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Abstract

The human upper forearm (UFA) consists of several muscles. These muscles are used

by researchers to identify the hand movements based on their acquired EMG signal. The

precision of EMG signal features and parameters proportionally vary with muscle signal,

features and fatigue. The major challenge for the study is to identify fundamental manifes-

tation in the EMG signal in muscle localisation in the human UFA regions, so that EMG

based control performance is improved. This can be achieved through improvement of data

collection, features extraction and classification. Hence, a fundamental study is performed

by investigating the signals acquired from the human UFA to discover muscle character-

istics and to establish the inter-relationship between the forearm and upper arm muscles.

The principal objective of this study is to investigate the research challenges stated earlier

via non-invasive EMG acquisition. Therefore, experimental protocols for data collection

are designed to achieve the study objectives. Using new features extracted from muscle

inter-relationship, feature reductions and specific classifier, a linear discriminant analysis

(LDA) is trained to detect possible errors in classification decisions. Non-stationary condi-

tions in real life applications for normally limbed human are taken into account in the data

collection strategy, such as different levels of maximum voluntary contraction (MVC) so

that the classification is robust and accurate estimations are achieved. The proposed study

contributes towards the enhancement of data collection strategy, extraction of best features

and parameters, and optimal classification accuracy for the control strategy. Furthermore,

it is established that the relationship between human UFA muscles is contributed from the

movement with an accuracy of >90%. This provides an additional insight into the inter-

relationship between both muscle regions (forearm and upper arm), which is unique in this

study.
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Chapter 1

Introduction

Many people suffer from losing their forearm or upper arm due to diseases, accidents, or

war. In England, there are 44 actively operating prosthetics service centres. Diabetes 42%

and dysvascularity 72% are the most common reasons for the amputation (source from

NASDAB,2009). There are more than 130 diabetes amputation cases reported every week,

based on an analysis by Diabetes UK. The annual number of diabetes-related amputations

has increased up to 7,000 in 2015. This is 4.83% of increment from the previous year,

2014. The human UFA amputation statistics in England has increased dramatically with

300 cases per year.

The statistics in Malaysia show that amputation cases have increased dramatically since

1990 due to accidents and chronic diseases such as diabetes. In 2010, it was estimated that

more than three million Malaysians suffered from diabetes. This could lead to amputa-

tion if the disease gets worse. Performances currently achieved with prosthetic control

are yet far from imitating the real function of the human hand. Most of the prosthetic de-

vices available in the market today do not provide sensational feeling and are not a natural

substitution for the missing limb.

The main focus of this study is on the forearm and upper arm of normally limbed

subjects, with normal hand and fingers movement before and after fatigue. It is aimed to

provide benchmark analysis and strategies of data collection for UFA regions, parameters

of feature extraction, and classification accuracy. This could be the reference for amputa-

tion cases where the findings will help clinicians to understand the variations of normally

limbed subjects compared to amputee subjects. Therefore the enhancements of the EMG

1
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data collection strategies including force variations and fatigue for different hand or fin-

ger movements, and robust classification techniques are essential for the development of

suitable prosthetic controls.

Since the 1980s, there have been numerous studies on the human normal limbed surface

EMG signals for movement identification to be used as input for prosthetic arm control.

These studies have used a non-invasive recording technique of surface EMG on the forearm

(Doerschuk et al. (1983)) and upper arm (Winters and Kleweno (1993)). This shows the

importance of such studies in order to help people with such a problem to have a better

life.

In this chapter, a brief background of the EMG signal is given. The motivation of

the study is also discussed. The motivation is also discussed, and the problem statement

is outlined. Hypotheses and research questions are listed to support the study objectives.

Finally, the objectives and scope of the study are pointed out at the end of this chapter.

1.1 Background of EMG

Electromyography (EMG) is one of the significant components in the nerve conduction

studies. EMG is one of the techniques for detecting, recording and evaluating the action

potential produced by the muscles of the body. It is also known as the diagnostic procedure

for the muscle health assessment and the motor neurons control. The origin of EMG action

potential or pulse comes from the central nervous system (CNS).

The brain sends the signals once the person wants to move their body parts. This will

initiate the muscle fibres through the motor neuron and the muscle contracts. The brain

signal is transferred along the nerves through the motor neurons carrying information in

pulse repetition or known as frequency. The action potentials generated from this occasion

is known as Motor Unit Action Potentials (MUAPs)(Stein and Milner-Brown (1973)).

The EMG is the accumulations of the amplitudes produced or known as MUAPs. When

the muscles contract, the individual motor unit firing rate and the number of motor unit

activation rise linearly to the voluntary muscle contraction of the person. EMG gives easy
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access to understand the physiological operation that manifests the generation of muscle

force, movement, and functions. The generation of EMG signals allows us to do countless

activities to interact with the world. The use of EMG and its properties has been discussed

extensively in De Luca (1997).

1.2 Motivation of the study and its significance

Classification of information based on the human UFA movements is needed to improve

the capabilities of disabled people, both physically and physiologically. A disabled person

may have problems or weaknesses in the muscles contraction or is amputated, thus with

difficulties to produce different kinds of hand, fingers, and wrist movements. Therefore,

the EMG acquired from their UFA muscles can be used to help them to move as ordinary

people. The signals relating to curl exercise, fingers pinch, handgrip force, wrist rotation

from the UFA muscle help develop the control system of a prosthetic arm. The prosthetic

arm control should be essential enough for the disabled person to perform like the normal

one.

Fingers pinch, hand grip, curl exercise, and wrist movement identifications will lead

to various applications of prosthetic arm based controllers. Many of the prosthetic limbs

available in the current market give narrow applicability for the users. Some of them lack

the precision of control, due to the limited access of the data acquisition, inaccuracies in

signal processing, and with a small number of degree of freedom for the movements.

A direct approach of assessing all the muscles involved in the human UFA regions with

various movements could be one of the solutions for improved functionality. The fatigue

study during the task also would be an advantage as the current controllers are impractical

because they cannot classify the low level of muscle contraction or muscle fatigue (MF).

Therefore during this study, data acquisition of EMG in the human UFA region will be

enhanced, with a suitable algorithm in processing the signals to be identified, overcoming

the current shortcomings.

The significant component in achieving reasonable prosthetic arm control lean on the
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suitability of features and classification algorithm. In the last 20 years, research on the

development of pattern classification to distinguish various arm movements has intensively

been carried out by many scholars. For example, pattern classification based on fuzzy

mapping function was introduced in Sang-Hui and Seok-Pil (1998). This kind of study was

extended by many, utilizing multiple classification algorithms as discussed in Guersoy and

Subasi (2008); Lalitharatne et al. (2013); Subasi and Kiymik (2010). However, most of

the studies focus only on a single region of the human UFA. For instance, they only focus

on the forearm muscle or upper arm muscle. The current research focuses on paralysed

persons or those amputated in the middle region between the forearm and upper arm, where

the current single system approach will not be adequate.

1.3 Hypothesis

If the muscles activity is producing signals associated with the power magnitudes, their

response within various kinds of events is excellent for study to magnify the individual

skills and form the new way in the human-machine interaction. The hypotheses of the

study are listed below:

• Since the forearm is considered an upper arm region, the hand’s movement can be

identified both from the forearm and upper arm muscles. It is possible to decode the

hand movements using surface EMG both from the forearm and upper arm of the

normally limbed subject.

• Normal EMG signals from muscle contraction are highly correlated with the force

generation.

• Fatigued EMG signals are shown by a decline in the spectral moment parameters

and an increase in those temporal moment parameters.
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1.4 Research questions

The motivation and hypotheses of the study have created the following research questions:

1. What is the relation between the human UFA muscles (forearm and the upper arm)

and the specific movements, force, MVC, and angles?

- Is it reliable to decode finger and hand movements using both forearm and upper

arm muscles? And if so, are there any significant differences in features from both

muscles?

- What is the relation between the two muscles region and the statistic of the EMG?

Are muscles needed to cooperate to produce a robust control strategy?

2. Do the variations of the force, percentage of MVC (%MVC), and angle depend on

each other?

- What happens to the variations or changes of the parameters? How do these varia-

tions affect the classification performance of the system?

3. How well the current study devise methodology, features extraction and classifica-

tion technique for the forearm and upper arm control?

- What are the optimal features to be used for the study? How stable the features will

be? What is the characteristic of the time, frequency and time-frequency domain

characteristics?

- The number of EMG channels needed for good classification accuracy?

The research questions listed will lead to the research objectives for the study. This

will include the new data acquisition strategy for multi region of the human UFA and will

improve the training and classification development of the algorithms. The signals from

various muscle sources will reveal any between them.
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1.5 Study objectives

The problem statement arise from the previous motivation, hypothesis, and research ques-

tion for this study is based on the current achievement so far. Since there are so many

disabled people or amputated people having difficulties in term of their muscles becom-

ing weak, thus unable to produce certain hand movements. This also contributes from the

current tech developed for this people are narrow in their applicabilities for the user. This

is due to the limitation in data acquisition and the inaccuracy or discrepancy of the signal

used in the application.

The objectives of the study is developed based on the problems stated earlier. Direct

approach of assessing and establishing the inter relations of all the muscle involved in the

human UFA regions with various hand movements could be one of the solutions. The

fatigue study as well would be an advantages as it becomes major contributor for making

the current controller become useless. Hence, it is hoped that from this motivations, the

new types of protocols, features and classification development could be done as this would

overcome the current shortcomings. Therefore, to tackle the issues discussed earlier, the

following set of study objectives are devised:

1. To develop a suitable methodology for surface EMG acquisition, best muscle posi-

tion and features extraction for the classification purpose.

2. To investigate development of a suitable approach for muscle selection and electrode

placement of the human UFA via surface EMG acquisition based on different hand

grip force, fingers pinch, %MVC, angle, and wrist movement.

3. To establish relationships between forearm and upper arm EMG signal parameters

for prediction of hand grip force, fingers pinch with various forces as well as wrist

movement.

4. To propose robust features extraction parameters, classification algorithm to coup

with normal EMG and MF with high classification accuracy.

5. To validate the proposed features, method and classification accuracy in comparison
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to previously reported method in the literature.

1.6 Scope of the study

The scope of the study is limited to the following:

• The human UFA region such as forearm muscle and upper arm muscle are consid-

ered in this study. This will include surface EMG procedures for data collection.

• The study includes fifteen (15) subjects; males and/or female aged 20-40 years, nor-

mally limbed without any neuromuscular problems.

• The experimental procedures for the study involve the forearm and upper arm mus-

cles of the subject. The emphasis will be on activities of the human UFA movements

related to: i) extraction of EMG signals both from the forearm and upper arm mus-

cles and regions contributing to finger(s) pinching at various wrist movements, ii)

extraction of EMG signals from both muscles and regions contributing to the hand

grasping, wrist movements, and curl exercises, iii) extraction of EMG signals from

both muscles and regions contributing to pronation and supination of hand with curl

exercises, vi) extraction of EMG signals from both muscles and regions contributing

to curl exercises alone.

• The experimental set up and analysis tools used in the project will include the data

acquisition system (manufactured by Vernier), a unit of LabQuest mini, a unit of

hand dynamometer, 2 channel EMG sensors, Logger Lite software package and a

computer. The disposable (Ag-AgCl) diagnostic tab electrodes (Kendall 5400) will

be used in the study.

• Matlab R2015b version 8.6 and OriginPro 2019 software for the analysis and plot-

ting.
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1.7 Contributions

The contributions to knowledge of the research comprise of the following:

i. The nature of human upper forearm EMG signals on different muscles localisation

are identified using a proposed practical procedure for detection, and analysis. This

is in conjunction with the standards procedure from SENIAM (Merletti (2000); Mer-

letti and Hermens (2000)).

ii. Proposed new acquisition strategies and development, including EMG acquisition

system to be used, subject preferences, sensors selection, and muscle selection pro-

tocol.

iii. Established a new way of interpretation of EMG based analysis, such as classifica-

tion systems and algorithms involving pre and post processing, feature extraction

and projection, classification and performance analysis.

iv. Investigated and evaluated the new approaches of data collection based on the de-

veloped protocols and assessing the human upper forearm muscles with force varia-

tions, contributing towards optimising the best classification performance.

v. Minimised the number of EMG channels or muscles used in the data collection, this

will optimise the cost, and reduce the complexity and computational time in data

analysis.

vi. Development of a new feature for the best classification scheme and achieving sig-

nificant enhancement in term of classification accuracies.

The contributions arising from this study are published and presented in several educa-

tional events as given below:

* WMB Wan Daud, N. A. and Tokhi, M. (2017). Assessment strategy of human

upper forearm inter-relation and muscle fatigue. In CLAWAR2017: 20th Interna-

tional Conference on Climbing and Walking Robots and the Support Technologies

for Mobile Machines. London South Bank University.
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* Daud, W. M. B. W., Abas, N., and Tokhi, M. O. (2018). Effect of two adjacent

muscles of flexor and extensor on finger pinch and hand grip force. In 2018 5th

IEEE International Conference on Control, Decision and Information Technologies

(CoDIT), pages 140–145.

* Abas, N., Daud, W. M. B. W., Abas, M. A., and Tokhi, M. O. (2018). Electromyo-

graphy assessment of forearm muscles: Towards the control of exoskeleton hand.

In 2018 5th IEEE International Conference on Control, Decision and Information

Technologies (CoDIT), pages 822–828.

* Daud, W. M. B. W., Abas, N., and Tokhi, M. O. (2018). Classification performance

based on feature reduction of number of adjacent forearm muscles using EMG sig-

nals. The Proceedings of the Institution of Mechanical Engineers, Part 1: Journal of

Systems and Control Engineering - JSCE-18-0261- Under second review

1.8 Thesis structure

The thesis is divided into seven (7) chapters. The foundation of the work and the literature

review are included in Chapter 1 and Chapter 2. Chapters 3 and 4 contain the methods, ma-

terials, and subject preferences employed in this research, and present the general knowl-

edge on EMG signals, mathematical modelling of the features used in this study. Chapter

5 addresses several analyses of the study, found through the work and that are used for

development in Chapter 6. Finally, Chapter 7 reviews the overall achievement of the study,

conclusions, and states the limitations of the work as well as recommendations for future

works related to the study. A summary of each chapter is provided in the paragraphs below.

Chapter 2 presents details of the literature reviewed on this study. This involves discus-

sions on previous research study, the outcomes and the methodologies used. The human

upper forearm based EMG signal model, characteristics, fatigue manifestation and muscles

coordination are also discussed in detail to give an overview about the study.

Chapter 3 provides details of investigations for the development of enhanced approaches

of detecting, analysing, and classifying the human upper forearm EMG signal. These
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include discussion on the standard procedure in detecting the EMG signal using mus-

cle coordination, positioning, and electrode placement published by SENIAM. Then, the

newly developed acquisition strategies are proposed and implemented for this study. The

proposed development includes EMG acquisition system to be used, subject preferences,

sensors selection, and muscle selection protocol. The chapter also describes in detail the

data collection strategies utilised in this study, which have been awarded ethical approval

from the Ethical Committee of the University of Sheffield. Several protocols have been

developed to consolidate in this study so that the data collected can be used to achieve the

objectives of the study.

The state-of-the-art classification systems and algorithms are introduced and discussed

in Chapter 4. Particularly, the entire processing series of the classification system is de-

scribed in detail, such as pre and post-processing, features extraction, dimensional reduc-

tion and projection, classification, as well as performance analysis. These approaches are

briefly explained and the justification of using them in this study is presented. This chapter

forms the basis for the classification approaches that are employed in Chapters 5, and 6.

The study employed two approaches of dimensional reduction, namely PCA and ULDA.

These are explored and tested with LDA classifiers.

Chapter 5 explores and evaluates the new approaches of data collection and assess-

ing the human upper forearm muscles with force variations, as well as muscle fatigue.

The chapter provides proposition for the most appropriate use of muscle to establish the

inter-relation between two regions of the human upper forearm with the statistical features

extracted from the TD and FD domains. This study presents an insight into the overall ob-

jectives of the study, which ultimately proposes and developed of new features using TFD

to distinguish the best classification accuracies for the specific hand movements. This is

achieved by analysing the EMG signal from the particular muscles as denoted in the chap-

ter. A new fuzzy mutual information based feature (FEFWC) is utilised and analysed using

two feature reduction technique, PCA and ULDA. LDA has been chosen as the classifier

to compare the classification performances between the new features and other features

from TD and FD. The results produced shown distinctively significant, especially on the
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proposed features developed. This is supported by the statistical analysis performed using

ANOVA, which is presented in detail in Chapter 6.

Chapter 7 presents an overall discussion and conclusions of the work, with specified

contributions of the study. The limitations of the study and analysis are listed in this

chapter, and future works are suggested in relation to the study objectives.



Chapter 2

Literature review

2.1 Introduction

In this chapter, an overview of EMG signals origination and propagation, characteristics of

EMG, muscle fatigue and the human UFA is presented. This will give a brief explanation

of the EMG signals of the human UFA as well as the applications related to the EMG. The

analysis approaches for time domain (TD), frequency domain (FD), and time-frequency

domain (TFD) are discussed in terms of the strengths and limitations. Thus, the proposed

improvement of the study is highlighted.

2.2 The model of EMG signal

In the 1666s, Francesco Redi became the first to explore muscle activities from electric

ray fish. He discovered that the fish muscles generated electricity once they were in a

specific condition(voluntary contraction). Then, Luigi Galvani was credited as the founder

of neurophysiology for his finding using frogs. He established that electrical stimulation

of muscular tissue produces contraction and force (Raez et al. (2006)).

EMG is a visual imitation of electrical activity from muscle’s exercise. The EMG is

an extracellular surface registration of the voltage potentials that happen during a muscle

compression. Muscle cells are polarized at rest. This means the cells have insignificantly

unbalanced concentrations of ions beyond their cell membranes. An abundance of positive

sodium ions on the outside of the layer produces, resulting in an outer layer having more

12



2.2. Human Upper Forearm 13

positive charge compared to the inner membrane. The hidden cell potentials can roughly

at 90 millivolts (mV ) less than the outer membrane. The 90mV difference is known as the

resting potential (Vernier Software Technology (2019a)).

The average cell membrane is approximately impermeable to the entry of sodium. But,

stimulation of a muscle cell causes an increase in its permeability to sodium. Sodium ions

travel into the cell through the opening of voltage-gated sodium paths. This forms a change

(depolarization) in the electrical field throughout the cell. This difference in cell potential

from negative to positive and back is a voltage pulse defined as the action potential. In

muscle cells, action potential triggers muscle contractions.

EMG signals are derived from the time variation of muscle contraction. It is a tech-

nique of detecting and recording the excitation of the electrical potential of the activated

muscles. The generation of the EMG originates from the flow of the ions through the

muscle fibre. The brain command generates the ions and innervated by motor neurons

through the motor unit. The surface EMG signal recorded by means of the electrode ex-

posed the real activities of individual muscle (or group of muscles). This was the results

of the properties of firing rates of motor units, as a function of time and force (De Luca

(1985)).

This creates the MUAPs, known as the basic building block of the neuromuscular sys-

tem. It is also referred to as a fundamental element of EMG signal propagation, and the

MUAPs model is thoroughly discussed in McGill (2004). Most MUAPs amplitudes range

from 100µV to 10mV . Figure 2.1 shows the MUAPs development from the individual

muscle fibres of activated motor units.

MUAPs is much depended on the size of muscle fibre, which is a larger amplitude in

long fibre. The shape of MUAPs also influenced by many factors such as the innervation

zone, and muscle fibre number (Merletti and Parker (2004)). The intended movement

such as finger pinches or hand gripping will require more force; hence the central nervous

system responds by increasing the motor units activation and firing rates of every single

motor units.

The signals generated from these activities are presented from the signal characteristics
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Figure 2.1: MUAPs developed from individual muscle fibre action potential composition Kamen
and Caldwell (1996)

such as their intensity and the power spectrum. This can be referred to as RMS, MPF,

MNF or rectified mean value of their frequency spectrum. All these characteristics are

attributed to as the global sEMG variables because they represent the overall picture of the

muscle condition. These variables allow EMG to be modelled and related to the underlying

properties of the central and peripheral in the muscle (De Luca (1982,8); Luca (1979)).

(a) EMG raw signal in time (b) EMG spectrum

Figure 2.2: The raw EMG signals and its power spectrum for references. This details can be found
in Appendix B

EMG is known by many as a bandpass random signals where the energy was realised

in the specific bandwidth (1-400 Hz) (Merletti (1999)). This type of signals are special

when initialising their spectrum, and they exhibit a series of localisation peaks whose

their stochastic properties (Zivanovic (2014)) determines time and frequency. EMG is
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considered stochastic in its process whose their amplitude is based on the muscle activation

level, and the spectral properties are based on the conduction velocity (Bonato et al. (2001);

McGill (2004)). The basic model of EMG signal for dynamic contractions has been used

in this study can be represented as:

x(t) = a(t)f(t) + n(t), (2.1)

where f(t) is a unit-variance random process expressing the stochastic features of the

signal, a(t) is the modulating signal that shows the power or amplitude of the EMG signal,

and n(t) denotes instrumentation and biological noise which may occur in EMG signal.

Sometimes the noise can be neglected if the proper preprocessing technique takes place

before analysing the EMG signal.

Thus far, the mathematical model developed for EMG signal was based on the human

muscle contraction, and most of the EMG model contributed in many studies are restricted

to the current physiological knowledge (Zivanovic (2014)). Consider Figure 2.2 shows an

EMG signal from one channel of muscle and their frequency spectrum using the Welch

method. The mathematical representation for EMG signal x(t) can be approximated as a

K component of a time-varying model x̂(t):

x̂(t) =
K∑
k=1

Ak(t)cos(2πfk(t)t+ θk), (2.2)

where Ak(t) and fk(t) are the instantaneous amplitude and frequency respectively.

Mathematical equation in (2.2) can be rewritten in a simply and better way as follows:

x̂(t) =
K∑
k=1

ak(t)sin(2πfk(t)t+ bk(t)cos(2πfk(t)t), (2.3)
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ak(t) = −Ak(t)sinθk, bk(t) = Ak(t)cosθk, (2.4)

In equation (2.3), the unknown parameters ak(t),bk(t), and fk(t) need to be estimated.

For N measurement points t = t1....tN , the expression (2.3) becomes an N-dimensional

linear system with 3NK unknowns. Such a systems cannot be solved; however it can

be assumed that in the analysis window the time variations of ak(t),bk(t), and fk(t) are

continuous,and therefore can be approximated by the following time polynomials for k =

1....K:

ak(t) = a
(k)
0 + a

(k)
1 t+ a

(k)
2 t2 + ....+ a

(k)
M tM =

M∑
m=0

a(k)m tm, (2.5)

bk(t) = b
(k)
0 + b

(k)
1 t+ b

(k)
2 t2 + ....+ b

(k)
M tM =

M∑
m=0

b(k)m tm, (2.6)

fk(t) = f
(k)
0 + f

(k)
1 t+ f

(k)
2 t2 + ....+ f

(k)
M tM =

M∑
m=0

f (k)
m tm, (2.7)

By inserting equation [2.5 − 2.6] into [2.3]:

x̂(t) =
M∑
k=1

M∑
m=0

a(k)m tmsin(λk(t)) +
M∑
m=0

b(k)m tmcos(λk(t)), (2.8)

λk(t) = 2π

(
f
(k)
0 t+

M∑
m=1

f (k)
m tm + 1

)
, k = 1....K (2.9)
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The argument λk(t) is written as a sum of the linear and non-linear spectral distribu-

tions. It could be analytically distinguished by transforming the sine and cosine in equation

(2.8). Therefore, for the kth component we have:

sin(λk(t)) = sin
(

2πf
(k)
0 t
)
cos

(
2π

M∑
m=1

f (k)
m tm+1

)
+cos

(
2πf

(k)
0 t
)
sin

(
2π

M∑
m=1

f (k)
m tm+1

)
(2.10)

xcos(λk(t)) = cos
(

2πf
(k)
0 t
)
cos

(
2π

M∑
m=1

f (k)
m tm+1

)
−sin

(
2πf

(k)
0 t
)
sin

(
2π

M∑
m=1

f (k)
m tm+1

)
(2.11)

Furthermore, it can be assumed that for a short-time analysis the non-stationary trigono-

metric terms in equations (2.10) and (2.11) can be approximated by a single term Taylor

series:

cos

(
2π

M∑
m=1

fkmt
m+1

)
≈ 0, (2.12)

sin

(
2π

M∑
m=1

fkmt
m+1

)
≈ 2π

M∑
m=1

fkmt
m+1, (2.13)

Furthermore, equation (2.9) can be rewritten by combining equations (2.10) − (2.13)

as follows:

x̂(t) =
K∑
k=1

sk(t)sin
(

2πfk0 t
)

+ ck(t)cos
(

2πfk0 t
)
, (2.14)
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sk(t) =
2M+1∑
i=0

[
aki − 2π

i−2∑
m=0

bkmfi−m−1

]
ti =

2M+1∑
i=0

ski t
i, (2.15)

ck(t) =
2M+1∑
i=0

[
bki − 2π

i−2∑
m=0

akmfi−m−1

]
ti =

2M+1∑
i=0

cki t
i. (2.16)

Equations (2.14) − (2.16) represent the EMG time varying multicomponent signal.

