Q1K612;Q01C		
	GN=rpsC PE=3	
	GN=rpsC PE=3 SV=1;>sp P46172 RS3_BUCAK	
E7;P0A7V5;P0A7V4;P0A7V3;C4Z UG9;B7UK38;B7NLN3;B7NDT5;B7	GN=rpsC PE=3 SV=1;>sp P46172 RS3_BUCAK 30S ribosomal protein S3	
E7;P0A7V5;P0A7V4;P0A7V3;C4Z UG9;B7UK38;B7NLN3;B7NDT5;B7 N198;B7MCS9;B7M1M8;B7L4K3;B	GN=rpsC PE=3 SV=1;>sp P46172 RS3_BUCAK 30S ribosomal protein S3 (Fragment) OS=Buchnera	
E7;P0A7V5;P0A7V4;P0A7V3;C4Z UG9;B7UK38;B7NLN3;B7NDT5;B7 N198;B7MCS9;B7M1M8;B7L4K3;B 6l228;B5YTN5;B1LHC8;B1IPY5;A8	GN=rpsC PE=3 SV=1;>sp P46172 RS3_BUCAK 30S ribosomal protein S3 (Fragment) OS=Buchnera aphidicola subsp. Acyrthosiphon	

	SepIO7MV53ISECB_PHOLI	17 521
	Protein-export protein SecB	17.521
	OS-Photorbabdus luminoscons	
	cuban laumandii (atrain DSM	
OZMVE2	15139/CIP 105005/1101)	
Q7M1153		00.040
	>splQ/MWI/TPIS_PORGI	26.819
	l riosephosphate isomerase	
	OS=Porphyromonas gingivalis	
	(strain ATCC BAA-308 / W83)	
	GN=tpiA PE=3	
	SV=1;>sp B2RII9 TPIS_PORG3	
	Triosephosphate isomerase	
	OS=Porphyromonas gingivalis	
	(strain ATCC 33277 / DSM	
	20709 / CIP 103683 / JCM	
Q7MWI7;B2RII9	12257 /	
	>sp Q7MW43 NAGB_PORGI	29.281
	Glucosamine-6-phosphate	
	deaminase OS=Porphyromonas	
	gingivalis (strain ATCC BAA-308	
	/W83) GN=nagB PE=3	
	SV=1;>sp B2RJ01 NAGB POR	
	G3 Glucosamine-6-phosphate	
	deaminase OS=Porphyromonas	
	gingivalis (strain ATCC 33277 /	
Q7MW43:B2RJ01	DSM 20709 / CIP 10368	
	>splQ7MTM3IRL14_PORGI	13.065
	50S ribosomal protein L14	
	OS=Porphyromonas gingivalis	
	(strain ATCC BAA-308 / W83)	
	GN-rpIN PE-3	
	SV-1:>splB2RI V2IRI 14 POR	
	G3 50S ribosomal protein L 14	
	OS-Porphyromonas gingivalis	
	(strain ATCC 22277 / DSM	
	20700 / CID 102692 / ICM	
	20709/CIF 103063/JCIVI	
Q7MTM3;B2RL12;A6LET		40.000
	>SplQ7MB46 FABA_PHOLL 3-	18.999
	nydroxydecanoyi-lacyi-camer-	
	proteinj denydratase	
	US=Photornabdus luminescens	
	subsp. laumondii (strain DSM	
	15139 / CIP 105565 / 1101)	
	SV=1;>SPIQ492P4 FABA_BLOP	
	в з-nydroxydecanoyl-[acyl-	
	carrier-proteinj dehydratase	
Q7MB46;Q492P4;Q1L161;B8F8M2	US=B	00.00
	>spiQ/MA35jDNAK_WOLSU	68.39
	Chaperone protein DnaK	
	OS=Wolinella succinogenes	
	(strain ATCC 29543 / DSM 1740	
	/ LMG 7466 / NCTC 11488 /	
	FDC 602W) GN=dnaK PE=3	
Q7MA35	SV=1	

		12 575
	>splQ7CP70 RIDA_SALTF2-	13.575
	iminopulanoale/2-	
	iminopropanoate deaminase	
	OS=Salmonella typhimurium	
	(strain L12 / SGSC1412 / A1CC	
Q7CP78	700720) GN=ridA PE=1 SV=1	
	>sp Q74LS5 DDL_LACJO D-	40.39
	alanineD-alanine ligase	
	OS=Lactobacillus johnsonii	
	(strain CNCM I-12250 / La1 /	
	NCC 533) $GN=ddI PE=3$	
	SV=1:>sp O046V3 DDI ACG	
	A D-alanineD-alanine ligase	
	A D-alarini eD-alarini e ligase	
0741 05 00401/0	ATCC 33323 / DSM 20243 /	
Q74LS5;Q046V3		
	>spiQ74L95 RPOB_LACJO	135.81
	DNA-directed RNA polymerase	
	subunit beta OS=Lactobacillus	
	johnsonii (strain CNCM I-12250 /	
	La1 / NCC 533) GN=rpoB PE=3	
	SV=1;>sp Q046D2 RPOB LAC	
	GA DNA-directed RNA	
	polymerase subunit beta	
	OS-Lactobacillus cassori (strain	
0741.05:004602		
Q74L95,Q040D2		40.400
	>splQ74L58 RL13_LACJO 505	16.402
	ribosomal protein L13	
	OS=Lactobacillus johnsonii	
	(strain CNCM I-12250 / La1 /	
Q74L58	NCC 533) GN=rpIM PE=3 SV=1	
Q74K17;Q042L3;P17674;Q88UU1;		55.137
Q9CER8;Q02XA3;A4W1V9;A4VVK		
1:A2RMI4:Q9PJ21:Q8E5V0:Q8E07		
4:Q5HX61:Q3K1J7:Q1JHN7:P9578		
7°C0MH19°C0M718°B9KES1°B9DR		
T4·B4I 12D9·A8F IR0·A7H1H9·A2R		
G7K5;Q63001;Q5XCY2;Q5HE95;		
Q4L7Y6;Q48UD5;Q2YUJ9;Q2FWE		
8;Q2FF22;Q1JMJ1;Q1JCL5;Q1J7G		
1;P99111;P63676;P63675;P0DA03		
;P0DA02;C4KYS5;C3P1F6;C3LFI1;		
C1F0N0;B9IRT9;B7JGN2;B7IQW0;		
B7HY67;B7HFK4:B5XKP9:B1YMR		
6:B1HM54:A9VSA5:A8YY72:A7X4		
115 A6U3.10 A6OII 19 A5II 100 A4IT I		
1.40RI 97.08CN 15.05HMB7.0407	synthase subunit alpha	
52.01/WI IC8.R0E8E8.0027/M/2.00	OS-Lactobacillus iobaconii	
	(ctrain CNCM 12250 / Lot /	
δ14WU;AδEV/2;A/2C35;A/11/5;A		
7H019;A6Q4C2;B7GMF5;A9H9A4;	SV=1;>sp Q042L3 ATPA_LACG	
Q831A3;P26679;Q5KUJ1;P42005;	A ATP synthase subunit alpha	
P09219;C5D992;Q9ZK79;Q1CSD3	OS=Lactobacillus gasseri (strain	
;Q17Y80;P55987;B6JMX4;B5Z8D2	ATCC 33323 / DSM 20243 /	
:B2UUP2:Q30QP9:Q03EL2:Q6MG	JCM 1131 / NCIMB	

M5;Q03A20;B3WDL6;Q38WK3;Q0 3QY6		
Q74JZ8:Q5FKW5	>sp Q74JZ8 SYV_LACJO ValinetRNA ligase OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=valS PE=3 SV=1;>sp Q5FKW5 SYV_LACA C ValinetRNA ligase OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=valS PE=3 SV=1	101.24
	>sp Q74JX6 SYI_LACJO IsoleucinetRNA ligase OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 /	105.96
074 IC1:05E IV2:01GA94:004310	>sp Q74JC1 FTHS_LACJO Formatetetrahydrofolate ligase OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=fhs PE=3 SV=1;>sp Q5FJY2 FTHS1_LAC AC Formatetetrahydrofolate ligase 1 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2	60.474
Q73PN3	>sp Q73PN3 EFTU_TREDE Elongation factor Tu OS=Treponema denticola (strain ATCC 35405 / CIP 103919 / DSM 14222) GN=tuf PE=3 SV=1	43.788
Q72HB8;P96077	>sp Q72HB8 RF1_THET2 Peptide chain release factor 1 OS=Thermus thermophilus (strain HB27 / ATCC BAA-163 / DSM 7039) GN=prfA PE=1 SV=1;>sp P96077 RF1_THET8 Peptide chain release factor 1 OS=Thermus thermophilus (strain HB8 / ATCC 27634 / DSM 579) GN=prfA PE	40.092
Q6N3N0;Q2IZ52;Q07K70;B3QGK4	>sp Q6N3N0 URE3_RHOPA Urease subunit gamma OS=Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) GN=ureA PE=3 SV=1;>sp Q2IZ52 URE3_RHOP 2 Urease subunit gamma OS=Rhodopseudomonas palustris (strain HaA2) GN=ureA PE=3 SV=1;>sp Q07K70 URE3_RHO P5 Urease s	11.088

		24 791
	ribosomal protoin L1	24.701
	US=Pectobacterium	
	atrosepticum (strain SCRI 1043 /	
	ATCC BAA-672) GN=rpIA PE=3	
Q6DAN3	SV=1	
	>sp Q6D8D2 FABZ_PECAS 3-	17.105
	hydroxyacyl-[acyl-carrier-protein]	
	dehydratase Fab7	
	OS-Pectobacterium	
	otropoptioum (stroip SCBI 1042 /	
0.00.00	ATCC BAA-672) GIN=TADZ PE=3	
Q6D8D2	SV=1	
	>sp Q6D400 SERC_PECAS	40.276
	Phosphoserine	
	aminotransferase	
	OS=Pectobacterium	
	atrosepticum (strain SCRI 1043 /	
	$\Delta TCC BAA_672) GN-serC$	
	DE_3	
	CP Phosphoserine	
V1;Q0TJE6;P23721;C4ZQ33;B7U	aminotransferase	
MZ3;B7NM68;B7NAQ6;B7MS22;B	OS=Pectobacterium	
7MHL6;B7M835;B7LD99;B6I8X9;B	carotovorum subsp.	
5YT41;B1X847;B1LJV7;B1IW24;A7	carotovorum (strain PC1)	
ZYL0;A7ZJZ6;A1A9I4	GN=se	
Q6D1I0:Q5PF80:Q57ST7:P0A278:		17.014
P0A277 C006T6 B5Y1E0 B5R5R4		
B5R4S1·B5E IW/9·B5EW/K0·B5BDO		
$2 \cdot B A T 7 8 5 \cdot B A T 7 \cap 0 \cdot B A S / / / 0 \cdot A 0 M V$	SCHOODINIYOPT RECAS	
00.40MNID0.484K00.47MENI2.46	Yanthing	
	nhaanharihaaultranafaraaa	
1532;A4W6X0;Q2NVF2;C6DC10;B	phosphonbosyltransierase	
2VHN3;Q32599;Q32J21;Q325P8;Q	OS=Pectobacterium	
017Q9;P0A9M7;B7LNG2;B2U3S9;	atrosepticum (strain SCRI 1043 /	
Q7N7B4;Q8FKM7;Q1RFT3;Q0TL7	ATCC BAA-672) GN=gpt PE=3	
8;P0A9M6;P0A9M5;C4ZT95;B7UJ	SV=1;>sp Q5PF80 XGPT_SALP	
C6;B7NK87;B7N8G9;B7MQ74;B7	A Xanthine	
MC88;B7M267;B7L3Z0;B6I018;B5	phosphoribosyltransferase	
Z1I2;B1XDY1;B1LHT4;B1J0Z6;A7Z	OS=Salmonella paratyphi A	
WK1;A7ZHZ7;A1A7U9;C5B9M4;A8	(strain ATCC 9150 / SARB42)	
GAD0;B4EUU7	GN=gpt	
	>splQ6D1G2IMTNC_PECAS	25 874
	Enclase-phosphatase F1	20.014
	OS-Pectobacterium	
	atrosenticum (strain SCPI 1042 /	
	$\frac{1}{1000} = \frac{1}{1000} = 1$	
	AIGC BAA-072) GIN=MINC	
	5v=1;>spjQ48389 M1NC_KLE	
	OX Enolase-phosphatase E1	
	OS=Klebsiella oxytoca	
Q6D1G2;Q48389;C6DCZ3;B5XZU	GN=mtnC PE=3	
3;B2VIR2;A8GAA9;A8ANI1;A6T67	SV=1;>sp C6DCZ3 MTNC_PEC	
3;A4W7Z3	CP Enolase-phosphatase E	
Q6CZX7;C6DG67:C5BGL8:B5XNA	>splQ6CZX7 RL16 PECAS 50S	15.321
1:B2VK57:A8GKJ0:A6TEW5:A4WF	ribosomal protein L16	-
, , , , ,		
C1	OS=Pectobacterium	

	atrosepticum (strain SCRI 1043 /	
	ATCC BAA-672) GN=rpIP PE=3	
	SV=1;>sp C6DG67 RL16_PEC	
	CP 50S ribosomal protein L16	
	OS=Pectobacterium	
	carotovorum subsp.	
	carotovorum (strain PC1)	
	GN-rolP PE-3 SV	
		17 812
	Spigocziczjococ_recko	47.012
	Giucose-i-priosphale	
	adenyiyitransierase	
	OS=Pectobacterium	
	atrosepticum (strain SCRI 1043 /	
	ATCC BAA-672) GN=glgC PE=3	
	SV=1;>sp C6DH77 GLGC_PEC	
	CP Glucose-1-phosphate	
	adenylyltransferase	
Q6CZK2;C6DH77;B2T2Z5;Q141E6	OS=Pectobacterium	
;B2JCH8;Q2A4U5;Q0BN65;B2SFM	carotovorum subsp.	
9;A7NAI4;A4IZK0;A0Q595	carotovorum	
	>splQ68XM0IDAPB_RICTY 4-	26 577
	hydroxy-tetrahydrodinicolinate	_0.0.1
	reductase OS-Rickettsia typhi	
	(strain ATCC VP 144 /	
	(Stialit ATCC VR-144)	
OCRYMO	Wiimington) Giv=uapB PE=3	
Q68XIVIU		74.005
	>splQ65RV7 HTPG_MANSM	71.305
	Chaperone protein HtpG	
	OS=Mannheimia	
	succiniciproducens (strain	
	MBEL55E) GN=htpG PE=3	
	SV=1;>sp A6VML2 HTPG_ACT	
	SZ Chaperone protein HtpG	
	OS=Actinobacillus	
	succinogenes (strain ATCC	
	55618 / 130Z) GN=htpG PE=3	
065R\/7·A6\/ML2·09CM20·03IK0	SV=1 >splO9CM201HTPG PAS	
$2 \cdot 0.12 \text{PB} 2 \cdot 0.15 \text{RT6} \cdot 0.47 \text{XA7}$		
2,@121 D2,@131(10,@47/\A7		11 0 1 9
	+DNA/tmDNA (ura cil C(E))	41.940
	(RNA/IIIRNA (UIACII-C(3))-	
	OS=Manneimia	
	succiniciproducens (strain	
	MBEL55E) GN=trmA PE=3	
Q65PY6	SV=1	
	>sp Q64QR7 PURA_BACFR	46.799
	Adenylosuccinate synthetase	
	OS=Bacteroides fragilis (strain	
	YCH46) GN=purA PE=3	
	SV=1;>sp Q5LAD5 PURA BAC	
	FN Adenylosuccinate	
	synthetase OS=Bacteroides	
	fragilis (strain ATCC 25285 /	
Q64QR7:Q5I AD5:B6YR45:A6I IF5	DSM 2151 / JCM 11019 / NCTC	
A6H0114·A5FHR3·A01 7F7	9343) $GN_{PU}A PF_{3} SV_{-1}$	
		77 807
	>>plansiniero1_dures	11.007
	Elemention factor 0.4	

	OS=Burkholderia pseudomallei (strain K96243) GN=fusA1 PE=3 SV=1;>sp Q62HK4 EFG1_BUR MA Elongation factor G 1 OS=Burkholderia mallei (strain ATCC 23344) GN=fusA1 PE=3 SV=1;>sp Q3JV86 EFG1_BURP 1 Elongation factor G	
Q60A10	>sp Q60A10 RL11_METCA 50S ribosomal protein L11 OS=Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath) GN=rpIK PE=3 SV=1	15.016
Q60151	>sp Q60151 GSHR_STRTR Glutathione reductase OS=Streptococcus thermophilus GN=gor PE=3 SV=1	48.711
Q5XAQ7	>sp Q5XAQ7 HPF_STRP6 Ribosome hibernation promotion factor OS=Streptococcus pyogenes serotype M6 (strain ATCC BAA-946 / MGAS10394) GN=hpf PE=1 SV=1	21.1
Q5U924	>sp Q5U924 HADB_CLODI (R)- 2-hydroxyisocaproyl-CoA dehydratase alpha subunit OS=Clostridioides difficile GN=hadB PE=1 SV=1	46.333
Q5U923	>sp Q5U923 HADC_CLODI (R)- 2-hydroxyisocaproyI-CoA dehydratase beta subunit OS=Clostridioides difficile GN=hadC PE=1 SV=1	42.365
Q5QY51	>sp Q5QY51 IXTPA_IDILO dITP/XTP pyrophosphatase OS=Idiomarina loihiensis (strain ATCC BAA-735 / DSM 15497 / L2-TR) GN=IL1979 PE=3 SV=1	21.889
Q5QXT4;B2GAT4;A9BDM9;Q9PET 2;Q9HVI7;Q8PPE3;Q8PCN4;Q88Q 27;Q87WC1;Q87AS2;Q5ZXK6;Q5 X722;Q5WYH4;Q5NFJ3;Q5GW07; Q4ZNH2;Q4UQT6;Q4K5R9;Q48D U7;Q3K6J0;Q3BXI8;Q2NZ83;Q2A4 98;Q14GZ5;Q0BMN1;C1DEQ3;B4 SJB0;B2SNV6;B2SGE5;B2I8R0;B2 FNK2;B0U4K9;B0TYH3;B0RVE1;A 7NB66;A5IGI2;A4VI36;A4IXD7;A3 QC57;A1TYW8;A0Q7C5;Q3II23;Q2 S9R4;Q15WB3;Q0VMH4;B8CJM7; B4RV95;B1KJJ9;B0TJY5;A8H1Q0; A8FSQ9;Q83BT3;Q488N6;B6J8Q9 ;B6IZ80;A9N8T8;A9KBN4;Q21NP8 ;A1SUU0;C5BS91;Q6CZV5;Q2S4 G9	>sp Q5QXT4 GLYA_IDILO Serine hydroxymethyltransferase OS=Idiomarina loihiensis (strain ATCC BAA-735 / DSM 15497 / L2-TR) GN=glyA PE=3 SV=1;>sp B2GAT4 GLYA_LAC F3 Serine hydroxymethyltransferase OS=Lactobacillus fermentum (strain NBRC 3956 / LMG 18251) GN=gl	45.536

Q5QWR2	>sp Q5QWR2 HTPG_IDILO Chaperone protein HtpG OS=Idiomarina loihiensis (strain ATCC BAA-735 / DSM 15497 / L2-TR) GN=htpG PE=3 SV=1	72.889
Q5PL63;P0A1D6;P0A1D5;B5R990; B5R004;B5FRK1;B5F2K9;B5BKF3; B4TSC5;B4TF79;A9MFS0;Q6D9J1 ;Q2NW95;C6DKC6;B4EXE3;A8G8 S6;A7MMB9;Q9F4E6;P25749;O51 831;B8D8I1;B8D6T5;Q7MAZ6;P48 228;A1JIP2;Q9F4F4;Q9F4F2;Q9F4 F0;Q9F4E8;Q9F4E4;Q9ANS0;Q49 3W8;Q058F4;P59525;C5BDK4;B2 VL85	>sp Q5PL63 CH10_SALPA 10 kDa chaperonin OS=Salmonella paratyphi A (strain ATCC 9150 / SARB42) GN=groS PE=3 SV=1;>sp P0A1D6 CH10_SALT I 10 kDa chaperonin OS=Salmonella typhi GN=groS PE=3 SV=1;>sp P0A1D5 CH10_SALT Y 10 kDa chaperonin OS=Salmonella typhimurium	10.318
Q5PKX3;Q57HY0;P0A1B8;P0A1B7 ;C0Q2N1;B5XZM5;B5RFW4;B5QU S3;B5EYZ5;B5BIN5;B4SYD0;A9MJ S1;A8ACN5;A7MMW8;A6TG35;Q6 CYJ6;Q3YVN5;Q329S0;Q31UN1;Q 0SYU5;P0A6E8;B7LK76;B2TUP4; A4WGF6;Q1R4K3;Q0TAX8;P5864 6;P0A6E7;P0A6E6;C4ZZ09;B7UMJ 6;B7NR33;B7NF47;B7N2H0;B7MG F1;B7M587;B7L881;B6I3W8;B5YX D5;B1X9V9;B1LL58;B1IX07;A8A6J 4;A7ZTU3	>sp Q5PKX3 ATPE_SALPA ATP synthase epsilon chain OS=Salmonella paratyphi A (strain ATCC 9150 / SARB42) GN=atpC PE=3 SV=1;>sp Q57HY0 ATPE_SAL CH ATP synthase epsilon chain OS=Salmonella choleraesuis (strain SC-B67) GN=atpC PE=3 SV=1;>sp P0A1B8 ATPE_SALT I ATP	15.064
Q5PK94;Q57H70;Q3YUZ8;P0A2A0 ;P0A299;C0Q2R6;B5XYF6;B5RFK 2;B5QYD7;B5FQJ8;B5F0W6;B5BJ Q2;B4TQJ4;B4TCS3;B4T0Y8;A9N 0J3;A8AKU0;A6TGN9;A4W5A6;A7 MQP6;A9MHF3;Q32AF8;Q31U11; Q0SY14;P0A7K5;B7LUL6;B4EYV0 ;B2VG95;B2TWH2;A8G8E6;Q6DA N1;C6DHR4;B8F6N0;B3GYU7;B0B SE8;A3N319;Q1R5V1;Q0TA79;P0 A7K4;P0A7K3;P0A7K2;C5A0S6;B7 UPE1;B7NRR4;B7NFS6;B7MRB2; B7MIX2;B7M733;B7LA79;B6I5J6;B 5Z082;B1XBY8;B1LNT8;B1IUR1;A 8A785;A7ZUK0	>sp Q5PK94 RL7_SALPA 50S ribosomal protein L7/L12 OS=Salmonella paratyphi A (strain ATCC 9150 / SARB42) GN=rplL PE=3 SV=3;>sp Q57H70 RL7_SALCH 50S ribosomal protein L7/L12 OS=Salmonella choleraesuis (strain SC-B67) GN=rplL PE=3 SV=3;>sp Q3YUZ8 RL7_SHISS 50	12.299
Q5PK21;Q57G39;P63924;P63923; C0Q7M5;B5R9V1;B5R2J8;B5F526; B5BAJ9;B4TU43;B4TH01;B4T4H2; A9N7E1;A9MRA5;B5FTC7;A4W6A 0;C6DKL9;A8G9H8;A1JJ99	>sp Q5PK21 DEOB_SALPA Phosphopentomutase OS=Salmonella paratyphi A (strain ATCC 9150 / SARB42) GN=deoB PE=3 SV=1;>sp Q57G39 DEOB_SAL CH Phosphopentomutase OS=Salmonella choleraesuis (strain SC-B67) GN=deoB PE=3 SV=1;>sp P63924 DEOB_SALT I Phosphopentomutase	44.303
Q5PI26;Q57LQ8;Q3YZA9;Q32DB9 ;Q31Y46;Q0T275;P63424;P63423; P63422;Q1R8T7;Q0TF35;P76539;	>sp Q5PI26 YPEA_SALPA Acetyltransferase YpeA OS=Salmonella paratyphi A	16.284

P63421;P63420;A1ADU8;Q6D8U7;	(strain ATCC 9150 / SARB42)	
Q2NS89	GN=ypeA PE=3	
	SV=1;>sp Q57LQ8 YPEA_SAL	
	CH Acetyltransferase YpeA	
	OS=Salmonella choleraesuis	
	(strain SC-B67) GN=ypeA PE=3	
	SV=2;>sp Q3YZA9 YPEA_SHIS	
	S Acetyltrans	
Q5PGI6;Q57R38;Q3Z3M7;Q32E12		48.58
;Q323L0;Q0T8M9;P67564;P67563;	>sp Q5PGI6 SYS_SALPA	
P0A8L4;C0PXT0;B7LN61;B5R8I1;	SerinetRNA ligase	
B5QYP4;B5FQ36;B5F146;B5BBR2	OS=Salmonella paratyphi A	
;B4TRS5;B4TD24;B4T128;B2TUI5;	(strain ATCC 9150 / SARB42)	
A9N7X6;A8AII9;Q1RE21;Q0TJF7;	GN=serS PE=3	
P0A8L3;P0A8L2;P0A8L1;C4ZQ19;	SV=1;>sp Q57R38 SYS_SALC	
B7UMY4;B7NM82;B7NAP4;B7MR	H SerinetRNA ligase	
V6;B7MHK5;B7M821;B7LD85;B6I8	OS=Salmonella choleraesuis	
W4;B5YT28;B1X833;B1LJX0;B1IW	(strain SC-B67) GN=serS PE=3	
N0;A7ZYJ7;A7ZJW2;A1A9D6;A9M	SV=1;>sp Q3Z3M7 SYS_SHISS	
HZ1;Q7N6E7;C5BE90	SerinetRNA ligase	
	>sp Q5PFN4 CLPP_SALPA	23.158
	ATP-dependent Clp protease	
	proteolytic subunit	
	OS=Salmonella paratyphi A	
	(strain ATCC 9150 / SARB42)	
Q5PFN4;Q57SB5;Q3Z4W6;Q32JJ	GN=clpP PE=3	
3;Q325G4;Q0T7E6;P0A6H0;P0A1	SV=1;>sp Q57SB5 CLPP_SALC	
D8;P0A1D7;B5QTJ6;B5BD83;B4T	H ATP-dependent Clp protease	
MC6;B4T9E3;B4SWU1;Q1RF98;Q	proteolytic subunit	
01KK4;P0A6G9;P0A6G8;P0A6G7;	OS=Salmonella choleraesuis	
B1J011;A7ZX95;A7ZIJ5;A1A8A6	(strain SC-B67) GN=	
	>splQ5PFK8 KAD_SALPA	23.488
	Adenylate kinase	
	OS=Salmonella paratypni A	
	(SITAITI ATCC 9150 / SARD42)	
	GINEAUK FEED	
	$SV = 1, SP[QSTSTORAD_SALC$	
05PEK8:057876:P041\/5:P041\//	OS-Salmonella choleraesuis	
·C0O812·B5R612·B5OU77·B5EU7	(strain SC-B67) GN-adk PE-3	
B5EXN0:B5BD44:B4TMG6:B4T91	SV=1 splP0A1/5KAD SALTI	
B4SWY1.88A.IW9	Adenvlate kinase OS=Salmonel	
05PF18:057KU7:03YYG7:032CN		6 8558
2:Q31X61:Q0T1C2:P69918:P6991	>SDIQ5PF18ICSRA_SALPA	0.0000
7:P69916:C0PWL9:B7LW33:B5XV	Carbon storage regulator	
B9:B5RDF1:B5QV75:B5FSX7:B5F	OS=Salmonella paratyphi A	
349;B5BEN4:B4TT03:B4TF10:B4T	(strain ATCC 9150 / SARB42)	
397;B2U050;A9N0C0;A9MFZ2:A8A	GN=csrA PE=3	
NQ0;A7MJ32;A6TCV8;A4WDQ5:Q	SV=1;>sp Q57KU7 CSRA SAL	
1R805;Q0TEI4;P69915;P69914;P6	CH Carbon storage regulator	
9913;C4ZYU1;B7UHB4;B7NSH6;B	OS=Salmonella choleraesuis	
7N6S6;B7MYZ3;B7MKG5;B7M9D3	(strain SC-B67) GN=csrA PE=3	
;B7LEA7;B6I682;B5Z2A6;B1XCM4;	SV=1;>sp Q3YYG7 CSRA_SHI	
B1LQ13;B1IUY3;A8A3H3;A7ZQC4	SS Carbon	
Q5PEH4;Q57KH0;P64077;P64076;	>sp Q5PEH4 ENO_SALPA	45.598
C0PXD5;B5RDS5;B5QW40;B5F4N	Enolase OS=Salmonella	
	nereturnh: A (strain ATCC 0150 /	

		1
3;A9N2F4;A9MF11;A7MQZ0;B5FT U9;B4EUF7;Q9KPC5;C3LQZ0;A5F 5I3;C4LBR1;Q4QLX6;P43806;A5UI 73;A5UDD6	SARB42) GN=eno PE=3 SV=3;>sp Q57KH0 ENO_SALC H Enolase OS=Salmonella choleraesuis (strain SC-B67) GN=eno PE=3 SV=1;>sp P64077 ENO_SALTI Enolase OS=Salmonella typhi GN=eno PE=3 SV=2;>	
	>sp Q5NG17 TTCA1_FRATT tRNA 2-thiocytidine biosynthesis protein TtcA 1 OS=Francisella tularensis subsp. tularensis (strain SCHU S4 / Schu 4) GN=ttcA1 PE=3	30.896
Q5NG17;Q2A3F9;Q14HG9;Q0BLX 1;B2SGI4;A7NC76;A4IXY7;A0Q6E 3	SV=1;>sp[Q2A3F9[TTCA2_FRA TH tRNA 2-thiocytidine biosynthesis protein TtcA 2 OS=Francisella tularensis	
Q5LMA7	>sp Q5LMA7 CLPS_RUEPO ATP-dependent Clp protease adapter protein ClpS OS=Ruegeria pomeroyi (strain ATCC 700808 / DSM 15171 / DSS-3) GN=clpS PE=3 SV=1	13.118
	>sp Q5LH68 MGP_BACFN 4-O- beta-D-mannosyl-D-glucose phosphorylase OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JCM 11019 / NCTC 0242) CN-BE0772 DE-1 SV-1	43.885
Q5L301:A4IK95	 >sp Q5L301 LUTB_GEOKA Lactate utilization protein B OS=Geobacillus kaustophilus (strain HTA426) GN=lutB PE=3 SV=1;>sp A4IK95 LUTB_GEOT N Lactate utilization protein B OS=Geobacillus thermodenitrificans (strain NG80-2) GN=lutB PE=3 SV=1 	53.088
	>sp Q5KX76 GCST_GEOKA Aminomethyltransferase OS=Geobacillus kaustophilus (strain HTA426) GN=gcvT PE=3	39.762
Q5FN09	<pre>>sp Q5FN09 RS6_LACAC 30S ribosomal protein S6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpsF PE=3 SV=1</pre>	11.336
Q5FM97	>sp Q5FM97 RPOB_LACAC DNA-directed RNA polymerase subunit beta OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpoB PE=3 SV=1	135.82

GSFM80/G305(Q37SV2;Q37EH;Q8E 30.34 7T5;Q8E2C8;Q8CWV5;Q71WE9;Q SED2;Q5M2B6;Q5LXR4;Q48VU6; Q3K3W6;Q1WS33;Q1JP14;Q1JJ5 9;Q1JE55;Q1J911;Q04MN3;Q032 9;Q1DE55;Q1J911;Q04MN3;Q032 Sep[Q3FM87]RL2_LACAC 50S P2;Q031F4;P60435;P6043;P6042 6;P60425;P0DE35;P0DE34;C1KZH 6;P60425;P0DE35;P0DE34;C1KZH 7;C1CP91;C1C1A0;C1CC09;C1CA 15;C0MC82;B9DYB2;B9 DSV3;B82KG0;B5XJ39;B5E6F8;B4 U503;B2UYB3;B2TIH8;B2IS43;B1 w111;B1K1;A8A2M2;A6LPR4;A SNQQ6;A4VYP6;A4VSF7;A3CK66; >sp[Q3FM80]RL14_LACAC 50S 7;Q04C82;B2GDW6;B2G8X5;A9 SV=1 X31;A5VL42;Q601L2;Q4AAE3;Q4 SV=1 A8H4;Q03PW0;Q03EB9 SV=1 SV=1 Ssp[Q3FM80]RL14_LACAC 50S ribosomal protein L14 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCK56 / N2 / NCFM) GN=rpIN PE=3 SV=1 SV=1;sp]A8YXL5 PE=3 SV=1 Q5FM80;A8YXL5 PE=3 SV=1 Q5FM78;RC14_T78;Q046B3;A8YXL7 NCC 533) GN=rpIE PE= Sv=1;sp]Q74L78;Q046B3;A8YXL7 NCC 533 GN=rpIE PE= Sv=1;sp]Q5FM76]RL5_LACAC5 0S ribosomal protein L5 OS=Lactobacillus acidophilus s			20.24
GS/NMLD0.GSV2.SGT1WE9.Q SXED2.QSM2B6.QSLXR4:Q48VU6; Q3X3W6:01WS93;Q1JP14;Q1JJ5 9;Q1JE55;Q1J911;Q04MN3;Q032 P2;Q03IF4;P60435;P60434;P6042 CP60425;P0DE35;P0DE34;C1KZH 7;C1CP91;C1CIA0;C1CC09;C1CA L5;C0MCB3;C0M623;B9DF32;B9 DSV3;B32K06;B5XJ39;B5E6F8;B4 U503;B2UVB3;B2TH8;B2IS43;B1 MW11;B1I8K1;A8AZM2;A6LPR4;A SN4Q0;A4VYP6;A4VSF7;A3CK66; SQQ4C12;Q034Y6;B3WAL4:Q88X Y3;Q04G82;B2GDW6;B2G8X5,A9 K131;A5VLK2;Q601L2;Q4AAE3;Q4 N2 / NCFM) GN=rpIB PE=3 SV=1 >splQ5FM80[RL14_LACAC 50S ribosomal protein L14 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIN PE=3 SV=1;>splQ5FM78[RL5_LACAC 50S ribosomal protein L14 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIP Q5FM80;A8YXL5 PE=3 SV=1 SSP[Q5FM78]RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE= SSP[Q5FM76]RL6_LACAC 50S			30.34
13:0012:003(25)(001,003,001,003,003,003,003,003,003,003,	7T5:08E2C8:08C\M\/5:071\M/E0:0		
Site 2: USINE 2:	5XED2:05M2B6:05LXR4:048\/LI6:		
CSISW0,GUN0,GUNSULTER Content 9(1) LESS,QUIST, 2043, 2044, 2043, 2044, 204			
Sign 10205, G19205, PODE 33; PODE 34; P6042 6; P60425; PODE 35; PODE 34; C1KZH 7; C1CP91; C1CIA0; C1CC09; C1CA L5; C0MCB3; C0M6X2; B9DYB2; B9 DSV3; B8ZKG0; B5X, J39; B5E6F8; B4 U503; B2UYB3; B2TIH8; B2IS43; B1 WW11; B118K1; A8AZM2; A6LPR4; A SQu04C82; B2GDW6; B2G8X; A9 K; J2(Q034Y6; B3WAL4; Q88X Y3; Q04G82; B2GDW6; B2G8X5; A9 KJ1; A5VLK2; Q60112; Q4AAE3; Q4 N2 / NCFM] GN=rpliB PE=3 SV=1 >sp[Q5FM80]RL14_LACAC 50S ribosomal protein L14 Q5=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM] GN=rpliN PE=3 SV=1 SV=1 Q5FM80;A8YXL5 PE=3 SV=1 Q5FM80;A8YXL5 PE=3 SV=1 SV=1; >sp[Q5FM78]RL5_LACAC 50S ribosomal protein L14 Q5=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM] GN=rpliP PE=3 SV=1; >sp[Q5FM76]RL5_LACAC 50S ribosomal protein L5 Q5=Lactobacillus acidophilus (strain OPC 4571) GN=rpliP Q5FM76;Q74L78;Q046B3;A8YXL7 NC 533) GN=rpliE PE=3 SV=1; >sp[Q5FM76]R	0.01 E55.01 011.004MN2.0027		
P2.G031r4;P0D33;P0D434;P042 (5)P60425;P0DE33;P0DE34;C1KZH 7;C1CP91;C1CIA0;C1CC09;C1CA L5;C0MCB3;C0M6X2;B9DYB2;B9 DSV3;B82KG0;BSXJ39;B5E6F8;B4 U503;B2UYB3;B2TIH8;B2IS43;B1 MW11;B1BK1;A8AZM2;A6LPR4;A SN400;A4VYP6;A4V9F6;A4V9F7;A3CK6; 2;C04C12;Q034V6;B3WAL4;Q88X Y3;Q04C32;B2GDW6;B2G85;A9 A8H4;Q03PW0;Q03EB9 SV=1 SV	9,Q1JE55,Q1J911,Q04WIN5,Q052		
0,F00425,F00E35,F00E35,F00E35,C1F2A F(C1CP4);C1CA0;C1CC009;C1CA L5;C0MCB3;C0M6X2;B9DYB2;B9 DSV3;B8ZKG0;B5XJ39;B5E6F8;B4 U503;B2UYB3;B2T1H8;B2IS43;B1 MW11;B1I8K1;A8AZM2;A6LPR4;A 5N400;A4VYP6;A4VSF7;A3CK66; x3C04C12;Q034Y6;B3WAL4;Q88X Y3;Q04G82;B2GDW6;B2G8X5;A9 ARH4;Q03PW0;Q03EB9 SV=1 SSP[Q5FM80]RL14_LACAC 50S ribosomal protein L14 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIN PE=3 SV=1 SV=1;Ssp[A8YXL5]RL14_LACH 4 50S ribosomal protein L14 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIN PE=3 SV=1;Ssp[A8YXL5]RL14_LACH 4 50S ribosomal protein L14 OS=Lactobacillus acidophilus (strain DPC 4571) GN=rpIN PE=3 SV=1 SV=1;Ssp[Q5FM78]RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain CNCM I-12250 / La1 / NC 533) GN=rpIE PE=3 SV=1;Ssp[Q5FM78]RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE=3 SV=1;Ssp[Q5FM78]RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE=3 SV=1;Ssp[Q5FM76]RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE=3 SV=1;Ssp[Q5FM76]RL5_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE=3 SV=1;Ssp[Q5FM76]RL5_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF PE=3 SV=1;Ssp[Q5FM59]RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF PE=3 SV=1 SSP[Q5FM59]RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF PE=3 SV=1 SSP[Q5FM59]RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / SSP[Q5FM59]RL51]L3_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /	F2,Q031F4,F00435,F00434,F0042		
ABIOPSICE ACC STATES AND A CONTRACT			
LJ, Colino SJ, Siba ZK, Goli BSZ, J39, BSE GF8; B4 US03; B2UYB3; B2TIH8; B2IS43; B1 MW11; B118K1; A8AZM2; A6LPR4; A SN4Q0; A4VYP6; A4VSF7; A3CK6; A2RC17; A0PXU9; A0ALW5; Q1GBL 5; Q04C12; Q034Y6; B3WAL4; Q88X Y3; Q04G82; B2GBW6; B2G8X5; A9 KJ11; A5VLK2; Q601L2; Q4AAE3; Q4 A8H4; Q03PW0; Q03EB9 SV=1 >splQ5FM80 RL14_LACAC 50S SV=1 >splQ5FM80 RL14_LACAC 50S SV=1 >splQ5FM80 RL14_LACAC 50S SV=1; SplA8YXL5 RL14_LACH 4 50S ribosomal protein L14 OS=Lactobacillus acidophilus (strain DPC 4571) GN=rplN PE=3 SV=1 SV=1; SplQ5FM78 RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplP PE=3 SV=1; SplQ5FM78 RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain CNCM I-12250 / La1 / NCC 533) GN=rplE PE=3 SV=1; SplQ5FM76 RL6_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 SV=1; SplQ5FM76 RL6_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 SV=1; SplQ5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 SV=1; SplQ5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1; SplQ5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1 >splQ5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain DPC 4571) GN=rplF PE=3 SV=1 >splQ5FM59 RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /			
Doroldzinos Doroldzinos US03;B2UYB3;B2TIH8;B2IS43;B1 MV11;B118K1;A8AZM2;A6LPR4;A SN4Q0;A4VYP6;A4VSF7;A3CK66; >splQ5FM87[RL2_LACAC 50S SQQ4C12;Q034Y6;B3WAL4;Q88X OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / KJJ1;A5VLK2;Q601L2;Q4AAE3;Q4 N2 / NCFM0 GN=rplB PE=3 A8H4;Q03PW0;Q03EB9 SV=1 SV=1 splQ5FM80[RL14_LACAC 50S ribosomal protein L14 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplN PE=3 SV=1 SV=1 Q5FM80;A8YXL5 PE=3 SV=1 Q5FM80;A8YXL5 PE=3 SV=1 Q5FM80;A8YXL5 PE=3 SV=1 Q5FM78;Q74L78;Q046B3;A8YXL7 NCC 533) GM=rpIP PE=3 SV=1;>splQ5FM76[RL6_LACAC 50S ribosomal protein L5 Q5=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / Q5FM78;Q74L78;Q046B3;A8YXL7 NCC 533) GM=rpIP PE=3 SV=1;>splQ5FM76[RL6_LACAC 50S ribosomal protein L5 Q5=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / Q5FM76;A8YXM0 N2 / NCFM) GN=rpIP FE=3 SV=1;>splQ5FM76[RL6_LACAC 50S ribosomal protein L6 Q5=Lactobacillus acidophilus<	DSV/3·B87KC0·B5X I30·B5E6E8·B4		
0005.0201100,0201100,02140,001 WV11;B118K1;A8AZM2;A6LPR4;A SN4Q0;A4VYP6;A4VSF7;A3CK66; A2RC17;A0PXU9;A0ALW5;Q1GBL S;004C12;00347(6):B3WAL4;Q88X Y3;Q04G82;B2GDW6;B2G8X5;A9 KJJ1;A5VLK2;0601L2;Q4AAE3;Q4 A8H4;Q03PW0;Q03EB9 SV=1 Ssp[Q5FM80]RL14_LACAC 50S ribosomal protein L14 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplN PE=3 SV=1;>sp[A5FM80]RL14_LACAC 50S SV=1;>sp[A8YXL5]RL14_LACH 4 50S ribosomal protein L14 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplN PE=3 SV=1;>sp[Q5FM78]RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 SV=1;>sp[Q5FM76]RL6_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 SV=1;>sp[Q5FM76]RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 /			
SPIQ5FM87 RL2_LACAC 50S ribosomal protein L2 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplB PE=3 SV=1 SylQ5FM87 RL2_LACAC 50S 13.161 SylQ05CH2;Q04A42;Q8X V2 / NCFM) GN=rplB PE=3 SV=1 SylQ5FM80 RL14_LACAC 50S 13.161 SylQ5FM80 RL14_LACAC 50S 13.161 ribosomal protein L14 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplN PE=3 13.161 SV=1:>splQ5FM80 RL14_LACAC 50S 13.161 SV=1:>splQ5FM80 RL14_LACAC 50S 13.161 G5FM80;A8YXL5 PE=3 SV=1 Q5FM80;A8YXL5 PE=3 SV=1 20.264 Q5FM78;Q74L78;Q046B3;A8YXL7 NCC 533) GN=rplE PE=3 SV=1;>splQ74L78;RL5_LACJO 505 ribosomal protein L5 20.264 Q5FM76;A8YXM0 PE=3 SV=1 20.264 19.172 Q5FM76;A8YXM0 NCC 533) GN=rplE PE=3 SV=1;>splQ5FM76;RL6_LACAC 50S 19.172 Q5FM76;A8YXM0 PE=3 SV=1 20.264 19.172 Q5FM76;A8YXM0 PE=3 SV=1	MW/11·B118K1·A8A7M2·A6I PR4·A		
AZRC17;A0PXU9;A0ALW5;Q1GBL 5;Q04C12;Q034Y6;B3WAL4;Q88X Y3;Q04G82;B2GDW6;B2G8X5;A9 KJJ1;A5VLK2;Q601L2;Q4AAE3;Q4 A8H4;Q03PW0;Q03EB9 SV=1 SV=	5N/00.4//VP6.4//SE7.43CK66	SCHOSEM871RL2 LACAC 50S	
Action J, Kol, No. J, Kol, Kol, Kol, Kol, Kol, Kol, Kol, Kol		ribosomal protein 1 2	
0.300012,3000410,000410,8268X5;A9 001240002400400000000000000000000000000	5.004C12.0034V6.B3WAL4.088X	OS-I actobacillus acidophilus	
15,3450/LK2;Q601L2;Q4AAE3;Q4 N2 / NCFM) GN=rpIB PE=3 A8H4;Q03PW0;Q03EB9 SV=1 >splQ5FM80 RL14_LACAC 50S 13.161 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIN PE=3 SV=1;>splA8YXL5 RL14_LACH 4 50S ribosomal protein L14 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpIN Q5FM80;A8YXL5 PE=3 SV=1 Q5FM80;A8YXL5 PE=3 SV=1 Q5FM80;A8YXL5 PE=3 SV=1 Q5FM76;A8YXL5 PE=3 SV=1 Q5FM76;A8YXM0 PE=3 SV=1;>splQ5FM76]RL6_LACAC 50S 19.172 ribosomal protein L5 OS=Lactobacillus johnsonii (Strain ATCC 700396 / NCK56 / N2 / NCFM) GRIE PE=3 SV=1;>splQ5FM76]RL6_LACAC 50S SV=1;>splQ5FM76]RL6_LACAC 50S 19.172 ribosomal protein L5 OS=Lactobacillus acidophilus (Strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF PE=3 SV=1;>splQ5FM76]RL6_LACAC 50S SV=1;>splA8YXM0]RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus acidophilus (Strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF PE=3 SV=1;>splA8YXM0]RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain DPC 4571) GN=rpIF PE=3 SV=1 >splQ5	V3:00/0682:B2GDW6:B2G8X5:49	(strain ATCC 700396 / NCK56 /	
A8H4;Q03PW0;Q03EB9 >splQ5FM80 RL14_LACAC 50S ribosomal protein L14 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIN PE=3 SV=1:>splA8YXL5 RL14_LACH 4 50S ribosomal protein L14 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpIN PE=3 SV=1 >splQ5FM78 RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE=3 SV=1:>splQ3FM78 RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain CNCM I-12250 / La1 / NCC 533) GN=rpIE PE= >splQ5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE= >splQ5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE= SplQ5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpIF PE=3 SV=1 >splQ5FM76;A8YXM0 PE=3 SV=1 >splQ5FM59 RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF	K 11.45\/I K2.0601 2.0444E3.04	N2 / NCFM) GN-rolB PE-3	
ABTH, 2001 W0, 2002 50 0%114_LACAC 50S 13.161 >splQ5FM80 RL14_LACAC 50S 13.161 ribosomal protein L14 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplN PE=3 SV=1;>splA8YXL5 RL14_LACH Q5FM80;A8YXL5 PE=3 SV=1 Q5FM80;A8YXL5 PE=3 SV=1 205FM80;A8YXL5 PE=3 SV=1 205FM78;Q74L78;Q046B3;A8YXL7 NCC 533) GN=rplE PE=3 SV=1;>splQ5FM76]RL6_LACAC 50S 19.172 ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 19.172 Q5FM78;Q74L78;Q046B3;A8YXL7 NCC 533) GN=rplE PE= >splQ5FM76]RL6_LACAC 50S 19.172 ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 19.172 SV=1;>splQ5FM76]RL6_LACAC 50S 19.172 ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>splA8YXM0]RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus Q5FM76;A8YXM0 PE=3 SV=1 >splQ5FM59]RL13_LACAC 50S SV=1 >splQ5FM59]RL13_LACAC 50S		SV-1	
A spiper more 114 ribosomal protein L14 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIN PE=3 SV=1;>splA8YXL5[RL14_LACH 4 50S ribosomal protein L14 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpIN PE=3 SV=1 >splQ5FM78]RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE=3 SV=1;>splQ74L78]RL5_LACJO 50S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rpIE PE= >splQ5FM76]RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE= >splQ5FM76]RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF PE=3 SV=1;>splA8YXM0/RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpIF PE=3 SV=1 >splQ5FM59]RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain DPC 4571) GN=rpIF PE=3 SV=1 >splQ5FM59]RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF		SPIC5EM80IRI 14 LACAC 50S	13 161
OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplN PE=3 SV=1;>splA8YXL5[RL14_LACH 4 505 ribosomal protein L14 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplN PE=3 SV=1 205FM80;A8YXL5 PE=3 SV=1 20.264 ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 SV=1;>splQ5FM78 RL5_LACAC 50S 20.264 ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 SV=1;>splQ5FM76 RL6_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 >splQ5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>splA8YXM0 PE=3 SV=1 Q5FM76;A8YXM0 PE=3 SV=1 >splQ5FM59 RL13_LACAC 50S ribosomal protein L14 OS=Lactobacillus acidophilus (strain DPC 4571) GN=rplF		ribosomal protein I 14	10.101
Q5FM80;A8YXL5 (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIN PE=3 SV=1;>sp A8YXL5]RL14_LACH 4 50S ribosomal protein L14 Q5FM80;A8YXL5 PE=3 SV=1 25FM80;A8YXL5 >sp Q5FM78 RL5_LACAC 50S 20.264 ribosomal protein L5 Q5FM78 RL5_LACAC 50S 20.264 ribosomal protein L5 Q5ELactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE=3 SV=1;>sp Q74L78 RL5_LACJO S0S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rpIE PE= 25FM78;Q74L78;Q046B3;A8YXL7 NCC 533) GN=rpIE PE= 25FM76;R4274L78;Q046B3;A8YXL7 >sp Q5FM76 RL6_LACAC 50S 19.172 ribosomal protein L6 OS=Lactobacillus acidophilus 19.172 (strain ATCC 700396 / NCK56 / N2 / NCK56 / N2 / NCFM) GN=rpIF PE=3 SV=1;>sp Q5FM76 RL6_LACAC 50S 19.172 ribosomal protein L6 OS=Lactobacillus acidophilus 19.172 10.172 Q5FM76;A8YXM0 PE=3 SV=1 SV=1;>sp A8YXM0]RL6_LACH4 50S ribosomal protein L6 0S=Lactobacillus helveticus 16.432 ribosomal protein L13 OS=Lactobacillus acidophilus 16.432 16.432 16.432		Ω S=Lactobacillus acidophilus	
Q5FM80;A8YXL5PE=3 SV=1;>sp A8YXL5]RL14_LACH 4 50S ribosomal protein L14 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplN PE=3 SV=1Q5FM80;A8YXL5PE=3 SV=1>splQ5FM78]RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE=3 SV=1;>splQ74L78]RL5_LACJO 50S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rpIE PE=Q5FM78;Q74L78;Q046B3;A8YXL7NCC 533) GN=rpIE PE=>splQ5FM76]RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF PE=>splQ5FM76]RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF PE=3 SV=1;>splA8YXM0[RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpIF PE=3 SV=1Q5FM76;A8YXM0PE=3 SV=1Q5FM76;A8YXM0PE=3 SV=1SsplQ5FM59]RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /		(strain ATCC 700396 / NCK56 /	
Q5FM80;A8YXL5 SV=1;>splA8YXL5IRL14_LACH 4 50S ribosomal protein L14 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplN PE=3 SV=1 25FM80;A8YXL5 PE=3 SV=1 25FM80;A8YXL5 SV=1;SplQ5FM78]RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 SV=1;SplQ74L78]RL5_LACJO SV=1;>splQ74L78]RL5_LACJO 50S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rplE PE= 25FM78;Q74L78;Q046B3;A8YXL7 NCC 533) GN=rplE PE= 25FM78;Q74L78;Q046B3;A8YXL7 NCC 533) GN=rplE PE= 25FM76;R16,L6_LACAC 50S 19.172 ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>splA8YXM0[RL6_LACH4 S0S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplF PE=3 SV=1 Q5FM76;A8YXM0 PE=3 SV=1 25SplQ5FM59 RL13_LACAC 50S 16.432 ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / 16.432		N2 / NCFM) GN=rpIN PF=3	
Q5FM80;A8YXL54 50S ribosomal protein L14 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplN PE=3 SV=1Q5FM80;A8YXL5PE=3 SV=1>sp Q5FM78 RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 SV=1;>sp Q74L78 RL5_LACJO 50S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rplE PE=Q5FM78;Q74L78;Q046B3;A8YXL7NCC 533) GN=rplE PE=>splQ5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>splQ5FM76 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplF PE=3 SV=1Q5FM76;A8YXM0PE=3 SV=1SFM76;A8YXM0PE=3 SV=1SsplQ5FM59 RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /		SV=1 >splA8YXI 5IRI 14 ACH	
Q5FM80;A8YXL5OS=Lactobacillus helveticus (strain DPC 4571) GN=rplN PE=3 SV=1>sp Q5FM78 RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 SV=1;>sp Q74L78 RL5_LACJO 50S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rplE PE=20.264Q5FM78;Q74L78;Q046B3;A8YXL7NCC 533) GN=rplE PE=>sp Q5FM76 RL6_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain CNCM I-12250 / La1 / NCC 533) GN=rplE PE=19.172Q5FM78;Q74L78;Q046B3;A8YXL7NCC 533) GN=rplE PE=>sp Q5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplF PE=3 SV=116.432Q5FM76;A8YXM0PE=3 SV=1>sp Q5FM59 RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /16.432		4 50S ribosomal protein L14	
Q5FM80;A8YXL5(strain DPC 4571) GN=rplN PE=3 SV=1Q5FM80;A8YXL5>sp Q5FM78 RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 SV=1;>sp Q74L78 RL5_LACJO 50S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rplE PE=20.264Q5FM78;Q74L78;Q046B3;A8YXL7NCC 533) GN=rplE PE=>sp Q5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplF PE=3 SV=119.172Q5FM76;A8YXM0PE=3 SV=1Q5FM76;A8YXM0PE=3 SV=1Q5FM76;A8YXM0PE=3 SV=1SV=1,>sp Q5FM59 RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF		OS=Lactobacillus helveticus	
Q5FM80;A8YXL5PE=3 SV=1>sp Q5FM78]RL5_LACAC 50S ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE=3 SV=1;>sp Q74L78]RL5_LACJO 50S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rpIE PE=Q5FM78;Q74L78;Q046B3;A8YXL7NCC 533) GN=rpIE PE=>sp Q5FM76]RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpIF PE=3 SV=119.172Q5FM76;A8YXM0PE=3 SV=1Q5FM76;A8YXM0PE=3 SV=1SP Q5FM76]RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF16.432		(strain DPC 4571) GN=rplN	
>sp Q5FM78 RL5_LACAC 50S 20.264 ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplE PE=3 SV=1;>sp Q74L78 RL5_LACJO 50S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / Q5FM78;Q74L78;Q046B3;A8YXL7 NCC 533) GN=rplE PE= >sp Q5FM76 RL6_LACAC 50S 19.172 ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>sp Q5FM76 RL6_LACAC 50S 19.172 ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplF PE=3 SV=1 >sp Q5FM59 RL13_LACAC 50S 16.432 ribosomal protein L13 OS=Lactobacillus acidophilus 16.432 (strain ATCC 700396 / NCK56 / N2 16.432	Q5FM80;A8YXL5	PE=3 SV=1	
ribosomal protein L5 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE=3 SV=1;>sp Q74L78 RL5_LACJO 50S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rpIE PE=Q5FM78;Q74L78;Q046B3;A8YXL7NCC 533) GN=rpIE PE=>sp Q5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF PE=3 SV=1;>sp A8YXM0]RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpIFQ5FM76;A8YXM0PE=3 SV=1Q5FM76;A8YXM016.432 ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /		>sp Q5FM78 RL5_LACAC 50S	20.264
OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE=3 SV=1;>sp Q74L78 RL5_LACJO 50S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rpIE PE=19.172Q5FM78;Q74L78;Q046B3;A8YXL7>sp Q5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpIF PE=3 SV=119.172Q5FM76;A8YXM0PE=3 SV=119.172Q5FM76;A8YXM0PE=3 SV=116.432ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /16.432		ribosomal protein L5	
(strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIE PE=3 SV=1;>sp Q74L78 RL5_LACJO 50S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rpIE PE=25FM78;Q74L78;Q046B3;A8YXL7NCC 533) GN=rpIE PE=>sp Q5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpIF PE=3 SV=119.172Q5FM76;A8YXM0PE=3 SV=119.172Q5FM76;A8YXM0PE=3 SV=119.172		OS=Lactobacillus acidophilus	
N2 / NCFM) GN=rpIE PE=3 SV=1;>sp Q74L78 RL5_LACJO 50S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rpIE PE=Q5FM78;Q74L78;Q046B3;A8YXL7NCC 533) GN=rpIE PE=>sp Q5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpIF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpIF PE=3 SV=116.432Q5FM76;A8YXM0PE=3 SV=1SP Q5FM59 RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /16.432		(strain ATCC 700396 / NCK56 /	
SV=1;>sp Q74L78 RL5_LACJO 50S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rplE PE=Q5FM78;Q74L78;Q046B3;A8YXL7NCC 533) GN=rplE PE=>sp Q5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplFQ5FM76;A8YXM0PE=3 SV=1Q5FM76;A8YXM0PE=3 SV=1SV=13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /Q5FM76;A8YXM0PE=3 SV=1SV=13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /		N2 / NCFM) GN=rpIE PE=3	
50S ribosomal protein L5 OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rplE PE=25FM78;Q74L78;Q046B3;A8YXL7NCC 533) GN=rplE PE=>sp Q5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplF19.172Q5FM76;A8YXM0PE=3 SV=119.172Q5FM76;A8YXM0PE=3 SV=116.432ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /16.432		SV=1;>sp Q74L78 RL5_LACJO	
OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) GN=rplE PE=>sp Q5FM76 RL6_LACAC 50S ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplF PE=3 SV=1Q5FM76;A8YXM0PE=3 SV=1Q5FM76;A8YXM0PE=3 SV=1SSP Q5FM59 RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /		50S ribosomal protein L5	
Q5FM78;Q74L78;Q046B3;A8YXL7NCC 533) GN=rplE PE=>sp Q5FM76 RL6_LACAC 50S19.172ribosomal protein L6OS=Lactobacillus acidophilus(strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3SV=1;>sp A8YXM0 RL6_LACH450S ribosomal protein L6OS=Lactobacillus helveticusQ5FM76;A8YXM0PE=3 SV=1Q5FM76;A8YXM0PE=3 SV=1SSP Q5FM59 RL13_LACAC 50S16.432ribosomal protein L13OS=Lactobacillus acidophilus(strain ATCC 700396 / NCK56 /		OS=Lactobacillus johnsonii	
Q5FM78;Q74L78;Q046B3;A8YXL7 NCC 533) GN=rplE PE= >sp Q5FM76 RL6_LACAC 50S 19.172 ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplF Q5FM76;A8YXM0 PE=3 SV=1 Sv[Q5FM59]RL13_LACAC 50S 16.432 ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / 16.432		(strain CNCM I-12250 / La1 /	
>sp Q5FM76 RL6_LACAC 50S 19.172 ribosomal protein L6 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplF Q5FM76;A8YXM0 PE=3 SV=1 >sp Q5FM59 RL13_LACAC 50S 16.432 ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / 16.432	Q5FM78;Q74L78;Q046B3;A8YXL7	NCC 533) GN=rpIE PE=	40.470
OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplF PE=3 SV=1 >sp Q5FM59 RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /		>splQ5FM76 RL6_LACAC 50S	19.172
Q5=Lactobacilius acidopnius (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplF PE=3 SV=1 >sp Q5FM59 RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /		nbosomai protein Lo	
(strain AFCC 7003967 NCK567 N2 / NCFM) GN=rplF PE=3 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplF PE=3 SV=1 >sp Q5FM59 RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /			
Q5FM76;A8YXM0 PE=3 SV=1 SV=1;>sp A8YXM0 RL6_LACH4 50S ribosomal protein L6 OS=Lactobacillus helveticus (strain DPC 4571) GN=rplF PE=3 SV=1 >sp Q5FM59 RL13_LACAC 50S 16.432 ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /		(SUBILIATUU / UUSYO / NUKSO /	
Q5FM76;A8YXM0 PE=3 SV=1 25FM76;A8YXM0 >sp Q5FM59 RL13_LACAC 50S 16.432 ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /			
OS=Lactobacillus helveticus (strain DPC 4571) GN=rplF Q5FM76;A8YXM0 PE=3 SV=1 >sp Q5FM59 RL13_LACAC 50S ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /		50S ribosomal protein L6	
Q5FM76;A8YXM0 PE=3 SV=1 >sp Q5FM59 RL13_LACAC 50S 16.432 ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / 16.432		OS-Lactobacillus belyeticus	
Q5FM76;A8YXM0 PE=3 SV=1 >sp Q5FM59 RL13_LACAC 50S 16.432 ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /		(strain DPC 4571) GN-rolF	
>sp Q5FM59 RL13_LACAC 50S 16.432 ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /		$PE_3 S_{-1}$	
ribosomal protein L13 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /		>splQ5FM59IRI 13 ACAC 50S	16 432
OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /		ribosomal protein I 13	10.402
(strain ATCC 700396 / NCK56 /		OS=Lactobacillus acidophilus	
		(strain ATCC 700396 / NCK56 /	
N2 / NCFM) GN=rpIM PE=3		N2 / NCFM) GN=rpIM PE=3	
SV=1:>splA8YTB1IRL13 LACH		SV=1:>splA8YTB1IRL13 LACH	
4 50S ribosomal protein L13		4 50S ribosomal protein L13	
Q5FM59;A8YTB1 OS=Lactobacillus helveticus	Q5FM59;A8YTB1	OS=Lactobacillus helveticus	

