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Abstract

In this thesis, we demonstrate some connections between the coefficients of

a Taylor series f(z) =
∑∞

n=0 anz
n and singularities of the function. There

are many known results of this type; for example, counting the number of

poles on the circle of convergence and doing convergence or overconvergence

for f on any arc of holomorphy. Here, a new approach is proposed in which

these kinds of results are extended by relaxing the classical conditions for

singularities and convergence theorems. This is done by allowing the co-

efficients to be sufficiently small instead of being zero. The well-known

theta function is an important example. Every point on the boundary of

its domain of holomorphy is singular. This function is delivered from the

covariant transform associated with the Heisenberg group representations.

Therefore, we devote the rest of our present work to deal primarily with the

covariant transform. We introduce three different forms of the Heisenberg

group representations. The covariant transform allows us to construct in-

tertwining operators related to L2-type spaces between the representations

of the Heisenberg group. The systematic usage of the covariant transform

between different spaces on which the Heisenberg group representations act

is another new contribution in this thesis.
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Chapter 1

Introduction

An analytic function and its expansion of the power series in the circle of convergence

are at some points not identical. If Taylor series has a finite radius of convergence,

the function that is represented by this series may be analytic in a larger domain. An

example of this f(z) = 1
1−z =

∑∞
n=0 z

n. Although the function f is analytic at every

point in C except z = 1, its Taylor expansion at z = 0 converges only for |z| < 1. If a

power series f(z) =
∑∞

n=0 anz
n, has a finite radius of convergence, it is possible that a

sub-series f(z) =
∑∞

nk=0 ankz
nk can converge uniformly in a larger domain [41, §11.2].

Many of the results that have been obtained to study the convergence on a larger

domain of analyticity are formulated to be based on conditions imposing coefficients to

vanish [41, §11.2]. Although these results are interesting in the theoretical sense, they

are not generally applicable for practical problems because, in applied science, values

do not need to be strictly zero. Our generalisations of classical results represented in

Chapter 2 show a certain stability in this transportation: a small variation in the Taylor

coefficients preserves the function’s property under consideration. In other words, a

new approach is presented here that relies on estimating some coefficients of a Taylor

series to be sufficiently small. This topic is a part of a broader discussion. An intriguing

connection with spectral theory was discovered in [10].

The analytic theta function is an interesting and important example of a function

with a natural boundary (i.e., every point on the boundary of the circle of convergence

of theta function is singular). The expansion of the theta function has gaps through its

Taylor coefficients. Initially, this function was introduced in the 19th century. Later,

it was discovered in many different areas from number theory to quantum mechanics.

A connection to the Heisenberg group representations and the group SL2(R) was later

1



Chapter 1. Introduction 2

identified by Cartier and Mumford [10, 34]. Here, we treat the theta function through

the covariant transform. It has been extensively studied by Grossmann, Daubechies,

Perelomov and others [3, 22,23,37]. We will be focused on the covariant transform for

the Schrödinger group, which is a semi-direct product of the Heisenberg group H1
p and

the group SL2(R).

1.1 Outline of this Thesis

The structure of this thesis is as follows.

• In Chapter 2, we discuss some connections between the coefficients of a Taylor

series f(z) =
∑∞

n=0 anz
n of an analytic function f and singularities of this func-

tion. We provide some classical results [39, § 5.3, Prob.244; 41, § 11.1], which

discuss the behaviour of the function f on the boundary of its domain of holo-

morphy. The hypotheses of these classical theorems impose that some of the

Taylor coefficients vanish. We then provide our modifications of these results by

eliminating the restriction of having these lacunas (gaps) through the coefficients

of the Taylor expansion.

• In Chapter 3, we provide various standard notations, definitions and results from

group theory and representation theory that are considered in this thesis.

• In Chapter 4, we recall fundamentals of the Heisenberg group H1
p and its asso-

ciated Lie algebra h1. Next, we describe H1
p–homogeneous spaces and actions of

H1
p on these spaces. Further, we describe important concepts of this thesis: the

Schrödinger group and the Jacobi theta function.

• In Chapter 5, we discuss the construction of induced representations of a group.

In particular, we describe three forms of the Heisenberg group representations:

the left quasi-regular representation, the Schrödinger representation and the lat-

tice representation. Further, we define operators produced by derived represen-

tations of the Lie algebra h1 of the Heisenberg group. Among these operators,

the most important are called ladder operators: creation and annihilation. We

discuss some properties of these operators. This leads to vacuum vectors, which

are null solutions to the annihilation operator. In particular, we find the vacuum

vectors of the three representations of the Heisenberg group.
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• In Chapter 6, we discuss the covariant transform and its inverse—the contravari-

ant transform. We find unitary intertwining operators between all three above

Heisenberg group representations through the covariant transform and its inverse.

That is, we calculate the following intertwining operators:

i. the (pre-) Fock–Segal–Bargamann (FSB) transform and its inverse between

the Schrödinger representation on L2(R) and the (pre-) FSB representation

on L2(R2);

ii. the Zak transform and its inverse between the Schrödinger representation

on L2(R) and the lattice representation on L2(T2); and

iii. the (pre-) theta transform and its inverse between the (pre-) FSB represen-

tation on L2(R2) and the lattice representation on L2(T2).

Figure 1.1 represents the connection of these intertwining operators.

Our contribution is the systematic usage of the covariant transform. In partic-

ular, the Zak transform and its inverse are expressed as the covariant transform

between the Schrödinger and lattice representations, with the theta function be-

ing the vacuum of the latter. Similarly, expressing the pre-theta transform and

its inverse throughout the same technique is also new.

It is often preferable to deal with some spaces of analytic functions, for example,

the FSB space, which appears in quantum mechanics. This allows us to use all

theorems from complex analysis to study induced representations of H1
p. Such

spaces can be obtained by an operation, which we refer to as peeling. We discuss

the peeling of the above three representation spaces of H1
p.

• In Chapter 7 we conclude and discuss further work.
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Chapter 2

Numerically stable conditions on

rational and essential singularities

It is a classical problem to analyse the boundary behaviour of an analytic function

in terms of its Taylor expansion. For example, for a function f which is analytic on

E = {z ∈ C : |z| < 1}, either f can be extended beyond the circle of convergence ∂E,

or ∂E is the natural boundary (i.e., every z ∈ ∂E is a singular point of f).

Many of the results that have been obtained so far (see discussion below) have

hypothesises which force some of the Taylor coefficients to vanish. Although these

results are interesting in the theoretical sense, they are not really applicable for practical

problems because, in applied science, values may not be strictly zero. For example, in

numerical methods, there is no test that can confirm that such a coefficient is exactly

zero; they may only conclude that it is sufficiently close to zero.

In this chapter, we will address the following two questions for a Taylor series

f(z) =
∑∞

n=0 anz
n that does not necessarily have gaps.

(i) How many poles of f are on the circle of convergence?

(ii) If f is defined analytically on E, when is ∂E the natural boundary for f?

We now discuss some classical results along with our generalizations, and the first

example is the following.

Theorem 2.1. [39, § 5.3, Prob.244]. Let vn be the number of non-zero coefficients

among the n coefficients a0, a1, ..., an−1. If there are only poles (and no other singular-

ities) on the circle of convergence of the power series:
∑∞

n=0 anz
n, the number of such

poles is not smaller than lim supn→∞
n
vn

.

5



Chapter 2. Numerically stable conditions on rational and essential singularities 6

Our first object is to replace the number vn in this theorem by the number of

coefficients that shall exceed some small values. This will constitute Theorem 2.11,

which has the same conclusion as in Theorem 2.1 but in a more general setting.

We next consider the classical theorem of Ostrowski convergence for lacunary series.

The definition of lacunary series used in the initial theorem is as follows.

Definition 2.2. [41, § 11.1]. An infinite power series
∑∞

v=0 avz
v is called a lacunary

series if there exists an increasing sequence (mv) of non-negative integers for v =

0, 1, 2, . . . such that limv→∞(mv+1 −mv) =∞, and

aj = 0, mv < j < mv+1, v = 0, 1, 2, . . . .

Ostrowski proved the following important property for lacunary series.

Theorem 2.3 (Ostrowski’s convergence). [41, § 11.1, Thm 3]. If f(z) =
∑∞

n=0 amnz
mn

is a lacunary series with a bounded sequence of coefficients, its sequence of partial sums

smn converges uniformly on every arc of holomorphy L of f.

Our treatment of this theorem is to relax the restrictive condition of consecutive zero

coefficients by instead requiring some coefficients of the Taylor series to be sufficiently

small (see Definition 2.12). More precisely, in Theorem 2.14 we relax the lacunas,

whilst at the same time the conclusion of Theorem 2.3 is preserved.

Another interesting theorem is that of Ostrowski overconvergence for Ostrowski

series, which is defined as follows.

Definition 2.4. [41, § 11.2]. A power series
∑∞

v=0 avz
v is called an Ostrowski series

if there exists a δ > 0 and two sequences (mv) and (nv) of non-negative integers for

v = 0, 1, 2, . . . such that:

(i) 0 ≤ m0 < n0 ≤ m1 < n1 ≤ ... ≤ mv < nv ≤ mv+1...; and nv −mv > δmv, v =

0, 1, 2, . . . ; and

(ii) aj = 0 if mv < j < nv, v = 0, 1, 2, . . . .

Let us denote by B(r, 0) a disc centred at the origin with radius r > 0. The classical

theorem of Ostrowski’s overconvergence is stated as follows.

Theorem 2.5 (Ostrowski’s overconvergence). [41, § 11.2, Thm 1]. Let f(z) =
∑∞

v=0 avz
v

be an Ostrowski series with radius of convergence r > 0, and let A ⊂ ∂B(r, 0) denote

the set of all the boundary points of f that are not singular. Then the sequence of

sections smk(z) =
∑mk

v=0 avz
v converges uniformly in a neighbourhood of B(r, 0) ∪ A.
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We again relax the requirement for the gaps of the power series in Theorem 2.5.

In Definition 2.15, we replace the consecutive zeros by adequately small coefficients

instead, which allows us to prove Theorem 2.16—a generalization of Theorem 2.5.

Finally, the last classical result that interests us is Hadamard’s theorem for Hadamard

lacunary series that is defined as follows.

Definition 2.6. [41, § 11.2, Def 3]. An infinite power series
∑∞

v=0 avz
v is called a

Hadamard lacunary series if there exists a δ > 0 and an increasing sequence (mv) of

non-negative integers for v = 0, 1, 2, . . . such that

mv+1 −mv > δmv, v = 0, 1, 2, . . . ; aj = 0, if mv < j < mv+1, amv 6= 0.

Every Hadamard lacunary series is a lacunary series in the sense of Definition 2.2,

and also an Ostrowski series (with nv = mv+1). The converse, however, is not true:

for a lacunary series as in Definition 2.2, only limv→∞(mv+1 − mv) = ∞ is required,

whereas for an Ostrowski series gaps need to appear only “here and there”. However,

the Hadamard lacunary condition requires that a gap lies between any two successive

terms that actually appear.

The classical Hadamard’s gap theorem is stated as follows.

Theorem 2.7 (Hadamard’s gap theorem). [41, § 11.2, Thm 3.] Every Hadamard

lacunary series
∑∞

v=0 avz
v with radius of convergence r > 0 has the disc B(r, 0) as a

domain of holomorphy.

Remark 2.8. The condition amv 6= 0 in Definition 2.6 of a Hadamard lacunary series

is necessary, otherwise we would obtain the series with zero coefficients that has trivial

convergence everywhere.

Our modification of Theorem 2.7 is to once more replace the lacunas of the power

series by suitably small values (see Definition 2.17 and Theorem 2.18).

2.1 Poles on the Circle of Convergence

In this section, we prove Theorem 2.11, which is a generalization of Theorem 2.1

presented in the introduction of this chapter. These results are a presentation of the

relationship between coefficients of a power series and singularities of the function they

present. The key to proving Theorem 2.11 will be Lemma 2.9.
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Lemma 2.9. [39, § 5.3, Prob.243] Let
∑∞

n=0 anz
n be the expansion into a power series

of a rational function whose denominator ( relative prime to the numerator) has degree

q. If An = max{|an|, |an−1|, ..., |an−q+1|}, then the radius of convergence r satisfies

lim
n→∞

n
√
An =

1

r
. (2.1)

Remark 2.10. An easy corollary of Lemma 2.9 is that for all l ∈ Z, for all ε > 0,

there exists N = N(l, ε) ∈ N such that ∀n ≥ N , we have that

An >

(
1

ρ
− ε
)n+l

. (2.2)

To present our modification of Theorem 2.11, we consider the number of coefficients

that shall exceed some small values instead of being non-zero in Theorem 2.1, and we

obtain our new theorem as follows.

Theorem 2.11. [2] Let
∑∞

n=0 anz
n be a power series that has only poles (and no other

singularities) on the circle of convergence |z| = ρ, as well as no other singularities

inside the circle |z| = ρ1 > ρ. Set α0 = ρ
ρ1
< 1. Let ε > 0 , 0 < α < α0 such that

1
ρ1
< α

(
1
ρ
− (1+α

α
)ε
)

. If vn is the number of coefficients |aj| > (1− αj)(1
ρ
− ε)j among

n coefficients a0, a1, ..., an−1, the number of poles on the circle of convergence is not

smaller than lim supn→∞
n
vn

.

Proof. Let k be the number of poles counted with multiplicity on the circle of conver-

gence. The power series in the hypotheses can be written in the form:

∞∑
n=0

anz
n =

(
c′1

(z − z1)m1
+

c′2
(z − z2)m2

+ ...+
c′k

(z − zk)mp

)
+
∞∑
n=0

bnz
n, (2.3)

such that m1 + · · · + mp = k, where mj ≥ 1 are non-negative integers for j = 1, · · · p.
The sum in the bracket contains all singularities, which are on the boundary. We

denote the expansion of the rational part(
c′1

(z − z1)m1
+

c′2
(z − z2)m2

+ ...+
c′k

(z − zk)mp

)
(2.4)

of the Taylor series
∑∞

n=0 anz
n by

∑∞
n=0 αnz

n, which has the radius of convergence ρ.

Thus, the infinite series
∑∞

n=0 bnz
n has a bigger radius of convergence ρ1 defined on

the hypothesis, i.e.

lim supn→∞
n
√
|bn| =

1

ρ1

< α

(
1

ρ
−
(

1 + α

α

)
ε

)
. (2.5)
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Then, for ε > 0 given in the hypothesis, there exists N1 ∈ N such that for all n ≥ N1,

|bn| < ( 1
ρ1

+ ε)n < αn
(

1
ρ
− ε
)n

. As the series
∑∞

n=0 αnz
n is the expansion into a power

series of the rational part of
∑∞

n=0 anz
n, by Lemma 2.9 and Remark 2.10 (when l = 0

and l = 1 − k), we have for ε, there exists N2 ∈ N such that for all n ≥ N2 we have

that

max(|αn|, |αn−1|, ..., |αn−k+1|) > max

(
(
1

ρ
− ε)n, (1

ρ
− ε)n−k+1

)
.

Set N = max(N1, N2). Then, for all n > N , there exists at least one n̄, n ≥ n̄ ≥ n−k+1

among each k consecutive elements such that

|αn̄| > (
1

ρ
− ε)n̄ > αn̄(

1

ρ
− ε)n̄ > |bn̄|. (2.6)

Thus, by (2.6), when n ≥ N , there is some n− k + 1 ≤ n̄ ≤ n with

|an̄| = |αn̄ + bn̄| ≥ |αn̄| − |bn̄| > (1− αn̄)(
1

ρ
− ε)n̄. (2.7)

Consequently, n−N
k
≤ vn, where vn is the number of coefficients |aj| > (1− αj)(1

ρ
− ε)j

among n coefficients a0, a1, ..., an−1. Then, n
k
− c ≤ vn, where c = N

k
. Thus,

k ≥ lim sup
n→∞

n

vn
, (2.8)

which proves the statement.

2.2 Expansion of Analytic Functions and its con-

vergence on the boundary

In this section, we shall generalise a result on the boundary behaviour of a power

series (see Theorem 2.3), which links the extension problem for a power series with

the convergence of its sequence of partial sums. This is by replacing the consecutive

zero coefficients in a lacunary series (see Definition 2.2) with small values at the same

places to create a quasi-lacunary series as follows.

Definition 2.12. An infinite power series
∑∞

n=0 anz
n is called a quasi-lacunary series

if there exists an increasing sequence (mv) of non-negative integers for v = 0, 1, 2, . . .

such that

lim
v→∞

(mv+1 −mv) =∞, and |aj| ≤ |cj|, mv < j < mv+1, v = 0, 1, 2, . . . ,
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where (cj), j = 0, 1, 2, . . . , is a p− summable sequences for some p > 1, i.e.
∑∞

j=0 |cj|p <
∞.

Let E = {z ∈ C : |z| < 1}. To give the proof of Theorem 2.14, we need the following

lemma.

Lemma 2.13 (M.Riesz). [41, § 11, Lem1]. For every arc of holomorphy L ⊂ ∂E of

a power series f(z) =
∑∞

v=0 avz
v with radius of convergence 1, there exists a compact

circular sector S with vertex at 0 such that L lies in the interior S̊ of S and f has a

holomorphic extension f̂ to S. Let z1, z2 6= 0 be the corners of S, and let w1 and w2 be

the points of intersection of ∂E with [0, z1] and [0, z2], respectively. Then |w1| = |w2| = 1

and s = |z1| = |z2| > 1.

To prove the next result, we consider the functions

gn(z) =
f̂(z)− sn(z)

zn+1
(z − w1)(z − w2), where sn(z) =

n∑
k=0

akz
k, n ∈ N. (2.9)

So, every function gn is holomorphic in S. In the proof of the next theorem, S and

f̂ can be chosen as in Lemma 2.13 and gn as in (2.9). Denote by (‖f̂ − sn‖)|L and

‖gn‖)|S be the maxima of the absolute values of the functions (f̂ − sn)(z) and gn(z)

for all z in L and S, respectively. Since |z| = 1 for z ∈ L, the inequality

(‖f̂ − sn‖)|L ≤ a−1(‖gn‖)|S, where a = min
z∈L
{|(z − w1)(z − w2)|} > 0, (2.10)

holds for all n ∈ N.

Now, we can prove our convergence theorem for a quasi-lacunary series.

Theorem 2.14 (Convergence for a quasi-lacunary series). [2] Let f(z) =
∑∞

n=0 anz
n be

a quasi-lacunary series such that (amv), where the coefficients amv satisfy the property

in Definition 2.12, is a bounded sequence of coefficients. Then the sequence of partial

sums smv converges uniformly on every arc of holomorphy L of f .