The non stationarity property was acquired by the 2M + 1 which is known as the order

of polynomials sk(t) and ck(t). Basically, the actual model of the EMG signal is linear in

its parameters, This can be seen in the polynomial coefficient of s(k)i and c(k)i using simple

linear equation solutions. Equations (2.15) and [2.16] shows the correlation between two

main components in the EMG signal which are the amplitude and the frequency. These

coefficients permit the estimation for ak(t), bk(t), and fk(t) for every specific demand of

application.

2.2.1 EMG characteristics

The characteristics of EMG signals greatly depend on the function of the EMG itself,

muscle fibre activation, electrode characteristics, and the data acquisition system used in

the recording. These extrinsic factors alter the shape of EMG signals during its way from

the muscle membrane to the electrodes.

EMG signals are considered as non-stationary as their characteristics change over time

(Phillips et al. (2003)), especially on the number and firing rate of motor units, force and

joint angle (Cechetto et al. (2001)). However, EMG signals are also known as stationary

in their characteristics for short periods. It is a one-dimensional (1D) time series signal of

muscle activity upon a certain level of muscle excitation. As mentioned in the previous

chapter, EMG signals are the addition of each single action potential or MUAP trains. It

is assumed that the stochastic nature of the signal based on the surface electrode pick up

the region and random nature of the MUAPs (Hudgins et al. (1993)). EMG signal is an
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algebraic composite of the activated MUAPs influenced by several factors such as phys-

iological and anatomical properties and characteristics of instrumentation. It is different

from one person to another. Figure 2.1 demonstrates the motor units functionality and

how each of the muscle fibres involvement furnishes to the action potential and frequency

attributes of the EMG signals (Kamen and Caldwell (1996)).

The Kukulka and Clamann (1981) did the study on the identification of the recruitment

and discharge characteristics of motor units in BB muscle during stationary contraction

from 0 to 88% MVC. They tested the stationarity of the EMG signals with an occurrence

of short interspike less than 20ms intervals. Therefore, to produce robust EMG features,

the instantaneous value of a short segment of energy for the EMG signal is possible to be

used.

2.2.2 Muscle fatigue manifestation

Research has been carried on the influence of MF on EMG single amplitudes and forces

(Dideriksen et al. (2010)). They conclude that the amplitudes of EMG are not a viable

solution towards estimating muscle activation and the force during fatigue. MF is a phe-

nomenon that happens for every creature with muscles in their body, such as human and

animal. Every daily activity performed is always involved with muscle activation develop-

ment in the muscular system territories. In the human body movement, muscular systems

played an important role followed by the structures in the body known as skeletal systems.

There are many definitions derived for the MF phenomena, and it has been extensively dis-

cussed in studies considering the factors involved. One of the best descriptions has been

given by Allen et al. (2008); muscles that are utilised intensively manifest a gradual decline

of production and improvement after a period of rest.

MF is available from different parts of the muscle body, as it is divided into two com-

ponents, namely muscle recruitment (central component) and the neuromuscular transmis-

sion (peripheral component) (González-Izal et al. (2012)). Earlier studies have described

MF as the existence of an individual critical threshold with the involvement of the central

and peripheral components (Yoon et al. (2008)). On the occasion of fatigue, various muscle
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properties are transformed and these constitute a major factor in contributing to the decline

of skeletal muscle working capacity. The properties can be in the firing rate and motor unit

action potentials (Adam and De Luca (2005)), the neuromuscular system (Benjamin and

Roger (2007)), intracellular metabolism (Westerblad et al. (1991)), and intra-extra cellular

ionization. For instance,(Bigland-Ritchie et al. (1983)) found that there were changes in

the motor unit firing rates during fatigue when the maximal voluntary contractions were

sustained for 40s-120s, and it is shown by the progressive decline in both the range and

mean rate of motor unit potentials. However, one cannot believe that these variations in the

motor unit further effect to submaximal fatiguing isometric contractions since it is inade-

quately documented throughout this sort of practice and remain a matter of debate (Gamet

and Maton (1989)).

The on-going research to date has described the fatigue phenomenon with many mean-

ings, considering all the processes and the mechanisms, but these disparities in viewing

the problems can be explained by the full range of exercise models, protocols, and meth-

ods applied in fatigue studies of human muscle (Vøllestad (1997)). Rogers and MacIsaac

(2011) have summed up the MF as the recruitment and de-recruitment of active motor units

in the neighbourhood electrodes, and the position of the electrode of the muscle activation

area with changes of muscle shape. There is an assumption made based on gravity and

muscle contraction dynamics; movements of a biological limb are considered as nonlinear

(Bhuiyan et al. (2014)).

Researchers have studied MF by observing muscle activation trends and changes in its

properties using different modalities and techniques. These have led to useful results in

areas of myoelectric control and prosthetics (Jahani Fariman et al. (2015)), neuromuscular

disease and rehabilitation (Riley and Bilodeau (2002)), human-machine interaction (Song

et al. (2006)), sports performance and ergonomic analysis Ma et al. (2011), and electrical

stimulation for functional study (Thrasher et al. (2005)). The obvious reason for the study

is that MF may lead to injury problems if not seriously monitored. For instance, detection

of MF during work in progress involving repetitive movement of muscle and load may

help the employer to prevent their work from getting injured.
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MF study and analysis depend on the conditions of the methodology and approaches

used in the data collection. It can be in terms of isometric and isotonic strength tests

(Adam and De Luca (2005); Arendt-Nielsen and Sinkjær (1991)), endurance test (Krogh-

Lund and Jørgensen (1993)), neuromuscular biopsy and imaging as well as surface EMG

(Cifrek et al. (2009)). Cechetto and his colleagues studied the effects of four time-varying

factors on the mean frequency and result from the study indicate that the number and firing

rates of active MUAPs and the muscle force contribute to relatively small changes in the

MF (Cechetto et al. (2001)). They also suggested that muscle geometry needs to be taken

into account as a fatigue index when dealing with dynamic contractions.

It is shown in Figure 2.3 that MF shifts the frequency contents of the EMG signal to-

wards lower frequency (Petrofsky and Lind (1980)). Few studies have been carried out

on determining parameter changes of surface EMG with inconclusive results (Anam et al.

(2013); Krogh-Lund and Jørgensen (1991,9); Thongpanja et al. (2012a)). These have sug-

gested that further studies are needed to identify those phenomena and hence contribute

towards better development of surface EMG means. This will enable one to explore and

distinguish variations in MF in relation to the conditions in external load both for continu-

ous static and dynamic repetitive tasks.

This is also supported by finding that the amplitude variations shrink towards zero

(Venugopal et al. (2014)) as the number of MUAPs firing rate increases to maintain the

muscle force at increased amplitude (Enoka et al. (2011)). Santos et al. (2016)have sug-

gested for research on upper forearm MF to focus on the improvement of the experimental

protocols and instrumentation, as they are the most influential factors on the result of such

studies.

2.2.3 Human upper forearm

The human upper forearm (UFA) comprises of the forearm and upper arm, as shown in

Figure 2.4(A). The forearm is physiologically part of upper arm combinations between

the elbow and the wrist. The forearm is specifically created to help human to perform

daily activities or movements such as fingers flexion, hand grip, wrist movement, and curl
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Figure 2.3: Example of power spectrum recorded from the fresh muscle (solid line) and fatigue
(broken line) Petrofsky and Lind (1980)

exercise. The upper arm muscles are the main components for flexion and extension. There

are three groups of muscles of the upper arm responsible for the flexion of the forearm

– brachialis, biceps brachii (BB), and brachioradialis (BR). The anterior part is for the

extensor- triceps brachii (TB). This is shown in Figure 2.4(B).

The forearm muscles are divided into four layers, from first to fourth layers, and two

compartments (anterior and posterior). Figure 2.4(C) shows the muscles that lie within

each segment. The anterior compartment is separated by the posterior compartment by two

bones (ulna and radius), interosseous membrane, and lateral intermuscular septum (Parson

(2009)). Figure 2.5 shows a cross-section of the forearm and the muscles of interest avail-

able in the forearm region. Muscles of the anterior compartment flex the forearm, and this

is known as pronation. Supination is derived from the forearm extension of the posterior

muscles. All the muscles of the anterior and posterior compartments play essential rules

for the hand and fingers movement, respectively.

The importance of human UFA analysis for the healthy and normally limbed subjects
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Figure 2.4: The human upper forearm regions and muscles; A) Upper arm and forearm, B)
Upper arm muscles; Biceps Brachii (BB), Triceps Brachii (TB), Coracobrachialis (CB), and
Brachialis(Br), C) Forearm muscles; Pronator Teres (PT), Flexor Carpi Radialis (FCR), Flexor
carpi Ulnaris (FCU), Palmaris Longus (PL), Flexor Digitorum Superficialis (FDS), Flexor Pollicis
Longus (FPL), Flexor Digitorum Profundus (FDP), and Pronator Quadratus (PQ).

Figure 2.5: Cross section of forearm showing the muscles available for the study

is crucial as the benchmark strategy for indicating the standard mean of its use. It can be

used as a reference for above elbow amputee study in the future. There is the need for

normally limbed survey on the upper limb region to help genuine understanding of the
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Table 2.1: Upper arm muscles, attachments and main actions

Muscle Attachment/Location Main Action

BB Connected to the anterior compartment of the
forearm.The muscle is developed from two heads:
long head and short head, large and thick muscle.

Acts to flex and supinate the forearm. Ma-
jor supinator of the forearm.

CB Muscle that comes from structure of scapula. Helps to flex and adduct arm.

Brachialis In the middle brachial region, lies underneath the
biceps brachii, located deep in the upper arm, sup-
porting biceps brachii for arms flexion

Flexes forearm in all positions.

Anconeus The muscle right of the elbow, helps the elbow
extension, with small triangular shape, and can be
found around the elbow region.

Assists triceps in extending forearm, sta-
bilizes elbow joint and abduct ulna during
pronation

TB Located at the back of the arm, develops from 3
origins; long head, medial head, and lateral head.

Chief extensor of the forearm.

variation between the above elbow amputees with the ordinary person.

For instance, Zardoshti-Kermani et al. (1995) has studied on an above-elbow amputee,

and they tried to put some noise to study the robustness of their proposed features and

controls. However, this would be good if they can have a reference with the usual standard

so that they can evaluate their robustness.

The upper arm muscles and its primary function are listed as in Table 2.1 and the

locations of the muscles are shown in Figure 2.4(B). The BB muscle is responsible for

further specific movements in conjunction with three different joints (tri-articulate). It is

positioned at the anterior of the upper arm housing the humerus bone. The main functions

of the BB are:

1) Supination using the proximal radius joint, the muscles attach to forearm diagonally

and contribute to produces to the forearm twist, permitting to turn palms from upside down.

For example, this forearm action should be used for turning the knob of a door or ignition

of the car.

2) Elbow flexion; flexion together with the humerus joint (elbow). The bending along

with the elbow joint, is generally accomplished throughout a BB curl. During contractions,

the tendon is stretched towards the two heads, leading the elbow to bend.

3) Shoulder flexion. The BB performs various powerless functions inside the shoulder

complex, for example, aiding the forward flexion from the shoulder blades (bringing the
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arm forward and upwards) along with backing within the stabilization inside the shoulder

joint.

Unlike other muscles discovered on the front of the body, the BB accounts for pulling

movements not like pushing movements. The BB, the muscle will be the antagonist to-

wards TB muscle and comprises around 33% of muscle tissues together with the upper

arm. There are two (2) additional muscles which can be about the anterior with all the

humerus that assist the BB. In addition, CB muscle also known as the brachialis muscle.

Efficiency lies underneath and aside from the BB.

Table 2.2: Forearm muscles,attachments, and main actions

Muscle Attachment/Location Main Action

FCU Originates from the medial epicondyle and
the ulna.

Flexes and adducts hand (at the wrist)

PL Medial epicondyle of humerus Flexes hand at the wrist.

FCR Originates from the medial epicondyle. Flexes and abducts at the wrist.

PT Two origins, medial epicondyle and coro-
noid process of the ulna.

Pronates of the forearm.

FDS Two heads, medial epicondyle and the ra-
dius

Flexes the metacarpophalangeal joints and
flexes at the wrist.

FDP Originates from the ulna. Only muscle that can flex joints of fingers
and joints of wrist.

FPL Originates from anterior surface of radius. Flexes phalanges of first digit (thumb)

PQ Originates from anterior surfaces of ulna Pronates the forearm

The focus on the current research is on the relations of the forearm muscles and upper

arm muscles. The linkages are strong, and it is envisaged to develop a suitable mea-

surement strategy using both regions of the human UFA, to establish suitable means for

achieving high classification for dexterous control of prostheses. The interest is to study

and explore the new features in the presence of such phenomena as MF to help avoid

the risk of getting impaired (Monjo (2015)) or probabilities of detecting neuromuscular

disorder and disease.

González-Izal et al. (2012) have concluded in their studies that approaches associate

with several sets of EMG features for measuring force variations yield better understanding

about MF. They have also suggested that more research is demanded to expand procedures
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that combine EMG variables for estimating changes concerning MF. The MF of human

UFA muscles is studied here as a way of determining suitable solutions in such areas, as,

to the author’s knowledge, there is no such research considering both muscle regions. This

involves maximum voluntary contraction, different loads, and maximum holding towards

fatigue.

2.3 Review of surface EMG assessment of the forearm

and upper arm

This section presents an overview of EMG assessment techniques in the context of human

UFA. The review also includes limitations associated with previous studies. The relations

between both muscle regions on human UFA also highlighted in this section.

There have been many studies on the surface EMG of human UFA, especially for

classification and control. Most of the studies have generally focused on only the single

region of the muscle of UFA and fatigue (Ahamed et al. (2014); Miyoshi et al. (2009);

Rojas-Martinez and Mananas (2014); Roman-Liu et al. (2004); Takahashi et al. (2006);

Yao et al. (2015); Zhou et al. (2011)).

For example, the studies on human UFA have been based on %MVC, considering

various implementations such as isometric and isotonic movements, muscle endurance

tests, multi-features classifications. A comparison of the reported studied is given as in

Table 2.3, Table 2.4 and Table 2.5. Unfortunately, there are few studies published based

on %MVC.

2.4 Relationship between surface EMG of forearm and

upper arm muscles, force, %MVC and wrist angle

There are numerous studies on surface EMG of human UFA control region such as forearm

and biceps brachii reported in the literature. However, fewer studies published on %MVC,

where classifications are made using multi features and fatigue as a comparison. A con-
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siderable amount of research has been done on EMG signals focusing on the BB muscle

movement analysis with fatigue.

Table 2.3: Previous study based on human upper arm isometric contraction

Author(s) Muscles Methodology/
Movement

Features Specialty Findings

Krogh-
Lund and
Jørgensen
(1991,9,9)

TB,BR
and BB

25%MVC of max-
imal duration,
15%MVC with
135◦ elbow angle,
30%MVC with 135◦

elbow angle

Mean, MDF,
RMS

Muscle fi-
bre,conduction
velocity (CV)
and fatigue

CV influences the
%MUAPs firing
frequencies

Doud and
Walsh
(1995)

BB 50%MVC with el-
bow angle

Center fre-
quency

Muscle length
interaction
and fatigue

fatigue significantly
influences the EMG
center frequency

Mamaghani
et al.
(2002,0)

Upper
trapezius,
anterior
deltoid,
BB, BR

(20, 40, 60%MVC)
with 3 elbow an-
gles (120◦,90◦,60◦)
and add on shoulder
angles

Mean fre-
quency, RMS

EMG, AMG,
goniometer,
and MMG

RMS of AMG has
an excellent correla-
tion with elbow an-
gle, and RMS of
MMG has a high as-
sociation with force
production

Ravier
et al.
(2005)

BB 70%MVC and short
contraction (3s) at
different strength

Power spec-
tral with
two linear
segments

fatigue new
frequency
indicator

proposed indices
able to differentiates
between fatigue and
non fatigue states

Dimitrova
et al.
(2009)

BB (20, 40, 60, 80, 100
%MVC)

MPF, median
frequency and
new spec-
tral indices
Finsmk

new spectral
fatigue in-
dices Finsmk

The responsiveness
of the signs to fatigue
depended on the
electrode placement
and its longitudinal
site in respect of the
end-plate region and
ends of the muscle
fibres.
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Table 2.4: Previous study based on human upper arm using both isometric and isotonic contraction

Author(s) Muscles Methodology/
Movement

Features Specialty Findings

Bai et al.
(2012)

BB (20,40,80 %MVC)
and 90◦ elbow angle

Mean of time
frequency of
STFT and
CWT

second order
of polynomial
and CWT

both techniques
reveal a significant
reduction in signal
power comparison
ratio and the fa-
tigue levels increase
as muscle fatigue
develop.

Subasi
(2012)

BB Force levels with
30%MVC

AR,CWT classifies the
EMG signals
into normal,
neurogenic or
myopathic.

The study shown that
ANFIS modelling is
better than the DFNN
and MLPNN

However, most of the research has focused only on certain number of %MVC. For

Krogh-Lund and Jørgensen (1991,9,9) used isometric contractions based on 25% MVC,

isometric flexion with 15% and 30% of MVC and elbow angle 135◦.

Mamaghani et al. (2001) have reported studies on mechanomyography (MMG) and

EMG in isometric contractions from four different muscles at 20%, 40% and 60% MVC

and with 60◦, 90◦, and 120◦ angles. They compared the differences between MMG and

EMG signals from muscle length and found a significant difference in frequency content

with respect to %MVC. Previously in their study, they reported that the mean power fre-

quency (MPF) and the root mean square (RMS) value of the MMG and EMG signals

changed according to the joint angle.

Differently, by using goniometer, Ravier et al. (2005) investigated the isometric move-

ment of 100◦ elbow angle to analyse the fatigue fluctuations based on a median frequency

(MDF) shift. Moreover, Dimitrova et al. (2009) proposed new indices based on spectral

features for various force levels of analysis. They suggested that the proposed indices

leaned on the electrode positioning and the location of the muscle fibres during contrac-

tion. Studies have shown that maximum angle for elbow would influence high RMS value

for static contractions. It has been found that at an angle of 90◦, muscle fibres in the BB

are at optimal length for force production. Soylu and Arpinar-Avsar (2010) studied the

variations of MVC and how it affects fatigue. Subasi (2012) used time-frequency features
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Table 2.5: Previous study based on human upper arm isotonic contraction

Author(s) Muscles Methodology/
Movement

Features Specialty Findings

Soylu and
Arpinar-
Avsar
(2010)

BB subjects approached
the highest force
level in 2s by
insignificantly ex-
panding the force,
and then contracted
the BB muscle
maximally

median
frequency,
integrated
EMG

data used not
influenced by
the muscle fa-
tigue

which is not influ-
enced by the fatigue
from the initial starts
of EMG and its peak
time

Jordanic
and Mag-
jarevic
(2012)

BB Curls exercise Median
frequency

fatigue esti-
mation using
the modified
periodograms

fatigue indices de-
fined as the slope of
the linear regression
model fitting the
median frequencies
of the electromyo-
graphic signal in the
least square sense

Ahamed
et al.
(2013)

BB muscle activity be-
tween the region of
the endplate and dis-
tal tendon insertion
with different gen-
ders and right or left
arms, concentric and
eccentric contraction

Not men-
tioned

activity be-
tween the
region of the
endplate and
distal tendon
insertion

there are no sig-
nificant differences
between male left
and female right
and male right and
female left arm
muscles

Venugopal
et al.
(2014)

BB repetitive flexion and
extension of the el-
bow with a 6 kg load
and 30degree angle

Multiple
time win-
dow features
rectangular,
hamming,
trapezoidal
and Slepian

Using mutiple
windowing
techniques
and fatigue

k-nearest neighbour
algorithm is found to
be the most accurate
in classifying the
features, with a
maximum accuracy
of 93% with the
features selected
using information
gain ranking

Al-Mulla
et al.
(2015)

BB 3 trials of dynamic,
exercises with and 3
trials of 70% MDS
and elbow angle

Higher-order
statistics,
Mean Fre-
quency (MF),
Median
Frequency,
Power Spec-
trum Den-
sity, RMS,
Daubechies 4
(Db4), Mexi-
can Hat (Mex
H), Pseudo-
wavelet (p-w)

Optimal el-
bow angles
for separa-
tion with
segmentation
(Non-Fatigue
and Fatigue)

optimal elbow an-
gles can be used for
fatigue classification,
one of the features
and on average of all
eight features show-
ing 87.90% highest
correct classification
for
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and independent component analysis (ICA) for dimension reduction, and artificial neural

network (ANN) for classification. However, latest studies shows that LDA was comparable

or much better than ANN in the classification accuracy (Resnik et al. (2018)).

2.5 Surface EMG features extraction and classification

Surface EMG features extraction and classification are the main important criteria in pros-

thetic design and control. These was first studied in the 1970s and the research has been

growing very fast. This has included signal acquisition protocol (data acquisition tech-

nique, electrodes placement, muscle selection), features extraction (segmentation or re-

duction) mainly for purposes of classification.

2.5.1 Features extraction

Feature extraction selection and strategy are essential for classification, especially in EMG

neuromuscular study and fatigue. The purpose is to improve classification robustness and

accuracy. The informative features can be represented as individual, group or derivation

from both classes as multi-features. It has to be very selective and sensitive to the studied

phenomena. This will help much in the offline and the real-time applications since it can

reduce the computational load’s problems.

It is generally agreed that multi features provide more complete information as com-

pared to any single feature (MacIsaac et al. (2006)). Therefore, there is a need for feature

reduction process after the features have been identified. This is believed as another fac-

tor that will affect the classification performance (Yan and Liu (2013)), and the stage of

choosing the robust features is key to better classification performance, not the classifier.

EMG fatigue signals are acknowledged as a non-physical variable, where the assess-

ment of the MF needs to be identified from EMG signals measurable physical variables as

new definable indices. Roman-Liu et al. (2004) have argued that MF is noted by the EMG

amplitude only if there is both a decline in the FD features and an increment in the TD

features.
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Table 2.6: Previous study based on human upper forearm muscle contraction and analysis of study

Author(s) Muscles Methodology/
Movement

Features Findings

Petrofsky
and Lind
(1980)

FCR Isometric strength
and endurance of the
handgrip muscles

Centre fre-
quency and
mean fre-
quency

centre frequency might pro-
vide a useful index of fa-
tigue for sustained submax-
imal isometric contractions.

Khushaba
et al.
(2009)

8 forearm
muscles

datasets taken from
UCI repository,
7 limb motions
position

TD,CWT the proposed DEFLDA tech-
nique proved to be success-
ful in achieving better per-
formance

Scheme
et al.
(2011)

around
the fore-
arm, 10
electrodes

nine motion classes
consisted of wrist
flexion-extension

MAV, ZC,
SSC, and
WL.

proposed control scheme ( 1
versus 1 classifier’s ULDA-
based) was the best

Thongpanja
et al.
(2012a)

4 forearm
mus-
cles,PL,
supinator
longus,
ECR and
pronator
radii teres

normal subjects with
different loads: (2, 4,
6 and 8 kg)

time depen-
dence of
the median
and mean
frequency

suggested new approach for
determining MF and loads
for the PL muscle, unfor-
tunately, the performance is
worse than for the BB mus-
cle

Anam
et al.
(2013)

2 channel
ECU and
EDM,
FDS and
PL

finger movements SSC, ZC,
WL, Hjorth
time domain
parameters,
Skewness ,
AR

proposed system which con-
sists of the SRDA, the opti-
mized ELM and the major-
ity vote was able to recog-
nize the individual and com-
bined finger movements

Al Omari
et al.
(2014)

4 forearm
muscles,
extensor
digitorum,
ECR, PL,
and FCU

eight hand move-
ments

WL, Wilson
amplitude,
RMS combi-
nation

the highest classification
rate achieved was 95 %
by GRNN using energy of
wavelet coefficients

Al-Angari
et al.
(2016)

Normal
subject
with 5
hands
move-
ments,
Around
forearm
muscles

eight hand move-
ments

MAV, SD,
WL, Energy,
ZC, SSC,
AR, Wavelet
decomposi-
tion, sample
entropy

correlation-based method
(CFSS) and a distance-based
method (DFSS)

Resnik
et al.
(2018)

Amputated
subjects
shoulder
and up-
per arm
muscles

five upper arm move-
ments

not stated compare PR control based
on LDA classifier

Bai et al.
(2019)

Shoulder
mus-
cles (64
points)

eight shoulder move-
ments

spatials
and time
frequency
domains

optimisation technique re-
duced the number of points
used
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Noticeable studies have been reported on various techniques of analysis of MF with re-

spect to the human UFA muscles separately. Several studies have reported fatigue analysis

during static loading, multi fingers coordination in force (Danion et al. (2000)), forceful

handgrip task (Alizadehkhaiyat et al. (2011)), arm wrestling (Ahamed et al. (2012)), dy-

namic contractions of biceps curls (Jordanic and Magjarevic (2012)),neck and shoulder

muscles (Chowdhury et al. (2013)), gender comparison using dominant arm and contrac-

tion (Ahamed et al. (2013)), cricket bowlers during bowling (Ahamed et al. (2014)), and

optimal elbow angles (Al-Mulla et al. (2015)).