	(strain DPC 4571) GN=rpIM	
	PE=3 SV=1	
	>sp Q5FLW6 SYA_LACAC	98.286
	AlaninetRNA ligase	
	OS=Lactobacillus acidophilus	
	(strain ATCC 700396 / NCK56 /	
	N2 / NCFM) GN=alaS PE=3	
Q5FLW6	SV=1	
	>sp Q5FLL0 GATB_LACAC	53.822
	Aspartyl/glutamyl-	
	tRNA(Asn/GIn)	
	amidotransferase subunit B	
	OS=Lactobacillus acidophilus	
	(strain ATCC 700396 / NCK56 /	
	N2 / NCFM) GN=gatB PE=3	
	SV=1;>sp A8YTZ7 GATB_LAC	
	H4 Aspartyl/glutamyl-	
	tRNA(Asn/GIn)	
	amidotransferase subunit B	
Q5FLL0;A8YTZ7;Q041K6;P61344	OS=Lac	
Q5FL75;A8YUC4;Q74KA5;Q042C9		91.554
;Q03GZ8;Q88YL7;Q38YD2;Q1WS		
W8;Q03SQ0;Q03AP4;B3WCM7;B2		
G5Y8;A5VIG0;Q04ED0;Q1GB45;Q		
04BJ2;Q81X26;Q815G7;Q72XS9;		
Q6HB99;Q631G4;B7IPV1;B7HEI8;		
A0RKX7;Q97PD6;Q927Y3;Q8DNT		
8;Q5KV94;Q04J70;C1CSW3;C1C		
M38;C1C8U0;B5E749;A4IST9;A0A		
LJ4;Q9K6W8;Q9AET4;A8AVC1;Q9		
9Y96;Q8NZK2;Q8DSF0;Q5XAA2;Q		
48RM6;Q1JK98;Q1JF92;Q1JA48;Q		
1J543;P0DF67;P0DF66;B5XI23;A3		
CLD3;A2RCT1;Q65EC5;Q5WDF8;		
A8FHW5;A7Z999;Q8E3M6;Q8DY0		
7;Q3JZK2;P47994;C0MEB9;C0M6		
83;B9EAE8;B9DVI5;B4U176;Q99V		
M2;Q7A6R5;Q7A1G4;Q6GIN8;Q6		
GB77;Q5HHR7;Q49VV2;Q2YSH6;		
Q2FIN8;006446;A7WZP8;A6QF62;		
Q8CPZ2;Q5HQX6;A4W3N7;A4VX		
E1;Q834A7;Q4L4H8;A4XJ42;Q5M		
	Protoin translassas suburit	
52L37,Q10103,Q17AE2,U25475,B	SECA US=Laciobacillus	
UJIVI 10, DUZ / E0, DZU 144, A/ZU 10, A		
131744, AOEUE3, A/1170, QOIVIK29, 031245 , 031245 , 031245	100390 / 100000 / 102 / 100 FIVI)	
	$3v = 1,>5p AO I UC4 3ECA_LAC$	
2.0461C8.8411065.02 M/00.02 10	Sect OS-Lactobacillus	
	belyeticus (strain DDC 4571)	
2,7301114,03E030,043738,Q4A03	$GN = coc \Delta PE = 3$	
		36 /02
	Glycerol-3-nhosnbate	50.435
SOI 210,101000	Circonol o priospriate	

	dehydrogenase [NAD(P)+] OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=gpsA PE=3 SV=1;>sp A8YUC9 GPDA_LAC H4 Glycerol-3-phosphate dehydrogenase [NAD(P)+] OS=Lactobacillus helveticus (strai	
Q5FL04;Q97NG0;Q8VVB7;Q8DN7 4;Q5M1N9;Q04IA2;Q03ML5;B5E37 9;B2IMZ0;B1I9D8;A8AUL5;Q03EI3	>sp Q5FL04 G6PI_LACAC Glucose-6-phosphate isomerase OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=pgi PE=3 SV=1	49.506
Q5FKZ0;Q1GAX5;Q04BB3;Q74K2 5;Q042K5;A8YUJ1	>sp Q5FKZ0 RF1_LACAC Peptide chain release factor 1 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=prfA PE=3 SV=1;>sp Q1GAX5 RF1_LACD A Peptide chain release factor 1 OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 1184	41.522
Q5FKY2;A8YUJ9;Q1GAW7;Q04BA 5;B1MW87;Q03V27;Q04G22	>sp Q5FKY2 ATPA_LACAC ATP synthase subunit alpha OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=atpA PE=2 SV=1;>sp A8YUJ9 ATPA_LACH 4 ATP synthase subunit alpha OS=Lactobacillus helveticus (strain DPC 4571) GN=atpA PE=3 SV=1;>sp Q1	54.932
Q5FKY0;A8YUK1;Q9A0I7;Q97PT6; Q8P1K5;Q8E5U8;Q8E072;Q8DP4 4;Q831A5;Q5XCY0;Q5M5J1;Q5M1 04;Q48UD3;Q3K1J5;Q1JMI9;Q1JH N5;Q1JCL3;Q1J7F9;Q04HT9;Q03L X3;P95789;P43451;P0DA05;P0DA 04;C1CSC8;C1CLK6;C1CF93;C1C 899;C0MH17;C0M720;B9DRT6;B8 ZLA9;B5E670;B4U2E1;B2IQX0;B1I CS9;A8AYG1;A4W1V7;A4VVJ9;A3 CM14;A2RFC2;Q74K15;Q042L5;B 5XKQ1;Q9CES0;Q02XA5;A2RMI2; B9DME3;A6TK65;B0THN2;Q2RV1 8;P05038;Q6MS94;Q2ST34;A7IH3 1;A1UR49	>sp Q5FKY0 ATPB_LACAC ATP synthase subunit beta OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=atpD PE=2 SV=1;>sp A8YUK1 ATPB_LAC H4 ATP synthase subunit beta OS=Lactobacillus helveticus (strain DPC 4571) GN=atpD PE=3 SV=1;>sp Q9A0	52.215
Q5FKS2	>sp Q5FKS2 RS20_LACAC 30S ribosomal protein S20 OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rpsT PE=3 SV=1	9.481

	>sp Q5FKR7 TIG_LACAC Trigger factor OS=Lactobacillus acidophilus (strain ATCC	49.305
Q5FKR7	700396 / NCK56 / N2 / NCFM) GN=tig PE=3 SV=1	
	>sp Q5FKK7 LDH2_LACAC L- lactate dehydrogenase 2	33.349
	OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /	
Q5FKK7	N2 / NCFM) GN=ldh2 PE=3 SV=1	
	>sp Q5FK48 LUXS_LACAC S- ribosylhomocysteine lyase	17.665
Q5FK48;Q049W0;A8YXQ1;Q88YI6	OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /	
;Q5QHW1;B2GE54;B2G970;A5VL V3	N2 / NCFM) GN=luxS PE=3 SV=1	
	>sp Q5FJU0 SYGB_LACAC GlycinetRNA ligase beta	78.622
	subunit OS=Lactobacillus	
	700396 / NCK56 / N2 / NCFM)	
	GN=glyS PE=3 SV=1;>sp A8YVM4 SYGB_LAC	
Q5FJU0;A8YVM4;Q04A23;Q038U3	H4 GlycinetRNA ligase beta subunit OS=Lactobacillus	
;B3WEK6;Q03F66;B2G6Z6;A5VJI1 :B2GBZ7:Q88VS3	helveticus (strain DPC 4571) GN=glvS PE	
	>sp Q5FJT2 PDRP_LACAC	31.258
	dikinase regulatory protein	
	OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 /	
	N2 / NCFM) GN=LBA1206 PE=3	
	SV=1;>sp A8YVN2 PDRP_LAC	
Q5FJT2;A8YVN2;Q74IY4;Q042X7; Q831T1	dikinase regulatory protein	
Q5FJK8;A8YVT1;Q1G9L7;Q049S3	>sp Q5FJK8 RL19_LACAC 50S	13.057
;Q92AM1;Q81WJ6;Q819W6;Q732 N0;Q71YM9;Q6HEX5;Q636I6;O53	OS=Lactobacillus acidophilus	
083;C3P5P1;C3L787;C1KW86;C1 EP64:B9IVC9:B8DDW6:B7.LIS6:B7	(strain ATCC 700396 / NCK56 / N2 / NCFM) GN=rplS PE=3	
IUJ9;B7HLH3;B7HDW3;B1HQI4;A9	SV=1;>sp A8YVT1 RL19_LACH	
VT78;A0RHL3;A0AJP5;Q833P5;Q3 8XQ6;Q038K1;B3WET9;A8MHC5;	4 50S ribosomal protein L19 OS=Lactobacillus helveticus	
B1YIM3;Q88WJ1;Q03RU8;Q03FW 2 [·] B1MZW8	(strain DPC 4571) GN=rplS PF=3 SV=1 >spl01G9	
	>sp Q5FIW3 SYT_LACAC	73.642
	OS=Lactobacillus acidophilus	
	N2 / NCFM) GN=thrS PE=3	
Q5FIW3	SV=1 >sp Q5FIS5 TRMB_LACAC	25.359
Q5FIS5;A8YWH0	tRNA (guanine-N(7)-)-	

	methyltransferase OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=trmB PE=3 SV=1;>sp A8YWH0 TRMB_LAC H4 tRNA (guanine-N(7)-)- methyltransferase OS=Lactobacillus helveticus (strain DPC 4571)	
Q5FIN5;A8YWU9;Q74HZ5;Q041F5 ;Q6MUG5;Q6F2A0;Q2SR32;B8J4S 2;Q88XZ7;Q03EA5;Q316Z9;Q037 M7;B3W8V7;Q8NYY2;Q8CU95;Q6 GKT6;Q6GD81;Q5HK07;Q5HJY7; Q4LAK8;Q2FKP7;P99178;P95689; P61083;A8YYT2;A7WWP0;A6TXF 9;A6QD48;A5INQ0;Q1G8N2;Q048 F6	>sp Q5FIN5 SYS_LACAC SerinetRNA ligase OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=serS PE=3 SV=1;>sp A8YWU9 SYS_LACH 4 SerinetRNA ligase OS=Lactobacillus helveticus (strain DPC 4571) GN=serS PE=3 SV=1;>sp Q74HZ5 SYS_LACJO S	49.616
Q5FI54:Q1G8B5:Q047T2	>sp Q5FI54 MURE_LACAC UDP-N-acetylmuramyl-tripeptide synthetase OS=Lactobacillus acidophilus (strain ATCC 700396 / NCK56 / N2 / NCFM) GN=murE PE=3 SV=1	57.633
Q59800	>sp Q59800 G3P_KITAU Glyceraldehyde-3-phosphate dehydrogenase OS=Kitasatospora aureofaciens GN=gap PE=3 SV=1	35.312
Q59727	>sp Q59727 PHTD_COMTE 4,5-dihydroxyphthalate decarboxylase OS=Comamonas testosteroni GN=phtD PE=4 SV=1	37.156
Q59677	>sp Q59677 MUTB_PORGI Methylmalonyl-CoA mutase large subunit OS=Porphyromonas gingivalis (strain ATCC BAA-308 / W83) GN=mutB PE=3 SV=1	78.702
Q59643	>sp Q59643 HEM2_PSEAE Delta-aminolevulinic acid dehydratase OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=hemB PE=1 SV=1	37.037
Q59485;A8YVY9;Q9Z5K9;Q1G9E8 ;Q049K4;P40334	>sp Q59485 PEPX_LACHE Xaa-Pro dipeptidyl-peptidase OS=Lactobacillus helveticus GN=pepX PE=1 SV=1;>sp A8YVY9 PEPX_LAC H4 Xaa-Pro dipeptidyl-peptidase	90.486

	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=pepX	
	PE=3 SV=1	
	>sp Q59477 DHAT_KLEPN 1,3-	41.465
	propanediol dehydrogenase	
	OS=Klebsiella pneumoniae	
Q59477;P45513	GN=dhaT PE=1 SV=1	
	>sp Q59111 GCTA_ACIFV	35.721
	Glutaconate CoA-transferase	
	subunit A OS=Acidaminococcus	
	fermentans (strain ATCC 25085	
050444	/ DSM 20731 / VR4) GN=gctA	
Q59111		40.047
	>splQ57K60 GCS1_SALCH	40.217
	Aminometnyitransferase	
	OS=Saimonella choleraesuls	
	(Strain SC-B67) GN=gCVT PE=3	
	SV=1,>SP CUP120 GCS1_SAL	
	Aninomethylitansielase	
	(strain DKS4504) CN gav	
D5F0G0,D4TGA5,D4T550,A4VVE5	(SIIAIII KKS4594) GN=gCVI	
7,Q3F3G4,F04223,F04222,B3F310, B5BEM0·BAT\/24·AQN3N3·AQMPH	FL=3 SV-1:splB5PE16IGCST_SAL	
0.484 PB/	G2 Aminomethyltransferase	
		30 182
	Murein bydrolase activator NInD	33.102
	OS-Salmonella typhi GN-nInD	
	SV=2:>splP40827INI PD_SALT	
	Y Murein hydrolase activator	
	NIDD OS=Salmonella	
	typhimurium (strain LT2 /	
	SGSC1412 / ATCC 700720)	
	GN=nlpD PE=3	
Q56131:P40827:P39700:P0ADA4:	SV=2:>splP39700INLPD SALD	
P0ADA3	U Murein	
	>sp Q53560 DHLE BACLI	40.04
	Leucine dehydrogenase	
	OS=Bacillus licheniformis	
	GN=ldh PE=1	
	SV=1;>sp P0A393 DHLE_BACC	
	E Leucine dehydrogenase	
	OS=Bacillus cereus GN=ldh	
	PE=1	
	SV=1;>sp P0A392 DHLE_BACC	
	R Leucine dehydrogenase	
Q53560;P0A393;P0A392;P13154;P	OS=Bacillus cereus (strain	
54531	ATCC 14579 / DSM 3	
	>sp Q51772 MERA_PSEFL	57.566
	Mercuric reductase	
	OS=Pseudomonas fluorescens	
	GN=merA PE=3	
	SV=1;>sp P94188 MERA_ALCS	
	P Mercuric reductase	
	US=Alcaligenes sp. GN=merA	
	PE=3	
Q51/72;P94188;Q52109;P94702	SV=1;>sp Q52109 MERA_ACIC	

	A Mercuric reductase	
	GN=merA PE=3 SV=1;>S	450.04
	>splQ51561 RPOB_PSEAE	150.84
	DNA-directed RNA polymerase	
	subunit beta OS=Pseudomonas	
Q51561;Q02187;B7V637;A60Z11;A	aeruginosa (strain ATCC 15692	
4XZ97;C1DKK5;A4VHM3;Q88QP2;	/ DSM 22644 / CIP 104116 /	
Q889X8;Q4ZMN7;Q4K526;Q48D2	JCM 14847 / LMG 12228 / 1C /	
9;Q3K5Y1;Q1IFX3;C3K2Y3;B1JDX	PRS 101 / PAO1) GN=rpoB	
	SV=2;>SP QU2187 RPOB_PSE	
	AB DINA-directed RINA	
6;Q5WZL9;086094;A5IH51		00.050
	>SplQ4QJQ4 E1CG_HAE18	22.952
	Electron transport complex	
	\square	
	S_{-1} S_{-1}	
	N Electron transport complex	
	subunit G OS-Haamanbilue	
	influenzae (strain ATCC 51907 /	
	DSM 11121 / KW20 / Pd)	
	GN-HI	
Q4Q3Q4,F44291,A30D10	SOLO19X88IMLITS STAS1	101 23
	DNA mismatch repair protein	101.25
	Muts OS-Stanbylococcus	
	saprophyticus subsp	
	saprophyticus (strain ATCC	
	15305 / DSM 20229) GN=mutS	
Q49X88	PF=3 SV=1	
	>splQ49419IY328_MYCGE	88 406
	Uncharacterized protein MG328	
	OS=Mycoplasma genitalium	
	(strain ATCC 33530 / G-37 /	
	NCTC 10195) GN=MG328	
Q49419	PE=4 SV=1	
	>splQ48558IPEPDA LACHE	53.512
	Dipeptidase A OS=Lactobacillus	
	helveticus GN=pepDA PE=1	
Q48558	SV=1	
	>sp Q48436 BUDC_KLEPN	26.642
	Diacetyl reductase [(S)-acetoin	
	forming] OS=Klebsiella	
	pneumoniae GN=budC PE=1	
Q48436;Q04520	SV=2	
	>sp Q47454 PCOC_ECOLX	13.256
	Copper resistance protein C	
	OS=Escherichia coli GN=pcoC	
Q47454	PE=1 SV=1	
	>sp Q46289 KPYK_CLOPE	52.081
	Pyruvate kinase OS=Clostridium	
-	perfringens (strain 13 / Type A)	
Q46289	GN=pykF PE=3 SV=2	
	>sp Q46130 ABGA_CLOLO 6-	54.413
Q46130	phospho-beta-glucosidase	

	OS=Clostrialum longisporum	
	Sin=abyr + E=3.5V=1 Sch $O37WO1SVI DEUMO$	02 072
	Louging tPNA ligase	92.915
	OS-Debelessessides magartui	
	(strain CRDR1) CN Jours DE 2	
	(Strain CBDBT) GIN=Ieus PE=3	
	SV=1;>SP Q3ZAU7 SYL_DEHIVI	
	1 LeucinetRNA ligase	
	OS=Dehalococcoides mccartyi	
	(strain ATCC BAA-2266 / KCTC	
	15142 / 195) GN=leuS PE=3	
	SV=1;>sp A5FP73 SYL_DEHM	
Q3ZWQ1;Q3ZA07;A5FP73	B Le	
	>sp Q3Z8V4 RPOB_DEHM1	141.36
	DNA-directed RNA polymerase	
	subunit beta	
	OS=Dehalococcoides mccartyi	
	(strain ATCC BAA-2266 / KCTC	
	15142 / 195) GN=rpoB PE=3	
	SV=1;>sp Q3ZX01 RPOB_DEH	
	MC DNA-directed RNA	
	polymerase subunit beta	
	OS=Dehalococcoides mccartyi	
Q3Z8V4;Q3ZX01;A5FRK5	(strain CBDB1)	
	>sp Q3Z606 TAL1 SHISS	35.219
	Transaldolase 1 OS=Shigella	
	sonnei (strain Ss046) GN=tal1	
Q3Z606;P0A872;P0A871;P0A870;	PE=3	
Q326L3:Q32KB0:K0BE10:Q8FLD1:	SV=1:>spIP0A872ITALB SHIFL	
Q9S0X4:Q9KLW8:Q8D6H9:Q87GY	Transaldolase B OS=Shigella	
5:Q7MDD5:Q6LLF0:Q6D8W0:Q3Y	flexneri GN=talB PE=3	
Z89:Q1H0R4:C3LVN8:B6ERE2:A7	SV=2:>spIP0A871ITALB ECO5	
N1Z7:A5F028:Q0I1U0:B0UV30:P0	7 Transaldolase B	
A869:P0A868:P0A867:Q83QM8:A1	OS=Escherichia coli O157:H7	
S414:C4K4G2	GN=talB PE=3 SV=2:>splP	
	>splQ3Z583IBGAL SHISS	116.31
	Beta-galactosidase OS=Shigella	
	sonnei (strain Ss046) GN=lacZ	
	PE=3	
Q3Z583:A7KGA5:A6TI29:A7ZWZ1:	SV=1:>spIA7KGA5IBGAL2_KLE	
A7ZI91:Q8X685:B7UJI9:B7N8Q1:B	PN Beta-galactosidase	
5Z2P7:P00722:B1J0T5:Q8VNN2:Q	OS=Klebsiella pneumoniae	
32JB6:B1LIM9:Q8FKG6:Q1RFJ2:Q	GN=lacZ PE=3	
0TKT1:A1A831:A8AKB8:A9R0.J8:A	SV=1:>splA6TI29IBGAL2 KLFP	
1JTC4:Q7CIZ3:Q1CI76:Q1C6T8:A	7 Beta-galactosidase 2	
4TLL5:Q669R9:B2K6E6:B1Jl86:A7	OS=Klebsiella pneumoniae	
FH78	subsp. pn	
Q3Z4Z4:Q32JG9:Q325I6:P61718·B	>splQ3Z4Z4IRISB_SHISS 6 7-	16,156
7LMH2:B5Y0X6:B2U4I 8-A8AK39	dimethyl-8-ribityllumazine	
A6T5E8:Q0TKM6:P61717:P61715	synthase OS=Shigella sonnei	
P61714:C4ZTH2:B7UUN8:B7N.182	(strain Ss046) GN=ribH PF=3	
B7N8W7:B7MQD0:B7MD73·B7M3	SV=1:>splQ32.JG9IRISB SHID	
Q4:B7L649:B6HZI 6:B5Z3R9:B1XF	S 6.7-dimethyl-8-ribityllumazine	
03:B1LJG5:B1.I034·A77X67·A77IG	synthase OS=Shigella	
8:A7MFG5:B4EU19:A8GAN7:A1.IN	dysenteriae serotype 1 (strain	
S3:Q5PFS8:Q57SF7:P66039:P660	Sd197) $GN=ribH PF=3$	
38.C5BCH5.C007112.B5R6R8.B50	SV=1:>splQ325I6IR	
00,000010,000102,001010,000		

TG5;B5FKS2;B5EXF8;B5BDB5;B4		
TM97;B4T8Q8;B4SWQ9;B2VHS9;		
Q6D848;C6DB33		
	>sp Q3Z0G5 HISX_SHISS	46.131
	Histidinol dehydrogenase	
	OS=Shigella sonnei (strain	
	SSU46) GIN=NISD PE=3	
	SV=1,>SP Q32EE9 NISA_SNID	
	OS-Shigella dysenteriae	
	serotype 1 (strain Sd197)	
	GN=hisD PE=3	
Q3Z0G5:Q32EE9:Q323J2:P59401:	SV=1:>splQ323J2IHISX SHIBS	
Q8X8T3;Q8FG52;P06988	Histidinol dehydroge	
Q3YY77;Q32CD6;Q31XL1;P0A6Q		45.698
2;B7LWP5;B2TZF4;Q1R7R4;Q0TE		
80;P0A6Q1;P0A6Q0;P0A6P9;C4Z		
ZT2;B7UHJ5;B7NV69;B7N715;B7		
MZ75;B7MLA0;B7LXJ5;B7LEJ8;B6		
16H5;B5Z3E3;B1XD19;B1LQB2;B11		
011F7, Q0D102, B2VF10, C0DD33, 087BN2:01CLT2:01C3V6: A9P1D		
1.84TPY1.88G9W/1.066ED8.B2K5		
61:B1JK09:A7FLZ5:A1JJR4:Q8GE		
63;Q6LMT1;A4SRC1;A0KGH3;Q8		
DC62;Q87LQ0;Q7MHQ1;A6VR00;		
Q7N835;B6EKL8;Q7VNM6;Q0I1Z1		
;P57975;B0UV89;Q65VZ7;B3GY00		
;B0BQ53;A3N1B9;B8F8L5;A4Y943		
;A1RHF3;A6VUU9;Q0VQD6;Q15Q		
R6;B4RVU5;Q8EBR0;Q0HXH0;Q0		
47WO8·048F70·0211 C2·B4RMD8		
A9I ZI 4 A1KUB6 09HXZ5 088MF		
9:Q4KHF6:Q3KH92:Q39T27:Q1I64		
6;Q02RA7;B7V7V4;B7I918;B7H22	>sp Q3YY77 ENO SHISS	
7;B3PJB3;B2I2A5;B1JB38;B0KSB9	Enolase OS=Shigella sonnei	
;A6V1F3;A4XWS1;A3M5Y1;Q12PZ	(strain Ss046) GN=eno PE=3	
4;B0VQI4;B0V677;A3QC77;A0KU8	SV=1;>sp Q32CD6 ENO_SHID	
2;Q47WR1;A1SSQ7;Q4FR74;A5W	S Enolase OS=Shigella	
G13;Q7VIH4;C6E471;B5EGF2;A5	dysenteriae serotype 1 (strain	
GEW5;Q67SV9;Q5R143;C6BSL8;		
	5V=1;>SP Q3TALT ENU_SHIB5 Epoloso OS-Shigolla boydii	
5.78E2299901W218901W04490112	serotype 4 (strain Sh227)	
K6	GN=eno	
Q3YXD9:Q31WU2:Q0T0H6:P0A8G	>splQ3YXD9IUXAC SHISS	53.987
5;B7LMX3;Q8XAI7;Q0TD14;P0A8	Uronate isomerase OS=Shigella	
G4;P0A8G3;C4ZR08;B7UIZ9;B7NJ	sonnei (strain Ss046) GN=uxaC	
V5;B7ND80;B7N095;B7MB25;B7L	PE=3	
ZZ6;B7LH20;B6I464;B5YRY4;B1X	SV=1;>sp Q31WU2 UXAC_SHI	
G96;B1LFJ0;B1IRM5;A8A4Q0;A7Z	BS Uronate isomerase	
	US=Shigella boydii serotype 4	
6D9HU;C6DKE7;Q8ZIC6;Q665N8;	(strain SD227) GN=uxaC PE=3	

Q1CMK0;Q1C300;C5BH54;B2K3C 6;B1JL96;A9R1P0;A7FE06;A4THL 9;A1JR25;A8GJX5;Q65V59;Q4QPJ 6;B0URH4;A6VKM8;A5UFL7;Q8Z M23;Q8Z3R7;Q8D556;Q87FH3;Q7 MBZ3;Q5PMP8;Q57JX8;C0PYB6; B5RE96;B5QYB2;B5FV01;B5F623; B5BFV0;B4TVB3;B4THM8;B4T5P8 ;A9N4U7;A9MQL9;Q7N9X5	SV=1;>sp Q0T0H6 UXAC_SHIF 8 Uronate isomerase OS=Shigella flexneri	
Q3YX68;Q32BG2;Q31W50;Q0T0B 0;P59609;B7LR40;B2U204;Q8X9M 0;Q1R6G5;Q0TCT8;P0A6E5;P0A6 E4;C4ZSR2;B7UJ66;B7NKP0;B7N DF7;B7N0V6;B7MB92;B7M079;B7 LHN6;B6I1P6;B5YS62;B1XGY3;B1 LFS3;B1IQV0;A8A4Y7;A7ZS69;A1 AG76;Q8Z3H5;B5QZW1;B5FI16;B 5F6U1;B4T702;B5XSX1;A8AQ63;A 6TEJ0;A9MP33;P0C1A0;Q65SH4; Q4QJM0;Q392V6;Q0I4M1;P44315; B2JP23;B0UW58;A9BM60;A6VN06 ;A5UFF8;A5UBF3;Q8XWC1;Q7WK W7;Q7W7H8;Q7VTJ9;Q6NCS7;Q2 1DC6;Q1BLH4;Q13D88;Q0B4C4;Q 07VN9;P59608;P59607;P57877;C1 F510;C1A3S5;B6JAT0;B4EM48;B3 Q9D3;B2UBA3;B1Z0E2;B1K5H3;A 9IQ90;A4JLD9;A4G3H1;A1VL71;A 0AYH4;Q62EQ4;Q3JWY8;Q2T1W2 ;Q12D55;C5CUG9;A3NQI1;A3N4T 7;A3MNB7;A2SK99;A2S7V6;A1V7 X3;Q9JXC1;Q9JWM1;Q8ZLT0;Q5F 5G5;B4TWE1;B4TJ09;B4RQS8;A9 N735;A9M4B1;A6SW90;A3M3K6;A 1KWJ8;B9MBJ2;A4WEY6;A1W9F9 ·A6W614:A4EDS0;A1SL13:006734	>sp Q3YX68 ASSY_SHISS Argininosuccinate synthase OS=Shigella sonnei (strain Ss046) GN=argG PE=3 SV=1;>sp Q32BG2 ASSY_SHID S Argininosuccinate synthase OS=Shigella dysenteriae serotype 1 (strain Sd197) GN=argG PE=3 SV=1;>sp Q31W50 ASSY_SHIB S Argininosuccinat	49.928
Q3YVX7;Q31V09;Q8XDE9;Q8FCA 6;Q0TBJ4;P37689;B1IZH8;A8A677 ;A7ZTG6;A1AHE9	>sp Q3YVX7 GPMI_SHISS 2,3- bisphosphoglycerate- independent phosphoglycerate mutase OS=Shigella sonnei (strain Ss046) GN=gpmI PE=3 SV=1;>sp Q31V09 GPMI_SHIB S 2,3-bisphosphoglycerate- independent phosphoglycerate mutase OS=Shigella boydii serotype 4 (strain Sb	56.109
Q3YV62;Q32A80;Q31U74;P0A798; C4LEQ5;B7LVC9;B5XZ40;B2TVQ8 ;A6TGB8;Q8FBD0;Q0TAE8;P0A79 7;P0A796;C5A083;B7UNN6;B7NU 91;B7NFL3;B7N2Q7;B7MI48;B7M6 W7;B7LA13;B6I4Q8;B5YZ53;B1XB 82;B1LNL9;B1IVG3;A8A720;A7ZU C9;Q9Z6C3;Q9KNP2;Q8K9N0;Q8 DCY1;Q87KX0;Q7MGW6;Q6CZ46; Q5PIR6;Q57HF3;P65693;P65692; P59563;P57391;C6DHK2;C5BC26;	>sp Q3YV62 PFKA_SHISS ATP-dependent 6- phosphofructokinase isozyme 1 OS=Shigella sonnei (strain Ss046) GN=pfkA PE=3 SV=1;>sp Q32A80 PFKA_SHID S ATP-dependent 6- phosphofructokinase isozyme 1 OS=Shigella dysenteriae serotype 1 (strain Sd197) GN=pfkA PE=3 SV=1;	34.842

C0Q414;B8D996;B8D7J8;B5RFA9; B5QWZ5;B5FPR2;B5F0P6;B5BJI2; B4TPS6;B4TCK0;B4T049;B2VF62; A9MZE7;A9MI50;A8AL13;A7MQ83 ;A4WG81;Q8ZJL6;Q66GA8;Q1CD 33;Q1C297;C4K7E1;B2JZA3;B1JQ U4;A9R6A3;A7FCW1;A4TSA7;A1J HZ3;B8D1K5		
Q3YV16;Q32AB5;Q31U28;Q0SY34 ;P59619;B7LUN5;B5XZ16;B2TWF5 ;A9MHH3;A8AKW2;A6TGE4;Q8ZK L6;Q8Z311;Q5PK73;Q57H93;C0Q 476;B5RF45;B5QXQ5;B5FPX5;B5 F0U9;B5BJN4;B4TQH6;B4TCQ6;B 4T0X1;A9N0H0;Q8X730;Q8FB96; Q1R3V1;Q0TAA0;P11447;C5A0Q9 ;B7UNT6;B7NU40;B7NFR0;B7MR5 1;B7MI96;B7M714;B7LA60;B6I5H6 ;B5Z062;B1XBC5;B1IVB8;A8A768; A7ZUH8;A1AID8;A8GL81;A4WG51	>sp Q3YV16 ARLY_SHISS Argininosuccinate lyase OS=Shigella sonnei (strain Ss046) GN=argH PE=3 SV=1;>sp Q32AB5 ARLY_SHID S Argininosuccinate lyase OS=Shigella dysenteriae serotype 1 (strain Sd197) GN=argH PE=3 SV=1;>sp Q31U28 ARLY_SHIB S Argininosuccinate lyas	50.23
Q3YUW0;Q328X7;Q31TX1;B2TX5 0;Q8FB44;Q1R3R3;Q0TA36;P0A6 T2;P0A6T1;C5A0W2;B7UPI6;B7N RZ0;B7MRF7;B7MJ15;B7M7T4;B7 LAX0;B6I5N7;B5Z0C4;B1XC24;B1 LPI9;B1IUM7;A8A7C4;A7ZUP3;A1 AIK3;B7LKZ8;Q83IN9;Q0SXP3;B7 NFW8;A7MPC2	>sp Q3YUW0 G6PI_SHISS Glucose-6-phosphate isomerase OS=Shigella sonnei (strain Ss046) GN=pgi PE=3 SV=1;>sp Q328X7 G6PI_SHIDS Glucose-6-phosphate isomerase OS=Shigella dysenteriae serotype 1 (strain Sd197) GN=pgi PE=3 SV=1;>sp Q31TX1 G6PI_SHIBS Glucose-6-ph	61.529
Q3YUE7;Q328J9;Q31TD1;Q0SX85 ;P0A4D2;B7LLY2;B2TY73;Q1R360 ;P0A4D1;P0A4D0;C4ZR77;B7UQK 9;B7NTQ6;B7NGD4;B7MST0;B7M LK5;B7M9G2;B7LCQ6;B6I2A6;B5Z 2K6;B1XDV1;B1LQM0;B1IT06;A8A 7U6;A7ZV71;A1AJA5;P02358	>sp Q3YUE7 RS6_SHISS 30S ribosomal protein S6 OS=Shigella sonnei (strain Ss046) GN=rpsF PE=3 SV=1;>sp Q328J9 RS6_SHIDS 30S ribosomal protein S6 OS=Shigella dysenteriae serotype 1 (strain Sd197) GN=rpsF PE=3 SV=1;>sp Q31TD1 RS6_SHIBS 30S ribosomal protein S	15.187
Q3SVL8;Q1QQV5;B6J9Z3;Q6NCH 9;Q2J2Q3;Q21BW8;Q13EG6;Q07V E4;B3QAG7;Q89XZ3;A5ETA3;A4Y KZ2	>sp Q3SVL8 RL28_NITWN 50S ribosomal protein L28 OS=Nitrobacter winogradskyi (strain ATCC 25391 / DSM 10237 / CIP 104748 / NCIMB 11846 / Nb-255) GN=rpmB PE=3 SV=1;>sp Q1QQV5 RL28_NITH X 50S ribosomal protein L28 OS=Nitrobacter hamburgensis (strain DSM 10229 >sp Q3IIX4 RS2 PSEHT 30S	26.843
Q3IIX4	ribosomal protein S2 OS=Pseudoalteromonas	

	Aloplanktis (strain TAC 125) GN=rpsB PE=3 SV=1	
Q3A4A7	>sp Q3A4A7 IF2_PELCD Translation initiation factor IF-2 OS=Pelobacter carbinolicus (strain DSM 2380 / NBRC 103641 / GraBd1) GN=infB PE=3 SV=1	102.91
Q38WN0	>sp Q38WN0 GCH1_LACSS GTP cyclohydrolase 1 OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=folE PE=3 SV=1	21.753
Q38UM4	>sp Q38UM4 SYS_LACSS SerinetRNA ligase OS=Lactobacillus sakei subsp. sakei (strain 23K) GN=serS PE=3 SV=1	47.704
Q32DE6;A8ADJ2;Q8XBN2;Q8FFC 9;Q1R8W9;Q0TF64;P04805;B6l6U 7;B5YZV2;B1X9R9;B1LMJ5;B1IX6 5;A8A2Q2;A7ZPK7;A1ADS2;Q6D2 06;Q3YZD6;B2TX02;Q83K84;Q5P NE5;Q57LU0;Q0T2A3;P0A2K4;P0 A2K3;B5RCP1;B5R3U6;B5FQB0;B 5F0E6;B5BB76;B4TQE9;B4TCE7; B4SZT6;A9N372;A9MIG3;A6TC43; Q7N6Y2;B4EZQ7;P0C6Q1;A5F649	>sp Q32DE6 SYE_SHIDS GlutamatetRNA ligase OS=Shigella dysenteriae serotype 1 (strain Sd197) GN=gltX PE=3 SV=1;>sp A8ADJ2 SYE_CITK8 GlutamatetRNA ligase OS=Citrobacter koseri (strain ATCC BAA-895 / CDC 4225-83 / SGSC4696) GN=gltX PE=3 SV=1;>sp Q8XBN2 SY	53.813
Q327L3;Q31SV6;Q0SX28;P0A6K9; B7LNS3;B2TZR6;Q1R260;Q0T8T0 ;P0A6K8;P0A6K7;P0A6K6;C4ZT65 ;B7UR11;B7NW63;B7NH51;B7MT C9;B7MNJ0;B7LXU5;B7LEM9;B6I6 N0;B5Z4R5;B1XFJ3;B1LEI8;B1IS3 6;A8A8B2;A7ZVS6;A1AJV0;Q3YU 10;Q8DBT0;Q87M24;Q7MI40;A7M UW4	 >sp Q327L3 DEOB_SHIDS >sp Q327L3 DEOB_SHIDS Phosphopentomutase OS=Shigella dysenteriae serotype 1 (strain Sd197) GN=deoB PE=3 SV=1;>sp Q31SV6 DEOB_SHIB S Phosphopentomutase OS=Shigella boydii serotype 4 (strain Sb227) GN=deoB PE=3 SV=1;>sp Q0SX28 DEOB_SHIF 8 Phosphopentomutase OS 	44.381
Q31FN8	>sp Q31FN8 FLIE_THICR Flagellar hook-basal body complex protein FliE OS=Thiomicrospira crunogena (strain XCL-2) GN=fliE PE=3 SV=1	11.978
Q2SDQ4	>sp Q2SDQ4 URED_HAHCH Urease accessory protein UreD OS=Hahella chejuensis (strain KCTC 2396) GN=ureD PE=3 SV=2	34.357
Q2S235	>sp Q2S235 RL19_SALRD 50S ribosomal protein L19 OS=Salinibacter ruber (strain DSM 13855 / M31) GN=rpIS PE=3 SV=1	13.087
	SCOLO2RKX/IDNAK MOOTA	66 214
----------------------	-------------------------------	--------
	Chaperone protein Dnak	00.214
	OS-Moorella thermoscotica	
	(strain ATCC 20072 / ICM	
ODRKY4	(Strain ATCC 39073 / JCIVI	
Q2RKX4		57 504
	>SplQ2RH96 PCKA2_MOOTA	57.521
	Phosphoenoipyruvate	
	carboxykinase (ATP) 2	
	OS=Moorella thermoacetica	
	(strain ATCC 39073 / JCM	
Q2RH96	9320) GN=pckA2 PE=3 SV=1	
	>sp Q2LVS9 LON_SYNAS Lon	88.438
	protease OS=Syntrophus	
	aciditrophicus (strain SB)	
Q2LVS9	GN=lon PE=3 SV=1	
	>sp Q2JH49 DNAJ_SYNJB	42.763
	Chaperone protein DnaJ	
	OS=Svnechococcus sp. (strain	
	JA-2-3Ba(2-13)) GN=dnaJ PE=3	
O2 IH49	SV/-1	
		15/ 13
	DNA directed DNA polymorese	134.13
	aubunit boto	
	US=Novosphingobium	
	aromaticivorans (strain ATCC	
	700278 / DSM 12444 / CIP	
	105152 / NBRC 16084 / F199)	
	GN=rpoB PE=3	
	SV=1;>sp Q5NPK5 RPOB_ZYM	
	MO DNA-directed RNA	
	polymerase subunit beta	
Q2GCD7;Q5NPK5;A5VBZ8	OS=Zymomona	
	>sp Q215W3 GATB_RHOPB	53.377
	Aspartyl/glutamyl-	
	tRNA(Asn/GIn)	
	amidotransferase subunit B	
	OS=Rhodopseudomonas	
	palustris (strain BisB18)	
Q215W3	GN=aatB PE=3 SV=1	
		80.004
	Catalase-perovidase	00.004
	OS-Chromobalobactor	
	colovidone (strain DSM 2042 /	
	ATUU DAA-130 / NUTIVID 13708)	
	SV=1;>SP Q21CF0 KAIG_RHO	
	PB Catalase-peroxidase	
	OS=Rhodopseudomonas	
	palustris (strain BisB18)	
	GN=katG PE=3	
Q1R185;Q21CF0;Q2G479	SV=1;>sp Q2G479 K	
	>splQ1QEB6 ACSA_PSYCK	72.312
	Acetyl-coenzyme A synthetase	
	OS=Psychrobacter	
	crvohalolentis (strain K5)	
Q1QEB6	GN=acsA PE=3 SV=1	

GN=Acid345_2140 PE=3 SV=1	
>sp Q1GBM5 RPOB_LACDA DNA-directed RNA polymerase subunit beta OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=rpoB PE=3 SV=1;>sp Q04C22 RPOB_LAC DB DNA-directed RNA	135.84
polymerase subunit	
>sp Q1GBM1 RS7_LACDA 30S ribosomal protein S7 OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=rpsG PE=3 SV=1;>sp Q04C18 RS7_LACDB 30S ribosomal protein S7	17.95
OS=Lactobacillus delbrueckii	
>sp Q1GBL2 RS3_LACDA 30S ribosomal protein S3 OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=rpsC PE=3 SV=1;>sp Q04C09 RS3_LACDB 30S ribosomal protein S3 OS=Lactobacillus delbrueckii	24.853
>sp Q1GAY0 G6PI_LACDA Glucose-6-phosphate isomerase OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=pgi PE=3 SV=1	49.288
Peptide deformylase OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=def PE=3 SV=1;>sp Q04B51 DEF_LACDB Peptide deformylase OS=Lactobacillus delbrueckii subsp. bulg >sp Q1G937 CH60_LACDA 60 kDa chaperonin OS=Lactobacillus delbrueckii	57.331
	>sp Q1GBM5 RPOB_LACDA DNA-directed RNA polymerase subunit beta OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=rpoB PE=3 SV=1;>sp Q04C22 RPOB_LAC DB DNA-directed RNA polymerase subunit >sp Q1GBM1 RS7_LACDA 30S ribosomal protein S7 OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=rpsG PE=3 SV=1;>sp Q04C18 RS7_LACDB 30S ribosomal protein S7 OS=Lactobacillus delbrueckii >sp Q1GBL2 RS3_LACDA 30S ribosomal protein S3 OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=rpsC PE=3 SV=1;>sp Q04C09 RS3_LACDB 30S ribosomal protein S3 OS=Lactobacillus delbrueckii >sp Q1GAY0 G6P1_LACDA Glucose-6-phosphate isomerase OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=rpsC PE=3 SV=1;>sp Q1GAY0 G6P1_LACDA Glucose-6-phosphate isomerase OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=pgi PE=3 SV=1 >sp Q1GAR4 DEF_LACDA Peptide deformylase OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=def PE=3 SV=1;>sp Q04B51 DEF_LACDA Peptide deformylase OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=def PE=3 SV=1;>sp Q14B51 DEF_LACDA Peptide deformylase OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=def PE=3 SV=1;>sp Q04B51 DEF_LACDA Peptide deformylase OS=Lactobacillus delbrueckii subsp. bulgaricus (strain ATCC

	11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NCIMB 11778) GN=groL PE=3 SV=1;>sp Q048Y3 CH60_LACD B 60 kDa chaperonin OS=Lactobacillus delbrueckii	
Q1B7E9 [.] A0K4A1	subsp. bulga >sp Q1BZE9 ZAPD_BURCA Cell division protein ZapD OS=Burkholderia cenocepacia (strain AU 1054) GN=zapD PE=3 SV=1;>sp A0K4A1 ZAPD_BUR CH Cell division protein ZapD OS=Burkholderia cenocepacia (strain HI2424) GN=zapD PE=3 SV=1	28.934
Q1BEM5;A3PTW3;A1UAA8	>sp Q1BEM5 ACKA_MYCSS Acetate kinase OS=Mycobacterium sp. (strain MCS) GN=ackA PE=3 SV=1;>sp A3PTW3 ACKA_MYC SJ Acetate kinase OS=Mycobacterium sp. (strain JLS) GN=ackA PE=3 SV=1;>sp A1UAA8 ACKA_MYC SK Acetate kinase OS=Mycobacterium sp. (strain KMS) GN=ackA	42.76
Q18C83	>sp Q18C83 ILVC_PEPD6 Ketol-acid reductoisomerase (NADP(+)) OS=Peptoclostridium difficile (strain 630) GN=ilvC PE=3 SV=1	36.877
Q18B36:B1GZX0	>sp Q18B36 ACKA_PEPD6 Acetate kinase OS=Peptoclostridium difficile (strain 630) GN=ackA PE=3 SV=1	43.32
Q189R8	>sp Q189R8 FOLD_PEPD6 Bifunctional protein FolD OS=Peptoclostridium difficile (strain 630) GN=folD PE=3 SV=2	30.913
Q186R1	>sp Q186R1 THIG_PEPD6 Thiazole synthase OS=Peptoclostridium difficile (strain 630) GN=thiG PE=3 SV=1	27.558
Q186R0	>sp Q186R0 THIC_PEPD6 Phosphomethylpyrimidine synthase OS=Peptoclostridium difficile (strain 630) GN=thiC PE=3 SV=1	48.45
Q184E4	>sp Q184E4 VATD_PEPD6 V- type ATP synthase subunit D OS=Peptoclostridium difficile	25.585

	(strain 630) GN-atoD PE-3	1
	SV_{-1}	
		36.22
	Proline racemase	50.22
	OS-Pentoclostridium difficile	
	(strain 630) GN - CD 630, 32370	
	PF-3	
	SV=1:>splA8DE78IPRAC_CLO	
	DI Proline racemase	
	OS=Clostridioides difficile PE=1	
Q17ZY4:A8DEZ8	SV=1	
	>splQ165D5IGLPK ROSDO	53.685
	Glycerol kinase	
	OS=Roseobacter denitrificans	
	(strain ATCC 33942 / OCh 114)	
	GN=qlpK PE=3	
	SV=1;>sp Q1IE16 GLPK PSEE	
	4 Glycerol kinase	
	OS=Pseudomonas entomophila	
	(strain L48) GN=glpK PE=3	
Q165D5;Q1IE16;B0KUG0;A8F679;	SV=1;>sp B0KUG0 GLPK_PSE	
Q51390	PG Glycerol kinase OS=Pseu	
	>sp Q12MB3 PEPE_SHEDO	25.833
	Peptidase E OS=Shewanella	
	denitrificans (strain OS217 /	
	ATCC BAA-1090 / DSM 15013)	
Q12MB3	GN=pepE PE=3 SV=1	
	>sp Q11QQ3 MDH_CYTH3	33.35
	Malate dehydrogenase	
	OS=Cytophaga hutchinsonii	
	(strain ATCC 33406 / NCIMB	
Q11QQ3	9469) GN=mdh PE=3 SV=1	
	>sp Q10744 PEPC_LACHE	51.399
	Aminopeptidase C	
	OS=Lactobacillus helveticus	
Q10744;Q48543	GN=pepC PE=3 SV=1	
	>sp Q10730 AMPN_LACHE	95.836
	Aminopeptidase N	
040700	OS=Lactobacillus helveticus	
Q10730		05 740
	>spiQUVQE1/ACCA_ALCBS	35./18
	Acetyl-coenzyme A carboxylase	
	alpha OS-Alconiverov	
	borkumensis (strain ATCC	
	12690 / SK2) CN-2004 DE- 2	
	SV_{-1}	
		52 706
	AsparaginetRNA ligase	52.190
	OS-Hapmonhilus some	
	(etrain 120Pt) CN-acnS PE-2	
	SV=1 son ROLITIASVN HISS	
	AsparaginetRNA ligase	
	OS=Histophilus somni (strain	
	2336) GN=asnS PF-3 SV-1	
Goizino, Door oo		

	>sp Q0HVI0 CHEB2_SHESR	37.905
	Chemotaxis response regulator	
	protein-glutamate	
	methylesterase 2	
	OS=Snewanella sp. (strain MR-	
		28 551
	Indole-3-alvcerol phosphate	20.001
	synthase OS=Burkholderia	
	ambifaria (strain ATCC BAA-244	
Q0BIM8	/ AMMD) GN=trpC PE=3 SV=1	
	>sp Q0AYS2 SYH_SYNWW	48.266
	HistidinetRNA ligase	
	OS=Syntrophomonas wolfei	
	subsp. wolfei (strain DSM 2245B	
004783	/ Goettingen) GN=nisS PE=3	
QUATSZ	SV = 1	11 282
	Acetyl-CoA acetyltransferase	71.202
	OS=Syntrophomonas wolfei	
	subsp. wolfei (strain DSM 2245B	
	/ Goettingen) GN=Swol_1934	
Q0AVM3	PE=1 SV=1	
	>sp Q0AVM1 CRCH_SYNWW	27.944
	Crotonyl-CoA hydratase	
	US=Syntropnomonas wolfei	
	/ Goettingen) GN-Swol 1936	
	PE=1	
	SV=1;>sp P52046 CRT CLOAB	
	Short-chain-enoyl-CoA	
	hydratase OS=Clostridium	
	acetobutylicum (strain ATCC	
Q0AVM1;P52046	824 / DSM 792 / JCM 1	
	>sp Q08518 UVRA_VITST	61.917
	(Fragment) OS-Vitroppeille	
	(Flagment) OS=Vitteoscilla stercoraria GN=uvrA PE=3	
P0A195 Q9 JUS4 Q9 JZP1 Q50968	SV=1:>splQ9KUW5UUVRA_VIB	
:Q8X5U9:Q8FB02:P0A698:Q8DCJ	CH UvrABC system protein A	
3;Q87LA0;Q7MHB5;Q7VLW2;P579	OS=Vibrio cholerae serotype O1	
79;Q88QK7;Q9HWG0;Q8ZJ07;O51	(strain ATCC 39315 / El Tor	
777;Q9PAR9;Q87BK9;Q8PN26;Q8	Inaba N16961) GN=uvrA PE=3	
PBH3;Q829X3;Q9Z507	SV=1;>sp P0A699 UVRA_	100.17
	>sp Q06879 NIFJ_NOSS1	132.17
	ryiuvale-llavodoxin	
	(strain PCC 7120 / SAG 25 82 /	
	UTEX 2576) GN=nifJ PE=2	
Q06879	SV=2	
	>sp Q05619 BUK_CLOB8	38.433
	Butyrate kinase OS=Clostridium	
	beijerinckii (strain ATCC 51743 /	
	NCIMB 8052) GN=buk PE=3	
	Sv=1;>sp B2UYH0 BUK_CLOB	
0.P0C2D8	OS=Clostridium botulinum	
0,1 00200		

	(strain Alaska E43 / Type E3)	
	GN=DUK PE=3	
	Dr	
		30.009
	Elagellin OS=Bacillus	00.000
	halodurans (strain ATCC BAA-	
	125 / DSM 18197 / FERM 7344 /	
	JCM 9153 / C-125) GN=hag	
	PE=1	
	SV=1;>sp P80583 FLA_CLOTY	
	Flagellin (Fragment)	
	OS=Clostridium tyrobutyricum	
	GN=fla PE=1	
005000 000500 000000	SV=2;>sp P02968 FLA_BACSU	
Q05203;P80583;P02968		40.000
	>splQuouy/IPATL_PSEAE PA-I	12.893
	OS-Pseudomonas acruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=lecA PE=1	
Q05097	SV=2	
	>sp Q04EV5 ARCA_OENOB	46.721
	Arginine deiminase	
	OS=Oenococcus oeni (strain	
	ATCC BAA-331 / PSU-1)	
Q04EV5	GN=arcA PE=3 SV=1	
	>sp Q043G9 SYN_LACGA	50.282
	AsparaginetRINA ligase	
	ICM 1131 / NCIMB 11718 /	
	AM63 GN=asnS PE=3	
	SV=1;>splQ74JA9ISYN LACJO	
	AsparaginetRNA ligase	
	OS=Lactobacillus johnsonii	
	(strain CNCM I-12250 / La1 /	
Q043G9;Q74JA9;P54262;Q88Y40	NCC	
	>sp Q03E93 RNY2_PEDPA	58.703
	Ribonuclease Y 2	
	OS=Pediococcus pentosaceus	
	(Strain ATUC 25745 / CCUG	
003E93	121000 / LIVIG 10740 / 100-1W) GN-rny2 PE-3 S $1/-1$	
		11 572
	ribosomal protein S6	11.012
	OS=Lactobacillus paracasei	
	(strain ATCC 334 / BCRC 17002	
) CIP 107868 / KCTC 3260 /	
	NRRL B-441) GN=rpsF PE=3	
	SV=1;>sp B3W6R4 RS6_LACC	
	B 30S ribosomal protein S6	
	OS=Lactobacillus casei (strain	
	I BL 23) CN_rocE DE_3	