Proof. It must be shown that limv→∞(‖f̂ − smv‖)|L = 0. By (2.10), it suffices to show

that the sequence gmv tends locally uniformly to zero in S̊. Let t ∈ (0, 1). By Vitali’s

theorem [41, § 7.3, Thm.2], it suffices to show that limv→∞ gmv(z) = 0 for |z| = t.
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Setting A = sup |amv |, we have

(|f̂(z)− smv(z)|)|S =

∣∣∣∣∣∣
∑

k∈∪∞n=v(mn,mn+1)

akz
k +

∞∑
j=v+1

amjz
mj

∣∣∣∣∣∣
 ∣∣∣∣∣∣

S

≤
∑

k∈∪∞n=v(mn,mn+1)

|ak|tk +
∞∑

j=v+1

|amj |tmj .

According to (2.9), we have that

(|gmv(z)|)|S =
(|f̂(z)− smv(z)|)|S

|zmv+1|
· |z − w1||z − w2|

≤ (|f̂(z)− smv(z)|)|S
tmv+1

· (1 + t)2 .

Subsequently,

(|gmv(z)|)|S ≤
∑

k∈∪∞n=v(mn,mn+1)

|ak|tk
(1 + t)2

tmv+1
+

∞∑
j=v+1

|amj |tmj
(1 + t)2

tmv+1
. (2.11)

The first term of the right hand side in (2.11) tends to zero. In fact, by Holder’s

inequality for 1 < p, q <∞ and 1
p

+ 1
q

= 1, we have

∑
k∈∪∞n=v(mn,mn+1)

|ak|tk
(1 + t)2

tmv+1
≤

 ∑
k∈∪∞n=v(mn,mn+1)

|ak|p
 1

p
 ∑
k∈∪∞n=v(mn,mn+1)

tqk

 1
q

(1 + t)2

tmv+1

≤

 ∑
k∈∪∞n=v(mn,mn+1)

|ak|p
 1

p (
tqmv

1− tq

) 1
q (1 + t)2

tmv+1

≤

 ∑
k∈∪∞n=v(mn,mn+1)

|ak|p
 1

p

tmv

(1− tq)
1
q

· (1 + t)2

tmv+1

=

 ∑
k∈∪∞n=v(mn,mn+1)

|ak|p
 1

p

(1 + t)2

t(1− tq)
1
q

→ 0 as v →∞.

Indeed, by the hypothesis, we have
∑

k∈∪∞n=v(mn,mn+1) |ak|p < ∞. Therefore, when

mn →∞ as n→∞, it follows that
∑

k∈∪∞n=v(mn,mn+1) |ak|p → 0.
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On the other hand, the second term of the right hand side in (2.11) also tends to

zero. Indeed, since limv→∞(mv+1−mv) =∞ and 0 < t < 1, then limv→∞ t
mv+1−mv = 0,

∞∑
j=v+1

|amj | tmj
(1 + t)2

tmv+1
≤ A

tmv+1

1− t
· (1 + t)2

tmv+1

= A tmv+1−mv · (1 + t)2

(1− t)t
−→ 0,

where, A = sup |amj |. Therefore, limv→∞(‖gmv‖)|S = 0. Then, limv→∞(‖f̂ − smv‖)|L =

0. Thus, the sequence of partial sums (smv(z)) converges uniformly on every arc of

holomorphy L of f .

2.3 Expansion of Analytic Functions and Overcon-

vergence theorems

This section is dedicated to proving two results (namely, Theorems 2.16 and 2.18),

which are further developments of Theorems 2.5 and 2.7 stated in the Introduction.

These classical theorems demonstrate close relationships between overconvergence and

the gaps of the power series, and once our modifications— the removal of the restrictive

gap conditions— are applied we are still able to derive the same conclusion.

To show Theorem 2.16, we first need the definition of a quasi-Ostrowski series.

Definition 2.15. [2] An infinite power series
∑∞

v=0 avz
v is called a quasi-Ostrowski

series if there exists a δ > 0, a positive decreasing sequence (cr), r = 0, 1, 2, . . . , cr ↘ 0,

and two sequences (mk) and (nk) of non-negative integers for k = 0, 1, 2, . . . , such that:

(i) nk −mk > δmk, k = 0, 1, 2, . . . , and 0 ≤ m0 < n0 ≤ m1 < n1 ≤ ... ≤ mk < nk ≤
mk+1... ; and

(ii) |aj| < 1
m2
k
cj, mk < j < nk, k = 0, 1, 2 . . . .

Recall that B(r, 0) denotes the open disc centred at zero and radius r > 0. Then,

we have our generalization of Theorem 2.5 as follows.

Theorem 2.16 (Overconvergence theorem for a quasi-Ostrowski series). [2] Let f(z) =∑∞
n=0 anz

n be a quasi-Ostrowski series with radius of convergence r > 0, and let A ⊂
∂B(r, 0) denote the set of all the boundary points of f that are not singular. Then the
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sequence of sections smk(z) =
∑mk

n=0 anz
n converges uniformly in a neighbourhood of

B(r, 0) ∪ A.

For every domain D ⊂ C, let O(D̄) denote the set of all functions that are holo-

morphic in an open neighbourhood of D̄ = D ∪ ∂D.

Proof Theorem 2.16 . Without loss of generality, let r = 1 and let c ∈ ∂E, where

E = {z ∈ C : |z| < 1}. We introduce the polynomial

q(w) =
c

2
(wp + wp+1), p ∈ N and p ≥ δ−1,

(where the smaller value of p such that p ≥ δ−1 gives the larger domain of overcon-

vergence). Consider the function f(q(w)) =
∑∞

n=0 anq(w)n, which is holomorphic in

q−1(E) = {w ∈ C : |q(w)| < 1}. We denote by
∑∞

n=0 bnw
n the Taylor series of f(q(w))

about 0 ∈ q−1(E) and by sv(z) and tv(z) the vth partial sums of
∑∞

n=0 anz
n and∑∞

n=0 bnw
n, respectively. We claim that

|t(p+1)mk(w)− smk(q(w))| → 0 as k →∞ where w ∈ E. (2.12)

We have t(p+1)mk(w) =
∑(p+1)mk

n=0 bnw
n, and

smk(q(w)) =

mk∑
r=0

arq(w)r =

mk∑
r=0

ar(
c

2
(wp + wp+1))r

=

mk∑
r=0

ar(
c

2
)r(Cr

rw
pr + ...+ Cr

0w
(p+1)r)

=

mk∑
r=0

ar(
c

2
)r

r∑
l=0

Cr
l w

r(p+1)−l .

Each polynomial (Cr
rw

pr + ...+Cr
0w

(p+1)r) has a range of powers pr ≤ n ≤ (p+ 1)r. If

0 ≤ r ≤ mk, then 0 ≤ n ≤ (p+ 1)mk. Subsequently, smk(q(w)) has a degree no greater

than (p+ 1)mk. Thus, by setting n = r(p+ 1)− l, we obtain that

smk(q(w)) =

(p+1)mk∑
n=0

[n
p

]∑
r=[ n

p+1
]

ar (
c

2
)r Cr

r(p+1)−nw
n

=

(p+1)mk∑
n=0

d(k)
n wn,
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where d
(k)
n =

∑[n
p

]

r=[ n
p+1

] ar ( c
2
)r Cr

r(p+1)−n . This means that by Weierstrass’ double series

theorem [40, Ch.8, §4.2, p.250],
∑
bnw

n and
∑
d

(k)
n wn come from the series

∑
arq(w)r

by multiplying out the polynomials q(w)r and grouping the resulting series
∑
ar(...)

according to powers of w. Therefore, in order to prove (2.12), we need to compute

the difference between t(p+1)mk(w) and smk(q(w)), and then show that it tends to zero

uniformly. In fact, we have

t(p+1)mk(w) = smk(q(w)) + ( some contribution from

(p+1)mk
p∑

r=mk+1

arq(w)r),

because when n is from 0 to pmk, the coefficients bn and d
(k)
n of the partial sums t(p+1)mk

and smk(q(w)) are equal, respectively, i.e. bn = d
(k)
n , for 0 ≤ n ≤ pmk. In addition, in

the partial sum of
∑

r arq(w)r when mk+1 > r ≥ nk, by (i), each polynomial arq(w)r,

r ≥ nk, contains monomial d
(k)
n wn with n ≥ pnk. Since pnk > pmk+pδmk ≥ (p+1)mk,

p ≥ δ−1, no such monomial contributes to t(p+1)mk(w), which is a polynomial of degree

no greater than (p+ 1)mk. However, the contribution exists from each arq(w)r where

|ar| < 1
m2
k
cr, cr is the notation of quasi-Ostrowski series, mk < r ≤ (p+1)mk

p
, i.e., it exists

from the monomial d
(k)
n wn where pmk < n ≤ (p+1)mk < pnk. Since t(p+1)mk has degree

no greater than (p + 1)mk, and bn = d
(k)
n , for 0 ≤ n ≤ pmk, the total contributions to

the partial sum t(p+1)mk is computed in the range of powers pmk < n ≤ (p + 1)mk as

follows.

|bn − d(k)
n | =

∣∣∣∣∣∣
[n
p

]∑
r=[ n

p+1
]

ar (
c

2
)r Cr

r(p+1)−n

∣∣∣∣∣∣
≤

[n
p

]∑
r=[ n

p+1
]

|ar|
1

2r
Cr
r(p+1)−n, where pmk < n ≤ (p+ 1)mk.

Since Cr
r(p+1)−n ≤ 2r, then for pmk < n ≤ (p + 1)mk and by using cr the notation of
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quasi-Ostrowski series, we have

|bn − d(k)
n | ≤

[n
p

]∑
r=[ n

p+1
]

|ar| <
1

m2
k

[n
p

]∑
r=[ n

p+1
]

cr

≤ 1

m2
k

[n
p

]∑
r=[ n

p+1
]

max
[ n
p+1

]≤r≤[n
p

]
cr

≤ 1

m2
k

([
n

p

]
−
[

n

p+ 1

]
+ 1

)
c[ n
p+1

]

<
1

m2
k

(
n

p(p+ 1)
+ 2

)
c[ n
p+1

] .

Therefore,

|bn − d(k)
n | ≤

{
0 if 0 ≤ n ≤ pmk

1
m2
k

(
n

p(p+1)
+ 2
)
c[ n
p+1

] if pmk < n ≤ (p+ 1)mk .

Consequently,

|t(p+1)mk(w)− smk(q(w))| =

∣∣∣∣∣∣
(p+1)mk∑
n=0

(bn − d(k)
n )wn

∣∣∣∣∣∣ =

∣∣∣∣∣∣
(p+1)mk∑
n=pmk+1

(bn − d(k)
n )wn

∣∣∣∣∣∣
<

1

m2
k

(p+1)mk∑
n=pmk+1

(
n

p(p+ 1)
+ 2

)
c[ n
p+1

]

≤ 1

m2
k

(p+1)mk∑
n=pmk+1

(
(p+ 1)mk

p(p+ 1)
+ 2

)
c[
pmk
p+1

]

≤ 1

m2
k

(
m2
k

p
+ 2mk

)
c[
pmk
p+1

] → 0 as k →∞ ,

because by hypothesis given in Definition 2.15 of a quasi-Ostrowski series, c[
pmk
p+1

] de-

creases to zero as k →∞. Thus, (2.12) was confirmed.

We have q−1(E) ⊃ E\{1}, since |1 + w| < 2, when w ∈ E\{1}. Hence |q(w)| < 1

for all w ∈ E\{1}. Set g(w) = f(q(w)) − smk(q(w)). The function g(w) ∈ O(q−1(E))

is thus holomorphic at every point of E\{1} for each mk ∈ N. Now, if c ∈ A, then

g is also holomorphic at 1 since q(1) = c. Thus, the sequence of sections (g(p+1)mk)

converges to zero in an open disk B ⊃ E. Then, by (2.12), the sequence (smk(z)) now

converges uniformly in q(B). Since q(B) is a domain containing c = q(1), then (smk(z))

converges uniformly in a neighbourhood of any point c ∈ A.
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In the following, we provide our proof of Theorem 2.18, which is a modification of

Hadamard’s gap theorem (Theorem 2.7) given in the Introduction. First, however, we

need to present the definition of a quasi-Hadamard lacunary series.

Definition 2.17. [2] An infinite power series
∑∞

v=0 avz
v is called a quasi-Hadamard

lacunary series if there exists a δ > 0, a summable positive decreasing sequence

(cr), r = 0, 1, 2, . . . , cr ↘ 0, and an increasing sequence (mv) of non-negative inte-

gers for v = 0, 1, 2, . . . , such that:

(i) mv+1 −mv > δmv, v = 0, 1, 2, . . . ;

(ii) |aj| ≤ 1
m2
v
cj, if mv < j < mv+1; and

(iii) the series
∑∞

v=0 |amv | is divergent.

Now, we present our new theorem as follows.

Theorem 2.18 (On a quasi-Hadamard lacunary series). Every quasi-Hadamard la-

cunary series
∑∞

n=0 anz
n with radius of convergence r > 0 has the disc B(r, 0) as a

domain of holomorphy.

Remark 2.19. i. In Definition 2.17, condition (iii) that the series
∑∞

v=0 |amv | is

divergent is necessary, otherwise the previous theorem would not hold. For ex-

ample, let
∑∞

n=1 anz
n =

∑∞
n=1

1
n2 z

2n . Notice that conditions (i) and (ii) are

satisfied, but we have
∑∞

v=1 |amv | <∞. On the other hand, denote by smv+1 the

mv+1 partial sums of
∑∞

n=1 anz
n. Then,

|smv+1| =

∣∣∣∣∣
mv+1∑
n=1

anz
n

∣∣∣∣∣ ≤
mv+1∑
n=1

| 1

n2
|.

Since, limv→∞ |smv+1| = L <∞, the conclusion of Theorem 2.18 does not hold.

ii. The series of quasi-Hadamard lacunary series is a subclass of quasi-Ostrowski

series.

Proof Theorem 2.18. Let sn(z) =
∑n

j=0 ajz
j be the nth partial sums of the series f(z) =∑∞

n=0 anz
n. Consider the partial sums smk(z), where the sequence of (mk) is defined as

in Definition 2.17 of a quasi-Hadamard lacunary series. For the partial sums of sn(z)

we have that

sn(z) =

{
smk(z) if n = mk,

smk(z) +
∑n

j=mk+1 ajz
j if mk < n < mk+1 ,
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where |aj| ≤ 1
m2
k
cj, cj is the notation used in the quasi-Hadamard lacunary series, and

mk < j < mk+1. Therefore,

|sn(z)− smk(z)| =

∣∣∣∣∣
n∑
j=0

ajz
j −

mk∑
j=0

ajz
j

∣∣∣∣∣
=

∣∣∣∣∣
n∑

j=mk+1

ajz
j

∣∣∣∣∣
≤

mk+1−1∑
j=mk+1

|aj| → 0 as k →∞,

(2.13)

since for mk < j < mk+1, we have
∑

j |aj| ≤
1
m2
k

∑
j cj < ∞. Thus, in (2.13)∑mk+1−1

j=mk+1 |aj| → 0 when k →∞.

Then, by (2.13), the sequence of partial sums (sn(z)) converges in the same domain

as (smk(z)). Thus, the sequence (smk(z)) diverges at every point ζ /∈ B(r, 0). Hence,

by Theorem 2.16 of overconvergence, all the points of ∂B(r, 0) are singular points of

f .
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Chapter 3

Preliminaries on Groups and

Representation theory

In this introductory chapter, we review the elementary notions of group theory and

representation theory that we will use in the remaining chapters. We mainly use the

references [24,25].

3.1 The Concept of Groups and Transformations

It is common to introduce groups in an abstract axiomatic way. To indicate the com-

mon source of this concept, we provide the definition of the complementing object—

transformation groups.

Definition 3.1. [24, §2.1] A transformation group G is a non-void set of one-to-one

mappings of a certain set X into itself with the following properties:

i. The identity map is included in G.

ii. If g1 ∈ G and g2 ∈ G, then g1g2 ∈ G.

iii. If g ∈ G, then g−1 exists and belongs to G.

Any abstract group can be viewed as a transformation group in several different

ways.

Example 3.2. [24, §2.1] Let G be a group. The actions on X = G can be defined as

follows:

19
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(i) The left shift

Λ̃(g) : g′ 7→ g−1g′; and (3.1)

(ii) the right shift

R̃(g) : g′ 7→ g′g. (3.2)

Note that the left action commutes with the right one; that is, for all g, g′ ∈ G, we

have:

Λ̃(g) ◦ R̃(g′) = R̃(g′) ◦ Λ̃(g). (3.3)

For a commutative group, the left and right actions are the inverse of one-another; that

is,

R̃(g)−1 = R̃(g−1) = Λ̃(g). (3.4)

Let V be a vector space of functions on G. The left (right) action of G into itself (3.1)

can be extended naturally into a linear transformation Λ and R on V as follows:

Λ(g) : f(g′) 7→ f(g−1g′), f ∈ V ; (3.5)

and

R(g) : f(g′) 7→ f(g′g), f ∈ V. (3.6)

3.1.1 Subgroups and Homogeneous Spaces

In this section, we describe the construction of homogeneous spaces. We also express

actions of a group on the homogeneous spaces through some respective parameters. To

begin, let X be a set. Let G be a group acting on X by some transformations. We say

that a subset S ⊂ X is G-invariant if g · s ∈ S for all g ∈ G and s ∈ S [24, §2.1].

Now, letH be a subgroup of the groupG. Let us define the space of cosetsX = G/H

by the equivalence relation: g1 ∼ g2 if there exists h ∈ H such that g1 = g2h [24, §2.1].

The space X = G/H is a homogeneous space under the left G-action:

g : g1H 7→ (gg1)H. (3.7)

It is often convenient to have parameterisations of X = G/H and express the

above G-action through those parameters, as is shown below [24, §2.1]. Suppose that

we have chosen a representative in each equivalence class. In other words, we have a
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function (section) s : X → G such that it is a right inverse to the natural projection

p : G→ G/H; that is, p(s(x)) = x for all x ∈ X.

The set G can be identified with the direct product G ∼ G/H × H; that is, for

any g ∈ G, we have g = s(p(g))h, for some h ∈ H depending on g. Indeed, from the

definition of s and p, the point s(p(g)) belongs to the same class of the point as g; that

is, s(p(g)) ∼ g. Then, any g ∈ G has a unique decomposition of the form

g = s(x)h, (3.8)

where x = p(g) ∈ X and h ∈ H. We define a map r associated to s through the

following identities:

x = p(g), h = r(g) := s(x)−1g. (3.9)

The G-action on x in terms of these parameterisations (the maps s and p) is as follows:

g : x 7→ g · x = p(g ∗ s(x)), (3.10)

where ∗ is the multiplication on G. This is illustrated by the following commutative

diagram:

G

p
��

g∗
// G

p
��

X

s

OO

g·
// X

s

OO (3.11)

3.1.2 Lie Groups

Groups can have some additional analytical structures. For example, they can be a

topological space with a corresponding notion of limit and respective continuity. To

perform some analysis on the groups, we need Lie groups, defined as follows.