Analysis Domains

In analysing the surface EMG, there several domains that could be employed individually

or in combination. Features identification and domain analysis were known as the main

criteria in fatigue study (Venugopal et al. (2014)). Time domain (TD) descriptive statistic

features such as root mean square (RMS), waveform length (WL), maximum amplitude

value (MAV), zero crossings (ZC), slope sign change (SSC), and TD frequency related

feature autoregression (AR) is the most conventionally used. Mean frequency (MNF),

peak frequency (PF), and median frequency (MDF) are frequency domain (FD) features

considered. To overcome the time-varying characteristic of the EMG signals, various time-

frequency domain (TFD) features are reported and used in many studies such as short-

time Fourier transform (STFT), Wigner-Ville distribution (WVD), and continuous wavelet

transforms (CWT). Each domain has its strength and weakness for analysis, and these are

highlighted briefly in Table 2.7.

Hudgins et al. (1993) have proposed the most useful features used in the TD. How-

ever, those do not fit with the natural behaviour of the EMG signal, which is time varying.

Several studies have subsequently been reported employing TD, FD as well as TFD tech-

niques. The performances of these approaches with features extracted are assessed and

compared. However, no study was performed for determining the best features contained

both in the forearm and upper arm muscles.
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Table 2.7: The preview of analysis domain of EMG signals

Domain Advantage Drawback Notes

Time Simple, low com-
putational cost, and
easy implementation

Unable to deal with non
stationarity (time varying)
property of EMG signal

“Most cases preferred TD features
based for their low complexity,
which is desirable for real time im-
plementation.”

Frequency Good frequency lo-
calization and suit-
able for EMG signals

some FD features have the
same discrimination in TD

“EMG features based on FD are
not good in EMG classification.”
Thongpanja et al. (2012a)

Time-
Frequency

Good time and fre-
quency resolutions

Complex, expensive, require
more processing time

“The performance of TFD features
is similar to that of TD features.”
Hargrove et al. (2007)

Thongpanja et al. (2012a) have suggested that EMG features based on FD were not

good enough in EMG signal classification. They provided a detailed review and theoretical

background of 37 features and pointed out the best features to be used in the EMG study

to avoid redundancies in using those features. However, their study did not take MF into

consideration. This probably may differ as the different strategy may propose a new finding

in the analysis.

2.5.2 Classification

Classification of surface EMG from both forearm and upper arm offers more intuitive and

reliable information for purposes of control. In general, it is agreed that various classifi-

cation algorithms such as ANN, linear discriminant analysis (LDA), k nearest neighbour

(k-NN), support vector machine (SVM), multi-layer perceptron (MLP), Extreme Learning

Machine (ELM) and others give a similar performance in terms of accuracy. It remains

whether there are other optimal and suboptimal feature sets for classification that are yet

to study. This has been listed as in Table 2.6.

Hargrove et al. (2007) has classified ten classes of isometric contraction from surface

EMG, and intramuscular EMG collected simultaneously. They concluded that there is no

difference in classification accuracy from both types of EMG forearm muscles. They also

suggested that to achieve optimal classification accuracy, the number of channels should

be within three channels only. Khezri and Jahed (2009) designed a unique classification

system for rehabilitation purposes using a combination of two classifiers ANN and fuzzy
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inference system (FIS) yielding a new adaptive neuro-fuzzy inference system (ANFIS).

The proposed classification algorithm successfully produced useful identification for six

types of hand movements.

Khushaba and Kodagoda (2012) have investigated multi features classification perfor-

mance based on the feature reduction algorithm mutual component analysis (MCA). The

developed feature reduction yielded a satisfactory result. Several studies have been con-

ducted similarly to this work but using different feature reduction technique (Al-Angari

et al. (2016); Anam et al. (2013); Geethanjali (2015)). Despite recent development and re-

search studies that have been discussed in Bai et al. (2019); Resnik et al. (2018), there is a

significant gap found in the study methodology and the features proposed in these studies.

An intuitive approach to achieve better classification performance is thus needed. The

new strategy adopted for this study consists of several aspects; signal acquisition protocol

features extraction and classification. For this study, time and frequency domain (TD and

FD) approaches are employed in the preliminary study. The study will then look into

details in the time-frequency domain (TFD) using wavelet transform. Wavelets are the

most applicable analysis technique for signals such as EMG. Wavelets necessitate the time

and frequency components of a time-varying signal. It presents better time and frequency

resolutions for the classification technique. These approaches will improve the gap of the

previous study mentioned earlier.

2.6 Summary

This chapter presents details of the literature reviews on this study. This involved discus-

sions on previous research study, the outcomes and the methodologies used or available

for the reference. The human upper forearm based EMG signal model, characteristics, fa-

tigue manifestation and muscles coordination also discussed in details to give an overview

about the study interest. The research reviews based on EMG topics were discovered and

tabulated in tables to provide better analysis of the methodologies, analysis and muscles

chosen.



Chapter 3

Research methodology

3.1 Introduction

The research methodology has been developed based on the objectives of the study stated

earlier. This will be executed to achieve the main goal of the study, human UFA analysis,

classification, and validation. For the objectives as mentioned earlier, a research study is

implemented to unlock a new set of dilemmas related to the multi-region of human UFA

muscles and classification based control is adapted to establish the relationship between

both regions. There is always the need to develop a scientific methodology, tools and

equipment used in this study. The approach that have been developed in this method-

ology will be thoroughly described in this chapter. The proposed research methodology

is executed in five stages, as shown in Figure 3.1. The stages are divided based on the

objectives of the study, stated in Section 1.5. For the first stage, the development of the

new data acquisition protocols, muscle selection, and data collection will be performed.

The second stage includes signal conditioning and preprocessing technique for establish-

ing the relationships among EMG upper forearm, force variation, %MVC and wrist angle.

The development of suitable feature extraction, feature reduction and selection of suitable

classifier are in stage 3. Analysis and evaluation of the overall classification performance

and validation of classification performance through the modelled control system will be

carried out in stages four and five, respectively.

35
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3.2 Surface EMG under European recommendations

The real issue in using a signal such as EMG in the analysis is their main source of origi-

nation. This has been debated for many years by researchers worldwide since 1900. The

works of literature related to this kind of matter were so limited, until in 1996 a group of re-

searchers proposing the SENIAM to publish a recommended standard for EMG detection.

This project run from 1996-1999. The full report of this project was published in 2000,

which was fully funded by the European Commission (BIOMED II-Program) (Merletti

(2000)). Since then, recommendations of the report have been used as the main reference

for any activities related to surface EMG.

There are two objectives created from this project, firstly as the knowledge transfer and

exchange between a researchers from different countries. The common interest also can

be shared from this kind of activity. Secondly, to develop recommendations on essential

elements which include experimental results or clinical data. The important elements may

include sensors, experimental procedures, signal processing as well as their modelling

strategy.

The main issues discussed in report were suggestion on manufacturing electrode and

their shape or size. The electrodes to be used in this topic has to well adhere to the skin

surface so as to reduce the effect of noise. Meanwhile, they also recommended suitable

inter-electrode distance and the electrode material. Additionally, factors such as patient

comfort, sensor or electrode placement, including skin preparation have to be taken into

consideration. This will guarantee good protocols for EMG detection and taking care of

patient welfare. Their recommendations for surface EMG sensors are listed in Table 3.1.

The recommendations as suggested above are followed in the current study for data

collection. The electrode used in this study was developed by using good materials, such

as Ag/AgCl. It has pre-gelled surfaces, to help the electrode fixed at their position and

maintain good contact with the skin. The electrodes used are to have low impedance

and steady performance in their transition. The electrode size should be 10mm or less.

The electrode used in this study is shown in Figure 6.5c. This electrode is commercially

available in the market.
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Another criterion followed is the gap between two differential EMG channels or know

as the inter-electrode distance (IED). The IED is the distance of the centre to centre of two

electrodes. It has to be at minimum of 20mm or a quarter from overall muscle length.

This is shown in Figure 6.5d. Figure 6.5f shows an example of one EMG channel and its

bipolar properties, the reference point for ground used in this study.

(a) Example of pregelled electrodes (b) Inter-electrode distance

(c) Bipolar electrodes for one EMG channel

Figure 3.2: Illustrations of electrodes setup and its configurations as recommended by SENIAM
used in this study.The details of these muscle selection can be found in Appendix A.

Before starting the procedure, SENIAM recommends for the subject skin preparation

if they were needed, such as the hairy region. The skin also needs to be clean using alcohol

to remove the dead tissues available on the skin surface. This step will help to obtain right

EMG signals, at minimum power or noise interference. Hence, it will give the smaller

common mode signals and better signal to noise ratio.

Furthermore, subject positioning plays an important role as it will reduce the motion

artefacts during the EMG data collection. In this study, the subject were advised to attain

their comfortable position as long as they never change the initial hand positioning during
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Table 3.1: Summary of the recommendations proposed by SENIAM for most of the study involving
the EMG signal. This recommendations recognised as a standard for many researchers in their
reporting or analysis.

Parameter SENIAM Recommendations

Electrodes
1. Size Diameter < 10mm
2. Electrode Distance < 20mm or quarter the muscle length, whichever is smaller
3. Location forearm and upper arm muscle regions
4. Reference an electrically inactive region such as wrist or ankle

Amplifier
1. Filter: High pass threshold for frequency analysis < 10 Hz

threshold for EMG movement analysis 10 Hz - 20 Hz
2. Filter:Low pass threshold for basic applications 500 Hz (frequency sampling

> 1000 samples per second)
cut off for special wide band applications 1000 Hz (fre-
quency sampling > 1000 samples per second)

3. Gain Suitable to bring the signal into the input range of the A/D
converter
with desired input resolution

Sampler and A/D con-
verter
1. Frequency sampling > 1000 samples per second for general applications

> 2000 samples per second for wide band applications

2. Number of bits A/D 12 (requires amplifier with variable gain)
16 (fixed gain amplifiers may be used)
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the task. This will give the subject more freedom as a different subjects have different types

of excellent position for relaxing. The subject has to be in calm, relaxed and comfortable

position before data collection begins. Examples of subject preferable position before the

data collection are shown in Figure 3.3.

(a) Subject A (b) Subject B

Figure 3.3: Subjects at their preferable positioning before EMG data collection begin. Experi-
mental protocol revealing the wrist inserted by pillow aid that stopped the subject from prono-
supinating the wrist. Each volunteered subject, following a period of familiarisation with the pro-
tocol, completed 20 trials of each hand grasp task. Movements were auditory paced every 5s. Each
hand movement collected in a different run. At least 5 min of rest was provided between each series,
and it has been prolonged upon the subject’s request.

3.3 Development of new EMG data acquisition protocol

This section presents the development of a new data acquisition protocol for this study.

There are lots of acquisition protocols suggested for this kind of research. However, the

acquisition protocol published by many; they only refer to single region on muscle detec-

tion. Since the focus is to establish the relationship between two regions of muscles at

one time, the new data acquisition of EMG signals of the human UFA is crucially needed.

Hence, new acquisition protocols using multichannel EMG acquisition system was formed

for this study. The EMG acquisition and their protocols were explicitly developed for this

study with reference to SENIAM recommendations (Section 3.2 ), while requirement and

considerations are discussed in the next subsections.



3.3. Development of new EMG data acquisition protocol 41

EMG acquisition system

This subsection describes the overall data acquisition used in this study. The data acquisi-

tion system was chosen based on the criteria and specification needed in order to achieve

the scientific investigation proposed. The data acquisition system consists of the parts

listed in Table 3.2. The overal system is shown in Figure 3.4.

Table 3.2: Data acquisition system and accessories or tools used in this study.

Item Accessories details

1 One unit LabQuest Mini data acquisition
2 Five units EMG sensors and cables
3 One unit Hand Dynamometer
4 One unit of computer with battery powered with Logger Lite software
5 Disposable Ag/AgCl electrodes (Kendall 5400)
6 MATLAB software R2015b by MathWorks (License number : 976008)
7 USB connector cables
8 One unit stop watch
9 One unit dumbbell with variable weight

Figure 3.4: The overall acquisition system used in this study. The wires and cables are not in the
connected as this illustration is only for clarification
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Labquest mini

LabQuest mini is a powerful data acquisition system produced by Vernier Software and

Technology, USA (Vernier Software Technology (2019c)). LabQuest Mini is a multi-

channel, data collection interface that can be used to acquire data from Vernier sensors

on multiple platforms, such as Windows and Mac computers and Chromebook. LabQuest

Mini recommends a wired (USB) connection only.

This is an affordable, versatile data acquisition system and easy to use with sensor

interface to collect EMG data while attached to a computer. It comes with 12-bit resolution

and 5V input data acquisition. It also has three analogue inputs and two digital inputs.

Figure 3.5 and Table 3.3 shows the LabQuest mini system and its specifications used in

this study.

Figure 3.5: The LabQuest Mini interface contains five (5) input sensors with three analog ports
(CH1–CH3), two digital ports (DIG1 and DIG 2), a mini-USB connection, and a power adapter
port (no main electrical power will be used in this study)

In this study, only the analogue ports were used as input. Since EMG signals are

required to be collected from several muscles (5 muscles) at one time, two Laquest mini

had to be used in the data acquisition to acquire EMG signals from five channels sensor

and one from the hand-dynamometer. The Labquest mini works with its own software
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Table 3.3: The technical specifications for LabQuest mini data acquisition system used in this study.

Criteria Specification

Inout voltage 5V
Resolution 12 bit
Connection USB 2.0
Maximum sample 100,000 samples per second (for one sensor)
rate (Computer) 10,000 samples per second (two or more sensors)
Maximum sample 10,000 samples per second
rate (Chromebooks)
Minimum sample rate 0.00125 samples per second (800s/sample)
Size 8.6 cm × 10.5 cm × 2.7 cm
Weight 100g

 

Figure 3.6: The Logger Lite software graphical user interface (GUI). This GUI will guide the
subject during the data collection and makes it easy to attain a certain amount of force needed to
be exerted during the session.

called Logger Lite. The graphical user interface (GUI) produced by this software is shown

in Figure 3.6.

Subject preferences

The subjects are either males or females and aged between 20 – 40 years old. The subjects

chosen must be normally limbed without any neuro-muscular problems. The subjects will

be asked about their dominant hand, and will be briefly explained (orally or using visual

aid, ie recorded video) and provided with informed consent prior to the study. The selection

criteria of the subjects are shown in Table 3.4.

At the initial stage, the subject was asked to perform each pre-set hand movement
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Table 3.4: The subject preferences for the study.

Criteria Description

Gender Male and Female
Age 20 to 40
Weight (kg) 60 to 90
Height (cm) 160 to 180
Health Normal Limbed
Subject Hand Dominant Hand or Arm

Table 3.5: Subjects configurations and their specific average 100 %MVC profiles listed for refer-
ences. Most of the subject shown high variations in the force produced when they were asked for
full exertion of muscle contraction.

Subject Gender
Hand Movement at 100% MVC

FP1 FP2 FP3 FP4 HGN HGF HGE

1 F 55.8 56.5 34.89 25.78 128.4 75.37 62.65
2 M 75.3 45.63 42.88 30.15 121.7 119.6 101.6
3 M 69.5 38.2 32.6 25.4 125.5 96.5 83.7
4 M 112.2 65.18 59.65 34.21 269.5 234.8 217.4
5 F 68.81 63.92 35.32 18.57 152.5 112.7 103.3
6 M 139.2 126.2 53.96 45.7 267.2 175.3 168.4
7 F 62.41 41.85 24.9 22.71 243.2 146.3 139.3
8 M 114.2 74.74 68.59 45.28 240.7 195.6 210.8
9 M 51.85 41.67 25.14 23.66 190.4 119.8 99.07

10 F 46.3 43.56 34.58 21.64 93.21 80.33 61.85
11 F 17.40 15.40 12.73 8.70 28.3 25.50 22.22
12 F 9.52 8.89 6.63 5.45 12.78 9.23 7.55
13 M 112.3 69.22 55.87 34.36 336.5 187.3 148.8
14 M 48.55 36.45 28.32 25.12 209.5 151.8 126.6
15 M 52.52 38.55 30.65 27.22 212.7 159.45 129.3

* F= Female, M= Male
* Unit is in Newton (N)
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with maximum force to determine their MVC force. This was done with the best of their

capability, for three times with 5 minutes rest interval. The final average value was taken

as their final 100 %MVC force. The average of full exerted MVC data for each subject has

been tabulated as in Table 3.5. The subject consists of 15 subjects comprised of nine (9)

males and six (6) females. Table 3.6 shows an example of one subject proportional MVC

value in force exertion for the task.

Table 3.6: The example of a subject MVC’s and proportional value in force exertion

Name Subject 1

MVC for FP1: 55.88
MVC for FP2: 56.5
MVC for FP3: 34.89
MVC for FP4: 25.78
MVC for HGN: 128.4
MVC for HGF: 75.37
MVC for HGE: 62.65

MVC FP1 FP2 FP3 FP4 HGN HGF HGE

20% 11.176 11.3 6.978 5.156 25.68 15.074 12.53
40% 22.352 22.6 13.956 10.312 51.36 30.148 25.06
60% 33.528 33.9 20.934 15.468 77.04 45.222 37.59
80% 44.704 45.2 27.912 20.624 102.72 60.296 50.12
100% 55.88 56.5 34.89 25.78 128.4 75.37 62.65

EMG sensor and cable

The Vernier EKG (Electrocardiogram or ECG) sensor acquires muscle potentias (volt-

ages generated through the contraction of muscles) or heart (Vernier Software Technology

(2019a)). The expression used as EKG is since the heart is one kind of muscle. It is just a

notation to differentiate between the heart and the muscle. Figure 3.7 and Table 3.7 show

the EKG sensor and its specifications.

The green and red heads are attached to a high-gain differential amplifier in the sensor

that has been optimised for measuring bioelectric signals. The high-gain amplifier circuit

that contains bioelectric signals is electrically isolated from an output circuit that sends

data to the software. This gives the device safe and without any electrical shock for human

use. The list of activities and experiments that can be performed using this sensor are listed

as:
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i. Compare and measure subject surface biosignals or waveforms such as EMG and

EKG.

ii. Study contractions of muscles (EMG) in the arm, leg, or jaw.

iii. Correlate measurements of grip strength and electrical activity with muscle fatigue.

Figure 3.7: The EMG sensor and cable that has been used in this study.

Table 3.7: EKG sensor and cable that has been used in this study.

Criteria Specification

Offset ∼ 1.00 V (±0.3 V)
Gain 1 mV body potential / 1 V sensor output

Hand dynamometer

The hand dynamometer is a device or sensor which measures the force or strength exerted

by the hand grip or finger pinches. The operation of hand dynamometer is quite simple

and it also can be referred to as force sensor (Vernier Software Technology (2019b)). The

subject needs to squeeze the sensors designed for hand grip and finger pinch separately.
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Figure 3.8 shows the hand dynamometer sensor with specially designed buttons for sepa-

rate tasks of hand grip and finger pinch (red circle). The corresponding specifications are

given in Table 3.8.

Figure 3.8: The hand dynamometer that has been used to measure force exertion from the subject.
This sensor uses the analogue port as its input. Unique design for a separate task can be seen in
the figure, as highlighted in the red circles. The small circle represents the force sensor location for
the finger pinch and the bigger circle designed for hand grip force.

Table 3.8: Hand dynamometer specifications used in this study. The maximum force this device can
handle is up to 850 N. Force exceeded the maximum value may break the sensor.

Criteria Specification

Accuracy ± 0.6 N
Power 7 mA @ 5V DC
Typical resolution 0.2141 N
Safety range 0 to 850 N
Operational range 0 to 600 N

Muscle selection

To have the best muscle selection for achieving the objective of the study, care has to be

exercised to consider all the muscles available in the human UFA region. This will involve

assessment strategies reported in the literature as well as those devised in this study.
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It is believed that for multi-movement, the relationship between both regions of mus-

cle is not as simple as a single movement where muscle amplitude is directly proportional

to the force produced. For multi-movement, the simple relationship does not occur, as the

movement does not depend solely on the specific muscle region, but also on another neigh-

bourhood muscle. This is also believed to have happened in human arm joint variations.

It is aimed to have the minimum number of muscles selected for the study. The muscles

selected will be tested by comparing each other. This will be implemented for all the

subjects in future data collection. The initial research was performed for muscle selection,

as discussed in Chapter 5. The ethical approval from The University of Sheffield Ethical

Committee has been granted successfully.

The development of the new data acquisition protocol, muscle selection, and trial data

collection performed and has shown satisfactory outcome.

3.4 Introduction to data collection

This data collection relates to several PhD projects together under Prof. M. Osman Tokhi’s

supervision in the Department of Automatic Control and Systems Engineering (ACSE),

The University of Sheffield. The research students are Wan Mohd Bukhari Bin Wan Daud

and Norafizah Abas. The purpose of this data collection is to investigate the interrelation

between the forearm and upper arm EMG signals handgrip force, finger pinches, wrist

angles, and curl exercises. This will be used for signal processing and analysis, and fed

into the design of assistive exoskeleton hand control. The EMG signals are extracted from

human upper forearm muscles using a non-invasive technique. A series of experiments are

designed to collect the EMG signals for various hand grip force and wrist angle movement,

from fifteen subjects. The subjects are either males or females and aged between 20 –

40 years old. The subjects chosen must be normally limbed without any neuro-muscular

problems. All subjects will be briefed (orally or using a visual aid, i.e. recorded video) and

provided with informed consent before the study. There are four experiments incorporated

in this data collection: i) extraction of EMG signals from forearm muscles contributing
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to the finger(s) pinching at various wrist movements, ii) extraction of EMG signals from

the forearm and upper arm muscles providing to the hand grasping, wrist movements,

and curl exercises, iii) extraction of EMG signals from the forearm and upper arm muscles

contributing to pronation and supination of hand with curl exercises, vi) extraction of EMG

signals from upper arm muscles contributing to curl exercises alone.

3.4.1 Pre-task protocols

1. Subject’s weight, height, and hand length are measured and recorded for reference.

2. Subjects are seated in an armchair, with their forearm supported and secured at one

position to withdraw the influence of varying limb positions on the generated EMG

signals.

3. The areas of the skin where the electrode patches are placed are scrubbed with a

paper towel to remove skin oil and moisture. (Detailed skin preparation procedures

will only be carried out if necessary) The electrode patches (Kendall 5400 Diagnostic

Tab Electrodes) used for the data collection are specifically designed for the most

diagnostic application. No extensive skin preparation procedure is needed since the

electrodes comprised of:

a. Conductive adhesive hydrogel to provide firm adhesion, reposition ability and low

impedance for clear, reliable tracing as well as minimising adhesive residue to facil-

itate subject clean up.

b. Different adhesive levels to accommodate different skin types, application and mon-

itoring situations

c. Laminated Carbon Vinyl to provide conformability to the skin, torsion relief and

radiolucency

d. Silver/Silver Chloride (Ag/AgCl) sensing element to assist in making the electrode

defibrillation recoverable.
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4. Electrode patches are placed on the selected forearm and upper arm muscles (Figure

3.9 on subject’s dominant hand and connected to the LabQuest mini data acquisition

through the interfacing wire (3channels; red, green and black wire with alligator clip

as shown in Figure 3.10). The red (or positive) alligator clip is connected to the

electrode patch that measures the muscle activation while the green (or negative)

alligator clip is connected to the other electrode patch on the same muscle within

24mm in distance between each electrode. The black (or reference) alligator clip is

connected to electrode patch that is placed at the reference point (near to bone).

5. Hand dynamometer is connected to the LabQuest mini data acquisition and it is

connected to a computer (battery powered).

6. Logger Lite software is launched and the hand dynamometer is calibrated. The raw

EMG signals are recorded via Logger Lite software for further analysis.

 

Figure 3.9: Example of electrodes placement for the forearm and upper arm muscles as recom-
mended by SENIAM (Merletti (2000); Merletti and Hermens (2000)); (A, B, D and F) Electrode
placement for the selected forearm and upper arm muscles involved in pronation and supination
with curl exercises, and (C and E) electrode placement for the selected forearm muscles involved in
finger(s) pinching and hand grasping. The 11 muscles involved in this study are: FDS, FCR, FCU,
FPL, PT, PQ, ECRL, EDC, ECU, PT, and PQ.
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Figure 3.10: Experimental setup for EMG data acquisition system developed by Vernier

Figure 3.11: Sketch for a human upper forearm muscles under consideration for the study pro-
posed; A) Anterior compartment and B) Posterior compartment.
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3.4.2 Muscle Selection Protocol

The muscle selection completed by using practical assessment and analysis described be-

low. The muscles are illustrated in Figure 3.11. Below are the protocol developed for the

muscle selection:

i. Electrodes are placed at the identified areas for each respective forearm muscles on

subject’s dominant hand as shown in Figure 3.11.

ii. Subjects are instructed to grasp the hand dynamometer at maximum strength. The

maximum hand grip force is recorded and considered as subject’s maximum volun-

tary contraction (MVC).

iii. Then, the subject is instructed to grasp (for 10 seconds) the hand dynamometer at

various hand grip strengths (20, 40, 60, 80, and 100% of MVC) and also at various

wrist positions (60◦, 90◦, and 120◦). Rest sessions (for 5 seconds) are incorporated

within the experiments to prevent muscle fatigue.

iv. The raw EMG signals extracted are recorded in Logger Lite software for further

analysis.