	>sp Q03CR5 DDL_LACP3 D-	39.02
	alanineD-alanine ligase	
	OS=Lactobacillus paracasei	
	(strain ATCC 334 / BCRC 17002	
	/ CIP 107868 / KCTC 3260 /	
	NRRL B-441) GN=001 PE=3	
	SV=1;>sp B3W7C1 DDL_LACC	
	B D-alanineD-alanine ligase	
	OS=Lactobacillus casei (strain	
Q03CR5:B3W7C1	BL23) GN=ddl P	
	>spl003AE5IY1022 LACP3	27 106
	Probable transcriptional	27.100
	regulatory protein LSEI_1022	
	OS=Lactobacillus paracasei	
	(strain ATCC 334 / BCRC 17002	
	/ CIP 107868 / KCTC 3260 /	
	NRRL B-441) GN=LSEI 1022	
	PE-3	
	SV_{-1} : op $B_{2}W_{D}_{2}OV_{14}S_{C}$	
	OD Duck also the second time al	
	CB Probable transcriptional	
Q03AF5;B3WD20	regulatory p	
	>sp Q03AC0 GATA_LACP3	51.332
	Glutamyl-tRNA(Gln)	
	amidotransferase subunit A	
	OS=Lactobacillus paracasei	
	(strain ATCC 334 / BCRC 17002	
	/ CIP 10/606 / KCTC 3260 /	
	NRRL B-441) GN=gatA PE=3	
	SV=1;>sp B3WD57 GATA_LAC	
	CB Glutamyl-tRNA(GIn)	
	amidotransferase subunit A	
Q03AC0:B3WD57	OS=Lac	
	Sept003A2511 IPP ACP3 Iracil	22 808
	phosphoribosyltrapsforaso	22.000
	(strain ATCC 334 / BCRC 17002	
	/ CIP 107868 / KCTC 3260 /	
	NRRL B-441) GN=upp PE=3	
	SV=1:>splB3WDL1IUPP_LACC	
	B Uracil	
	nhosnhorihosyltransferase	
	OS-I actobacillus casoi (strain	
QUSA25,DSWDE1,Q95CA7,Q56W5		
0		0.0050
	>splQ039P0[Y1299_LACP3	8.2653
	UPF0356 protein LSEI_1299	
	OS=Lactobacillus paracasei	
	(strain ATCC 334 / BCRC 17002	
	/ CIP 107868 / KCTC 3260 /	
	NRRL B-441) GN=I SFI 1299	
	PF-3	
	SV-1:>cp/B2\//E10/V1520 1 AC	
	CB UPFU356 protein	
	LCABL_15300	
	OS=Lactobacillus casei (strain	
Q039P0;B3WE10	BL23)	
	>splQ038N3 DNAK LACP3	67.563
Q038N3·B3WEQ7·P17820	Chaperone protein DnaK	

	OS=Lactobacillus paracasei	
	(strain ATCC 334 / BCRC 17002	
	/ CIP 107868 / KCTC 3260 /	
	NRRL B-441) GN=dnaK PE=3	
	SV-1->splB3WE07IDNAK_LAC	
	CB Chaperone protein Dnak	
	US=Lactobacilius casel (strain	
	BL23) GN=dnaK PE=3 SV	
	>sp Q038L5 RRF_LACP3	20.593
	Ribosome-recycling factor	
	OS=Lactobacillus paracasei	
	(strain ATCC 334 / BCRC 17002	
	/ CIP 107868 / KCTC 3260 /	
	NDDI D 441 CN_frr DE_2	
	SV=1;>spiB3WES5 RRF_LACC	
	B Ribosome-recycling factor	
Q038L5;B3WES5;Q38W67;A8YVR	OS=Lactobacillus casei (strain	
6	BL23) GN=frr PE=3	
	>splQ035V6IRL7_LACP3_50S	12.518
	ribosomal protein I 7/I 12	
	OS-Lactobacillus paracasei	
	(otroin ATCC 224 / PCPC 17002	
	/ CIP 10/868 / KCIC 3260 /	
	NRRL B-441) GN=rpIL PE=3	
	SV=1;>sp B3WA01 RL7_LACC	
	B 50S ribosomal protein L7/L12	
	OS=Lactobacillus casei (strain	
Q035V6:B3WA01	BL23) GN=rp	
	>splQ034Z7IRS8_LACP3_30S	14,774
	ribosomal protein S8	
	(atrain ATCC 224 / PCPC 17002	
	/ CIP 107868 / KCIC 3260 /	
	NRRL B-441) GN=rpsH PE=3	
	SV=1;>sp B3WAK4 RS8_LACC	
	B 30S ribosomal protein S8	
	OS=Lactobacillus casei (strain	
003477·B3WAK4	BI 23) GN=rnsH PE=3	
		51 456
	>SplQUS2S4 ATFB_LACCAATF	51.450
	US=Lactobacilius casei	
	GN=atpD PE=3	
	SV=1;>sp Q03A18 ATPB_LACP	
Q03234;Q03A18;B3WDL8;Q04G20	3 ATP synthase subunit beta	
:A7I177;Q7VJ21;A6QB59;P41168;	OS=Lactobacillus paracasei	
Q2GD08:A0LDA0:067828:050292:	(strain ATCC 334 / BCRC 17002	
O2GKK8 O5PAN2 A9H9A8 O2R7 //	/ CIP 107868 / KCTC 3260 /	
	/ 011 10/000 / 10010 0200 /	
2:01A\/H0:05HB71:05ECV2:02V	NIDDI B 111) CN-atoD DE-2	
3;Q1AVH9;Q5HB71;Q5FGY3;Q3Y	NRRL B-441) GN=atpD PE=3	
3;Q1AVH9;Q5HB71;Q5FGY3;Q3Y S09;Q2GGP9;Q6G1W9;Q6FYM3	NRRL B-441) GN=atpD PE=3 SV=1;>sp B	20.050
3;Q1AVH9;Q5HB71;Q5FGY3;Q3Y S09;Q2GGP9;Q6G1W9;Q6FYM3	NRRL B-441) GN=atpD PE=3 SV=1;>sp B >sp Q02RC7 EFTS_PSEAB	30.653
3;Q1AVH9;Q5HB71;Q5FGY3;Q3Y S09;Q2GGP9;Q6G1W9;Q6FYM3	NRRL B-441) GN=atpD PE=3 SV=1;>sp B >sp Q02RC7 EFTS_PSEAB Elongation factor Ts	30.653
3;Q1AVH9;Q5HB71;Q5FGY3;Q3Y S09;Q2GGP9;Q6G1W9;Q6FYM3	NRRL B-441) GN=atpD PE=3 SV=1;>sp B >sp Q02RC7 EFTS_PSEAB Elongation factor Ts OS=Pseudomonas aeruginosa	30.653
3;Q1AVH9;Q5HB71;Q5FGY3;Q3Y S09;Q2GGP9;Q6G1W9;Q6FYM3	NRRL B-441) GN=atpD PE=3 SV=1;>sp B >sp Q02RC7 EFTS_PSEAB Elongation factor Ts OS=Pseudomonas aeruginosa (strain UCBPP-PA14) GN=tsf	30.653
3;Q1AVH9;Q5HB71;Q5FGY3;Q3Y S09;Q2GGP9;Q6G1W9;Q6FYM3	NRRL B-441) GN=atpD PE=3 SV=1;>sp B >sp Q02RC7 EFTS_PSEAB Elongation factor Ts OS=Pseudomonas aeruginosa (strain UCBPP-PA14) GN=tsf PE=3	30.653
3;Q1AVH9;Q5HB71;Q5FGY3;Q3Y S09;Q2GGP9;Q6G1W9;Q6FYM3	NRRL B-441) GN=atpD PE=3 SV=1;>sp B >sp Q02RC7 EFTS_PSEAB Elongation factor Ts OS=Pseudomonas aeruginosa (strain UCBPP-PA14) GN=tsf PE=3 SV=1:>sp O82851 EFTS_PSEA	30.653
3;Q1AVH9;Q5HB71;Q5FGY3;Q3Y S09;Q2GGP9;Q6G1W9;Q6FYM3	NRRL B-441) GN=atpD PE=3 SV=1;>sp B >sp Q02RC7 EFTS_PSEAB Elongation factor Ts OS=Pseudomonas aeruginosa (strain UCBPP-PA14) GN=tsf PE=3 SV=1;>sp O82851 EFTS_PSEA E Elongation factor Ts	30.653
3;Q1AVH9;Q5HB71;Q5FGY3;Q3Y S09;Q2GGP9;Q6G1W9;Q6FYM3 Q02RC7;O82851;B7V7F8;A6V1D3; C1DSU5	NRRL B-441) GN=atpD PE=3 SV=1;>sp B >sp Q02RC7 EFTS_PSEAB Elongation factor Ts OS=Pseudomonas aeruginosa (strain UCBPP-PA14) GN=tsf PE=3 SV=1;>sp O82851 EFTS_PSEA E Elongation factor Ts OS=Pseudomonas aeruginosa	30.653

	(strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM	
	10	
Q02PG5	>sp Q02PG5 GAP2_PSEAB Glyceraldehyde-3-phosphate dehydrogenase-like protein OS=Pseudomonas aeruginosa (strain UCBPP-PA14) GN=gap2 PE=1 SV=1	50.082
Q02NB5:Q9ZH99	>sp Q02NB5 IDH_PSEAB Isocitrate dehydrogenase [NADP] OS=Pseudomonas aeruginosa (strain UCBPP- PA14) GN=icd PE=1 SV=1;>sp Q9ZH99 IDH_COXB U Isocitrate dehydrogenase [NADP] OS=Coxiella burnetii (strain RSA 493 / Nine Mile phase I) GN=icd PE=1 SV=1	45.577
002KP1	>sp Q02KR1 PPSA_PSEAB Phosphoenolpyruvate synthase OS=Pseudomonas aeruginosa (strain UCBPP-PA14) GN=ppsA PE=1 SV=1	85.816
002K94	>sp Q02K94 FABB_PSEAB 3- oxoacyl-[acyl-carrier-protein] synthase 1 OS=Pseudomonas aeruginosa (strain UCBPP- PA14) GN=fabB_PE=1 SV=1	42.878
	 >sp Q02E40 ALGC_PSEAB Phosphomannomutase/phospho glucomutase OS=Pseudomonas aeruginosa (strain UCBPP- PA14) GN=algC PE=1 SV=2;>sp P26276 ALGC_PSEA Phosphomannomutase/phospho glucomutase OS=Pseudomonas aeruginosa (strain ATCC 15692 CDSM 22044 (CID 404446 (50.295
002240,F20270	<pre>>sp Q022G3 OBG_SOLUE GTPase Obg OS=Solibacter usitatus (strain Ellin6076) CN=obg DE=2 SV=1</pre>	36.446
Q01770;A8ZYF3;P31101;Q97DP4; Q898N5	 >sp Q01770 HCP_DESDA Hydroxylamine reductase OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM 6949) GN=hcp PE=1 SV=2;>sp A8ZYF3 HCP_DESO H Hydroxylamine reductase OS=Desulfococcus oleovorans (strain DSM 6200 / Hxd3) GN=hcp PE=3 SV=1;>sp P31101 HCP_DE 	58.659

		22.05
	>>pluuizo4linfoB_EINICL	23.95
	Oxygen-insensitive INAD(P)H	
0.0400.4	nitroreductase OS=Enterobacter	
Q01234	cloacae GN=nfsB PE=1 SV=1	
	>sp Q00767 CH601_STRAL 60	56.715
	kDa chaperonin 1	
	OS=Streptomyces albus G	
	GN=groL1 PE=1	
	SV=3:>splP40171ICH601 STR	
	CO 60 kDa chaperonin 1	
	OS=Streptomyces coelicolor	
	(strain $\Delta TCC B \Delta A - 471 / \Delta 3(2) /$	
	M145 GN-grol 1 PE-3	
	SV_{-2} colO22DI5ICH601 STP	
	$3V=3,>$ spigoz Disjeriou 1_31K	
Q00767;P40171;Q82DI5;A4J8H4	AW 60 KDa chaperonin T O	50.054
	>spiP9wQH7jPCC5_MYCTU	59.354
	Probable propionyl-CoA	
	carboxylase beta chain 5	
	OS=Mycobacterium tuberculosis	
	(strain ATCC 25618 / H37Rv)	
	GN=accD5 PE=1	
	SV=1;>sp P9WQH6 PCC5_MY	
	CTO Probable propionyl-CoA	
	carboxylase beta chain 5	
	OS=Mycobacterium tuberculosis	
P9WQH7;P9WQH6	(strain C	
	>spIP9WGW5IRTCB MYCTU	45.527
	RNA-splicing ligase RtcB	
	OS=Mycobacterium tuberculosis	
	(strain ATCC 25618 / H37Ry)	
	GN=rtcB PF=2	
	SV-1:>splP9W/GW/4IRTCB_MY	
	CTO PNA-splicing ligase PtcB	
	OS-Mycobacterium tuberculosis	
	(strain CDC 1551 / Ochkoch)	
	CN-rtoP DE-2	
P900G005;P900G004;P59975	5V=1;>SP[P59975	50.000
	>SpiP948/UPEPE_LACHE	50.022
D0 4070 D0 4000	OS=Lactobacillus helveticus	
P94870;P94869	GN=pept Pt=1 SV=1	
	>sp P85098 NARH_BRASZ	29.401
	Respiratory nitrate reductase	
	beta chain (Fragments)	
	OS=Bradyrhizobium sp.	
	GN=narH PE=1	
	SV=1;>sp Q83RN5 NARH_SHIF	
	L Respiratory nitrate reductase 1	
	beta chain OS=Shigella flexneri	
	GN=narH PE=3	
	SV=1:>splP11349INARH FCOL	
P85098:Q83RN5:P11349	I Respiratory nit	
	SplP83513IXY11A PSEXV	65 922
	Bifunctional	00.922
	vylanase/deacatylaca	
D92512	Ayialiase/ueabelyiase	
100013		

	xylanivorans GN=xyn11A PE=1	
		F7 074
	>sp P81284 CH60_TANFO 60	57.971
D04004	KDa chaperonin OS=1 annerella	
P81284	forsythia GN=groL PE=1 SV=3	04.000
	>sp P80019 PFKA_LACDE	34.008
	AIP-dependent 6-	
	phosphotructokinase	
	US=Lactobacilius delbrueckii	
	JATP dopondont 6	
	nhosphofructokingse	
	OS-Lactobacillus plantarum	
	(strain ATCC BAA-793 / NCIMB	
P80019 088VY1	8826 / WCFS1) GN=pf	
	>splP76558IMAQ2_ECOLL	82 416
	NADP-dependent malic enzyme	
	OS=Escherichia coli (strain K12)	
P76558:P43837	GN=maeB PE=1 SV=1	
· · · · · · · · · · · · · · · · · · ·	>sp P76513 YFDQ_ECOLI	30.442
	Uncharacterized protein YfdQ	
	OS=Escherichia coli (strain K12)	
P76513	GN=yfdQ PE=4 SV=1	
	>sp P76177 YDGH_ECOLI	33.903
	Protein YdgH OS=Escherichia	
	coli (strain K12) GN=ydgH PE=1	
P76177	SV=1	
	>sp P76149 SAD_ECOLI	49.717
	Succinate semialdehyde	
	dehydrogenase [NAD(P)+] Sad	
570/10	OS=Escherichia coli (strain K12)	
P76149	GN=sad PE=1 SV=2	
	>sp P76002 PLIG_ECOLI	14.906
	Inhibitor of g-type lysozyme	
D70000		
P76002		40.005
	>Sp P73313 RL16_STN13505	16.035
	OS-Synachocyctic cp. (strain	
	PCC 6803 / Kazusa) GN-rolP	
P73313·B7K241·B1\//OR7·O8DMM	PF=3	
5.Q18CG4.B111.I5.B0TC63.A6I PR	SV=1:>splB7K241IRI 16 CVAP	
8:Q250M5:B8I7Y6:B8G1X3:A3D.IH	8 50S ribosomal protein L16	
9:Q97EI5:C3KVP4:C1FMU4:B9MK	OS=Cvanothece sp. (strain PCC	
H4;B9DYB6;B1KSL8:B1IGE7:A8M	8801) GN=rpIP PE=3	
LE7;A7GJ67;A7FZ62;A5N4Q4:A5I	SV=1;>sp B1WQR7 RL16 CYA	
7J9;A4XLS3;A0PXV3	A5 50S ribosomal prot	
	>sp P72173 AAT_PSEAE	43.319
	Aspartate aminotransferase	
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DŠM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=aspC PE=3	
D70170	SV=2	

P71296 32.678 Uncharacterized protein YagM SepiP69912[DCEB_SHIFL GILamate decarboxylase beta 52.678 OS=Shigella flexneri GN-gadB 52.678 PF09912[DCEB_SHIFL 52.668 Glutamate decarboxylase beta OS=Shigella flexneri GN-gadB OS=Shigella flexneri GN-gadB FE=3 SV=1;>spIP69911[DCEB_ECOL 1 Glutamate decarboxylase beta OS=Escherichia col OS=Escherichia col OS=Escherichia col OS=Escherichia col SSUP1;>spIP69910[DCEB_ECOL G9908;Q83PR1;Q8FHG5;P58228 OS=Escherichia col OS=Escherichia col SSUP1;>spIP69910[DCEB_ECOL OS=Escherichia col SSUP1;>spIP69790[PNAB_ECO OS=Escherichia col OS=Simple930[PNAB_ECO SV=2;>spIP69709[PNAB_ECO L6 PTS system manose- System manose SpeCific EIIAB component OS=Escherichia col OS=Escherichia col V=2;>spIP69709[PNAB_ECO L6 PTS system manose- System manose SpeCific EIIAB component OS=Escherichia col OS=Escherichia col P69800;P69799;P69798;P69798;P69797 L6 PTS system			22.670
Obcaracterized protein Yagm OS=Escherichia coli (strain K12) P71296 GN=yagM PE=4 SV=1 >splP69912[DCEB_SHIFL 52.668 Glutamate decarboxylase beta OS=Escherichia coli (OTS:H7 GN=gadB PE=3 52 SV=1;>splP69911[DCEB_ECOL I Glutamate decarboxylase beta OS=Escherichia coli OTS:H7 GN=gadB PE=3 SV=1;>splP69910[DCEB_ECOL I Glutamate decarboxylase beta OS=Escherichia coli OTS:H7 GN=gadB PE=3 SV=1;>splP69910[DCEB_ECOL I Glutamate decarboxylase beta OS=Escherichia coli OTS:H7 GN=gadB PE=3 SV=2;>splP69909[PTNAB_SHIFL PTS system mannose-specific EIIAB component OS=Shigella Ifexneri GN=manx PE=3 35.047 PTS system mannose-specific EIIAB component OS=Escherichia coli 0157:H7 GN=manx PE=3 35.047 SV=2;>splP69799]PTNAB_ECO 57 PTS system mannose- specific EIIAB component 26.945 GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ydpl PE=3 SV=1;>splP67270]GCH1L_SALT1 26.945 P67271;P67270;P0AFP8;P0AFP7; P0AFP6 SV=1;>splP67093USPG_SALT1 15.901 Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093USPG_SALT 15.901 V1niversal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67091USPF_SALT		>spip/i296/iAGM_ECOLI	32.678
OS=Eschericha coli (strain K12) GN=zgdW PE=4 SV=1 >sp P69912 DCEB_SHIFL Glutamate decarboxylase beta OS=Shigella flexneri GN-gadB PE=3 SV=1;>sp P69911 DCEB_ECO5 7 Glutamate decarboxylase beta OS=Escherichia coli O157:H7 GN=gadB PE=3 SV=1;>sp P69910]DCEB_ECOL I Glutamate decarboxylase beta OS=Escherichia coli O157:H7 GN=sadB PE=3 SV=1;>sp P69910]DCEB_ECOL I Glutamate decarboxylase beta OS=Escherichia coli O157:H7 Sv=1;>splP6990]PTMAB_ECO SV=2;>splP69709]PD470B(5P6798) SV=2;>splP69729]P69739]PTMAB_ECO SV=2;>splP69799]P04720]GCH1L_SALT GN=saterichia coli 0157:H7 GN=saterichia coli 0157:H7 SV=2;>splP69798]P04798]P04798]CH1L_SALT GPEsotophydrolase 1 type 2 homolog OS=Salmonella typhi GN=solehydrolase 1 type 2 homolog OS=Salmonella typhi GN=solehydrolase 1 type 2 homolog OS=Salmonella typhi GN=solehydrolase 1 type 2 homolog OS=Salmonella typhi GN=uspG PE=3		Uncharacterized protein YagM	
P71236 GN-yagM PE=4 SV=1 >splP69912 DCEB_SHIFL 52.668 Glutamate decarboxylase beta OS=Schigella flexneri GN=gadB PE=3 SV=1;>splP69911 DCEB_ECO5 7 Glutamate decarboxylase beta OS=Escherichia col 0157:H7 GN=gadB PE=3 SV=1;>splP69910 DCEB_ECOL 1 Glutamate decarboxylase beta OS=Escherichia col 0157:H7 GN=gadB PE=3 SV=1;>splP69910 DCEB_ECOL 1 Glutamate decarboxylase beta OS=Escherichia col SV=1;>splP69900 PTNAB_SHIFL 35.047 PTS system mannose-specific EIIAB component GS=scherichia col 0157:H7 GN=manX PE=3 SV=2;>splP69799 PTNAB_ECO 57 PTS system mannose-specific EIAB component OS=Escherichia col 0157:H7 GN=manX PE=3 SV=2;>splP69798 PNAB_ECO SV=1;>splP67271 GCH1L_SALTI 26.945 GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=vgdi PE=3 SV=1;>splP67270 GCH1L_SALTI YDAFP6 SV=1;>splP67093USPG_SALTI V1;viersal stress protein G OS=Salmonella typhimurium GS=1;>splP67093USPG_SALTI YUniversal stress protein G		OS=Escherichia coli (strain K12)	
>splP69912[DCEB_SHIFL Glutamate decarboxylase beta OS=Shigella flexneri GN=gadB PE=3 SV=1;>splP69911[DCEB_ECOL 7 Glutamate decarboxylase beta OS=Escherichia col 0157:H7 GN=gadB PE=3 SV=1;>splP69910[DCEB_ECOL 1 Glutamate decarboxylase beta OS=Escherichia col 35.047 P69912;P69911;P69910;P69909;P 69908;Q83PR1;Q8FHG5;P58228 SV=1;>splP69910[DCEB_ECOL 1 Glutamate decarboxylase beta OS=Escherichia col 35.047 PTTS system mannose-specific EIIAB component OS=Shigella flexneri GN=manX PE=3 SV=2;>splP69799[PTNAB_ECO 57 PTS system mannose- specific EIIAB component OS=Escherichia coli 0157:H7 GN=marX PE=3 SV=2;>splP69798[PTNAB_ECO L6 PTS system man 35.047 P69800;P69799;P69798;P69797 26.945 35.047 P69800;P69799;P69798;P69797 SV=2;>splP69798]PTNAB_ECO L6 PTS system man 26.945 P69800;P69799;P69798;P69797 SS[P67271]GCH1L_SALT1 GIT cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67094[USPC_SALT1 V Universal stress protein G OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67094[USPC_SALT1 V Universal stress protein G OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67092[USPF_SALT V Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091[USPF_SALT V Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720] GN=uspF PE=3 SV=1;>splP67091[USPF_SALT V Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720] GN=uspF PE=1 SV=1;>splP67091[USPF_SALT V Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720] GN=uspF PE=1 SV=1;>splP67091[USPF_SALT V Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC	P71296	GN=yagM PE=4 SV=1	
Glutamate decarboxylase beta OS=Shigella flexneri GN=gadB PE=3 SV=1>splP69911 DCEB_ECOL 7 Glutamate decarboxylase beta OS=Escherichia col 0157:H7 GN=gadB PE=3 SV=1>splP69910 DCEB_ECOL I Glutamate decarboxylase beta OS=Escherichia col OS=Escherichia col OS=Escherichia col OS=Escherichia col SsplP69800)[PTNAB_SHIFL PTS system mannose-specific EliAB component OS=Shigella flexneri GN=max PE=3 SV=2>splP69799]PTNAB_ECO S7 PTS system mannose-specific EliAB component OS=Shigella flexneri GN=max PE=3 SV=2>splP69799]PTNAB_ECO S7 PTS system mannose- specific EliAB component OS=Escherichia col 0157:H7 GN=max PE=3 SV=2>splP69798]PTNAB_ECO L6 PTS system mannose- specific EliAB component OS=Escherichia col 0157:H7 GN=max PE=3 SV=2>splP69798]PTNAB_ECO L6 PTS system man OS=Salmonella typhi GN=ybgl PE=3 SV=1>splP67270]CGH1_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1>splP67094[USPG_SALT] V=niversal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1>splP67093[USPG_SALT] Y Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1>splP67093[USPF_SALT] Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1>splP67093[USPF_SALT] Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC T00720] GN=uspF PE=1 SV=1>splP67091[USPF_SALT] Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC T00720] GN=uspF PE=115.714 Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC T00720] GN=uspF PE=115.714 Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC T00720] GN=uspF PE=115.714 Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC14		>sp P69912 DCEB_SHIFL	52.668
P69912;P69911;P69910;P69909;P OS=Shigella flexneri GN=gadB P69912;P69911;P69910;P69909;P OS=Escherichia coli 0157:H7 GN=gadB PE=3 SV=1;>sp P69910]DCEB_ECOL I Glutamate decarboxylase beta OS=Escherichia col 05908;Q83PR1;Q8FHG5;P58228 OS=Escherichia col SV=7;sp P68901]DCEB_ECOL I Glutamate decarboxylase beta 05908;Q83PR1;Q8FHG5;P58228 OS=Escherichia col SV=2;sp P68799]FTNAB_SHIFL 35.047 PTS system mannose-specific EIIAB component OS=Shigella Ifexneri GN=manX PE=3 SV=2;sp P69799]FTNAB_ECO SV=2;sp P69799]FTNAB_ECO IS PTS system man 0S=Escherichia col 0157:H7 GN=manX PE=3 SV=2;sp P69799]FTNAB_ECO IS PTS system man 0S=Salmonella typhi GN=ybgI PE=3 SV=1;sp P67271 GCH1L_SAL 26.945 GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi Momolog OS=Salmonella typhi SV=1;sp P67270 GCH1L_SAL Y =1;sp P67094 USPG_SALT V=1;sp P67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhi GN=uspF PE=3 SV=1;sp P67091 USPF_SALT Y =1;sp P67091 USPF_SALT		Glutamate decarboxvlase beta	
PE=3 SV=1;>splP69911]DCEB_EC05 7 Glutamate decarboxylase beta OS=Escherichia coli O157:H7 OS=Escherichia coli O157:H7 Glutamate decarboxylase beta OS=Escherichia coli O157:H7 SV=1;>splP69910]DCEB_EC0L 69908;Q83PR1;Q8FHG5;P58228 SV=1;>splP69910]DCEB_EC0L SU=1;>splP69800]PTNAB_SHIFL PTS system mannose-specific EIIAB component OS=Shigelia flexneri GN=marX PE=3 SV=2;>splP69799]PTNAB_EC0 SV=2;>splP69799]PTNAB_EC0 SV=2;>splP69799]PF09799;P69798;P69797 L6 PTS system mannose- specific EIIAB component OS=Escherichia coli O157:H7 GN=marX PE=3 SV=2;>splP69799]PTNAB_EC0 L6 PTS system man SV=2;>splP69799]PE09798;P69797 L6 PTS system man 26.945 GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybg1PE=3 SV=1;>splP67271[GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybg1PE=3 26.945 P67271;P67270;P0AFP8;P0AFP7; P0AFP6 SV=1;>splP67094[USPG_SALT V Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 15.901 P67094;P67093 SV=1;>splP67093[USPF_SALT V Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 707201 OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67094;P67091;P0A4P8;P9WFD5; P9WFD4;Q0T119;P37903;P0A4P7; SV=1;>splP67091[USPF_SALT V Universal stress protein F OS=Salmonella typhimu		OS=Shigella flexneri GN=gadB	
SV=1:>splP69911[DCEB_EC05 7 Glutamate decarboxylase beta OS=Escherichia coli O157:H7 GN-gadB PE=3 SV=1:>splP699010[DCEB_EC0L I Glutamate decarboxylase beta OS=Escherichia col 35.047 69903;Q3PR1;Q8FHG5;P58228 OS=Escherichia col 35.047 FTS system mannose-specific EIIAB component OS=Shigella flexneri GN=marX PE=3 SV=2:>splP69799]PNAB_EC0 57 PTS system mannose- specific EIIAB component OS=Escherichia coli O157:H7 GN=marX PE=3 SV=2:>splP69799[PTNAB_EC0 L6 PTS system mannose- specific EIIAB component OS=Escherichia coli O157:H7 GN=marX PE=3 SV=2:>splP67271[GCH1L_SALTI GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1:>splP67270[GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1:>splP67034[USPG_SALTI Universal stress protein G OS=Salmonella typhimurium (strain L72 / SGC1412 / ATCC 700720) GN=ybgl PE=3 SV=1:>splP67093[USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain L72 / SGC1412 / ATCC 700720] GN=uspG PE=3 SV=1 >splP67092[USPF_SALT] V Universal stress protein G OS=Salmonella typhimurium (strain L72 / SGC1412 / ATCC 700720] GN=uspG PE=3 SV=1 >splP67091[USPF_SALT] V Universal stress protein F OS=Salmonella typhimurium (strain L72 / SGC1412 / ATCC 700720] GN=uspF PE=1 SV=1:>splP67091[USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain L72 / SGC1412 / ATCC 700720] GN=uspF PE=1 SV=1:>splP67091[USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain L72 / SGC1412 / ATCC 700720] GN=uspF PE=1 SV=1:>splP67091[USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain L72 / SGC1412 / ATCC 700720] GN=uspF PE=1 SV=1:>splP67091[USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium		PF=3	
P63912;P63911;P63910;P639909;P OSHIP29910;P639910;DCEB_ECOL GS=Escherichia coli 0157;H7 GN=gadB PE=3 SV=1;>splP639910;DCEB_ECOL I Glutamate decarboxylase beta OS=Escherichia col 35.047 P63908;Q83PR1;Q8FHG5;P58228 OS=Escherichia col 35.047 PTS system mannose-specific EIIAB component OS=Shigella flexneri GN=manX PE=3 SV=2;>splP69799[PTNAB_ECO 57 PTS system mannose- specific EIIAB component OS=Escherichia coli 0157;H7 GN=maX PE=3 SV=2;>splP69798[PTNAB_ECO L6 PTS system mannose- specific CIIAB component OS=Escherichia coli 0157;H7 GN=maX PE=3 SV=2;>splP69798[PTNAB_ECO L6 PTS system man 26.945 P69800;P69799;P69798;P69797 L6 PTS system mannose- specific CIIAB component OS=Escherichia coli 0157;H7 GN=maX PE=3 SV=2;>splP67091[CCH1_SALTI GN=ybgl PE=3 SV=1;>splP67270[GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ybgl PE=3 SV=1;>splP67094[USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093[USPG_SALT] 15.901 P67094;P67093 T0720] GN=uspG PE=3 SV=1 >splP67093[USPG_SALT] 15.901 V1:iversal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093[USPG_SALT] 15.714 V1:iversal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091[USPF_SALT] 15.714 V1:iversal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091[USPF_SALT] 15.714 V1:iversal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091[USPF_SALT] 15.714 P67092;P67091;P		SV_{-1}	
P69912;P69911;P69910;P69909;P OS=Escherichia coli O157:H7 GN=gadB PE=3 SV=1;sp P69910]DCEB_ECOL IGutamate decarboxylase beta OS=Escherichia col 9908;Q83PR1;Q8FHG5;P58228 >sp P69800]PTNAB_SHIFL PTS system manose-specific EIIAB component OS=Shigella flexneri GN=manX PE=3 SV=2;sp P69799]PTNAB_ECO SV=2;sp P69799]PTNAB_ECO IS = Scherichia coli O157:H7 GN=manX PE=3 SV=2;sp P69798]PTNAB_ECO SV=2;sp P69798]PTNAB_ECO IS = Scherichia coli O157:H7 GN=manX PE=3 SV=2;sp P69798]PTNAB_ECO V=2;sp P69798]PTNAB_ECO IS = Scherichia coli O157:H7 GN=manX PE=3 SV=2;sp P69798]PTNAB_ECO IS = Scherichia coli O157:H7 GN=manX PE=3 SV=2;sp P69798]PTNAB_ECO IS = Sp[P67271]GCH1L_SALT1 QS=Escherichia coli O157:H7 GN=manX PE=3 SV=1;sp[P69798]PTNAB_ECO IS = Sp[P67271]GCH1L_SALT1 GN=ybgl PE=3 SV=1;sp[P6770]GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=salmonella Nomolog OS=salmonella typhimurium (strain LT2 / SSC1412 / ATCC P67271;P67270;P0AFP8;P0AFP7; SV=1;spPP67093]USPG_SALT1 <t< td=""><td></td><td>7 Glutamate decarboxylase beta</td><td></td></t<>		7 Glutamate decarboxylase beta	
OS=Escherichia doi 103.h7 GN=gadB PE=3 SV=1;>spIP69910;P69909;P 69908;Q83PR1;Q8FHG5;P58228 SV=1;>spIP69800[PTNAB_SHIFL OS=Escherichia col >spIP69800[PTNAB_SHIFL PTS system mannose-specific EIIAB component OS=Shigella flexneri GN=manX PE=3 SV=2;>spIP69799[PTNAB_ECO SV=2;>spIP69799[PTNAB_ECO SV=2;>spIP69798[PTNAB_ECO C6 PTS system mannose- specific EIIAB component OS=Escherichia coli 0157:H7 GN=manX PE=3 SV=2;>spIP69798[PTNAB_ECO L6 PTS system mannose- specific EIIAB component OS=Escherichia coli 0157:H7 GN=manX PE=3 SV=2;>spIP67979[PTNAB_ECO L6 PTS system man SV=1;>spIP67270[GCH1L_SALTI TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgI PE=3 SV=1;spIP67094[USPG_SALTI YphortylePAF8[GCH1L_E SselPf67094[USPG_SALTI Yuniversal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC		7 Glutamate decarboxylase beta OS-Ecohoriobio coli $O157$:U7	
P69912;P69911;P69910;P69909;P SV=1;>sp P69910]DCEB_ECOL 69908;Q83PR1;Q8FHG5;P58228 OS=Escherichia col >splP699800]PTNAB_SHIFL 35.047 PTS system mannose-specific EIIAB component OS=Shigella flexmanx PE=3 SV=2;>splP69799]PTNAB_ECO SV=2;>splP69799]PTNAB_ECO 57 PTS system mannose-specific geoditic ElIAB component OS=Escherichia coli O157:H7 GN=manX PE=3 SV=2;>splP69798]PTNAB_ECO SV=2;>splP69798]PTNAB_ECO L6 PTS system man QS=Escherichia coli O157:H7 GN=manX PE=3 SV=2;>splP67271[GCH1L_SALTI 26.945 GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67270[GCH1L_SAL YG CY04;P67094[USPG_SALTI YGTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ssglP0AFP8]GCH1L_E SSPIP67094[USPG_SALTI SSV=1;>splP67094[USPG_SALTI Universal stress protein G OS=Salmonella typhimurium OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093[USPG_SALT] YUniversal stress protein F OS=Salmonella typhimurium OS=Salmonella typhimurium (strain LT2 / SGSC1412			
P69912;P69911;P69910;P69990;P IGlutamate decarboxylase beta 69908;Q83PR1;Q8FHG5;P58228 OS=Escherichia col >splP69800]PTNAB_SHIFL 35.047 PTS system mannose-specific EIIAB component OS=Shigella flexneri GN=manX PE=3 SV=2;>splP69798]PTNAB_ECO SV=2;>splP69798]PTNAB_ECO 57 PTS system mannose-specific EIIAB component OS=Escherichia coli O157:H7 GN=manX PE=3 SV=2;>splP69798]PTNAB_ECO L6 PTS system mannose-specific EIIAB component OS=Escherichia coli O157:H7 GN=manX PE=3 SV=2;>splP69798]PTNAB_ECO L6 PTS system mannose-specific GTE cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=splP67270[GCH1L_SALTI GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi homolog OS=Salmonella typhi SV=1;>splP67270[GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi N=1;>splP67094[USPG_SALTI SSC112 / ATCC 700720) GN=SplP67094[USPG_SALTI SSS Y=1;>splP67093[USPG_SALT Y Universal stress protein G OS=Salmonella typhi GN=uspF SSV=1;>splP67093[USPF_SALT Y Universal stress protein F OS=Salmonella typhi GN=uspF <td< td=""><td></td><td></td><td></td></td<>			
P69911;P69910;P6990;P ICitutamate decarboxylase beta 69908;Q83PR1;Q8FHG5;P58228 OS=Escherichia col 0S=Escherichia col >ssplP69800[PTNAB_SHIFL PTS system mannose-specific EIIAB component OS=Shigella Ifexneri GN=manX PE=3 SV=2;>splP69798[PTNAB_ECO SV=2;>splP69798[PTNAB_ECO 57 PTS system mannose-specific EIIAB component OS=Escherichia coli 0157:H7 GN=manX PE=3 SV=2;>splP69798[PTNAB_ECO L6 PTS system man 0S=Escherichia coli 0157:H7 GN=manX PE=3 SV=2;>splP67798[PTNAB_ECO L6 PTS system man 0S=Escherichia coli 0157:H7 GN=manX PE=3 SV=2;>splP67798[PTNAB_ECO L6 PTS system man >spiP67271[GCH1L_SALTI 26.945 GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=bybgI PE=3 SV=1;>splP67270[GCH1L_SAL SV=1;>splP67270[GCH1L_E SSC34100 splP67094[USPG_SALTI 15.901 Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093[USPG_SALTI 15.911 P67094;P67093 SV=1;>splP67093[USPF_SALTI 15.914 V=1;>splP67091;USPF_SALT </td <td></td> <td>SV=1;>spiP69910 DCEB_ECOL</td> <td></td>		SV=1;>spiP69910 DCEB_ECOL	
69908;Q83PR1;Q8FHG5;P58228 OS=Escherichia col >spiP69800 PTNAB_SHIFL 35.047 PTS system mannose-specific EIIAB component OS=Shigella flexneri GN=manX PE=3 SV=2;>spiP69799 PTNAB_ECO SV=2;>spiP69799 PTNAB_ECO 57 PTS system mannose-specific EIIAB component OS=Escherichia coli 0157:H7 GN=manX PE=3 SV=2;>spiP69798 PTNAB_ECO L6 PTS system man Sv=2;>spiP67271[GCH1L_SALTI 26.945 GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ygl PE-3 SV=1;>spiP67270[GCH1L_SAL YGTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ygl PE-3 SV=1;>spiP67270[GCH1L_SAL YGTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi YHINUTUM (strain LT2 / SGSC1412 / ATCC 700720) GN=syspiP67094[USPG_SALTI YUniversal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>spiP67093[USPG_SALTI 15.901 YUniversal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>spiP67093[USPF_SALTI 15.714 YUniversal stress protein F OS=Salmonella typhimurium SV=1;>spiP67091[USPF_SALTI YU	P69912;P69911;P69910;P69909;P	I Glutamate decarboxylase beta	
>splP69800(PTNAB_SHIFL PTS system mannose-specific EIIAB component OS=Shigella flexneri GN=manX PE=3 SV=2;>splP69799(PTNAB_ECO) 57 PTS system mannose- specific EIIAB component OS=Escherichia coli 0157:H7 GN=manX PE=3 SV=2;>splP69798(PTNAB_ECO) L6 PTS system man >splP67271(GCH1L_SALTI GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67270(GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67270(GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ybgl PE=3 SV=1;>splP67093(USPG_SALTI Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67094;P6709315.901P67094;P67093Sv=1;>splP67093[USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67091[USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091[USPF_SALTI V Universal stress protein F OS=Salmonella typhimurum (strain LT2 / SGSC1412 / ATCC 700720) GN=uspF PE=1 SV=1;>splP67091[USPF_SALTI V Universal stress protein F OS=Salmonella typhimurum (strain LT2 / SGSC1412 / ATCC 700720) GN=uspF PE=1 SV=1;>splP67091[USPF_SALTI V Universal stress protein F OS=Salmonella typhimurum (strain LT2 / SGSC1412 / ATCC 700720) GN=uspF PE=1 SV=1;>splP67091[USPF_SHIF FE=3 SV=1;>splP67091[USPF_SHIF FE=1 SV=1;>splP67091[USPF_SHIF SV=1;>splP67091[USPF_SHIF SV=1;>splP67091[USPF_SHIF SV=1;>splP67091[USPF_SHIF SV=1;>splP67091[USPF_SHIF SV=1;>splP67091[USPF_SHIF SV=1;>splP67091[USPF_SHIF SV=1;>splP6404P8]USPF_SHIF SV=1;>splP6404P8]USPF_SHIF	69908;Q83PR1;Q8FHG5;P58228	OS=Escherichia col	
PTS system mannose-specific EIIAB component OS-Shigella flexneri GN=manX PE=3 SV=2;>splP69799 PTNAB_ECO 57 PTS system mannose- specific EIIAB component OS=Escherichia coli O157:H7 GN=manX PE=3 SV=2;>splP69798 PTNAB_ECO L6 PTS system man >splP67271[GCH1L_SALTI GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67270[GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67270[GCH1L_E >SV=1;>splP67270]GCH1L_E >splP67271;P67270;P0AFP8;P0AFP7; P0AFP6 SV=1;>splP67093[USPG_SALT] Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720] GN=uspG PE=3 SV=1 >splP67093[USPG_SALT] Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091[USPF_SALT] Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720] GN=uspF PE=1 SV=1;>splP67091[USPF_SALT] Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720] GN=uspF PE=1 SV=1;>splP67091[USPF_SALT] Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC		>sp P69800 PTNAB_SHIFL	35.047
EllAB component OS=Shigella flexneri GN=manX PE=3 SV=2;>splP69799[PTNAB_ECO 57 PTS system mannose- specific EllAB component OS=Escherichia coli O157:H7 GN=manX PE=3 SV=2;>splP69798[PTNAB_ECO L6 PTS system mannose- splP67271[GCH1L_SALTI GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67270[GCH1L_SALT TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67270[GCH1L_E26.945P67271;P67270;P0AFP8;P0AFP7; P0AFP6GN=ybgl PE=3 SV=1;>splP67094[USPG_SALTI Y Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093[USPG_SALTI Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=Salmonella typhiGN=uspF PE=3 SV=1;>splP67093[USPF_SALTI Y Universal stress protein F OS=Salmonella typhiGN=uspF PE=3 SV=1;>splP67091[USPF_SALTI Y Universal stress protein F OS=Salmonella typhiMurium (strain LT2 / SGSC1412 / ATCC 700720] GN=uspF PE=1 SV=1;>splP67091[USPF_SALTI Y Universal stress protein F OS=Salmonella typhiMurium (strain LT2 / SGSC1412 / ATCC 700720] GN=uspF PE=1 SV=1;>splP67091[USPF_SALTI Y Universal stress protein F OS=Salmonella typhiMurium (strain LT2 / SGSC1412 / ATCC15.714 Universal stress protein F OS=Salmonella typhiMurium (strain LT2 / SGSC1412 / ATCCP67092;P67091;P0A4P8;P9WFD5; P0A4P6700720] GN=uspF PE=1 SV=1;>splP0A4P8 USPF_SHIF15.714		PTS system mannose-specific	
flexneri GN=manX PE=3 SV=2;>sp P69799 PTNAB_EC0 57 PTS system mannose- specific EIIAB component OS=Escherichia coli 0157:H7 GN=manX PE=3 SV=2;>sp P69798 PTNAB_EC0 L6 PTS system man 26.945 P69800;P69799;P69798;P69797 L6 PTS system man 26.945 SV=2;>sp P697271 GCH1L_SALTI GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgI PE=3 SV=1;>sp P67270 GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ybgI PE=3 SV=1;>sp P67270]GCH1L_E 26.945 P67271;P67270;P0AFP8;P0AFP7; P0AFP6 SV=1;>sp P67270]GCH1L_E 26.945 SSSC1412 / ATCC 700720) GN=ybgI PE=3 SV=1;>sp P67094 USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>sp P67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>sp P67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhi Murium (strain LT2 / SGSC1412 / ATCC 15.714 P67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0T119;P37903;P0A4P7; SV=1;>sp P0A4P8 USPF_SHIF 15.714		EIIAB component OS=Shigella	
SV=2;>splP69799]PTNAB_ECO 57 PTS system mannose- specific ElIAB component OS=Escherichia coli O157:H7 GN=manX PE=3 SV=2;>splP69798]PTNAB_ECO L6 PTS system man P69800;P69799;P69798;P69797 L6 PTS system man >splP67271[GCH1L_SALTI GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67270]GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) P67271;P67270;P0AFP8;P0AFP7; P0AFP6 26.945 P67271;P67270;P0AFP8;P0AFP7; P0AFP6 SV=1;>splP67094 USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhiGN=uspG PE=3 SV=1;>splP67093 USPG_SALT Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP0A4P8 USPF_SHIF I Universal stress protein F OS=Salmonella typhi GN=uspF PE=1 SV=1;>splP0A4P8 USPF_SHIF I Universal stress		flexneri GN=manX PE=3	
P67 PTS system mannose- specific EllAB component OS=Escherichia coli O157:H7 GN=manX PE=3 SV=2;>splP69798 PTNAB_ECO L6 PTS system man P69800;P69799;P69798;P69797 L6 PTS system man >splP67271[GCH1_SALTI 26.945 GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67270]GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ybgl PE=3 SV=1;>splP67094]USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093]USPG_SALTI V Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093]USPG_SALT Y Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67092]USPF_SALTI V Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091]USPF_SALTI V Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091]USPF_SALT Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091[USPF_SALT Y Universal stress protein F OS=Salmonella typhi MI2 / ATCC 15.714 P67094;P67093 SV=1;>splP67091[USPF_SALT Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091[USPF_SALT Y Universal stress protein F OS=Salmonella typhiMurium (strain LT2 / SGSC1412 / ATCC 15.714 P67092;P67091;P0A4P8;P9WFD5; P0M4P6 SV=1;>splP0A4P8]USPF_SHIF 15.714		SV=2:>splP69799IPTNAB FCO	
P69800;P69799;P69798;P69797 L6 PTS System man >speific EllAB component OS=Escherichia coli O157:H7 GN=manX PE=3 SV=2;>splP69798 PTNAB_ECO L6 PTS system man >splP67271 GCH1L_SALTI GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67270]GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ybgl PE=3 SV=1;>splP67094 USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67094;P67093 700720)GN=uspG PE=3 SV=1 >splP67092 USPF_SALTI Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0T119;P37903;P0A4P7; P0A4P6 P0AFP6		57 PTS system mannose-	
P69800;P69799;P69798;P69797 P69800;P69799;P69798;P69797 E69800;P69799;P69798;P69797 P69800;P69799;P69798;P69797 E67271;GCH1L_SALTI GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67270;GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ybgl PE=3 SV=1;>splP67094[USPG_SALTI Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67094;P67093 P67094;P67093 P67094[USPG_SALT] Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67094;P67093 P67092[USPF_SALT] Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091[USPF_SALT] Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091[USPF_SALT] Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091[USPF_SALT] V Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720] GN=uspG PE=3 SV=1;>splP67091[USPF_SALT] V Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720] GN=uspF PE=1 SV=1;>splP67091[USPF_SHIF] P0A4P6 U Iniversal stress		specific FIIAB component	
P69800;P69799;P69798;P69797 SV=2;>splP69798[PTNAB_ECO L6 PTS system man 26.945 SV=2;>splP67271[GCH1L_SALTI GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67270[GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) 26.945 P67271;P67270;P0AFP8;P0AFP7; P0AFP6 SV=1;>splP67094[USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093[USPG_SALTI Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 15.901 P67094;P67093 T0720) GN=uspG PE=3 SV=1 >splP67093[USPF_SALTI Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67092[USPF_SALTI Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091[USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091[USPF_SALT] 15.714 P67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0T119;P37903;P0A4P7; SV=1;>splP67044P8[USPF_SHIF] 15.714 P67092;P67091;P0A4P8;P9WFD5; P0A4P6 SV=1;>splP0A4P8[USPF_SHIF]		OS-Escherichia coli O157·H7	
P69800;P69799;P69798;P69797 SV=2;>splP69798;PTNAB_ECO L6 PTS system man 26.945 SV=2;>splP67271 GCH1L_SALTI GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgI PE=3 SV=1;>splP67270 GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ybgI PE=3 SV=1;>splP67094 USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093 USPG_SALTI Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=1 15.901 P67094;P67093 700720) GN=uspG PE=3 SV=1 15.911 P67094;P67093 SV=1;>splP67093 USPG_SALTI Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 15.714 P67094;P67093 SV=1;>splP67091 USPF_SALTI Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091 USPF_SALTI Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspF PE=1 SV=1;>splP0A4P8 USPF_SHIF 15.714 P67092;P67091;P0A4P8;P9WFD5; P0A4P6 SV=1;>splP0A4P8 USPF_SHIF 15.714			
P69800;P69799;P69799;P69797 L6 PTS system man 26.945 Sr PF67271 GCH1L_SALTI GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>sp P67270 GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) 26.945 P67271;P67270;P0AFP8;P0AFP7; P0AFP6 SV=1;>sp P67094 USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>sp P67093 USPG_SALTI Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 15.901 P67094;P67093 700720) GN=uspG PE=3 SV=1 >sp P67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67094;P67093 700720) GN=uspG PE=3 SV=1 >sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 15.714 P67092;P67091;P0A4P8;P9WFD5; P0S4P6 SV=1;>sp P0A4P8 USPF_SHIF Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 15.714			
P69800,P69799,P69797 Lb P1S system main 26.945 >sp P67271 GCH1L_SALTI 26.945 GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgI PE=3 SV=1;>sp P67270 GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella homolog OS=Salmonella typi YPGTP cyclohydrolase 1 type 2 homolog OS=Salmonella homolog OS=Salmonella typi SV=1;>sp P67270 GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typi P67271;P67270;P0AFP8;P0AFP7; GN=ybgI PE=3 P0AFP6 SV=1;>sp P67094 USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>sp P67093 USPG_SALTI Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=1 >sp P67092 USPF_SALTI 15.714 Universal stress protein F OS=Salmonella typhimurium SV=1;>sp P67091 USPF_SALTI 15.714 Universal stress protein F OS=Salmonella typhimurium SV=1;>sp P67091 USPF_SALTI Y Universal stress protein F OS=Salmonella typhimurium SV=1;>sp P67091		SV=2;>sp P69798 PTNAB_ECO	
P67094;P67091;P0A4P8;P9WFD5; P67092;P67091;P0A4P8;P9WFD5; P0AFP6 P67092;P67091;P0A4P8;P9WFD5; P0AFP6 P0AFP6 P67092;P67091;P0A4P8;P9WFD5; P0AFP6 P0AFP6	P69800;P69799;P69798;P69797	L6 PTS system man	
GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67270]GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)P67271;P67270;P0AFP8;P0AFP7; P0AFP6GN=ybgl PE=3 SV=1;>splP0AFP8]GCH1L_E >splP67094 USPG_SALTI Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67094;P6709315.901P67094;P67093OX=2000000000000000000000000000000000000		>sp P67271 GCH1L_SALT	26.945
homolog OS=Salmonella typhi GN=ybgl PE=3 SV=1;>splP67270]GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)P67271;P67270;P0AFP8;P0AFP7; P0AFP6GN=ybgl PE=3 SV=1;>splP0AFP8]GCH1L_E >splP67094 USPG_SALTIP67094;P67093SV=1;>splP67093 USPG_SALTI Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67094;P67093P67094;P67093700720) GN=uspG PE=3 SV=1;>splP67093 USPG_SALTI Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=1P67094;P67093700720) GN=uspG PE=3 SV=1SV=1;>splP67091 USPF_SALTI Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720]GN=uspF PE=3 SV=1;>splP67091 USPF_SALTI Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720]GN=uspF PE=1 SV=1;>splP67091;P0A4P8;P9WFD5; P0WFD4;Q0T119;P37903;P0A4P7; P0A4P61 Universal stress V=1;>splP0A4P8 USPF_SHIF		GTP cyclohydrolase 1 type 2	
GN=ybgl PE=3 SV=1;>splP67270 GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)P67271;P67270;P0AFP8;P0AFP7; P0AFP6GN=ybgl PE=3 SV=1;>splP0AFP8 GCH1L_E>splP67094 USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=1P67094;P67093700720) GN=uspG PE=3 SV=1P67094;P67093>splP67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091 USPF_SALTI Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspF PSALTI Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091 USPF_SALTI Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspF PE=1 SV=1;>splP0A4P8 USPF_SHIF P0A4P6P67092;P67091;P0A4P8;P9WFD5; P0A4P6SV=1;>splP0A4P8 USPF_SHIF Universal stress		homolog OS=Salmonella typhi	
SV=1;>sp P67270 GCH1L_SAL TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)P67271;P67270;P0AFP8;P0AFP7; P0AFP6GN=ybgl PE=3 SV=1;>sp P0AFP8]GCH1L_E>sp P67094 USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>sp P67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67094;P6709315.901P67094;P67093OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=115.714P67094;P67093>SV=1;>sp P67091 USPF_SALTI Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALTI Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspF PE=1 SV=1;>sp P67091 USPF_SALTI Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=SplP0A4P6 L Universal stress SV=1;>splP0A4P8]USPF_SHIF		GN=ybgl PE=3	
TY GTP cyclohydrolase 1 type 2 homolog OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)P67271;P67270;P0AFP8;P0AFP7; P0AFP6GN=ybgl PE=3 SV=1;>splP0AFP8]GCH1L_E>splP67094[USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093]USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67094;P6709315.901P67094;P67093700720) GN=uspG PE=3 SV=1P67094;P67093>splP67092[USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091[USPF_SALT] Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720] GN=uspF PE=1 SS=1 SV=1;>splP67091[USPF_SALT] Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCCP67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0T119;P37903;P0A4P7; P0A4P6SV=1;>splP0A4P8]USPF_SHIF		SV=1;>sp P67270 GCH1L_SAL	
homolog ÓS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ybgl PE=3 SV=1;>splP0AFP8 GCH1L_EP0AFP6>splP67094 USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCCP67094;P67093700720) GN=uspG PE=3 SV=1P67094;P67093>splP67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091 USPF_SALTI Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspF PE=1 SV=1;>splP67091;P0A4P8;P9WFD5; P9WFD4;Q0T119;P37903;P0A4P7; P0A4P615.714 Universal stress SV=1;>splP6AP8 USPF_SHIF Universal stress		TY GTP cyclohydrolase 1 type 2	
P67271;P67270;P0AFP8;P0AFP7; P0AFP6 P67271;P67270;P0AFP8;P0AFP7; P0AFP6 P67094;P67094;P67094;P67094;P67094;P67093;USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>splP67093;USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720; GN=uspG PE=3 SV=1 >splP67092;USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091;USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>splP67091 USPF_SALTI Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720; GN=uspF PE=1 SV=1;>splP67091;P0A4P8;P9WFD5; P9WFD4;Q0T119;P37903;P0A4P7; P0A4P6		homolog OS=Salmonella	
P67271;P67270;P0AFP8;P0AFP7; P0AFP6 SGSC1412 / ATCC 700720) GN=ybgl PE=3 SV=1;>sp P0AFP8]GCH1L_E Ssp P67094 USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>sp P67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67094;P67093 P67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0T119;P37903;P0A4P7; P0A4P6 U Universal stress s		typhimurium (strain LT2 /	
P67271;P67270;P0AFP8;P0AFP7; P0AFP6 GN=ybgl PE=3 SV=1;>sp P0AFP8 GCH1L_E >sp P67094 USPG_SALTI Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>sp P67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=1 >sp P67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALTI Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=1 >sp P67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspF PE=1 SV=1;>sp P0A4P8;P9WFD5; P9WFD4;Q0TI19;P37903;P0A4P7; P0A4P6 L Universal stress		SGSC1412 / ATCC 700720)	
POAFP6SV=1;>sp P0AFP8 GCH1L_EP0AFP6SV=1;>sp P67094 USPG_SALTI15.901Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>sp P67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=115.714P67094;P67093>sp P67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALTI Y Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress protein F Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y Universal stress POA4P6		GN-ybal PE-3	
P0APP6 SV=1,>Sp[P0APP6]GCHTL_E >sp[P67094]USPG_SALTI 15.901 Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>sp[P67093]USPG_SALT SV=1;>sp[P67093]USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC Y0720) GN=uspG PE=3 SV=1 >sp[P67092]USPF_SALTI V=1;>sp[P67092]USPF_SALTI 15.714 Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp[P67091]USPF_SALTI 15.714 Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp[P67091]USPF_SALT 15.714 Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp[P67091]USPF_SALT 15.714 Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67092;P67091;P0A4P8;P9WFD5; 700720) GN=uspF PE=1 SV=1;>sp P0A4P8 USPF_SHIF P0A4P6 L Universal stress SV=1;>sp P0A4P8 USPF_SHIF	PONEDC		
>spiP67094 USPG_SALT115.901Universal stress protein GOS=Salmonella typhi GN=uspGPE=3SV=1;>spiP67093 USPG_SALTY Universal stress protein GOS=Salmonella typhimurium(strain LT2 / SGSC1412 / ATCC700720) GN=uspG PE=3 SV=1>spiP67092 USPF_SALT115.714Universal stress protein FOS=Salmonella typhi GN=uspFPE=3SV=1;>spiP67091 USPF_SALT115.714VIniversal stress protein FOS=Salmonella typhi GN=uspFPE=3SV=1;>spiP67091 USPF_SALT115.714VIniversal stress protein FOS=Salmonella typhimurium(strain LT2 / SGSC1412 / ATCC700720) GN=uspF PE=1P67092;P67091;P0A4P8;P9WFD5;700720) GN=uspF PE=1P9WFD4;Q0T119;P37903;P0A4P7;SV=1;>spiP0A4P8 USPF_SHIFP0A4P6L Universal stress	PUAFPO		45.004
Universal stress protein G OS=Salmonella typhi GN=uspG PE=3 SV=1;>sp P67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=1P67094;P67093700720) GN=uspG PE=3 SV=1>sp P67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0TI19;P37903;P0A4P7; P0A4P615.714		>spip67094juSPG_SALTI	15.901
OS=Salmonella typhi GN=uspG PE=3SV=1;>sp P67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=1P67094;P67093700720) GN=uspG PE=3 SV=1>sp P67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0TI19;P37903;P0A4P7; P0A4P615.714		Universal stress protein G	
PE=3 SV=1;>sp P67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=1P67094;P67093700720) GN=uspG PE=3 SV=1>sp P67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCCP67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0TI19;P37903;P0A4P7; P0A4P61. Universal stress SV=1;>sp P0A4P8 USPF_SHIF Universal stress		OS=Salmonella typhi GN=uspG	
SV=1;>sp P67093 USPG_SALT Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=1P67094;P67093700720) GN=uspG PE=3 SV=1>sp P67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCCP67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0TI19;P37903;P0A4P7; P0A4P6700720) GN=uspF PE=1 SV=1;>sp P0A4P8 USPF_SHIF Universal stress		PE=3	
Y Universal stress protein G OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=1P67094;P67093>sp P67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCCP67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0TI19;P37903;P0A4P7; P0A4P6T00720) GN=uspF PE=1 SV=1;>sp P0A4P8 USPF_SHIF		SV=1;>sp P67093 USPG_SALT	
OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=1P67094;P67093>sp P67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCCP67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0TI19;P37903;P0A4P7; P0A4P6SV=1;>sp P0A4P8 USPF_SHIF L Universal stress		Y Universal stress protein G	
P67094;P67093(strain LT2 / SGSC1412 / ATCC 700720) GN=uspG PE=3 SV=1>sp P67092 USPF_SALTI Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC15.714P67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0TI19;P37903;P0A4P7; P0A4P6SV=1;>sp P0A4P8 USPF_SHIF L Universal stress15.714		OS=Salmonella typhimurium	
P67094;P67093700720) GN=uspG PE=3 SV=1>sp P67092 USPF_SALTI15.714Universal stress protein FOS=Salmonella typhi GN=uspFPE=3SV=1;>sp P67091 USPF_SALTY Universal stress protein FOS=Salmonella typhimurium(strain LT2 / SGSC1412 / ATCCP67092;P67091;P0A4P8;P9WFD5;700720) GN=uspF PE=1P9WFD4;Q0TI19;P37903;P0A4P7;SV=1;>sp P0A4P8 USPF_SHIFP0A4P6L Universal stress		(strain LT2 / SGSC1412 / ATCC	
>sp P67092 USPF_SALTI 15.714 Universal stress protein F OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67092;P67091;P0A4P8;P9WFD5; 700720) GN=uspF PE=1 P9WFD4;Q0TI19;P37903;P0A4P7; SV=1;>sp P0A4P8 USPF_SHIF P0A4P6 L Universal stress	P67094;P67093	700720) GN=uspG PE=3 SV=1	
 Poppi eroscipci right in formation in the interval of the interva	,	>splP67092IUSPF_SALTI	15.714
OS=Salmonella typhi GN=uspF PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0TI19;P37903;P0A4P7; P0A4P6		Universal stress protein F	
PE=3 SV=1;>sp P67091 USPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC P67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0TI19;P37903;P0A4P7; P0A4P6 SV=1;>sp P0A4P8 USPF_SHIF		OS-Salmonella typhi GN-uenE	
P67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0TI19;P37903;P0A4P7; P0A4P6			
SV=1;>Sp[P67091]0SPF_SALT Y Universal stress protein F OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCCP67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0TI19;P37903;P0A4P7; P0A4P6SV=1;>sp[P0A4P8]USPF_SHIF L Universal stress			
P67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0TI19;P37903;P0A4P7; P0A4P6		Sv=1,>splPo/U91/USPF_SAL1	
OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCCP67092;P67091;P0A4P8;P9WFD5; P9WFD4;Q0TI19;P37903;P0A4P7;700720) GN=uspF PE=1 SV=1;>sp P0A4P8 USPF_SHIF L Universal stress		r Universal stress protein F	
P67092;P67091;P0A4P8;P9WFD5; (strain LT2 / SGSC1412 / ATCC P9WFD4;Q0TI19;P37903;P0A4P7; 700720) GN=uspF PE=1 P0A4P6 SV=1;>sp P0A4P8 USPF_SHIF		US=Salmonella typhimurium	
P67092;P67091;P0A4P8;P9WFD5; 700720) GN=uspF PE=1 P9WFD4;Q0TI19;P37903;P0A4P7; SV=1;>sp P0A4P8 USPF_SHIF P0A4P6		(strain L12 / SGSC1412 / ATCC	
P9WFD4;Q0TI19;P37903;P0A4P7; SV=1;>sp P0A4P8 USPF_SHIF P0A4P6	P67092;P67091;P0A4P8;P9WFD5;	700720) GN=uspF PE=1	
POA4P6	P9WFD4;Q0TI19;P37903;P0A4P7;	SV=1;>sp P0A4P8 USPF_SHIF	
	P0A4P6	L Universal stress	