Definition 3.3. [25, App.III, §1.1] A Lie group is a smooth manifold G endowed with

a multiplication law that is a smooth map G × G → G satisfying the usual group

axioms.

Consider the particular case in which G is a smooth manifold and at the same time

a subgroup of GL(n,R) of n × n invertible matrices whose entries are in R. Such a

group is usually called a matrix Lie group [25, App.III, §1.1]. A matrix Lie group is

locally compact [8, Ch.3,§3.1] in the natural topology; that is, there exists a compact

neighbourhood of every point. Henceforth, a group G will mean a locally compact

matrix group.
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Example 3.4. The following are non-commutative matrix Lie groups:

(i) The group SL2(R) [29] is a set of 2 × 2 matrices A =

(
a b

c d

)
with real entries

a, b, c, d ∈ R, and the determinant detA = ad− bc is equal to 1. The group law

coincides with the matrix multiplication:(
a b

c d

)(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
.

The identity is the unit matrix I =

(
1 0

0 1

)
, and the inverse of A is:

(
a b

c d

)−1

=

(
d −b
−c a

)
.

(ii) Let SL3(R) be the 3 × 3 matrices with the unit determinant [19, Ch.1,§2]. We

define a matrix SL3(s, x, y) ∈ SL3(R), for (s, x, y) ∈ R3, by

SL3(s, x, y) =

1 x s

0 1 y

0 0 1

 . (3.12)

It is easy to verify that

SL3(s, x, y)SL3(s′, x′, y′) = SL3(s+ s′ + xy′, x+ x′, y + y′). (3.13)

Thus, the set

{SL3(s, x, y) ∈ SL3(R) : (s, x, y) ∈ R3} (3.14)

with the group law (3.13) forms a subgroup of GL(3,R). The matrix multiplica-

tion (3.13) in the coordinates (s, x, y) ∈ R3 can be reduced to the following group

law:

(s, x, y) (s′, x′, y′) = (s+ s′ + xy′, x+ x′, y + y′). (3.15)

The triple real numbers (s, x, y) with the group multiplication (3.15) are called

the polarised Heisenberg group and denoted by H1
p [18]. The identity is (0, 0, 0),

and the inverse of (s, x, y) is (s, x, y)−1 = (−s+ xy,−x,−y).
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The group SL2(R) and the polarised Heisenberg group are two examples of ma-

trix Lie groups, which will be the main objects in the reminder of this thesis. Note

that every closed subgroup H of a Lie group G is itself a Lie group. Moreover, the

respective homogeneous space G/H is a smooth manifold on which G acts by smooth

transformations (see [25, App.III, §1.3,Thm.4]).

3.1.3 Lie Algebras

The theory of Lie groups is closely related to the respective infinitesimal object—a Lie

algebra—given as follows.

Definition 3.5. [25, App.III, §1.2] Let g be a vector space over some field F (in our

thesis, we shall use only fields of real and complex numbers) endowed with a bilinear

map [·, ·] : g× g→ g satisfying the following axioms: for all X, Y , and Z in g, we have

i. bilinearity: [aX + bY, Z] = a[X,Z] + b[Y, Z], for all scalars a, b in F ;

ii. alternating on g: [X,X] = 0; and

iii. Jacobi identity: [X, [Y, Z]] + [Y, [X,Z]] + [Z, [X, Y ]] = 0.

The map [·, ·] is called the commutator.

An important class of Lie algebras is formed by matrix Lie algebras [25, App.III,

§1.2], which are subspaces of Mn(F ) (a Lie algebra of n × n matrices over the field

F of real or complex numbers) and are closed with respect to the ordinary matrix

commutator

[X, Y ] = XY − Y X. (3.16)

This class is universal because of Ado’s Theorem (any Lie algebra is isomorphic to a

matrix Lie algebra [25, App.III, §1.2]).

For every matrix Lie group G there is an associated matrix Lie algebra g. An

important relation between them is the exponential map [25, App.III, §1.2]:

exp : g→ G :

X 7→ expX = eX .
(3.17)

The expansion map for a matrix Lie group is defined by the following Taylor series:

exp(X) =
∑
k≥0

(X)k

k!
. (3.18)
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The Lie algebra g can be realised in several different ways (see [25, App.III, §1.2]).

We we will mention two of them in Subsections 3.1.4 and 3.1.5.

3.1.4 One-parameter Subgroups and Lie Algebras

Let G be a matrix Lie group and g be its associated matrix Lie algebra. For the first

realisation of the matrix Lie algebra, we consider a one-dimensional continuous sub-

group x(t) of G as a group homomorphism of x : (R,+)→ G [25, App.III, §1.2,Thm.2].

It follows from the well-known property of the exponent that for any element X ∈ g,

the curve x(t) = exptX, t ∈ R is a one parameter subgroup of G that satisfies:

x(t)x(s) = x(t+ s), x(0) = I, x′(t)|t=0 = X, for all t, s ∈ R, (3.19)

where I is the identity matrix in G. An example of this will be considered for the

polarised Heisenberg group in Subsection 4.3.

3.1.5 Invariant Vector Fields and Lie Algebras

The second realisation of the matrix Lie algebra g [25, App.III, §1.2] is identified

through the left (right) invariant vector fields on a group G; that is, first-order dif-

ferential operators X̃ defined at every point of G and invariant under the left (right)

shifts:

X̃Λ = ΛX̃ (X̃R = RX̃).

The Lie bracket of two left (right) invariant vector fields is also a left (right) invariant

vector field. We will give an example of this for the Lie algebra of the polarised

Heisenberg group in Subsection 4.3.

3.2 Representations of Groups

Groups act on other sets by means of transformations. Among various group actions

there is an important subclass called linear representations.

Definition 3.6. [24, §7.1] A representation in the wide sense means a homomorphism

of a group G:

ρ(g1g2) = ρ(g1)ρ(g2), for all g1, g2 ∈ G, (3.20)



Chapter 3. Preliminaries on Groups and Representation theory 25

into the group of one-to-one mappings of a certain set H onto itself. The representation

ρ is called linear if H is a linear space and the mappings ρ(g) are linear operators.

The space H is called the representation space.

If e is the identity of G and g ∈ G, we have ρ(g−1) = ρ(g)−1 and ρ(e) = I, where I

is the identity operator. Let ρ be a representation of a Lie group G on a Hilbert space

H. A strong continuity of ρ means that for any vector u ∈ H and for any convergent

sequence (gn)→ g ∈ G, we have [25, App.V, §1.1]

||ρ(gn)u− ρ(g)u|| → 0.

More details on other types of continuous representation can be found in [24, §7.1;

25, App.V, §1.1]. In this thesis, we agree that the term ‘representation’ of Lie groups

always means a ‘linear strongly continuous representation’. Furthermore, the majority

of representations will be from the following important class, which has many additional

properties:

Definition 3.7. [24, §7.3] A representation ρ of a Lie group G in a Hilbert space H is

called a unitary representation if ρ(g) is a unitary operator for all g ∈ G.

The representation theory is much simpler if ρ is unitary [24, §7.3]. If the dimen-

sionality of H is infinite, then ρ is an infinite-dimensional representation. There is a

natural equivalent relation on the set of all representations of a group, which is defined

by an intertwining property.

Definition 3.8. [24, §7.2] Let ρ1 and ρ2 be two representations of a Lie group G in

spaces H1 and H2, respectively. An operator U : H1 → H2 is called an intertwining

operator between ρ1 and ρ2 if for every g ∈ G

Uρ1(g) = ρ2(g)U, (3.21)

that is, the following diagram commutes

H1

ρ1(g)
��

U //H2

ρ2(g)
��

H1
U //H2

(3.22)

Furthermore, unitary representations ρ1 and ρ2 are unitary equivalent representations

if and only if there is a unitary operator U : H1 → H2 intertwining ρ1 and ρ2. In this

case, we write ρ1 ∼ ρ2.
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3.3 Decomposition of Representations

It is a standard mathematical approach to study representations through their decom-

position into smaller blocks. To be able to do this, we have to clarify some relevant

notions.

Definition 3.9. [24, §7] Let ρ be a linear representation of a Lie group G in a Hilbert

space H. A linear subspace L ⊂ H is an invariant subspace for ρ if for any x ∈ L and

g ∈ G the vector ρ(g)x again belongs to L.

There are always two trivial invariant subspaces: the null space and the entire H.

All others are non-trivial invariant subspaces.

Let ρ be a linear representation of a Lie group G in a Hilbert space H. If there

are only two trivial invariant subspaces, then ρ is an irreducible representation. Oth-

erwise for any non-trivial invariant and irreducible subspace L ⊂ H, we can define the

restriction of the representation ρ on L and obtain a subrepresentation of ρ acting on

L (see [24, §7]). If there is a non-trivial subrepresentation, then the representation is

called reducible (see [24, §7]).

The following type of representations is easier to study.

Definition 3.10. [24, §7] A linear representation ρ of a Lie group G on a space H is

called decomposable if there are two non-trivial invariant subspaces H1 and H2 of H

such that H = H1 ⊕H2.

An important property of the unitary representation is that any representation

is either irreducible or decomposable. The irreducibility of a representation is often

established by Schur’s lemma.

Lemma 3.11. (Classical Schur’s lemma)[4, Lem. 4.3.1] Let ρ be a strongly continuous

unitary irreducible representation of a Lie group G on a Hilbert space H. If U : H→ H

is a linear bounded operator and U commutes with ρ(g), for all g ∈ G, then U = c I,

for some c ∈ C.

A character χ of a commutative locally compact group G is a continuous function

χ : G→ C [8, Ch.5,§5.1], which satisfies

|χ(g)| = 1, χ(g1g2) = χ(g1)χ(g2), for all g1, g2 ∈ G, (3.23)

that is, a character is a (one-dimensional) continuous irreducible unitary representation

of G.
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Example 3.12. [8, Ch.5,§5.1] For G = Rn, every character χ has the form:

χ(x) = exp (2πi(y1x1 + y2x2 + · · ·+ ynxn)) = exp (2πi 〈y, x〉), with y, x ∈ Rn.

(3.24)
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Chapter 4

Preliminaries on the Heisenberg

Group

In this chapter we provide some basic definitions of and results on the Heisenberg

group and its Lie algebra. Next, we give an account of continuous and non-commutative

subgroups H of H1
p. We also describe the respective homogeneous spaces X = H1

p/H of

H1
p and actions of the Heisenberg group on X. Then, we briefly discuss the Schrödinger

group. In the last section, we give an introduction of the Jacobi theta function. We

mainly use the references [19,32] (see also [17, 18,25]).

4.1 The Heisenberg Group

Let n ≥ 1 be an integer. For two real n-vectors x, y ∈ Rn, we write xy for their inner

product [19, Ch.1,§2]:

xy = x1y1 +x2y2 + · · ·+xnyn, where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn). (4.1)

Similarly for complex vectors z, w ∈ Cn, we define:

zw̄ = z1w̄1 + z2w̄2 + · · ·+ znw̄n, where z = (z1, z2, . . . , zn), w = (w1, w2, . . . , wn).

(4.2)

Definition 4.1. [19, Ch1.,§2] The symplectic form ω on R2n is a function of two vectors

given by

ω(x, y;x′, y′) = xy′ − x′y, where (x, y), (x′, y′) ∈ R2n. (4.3)

29
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The symplectic form ω possesses the following properties:

i. ω is anti-symmetric: ω(x, y;x′, y′) = −ω(x′, y′;x, y).

ii. ω is bilinear:

ω(x, y;αx′, αy′) = αω(x, y;x′, y′) for all α ∈ Rn,

ω(x, y;x′ + x′′, y′ + x′′) = ω(x, y;x′, y′) + ω(x, y;x′′, y′′).

iii. Let z = x+ iy and w = x′ + iy′. Then, ω can be expressed through the complex

inner product (4.2) as ω(x, y;x′, y′) = −=(zw̄), where = is the imaginary part of

a complex number.

Definition 4.2. [19, Ch1.,§2] An element of the n-dimensional Heisenberg group Hn is

(s, x, y) ∈ R2n+1, where s ∈ R and x, y ∈ Rn. The group law on Hn is given as follows:

(s, x, y) · (s′, x′, y′) = (s+ s′ + 1
2
ω(x, y;x′, y′), x+ x′, y + y′), (4.4)

where ω is the symplectic form.

The identity is (0, 0, 0), and (s, x, y)−1 = (−s,−x,−y).

Let us introduce complexified coordinates (s, z) on H1 with z = x+ iy. As

ω(x, y;x′, y′) = −=(zz̄′) = =(z′z̄),

the group law can be written as:

(s, z) · (s′, z′) = (s+ s′ + 1
2
=(z′z̄), z + z′).

For the sake of simplicity, in this thesis we will work with the one-dimensional Heisen-

berg group H1. The group law on H1 can be expressed in an equivalent form of the

polarised Heisenberg group law H1
p (3.15) [19, § 1.2]:

(s, x, y) · (s′, x′, y′) = (s+ s′ + xy′, x+ x′, y + y′). (4.5)

The map

ψ : H1 −→ H1
p

(s, x, y) 7→ (s+
1

2
xy, x, y)

(4.6)
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is an isomorphism of the Heisenberg group H1 to its polarised form H1
p. We observe

that [19, Ch1.,§2]

Z = {(s, 0, 0) ∈ H1
p : s ∈ R} (4.7)

is the centre of H1
p, that is (s, 0, 0), which commutes with any other element of H1

p. In

this thesis, we only consider the polarised Heisenberg group H1
p, and we simply call it

the Heisenberg group.

4.2 Automorphisms of the Heisenberg Group

A group automorphism is its homomorphism to itself. Among all of the automorphisms

of the Heisenberg group we are interested in those connected to symplectic transfor-

mations. Let A =

(
a b
c d

)
be an element of the symplectic group Sp(2) ∼ SL2(R) with

real entries a, b, c, d ∈ R, where the determinant detA = ad− bc is equal to 1.

i. The following transformation φA [19, Ch.1] is an automorphism of H1:

φA : H1 −→H1

(s, x, y) 7→(s, A(x, y))

= (s, x̃, ỹ)

(4.8)

where (
x̃
ỹ

)
=

(
ax+ by
cx+ dy

)
=

(
a b
c d

)(
x
y

)
. (4.9)

The map A : (x, y) 7→ (x̃, ỹ) is called a symplectic map.

ii. An automorphism φpA : H1
p → H1

p in polarised form is calculated as follows. Recall

the homorphism ψ : H1 → H1
p (4.6)

ψ : (s, x, y) 7→ (s+
1

2
xy, x, y). (4.10)

The inverse map ψ−1 : H1
p → H1 is:

ψ−1 : (s, x, y) 7→ (s− 1

2
xy, x, y). (4.11)

To define the automorphism of H1
p, we use the following commutative diagram:

H1 φA // H1

ψ

��

H1
p

ψ−1

OO

φpA // H1
p

(4.12)
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where φA is the automorphism of H1 (4.8). Then:

φpA(s, x, y) = ψ ◦ φA ◦ ψ−1(s, x, y)

= ψ ◦ φA(s− 1

2
xy, x, y)

= ψ(s− 1

2
xy, x̃, ỹ)

= (s+
1

2
(x̃ỹ − xy), x̃, ỹ)

= (s+
1

2
(ac x2 + 2bc xy + bd y2), x̃, ỹ),

(4.13)

where (
x̃
ỹ

)
=

(
ax+ by
cx+ dy

)
=

(
a b
c d

)(
x
y

)
. (4.14)

4.3 The Lie Algebra of the Heisenberg Group

The Lie algebra of the Heisenberg group is denoted by h1 and is also called the Weyl

algebra. The Lie algebra h1 is a three-dimensional real vector space R3 with basis

vectors

S = (1, 0, 0), X = (0, 1, 0), Y = (0, 0, 1), (4.15)

satisfying the following commutation relations:

[X, Y ] = S, [X,S] = [Y, S] = 0. (4.16)

In order to identify the Lie algebra corresponding to h1, it is convenient to use a matrix

representation. Given (s, x, y) ∈ h1, we define the m(s, x, y) ∈M3(R) by [19, Ch.1,§2]

m(s, x, y) =

0 x s− 1
2
xy

0 0 y
0 0 0

 , (4.17)

which forms the 3× 3 matrix Lie algebra. In fact, the matrix SL3(s, x, y) from (3.12)

is created by the exponential map SL3(s, x, y) = exp(m(s, x, y)):1 x s
0 1 y
0 0 1

 = exp

0 x s− 1
2
xy

0 0 y
0 0 0

 . (4.18)
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Thus, we link h1 with the one-parameter subgroups of the Heisenberg group H1
p (see

Subsection 3.1.3):

s(t) = (t, 0, 0), x(t) = (0, t, 0), and y(t) = (0, 0, t). (4.19)

Also, there is a realisation of h1 as the collection of invariant vector fields. Let f be a

differentiable function on H1
p. The left and the right shifts on f are

Λ(g) : f(g′) 7→ f(g−1g′) and R(g) : f(g′) 7→ f(g′g) g, g′ ∈ H1
p. (4.20)

We calculate the invariant vector fields on the Heisenberg group H1
p through a con-

nection to the above one-parameter subgroups. The left invariant vector fields corre-

sponding to the subgroups (4.19) are obtained through the differentiation of the right

actions of these subgroups:

Sl = ∂s, X l = ∂x, Y l = x ∂s + ∂y. (4.21)

Similarly, the right-invariant vector fields are obtained by the derivation of the left

actions of the subgroups (4.19):

Sr = −∂s, Xr = −y ∂s − ∂x, Y r = −∂y. (4.22)

The left (right) invariant vector fields form a bases of the Lie algebra h1 (see [25,

App.III, §1.3]). As expected, they satisfy the Heisenberg commutator relation

[X l(r), Y l(r)] = Sl(r). (4.23)

4.4 Continuous Subgroups of H1
p and Homogeneous

Spaces

In this section, we describe H1
p–homogeneous spaces X and actions of H1

p on each space.

The main references of this section are [19, Ch.1; 32].

4.4.1 1D Continuous Subgroups and 2D Homogeneous Spaces

Let us consider a one-dimensional continuous subgroup of H1
p:

Z = {(s, 0, 0) ∈ H1
p : s ∈ R}, (4.24)
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which is the centre (4.7) of H1
p.