3.5 Experiment 1: Extraction of EMG signals on human

upper forearm muscles contributing to the finger(s)

pinching at various wrist movements

There are four (4) groups of finger pinches (Figure 3.12) involved in this study: index

finger pinch, middle finger pinch, ring finger pinch and little finger pinch, at various wrist

angles. Fifteen (15) classes of datasets are collected at different finger pinch strengths (20,

40, 60, 80, and 100% of MVC) and also at various wrist positions (60◦, 90◦, and 120◦)

until fatigue occurrs. The data is collected for five datasets at each session to get a high

number of input data for classification input.
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Figure 3.12: Finger pinches muscle contractions of forearm with four groups of movements: (A)
index finger pinch, (B) middle finger pinch, (C) ring finger pinch and (D) little finger pinch.

3.5.1 Experimental protocols

i. Subjects are instructed to pinch (for 5 seconds) the hand dynamometer using dif-

ferent finger groups (index finger pinch, middle finger pinch, ring finger pinch and

little finger pinch) with maximum pinch strength. Rest sessions (for 5 seconds)

are incorporated within each pinch to prevent muscle fatigue. The maximum finger

pinch strengths for each finger group are recorded and considered as the subject’s

maximum voluntary contraction (MVC).

ii. Electrode patches are placed on the selected forearm muscles (Figure 3.11A and

Figure 3.11B). Then, the subjects are instructed to pinch (for 5 seconds) the hand

dynamometer using different finger groups with various pinch strengths (20, 40, 60,

80, and 100% of MVC) at 90◦ of wrist angle (Figure 3.12A to Figure 3.12D). Rest

sessions (for 2 seconds) are incorporated within each pinching to prevent muscle

fatigue.

iii. The raw EMG signals extracted are recorded in Logger Lite software for further

analysis.

iv. Steps 2 and 3 are repeated for different wrist angle positions (at 60◦ and 120◦).

v. Next, the steps 1 to 4 are repeated for different pinching strength (for approximately
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10-15 second or until fatigue) with rest intervals (for 5 seconds).

3.6 Experiment 2: Extraction of EMG signals on human

upper forearm muscles contributing to the hand grasp-

ing, wrist movements and curl exercise

There are six (6) groups of movement involved in this study: hand grasping at different

wrist positions (at 60◦, 90◦, and 120◦) (Figure 3.13A to Figure 3.13C ), and hand grasping

at different curl exercise positions (at 60◦, 90◦, and 180◦) (Figure 3.13D). 30 classes of

datasets are collected at different hand grip strengths (20, 40, 60, 80, and 100% of MVC)

at various wrist positions and curl exercises until fatigue occurrs. The data is collected for

five datasets at each session to get a high number of input data for classification input.

Figure 3.13: : Hand gripping positions for hand dynamometer at various wrist angle positions:
(A) at 120◦ (B) at 90◦ (C) at 60◦, and D) curl exercises.

3.6.1 Experimental protocols

i. Subjects are instructed to grasp (for 5 seconds) the hand dynamometer with maxi-

mum hand grip strength. Rest sessions (for 5 seconds) are incorporated within each

grasp to prevent muscle fatigue. The maximum handgrip strengths are recorded and

considered as the subject’s maximum voluntary contraction (MVC).

ii. Electrode patches are placed on the selected forearm muscles (Figure 3.11A and

Figure 3.11B). Then, the subjects are instructed to grasp (for 5 seconds) the hand
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dynamometer using different hand grip strengths (20, 40, 60, 80, and 100% of MVC)

at 90◦ of wrist angle (Figure 3.13A to Figure 3.13D). Rest sessions (for 2 seconds)

are incorporated within each grasping to prevent muscle fatigue.

iii. The raw EMG signals extracted are recorded in Logger Lite software for further

analysis.

iv. Steps 2 and 3 are repeated for different wrist positions (at 60◦ and 120◦).

v. Next, the steps 2 to 4 are repeated for different curl exercise positions (at 60◦, 90◦,

and 180◦).

vi. Finally, the steps (step 1 to 5) are repeated for different grasping time (for approxi-

mately 10-15 second or until fatigue) with rest intervals (for 5 seconds).

3.7 Experiment 3: Extraction of EMG signals on human

upper forearm muscles contributing to pronation and

supination of hand with curl exercise

There are six (6) groups of movement involved in this study: pronation and supination at

different curl exercise positions (at 60◦, 90◦, and 180◦). 30 classes of datasets are collected

at different hand grip strengths (20, 40, 60, 80, and 100% of MVC) at various wrist posi-

tions and curl exercises until fatigue occurrs. The data is collected for 5 datasets of each

session in order to get a high number of input data for classification input.

3.7.1 Experimental protocols

i. Subjects are instructed to grasp (for 5 seconds) the hand dynamometer with maxi-

mum hand grip strength. Rest sessions (for 5 seconds) are incorporated within each

grasp to prevent muscle fatigue. The maximum hand grip strengths are recorded and

considered as subject’s maximum voluntary contraction (MVC).
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ii. Electrode patches are placed on the selected forearm and upper arm muscles. Then,

the subject is instructed to grasp (for 5 seconds) the hand dynamometer using differ-

ent hand grip strengths (20, 40, 60, 80, and 100% of MVC) with supination at 90◦

of curl angle. Rest sessions (for 2 seconds) are incorporated within each grasping to

prevent muscle fatigue.

iii. The raw EMG signals extracted are recorded in Logger Lite software for further

analysis.

iv. Steps 2 and 3 are repeated for different wrist positions (at 60◦ and 120◦).

v. Next, the steps 2 to 4 are repeated for different curl exercise positions (at 60◦ and

180◦).

vi. Finally, the steps 1 to 5 are repeated for different grasping time (for approximately

10-15 second or until fatigue) with rest intervals (for 5 seconds).

3.8 Experiment 4: Extraction of EMG signals on human

upper forearm muscles contributing to curl exercise

There are three (3) groups of movement involved in this study: hand grasping at different

curl exercise positions (at 60◦, 90◦, and 180◦). 15 classes of datasets are collected at

different hand grip strengths (20, 40, 60, 80, and 100% of MVC) for various curl exercises

until fatigue occurrs. The data is collected for 5 datasets of each session in order to get a

high number of input data for classification input.

3.8.1 Experimental protocols

i. Subjects are instructed to grasp (for 5 seconds) the hand dynamometer with maxi-

mum hand grip strength. Rest sessions (for 5 seconds) are incorporated within each

grasp to prevent muscle fatigue. The maximum hand grip strengths are recorded and

considered as subject’s maximum voluntary contraction (MVC).
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ii. The subjects are instructed to grasp (for 5 seconds) the hand dynamometer using

different hand grip strengths (20, 40, 60, 80, and 100% of MVC) at 90◦ of curl

angle. Rest sessions (for 5 seconds) are incorporated within each grasping to prevent

muscle fatigue.

iii. The raw EMG signals extracted are recorded in Logger Lite software for further

analysis.

iv. Steps step 2 and 3 are repeated for different curl exercises positions (at 60◦and 180◦).

v. Next, the steps 1 to 5 are repeated for different grasping time (for approximately

10-15 second or until fatigue) with rest intervals (for 5 seconds).

3.9 Summary

This chapter presents in details with regards on investigating the development of enhanced

approaches for detecting, analysing, and classifying of the human upper forearm EMG

signal. These include discussion on the standards procedure in detecting the EMG signal

using muscles coordination, positioning, and electrode placement published by SENIAM.

Then, the newly developed acquisition strategies have been proposed and implemented

for this study. The proposed development includes EMG acquisition system to be used,

subject preferences, sensors selection, and muscle selection protocol. The chapter also

described in details on the data collection strategies utilised in this study, which has been

awarded ethical approval from the Ethical Committee of the University of Sheffield. Sev-

eral protocols have been developed to consolidate in this study so that the data collected

can be used to achieve the objectives of the study. All experiments and data executed in

this chapter not necessarily be used in this study.
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Pre-processing, feature and
classification based methods

4.1 Introduction

As stated earlier, the proposed new framework of human UFA pattern classification sys-

tem will offer an intuitive classification and control that will be more robust than the cur-

rent single region of the human UFA classification. Furthermore, it is believed that this

new technique of estimating the correlation between the forearm and upper arm muscles

will overcome significant drawbacks such as the trade-off between adjacent muscles and

crosstalk. The future steps are to perform and complete the EMG data acquisition from

several subjects, carry out the features extraction and pattern classification as well as estab-

lish the relationship between human UFA with various hand grip force, MVC and angle.

These technique was used by many in the previous studies, and been refered as many as

been discussed in Chapter 3. Some methods has been used in this study for further inves-

tigation.

4.2 EMG pre-processing

The original source of the EMG signal and their model representation were discussed in

Chapter 2. The initiation of MUAPs for EMG signal, manifest the neuromuscular activa-

tion by specific muscle contraction and allowed realisation of EMG model. The impor-

tance issue in analysing the EMG is based on the approach for interpreting the information

58
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contained within the EMG signal.

This chapter presents the state-of-the-art of the study objectives based on EMG pat-

tern classification. This forms the foundation of the work in this study. An overall block

diagram of the study was presented in Chapter 3. The initialisation of the pattern classifi-

cation for the study starts in stage 2. The signal is conditioned with a proper preprocessing

technique such as filtering and signal segmentation. Then in stage 3, the feature extraction

will take place as the EMG information content is best to represented by features. This will

include the normalisation and feature reduction if necessary. Then, pattern classification

is performed to form the result in stage 4. In the final stage, the classification analysis is

assessed to estimate the pattern classification efficiency of the method.

4.2.1 EMG signal conditioning

Various analytical approaches are implemented for the data or signal involved in this study.

These includes the filtering process, such as eliminating the direct current noise from the

signal. The segmentation will be performed as the lengths of segments are the foremost

important features that require to be concluded(Asghari Oskoei and Hu (2007)).

Generally, EMG investigations will include two types of segmentation scheme: 1) the

disjointed scheme, where adjacent sections of a selected range will be used for the feature

extraction and 2) the overlapped scheme, a section which overlapped the current with

additional time and must be smaller than selected range.

Figure 4.1 shows an illustration of both the segmentation techniques that may be used

in processing the EMG signal. The disjointed and adjacent segments are labelled using

the blue arrow with the L marker representing the segment length of EMG for the feature

extraction. The τ represents the time needed for the process to extract features and the

classification. The classification decision, D is then decided seconds later. Furthermore,

the overlapped segmentation scheme is represented by the red arrow.

The overlapped segment was used in this study for the EMG signal segmentation. The

segment length chosen in this scheme is applicable for establishing multi-region charac-

terisation, and the computational problems will be minimised. Studies have revealed that
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Figure 4.1: Examples of segmentation strategy for EMG data in the preprocessing condition. The
blue arrow shows the disjointed and adjacent segmentation while red arrow for the overlapped seg-
mentation. L = window length, τ = processing time and C = classification decision (Asghari Oskoei
and Hu (2007); Englehart and Hudgins (2003))

there is a trade-off between the range of the segment used and processing time for classi-

fication (Englehart and Hudgins (2003); Farina et al. (2001)). They have concluded that

configurable parameters will affect the classification performance, such as window length

and time delay. However, the preprocessing of the EMG signal improves the accuracy, but

sacrifices response time.

EMG signal were preprocessed digitally before the feature extraction procedure. A

technique was employed to minimise the complexity of the processing by using 5s epoch

window for each movement. The 5s signal was selected for each hand movement, and all

the movements were combined in specific order so that they were correctly labeled. This

is illustrated in Figure 4.1. This kind of preprocessing scheme is employed as continuous

control of prosthesis requires the feature extraction to be done in a sliding window manner.

The 5s epoch of disjointed window was used to ensure that no data was neglected since the

acquisition protocols used require the subject to perform hand movement task in 5s time

frame. 100ms overlapped window increment was used for the whole signal in the feature

extraction process.
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4.3 Feature extraction

Feature extraction is considered as the main part of the signal analysis. It gives the most

compact and informative set of indicators, especially when dealing with condensed signals

such as EMG. Feature extraction is needed in various signal analyses, as the process will

produce a new reduced but highly informative set of data to represent the basic raw signal.

The EMG signal features are selected to represent details of each segment of EMG data.

This will allow the system to be reliable, and its robustness will not be argued.

The feature extraction process in regards of each time window at specific EMG chan-

nels will then be combined in global vector to yield the complete sets of the feature that

will represent as the EMG pattern for a particular movement or task. Hargrove et al. (2007)

stated that the feature extraction stage is crucial as it is the process of extracting the excel-

lent and useful information that lies upon the EMG signal. Therefore, it will produce better

separability between each class. Some researchers believe that the perfect choice of EMG

features is much better than a good classifier. Various techniques of feature extraction have

been utilised by many as previously discussed in Chapter 2.

4.3.1 Time domain features

The time domain (TD) features are known as the most advantageous features and com-

monly used in many classification studies. The primary benefit is the low complexity asso-

ciated with extraction procedure, yet producing an outstanding performance as compared

to other methods such as FD and TFD. Many studies have proved the usefulness of the TD,

especially on their quick and easy implementations, and also without any transformation

needed (Asghari Oskoei and Hu (2007); Hudgins et al. (1993); Thongpanja et al. (2012b);

Tkach et al. (2010)). The major drawback associated with the TD is that the features are

generated from stationary properties of the signal. Hence, the features are likely to have

very high variations when dealing with non-stationary signal such as the EMG captured

mostly in dynamic movements.

Since the TD features are solely calculated based on the EMG amplitudes, they are
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very susceptible to noise acquired during the data collection. The temporal and spectral

information is highly essential for differentiating class movements. Moreover, this will be

the main criteria for distinguishing the TD and FD performance in the classification. Many

researchers have utilised most of these features and it is deserving to note that not all of

these features are employed together. The feature are selected for the classification study.

Six TD features have been proposed to be used in this study and these are described in

detail in the following subsections.

Root mean square

Root mean square (RMS) is modelled as Gaussian process which is akin to the normal

muscle contraction procedure (Phinyomark et al. (2009)). It also resembles the standard

deviation (SD) method (Phinyomark et al. (2012b)) the mathematical model for RMS is

defined as follow:

RMS =

√√√√ 1

N

N∑
i=1

x2i (4.1)

where xi is the EMG signal, while N denotes the sample number of the signal. RMS is

one of the most popular features used with EMG analysis (Boostani and Moradi (2003)).

Integrated absolute value

Integrated absolute value (IAV) feature is one of the most well known and commonly used

by researchers in EMG signal study. Also known as integrated EMG (IEMG) value and

computed using the moving average of the rectified EMG. This feature is also known by

many other names such as average rectified value (ARV), mean absolute value (MAV),

average absolute value (AAV), and the first order of v−order (V 1) (Phinyomark et al.
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(2012b); Tkach et al. (2010)). IAV is mathematically given as:

IAV =
1

N

N∑
i=1

|xi| (4.2)

where xi is the EMG signal, while N denotes the sample number of the signal.

Zero crossing

Zero crossing (ZC) is a frequency related in time domain analysis. It is a measure of

the spectral component where the number of EMG magnitudes passes the zero amplitude

level (Hudgins et al. (1993); Phinyomark et al. (2012b)). To avoid low-voltage fluctuation

or background noise, threshold condition is applied and the mathematical definition is:

ZC =
N−1∑
i=1

[
sgn(xi × xi+1) ∩ |xi − xi+1| ≥ threshold

]
(4.3)

sgn(x) =

 1, ifx ≥ threshold

0, otherwise

Meanwhile, there is one feature that measures the ratio of upward ZC divided by the

number of peaks (NP ) (Al-Timemy et al. (2015)). This feature can only be measured

using their spectral moments (SM ); described later in Section 4.3.2 . The corresponding

feature can be represented as:

IF =
ZC

NP
=

SM2√
SM0 × SM4

(4.4)
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Waveform length

Waveform length (WL) is a measure of the EMG complexity which is defined as the overall

cumulative sum of the differences over each time segment of a signal. Some may define

this feature as wavelength (WAVE), and also known as the total value of the absolute

derivative signals. The formula for WL is given by,

WL =
N−1∑
i=1

|xi+1 − xi| (4.5)

where xi is the EMG signal, whileN denotes the sample number of the signal. Another

feature that may be useful in this study and quite close to the WL, is given as waveform

length ratio (WLR). WLR is the ratio of WL feature of the first derivative to the waveform

length of the second derivative. The WLR definition is defined as:

WLR = log

( ∑N−1
i=0 |4x|∑N−1
i=0 |42x|

)
(4.6)

Slope sign change

Slope sign change (SSC) has common character as ZC feature. It represents the signal

frequency information by calculating the changes of the slope sign (Hudgins et al. (1993)).

The positive and negative slopes changes are counted within three sequentials within their

threshold function. This will avoid noises in the EMG background. The mathematical

expression for this feature is:

SSC =
N−1∑
i=2

[
f
[
(xi − xi−1)× (xi − xi+1)

]]
(4.7)
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f(x) =

 1, ifx ≥ threshold

0, otherwise

The suggested value for the threshold parameter of this feature to be chosen is within

50 µV to 100 mV (Boostani and Moradi (2003); Phinyomark et al. (2009)). However, it

may differ if the setting for the gain value of the instrument and background noise are not

level.

Auto-regressive coefficient

Auto-regressive (AR) feature is based on the statistical approach on the spectral informa-

tion of the EMG signal, when the peak location is known. It is a prediction models that

describes EMG signal as a linear combination of the previous samples xi−p and a white

noise wi (Boostani and Moradi (2003); Phinyomark et al. (2012b)). In many classification

model, the AR coefficient is employed as feature vector. The general AR model is defined

as below:

xi =
P∑
p=1

apxi−p + wi (4.8)

where P stands for the AR order at specific autoregressive coefficient ap. There has

been research studies suggested for the best AR order to be used in EMG analysis between

fourth order (AR4) (Boostani and Moradi (2003); Phinyomark et al. (2012b); Zardoshti-

Kermani et al. (1995)) to sixth order (AR6) (Asghari Oskoei and Hu (2007); Hargrove

et al. (2007)). In this study, the author selected the AR6 to be used as one of TD features.

AR6 was best tested with hand movement and finger flexion.

All the six TD features chosen in this study have been widely used by researchers as

cited above. The combination of TD features with the AR has been proposed and used in

the previous study such as (Khushaba et al. (2010)). They have shown that the feature is
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achievable and works better in the classification of the EMG signal.

These features also prove to gain very high accuracy in classification as compared to

any FD and TFD in hand movement detection algorithm (Hargrove et al. (2007)). This has

been the motivation for this study to choose TD features as described earlier, for application

into the EMG signal collected within this framework of research.

4.3.2 Frequency domain features

Frequency domain (FD) is another method that can be used to analyse EMG signal. Fre-

quency or spectral components of a signal represent a transformation of time function to

the sum or integral function of sine waves with different frequency bands. This analysis

is familiar and well known in many studies, especially with regards to the EMG signal.

Different to TD which shows the signal change over time, FD reveals how much signal

lies in the frequency band or range.

The spectrum or power spectral density (PSD) of signal is the result of FD transforma-

tion, and is mostly used to study MUAPs recruitment (Arendt-Nielsen and Mills (1988);

Beck et al. (2005); Cechetto et al. (2001)) or fatigue analysis (Dalton and Stokes (1993);

Doud and Walsh (1995)) for EMG signal . PSD is the most useful tool in studying the

frequency component of a signal. Different approaches to statistical properties have been

applied to the PSD, which is defined as a Fourier Transform. It can be estimated using

either periodogram or any other parametric methods.

There are two FD features or PSD variables that have been widely utilised in many re-

search studies, these include mean frequency (MNF), and median frequency (MDF). Other

suitable FD variables that can be used are peak frequency (PF), mean power frequency

(MPF), total power (TP), frequency ratio, central frequency and spectral moments.

Therefore, six FD features are chosen for investigation in this study. These FD features

are described below:



4.3. Feature extraction 67

Peak frequency

Peak frequency (PF) is the frequency which attains the maximum power in the spectrum.

It is given as:

PF = max(Pj), j = 1, .....,M (4.9)

where Pj is the power spectrum at frequency bin j.

Mean frequency

Mean frequency (MNF) is defined as the average value of frequency calculated from the

sum of spectrum power from the EMG signal and the frequency divided by the total of

spectrum intensity (Asghari Oskoei and Hu (2007); Phinyomark et al. (2012b); Sijiang

and Vuskovic (2004)). The MNF is also known as central frequency and spectral center of

gravity. The MNF is expressed as:

MNF =
M∑
j=1

fjPj

/ M∑
j=1

Pj (4.10)

where fj is the spectrum frequency at frequency bin j, Pj is the power spectrum at

frequency bin j, and M is the frequency bin length.

Median frequency

The division of two equal amplitude of frequency spectra is known as median frequency

(MDF). This type of frequency can also be measured as half of total power.

MDF∑
j=1

Pj =
M∑

j=MDF

Pj =
1

2

M∑
j=1

Pj (4.11)
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Mean power frequency

Mean power frequency (MPF) is an average power of the EMG spectrum. The model of

MPF equation is given as:

MNP =
M∑
j=1

Pj

/
M (4.12)

Total power frequency

Total power frequency (TPF) is defined as an aggregate of the EMG power spectrum. This

is mathematically described as:

TPF =
M∑
j=1

Pj = SM0 (4.13)

The TPF is also known as zero order spectral moment (SM0) or can be refered to as

the energy (Sijiang and Vuskovic (2004)). If n = 0 is applied in the equation above, it will

be related to the Parseval’s theorem. Therefore, SM0 is a symbol of the total power in the

frequency spectrum (Khushaba et al. (2014)).

Spectral moment

The spectral moment (SM) is another way of extracting the power spectrum from the EMG

signal. It is a kind of statistical analysis approach that will produce a new feature based on

the power spectrum. The definition for general order of SMn is given as follows:

SMn =
M∑
j=1

Pjfj
n, n = 1, ......, n (4.14)

where n is the order number of the SM .

The features selected for use in this study are those that enable EMG based control,
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attain maximum class separability, show robustness in a noisy environment, and are asso-

ciated with computationally low complexity. This is crucially needed as the features will

have to work in a real-time environment, to yield better pattern classification performance

in EMG.

Since the EMG signal is well known for non-stationarity or transitory characteristics,

using time or frequency domain alone is not enough for feature extraction. Fourier series

gives only the whole time series analysis in one off.

4.4 Statistical analysis

In many research studies, the goal of scientific research must be able to clarify the purpose

value of objective endpoint. This endpoint will conclude the level of research values that

may indicate the works that have made. Descriptive statistics is one of the best methods

for achieving that goal. Such statistical purposes should be used as a model to become

habitual for researchers to determine which model they will adopt. In some way, the

descriptive statistics are methods to organise, compile and present data in an enlightening

way. If this is not taken into account in the research process involving large-scale data, its

impact will result in abnormalities in the results of the study.

4.4.1 Descriptive statistic

Descriptive statistics are necessary for many studies involving the biometric analysis and is

known as a prior requirement in making inferences or hypothetical evaluations (Spriesters-

bach et al. (2009)). Descriptive statistics is a process to produce well-presented data for the

researchers to get more understanding of their subject of study. This strategy will surely

need them to have excellent and accepted practice in their particular field of study.

4.4.2 Correlation coefficients

A linear relationship between two variables is a particular case of a monotonic relation-

ship. Most often, the term “correlation” is used in the context of such a linear relationship
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between two continuous variables.

In the biometric analysis, there are two types of the most commonly used to find the

correlation coefficients. These are known as Pearson’s product moment correlation co-

efficient and Spearman’s rank correlation coefficient. The correct usage of correlation

coefficient type depends on the type of variables being studied (Schober et al. (2018)).

Correlation is defined as a way of identifying the reciprocity, relationship, or associa-

tion between two or more variables. Mathematically, correlation is a statistical approach

to measure any possibility of two variable’s association, whether it is linear or nonlinear

(Mukaka (2012)). Correlation coefficient points the intensity of linear computation and

association between the studied variables. Statistically, it calculates the closeness of the

two variables co-vary, it merely represents as −1 for the perfect negative correlation, +1

as an excellent positive relationship. While through 0, it means no correlation at all.

4.5 Time-frequency domain

.

4.5.1 Fourier transform

Wavelets found when Joseph Fourier introduced his theory in spectral study. He elaborated

Fourier synthesis which is a method to switch TD, as denoted in TD (x(t)) to FD (X(f))

as presented in Figure 4.2.