	>sp P65809 YGEY_ECO57	44.803
	Uncharacterized protein YgeY	
	OS=Escherichia coli O157:H7	
	GN=ygeY PE=3	
	SV=1;>sp P65808 YGEY_ECOL	
	6 Uncharacterized protein YgeY	
	OS=Escherichia coli O6:H1	
	(strain CF1073 / ATCC 700928 /	
	SV=1;>SP P65807 YGEY_ECOL	
P65809;P65808;P65807		00.040
	>SpiPo5705iFKBA_ECU57	28.912
	trans isomoroso EknA	
	0S-Escharichia coli 0157:47	
	GN-fkpA DE-3	
	SV-1:>splP65764IEKBA ECOL	
	6 FKBP-type peptidyl-prolyl cis-	
	trans isomerase FknA	
	OS=Escherichia coli O6·H1	
	(strain CET073 / ATCC 700928 /	
P65765 P65764 P45523	UPEC) G	
	>splP65749IIPYR_SALTI	19.676
	Inorganic pyrophosphatase	
	OS=Salmonella typhi GN=ppa	
	PE=3	
	SV=2;>sp P65748 IPYR_SALTY	
	Inorganic pyrophosphatase	
	OS=Salmonella typhimurium	
	(strain LT2 / SGSC1412 / ATCC	
	700720) GN=ppa PE=3	
P65749;P65748;Q8FAG0;P0A7B0;	SV=2;>sp Q8FAG0 IPYR_ECOL	
P0A7A9	6 Inorganic pyrophosph	
P63412;P63411;P0A6A5;P0A6A4;	>sp P63412 ACKA_SALTI	43.257
P0A6A3;A7MH28;A8GH24;Q9KT0	Acetate kinase OS=Salmonella	
7;Q8ZDJ6;Q7N2I1;Q6D2Q6;Q668Z	typhi GN=ackA PE=3	
0;Q1CHP3;Q1C6A1;B4EZD9;B2VI	SV=1;>sp P63411 ACKA_SAL1	
P6;B2K830;B1JGK4;A9R6M9;A7F	Y Acetate kinase	
	OS=Salmonella typhimurium	
	(Strain L12/ SGSC 1412/ ATCC 700720) CNL cokA DE 1	
	700720) GN=ackA PE=1	
	57 Acotato kinaso	
810·A1PIHO	05-Escherichia coli 0157	
		54 614
	Aspartyl/dutamyl-	54.014
	tRNA(Asn/Gln)	
	amidotransferase subunit B	
	OS=Corynebacterium	
	diphtheriae (strain ATCC	
	700971 / NCTC 13129 / Biotype	
	gravis) GN=gatB PE=3	
	ŠV=1;>sp A4QDM0 GATB CO	
	RGB Aspartyl/glutamyl-	
	tRNA(Asn/Gln)	
P61342;A4QDM0	amidotransferase subu	

	>sp P58581 GSHB_SALTI Glutathione synthetase OS=Salmonella typhi GN=gshB PE=3 SV=1;>sp P58580 GSHB_SALT Y Glutathione synthetase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=gshB PE=3	35.379
P58581;P58580;Q83Q91;P58582;P 58578;Q8FE30;P04425	SV=1;>sp Q83Q91 GSHB_SHIF L Glutathione synthetase O	
	>sp P57958 TKT2_PASMU Transketolase 2 OS=Pasteurella multocida (strain Pm70) GN=tktB PE=3 SV=1;>sp P57927 TKT1_PASM U Transketolase 1 OS=Pasteurella multocida (strain Pm70) GN=tktA PE=3	73.354
P57958;P57927	SV=1	
P57508;P0A3B4;Q8K9C8;P44910; P32132;P0A3B3;P0A3B2;P0A3B1; Q89AC9:Q07631	>sp P57508 TYPA_BUCAI GTP- binding protein TypA/BipA homolog OS=Buchnera aphidicola subsp. Acyrthosiphon pisum (strain APS) GN=typA PE=3 SV=1;>sp P0A3B4 TYPA_SHIF L GTP-binding protein TypA/BipA OS=Shigella flexneri GN=typA PE=3 SV=1;>sp Q8K9C8 TYPA_BUC AP GT	68.506
P54334	>sp P54334 XKDO_BACSU Phage-like element PBSX protein XkdO OS=Bacillus subtilis (strain 168) GN=xkdO PE=4 SV=2	145.22
P54298:A7MRY3	>sp P54298 LUXM_VIBHA Acyl- homoserine-lactone synthase LuxM OS=Vibrio harveyi GN=luxM PE=1 SV=2;>sp A7MRY3 LUXM_VIB CB Acyl-homoserine-lactone synthase LuxM OS=Vibrio campbellii (strain ATCC BAA- 1116 / BB120) GN=luxM PE=3 SV=1	46.371
P54226:E3\/\///2	>sp P54226 G3P1_STRAE Glyceraldehyde-3-phosphate dehydrogenase 1 OS=Streptomyces arenae GN=gap1 PE=1 SV=1;>sp E3VWI2 G3P2_STRA E Glyceraldehyde-3-phosphate dehydrogenase 2 OS=Streptomyces arenae CN=gap2 RE=1 SV=1	34.945
	011-yapz1 L=1 0V=1	

	>spIP53578IFIXB CLOSA	35.68
	Protein FixB OS=Clostridium	00100
	saccharobutylicum GN=fixB	
P53578	PE=3 SV=1	
	>sp P53381 APBC_CLOPE	30.835
	Iron-sulfur cluster carrier protein	
	OS=Clostridium perfringens	
	(strain 13 / Type A) GN=mrp	
P53381	PE=3 SV=2	
	>sp P52937 SP0A_CLOBU	18.134
	Stage 0 sporulation protein A	
	homolog (Fragment)	
	OS=Clostridium butyricum	
	GN=spo0A PE=3	
	SV=1;>sp P52936 SP0A_CLOB	
	8 Stage 0 sporulation protein A	
	homolog OS=Clostridium	
	beijerinckii (strain ATCC 517437	
D50007 D50000	NCIMB 8052) GN=spo0A PE=3	
P52937;P52936		04750
	>sp P52662 PEC1_DICD3 H1H-	34.756
	type transcriptional regulator	
	Peci US=Dickeya dadantii	
	5V=1;>SP Q8VVVE0 LRHA_ECO	
	57 Probable HTH-type	
	GN-IrbA DE-3	
P52662:Q8VWE6:P36771		
	>splP51591 RUBY CLOPE	22.158
	Rubrerythrin OS=Clostridium	
	perfringens (strain 13 / Type A)	
P51591	GN=rbr PE=3 SV=2	
	>sp P51181 KPYK_BACLI	61.942
	Pyruvate kinase OS=Bacillus	
	licheniformis GN=pyk PE=3	
	SV=1;>sp P80885 KPYK_BACS	
	U Pyruvate kinase OS=Bacillus	
	subtilis (strain 168) GN=pyk	
P51181;P80885	PE=1 SV=2	
	>sp P47234 LACY_CITFR	46.537
	Lactose permease	
	OS=Citrobacter freundii	
P47234	GN=lacY PE=3 SV=1	
	>sp P45511 GLDA_CITFR	39.018
	Glycerol dehydrogenase	
DAFEAA		
P45511		40 504
	>spiP45361/CR1_CLODI Short-	16.581
	Chain-enoyi-CoA hydratase	
DAFOOA	(Fragment) US=Clostridioides	
P40301		00.400
	>SP P442/1 Y1603_HAEIN	26.482
DAADZA		
P442/1	US=Haemophilus Influenzae	

	(strain ATCC 51907 / DSM	
	11121 / KW20 / Rd)	
	GN=HI_1603 PE=1 SV=1	
	>sp P43099 DCOR_LACS3	82.687
	decarboxylase	
	OS-Lactobacillus sp. (strain	
P43099 P44317 P21169 P24169	30a) GN=odcl PE=1 SV=2	
	>splP42953ITAGG BACSU	32.184
	Teichoic acid translocation	
	permease protein TagG	
	OS=Bacillus subtilis (strain 168)	
P42953	GN=tagG PE=1 SV=1	
	>sp P41576 6PGD_KLEPN 6-	51.327
	phosphogluconate	
	dehydrogenase, decarboxylating	
	OS=Kiebsielia pheumoniae	
	SV = 2 sol P37754 6PGD9 ECO	
	LX 6-phosphoaluconate	
	dehydrogenase, decarboxylating	
P41576;P37754;P41583;P41577;P	OS=Escherichia coli GN=gnd	
41575	PE=3 SV=1	
	>sp P40947 SSB_PSEAE	18.557
	Single-stranded DNA-binding	
	protein OS=Pseudomonas	
	aeruginosa (strain ATCC 15692	
	/ DSW 22044 / CIP 104110 /	
	PRS 101 / PAO1) GN-ssh PE-1	
	$SV=3$ >splQ8K933ISSB_BUCA	
	P Single-stranded DNA-binding	
P40947;Q8K933;P57610;P28046	protein OS=Buchn	
	>sp P40720 FUMA_SALTY	63.824
	Fumarate hydratase class I,	
	aerobic OS=Salmonella	
	typhimurium (strain LT2 /	
	SGSC1412 / ATCC 700720)	
	57 Eumarate hydratase class I	
	aerobic OS=Escherichia coli	
	O157:H7 GN=fumA PE=3	
P40720;Q8X4P8;P0AC34;P0AC33	SV=3;>sp P0AC34 F	
	>sp P39384 YJIM_ECOLI	42.742
	Putative dehydratase subunit	
Dooro (YjiM OS=Escherichia coli (strain	
P39384	K12) GN=yJIM PE=3 SV=2	20.054
	>spiP39304 SGCQ_ECULI	29.354
	Saco OS-Escherichia coli	
	(strain K12) GN=sqcO PF=3	
P39364	SV=1	
	>sp P39325 YTFQ ECOLI ABC	34.344
	transporter periplasmic-binding	
P39325	protein YtfQ OS=Escherichia	

	coli (strain K12) GN=ytfQ PE=1	
P39265	>sp P39265 ALSB_ECOLI D- allose-binding periplasmic protein OS=Escherichia coli (strain K12) GN=alsB PE=1 SV=1	32.91
P37902	>sp P37902 GLTI_ECOLI Glutamate/aspartate import solute-binding protein OS=Escherichia coli (strain K12) GN=gltI PE=1 SV=2	33.42
P37798	>sp P37798 ACCC_PSEAE Biotin carboxylase OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) GN=accC PE=1 SV=1	48.887
P37755	>sp P37755 RFBK9_ECOLX Phosphomannomutase OS=Escherichia coli GN=manB PE=3 SV=1	50.423
P37647;E0J5J4	>sp P37647 KDGK_ECOLI 2- dehydro-3-deoxygluconokinase OS=Escherichia coli (strain K12) GN=kdgK PE=1 SV=1;>sp E0J5J4 KDGK_ECOL W 2-dehydro-3- deoxygluconokinase OS=Escherichia coli (strain ATCC 9637 / CCM 2024 / DSM 1116 / NCIMB 8666 / NRRL B- 766 / W) GN=kdgK	33.962
P37450	>sp P37450 PDUC_SALTY Propanediol dehydratase large subunit OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=pduC PE=1 SV=3	60.362
P37424;P37425;P0ACJ4;P0ACJ3; P0A2S0;P45265;P0ACJ2;P0ACJ1; P0ACJ0	>sp P37424 LRP_KLEPN Leucine-responsive regulatory protein OS=Klebsiella pneumoniae GN=Irp PE=3 SV=3;>sp P37425 LRP_SERMA Leucine-responsive regulatory protein OS=Serratia marcescens GN=Irp PE=3 SV=3;>sp P0ACJ4 LRP_KLEAE Leucine-responsive regulatory prote	18.873
P37419;P0AB79;P0AB78;P0AB77	>sp P37419 KBL_SALTY 2- amino-3-ketobutyrate coenzyme A ligase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)	43.031

	GN=kbl PE=3	
	SV=2;>sp P0AB79 KBL_SHIFL	
	2-amino-3-ketobutyrate	
	coenzyme A ligase OS=Shigella	
	flexneri GN=kbl PE=3	
	SV=1;>spIP0AB78 KB	
	>splP36938IPGM_ECOLI	58.36
	Phosphoglucomutase	00.00
	OS-Escharichia coli (strain K12)	
Dacoao	OS=ESCHERICHIA COIL (SHAILT KTZ)	
P30938		00.407
	>sp P36683 ACNB_ECOLI	93.497
	Aconitate hydratase B	
	OS=Escherichia coli (strain K12)	
P36683	GN=acnB PE=1 SV=3	
	>sp P35596 GLPO_STRPN	66.795
	Alpha-glycerophosphate oxidase	
	OS=Streptococcus pneumoniae	
	serotype 4 (strain ATCC BAA-	
	334 / TIGR4) GN-alpO PE-3	
D25506		
F 35390		07.005
	Spip35482 PPBL_PSEAE	37.885
	Alkaline phosphatase L	
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=phoA2 PE=1	
P35482	SV=2	
	>splP30860/ARTJ_ECOLIABC	26.829
	transporter arginine-binding	_0.0_0
	protein 1 OS-Escherichia coli	
	(stroip K12) CN-ort DE-1	
P30860	(SITAIN K I Z) GN=aIIJ PE=1	
P30860		
	>sp P30859 ARTI_ECOLI	26.929
	Putative ABC transporter	
	arginine-binding protein 2	
	OS=Escherichia coli (strain K12)	
P30859	GN=artI PE=1 SV=3	
	>splP29847/CYSE_SALTY	29.29
	Serine acetyltransferase	
	OS=Salmonella tynhimurium	
	$(\text{strain} \mid \text{T2} / \text{SGSC} 1412 / \text{ATCC})$	
	$(300720) CN_{-0} C = DE_{-1}$	
	SV-1-201000070VSE SUIT	
	$0 v = 1, > 0 T \cup A = 0 U 0 0 0 0 0 0 0 0$	
	US=Snigelia flexneri GN=cysE	
P29847;P0A9D7;P0A9D6;P0A9D5;	SV=1;>sp P0A9D6 CYSE_ECO	
P0A9D4	57 Serine acetyltransf	
	>sp P28997 DHE2_PEPAS	46.513
	NAD-specific glutamate	
	dehvdrogenase	
	OS=Peptoniphilus	
P28997	asaccharolyticus PF-1 SV-1	
1 20001		17 002
DOZZOE	Throoping ounthace	47.093

	OS=Serratia marcescens	
	GN=thrC PE=3 SV=1	
	>sp P26975 PHON_PROST	27.043
	Non-specific acid phosphatase	
	GN-phoN RE-2	
	SV_{-1}	
	MO Major phosphate-	
	irrepressible acid phosphatase	
	OS=Morganella morganii	
P26975;P28581	GN=phoC PE=1 SV=1	
	>sp P26478 MALM_SALTY	31.823
	Maltose operon periplasmic	
	protein OS=Salmonella	
	typhimurium (strain LT2 /	
	SGSC1412 / ATCC 700720)	
	GN=malM PE=3	
	SV=2;>sp P03841 MALM_ECO	
	Li Maltose operon periplasmic	
	protein US=Escherichia coli	
D26479-D02941	SV_{-1} (Strain K12) GN=main PE=3	
F20478,F03841	SV=1	18 808
	Single-stranded DNA-binding	10.000
	protein OS=Serratia	
	marcescens GN=ssb PE=1	
	SV=2:>splP0A2F7ISSB1_SALTI	
	Single-stranded DNA-binding	
P25762;P0A2F7;P0A2F6;Q8ZJ06;	protein 1 OS=Salmonella typhi	
Q87LA3;Q9KUW2;Q9RHF4;P0AG	GN=ssb PE=3	
E3;Q8DCJ0;Q8EA81;P28045;P280	SV=2;>sp P0A2F6 SSB1_SALT	
44;P18022;P0AGE2;P0AGE1;P0A	Y Single-stranded DNA-binding	
GE0;P28043	protein 1 OS	
	>sp P25253 OMPX_ENTCL	18.653
	Outer membrane protein X	
Dococo	OS=Enterobacter cloacae	
P25253		25.040
	<pre>>Sp P23925 DGAL_CITER D- galactose binding periplasmic</pre>	30.010
	protein OS-Citrobacter freundii	
P23925	GN=malB PE=3 SV=1	
	>splP23869IPPIB_ECOLI	18.153
	Peptidyl-prolyl cis-trans	
	isomerase B OS=Escherichia	
	coli (strain K12) GN=ppiB PE=1	
P23869	SV=2	
	>sp P23843 OPPA_ECOLI	60.898
	Periplasmic oligopeptide-binding	
	protein OS=Escherichia coli	
P00040	(strain K12) GN=oppA PE=1	
r23043		07 404
	>SUIP23330 PP3A_EUULI Phosphoepolovruvata svetbase	ð1.434
	OS-Escherichia coli (strain K12)	
P23538	GN=pnsA PF=1 SV=5	
1 20000	>splP21883IODP2 BACSU	47 538
P21883:P11961	Dihydrolipovllysine-residue	

	acetyltransferase component of	
	pyruvate dehydrogenase	
	complex OS=Bacillus subtilis	
	(strain 168) GN=pdhC PE=1	
	SV=2;>sp P11961 ODP2 GEO	
	SE Dihydrolipovllysine-residue	
	acetyltransferase component of	
	nyruvate de	
	sonD21621ISUMT DSEDE	20.252
	>spjF21031jS0IMI_FSEDE	29.252
	Uroporphyrinogen-in C-	
	metnyitransferase	
	OS=Pseudomonas denitrificans	
P21631	GN=cobA PE=1 SV=1	
	>sp P21184 FLICA_PSEAI A-	40.066
	type flagellin OS=Pseudomonas	
	aeruginosa GN=fliC PE=1	
	SV=3:>sp P72151 FLICB PSEA	
	E B-type flagellin	
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15602 / DSM	
	22644 / CIP 104116 / ICM	
	1/9/7 / I MC 10000 / 10 / DDC	
D21104-D72454	1404 / DAOA) ON 400 DE 4 01	
PZ1184;P72151	IUI / PAUT) GN=TIIC PE=1 SV	45.000
	>sp P19926 AGP_ECOLI	45.682
	Glucose-1-phosphatase	
	OS=Escherichia coli (strain K12)	
P19926	GN=agp PE=1 SV=1	
	>sp P17838 FMP1_PSEAI	16.175
	Fimbrial protein	
	OS=Pseudomonas aeruginosa	
P17838	GN=pilA PF=1 SV=1	
111000		52 015
	Cytosol non-specific dipentidase	02.010
	OS-Escharichia coli (strain K12)	
D15000	OS=ESCHEIRCHIA COII (SHAIT KTZ)	
P 15200		47.004
	>sp P14165 CISY_PSEAE	47.694
	Citrate synthase	
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=altA PE=1	
P14165	SV=2	
	>splP1406216PGD_SALTY 6-	51 395
	phosphogluconate	21.000
	debydrogenase decarboxylating	
	OS-Solmonollo tunhimurium	
	(stroin LT2 / SCSC4442 / ATCC	
D14000	(Sudii Liz/ SGSC1412/ ATCC	
M1406Z	100720) GN=gnd PE=3 SV=1	40.45-
	>spiP13981 ARCA_PSEAE	46.435
	Arginine deiminase	
	OS=Pseudomonas aeruginosa	
	(strain ATCC 15692 / DSM	
	22644 / CIP 104116 / JCM	
	14847 / LMG 12228 / 1C / PRS	
	101 / PAO1) GN=arcA PE=1	
P13981·O88P52·P41142	SV=2 spl088P521ARCA PSF	

	PK Arginine deiminase	
	ATCC 4705	
		12 029
	2-bydroxyglutaryl-CoA	42.020
	debydratase subunit beta	
	OS=Acidaminococcus	
	fermentans (strain ATCC 25085	
	/ DSM 20731 / VR4) GN=hadB	
P11570	PE=1 SV=3	
	>splP0DOV9ISLAD_PSEPU 3-	52.148
	sulfolactaldehyde	
	dehydrogenase	
	OS=Pseudomonas putida	
	GN=PpSQ1_00395 PE=1	
	SV=1;>sp P94428 GABD_BACS	
	U Succinate-semialdehyde	
	dehydrogenase [NADP(+)]	
	OS=Bacillus subtilis (strain 168)	
	GN=gabD PE=1	
	SV=1;>sp P25526 GABD_ECOL	
P0DOV9;P94428;P25526	I Succinate-	
	>sp P0DM31 ENO_ENTFA	46.511
	Enolase OS=Enterococcus	
	faecalis (strain ATCC 700802 /	
	V583) GN=eno PE=3	
	T Enclose OC Enternosesus	
	faccolic (strain TX4000 / IH2 2)	
	$CN_{app} DE_1 SV_1$	
FUDIVIST,EUERTO		34.24
	lactate debydrogenase 2	34.24
	OS=Bifidobacterium longum	
	(strain NCC 2705) GN=ldh2	
	PF=1	
	SV=1:>splE8ME30ILDH2 BIFL	
	2 L-lactate dehydrogenase 2	
	OS=Bifidobacterium longum	
	subsp. longum (strain ATCC	
	15707 / DSM 20219 / JCM 1217	
P0CW93;E8ME30;B8DSV5	/ NCTC 11818 / E	
	>sp P0AGK7 YHBY_SHIFL	10.784
	RNA-binding protein YhbY	
	OS=Shigella flexneri GN=yhbY	
	SV=1;>sp PUAGK6 YHBY_ECO	
	57 RNA-binding protein YhbY	
DUVCK2-DUVCKE-DUVCKE-DUVCK	5v=1,>spiruagkojingi L6 DNA binding protoin VebV	
TUAGN7, TUAGNO; TUAGNO; TUAGNO; TUAGN	Contracting protein the t	
- *		20 777
	Succipate-Con ligace [ADD]	29.111
	formingl subunit alpha	
	OS=Fscherichia coli O157.H7	
6.P53591	GN=sucD PF=3	
0,1 00001		

Γ		
	SV=2;>sp P0AGF0 SUCD_ECO	
	L6 SuccinateCoA ligase [ADP-	
	forming] subunit alpha	
	OS=Escherichia coli O6:H1	
	(strain CET073 / ATCC 700928 /	
		27.022
	>spipuagosipsis_shirt	37.023
	Phosphate-binding protein PstS	
	OS=Shigella flexneri GN=pstS	
	PE=3	
	SV=1;>sp P0AG82 PSTS_ECO	
	LI Phosphate-binding protein	
	PstS OS-Escherichia coli (strain	
P0AC83-P0AC82	K(12) GN-pstS PE-1 SV-1	
FUAG63,FUAG62		20.050
	>SPIPUAG79 SUBI_SHIFL	36.659
	Sulfate-binding protein	
	OS=Shigella flexneri GN=sbp	
	PE=3	
	SV=1;>sp P02906 SUBI_SALTY	
	Sulfate-binding protein	
	OS=Salmonella typhimurium	
	(strain LT2 / SGSC1/12 / ATCC	
	(Stialit E12/ 500001412/ ATCC	
	SV=3;>sp P0AG78 SUBI_ECOL	
P0AG79;P02906;P0AG78	I Sulfate-binding protein	
	>sp P0AG70 RS1_SHIFL 30S	61.157
	ribosomal protein S1	
	OS=Shigella flexneri GN=rpsA	
	PE=3	
	SV=1:>splP0AG69IRS1 ECO57	
	30S ribosomal protein S1	
	OS=Escherichia coli O157·H7	
	GN-rpsA PE-3	
	SV_{-1} ; op $DAC69 DS1 ECO16$	
	3V=1,>SPIFUAG00 R31_ECOL0	
	30S hosomal protein ST	
P0AG70;P0AG69;P0AG68;P0AG6	OS=Escherichia coli O6:H1	
7;P37985;P14128;P57395;Q44653	(strain	
	>sp P0AFL0 POTD_SHIFL	38.867
	Spermidine/putrescine-binding	
	periplasmic protein OS=Shigella	
	flexneri GN=potD PE=3	
	SV=1:>splP0AFK9IPOTD FC0	
	LI Spermidine/putrescine-	
	binding pariplasmic protoin	
	OS-Ecohorichia adi (atrain K12)	
	SV=1;>SPIPUA2C8 POID_SALT	
PUAFL0;PUAFK9;P0A2C8;P0A2C7		
	>sp P0AFJ0 PERM_ECO57	39.194
	Putative permease PerM	
	OS=Escherichia coli O157:H7	
	GN=perM PE=3	
	SV=1:>splP0AFI9IPERM ECOI	
	I Putative permease PerM	
	OS=Escherichia coli (strain K12)	
	CN = control DE = 3 CV = 1	
FUALJU, FUALIS	Giv=helini LE=2 2A=1	

	>sp P0AFH9 OSMY_ECOL6	21.073
	Osmotically-inducible protein Y	
	OS=Escherichia coli O6:H1	
	(strain CFT073 / ATCC 700928 /	
	UPEC) GN=osmY PE=3	
	SV=1:>splP0AFH8lOSMY_ECO	
	V OS-Ecoboriobio poli (stroip	
Ρυάρπθ,ρυάρπο	KIZ) GINEUSIIII PEEI SVEI	00.007
	>sp PUAFG9 ODP1_ECO57	99.667
	Pyruvate dehydrogenase E1	
	component OS=Escherichia coli	
	O157:H7 GN=aceE PE=1	
	SV=2;>sp P0AFG8 ODP1_ECO	
	LI Pyruvate dehydrogenase E1	
	component OS=Escherichia coli	
P0AFG9 P0AFG8 P57301 Q8K9T9	(strain K12) GN=aceE PE=1	
·P45119·O89AR0·O59097	SV-2	
, 10110, @00/110, @0000/	ST-2 SSDIPOAF951RIDA SHIEL 2-	13 611
	iminohutaneete/2	10.011
	iminopularioale/2-	
	OS=Shigella flexneri GN=yjgF	
	PE=3	
	SV=2;>sp P0AF94 RIDA_ECOL	
	6 2-iminobutanoate/2-	
	iminopropanoate deaminase	
	OS=Escherichia coli O6:H1	
	(strain CFT073 / ATCC 700928 /	
P0AF95:P0AF94:P0AF93	UPEC) GN=viaF PE=3 SV=2:>s	
	>splP0AEU2IHIS1 ECO57	28 483
	Histidine-binding periplasmic	20.400
	protein OS-Escherichia coli	
	O157 $H7$ CN hig L $DE - 2$	
	SV=1;>sp PUAEU1 HISJ_ECOL	
	6 Histidine-binding periplasmic	
	protein OS=Escherichia coli	
	O6:H1 (strain CFT073 / ATCC	
	700928 / UPEC) GN=hisJ PE=3	
P0AEU2;P0AEU1;P0AEU0	SV=1;>sp P0AEU	
	>sp P0AET4 HDEB SHIFL Acid	12.043
	stress chaperone HdeB	
	OS=Shigella flexneri GN=hdeB	
	PF=3	
	SV-1-SOLDOAFTRINDER FOO	
	L6 Acid stress chaparana UdaP	
	CO-Epoboriatio and CO-U	
	(strain CF1073/A1CC /00928/	
	UPEC) GN=hdeB PE=3	
	SV=1;>sp P0AET2 HDEB_ECO	
P0AET4;P0AET3;P0AET2	LI Acid stress chap	
	>sp P0AES5 GYRA_SHIFL	96.962
	DNA gyrase subunit A	
	OS=Shigella flexneri GN=avrA	
	PF=1	
	SV-1-SOLP37411IGVRA SALT	
	V DNA avrase subunit A	
	CS-Solmonollo turbimurium	
FUAESS, P3/411, PUAES4	US=Saimonella typnimurium	

	L6 Methionine aminopeptidase	
		00.05
	>sp PUADA6 YAJG_ECOL6	20.95
	Uncharacterized lipoprotein	
	YajG OS=Escherichia coli	
	O6:H1 (strain CFT073 / ATCC	
	700928 / UPEC) GN=yajG PE=3	
	SV=1;>sp P0ADA5 YAJG_ECO	
	LI Uncharacterized lipoprotein	
	YaiG OS=Escherichia coli	
	(strain K12) GN=vaiG PE=3	
P0ADA6:P0ADA5	SV=1	
	>splP0AD60IIVY ECO57	16.872
	Inhibitor of vertebrate lysozyme	
	OS=Escherichia coli O157:H7	
	GN-ivy PE-3	
	SV-1:>splP0AD5911//X ECOLI	
	Inhibitor of vortobrato lycozymo	
	OS Espherichia soli (strain K12)	
	OS = ESCHERICHIA COII (STAIR K12)	
PUAD60;PUAD59	GN=IVY PE=1 SV=1	
	>SPIPUACK1 CRP_SHIFL	23.64
	cAMP-activated global	
	transcriptional regulator CRP	
	OS=Shigella flexneri GN=crp	
	PE=3	
	SV=1;>sp P0A2T7 CRP_KLEAE	
	cAMP-activated global	
	transcriptional regulator CRP	
	OS=Klebsiella aerogenes	
	GN=crp PE=1	
P0ACK1:P0A2T7:P0A2T6:P0ACK0	SV=1:>splP0A2T6lCRP_SALTY	
·P0AC.19·P0AC.18·005689	cAMP-activ	
	SSDIPOACA6ISSPA SHIFI	24 305
	Stringent starvation protein A	24.000
	OS-Shigolla floxport CN-conA	
	SV=2,>SPIPUACASISSPA_ECO	
	57 Stringent starvation protein A	
	OS=Escherichia coli O157:H7	
	GN=sspA PE=3	
P0ACA6;P0ACA5;P0ACA4;P0ACA	SV=2;>sp P0ACA4 SSPA_ECO	
3;Q9CNB0;P45207;P31784;Q7VLK	L6 Stringent starvation protein A	
4	OS=Escherich	
	>sp P0AC87 PHSG_SHIFL	93.171
	Glycogen phosphorylase	
	OS=Shigella flexneri GN=glgP	
	PE=3	
	SV=1;>sp P0AC86 PHSG_ECO	
	LI Glycogen phosphorylase	
	OS=Escherichia coli (strain K12)	
P0AC87;P0AC86	GN=glgP PE=3 SV=1	
	>spIP0AC50IFRDB SHIFL	27,123
	Fumarate reductase iron-sulfur	0
	subunit OS=Shigella flexneri	
	GN=frdB PE=3	
ΡΛΑΩ50 ΡΛΑΩ49 ΡΛΑΩ48 ΡΛΑΩ47	SV=2:>splP0AC49IFRDB FCO	
· 07000, 07040, 07040, 07047	57 Eumarate reductado iron	
, F ZUJZ I	JI I UIIIAIALE IEUUULASE IIUII-	

Sulfur subunit OS=Escherichia coli O157:H7 GN=rdB PE-3 SV=2;>spIP0AC48 FRDB_EC0 L6 Furnarate reductase iron-sul >spIP0ABS4(DKSA_SHIFL RNA polymerase-binding transcription factor DksA OS=Shigella flexneri GN=dsA PE-3 SV=1;>spIP0A1G6[DKSA_SALT I RNA polymerase-binding transcription factor DksA OS=Salmonella typhi GN=dksA PE=3 3;P0ABS2;P0ABS1;Q8K9U5 SV=1;>spIP0A1G5[DKSA_SALT Y RNA polymerase- spIP0ABQ3[GARR_EC0L6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>spIP0ABQ2[GARR_EC0 L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 PV=1 SV=1;>spIP0ABD4]BFR_EC0L6 Bacterioferritin OS=Escherichia coli (strain K12) GN=garR PE=1 PV=2 P0ABQ3;P0ABQ2 SV=1 P0ABD4;P0ABD3;068926;068935; SV=1;>spIP0ABD3]BFR_EC0L1 Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>spIP0ABT3]ALF_SHIFL P0ABD4;P0ABD3;068926;068935; SV=1;>spIP0ABT3]ALF_SHIFL SV=1;>spIP0ABT3]ALF_SHIFL P0ABT3;P0AB72;P0AB71 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157
coli O157:H7 GN=frdB PE=3 SV=2;>spIP0AC48 FRDB_EC0 L6 Fumate reductase iron-sul>spIP0ABS4 DKSA_SHIFL RNA polymerase-binding transcription factor DksA OS=Shigella flexneri GN=dksA PE=3 SV=1;>spIP0A166 DKSA_SALT I RNA polymerase-binding transcription factor DksA OS=Salmonella typhi GN=dksA PE=3 SV=1;>spIP0A165 DKSA_SALT Y RNA polymerase- SV=1;>spIP0A165 DKSA_SALT Y RNA polymerase- SV=1;>spIP0A165 DKSA_SALT Y RNA polymerase- SV=1;>spIP0A165 DKSA_SALT Y RNA polymerase- SV=1;>spIP0ABQ3[GARR_ECOL6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700282 / UPEC) GN=garR PE=3 SV=1;>spIP0ABQ2[GARR_ECO L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1;>spIP0ABD4]BFR_ECOL6 Bacterioferritin OS=Escherichia coli (strain K12) GN=garR PE=3 SV=1;>spIP0ABD4]BFR_ECOL6 Bacterioferritin OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1;>spIP0ABD3]BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1;>spIP0ABD3]BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1;>spIP0ABD3]BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=fre=1 SV=1;>spIP0ABD3]BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=fre=1 SV=1;>spIP0ABD3]BFR_ECOL1 Bacterioferritin OS=Escherichia
SV=2;>sp P0AC48 FRDB_EC0 L6 Fumarate reductase iron-sul 17.528 >ssp[P0ABS4[DKSA_SHIFL_RNA polymerase-binding transcription factor DksA OS=Shigella flexneri GN=dksA PE=3 SV=1;>sp P0A1G6[DKSA_SALT I RNA polymerase-binding transcription factor DksA OS=Salmonella typhi GN=dksA PE=3 SV=1;>sp P0A1G5[DKSA_SALT Y RNA polymerase- ssp P0ABQ3[GARR_EC0L6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>sp P0ABQ2[GARR_EC0 L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 30.427 P0ABQ3;P0ABQ2 SV=1;>sp P0ABQ2[GARR_EC0 L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 18.495 P0ABQ3;P0ABQ2 SV=1;>sp P0ABD4]BFR_EC0L6 Bacterioferritin OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 18.495 P0ABD4;P0ABD3;068926;068935; O50172 SV=1;>sp P0ABD3]BFR_EC0L1 Bacterioferritin OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1;>sp P0AB73]ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB73]ALF_EC0L1 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB73]ALF_EC0L1 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB73]ALF_EC0L1 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB73]ALF_EC0L1 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O3=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A939]CSPC_SALT Y Cold shock-like protein CspC 7.4023
L6 Fumarate reductase iron-sul >splP0ABS4[DKSA_SHIFL_RNA polymerase-binding transcription factor DksA OS=Shigella flexneri GN=dksA PE=3 SV=1;splP0A1G6[DKSA_SALT I RNA polymerase-binding transcription factor DksA OS=Salmonella typhi GN=dksA PE=3 P0ABS4;P0A1G6;P0A1G5;P0ABS 3;P0ABS2;P0ABS1;Q8K9U5 SV=1;splP0A1G5[DKSA_SALT Y RNA polymerase- splP0ABQ3[GARR_ECOL6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;splP0ABQ2[GARR_ECOL L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1;splP0ABD4]BFR_ECOL6 Bacterioferritin OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bir PE=3 SV=1;splP0ABD4]BFR_ECOL6 Bacterioferritin OS=Escherichia coli 06:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bir PE=3 SV=1;splP0ABD3]BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=bir PE=1 SV=1;splP0ABD3]BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=bir PE=1 SV=1;splP0ABD3]BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=bir PE=1 SV=1;splP0AB7]ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Stojella flexneri GN=fbaA PE=3 SV=2;splP0AB7]ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=tbaA PE=3 SV=2;splP0AB7]ALF_ECO51 Fructose-bisphosphate aldolase class 2 OS=Stojella flexneri GN=fbaA PE=3 SV=2;splP0AB7]ALF_ECO51 Fructose-bisphosphate aldolase class 2 OS=Stojella flexneri GN=fbaA PE=3 SV=2;splP0AB7]ALF_ECO51 Fructose-bisphosphate aldolase class 2 OS=Stojella flexneri GN=fbaA PE=3 SV=2;splP0AB7]ALF_ECO51 Fructose-bisphosphate aldolase class 2 OS=StojelAB7]ALF_ECO51 Fructose-bisphosphate aldolase class 2 OS=StojelAB7]ALF_ECO51 Fructose-bisphosphate aldolase class 2 OS=StojelAB7]ALF_ECO51 Fructose-bisphosphate aldolase class 2 OS=StojelAB7]ALF_SCO14 Fructose-bisphosphate aldolase class 2 OS=StojelAB7]ALF_SCO14 Fructose-bisphosphate aldolase
P0ABS4/DKSA_SHIFL_RNA polymerase-binding transcription factor DksA OS=Shigella flexneri GN=dksA PE=3 SV=1;>splP0AIG6/DKSA_SALT I RNA polymerase-binding transcription factor DksA OS=Salmonella typhi GN=dksA PE=3 SV=1;>splP0ABQ3/GARR_ECOL6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CF1073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>splP0ABQ2/GARR_ECO L12-hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CF1073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>splP0ABQ2/GARR_ECO L12-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 30.427 P0ABQ3;P0ABQ2 SV=1;>splP0ABQ2/GARR_ECO L12-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 18.495 P0ABQ3;P0ABQ2 SV=1 SV=1 P0ABQ3;P0ABQ2 SV=1; SV=1;>splP0ABD3/DR=ECO L12-hydroxy-3-oxopropionate reductase OS=Escherichia coli 06:H1 (strain CF1073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>splP0ABD3/BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>splP0ABD3/BFR_SALTY Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=2;>splP0AB73/ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB73/ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB72/ALF_ECOJF Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB73/ALF_SCOJ Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB73/ALF_SCOJ Fructos
POABA3;P0
polymerase-binding transcription factor DtsA OS=Shigella litexneri GN=dksA PE=3 SV=1;>spIP0A1G6[DKSA_SALT I RNA polymerase-binding transcription factor DksA OS=Salmonella typhi GN=dksA PE=3 SV=1;>spIP0A1G5[DKSA_SALT Y RNA polymerase- spIP0ABS2;P0ABS1;08K9U530.427 30.427 hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>spIP0ABQ2[GARR_ECO L12-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=130.427P0ABQ3;P0ABQ2SV=1;>spIP0ABQ2[GARR_ECO L12-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=118.495P0ABQ3;P0ABQ2SV=1 >spIP0ABD4]BFR_ECOL6 Bacterioferritin OS=Escherichia coli 06:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>spIP0ABD3]BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=3 SV=1;>spIP0ABD3]BFR_ECOL1 Bacterioferritin OS=Salmonell39.147P0ABD4;P0ABD3;O68926;O68935; O50172SV=1;>spIP0AB73]ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>spIP0AB73]ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Scherichia coli O157:H7 GN=fbaA PE=3 SV=2;>spIP0AB73]ALF_ECOL1 PCAB73;P0AB72;P0AB7139.147P0AB73;P0AB72;P0AB71Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>spIP0AB73]ALF_ECOL1 Fructose-bisphosphate aldolase class 2 OS=Scherichia coli O157:H7 GN=fbaA PE=3 SV=2;>spIP0AB73]ALF_ECOL1 Fructose-bisphosphate aldolase class 2 OS=Scherichia coli O157:H7 GN=fbaA PE=3 SV=2;>spIP0AB73]ALF_ECOL1 Fructose-bisphosphate aldolase class 2 OS=Scherichia coli O157:H7 GN=fbaA PE=3 SV=2;>spIP0AB73]ALF_EC
factor DksA OS=Shigella flexneri GN=dksA PE=3 SV=1;>spIP0A1G6[DKSA_SALT I RNA polymerase-binding transcription factor DksA OS=Salmonella typhi GN=dksA PE=3 SV=1;>spIP0A1G5[DKSA_SALT Y RNA polymerase- >spIP0ABQ3[GARR_ECOL6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CF1073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>spIP0ABQ2[GARR_ECOL6 L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=3 SV=1;>spIP0ABQ2[GARR_ECOL6 L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=3 SV=118.495 Bacterioferritin OS=Escherichia coli (strain K12) GN=garR PE=3 SV=1P0ABQ3;P0ABQ2SV=1>spIP0ABD4]BFR_ECOL6 Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=3 SV=1;>spIP0ABD3]BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=3 SV=1;>spIP0ABD3]BFR_ECOL1 Bacterioferritin OS=Salmonell SV=1;>spIP0ABD3]ALF_SHIFL SV=1;>spIP0AB7]ALF_SHIFL SV=1;>spIP0AB7]ALF_SHIFL SV=2;>spIP0AB7]ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>spIP0AB71 ALF_ECOL1 Fructose-bisphosphate aldolase class 2 OS=Scherichia coli O157171 GN=fbaA PE=3 SV=2;>spIP0AB71 ALF_ECOL1 Fructose-bisphosphate aldolase class 2 OS=Scherichia coli OS=Salmonella typhi GN=cspC PE=3 SV=2;>spIP0AB71 ALF_ECOL1 Fructose-bisphosphate aldolase class 2 OS=Salmonella typhi GN=cspC PE=3 SV=2;>spIP0A920[CSPC_SALT Y Cold shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>spIP0A929[CSPC_SALT Y Cold shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>spIP0A929[CSPC_SALT Y Cold shock-like protein CspC OS=Salmonella typhi GN=cspC7.4023 shock-like protein CspC OS=Salmonella typhi GN=cspC PE
flexneri GN=dksA PE=3 SV=1;>spIP0A1G6[DKSA_SALT I RNA polymerase-binding transcription factor DksA OS=Salmonella typhi GN=dksA PE=3 SV=1;>spIP0A1G5[DKSA_SALT Y RNA polymerase- SV=1;>spIP0ABQ3[GARR_ECOL6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>spIP0ABQ2[GARR_ECO L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 30.427 P0ABQ3;P0ABQ2 SV=1;>spIP0ABQ2[GARR_ECO L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 18.495 P0ABQ3;P0ABQ2 SV=1; SV=1;>spIP0ABD4]BFR_ECOL6 Bacterioferritin OS=Escherichia coli 06:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>spIP0ABD3]BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=3 SV=1;>spIP0ABD3]BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=3 SV=1;>spIP0ABD3]BFR_ECOL1 Bacterioferritin OS=Salmonell 39.147 P0ABD4;P0ABD3;O68926;O68935; O50172 SV=1;>spIP0ABD3[BFR_ECOL1 Bacterioferritin OS=Salmonell 39.147 P0ABD4;P0ABD3;O68926;O68935; O50172 SV=2;>spIP0AB72]ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>spIP0AB72]ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Scherichia coli O157:H7 GN=fbaA PE=3 SV=2;>spIP0AB71]ALF_ECO11 POAB73;P0AB72;P0AB71 7.4023 shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>spIP0A920]CSPC_SALT Y Cold shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 7.4023
P0ABS4;P0A1G6;P0A1G5;P0ABS 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABQ3]GARR_ECOL62 hydroxy-3-oxopropionate reductase OS=Escherichia coli 06:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>sp P0ABQ2]GARR_ECO L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 P0ABQ3;P0ABQ2 9 P0ABQ3;P0ABQ2 9 V=1 P0ABD4;P0ABD3;O68926;O68935; O50172 9 P0ABD4;P0ABD3;O68926;O68935; O50172 9 P0ABD4;P0ABD3;O68926;O68935; O50172 9 P0ABD4;P0ABD3;O68926;O68935; O50172 9 P0ABD4;P0ABD3;O68926;O68935; O50172 9 P0ABD4;P0ABD3;O68926;O68935; OSV=1;>sp P0AB73]ALF_SHIFL SV=1;>sp P0AB73]ALF_SHIFL SV=2;>sp P0AB73]ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:17 GN=fbaA PE=3 SV=2;>sp P0AB71]ALF_ECOL1 Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB71]ALF_ECOL1 Fructose-bisphosphate aldolase class 2 OS=Saltmonella typhi GN=cspC PE=3 SV=2;>sp P0A920]CSPC_SALT Y Cold shock-like protein CspC OS=Saltmonella typhi GN=cspC PE=3 SV=2;>sp P0A920]CSPC_SALT Y Cold shock-like protein CspC
P0ABS4;P0A1G6;P0A1G5;P0ABS 3;P0ABS2;P0ABS1;08K9U5 3;P0ABS2;P0ABS1;08K9U5 3;P0ABS2;P0ABS1;08K9U5 3;P0ABS2;P0ABS1;08K9U5 3;P0ABS2;P0ABS1;08K9U5 3;P0ABS2;P0ABS1;08K9U5 3;P0ABS2;P0ABS1;08K9U5 3;P0ABS2;P0ABS1;08K9U5 3;P0ABQ3[GARR_ECOL6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>splP0ABD2[GARR_ECO L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 SV=1 SV=1 SV=1 SV=1 SV=1 SV=1 SV
P0ABS4;P0A1G6;P0A1G5;P0ABS 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABS2;P0ABS1;Q8K9U5 3;P0ABQ2;GARR_ECOL62- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>splP0ABQ2[GARR_ECO L12-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 3;SV=1 3;SV=1 3;SV=1 3;SV=1 3;SV=1 3;SV=1;>splP0ABD4]BFR_ECOL6 Bacterioferritin OS=Escherichia coli (o6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>splP0ABD3 BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>splP0ABD3 BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>splP0ABD3 BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>splP0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Scherichia coli O157:H7 GN=fbaA PE=3 SV=2;>splP0AB73 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB73 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB73 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB73 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Scherichia coli O157:H7 GN=fbaA PE=3 SV=2;>splP0AB73 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Scherichia coli O157:H7 GN=fbaA PE=3 SV=2;>splP0AB73 ALF_SHIFL Fructose-bisphosphate aldolase SV=2;>splP0AB73 ALF_SHIFL Fructose-bisphosphate aldolase SV=2;>splP0AB73 ALF_SHIFL Fructose-bisphosphate aldolase OS=Salmonella typhi GN=cspC OS=Salmonella typhi GN=cspC OS=Salmonella typhi GN=cspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>splP0AB79 CSPC_SALT Y Cold shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>splP0AB73 ALF_SHIFL Fructose
P0ABS4;P0A1G6;P0A1G5;P0ABS OS=Salmonella typhi GN=dksA PE=3 SV=1;>splP0A1G5]DKSA_SALT 3;P0ABS2;P0ABS1;Q8K9U5 Y RNA polymerase- splP0ABG3]GARR_ECOL6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 70028 / UPEC) GN=garR PE=3 SV=1;>splP0ABQ2[GARR_ECOL L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 P0ABQ3;P0ABQ2 SV=1 P0ABQ3;P0ABQ2 SV=1 splP0ABD4]BFR_ECOL6 Bacterioferritin OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 P0ABQ3;P0ABQ2 SV=1 splP0ABD4]BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=3 SV=1;>splP0ABD3]BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=3 SV=1;>splP0ABD3]DFR_ECOLI Bacterioferritin OS=Salmonell ssplP0AB7;P0ABD3;O68926;O68935; SV=1;>splP0AB7;ALF_SHIFL 7fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=1;>splP0AB7;POAB7;POAB71 Fructose-bisphosphate aldolase Class 2 OS=Shigella flexneri SV=2;>splP0AB7]ALF_ECOL
OS=Salmonella typhi GN=dksA PE=3 P0ABS4;P0A1G6;P0A1G5;P0ABS 3;P0ABS2;P0ABS1;Q8K9U5 >splP0ABG3]GARR_ECOL6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1:>splP0ABQ2[GARR_ECO L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 P0ABQ3;P0ABQ2 SV=1 P0ABQ3;P0ABQ2 SV=1 SV=1 SV=1 SPIP0ABD4]BFR_ECOL6 L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 SV=2 SV=1 SV=2 SV=1 SV=1 SV=1 SV=1 SV=1 SV=2 SV=2 SV=2 SV=
P0ABS4;P0A1G6;P0A1G5;P0ABS PE=3 SV=1;>spIP0ABG3[GARR_ECOL6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>spIP0ABQ2[GARR_ECOL L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 30.427 P0ABQ3;P0ABQ2 SV=1;>spIP0ABQ2[GARR_ECOL L1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 18.495 P0ABQ3;P0ABQ2 SV=1 >spIP0ABD4[BFR_ECOL6 Bacterioferritin OS=Escherichia coli 06:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>spIP0ABD3[BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>spIP0ABD3[BFR_ECOLI Bacterioferritin OS=Salmonell 18.495 P0ABD4;P0ABD3;O68926;O68935; SV=1;>spIP0ABD3[BFR_ECOLI Bacterioferritin OS=Salmonell 39.147 Fructose-bisphosphate aldolase class 2 OS=Scherichia coli O157:H7 GN=fbaA PE=3 SV=2;>spIP0AB72]ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>spIP0AB72]CALF_ECOJ1 Fructose-bisphosphate aldolase class 2 OS=Scherichia coli O157:H7 GN=fbaA PE=3 SV=2;>spIP0A9Z0[CSPC_SALT] 39.147 P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase class 2 OS=Scherichia coli O157:H7 GN=fbaA PE=3 SV=2;>spIP0A9Z0[CSPC_SALT] 7.4023 SV=2;>spIP0A9Z0[CSPC_SALT] Y Cold shock-like protein CspC 7.4023
P0ABS4;P0A1G6;P0A1G5;P0ABS SV=1;>sp P0A1G5]DKSA_SALT 3;P0ABS2;P0ABS1;Q8K9U5 >sp P0ABQ3]GARR_ECOL6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli 06:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>sp P0ABQ2[GARR_ECO U1 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 P0ABQ3;P0ABQ2 SV=1 P0ABQ3;P0ABQ2 SV=1 Sv=1:>sp P0ABD4]BFR_ECOL6 18.495 Bacterioferritin OS=Escherichia coli 06:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>sp P0ABD3]BFR_ECOLI Bacterioferritin OS=Escherichia coli 06:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>sp P0ABD3]BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>sp P0AB73]ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB73]ALF_SHIFL SV=2;>sp P0AB73]ALF_SHA PE=3 SV=2;>sp P0AB71]ALF_ECOLI POAB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase SV=2;>sp P0AB71]ALF_ECOLI Fructose-bisphosphate aldolase SV=2;>sp P0AB71]ALF_ECOLI
3;P0ABS2;P0ABS1;Q8K9U5 SV=1,>sp P0ABQ3]GARR_ECOL6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>sp P0ABQ2[GARR_ECO LI 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 30.427 P0ABQ3;P0ABQ2 SV=1;>sp P0ABQ2[GARR_ECO LI 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 18.495 P0ABQ3;P0ABQ2 SV=1 Ssp P0ABD4]BFR_ECOL6 Bacterioferritin OS=Escherichia coli 06:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>sp P0ABD3]BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=3 SV=1;>sp P0ABD3]BFR_ECOLI Bacterioferritin OS=Salmonell 39.147 P0ABD4;P0ABD3;O68926;O68935; O50172 SV=1;>sp P0ABD3]BFR_SALTY Bacterioferritin OS=Salmonell 39.147 P0ABD4;P0ABD3;O68926;O68935; O50172 SV=1;>sp P0AB73]ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72]ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB72]ALF_ECOLI Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB72]ALF_ECOLI Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB72]ALF_ECOLI Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB70]CSPC_SALTI Cold shock-like protein CspC OS=Salmonella tybi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALTI 7.4023 SV=2;>sp P0A9Y9 CSPC_SALTI Col shock-like protein CspC 0.0 OS=Solmonella tybi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALTI
3;P0ABS2;P0ABS1;Q8R9U5 Y RNA polymerase- >splP0ABQ3]GARR_ECOL6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>splP0ABQ2[GARR_ECO LI 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 V=1 P0ABQ3;P0ABQ2 SV=1 SV=1 P0ABQ3;P0ABQ2 SV=1 SV=1 P0ABQ3;P0ABQ2 SV=1 SV=1 P0ABD4;P0ABD3;O68926;O68935; O50172 SV=1;>splP0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=3 SV=1;>splP0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=3 SV=2;>splP0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>splP0AB71 ALF_ECOLI P0AB73;P0AB72;P0AB71 P0AB73;P0AB73;P0AB72;P0AB71 P0AB73;P0AB73;P0AB73;P0AB73;P0AB73;P0AB72;P0AB7
>sp P0ABQ3 GARR_ECOL6 2- hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>sp P0ABQ2 GARR_ECO LI 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=118.495P0ABQ3;P0ABQ2SV=1>sp P0ABD4 BFR_ECOL6 Bacterioferritin OS=Escherichia coli 06:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>sp P0ABD3 BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=3 SV=1;>sp P0ABD3 BFR_ECOL1 Bacterioferritin OS=Salmonell18.495P0ABD4;P0ABD3;O68926;O68935; O50172SV=1;>sp P0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOL1 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOL1 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli OS=Salmonell >Sp P0AB73;P0AB72;P0AB7139.147P0AB73;P0AB72;P0AB71Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOL1 Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=Salmonell >Sp P0AB72;P0AB717.4023
hydroxy-3-oxopropionate reductase OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>splP0ABQ2[GARR_ECO Ll 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1P0ABQ3;P0ABQ2SV=1P0ABQ3;P0ABQ2SV=1P0ABQ3;P0ABQ2SV=1P0ABQ3;P0ABQ2SV=1P0ABQ3;P0ABQ2SV=1P0ABQ3;P0ABQ2SV=1P0ABQ3;P0ABQ2SV=1P0ABQ3;P0ABQ2SV=1P0ABQ3;P0ABQ2SV=1P0ABQ3;P0ABQ2SV=1SV=1>splP0ABD4]BFR_ECOL6 Bacterioferritin OS=Escherichia coli 06:H1 (strain CF1073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>splP0ABD3]BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 Sv=1;>splP0ABD3]BFR_ECOL1 Bacterioferritin OS=SalmonellP0ABD4;P0ABD3;O68926;O68935; O50172SV=1;>splP0AB73]ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB72]ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>splP0AB72]ALF_ECOL1 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>splP0AB71]ALF_ECOL1 Fructose-bisphosphate aldolase class 2 OS=Salmonella typhi GN=cspC DS=Salmonella typhi GN=cspC DS=Salmonella typhi GN=cspC PE=3 SV=2;>splP0A9Y9]CSPC_SALT Y Cold shock-like protein CspC7.4023 shock-like protein CspC
P0ABQ3;P0ABQ2 P0ABQ3;P0ABQ2;P0
POABQ3;P0ABQ2 POABQ3;P0ABQ2;O68926;O68935; SV=1;>sp P0ABQ3]BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>sp P0ABQ3]ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72]ALF_ECOLI POAB73;P0AB72;P0AB71 POAB73;P0AB74 POAB73;P0AB72;P0AB71 POAB73;P0AB74 POAB73;P0AB74 POAB73;P0AB72;P0AB71 POAB73;P0AB74 POAB73;P0AB74 POAB73;P0AB74 POAB73;P0AB74 POAB73;P0AB74 POAB73;P0AB74 POAB74 POAB73;P0AB74 POAB74 POAB74 POAB74 POAB74 POAB74 POAB74 POAB74 P
OC:T1 (Strain CF10/3 / ATCC 700928 / UPEC) GN=garR PE=3 SV=1;>splP0ABQ2[GARR_ECO LI 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 P0ABQ3;P0ABQ2 SV=1 P0ABQ3;P0ABQ2 SV=1 SV=1:>splP0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1:>splO68926 BFR_SALTY Bacterioferritin OS=Salmonell SV=1:>splP0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2:>splP0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2:>splP0AB72 ALF_ECOLI PE=3 SV=2:>splP0AB72 CSPC_SALTI Cold shock-like protein CspC OS=Salmonell typh GN=cspC PE=3 SV=2:>splP0A929 CSPC_SALT Y Cold shock-like protein CspC
700928 / UPEC) GN=garR PE=3 SV=1;>splP0ABQ2 GARR_ECO Ll 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 POABQ3;P0ABQ2 SV=1 >splP0ABD4 BFR_ECOL6 Bacterioferritin OS=Escherichia coli 06:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>splP0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli 06:H1 (strain K12) GN=bfr PE=1 SV=1;>splP0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>splP0ABD3 BFR_SALTY Bacterioferritin OS=Salmonell >splP0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB71 ALF_ECOLI POAB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>splP0AB71 ALF_ECOLI POAB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase OS=Salmonella typhi GN=cspC
PE=3 SV=1;>sp P0ABQ2 GARR_ECO Ll 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1P0ABQ3;P0ABQ2SV=1P0ABQ3;P0ABQ2SV=1sp P0ABD4 BFR_ECOL6 Bacterioferritin OS=Escherichia coli 06:H1 (strain CF1073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>sp P0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>sp P0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=3 SV=1;>sp P0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Salmonella aldolase class 2 OS=Saltr ICold Shock-like protein CspC OS=Saltronella typhi GN=cspC PE=3 SV=2;>sp P0A920 CSPC_SALT Y Cold shock-like protein CspC7.4023
SV=1;>sp P0ABQ2 GARR_ECO Ll 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1P0ABQ3;P0ABQ2SV=1ssp P0ABD4 BFR_ECOL6 Bacterioferritin OS=Escherichia coli 06:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>sp P0ABD3 BFR_ECOL1 Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>sp P0ABD3 BFR_SALTY Bacterioferritin OS=SalmonellP0ABD4;P0ABD3;O68926;O68935; O50172SV=1;>sp P0ABD3 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:HT GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOL1 Fructose-bisphosphate aldolase39.147P0AB73;P0AB72;P0AB71Fructose-bisphosphate aldolase o157:HT GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOL1 Fructose-bisphosphate aldolase oCS=Salmonell typhi GN=cspC PE=3 SV=2;>sp P0A920]CSPC_SALT1 COS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A929]CSPC_SALT Y Cold shock-like protein CspC7.4023
P0ABQ3;P0ABQ2 LI 2-hydroxy-3-oxopropionate reductase OS=Escherichia coli (strain K12) GN=garR PE=1 SV=1 P0ABQ3;P0ABQ2 SV=1 >splP0ABD4 BFR_ECOL6 Bacterioferritin OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>splP0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>splO68926 BFR_SALTY Bacterioferritin OS=Salmonell P0ABD4;P0ABD3;O68926;O68935; O50172 SV=1;>splO68926 BFR_SALTY Bacterioferritin OS=Salmonell >splP0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>splP0AB71 ALF_ECOLI Fructose-bisphosphate aldolase P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>splP0A9Z0]CSPC_SALT1 Cold shock-like protein CspC 7.4023 P0AB73;P0AB72;P0AB71 Sv=2;>splP0A9Y9]CSPC_SALT1 7.4023
P0ABQ3;P0ABQ2 SV=1 P0ABQ3;P0ABQ2 SV=1 >splP0ABD4 BFR_ECOL6 18.495 Bacterioferritin OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>splP0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>splP0ABD3;O68926;O68935; SV=1;>splO68926 BFR_SALTY Bacterioferritin OS=Salmonell splP0AB73 ALF_SHIFL SplP0AB73]ALF_SHIFL 39.147 Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>splP0AB71 ALF_ECOLI P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase P0AB73;P0AB72;P0AB71 >splP0A920 CSPC_SALTI Cold SV=2;>splP0A920 CSPC_SALTI Cold 7.4023 SV=2;>splP0A920 CSPC_SALTI Cold 7.4023 SV=2;>splP0A929 CSPC_SALTI Cold
P0ABQ3;P0ABQ2 P0ABQ3;P0ABQ2 SV=1 SV=1 Ssp P0ABD4]BFR_ECOL6 Bacterioferritin OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>sp P0ABD3]BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>sp P0ABD3;O68926;O68935; SV=1;>sp P0ABD3[BFR_SALTY Bacterioferritin OS=Salmonell Ssp P0AB73]ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72]ALF_ECOLI P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71]ALF_ECOLI P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71]ALF_ECOLI Fructose-bisphosphate aldolase class 2 OS=Salmonella typhi GN=cspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9]CSPC_SALTT Y Cold shock-like protein CspC
P0ABQ3;P0ABQ2(strain K12) GN=garR PE=1 SV=1>sp P0ABD4 BFR_ECOL618.495Bacterioferritin OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>sp P0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>sp P0ABD3;O68926;O68935; O50172SV=1;>sp P0ABD3 BFR_SALTY Bacterioferritin OS=SalmonellP0ABD4;P0ABD3;O68926;O68935; O50172SV=1;>sp O68926]BFR_SALTY Bacterioferritin OS=Salmonell39.147P0ABD4;P0ABD3;O68926;O68935; O50172SV=1;>sp P0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolase class 2 OS=CALTI Cold Ssp P0A9Z0 CSPC_SALTI Cold Ssp P0A9Z0 CSPC_SALTI Cold SSP <p0a9y9 cspc_salti </p0a9y9 cspc_salti Y Cold shock-like protein CspC O2.0 cherseri the technication O2.0 cherseri the technication7.4023
P0ABQ3;P0ABQ2SV=1>sp P0ABD4]BFR_ECOL618.495Bacterioferritin OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=318.495SV=1;>sp P0ABD3]BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>sp P0ABD3]BFR_SALTY Bacterioferritin OS=Salmonell39.147P0ABD4;P0ABD3;O68926;O68935; O50172SV=1;>sp O68926]BFR_SALTY Bacterioferritin OS=Salmonell39.147P0ABD4;P0ABD3;O68926;O68935; O50172SV=1;>sp OAB73]ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72]ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71]ALF_ECOLI Fructose-bisphosphate aldolase class 2 OS=Salmonella typhi GN=cspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9]CSPC_SALT Y Cold shock-like protein CspC7.4023
>sp P0ABD4 BFR_ECOL618.495Bacterioferritin OS=Escherichia coli 06:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>sp P0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>sp P0ABD3 BFR_SALTY Bacterioferritin OS=SalmonellP0ABD4;P0ABD3;068926;068935; O50172SV=1;>sp 068926 BFR_SALTY Bacterioferritin OS=SalmonellP0ABD4;P0ABD3;068926;068935; O50172SV=1;>sp 068926 BFR_SALTY Bacterioferritin OS=SalmonellP0AB73;P0AB73;068926;068935; O50172SV=1;>sp 0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolase class 2 OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A979 CSPC_SALT Y Cold shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A979 CSPC_SALT Y Cold shock-like protein CspC OS=Osmerille to block-like protein CspC OS=Osmerille to block-like protein CspC7.4023
P0ABD4;P0ABD3;O68926;O68935; SV=1;>sp P0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=3 SV=1;>sp P0ABD3;D68926;O68935; SV=1;>sp O68926 BFR_SALTY D50172 Bacterioferritin OS=Salmonell >sp P0AB73;ALF_SHIFL 39.147 Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase Sv=2;>sp P0A9Z0 CSPC_SALTI Cold 7.4023 shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC OS=Salmonella typhi GN=cspC OS=Calmonella typhi GN=cspC OS=Salmonella typhi GN=cspC OS=Calmonella typhi GN=cspC
P0ABD4;P0ABD3;O68926;O68935; SV=1;>sp[P0ABD3]BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>sp[O68926]BFR_SALTY Bacterioferritin OS=Salmonell P0ABD4;P0ABD3;O68926;O68935; SV=1;>sp[O68926]BFR_SALTY Bacterioferritin OS=Salmonell >sp[P0ABT3]ALF_SHIFL 39.147 Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp[P0AB72]ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp[P0AB71]ALF_ECOLI Fructose-bisphosphate aldolase P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase class 2 OS=Salmonella SV=2;>sp[P0AB71]ALF_ECOLI Fructose-bisphosphate aldolase 7.4023 SV=2;>sp[P0A9Z0]CSPC_SALTI Cold shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp[P0A9Y9]CSPC_SALT Y Cold shock-like protein CspC 7.4023
Coll OG.PT (strain CF10737 ATCC 700928 / UPEC) GN=bfr PE=3 SV=1;>sp P0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>sp O68926 BFR_SALTY Bacterioferritin OS=SalmonellP0ABD4;P0ABD3;O68926;O68935; O50172SV=1;>sp O68926 BFR_SALTY Bacterioferritin OS=Salmonell>splP0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolaseP0AB73;P0AB72;P0AB71Fructose-bisphosphate aldolase SP P0A9Z0 CSPC_SALTI Cold shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC
A I CC 700928 / 0PEC) GN=btr PE=3 SV=1;>sp P0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 P0ABD4;P0ABD3;O68926;O68935; O50172 Bacterioferritin OS=Salmonell >sp P0AB73 ALF_SHIFL 39.147 Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolase SV=2;>sp P0A9Z0 CSPC_SALTI Cold shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALTT Y Cold shock-like protein CspC
PE=3 SV=1;>sp P0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>sp O68926 BFR_SALTY Bacterioferritin OS=SalmonellP0ABD4;P0ABD3;O68926;O68935; O50172SV=1;>sp O68926 BFR_SALTY Bacterioferritin OS=Salmonell>sp P0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolaseP0AB73;P0AB72;P0AB71Fructose-bisphosphate aldolase OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALTI Y Cold shock-like protein CspC7.4023
SV=1;>sp P0ABD3 BFR_ECOLI Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>sp O68926 BFR_SALTY Bacterioferritin OS=SalmonellP0ABD4;P0ABD3;O68926;O68935; O50172SV=1;>sp O68926 BFR_SALTY Bacterioferritin OS=Salmonell>sp P0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolaseP0AB73;P0AB72;P0AB71Fructose-bisphosphate aldolase class 2 OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALTI Y Cold shock-like protein CspC7.4023
Bacterioferritin OS=Escherichia coli (strain K12) GN=bfr PE=1 SV=1;>splO68926 BFR_SALTY Bacterioferritin OS=Salmonell90ABD4;P0ABD3;O68926;O68935; O50172SV=1;>splO68926 BFR_SALTY Bacterioferritin OS=Salmonell>splP0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>splP0AB71 ALF_ECOLI Fructose-bisphosphate aldolase class 2 OS=SiphoAB71 ALF_ECOLI Fructose-bisphosphate aldolase SV=2;>splP0AB71 ALF_ECOLI Fructose-bisphosphate aldolaseP0AB73;P0AB72;P0AB71Fructose-bisphosphate aldolase OS=Salmonella typhi GN=cspC PE=3 SV=2;>splP0A9Y9 CSPC_SALT Y Cold shock-like protein CspC7.4023
P0ABD4;P0ABD3;O68926;O68935; SV=1;>sp O68926]BFR_SALTY D050172 Bacterioferritin OS=Salmonell >sp P0AB73]ALF_SHIFL 39.147 Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72]ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase Sv=2;>sp P0A9Z0]CSPC_SALTI Cold 7.4023 shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9]CSPC_SALT Y Cold shock-like protein CspC O2 Selementile to the protein CspC
P0ABD4;P0ABD3;O68926;O68935; O50172SV=1;>sp O68926 BFR_SALTY Bacterioferritin OS=Salmonell>sp P0AB73 ALF_SHIFL Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolase o157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolase o157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolaseP0AB73;P0AB72;P0AB71Fructose-bisphosphate aldolase OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC7.4023
P0ABD4;P0ABD3;068926;068935; SV=1;>sp[068926;BFR_SALTY Bacterioferritin OS=Salmonell >sp[P0AB73]ALF_SHIFL 39.147 Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72 ALF_EC057 Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72 ALF_EC057 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli 0157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_EC0LI Fructose-bisphosphate aldolase P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase >sp P0A9Z0 CSPC_SALTI Cold 7.4023 shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC
O50172 Bacterioferritin OS=Salmonell >sp P0AB73 ALF_SHIFL 39.147 Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>sp P0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase SV=2;>sp P0A9Z0 CSPC_SALTI Cold 7.4023 shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC OS=Cshock-like protein CspC
>sp P0AB73 ALF_SHIFL39.147Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3
Fructose-bisphosphate aldolase class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>splP0AB71 ALF_ECOLI P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase >splP0A9Z0 CSPC_SALTI Cold 7.4023 shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>splP0A9Y9 CSPC_SALT Y Cold shock-like protein CspC
Pictotose biophicute didulate class 2 OS=Shigella flexneri GN=fbaA PE=3 SV=2;>splP0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>splP0AB71 ALF_ECOLI P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase >splP0A9Z0 CSPC_SALTI Cold 7.4023 shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>splP0A9Y9 CSPC_SALT Y Cold shock-like protein CspC
Class 2 OS=Snigelia liexnen GN=fbaA PE=3 SV=2;>sp P0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase >sp P0A9Z0 CSPC_SALTI Cold Shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC OS = Salmonella typhi GN=cspC
GN=tbaA PE=3 SV=2;>sp P0AB72 ALF_ECO57 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase >sp P0A9Z0 CSPC_SALTI Cold Shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC O2 schware like to the protein
SV=2;>sp P0AB72 ALF_EC057 Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase >sp P0A9Z0 CSPC_SALTI Cold Shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC OC Sold shock-like protein CspC
Fructose-bisphosphate aldolase class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolase >sp P0A9Z0 CSPC_SALTI Cold shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC OS
class 2 OS=Escherichia coli O157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolase >sp P0A9Z0 CSPC_SALTI Cold shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC O2 SV=2;>splP0A9Y9 CSPC_SALT
0133 2 00-Lachertering con 0157:H7 GN=fbaA PE=3 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolase >sp P0A9Z0 CSPC_SALTI Cold shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC OS
P0AB73;P0AB72;P0AB71 SV=2;>sp P0AB71 ALF_ECOLI Fructose-bisphosphate aldolase >sp P0A9Z0 CSPC_SALTI Cold 7.4023 shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC OS SV=2;>sp P0A9Y9 CSPC_SALT
SV=2;>splP0AB71 ALF_ECOLI P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase >splP0A9Z0 CSPC_SALTI Cold 7.4023 shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC O2 Solution
P0AB73;P0AB72;P0AB71 Fructose-bisphosphate aldolase >sp P0A9Z0 CSPC_SALTI Cold 7.4023 shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC OS
>sp P0A9Z0 CSPC_SALTI Cold 7.4023 shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC
shock-like protein CspC OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC
OS=Salmonella typhi GN=cspC PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC
PE=3 SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC
SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC
SV=2;>sp P0A9Y9 CSPC_SALT Y Cold shock-like protein CspC
Y Cold shock-like protein CspC
US=Salmonella typhimurium
(etrain LT2 / SCSC1412 / ATCC
(Sualli L12/ SUSCI412/ ATOC
700720) GN=cspC PE=3
700720) GN=cspC PE=3 P0A9Z0;P0A9Y9;P0A9Y8;P0A9Y7; SV=2;>sp P0A9Y8 CSPC_ECO