By (3.8), the space H1
p/Z can be identified with R2 through the decomposition

(s, x, y) = (0, x, y)(s, 0, 0) for each (s, x, y) ∈ H1
p.

Next, we describe the actions of H1
p on the homogeneous space H1

p/Z. See Sec-

tion 3.1.1 for the background theory and definitions of maps p : H1
p → X and s : X →

H1
p, where X = H1

p/H is the respective homogeneous space for a subgroup H ⊂ H1
p.

We use the following parametrisations:

p : (s′, x′, y′) 7→ (x′, y′),

s : (x′, y′) 7→ (0, x′, y′).
(4.25)

Let g = (s, x, y) ∈ H1
p. By (3.10), the action of g on x̃ = (x′, y′) ∈ X = H1

p/Z is

calculated as follows.

g−1 · x̃ = p(g−1 ∗ s(x̃))

= p((s, x, y)−1 ∗ (0, x′, y′))

= p((−s+ xy,−x,−y) ∗ (0, x′, y′))

= (x′ − x, y′ − y).

(4.26)

4.4.2 A 2D Continuous Subgroup and a 1D Homogeneous

Space

In this subsection, we consider a two-dimensional continuous subgroup [32] of H1
p given

as follows:

H ′x = {(s, 0, y) ∈ H1
p : s, y ∈ R}. (4.27)

The homogeneous space X = H1
p/H

′
x is parametrised by R because, by (3.8), X can be

identified through the decomposition (s, x, y) = (0, x, 0)(s−xy, 0, y) for each (s, x, y) ∈
H1
p. Using the maps p : (s′, x′, y′) 7→ x′ and s : x′ 7→ (0, x′, 0), by (3.10), the action of

g = (s, x, y) ∈ H1
p on x′ ∈ H1

p/H
′
x = R is

g−1 · x′ = p(g−1 ∗ s(x′))

= x′ − x
(4.28)
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4.5 A Non-commutative Discontinuous Subgroup

and a Homogeneous Space

In this section, we consider a non-commutative discontinuous subgroup Hd of H1
p and

the respective homogenous space X = H1
p/Hd. The main references for this section are

[10, §11, §12; 34, §3, p.8].

Definition 4.3. [12, §1] Let v = (v1, v2), w = (w1, w2) be two non-zero linearly

independent vectors in R2. The set of vectors

Γ = Zv + Zw

=
{
m1v +m2w ∈ R2 : m1,m2 ∈ Z

} (4.29)

forms a lattice in R2.

The lattice Γ can be represented by parallelograms formed by two vectors v and w

as in Figure 4.1.

Figure 4.1: Parallelogram Lattice in R2 generated by v and w.

This Γ can be transformed to the lattice of squares (see Figure 4.2) as follows.

Suppose that Γ is defined by two complex vectors v = v1 + iv2 and w = w1 + iw2,

which spans a parallelogram of the unit area, that is, v1w2 − v2w1 = 1. Then, the

matrix A =

(
v1 w1

v2 w2

)
∈ SL2(C). The inverse of it is A−1 =

(
w2 −w1

−v2 v1

)
. The linear

transformation of R2 defined by the latter matrix maps points of the lattice spanned

by v and w to the standard lattice Z2 (see [36, Ch.7]).
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τ
i

1

Figure 4.2: Square Lattice in R2 generated by 1 and i

Denote by C+ the upper half-plane. A non-commutative discontinuous subgroup

Hτ , τ ∈ C+, of the Heisenberg group H1
p (see [10, §11, §12; 34, §3, p.8]) is defined by:

Hτ =
{

(s, n, k)τ := (s, n+ τk) : (n, k) ∈ Z2, s ∈ R
}
, (4.30)

where Γ = {n + τk : n, k ∈ Z} is the lattice of parallelograms generated by 1 and τ .

As the parallelogram lattice Γ can be mapped into a square lattice Γ′, we consider Γ′

to define the following non-commutative discontinuous subgroup Hd:

Hd = {(s, n, k) = (s, n+ ik) : (n, k) ∈ Γ′, s ∈ R} . (4.31)

That is, Hτ for τ = i. The subgroup Hd has a discrete subgroup H∗d (see [10, §1.1;

34, §3, p.8]):

H∗d = {(t, n, k) = (m,n+ ik) : (n, k) ∈ Γ′, t ∈ Z} . (4.32)

We have H∗d ⊂ Hd ⊂ H1
p. In this thesis, for the sake of simplicity, we only consider the

subgroup Hd. We consider a topology on Hd by embedding into H1
p.

By (3.8), the homogeneous space X = H1
p/Hd can be identified with the torus

T2 = {(u, v) : u, v ∈ [0, 1)} (4.33)

through the following decomposition

(s, x, y) = (0, {x}, {y})(s− {x}[y], [x], [y]), (4.34)

where [x] ∈ Z and {x} ∈ [0, 1) denote the integer and fractional parts of x, respectively,

that is, [x] + {x} = x ∈ R. Let (s, x, y) ∈ H1
p and x̃ = (u, v) ∈ H1

p/Hd. By (3.10), we

calculate the H1
p-action on H1

p/Hd = T2 as follows. For

p : (s, x, y) 7→ ({x}, {y}),

s : (u, v) 7→ (0, u, v),
(4.35)
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we have

g−1 · x̃ = p(g−1 ∗ s(x))

= p((s, x, y)−1 ∗ (0, u, v))

= p (−s+ xy − xv, u− x, v − y)

= ({u− x}, {v − y}).

(4.36)

This action is called a ‘periodic shift’.

4.6 Schrödinger Group

Since the group law on the Heisenberg group is defined using the symplectic form ω,

any transformation of H1 that preserves ω can be used to define a group automorphism.

In general, whenever we have a group acting by automorphisms on another group, we

can consider their semi-direct product.

Definition 4.4. [42, §7] Let N and K be groups, and let φ : K −→ Aut(N) (we

write φk := φ(k), which is an automorphism corresponding to K acting on N). The

semi-direct product of N by K denoted by N oK is the set of ordered pairs {(n, k) :

n ∈ N, k ∈ K} together with the binary operation defined by

(n1, k1) ∗ (n2, k2) = (n1φk1(n2), k1k2). (4.37)

If N = H1 and K = Sp(2), we can build the semi-direct product G̃ = H1 o Sp(2)

[17, 32], where Sp(2) is the symplectic group. Since the symplectic group Sp(2) is

isomorphic to SL2(R) [32], the semi-direct product can be written as:

G̃ = H1 o SL2(R). (4.38)

This group is called the Schrödinger group or Jacobi group. Consider two matrices

A =

(
a b
c d

)
and A′ =

(
a′ b′

c′ d′

)
of the group SL2(R) (see Example 3.4 (i)). Let

g = (s, x, y), g′ = (s′, x′, y′) ∈ H1. By (4.37), the group law of G̃ = H1 o SL2(R) is

(g, A) ∗ (g′, A′) = (g · φA(g′), AA′)

= ((s, x, y) · (s′, x̃′, ỹ′), AA′)

= (s+ s′ +
1

2
(xỹ′ − x̃′y), x+ x̃′, y + ỹ′), AA′),

(4.39)
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where the action φA(g′) is defined in (4.8) and(
x̃′

ỹ′

)
=

(
ax′ + by′

cx′ + dy′

)
=

(
a b
c d

)(
x′

y′

)
. (4.40)

Now, we give the construction of the Schrödinger group in polarised form.

i. The semi-direct product of H1
p by the group SL2(R) is

G = H1
p o SL2(R). (4.41)

Similar to (4.39), the group law of G = H1
p o SL2(R) is given by:

(g, A) ∗ (g′, A′) = (g · φpA(g′), AA′), (4.42)

where, the action φpA(g′) is defined in (4.13) by:

φpA(g′) = (s′ +
1

2
(ac x′2 + x′y′ (ad+ bc) + bd y′2 − x′y′), x̃′, ỹ′), (4.43)

and

(
x̃′

ỹ′

)
=

(
ax′ + by′

cx′ + dy′

)
=

(
a b
c d

)(
x′

y′

)
. We call G the polarised Schrödinger

group.

ii. The Heisenberg group is a subgroup of the polarised Schrödinger group because

H1
p = H1

p o {I} ⊂ H1
p o SL2(R). (4.44)

In this thesis, we only consider the polarised Schrödinger group and call it the

Schrödinger group.

4.7 Introduction of the Jacobi Theta Functions

The object connecting two parts of this thesis is the analytic function Θ(z, τ) in two

variables called the Jacobi theta function or simply the theta function. We mainly use

[34] as a reference for this section. Other additional sources are [8, 10, 14,19,43].

Definition 4.5. [34] Let z ∈ C and τ ∈ C+, where C+ is the upper half-plane. The

Jacobi theta function is defined by:

Θ(z, τ) =
∞∑

n=−∞

eπin
2τe2πinz. (4.45)
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Let Z be the centre of the Heisenberg group H1
p. If H = Z × SL2(Z) is a subgroup

of the Schrödinger group H1
p o SL2(R) (4.41), the domain X = C ×C+, on which Θ is

defined, is a homogeneous space obtained as follows [34]:

X = H1
p o SL2(R)/Z × SL2(Z). (4.46)

We now take a closer look at Θ as a function of z, with τ fixed, by recording its

basic structural properties.

Proposition 4.6. [34] Let z ∈ C and τ ∈ C+. The theta function Θ satisfies the

following properties:

(i) Θ(z + 1, τ) = Θ(z, τ) (periodic).

(ii) Θ(z + τ, τ) = e−πiτe−2πizΘ(z, τ) (quasi-periodic).

The above two periodicities together imply the following:

Θ(z + aτ + b, τ) = e−πia2τ−2πiazΘ(z, τ), where a, b ∈ Z. (4.47)

By Proposition 4.6, the theta function Θ has double quasi-periodic behaviour with

respect to the lattice Γ (4.29) generated by 1 and τ . That is, it is periodic with respect

to z 7→ z + b, b ∈ Z and quasi-periodic with respect to z 7→ z + aτ , a ∈ Z. Therefore,

for a fixed τ ∈ C+, there are two possibilities to study the theta function (see [34]):

i. Θ is a double quasi-periodic function on R2.

ii. Θ is a function on the square T2.

Taking into account both variables of Θ, we consider it as function on the homogeneous

space

(z, τ) ∈ X = H1
p o SL2(R)/Hd o SL2(Z) = T2 × C+, (4.48)

where Hd is the non-commutative discontinuous subgroup defined in (4.32) of H1
p.
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Chapter 5

Representations of the Heisenberg

Group and Ladder Operators

The main purpose of this chapter is to describe the construction of induced represen-

tations of the Heisenberg group H1
p on Hilbert spaces of the following forms:

i. the left quasi-regular representation induced from a character of the centre Z;

ii. the Schrödinger representation induced from a character of H ′x; and

iii. the lattice representation induced from a character of the non-commutative sub-

group Hd.

Furthermore, we discuss ladder operators: creation and annihilation operators pro-

duced by derived representations of the Lie algebra h1 of the Heisenberg group.

5.1 Left Regular Representations of H1
p

In the present section, we extend the action of H1
p on itself by left shift to a linear

representation

Λ(g) : F (g′) 7→ F (g−1g′), g, g′ ∈ H1
p (5.1)

on a certain linear space of functions on H1
p [8, §1.1]. The main references of this section

are [18; 24, §13; 25, App.V,§ 2; 32].

The Lebesgue measure dg = ds dx dy on H1
p ∼ R3 is invariant under the left

shift (3.1). This measure is also invariant under right shifts. Thus, H1
p is unimod-

ular. The action (5.1) on the Hilbert space L2(H1
p, dg) of square integrable functions

41
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on H1
p is unitary [25, App.V, §2] and is called the left regular representation. Let

χ}(s, 0, 0) = e2πi}s be the character of the centre Z of H1
p [8, Ch.5,§5.1]. Let Lχ2 (H1

p) be

the space of functions on H1
p having the properties [28]:

F (gh) = χ̄~(h)F (g), for all g ∈ H1
p, h ∈ Z (5.2)

and ∫
R2

|F (0, x, y)|2 dx dy <∞. (5.3)

We call the property (5.2) the H-covariance property. The space Lχ2 (H1
p) is invariant

under the left H1
p-shifts (5.1) because the left and right shifts commute.

5.1.1 Induced Representations of H1
p on Homogeneous Spaces

In this section, we discuss a particular case of induced representations in the sense

of Mackey, where the induction is performed from a character of a subgroup H of a

group G [24, §13.2]. A detailed consideration of this topic can be found in [24, §13.2;

25, App.V, §2; 32] and Subsection 3.1.1.

Let H be a subgroup of the Heisenberg group H1
p and H1

p/H be the respective

homogeneous space. Consider a continuous section s : H1
p/H → H1

p, which is a right

inverse of the natural projection p : H1
p → H1

p/H. Any element g ∈ H1
p can be uniquely

decomposed as g = s(p(g))r(g), where the map r : G → H is defined by the previous

identity (see Subsection 3.1.1 and [24, §13.2]):

r(g) = s(p(g))−1g. (5.4)

Let χ be a character of H. Let L2(H1
p/H) be a space of square integrable functions

on the homogeneous space H1
p/H, which will be a subset of Euclidean space with the

Lebesgue measure. We define a lifting Lχ : L2(H1
p/H)→ Lχ2 (H1

p) [32] as follows:

[Lχf ](g) = χ̄(r(g))f(p(g)), where f ∈ L2(H1
p/H)

=: F (g).
(5.5)

The image space of the lifting Lχ satisfies the H-covariance property (5.2). Indeed, by

(5.5), if F ∈ Lχ2 (H1
p), we have

F (gh) = χ̄(r(gh))f(p(gh)). (5.6)
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Now, as g ∈ H1
p, we have g = s(p(g))r(g); therefore,

gh = s(p(gh))r(gh)

= s(p(g))r(gh)

= g (r(g))−1r(gh).

Hence, h = (r(g))−1r(gh), that is, r(g)h = r(gh). Thus, the identity (5.6) becomes

F (gh) = χ̄(h)χ̄(r(g))f(p(g))

= χ̄(h)F (g).

This shows that any lifting function Lχf = F possesses the H-covariance property.

The space Lχ2 (H1
p) is not invariant under right H1

p-shifts

R(g) : F (g′) 7→ F (g′g), g′, g ∈ H1
p (5.7)

because the H-covariance property (5.2) is not preserved. Now, we define the pulling

P : Lχ2 (H1
p)→ L2(H1

p/H) by [PF ](x) = F (s(x)) [32]. The induced representation ρχ on

L2(H1
p/H) for the character χ on H is generated by the following formula [32]:

ρχ(g) = P ◦ Λ(g) ◦ Lχ. (5.8)

This can be represented by the following commutative diagram.

Lχ2 (H1
p)

P

��

Λ(g)
// Lχ2 (H1

p)

P

��

L2(H1
p/H)

Lχ

OO

ρχ(g)
// L2(H1

p/H)

Lχ

OO

Figure 5.1: Induced representation from a character of a subgroup

Thus, the formula of the induced representation on the homogeneous space H1
p/H

(5.8) is

[ρχ(g)f ](x) = χ̄(r(g−1 ∗ s(x)))f(g−1 · x). (5.9)
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5.1.2 Induction from Continuous Subgroups

In this section, we use formula (5.9)

[ρχ(g)f ](x) = χ̄(r(g−1 ∗ s(x)))f(g−1 · x) (5.10)

to construct induced representations from the continuous subgroups Z and H ′x obtained

in Subsections 4.4.1 and 4.4.2, respectively. Let ~ 6= 0 be a real number, which can be

associated with the Planck constant [9].

i. In the following we construct a representation induced from the character χ}(s, 0, 0) =

e2πi}s of the centre Z. Consider the natural projection and section maps defined

in (4.25):

p : (s′, x′, y′) 7→ (x′, y′),

s : (x′, y′) 7→ (0, x′, y′).
(5.11)

Let g = (s, x, y) ∈ H1
p. The map r : H1

p → Z is

r(g) = s(p(g))−1 g

= (0, x, y)−1 g

= (xy,−x,−y) (s, x, y)

= (s, 0, 0).

For x̃ = (x′, y′) ∈ R2 = H1
p/Z, we have

r(g−1 ∗ s(x̃)) = r((−s+ xy,−x,−y) (0, x′, y′))

= r(−s+ xy − xy′, x′ − x, y′ − y)

= (−s− x(y′ − y), 0, 0).

(5.12)

Recall the H1
p-action on R2 (4.26)

g−1 · x̃ = (x′ − x, y′ − y). (5.13)

For f ∈ L2(R2), substituting the calculations from (5.12) and (5.13) into the

general induced representation formula (5.10) implies

[Λ~(s, x, y)f ](x′, y′) = e2πi}(s+x(y′−y))f(x′ − x, y′ − y). (5.14)
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This representation is equivalent to a restriction of the left regular representation

to the space of functions having a Z-covariance property (5.2). We call this

representation the left quasi-regular representation. This is reducible [28], and

we will decompose it into irreducible components (see Subsection 6.4.1).

ii. Let H = H ′x = {(s, 0, y) ∈ H1
p, s ∈ R, y ∈ R1}. We construct an induced

representation from a character χ}(s, 0, 0) = e2πi}s of H ′x as follows. Consider the

projection and section maps p : (s′, x′, y′) 7→ x′ and s : x′ 7→ (0, x′, 0) defined in

Subsection 4.4.2. The map r : H1
p → H ′x (5.4) for g = (s, x, y) ∈ H1

p is

r(g) = s(p(g))−1 g

= (0, x, 0)−1 g

= (0,−x, 0) (s, x, y)

= (s− xy, 0, y).

For x̃ = t ∈ R = H1
p/H

′
x, we have

r(g−1 ∗ s(x̃)) = r((−s+ xy,−x,−y) (0, t, 0))

= r(−s+ xy, t− x,−y)

= (−s+ ty, 0,−y).

(5.15)

The H1
p-action on R defined in (4.28) is

g−1 · t = t− x. (5.16)

Therefore, for f ∈ L2(R), if we substitute our calculations from (5.15) and (5.16)

into the general formula (5.9) of the induced representation, we obtain

[ρ}(s, x, y)f ](t) = e2πi}(s−ty) f(t− x). (5.17)

This is a unitary irreducible representation on L2(R) called the Schrödinger rep-

resentation [19, CH.1].

We will see later that all these representations (and many others) with the same

value ~ are unitarily equivalent by the Stone–von Neumann theorem given in Section

5.2. In this thesis, for the sake of simplicity, we only consider the positive Planck

constant ~ > 0.
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5.1.3 Induction from a Non-commutative Subgroup

In this section, we construct an induced representation on L2(T2) from a character

χm(s′, n, k) = e2πmis′ , m ∈ Z\{0}, of the subgroup (4.32)

Hd = {(s, n, k) := (s, n+ ik) : (n, k) ∈ Γ′, s ∈ R} .