Figure 4.2: The Fourier transform (FT) is the general practice in the measurement of time series
signal. The fundamental practice of FT is changing domain of operation in the TD into the FD.
(Adapted from Matlab software application)
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For any periodic waveform (2π), the Fourier series generally can be referred as:

x(t) = a0 +
∞∑
k=1

(akcoskt+ bksinkt) (4.15)

while the Fourier coefficients for a0, ak, and bk are denoted as follows:

a0 =
1

2π

∫ 2π

0

x(t)dt (4.16)

ak =
1

π

∫ 2π

0

x(t)cosktdt (4.17)

and

bk =
1

π

∫ 2π

0

x(t)sinktdt (4.18)

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt; j =
√
−1 (4.19)

In general signal analysis, Fourier is excellent and valuable since its main result exposes

the invisible spectral components of a signal. Due to the nature of FT, which discovered

the entire signal at once, is known as its significant drawbacks. The consequence of this

drawback is that the frequencies exhibited are inadequate and not localised in time. This

can be seen as in Figure 4.3. So, it is challenging to determine where and when a particular

situation develops, means that the application of the real-time based system not easily

realised.

The narrower the window, the localisation details in the FD is compromised, while the
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Figure 4.3: Top:Fourier series of a signal in TD (sine wave); Bottom: signal in FD.

wider the window, the localisation details in TD gets compromised. These known as the

effect of the uncertainty principle. The equation of STFT can be referred as below:

XSTFT (ω, β) =

∫ ∞
−∞

x(t)h(t− β)e−jωtdt (4.20)

where β is the central point of windowed time, the STFT provides regional frequency

content, the time and frequency resolution are depended on the windowed size. Shorter

windowed time, up to a limited extent, similarly as quasi-stationary for a specific time.

This means that window size is essential to measures the precision; denoted as a drawback

of this technique. The STFT reveals the ineffective way of time-frequency localisation due

to scale or “response interval” employed in its operation.

4.5.2 Wavelet transform

Wavelet transform (WT) described as another version of the improvement of FT. The con-

nections between the FT, STFT, and the WT in term of properties, and another aspects are

explained in this section. Observations of algorithm are described to gain a precise look of
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wavelets characteristic.

The scale determines the first strategy in investigating the wavelets, one type of TFD

analysis. Besides, wavelets are recognised as methods that perform many numerical des-

ignations and practised in interpreting the signal. WT algorithms run dataset of a signal at

several occasion of translation and dilation. Vast detail information can be seen if viewing

the signal from a large window. However, smaller details are visible if viewing with a

shrunken window. The WT shows the estimation result of analysis in the composition of

both the forest and the trees.

Current section unveils the method of WT investigation, covers the various opinions

and debate of WT approaches, and decorate the analysis of the WT in the previous re-

ports as described by (Bruce et al. (1996); Englehart et al. (2001)). WT has caught new

enthusiasm among researchers in signal analysis and data processing.

WT are the best when implemented in various directions such as transient study, sig-

nal and communication as well as signal processing for multiple applications. WT gives

a satisfying outcome to the dilemmas of the FT and STFT (refer Figure 4.4). The STFT

produces fixed time and frequency resolution for the entire signal due to its fixed window

size. But, in WT, different window size providing multiple resolutions of time and fre-

quency resolution (Daubechies (1990)). The fundamental approach of WT property has

exhibited a process of “dissociations” of a signal. It represents a signal power decomposi-

tion with specified detail coefficients. WT computed and provides details coefficients for

each window made. Though, the width of the wavelet function varies with each spectral

component.

WT described as a series of the regular FT which is working on a single scale either

time or frequency, WT works on a multi-scale basis both for time and frequency. The

mother wavelet decomposed raw signal into a scaled and translated component known as

coefficients. This process overwrites the flaw in STFT which use fixed window size. The

overall process of WT illustrated as in Figure 4.5.

The mother wavelet or known as wavelet function ψ(t), is a zero mean function and
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Figure 4.4: WT approaches are contrary to the STFT as it imposed a timely adjustable window
(Daubechies (1990)). WT technique produce essential frequency localisation properties in both TD
and FD.

Figure 4.5: The general approach of Wavelet transform process.

satisfies the admissibility condition:

Cψ =

∫ ∞
−∞

|Ψ(ω)|2

|ω|
dω <∞ (4.21)

Where Cψ and Ψ(ω) are the admissibility constant and the fourier transform of the

wavelet function respectively.

The process should be averagely zero and centred in both time and frequency space, to

be “admissible”, which expose the application of mother wavelet. This will satisfied the

admissibility condition in WT. The window function of WT can be defined as, ψab(t):

ψaτ (t) =
1√
a
ψ

(
t− τ
a

)
(4.22)
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where a is identified as scaling factor and must be positive, τ is translation parameter

(time shift), while a, τ ∈ < and a 6= 0. The mother wavelet denoted as the scale, a = 1

and position, τ = 0. These will be utilised to produce other wavelets at various scales and

translation.

4.6 Feature dimensionality reduction

Feature extraction method is a crucial method to elicit valuable information and to elim-

inate undesired component and interferences, embedded in the EMG signal. Successful

classification greatly depends on the adoption of a feature vector. However, various inves-

tigations of the EMG signal classification have utilised a feature set that has carried some

redundant features. Then, there is the need for employing the feature reduction strategy in

the EMG analysis.

The features extracted could be showing a high degree of commonality in their at-

tributes or dimensionality. Therefore, there is a need for a reduction technique able to

minimise the feature dimensionality. Candidate techniques include principal component

analysis (PCA), independent component analysis (ICA), and linear discriminant analysis

(LDA) (Chen et al. (2013)). In this study, PCA and a variant of LDA have used to asses the

performance of the features. These reduction techniques have been chosen for their ability

to reduce the redundancy of the features.

Feature reduction comprises methods that can offer low-dimensional feature represen-

tation with improved discriminatory capability that are of predominant interest. Many ap-

proaches have been investigated for dimensionality reduction and feature extraction, such

as PCA, ICA, and LDA. For LDA, is designed to especially fit for resolving classification

dilemmas. It intends to maximise the proportion of the determinant of between-class sets

of the calculated units to the determinant of within-class sets of the computed units.

Feature reduction has been utilised to withdraw problems correlated among huge di-

mension feature vector, and has been acknowledged as ‘curse of the dimensionality’ (Har-

grove et al. (2007)) — this problem results with the implementation of high muscle chan-
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nels. Feature projection helps decrease the feature dimensionality problems, and also to

produce a feature set that enhances the classification performance as well as reduces the

computational cost.

Two types of feature reduction techniques are explored in this study: PCA and un-

correlated linear discriminant analysis (ULDA) (Yang et al. (2008)). These will serve to

lessen the dimension of the feature, also to provide a feature set that enhances the classifi-

cation result and minimises computational cost. These two feature projection procedures

are presented in the following subsections.

4.6.1 Principal component analysis

Principal component analysis (PCA) is known as a conversion method that has been ap-

plied due to its simplicity in signal pre-processing and analysis (Gokgoz and Subasi (2014)),

feature reduction (Geethanjali (2015)) and controller design for assistive devices (Khushaba

et al. (2016)) and rehabilitation systems (Brown et al. (2016)). PCA is an established

method and is commonly adopted in many research works involving bio-signals (Güler

and Koçer (2005)), and is introduced as a standard approach (Chan and Green (2007)) in

classification studies. Various modifications in PCA have been developed to diminish the

dimensional problems of data and for proper data visualisation recently.

The class label details are excluded in this process as it is depended on the data for the

feature projection. PCA reconstructs the data matrix statistically through diagonalizing

process by the covariance matrix. The method acquires the correlation among variables in

the data. If the calculated and evaluated variables are associated, the first few substances

manifest the correlation within the variables.

The steps of PCA computation are illustrated as in Figure 4.6. Consider an X dataset

with n samples ×m measurements. The dimensional mean vector (µ) and covariance ma-

trix of X are computed for the full data set by using subtraction. PCA will calculate the

eigen decomposition of the covariance matrix of (ΣX=XTX), producing the eigenvec-

tors (W ) as the principal components, and eigenvalues (λ) as the weights, which will be

sorted with the highest magnitude as first. Eigenvalues are important for future analysis as
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Figure 4.6: Principal component analysis for feature reduction problem strategy are illustrated.
The steps shows how the new dataset projected from the PCA computation that will be used in the
classification.

they will help in deciding the number of orthogonal components, while eigenvectors will

establish the connection between the new components and the original variables. These

are used to construct the principal components matrix, and then multiplied by the original

dataset. This will produce the new dataset for the classification.

4.6.2 Uncorrelated linear discriminant analysis

LDA is a recognised technique for feature extraction and dimensional problem reduction.

In recent years, it has been utilised in numerous studies such as sensors analysis (Akbar

et al. (2016)), fingerprint recognition (Noor et al. (2018)), and text classification (Anwar

et al. (2019)). LDA accepts as its input a set of greater dimension of features assorted into

groups by determining a best projection that outlines the new features toward a reduced

dimension space while maintaining the group composition. It decreases the within-class

gap and concurrently maximises the between-class gap, consequently reaching the highest

separation.

Another type of dimensional reduction technique employed in this study is a variant

of LDA known as uncorrelated linear discriminant analysis (ULDA). LDA as widely dis-

cussed in Guersoy and Subasi (2008); Subasi and Gursoy (2010). It is a linear combination

of variables that best separate classes or targets. ULDA was proposed by Jin et al. (2001),
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Figure 4.7: Uncorrelated linear discriminant analysis (ULDA) and their transformation steps for
feature reduction problems. The transformation process has to follow the condition sets to assure
the non singularity of Within-class (Sw) scatter matrices

due to limitation problems in classical LDA which require the scatter matrices to be non-

singular, and due to lack of supervision of the dataset decorrelation. This will give poor

results when dealing with high sets of redundant information in datasets.

The new approach of dimensional reduction, namely ULDA, which employs the Gen-

eralised Singular Value decomposition technique to deal with undersampled data by pro-

ducing uncorrelated features in the transformed space introduced by Jieping et al. (2004).

They have provided details on the ULDA which has thus been applied in many research

studies as feature projection technique (Khushaba et al. (2008); Phinyomark et al. (2012a);

Yang et al. (2008)).

Figure 4.7 shows the transformation steps for the ULDA feature reduction technique.

ULDA is a supervised technique for feature extraction, using Fisher criterion based on

discriminant analysis. While PCA explores for objectives of highest diversity in the data,

ULDA attempts linearly joined variables described as uncorrelated discriminant vectors.

The vectors maximise the classes separability regarding the Fisher criterion. The main dif-

ference between ULDA and LDA is that the vectors in the transformation matrix obtained

by ULDA have to satisfy the constraint of so-called “S-orthogonality” (Yuan et al. (2008)).
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4.7 Pattern classification strategy

Classification of hand movements employing an EMG pattern recognition have not gained

the corresponding level of attention given to less dexterous arm movements, such as gross

hand movements, grasping, and movement at the elbow, nor similar classification accuracy

results give the same level of performance. Classification based EMG control attempts to

analyse input data within a particular representation of pre-defined groups for the hand

movements. It involves various approaches for the feature extraction, dimensional reduc-

tion and classification. This also includes data collection strategy applied in the current

study. Feature sets and classifier types have been utilised by researchers to attain high

accuracy such as artificial neural network (Jahani Fariman et al. (2015); Khushaba et al.

(2014); Subasi and Kiymik (2010)), linear discriminant analysis (Noor et al. (2018); Phiny-

omark et al. (2012a)), and support vector machines (Chen et al. (2018); Liu et al. (2007);

Parsaei and Stashuk (2012)).

In the last decades, standardised classification structure has been employed to anal-

yse the collected EMG signals using pre-stated movement sets (Englehart and Hudgins

(2003)). Thus, numerous types of feature and classification techniques have been used

in many research studies exhibiting the usefulness of surface EMG control (Asghari Os-

koei and Hu (2007)). Tenore et al. (2009) continued the notion of control strategy using

EMG based on finger movements for flexion and extension of individual fingers using 32

channels EMG. They managed to achieve excellent classification, but it costed them a for-

tune in the processing time due to a large number of electrodes. However, a modification

in the number of EMG channels, without discrediting the classification efficiency, would

significantly elucidate the obligations for establishing state of the art prostheses.

Hargrove et al. (2007) analysed the classification accuracy of five pattern classification

methods (multilayer perceptron, linear perceptron, LDA, Gaussian mixture model, hidden

Markov model). They resolved that there was no significant difference in the performance

of these classifiers. Furthermore, they suggested that superior accuracy can be achieved by

using optimally three channels of EMG signal for the classification, provided the channels

are chosen carefully and added that the selection of the feature sets and dimensionality
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reduction is significant than the selection of the classification method. These works were

then continued by Scheme et al. (2011), where they rated comparable achievement for ten

classifiers tested.

Further investigation on LDA was done by Khushaba et al. (2012). They reported an

average classification accuracy of ≈90% in discriminating between individual and com-

bined fingers movements. They used two channel EMG from eight participants for finger

movements consisting of 10 classes of individual and combined fingers movements. In

contrast, another set of studies in hand movements classification was done using both nor-

mal and amputee subjects. The variations of classification accuracies can be seen in this

study as they used six EMG channels, resulting in 15 classes of fingers movements (Al-

Timemy et al. (2013)).

Neither Khushaba et al. (2012) nor Al-Timemy et al. (2013) can confirm whether or not

the classification accuracy was affected by the number of EMG channels involved in the

study. However, the outcomes given by both studies are probably confined by the charac-

teristics of the movement classes and the use of data for training or testing. Both of these

circumstances influence the generalisation of the classification performances, and there-

fore there is a need for this new study to take measures in these contexts (EMG channel),

the correlation between EMG muscles, their features and draw a conclusion based on the

findings appropriately. Since this kind of study is dealing with large numbers of datasets,

it is worth to notes that the classification windows for the datasets (CW ) are calculated as

follows:

CW =
xL − L
Linc

(4.23)

where xL is the size of the full dataset, L is the window length and Linc is the window

size increment. The orientation of the windowing techniques can be found in Section 4.2.1.
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4.7.1 Artificial neural network

The multilayer perceptron (MLP) neural network is usually employed for use in EMG sig-

nal classification and has produced competitive achievement for steady-state movement

classification and has been reported in various research studies with promising perfor-

mances (Baspinar et al. (2013); Gandolla et al. (2017); Karlik et al. (2003); Mobasser and

Hashtrudi-Zaad (2012)).

Artificial neural networks (ANNs) are biologically inspired algorithms where the knowl-

edge about the problem is distributed in neurons and their connection weights. ANNs are

non-linear mapping formations based on the function of human brain. They are important

means for modelling, primarily at the underlying information association is unexplained.

Figure 4.8 shows basic architecture and configuration of ANN consisting of three layers:

input layer, hidden layer and output layer. Moreover, each layer has a weight matrix, a bias

vector and an output vector.

Figure 4.8: The basic architure of ANN with the generations from different layers such as input
layer, two hidden layers, and the output layer. Activation functions of the hidden layers and the
output layer were chosen as tansig and purelin separately.

Back-propagation neural network

This type of back-propagation neural network (BPNN) classifier algorithm is known for

effective training and better understanding of the system behaviour (Ahsan et al. (2011);

Baspinar et al. (2013); Ibrahimy et al. (2013); Wang and Buchanan (2002)). The uses of

BPNN abide by a group of standard processing systems which interact by transmitting
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signals to each other over a large number of weighted connections.

The algorithm uses a hyperbolic tangent sigmoid function and linear functions are ap-

plied for the hidden layer and the output layer. This is done separately for each respective

layer. The training process will adjust the connection weights and biases to map the de-

sired output. The generalisation of ANN and their processes are achieved by updating

weight and bias values corresponding to the Levenberg-Marquardt optimisation algorithm

and gradient descent is applied as the learning function (Hagan and Menhaj (1994)).

The basic BPNN algorithm can be set by first initializing the values of weights and

threshold levels of the network to small uniformly distributed random numbers, details for

BPNN computation can be found in Karlik et al. (2003). The activation functions for the

BPNN is known as sc : IR −→ (0, 1) and defined by the expression (Rojas (1996)):

sc(x) =
1

1 + e−cx
(4.24)

where c is a constant and must be positive. The shapes of the activation functions

changes with respect to the value of c.

4.7.2 Linear discriminant analysis

Linear discriminant analysis (LDA) has been broadly utilised to classify human hand

movements based on EMG data (Al-Timemy et al. (2013); Chen et al. (2013); Noor et al.

(2018); Phinyomark et al. (2012a)). The purpose of LDA is to obtain a hyperplane that

can classify the data points describing distinct hand movement classes. The hyperplane is

acquired by examining for a prediction which shows the maximum gap among the average

of the classes and reduces the diversity within the class as the data are assumed normally

distributed.

Balakrishnama and Ganapathiraju (1998) give details of multi-class classification using

LDA alorithm, and summarise the process as follows:

i. Formulate the features dataset for training and testing, which will be classified in the
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original space.

x1 =



a11 a12

a21 a22

... ...

am1 am2


, ..x2 =



b11 b12

b21 b22

... ...

bm1 bm2


, xi =



i11 i12

i21 i22

... ...

im1 im2


.

ii. Compute the mean of each set of features (U1, U2, ..., Ui) in class (i) , and also the

average mean of the entire input data (xi)

iii. Compute the mean global vector (U) for the whole data set, say for a simple two

class problem;

U = p1 × U1 + p2 × U2 (4.25)

where p1 and p2 are the apriori probabilities of the classes.

iv. Subtract the mean from each data point to get the corrected mean data

xoi = xi − U (4.26)

v. Determine the covariance matrix (covi) of the group (i) provided by

covi =
(xoi )

Txoi
ni

(4.27)

where ni is the number of sample class (i)

vi. Compute the combined within-group covariance matrix provided by

Pcov =
1

ntotal

g∑
i=1

nicovi (4.28)

where covariance matrix is represented by covi, number of class (i) samples ni, and
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the total samples number for all classes ntotal, while g is the number of classes.

vii. Compute the inverse of combined within-group Pcov−1 matrix

viii. Employ the discriminant function rule for a k unit provided by

fi = Uicov
−1xTk −

1

2
Uicov

−1UT
i + ln(Pi) (4.29)

where xTk is the input sample data, and Pi is known as the prior probability vector;

Pi =
ni
ntotal

(4.30)

The input sample numbers k that have maximum fi are assigned to the class (i). The

idea of LDA is to classify those features according to their movement class in which

the apriori probabilities can be maximised. LDA performed similarly as ANN with

better computational time. This has been discussed in detail by Tkach et al. (2010).

4.8 Classification performance evaluation

The ultimate measure of the classification scheme is to analyse the performance of the al-

gorithms studied. A non-functional evaluation is utilised to assess the achievement of the

classification strategy. In this technique, the evaluation should not involve the prosthetic

arm to estimate the achievement of the classification method in the study. Therefore, ac-

curate classification based on the user movement class can be used as a standard for the

classification performance.

4.8.1 Classification accuracy

Accuracy is one metric for assessing a classification system. The percentage of correct

classification of the system and its computational information are used to justify the per-
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formance of the classification system, The percentage of correct prediction has been used

in many studies and can be defined as:

ClassificationAccuracy =
Numberofcorrectpredictions

Totalnumberofpredictions
× 100% (4.31)

As for binary classification, accuracy might be determined based on positives and neg-

atives as below:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.32)

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN

= False Negatives. Meanwhile, the percentage of error for a classification system can be

found as :

Error = 100%− ClassificationAccuracy (4.33)

4.8.2 Classification plot

The classification plot can be used to show the results of classification utilising a trained

classifier based on time series. A proper technique for the analysis of a classifier output

is the classification plot, and this has been discussed in Chan and Green (2007). In this

graphical plot, the correct class is drawn alongside the target class on the y-axis against

a time scale in the x-axis. This type of plot gives an advantage of exhibiting the error

distributions and the time location of these errors. The classification plot example can be

found in Chapter 5, Figure 5.20.
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4.9 Summary

The state-of-the-art classification systems and algorithms have been introduced and dis-

cussed. Particularly, the entire processing series of the classification system has been de-

scribed in detail, such as pre and post-processing, features extraction, dimensional reduc-

tion and projection, classification, as well as performance analysis. These approaches have

been briefly explained and the justification of using them in this study has been presented.

This chapter forms the basis for the classification approaches that will be employed in the

following Chapters 5, and 6. This study employed two types of dimensional reduction

techniques, which are namely as PCA and ULDA. These two will be explored and tested

with LDA classifiers. All the data collected with many trials are combined into the whole

new dataset, which is then divided into two sets. The first 55% dataset will be used for the

classifier training, and the rest 45% will be set as testing data and individual performance

extracted using specified classifier. The scheme initiated for this classification will be used

in this study unless pre-stated otherwise in the introduction topic.



Chapter 5

Assessment strategy of human upper
forearm

5.1 Introduction

As stated earlier in the previous chapter, the development of this study was based on the

investigation of the selected muscles involved in the human upper forearm movement. This

has been taken as an initial investigation to understand the real way of signal propagation

within the human upper forearm muscle. Despite many studies done in this context, this

pilot study, however, tends to create a new approach which is using two region of muscles

in the human UFA area as a benchmark strategy. Therefore, there is a need for a new

protocol to be implemented as it will help to realise the real implementation of control

with better performance through each individual muscle analysis.

The study hypothesis is that the EMG signal acquisition is the approximation of the

weighted sum of all muscles sources. There are more than 10 muscles involved in control-

ling hand movements. The muscles locations and their types were discussed in Chapter 2

section 2.2.3. The flow from the hand is affected by the mean of the peripheral and central

nervous system of human. These include the anatomical and physiological characteristic

of human muscle. Besides, the instrumentation performance in data acquisition also affects

the signal properties.

In this chapter a new novel approach of analysis for optimising the use of muscles and

their proper channels is proposed. The data of nine subjects with the normal condition is

used in this study. This study will allow to understand the importance of the muscle use-
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fulness, muscle region and their variations and their distinctive characteristic concerning

the designated movement procedures for the study. In general, the outcome from this study

is expected to establish the information of muscles characteristics and their corresponding

feature in the regional aspect. These will lead to the generalisation of the muscle to be

used in the next chapter for real applicability in the use of selected muscles.

5.2 The assessment strategy for subject muscles and EMG

site selection

To the author’s knowledge, there are no studies reported investigating the relations of sur-

face EMG signals of upper arm and forearm muscles region. The precision of EMG signal

features and parameters proportionally vary with various MVC, index of hand movements

as well as muscle fatigue (MF). The major challenge for the study is to identify suitable

muscles to cooperate better with various hand movements as well as acknowledging the

fatigue manifestation in the EMG signal. This particular study requires thorough investi-

gation and better analysis so that the control performance is improved.

This involves maximum voluntary contraction, different loads, and maximum holding

towards fatigue. Hence, the fundamental study is performed by investigating the signals

acquired from the human upper forearm (UFA) to determine muscle characteristics and to

establish the inter-relationship between both muscles of the forearm and upper arm. The

relationships developed from these muscles will be useful for classification. The present

study aimes to investigate the applicability of human UFA muscles and MF indices at

various force levels of MVC.

The improvement of data collection practicality will allow features extraction and

classification. Hence, a fundamental study is performed by investigating the signals ac-

quired from the human UFA to determine muscle characteristics and to establish the inter-

relationship between both muscles of the forearm and upper arm. The present study aims

to investigate the applicability of human UFA muscles and MF indices at various force

levels of MVC.
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Figure 5.1: Block diagram illustrated the overall approaches in achieving the proposed assessment
and subject muscle performance towards proper EMG site selection

5.2.1 Data acquisition system and protocol

To achieve a proper definitive solution for the EMG muscles and channel selection, nine

(9) subjects were chosen for this particular section of the study. The subject preferences

and acquisition systems were described in Chapter 3. In this assessment strategy, only

hand grip force movements at the standard positions,i.e. 90◦ his used. Hand grip force

involves both human upper forearm main movements such as fingers and palm grip. That

is why it is suitable to be used as a pilot movement for the study. As the movement is

generated by the muscle, the signal propagates from one muscle to another with respect to

their functionality.

The schematic diagram of the proposed of the proposed assessment and subject muscle

investigation of EMG site selection is shown in Figure 5.1. The design protocol involves

several stages, where every detail for each step is explained in their own specific subsec-

tion. The general scheme of the assessment strategy utilised in this study and the analytical

strategy has been proposed. The results from this study will be used in future analytical

technique such as EMG conditioning and segmentation, feature extraction, dimensionality

reduction and classification will also be considered.
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5.2.2 Electrode placement and muscle channels

The subject muscles chosen for this assessment strategy are based on the previous study

collection in Chapter 3 and Chapter 4. The muscles were also pre-examined by the medical

experts before it has been decided to be used in this study. Therefore, there are nine

muscles chosen and these are shown as in Figure 3.9. The electrode placement is the pre-

examined best muscle location suggested for this study. In Figure 3.9, various approaches

of data collection are investigated by variably pairing or combining the muscles as by

variably paired or combined the muscles as shown in A, B, C, D, E, and G. The ground

(G) electrode was located at the most bones known as medial epicondyle.