	>sp P0A9S6 GLDA_ECOL6	38.712
	Glycerol dehydrogenase	
	OS-Escherichia coli O6:H1	
	(strain CET072 / ATCC 700028 /	
	(Strain CF1073/ATCC 700928/	
	UPEC) GN=gldA PE=3	
	SV=1;>sp P0A9S5 GLDA ECO	
	LL Glycerol dehydrogenase	
	OS Essharishis seli (strain K12)	
	GN=gldA PE=1	
	SV=1;>sp P50173 GLDA_PSEP	
P0A9S6:P0A9S5:P50173	U Glycerol deh	
	SCHERAGE SHIFT	40.017
	Aspertate esticide by de	40.017
	Aspanate-semialdenyde	
	dehydrogenase OS=Shigella	
	flexneri GN=asd PE=3	
	SV=1:>splP0A1F9IDHAS SALT	
	L Aspartate-semialdehyde	
	dobudrogonogo OS Colmonalla	
	typhi GN=asd PE=3	
	SV=1;>sp P0A1F8 DHAS_SALT	
P0A9R1:P0A1F9:P0A1F8:Q8FCR6	Y Aspartate-semialdehyde	
$\cdot P \cap A \cap P \cap A \cap O$	debydrogenase OS-S	
,1 04310,1 04303		07.000
	>SPIPUA9Q4 ARCA_SHIFL	27.292
	Aerobic respiration control	
	protein ArcA OS=Shigella	
	flexneri GN=arcA PE=3	
	SV-1:>splP0A903IARCA ECO	
	EZ A crobic respiration control	
	57 Aerobic respiration control	
	protein ArcA OS=Escherichia	
	coli O157:H7 GN=arcA PE=3	
P0A9Q4:P0A9Q3:P0A9Q2:P0A9Q	SV=1:>spIP0A9Q2IARCA ECO	
1	1.6 Aerobic respiration con	
•		24 622
	This was derive the development	54.025
	I nioredoxin reductase	
	OS=Escherichia coli O157:H7	
	GN=trxB PE=3	
	$SV=2$ >splP0A9P4ITRXB_ECO	
	LI Thioredoxin reductase	
	CO Fachariahia agli (atrain K40)	
	OS=Escherichia coli (strain K12)	
	GN=trxB PE=1	
	SV=2;>sp Q9KSS4 TRXB_VIBC	
P0A9P5 P0A9P4 09KSS4 P43788	H Thioredoxin reductase	
P80802.003HX6.D30016	OS = V/ibrio cholerae serotype	
F 60092, Q9511X0, F 59910		50.000
	>spipuagp3jdldh_Shifl	50.688
	Dihydrolipoyl dehydrogenase	
	OS=Shigella flexneri GN=lpdA	
	PE=3	
	57 Dibudrolinovi dobudromore	
	57 Dinydrolipoyl denydrogenase	
	US=Escherichia coli O157:H7	
	GN=lpdA PE=3	
	SV=2:>splP0A9P1IDLDH ECO	
	L6 Dibydrolipovl debydrogenase	
	OS-Ecohorichia cali O	
	>splP0A9M9lP1A_SHIFL	//.171
P0A9M9;P0A9M8;Q7CJ96;Q820S1	Phosphate acetyltransferase	
;Q9RY77;Q1J2D0	OS=Shigella flexneri GN=pta	
	-	

	DE 2	[]
	PE=3 SV=2;>sp P0A9M8 PTA_ECOLI Phosphate acetyltransferase OS=Escherichia coli (strain K12) GN=pta PE=1 SV=2	
P0A9L2;P0A9L1;P0A9L0;P0A9K9	>sp P0A9L2 SLYD_SHIFL FKBP-type peptidyl-prolyl cis- trans isomerase SlyD OS=Shigella flexneri GN=slyD PE=3 SV=1;>sp P0A9L1 SLYD_ECO5 7 FKBP-type peptidyl-prolyl cis- trans isomerase SlyD OS=Escherichia coli O157:H7 GN=slyD PE=3 SV=1;>sp P0A9L0 SLYD_ECOL 6 FKB	20.853
	>spiP0A9K6 PHOL_SHIFL PhoH-like protein OS=Shigella flexneri GN=ybeZ PE=3 SV=2;>spiP0A9K5 PHOL_ECO 57 PhoH-like protein OS=Escherichia coli O157:H7 GN=ybeZ PE=3 SV=2;>spiP0A9K4 PHOL_ECO L6 PhoH-like protein OS=Escherichia coli O6:H1	39.038
_P0A9K6;P0A9K5;P0A9K4;P0A9K3	<pre>(strain CF10737ATCC700 >sp P0A9J7 RBSK_ECO57 Ribokinase OS=Escherichia coli 0157:H7 GN=rbsK PE=3 SV=1;>sp P0A9J6 RBSK_ECOL I Ribokinase OS=Escherichia coli (strain K12) GN=rbsK PE=1</pre>	32.29
P0A9J7;P0A9J6	SV=1 >sp P0A9C8 GLN1B_SHIFL Glutamine synthetase OS=Shigella flexneri GN=glnA PE=3 SV=2;>sp P0A9C7 GLN1B_EC O57 Glutamine synthetase OS=Escherichia coli O157:H7 GN=glnA PE=3 SV=2;>sp P0A9C6 GLN1B_EC OL6 Glutamine synthetase OS=Escherichia coli O6:H1	51.903
P0A9C8;P0A9C7;P0A9C6;P0A9C5	(strain CF107>sp P0A9A1 FTNA_SHIFLBacterial non-heme ferritinOS=Shigella flexneri GN=ftnAPE=3SV=1;>sp P0A9A0 FTNA_ECO57 Bacterial non-heme ferritinOS=Escherichia coli O157:H7GN=ftnA PE=3SV=1;>sp P0A999 FTNA_ECOL	19.424

	C Destarial new home formitin	
	6 Bactenal non-neme lemun	
	>sp P0A992 ALF1_ECOL6	38.109
	Fructose-bisphosphate aldolase	
	class 1 OS=Escherichia coli	
	O6:H1 (strain CET073 / ATCC	
	700928 / LIPEC) GN-fbaB PE-3	
	SV_{-2} : op D0.0001/01 E1 ECOL	
	SV=2,>SPIFUA991[ALF1_ECOLI	
	Fructose-bisphosphate aldolase	
	class 1 OS=Escherichia coli	
P0A992;P0A991;O84217;Q9Z8Q7;	(strain K12) GN=fbaB PE=1	
Q9PKH8	SV=2	
	>sp P0A958 ALKH_SHIFL	22.284
	KHG/KDPG aldolase	
	OS=Shigella flexneri GN=eda	
	PE-3	
	SV_{-1}	
	$\frac{1}{7} \frac{1}{7} \frac{1}$	
	US=Escherichia coli U15/:H/	
	GN=eda PE=3	
	SV=1;>sp P0A956 ALKH_ECOL	
	6 KHG/KDPG aldolase	
	OS=Escherichia coli O6:H1	
P0A958:P0A957:P0A956:P0A955	(strain CFT073 / ATCC 70092	
	>splP0A907ISI YB_SHIFL_Outer	15 601
	membrane lipoprotein SlyB	10.001
	OS-Shigolla flovnori CN-slyB	
	SV=1;>sp PUA1X1 SLYB_SALT	
	Outer membrane lipoprotein	
	SlyB OS=Salmonella typhi	
	GN=slyB PE=3	
	SV=1;>sp P0A1X0 SLYB SALT	
P0A907:P0A1X1:P0A1X0:P0A906:	Y Outer membrane lipoprotein	
P0A905	SlyB OS=Salmonella typ	
	SplP04904IBAMC SHIFT	36.842
	Outer membrane protein	30.04Z
	assembly factor BamC	
	US=Shigella flexneri GN=bamC	
	PE=3	
	SV=1;>sp P0A903 BAMC_ECO	
	LI Outer membrane protein	
	assembly factor BamC	
	OS=Escherichia coli (strain K12)	
P0A904·P0A903	GN=bamC PE=1 SV/-1	
	SCHOREN CHIDY THINK	17 925
		11.000
	aysenteriae GN=tpx PE=3	
	SV=2;>sp P0A865 TPX_SHIFL	
	Thiol peroxidase OS=Shigella	
	flexneri GN=tpx PE=3	
	SV=2;>spIP0A864ITPX ECO57	
	Thiol peroxidase	
	OS-Escherichia coli O157·H7	
PUA862	5v=2;>sp PUA863 1PX_ECO	

	>sp P0A330 CCMK_SYNPW	10.584
	Carbon dioxide-concentrating	
	mechanism protein CcmK	
	OS=Synechococcus sp. (strain	
	WH7803) GN=ccmK PE=3	
	SV=1;>sp P0A329 CCMK_SYN	
	PX Carbon dioxide-	
	concentrating mechanism	
	protein CcmK	
	Ω S=Synechococcus sp. (strain	
P0A330:P0A329:P0A328	WH8102) GN=ccmK PE=3 SV=	
	>splP0A2D0IFABG_SALTL3-	25.545
	oxoacyl-lacyl-carrier-protein]	2010 10
	reductase EabG OS-Salmonella	
	typhi CN-fabC PE-2	
	S_{-1}	
	SV=1,>Sp FUA2C9 FABG_SAL1	
	raductoco Fabo OS Ostra anglis	
	typnimurium (strain L12/	
	SGSC1412 / ATCC 700720)	
P0A2D0;P0A2C9;P0AEK3;P0AEK2	GN=fabG PE=1 S	
	>sp P0A284 PTGA_SALTI PTS	18.247
	system glucose-specific EIIA	
	component OS=Salmonella	
	typhi GN=crr PE=1	
	SV=2;>sp P0A283 PTGA_SALT	
	Y PTS system glucose-specific	
	EIIA component OS=Salmonella	
	typhimurium (strain LT2 /	
P0A284·P0A283·P69785·P69784·P	SGSC1412 / ATCC 700720)	
69783	GN=crr PF=1 SV=2 >splP697	
66766		
	>splP0A250/PT1 SALTI	63 368
	>sp P0A250 PT1_SALTI	63.368
	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein	63.368
	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase	63.368
	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsl	63.368
	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsl PE=3 SV=1:>sp P0A240 PT1_SALTY	63.368
	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsl PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate protein	63.368
	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein	63.368
	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsl PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase	63.368
	 >sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium 	63.368
P0A250;P0A249;P08839;P43922;Q	 >sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 	63.368
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsI PE=1 SV=1;	63.368
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsI PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI	63.368
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsI PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI NADH-quinone oxidoreductase	63.368
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsI PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI NADH-quinone oxidoreductase subunit E OS=Salmonella typhi	63.368
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04	 >sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsI PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI NADH-quinone oxidoreductase subunit E OS=Salmonella typhi GN=nuoE PE=3 	63.368
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsl PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsl PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI NADH-quinone oxidoreductase subunit E OS=Salmonella typhi GN=nuoE PE=3 SV=1;>sp P0A1Y8 NUOE_SAL	63.368
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsl PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsl PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI NADH-quinone oxidoreductase subunit E OS=Salmonella typhi GN=nuoE PE=3 SV=1;>sp P0A1Y8 NUOE_SAL TY NADH-quinone	63.368
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsl PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsl PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI NADH-quinone oxidoreductase subunit E OS=Salmonella typhi GN=nuoE PE=3 SV=1;>sp P0A1Y8 NUOE_SAL TY NADH-quinone oxidoreductase subunit E	63.368
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04	 >sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsI PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI NADH-quinone oxidoreductase subunit E OS=Salmonella typhi GN=nuoE PE=3 SV=1;>sp P0A1Y8 NUOE_SAL TY NADH-quinone oxidoreductase subunit E OS=Salmonella typhimurium 	63.368
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04	 >sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsI PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI NADH-quinone oxidoreductase subunit E OS=Salmonella typhi GN=nuoE PE=3 SV=1;>sp P0A1Y8 NUOE_SAL TY NADH-quinone oxidoreductase subunit E OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 	63.368
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04	 >sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsI PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI NADH-quinone oxidoreductase subunit E OS=Salmonella typhi GN=nuoE PE=3 SV=1;>sp P0A1Y8 NUOE_SAL TY NADH-quinone oxidoreductase subunit E OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 	63.368
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04 P0A1Y9;P0A1Y8	 >sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsI PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI NADH-quinone oxidoreductase subunit E OS=Salmonella typhi GN=nuoE PE=3 SV=1;>sp P0A1Y8 NUOE_SAL TY NADH-quinone oxidoreductase subunit E OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=nuoE PE=3 SV=1 >sp P0A1W7 LIVK SALTI 	63.368 18.602 39.4
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04	 >sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsI PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI NADH-quinone oxidoreductase subunit E OS=Salmonella typhi GN=nuoE PE=3 SV=1;>sp P0A1Y8 NUOE_SAL TY NADH-quinone oxidoreductase subunit E OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=nuoE PE=3 SV=1 >sp P0A1W7 LIVK_SALTI Leucine-specific-binding protein 	63.368 18.602 39.4
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04	 >sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsI PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI NADH-quinone oxidoreductase subunit E OS=Salmonella typhi GN=nuoE PE=3 SV=1;>sp P0A1Y8 NUOE_SAL TY NADH-quinone oxidoreductase subunit E OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=nuoE PE=3 SV=1 >sp P0A1W7 LIVK_SALTI Leucine-specific-binding protein OS=Salmonella typhi GN=livK 	63.368 18.602 39.4
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04	 >sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsI PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI NADH-quinone oxidoreductase subunit E OS=Salmonella typhi GN=nuoE PE=3 SV=1;>sp P0A1Y8 NUOE_SAL TY NADH-quinone oxidoreductase subunit E OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=nuoE PE=3 SV=1 >sp P0A1W7 LIVK_SALTI Leucine-specific-binding protein OS=Salmonella typhi GN=livK PE=3 	63.368 18.602 39.4
P0A250;P0A249;P08839;P43922;Q 8KA50;Q9WXI6;Q89B04 P0A1Y9;P0A1Y8	>sp P0A250 PT1_SALTI Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhi GN=ptsI PE=3 SV=1;>sp P0A249 PT1_SALTY Phosphoenolpyruvate-protein phosphotransferase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=ptsI PE=1 SV=1; >sp P0A1Y9 NUOE_SALTI NADH-quinone oxidoreductase subunit E OS=Salmonella typhi GN=nuoE PE=3 SV=1;>sp P0A1Y8 NUOE_SAL TY NADH-quinone oxidoreductase subunit E OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=nuoE PE=3 SV=1 >sp P0A1W7 LIVK_SALTI Leucine-specific-binding protein OS=Salmonella typhi GN=livK PE=3 SV=1:>sp P0A1W6 LIVK_SALTI	63.368 18.602 39.4

	Y Leucine-specific-binding	
	typhimurium (strain LT2 /	
	SGSC1412 / ATCC 700720)	
	GN=livK PF=1	
	SV=1:>splP04816ILIVK ECOLI	
	Leuc	
	>sp P0A1P7 GLN1B_SALTI	51.785
	Glutamine synthetase	
	OS=Salmonella typhi GN=glnA	
	PE=1	
	SV=2;>sp P0A1P6 GLN1B_SAL	
	I Y Glutamine synthetase	
	(strain LT2 / SCSC1/12 / ATCC	
P0A1P7 [.] P0A1P6	700720) GN=dlnA PE=1 SV=2	
	>spiP0A1F7IUDP_SALTI	27.139
	Uridine phosphorylase	
	OS=Salmonella typhi GN=udp	
	PE=3	
	SV=2;>sp P0A1F6 UDP_SALTY	
	Uridine phosphorylase	
	OS=Salmonella typhimurium	
	(strain L12/SGSC1412/ATCC	
	SV_{-2}	
	Uridine phosphorylase	
P0A1F7:P0A1F6:P12758:P43770	OS=Escher	
- ,,	>sp P0A1A6 ILVE_SALTI	34.052
	Branched-chain-amino-acid	
	aminotransferase	
	OS=Salmonella typhi GN=ilvE	
	SV=2;>SP PUA1A5 ILVE_SALTY	
	aminotransferase	
	Ω S=Salmonella typhimurium	
	(strain LT2 / SGSC1412 / ATCC	
P0A1A6;P0A1A5;P0AB82;P0AB81;	700720) GN=ilvE PE=1	
P0AB80	SV=2;>sp P0	
	>sp P09831 GLTB_ECOLI	163.3
	Glutamate synthase [NADPH]	
	arge chain US=Escherichia coll	
P00831	$(S(Tall I \land TZ) GN=g(ID PE=1)$	
	>splP09394IGLPQ_ECOLL	40 843
	Glycerophosphodiester	
	phosphodiesterase, periplasmic	
	OS=Escherichia coli (strain K12)	
P09394	GN=glpQ PE=1 SV=2	
	>sp P09148 GAL7_ECOLI	39.645
	Galactose-1-phosphate	
	UIIOVIVIIIansterase	
	GN-aalT PE-1	
	SV=2:>splP22714lGAL7 SALT	

	uridylyltransferase	
	OS=Salmonella typhimurium	
	(strain LT2 / SGSC1412 / ATCC	
	700720) GN=galT PE=3	
	>sp P08331 CPDB_ECOLI 2,3-	70.831
	cyclic-nucleotide 2-	
	phosphodiesterase/3-	
	nucleotidase OS=Escherichia	
	coli (strain K12) GN=cpdB PE=1	
P08331	SV=2	
	>splP08200IIDH_ECOLI	45,756
	Isocitrate dehydrogenase	
	[NADP] OS=Escherichia coli	
P08200.P50214.P80046.P39126	(strain K12) GN=icd PE=1 SV=1	
1 00200,1 00214,1 00040,1 00120		12 325
	Maltodevtrin phosphorylase	12.525
	(Fragmont) OS-Klabsiella	
	(Flagment) OS=Riebsiella	
D07004		
FU/U34		22.450
	>spipuossaiprike_eculi ATP-	32.450
	aepenaent 6-	
	phosphotructokinase isozyme 2	
	OS=Escherichia coli (strain K12)	
P06999	GN=pfkB PE=1 SV=2	
	>sp P06960 OTC2_ECOLI	36.827
	Ornithine carbamoyltransferase	
	subunit F OS=Escherichia coli	
	(strain K12) GN=argF PE=1	
P06960	SV=4	
	>sp P06202 OPPA_SALTY	61.291
	Periplasmic oligopeptide-binding	
	protein OS=Salmonella	
	typhimurium (strain LT2 /	
	SGSC1412 / ATCC 700720)	
P06202	GN=oppA PE=1 SV=2	
	>splP06175 FLIC_SALRU	51.416
	Flagellin OS=Salmonella	
	rubislaw GN=fliC PE=3	
	SV=2:>splP06179IFLIC SALTY	
	Flagellin OS=Salmonella	
P06175:P06179:P06178:P52615:P	typhimurium (strain LT2 /	
06176:P06177:P52616:Q56826:P4	SGSC1412 / ATCC 700720)	
2272 P42273 Q06983 Q06982 Q06	GN=fliC PF=1	
981 Q06973 Q06972 Q06971 Q069	SV=4:>splP06178IFLIC SALPA	
70 [.] Q06969 [.] O52959 [.] Q06974 [.] Q0696	Flagellin OS=Salmonella	
8·008860·P04949	paratyphi A (strain ATC	
	SplP04825/AMPN_ECOLL	98 918
	Aminopentidase N	55.510
	OS=Escherichia coli (strain K12)	
P04825	GN=pepN PE=1 SV=2	
		28 370
	Histiding_binding_parislosmic	20.319
	protoin OS-Solmonollo	
	typhimurium (strain LT2 /	
	(yphilliununi (Strain LTZ /	
D02010	SGSC1412/ATUC /00/20)	
	GIN=NISJ PE=T SV=T	

	>sp P00934 THRC_ECOLI	47.113
	Threonine synthase	
B00024	OS=Escherichia coli (strain K12)	
		34 222
	Histiding decarboxylase	34.233
	proenzyme OS-Lactobacillus	
	sp. (strain 30a) GN=hdcA PE=1	
P00862	SV=2	
	>sp P00805 ASPG2_ECOLI L-	36.85
	asparaginase 2 OS=Escherichia	
Dagaas	coli (strain K12) GN=ansB PE=1	
P00805		40 570
	>spiP00509 AA1_ECOLI	43.573
	Aspanale ammoliansierase	
	GN-aspC PE-1	
	SV=1:>sp[Q56114]AAT SALTI	
	Aspartate aminotransferase	
	OS=Salmonella typhi GN=aspC	
	PE=3	
	SV=2;>sp P58661 AAT_SALTY	
	Aspartate aminotransferase	
P00509;Q56114;P58661	OS=Salmonella typhimuri	
	>sp P00490 PHSM_ECOLI	90.521
	Maltodextrin phosphorylase	
D00400	OS=Escherichia coli (strain K12)	
P00490		10 501
	NADP-specific dutamate	40.001
	dehydrogenase OS=Escherichia	
	coli (strain K12) $GN=adhA PE=1$	
P00370;P14657	SV=1	
	>sp P00282 AZUR_PSEAE	16.008
	Azurin OS=Pseudomonas	
	aeruginosa (strain ATCC 15692	
	/ DSM 22644 / CIP 104116 /	
	JCM 14847 / LMG 12228 / 1C /	
	PRS IUI / PAUT) GN=azu	
	Al Azurin OS=Pseudomonas	
P00282;B3EWN9	aeruginosa PE=1 SV=1	
- ,	>sp O69395 BLT2 ECOLX	30.745
	Beta-lactamase Toho-2	
O69395;P74841;Q47066;P28585;E	OS=Escherichia coli GN=bla	
1ANH6	PE=3 SV=1	
	>sp O68883 CISY_SALTY	48.106
	Citrate synthase OS=Salmonella	
	typhimurium (strain LT2 /	
	SGSC1412 / ATCC 700720)	
	6 Citrate synthese	
	OS=Escherichia coli O6·H1	
P51031;P20902	(strain CFT073 / ATCC 700928 /	

	UPEC) GN=gltA PE=3	
	SV=1;>sp P0ABH7 CISY	
	>sp O67820 IMDH_AQUAE	53.4
	Inosine-5-monophosphate	
	denydrogenase OS=Aquifex	
	PE-3	
	SV=1:>splP9WKI7IIMDH_MYC	
	TU Inosine-5-monophosphate	
	dehydrogenase	
	OS=Mycobacterium tuberculosis	
	(strain ATCC 25618 / H37Rv)	
O67820;P9WKI7;P9WKI6;P65168	GN=guaB PE=1 SV=1;>sp P9W	
	>sp O53079 CILA_LEUMC	55.067
	Citrate lyase alpha chain	
	mesenteroides subsp. cremoris	
053079	GN=citE PE=3 SV=1	
	>sp O52836 TETW_BUTFI	71.294
	Tetracycline resistance protein	
	TetW OS=Butyrivibrio	
	fibrisolvens GN=tetW PE=3	
O52836	SV=1	
	>sp 052762 CATA_PSEAE	55.588
	catalase US=Pseudomonas	
	/ DSM 22644 / CIP 104116 /	
	JCM 14847 / LMG 12228 / 1C /	
	PRS 101 / PAO1) GN=katA	
O52762	PE=1 SV=1	
	>sp O52402 ALF_EDWI9	39.154
	Fructose-bisphosphate aldolase	
052402	OS=Edwardslella Ictaluri (strain	
052402	33-140 GN=100 FE= $3.37=2$	27.034
	Uridine phosphorylase	21.004
	OS=Klebsiella aerogenes	
O08444	GN=udp PE=3 SV=1	
	>sp O05508 GMUD_BACSU 6-	54.333
	phospho-beta-glucosidase	
	GmuD OS=Bacillus subtilis	
005508	(strain 100) GN=gmuD PE=1	
	SSDUTTOSTICSXB_CLOS1	16 609
	Exosporium protein B	10.000
	OS=Clostridium sporogenes	
	(strain ATCC 15579) GN=csxB	
J7T0S1	PE=1 SV=1	
	>sp G8JZT0 SUSE_BACTN	42.754
	Outer membrane protein SusE	
	thotaiotaomicron (strain ATCC	
	10582 / E50 / VPI-5482)	
G8JZT0	GN=susE PE=1 SV=1	
	>sp G8JZS6 SUSF_BACTN	52.124
G8JZS6	Outer membrane protein SusF	

	OS=Bacteroides	
	thataiotaomicron (strain ATCC	
	29148 / DSM 2079 / NCTC	
	10582 / E50 / VPI-5482)	
	GN=susF PE=1 SV=1	
		40.679
	>SPIC/NB0/PAGL_LEPBD 6-	49.678
	phospho-alpha-glucosidase	
	OS=Leptotrichia buccalis (strain	
	ATCC 14201 / DSM 1135 / JCM	
	12060 / NCTC 10240 / C 1013	
	12909/ NCTC 10249/ C-1013-	
	b) GN=pagL PE=1	
	SV=1;>sp Q97LM4 MALH_CLO	
	AB Maltose-6-phosphate	
	glucosidase MalH	
	OS-Clastridium aastabutulisum	
C/NB67;Q97LM4;P54716	(strai	
	>sp C5D4X9 MTNN_GEOSW 5-	25.072
	methylthioadenosine/S-	
	adenosylhomocysteine	
	sp. (strain WCH70) GN=mtnN	
C5D4X9	PE=3 SV=1	
	>splC5CEU0ICOAX_KOSOT	28 542
	Type III pantothenate kinaso	20.012
	OS=Kosmotoga olearia (strain	
	TBF 19.5.1) GN=coaX PE=3	
C5CFU0	SV=1	
	>splC5CC02lCH10_MICLC_10	10.346
	kDa chaporonin	10.010
	OS=Micrococcus luteus (strain	
	ATCC 4698 / DSM 20030 / JCM	
	1464 / NBRC 3333 / NCIMB	
	9278 / NCTC 2665 / \/KM Ac-	
CECC02	2220 CN-gros DE-2 SV/-1	
00002	2230) GIN=9103 FE=3 3V=1	
	>sp C5BF98 MDH_EDW19	32.348
	Malate dehydrogenase	
	OS=Edwardsiella ictaluri (strain	
C5BF98	93-146) GN=mdh PE-3 S\/-1	
		72 000
		13.938
4;B4RSL8;Q88K27;Q1IC15;B0KKR		
8;A5W5E1;Q8ZPS9;Q8ZDW5;Q8Z		
612 Q6D4G8 Q669Z0 Q5PH96 Q57		
P\/3.037267.032EI0.03211 0.02N		
131;Q1CIG3;Q1C728;Q014S9;P0A		
8M5;C6DFY6;C4LFH3;C0Q647;B7		
LQ71;B5RAX3;B5QVW8;B5FJA8:B		
5F7G2·B5BA42·B4TUF0·B4TGH1	>splC5B846ISYT_EDWI9	
BATAM8·B3PI 16·B2\/EM1·B2I 1207	ThreeninetRNA ligase	
	OC Educado allo intelini (atroin	
,DZN000,DIJJ17,A9KUA8,A9NZ43;		
A8GDQ5;A7FHG1;A4W9M3;A4TIL	93-146) GN=thrS PE=3	
1;A1S6G4;A1JMJ9;Q7N3P6;Q3JC	SV=1;>sp B5XQC6 SYT KLEP3	
02:A6VYI1:Q8XE27:Q1RB76:Q0TH	ThreoninetRNA ligase	
B0.D088M4.D088M2.C47VI1.P7U	OS-Klabsiella preumoniae	
SA2;B/N158;B/N556;B7MVJ7;B7	(strain 342) GN=thrS PE=3	
MAS9;B7M1C7;B7L6J2;B6IBD7;B5	SV=1;>sp Q480A9 SYT_COLP3	
YQ07·B1XGI1·B1I F12·B1IPK9·A8	ThreoninetRNA ligase	

		44.007
	>sp C4Z4Y1 DAPA1_EUBE2	44.387
	LL-diaminopimelate	
	aminotransferase	
	OS=Eubacterium eligens (strain	
0.7.0.4	ATCC 27750 / VPI C15-48)	
C4Z4Y1	GN=dapL PE=3 SV=1	
	>sp C4XPE9 KAD_DESMR	24.648
	Adenylate kinase	
	OS=Desulfovibrio magneticus	
	(strain ATCC 700980 / DSM	
	13731 / RS-1) GN=adk PE=3	
	SV=1;>sp B8J2T3 KAD_DESDA	
	Adenylate kinase	
	OS=Desulfovibrio desulfuricans	
	(strain ATCC 27774 / DSM	
C4XPE9;B8J2T3	6949) GN=adk PE=3 SV=1	
	>sp C4L8U2 KAD_TOLAT	23.46
	Adenylate kinase	
	OS=Tolumonas auensis (strain	
	DSM 9187 / TA4) GN=adk PE=3	
C4L8U2	SV=1	
C4K799;Q9KP03;Q8ZJ93;Q8EK51;		15.328
Q8DE59;Q87SZ4;Q7MPG9;Q6LV9		
7;Q6CZY9;Q664U0;Q5PK03;Q5E8		
95;Q57J51;Q3YWV8;Q32B50;Q31		
VX5;Q2NQP1;Q21M39;Q1CCW3;		
Q1C2W6;Q12SU0;Q0T001;Q0I086		
;Q0HNR8;Q089N5;P66075;P66074		
;P66073;P46185;C6DG55;C5BGK6		
;C4L7U9;C3LRN9;C0PZW4;B8EBI		
6;B8CNF2;B7VLD8;B7LRR7;B6EP		
U4;B5XNB2;B5RH34;B5R1F8;B5F		
JJ5;B5FGD5;B5F7S6;B5BGW7;B4		
TXC3;B4TJZ0;B4SUS1;B2VK77;B2		
U2R9;B2K518;B1KMW4;B1JIY0;B0		
TLZ3;A9R913;A9MSX9;A9MN68;A		
9KWC1:A8GYZ5:A8GKH8:A8G1D0		
:A8AQJ5:A7MWH7:A7FNL5:A6WH	>splC4K799IRL15_HAMD5_50S	
U7:A6TEV3:A5E561:A4YBW4:A4T	ribosomal protein L15	
H10:A3Q9A1:A3DA53:A1T0C3:A1	OS=Hamiltonella defensa	
S237:A1RED3:A1JS08:A0KRP3:A4	subsp. Acyrthosiphon pisum	
SSY7:A0KF40:Q1R630:Q0TCG0·P	(strain 5AT) GN=rolO PE=3	
66072:P66071:P02413:C4ZUF6·B7	SV=1:>splQ9KP03IRL15 VIBC	
UK25:B7NLM0:B7NDS2:B7N185:B	H 50S ribosomal protein I 15	
7MCR6:B7M106·B7I I02·B6I215·B5	OS=Vibrio cholerae serotype O1	
YTM2 [·] B1X6F3 [·] B1I HB5 [·] B1IP78 [·] A8	(strain ATCC 39315 / FLTor	
A5A6·A77SJ0·A1AG.I1	Inaba N16961) GN=rp	
	>splC4K4K1IFNO HAMD5	46 564
	Enclase OS=Hamiltonella	40.004
	defensa subsp. Acyrthosinhon	
	nisum (strain 5AT) GN-eno	
CAKAK1	PE-3 SV-1	
		150 44
	DNA-directed PNA polymoraes	100.44
	subunit beta OS-Hamiltonella	
	dofonce cuben Acuthosishes	
	derensa subsp. Acynnosipnon	
	pisum (strain 5AT) GN=rpoB PE=3 SV=1	
------------------------------	---	--------
	>splC3PF03IPUR9_CORA7	54,833
	Bifunctional purine biosynthesis	
	protein PurH	
	OS-Corvnebacterium	
	aurimucosum (strain ATCC	
	700075 / DSM 44827 / CN 1)	
C3DE03	7009757 DSIVI 446277 CIN-1)	
C3PF03		07.040
	>splC3L179 OTC_CLOB6	37.248
	Ornithine carbamoyltransferase	
	OS=Clostridium botulinum	
	(strain 657 / Type Ba4)	
	GN=arcB PE=3	
	SV=1;>sp C1FTE9 OTC_CLOB	
	J Ornithine	
	carbamoyltransferase	
	OS=Clostridium botulinum	
	(strain Kyoto / Type A2)	
C3L179;C1FTE9;B1KXQ3;B1IJJ6;	GN=arcB PE=3	
A7GGI0;A7FWM4;A5I524	SV=1;>sp B1KXQ3 OTC_CL	
	>sp C1F111 RECR_ACIC5	21.824
	Recombination protein RecR	
	OS=Acidobacterium capsulatum	
	(strain ATCC 51196 / DSM	
	11244 / JCM 7670 / NBRC	
	15755 / NCIMB 13165 / 161)	
C1F111	GN=recR PF=3 SV=1	
	>splC0ZZ48IRUVB_RHOE4	38.812
	Holliday junction ATP-	
	dependent DNA helicase RuvB	
	OS=Rhodococcus erythropolis	
	(strain PR4 / NBRC 100887)	
C07748	$GN-r_{IV}BPE-3SV-1$	
		15 13
	Poptidaça T OS-Brovibacillus	43.43
	brovic (strain 47 / ICM 6285 /	
	NPPC 100500) CN-popT DE-2	
007012		
		E4 42E
	>spicuQvvA9juXAC_BRAHvv	54.435
00014/40	(strain ATCC 49526 / WAT)	
CUQWA9	GN=UXaC PE=3 SV=1	75.000
	>splC0QJ86 DNLJ_DESAH	75.283
	DINA ligase	
	US=Desulfobacterium	
	autotrophicum (strain ATCC	
	43914 / DSM 3382 / HRM2)	
C0QJ86	GN=ligA PE=3 SV=1	
	>sp B9M7V0 CBID_GEODF	38.09
	Cobalt-precorrin-5B C(1)-	
	methyltransferase	
	OS=Geobacter daltonii (strain	
	DSM 22248 / JCM 15807 / FRC-	
B9M7V0	32) GN=cbiD PE=3 SV=1	