Since this subgroup is not commutative, we need to consider only characters with

kernels containing the subgroup’s commutator consisting of elements (m, 0, 0) ∈ H1
p

with m ∈ Z; therefore, m ∈ Z as above. For the sake of simplicity, we only consider

m ∈ N, which can be associated with a positive Planck constant [9].

For F ∈ Lχm2 (H1
p), the H-covariance property F (gh) = χ̄m(h)F (g) (5.2) with g =

(s, x, y) and h = (−xk, n, k) ∈ Hd implies

F (s, x+ n, y + k) = e2πmixkF (s, x, y). (5.18)

Thus, the space Lχm2 (H1
p) consists of functions F , which are double quasi-periodic

(periodic in x and quasi-periodic in y). Consider the natural projection and section

maps defined in (4.35):

p : (s, x, y) 7→ ({x}, {y}),

s : (u, v) 7→ (0, u, v).
(5.19)

We calculate the map r : H1
p → Hd (5.4) as follows:

r(g) = s(p(g))−1 g

= s({x}, {y})−1 (s, x, y)

= ({x}{y},−{x},−{y}) (s, x, y)

= (s− {x}[y], [x], [y]).

(5.20)

Since m ∈ N, we have

χm(r(s, x, y)) = e2πmi(s−{x}[y]) = e2πmi(s−(x−[x])[y]) = e2πmi(s−x[y]).

The H1
p-action on H1

p/Hd = T2 calculated in (4.36) is

g−1 · x̃ = ({u− x}, {v − y}). (5.21)
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Thus, for a function f ∈ L2(T2), the representation induced from the character χm of

Hd is

[ρm(s, x, y)f ](u, v) = χ̄m(r(g−1 ∗ s(x)))f(g−1 · x)

= χ̄m(−s− x(v − y)− {u− x}[v − y], [u− x], [v − y])f(g−1 · x)

= e2πmi(s+x(v−y)+(u−x)[v−y])f({u− x}, {v − y}).
(5.22)

Remark 5.1. [35, §8.1] We have two possibilities to treat the function f ∈ L2(T2):

i. f is a double quasi-periodic function on R2; and

ii. f is a function on the torus T2 = {(u, v) : u, v ∈ [0, 1)} (4.33).

If f is considered as a double quasi-periodic function on R2, by Remark 5.1, the

representation (5.22) becomes

[ρm(s, x, y)f ](u, v) = e2πmi(s+x(v−y))f(u− x, v − y). (5.23)

The representation ρm is unitary irreducible on L2(T2) and is called the lattice repre-

sentation [10].

5.2 Stone–von Neumann Theorem

So far we have constructed several families of strongly continuous unitary infinite-

dimensional irreducible representations of the Heisenberg group H1
p parametrised by

~ ∈ R\{0}. The theorem of Stone–von Neumann holds that any two irreducible unitary

representations of H1
p with the same ~ are equivalent.

Theorem 5.2 (Stone–von Neumann). [19, Ch.1,§5] Let ρ be a strongly continuous

unitary representation of Hn on a Hilbert space H, such that ρ(s, 0, 0) = e2iπ~sI for a

non-zero real ~. Then H = ⊕Hα, where the Hα’s are mutually orthogonal subspaces of

H, each invariant under ρ, such that that the restriction ρ|Hα is unitarily equivalent

to the Schrödinger representation ρh for each α. In particular, if ρ is irreducible then

ρ is equivalent to ρ~.
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5.3 Ladder Operators

If ρ is a representation of a Lie group G acting on a Hilbert space H, it is useful to

pass to its derived representations dρ of the Lie algebra g (cf. [25, Ch.2]). For the

Heisenberg group H1
p, the important operators produced by derived representations are

called ladder operators. The historic origin of ladder operators is the study of spectrum

of quantum harmonic oscillator (cf. [9, § II.3]). Thereafter, mathematicians realised

that these operators are also useful for the representations theory of the Heisenberg

group (cf. [25, Ch.2]). Our main references are [9, §II.3; 25, §2]. Additional useful

sources are [17; 19, Ch.1; 20, § 2.5; 21, § 2.2; 38, § 1.3].

To begin, let ρ be a representation of H1
p on a Hilbert space H. Let

S = (1, 0, 0), X = (0, 1, 0), Y = (0, 0, 1) (5.24)

be the basis (5.24) of the Lie algebra h1 of the Heisenberg group H1
p. Consider the

derived representations of h1:

dρS =
d

dt
ρ(etS)|t=0, dρX =

d

dt
ρ(etX)|t=0, dρY =

d

dt
ρ(etY )|t=0. (5.25)

To simplify the above expressions, we denote S̃ = dρS, X̃ = dρX and Ỹ = dρY . The

commutation relation between X̃ and Ỹ is

[X̃, Ỹ ] = S̃.

The set {X̃, Ỹ , S̃} spans representations of the Lie algebra h1 of the Heisenberg group

H1
p. If ρ is irreducible, S̃ is a multiple of the identity operator I, that is, S̃ = −i~I,

where ~ > 0 a positive real number (cf. [9, § II.3; 25, §2]). Now, we provide the

definition of the ladder operators.

Definition 5.3. [9, § II.3] Let κ > 0 be some fixed number. In the above notations,

the ladder operators a+, a− are defined as follows:

a− =
1√
2~κ

(κ(iX̃) + i(iỸ )), a+ =
1√
2~κ

(κ(iX̃)− i(iỸ )), ~ > 0, (5.26)

with the commutator

[a−, a+] = a−a+ − a+a− = I. (5.27)

The operator a+ (respectively, a−) is known as the creation (respectively, annihilation)

operator. These names are borrowed from quantum mechanics.
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In this thesis, we fix the parameter κ > 0 of the ladder operators a± [5]. Since ρ is

unitary, X̃ and Ỹ are skew-adjoint, that is, X̃∗ = −X̃ and Ỹ ∗ = −Ỹ . Thus, iX̃ and

iỸ are self-adjoint. Consequently, the creation and annihilation operators are adjoint

of each other, that is, (a−)∗ = a+ on H.

5.4 Number Operator and Ladder Operators

Let ρ be a unitary irreducible representation of the Heisenberg group H1
p on a Hilbert

space H. Consider the creation and annihilation operators a+ and a− (5.26) of ρ of the

Lie algebra h1 of the Heisenberg group, respectively. We define the number operator

N to be N = a+a− [9, § II.3]. As a consequence of (5.27), there are commutation

relations between N and a± given by:

[N, a−] = −a−, (5.28)

[N, a+] = a+. (5.29)

Due to these commutators, the spectral decomposition [17] of the operator N is rooted

in the following notion.

Definition 5.4. [25, Ch.2, §2.6] In the above notations, a vector φ0 ∈ H is called a

vacuum vector if it is a null solution of the annihilation operator (i.e., a−φ0 = 0).

The main properties of the number operator N and the ladder operators a± follow

from the commutation relations of (5.28) and (5.29).

i. If φ0 is a vacuum of the irreducible representation ρ, then, for a fixed κ, φ0 is

unique up to scalar multiplication (see [25, Ch.2, §2.6]).

ii. For n ≥ 0, the vectors

φn =
1√
n!

(a+)nφ0 (5.30)

are the eigenvectors of N with the eigenvalues n, that is, Nφn = nφn. Further-

more, we have

a+φn =
√
n+ 1 φn+1, a−φn =

√
n φn−1. (5.31)

If ρ is the Schrödinger representation ρ~, the vectors in (5.30) are the celebrated

Hermite functions (see [25, Ch.2, §2.6]).
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iii. The vectors {φn}n≥0 (5.30) form an orthonormal basis. In fact, assume a Hilbert

subspace H1 of H spanned by {φn}n≥0. By (5.31), the subspace H1 is invariant

under both operators a±. Since ρ is irreducible, H1 must coincide with the whole

space (see [25, Ch.2, §2.6]).

The name of the ladder operators a± is explained by the following diagram, which

visualises relations (5.31):

φ10
a−

φ0
a+

a−
φ2

a+

a−
φ3

a+

a−
· · ·

a+

a−

Figure 5.2: Ladder operators

The following subsections are devoted to calculating the vacuums for the left quasi-

regular, the Schrödinger and the lattice representations of H1
p.

The Gaussian function is a crucial element in the theory of the Heisenberg group,

and we will repeatedly use its properties [17]. The main feature of this function is that

the Gaussian represents vacuums for the representations of H1
p, which will be discussed

in detail in Subsections 5.4.1, 5.4.2 and 5.4.3.

5.4.1 Vacuum of the Left Quasi-Regular Representation

In this subsection, we look for vacuums of the left quasi-regular representation (5.14):

[Λ~(s, x, y)f ](x′, y′) = e2πi}(s+x(y′−y))f(x′ − x, y′ − y). (5.32)

To begin, we calculate the following derived representations. Let h = 2π} > 0. The

derived representations of Λ~ of h1 are

dΛX
~ = 2πi~y − ∂x, dΛY

~ = −∂y,

and the annihilation operator a−Λ~
is

a−Λ~
= dΛκX−iY

~ = 2πi}κy − (κ∂x − i∂y). (5.33)

The ladder operators a±Λ~
act on the Schwartz space S(R2) of smooth rapidly decreasing

functions, which is dense in L2(R2) (see [25, § 2.3]).
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It is useful to write the above differential operators in terms of a complex variable

z [33]. Let us consider z =
√

h
2κ

(x+ iκy), x, y ∈ R. Then, we have

∂z =
1√
2hκ

(κ∂x − i∂y), ∂z̄ =
1√
2hκ

(κ∂x + i∂y). (5.34)

To calculate the vacuums of Λ~ annihilated by a−Λ~
, we solve the partial differential

equation a−Λ~
φ = 0 (5.33), for a fixed κ > 0, using the method of characteristics [1].

The solutions are the Gaussian-type functions

φ~κ(z, z̄) = e−ψ(z̄) · e
1
4

(z−z̄)2

= e−ψ(x−iκy)e−
hκ
2
y2 ∈ S(R2),

(5.35)

where ψ is an arbitrary smooth function depends on z̄. Therefore, we obtain infinitely

many vacuums up to scalars annihilated by a−Λ~
.

In particular, there is a special vacuum of (5.35) such that it is annihilated by two

operators a−Λ~
and a−R~

, where a−R~
is the derived representation from the right regular

action R~ given by:

[R~(g)f ](x′, y′) = e−2πi~(s+x′y)f(x′ + x, y′ + y). (5.36)

Therefore, the corresponding derived representations of h1 are:

dRX
~ = ∂x, dRY

~ = −2πi~x+ ∂y, (5.37)

and the operator a−R~
=: LκX+iY is:

LκX+iY = 2π~x+ (κ∂x + i∂y). (5.38)

We call LκX+iY the right ladder operator, which acts on S(R2). Now, the partial

differential equation

LκX+iY φ~κ =
√

2hκ (
1

2
(z + z̄) + ∂z̄)φ~κ = 0

holds if and only if ψ(z̄) of the vacuums (5.35) is ψ(z̄) = 1
2
z̄2 + c, for a constant c ∈ C.

Let c0 ∈ C be a non-zero arbitrary constant. The unique vacuum annihilated by both

a−Λ~
and LκX+iY is as follows:

φ0,~κ(z, z̄) = c0 e−
1
2
z̄2+ 1

4
(z−z̄)2+c

= c0 e
1
4

(z2−z̄2−2zz̄)+c.
(5.39)

The special rôle of this vacuum will be revealed in Subsections 6.4.1 and 6.5.1.
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5.4.2 Vacuum of the Schrödinger Representation

To calculate the vacuum of the Schrödinger representation, we follow a similar method

to the one listed Subsection 5.4.1. The formula of the Schrödinger representation (5.17)

is

[ρ}(s, x, y)f ](t) = e2πi}(s−ty) f(t− x). (5.40)

The derived representations of ρ} of h1 are

dρX} = −∂x, dρY} = −2πi~x,

and the annihilation operator a−ρ} is:

a−ρ} = dρκX−iY
} = −2π}t− κ∂t. (5.41)

The operators a±ρ} act on S(R) ⊂ L2(R) (cf. [25, Ch.2, §2.3]). After simple calculation

for a−ρ}φ~κ = 0, for a fixed κ > 0, we conclude that the unique vacuum φ~κ up to scalars

is the Gaussian function [17]

φ~κ(t) = e−
π~
κ
t2 ∈ S(R) ⊂ L2(R). (5.42)

5.4.3 Vacuum of the Lattice Representation

An interesting observation is that the vacuum for the lattice representation is to be the

well-known theta function (up to a scalar multiplication) (4.45). To begin, the derived

representations of ρm of h1 are

dρXm = 2πimy − ∂x, dρYm = −∂y,

and the annihilation operator a−ρm of the lattice representation (5.23) is

a−ρm = dρκX−iY
m = 2πimκy − (κ∂x − i∂y). (5.43)

The ladder operators a±ρm act on S(T2) ⊂ L2(T2) [25, Ch.2, §2.3].

Let h = 2πm. For ω =
√

h
2κ

(κy + ix) and ω′ =
√

h
2κ

(κv + iu) of C, the formula of

the lattice representation

[ρm(s, x, y)f ](u, v) = e2πmi(s+x(v−y))f(u− x, v − y) (5.44)
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in terms of the variables ω and ω′ after simplification is as follows:

[ρm(s, ω)f ](ω′, ω̄′) := e2πmis e
1
2

(ω−ω̄)(ω′+ω̄′)+ 1
2

(ω̄2−ω2)f(ω′ − ω, ω̄′ − ω̄). (5.45)

The annihilation operator a−ρm (5.43) in terms of the variables ω and ω′ is

a−ρm = dρκX−iY
m = 2πimκy − (κ∂x − i∂y)

=
√

2hκ i (
1

2
(ω + ω̄) + ∂ω̄).

(5.46)

One can directly check that, for a fixed κ > 0, up to scalars, the function

Φmκ(u, v) = e−
πm
κ

(u2−2iκuv)Θmκ(

√
h

2κ
((κv + iu), i)

= e
1
4

(3ω2−ω̄2−2ωω̄) Θmκ(ω, i)

= Φmκ(ω, ω̄)

(5.47)

is a null solution of a−ρm (5.46), where Θmκ(ω, i) is the analytic theta function (4.5) in

ω =
√

h
2κ

(κy+ ix) ∈ C. We will present our calculation of Φmκ(ω, ω̄) (5.47) in Remark

6.42 after introducing the covariant transform.
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Chapter 6

Covariant Transform and

Analyticity

In this chapter, we present our constructions based on group representations of:

i. the pre-Fock–Segal–Bargamann (FSB) transform and its inverse;

ii. the Zak transform and its inverse;

iii. the theta function;

iv. the pre-theta transform and its inverse; and

v. the Fock-Segal-Bargmann (FSB) space of analytic functions.

To perform these, we use the covariant transform. The original contributions are the

interpretations of the Zak transform and the pre-theta transform with their inversions

through the covariant transform. Thereafter, the theta function is completely defined

in terms of group representations.

Much of the the materials in this chapter are scattered through the literature, but

our presentation is more systematic in the usage of group representations. The main

sources for this chapter are [4, Ch.8; 9; 17; 25; 29; 31; 32].

6.1 Covariant Transform

Consider a representation ρ of a group G on a Hilbert space H. A map W from H⊗H

to a space L(G) of functions over G is defined by a matrix coefficient [29] via a pair of

55
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vectors f, φ ∈ H as follows:

W(f, φ)(g) = 〈f, ρ(g)φ〉 , g ∈ G. (6.1)

If ρ is unitary, we obtain the following identity:

W(f, φ)(g) =
〈
ρ(g−1)f, φ

〉
= 〈f, ρ(g)φ〉 , g ∈ G. (6.2)

Moreover, if ρ is a strongly continuous unitary representation of a Lie group G on H, it

is clear from the Schwartz’s inequality that W(u, v) is a continuous bounded function

on G. Providing a more detailed description of the space L(G) is an important and

challenging task of harmonic analysis (see [13, 18]). If a non-zero vector φ is fixed,

we have a map from H to L(G). In this thesis, the non-zero fixed vector φ is called

a fiducial vector (is also known as aka vacuum vector, ground state, mother wavelet,

etc.).

Definition 6.1. [29] Let ρ be a representation of a group G on a Hilbert space H. If

φ ∈ H is a fiducial vector, the linear map Wφ : H→ L(G):

Wφ : f 7→W(f, φ)

= 〈f, ρ(g)φ〉 , g ∈ G
(6.3)

is called the covariant transform.

The main property of the covariant transform is given in Proposition 6.2.

Proposition 6.2. [29] Let ρ be a unitary representation of a group G on a Hilbert

space H. The covariant transform Wφ intertwines the representation ρ on H and the

left regular action Λ of G on L(G):

Wφ(ρ(g)f) = Λ(g) ◦Wφ(f) ∀g ∈ G, (6.4)

where Λ(g) : f(g′) 7→ f(g−1g′), g, g′ ∈ G (5.1).

Proof. We have that

[Wφ(ρ(g)f)](g′) = 〈ρ(g)f, ρ(g′)φ〉
=
〈
ρ(g′−1)ρ(g)f, φ

〉
=
〈
ρ(g−1g′)−1f, φ

〉
=
〈
f, ρ(g−1g′)φ

〉
= [Λ(g) ◦Wφ(f)](g′).

(6.5)
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To discover some preferable fiducial vectors, we use a particular case of a result

from [29, § 5]. Let G be a Lie group and ρ be its representation in a Hilbert space

H. Let [Wφf ](g) = 〈f, ρ(g)φ〉 be the covariant transform defined by a fiducial vector

φ ∈ H . Then, the covariant transform intertwines right shifts on the group G with the

associated action ρ on fiducial vectors:

R(g) ◦Wφ = Wρ(g)φ. (6.6)

There are many interesting applications of this simple observation [5, 6, 29,30,32].

Proposition 6.3. Let G be a Lie group with a Lie algebra g and ρ be a representation

of G on a Hilbert space L2(Rn). We denote the derived representation of ρ by dρX .

Let φ be a fiducial vector in the Schwartz space S(Rn) such that (
∑n

j=1 ajdρ
Xj)φ = 0,

for some aj ∈ C. Then, the covariant transform Wφ obeys the condition:(
n∑
j=1

ājdR
Xj

)
f̃ = 0, f̃ = Wφ(f), for any f ∈ L2(Rn), (6.7)

with dR being the derived form of the right regular representation of G.