5.2.3 Assessing muscle fatigue

The MF phenomenon was investigated based on the EMG signal recorded from the subject.

However, to achieve fatigue condition, the subject was asked to apply maximum hand grip

force for a certain amount of time at each level of %MVC. As noted in Figure 5.2, the

%MVC was stable at 80% before fatigue started to happen at around 70s. The fatigue

has became obvious as the subject reached 100 %MVC, where the moment reduced as the

force increased. As the subject tried to push harder and harder, the force still kept going

down.

This can be compared with the fresh EMG signals at 20 and 40 %MVCs. The envelope

of EMG activity, each spike represents the brain activity telling the muscles to be active.

More spikes mean more muscle activity. As can be seen at 100 %MVC, the envelope of

EMG increased even though the strength was actually decreasing as a function of time.

This means that the brain is driving the muscle harder, but something happening peripher-

ally in the muscle makes it weaker than required by the brain. This is called MF and the

force variations degrade the EMG signal performance and cause fatigue.

The result of the present study demonstrates that the MF affects the frequency contents

of the EMG signal. It is shown that the characteristic of the frequency shifts to the lower

frequency when the muscle experiences fatigue (Figure 5.3).

The impact of power frequency at different %MVC on EMG signals recorded from
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Figure 5.2: Raw EMG signal of handgrip at 90 deg force with muscle fatigue occurence after 80%
MVC.
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Figure 5.3: Comparison of handgrip EMG signal power frequency spectrum with (80% MVC) and
without fatigue (20% MVC). The zoomed box (green) shows that the amplitudes is shrinked towards
lower frequencies when fatigue occured. The estimated power for muscle with fatigue are higher
than the estimated signal without fatigue.
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Figure 5.4: Variations of power frequency spectrum produced at different MVCs. These are also
highlighted using zoomed version to give clear pictures on the muscles and their power perfor-
mances.

the 11 muscles used in this study are shown in Figure 5.4. Significantly, each muscle was

involved in such movement. As noted there were variations in the power output for each

muscle concerning their MVCs. Figure 5.4 highlights the power frequency produced using

the red dashed box. This characteristic will be compared and analysed for muscle selection

shown Figure B.1 and Figure B.2 (Appendix B).

There are three properties from the extracted power frequency spectrum used, that is

median frequency, peak frequency and mean frequency. All these properties are calculated

for each muscle and subject involved in this study. Table 5.1 shows the average value for

all subjects. With reference to Table 5.1, the effect of power frequency on 11 muscles was

investigated at four levels of voluntary contractions. The main objective is to determine if

signal power frequency information provides another strategic dimension, hence to identify

the most suitable muscles to be chosen for regular use in the future study and the effect of

muscle fatigue.

In Table 5.1, median power frequencies collected for each muscle consistently indicates

that the frequency content from 40 %MVC to 80 %MVC shifted from higher frequency
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Figure 5.5: The changes of the average value of frequency performance between three properties
selected; median frequency has shown a characteristic of fatigue index, while peak and mean fre-
quencies exposed the real features for the muscle performance selections. These indications give
new insight in assessing the muscle performance and fatigue phenomenon.
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to the lower frequency. This demonstrates that the subjects appeared to endure fatigue

when they reached 60 %MVC or higher, specifically in this study. The changes in median

frequency, as a function of level contraction, are summarised for the whole muscles as

in Table 5.1. A consistent significant slope degradation of the median power frequency

between 60 %MVC to 80 %MVC for all muscles indicated that fatigue corresponded with

no exclusion. This is supported the findings as discussed by Sparto et al. (2000). Median

power frequency is known for its linear characteristic with the MUAPs. Therefore, median

frequency is best to deal with fatigue and could be used as a fatigue index for the future

study.

The selection of muscle is generalised in this study using only one component of hand

movement, that is the hand grip force at normal position. In real life application, the hand

grip covers all types of movement (grip and pinches) for the human hand. During hand

grip force exertion, the muscles in the human UFA initiates EMG spikes to produce the

fingers and grip strength. This was achieved by controlling the movements of the index,

middle, ring and little fingers and the wrist. Scheme et al. (2011) suggested that the best

%MVC to use are 20 and 80, where these data highly possible in reducing the force effect

between two levels of contraction.

5.2.4 Muscle selection

Figure 5.5 presents and concludes the findings for investigation of muscle selection and

muscle fatigue. The change in these properties was spotted when plotted as a function

of the level of force contraction (%MVC). The results presented for fatigue indicators are

based on their median frequency with the time-varying muscle strength used in the current

study.

In assessing the muscles performance, two power frequency properties were used in

this study. The peak frequency shows a steady linear increment while the mean frequency

demonstrates a significant reduction for the preset MVC as shown in Table 5.5. These

properties correlate well with the muscle performance and will be used in the muscle se-

lection strategy. As indicated the proportion of power among different muscles play a
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significant role in hand movement. Whenever muscles are imposed upon diverse force, the

power ratio become the most important feature to be considered.

Figure 5.6: Analysis comparison for the muscle selection strategy based on average peak power
and their mean frequency. These characteristic will be the ultimate tools in this study for the muscle
selection. Muscle will be chosen based on their peak power and their suitabilities according to
SENIAM.

From Figure 5.6, the peak power amplitude versus muscle suggest a tendency of few

muscles to respond very well with the task performed. This will be a good reference

point as these are needed to have suitable muscle selection to reach a plateau in the data

consistency and accuracy of the human UFA classification. It was found that there were

several muscles from both regions of interest giving good response to the movement. Some

of the muscles produce relatively lower than other muscles performance such as FCU, FPL,

PT, PQ, and ECU.

However, minimising the number of channels is the main focus of the study, two hu-

man UFA muscles will be selected for each region (forearm and upper arm). Therefore,

two flexor muscles (FDS and FCR), two extensor muscles (ECRL and EDC) and two up-

per arm muscles (BB and TB) are chosen for the further study. Thus a total of six muscles

to consider. The BB and TB muscles have shown different and attractive characteristic

between each other; however, it is well known for BB muscle gives more valuable infor-
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mation in the analysis as the BB muscle is more prominent than TB. Therefore, it was

concluded to choose only BB muscle for the upper arm area. This would be beneficial for

developing new features involving two regions of muscles for classification, the FDS and

BB muscles are chosen for this study.

5.3 Feature performance analysis

This study attempts to enhance the performance of EMG classification techniques. There-

fore a new considerable research effort in the current use of features needs to be addressed.

This study focused on finding the feasibility features of several types of hand movement

with respective muscle contraction and muscle fatigue. Features are considered as the

central part of this study, as it was the vital component behind the classification accuracy

performance. Functional feature component addressed the sets of information localisation

that represent the EMG signal accurately. Secure information relies on EMG signal are

the most challenging problem to solve. Therefore, investigation on features in terms of the

robustness, level of separability, computation complexity are important in this study.

The current study on EMG feature development focuses on various time (temporal) and

frequency (spectral) indices, for achieving better classification and control technique. It is

known that each domain used in the study came up with its pros and cons. This has been

discussed by many researchers (Asghari Oskoei and Hu (2007); Hudgins et al. (1993);

Thongpanja et al. (2012b); Tkach et al. (2010)). The study will use the indices extracted

based on EMG time-dependent and power frequency analysis.

However, the determination of the signal quality and stability depends on the detection

site that has been proposed. The detection site can be anywhere, as long as it is within

the range and distance of the muscle signal. Therefore, the model of site detection is

introduced, which affects the performance of the EMG detection according to the SENIAM

protocol.

Figure 5.7 depicts the model of EMG signal propagation between two muscles X and

Y, at four different detection sites. Each site detects the signals; however the signal quality
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Figure 5.7: The illustration model of basic EMG signal propagations between two neighbourhood
deep muscles, X and Y. The signals travelled all the way through the deep muscle layers regard-
less of their distances, through fat and skin before reaching the detection sites (E1 to E4). Each
detection sites will have their own characteristics of EMG signal.

is based on the distance between the deep muscle and the sites. Distance is shown by

the length of the propagation arrow for X muscle (blue) and Y muscle (yellow). As can

be seen, there is also the crosstalk between the muscles as they are located side by side.

These phenomena affect the performance of the amplitude and frequency of the signal.

These non-stationary characteristics have opened so much argument within the researchers,

where the feature extracted from the muscle in time and frequency domain are useful but

not adequate for better recognition. The feature exploration and the detection technique

are widely open for new findings.

Therefore, better accuracy only could be realised by extending the possibilities of ex-

ploration of the new features or the combination of the detection technique and the feature.

In general, most of the muscles performing the hand movements, originate from all three

layers in the human upper forearm. Another concern that has to be taken into consideration

is the following:

• The signal amplitude is inversely proportional to the distance travelled (Adam and

De Luca (2005)). This means, the deeper muscles located in the forearm, the lower

amplitude will be detected. This could verify why the signals from the finger pinches

are smaller than the hand grip force.
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• The EMG signals acquired on the thick muscle tissue, fat and also the skin will

produce narrow frequency bandwidth information.

• The fatigue gives a new set of muscle amplitudes and frequency characteristics as

fatigue degrades the real muscle performance. This is the main problem faced by

many researchers as fatigue has its own characteristics for each subject. This is

also the reason why in this study, the muscle performance based on their MVC was

designed, to gather information on the fatigue index and their variabilities between

subjects.

In this study, the time and frequency domain features are used on deciding the robust

EMG feature sets for the hand movement, while their performances will be compared with

the new features extracted in the time-frequency domain. Even though many previous

studies have focused on the same features, the combination of muscles used in this study

rarely analysed or evaluated in other studies, since the current major drawback from these

feature parameters was the nonlinear relationship between different types of muscle or

contraction level. Hence, the investigation here focuses analysing the TD and FD features

in terms of their best linear relationship within these two components. They will also

be inspected in terms of their quality inseparability, robustness and low in computational

criteria.

The previous works have proposed some of the features chosen in this study, but many

research works have only focused on a few muscles rather than trying to investigate the

whole tissue in a go. Thus, these measures have been catered in this study. Moreover, the

approach in this study is much better as it concatenates within each subchapter where the

evaluation is carried out in consecutive order and covered almost the whole muscle in the

human upper extremities.

5.3.1 Data collection

EMG signals were recorded from fifteen (15) normally limbed subjects. Data collection

protocols described for the volunteers, and they sat on a chair facing the battery-powered
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computer with the LabQuest mini interface software (see Chapter 3). This could help them

to visualize the real-time EMG signal for each channel while performing the task given.

The forearm was fixed in one position, and it was resting on a comfortable base. Thus, it

will give the subject a relaxation and calm in their position.

At the initial stage, the subject was asked to perform each pre-set hand movement

with maximum force to determine their MVC force. This was done with the best of their

own capability, for three times with 5 minutes rest intervals. The final average value was

taken as their final 100 %MVC force. The subjects consisted of nine (9) males and six (6)

females.
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 Figure 5.8: The average value of maximum voluntary contraction for all subjects. This show the
variation of force produced between each hand movement at varying contraction level. Hand grip
force dominated the average value as compared with finger pinches. Classification accuracy were
most affected by these variations characteristic.

The electrodes were placed in the pair muscles (2 channels) for each session of data

acquisition. This is to get a better signal without having noise such as crosstalk, minimise

the number of detection sites and to understand the specific muscles in their corresponding

functionality. There were three consecutive days of data collection for each subject to

complete. However, this depended on subject availability during the data collection. Figure
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Figure 5.9: i) Example of disposable electrode placement on the paired forearm muscles, FDS
and FCR: seven classes of hand movement studied in this experiment, three for handgrip force
movement (a, b, c) and four for finger pinch movement (A, B, C, D)

5.10 shows the raw EMG signal collected from a subject. The signal duration for one set of

data collection will be around 80s. This is because in every consecutive MVC, the subject

will have to rest for 5s before they start the next hand movement.

5.3.2 Pre-processing

The study investigates the EMG activity between several muscles for each specific move-

ment. Then, there will be an investigation of its relation in terms of the signal properties.

This can be by means of time domain descriptive statistic analysis, frequency analysis, or

the time-frequency analysis. It is believed that the propagation of the EMG signals orig-

inates from the brain, towards the muscle fibre from the upper arm and then the forearm

back and forth. When the signals propagate from the same source, the interconnection

between them will allow their identification. The relationships must be unique since it is

in the same neighbourhood or region of interest.

The raw data from the source, as in Figure 5.10 will be pre-processed by selecting

the first 5s of movement states in each particular MVC. This will make each movement

separated from other MVCs. Therefore, the new data will be used in future analysis.

The example of the new data after rest state removal are shown as in Figure 5.11. The

shortening segment length of the raw EMG signal offers various benefits to the study,

which is likely to enable fast response time in the classification process. The features

extracted from EMG signals cannot be directly from individual raw samples as the detailed

structure of the raw signal is considered lost (Hudgins et al. (1993)). Generally, the signal
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Figure 5.10: EMG signal with its amplitudes and forces versus time. This signal was separated by
at least 5s rest for each movement. EMG data were collected at sampling frequency of 2000 Hz.

from each channel is differentiable as in Figure 5.11. However, there is also the noise,

and it can be seen that for each paired channels such as FDS and FCR, the variations of

amplitudes and frequencies are apparent.
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Figure 5.11: Example of raw EMG signals for six types of muscles for FP1 movement. This signal
was taken from one of the subjects at their best fresh muscle which is 20 %MVC for 5 consecutive
seconds.
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This can also be seen for other types of movement. It is noticeable that some of the

background noise appears in parts of the channels. This can be caused by crosstalk, move-

ment artefacts, power noise as well as high skin impedance between the electrode and skin.

Therefore, there is a need to propose proper analysis, such as digital filtering to eliminate

this activity.

The other signal property which is noticeable from Figure 5.11 is the distinction of the

signal amplitudes between the muscles or channels. This amplitude variation information

is very important in this analysis as it becomes the primary component that is considered

for classification performance. In Figure 5.12, the four classes of hand movements speci-

fied for fingers are shown. This is only an example for the 20% MVC, which is assumed

as the fresh muscle state. As can be seen, the variation of the amplitude in the respec-

tive muscles is shows very distinctive properties. For examples, the magnitudes of FDS,

ECRL, and EDC are the highest, that is between 0.05 mV to 0.1 mV .
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5.3.3 Feature Extraction

In determining the best features correlated with the types of movement set in this study, an

analysis and verification is carried out in this section to reveal the real character of TD and

FD features. Features are considered as the most valuable criteria in this study, as it will be

used as a new representation for the signal movements. It has to be accurately informative

and robust enough to react to all the movements.

Feature extraction is considered as the central part of this study. It will give the most

compact and informative set of indicators, especially when dealing with the most con-

densed signal such as EMG. The features were chosen are going to be utilised in this

study to associate with EMG based control, achieved maximum class separability, exhibit-

ing robustness in noisy surroundings, and must be computationally low complexity. It is

crucially required that the features will work in a real-time environment, and yield better

pattern classification performance in EMG.

Features are generally categorised in three domains; time, frequency and time-frequency.

Entropy is also considered one type of domain by some in this context. However, the most

common features used in EMG study are time and frequency domain.

Therefore, several feature extraction approaches were used to extract useful features

and to avoid redundancy. Twelve features from time domain and frequency domain were

identified for use in this study. The main reason for having a large number of features is to

minimise the computational complexity and time cost. Specifically, the features used were

six (6) time domain (TD) features; root mean square (RMS), integrated absolute value

(IAV ), zero crossing (ZC), waveform length (WL), slope sign change (SSC), autore-

gression 6th order (AR6), and six (6) frequency domain (FD) features, namely root square

zero-order moment (m0), root square second (m2) and fourth order moments (m4), sparse-

ness (S), irregularity factor (IF ), and waveform length ratio (WLR). These features have

been discussed and used by many researchers, and are listed in Table.

Both TD and FD features were extracted from the raw EMG signals acquired from the

subjects. The features that were chosen in this study were generally based on the criterion

of reducing the complexity and processing time. Features selected also intended to cover
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spatial and temporal information that belong to the signals. Therefore, several key features

involved in this study have been proposed in several previous studies as listed in Table 5.2.

5.3.4 Feature reduction technique

The features extracted could show a high degree of commonality in their attributes or

dimensionality. Therefore, there is a need for a reduction technique able to minimise the

feature dimensionality. In this study, PCA and a variant of LDA (ULDA) are used to asses

the performance of the features. These reduction techniques have been chosen for their

ability to reduce the redundancy of the features. The detailed explanation of these were

given in Chapter 4.

In this study, the features extracted from the TD and FD sets were computed and anal-

ysed using MATLAB R©R2015b software (Mathworks, USA). The contents of the features

were then subjected to the dimensional reduction using PCA and ULDA. The component

of feature number (FN) was dimensionally reduced with various sets (from 2 to 24), to

investigate the suitability of features with the reduction number. Thus, this will identify

which technique is capable of achieving the best FN and higher separability between the

movement classes. These will be discussed in the results section.

The reason for the dimensional reduction needed in this study is twofold. Firstly, there

are 15 subjects involved with whom to produce useful data for training and testing. Sec-

ondly, various numbers of features are used, and these cause the high dimensionality prob-

lems impacting on the data processing to be acceptable in ranges. This is important in any

classification study.

Features separability

The first phase of analysis constituted inspecting the separability of the chosen features

used in this study. The EMG features extracted from different hand movements were plot-

ted using scatter plots showing sample observation of the FCR, FDS, ECRL and EDC mus-

cles of the first subject, their features distribution across seven types of hand movement.

The scatter plot figures were displayed to show that different types of muscle features, es-
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Table 5.2: Six time domain (TD) features; root mean square (RMS), integrated absolute value
(IAV ), zero crossing (ZC), waveform length (WL), slope sign change (SSC), auto regression 6th
order (AR6), and six (6) frequency domain (FD) features; root square zero order moment (m0),
root square second (m2) and fourth order moments (m4), sparseness (S), irregularity factor (IF ),
and lastly waveform length ratio (WLR). There are 12 features in total and each feature was
determined to be used in this study.

Time Domain Frequency Domain

RMS =

√√√√ 1

N

N∑
i=1

x2i (5.1) m0 =

√√√√N−1∑
k=0

x[j]2 (5.2)

IAV =
1

N

N∑
i=1

|xi| (5.3) m4 =

√√√√N−1∑
k=0

k4P [k] (5.4)

ZC =

√
m4

m0
(5.5)

m8 =

√√√√N−1∑
k=0

k8P [k] (5.6)

WL =

N−1∑
i=1

|xi+1 − xi| (5.7) S = | m0√
m0 −m4 �

√
m0 −m8

|

(5.8)

SSC =

N−1∑
i=2

[
f [(xi− xi−1)].. (5.9) IF = log

(
| m4√
m4m8

|
)

(5.10)

..× (xi − xi+1)
]

AR =

P∑
i=1

a(i)x(n− 1)+e(n) (5.11) WLR = log

((∑N−1
j=0 |42x|∑N−1
j=0 |44x|

))
(5.12)
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pecially in time and frequency domains, were exhibiting distinctive classes of separability

performance with respect to feature reduction technique applied.

Figures 5.16, 5.18, 5.17, and 5.19 are presented to illustrate the TD and FD features

extracted. The scatter plots in these figures were constructed upon the most three discrimi-

nant feature components after the dimensionality reduction method using PCA and ULDA,

respectively. The class movements are indicated in the variation of colours as labelled in

each figure to clarify the seven hand movements involved in this study.

For reasons of comparison in the analysis the plots are shown with PCA on the left

side and ULDA on the right side, both with TD and FD. As noted, the TD features had

a more substantial variance when ULDA reduction was used as compared to the PCA.

PCA gave poor class separability where the features were compact in the same region,

especially for the flexor muscle. All muscles performed well when using ULDA, where

the distribution appeared to form a precise class of hand movement in TD. Meanwhile, for

FD, it was evident that both features had a larger variance when ULDA reduction was used

as compared to the PCA. PCA gave poor class separability where the features appeared

compact in the same region, especially for flexor muscle. However, all muscles performied

well when using ULDA, where the distribution formed a precise class of hand movement.

Meanwhile, it is clear from FD features that the performance of PCA in distributing the

feature components was unpredictable. However, ULDA in FD features performed very

well. The scatter plot of feature components show a good consistency and looks promising

in the class separability, with each muscle showing its characteristic within class variance

in each hand movement. FCR and FDS muscles using PCA have shown inconsistencies

in their distribution, while ECRL and EDC have formed better class separability. It can be

seen that the class separability algorithm used in this study was successful in separating

the feature components.

The classification performance of the combinations of the most three prominent TD

and FD features were analysed. LDA classifier architecture has been shown to perform

the equivalent performance as k-nearest neighbour (kNN) or multilayer perceptron neural

network (MLPNN) (Englehart et al. (2001); Geethanjali (2015); Khushaba et al. (2016);
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(a) FCR;TD features with PCA

 

(b) FCR;TD features with ULDA

 

(c) FDS;TD features with PCA

 

(d) FDS;TD features with ULDA

Figure 5.16: Graphical illustration showing TD features and their class of separabilities between
two adjacent flexor muscles FCR and FDS concerning the PCA and ULDA. PCA not successful
in separating the movement class. This creates new insight into how well PCA adapted to the
variations of the feature for different class movements, especially as proposed in this study.

Venugopal et al. (2014)), thus excluded for the further analysis. An analysis of training

and testing data for the LDA classifier was performed in this study based on the features

extracted from time and frequency domain components. There was high accuracy achieved

by both reduction methods. Figure 5.20 shows the error produced in one of the datasets

from ECRL muscle. The errors produced were due to the transition moment as the EMG

contraction state was undetermined (Winters and Kleweno (1993)).

The example classification sequence for one of the involved muscles shown in Figure

5.20 indicates that the proposed method used in FN reduction on the EMG data set is

highly accurate. This technique has been applied to all the datasets available for this study

using LDA classifier.

ULDA has shown the top classification performances by giving>98% average for both

TD and FD training features. While for PCA, less than 92% average was achieved for both

TD and FD training features. The trend appeared almost the same on testing data with



5.3. Feature performance analysis 113

 

(a) ECRL;TD features with PCA

 

(b) ECRL;TD features with ULDA

 

(c) EDC;TD features with PCA

 

(d) EDC;TD features with ULDA

Figure 5.17: Graphical illustration showing TD features and their class of separabilities between
two adjacent extensor muscles ECRL and EDC with respect to the PCA and ULDA. Although
PCA seems to have good class separability, ULDA proves to be more efficient where all the class
movements are compact and within their group boundary. This will results in better classification
with ULDA.

ULDA performing much better than PCA (see Table 5.3).

One of the best ways to investigate the performances of adjacent muscles regarding

their feature number is based on the concept of correlation of the individual muscle’s

performance. This can be achieved by estimating the classification rates between those

adjacent muscles. High mutuality between nearby muscles with their best-desired classifi-

cation accuracy, could justify the standard functionality of the muscle. As can be observed

in Figure 5.21, there are interesting patterns that appear in the adjacent muscles where dif-

ferent reduction techniques give very likely performances. All the muscles involved in this

study tend to perform well with their pairs.

ULDA is outperforming the PCA in terms of achieving high accuracies >90% at

smaller FN, which is by FN of 2 and 4 for (ECRL vs EDC) and (FDS vs FCR) respectively.

PCA is believed to require more features to achieve the same results as it works based on

reducing the redundancy without considering the features or connectivity of classes. For
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(a) FCR;FD features with PCA

 

(b) FCR;FD features with ULDA

 

(c) FDS;FD features with PCA
 

(d) FDS;FD features with ULDA

Figure 5.18: Graphical results illustrate FD features and their class of separabilities between two
adjacent flexor muscles FCR and FDS with respect to the PCA and ULDA. PCA was unable to
separate the movement classes in a good way as all classes were undetermined within their group.
This creates unstable classification and might be related to the disability of PCA to reduce the
redundancy problems in the FD features.

this case, PCA achieved mutual accuracies >90% at FN= 12.

As can be seen in Figure 5.21, FDS and FCR performed very similarly when using

PCA and ULDA, where they achieved mutual accuracies above 90% at a factor of 12 for

FN.

Meanwhile, ECRL and EDC muscles responded very well using both PCA and ULDA.

However, this does not affect the objective of the study, where the overall performance

between muscles could be the ultimate justification. As can be seen in the Figure B.2 in

Appendix B, the similarity performance between both adjacent muscles are high, less than

5% gap for both flexor (FCR and FDS) and extensor (ECRL and EDC) muscles on average.

These are applicable to both domains of feature analysis.

On those findings, it is believed that the adjacent muscles perform almost similar in all

subjects. Thus, the number of muscles used in the data collection could be reduced as it

would make the analysis better. The data arrangement, muscle selection, and feature set
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(a) ECRL;FD features with PCA

 

(b) ECRL;FD features with ULDA

 

(c) EDC;FD features with PCA

 

(d) EDC;FD features with ULDA

Figure 5.19: Graphical illustration showing FD features and their class of separabilities between
two adjacent extensor muscles ECRL and EDC with respect to the PCA and ULDA. ULDA with FD
features performed very well as compared to PCA for both muscles (refer Figure 5.19b and 5.19d).