SepIB9L698(CH60_NAUPA 60)57.85 KDa chaperonin OS-Nautilia profundicola (strain ATCC BAA- 1463 / DSM 18972 / AmH)B9L698GN=groLPE=3 SV=1sepIB9JH59(RSMH_AGRRK Ribosomal RNA small subunit methyltransferase H OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868)B9JH59GN=srnd PE=3 SV=1SepIB9J8C6(FMT_AGRRK Methionyl-RNA formyltransferase OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868)B9JH59GN=rsmH PE=3 SV=1SepIB9J8C6(FMT_AGRRK (STam K84 / ATCC BAA-868)B9J8C6GN=fmt PE=3 SV=1SepIB9E972(DLHYD_MACCJ Oleate hydratase OS=Macrocccus caseolyticus (strain JCSC5402)B9E972GN=MMCCL_0076 PE=1 SV=1SepIB9E972(DLHYD_MACCJ Oleate hydratase OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM 6949) GN=groLPE=3 SV=1SepIB8123(CH60_DESDA 60 NDa chaperonin OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM 6949) GN=groLPE=3 SV=1SepIB81MR7PE=3 SV=1SepIB81MR7SepIB80W12[DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bildobacterium animalis subsp. lactis (strain AD011) GN=BA_1483 PE=3 SV=1B8DW12AD011) GN=dapA PE=3 SV=1SepIB8DW14[SPFH BIFAS Xyuluose-5.phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosp			
KDa chaperonin OS=Nautilia profuncticola (strain ATCC BAA- 1463 / DSM 18972 / AmH)B9L698GN=groL PE=3 SV=1>sep[B9JH59]RSMH_AGRRK Ribosomal RNA small subunit methyltransferase H OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868) GN=rsmH PE=3 SV=1B9JH59GN=rsmH PE=3 SV=1>sep[B9JBC6]FMT_AGRRK (strain K84 / ATCC BAA-868) GM=rsmH PE=3 SV=1B9J8C6GN=rsmH PE=3 SV=1Sep[B9J8C6]FMT_AGRRK (strain K84 / ATCC BAA-868) GM=fmt PE=3 SV=1B9J8C6GN=fmt PE=3 SV=1Sep[B92972]OLHYD_MACCJ Oleate hydratase OS=Macrocccus caseolyticus (strain JCSC5402)67.309B9E972GN=MCCL 0076 PE=1 SV=1Sep[B8J123]CH60_DESDA 60 kDa chaperonin OS=Desulfovibrio desulfuricans (strain ATCC 2774 / DSM 6949) GN=groL PE=3 SV=1Sep[B8HMR7]RS8_CYAP4 30S ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH PE=3 SV=1B8HMR7PE=3 SV=1Sep[B8DW12]DAPA_BIFA0 4- hydroxy-tetrahydrolipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1B8DW12AD011) GN=dapA PE=3 SV=1Sep[B8DW12]DAPA_BIFA0 Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1_sep[Q9AEM9]KP_BIFA0 Threonine-tRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1_sep[Q9AEM9]KP_BIFA0 Tracoine-tRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BIA_1483 PE=3 SV=1_sep[Q5E0Z0]6BER09,BET10 SHB7VQ26JCLPK_VIBT GN=KH03;Q0TMA0;Q0SQ01;Q7M HS6Q9KLJ9;C3LW10;A5EZR2;A1 SN=1;sep[Q5E0Z0]GLPK_VIBF55.869<		>splB9L698 CH60_NAUPA 60	57.85
profundicola (strain ATCC BAA- 1463 / DSM 18972 / AmH)B9L698GN=groL PE=3 SV=1Ribosomal RNA small subunit methyltransferase H OS=Agrobacterium radiobacter (strain K64 / ATCC BAA-668)35.957B9JH59GN=rsmH PE=3 SV=1>sep[B3BC6[FMT_AGRK Methionyl-tRNA formyltransferase OS=Agrobacterium radiobacter (strain K64 / ATCC BAA-868)33.657B9J8C6GN=rsmH PE=3 SV=1>sep[B3BC6[FMT_AGRK (strain K64 / ATCC BAA-868)67.309OB=Agrobacterium radiobacter (strain K64 / ATCC BAA-868)67.309Dester hydratase OS=Magrobacterium radiobacter (strain JCSC5402)67.309B9E972GN=MCCL_0076 PE=1 SV=1>sep[B3E972]OLHYD_IMACCJ OS=Macrocccus caseolyticus (strain ATCC 27774 / DSM (S=Desulfovibrio desulfuricans (S=2054000)58.418B8J1236949) GN=groL PE=3 SV=1>sep[B8HMR7PE=3 SV=1>sep[B8DW12]DAPA_BIFA0 4 hydroxy-tetrahydrodipicolinate synthase OS=Bifdobacterium animalis subs. lactis (strain AD011) GN=BLA_1483 PE=332.204B8DW12AD011) GN=dapA PE=3 SV=132.204Sv=1:sep[Q3EDW12]DAPA_BIFA0 4 hydroxy-tetrahydrodipicolinate synthase OS=Bifdobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=332.204B8DUT6;Q9AEM9subsp. lactis (strain DS32.204Sv=1:sep[Q3EDW12]DAPA_BIFA0 4 hydroxy-tetrahydrodipicolinate synthase OS=Bifdobacterium animalis subsp. lactis (strain DS32.204B8DUT6;Q9AEM9sep[B8DUT6]PHK_BIFA0 SXJulose-5.phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphat		kDa chaperonin OS=Nautilia	
B9L698 GN=groL PE=3 SV=1 ssplB3UH59[RSMH_AGRRK Ribosomal RNA small subunit methyltransferase H 35.957 B3JH59 GN=groL PE=3 SV=1 B3JH59 GN=srmt PE=3 SV=1 B3JH59 GN=srmt PE=3 SV=1 B3JH59 SapB3UC6[FMT_AGRRK Methionyl-tRNA formyltransferase OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868) 33.657 B3J8C6 GN=fmt PE=3 SV=1 33.657 Delate hydratase OS=Macrococcus caseolyticus (strain JCSC5402) 67.309 Dieate hydratase OS=Macrococcus caseolyticus (strain ATCC 2076 PE=1 SV=1 69.49 B9E972 GN=McCL_0076 PE=1 SV=1 58.188 B3J123 69.49 GN=cycor774 / DSM (B949) GN=cyr774 / DSM (B949) GN=cyr774 / DSM (SS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH PE=3 SV=1 32.204 B8HMR7 PE=3 SV=1 32.204 B8HMR7 PE=3 SV=1 32.501 B8HMR7 PE=3 SV=1 32.501 B8HMR7 PE=3 SV=1 32.204 SymbabW12 SpiBB0W12[DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD01+ GN=BLA_1483 PE=3 32.501 B8DW12 AD0111) GN=dapA PE=3 SV=1 32		profundicola (strain ATCC BAA-	
B9L698 GN-groL PE=3 SV=1 >splB3/H59 RSMH_AGRRK 35.957 Ribosomal RNA small subunit methyltransferase H 35.957 B9JH59 GN=rsmH PE=3 SV=1 SeplB3/B3/B3/B3/B3/B3/B3/B3/B3/B3/B3/B3/B3/B		1463 / DSM 18972 / AmH)	
>spjB9JH59 RSMH_AGRRK Ribosomal RNA small subunit methyltransferase H OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868) GN=rsmH PE=3 SV=1 33.657 B9JH59 GN=rsmH PE=3 SV=1 33.657 Methionyl-tRNA formyltransferase OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868) 33.657 B9J8C6 GN=rsmH PE=3 SV=1 33.657 B9J8C6 GN=rmt PE=3 SV=1 558.688) B9J8C6 GN=rmt PE=3 SV=1 55.869 B9E972 GN=McCL_0076 PE=1 SV=1 55.869 B9E972 GN=McCL_0076 PE=1 SV=1 55.8418 B8J123 G949) GN=groL PE=3 SV=1 55.8418 B8J123 G949) GN=groL PE=3 SV=1 55.8418 B8J123 G949) GN=groL PE=3 SV=1 55.8418 B8HMR7 PE=3 SV=1 55.8512 B8HMR7 PE=3 SV=1 32.204 Symbase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dapA PE=3 SV=1 32.204 Symbase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dapA PE=3 SV=1 32.204 Symbase OS=Bifidobacterium animalis subsp. lactis (strain AD011) ST GN=MCCL BD76 DBFA0 Sphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) ST <td>B9L698</td> <td>GN=groL PE=3 SV=1</td> <td></td>	B9L698	GN=groL PE=3 SV=1	
Ribosomal RNA small subunit methyltransferase H OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868)B9JH59GN=rsmH PE=3 SV=1>spIB9J8C6[FMT_AGRRK Methionyl-RNA formyltransferase OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868)33.657B9J8C6GN=rsmH PE=3 SV=155B9J8C6GN=rsmH PE=3 SV=1SpIB9E972[OLHYD_MACCJ Oleate hydratase OS=Marococcus caseolyticus (strain JCSC5402)67.309B9E972GN=MCCL_0076 PE=1 SV=1SpIB3123[CH60_DESDA 60 Strain ATC 27774 / DSM (Strain ATC 27774 / DSM<		>splB9JH59IRSMH AGRRK	35.957
methyltransferase H OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868)B9JH59SNERA/SQUE (SHain K84 / ATCC BAA-868)B9J8C6SSPIB9J8C6(FMT_AGRRK Methionyl-RNA formyltransferase OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868)B9J8C6GN=fmt PE=3 SV=1SSPIB9E972(JCHYD_MACCJ Oleate hydratase OS=Macrococcus caseolyticus (strain XSC5402)67.309B9E972GN=MCCL_0076 PE=1 SV=1SSPIB8102(JCH0_DESDA 60 (strain ATCC 27774 / DSM 6949) GN=groL PE=3 SV=158.418B8J123G949) GN=groL PE=3 SV=1SSPIB8HMR7(RS8_CYAP4 30S ribosomal protein S8 OS=Cyanthece sp. (strain PCC 7425 / ATCC 29141) GN=pSH14.699B8HMR7PE=3 SV=1SSPIB8DUT6[DAPA_BIFA0 + Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BL_1433 PE=332.204B8DW12AD011) GN=dapA PE=3 SV=1SSPIB8DUT6[PHK_BIFA0 Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BL_1438 PE=3 SV=1:>spIBBUT6[PHK_BIFA0 SV=1;>spIBAD47[SPLBFA0 SV=1;>spIBAD47[SPLBFA0 SV=1;>spIBAD47[SPLBFA0 SV=1;>spIBAD47[SPLBFA0 SV=1;>spIBAD47[SPLBFA0 SV=1;>spIBAD47[SPLBFA0 SV=1;>spIBAD47[SPLBFA0 SV=1;>spIBAD47[SPLBFA0 SV=1;>spIBAD47[SPLBFA0 SV=1;>spIBAD47[SPLBFA0 SV=1]78.614 Threonine-rRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=erG1020;6EC70;0ECR0;9ESET10 SQBBM6;Q37M72;Q7M193;A7N1R GN263(SC1020]GLPK_VIBTL GN263(SC1020]GLPK_VIBTL GN263(SC1020]GLPK_VIBF55.869 SNe1 SNE12 SNE12 SNE13B8DUF4SNE147(ST_SR2;A1 SNE147 SNE147SSF187020 SNE147 SNE14755.869 <b< td=""><td></td><td>Ribosomal RNA small subunit</td><td></td></b<>		Ribosomal RNA small subunit	
B9JH59 SPEARCOLL STATES B9JH59 SPEARCOLL STATES B9JH59 SPEARCOLL STATES B9JB59 SPEARCOLL STATES B9JB59 SPEARCOLL STATES B9JB50 SPEARCOLL STATES B8J123 SPEARCOLL STATES B8J123 SPEARCOLL STATES B8J123 SPEARCOLL STATES B8J123 SPEARCOLL STATES B8JMR7 PEARCOLL STATES B8JMR7 PEARCOLL STATES B8JMR7 PEARCOLL STATES B8JMR7 PEARCOLL STATES B8JMR7 PEARCOLL STATES B8JMR7 PEARCOLL STATES B8JM12 ADD11 SPEARCOLL STATES B8JM12 ADD11 SPEARCOLL STATES B8JB0U16 SPEARCOLL STATES B8JB0U16 SPEARCOLL STATES B8JB0U16 SPEARCOLL STATES B8JB0U16 SPEARCOLL STATES B8JB017 SPEARCOLL STATES SVE1. SSPIBR017 SPEARCOLL STATES SVE1. SSPIST SPEARCOLL STATES SVE1. SSPIST STATES		methyltransferase H	
B9JH59 (Strain K84 / ATCC BAA-868) B9JH59 (Sh=rsmH PE=3 SV=1 >splB9J8C6(FMT_AGRRK MethionyI-IRNA formyItransferase OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868) (Sh=fmt PE=3 SV=1 >splB9T2/OLHYD_MACCJ Oleate hydratase OS=Macrococcus caseolyticus (strain JCSC5402) B9E972 (Sh=Macrococcus caseolyticus (strain JCSC5402) B9E972 (Sh=Macrococcus caseolyticus (strain JCSC5402) B9E972 (Sh=Macrococcus caseolyticus (strain JCSC5402) B9E972 (Sh=Macrococcus caseolyticus (strain ATCC 27774 / DSM (Sh=Macrococcus caseolyticus) (strain ATCC 27774 / DSM (Sh=Macrococcus caseolyticus) (strain ATCC 29141) GN=rpsH PE=3 SV=1 >splB8DVI2 DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain B8DW12 AD011) GN=dpaPE=3 SV=1 >splB8DUT6 PHK_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;splQ9AEM9 XFP_BIFAS Xylulose-5-phosphate/fncutose- 6-phosphate/bosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) B8DUF4 Syntase OS=Bifidobacterium animalis subsp. lactis (strain AD011) B8DUF4 Syntase OS=Bifidobacterium animalis subsp. lactis (strain AD011) B8DUF4 Syntase OS=Bifidobacterium animalis subsp. lactis (strain AD011) B8DUF4 Syntase OS=Vibrio tasmaniensis (strain LGP32) GN=glKL97C3LW10;A5EZR2;AI SV=1;ssplQ9AED92C3LW10;A5EZR2;AI SV=1;ssplQ9AED92C3LW10;A5EZR2;AI SV=1;ssplQ9AED92C3LW10;A5EZR2;AI SV=1;ssplQ9AED92C3LW10;A5EZR2;AI SV=1;ssplQ9AED92C3LW10;A5EZR2;AI		Ω S-Agrobacterium radiobacter	
B9JH59 GN-FSML PE=3 SV=1 Sep[B9J8C6[FMT_AGRRK Methiony]-tRNA formyltransferase OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868) GN=fmt PE=3 SV=1 Sep[B9E972]OLHYD_MACCJ Oleate hydratase OS=Macrococcus caseolyticus (strain JCSC5402) B9E972 GN=MCCL_0076 PE=1 SV=1 Sep[B8J123]CH60_DESDA 60 kDa chaperonin OS=Desultovibrio desulfuricans (strain ATCC 27774 / DSM B8J123 6949) GN=groL PE=3 SV=1 Sep[B8HMR7/R2R8_CYAP4 30S ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH PE=3 SV=1 Sep[B8DU12]DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate Synthase OS=Bifdobacterium animalis subsp. lactis (strain AD011) GN=eta_1 XE-1 Sep[B8DU16]PAA_BIFA0 4- hydroxy-tetrahydrodipicolinate Synthase OS=Bifdobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;sep[Q9AEM9]XFP_BIFAS XyUlose-5-phosphate/fructose- 6-phosphate/hosphoketolase OS=Bifdobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;sep[Q9AEM9]XFP_BIFAS XyUlose-5-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 6-phosphate/fructose- 0S=Bifdobacterium animalis subsp. lactis (strain AD011) B8DUF4 B8DUF4 B7VQ85;Q5ED20;B6ER09;B5ETU ;Q8DBM6;Q87M72;Q7MI93;A7N1R ;08XHD3;Q0TMA0;Q0SQ01;Q7M YB6;Q9KLJ9;C3LW10;A5EZR2;A1 SV=1;>sp[Q6E020]GLPK_VIBFL SZE1		$(\text{strain } K84 / \Lambda TCC BAA_868)$	
DSI/159 On-HSIMI PLEXSUP1 SepIB93/BCG[FMT_AGRRK 33.657 Methionyl-tRNA formyltransferase OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868) B9J8C6 GN=fmt PE=3 SV=1 SepIB9572[OLHYD_MACCJ) 67.309 Oleate hydratase OS=Macrococcus caseolyticus (strain JCSC5402) GN=MmCCL_0076 PE=1 SV=1 SepIB8J123(CH60_DESDA 60 58.418 KDa chaperonin SseJB8J123(CH60_DESDA 60 B8J123 6949) GN=groL PE=3 SV=1 SepIB8HMR7[RS8_CYAP4 30S 14.699 ribosomal protein S8 OS=Cyanothece sp. (strain PCC OS=DBBBHMR7[RS8_CYAP4 30S 14.699 ribosomal protein S8 OS=Cyanothece sp. (strain PCC SepIB8DW12[DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain B8DW12 AD011) GN=dapA PE=3 SV=1 SepIB8DW12[DAPA_BIFA0 92.501 Probable phosphoketolase OS=Bifidobacterium animalis Subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>spIQ9AEM9[XFP_BIFAS X/Ulose-5-phosphate/fructose- SephyB8DUF4[SYT_BIFA0 78.614		(SII a III R04 / ATCC BAA-000) CN = rem H DE = 2 SV = 1	
SpipB30c0prM1_ACRRK Methionyl-tRNA formyltransferase OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868)33.657B9J8C6GN=fmt PE=3 SV=167.309Oleate hydratase (strain JCSC5402)67.309B9E972GN=MCCL_0076 PE=1 SV=1SsplB8J123[CH60_DESDA 60 kDa chaperonin OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM (SS=Desulfovibrio desulfuricans (strain ATCC 27174 / DSM (SS=DESULFOVID) (SS=D	B9J1129		22.057
B9J8C6 OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868) B9J8C6 GN=Fmt PE=3 SV=1 Sep[B9E972]OLHYD_MACCJ Oleate hydratase 67.309 OS=Macrococcus caseolyticus (strain JCSC5402) 67.309 B9E972 GN=MACCL_0076 PE=1 SV=1 Sep[B8J123]CH60_DESDA 60 kDa chaperonin 58.418 B8J123 G949 [ON-group E=3 SV=1] Sep[B8J123]CH60_DE=3 SV=1 Sep[B8HMR7]RS8_CYAP4 30S ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH B8HMR7 PE=3 SV=1 Sep[B8DW12[DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain ADO11) GN=dapA PE=3 SV=1 B8DW12 >sp[B8DUT6]PHK_BIFA0 SV=1 >sp[B8DUT6]PHK_BIFA0 Sv=1 Sv=1 Sv=1 Sv=1 B8DW12 >sp[B8DUT6]PHK_BIFA0 SV=1,>sp[03AEM]XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase SV=1,sp[03AEM]XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase SV=1,ssp[03AEM]XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase SV=1,ssp[03AEM]XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate/fructose- 6-phosphate phosphoketolase		>SPID9JOCOFINIT_AGRAK	33.057
B9J8C6 OS-Agrobacterium radiobacter (strain K84 / ATCC BAA-868) GN=fmt PE=3 SV=1 >splB9E972[OLHYD_MACCJ Oleate hydratase OS=Macrococcus caseolyticus (strain JCSC5402) B9E972 GN=MCCL_0076 PE=1 SV=1 >splB8J123[CH60_DESDA 60 KDa chaperonin OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM 6949) GN=groL PE=3 SV=1 >splB8HMR7[RS8_CYAP4 30S ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH B8HMR7 PE=3 SV=1 >splB8DW12[DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dapA PE=3 SV=1 >splB8DW12 AD011) GN=dapA PE=3 SV=1 >splB8DW12 AD011) GN=dapA PE=3 SV=1 >splB8DW12 AD011) GN=dapA PE=3 SV=1 >splB8DW12 AD011) GN=dapA PE=3 SV=1;>splQ0AEM9 XFP_BIFA0 Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>splQ0AEM9 XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>splQ0AEM9 XFP_BIFA0 ThreoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=1 SPJB8DUF4(SYT_BIFA0 Threonine-tRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=1 B7VQ85;Q5E020;B6ER09;B5ET10 spB7VQ85;G1DFV_VIBTL ;Q8DBM6;Q87M72;Q7M193;A7N1R 1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M Y66;Q9KLJ9;C3LW10;A5EZR2;A1 SV=1;>splQ5E020[GLPK_VIBTL SV=1;>splQ5E020[GLPK_VIBF		Methionyl-tRNA	
OS=Agrobacterium radiobacter (strain K84 / ATCC BAA-868) GN=fmt PE=3 SV=1 >sp[B9E972[OLHYD_MACCJ Oleate hydratase OS=Macrococcus caseolyticus (strain JCSC5402) B9E972 GN=MACCC_0076 PE=1 SV=1 >sp[B8J123[CH6L_DESDA 60 KD KD Sep[B8J123]CH6L_0DESDA 60 KD SSP[B8HMR7]RS8_CYAP4 30S (strain ATCC 27774 / DSM G949) GN=groL PE=3 SV=1 SSP[B8HMR7]RS8_CYAP4 30S ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH PE=3 SV=1 SSP[B8DW12]DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1 SSP[B8DUT6]PHK_BIFA0 Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DS SV=1;>sp[QB4M9]XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase <t< td=""><td></td><td>formyltransferase</td><td></td></t<>		formyltransferase	
(strain K84 / A ICC BAA-868) B9J8C6 GN=fmt PE=3 SV=1 >splB9E972[OLHYD_MACCJ 67.309 Oleate hydratase OS=Macrococcus caseolyticus (strain JCSC5402) 58.418 B9E972 GN=MCCL_0076 PE=1 SV=1 >splB8J123(CH60_DESDA 60 kDa chaperonin OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM 58.418 B8J123 6949) GN=groL PE=3 SV=1 SsplB8HMR7/RS8_CYAP4 30S ribosomal protein S8 14.699 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH 32.204 B8HMR7 PE=3 SV=1 32.204 SplB8DW12 DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dapA PE=3 SV=1 32.204 B8DW12 AD011GPHK_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dapA PE=3 SV=1 92.501 B8DW12 AD011(BHK_BIFA0 Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) 92.501 B8DUT6;Q9AEM9 SV=1:splQ9AEM9 XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate/fnuctose- 6-phosphate/fnuctose- 6-phosphate/fnuctose- 6-phosphate/fnuctose- 6-phosphate/fnuctose- 6-phosphate/fnuctose- 6-phosphate/fnuctose- 6-phosphate/fnuctose- 6-phosphate/fnuctose- 6-phosphate/fnuctose- 6-phosphate/fnuctose- 6-phosphate/fnuctose- 6-phosphate/fnuctose- 6-phosphate/fnuctose- 6-phosphate/fnuctose- 6-p		OS=Agrobacterium radiobacter	
B9J8C6 GN=fmt PE=3 SV=1 >splB9E972 OLHYD_MACCJ 67.309 Oleate hydratase 0S=Macrococcus caseolyticus (strain JCSC5402) GN=MCCL_0076 PE=1 SV=1 B9E972 GN=MCCL_0076 PE=1 SV=1 SsplB8.1123 CH60_DESDA 60 KBa chaperonin OS=Desulfovibrio desulfuricans 58.418 6949) GN=groL PE=3 SV=1 59 B8J123 6949) GN=groL PE=3 SV=1 SsplB8HMR7 RS8_CYAP4 30S 14.699 ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH PE=3 SV=1 B8HMR7 PE=3 SV=1 SsplB8DUT2 DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium 32.204 Mydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium B8DW12 AD011) GN=dapA PE=3 SV=1 SsplB8DUT6(PHK_BIFA0 92.501 Probable phosphoketolase OS=Bifidobacterium animalis Subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>splQAEM9 Subsp. lactis (strain AD011) B8DUT6;Q9AEM9 Subsp. lactis (strain AD011) GN=Bifidobacteriu		(strain K84 / ATCC BAA-868)	
>sp B9E972 OLHYD_MACCJ Oleate hydratase OS=Macrococcus caseolyticus (strain JCSC5402) GN=MCCL_0076 PE=1 SV=167.309B9E972GN=MCCL_0076 PE=1 SV=1>sp B8J123 CH60_DESDA 60 KDa chaperonin OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM58.418B8J1236949) GN=groL PE=3 SV=1>sp B8HMR7 RS8_CYAP4 30S ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH14.699B8HMR7PE=3 SV=1>sp B8DW12 DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dpA PE=3 SV=132.204B8DW12AD011) GN=dpA PE=3 SV=132.204SplB8DUT6 PHK_BIFA0 Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>splB8DUT6 PHK_BIFA0 Threonine-tRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>splB8DUF4[SYT_BIFA0 Threonine-tRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=HrS PE=3 SV=178.614 Threosine-tRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=178.614 Threosine-tRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=155.869B8DUF4Glycerol kinase OS=Vibrio tasmaniensis (strain AD011) GN=glpK PE=3 SV=155.869B7VQ85;Q5E020;B6ER09;B5ET10 YB6;Q9KLJ9;C3LW10;A5EZR2;A1 SV=1;>sp B4020GLPK_VIBFL55.869Glycerol kinase OS=Vibrio tasmaniensis (strain LGP32) Glycerol kinase OS=Vibrio tasmaniensis (strain LGP32) Glycerol kinase OS=Vibrio tasmaniensis (strain LGP32) Glycerol kinase OS=Vibrio 	B9J8C6	GN=fmt PE=3 SV=1	
Oleate hydratase OS=Macrococcus caseolyticus (strain JCSC5402)B9E972GN=MCCL_0076 PE=1 SV=1>sp B8J123 CH60_DESDA 60 kDa chaperonin OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM 6949) GN=groL PE=3 SV=158.418 kDa chaperonin OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM 6949) GN=groL PE=3 SV=1B8J1236949) GN=groL PE=3 SV=1>sp B8HMR7 RS8_CYAP4 30S ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH PE=3 SV=114.699 ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsHB8HMR7PE=3 SV=132.204 hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dapA PE=3 SV=1B8DWI2AD011) GN=dapA PE=3 SV=132.204 hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>sp B8DUF4 SYT_BIFA0 Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BBDUF478.614 Threonine-tRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=HtrS PE=3 SV=1B8DUF4GN=thrS PE=3 SV=178.614 Threonine-tRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=1B8DUF4GN=thrS PE=3 SV=155.869 GyaSHidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=1B8DUF4GN=glpK PE=3 SV=1S5.869 GyaSHidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=1B8DUF4GN=thrS PE=3 SV=1S5.869 GyaSHidobacterium animalis subsp. lactis (strain AD011) <td></td> <td>>sp B9E972 OLHYD_MACCJ</td> <td>67.309</td>		>sp B9E972 OLHYD_MACCJ	67.309
OS=Macrococcus caseolyticus (strain JCSC5402)B9E972GN=MCCL_0076 PE=1 SV=1>splB8J123(CH60_DESDA 60 kDa chaperonin OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM58.418B8J1236949) GN=groL PE=3 SV=1>splB8HMR7[RS8_CYAP4 30S ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH14.699B8HMR7PE=3 SV=1>splB8DW12[DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dpaA PE=3 SV=132.204B8DW12AD011) GN=dpaA PE=3 SV=1>splB8DUT6[PHK_BIFA0 Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>splQ8ADM2[PST_BIFAS Xylulose-5-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DS92.501B8DUT6;Q9AEM9subsp. lactis (strain DS78.614 Threonine-rtRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=HtrS PE=3 SV=178.614 Threonine-rtRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GS=BIFIdobacterium animalis Subsp. lactis (strain AD011) GS=BIFIdobacterium animalis Subsp. lactis (strain DS78.614 Threonine-rtRNA ligase OS=BIFIdobacterium animalis Subsp. lactis (strain AD011) GS=BIFIdobacterium animalis Subsp. lactis (strain AD011)55.869 Ste1B7VQ85;Q5E020;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R GN=grbK PE=3 SZE1SV=1;>splQ5E020]GLPK_VIBFL GN=grbK PE=3 SV=1;>splQ5E020]GLPK_VIBFL55.869 Ste1		Oleate hydratase	
B9E972(strain JCSC5402) GN=MCCL_0076 PE=1 SV=1>sp B8J123 CH60_DESDA 60 kDa chaperonin OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM 6949) GN=groL PE=3 SV=158.418 kDa chaperonin OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM 6949) GN=groL PE=3 SV=1B8J1236949) GN=groL PE=3 SV=1>sp B8HMR7 RS8_CYAP4 30S ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH PE=3 SV=114.699 ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsHB8HMR7PE=3 SV=1>sp B8DWl2 DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dapA PE=3 SV=132.204 hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>sp B8DUT6 PHK_BIFA0 Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>sp B8DUT6 SYT_BIFA0 Threonine-rtRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain DS78.614 Threonine-rtRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLF4B8DUF4GN=thrts PE=3 SV=1B7VQ85;Q5E020;B6ER09;B5ET10 ;Q3DBM6;Q87M72;Q7MI93;A7N1R ;Q3KHD3;Q0TMA0;Q0SQ01;Q7M YB6;Q9KL9;G2LW10;A55ZR2;A1 SV=1;>sp Q5E020]GLPK_VIBF55.869 SS		OS=Macrococcus caseolyticus	
B9E972 GN=MCCL_0076 PE=1 SV=1 >sp B8J123 CH60_DESDA 60 KDa chaperonin OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM 58.418 B8J123 6949) GN=groL PE=3 SV=1 - Sp B8HMR7 RS8_CYAP4 30S ribosomal protein S8 14.699 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH 14.699 B8HMR7 PE=3 SV=1 Sp B8DW12 DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dapA PE=3 SV=1 32.204 B8DW12 AD011) GN=dapA PE=3 SV=1 - Sp B8DUT6 PHK_BIFA0 Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BL_1483 PE=3 SV=1:>sp Q9AEM9 XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DS 78.614 B8DUT6;Q9AEM9 subsp. lactis (strain AD011) GN=BL74N ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) 78.614 B7VQ85;Q5E020;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R >sp B7VQ85]GLPK_VIBTL GN=glpK PE=3 SV=1 55.869 B7VQ85;Q5E020;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q3UM10;A5EZR2;A1 SV=1 55.869 SV=1 Sp B7VQ85]GLPK_VIBFL 55.869 GN=glpK PE=3 SV=1 SV=1 55.869		(strain JCSC5402)	
>sp B8J123]CH60_DESDA 60 kDa chaperonin OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM 6949) GN=groL PE=3 SV=158.418B8J1236949) GN=groL PE=3 SV=114.699Sp B8HMR7 RS8_CYAP4 30S ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH PE=3 SV=114.699B8HMR7PE=3 SV=132.204B8HMR7PE=3 SV=132.204B8HMR7Sp B8DWl2 DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dapA PE=3 SV=132.204B8DWI2AD011) GN=dapA PE=3 SV=1>sp B8DUT6 PHK_BIFA0 Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>sp Q9AEM9 XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DS78.614 Threonine-+tRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=1B8DUF4GN=thrS PE=3 SV=1>sp B7VQ85 GLPK_VIBTL Glycerol kinase OS=Vibrio tasmaniensis (strain LGP32) GN=dpK PE=3 SV=1;>sp Q5E020 GLPK_VIBF55.869	B9E972	GN=MCCL 0076 PE=1 SV=1	
Bay 123 Sep 123		>splB8J123ICH60_DESDA_60	58.418
B8J123 OS=Desulfovibrio desulfuricans (strain ATCC 27774 / DSM 6949) GN=groL PE=3 SV=1 >splB8HMR7 RS8_CYAP4 30S ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH PE=3 SV=1 >splB8DW12 DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain B8DW12 AD011) GN=dapA PE=3 SV=1 >splB8DUT6 PHK_BIFA0 Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>splQ9AEM9 XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DS >splB8DUF4 SYT_BIFA0 TheoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain DS >splB8DUF4 SYT_BIFA0 Theonine-tRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=1 SV=1;>splB8DUF4 SYT_BIFA0 Theonine-tRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=1 B7VQ85;Q5E0Z0;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R Glycerol kinase OS=Vibrio tasmaniensis (strain LGP32) GN=djK PE=3 SV=1;>splQ5E0Z0;GLPK_VIBF		kDa chaperonin	
Subscience is a construction of the initial of the initial is a construction of the initial is a constructing of the initial is a constru		OS=Desulfovibrio desulfuricans	
B8J1236949) GN-groL PE=3 SV=1>sp B8HMR7 RS8_CYAP4 30S ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH PE=3 SV=114.699B8HMR7PE=3 SV=1		(strain ATCC 27774 / DSM	
bbs/b2 Sxpl/B8HMR7[R58_CYAP4 30S] 14.699 ribosomal protein S8 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH B8HMR7 PE=3 SV=1 32.204 hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain B8DWI2 AD011) GN=dapA PE=3 SV=1 32.204 Svp[B8DUT6]PHK_BIFA0 - - B8DWI2 AD011) GN=dapA PE=3 SV=1 - Svp[B8DUT6]PHK_BIFA0 92.501 - Probable phosphoketolase OS=Bifidobacterium animalis - Subsp. lactis (strain AD011) GN=BLA_1483 PE=3 - SV=1;>sp[Q9AEM9]XFP_BIFAS Xylulose-5-phosphate/fructose-6-phosphate phosphoketolase - B8DUT6;Q9AEM9 subsp. lactis (strain DS - - B8DUT6;Q9AEM9 subsp. lactis (strain DS - - B8DUF4 GN=thrS PE=3 SV=1 - - - B8DUF4 SSIG0SE0Z0;B6ER09;B5ET10 - - - - GN285;Q5E0Z0;B6ER09;B5ET10 - - - - - - B7VQ85;Q5E0Z0;B6ER09;B5ET10 - - - </td <td>B8 1123</td> <td>(31111) (3121) (3111) (3111)</td> <td></td>	B8 1123	(31111) (3121) (3111)	
>spipbol MiNT/ROS_CTAP4 300314.099ribosomal protein S8OS=Cyanothece sp. (strain PCC7425 / ATCC 29141) GN=rpsHPE=3 SV=1>spiB8DWl2 DAPA_BIFA0 4-32.204hydroxy-tetrahydrodipicolinatesynthase OS=Bifidobacteriumanimalis subsp. lactis (strainAD011) GN=dapA PE=3 SV=1B8DWl2AD011) GN=dapA PE=3 SV=1>spiB8DUT6 PHK_BIFA092.501Probable phosphoketolaseOS=Bifidobacterium animalissubsp. lactis (strain AD011)GN=BLA_1483 PE=3SV=1;>spiQ9AEM9 XFP_BIFASXylulose-5-phosphate/fructose- 6-phosphate phosphoketolaseB8DUT6;Q9AEM9subsp. lactis (strain DSsylB8DUT6;Q9AEM978.614ThreoninetRNA ligaseOS=Bifidobacterium animalis subsp. lactis (strain AD011)B8DUF4GN=thrS PE=3 SV=1B7VQ85;Q5E0Z0;B6ER09;B5ET10>splB7VQ85[GLPK_VIBTL Giycerol kinase OS=Vibrio tasmaniensis (strain LGP32) YB6;Q9KLJ9;C3LW10;A5EZR2;A1SV=1;>splQ5E0Z0]GLPK_VIBF	803125		14 600
B8HMR7 OS=Cyanothece sp. (strain PCC 7425 / ATCC 29141) GN=rpsH PE=3 SV=1 Ssp B8DW12 DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain B8DW12 AD011) GN=dapA PE=3 SV=1 Ssp B8DUT6 PHK_BIFA0 Subsp. lactis (strain AD011) Subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>sp QAEM9 XFP_BIFAS Xylulose-5-phosphatefructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis Subsp. lactis (strain DS Subsp. lactis (strain DS Subsp. lactis (strain AD011) B8DUT6;Q9AEM9 Subsp. lactis (strain DS Ssp B8DUT6 SYT_BIFA0 ThreoninetRNA ligase OS=Bifidobacterium animalis Subsp. lactis (strain AD011) B8DUF4 B7VQ85;Q5E0Z0;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R Glycerol kinase OS=Vibrio tasmaniensis (strain LGP32) SV=1;>sp Q5E0Z0]GLPK_VIBF SUBSP. Q5E0Z0]GLPK_VIBF		ribocomal protoin S8	14.099
B3HMR7OS-Cyalititee sp. (strain PCC7425 / ATCC 29141) GN=rpsHPE=3 SV=1>sp[B8DW12]DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dapA PE=3 SV=132.204B8DW12AD011) GN=dapA PE=3 SV=1>sp[B8DUT6]PHK_BIFA092.501Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>sp[Q9AEM9]XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DS92.501B8DUT6;Q9AEM9Subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>sp[B8DUF4]SYT_BIFA0 ThreoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLF478.614B7VQ85;Q5E0Z0;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R I;Q8XHD3;Q0TMA0;Q0SQ01;Q7M YB6;Q9KLJ9;C3LW10;A5EZR2;A1 SZE1>splQ5E0Z0[GLPK_VIBF		OS = Cyanothaco co. (ctrain BCC)	
7425 / ATCC 29141) GiverpsinB8HMR7PE=3 SV=1>sp B8DW12 DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dapA PE=3 SV=1B8DW12AD011) GN=dapA PE=3 SV=1>sp B8DUT6 PHK_BIFA0 Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>sp Q9AEM9 XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DSB8DUT6;Q9AEM9subsp. lactis (strain DSB8DUT6;Q9AEM9>sp B8DUF4 SYT_BIFA0 ThreoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain DSB8DUF4GN=thrS PE=3 SV=1B7VQ85;Q5E0Z0;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7M193;A7N1R HS(Q9KLJ9;C3LW10;A5EZR2;A1 SZE1>splB7VQ85[QLPK_VIBTL GN=glpK PE=3 SV=1;>splQ5E0Z0]GLPK_VIBF			
B8HMR7PE=3 SV=1>sp B8DWI2 DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dapA PE=3 SV=132.204B8DW12AD011) GN=dapA PE=3 SV=1>>sp B8DUT6 PHK_BIFA0 Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>sp Q9AEM9 XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DS92.501B8DUT6;Q9AEM9SV=1;>sp Q9AEM9 XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DS78.614B8DUT6;Q9AEM9SylB8DUF4 SYT_BIFA0 ThreoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=178.614B7VQ85;Q5E0Z0;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R (Blycerol kinase OS=Vibrio 1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M YB6;Q9KLJ9;C3LW10;A5EZR2;A1 SZE1SV=1;>sp Q5E0Z0]GLPK_VIBF		7425 / ATCC 29141) GN=IPSH	
>sp BBDWI2 DAPA_BIFA0 4- hydroxy-tetrahydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain 	Bonivir7		00.004
Nydroxy-tetranydrodipicolinate synthase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dapA PE=3 SV=1B8DW12AD011) GN=dapA PE=3 SV=1>sp B8DUT6 PHK_BIFA0 Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>sp Q9AEM9 XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DSB8DUT6;Q9AEM9subsp. lactis (strain DSB8DUT6;Q9AEM9>sp B8DUF4 SYT_BIFA0 ThreoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BIFISAS Sylasp. lactis (strain AD011) GN=BIFISAS Subsp. lactis (strain AD011) GN=BIFISAS Subsp. lactis (strain AD011) GN=BIFISAS Subsp. lactis (strain AD011) GN=BIFISAS SUSP. lactis (strain AD011) GN=thrS PE=3 SV=1B8DUF4Sn=thrS PE=3 SV=1B7VQ85;Q5E0Z0;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R YB6;Q9KLJ9;C3LW10;A5EZR2;A1 SZE1SV=1;>sp Q5E0Z0[GLPK_VIBF GN=glpK PE=3 SV=1;>sp Q5E0Z0[GLPK_VIBF		>sp B8DWI2 DAPA_BIFAU 4-	32.204
Syntnase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=dapA PE=3 SV=1B8DWI2AD011) GN=dapA PE=3 SV=1>sp B8DUT6 PHK_BIFA092.501Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>sp Q9AEM9 XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DSB8DUT6;Q9AEM9subsp. lactis (strain DSB8DUT6;Q9AEM9>sp B8DUF4 SYT_BIFA0 ThreoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1B8DUF4GN=thrS PE=3 SV=1B7VQ85;Q5E0Z0;B6ER09;B5ET10 (3Q8THA3;Q0TMA0;Q0SQ01;Q7M YB6;Q9KLJ9;C3LW10;A5EZR2;A1>sp B7VQ85[GLPK_VIBTL GN=glpK PE=3 SV=1;>sp Q5E0Z0]GLPK_VIBF		nydroxy-tetranydrodipicolinate	
B8DWI2AD011) GN=dapA PE=3 SV=1>sp B8DUT6 PHK_BIFA092.501Probable phosphoketolaseOS=Bifidobacterium animalisSubsp. lactis (strain AD011)GN=BLA_1483 PE=3SV=1;>sp Q9AEM9 XFP_BIFASXylulose-5-phosphate/fructose- 6-phosphate phosphoketolaseB8DUT6;Q9AEM9subsp. lactis (strain DSB8DUT6;Q9AEM9>sp B8DUF4 SYT_BIFA0ThreoninetRNA ligaseOS=Bifidobacterium animalisSubsp. lactis (strain AD011)GN=thrS PE=3 SV=1B8DUF4Sy B8DUF4 SYT_BIFA0B7VQ85;Q5E0Z0;B6ER09;B5ET10>sp B7VQ85 GLPK_VIBTL;Q8DBM6;Q87M72;Q7M193;A7N1RGlycerol kinase OS=Vibrio1;Q8XHD3;Q0TMA0;Q0SQ01;Q7MSV=1;>sp Q5E0Z0 GLPK_VIBFSZE1SV=1;>sp Q5E0Z0 GLPK_VIBF		synthase OS=Bifidobacterium	
B8DW12AD011) GN=dapA PE=3 SV=1>sp B8DUT6 PHK_BIFA092.501Probable phosphoketolaseOS=Bifidobacterium animalisSubsp. lactis (strain AD011)GN=BLA_1483 PE=3SV=1;>sp Q9AEM9 XFP_BIFASXylulose-5-phosphate/fructose- 6-phosphate phosphoketolase0S=Bifidobacterium animalissubsp. lactis (strain DSB8DUT6;Q9AEM9subsp. lactis (strain DS>sp B8DUF4 SYT_BIFA078.614ThreoninetRNA ligaseOS=Bifidobacterium animalissubsp. lactis (strain AD011)GN=thrS PE=3 SV=1B8DUF4Sp B7VQ85 GLPK_VIBTL55.869Glycerol kinase OS=Vibriotasmaniensis (strain LGP32)YB6;Q9KLJ9;C3LW10;A5EZR2;A1SV=1;>sp Q5E0Z0 GLPK_VIBF		animalis subsp. lactis (strain	
>sp B8DUT6 PHK_BIFA092.501Probable phosphoketolaseOS=Bifidobacterium animalisSubsp. lactis (strain AD011)GN=BLA_1483 PE=3SV=1;>sp Q9AEM9 XFP_BIFASXylulose-5-phosphate/fructose-6-phosphate phosphoketolaseOS=Bifidobacterium animalisB8DUT6;Q9AEM9subsp. lactis (strain DSSV=1;>sp B8DUF4 SYT_BIFA078.614ThreoninetRNA ligaseOS=Bifidobacterium animalissubsp. lactis (strain AD011)GN=thrS PE=3 SV=1B8DUF4Ssp B7VQ85 GLPK_VIBTL55.869jQ8DBM6;Q87M72;Q7MI93;A7N1RGlycerol kinase OS=Vibrio1;Q8XHD3;Q0TMA0;Q0SQ01;Q7MSV=1;>sp Q5E0Z0]GLPK_VIBF55.869SZE1SV=1;>sp Q5E0Z0]GLPK_VIBFSV=1;>sp Q5E0Z0]GLPK_VIBF	B8DWI2	AD011) GN=dapA PE=3 SV=1	
Probable phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>sp Q9AEM9 XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DSB8DUT6;Q9AEM9Subsp. lactis (strain DSSV=1;>sp B8DUF4 SYT_BIFA0 ThreoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=1B8DUF4GN=thrS PE=3 SV=1B7VQ85;Q5E0Z0;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R 1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M YB6;Q9KLJ9;C3LW10;A5EZR2;A1>splQ5E0Z0[GLPK_VIBFL GN=glpK PE=3 SV=1;>splQ5E0Z0[GLPK_VIBF		>sp B8DUT6 PHK_BIFA0	92.501
OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=BLA_1483 PE=3 SV=1;>sp Q9AEM9 XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DSB8DUT6;Q9AEM9>sp B8DUF4 SYT_BIFA0 ThreoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=178.614 ThreoninetRNA ligase SV=1;>sp B7VQ85;Q5E0Z0;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R 1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M YB6;Q9KLJ9;C3LW10;A5EZR2;A1>splB7VQ85[GLPK_VIBTL GN=glpK PE=3 SV=1;>sp Q5E0Z0]GLPK_VIBF		Probable phosphoketolase	
subsp. lactis (strain AD011)GN=BLA_1483 PE=3SV=1;>sp Q9AEM9 XFP_BIFASXylulose-5-phosphate/fructose-6-phosphate phosphoketolaseOS=Bifidobacterium animalisB8DUT6;Q9AEM9Subsp. lactis (strain DS>sp B8DUF4 SYT_BIFA078.614ThreoninetRNA ligaseOS=Bifidobacterium animalissubsp. lactis (strain AD011)B8DUF4B7VQ85;Q5E0Z0;B6ER09;B5ET10;Q8DBM6;Q87M72;Q7MI93;A7N1R1;Q8XHD3;Q0TMA0;Q0SQ01;Q7MYB6;Q9KLJ9;C3LW10;A5EZR2;A1SZE1SZE1SZE1SZE1SZE1SZE1SUSPSUSPSUSPSZE1SUSPSU		OS=Bifidobacterium animalis	
GN=BLA_1483 PE=3SV=1;>sp Q9AEM9 XFP_BIFASXylulose-5-phosphate/fructose- 6-phosphate phosphoketolase0S=Bifidobacterium animalisB8DUT6;Q9AEM9subsp. lactis (strain DS>sp B8DUF4 SYT_BIFA078.614ThreoninetRNA ligase0S=Bifidobacterium animalissubsp. lactis (strain AD011)B8DUF4B7VQ85;Q5E0Z0;B6ER09;B5ET10;Q8DBM6;Q87M72;Q7MI93;A7N1R1;Q8XHD3;Q0TMA0;Q0SQ01;Q7MYB6;Q9KLJ9;C3LW10;A5EZR2;A1SZE1 <td></td> <td>subsp. lactis (strain AD011)</td> <td></td>		subsp. lactis (strain AD011)	
SV=1;>sp Q9AEM9 XFP_BIFAS Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DSB8DUT6;Q9AEM9subsp. lactis (strain DSSyp B8DUF4 SYT_BIFA0 ThreoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011)78.614 ThreoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011)B8DUF4GN=thrS PE=3 SV=1B7VQ85;Q5E0Z0;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R 1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M YB6;Q9KLJ9;C3LW10;A5EZR2;A1 SZE1SV=1;>sp Q5E0Z0 GLPK_VIBF		GN=BLA_1483 PE=3	
Xylulose-5-phosphate/fructose- 6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DSB8DUT6;Q9AEM9subsp. lactis (strain DS>sp B8DUF4 SYT_BIFA0 ThreoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=178.614 Threonine- 55.869B7VQ85;Q5E0Z0;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R 1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M YB6;Q9KLJ9;C3LW10;A5EZR2;A1 SZE1>sp B7VQ85[GLPK_VIBTL GN=glpK PE=3 SV=1;>sp Q5E0Z0]GLPK_VIBF		SV=1;>sp Q9AEM9 XFP BIFAS	
6-phosphate phosphoketolase OS=Bifidobacterium animalis subsp. lactis (strain DSB8DUT6;Q9AEM9subsp. lactis (strain DS>sp B8DUF4 SYT_BIFA0 ThreoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011)78.614B8DUF4GN=thrS PE=3 SV=1B7VQ85;Q5E0Z0;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R 1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M YB6;Q9KLJ9;C3LW10;A5EZR2;A1 SZE1>sp B7VQ85[GLPK_VIBTL GN=glpK PE=3 SV=1;>sp Q5E0Z0]GLPK_VIBF		Xylulose-5-phosphate/fructose-	
B8DUT6;Q9AEM9OS=Bifidobacterium animalis subsp. lactis (strain DSB8DUT6;Q9AEM9>sp B8DUF4 SYT_BIFA0 ThreoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=178.614 ThreoninetRNA ligase OS=Bifidobacterium animalis subsp. lactis (strain AD011) GN=thrS PE=3 SV=1B7VQ85;Q5E0Z0;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R 1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M YB6;Q9KLJ9;C3LW10;A5EZR2;A1 SZE1>sp B7VQ85 GLPK_VIBTL GN=glpK PE=3 SV=1;>sp Q5E0Z0 GLPK_VIBF		6-phosphate phosphoketolase	
B8DUT6;Q9AEM9subsp. lactis (strain DS>sp B8DUF4 SYT_BIFA078.614ThreoninetRNA ligaseOS=Bifidobacterium animalisOS=Bifidobacterium animalissubsp. lactis (strain AD011)B8DUF4GN=thrS PE=3 SV=1B7VQ85;Q5E0Z0;B6ER09;B5ET10>sp B7VQ85 GLPK_VIBTL;Q8DBM6;Q87M72;Q7MI93;A7N1RGlycerol kinase OS=Vibrio1;Q8XHD3;Q0TMA0;Q0SQ01;Q7Mtasmaniensis (strain LGP32)YB6;Q9KLJ9;C3LW10;A5EZR2;A1SV=1;>sp Q5E0Z0 GLPK_VIBF		OS=Bifidobacterium animalis	
Sobering of the second secon	B8DUT6 Q9AEM9	subsp. lactis (strain DS	
>3p1DDDD1 4[ST1_Dir A078.014ThreoninetRNA ligaseOS=Bifidobacterium animalisOS=Bifidobacterium animalissubsp. lactis (strain AD011)B8DUF4GN=thrS PE=3 SV=1B7VQ85;Q5E0Z0;B6ER09;B5ET10>sp B7VQ85 GLPK_VIBTL;Q8DBM6;Q87M72;Q7MI93;A7N1RGlycerol kinase OS=Vibrio1;Q8XHD3;Q0TMA0;Q0SQ01;Q7Mtasmaniensis (strain LGP32)YB6;Q9KLJ9;C3LW10;A5EZR2;A1GN=glpK PE=3SZE1SV=1;>sp Q5E0Z0 GLPK_VIBF		SSDIB8DLIFAISVT RIFAD	78 614
Inteonnie=trive ligaseOS=Bifidobacterium animalis subsp. lactis (strain AD011)B8DUF4GN=thrS PE=3 SV=1B7VQ85;Q5E0Z0;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R>sp B7VQ85 GLPK_VIBTL Glycerol kinase OS=Vibrio1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M YB6;Q9KLJ9;C3LW10;A5EZR2;A1GN=glpK PE=3 SV=1;>sp Q5E0Z0 GLPK_VIBF		ThreoninetRNA ligase	10.014
OS=Bindobacterium animaissubsp. lactis (strain AD011)B8DUF4GN=thrS PE=3 SV=1B7VQ85;Q5E0Z0;B6ER09;B5ET10>sp B7VQ85 GLPK_VIBTL;Q8DBM6;Q87M72;Q7MI93;A7N1RGlycerol kinase OS=Vibrio1;Q8XHD3;Q0TMA0;Q0SQ01;Q7Mtasmaniensis (strain LGP32)YB6;Q9KLJ9;C3LW10;A5EZR2;A1GN=glpK PE=3SZE1SV=1;>sp Q5E0Z0 GLPK_VIBF		OS-Bifidebactorium animalia	
B8DUF4Subsp. factis (strain AD011)B8DUF4GN=thrS PE=3 SV=1B7VQ85;Q5E0Z0;B6ER09;B5ET10 ;Q8DBM6;Q87M72;Q7MI93;A7N1R>sp B7VQ85 GLPK_VIBTL Glycerol kinase OS=Vibrio1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M YB6;Q9KLJ9;C3LW10;A5EZR2;A1 SZE1GN=glpK PE=3 SV=1;>sp Q5E0Z0 GLPK_VIBF			
B&DUF4 GN=thrS PE=3 SV=1 B7VQ85;Q5E0Z0;B6ER09;B5ET10 >sp B7VQ85 GLPK_VIBTL 55.869 ;Q8DBM6;Q87M72;Q7MI93;A7N1R Glycerol kinase OS=Vibrio 1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M tasmaniensis (strain LGP32) YB6;Q9KLJ9;C3LW10;A5EZR2;A1 GN=glpK PE=3 SZE1 SV=1;>sp Q5E0Z0 GLPK_VIBF		Subsp. lacus (strain ADU11)	
B7VQ85;Q5E0Z0;B6ER09;B5E110 >sp B7VQ85 GLPK_VIBTL 55.869 ;Q8DBM6;Q87M72;Q7MI93;A7N1R Glycerol kinase OS=Vibrio 1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M tasmaniensis (strain LGP32) YB6;Q9KLJ9;C3LW10;A5EZR2;A1 GN=glpK PE=3 SZE1 SV=1;>sp Q5E0Z0 GLPK_VIBF		GN=thrS PE=3 SV=1	
;Q8DBM6;Q87M72;Q7MI93;A7N1R Glycerol kinase OS=Vibrio 1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M tasmaniensis (strain LGP32) YB6;Q9KLJ9;C3LW10;A5EZR2;A1 GN=glpK PE=3 SZE1 SV=1;>sp Q5E0Z0 GLPK_VIBF	B/VQ85;Q5E0Z0;B6ER09;B5ET10	>splB7VQ85 GLPK_VIBTL	55.869
1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M tasmaniensis (strain LGP32) YB6;Q9KLJ9;C3LW10;A5EZR2;A1 GN=glpK PE=3 SZE1 SV=1;>sp Q5E0Z0 GLPK_VIBF	;Q8DBM6;Q87M72;Q7MI93;A7N1R	Glycerol kinase OS=Vibrio	
YB6;Q9KLJ9;C3LW10;A5EZR2;A1 GN=glpK PE=3 SZE1 SV=1;>sp Q5E0Z0 GLPK_VIBF	1;Q8XHD3;Q0TMA0;Q0SQ01;Q7M	tasmaniensis (strain LGP32)	
SZE1 SV=1;>sp Q5E0Z0 GLPK_VIBF	YB6;Q9KLJ9;C3LW10;A5EZR2;A1	GN=glpK PE=3	
	SZE1	SV=1;>sp Q5E0Z0 GLPK_VIBF	

	1 Chronic kingge OS Mikrig	I
	fischeri (strain ATCC 700601 / ES114) GN=glpK PE=3 SV=1;>sp B6ER09 GLPK_ALIS	
	L Glycerol kinase OS=Aliivibrio	
	>sp B7LKL8 TOLB_ESCF3	46.251
	ProteintolB OS=Escherichia	
	DSM 13698 / CDC 0568-73)	
B7LKL8	GN=toIB PE=3 SV=1	
	>sp B5YFZ0 GLYA_THEYD	45.672
	hydroxymethyltransferase	
	OS=Thermodesulfovibrio	
	yellowstonii (strain ATCC 51303	
B5YFZ0	PE=3 SV=1	
B5Y369;A6TH52;Q93FU7;A4W5N7	>sp B5Y369 CH10_KLEP3 10	10.36
;P43734;Q3YUJ8;Q328C5;Q31T77	kDa chaperonin OS=Klebsiella	
;QUSXD7;P95801;P0A6G2;B7LLS4	pneumoniae (strain 342)	
1:P0A6G0:P0A6F9:C5A1D4:B7UP	SV=1:>splA6TH52ICH10 KLEP	
W2;B7NTK1;B7NG80;B7MSG3;B7	7 10 kDa chaperonin	
MKU7;B7M8Q3;B7LC01;B6I614;B5	OS=Klebsiella pneumoniae	
Z2F1;B1XDP6;B1LQG3;B1ITQ6;A8	subsp. pneumoniae (strain	
5F8F7 059686 040N06 001285 B	GN=aroS PE=3	
5FFX9;B0USK5;A5UH47;A5U9V3;	SV=1;>sp Q93FU7 CH10_KLEA	
A3QA45;Q59176	E 10 k	
	>sp B5Y277 DEOC_KLEP3	27.712
	aldolase OS=Klebsiella	
	pneumoniae (strain 342)	
	GN=deoC PE=3	
	SV=1;>sp A7MGB0 DEOC_CR	
	aldolase OS=Cronobacter	
	sakazakii (strain ATCC BAA-	
B5Y277;A7MGB0	894) GN=deoC PE=3 SV=1	
B5Y1Y1;A6T4K0;Q7UDT4;Q5PDF		55.868
2;Q571F9;Q32509;Q32K31;Q326 H3·O0T8D5·P58539·P06189·B7LV	arabinose isomerase	
T3;B5RGD3;B5R1T9;B5F783;B5BL	OS=Klebsiella pneumoniae	
43;B4TWU8;B4TJ59;B4SU23;B2U	(strain 342) GN=araA PE=3	
268;A9MYN8;A8ALP0;Q8FL89;Q1	SV=1;>sp A6T4K0 ARAA_KLEP	
RGD7;QU1LS8;P58538;P08202;C4 7PY5:B7U1A8:B7NHC8:B7N7T6:B	1 L-arabinose isomerase	
7MNR9;B7MAI5;B7M0F7:B7L4I3:B	subsp. pneumoniae (strain	
6HZ42;B5YZ98;B1LFZ6;B1IRB6;A	ATCC 700721 / MGH 78578)	
7ZW12;A7ZHF3;A1A7A9;B5FI45;A	GN=araA PE=3	
91VIQF1;A4VV6G6	SV=1;>SP Q/UD14 ARAA_SH	28 042
	methyl-2-oxobutanoate	20.043
	hydroxymethyltransferase	
B5Y1P5	OS=Klebsiella pneumoniae	

	(strain 342) GN=panB PE=3 SV=1	
	>sp B5Y1K5 DAPD_KLEP3 2,3,4,5-tetrahydropyridine-2,6- dicarboxylate N-	29.832
B5Y1K5;A6T4W8;Q3Z5J2;Q32JU3;	succinyltransferase	
01643,F0A9D9,B7LWA5,Q6A617	(strain 342) GN-dapD PE-3	
8:C4ZRQ8:B7UIL1:B7NIC7:B7N83	SV=1:>splA6T4W8IDAPD_KLE	
3:B7MBE7:B7M1A5:B6HZE0:B5Z0	P7 2.3.4.5-tetrahvdropyridine-	
E4;B1XD35;B1LGW7;B1IQH5;A7Z	2,6-dicarboxylate N-	
WB2;A7ZHQ6;A1A7L0;A8GIE9;Q3	succinyltransferase	
25X4	OS=Klebsiella pneumoni	
B5Y1J9;Q57T36;Q3Z5I6;Q32JT7;Q		20.63
325778;QU1837;P66739;P66738;P		
B5R3I5·B5E 110·B5E8T3·B4TVD2·B		
4TK47'B4SV01'B2U315'A9N0S0'A		
9MPI9;Q1RG17;Q0TLG1;P0A807;		
P0A806;P0A805;C4ZRR4;B7UIL7;		
B7NID4;B7N839;B7MP32;B7MBF3		
;B7M1X4;B7LGN3;B6HZE6;B5Z0F		
1;B1XD41;B1LGX4;B1IQG9;A7ZW		
	>SPIDSTIJ9 RRF_RLEPS Ribosome-recycling factor	
6D8E0 065R74 060BA7 05E3E2	OS=Klebsiella pneumoniae	
Q4QM92:Q2NRL0:Q0I379:P57984:	(strain 342) GN=frr PE=3	
P44307;C6DAI6;C5BHB9;C3LQ29;	SV=1;>sp Q57T36 RRF_SALCH	
B8F3D4;B6J8M4;B6IZA9;B6EK54;	Ribosome-recycling factor	
B5F9X3;B4F2D0;B3GXB4;B0UUI5;	OS=Salmonella choleraesuis	
B0BUC8;A9N8Q7;A9KBR6;A7MXZ	(strain SC-B67) GN=frr PE=3	
7;A6VM32;A5UHW0;A5F618;A4SQ	SV=1;>sp Q3Z5I6 RRF_SHISS	
H9;A3MZ16;A0KHG6 B5V1E4:A6T518:O5DE73:O57SU4:	Ribosome-recycling factor	20.0
0375B4 032 IN6 0325S4 P63227	>splB5Y1E4IGMHA_KLEP3	20.9
P63223:P63222:B7LW94:B5R5Q7:	Phosphoheptose isomerase	
B5R470;B5FJW2;B5EWJ3;B5BDQ	OS=Klebsiella pneumoniae	
9;B4TYM6;B4T7P3;B4SVV2;B4EU	(strain 342) GN=gmhA PE=3	
T1;B2U3R4;A9MY16;A4W6W5;Q7	SV=1;>sp A6T518 GMHA_KLE	
N7F7;A8GAB6;A7MI45;A1JP02;Q0	P7 Phosphoheptose isomerase	
IL93;P03220;P03225;P03224;C42		
	ATCC 700721 / MGH 78578)	
570M1·B1XD84·B1I HM8·B1IPP6·A	GN=amhA PE=3	
7ZWI6;A7ZHY1	SV=1;>sp Q5PF73 G	
B5Y0U3;A8AK17;A6T5H9;A4W7A7	>sp B5Y0U3 TIG_KLEP3	48.056
;Q5PFN3;Q57SB6;P66933;P66932	Trigger factor OS=Klebsiella	
;C0Q7X2;B5R6U8;B5QTJ5;B5FKV	pneumoniae (strain 342) GN=tig	
2;85EXI7;85BD84;84TMC5;84T9E	PE=3	
2,043WUU;A9WWVX9;A7WF19;Q32	Sv=1,>sp A8AK17 11G_C11K8 Trigger factor OS_Citrobactor	
μινι, ασέσσο, αυτίει, κυλοσέ, βε ΠΔΡ1·Ο1RFΔΟ·R7ΜΠος·Δ1Δ2Δ5·Ο	koseri (strain ATCC RAA-805 /	
8FKA7:Q0TKK5:P0A851:P0A850.C	CDC 4225-83 / SGSC4696)	
4ZTJ3;B7UJQ9;B7NJ58:B7N8Z0:B	GN=tig PE=3	
7MQF2;B7M3S9;B7L673;B6HZP3;	SV=1;>sp A6T5H9 TIG_KLEP7	
B5Z3U4;B1XFM4;B1LJJ3;B1J012;	Trigger factor OS=Kleb	