Proof. Let f ∈ L2(Rn). Since R(g) ◦Wφ(f) = Wρ(g)φ(f) (6.6), then(
n∑
j=1

ājdR
Xj

)
◦Wφ(f) = W(

∑n
j=1 ajdρ

Xj (g))φ(f). (6.8)

As (
∑n

j=1 ajdρ
Xj)φ = 0, we thus have

(∑n
j=1 ājdR

Xj

)
f̃ = 0, which proves the state-

ment.

Consider the Heisenberg group G = H1
p. Let ρ} be the Schrödinger representation.

For f, φ ∈ L2(R), the corresponding matrix coefficient of ρ} at (f, φ) is:

W(f, φ)(x, y) = 〈f, ρ}(0, x, y)φ〉

=

∫
R

e2πi}ytf(t)φ̄(t− x) dt.
(6.9)

The map W(f, φ) (6.9) is called the Fourier-Wigner transform [19, Ch.1, §4].

Proposition 6.4. [19, Ch.1, §4] Let ρ} be the Schrödinger representation of H1
p. The

Fourier-Wigner transform W(f, φ)(x, y) = 〈f, ρ}(0, x, y)φ〉 is a linear map of the spaces

S(R)× S(R)→ S(R2),

L2(R)× L2(R)→ L2(R2).
(6.10)
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Moreover, W : L2(R)×L2(R)→ L2(R2) is ‘sesqui-unitary’; that is, for all f1, g1, f2, g2

of L2(R), we have

〈W(f1, φ1),W(f2, φ2)〉L2(R2) = 〈f1, f2〉L2(R) 〈φ1, φ2〉L2(R). (6.11)

The sesqui-unitary property (6.11) of the Fourier-Wigner transform can be gener-

alised for any equivalent representation ρ of H1
p as follows.

Proposition 6.5. Let ρ be a strongly continuous unitary irreducible representation of

the Heisenberg group H1
p on a Hilbert space H. Then, the matrix coefficient W(f, φ)(x, y) =

〈f, ρ(0, x, y)φ〉 (6.2) is a linear map of the spaces

H ×H→ L2(R2). (6.12)

Moreover, for all f1, φ1, f2, φ2 ∈ H, the matrix coefficient W (6.2) is sesqui-unitary on

H ×H→ L2(R2), that is,

〈W(f1, φ1),W(f2, φ2)〉L2(R2) = 〈f1, f2〉H 〈φ1, φ2〉H. (6.13)

Proof. By the Stone–von Neumann Theorem 5.2, two unitary irreducible representa-

tions of H1
p, for the same Planck constant ~, are equivalent. Thus, there is a unitary

operator U : H → L2(R) such that it intertwines the Schrödinger representation ρ}
and the representation ρ, for the same Planck constant ~, that is, ρ = U−1ρ} U . Then,

for f, φ ∈ H, we have

W(f, φ)(x, y) = 〈f, ρ(0, x, y)φ〉 =
〈
f, U−1ρ}(0, x, y)Uφ

〉
= 〈Uf, ρ}(0, x, y)Uφ〉

=
〈
f̃ , ρ}(0, x, y) φ̃

〉
= W1(f̃ , φ̃)(x, y).

(6.14)

By Proposition 6.4, the Fourier-Wigner transform W1 is a linear map of the spaces of

L2(R) × L2(R) → L2(R2) (6.10) and sesqui-unitary. Thus, according to the identity

(6.14), the matrix coefficient W(f, φ) of the equivalent representation ρ is a linear map

of H ×H→ L2(R2) and sesqui-unitary.

The sesqui-unitary property (6.14) for a unitary irreducible representation ρ of H1
p

is known as square integrability modulo the centre Z [19, Ch.1,§4].
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6.2 Induced Covariant Transform on H1
p

In this section, we study the covariant transform that produces functions on a homo-

geneous space rather than the entire group.

Definition 6.6. [29] Let ρ be a representation of H1
p on a Hilbert space H and H be

a closed subgroup of H1
p. Let X = H1

p/H be a homogeneous space. Let φ0 ∈ H be a

fiducial vector such that

ρ(h)φ0 = χ(h)φ0, for all h ∈ H, (6.15)

for some character χ of H. The induced covariant transform W
ρ
φ0

is a map from the

Hilbert space H to a space W (X) of functions on X = H1
p/H given as follows:

W
ρ
φ0

: f 7→f̃(s(x))

= 〈f, ρ(s(x))φ0〉 , x ∈ X,
(6.16)

where s is a continuous section from X to H1
p.

Note that the map f 7→ f̃(s(x)) (6.16) intertwines ρ on H with a representation ρχ

on W (X) induced by the character χ of the subgroup H. Indeed,

ρχ(g) ◦ [W
ρ
φ0

(f)](x) = χ̄(r(g−1 ∗ s(x)))[W
ρ
φ0

(f))](g−1.x)

= χ̄(r(g−1 ∗ s(x)))
〈
f, ρ(s(g−1.x))φ0

〉
=
〈
f, ρ(s(g−1.x))χ(r(g−1 ∗ s(x)))φ0

〉
=
〈
f, ρ(s(g−1.x)) ρ(r(g−1 ∗ s(x)))φ0

〉
=
〈
f, ρ(s(g−1.x) r(g−1 ∗ s(x)))φ0

〉
.

(6.17)

The last action coincides with the induced representation (5.9). Alternatively, this can

be seen from the fact that any function of the image of the induced covariant transform

(6.16) has the H-covariance property f̃(gh) = χ̄(h)f̃(g) [29]. Indeed, for all g ∈ G and

h ∈ H, since ρ(h)φ0 = χ(h)φ0 (6.15), we have

f̃(gh) = 〈f, ρ(gh)φ0〉

= 〈f, ρ(g)ρ(h)φ0〉

= 〈f, ρ(g)χ(h)φ0〉

= χ̄(h) 〈f, ρ(g)φ0〉

= χ̄(h)f̃(g).

(6.18)
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In Section 5.1.1, we described three forms of the representations of H1
p: the left

quasi-regular, the Schrödinger and the lattice representations. By the Stone–von Neu-

mann Theorem 5.2, these representations for the same Plank constant ~ shall be inter-

twined by unitary operators. The exact form of intertwining operators can be found by

the induced covariant transform. The following subsections will provide the all three

possible intertwining operators:

i. between the Schrödinger representation and the left quasi-regular representation;

ii. between the Schrödinger representation and the lattice representation; and

iii. between the left quasi-regular representation and the lattice representation.

6.2.1 The (Pre-) Fock-Segal-Bargmann Transform

Let [ρ}(s, x, y)f ](t) = e2πi}(s−ty) f(t− x) be the Schrödinger representation (5.17). We

look for the induced covariant transform W
ρ}
φ : L2(R) → L2(R2), which intertwines

the Schrödinger representation and the left quasi-regular representation restricted to

an irreducible component of L2(R2). In fact, for the character χ}(s, 0, 0) = e2πi}s of the

centre Z = {(s, 0, 0) ∈ H1
p : s ∈ R}, any vector φ ∈ L2(R) satisfies (6.15)

ρ}(s, 0, 0)φ = χ}(s, 0, 0)φ, for all (s, 0, 0) ∈ Z.

Thus, for all f ∈ L2(R), the induced covariant transform W
ρ}
φ for any fiducial vector

φ ∈ L2(R) is:

[W
ρ}
φ (f)](x, y) =

∫
R
f(t) e2πi}ty φ(t− x) dt. (6.19)

The main properties of W
ρ}
φ follow from the general properties of the covariant trans-

form.

Corollary 6.7. Let φ ∈ L2(R) be a fiducial vector such that ||φ|| = 1. The covari-

ant transform W
ρ}
φ : L2(R) → L2(R2) is a unitary intertwining operator between the

Schrödinger representation ρ~ on L2(R) and the left quasi-regular representation Λ~

restricted on the image space

Fφ(R2) := {Wρ~
φ (f) : f ∈ L2(R)}. (6.20)

In particular, Λ~ is an irreducible representation on Fφ(R2).
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Since, by Proposition 6.3, there is a special component which is annihilated by the

right ladder LκX+iY (5.38), we specify φ to the corresponding fiducial vector. That

is, we consider the vacuum of the Schrödinger representation (up to normalisation)

φ~κ(t) = 21/4e−
π~
κ
t2 (5.42). The corresponding induced covariant transform (6.3) with

the measure renormalised by the factor ( }
κ
)1/2 is given by:

f̃(x, y) := [W
ρ}
φ~κ

(f)](x, y) = 〈f, ρ}(0, x, y)φ~κ〉

=

(
}
κ

)1/2

21/4

∫
R
f(t) e2πi}ty e−

π}
κ

(t−x)2

dt.
(6.21)

This is called the pre-FSB transform [35, §4.2] from L2(R) into

Fφ~κ(R2) = {f̃ : f̃ = W
ρ}
φ~κ

(f), f ∈ L2(R)}. (6.22)

The image space Fφ~κ(R2) is a subspace of square integrable functions on R2, called

the pre-FSB space. The left quasi-regular representation Λ~ restricted on the pre-FSB

space Fφ~κ(R2) is called the pre-FSB representation. The prefix “pre-” is removed by a

unitary operator—the peeling, which will produce the FSB space of analytic functions

on C in Subsection 6.5.1.

6.2.2 The Zak Transform

In this subsection, we derive the Zak transform as a special case of the covariant

transform. This will allow us to recover results from [8, Ch 9; 10; 19, Ch 4]. To begin,

we give the standard definition of the Zak transform and some related properties.

Definition 6.8. [35, §8.1] Let f ∈ S(R) be a function of the Schwartz space of smooth

rapidly decreasing functions on R. For m ∈ N, the Zak transform on (u, v) ∈ R2 is

defined as follows:

[Z̃f ](u, v) =
∑
n∈Z

f(u+ n) e2πimnv. (6.23)

The function [Z̃f ](u, v) is quasi-periodic in u and periodic in v.

In the most fundamental situation, it is considered m = 1 in (6.23) [35, §8.1]. Since

f ∈ S(R) is a smooth rapidly decreasing function, the Zak transform of f is well-defined

through a convergent series. For convenience, we define an associated transform.
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Definition 6.9. Let f ∈ S(R) be a function of the Schwartz space of smooth rapidly

decreasing functions on R. For m ∈ N, the co-Zak transform is defined as follows:

[Zf ](u, v) = e2πimuv[Z̃f ](u, v), (6.24)

where [Z̃f ](u, v) is the Zak transform defined as above.

We denote the space of functions f̃(u, v), which are quasi-periodic in u, periodic in

v and square integrable by L̃2(T2). The factor e2πimuv in (6.24) swaps the periodicity

property on the variables (u, v) due to the following useful lemma.

Lemma 6.10. Let f̃(u, v) ∈ L̃2(T2) be a function, which is quasi-periodic in u and

periodic in v. Then, f(u, v) = e2πimuvf̃(u, v) ∈ L2(T2) is periodic in u and quasi-

periodic in v. Moreover, the map

U : f̃(u, v) 7→ e2πimuvf̃(u, v)

= f(u, v)
(6.25)

is a unitary intertwining operator between the lattice representation (5.23)

[ρm(s, x, y)f ](u, v) = e2πmi(s+x(v−y))f(u− x, v − y) (6.26)

on L2(T2) and the corresponding lattice representation on L̃2(T2) given by

[ρ̃m(s, x, y)f̃ ] = e2πmi(s−uy)f(u− x, v − y). (6.27)

Proof. Let n, k ∈ Z. Since f̃(u, v) is quasi-periodic in u and periodic in v, then

f̃(u+ n, v) = e−2πminvf̃(u, v), and f̃(u, v + k) = f̃(u, v). (6.28)

Therefore, we have

f(u+ n, v) = e2πim(u+n)vf̃(u+ n, v)

= e2πim(u+n)ve−2πimnvf̃(u, v)

= e2πimuvf̃(u, v)

= f(u, v).

(6.29)

Thus, f(u, v) is periodic in u. Now,

f(u, v + k) = e2πimu(v+k)f̃(u, v + k)

= e2πimuke2πimuvf̃(u, v)

= e2πimukf(u, v).

(6.30)
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Hence, f(u, v) is quasi-periodic in v. The map U is obviously a unitary operator:

U : L̃2(T2, du dv) −→ L2(T2, du dv). (6.31)

Furthermore, U intertwines ρm on L2(T2) and the corresponding lattice representation

ρ̃m := U−1 ◦ ρm ◦ U on L̃2(T2). The formula of ρ̃m := U−1 ◦ ρm ◦ U after simplification

is as follows:

[e−2πimuvρm(s, x, y)e2πimuvf̃ ](u, v) = e2πmi(s−uy)f̃(u− x, v − y)

= [ρ̃m(s, x, y)f̃ ](u, v),
(6.32)

which proves the statement.

Remark 6.11. i. Since the lattice representation (5.23)

[ρm(s, x, y)f ](u, v) = e2πmi(s+x(v−y))f(u− x, v − y) (6.33)

is irreducible on L2(T2), the vacuum

Φmκ(u, v) = e−
πm
κ

(u2−2iκuv)Θmκ(

√
h

2κ
((κv + iu), i)

of the representation ρm obtained in (5.47) is unique up to scalar multiplication

(see Section 5.4 in (iii)).

ii. By Lemma 6.10, if we multiply Φmκ(u, v) by e−2πimuv, we obtain a function

e−
πm
κ
u2

Θmκ(
√

h
2κ

(κv+iu), i) in the corresponding space L̃2(T2) that has the same

double quasi-periodic property but in the opposite way. Since U−1 : L2(T2) →
L̃2(T2) of (6.25) is a unitary intertwining operator between ρm and the corre-

sponding lattice representation ρ̃m (6.27), the function

Φ̃mκ(u, v) = e−
πm
κ
u2

Θmκ(

√
h

2κ
(κv + iu), i) (6.34)

is the corresponding unique vacuum up to scalar multiplication annihilated by

a−ρ̃m = dρ̃κX−iY
m = −2πmu− (κ∂u − i∂y). (6.35)

Let [ρ}(s, x, y)f ](t) = e2πi}(s−ty) f(t− x) be the Schrödinger representation and χm

be the character of the non-commutative subgroup Hd = {(s, n, k) : s ∈ R, n, k ∈ Z}
of H1

p. To calculate the induced covariant transform

W
ρ~
φ0

: L2(R)→ L2(T2), (6.36)
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we first need a fiducial vector φ0 satisfying (6.15), that is, for all (s, n, k) ∈ Hd, we

have

e2πi~se−2πi~tk φ0(t− n) = e2πimsφ0(t). (6.37)

The left- and the right-hand sides of (6.37) are equal if and only if

i. ~ = m; and

ii. the function φ0 is a periodic function and supp(φ0) ⊆ Z. This implies that

supp(φ0) = Z.

Thus, the only vector φ0 satisfying (6.37) would be the Dirac comb distribution, that

is, φ0(t) =
∑

n∈Z δ(t−n), which is is a periodic distribution constructed from the Dirac

delta δ(t) [11].

Remark 6.12. In Definition 6.1, the covariant transform Wφ0 is defined for a fiducial

vector being a vector of a Hilbert space. In [15, 16, 27, 28], the covariant transform

Wφ0 was treated in Banach spaces. A further generalisation to Frechet spaces would

allow to use the Dirac comb as a fiducial vector (mother wavelet). However, in this

thesis, we do not consider the covariant transform in such generality. Therefore, we

will only heuristically proceed with the Dirac comb distribution as a regular function.

A posteriori justification of obtained results can be made by direct arguments.

Let s : T2 → H1
p : (u, v) 7→ (0, u, v) be the continuous section defined in (4.35).

For f ∈ S(R) ⊂ L2(R), we calculate the induced covariant transform [W
ρ~
φ0

(f)](u, v) =

〈f, ρ~(s(x̃))φ0〉, x̃ ∈ T2, as follows:

[W
ρ~
φ0

(f)](u, v) = 〈f, ρ~(0, u, v)φ0〉

=

∫
R
f(t) e2πi~tv φ̄0(t− u) dt

=

∫
R
f(t) e2πimtv

∑
n∈Z

δ(t− (u+ n)) dt, } = m

=
∑
n∈Z

∫
R
f(t) e2πimtvδ(t− (u+ n)) dt

=
∑
n∈Z

f(u+ n) e2πimv(u+n)

= e2πimuv
∑
n∈Z

f(u+ n) e2πimvn.

(6.38)
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This is the co-Zak transform (6.24), which possesses the following properties.

Corollary 6.13. For f ∈ L2(R), let

[W
ρ~
φ0

(f)](u, v) = e2πimuv
∑
n∈Z

f(u+ n) e2πimnv = [Zf ](u, v)

be the co-Zak transform. Then, we have the following properties:

i. The operator Z : L2(R)→ L2(T2) is unitary.

ii. The operator Z : L2(R) → L2(T2) intertwines the Schrödinger representation ρ~
and the lattice representation ρm. That is, ρm ◦ Z = Z ◦ ρ}, for } = m.

iii. The image space of [Zf ](u, v) consists of functions f̃(u, v) that have the double-

quasi-periodic property on R2.

The statements i–iii were proved by direct arguments in many references, such as

[7, Ch.I; 19, Ch.1,§10]. If a theory of the covariant transform for the Dirac comb

distribution were at our disposal, this would imply the following properties of the Zak

transform:

i. the first property is parallel to the sesqui-unitarity (6.13) of the covariant trans-

form. That is, for f ∈ L2(R), we have that

||Zf ||2L2(T2) = ||f ||2L2(R), (6.39)

where || · || denotes the norm and the subscript indicates the Hilbert space in

which the function lies.

ii. Since W
ρ~
φ0

= Z, the second property corresponds exactly to the intertwining

property in (6.17), i.e. for ~ = m, we have

ρm ◦W
ρ~
φ0

= W
ρ~
φ0
◦ ρ~. (6.40)

iii. The image space of the induced covariant transform f̃ = W
ρ~
φ0

(f) has the H-

covariance property (6.18) f̃(gh) = χ̄(h)f̃(g), for all g ∈ G and h ∈ H. For the

subgroup Hd = {(s, n, k) = (s, n+ ik) : (n, k) ∈ Γ′, s ∈ R} (4.32), it is exactly

the double-quasi-periodic property (5.18):

f̃(u+ n, v + k) = e2πmiukf̃(u, v). (6.41)
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This indicates that the covariant transform is worth to be extended for singular fiducial

vectors.