 

Figure 5.20: Example of classification sequence for FD features of ECRL muscle. The classification
time plot is highly successful presenting the actual and estimated class of hand movement with
2.6114% error.

used in the parameter adjustment for an LDA classifier produced better results. LDA can be

seen as the most useful classifier, which matches or sometimes exceeds other classifiers in

terms of their performance. LDA also performs better in terms of computational efficiency.
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Table 5.3: Training and testing data classification accuracies using PCA and ULDA for both time
and frequency domain features, FN=10. Training data has excellent performance for both domain
and reduction technique. However, performances of testing data are slightly low. This might be due
to the variations of the features among subjects.

Analysis
Muscles

Training Data (%) Testing Data (%)

Domain PCA ULDA PCA ULDA

TD FCR 86.9432 99.5392 85.3403 90.8377
FDS 85.4071 98.9247 87.8272 92.0157

ECRL 98.6175 99.6928 93.7173 94.2408
EDC 97.0814 99.3856 94.3717 99.8691

FD FCR 91.5515 97.3886 81.4136 87.9581
FDS 88.0184 98.1567 91.0995 93.9791

ECRL 97.3886 99.232 80.6283 84.8168
EDC 94.7773 98.4639 81.6754 76.8325
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Figure 5.21: The average classification accuracies for all the studied muscles using both the pro-
posed PCA and ULDA reduction techniques with various FN. The adjacent muscles performed
similarly in their accuracy for both categories. However, ULDA outperformed the PCA by achiev-
ing smaller FN of reduction components, FN=7 to made an accuracy >95%.
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This also would help the researchers to be efficient in the time and money spent in the data

collection. However, the deservedness of reducing the number of channels or muscles used

should reflect the study objectives.

5.3.5 Descriptive statistical strategy

In this study, the overall impact of the EMG signal and its variation on nine (9) TD and FD

related statistical features is analysed. Our features created here are solely tied to TD and

FD, as is believed that several combinations of features extracted will produce a powerful

feature set. Hence, these will be used to identify the most suitable and robust feature sets

to deal with the EMG signals. The features selected from this study will also be used in

future for comparative analysis.

The analysis of EMG in this study is based on the EMG readings and the features were

extracted using descriptive statistical features of TD and FD. The generated features were

believed to be at the best component, which will give indication of the highest significant

difference between the muscle component and their properties. Thus, it will provide better

and useful features for the classification. However, the design of the pattern recognition

technique in this study remains challenging. The challenge, as many researchers struggle

to deal with this kind of signals, was the issue of robustness and information efficiency for

top-notch performance in classification. Therefore, to propose a new approach of analysis,

this study attempted to impose a new treatment of EMG signals, their respective muscle

and the movement strategy used to compensate for daily human activities.

Nevertheless, in many previous research works, the EMG signals have been acquired

from only two or three specific muscle, and the pattern classification is realised based on

the different feature extraction methods. Theoretically, there are many differences between

the muscle layers and their region of interest. Therefore, for example, the intramuscular

muscles are not comparable with the surface muscle, and this cannot guarantee their perfor-

mances nor effectiveness of the algorithm used. Understanding the nature of EMG signal

for hand movements, their characteristics in terms of amplitude and spectrum component

are studied. That has been designed and conducted for seven types of hand movement, as
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mentioned earlier. For example, Figure 5.13 and Figure 5.14 show the raw EMG signals

acquired from six muscles for four finger movements and three hand grip movements.

To better understand the nature of the EMG spectrum for each movement at their spe-

cific muscles, the frequency spectrum was plotted using FFT analysis method. These has

been shown as in Figure 5.13 and Figure 5.15. The variation of the frequency bandwidth

between types of muscle (flexor, extensor and upper arm muscles) may be seen in this

figures. For the flexor muscles, the bandwidth was spotted between 1-250Hz, extensor

1-350Hz, and upper arm muscle 1-150Hz. In Figure 5.13 and Figure 5.15, every channel

of muscle showed a very distinct peak at roughly around 50Hz, which is probably due to

mains power disturbance. This can be seen for all movements. Therefore, there is a need

for the use of notch filtering to eliminate the noise.

Table 5.4: The table shows an example correlation coefficient between each feature as proposed
in this study. The correlation calculated using Pearson R statistical method. This proves the best
linear relationship between each feature at r>0.95. The number indicated in the table was set as
a feature and denoted as follows: 1. Mean, 2. Standard deviation, 3. Variance, 4. Skewness, 5.
Kurtosis, 6. Mean absolute deviation, 7. Minimum, 8. Medium, and 9. Maximum

1 2 3 4 5 6 7 8 9
1 – 0.06932 0.0879 0.0188 0.15912 0.04254 0.18599 0.99671 0.32734
2 0.06932 – 0.92887 0.40869 0.3497 0.99639 -0.9282 0.02609 0.91249
3 0.0879 0.92887 – 0.39009 0.37264 0.91285 -0.8601 0.04873 0.89364
4 0.0188 0.40869 0.39009 – 0.7128 0.37124 -0.3283 -0.0416 0.54081
5 0.15912 0.3497 0.37264 0.7128 – 0.2902 -0.3634 0.11724 0.56897
6 0.04254 0.99639 0.91285 0.37124 0.2902 – -0.9223 0.00207 0.88185
7 0.18599 -0.92821 -0.8601 -0.3283 -0.3634 -0.92229 – 0.22013 -0.8043
8 0.99671 0.02609 0.04873 -0.0416 0.11724 0.00207 0.22013 – 0.27847
9 0.32734 0.91249 0.89364 0.54081 0.56897 0.88185 -0.8043 0.27847 –

MAX 0.99671 0.99639 0.9289 0.7128 0.7128 0.99639 0.2201 0.9967 0.9125
MIN 0.0188 -0.9282 -0.86 -0.328 -0.363 -0.9223 -0.928 -0.042 -0.804

Table 5.5: Linear correlation coeffiecient using Pearson’s R (r>0.95) for finger pinches using
TD features at different MVCs;Legend: X Linearly correlated within each paired ; Y Linearly
correlated within each paired; J Linearly correlated within each paired; 6 Not linearly correlated

FP Mean SD Var Skew Kurt MAD Min Med Max

1 X Y 6 6 6 Y 6 X 6
2 X YJ J 6 6 Y 6 X 6
3 X Y 6 6 6 Y 6 X 6
4 X Y 6 6 6 Y 6 X 6

For finger pinches, the analysis for all subjects involved in this study reveals that sev-
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Figure 5.23: Example of confusion matrix Pearson’s R correlation coefficient of 9 TD features, at
FP1 for various percentages of MVC. Results averaged from all subject involved in this study. The
highest concentration red box shows the most positive linear correlation r=0.996. The acceptable
range was set at r>0.95.

Table 5.6: Linear correlation coeffiecient using Pearson’s R (r>0.95) for finger pinches using FD
features at different MVCs

FP Mean SD Var Skew Kurt MAD Min Med Max

1 X Y 6 6 6 Y 6 X 6
2 X YJ J 6 6 Y 6 X 6
3 X Y 6 6 6 Y 6 X 6
4 X Y 6 6 6 Y 6 X 6
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eral features have been showing strong correlation between each other such as (Mean vs

Med, SD vs MAD and SD vs Var). The features were optimised empirically using the pair-

ing system through the measures of their correlation coefficient. The feature at different

combinations is calculated using Pearson’s correlation coefficient. The chosen features are

selected between features with r>0.95 between the pairs.

Table 5.7: Linear correlation coeffiecient using Pearson’s R (r>0.95) for hand grip forces using
TD features at different MVCs;Legend: X Linearly correlated within each paired ; Y Linearly
correlated within each paired; J Linearly correlated within each paired; 6 Not linearly correlated

HG() Mean SD Var Skew Kurt MAD Min Med Max

N 6 XY 6 6 6 X 6 6 Y
F 6 XY 6 6 6 X 6 6 Y
E X Y 6 6 6 Y 6 X 6

Table 5.8: Linear correlation coeffiecient using Pearson’s R (r>0.95) for hand grip forces using
FD features at different MVCs

HG() Mean SD Var Skew Kurt MAD Min Med Max

N 6 X 6 6 6 X 6 6 6
F 6 XY 6 6 6 X 6 6 Y
E X Y 6 6 6 Y 6 X 6

5.4 Summary

This chapter explored and evaluated the new approaches of data collection and assessing

the human upper forearm muscles with force variations, as well as muscle fatigue. It is

suggested that the most appropriate use of muscle to establish the inter-relation between

two regions of the human upper forearm with the statistical features extracted from the TD

and FD domains. It has been shown that there are four statistical features perform very

well, and these are mean, standard deviation (SD), mean absolute deviation (MAD) and

variance (Var). The analysis results from the data that has been collected, two types of

muscle group has been selected for further study. The most highest EMG average power

from those tested in this Section was chosen; this has been discussed in Section 5.2.4.

This study offers an opportunity to develop a new feature and classification scheme

to enhance the capabilities of disabled people, especially one that may have problems of
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weaknesses in muscle contraction or amputated. The current study focuses on paralysed

persons or those amputated in the middle region between the forearm and upper arm, where

the current single system approach will not be adequate.

This also aimed to minimise the number of EMG channel used, optimise the cost for

data collection, and also reduce the complexity in data analysis. Therefore, there is the

need to perform this study before proceeding to achieving ultimate objective for the whole

study. Consequently, it is necessary to identify all these muscles and their performances

with individual hand movement covered in this study. Another potential application that

may be applied in this study is the way to distinguish the movement and contraction levels

without using all the muscles available in the forearm and upper arm.



Chapter 6

Fuzzy entropy mutual information
based on wavelet EMG fusion

6.1 Introduction

The proposed EMG fusion algorithm in the pattern classification for the human UFA are

described and presented in this chapter. The fusion modelling covered the forearm and

upper arm muscles and their region was discovered. Development of pattern classification

with the proposed algorithms for reference to initiating a new approach of concatenating

the two regions of muscles as one the application of the pattern classification has been

analysed, and the details of the analysis is concluded in this cahpter.

It has been proved that the EMG signals exhibit an interconnected function between

one another. The basic rule for the muscles, they function independently of one another;

however, some parts of the muscle series manifest synchronous potentials. One of the most

known terms for this behaviours is synchronisation. This will be the ultimate justification

for proposing this idea for the study.

EMG is well known on the problematic situation where it has to deal with the exces-

sive number of inputs. This happened as different input or features extracted from the

same region of muscles produces different patterns or properties of the signal. Therefore,

by combining or fusing these flexible characteristics, the information gathered is retained

while eliminating the redundancy problems. Time-frequency features will be used in this

chapter as it is aimed at the real-time application in future work.

A cross-correlation technique based on time-frequency fusion feature was chosen. The

123
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fusion techniques have been popular in the pattern classification study in recent years and

well known for its richness properties like EMG signals. Feature fusion typically com-

prises from three different strategies: pixel-level fusion, feature-level fusion and decision-

level fusion.

6.2 Data fusion techniques

The integration of data and information (feature) from various causes have been identified

as data fusion. This subchapter summarises the state of the data fusion field and describes

the most relevant studies. Generally, the use of knowledge or data fusions can benefit most

information or signal that requires any parameter estimation from diverse origins (Cas-

tanedo (2013)). The expressions of data/information fusion are known as one meaning;

but in some strategies, the data fusion employed for raw data (acquired immediately from

sensors) and the feature fusion is used to represent means from pre-processed data.

Hall and Llinas (1997) in their reports stated that data fusion procedures fuse data

from many sensors and described information from associated databases to gain upgraded

accuracy and more precise results than could be attained by the performance of a single

sensor. Feature fusion has been frequently employed in the current interest of pattern

classification due to their abundance of quality credentials in the signal database. Feature

fusion typically involves three approaches:

a. Signal or pixel-level : the fusion at the raw/original data layer, or known as data

fusion,

b. Feature-level : utilize fusion at extracted feature from space of different modality

profiles, the most important pre-processing step for any classifier,

c. Decision-level : fuses results from various approaches, algorithms, origins, or clas-

sifiers to produce estimations that are of greater quality. This technique also consid-

ered as high level fusion.

This technique has been briefly discussed in Luo et al. (2002), which stressed on the
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abstraction levels of information/feature fusion. The principal goal of information/feature

fusion is to employ entirely appropriate low-level features extracted from the identical or

diverse modality outlines of tasks for analysis. Though, the obtained features (or signals)

may carry excessive and unnecessary information, which raises the dimensional problems

and decreases feature spaces quality.

In this case, standard data integration procedures unable to present a decent understand-

ing. Furthermore, dimensionality problems extend the training execution in the classifiers

and thus costs high computation complexity; hence, dimensional reduction strategy using

feature projection is necessary.

Feature projection has been popular for the most widely used technique in the feature

fusion. It is a technique that described as mapping strategy of original feature space into a

new subspace so that the learning criterion or processes optimised.

6.3 Fusion strategy

In this work, two tiers of fusion technique are proposed to improve the usual way of EMG

classification scheme. The EMG data acquired, as explained in Chapter 3, and being pre-

analysed in Chapter 4 and Chapter 5 were used in this chapter. The effective EMG based

with proper EMG channel numbers selected is analysed using fusion techniques. Accord-

ing to the simplified EMG channels concluded in Chapter 4 and 5, the use of the optimised

channels with proper classification technique improves the performance.

At first, the raw signals from two regions of muscles are fused together, generating a

new whole dataset for the feature extraction. The features using fuzzy mutual information

entropy based on wavelet (FEFWC) is extracted. The generalised feature functions based

on fuzzy mutual information produced from this method. This approach is believed to

works better as multiple fusion strategy will give better resolution on the classification

decision. The subject’s data from previous works are used in this newly proposed work.

It is to make sure that the results gathered from this approach can be compared and the

performance of the new proposed idea could be evaluated.
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6.4 Wavelet analysis

Fourier is a basic standard of the frequency component, and it is limited to only station-

ary signals. Fourier working principle is based on the time evolution of a fixed window,

following in unpredictable frequency localisation. Fixed window technique is not suitable

for human biosignals. Actual human biosignal like EEG, ECG, EMG is not stationary in

their natural properties. Intermittencies and uncertainties in their frequency components,

notably variable. These type of signals are common with multiscale and transient aspects.

Therefore, wavelet was introduced to overcome the problem of frequency localisation in

the fixed window as appears in Fourier.

6.4.1 Continuous wavelet transform

The continuous wavelet transform (CWT) is one of the wavelets analysis type. It represent

an optimal decomposition of frequency localisation for the time series, x(t), time (t) and

frequency or scaling function (a) with a convolution integral:

Wf (a, τ) =
1√
a

∫ +∞

−∞
x(t)ψ∗(

t− τ
a

)dt (6.1)

where ψ is refer to the mother wavelet function, a denote the dilation or scale factor, τ

translation parameter (time shift) and ’?’ is a complex conjugate operator. To get this right,

it must follow the admissibility condition. Based on admissibility condition as discussed

in Section 4.5.2, local wavelet spectrum can be define as:

P (k, t) =
1

2Cψk0

∣∣∣∣W (
k0
k
, t)

∣∣∣∣2, k ≥ 0, (6.2)

where k0 is the peak frequency of the mother wavelet used in the study. From this
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equation, a mean or global wavelet spectrum can be defined as;

P (k) =

∫ +∞

−∞
P (k, t)dt (6.3)

which also highly related to the total energy E of the original signal x(t);

Total Energy

E =

∫ +∞

−∞
P (k)dk (6.4)

P (k, t) =
1

Cψk

∫ +∞

0

PF (ω)

∣∣∣∣W(k0k , t
)∣∣∣∣2, (6.5)

The square of the FT of shifted wavelet function ψ at frequency k produces the global

wavelet spectrum, in their sample average.

Wavelet Cross Correlation

The idea of using wavelet cross-correlation began when we were trying to reach a new

adaptation in our study to investigates the correlation between two regions of muscles in the

human upper forearm since the muscles in the forearm and upper arm are complexes within

its functional and specification. The cross-correlation technique using specific muscles

specially chosen from the pre-study highly considered. This methodology is believed to

create a new space of information in getting a better and proper analysis of detection or

integration of human upper forearm region.

The wavelet fusion strategy is to utilise the wavelet coefficients generated at each fusion

signal, to construct new features or variables that can best represent the classes of the

task for the hand movement. If the two signals multiplied, and the features extracted

from fusion operation will generate the boosted correlation values, while the uncorrelated

features will depreciate. The identification of the best bases was a problem that needs to
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rectify. The features constructed has to be highly discriminate between each class of the

problem tasks.

Let the wavelet transform of two real signals, represents by f(t) and g(t). The wavelet

cross-correlation can be define as equation below:

Wfg(a, τ) = W ∗
f (a, τ)Wg(a, τ), (6.6)

The symbol for ’∗’ means for complex conjugate operator, and since the analysing

wavelet is complex, the Wfg(a, τ) also considered as complex and they can be written in

its complexes forms:

Wfg(a, τ) = CoWf (a, τ)− iQuadWfg(a, τ), (6.7)

If f(t) and g(t) ∈ L2(<), this important relation means:

∫ +∞

−∞
f(t)g(t)dt =

1

Cψ

∫ +∞

0

∫ +∞

−∞
CoWfg(a, τ)dτda, (6.8)

which relates the Co-spectrum to the correlation integral of the signals. Therefore, the

local wavelet cross-correlation spectrum is defined by:

|Wfg(a, τ)|2 = |CoWfg(a, τ)|2 + |QuadWfg(a, τ)|2 (6.9)

The integration τ and a of local wavelet equation gives the global wavelet coefficients

and correlation energy dispersed by the fusion signal. These equivalent quantities gives

better personalisation of features to be used in the classification analysis.
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Figure 6.1: The basic fusion strategy introduced for this study.

6.5 Mutual information based on wavelet fusion

Entropy is one types of primary measures that give probabilities of information content

for a random variable. Entropy was used by many researchers to estimate the uncertainty

of that variable by employing mutual information strategy. This will involves two types

of mutual information of variables using a joint probability distribution and a marginal

probability distribution (Khushaba et al. (2016)).

The value for the kth vector with class, ith denoted as follow:

µik = µi(xk) ∈ [0, 1] (6.10)

whereX = {x1, x2, x3, ...xl} are the space pattern, and k = 1, 2, 3, ...l is patterns total

number. The average sample data of class ith are represented by xi, while the data radius



130 Chapter 6. Fuzzy entropy mutual information based on wavelet EMG fusion

r can be found at:

r = max ‖ x− xk ‖σ (6.11)

Hence, the membership µik calculated as:

µik =

(
‖ x− xk ‖σ

r + ε

) −2
m−1

(6.12)

where m known as fuzzification parameter, and it must be ε > 0 to avoid singularity.

σ is the distance of the SD, hence the samples membership are individually normalised

according to:

c∑
i=1

µik = 1 (6.13)

Let X = {x1, x2, ..., xn} with n symbols, and the membership degree of xi to fuzzy

set A denoted as µA(xi), and F : G(2X)→ [0, 1] as a set-to-point mapping.The following

standard of De Luca–Termini (DLT) axioms are required for the F to be established as a

sets of fuzzy entropy:

Ac = (1− µA(x1), ...., 1− µA(xn)) (6.14)

While, Shannon entropy satisfies all the above DLT axioms, and is defined as:

H(X) = −
∑
i

p(xi)log2p(xi) (6.15)

The c-fuzzy sets are constructed along with each particular feature using the proposed
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membership function. This reflects the membership degrees of the individuals in the prob-

lem classes. The fuzzy equivalent to the mutual probability of the practice models that

belong to class i is presented as:

P (f, ci) =

∑
k∈Ai

µik

NP
(6.16)

while, P (f, ci) were interpreted as predefined samples class degree that belong to the

class i. Meanwhile Ai denoted as the pattern indices for the training data, which NP

reflect to the total number of patterns. Therefore, the joint fuzzy entropy of the class i can

be stated as:

H(f, ci) = −Pf,cilogPf,ci (6.17)

The entropy for all c-classes can be calculated by summing along the universal set.

This will produce the complete fuzzy entropy set, stated as:

H(f, C) =
c∑
i=1

H(f, ci) (6.18)

The joint fuzzy entropy did satisfies the four DLT axioms. The associated entropies for

each feature can be computed along each features samples. Hence, the marginal entropy

for each feature can be produce by adding the estimated membership values of the samples

together with the c-fuzzy sets Si:

P (fSi) =

∑
k µik
NP

(6.19)
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Hence, the feature marginal entropy is denoted as:

H(X) = −PfSi
logPfSi

(6.20)

Similarly, for the class marginal entropy can be found by computing the fuzzy class

probability P (ci) :

P (ci) =

∑
k∈Ai,∀S µik

NP
(6.21)

Then,

H(Y ) = −PcilogPci (6.22)

are referred to as marginal class entropy H(Y ).

The fuzzy mutual information (FMI) is then calculated using the equation defined as

below:

FMI(X, Y ) = H(X) +H(Y )−H(X, Y ) = H(Y )−H(X|Y ) (6.23)

where X and Y are two fuzzy variables with respective marginal entropies H(X) and

H(Y ). H(X, Y ) are the fuzzy entropy for X and Y . This will be used to calculate the

feature-class FMI and feature-feature FMI. The correlation of a feature generated from

feature-class FMI will gives a justification of feature with its class label score, and the

feature-feature FMI gives the similarity score between two features. The rank of the FMI

score can be justify as below:

Handling real data or datasets can get headache as its well know properties such as

vagueness or imprecission. These problems may affect model for analysis or study. Fuzzy
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Table 6.1: Correlation score for mutual information definition.

Correlation Score (Mutual Information) Definition
High Indicators of large reduction in uncertainty
Low Indicators of small reduction in uncertainty
Zero Independent variables

was used by many researchers to deal with imprecise data, which estimate the membership

value for the specific pattern or variable. The FMI is proposed to gives effective measure

for the continuous random variable. The advantages of using mutual information different

features for each desired target may produce a better or minimal error in the probabilities

function.

6.6 Feature extraction method

The raw dataset for each signal is then was transformed into wavelet to produce a complete

tree up to a level of J decomposition. These wavelet signals are fused to generated a new

set of cross correlation or decomposition coefficients. As the decomposition coefficients

can be considered as a new feature space, each subspaces of Ωj,k can be constructed using

normalised wavelet energy.

Each coefficients subspace are accumulated by squares divided the coefficient numbers.

The logarithmic operator is applied for the normalisation of the distributed features, this

can be refer as below:

The features from various number of dataset can be use as its normalised variant using

the below equation:

Fi =
I(C; fi)

(H(fi))
(6.24)

Based on the equation (6.24), the criterion for the fuzzy set can be calculated, and will

show their classification ability. These normalised features will be ranked and sorted to

remove the unnecessary nodes or features. The approaches can be summarised as follows:

Step 1 For each paired signals, perform full continuous wavelet transform. Perform wavelet



134 Chapter 6. Fuzzy entropy mutual information based on wavelet EMG fusion

cross correlation to get CWT1 and CWT2 of the signals.

Step 2 Apply linear correlation (using Spearman’s rank coefficient), resulting in conjuga-

tion of scaled wavelet with the subject and signal output.

Step 3 Extract the maximum and minimum correlation scales or location.

Step 4 Extract the individual coefficients at maximum and minimum.

Step 5 Construct elements from 3 and 4 as a set of features and calculate the energy com-

ponent by accumulating all the features by squares.

Step 6 Calculate the normalised logarithmic energy of the wavelet coefficients of the indi-

vidual coefficients according to (reflogoperator) .

Step 7 Construct the associated fuzzy sets and compute the fuzzy entropies mutual infor-

mation based on equation (6.24).

Step 8 In descending order, sort the individual coefficients. The sorted sets is the final

FEFWC based decomposition.

The above algorithm is applied for the features selection for each channel, then these fea-

tures will be concatenated to generate a new vector for the classification purpose.

The aforementioned classification techniques applied in this study has been described

as in Chapter 5, which is used in the preliminary studies on determining the best muscles

to be used for the whole study objective. The spesific objective for this chapter was to

verify the significance of the proposed fusion technique using two different muscle region

for the hand movement classifications.

6.7 Results

Before the overall scale of proposed analysis can be done, there is the need to investigates

few components which is linked closely to the development of the proposed algorithm for

the analysis.
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6.7.1 Mother wavelet determination

The original concept behind wavelets is to examine signals according to their scale level

or decomposition. The wavelet analysis system is to utilise a wavelet prototype function

or known as mother wavelet. The mother wavelet are the main key component in wavelet

analysis or study. The mother wavelet will determine the suitability of the studies ap-

proach. One of the easiest way to choose suitable mother wavelet for the study is refering

to the previous article. However, this technique might jeopardice the whole objective of

the study if it was wrongly chosen. Therefore, the best way for the wavelet determination

is by testing the analysis data with several mother wavelet available in the literatures.