A7ZX94;A7ZIJ4;Q32JJ2;B7LME3;A 9MM24;A8GAQ8;Q7N0L2;B2VHT7 ;Q8ZC64;Q66DT5;Q1CL66;Q1C4K 7;B2K6V6;B1JHS2;A9QZQ4;A7FL C5;A4TPE4;B8F6T9;Q6D828;C6D B54;B4EU52;A1JNN4		
B5X7M4	>sp B5XZM4 ATPB_KLEP3 ATP synthase subunit beta OS=Klebsiella pneumoniae (strain 342) GN=atpD PE=3 SV=1	50.238
B5XZD1;A6T6F6;Q5PCM7;Q57RL 3;P66870;P66869;C0PWE7;B5R68 9;B5QWG8;B5FNF9;B5EZG1;B5B C72;B4TQ53;B4TBD7;B4SZE2;A9 MTQ2;A9MJL9;A7MQX5;A4W879; Q3Z476;Q32IK3;Q324I4;Q0T6W6; P0A839;B2TUB2;P0A838;P0A837; P0A836;C4ZWK2;B7NMS9;B7N9W 6;B7LAD4;B6I7Z9;B5YQR7;B1X6Q 8;B1LLG1;B1IY02;A7ZXY8;A7ZJA8 ;B7M5P1;B4ESR1;Q8ZH00;Q66DA 0;Q2NUM2;Q1CFM0;Q1CAG1;B2K 8F1;B1JG57;A9R2F2;A8GB83;A7F KR4;A4TNT8;A1JRB6;Q5X7K6;Q5 WZ04;A5IH21;Q9JZP4;Q9JUT0;Q8 8FB2;Q883Z4;Q7N6V5;Q6F8L4;Q6 D7G2;Q5F878;Q4ZUW7;Q4KFY6; Q4FVH9;Q48K68;Q3KFU6;Q2SD3 5;Q21IW6;Q117L3;Q02K73;P53593 ;C6DCD6;C3K6N0;B7UVD3;B7I6T 2;B7GXK7;B4RL77;B2HXG0;B1JA V3;B0VSL0;B0VEF2;B0KNW8;A9M 4F8;A6V7K5;A5W114;A4XV90;A3 M887;A1KTM6;C5BL83;A5WC33	>sp B5XZD1 SUCC_KLEP3 SuccinateCoA ligase [ADP- forming] subunit beta OS=Klebsiella pneumoniae (strain 342) GN=sucC PE=3 SV=1;>sp A6T6F6 SUCC_KLEP 7 SuccinateCoA ligase [ADP- forming] subunit beta OS=Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 70	41.502
B5XZC1	>sp B5XZC1 TOLB_KLEP3 ProteintolB OS=Klebsiella pneumoniae (strain 342) GN=tolB PE=3 SV=1	45.795
B5XZ39;A6TGB9;A7ML69;A4WG6 9;Q5PIS0;Q57HC8;P67652;P6765 1;C5BB79;C0Q439;B5RF82;B5QX L8;B5FPT8;B5F0S0;B5BJK6;B4TP V0;B4TCM6;B4T0T6;A9MI36;A8AK Z4	>sp B5XZ39 RRAA_KLEP3 Regulator of ribonuclease activity A OS=Klebsiella pneumoniae (strain 342) GN=rraA PE=3 SV=1;>sp A6TGB9 RRAA_KLE P7 Regulator of ribonuclease activity A OS=Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 700721 / MGH 78578) GN=rra	17.385
B5XZ19;A4WG54	>sp B5X219 ARGE_KLEP3 Acetylornithine deacetylase OS=Klebsiella pneumoniae (strain 342) GN=argE PE=3 SV=1;>sp A4WG54 ARGE_ENT 38 Acetylornithine deacetylase	42.352

		1
	OS=Enterobacter sp. (strain	
	638) GN=argE PE=3 SV=1	
B5XZ01;A6TGF8;Q8FBR5;B7UMM		65.691
8;B3GZ16;B0BS03;A3MYG9;B0U	>sp B5XZ01 ILVD_KLEP3	
W18;Q4QMF8;P44851;A5UHP2;A5	Dihydroxy-acid dehydratase	
UDY7;Q9KVW0;Q8DDG1;Q87KB6;	OS=Klebsiella pneumoniae	
Q7MGI8;C3LPA1;A5F497;A4WG37	(strain 342) GN=ilvD PE=3	
:B4F1U3:Q8Z377:Q7MYJ5:Q5PK0	SV=1:>splA6TGF8IILVD KLEP	
0.0224012.0524010.0000	7 Dihydroxy-acid dehydratase	
$H1 \cdot C002U8 \cdot B5RET3 \cdot B50 \cdot C2 \cdot B5E$	OS-Klebsiella preumoniae	
N65:B5E728:B5BIR7:B4TNS1:B4T	subsp. pneumoniae (strain	
R03,03EZZ0,03DI(7,041101,041		
D04,D43217,A9WIXE2,A0GL00,A0		
K332	GN=IIVD PE=3 SV=1;>SP Q8FB	00 705
	>sp B5XYL1 HEM3_KLEP3	33.725
	Porphobilinogen deaminase	
	OS=Klebsiella pneumoniae	
	(strain 342) GN=hemC PE=3	
	SV=1;>sp A6TGI8 HEM3_KLEP	
	7 Porphobilinogen deaminase	
	OS=Klebsiella pneumoniae	
	subsp. pneumoniae (strain	
	ATCC 700721 / MGH 78578)	
	GN=hemCPE=3SV/-1	
BOXTEL,AUTOIO		19 615
	Spipo tRNA ligooo	40.045
	SenneIRINA ligase	
	(strain 342) GN=serS PE=3	
	SV=1;>sp A616Z0 SYS_KLEP7	
	SerinetRNA ligase	
	OS=Klebsiella pneumoniae	
	subsp. pneumoniae (strain	
	ATCC 700721 / MGH 78578)	
B5XY99;A6T6Z0;A4W8R7	GN=serS PE=3 SV=1	
	>splB5XXK6lOPGG KLEP3	57.821
	Glucans biosynthesis protein G	
	OS=Klebsiella pneumoniae	
	(strain 342) GN-mdoG PE-3	
BSYYKS	(Strain 342) ON=md00 T E=3	
		34 002
	Durimiding specific	54.005
	(strain 342) GN=rihA PE=3	
	SV=1;>sp A6T9S2 RIHA_KLEP	
	7 Pyrimidine-specific	
	ribonucleoside hydrolase RihA	
	OS=Klebsiella pneumoniae	
	subsp. pneumoniae (strain	
B5XWV7:A6T9S2	ATCC	
B5XW55:A6TAN5:087FX4:06D54	>SDIB5XW55IKDSA_KLEP3.2-	30.824
7.Q66AX1.Q5PNK8.Q57NN9.Q370	dehvdro-3-	COLOR 1
T2.032672.031708.010 U7.010	deoxyphosphooctonate aldolaco	
850.00T510.065216.065215.0047	OS-Klabsiella proumoniao	
	(otroin 242) CN-kdoA DE 2	
	SV=T;>SPIAOTAN5 KDSA_KLE	
;B41X18;B41KA0;B4SUF8;B4EVS	P7 2-dehydro-3-	
0;B2TZW3;B2K2Z4;B1JM81;A9QZ	deoxyphosphooctonate aldolase	

04;A9MW08;A9MPA5;A8GDA7;A8	OS=Klebsiella pneumoniae	
AG06;A7FIF7;A4TJN3;Q8XDE7;Q8	subsp. pneumoniae (strain	
FHZ8;Q1RCM3;P0A715;C4ZTQ6;B	ATCC 700721 / MGH 785	
7UQA3;B7NUY1;B7N426;B7MTZ9;		
B7MKB7;B7LXX2;B7LGX6;B6I9T0;		
B5YXN3;B1XAQ6;B1LH85;B1ITN8;		
A7ZZF1:A7ZKY9:A1AAE2:B2VEI7:		
A7MKA7:A4WBC2:A1JRS8:Q7N58		
3:Q65TB4:Q2NRS7:Q0I3B9:P5785		
3:B8F521:B3GZI6:B0UUE2:B0BU6		
9.A6VP95.O68662.P61653		
	SSDIB5XVC4ILLIXS_KLEP3 S-	19 454
	ribosylhomocysteine lyase	10.101
3:01CL KA:01CA16:C6DC0A:B2K5	OS-Klebsiella preumoniae	
VA:P1 LIO5: AOPO\/2: AOME76: A9AN	(strain 242) CN-luxS DE-2	
14,D1JJ95,A9R0V5,A9WIFZ0,A0AN	(S(1a)(1) 342) G(N=10X3 PE=3)	
P5,A7FLR2,A41Q57,A1JK10		104.01
	>SpiB5XUD5jGCSP_KLEP3	104.01
	Givene denydrogenase	
	(decarboxylating) US=Klebsiella	
	pneumoniae (strain 342)	
	GN=gcvP PE=3	
	SV=1;>sp A6TDR5 GCSP_KLE	
	P7 Glycine dehydrogenase	
	(decarboxylating) OS=Klebsiella	
	pneumoniae subsp.	
B5XUD5;A6TDR5;Q8Z3X0;A4WE5	pneumoniae (strain ATCC	
5;A7MR85	700721 / MGH 78578)	
B5XTS2;A6TF37;A4WFK2;Q9EXI9;		21.004
Q8ZLI7;Q8ZJI0;Q664J6;Q5PLY6;Q		
57IW3;Q3YWL1;Q32AM7;Q31VL8;		
Q1CCL5;Q1C2L8;Q0SZQ1;P63023		
;C0Q0I7;B7LSB7;B5R7K3;B5R371;		
B5FKD2;B5F8M8;B5BHG9;B4TY7	>sp B5XTS2 NFUA_KLEP3	
1;B4TKT8;B4SVL5;B2U3M4;B2K5	Fe/S biogenesis protein NfuA	
V9;B1JHZ3;A9R4D2;A9MTT1;A9M	OS=Klebsiella pneumoniae	
MB3:A8GKT7:A8AQW7:A7FNW0:A	(strain 342) GN=nfuA PE=3	
4TGR7:A1JSF6:Q1R5M0:Q0TC53:	SV=1:>splA6TF37INFUA KLEP	
P63022:P63021:P63020:C4ZVW3:	7 Fe/S biogenesis protein NfuA	
B7UKB9:B7NMH9:B7NE19:B7N14	OS=Klebsiella pneumoniae	
7:B7MDP0:B7M1X0:B7L4U4:B6I2X	subsp. pneumoniae (strain	
8:B5YTW5:B1X760:B1LHL4:B1IP5	ATCC 700721 / MGH 78578)	
1:A8A5M2:A7ZSU3:A1AGT8	GN=nfuA PE=3 SV=1:>spl	
B5XTJ1:A6TFK4:B2VI 52:08XGG5	>splB5XTJ1ISECB_KI FP3	17,19
Q7CPH8:Q5PB75:Q57ID2:C0Q111	Protein-export protein SecB	
3:B7LTL6:B5RGH7:B5R5D4:B5FI	OS=Klebsjella pneumoniae	
H9·B5FXB6·B5BHY4·B4T7\/2·B4T	(strain 342) GN=secB PE=3	
994·B4SXB2·A9M\/K3·A9MKR5·A8	SV=1:>splA6TFK4ISECB_KIEP	
AR.I6:A4W536:O8KRM2:C6DIA3:A	7 Protein-export protein SecR	
8GI B9·Δ1 IHYΔ·BΔF130·O87 IM7·		
O6DAT1 O66CB0 O1CD20 O1C28	subsp. pneumoniae (strain	
Q6DAT1;Q66GB9;Q1CD20;Q1C28	subsp. pneumoniae (strain	
Q6DAT1;Q66GB9;Q1CD20;Q1C28 5;B2JYQ0;B1JQV6;A9R690;A7FC	subsp. pneumoniae (strain ATCC 700721 / MGH 78578)	
Q6DAT1;Q66GB9;Q1CD20;Q1C28 5;B2JYQ0;B1JQV6;A9R690;A7FC V1;A4TSB9	Subsp. pneumoniae (strain ATCC 700721 / MGH 78578) GN=secB PE=3 SV=1	76 850
Q6DAT1;Q66GB9;Q1CD20;Q1C28 5;B2JYQ0;B1JQV6;A9R690;A7FC V1;A4TSB9 B5XSX9;A6TEI3;Q8ZLT3;Q8Z3I0; Q83 IG0;O5PL 97;O57 II2;O2XX77;	Subsp. pneumoniae (strain ATCC 700721 / MGH 78578) GN=secB PE=3 SV=1 >sp B5XSX9 PNP_KLEP3 Polyribonucleotide	76.859
Q6DAT1;Q66GB9;Q1CD20;Q1C28 5;B2JYQ0;B1JQV6;A9R690;A7FC V1;A4TSB9 B5XSX9;A6TEI3;Q8ZLT3;Q8Z3I0; Q83JG0;Q5PL97;Q57JI3;Q3YX77; Q32BG9;Q31W42;Q010B7;C0D75	Subsp. pneumoniae (strain ATCC 700721 / MGH 78578) GN=secB PE=3 SV=1 >sp B5XSX9 PNP_KLEP3 Polyribonucleotide	76.859
Q6DAT1;Q66GB9;Q1CD20;Q1C28 5;B2JYQ0;B1JQV6;A9R690;A7FC V1;A4TSB9 B5XSX9;A6TEI3;Q8ZLT3;Q8Z3I0; Q83JG0;Q5PL97;Q57JI3;Q3YX77; Q32BG9;Q31W43;Q0T0B7;C0PZ5 0;B7LP32;B5EED3;25C07)/4;B5DC	Subsp. pneumoniae (strain ATCC 700721 / MGH 78578) GN=secB PE=3 SV=1 >sp B5XSX9 PNP_KLEP3 Polyribonucleotide nucleotidyltransferase	76.859
Q6DAT1;Q66GB9;Q1CD20;Q1C28 5;B2JYQ0;B1JQV6;A9R690;A7FC V1;A4TSB9 B5XSX9;A6TEI3;Q8ZLT3;Q8Z3I0; Q83JG0;Q5PL97;Q57JI3;Q3YX77; Q32BG9;Q31W43;Q0T0B7;C0PZ5 0;B7LR33;B5REN2;B5QZV4;B5BG	Subsp. pneumoniae (strain ATCC 700721 / MGH 78578) GN=secB PE=3 SV=1 >sp B5XSX9 PNP_KLEP3 Polyribonucleotide nucleotidyltransferase OS=Klebsiella pneumoniae	76.859

M3;Q8FD87;Q1R6H4;Q0TCU5;P05 055;C4ZSQ5;B7UJ59;B7NKN3;B7 NDF0;B7N0U9;B7MB85;B7M072;B 7LH99;B6I1N9;B5YS54;B1XGX6;B 1LFR6;B1IQV7;A8A4Y0;A7ZS61;A 1AG69;A8AQ53;A4WEX9;Q66F56; B2K2Q9;Q1CM51;Q1C3L8;Q0WBF 9;B1JLX6;A9R5A9;A7FMR8;A4TQ U4;O34275;A1JIX3;C5BFC1;A7MI N6;Q6D9A1;C6DKK7;Q4QNV7;P4 4584;B8F492;A5UG34;A5UAQ6;Q 0I2T0;B0UTJ5;Q9CLU1;B3GXC1;B 0BUD5;A3MZU3;Q65VB0;A6VR10; Q9KU76;C3LSQ2;A5F913	SV=1;>sp A6TEI3 PNP_KLEP7 Polyribonucleotide nucleotidyltransferase OS=Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 700721 / MGH 78578)	
B5XSQ7-A6TEQ3-A7MNR3	>sp B5XSQ7 MDH_KLEP3 Malate dehydrogenase OS=Klebsiella pneumoniae (strain 342) GN=mdh PE=3 SV=1;>sp A6TEQ3 MDH_KLEP 7 Malate dehydrogenase OS=Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 700721 / MGH 78578) GN=mdh PE=3 SV=1;>sp A7MNR3 MDH_CRO S8 Mal	32.398
	>sp B5XR74 Y2871_KLEP3 UPF0482 protein KPK_2871 OS=Klebsiella pneumoniae (strain 342) GN=KPK_2871 PE=3 SV=1;>sp A6T8U4 Y1554_KLE P7 UPF0482 protein KPN78578_15540 OS=Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 700721 / MGH 78578)	12.916
B5XR74;A6T8U4	GN=KPN78578_15540 >sp B5XQU5 UXAB_KLEP3 Altronate oxidoreductase OS=Klebsiella pneumoniae (strain 342) GN=uxaB PE=3 SV=1;>sp A6T900 UXAB_KLEP 7 Altronate oxidoreductase OS=Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 700721 / MGH 78578) GN=uxaB PE=3	54.392
B5XQU5;A6T900;A4WAF9	SV=1;>sp A4WAF9 U >sp B5XQ02 Y1906_KLEP3 Probable transcriptional regulatory protein KPK_1906 OS=Klebsiella pneumoniae (strain 342) GN=KPK_1906 PE=3 SV=1;>sp A6TB33 Y2343_KLE P7 Probable transcriptional	26.317

	no evileto e o estalo	
	CS_Klobsielle proumenies	
		00 450
	SpiboxP24 CUTC_KLEP3	20.458
	Copper nomeostasis protein	
	CN auto DE 2	
	7 Coppor homosotosis protoin	
	CutC OS-Klobsiolla	
	pheumoniae subsp.	
	700721 / MGH 78578) GN-cutC	
B5YD74-A6TB41	$PE_{-3} SV_{-}$	
	FL=33V=	38 632
6.0370G4.032EE0.0323 11.00T34		30.03Z
6.B7I IF2.B2TVF0.0875 10.0500		
P1.057MS2.P10360.C001K1.B5R	Histidinal-phosphate	
BR3·B5O7I 3·B5EM42·B5EX40·B5	aminotransferase OS-Klebsiella	
BEB9:B4TMR6:B4T9N5:B4SX42:A	nneumoniae (strain 342)	
9MSC2 A9MI 15 A8AFK3 A7M IP4	GN=hisC PE=3	
0985G6:08EG51:01RA52:00TG6	SV=1 >sp A6TBC4 HIS8 KI FP	
6 P06986 C4ZSB0 B7UT58 B7NO	7 Histidinol-phosphate	
G9:B7NC61:B7MWU0:B7MDH5:B7	aminotransferase OS=Klebsiella	
M400:B7L9P8:B6I848:B5YU77:B1	pneumoniae subsp.	
X6V8:B1LP20:B1IZ53:A8A1P5:A7Z	pneumoniae (strain ATCC	
NJ3:A1ACN3	700721 / MGH 78578) GN=h	
B5XNV6:A6TBX2:Q57M30:P0A1Y7		69.099
:P0A1Y6:B5RCF1:B5R307:B5FPG		
7:B4TBJ2:Q5PN53:C0Q041:B5EZ		
K7;B5BCM0;B4TPK8;B4SYZ7;A9N		
582;A9MJ99;Q9I0J9;Q88FH5;Q1I7	>sp B5XNV6 NUOCD KLEP3	
Z8;Q02ND1;B1J6N2;B0KMY0;A6V	NADH-quinone oxidoreductase	
4E7;A5W190;A4XV04;A4WCR5;Q0	subunit C/D OS=Klebsiella	
T2K1;Q6D2R9;B2VIV5;Q83QS6;Q	pneumoniae (strain 342)	
3YZS4;Q32DQ3;Q31YH5;B7LM46;	GN=nuoC PE=3	
B2TW67;A8ADV3;Q0TFG0;P33599	SV=1;>sp A6TBX2 NUOCD_KL	
;Q8XCW9;Q8FFJ7;Q1R9D1;B7UF	EP7 NADH-quinone	
U4;B7NNW5;B7N5P8;B7MXG5;B7	oxidoreductase subunit C/D	
MG50;B7M5W5;B7LAU8;B6I7N6;B	OS=Klebsiella pneumoniae	
5YXS6;B1X8Z8;B1LLN9;B1IXQ6;A	subsp. pneumoniae (strain	
8A2F5;A7ZPA0;A1ADD4	ATCC 700721 / MGH 78578	
	>sp B5XNU6 Y1463_KLEP3	19.397
	UPF0304 protein KPK_1463	
	OS=Klebsiella pneumoniae	
	(strain 342) GN=KPK_1463	
B5XNU6;A8ADU4	PE=3 SV=1	
	>sp B5XNK4 PEPB_KLEP3	46.217
	Peptidase B OS=Klebsiella	
	pneumoniae (strain 342)	
	GN=pepBPE=3	
	SV=1;>sp A61CE4 PEPB_KLEP	
	/ Peptidase B OS=Klebsiella	
	pneumoniae subsp.	
	pneumoniae (strain ATCC	

	700721 / MGH 78578)	
	SN=PEPB PE=3 SV=1	13 21
	ribosomal protein S13	10.21
	OS=Klebsiella pneumoniae	
	(strain 342) GN=rpsM PE=3	
	SV=1;>sp A6TEV1 RS13_KLEP	
	7 30S ribosomal protein S13	
	OS=Klebsiella pneumoniae	
	subsp. pneumoniae (strain	
	AICC /00/21 / MGH /85/8)	
	SolB5RRF3IRI 13 BORRA	17 303
	50S ribosomal protein L13	17.000
	OS=Borrelia recurrentis (strain	
	A1) GN=rpIM PE=3	
	SV=1;>sp B5RLS4 RL13_BORD	
	L 50S ribosomal protein L13	
	OS=Borrelia duttonii (strain Ly)	
B5RRF3;B5RLS4	GN=rpIM PE=3 SV=1	
	>sp B5FAF9 ENO_VIBFM	45.514
	enolase US=VIDrio fischeri	
	Enclase OS=Vibrio fischeri	
	(strain ATCC 700601 / ES114)	
B5FAF9;Q5E326;B1GYL7	GN=eno PE=3 SV=1	
	>sp B3WF72 Y1944_LACCB	13.22
	UPF0342 protein LCABL_19440	
	OS=Lactobacillus casei (strain	
	BL23) GN=LCABL_19440 PE=3	
	SV=1;>sp Q037X5 Y1724_LAC	
	P3 UPF0342 protein LSEI_1724	
	(strain ATCC 334 / BCBC 17002	
	/ CIP 107868 / KCTC 3260 /	
B3WF72:Q037X5	NRRL B-441	
	>sp B3WBT3 MTLD_LACCB	42.453
	Mannitol-1-phosphate 5-	
	dehydrogenase	
	OS=Lactobacillus casei (strain	
	BL23) GN=mtID PE=3	
	SV=1;>sp Q033M9 M1LD_LAC	
	debydrogenase	
	OS=I actobacillus paracasei	
	(strain ATCC 334 / BCRC 17002	
B3WBT3;Q033M9	/ CIP 107868 / KCTC 3260 /	
	>sp B3WAJ7 KAD_LACCB	23.667
	Adenylate kinase	
	OS=Lactobacillus casei (strain	
B3WAJ7	BL23) GN=adk PE=3 SV=1	40.00
	>sp B3QY22 EFTU_CHLT3	42.99
	Elongation factor 10	
	(strain ATCC 35110 / GR-78)	
B3QY22	GN=tuf PE=3 SV=1	

	>sp B2VGN7 PNP_ERWT9 Polyribonucleotide nucleotidyltransferase OS=Erwinia tasmaniensis (strain DSM 17950 / CIP 109463 / Et1/99) GN=pnp PE=3 SV=1;>sp A8G911 PNP_SERP5 Polyribonucleotide nucleotidyltransferase	76.715
B2VGN7;A8G911;P41121;B4F2C3; Q2NW19;Q7MYZ0	OS=Serratia proteamaculans (strain 568) GN=pnp P	
	>sp B2V307 Y1879_CLOBA UPF0210 protein CLH_1879 OS=Clostridium botulinum (strain Alaska E43 / Type E3) GN=CLH_1879 PE=3 SV=1;>sp B2TL32 Y1718_CLO BB UPF0210 protein CLL_A1718 OS=Clostridium botulinum (strain Eklund 17B / Type B) GN=CLL_A1718 PE=3	47.435
B2V307;B2TL32;A6LVY2	SV=1;>sp A	17 303
B2\/1S6-B2TRE4-46M3K0	Adenylosuccinate synthetase OS=Clostridium botulinum (strain Alaska E43 / Type E3) GN=purA PE=3 SV=1;>sp B2TRE4 PURA_CLO BB Adenylosuccinate synthetase OS=Clostridium botulinum (strain Eklund 17B / Type B) GN=purA PE=3 SV=1;>splA6M3K01	11.000
	 >sp B2V049 GLGA_CLOBA Glycogen synthase OS=Clostridium botulinum (strain Alaska E43 / Type E3) GN=glgA PE=3 SV=1;>sp B2TR28 GLGA_CLO BB Glycogen synthase OS=Clostridium botulinum (strain Eklund 17B / Type B) 	55.86
B2V049;B2TR28	GN=glgA PE=3 SV=1	
B2UZL5;B2TK15	>sp B2UZL5 SECA_CLOBA Protein translocase subunit SecA OS=Clostridium botulinum (strain Alaska E43 / Type E3) GN=secA PE=3 SV=1;>sp B2TK15 SECA_CLO BB Protein translocase subunit SecA OS=Clostridium botulinum (strain Eklund 17B / Type B) GN=secA PE=3 SV=1	94.707
B2UZK0;B2TK00;Q9Z687;C3KYJ3; C1FQP5;B1KSS8;B1IE34;A7G9Q9 ;A7FQH9;A5HY52;Q180W5;A5N3H 7;Q4A604;Q8XID4;Q0TNC4;Q0SQ	>sp B2UZK0 ATPB_CLOBA ATP synthase subunit beta OS=Clostridium botulinum (strain Alaska E43 / Type E3)	50.327

75·P33253·O9PR15·R57Δ\W1·R1Δ	GN-atrD PE-3	
B8.08KAC0.03B6\N/2.03AD12.D25	SV-1-SCOB2TKOOLATER CLOR	
	$Sv = 1, > Sp BZ RUU A PB_UUB$	
110;B45AN0;B3EJK9;B3EDQ7;A4	BAIP synthase subunit beta	
SC45;A1BCJ2;B3QUP6;Q601Z5;Q	OS=Clostridium botulinum	
4AAV7;Q4A8V9;P42465;A5EBX1	(strain Eklund 17B / Type B)	
	GN=atpD PE=3	
	SV=1;>sp Q9Z687 ATPB	
	>splB2UZJ8IATPA CLOBA	55.429
	ATP synthase subunit alpha	
	OS-Clostridium botulinum	
	(strain Alaska E42 / Type E2)	
	CN oto A DE 2	
	SV=1;>sp B21J28 A1PA_CLOB	
	B A I P synthase subunit alpha	
	OS=Clostridium botulinum	
	(strain Eklund 17B / Type B)	
B2UZJ8;B2TJZ8;A6LQH4;Q8XID2;	GN=atpA PE=3	
Q0TNC2;Q0SQZ3	SV=1;>sp A6LQH4 AT	
	>sp B2UYW3 SYT CLOBA	73.795
	ThreoninetRNA ligase	
	OS=Clostridium botulinum	
	(strain Alaska F43 / Type F3)	
	GN=thrS PE=3	
	SV-1-SenIB2TITESVT CLOPP	
	Throoping tPNA ligger	
	Clostridium batulinum	
	(stasia Elduad 47D (Turse D)	
	(strain Eklund 17B / Type B)	
B2UYW3;B21115	GN=thrS PE=3 SV=1	
	>sp B2UYT8 ILVC_CLOBA	37.036
	Ketol-acid reductoisomerase	
	(NADP(+)) OS=Clostridium	
	botulinum (strain Alaska E43 /	
	Type E3) GN=ilvC PE=3	
	SV=1;>sp B2TIR4 ILVC_CLOBB	
	Ketol-acid reductoisomerase	
	(NADP(+)) OS=Clostridium	
	botulinum (strain Eklund 17B /	
B2UYT8·B2TIR4·B0.IRP2·B2.121.16	Type B) GN=ilyC P	
	SeniB2LIXSOISVN CLOBA	52 21
	AsparaginetPNA ligase	55.54
	Asparagineinina ligase	
	SV=1;>sp B21101 SYN_CLOBB	
	AsparaginetRNA ligase	
	OS=Clostridium botulinum	
	(strain Eklund 17B / Type B)	
B2UXS0;B2TI01	GN=asnS PE=3 SV=1	
	>sp B2UXF7 CBID_CLOBA	41.825
	Cobalt-precorrin-5B C(1)-	-
	methyltransferase	
	OS=Clostridium botulinum	
	(strain Alaska E/3 / Type E2)	
	(Shall Alaska L43 / Type E3)	
	$SV = 1$;>SP B21PGb CBID_CLOB	
	B Cobalt-precorrin-5B C(1)-	
B2UXF7;B2TPG6	methyltransferase	

	OS=Clostridium botulinum	
	(strain Eklund 17B / Type B)	
	>sp B2UW93 PYRB_CLOBA	35.169
	Aspartate carbamoyltransferase	
	OS=Clostridium botulinum	
	(strain Alaska E43 / Type E3)	
	GN=pyrB PE=3	
	SV=1;>sp B2TNG3 PYRB CLO	
	BB Aspartate	
	carbamovltransferase	
	OS=Clostridium botulinum	
	(strain Eklund 17B / Type B)	
B2UW93·B2TNG3·A6TVR2	GN=pyrB PF=3 SV=1:>splA	
	\sim SplB2TS78IDAPH CLOBB	25 085
	2 3 4 5-tetrabydronyridine-2 6-	20.000
	dicarboxylate N	
	OS-Clostridium botulinum	
	SV=1;>SPIA6LUD2 DAPH_CLO	
B21578;A6LUD2;C3K1L7;C1FL32;	B8 2,3,4,5-tetranydropyridine-	
B2V5B7;B1L0V4;B1IMX1;A7GI22;	2,6-dicarboxylate N-	
A7FYA5;A5I6N5	acetyltransferase OS=Clostri	
	>sp B2ICU4 CH60_BEII9 60	57.711
	kDa chaperonin OS=Beijerinckia	
	indica subsp. indica (strain	
	ATCC 9039 / DSM 1715 / NCIB	
B2ICU4	8712) GN=groL PE=3 SV=1	
	>sp B2GIL1 EFG_KOCRD	77.514
	Elongation factor G OS=Kocuria	
	rhizophila (strain ATCC 9341 /	
	DSM 348 / NBRC 103217 /	
B2GIL1	DC2201) GN=fusA PE=3 SV=1	
	>sp B2GDD5 Y1331 LACF3	13.72
	UPF0342 protein LAF 1331	
	OS=Lactobacillus fermentum	
	(strain NBRC 3956 / LMG	
	18251) GN=LAF 1331 PF=3	
B2GDD5	SV=1	
	>SDIB2EN.IOISME1_STRMK	17 205
	Major fimbrial subunit SMF-1	
	0S=Stenotronhomonas	
	maltonhilia (etrain K270a)	
B2EN IO	$GN-emf_1 PE-1 SV-1$	
		36 630
	budrovy 2 ovovelerate addelerate	30.020
	17206 / CIP 10/1/1 / LMG	
Deally	19424 / R1) GN=mhpE PE=3	
B2AIJ5	SV=1	
	>sp B2A4D6 EFG_NATTJ	77.425
	Elongation factor G	
	OS=Natranaerobius	
B2A4D6	thermophilus (strain ATCC BAA-	

	1301 / DSM 18059 / JW/NM-	
	$\frac{1}{10000000000000000000000000000000000$	17 105
	Spibilivivijeno_Leuck	47.495
	Enolase OS=Leuconostoc	
	citreum (strain KM20) GN=eno	
	PE=3	
	SV=1;>sp Q03ZK4 ENO_LEUM	
	M Enolase OS=Leuconostoc	
	mesenteroides subsp.	
	mesenteroides (strain ATCC	
	8293 / NCDO 523) GN=eno	
B1M\/W/3·Q037K4	PF=3 SV=1	
Dimitio, QUOLICI		13 27
	Phosphoglycorate kinaso	40.27
	Cleatridium batuliaum	
	(stasis leads Manage (Tage AQ)	
	(strain Loch Maree / Type A3)	
B1K1J5	GN=pgk PE=3 SV=1	
	>sp B1KF50 IHFB_SHEWM	10.703
	Integration host factor subunit	
	beta OS=Shewanella woodyi	
	(strain ATCC 51908 / MS32)	
B1KF50	GN=ihfB PE=3 SV=1	
	>spIB0TJY6INRDR SHFHH	17.062
	Transcriptional repressor NrdR	11.002
	OS-Showanolla halifayonsis	
DOTING	(Strain HAW-EB4) GN=hror	
BUIJYO		44.0.10
	>sp BUSYX8 ENO_CAUSK	44.949
	Enolase OS=Caulobacter sp.	
	(strain K31) GN=eno PE=3	
	SV=1;>sp Q1QMI9 ENO_NITHX	
	Enolase OS=Nitrobacter	
	hamburgensis (strain DSM	
	10229 / NCIMB 13809 / X14)	
B0SYX8·Q1QMI9	GN=eno PE=3 SV=1	
	splB0S1E5IIE2_EINM2	85 138
	Translation initiation factor IE-2	00.100
	OS-Einogoldia magna (atrain	
DOOLEE	ATCC 29328) GN=INTB PE=3	
BUS1E5	SV=1	
A9MKA9;Q3Z4C2;Q324M6;Q0T6S	>sp A9MKA9 NAGB_SALAR	29.669
6;P59688;B7LKT5;B2TU53;Q8FJX	Glucosamine-6-phosphate	
7;Q1REP9;Q0TK13;P0A760;P0A75	deaminase OS=Salmonella	
9;C4ZWF4;B7UKV0;B7NMM9;B7N	arizonae (strain ATCC BAA-731	
9S4;B7MPI3;B7MFT4;B7M5J6;B7L	/ CDC346-86 / RSK2980)	
9L4;B6HYN6:B5YQM0:B1X6L1:B1	GN=nagB PE=3	
LLC0:B1IY50:A7ZXT7:A7Z.I60.A1A	SV=1:>splQ3Z4C2INAGB SHIS	
8T7:Q8ZDE1:Q66DC7:Q1CKN7:Q	S Glucosamine-6-phosphate	
$1C537 \cdot B2K8A2 \cdot B1 \cdot G88 \cdot \Delta 0R79 1 \cdot A$	deaminase OS=Shigella sonnei	
7MOT6: A7EKI 12: A 4TNIV0: O221O2:	(strain Sc046) GN-page DE-2	
$\int d\theta = \frac{1}{2} \int d\theta$	(S(1a)) = (S(1	
	SV = 1, >SP[QSZ]	00.400
	>splaskkuuldnak_LACP7	66.126
	Chaperone protein DnaK	
	OS=Lachnoclostridium	
	phytofermentans (strain ATCC	
A9KKU0;Q92BN8;Q71ZJ7;P0DJM2	700394 / DSM 18823 / ISDg)	
;G2K046;C1KVC0;B8DE38;A0AIS4	GN=dnaK PE=3	
,		

	SV=1 >splQ92BN8IDNAK LISI	
	N Chaperone protein DnaK	
	OS=Listeria innocua serovar 6a	
	(strain ATCC BAA-680 / CLIP	
	11262) GN=dn	
	>sp A9KJI0 RS8_LACP7 30S	14.498
	ribosomal protein S8	
	OS=Lachnoclostridium	
	pnytotermentans (strain ATCC	
	GN-rpsH PE-3 SV-1	
	SplA8YXL4IRS17 LACH4 30S	10 562
	ribosomal protein S17	10.002
	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=rpsQ	
	PE=3	
	SV=1;>sp Q5FM81 RS17_LACA	
	C 30S ribosomal protein S17	
	(Strain ATCC 7003967 NCK567) N2 / NCEM) CN-rpsO $PE-3$	
6	SV=1	
	>sp A8YXK8 RL2 LACH4 50S	30.297
	ribosomal protein L2	
	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=rplB	
	SV=1;>sp Q/4L86 RL2_LACJO	
	SUS ribosomai protein L2	
	(strain CNCM I-12250 / La1 /	
	NCC 533) $GN=rpIB PE=3$	
A8YXK8;Q74L86;Q046C2	SV=1;>sp Q046C2 RL2_LA	
A8YXJ8;Q661M9;Q59191;Q0SNB8		135.7
;B7J1W1;B5RRJ7;B5RLU9;B2S09	>sp A8YXJ8 RPOB_LACH4	
2;A1QZH7;Q9CEN6;Q02X59;A2R	DNA-directed RNA polymerase	
ML9;Q9Z9A0;Q822J1;Q5L5I3;Q3K	subunit beta OS=Lactobacillus	
M47;Q255E6;P56869;PUCE09;BUB	neiveticus (strain DPC 4571)	
	Sin=1pob FE=3.5V=1	32.00
	kDa chaperonin	52.03
	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=hslO	
	PE=3	
	SV=1;>sp Q5FMA2 HSLO_LAC	
	AC 33 kDa chaperonin	
	N2 / NCFM) GN-helO PE-3	
A8YXJ3:Q5FMA2	SV=1	
	>sp A8YWE1 SYT LACH4	73.46
	ThreoninetRNA ligase	
	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=thrS	
A8YWE1;Q037Z6;B3WF49		07 700
A&YVK&;Q5FJM4;Q044C9;P61334	>sp A&Y VK& EF IS_LACH4 Elemention factor To	37.706
, VODO 12	EIUNYALIUN TAULUT TS	

	OS=Lactobacillus helveticus	
	(strain DPC 45/1) GN=tst PE=3	
	SV=1;>sp Q5FJM4 EFTS_LACA	
	C Elongation factor Ts	
	OS=Lactobacillus acidophilus	
	(strain ATCC 700396 / NCK56 /	
	N2 / NCFM) GN-tsf PE-3	
	$3V=1,>SP[Q044C9]EF13_LACG$	00.000
	>sp A8YVR3 SYP_LACH4	63.228
	ProlinetRNA ligase	
	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=proS	
A8YVR3	PE=3 SV=1	
	>splA8YVQ7IIE2 LACH4	97 278
	Translation initiation factor IE-2	57.270
	(strain DPC 4571) GN=InfB	
	PE=3	
	SV=1;>sp Q5FJN6 IF2_LACAC	
	Translation initiation factor IF-2	
	OS=Lactobacillus acidophilus	
	(strain ATCC 700396 / NCK56 /	
	N2 / NCEM) CNLinfP DE	
A01 VQ7,Q3FJN0,Q74I30,Q044B7		50.00
	>SPIABY VJ7 SYN_LACH4	50.26
	AsparaginetRNA ligase	
	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=asnS	
A8YVJ7	PE=3 SV=1	
A8YUS4:Q5M5B0:Q5M0S4:Q03LN		47.074
0.074.II.I4.0042T7.C4L.IV6.083MI	>splA8YUS4ICLPX_LACH4	_
6:083G50:001 7X5:08VHC7:08C0	ATP-dependent Clp protease	
5.060272.060177.064E76.02V	ATT -dependent Cip protease	
	ATD binding outpunit Clov	
15,Q0G522,Q0G177,Q0AF20,Q21	ATP-binding subunit ClpX	
PX2;C0RJ80;B2S5W0;B0CGR0;A9	ATP-binding subunit ClpX OS=Lactobacillus helveticus	
PX2;C0RJ80;B2S5W0;B0CGR0;A9 M5C1;A9ISA8;A6X117;A1USA8;Q9	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX	
PX2;C0RJ80;B2S5W0;B0CGR0;A9 M5C1;A9ISA8;A6X117;A1USA8;Q9 2QQ2;Q8UFY5;Q2K9U6;Q1MIM6;	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3	
PX2;C0RJ80;B2S5W0;B0CGR0;A9 M5C1;A9ISA8;A6X117;A1USA8;Q9 2QQ2;Q8UFY5;Q2K9U6;Q1MIM6; C3MA45;B9JVD6;B5ZY09;B3PVY5	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR	
PX2;C0RJ80;B2S5W0;B0CGR0;A9 M5C1;A9ISA8;A6X117;A1USA8;Q9 2QQ2;Q8UFY5;Q2K9U6;Q1MIM6; C3MA45;B9JVD6;B5ZY09;B3PVY5 ;A6U7U8;B8HA33;A1SME0;A9WU	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease	
PX2;C0RJ80;B2S5W0;B0CGR0;A9 M5C1;A9ISA8;A6X117;A1USA8;Q9 2QQ2;Q8UFY5;Q2K9U6;Q1MIM6; C3MA45;B9JVD6;B5ZY09;B3PVY5 ;A6U7U8;B8HA33;A1SME0;A9WU W1:A5VQN3:A0LSV2:A0,IXL2:B5R	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX	
PX2;C0RJ80;B2S5W0;B0CGR0;A9 M5C1;A9ISA8;A6X117;A1USA8;Q9 2QQ2;Q8UFY5;Q2K9U6;Q1MIM6; C3MA45;B9JVD6;B5ZY09;B3PVY5 ;A6U7U8;B8HA33;A1SME0;A9WU W1;A5VQN3;A0LSV2;A0JXL2;B5R PV8;B5PMG2:O6NEU7;C3PI25;O8	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus	
PX2;C0RJ80;B2S5W0;B0CGR0;A9 M5C1;A9ISA8;A6X117;A1USA8;Q9 2QQ2;Q8UFY5;Q2K9U6;Q1MIM6; C3MA45;B9JVD6;B5ZY09;B3PVY5 ;A6U7U8;B8HA33;A1SME0;A9WU W1;A5VQN3;A0LSV2;A0JXL2;B5R PV8;B5RMG2;Q6NFU7;C3PI25;Q8 91 J8:C5CAX2:07UKU7	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B	
PX2;C0RJ80;B2S5W0;B0CGR0;A9 M5C1;A9ISA8;A6X117;A1USA8;Q9 2QQ2;Q8UFY5;Q2K9U6;Q1MIM6; C3MA45;B9JVD6;B5ZY09;B3PVY5 ;A6U7U8;B8HA33;A1SME0;A9WU W1;A5VQN3;A0LSV2;A0JXL2;B5R PV8;B5RMG2;Q6NFU7;C3PI25;Q8 91J8;C5CAX2;Q7UKU7	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B	50.40
PX2;C0RJ80;B2S5W0;B0CGR0;A9 M5C1;A9ISA8;A6X117;A1USA8;Q9 2QQ2;Q8UFY5;Q2K9U6;Q1MIM6; C3MA45;B9JVD6;B5ZY09;B3PVY5 ;A6U7U8;B8HA33;A1SME0;A9WU W1;A5VQN3;A0LSV2;A0JXL2;B5R PV8;B5RMG2;Q6NFU7;C3PI25;Q8 91J8;C5CAX2;Q7UKU7	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4	50.48
PX2;C0RJ80;B2S5W0;B0CGR0;A9 M5C1;A9ISA8;A6X117;A1USA8;Q9 2QQ2;Q8UFY5;Q2K9U6;Q1MIM6; C3MA45;B9JVD6;B5ZY09;B3PVY5 ;A6U7U8;B8HA33;A1SME0;A9WU W1;A5VQN3;A0LSV2;A0JXL2;B5R PV8;B5RMG2;Q6NFU7;C3PI25;Q8 91J8;C5CAX2;Q7UKU7	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus	50.48
PX2;C0RJ80;B2S5W0;B0CGR0;A9 M5C1;A9ISA8;A6X117;A1USA8;Q9 2QQ2;Q8UFY5;Q2K9U6;Q1MIM6; C3MA45;B9JVD6;B5ZY09;B3PVY5 ;A6U7U8;B8HA33;A1SME0;A9WU W1;A5VQN3;A0LSV2;A0JXL2;B5R PV8;B5RMG2;Q6NFU7;C3PI25;Q8 91J8;C5CAX2;Q7UKU7	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571)	50.48
A8YUS3	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1	50.48
A8YUS3	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1 >sp A8YUR0 DEF_LACH4	50.48
A8YUS3	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1 >sp A8YUR0 DEF_LACH4 Peptide deformvlase	50.48
A8YUS3	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1 >sp A8YUR0 DEF_LACH4 Peptide deformylase OS=Lactobacillus helveticus	50.48
A8YUS3	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1 >sp A8YUR0 DEF_LACH4 Peptide deformylase OS=Lactobacillus helveticus (strain DPC 4571) GN=def PE=3	50.48
A8YUD0	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1 >sp A8YUR0 DEF_LACH4 Peptide deformylase OS=Lactobacillus helveticus (strain DPC 4571) GN=def PE=3 SV=1	50.48
A8YUR0	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1 >sp A8YUR0 DEF_LACH4 Peptide deformylase OS=Lactobacillus helveticus (strain DPC 4571) GN=def PE=3 SV=1	50.48
A8YUR0	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1 >sp A8YUR0 DEF_LACH4 Peptide deformylase OS=Lactobacillus helveticus (strain DPC 4571) GN=def PE=3 SV=1 >sp A8YUL2 RS4_LACH4 30S	20.66
A8YUR0	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1 >sp A8YUR0 DEF_LACH4 Peptide deformylase OS=Lactobacillus helveticus (strain DPC 4571) GN=def PE=3 SV=1 >sp A8YUL2 RS4_LACH4 30S ribosomal protein S4	50.48 20.66 23.386
A8YUR0	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1 >sp A8YUR0 DEF_LACH4 Peptide deformylase OS=Lactobacillus helveticus (strain DPC 4571) GN=def PE=3 SV=1 >sp A8YUL2 RS4_LACH4 30S ribosomal protein S4 OS=Lactobacillus helveticus	50.48 20.66 23.386
A8YUR0	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1 >sp A8YUR0 DEF_LACH4 Peptide deformylase OS=Lactobacillus helveticus (strain DPC 4571) GN=def PE=3 SV=1 >sp A8YUL2 RS4_LACH4 30S ribosomal protein S4 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpsD	50.48 20.66 23.386
A8YUR0	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1 >sp A8YUR0 DEF_LACH4 Peptide deformylase OS=Lactobacillus helveticus (strain DPC 4571) GN=def PE=3 SV=1 >sp A8YUL2 RS4_LACH4 30S ribosomal protein S4 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpsD PE=3	50.48 20.66 23.386
A8YUR0	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1 >sp A8YUR0 DEF_LACH4 Peptide deformylase OS=Lactobacillus helveticus (strain DPC 4571) GN=def PE=3 SV=1 >sp A8YUL2 RS4_LACH4 30S ribosomal protein S4 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpsD PE=3 SV=1:>sp Q5FKX2 RS4_LACA	50.48 20.66 23.386
A8YUR0	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1 >sp A8YUR0 DEF_LACH4 Peptide deformylase OS=Lactobacillus helveticus (strain DPC 4571) GN=def PE=3 SV=1 >sp A8YUL2 RS4_LACH4 30S ribosomal protein S4 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpsD PE=3 SV=1;>sp Q5FKX2 RS4_LACA C 30S ribosomal protein S4	50.48 20.66 23.386
A8YUR0	ATP-binding subunit ClpX OS=Lactobacillus helveticus (strain DPC 4571) GN=clpX PE=3 SV=1;>sp Q5M5B0 CLPX_STR T2 ATP-dependent Clp protease ATP-binding subunit ClpX OS=Streptococcus thermophilus (strain ATCC B >sp A8YUS3 TIG_LACH4 Trigger factor OS=Lactobacillus helveticus (strain DPC 4571) GN=tig PE=3 SV=1 >sp A8YUR0 DEF_LACH4 Peptide deformylase OS=Lactobacillus helveticus (strain DPC 4571) GN=def PE=3 SV=1 >sp A8YUL2 RS4_LACH4 30S ribosomal protein S4 OS=Lactobacillus helveticus (strain DPC 4571) GN=rpsD PE=3 SV=1;>sp Q5FKX2 RS4_LACA C 30S ribosomal protein S4	50.48 20.66 23.386

	(strain ATCC 700396 / NCK56 /	
	N2 / NCFM) GN=rpsD PE=3 SV=1	
	>sp A8YUI5 G6PI_LACH4	49.633
	Glucose-6-phosphate isomerase	
	OS=Lactobacillus helveticus	
A8YI 115	SV=1	
	>splA8YUH0IY777 LACH4	26.604
	Probable transcriptional	
	regulatory protein lhv_0777	
	OS=Lactobacillus helveticus	
	$(Strain DPC 4571) GN=INV_0777$	
ASTONO	>spla8YUE8IGLMM_LACH4	48 903
	Phosphoglucosamine mutase	40.000
	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=glmM	
	AC Phosphoglucosamine	
	mutase OS=Lactobacillus	
	acidophilus (strain ATCC	
	700396 / NCK56 / N2 / NCFM)	
	GN=glmM PE=3	
A8YUF8;Q5FL35;Q1GB12;Q04BF6		21 212
	ATP-dependent Clp protease	21.312
	proteolytic subunit	
	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=clpP	
	O ATP-dependent Clp protease	
	proteolytic subunit	
A8YUD9;Q74K84;Q5FL55;Q042E8	OS=Lactobacillus johnsonii	
;Q1GB31;Q04BH7	(strain CNCM I-12250 / La1	
	>sp A8YUD6 Y732_LACH4	33.264
	Nucleotide-binding protein	
	helveticus (strain DPC 4571)	
	GN=lhv 0732 PE=3	
	SV=1;>sp Q1GB34 Y621_LACD	
	A Nucleotide-binding protein	
	Ldb0621 OS=Lactobacillus	
074K87·0042E5	(strain ATCC 11842 / DSM 2	
	>sp A8YUC7 HPRK_LACH4	35.956
	HPr kinase/phosphorylase	
	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=hprK	
	Γ=3 SV=1:>sp 05F 72 HPRK Δ0Λ	
	C HPr kinase/phosphorvlase	
	OS=Lactobacillus acidophilus	
A8YUC7;Q5FL72;Q042D2;P61324	(strain ATCC 700396 / NCK56 /	

	N2 / NCFM) GN=hprK PE=3	
	SV=1	
	>sp A8YTZ6 GATA_LACH4	51.787
	Glutamyl-tRNA(GIn)	
	amidotransferase subunit A	
	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=gatA	
A8Y1Z6;Q5FLL1		20.000
	>spiao f i k/ asina_lach4	JO.099
	Ω S=L actobacillus belveticus	
	(strain DPC 4571) GN=asnA	
A8YTK7	PE=3 SV=1	
	>sp A8YTE3 RL1_LACH4 50S	24.775
	ribosomal protein L1	
	OS=Lactobacillus helveticus	
	(strain DPC 4571) GN=rpIA	
A8YTE3	PE=3 SV=1	
	>sp A8LJA8 CLPP_DINSH ATP-	23.177
	dependent Clp protease	
	proteolytic subunit	
	(strain DSM 16403 / NCIMB	
	14021 / DEL 12) GN-cloP PE-3	
A8I.IA8	SV=1	
	>splA8GKU8IGLGC_SERP5	47.779
	Glucose-1-phosphate	
	adenylyltransferase OS=Serratia	
	proteamaculans (strain 568)	
A8GKU8	GN=glgC PE=3 SV=1	
	>sp A8GAV0 Y1136_SERP5	11.998
	Nucleoid-associated protein	
	Spro_1136 US=Serratia	
	CN-Spro 1126 DE-2	
	SV-1:>snla84 IX2IV2678 CITK	
A8GAV0-A8A.IX2-087C96-066D0	8 Nucleoid-associated protein	
0:Q1CL31:Q1C4P5:B2K6Z3:B1JH	CKO 02678 OS=Citrobacter	
N4;A9R0Q3;A7FL90;A4TPA8;A1JN	koseri (strain ATCC BAA-895 /	
B8	CDC 4225-83 / SGSC4696) GN	
	>sp A8G8E4 RL1_SERP5 50S	24.719
	ribosomal protein L1	
	OS=Serratia proteamaculans	
	(strain 568) Gin=rpiA PE=3	
A000E4	SV=1 SCAREFTERTE	50 67
	synthase OS=Bacillus pumilus	59.07
	(strain SAFR-032) GN=pvrG	
A8FIE5	PE=3 SV=1	
	>sp A8FBJ4 Y927_BACP2	42.873
	UPF0754 membrane protein	
	BPUM_0927 OS=Bacillus	
	pumilus (strain SAFR-032)	
A8FBJ4	GN=BPUM_0927 PE=3 SV=1	
A8AQV7;Q8Z216;Q5PLX8;C0Q0H	>sp A8AQV7 PCKA_CITK8	59.671
5;B5R360;B5FJS1;B5F8L6;B5BHF	Phosphoenolpyruvate	
8;841Y59;841KS6;84SVK3;A9MT	carboxykinase (ATP)	

72;P41033;A9MMC5;B5R7L4;Q57I X4	OS=Citrobacter koseri (strain ATCC BAA-895 / CDC 4225-83 / SGSC4696) GN=pckA PE=3 SV=1;>sp Q8Z216 PCKA_SALT I Phosphoenolpyruvate carboxykinase (ATP) OS=Salmonella typhi GN=pckA PE=3 SV=1;>sp Q5P	
A8APB1;C6D8X1;Q8ZM76;Q83QA 2;Q3YXW7;Q32BW5;Q31WG4;Q0 T0Z5;C0PY26;B7LPB7;B5RE14;B5 QXI0;B5FUG6;B5F5H7;B4TGX3;B 4T548;B2U0S0;A9N3N1;Q8XD33; Q8FE67;Q1R7C8;Q0TDU9;P33195 ;C5A0H5;B7UHV1;B7NHW4;B7N7 E6;B7MZ55;B7MM89;B7LYG7;B7L F89;B6I736;B5YQ95;B1XEJ0;B1LD A3;B1IT99;A8A444;A7ZR12;A1AF9 2;Q6D974;A9MRH2;Q7N199;Q8ZH I8;Q666R7;Q1CEZ9;Q1CB42;B2K0 Q3;B1JNS8;A9R4K8;A8GIR9;A7FF 21;A4TIA7;A1JPN3	>sp A8APB1 GCSP_CITK8 Glycine dehydrogenase (decarboxylating) OS=Citrobacter koseri (strain ATCC BAA-895 / CDC 4225-83 / SGSC4696) GN=gcvP PE=3 SV=1;>sp C6D8X1 GCSP_PEC CP Glycine dehydrogenase (decarboxylating) OS=Pectobacterium carotovorum subsp. carotovo	104.55
A8AMJ4;Q8ZK80;Q8Z163;Q5PJ55; Q57GI8;C0Q6G1;B5R9F1;B5R0S1 ;B5FSA4;B5F3C0;B5BKL2;B4TT36 ;B4TFD8;B4T3F4;A9N521;A9MF07 ;Q3YUE4;Q31TD4;Q0SX83;P0A7R 4;B7LLY5;B2TY76;Q1R357;Q0T9J 0;P0A7R3;P0A7R2;P0A7R1;C4ZR 80;B7UQL2;B7NTQ8;B7NGD7;B7 MT77;B7MLK8;B7M9G5;B7LCR4;B 6I2A9;B5Z2K8;B1XDV3;B1LR79;B 1IT03;A8A7U9;A7ZV74;A1AJA7;Q 328J6;Q8ZB84;Q66F99;Q1CEH3; Q1CBW7;B2K2L6;B1JMM1;A9QYL 3;A7FMW2;A4TRM3;A1JIT1	>sp A8AMJ4 RL9_CITK8 50S ribosomal protein L9 OS=Citrobacter koseri (strain ATCC BAA-895 / CDC 4225-83 / SGSC4696) GN=rpII PE=3 SV=1;>sp Q8ZK80 RL9_SALTY 50S ribosomal protein L9 OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) GN=rpII PE=3	15.77
A8ALC4;A4W6R1;Q8ZRP4;Q5PD5 7;B5FJ13;B5BL93;A9N0R2;A9MPJ 6;B4TK41;Q8Z9A8;Q57T42;C0Q5S 6;B5RHF1;B5R3H8;B4SUZ5;B5F8 S7;B4TXR8;P41397;P56220;B2U3 08;B8GPS1;Q8ZH69;Q667I6;Q1CF E3;Q1CAN9;B2JZ37;B1JQF7;A9R 398;A7FFG6;A4TL95;A1JP86;A7M GS1;Q2NRK4;B4F2D6;C1DD37;Q 82S90;Q5NYT9;Q2Y7X5;Q0AJF8; A1K717;Q7N8Q0;Q3SJI4;C5BHB3; B2VE16;Q9CMZ2;Q7VNC4;Q1LNH 0;P41396;B1Y6E5;A6SZR2;A4G4R 0;A3N3F7;Q6D8E6;Q4QL69;Q470 C6;Q0KA05;P45284;B3R2C8;A6V P50;A5UCM7	>sp A8ALC4 DAPD_CITK8 2,3,4,5-tetrahydropyridine-2,6- dicarboxylate N- succinyltransferase OS=Citrobacter koseri (strain ATCC BAA-895 / CDC 4225-83 / SGSC4696) GN=dapD PE=3 SV=1;>sp A4W6R1 DAPD_ENT 38 2,3,4,5-tetrahydropyridine- 2,6-dicarboxylate N-succinyltra	29.864
A8AFH5;Q7UAE6;Q3Z2M4;Q32H9 5;Q322D4;Q0T3U0;B7LPH8;B2TX L2;Q8ZNV2;Q5PMZ6;Q57N96;C0Q 2E8;B5R8D6;B5R1V2;B5FSN0;B5 F3I9;B5BH54;B4TYS4;B4T7Z9;B4	>sp A8AFH5 SYD_CITK8 AspartatetRNA ligase OS=Citrobacter koseri (strain ATCC BAA-895 / CDC 4225-83 / SGSC4696) GN=aspS PE=3	65.661