Remark 6.14. In Subsection 5.4.3, we showed that Φmκ(ω, ω̄) (5.47) is the vacuum of

the lattice representation ρm. The same vacuum can be obtained from scratch by the

following consideration. By Corollary 6.13, the Schrödinger representation ρ} (5.17)

and the lattice representation ρm are intertwined by the co-Zak transform Z = e2πimuvZ̃

for the same Planck constant ~ = m. Therefore, Z = e2πimuvZ̃ intertwines the derived

representations a−ρ} = dρκX−iY
~ and a−ρm = dρκX−iY

m :

Z ◦ a−ρ} = a−ρm ◦ Z. (6.42)

Since φ~κ(t) = e−
π~
κ
t2 is the vacuum annihilated by a−ρ} (see Subsection 5.4.2), the

function [Zφhκ] would be annihilated by a−ρm as well. We calculate [Zφhκ] as follows

(cf. [19, Ch 4]):

Φmκ(u, v) := [Zφhκ](u, v) = e2πimuv[Z̃φhκ](u, v)

= e2πimuv
∑
n∈Z

φhκ(u+ n)e2πimnv

= e2πimuv
∑
n∈Z

e−
πm
κ

(u+n)2

e2πimnv

= e−
πm
κ

(u2−2iκuv)
∑
n∈Z

e−
πm
κ
n2

e
2πim
κ

n(κv+iu)

= e
1
4

(3ω2−ω̄2−2ω′ω̄)
∑
n∈Z

e−
πm
κ
n2

e2πin
√

m
πκ
ω

= e
1
4

(3ω2−ω̄2−2ωω̄) Θmκ(ω, i)

=: Φmκ(ω, ω̄),

(6.43)

where ω =
√

h
2κ

(κv + iu) ∈ C, h = 2πm and Θmκ is the theta function (see Section

4.7).

6.2.3 The (Pre-) Theta Transform

In the present subsection, we look for an intertwining operator

W
ρm
Θ : L2(T2)→ L2(R2) (6.44)
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between the lattice representation and the left quasi-regular representation restricted

to an irreducible component of L2(R2). Although the formula of the left quasi-regular

representation (5.14)

[Λ~(s, x, y)f ](x′, y′) = e2πi}(s+x(y′−y)f(x′ − x, y′ − y) (6.45)

is similar to the lattice representation’s formula (5.23)

[ρm(s, x, y)f ](u, v) = e2πmi(s+x(v−y))f(u− x, v − y), (6.46)

they are rather different, e.g., they act on different spaces L2(R2) and L2(T2), respec-

tively.

Let χ}(s, 0, 0) = e2πi}s be the character of the centre Z = {(s, 0, 0) : s ∈ R}
of H1

p. To calculate the induced covariant transform W
ρm
Θ , we need to find a fiducial

vector φ0 satisfying (6.15). As was already mentioned (see Subsection 6.2.1), any vector

φ0 ∈ L2(T2) satisfies that ρm(s, 0, 0)φ0 = χ~(s, 0, 0)φ0, for all (s, 0, 0) ∈ Z and ~ = m.

As in the case of the pre-FSB transform (see Subsection 6.2.1) and by Proposition

6.3, if we specify φ0 to be the vacuum Φmκ obtained in (5.47) of the lattice represen-

tation ρm, the image space of W
ρm
Θ (f), f ∈ L2(T2) is annihilated by the right ladder

LκX+iY (5.38). Thus, we set

φ0(u, v) = Φmκ(u, v) = e−
πm
κ

(u2−2iκuv)Θmκ(

√
h

2κ
((κv + iu), i).

Let s : R2 → H1
p : (x, y) 7→ (0, x, y) (4.35) be the continuous section. For ~ = m, the

induced covariant transform W
ρm
Θ : L2(T2)→ L2(R2) is calculated as follows:

[W
ρm
Θ (f)](x, y) = 〈f, ρm(s(x̃))φ0〉 , x̃ ∈ T2

=

∫
T2

f(u, v) e−2πimx(v−y) φ̄0(u− x, v − y) du dv

=

∫
T2

f(u, v)e−2πimu(v−y)−πm
κ

(u−x)2

× Θ̄mκ

(√
h

2κ
(κ(v − y) + i(u− x), i

)
du dv.

(6.47)
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After simplifications, (6.47) becomes

[W
ρm
Θ (f)](x, y) =

∫
T2

f(u, v) e−
πm
κ

(u2+2iκuv)−πm
κ

(x2−2u(x+iκy))

× Θ̄mκ

(√
h

2κ
(κ(v − y) + i(u− x), i

)
du dv

= f̃(x, y).

(6.48)

Thus, we obtain the induced covariant transform W
ρm
Θ from L2(T2) into L2(R2). We

call W
ρm
Θ the pre-theta transform. The image space of the pre-theta transform

FΘ(R2) = {f̃ : f̃ = W
ρm
Θ (f), f ∈ L2(T2)} (6.49)

consists of null solutions of LκX+iY . The prefix “pre-” is removed when the operator

LκX+iY is translated into the analyticity condition ∂z̄ by a unitary peeling operator

(see Subsection 6.5.1).

The general properties of the covariant transform W
ρm
Θ yield corresponding proper-

ties of the pre-theta transform.

Corollary 6.15. The pre-theta transform W
ρm
Θ : L2(T2)→ L2(R2) given by

[W
ρm
Θ (f)](x, y) =

∫
T2

f(u, v) e−
πm
κ

(u2+2iκuv)−πm
κ

(x2−2u(x+iκy))

× Θ̄mκ

(√
h

2κ
(κ(v − y) + i(u− x), i

)
du dv

(6.50)

is a unitary intertwining operator between the lattice representation ρm on L2(T2) and

the left quasi-regular representation Λ~ on FΘ(R2).

6.3 Contravariant Transform on H1
p

The goal of the present section is to introduce the contravariant transform Mψ with

some basic properties [29]. Examples of Mψ are also given in Subsections 6.3.1, 6.3.2

and 6.3.3. In Section 6.2, we study the covariant transform Wφ (6.70), which is a map

from a Hilbert space H to a space W (X) of functions on a homogeneous space X. The

contravariant transform Mψ is the adjoint of Wφ and sends a function f on L1(X) to

a vector on H.
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Definition 6.16. [29] Let ρ be a representation of the Heisenberg group H1
p on a Hilbert

space H and H be a closed subgroup of H1
p. Let X = H1

p/H be a homogeneous space,

which will be a subset of Euclidean space with the Lebesgue measure. The contravariant

transform Mψ for a reconstruction vector ψ ∈ H is a map M
ρ
ψ : L1(X)→ H given by

M
ρ
ψ : ν̃ 7→Mψ(ν̃)

=

∫
X

ν̃(x) ψx dµ(x)

=

∫
X

ν̃(x) ρ(s(x)) dµ(x) ψ,

(6.51)

where ψx = ρ(s(x))ψ and s is a continuous section from X = H1
p/H to H1

p (see Section

3.1.1).

Let ρ be a strongly continuous unitary irreducible representation of H1
p on a Hilbert

space H. For non-orthogonal fiducial and reconstruction vectors, the contravariant

transform Mψ and the covariant transform Wφ (6.3) are adjoints

〈Mψ ν̃, u〉H = 〈ν̃,Wφ u〉L2(R2) , (6.52)

where u ∈ H (see [4, Ch.8,§8.1]). To see this, we note that the contravariant transform

Mψ intertwines the left regular representation Λ (5.1) on H1
p and ρ on H [29]:

Mψ ◦ Λ(g) = ρ(g) ◦Mψ. (6.53)

Combining with Wφ ◦ ρ(g) = Λ(g) ◦Wφ (6.4), we see that the composition Mψ ◦Wφ of

the covariant and contravariant transform intertwines ρ with itself. That is,

(Mψ ◦Wφ) ◦ ρ(g) = ρ(g) ◦ (Mψ ◦Wφ). (6.54)

Therefore, Schur’s lemma 3.11 implies that

Mψ ◦Wφ = c I, (6.55)

for some constant c ∈ C. Alternatively, the sesqui-unitary property (6.13) implies that

Mψ ◦Wφ = 〈ψ, φ〉 I. Indeed, if f, g ∈ H, we have

〈Mψ ◦Wφf, g〉 = 〈Wφf,Wψg〉

= 〈f, g〉 〈φ, ψ〉

= 〈〈ψ, φ〉 f, g〉 .

(6.56)

Therefore, for non-orthogonal vectors ψ and φ, we obtain 〈ψ, φ〉 = c 6= 0. Thus,

Mψ ◦Wφ is a scalar multiple of the identity operator I. Thus, c−1Mψ is the inverse

operator of Wφ.



Chapter 6. Covariant Transform and Analyticity 70

6.3.1 The Inverse of the (Pre-) FSB Transform

Let [ρ}(s, x, y)f ](t) = e2πi}(s−ty) f(t− x) be the Schrödinger representation (5.17). The

contravariant transform M
ρ~
ψ : L2(R2) → L2(R) associated with a vector ψ ∈ L2(R)

provides the reconstruction formula [33]:

M
ρ~
ψ : f 7→

∫
R2

f(x, y) ρ}(0, x, y) ψ dx dy. (6.57)

In particular, if the reconstruction vector is the vacuum ψ~κ(t) = 21/4e−
π~
κ
t2 of the

Schrödinger representation, we obtain that

M
ρ~
ψ : f 7→21/4

∫
R2

f(x, y) e−2πi}ty e−
π~
κ

(t−x)2

dx dy

= 21/4e−
π~
κ
t2
∫
R2

f(x, y) e−
π~
κ

(x2−2t(x−iκy)) dx dy.

(6.58)

This is known as the inverse of the pre-FSB transform [35, §4.2].

6.3.2 The Inverse of the Zak Transform

In Subsection 6.2.2, we derived the co-Zak transform Z : L2(R) → L2(T2) (6.38)

through the induced covariant transform W
ρ~
φ0

. Now, we calculate its inverse using the

contravariant transform. To begin, we provide the standard definition of the inverse of

the Zak transform.

Definition 6.17. [35, §8.1] Let L̃2(T2) be a space of square integrable functions g̃(x, v)

that are quasi-periodic in x and periodic in v. Let g̃ = Z̃f be the Zak transform of

f ∈ S(R) ⊂ L2(R). The function f can be reconstructed using the following formula:

Z̃−1 :L̃2(T2)→ L2(R)

[Z̃−1g̃](x) =

∫
T
g̃(x, v)e−2πimnv dv, n ∈ Z, m ∈ N.

(6.59)

The operator Z̃−1 is called the inverse of the Zak transform.

Let [ρ}(s, x, y)f ](t) = e2πi}(s−ty) f(t − x) be the Schrödinger representation and

χ~ = e2πi~s be the character of the subgroup H ′x = {(s, 0, y) : s, y ∈ R} (4.27). We

look for the contravariant transform M
ρ~
ψ0

: L2(T2) → L2(R). To calculate it, we need
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to find a reconstruction vector ψ0 satisfying the condition in (6.15), that is, for all

h ∈ H ′x = {(s, 0, y) : s, y ∈ R}, we want

e2πi~(s−ty)ψ0(t) = e2πi~sψ0(t). (6.60)

Thus, the left-hand side of (6.60) is equal to the right-hand side if and only if ψ0 is

supported at {0}. Further analysis shows that the reconstruction vector ψ0 satisfying

the condition (6.60) is the Dirac delta distribution δ(t) [11]. As discussed in Remark

6.12, we manipulate heuristically using the distribution δ(t) as a regular function.

Let x̃ = (u, v) ∈ X = T2 = H1
p/Hd, where Hd is the non-commutative subgroup

(4.32). Consider the section map s : T2 → H1
p : (u, v) 7→ (0, u, v) defined in (4.35). For

g ∈ L2(T2) and ~ = m, we have that

M
ρ~
ψ0

: g 7→
∫
T

∫
T
g(u, v) ρ~(s(x̃))ψ0(t) du dv

=

∫ 1

0

∫ 1

0

g(u, v) ρ~(0, u, v)ψ0(t) du dv

=

∫ 1

0

∫ 1

0

g(u, v) e−2πimtvδ(t− u) du dv

=

∫ 1

0

g(t, v) e−2πimtv dv

=

∫ 1

0

g̃(t, v) dv.

(6.61)

Since g(t, v) is contained in the space L2(T2) of square integrable functions that are

periodic in t and quasi-periodic in v, by our Lemma 6.10, multiplying g(t, v) by e−2πimtv

produces a function that has the same double quasi-periodicity property of g(t, v) but

in the opposite way. In other words, g̃(t, v) = g(t, v)·e−2πimtv ∈ L̃2(T2) is quasi-periodic

in t and periodic in v and square integrable. Moreover, since t ∈ R ≈ [0, 1]× Z, then

t = x+ n, for some x ∈ [0, 1] and n ∈ Z. Therefore, for t = x+ n, (6.61) becomes∫ 1

0

g̃(x+ n, v) dv =

∫ 1

0

g̃(x, v) e−2πimnv dv

= [M
ρ~
ψ0
g](x) = [M

ρ~
ψ0

(e2πimxv g̃)](x).

(6.62)

Thus, M
ρ~
ψ0

is the inverse of the induced covariant transform W
ρ~
φ0

(6.38) from L2(T2)

into L2(R).
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Corollary 6.18. Let g̃(x, v) = g(x, v) · e−2πimxv such that g ∈ L2(T2). The contravari-

ant transform (6.62),

[M
ρ~
ψ0

(e2πimxv g̃)](x) =

∫ 1

0

g̃(x, v) e−2πimnv dv

= [Z̃−1g̃](x),

(6.63)

is the inverse of the Zak transform. For g ∈ L2(T2), one can write the inverse of the

co-Zak transform Z−1g = Z̃−1 e−2πimuvg.

6.3.3 The Inverse of the (Pre-) Theta Transform

In Subsection 6.2.3, we found the pre-theta transform from L2(T2) into L2(R2). Now,

we calculate the inverse of the pre-theta transform

M
ρm
Θ : L2(R2)→ L2(T2), (6.64)

where [ρm(s, x, y)f ](u, v) = e2πim(s+x(v−y)f(u− x, v − y) is the lattice representation.

Let s : R2 → H1
p : (x, y) 7→ (0, x, y) (4.25) be the continuous section. For ~ = m and

f ∈ L2(R2), the contravariant transform M
ρm
ψ associated with a reconstruction vector

ψ ∈ L2(T2) from Definition 6.16 is

M
ρm
ψ : f 7→

∫
R2

f(x, y) ρm(0, x, y) dx dy ψ(u, v). (6.65)

In particular, if we set the reconstruction vector ψ by the lattice representation’s vac-

uum (5.47)

Φmκ(u, v) = e−
πm
κ

(u2−2iκuv)Θmκ(

√
h

2κ
((κv + iu), i), (6.66)

the integral transformation M
ρm
ψ (6.65) after simplification becomes

M
ρm
ψ~κ

(f) = e−
πm
κ
u2−2iκuv

∫
T2

f(x, y) e−
πm
κ

(x2−2u(x−iκy))

×Θmκ

(√
h

2κ
(κ(v − y) + i(u− x), i

)
dx dy.

(6.67)

Thus, we obtain the inverse operator of W
ρm
Θ (6.48). We call the transformation M

ρm
Θ

(6.67) the inverse of the pre-theta transform.
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6.4 Decomposing Representations of H1
p into Irre-

ducible Components

It is very common in mathematics to split complex structures into simpler pieces. Thus,

the aim of this section is to separate a strongly continuous unitary reducible representa-

tion of the Heisenberg group H1
p into irreducible components. For decomposing general

representations of a Lie group G, readers can look at [24, § 8; 25, App.IV,§2.5].

Consider G = H1
p. In Section 6.1, we defined the covariant transform Wφ (6.3)

by fixing the second variable of the matrix coefficient as a fiducial vector φ. If we fix

the first vector in the matrix coefficient (6.2) rather than the second one, we call this

operator the co-covariant transform W̃φ.

Definition 6.19. [29] Let ρ be a representation of the Heisenberg group H1
p on a

Hilbert space H. Let φ be a fiducial vector in H. The co-covariant transform W̃φ is

given by

W̃φ : H→ L(H1
p)

f 7→ 〈ρ(g)f, φ〉
= 〈φ, ρ(g)f〉.

(6.68)

If ρ is unitary, then we have

W̃φ : H→ L(H1
p)

f 7→ 〈f, ρ(g−1)φ〉
= 〈φ, ρ(g)f〉.

(6.69)

Let H be a closed subgroup of H1
p and X = H1

p/H be the respective homogeneous

space, which will be a subset of Euclidean space with the Lebesgue measure. Similarly

to the covariant transform Wφ, we define W̃φ for X = H1
p/H by

W̃φ : H→ W (X)

f 7→ 〈f, ρ(s(x)−1)φ〉
= 〈φ, ρ(s(x))f〉 = φ̃f (x), x ∈ X = H1

p/H,

(6.70)

where s is any continuous section from X to H1
p and W (X) is the space of functions

on the homogeneous space X.
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Since the Schrödinger (5.17) and the lattice (5.23) representations are already irre-

ducible, we only need to decompose the left quasi-regular representation Λ~ (5.14) as

shown in Subsection 6.4.1.

6.4.1 Decomposing the Left Quasi-Regular Representation

In this subsection, we decompose the left quasi-regular representation Λ~ (5.14) into

irreducible components on L2(R2). To begin, we provide the following result, which is

an immediate consequence of Proposition 6.3.

Corollary 6.20. Let G = H1
p be the Heisenberg group and

[ρ}(s, x, y)f ](t) = e2πi}(s−ty) f(t− x) (6.71)

be the Schrödinger representation. Consider the vacuum φ~κ ∈ L2(R) of ρ~ as a fiducial

vector of the co-covariant transform W̃
ρ~
φ~κ

. Then, the image space

{φ̃f = W̃φ~κ(f) : f ∈ L2(R)} (6.72)

of the co-covariant transform W̃
ρ~
φ~κ

: L2(R) → L2(R2) is a linear subspace of L2(R2)

consisting of all vacuum vectors of the form φ̃f of the left quasi-regular representation

Λ~ (5.14).