SVF1;A9MUB9;A9MND2;Q8XCI7; Q8FGQ9;Q1RAR8;Q0TGW6;P218 89;C4ZQF0;B7USP3;B7NS52;B7N BL7;B7MVZ7;B7MBS5;B7M2F7;B7 L7R9;B6IBU5;B5YR11;B1XHD4;B1 LD05;B1J0M2;A8A166;A7ZMZ0;A1 AC27;A4WBM3;Q8Z5W1;B5XQ00; A6TB35;A4SPN5;Q5QYV2;Q8EEE 9;Q5E6A2;Q0HUY7;Q0HIZ5;Q081 N5;B6EGJ1;B5FCP9;A0KWL5;Q3II N7;B8EA71;B7VMI0;A9L3I1;A6WN Q6;A4Y6S5;A3QEP7;A3D477;A1R JQ6;A7MEB6;Q12N06;B8CNX7;A8 GFJ2;B1KHG7;A8FUW6;B2VJ90;Q 2NTJ3;Q6LT53;A8H549;C6DFE7;B 0TSA3;Q6D497	SV=1;>sp Q7UAE6 SYD_SHIFL AspartatetRNA ligase OS=Shigella flexneri GN=aspS PE=3 SV=2;>sp Q3Z2M4 SYD_SHISS AspartatetRNA ligas	
A8ACS4;B5XYZ8;Q7UB34;Q3YVJ 0;Q329V3;Q31UL0;B7LU79;B2TU1 7;A9MJN4;Q8FBR2;Q1R4G3;Q0T AU6;P58256;P05793;C4ZZ44;B7U MN1;B7NTG7;B7NF81;B7N269;B7 MGI6;B7M5C2;B7L8B5;B6I4B1;B5 YY23;B1X9Z0;B1LLU9;B1IWC4;A8 A6N0;A7ZTX6;A1AHU6;P05989;A6 TGG1;A4WG34;A7MQH1;B4F1U6; A8GL54;Q8ZAC2;Q7MYK9;Q6CZD 1;Q66G37;Q1CNM0;Q1CBS1;C6D HG3;B2VG69;B2JZH8;B1JQ26;A9 R8G1;A7FD32;A4TRD9;A1JI57;A4 STE2;A0KEM1;Q9KVI4;Q6LVZ5;C 4L8N9;C3LQ01;A5F449;A5FFY3;C 5BBA8;B4S1X4;Q9CLF1;Q4QMN4; Q2NQA9;P44822;A5UHH1;A5UE3 4;B8F6G2;B0BTD3;A3N3E9;B7VG L9	>sp A8ACS4 ILVC_CITK8 Ketol- acid reductoisomerase (NADP(+)) OS=Citrobacter koseri (strain ATCC BAA-895 / CDC 4225-83 / SGSC4696) GN=ilvC PE=3 SV=1;>sp B5XYZ8 ILVC_KLEP 3 Ketol-acid reductoisomerase (NADP(+)) OS=Klebsiella pneumoniae (strain 342) GN=ilvC PE=	53.974
A8ACN8	>sp A8ACN8 ATPA_CITK8 ATP synthase subunit alpha OS=Citrobacter koseri (strain ATCC BAA-895 / CDC 4225-83 / SGSC4696) GN=atpA PE=3 SV=1	55.278
A7MGY5;A4WDC0;B5XNI6;A9MHI 3;A6TCG5;Q9KTG1;Q8ZCR1;Q8E BN8;Q7N216;Q6D246;Q667X1;Q5 PII3;Q57LF7;Q481S6;Q47WY2;Q3 YZ04;Q32D21;Q31XT6;Q2NS25;Q 1CKB8;Q1C5G0;Q0T1W9;Q0HXJ6 ;Q0HL93;P0A827;P0A2E2;P0A2E1 ;C5BEV2;C4LAE6;C0PYJ5;B5F1D 2;B5BAV4;B4TRY8;B4TDC8;B4T1 D1;B4EZV5;B2VI25;B2TXW4;B2K9 S8;B1JRX7;A9R8C1;A9N1W0;A8G HZ4;A8AD38;A7FFW1;A4TMW4;A 1S4B5;A1JKP3;A0KU60;Q8XA55; Q1R8I4;Q0TET8;P0A826;P0A825; C4ZXC6;B7UGZ1;B7NRK2;B7N6D 8;B7MYI0;B7MIN5;B7M8A7;B7LDE	>sp A7MGY5 GLYA_CROS8 Serine hydroxymethyltransferase OS=Cronobacter sakazakii (strain ATCC BAA-894) GN=glyA PE=3 SV=2;>sp A4WDC0 GLYA_ENT 38 Serine hydroxymethyltransferase OS=Enterobacter sp. (strain 638) GN=glyA PE=3 SV=1;>sp B5XNI6 GLYA_KLEP 3 Serine hyd	45.497

3;B6I5C4;B5Z123;B1XB26;B1LNK7 ;B1IVS6;A8A359;A7ZPZ4;A1AE82		
A7MGT1	>sp A7MGT1 EFTS_CROS8 Elongation factor Ts OS=Cronobacter sakazakii (strain ATCC BAA-894) GN=tsf PE=3 SV=1	30.56
A7I3Z5	>sp A7I3Z5 PPK1_CAMHC Polyphosphate kinase OS=Campylobacter hominis (strain ATCC BAA-381 / LMG 19568 / NCTC 13146 / CH001A) GN=ppk PE=3 SV=1	80.339
A7HZ35;A9KN01	>sp A7HZ35 GPMA_PARL1 2,3- bisphosphoglycerate-dependent phosphoglycerate mutase OS=Parvibaculum lavamentivorans (strain DS-1 / DSM 13023 / NCIMB 13966) GN=gpmA PE=3 SV=1;>sp A9KN01 GPMA_LAC P7 2,3-bisphosphoglycerate- dependent phosphoglycerate mutase OS=Lac	23.686
A6VXD0;Q88NJ4;Q1I6E5;B1JD74; B0KTJ6;A5VZU3;Q1QWG2;Q7NR P0;A1KAJ9;C5BPP4;A5WE50;Q9K 0U5;Q9JT23;B4RPA1;A9M257;A1 KVG2;C1DB91;Q4FSF4;Q1QBI9	>sp A6VXD0 SYDND_MARMS AspartatetRNA(Asp/Asn) ligase OS=Marinomonas sp. (strain MWYL1) GN=aspS PE=3 SV=1;>sp Q88NJ4 SYDND_PS EPK AspartatetRNA(Asp/Asn) ligase OS=Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440) GN=aspS PE=3 SV=1;	65.837
A6UDW1	>sp A6UDW1 RLMH_SINMW Ribosomal RNA large subunit methyltransferase H OS=Sinorhizobium medicae (strain WSM419) GN=rlmH PE=3 SV=1	17.441
A6TDS5;Q8RLY6;B5XUC4;Q5PJH 1;Q57K52;Q3YXV7;Q32BX5;Q31W H4;Q0T0Y5;P66693;P66692;P0A7 Z3;C0PY37;B5RE24;B5QXJ0;B5B FM8;B2U0T0;A9N3P6;A9MRG2;P0 A7Z2;P0A7Z1;P0A7Z0;C5A0I5;B7 UHW1;B7NHX4;B7N7F6;B7MZL0; B7MM99;B7LYT1;B7LFH2;B6I746; B5YQA8;B1XEJ9;B1LDB5;B1IT89; A8A454;A7ZR23;A1AFA2;B7LPC8; A1JPP4;Q0TDT9;Q8PH49;Q5H3U 0;Q3BPQ4;Q2P6P9;B4SI18;B2SL M6;B2FT30;Q8ZHH8;Q666Q7;Q60 BV9;Q3SGD3;B7VK98;B4F0Q0;B2 K0R4;Q82TX6;Q7N189;Q6D093;Q 2YBX7:C6DF34;A0KTU4:B2VF17	>sp A6TDS5 RPIA_KLEP7 Ribose-5-phosphate isomerase A OS=Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 700721 / MGH 78578) GN=rpiA PE=3 SV=1;>sp Q8RLY6 RPIA_ENTC L Ribose-5-phosphate isomerase A OS=Enterobacter cloacae GN=rpiA PE=3 SV=1:>sp B5XUC4 RPI	22.735

C5BMC8;Q7WH03;Q7W9Q5;Q7V WC1:Q21F87		
	>sp A6TD53 ENO_KLEP7 Enolase OS=Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 700721 / MGH 78578) GN=eno PE=3 SV=1:>sp B5XV19 ENO KLEP3	45.549
A6TD53 [·] B5XV19	Enolase OS=Klebsiella pneumoniae (strain 342) GN=eno PE=3 SV=1	
A6TCV9;Q8ZMK6;Q8Z4D5;Q5PF1 7;Q57KU6;A9N0C1;Q1C420;Q0l42 6;B0UTE1;Q8ZBT8;Q6D1T0;Q66E 68;Q2NVL2;Q1CLK9;B2K5X9;B1JJ A0;A9R0V7;A8GA09;A7MJ41;A7FL R7;A4TQ52;A1JK09;Q9ZJY5;Q1C S22;Q17ZF3;P56452;B2UV04;Q30 PA9;A6Q576;A8EWI6;Q5ZUJ9;Q5 X4B7;Q5WVQ2;A5ICV6;Q2YD40;Q 82TF8;Q0VNK2;Q0AHX2;A1WXK5 ;Q31F91;Q83CQ6;Q5QUV7;Q15R G5;A9NCN7;A9KG28;A5CVU0;A1 AXE0;Q60BS6;Q3ILF3;A6SVH6;A4 G2S9;Q47AU8;Q3SLA9;A6W1F1;A 1WIG8;Q5P7Q3;Q3JCK8;Q2KY72; A9IK31;A5EW88;Q9JYG6;Q9JTG4 ;Q9I553;Q88E18;Q885J0;Q7WHL6; Q7W6N4;Q7VXE1;Q7VLK0;Q63TF 9;Q62KZ3;Q5F7C4;Q4ZQI4;Q4QM 86;Q4K843;Q48G25;Q474F4;Q3K8 92;Q3JT87;Q39HB7;Q2SV73;Q1L Q59;Q1I6Z8;Q1H3U9;Q1BX19;Q13 W97;Q0K823;Q0BG79;Q02I63;P57 933;P43815;B3H177;B2SZN0;B2J K72;B1YNJ6;B1K026;B1JCG9;B0K R43;B0BNS8;A9M198;A9C0B9;A9 AC16;A6VKD6;A6VA71;A5W0D9;A 5UHW6;A5UDR0;A4XWE2;A4VJB 3;A4SS99;A4JDM9;A3NUB0;A3N8 K7;A3N018;A3MJ36;A2S3D4;A1W 7D0;A1VQK2;A1V3F2;A1KV20;A0 KPG1;A0K6N4;Q65VQ5;Q21L68;A 2SI90;Q7N7A5;Q487H5;Q2SBT9;Q 221G2;A8ZY67;A1TZ92;Q7NXM2; Q56273;Q1RKG2;B0BVK9;A8GU1 6;Q92G00;Q4UJT5;Q129G8;A8GQ 73;A8F323;A8F078;Q6AQ16;Q8Y1	>sp A6TCV9 SYA_KLEP7 AlaninetRNA ligase OS=Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 700721 / MGH 78578) GN=alaS PE=3 SV=1;>sp Q8ZMK6 SYA_SALT Y AlaninetRNA ligase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC	95.63
93;A1K991;Q7VHV4;A1TRL4 A6T726;Q5PGF0;Q57QZ8;Q56112	700720) GN=alaS PE=3 S >sp A6T726 SYN_KLEP7	52.495
, P38696;Q323J0;Q32E51;Q31YR7; Q0T6B1;P0A8M2;Q1RDS7;Q0TJC 3;P58694;P0A8M1;P0A8M0;B1IW0 1;A7ZYN3;A7ZK21;A4W8U9;Q2NU 85;A8GCJ5;Q7N622;A3QE68;A6V	Asparaginetrivia ligase OS=Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 700721 / MGH 78578) GN=asnS PE=3	
NV7;Q3IGU4;Q15UN9;Q6D453;Q6	SV=1;>sp Q5PGF0 SYN_SALP	

		1
6CG7;Q1CGI7;Q1CA47;P58697;A7	A AsparaginetRNA ligase	
	OS=Salmonella paratyphi A	
9CN06;P43829;A5UF16;A5UCB9;	(strain ATCC 9150 / SARB42)	
Q651R1;B8F315;B3H198;A3N039;	GN=asnS PE=3 SV=1;	
2.00TUU1.09U/67.01S004,ATKK5		
06:0481G3:008100:48EVU8:40K		
R09:0492P3:083618:B2S3.19		
A6T5N6:P58482:A8GAV2:066DP8		71 106
:Q5PFK7:Q57S77:Q1CL28:Q1C4P		
8:P58480:P58479:A9MW88:A8AJX		
0;A7MJW4;A4TPA5;A1JNB3;Q2NV		
58;Q7N0P4;A4W7F7;B3GXX7;B0B		
PS7;A3N0Z5;Q4QP81;Q0I2A3;P54		
649;P44516;B0USJ0;A5UFQ9;A5U	>sp A6T5N6 HTPG_KLEP7	
B42;Q6D7Z6;Q1H2K2;B8F5X3;Q7	Chaperone protein HtpG	
NYF6;Q1LTX6;Q3SJW8;Q9I3C5;Q	OS=Klebsiella pneumoniae	
88FB9;Q6LTE2;Q60AK3;Q142T5;A	subsp. pneumoniae (strain	
6V7J7;A4XV81;A4SLY0;Q2YA09;Q	ATCC 700721 / MGH 78578)	
82TV8;Q0AHI5;A0KL53	GN=htpG PE=3 SV=1	070.40
	>sp A6QGY4 EBHA_STAAE	378.16
	Extracellular matrix-binding	
	OS-Stanbylococcus aurous	
	(strain Newman) GN-ebbA	
	SV=1:>splQ9911541FBHA_STA	
	AN Extracellular matrix-binding	
	protein EbhA	
A6QGY4:Q99U54:Q931R6:A7X2C	OS=Staphylococcus aureus	
3;Q2FYJ6;Q8NWQ6;Q2FH04;A8Z4	(strain N315) GN=ebhA PE=4	
14;Q5HFY8;A6U1Q5;A5ISW6	SV=1;>sp Q931R6 E	
	>sp A6QD02 ILVD_SULNB	60.582
	Dihydroxy-acid dehydratase	
	OS=Sulfurovum sp. (strain	
A6QD02	NBC37-1) GN=ilvD PE=3 SV=1	
	>sp A6M334 GLGA_CLOB8	55.552
	Giycogen synthase	
	OS=CIOSTICIUM DEIJERINCKII	
A6M224	(SUBINATUC 51/43 / NUIVIB)	
A01VI334	2002/ GIV=919A PE=3 3V=1	10 927
	IPE0473 protein Chei 1107	10.027
	OS=Clostridium beijerinckij	
	(strain ATCC 51743 / NCIMB	
	8052) GN=Cbei 1107 PF=3	
A6LSF9	SV=1	
	>sp A6LRN4 DNAK_CLOB8	65.341
	Chaperone protein DnaK	
	OS=Clostridium beijerinckii	
	(strain ATCC 51743 / NCIMB	
A6LRN4	8052) GN=dnaK PE=3 SV=1	
	>sp A6LQH6 ATPB_CLOB8	50.232
A6LQH6	ATP synthase subunit beta	

A6LPT2 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=adk PE=3 SV=1 >sp A6LPS[RS8_CLOB8 30S ribosomal protein S8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 >sp A6LPQ3[RL7_CLOB8 50S ribosomal protein L7/L12 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpIL PE=3 SV=1 >sp A6LPQ3[RL7_CLOB8 50S ribosomal protein L7/L12 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpIL PE=3 SV=1 >sp A6LPP1[SVC_CLOB8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpIL PE=3 SV=1 >sp A6LPP1[SVC_CLOB8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=cpIS PE=3 SV=1 >splA6LP1[SVC_CLOB8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=spoVG PE=3 SV=1 >splA6LPJ0[SP5C_CLOB8 10.170 Putative septation protein SpoVG OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=spoVG PE=3 SV=1 >splA6LPJ0[SP5C_PARD8 Phosphoserine aminotransferase OS=Parabacteroides distasonis (strain ATCC 8082 / DSM 20701 / CIP 104284 / JCM 5825 / NCTC 11152) GN=serC PE=3 SV=1 >splA6L4M4 ATPA_BACV8 ATP synthase subunit alpha OS=Bacteroides vulgatus (strain ATCC 8482 / DSM 1447 / JCM 5826 / NBRC 14291 / NCTC 11154) GN=atpA PE=3 SV=1;>splQ8A9U7;Q64UA4;Q5LD8 A6L4M4;Q8A9U7;Q64UA4;Q5LD8	A6L0V2	ATCC 8482 / DSM 1447 / JCM	
A6LPT2 B052 GN=adk PE=3 SV=1 Sep[A6LPS5]RS8_CLOB8 30S ribosomal protein S8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 Sep[A6LPQ3]RL7_CLOB8 50S ribosomal protein L7/L12 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rplH PE=3 SV=1 Sep[A6LPQ3]RL7_CLOB8 50S ribosomal protein L7/L12 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rplH PE=3 SV=1 Sep[A6LPP1SYC_CLOB8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rplH PE=3 SV=1 Sep[A6LP1SYC_CLOB8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=cysS PE=3 SV=1 Sep[A6LP0]SP5G_CLOB8 10.170 Putative septation protein SpoVG OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=spoVG PE=3 SV=1 A6LPJ0 SV=1 A6L9B7 SV=1 A6L9B7 SV=1 Sp[A6L9B7]SERC_PARD8 Phosphoserine aminotransferase OS=Parabacteroides distasonis (strain ATCC 8503 / DSM 20701 / CIP 104284 / JCM 5825 / NCTC 11152) GN=serC PE=3 SV=1 SV=1 SV=1 SP[A6L4M4]ATPA_BACV8 ATP synthase subunit alpha OS=Bacteroides vulgatus (strain ATCC 8482 / DSM 1447 / JCM 5826 / NBRC 14291 / NCTC 11154) GN=atpA PE=3 SV=1;>sp[A6A99U7;Q64UA4;Q5LD8 thetaiotaomicron (strain ATCC 2014		SplA6L0V2 EFTS_BACV8 Elongation factor Ts	35.502
A6LPT2 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=adk PE=3 SV=1 >splA6LPS5 RS8_CLOB8 30S ribosomal protein S8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpH PE=3 SV=1 >splA6LPQ3 RL7_CLOB8 50S ribosomal protein L7/L12 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpI PE=3 SV=1 >splA6LPQ3 8052) GN=rpI PE=3 SV=1 >splA6LPQ3 8052) GN=rpI PE=3 SV=1 >splA6LPP1SYC_CLOB8 54.16 Cysteine-tRNA ligase OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=cysS PE=3 SV=1 >splA6LPJ0 SP5G_CLOB8 10.170 Putative septation protein SpoVG OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=spoVG PE=3 SV=1 >splA6L9B7[SERC_PARD8 Phosphoserine aminotransferase OS=Parabacteroides distasonis (strain ATCC 8503 / DSM 20701 / CIP 104284 / JCM 5825 / NCTC 11152) GN=serC PE=3 SV=1 >splA6L4M4 ATPA_BACV8 ATP synthase subunit alpha OS=Bacteroides vulgatus (strain ATCC 8482 / DSM 1447 / JCM 5826 / NBRC 14291 / NCTC 11154) GN=atpA PE=3 SV=1 SV=1>SPI(A6NPUTAPA_BAC TN ATP synthase subunit alpha	A6L4M4;Q8A9U7;Q64UA4;Q5LD8 2	OS=Bacteroides thetaiotaomicron (strain ATCC 2914	
A6LPT2 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=adk PE=3 SV=1 >sp A6LPS5 RS8_CLOB8 30S ribosomal protein S8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 >sp A6LPQ3 RL7_CLOB8 50S ribosomal protein L7/L12 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 >sp A6LPP1 SYC_CLOB8 54.16 CysteinetRNA ligase OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=cysS PE=3 SV=1 >sp A6LPP1 SYC_CLOB8 54.16 CysteinetRNA ligase OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=cysS PE=3 SV=1 >sp A6LPP1 SYC_CLOB8 54.16 CysteinetRNA ligase OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=cysS PE=3 SV=1 >sp A6LPJ0 SP5G_CLOB8 Putative septation protein SpoVG OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=spoVG PE=3 SV=1 A6LPJ0 SV=1 >sp A6L9B7 SERC_PARD8 Phosphoserine aminotransferase OS=Parabacteroides distasonis (strain ATCC 8503 / DSM 20701 / CIP 104284 / JCM 5825 / NCTC 11152) GN=serC PE=3 SV=1 A6L9B7 SV=1		11154) GN=atpA PE=3 SV=1;>sp Q8A9U7 ATPA_BAC TN ATP synthase subunit alpha	
A6LPT2 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=adk PE=3 SV=1 >splA6LPS5[RS8_CLOB8 30S ribosomal protein S8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 >splA6LPQ3[RL7_CLOB8 50S ribosomal protein L7/L12 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rplL PE=3 SV=1 >splA6LPP1[SVC_CLOB8 54.16 CysteinetRNA ligase OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=cysS PE=3 SV=1 >splA6LPP1[SVC_CLOB8 10.170 Putative septation protein SpoVG OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=spoVG PE=3 SV=1 >splA6LPJ0[SP5G_CLOB8 10.170 Putative septation protein SpoVG OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=spoVG PE=3 SV=1 >splA6LPJ0[SERC_PARD8 Phosphoserine aminotransferase OS=Parabacteroides distasonis (strain ATCC 8503 / DSM 20701 / CIP 104284 / JCM 5825 / NCTC 11152) GN=serC PE=3 SV=1 >splA6L4M4[ATPA_BACV8 ATP synthase subunit alpha OS POR Subunit alpha OR SUB		ATCC 8482 / DSM 1447 / JCM 5826 / NBRC 14291 / NCTC	
A6LPT2 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=adk PE=3 SV=1 >sp A6LPS5 RS8_CLOB8 30S ribosomal protein S8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 >sp A6LPQ3 RL7_CLOB8 50S ribosomal protein L7/L12 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 >sp A6LPPQ3 RL7_CLOB8 50S ribosomal protein L7/L12 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 >sp A6LPP1 SYC_CLOB8 S052) GN=rpsH PE=3 SV=1 >sp A6LPP1 SYC_CLOB8 S052) GN=rpiLPE=3 SV=1 >sp A6LPP1 SYC_CLOB8 A6LPP1 S052) GN=cysS PE=3 SV=1 >sp A6LPJ0 SP5G_CLOB8 10.170 Putative septation protein SpoVG OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=spoVG PE=3 SV=1 >sp A6LPJ0 SFCC_PARD8 Phosphoserine aminotransferase OS=Parabacteroides distasonis (strain ATCC 8503 / DSM 20701 / CIP 104284 / JCM 5825 / NCTC 11152) GN=serC PE=3 SV=1 A6L9B7 SV=1		>sp A6L4M4 ATPA_BACV8 ATP synthase subunit alpha	57.714
A6LPT2 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=adk PE=3 SV=1 >sp A6LPS5 RS8_CLOB8 30S ribosomal protein S8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 >sp A6LPQ3 RL7_CLOB8 50S ribosomal protein L7/L12 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rplL PE=3 SV=1 >sp A6LPP1 SYC_CLOB8 54.16 CysteinetRNA ligase OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=cysS PE=3 SV=1 >sp A6LPD1SFG_CLOB8 10.170 Putative septation protein SpoVG OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=spoVG PE=3 SV=1 >sp A6LPJ0 SP5G_CLOB8 10.170 Putative septation protein SpoVG OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=spoVG PE=3 SV=1 >sp A6LPJ0 SP5G_CLOB8 39.503	A6L9B7	/ CIP 104284 / JCM 5825 / NCTC 11152) GN=serC PE=3 SV=1	
A6LPT2 A6LPT2 A6LPT2 A6LPT2 A6LPT2 A6LPS5 A6LPS5 A6LPS5 A6LPS5 A6LPS5 A6LPS5 A6LPS5 A6LPQ3 A6LPJ0 A7 A6LPJ0 A7 A7 A7 A7 A7 A7 A7 A7 A7 A7		aminotransferase OS=Parabacteroides distasonis (strain ATCC 8503 / DSM 20701	
A6LPT2 A6LPT2 A6LPT2 A6LPT2 A6LPT2 A6LPS5 A6LPS5 A6LPS5 A6LPS5 A6LPS5 A6LPS5 A6LPQ3 A7 A7 A7 A7 A7 A7 A7 A7 A7 A7		>sp A6L9B7 SERC_PARD8 Phosphoserine	39.505
A6LPT2 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB A6LPT2 8052) GN=adk PE=3 SV=1 >sp A6LPS5 RS8_CLOB8 30S 14.65 ribosomal protein S8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 A6LPS5 8052) GN=rpsH PE=3 SV=1 >sp A6LPQ3 RL7_CLOB8 50S 12.542 ribosomal protein L7/L12 OS=Clostridium beijerinckii QS=Clostridium beijerinckii 12.542 ribosomal protein L7/L12 OS=Clostridium beijerinckii QS=Clostridium beijerinckii 12.542 ribosomal protein L7/L12 OS=Clostridium beijerinckii QS=Clostridium beijerinckii 12.542 (strain ATCC 51743 / NCIMB 8052) GN=rplL PE=3 SV=1 >sp A6LPP1 SYC_CLOB8 54.163 CysteinetRNA ligase OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=cysS PE=3 SV=1 >sp A6LPP1 SYC_CLOB8 10.170 Putative septation protein 5x0/G QS=Clostridium	A6LPJ0	beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=spoVG PE=3 SV=1	
A6LPT2 OS=Clostridium beijerinckii A6LPT2 8052) GN=adk PE=3 SV=1 >sp A6LPS5 RS8_CLOB8 30S 14.65 ribosomal protein S8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 A6LPS5 8052) GN=rpsH PE=3 SV=1 >sp A6LPQ3 RL7_CLOB8 50S 12.542 ribosomal protein L7/L12 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rplL PE=3 SV=1 A6LPQ3 8052) GN=rplL PE=3 SV=1 A6LPQ3 Ssp A6LPP1 SYC_CLOB8 54.161 (strain ATCC 51743 / NCIMB SoS=Clostridium beijerinckii 54.161 (strain ATCC 51743 / NCIMB SoS=Clostridium beijerinckii 54.161 A6LPP1 8052) GN=cysS PE=3 SV=1 54.161		>sp A6LPJ0 SP5G_CLOB8 Putative septation protein SpoVG OS=Clostridium	10.176
A6LPT2 OS=Clostridium beijerinckii A6LPT2 8052) GN=adk PE=3 SV=1 >sp A6LPS5 RS8_CLOB8 30S 14.65 ribosomal protein S8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 A6LPS5 8052) GN=rpsH PE=3 SV=1 >sp A6LPQ3 RL7_CLOB8 50S 12.542 ribosomal protein L7/L12 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 >sp A6LPQ3 RL7_CLOB8 50S 12.542 ribosomal protein L7/L12 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rplL PE=3 SV=1 A6LPQ3 8052) GN=rplL PE=3 SV=1 >sp A6LPP1 SYC_CLOB8 54.167 CysteinetRNA ligase OS=Clostridium beijerinckii	A6LPP1	(strain ATCC 51743 / NCIMB 8052) GN=cysS PE=3 SV=1	40.170
A6LPT2 OS=Clostridium beijerinckii A6LPT2 8052) GN=adk PE=3 SV=1 >sp A6LPS5 RS8_CLOB8 30S 14.65° ribosomal protein S8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 A6LPS5 8052) GN=rpsH PE=3 SV=1 >sp A6LPQ3 RL7_CLOB8 50S 12.54% ribosomal protein L7/L12 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpIL PE=3 SV=1 A6LPQ3 8052) GN=rpIL PE=3 SV=1		SpjA6LPP1jSYC_CLOB8 CysteinetRNA ligase OS=Clostridium beijerinckii	54.167
AGLPT2 OS=Clostridium beijerinckii A6LPT2 8052) GN=adk PE=3 SV=1 >sp A6LPS5 RS8_CLOB8 30S 14.65 ribosomal protein S8 OS=Clostridium beijerinckii A6LPS5 8052) GN=rpsH PE=3 SV=1 >sp A6LPS5 RS8_CLOB8 30S 14.65 ribosomal protein S8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rpsH PE=3 SV=1 >sp A6LPQ3 RL7_CLOB8 50S 12.542 ribosomal protein I 7/I 12 12.542	A6LPQ3	OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=rplL PE=3 SV=1	<u> </u>
A6L PS5		>sp A6LPQ3 RL7_CLOB8 50S ribosomal protein L7/L12	12.542
Addity falls kindles OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB A6LPT2 8052) GN=adk PE=3 SV=1 >sp A6LPS5 RS8 CLOB8 30S		ribosomal protein S8 OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) (N=rrcH PE=2 SV=1	
OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB	A6LPT2	8052) GN=adk PE=3 SV=1 >sp A6LPS5 RS8_CLOB8 30S	14.651
Adenylate kinase		Adenylate kinase OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB	
A6LQ99 8052) GN=pgi PE=3 SV=1 >sp A6LPT2 KAD_CLOB8 23.905	A6LQ99	8052) GN=pgi PE=3 SV=1 >sp A6LPT2 KAD_CLOB8	23.905
OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB		OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB	
>sp A6LQ99 G6PI_CLOB8 49.803		>sp A6LQ99 G6PI_CLOB8	49.803
OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN=atpD PE=3 SV=1		OS=Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052) GN-atoD PE-3 SV-1	

	5826 / NBRC 14291 / NCTC	
	r = 3 GN = 13 F = 3 GN = 1	71 407
	>SplAOLUI2 SPEA_BACVO	/1.40/
	Biosynthetic arginine	
	decarboxylase OS=Bacteroides	
	vulgatus (strain ATCC 8482 /	
	DSM 1447 / JCM 5826 / NBRC	
	14291 / NCTC 11154) GN=speA	
A6L012	PE=3 SV=1	
	>sp A5WGL0 EFG_PSYWF	79.387
	Elongation factor G	
	OS=Psychrobacter sp. (strain	
	PRwf-1) GN=fusA PE=3	
	SV=1:>splQ6FDS6IEFG_ACIAD	
	Flongation factor G	
	OS-Acinetobacter baylyi (strain	
	ΔTCC 33305 / BD/13 / $\Delta DP1$	
	$CN = fuc \Lambda DE = 2 SV = 1$	
ASWGLU,QOFD30		22.002
	>SPIADEXOZIKL3_DIGNV 50S	22.903
	ribosomai protein L3	
	OS=Dichelobacter nodosus	
	(strain VCS1703A) GN=rplC	
A5EX82	PE=3 SV=1	
	>sp A5D2Z8 NADK_PELTS	32.264
	NAD kinase OS=Pelotomaculum	
	thermopropionicum (strain DSM	
	13744 / JCM 10971 / SI)	
A5D2Z8	GN=nadK PE=3 SV=1	
	>spIA5D0W6IMUTS2 PELTS	86.174
	Endonuclease MutS2	
	OS=Pelotomaculum	
	thermonronionicum (strain DSM	
	137 <i>4</i> / ICM 10971 / SI)	
	$CN_{mut}S2 PE_{-2} SV_{-1}$	
ASDOWO		14 606
	ribosomal protoin S0	14.000
	nbosomai protein 59	
	saccharolyticus (strain ATCC	
	43494 / DSM 8903 / 1p81 6331)	
A4XJ60	GN=rpsI PE=3 SV=2	
	>sp A4WFJ1 PCKA_ENT38	59.474
	Phosphoenolpyruvate	
	carboxykinase (ATP)	
	OS=Enterobacter sp. (strain	
A4WFJ1	638) GN=pckA PE=3 SV=1	
A4WE78;Q8K9E5;B4RWC7;B8F4B	>sp A4WE78 METK_ENT38 S-	41.909
2;Q8EIB4;Q6D081;Q65UT4;Q3IDQ	adenosylmethionine synthase	
1;Q15QK1;Q0HRM1;Q0HM65:C6D	OS=Enterobacter sp. (strain	
FI3;B7VKB3;B3H1W3:B0BQ17:A8	638) GN=metK PE=3	
FRL1:A6VMK8:A4Y3R7:A3QAX5:A	SV=1:>splQ8K9E5IMETK BUC	
3N186-A1S9A6-A1RN71-A01 0K9-0	AP S-adenosvlmethionine	
	synthese OS-Buchnera	
	anhidicola suben Schizanhia	
	apriluicula subsp. Schilzaphiis	
1070;001559;P66765;P66764;P57	SV=1;>sp B4RVVC/ METK_ALT	
897;P43762;P0A820;C5BAV4;B7L	MD	

PQ9;B6EMV8;B5XUA8;B5RE50;B5 QY66;B5FUK0;B5F9T2;B5F5L4;B5 BFP7;B4TV58;B4THH4;B4T5J6;B4 F1A5;B2VF06;B2U0W2;B2K0S7;B 1JNQ2;B0UWT3;A9R314;A9MRD1 ;A8GIX9;A8APG1;A7MTQ7;A7MJQ 6;A7FEZ7;A6TDV1;A5UIU0;A5UCT 6;A4TI83;A1JPS4;Q9KUP3;Q8D2N 8;Q2NRD1;C4K3W7;C3LRY9;A5F9 H4;Q7VNG7;Q7NZF9;P61946;C6E 2L2;C6C1U5;C4XPZ6;C1DCT7;B8 DSC3;A5GA66;A0LF65;Q7N119;Q 729A3;Q311V1;A1VBJ1;Q0TDR0;P		
7UHY9;B7NI05;B7N7J5;B7LYX2;B 7LFK4;B6I780;B5YQD9;B1XFA4;B 1LDF1;B1IT65;A8A481;A7ZR64		
A4WDW7;Q2NVN7	>sp A4WDW7 ENO_ENT38 Enolase OS=Enterobacter sp. (strain 638) GN=eno PE=3 SV=1;>sp Q2NVN7 ENO_SOD GM Enolase OS=Sodalis glossinidius (strain morsitans) GN=eno PE=3 SV=1	45.467
A4WDQ6	>sp A4WDQ6 SYA_ENT38 AlaninetRNA ligase OS=Enterobacter sp. (strain 638) GN=alaS PE=3 SV=1	95.942
A4WD70;C5BHQ5;B5XNQ4;A8AD 93;A6TCB0;Q7N3F8;Q5PNJ7;Q57 LL1;Q0T222;P0A8F3;P0A2M6;P0A 2M5;C0PYQ8;B7LKE4;B5RCX0;B5 R560;B5FQJ0;B5F173;B5BB06;B4 TR74;B4TD73;B4T0M7;B2TXS3;A 9N2Y1;A9MHP1;Q0TEZ0;P0A8F2; P0A8F1;P0A8F0;C4ZX73;B7UGN6 ;B7NQN7;B7N680;B7MYC5;B7MH X9;B7M7K2;B7LCN8;B6I570;B5Z0 35;B1XAX3;B1LNE8;B1IWG2;A8A 2Z0;A7ZPU1;A1ADZ1;Q9KPY7;Q6 LN74;Q6D7S0;Q2NS69;C6DBR1;C 3LPM9;A5F642;P43857;A6VQ76;A 5UF76;A5UBP1	>sp A4WD70 UPP_ENT38 Uracil phosphoribosyltransferase OS=Enterobacter sp. (strain 638) GN=upp PE=3 SV=1;>sp C5BHQ5 UPP_EDWI 9 Uracil phosphoribosyltransferase OS=Edwardsiella ictaluri (strain 93-146) GN=upp PE=3 SV=1;>sp B5XNQ4 UPP_KLEP 3 Uracil phosphoribos	22.549
A4WBM1;B2VJ92	>sp A4WBM1 Y2432_ENT38 Probable transcriptional regulatory protein Ent638_2432 OS=Enterobacter sp. (strain 638) GN=Ent638_2432 PE=3 SV=1;>sp B2VJ92 Y1487_ERW T9 Probable transcriptional regulatory protein ETA_14870 OS=Erwinia tasmaniensis (strain DSM 17950	26.173
A4W787;Q8ZC41;Q66DV8;Q1CL9 2;Q1C4I4;B2K6T3;B1JIE2;A9R2J8; A7FLE8;A4TPG7	>sp A4W787 RISB_ENT38 6,7- dimethyl-8-ribityllumazine synthase OS=Enterobacter sp. (strain 638) GN=ribH PE=3	16.097

	SV=1;>sp Q8ZC41 RISB YERP	
	E 6.7-dimethyl-8-ribityllumazine	
	synthase OS=Yersinia pestis	
	GN-ribH PE-3	
	SV=1,>SP Q00DV0 RISD_TERP	
	5 6,7-dimethyl-8-ribityl	
	>sp A4W6R5 EFTS_ENT38	30.371
	Elongation factor Ts	
	OS=Enterobacter sp. (strain	
A4W6R5	638) GN=tsf PE=3 SV=1	
	>splA4W5T2IRL9_ENT38.50S	15 66
	ribosomal protein 19	10100
	OS-Enterobacter sp. (strain	
A 4)A/CTO		
A4VV512	638) GN=rpii PE=3 SV=1	
	>sp A4W5F0 LAMB_EN138	49.236
	Maltoporin OS=Enterobacter sp.	
	(strain 638) GN=lamB PE=3	
A4W5F0	SV=1	
	>sp A4W5A7 RPOB_ENT38	150.47
	DNA-directed RNA polymerase	
	subunit beta OS-Enterobacter	
	$c_{\rm D}$ (strain 628) $C_{\rm D}$ $C_{\rm D}$	
	SV=1;>splC6DHR5 RPOB_PEC	
	CP DNA-directed RNA	
	polymerase subunit beta	
	OS=Pectobacterium	
	carotovorum subsp.	
A4W5A7;C6DHR5;Q6DAN0;Q3ILP	carotovorum (strain PC1)	
9	GN=rpoB PE=3 SV=1	
	>splA4VMP0IFLIE_PSFU5	12 002
	Flagellar book-basal body	121002
	complex protein EliE	
	(strain A1501) GN=TILE PE=3	
A4VMP0	SV=1	
	>sp A4VFW9 FDHE_PSEU5	33.325
	Protein FdhE homolog	
	OS=Pseudomonas stutzeri	
	(strain A1501) GN=fdhE PE=3	
A4\/F\//9	SV=1	
		15 320
	ribosomal protein LQ	10.023
	(strain A449) GN=rpII PE=3	
A45IZ9	SV=1	
	>sp A4J592 KAD_DESRM	23.245
	Adenylate kinase	
	OS=Desulfotomaculum	
	reducens (strain MI-1) GN=adk	
	PF=3	
	SV-1-SeDICAKTNARKAD HAMD	
	5 A denulate kinese	
	5 Adenyiate Kinase	
	US=Hamiltonella detensa	
	subsp. Acyrthosiphon pisum	
	(strain 5AT) GN=adk PE=3	
A4.1592.C4K7\N/8	SV=1	

A2RIX0	>sp A2RIX0 HPF_LACLM Ribosome hibernation promotion factor OS=Lactococcus lactis subsp. cremoris (strain MG1363) GN=hpf PE=1 SV=1	21.314
A2BQ46	>sp A2BQ46 DNAA_PROMS Chromosomal replication initiator protein DnaA OS=Prochlorococcus marinus (strain AS9601) GN=dnaA PE=3 SV=1	52.144
A1SGG5;A6W6U1;C5C046	>sp A1SGG5 SYM_NOCSJ MethioninetRNA ligase OS=Nocardioides sp. (strain ATCC BAA-499 / JS614) GN=metG PE=3 SV=1;>sp A6W6U1 SYM_KINR D MethioninetRNA ligase OS=Kineococcus radiotolerans (strain ATCC BAA-149 / DSM 14245 / SRS30216) GN=metG PE=3 SV=1;>sp C5	66.251
A1S1X0	>sp A1S1X0 PCKA_SHEAM Phosphoenolpyruvate carboxykinase (ATP) OS=Shewanella amazonensis (strain ATCC BAA-1098 / SB2B) GN=nckA_PE=3 SV=1	55.974
A1JRT1;Q7N6S0;B2VBS6;Q9CKU 9;Q4QME2;Q0I4D8;P44865;B8F5J 4;B3H1G9;B0US27;B0BPB3;A5UH R1;A5UDW8;A3N0J2;P53531;B8Z T86;Q8NTA5;A4QB41;Q9PC88;Q8 7CZ1;Q73SU2;Q6ADH3;P9WIC9;P 9WIC8;P0A5R7;C1AKG7;B2I4U0;B 0U2F2;A5TZL7;A1KFW3;A0QLK3; Q727C0;A1VAI9;B2HQV4;A0PVZ3	>sp A1JRT1 GPMA_YERE8 2,3-bisphosphoglycerate- dependent phosphoglycerate mutase OS=Yersinia enterocolitica serotype O:8 / biotype 1B (strain NCTC 13174 / 8081) GN=gpmA PE=3 SV=1;>sp Q7N6S0 GPMA_PHO LL 2,3-bisphosphoglycerate- dependent phosphoglycerate mutas	28.344
A1JI23;Q6DAR0;C6DI80;B5XZ17;B 5FPX4;B5F0U8;B5BJN3;B4TQH5; B4TCQ5;B4T0X0;B2TWF4;A9N0G 9;A8GL83;A4WG52;Q8ZA87;Q66G 71;Q5PK74;Q57H94;Q3YV17;Q32 AB6;Q31U29;Q1CNQ4;Q1CBV5;Q 0SY35;P63558;P63557;P59302;C0 Q475;B5RF46;B5QXQ4;B2JZE3;B 1JQ60;A9R515;A8AKW3;A7ML88; A7FD00;A6TGE3;A4TRH4;B7MI95; B7M713;B7LA54;B6I5H5;B5Z061;B 1XBC4;B1IVB9;A8A767;A7ZUH7;Q 1R3V2;Q0TAA1;P59298;P0A6C9;P 0A6C8;C5A0Q8;A1AID7	>sp A1JI23 ARGB_YERE8 Acetylglutamate kinase OS=Yersinia enterocolitica serotype O:8 / biotype 1B (strain NCTC 13174 / 8081) GN=argB PE=3 SV=1;>sp Q6DAR0 ARGB_PEC AS Acetylglutamate kinase OS=Pectobacterium atrosepticum (strain SCRI 1043 / ATCC BAA-672) GN=	26.373
A1A3N3;P59076;B7GP85;B8DT48	>sp A1A3N3 SYM_BIFAA MethioninetRNA ligase OS=Bifidobacterium adolescentis (strain ATCC	68.693

	15703 / DSM 20083 / NCTC	
	11814 / E194a) GN=metG PE=3	
	SV=1	
A1A3C7;Q8G7B1;B7GTZ1;B3DTV		58.683
2;C5C1U6;B8DWS4;A4XAW4;Q73		
X57;A0QCX6;Q72E02;B8DRD0;A1		
VFJ3:B2GLY8:Q83HY2:Q83G89:Q		
6NHT1 06AG60 B0RED6 A5C058		
B8H471:40 IV66:04 II I I8:B1//EV5:		
$O8EO22 \cdot C3DED3 \cdot O70 / C7 \cdot O08CD$		
W7G7;P45825;B8ZR40;Q05FY3;Q		
8RGE0;Q180W8;Q5M5J3;Q5M106		
;Q3A944;Q03LX5;Q9K6H3;Q24MN		
9;P50000;C6E9F3;C5CIV6;C4XI08;		
B9LZ86;B8FZ36;B5YI22;B5EFI9;B		
4U989;B3EA03;B0THN4;B0JWV1;		
A9KK94;A5G9D6;A1ALL5;Q8DLP3		
;Q74GY2;Q3Z8Z4;Q39Q54;Q0537		
2:066907:C0Z778:B7KKR4:Q2LQZ		
7:Q0AUD1:C3KYJ1:C1FQP3:B9DX		
63:B2V6N6:B1KSS6:B1IE32:B0SL		
C6 B0SDA3 A7G907 A7F0H7 A6		
0B61:A5N3H9:A5HY50:07\/5S7:0		
31RF1·O11276·P08440·B8HPK1·B		
0P71 2:49M IM/1:49C6\/1:46TK62		
7;B7IG42;A6LJR3;B9J1R4;Q98EV		
6;Q92LK6;Q8YJ37;Q8UC74;Q8FY		
R3;Q89X72;Q5NQZ1;Q57B86;Q2Y		
LI5;Q2VZN0;Q2N8Z5;Q2K3G8;Q2		
G5N7;Q1MAZ0;Q1GQS7;Q11DD7;		
C3M9S3;C0RF52;B8IN03;B8EQP9		
;B7KUA4;B5ZSN9;B3PQ70;B2S7M		
5;B1ZEE9;B0UE41;A9WWS4;A9W		
2R3;A9M839;A7IH29;A7HT50;A6W		
XW9;A6UDM3;A5VSE3;A5V3X3;A		
5E948:A4YKD8:Q9A2V7:Q92G86:		
Q6NDD0:Q4UK16:Q3SVJ4:Q2J3I2		
\cdot 021CY5 \cdot 0100S5 \cdot 013DP4 \cdot 00AK		
V8:0071173:C4K229:B8H512:B4RD		
45:B11 \/H1:B0T338:B0B\/B8:A8HS		
15.48GTS8.48E2112.45E752.06G		
	>splatasc/latea_diraa atP	
Q16257;050288;B30559;B2KEX0		
;A8GY42;A8GP26;A5CD07;A1K1S	adolescentis (strain AICC	
0;Q82XQ0;Q7WEM7;Q7W3A8;Q7	15703 / DSM 20083 / NCTC	
VU46;Q7NCS3;Q63PH8;Q62FR7;	11814 / E194a) GN=atpA PE=3	
Q60CR6;Q5NIK5;Q46VX8;Q3SF64	SV=1;>sp Q8G7B1 ATPA_BIFL	
;Q3JXV6;Q39KX8;Q2YCA5;Q2STE	O ATP synthase subunit alpha	
7;Q2KU34;Q2A1I0;Q21DK6;Q1GE	OS=Bifidobacterium longum	
U6;Q1BRA8;Q14K08;Q0K5M5;Q0	(strain NCC 2705) GN=atpA	
BK82;Q0BJL7;Q0AJB2;Q0A4M6;C	PE=	

5BKJ7;B8GRC0;B4EEY7;B2SEX9; B1YQL2;B1JSV5;B0TWS5;A9HY4 0;A9AJG2;A7NEH6;A5EXJ7;A5CVI 8;A4JA33;A4IW22;A3P0Z2;A3NF4 2;A3MQJ7;A2S6K0;A1WZT3;A1V8 T3;A1AXU4;A0Q8E1;A0K2Y1;Q7P 097;Q2S6N9;Q0VKX2;P41167;C1 D5G4;B7JB86;B5ER44;A6W3T0;A 9AVV2;B8G6G8;A9WGS6;B1W0A 5;Q6MS92;Q6F204;Q2ST36;A6H2 D7;A5FL34;Q8KAW8;Q3AUA7;Q11 YP1;B4SGC7;B3EL39;B3EHU6;A7 NIR1;A1BJF5;A5UQN5;Q9K4D5;Q 82J82;P50001;B3EU98;C1F3N8;B 3QWX7;A1WF56;B8CZ12;Q6A8C5 ;Q5Z0Y3;A9WNC6;A1R7V5;Q47M 80;A1SHI9;B1MLW0;A4FN29;A8M 2J5;Q2J6N1;Q0RDB2;A8L3W3;A0 LSL4;A9GHR6;Q9PR12;B1AIC1		
	>sp A1A3B6 SYR_BIFAA ArgininetRNA ligase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=argS PE=3 SV=1	64.876
	>sp A1A399 BGAL_BIFAA Beta- galactosidase BgaB OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=bgaB PE=1	78.024
A1A399	SV=2 >sp A1A2Z2 GLMM_BIFAA Phosphoglucosamine mutase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=glmM PE=3	48.354
A1A2Z2	Sv=1 >sp A1A2L6 MURI_BIFAA Glutamate racemase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=murl PE=3	28.338
A1A2L6	SV=1 >sp A1A2H2 HIS4_BIFAA 1-(5- phosphoribosyl)-5-[(5- phosphoribosylamino)methylide neamino] imidazole-4- carboxamide isomerase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=hisA PE=3 SV=1	25.734

	>sp A1A2F1 MURD_BIFAA UDP-N-acetylmuramoylalanine D-glutamate ligase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC	51.021
A1A2F1	11814 / E194a) GN=murD PE=3 SV=1	
A1A2E9	>sp A1A2E9 MURG_BIFAA UDP-N-acetylglucosamineN- acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=murG PE=3 SV=1	41.546
A1A2E8	>sp A1A2E8 MURC_BIFAA UDP-N-acetylmuramateL- alanine ligase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=murC PE=3 SV=1	55.602
A1A1V0;Q2GLH3;Q73WG1;P5995 3;A0QC23;Q5PBM8;B9KHP8;Q5Y Q76;B1VFM5;B7GTL3;Q4JU69;P9 WGI9;P9WGI8	>sp A1A1V0 GLYA_BIFAA Serine hydroxymethyltransferase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=glyA PE=3 SV=1;>sp Q2GLH3 GLYA_ANA PZ Serine hydroxymethyltransferase OS=Anaplasma phagocytophilum (strain HZ) GN=g	46.576
A1A1U9;C1DMQ0;Q8G5H9;B7GTL 2	>sp A1A1U9 PROA_BIFAA Gamma-glutamyl phosphate reductase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=proA PE=3 SV=1	45.48
A1A1R2	>sp A1A1R2 SYL_BIFAA LeucinetRNA ligase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=leuS PE=3 SV=1	110.94
A1A1N3	>sp A1A1N3 PGK_BIFAA Phosphoglycerate kinase OS=Bifidobacterium adolescentis (strain ATCC	42.09

	1	
	15703 / DSM 20083 / NCTC 11814 / E194a) GN=pgk PE=3 SV=1	
A1A1I0	>sp A1A1I0 EFTS_BIFAA Elongation factor Ts OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=tsf PE=3 SV=1	30.628
A1A1G3	>sp A1A1G3 PYRE_BIFAA Orotate phosphoribosyltransferase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=pyrE PE=3 SV=1	24.908
A1A1F7;Q8G655;B7GRV4;B3DS61	>sp A1A1F7 PYRB_BIFAA Aspartate carbamoyltransferase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=pyrB PE=3 SV=2;>sp Q8G655 PYRB_BIFL O Aspartate carbamoyltransferase OS=Bifidobacterium longum (strain NCC 2705) GN=	35.385
	 >sp A1A1B4 GLGC_BIFAA Glucose-1-phosphate adenylyltransferase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=glgC PE=3 	45.609
A1A1B4;B8DUN4	Sv=1 >sp A1A1A2 AROC_BIFAA Chorismate synthase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=aroC PE=3 SV=1	42.456
A1A198	>sp A1A198 SYA_BIFAA AlaninetRNA ligase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=alaS PE=3 SV=1	97.575
A1A171	>sp A1A171 FOLD_BIFAA Bifunctional protein FolD OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC	31.278

	11814 / E194a) GN=folD PE=3	
	SV=1 >sp A1A0T7 ILVD_BIFAA Dihydroxy-acid dehydratase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=ilvD PE=3	66.449
A1A0T7;Q8G3H2;B7GUP9	SV=1	123.2
A1A0T4;B8DTW3;Q8G815;B3DQ3 2	Carbamoyl-phosphate synthase large chain OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=carB PE=3 SV=1;>sp B8DTW3 CARB_BIF A0 Carbamoyl-phosphate synthase large chain OS=Bifidobacterium animalis	123.2
A1A0T0;B8DTV6;Q8G5B6;B3DT30 ;A6W5T4;P09952;C3PKP1	>sp A1A0T0 EFG_BIFAA Elongation factor G OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=fusA PE=3 SV=1	78.465
A1A0K4;Q8G3N0;B8DTM3;Q5YSB 9	>sp A1A0K4 SYP_BIFAA ProlinetRNA ligase OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=proS PE=3 SV=1	67.087
A1A0A9;Q8G3X9;B7GN96;B3DQF 7	>sp A1A0A9 RPIA_BIFAA Ribose-5-phosphate isomerase A OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=rpiA PE=3 SV=1	25.266
A1A0A2;Q8G3Y5;B3DQF0;B7GNA	>sp A1A0A2 IF2_BIFAA Translation initiation factor IF-2 OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=infB PE=3 SV=1;>sp Q8G3Y5 IF2_BIFLO Translation initiation factor IF-2 OS=Bifidobacterium longum	99.002
A1A095;Q8G3Z3;B8HCX4;A9WSR 1;A0JZ49;A6W5W5;Q82QR5;C5C0 G1;Q9X4V6;P60313;P60312;B1W3 Y0;Q9X798;Q73S43;P9WGZ1;P9 WGZ0;P66702;A5U8D3;A1KPE3;A 0QKU5;A0PMB7;Q1BD08;A3PVL8;	 >sp A1A095 RPOA_BIFAA DNA-directed RNA polymerase subunit alpha OS=Bifidobacterium adolescentis (strain ATCC 15703 / DSM 20083 / NCTC 11814 / E194a) GN=rpoA PE=3 	36.232

A1UBY5;A1T520;A0QSL8;Q5Z1K9	SV=2;>sp Q8G3Z3 RPOA_BIFL	
;Q0S3E7;A4FPJ2	O DNA-directed RNA	
	polymerase subunit alpha	
	OS=Bifidobacterium longum	
	>sp A1A008 PNP_BIFAA	99.739
	Polyribonucleotide	
	nucleotidyltransferase	
	OS=Bifidobacterium	
	adolescentis (strain ATCC	
	15703 / DSM 20083 / NCTC	
	11814 / E194a) GN=pnp PE=3	
	SV=1;>sp B7GNH2 PNP_BIFLS	
	Polyribonucleotide	
A1A008;B7GNH2;Q8G447;B3DPX	nucleotidyltransferase	
0;B8DVV8	OS=Bifidobacterium longum su	
	>sp A0ZZT4 DDL_BIFAA D-	40.528
	alanineD-alanine ligase	
	OS=Bifidobacterium	
	adolescentis (strain ATCC	
	15703 / DSM 20083 / NCTC	
A0ZZT4;B7GU04;B3DTT9;Q8G7C	11814 / E194a) GN=ddl PE=3	
4	SV=1	
	>sp A0ZZS4 SYE_BIFAA	56.634
	GlutamatetRNA ligase	
	OS=Bifidobacterium	
	adolescentis (strain ATCC	
	15703 / DSM 20083 / NCTC	
A0ZZS4;Q8G709;B3DU87;Q83HJ1	11814 / E194a) GN=gltX PE=3	
;Q83GP4;Q5YRX6;Q6AEQ1;Q0S2	SV=1;>sp Q8G709 SYE_BIFLO	
G8;A1SM03;O86528;A6W7Q5;O33	GlutamatetRNA ligase	
120;A4FMP6;Q82JR3;B1V206;A0J	OS=Bifidobacterium longum	
XY5;B2GFK2;B0RIP8;A5CPZ8;A1	(strain NCC 2705) GN=gltX	
R7K6	PE=3 SV=1;>sp	40.007
	>sp AUZZG5 PURA_BIFAA	46.637
	Adenylosuccinate synthetase	
	OS=Billdobacterium	
	adolescentis (strain ATCC	
	15703 / DSM 20083 / NCTC	
A07705-D70700	11814 / E194a) GN=purA PE=3	
AUZZG5;B7G129		44.007
	>sp AURIN28 ISPDF_CAMFF	41.387
	Birunctional enzyme ispD/ispF	
	OS=Campylobacter fetus subsp.	
AURINZO		ED 04E
	<pre>>Sp AUQ110 RS1_W10S2305 ribosomal protain S1</pre>	53.315
	OS-Mucchaotorium amagmatic	
	(strain ATCC 700094 /	
	$(3110111 \times 100 / 00004 / mc/2)155) CN-roch DE-1$	
	$\frac{110(2)100}{0} \text{ Given psa per 1}$	
	5v = 1,25p (5v	
	OS-Mycobacterium tuberculosis	
	CO-WyCODacterium (uberculosis)	
	$GN = roc \Delta PE = 1$	
6	$S_{1}=1$ S_{1}=1 S_{1}=1	
v		

A0Q087	>sp A0Q087 EFP_CLONN Elongation factor P OS=Clostridium novyi (strain NT) GN=efp PE=3 SV=1	20.784
A0L9N3	>sp A0L9N3 SECA3_MAGMM Protein translocase subunit SecA 3 OS=Magnetococcus marinus (strain ATCC BAA-1437 / JCM 17883 / MC-1) GN=secA3 PE=3 SV=1	73.775