Proof. By Proposition 6.4, the co-covariant transform W̃φ~κ is a linear map from L2(R)

to L2(R2). According to Proposition 6.2, we have

Λ~(g) ◦ W̃φ~κ = W̃ρ~(g)φ~κ , g ∈ H1
p. (6.73)

To show that φ̃f is a vacuum for each function f ∈ L2(R), we need to verify that

φ̃f is annihilated by a−Λ~
= dΛκX−iY

~ (5.33). By (6.73), we have that

dΛκX−iY
~ ◦ W̃φ~κ = W̃dρκX−iY

~ φ~κ
. (6.74)

Hence,

dΛκX
~ 〈φ~κ, ρ~(s(x))f〉 = 〈φ~κ, dρ

−κX
~ ρ~(s(x))f〉

= 〈dρκX~ φ~κ, ρ~(s(x))f〉

and

dΛ−iY
~ 〈φ~κ, ρ~(s(x))f〉 = 〈φ~κ, dρ

iY
~ ρ~(s(x))f〉

= 〈dρ−iY
~ φ~κ, ρ~(s(x))f〉.
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Since φ~κ is the Schrödinger representation’s vacuum obtained in Subsection 5.4.2, it

is annihilated by a−ρ~ = dρκX−iY
~ . Then,

dΛκX−iY
~ 〈φ0, ρ~(s(x))f〉 = 〈dρκX−iY

~ φ~κ, ρ~(s(x))f〉 = 0, (6.75)

i.e., a−Λ~
φ̃f = 0. Therefore, for all f ∈ L2(R), the image space of the co-covariant

transform is a space of all vacuums φ̃f of Λ~.

We now turn to decomposing the space L2(R2) into a direct sum of invariant ir-

reducible subspaces L2(R2) = ⊕n∈NHn under the left quasi-regular representation Λ~.

Consider the vacuum φ0,~κ(z, z̄) = e
1
4

(z2−z̄2−2zz̄)+c of Λ~ obtained in (5.39), which is

the unique vector (up to normalisation) in L2(R2) annihilating by both operators a−Λ~

(5.33) and LκX+iY (5.38). Set φ00 := φ0,~κ, then all vectors φ0j = (a+
R~

)jφ00 are vacuum

due to the commutation of the left and right actions:

a−Λ~
φ0n = a−Λ~

(a+
R~

)n φ00

= (a+
R~

)n a−Λ~
φ00 = 0.

(6.76)

For each vacuum φ0j, the collection of vectors φij = (a+
Λ~

)iφ0j form an orthonormal basis

of an irreducible component of the left quasi-regular representation with the respective

ladder structure (cf. (5.31))

a+
Λ~
φij =

√
i+ 1 φi+1,j, a−Λ~

φij =
√
i φi−1,j. (6.77)

This is complemented by the respective action of the right derived representation

a+
R~
φij =

√
j + 1 φi,j+1, a−R~

φij =
√
j φi,j−1. (6.78)

Two actions—the left and the right—jointly create the two-dimensional lattice struc-

ture shown in Fig. 6.1. The collection of all vectors φij is an orthonormal basis of

L2(R2) [44]. In greater detail, the first row represents an orthonormal basis of the im-

age space of the co-covariant transform vacuums {φ̃f = W̃φ~κ(f) : f ∈ L2(R)} (6.72).

This implies that the operator a−Λ~
annihilates the whole space generated by the first

horizontal ladder in Figure 6.1.

Due to the commutativity of the left and right actions, the first column is an

orthonormal basis of the covariant transform image Wφ~κ(f) (the pre-FSB component

H0 := Fφ~κ = {f̃ : f̃ = Wφ~κ(f), f ∈ L2(R)} (6.22)) annihilated by

LκX+iY φj0 = 0, ∀, φj0 ∈ H0, j ∈ N. (6.79)
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Figure 6.1: Decomposing the left quasi-regular representation

Since the Wφ~κ(f) is a unitary operator between the invariant irreducible space L2(R)

and the image space H0, the component H0 is invariant and irreducible with respect to

Λ~ (see Corollary 6.7). The other vertical ladders also generate corresponding invariant

irreducible components Hn (n ∈ N). This is because for each n ∈ N, there is a

covariant transform WΛ~
φ0n

: Hn → L2(R) such that its fiducial vector is taken to be the

vacuum φ0n of Λ~. Then, WΛ~
φ0n

(f) intertwines the left quasi-regular representation Λ~

restricted on Hn (n ∈ N) and the Schrödinger representation ρ~ on L2(R), which is

already invariant and irreducible.

Now, we decompose the space L2(R2) into a direct sum of the invariant irreducible

subspaces

L2(R2) = ⊕∞n=0Hn, (6.80)

where each Hn is generated by the n-th unique vertical ladder, i.e.,

Hn = span{φ0n, φ1n, · · · }. (6.81)

Each component Hn, for n = 0, 1, · · ·, possesses the following properties for all j ∈ N:

(LκX+iY )mφjn = 0, ∀m ≥ n and (LκX+iY )n−1φjn 6= 0. (6.82)
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If n = 0, we have the pre-FSB space H0. If n > 0, the components Hn are called the

n-th true pre-poly-analytic subspace [44]. Fig. 6.1 visualises a decomposition of L2(R2)

into irreducible subspaces of the left quasi-regular representation. The described de-

composition is not unique, but it is distinguished among infinitely many others through

its connections to the poly-analytic functions.

6.5 Peeling Representations of H1
p and Analyticity

Since the annihilation operator provides a useful characterisation of an irreducible com-

ponent of a representation ρ we are interested in expressing it in the most transparent

form. The peeling of the representation ρ is useful because it simplifies the correspond-

ing annihilation operator to be a linear combination of derivatives only. Therefore, it

also simplifies the structure of the eigenvectors φn (5.30) forming an orthonormal basis

of the initial irreducible space H. Sometimes, say for the pre-FSB representation, we

are able to peel an irreducible representation to a space of analytic functions. In this

situation, one can use all complex analysis theorems to study the induced representa-

tions of H1
p.

Definition 6.21. [33] LetG be a group and ρ be a representation on a space L2(X, dµ(x))

of square integrable functions on some set X with an appropriated measure dµ(x). A

peeling εd is an invertible operator of multiplication defined by a function d(x) on X:

εd : f(x) 7→ ed(x)f(x). (6.83)

The operator εd is unitary for suitably related measures:

εd : L2(X, dµ(x))→ L2(X, dν(x)) (6.84)

such that dν(x) = e−2<d(x)dµ(x).

In this thesis, all considered peelings use smooth d(x) on a domain X in a Euclidean

space. We will discuss the choice of d(x) for the pre-FSB, Schrödinger and lattice

representations in Subsections 6.5.1, 6.5.2 and 6.5.3, respectively.
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6.5.1 Peeling the (Pre-) FSB Representation

Let Λ~ be the pre-FSB representation (5.14), which acts irreducibly on the pre-FSB

space Fφ~κ (6.22). Consider the variables z, z̄ ∈ C, where z =
√

h
2κ

(x + iκy) and

h = 2π~ > 0. In this subsection, we peel the representation Λ~ into the corresponding

one Λ̃~ that acts on the FSB space of analytic functions. Moreover, we want to simul-

taneously simplify two ‘orthogonal’ sets of ladder operators from Fig. 6.1. To perform

this, we look for a peeling operator satisfying the following conditions:

i. The peeling defined by ed(z,z̄) shall intertwine the right annihilation operator

LκX+iY = 2π~x+ (κ∂x+ i∂y) and the Cauchy–Riemann operators ∂z̄ = κ∂x+ i∂y:

∂z̄ ed(z,z̄)f(z, z̄) = ed(z,z̄)LκX+iY f(z, z̄). (6.85)

A simple differential equation for (6.85) implies that d(z, z̄) = ψ̃(z) + 1
4
(z + z̄)2,

where ψ̃ is an arbitrary smooth function of z alone.

ii. The same peeling shall intertwine the left annihilation operator a−Λ~
= 2πi}κy −

(κ∂x − i∂y) with (a multiple of) the complex derivative ∂z = (κ∂x − i∂y). This

fixes ψ̃(z) = −1
2
z2 − c and the peeling operator becomes

εd · I = ed(z,z̄) · I = e
h
4κ

(x2+κ2y2−2iκxy)−c · I

= e−
1
2
z2+ 1

4
(z+z̄)2−c · I

= e
1
4

(z̄2−z2+2zz̄)−c · I.

(6.86)

The consequence of the above conditions is that the peeling maps the vacuum φ00, which

is killed by both the left and right annihilation operators to the function identically

equal to c0 ∈ C, c0 6= 0, which is killed by both ∂z and ∂z̄. To find the corresponding

representation on the space F }
2 of analytic functions after peeling, we consider its

composition with the covariant transform:

F (x, y) =

(
}
κ

)1/2

e
h
4κ

(x2+κ2y2−2iκxy)−c
∫
R
f(t) e2πi}ty e−

π}
κ

(t−x)2

dt

=

(
}
κ

)1/2 ∫
R
f(t) e−

π}
κ
t2 e

2π}
κ
t(x+iκy) e−

π}
2κ

(x2−κ2y2+2iκxy) dt

=

(
}
κ

)1/2 ∫
R
f(t) e−

h
2κ
t2+
√

2h
κ

tz− 1
2
z2

dt =: F (z),

(6.87)
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where F is an analytic function. Indeed, the function F (z) = ed(z,z̄)f̃(z) (6.87) satisfies

the Cauchy-Riemann equation

∂z̄F (z) = (κ∂x + i∂y)F (x, y) = 0.

The integral (6.87) is known as the FSB transform. The image F }
2 of the FSB trans-

forms is called the FSB space. It is a closed subspace of

L2(R2, e−
h
2κ

(x2+κ2y2)+2cdx dy) = L2(C, e−|z|2+2cdz dz̄), (6.88)

and often only values ~ = 1, κ = 1 and c = 0 are used [44]. Now, we calculate the

corresponding representation Λ̃~:

ed(z′,z̄′)Λ~(g)e−d(z′,z̄′)F (z′) = e
1
4

(z̄′
2−z′2+2z′z̄′)Λ~(s, z)e

− 1
4

(z̄′
2−z′2+2z′z̄′)F (z′)

= ehis− 1
2

(z2−z̄2)− 1
4

(z̄2−z2+2zz̄)+z̄z′ F (z′ − z)

= ehis+ 1
4

(z̄2−z2−2zz̄)+z̄z′F (z′ − z)

=: [Λ̃~(s, z)F ](z′),

(6.89)

for any analytic function F and g ∈ H1
p. The action

[Λ̃~(s, z)F ](z′) = ehis+ 1
4

(z̄2−z2−2zz̄)+z̄z′F (z′ − z) (6.90)

is called the FSB representation. It agrees with the previously imposed annihilation

operator:

a−
Λ̃~

= dΛ̃κX−iY
~ = −

√
2hκ ∂z, (6.91)

which annihilates the vacuum φ̃~κ(z) = c0 ∈ C. Furthermore, the intertwining property

implies:

Corollary 6.22. The action Λ̃~ = εd ◦ Λ~(g) ◦ ε−1
d (6.90) is a unitary irreducible

representation of H1
p in the FSB space F }

2 . Two such actions, Λ̃~ and Λ̃~′, are not

equivalent for } 6= }′.

Similar to the pre-FSB transform, we calculate the composition of the pre-theta
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transform f̃ (6.48) and the peeling e
h
4κ

(x2+κ2y2−2iκxy)−c (6.86), h = 2πm, as follows:

F̃ (x, y) = e
h
4κ

(x2+κ2y2−2iκxy)−c f̃(x, y)

=

∫
T2

f(u, v) e−
πm
κ

(u2+2iκuv)−πm
2κ

(x2−κ2y2+2iκxy)+ 2πm
κ
u(x+iκy)−c

× Θ̄mκ

(√
h

2κ
(κ(v − y) + i(u− x), i

)
du dv

=

∫
T2

f(u, v) e−
πm
κ

(u2+2iκuv)− 1
2
z2+2
√

πm
κ
uz−c Θ̄mκ(−i(z̄′ − z̄), i) du dv

= F̃ (z),

(6.92)

where z =
√

h
2κ

(x + iκy) ∈ C. It was considered in Subsection 5.4.3 that the theta

function Θmκ(ω, i) is analytic in ω =
√

h
2κ

(κy + ix) = iz̄. Thus, Φ̄(z̄) = Θ̄mκ(iz̄, i) is

analytic in z. Therefore, the function F̃ (z) = ed(z,z̄)f̃(z, z̄) (6.92) satisfies the Cauchy-

Riemann equation

∂z̄F (z) = (κ∂x + i∂y)F (x, y) = 0. (6.93)

We call F̃ (x, y) the theta transform. Note that in both cases of peeling the pre-FSB

and pre-theta spaces, we obtained the well-known space of analytic functions, which

can be found in many references, such as [8, 19, 35]. Similar to the decomposition of

the left quasi-regular representation on L2(R2), we decompose FSB representation into

irreducible components

L2(C, e−2<(dn,~(z,z̄))dz dz̄) = ⊕∞n=0F
n,~
2 (C),

where F n,}
2 (C) are the corresponding invariant irreducible subspaces having the follow-

ing property:

F n,~
2 : ∂mz̄ f = 0, ∀m ≥ n, ∂n−1

z̄ f 6= 0. (6.94)

The spaces F n,}
2 (C) are called the n-th true poly-analytic space [44]. In particular, if

n = 0, we deliver to the FSB space of analytic functions.

6.5.2 Peeling the Schrödinger Representation

In this subsection, we peel the Schrödinger representation ρ} (5.17) so that the corre-

sponding annihilation operator in the corresponding space will be only the derivative
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∂t. As in the case of peeling the pre-FSB representation, it is a matter of simplifying

the eigenfunction (vacuum) of the initial component.

Let c ∈ C be a non-zero arbitrary constant. In Subsection 5.4.2, we obtained

the vacuum φ~κ(t) = c e−
π~
κ
t2 ∈ L2(R) of the annihilation operator a−ρ} = dρκX−iY

} =

−2π}t− κ∂t (5.41). We choose a peeling operator εd defined by d(t) such that

εd : φ~κ 7→ ed(t)φ~κ

c e−
π~
κ
t2 7→ φ̃ = c.

(6.95)

Thus,

εd · I = e
π~
κ
t2 · I. (6.96)

Then, εd transforms the Hermite functions Hn(t)e−
π~
κ
t2 from the initial representation

space of ρ}, to the corresponding Hermite polynomials Hn(t), where the equivalent

representation ed(t) ◦ ρ} ◦ e−d(t) acts. The operator εd is unitary:

εd : L2(R, dt) −→ L2(R, e−2π~
κ
t2dt). (6.97)

The system of chains in Figure 6.2 represents the peeling transformation. The cor-

H0(t)e−
π~
κ
t2

a+

��

εd // H0(t)

ã+

��

H1(t)e−
π~
κ
t2

a−

OO

a+

��

H1(t)

ã+

��

ã−

OO

H2(t)e−
π~
κ
t2

a−

OO

a+

��

H2(t)

ã−

OO

a+

��

H1(t)e−
π~
κ
t2

a−

OO

a+

��

H1(t)

ã+

��

ã−

OO

...

a−

OO

...

ã−

OO

Figure 6.2: Transforming Hermite functions to Hermite polynomials

responding representation ρ̃~ acting on F ∈ L2(R, e−2π~
κ
t2dt) is calculated as follows:
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[ed(t) ◦ ρ}(s, x, y) ◦ e−d(t)F ](t) = e
π~
κ
t2e2πi}(s−ty)e−

π~
κ

(t−x)2

F (t− x)

= e2πi}se−
π~
κ

(x2−2xt+2iκyt)F (t− x)

= e2πi}se−
π~
κ

(x2−2t(x−iκy))F (t− x)

=: [ρ̃~(s, x, y)F ](t).

(6.98)

Consequently, the corresponding derived representations of the Lie algebra h1 are

dρ̃X~ = 2π~t− ∂t, dρ̃Y~ = −2πi~t (6.99)

and the annihilation operator a−ρ̃~ is

a−ρ̃~ = dρ̃κX−iY
~ = −∂t, (6.100)

which annihilates the vacuum φ̃(t) = c.

6.5.3 Peeling the Lattice Representation

The purpose of peeling the lattice representation ρm is similar to that of peeling the

Schrödinger representation ρ~. That means we will simplify the initial vacuum (5.47)

Φ(ω, ω̄) = c e
1
4

(3ω2−ω̄2−2ωω̄) Θmκ(ω, i), ω =

√
h

2κ
(κv + iu) ∈ C, (6.101)

of ρm calculated in Subsection 5.4.3, for any non-zero c ∈ C. We choose a peeling

operator εd defined by d(ω, ω̄) such that

εd : Φ(ω, ω̄) 7→ ed(ω,ω̄)Φ(ω, ω̄)

= c Θmκ(ω, i).
(6.102)

Thus,

εd · I = ed(ω,ω̄) · I

= e−
1
4

(3ω2−ω̄2−2ωω̄) · I.
(6.103)

Then, εd is a unitary operator:

εd : L2(T2, dω dω̄) −→ L̂2(T2, e−2<d(ω,ω̄)dω dω̄)

−→ L̂2(T2, e−
2πm
κ
u2

du dv) =: H̃.
(6.104)
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Furthermore, for all F ∈ H̃, the corresponding irreducible lattice representation ρ̃m

acting on H̃ is

[ed(ω′,ω̄′)ρm(s, ω)e−d(ω′,ω̄′)F ](ω′, ω̄′) = e2πmis e
1
4

(ω−ω̄)2+ω(ω̄′−ω′)F (ω′ − ω, ω̄′ − ω̄)

=: [ρ̃m(s, ω)F ](ω′, ω̄′).
(6.105)

Therefore, the corresponding annihilation operator is simply

a−ρ̃m = dρ̃κX−iY
m = i

√
2hκ ∂ω̄, (6.106)

which annihilates the theta function Φ̃ =: cΘmκ(ω, i).
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Chapter 7

Epilogue

7.1 Conclusion and Further Work

Taylor coefficients can be viewed as one of the fundamental examples of the covariant

transform [26, 29] of analytic functions. Many classical results of harmonic analysis

describe how the properties of functions are “transported” by the covariant transform

[28,30]. The results presented in Chapter 2 show a certain stability in this transporta-

tion: a small variation in the Taylor coefficients preserves certain properties of the

function under consideration.

Our work in the remaining chapters provides a detailed construction of equivalent

representations of the (polarised) Heisenberg group H1
p. This is summarised in Ta-

ble 7.1. Furthermore, we have also found the corresponding vacuums and irreducible

components. Using the covariant transform in a systematic way is a new approach to

produce:

i. the Zak transform and its inverse;

ii. the theta function as a vacuum of the Zak transform; and

iii. the pre-theta transform and its inverse.

Furthermore, we used the peeling operator to obtain the FSB space of analytic func-

tions. In Figure 1.1, we have shown how our work on the intertwining operators relates

these representations of Heisenberg group H1
p.

The main objective of the subsequent research will be a proper extension of the

covariant transform for distributions. This shall be done to cover all aspects of the

85
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Zak transform and its inverse. Furthermore, our research will make a closer connection

between singularities of a complex analytic function f and the representations theory

of the Schrödinger group G = H1
p o SL2(R). We shall pay close attention to the theta

function Θ, which has the real line as a natural boundary. Some recent research about

the natural boundaries for power series can be found in [10].
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