In this study, eight (8) types of mother wavelet has been used to justify the performance

of the EMG signals correspond to the level of decompositions. The eight wavelet used in

this study are; Daubechies, Gaussian, Symlet, Coiflet, Morlet, Haar, Meyer, and Discrete

approximation (Dmeyer), illustrated as in Figure 6.2 . Each wavelet are designed with

their own characteristic, such as vanishing moment and scaling function to cope with the

analysed raw signal. They will exhibit their own properties, such as frequency component

and scaling function of the signal.
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(a) Gaussian wavelet (b) Morlet wavelet

(c) Symmlet wavelet (d) Daubechies wavelet

(e) Meyer wavelet (f) D-Meyer wavelet

(g) Haar wavelet (h) Coiflet wavelet

Figure 6.2: The eight (8) mother wavelets used in this topic.
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The spectral information found in each of them were analysed. These information will

be used to choose which wavelet function give better detection and the features will be

extracted based on the chosen one. In general, wavelet analysis works best with selection

of a mother wavelet which closely resembles the target oscillation of the original signal.

In this study, the parameter setup for the mother analysis has been develop to generalise

the outcome of the study. The parameter setup was fixed as stated below:

Table 6.2: Parameter setup for the mother wavelet analysis

Parameter name Parameter setup value
Window size 5000 ms

Window increment 256 ms
Sampling frequency 2000 Hz

Level of decomposition 10

(a) (b)

Figure 6.3: (a)Examples of the FP1 raw signals, converted into wavelet scalogram with respect to
the Gaussian wavelet; (b) correspondence table of scales and frequencies associated to the analyse
wavelet.
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(a) FDS muscle (b) FCR muscle

(c) EDC muscle (d) ECRL muscle

(e) BB muscle (f) Table for Gaussian

Figure 6.4: The scalogram representation for the FP1 hand movement using Gaussian wavelet at
level 4 (gaus4). These shows the variations of coefficient amplitudes at different time and scale for
different muscles, even at the same movement.
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Table 6.3: Overall eight (8) wavelets performances for subject 1 on finger pinch 1 (FP1). This
is just to show the variations may occurs on different wavelet at the different scale and frequency
components.

Muscle Wave
Name

Scale True Fre-
quency (Hz)

Muscle Wave
Name

Scale True Fre-
quency (Hz)

FDS

Gaussian

128 0 FDS

Meyer

128 0
FCR 48 20.833 FCR 66 20.833
ECRL 48 20.833 ECRL 66 20.833
EDC 48 20.833 EDC 66 20.833
BB 128 0 BB 128 0

FDS

Morlet

128 0 FDS

DMeyer

128 0
FCR 78 20.833 FCR 64 20.833
ECRL 78 20.833 ECRL 64 20.833
EDC 78 20.833 EDC 64 20.833
BB 128 0 BB 128 0

FDS

Symlet

128 0 FDS

Haar

128 0
FCR 69 20.833 FCR 96 20.833
ECRL 69 20.833 ECRL 96 20.833
EDC 69 20.833 EDC 96 20.833
BB 128 0 BB 128 0

FDS

Daubechies

128 0 FDS

Coiflet

128 0
FCR 69 20.833 FCR 67 20.833
ECRL 69 20.833 ECRL 67 20.833
EDC 69 20.833 EDC 67 20.833
BB 128 0 BB 128 0
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(a) FDS muscle (b) FCR muscle

(c) EDC muscle (d) ECRL muscle

(e) BB muscle (f) BB muscle

Figure 6.5: The scalogram representation for the FP1 hand movement using Coiflet at level 4
(coif4). These shows the variations of coefficient amplitudes at different time and scale for different
muscles, even at the same movement.
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Table 6.5: Overal wavelets performances for the hand grip movement

Movements Wavelet Func-
tion

Scales True Frequency
(Hz)

HGN

Gaussian 48 20.833

Morlet 78 20.833

Symlet 69 20.833

Daubechies 69 20.833

Meyer 66 20.833

Dmeyer 64 20.833

Haar 96 20.833

Coiflet 67 20.833

HGF

Gaussian 48 20.833

Morlet 78 20.833

Symlet 69 20.833

Daubechies 69 20.833

Meyer 66 20.833

Dmeyer 64 20.833

Haar 96 20.833

Coiflet 67 20.833

HGE

Gaussian 24 41.667

Morlet 39 41.667

Symlet 34 41.667

Daubechies 34 41.667

Meyer 33 41.667

Dmeyer 32 41.667

Haar 48 41.667

Coiflet 33 41.667

The wavelets gives proper detection of the EMG signal each movement, all of it. It

shows that the detection on FDS, FCR, ECRL and EDC muscles consistently measured

at 20.833 Hz, and different value of scales concerning the all mother wavelet used. It is

evident that the analysed data/behaviour have shown pure consistencies for each mother

wavelet used in the study. Results indicate a good indicator as the pattern will guide us to

understand whether different hands movement could produce different frequency localisa-

tion and scales.
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6.8 Correlation of EMG fusion with wavelet

The idea of the study prescribed in the Section. It is proved that the cross-correlation

analysis revealed the synchronisation between two muscles at the different practice or in

this case hand movement. The higher the contraction, the greater sync will be seen due to

the existence of synaptic pathways and interaction constitutes pre-condition the process to

appear (Person and Mishin (1964)).

The wavelet cross-correlation analysis of the EMG signals between two muscles cru-

cially needed as an EMG data, popular with problems which are intermittent, and it can

wax or wane dramatically. Since the technique based on scales concentration, it is indeed

a useful tool to study the significance of interrelations between muscles or region of mus-

cles. This analysis allows the researcher to understand at which levels of frequencies and

scales correlation between the two muscles involve. If the correlation between these two

muscles is high, hence they were having good inter-relations in that specific movement.

Cross-correlation gives valuable information about the dependence of one signal on

the other. While wavelet provides better localisation of time resolution at high frequency

and proper scale resolution at low frequency, these two combinations will be useful for

determining the correlation between two regions of EMG signals at a range of periodicities.

Two muscles at a different region of muscles were paired off simultaneously to create

a whole new signal for the analysis. Gaussian (gaus4) wavelet was chosen as this signal

closely resembles the original signal. The index number four (4) refers to the number of

coefficients. This number of coefficients also represents half of zero moments of vanishing

moment for that particular mother wavelet.

The output of wavelet at each scale will be correlated using Spearman (Rs) rank cor-

relation coefficient (Spearman (1904)). The Nyquist criterion in terms of scales selections

(1000), scales must be less than half of the signal sampling rate are followed in this study.

The Figure 6.6 shows the example of results of the cross-correlation coefficient for one

pair of muscles (FDS and BB) at 1000 scales. The figures show the correlation image

generated, which indicating the positions or scales of the two muscles regarding their mu-

tual oscillation. The red colour is showing where the mutual information is present. From
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this, we could know at which scales the mutual oscillations manifest occurred. Each scales

represent 0.005s in real signal time. At first sight, by using qualitative measures, we can

derive some essential features typical for these two correlated EMG signals.

Figure 6.7a shows the example results of the correlation coefficient for a pair of muscles

FDS and FCR. It is known that these two muscles are located in adjacent within each other;

the association tends to develop a good relationship as it goes over all scales. They also

shared the same frequency localisation. The magnitude of FDS muscle is relatively higher

than FCR muscle. This is a good indicator as we can say that we will use FDS muscle to

be tested with other rest of the muscles in the wavelet correlation analysis.

The correlation coefficient generated from the wavelet analysis shown in Figure 6.7c

that these two signals are uncorrelated. Furthermore, we could see some irregular ener-

getic activity occurs at scales 0 to 500. This is related to lower muscle synchronisation

and coordination. These also proved by the frequency localisation and their magnitude

is showing intermittent features. The unsteady features gain from these two muscles not

suitable for our features development. We then further analyse by statistically tabulate the

maximum and minimum correlation coefficient and their relative scales. These were done

for all subjects and their respected muscles averagely.

This essential features, which will be used to examine and investigate the correlation

behaviour between two muscles, mainly will be focused on two different regions of mus-

cles. As recommended by Cohen (1988), maximum cross-correlation (MaxCorr) coeffi-

cients between 0.1 0 MaxCorr 0 0.3 were considered small, those 0.3 0 MaxCorr 0

0.5 were deemed to be moderate, and those 0.5 0 MaxCorr 0 1.0 were considered

significant.

As the performance of paired muscles has been investigated, the examples of the data

tabulated for the investigation are illustrated as in Figure 6.8. Their performances were

tabulated and concluded as shown in Table 6.6 and Table 6.7.

Based on these example performances, it is shown that different pair of muscles gen-

erate a different situation in their correlation coefficients. The objective of the study was

to look in details about the performance of the pair muscles from two different regions
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(a) FDS and FCR muscles

(b) FDS EDC muscles

(c) FDS and ECRL muscles

Figure 6.7: Another examples for FP1 task using the proposed wavelet cross correlation between
two muscles, showing certain levels of association between the two muscles at different region of
human upper arm. Warmer colouration shows the scales which correlation is manifested by each
pair of muscles tested in this study.
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Figure 6.9: The assessment strategy for the muscle chosen used in this study. The highlighted
muscles are related to the muscles within the two regions of human upper forearm. This technique
will generate a new insight of getting the useful muscles to be use in various application both for
normal and amputated people.

of muscles. This can be referred as forearm muscle (FDS, FCR, ECRL, and EDC) and

upper arm muscle (BB and TB), with TB, has been excluded in this study because of its

reciprocal property towards the BB. Therefore, the muscle focused in this study is between

FDS and BB. This has been concluded in Chapter 5 and supported by the initial findings

in this section. We chose the FDS and BB muscles for this final topic as we would like

to understand the possibilities of concatenating the two muscles for the generation of the

hand movements. The vital energy of EMG signals mainly came from the BB muscles as

BB muscles are the most significant fibre muscle available in the human upper forearm and

with the extension of other incorporated muscles such as denoted in Chapter 3 and 4.

6.9 Fuzzy mutual information

The fuzzy mutual information analysis starts by computing the feature-class mutual infor-

mation, to asses the highest mutual information available in each dataset. The feature will

be relocated in the subspace as representative for each feature sets.
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(a) Finger pinches maximum correlation coefficients and scales location

(b) Hand grip force maximum correlation coefficients and scales location

Figure 6.10: The average maximum correlation for the hand movement task as described in (a) and
(b).
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The dataset from the overall 15 subjects collected has been utilised for this technique.

The ultimate goal in this was to acknowledge the significance of using the wavelet cross-

correlation as one of the time-frequency domain features, in the classification set. All the

aforementioned pre-processing techniques and approaches tested in the previous section

applied for this technique.

A Gaussian wavelet of order 4 (gaus4) was chosen for this analysis. Since there is

a various number of feature domains involved in this study, the implementation of using

dimensional reduction technique still needed. Therefore, PCA and ULDA dimensional

reduction techniques are used to validate the performance of the new study approach. Their

performance has been proven as detailed in Chapter 5, but this time with more subject

numbers included.

LDA classifier is used to evaluate the classification performance on several features

developed from all the three domains, TD, FD, and TFD proposed in this study. This pro-

cess was used to validate the new feature developed in the TFD so that their performances

are known. Given that from the previous analysis, different hand movements with specific

muscle excitation exhibited various performances. The classification accuracies using 50%

dataset for the training, and another half for the testing were computed and shown as in

Figure 6.11.

Given data tabulated in Figure 6.11a, 6.11b,and 6.11c that different subjects manifested

diverse classification accuracies for each specific domain (TD, FD, TFD) while using dif-

ferent feature reduction methods (PCA, ULDA) with bars expressing the standard errors.

Generally, it can be seen that the performances for all the subjects at all types of domains

are > 80%, while ULDA improves the classification better than the PCA. The results also

show that the performance of the TFD-proposed features performing well compared to the

TD and FD domains. The results in Figure 6.12 were plotted to give more details view for

the analysis. It is indicated that the proposed features can outperform the TD and FD in

both ways of feature reduction strategy where all the components tabulated in their normal

distribution graph. The normal distribution graph shows the consistencies of the accuracy

towards achieving better performance.
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(a) Time domain features

 

(b) Frequency domain features

 

(c) Time-frequency domain proposed features- FEFWC

Figure 6.11: The average classification rate for each subject involved in this study with respect
to diffrent feature reduction (PCA and ULDA) for three different domains; (a) time domain, (b)
frequency domain and (c) time frequency domain-FEFWC.
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Figure 6.12: Comparison of TD, FD, and TFD performances based on the bar plot with normal
distribution measures.

To test the significance of the proposed features and classification accuracies achieved,

the analysis of variance (ANOVA) employed in this study. One-way ANOVA and Two-

way ANOVA with significance level were set to 0.05 were analysed to make sure the

significance of the achieved results. This will measure the results achieved by the proposed

features are significant enough and support the findings of the study. The accuracies of

proposed features strongly achieved all the significance different from the other two types

of features and each of the other two-dimensional reduction technique (p < 0.05). The

details of the ANOVA analysis can be found in Appendix B.

These results achieved the objective of the study, which is to generate better classifi-

cation accuracy compared to the other domains. However, it is not suitable to do a basic

comparison based on the previous studies performances. Therefore, in this study, the per-

formances comparisons presented are based on the data that was used only in this study.

That is why, in this study, the analysis for all TD, FD, and the new features developed in

TFD are compared. This will inspire a new approach in realising the real-time performance

in the future works.
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The final analysis of this study was the processing time required by each method. The

average time is calculated (per second) based on the different feature domains and di-

mensional reduction techniques. This calculation was based on the computer that used to

run the analysis for this study, with Intel (i5) 64-bit processor (3.3GHz) and 8 gigabyte

of random access memory (RAM). The computational cost for the proposed method out-

performed the FD domain and reasonably better than the TD domain. In additions, even

though the ULDA processing times slightly higher than PCA (±0.12s), it is acceptable as

the ULDA methods give superior performance in the classification compared to the others.

The results are listed as in Table below:

Table 6.8: Processing time cost comparisons for the all methods used in this study.

Domain Reduction Mean Standard Deviation Variance Minimum Median Maximum

TD
PCA 1.09108 0.07282 0.0053 1.0021 1.0541 1.2452
ULDA 1.30056 0.06781 0.0046 1.2004 1.322 1.3982

FD
PCA 1.47919 0.12556 0.01576 1.3289 1.432 1.844
ULDA 1.57575 0.1734 0.03007 1.3021 1.547 1.855

TFD
PCA 1.20771 0.0801 0.00642 1.0241 1.2001 1.325
ULDA 1.25248 0.0779 0.00607 1.1014 1.2532 1.3698

6.10 Summary

This study presents an insight into the overall objectives of the study, which ultimately

proposed and developed a new features using TFD to distinguish the best classification

accuracies for the specific hand movements. This was achieved by analysing the EMG

signal from the particular muscles as denoted in the chapters. The new fuzzy mutual in-

formation based features (FEFWC) was utilised and analysed using two feature reduction

technique, PCA and ULDA. LDA has been chosen as the classifier to compare the classi-

fication performances between the new features and other features from TD and FD. The

results produced have shown distinctive significant, especially on the proposed features

developed. This is supported by the statistical analysis performed using ANOVA.



Chapter 7

Conclusion and future works

7.1 Discussions and conclusions

In the past decades, the development of EMG signal analysis has been exciting, as the

importance of EMG has been realised in numerous applications focussing on assisting

humans in their daily lives. The EMG signal analysis offers prominent advantages of up-

lifting the human quality of life. The essential benefit gained from the EMG signal analysis

is that it can help people to attain multiple controls of the situation, which outperform the

traditional method of EMG based control. Despite the advancement of research in the

EMG field, the use of various number of muscles for the analysis of control has produced

many challenges for the study. Among these challenges is the lack of intensive research on

the significant muscle components based on standard human personalisation. Researchers

tend to focus on the unusual case of human to be investigated; hence, their results may be

compromised by the ordinary person. That also includes the use of EMG variations of the

MVC of the average human. Unlike previous works, this study has focused on the nor-

mal human EMG, and has carried out thorough investigation, and the findings have been

validated through multiple approaches of analysis.

The methodology designed for this study has involved various number of stages, First,

the development of own experimental protocols, by identifying all the muscles involved in

a specific designed task. This has produced four types of experimental protocols, investi-

gating the muscles related to the task given and the protocols developed. Inevitably, the

investigation requires extensive analyses. The first analysis has involved pre-processing

156
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strategies, which include data arrangement, segmentation, and so on. This is then followed

by features extraction strategy, where various domains have been tested, and in light of the

literature, 6 TD and FD domains have been chosen for the analysis. This has constituted

the main strategy for deciding on suitable EMG muscles and their site selection. Hence,

based on these findings, new types of feature extraction with fusion strategy have been

proposed.

A comparative assessment with the previous analysis in this study has been carried out

to establish the performance of the proposed feature. This constitutes the development

of data collection strategy, using several experimental protocols. Four experimental pro-

tocols suitable for the study have been developed. The working idea is to develop new

approaches of detecting the hand movements based on the two muscle regions in the hu-

man upper forearm area. The process begins by implementing the pre-processing strategy

in analysis involving signal segmentation, filtering and conditioning. The feature extrac-

tion is then tested for performance based on the muscles with specific hand movements.

The features are varied from TD, FD, and TFD. The new approach of developing a method

of detecting the movements was proposed based on the two regions of muscles, with the

implementation of reduced muscle channel to be used in the classification. This was based

on pre-analysis of the EMG muscles and proper site selection determination. The pro-

posed idea was then extended to produce a technique of developing new features using

the wavelet fusion approach. This technique thus developed was then assessed on a com-

parative basis and validated to understand the performance of the adopted technique with

minimising the number of muscle channels. The study explored and evaluated the new

approaches of data collection and assessing the human upper forearm muscles with force

variations, as well as muscle fatigue, thus achieving the main objectives of the study. This

also suggested the most applicable use of muscle to establish the inter-relation between

two regions of human upper forearm. Although the experimental protocols were only

implemented for the hand grip movement, the results showed that this could achieve the

objective of study. The study thus offers an opportunity to develop new feature extraction

and classification scheme to enhance the capabilities of disabled people especially those
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that may have problems of weaknesses in the muscle contraction or are amputated.

7.2 Contributions

The main objectives of this study were achieved and contributions to the knowledge are

listed below:

(1) EMG signal and its nature presented for better understanding in the sense of the de-

velopment of enhanced approaches for detecting, analysing, and classification. The

approach adopted has followed certified standards procedure in detecting the EMG

signal using muscles coordination, positioning, and electrode placement published

by SENIAM.

(2) New acquisition strategies including EMG acquisition system to be used, subject

preferences, sensors selection, and muscle selection protocol. The proposed proto-

cols and experimental procedure have been awarded ethical approval from the Ethi-

cal Committee of the University of Sheffield.

(3) A clear understanding of the state of the art of EMG based analysis, such as classifi-

cation systems and algorithms including pre and post processing, features extraction,

dimensinal reduction and projection, classification strategy and accuracy analysis

has been provided.

(4) Investigation and evaluation of the new approaches of data collection based on the

developed protocols and assessing the human upper forearm muscles with force vari-

ations, as well as muscle fatigue. These include the basic hand movements such as

finger pinches and hand grip force. The strategy developed has given benchmark

measures on the standard human capabilities within the scope of the study and justi-

fies the needs of the study objective.

(5) The work leads to minimisation of the number of EMG channels used, optimises

the cost for data collection, and also can reduce the complexity in data analysis.
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The necessary and applicable muscles have been identified and their performance

with particular hand movement covered in this study. Other findings distinguished

the movement and contraction levels without using all the muscles available in the

forearm and upper arm.

(6) Identification of a new feature for best classification scheme to enhance the capabili-

ties of disabled people, especially one that may have weaknesses in muscle contrac-

tion or is amputated. This approach will be beneficial in the development of better

applications for disabled people who may endure several difficulties in both regions

of upper forearm muscles.

7.3 Limitations

It is worth stating that as with any study, there are certain limitations involved. First,

the number of muscles used in the study did not cover the overall muscles available in

the human upper forearm area. However, the chosen muscles were based on the most

significant muscles in their functionality of the hand movement. Secondly, due to the

limited datasets for training and testing analysis, the classification accuracies could vary if

the number of datasets increased. Therefore, it is suggested for the use of this technique,

to consider all the constraints or parameters as set up in this study.

In this study, offline data pre-processing and classification was implemented for the

analysis. It is considered that the functional achievement might be lower if real-time anal-

ysis is employed due to, possibly transitions periods between movements and rest sessions.

This may result in various effects on the EMG signal characteristics, and affect the perfor-

mance of the classification.

7.4 Suggestions for future works

The suggestions for possible works in the future are stated as below:

• To investigate the proposed technique using online or real-time data from the subject.
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The performance of the online system can be evaluated using the offline proposed

method. However, to use online data processing, the data acquired must be from

an extended period, might be reaching many days, so that the reproducibility of the

results confirmed. Therefore, there is the need to develop a new online system which

can evaluate the performance of the classification.

• To apply online data analysis, the transition periods or regions between two states of

movement need a proper investigation. The areas that have been removed as used in

offline processing are not adequate for the online purpose.

• Windowing technique has to be adaptive for the online classification. The adap-

tive windowing technique is believed can minimise the classification errors. This

technique also can shorten the delay time between the processing and classification

process. Hence, it improves the computational cost for online recognition.

7.5 Conclusions

This study has presented an insight into the overall objectives of the study, which ultimately

has proposed and developed new features using TFD to distinguish the best classification

accuracies for specific hand movements. This has been achieved by analysing the EMG

signal from the particular muscles identified. New fuzzy mutual information based fea-

tures (FEFWC) have been utilised and analysed using two feature reduction techniques,

namely PCA and ULDA. LDA has been chosen as the classifier to compare the classifi-

cation performances between the new features and other features from TD and FD. The

results produced have shown distinctive significance, especially on the proposed features

developed. This is supported by the statistical analysis performed using ANOVA.

The findings have justified the possibilities that only two channel of muscles are capa-

ble of achieving a promising result in the hand movements classification. The use of small

number of channels will result in far better system error rates, as the minimum number

of channels provide brighter information of the actual physiological state of the human

upper forearm system. Moreover, minimising the number of channels used in the muscle
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study, with proper selection of the domains and their features, give far better error rates and

higher classification accuracies with linkage to a suitable dimensional reduction strategy

for the features used. Furthermore, the results from this study suggest that the information

extracted from the EMG signal using TFD features are more representative than the TD

and FD. This, in turn, proves the effectiveness of the proposed features and will support

better strategy in developing a real-time analysis rather than using an offline method. Fi-

nally, the use of a linear combination in the dimensional reduction and classifier presented

in this study has shown that the method achieves high classification rates.
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design of assistive exoskeleton hand control. The electromyogram is extracted from forearm 

muscles using surface electrodes thus non-invasive.   
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participation is entirely voluntary, and you may withdraw from this study at any time. The 

promise of strict confidentiality is assured in both the collection and reporting of the data. Any 

findings obtained in connection with this study will be presented in such a way that no 

individual will be identifiable. By completing the attached consent form, you will be granting 

me permission to publish aggregated results in my dissertation, in peer reviewed journals, and 

at professional conferences. 

 

Hopefully, the results from this research will enhance the technology in communication 

between human and machine and assist the control development of exoskeleton hand in ways 

that would benefit and assist stroke survivors and others. Should you have any questions about 
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PhD Candidate  
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1.  Research Project Title:  

 

EMG Signal Data Collection Involving Human Forearm and Upper Arm Muscles 

 

2.  Invitation paragraph  

 

You have been invited to participate in this project. It is essential for you to understand 

the purpose of this research and what is involved before you decide to take part. Please 

take time to read the following information carefully. Ask us if any clarification or 

further information is needed. Thank you for reading this.  

 

3.  What is the project’s purpose?  

 

This data collection relates to several PhD projects together under supervision of Dr 

Osman Tokhi in the Department of Automatic Control and System Engineering 

(ACSE). The research students are Norafizah Abas and Wan Mohd Bukhari Wan Daud. 

The purpose of this data collection is to investigate the inter-relation between forearm 

and upper arm electromyogram (EMG) signals hand grip force, wrist angles, and curl 

exercises. This will be used for signal processing and analysis, and fed into design of 

assistive exoskeleton hand control. The EMG signals are extracted from forearm and 

upper arm muscles using surface electrodes thus non-invasive. There are four 

experiments incorporated in this data collection: i) extraction of EMG signals from 

forearm muscles contributing to the finger(s) pinching at various wrist movements, ii) 

extraction of EMG signals from forearm and upper arm muscles contributing to hand 

grasping, wrist movements, and curl exercises, iii) extraction of EMG signals from 

forearm and upper arm muscles contributing to pronation and supination of hand with 

curl exercises, vi) extraction of EMG signals from upper arm muscles contributing to 

curl exercises alone. 

 

 

 

Figure A.4: Participant information sheet page 1-amended version in 2018 due to the ethical policy
changes
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 Department of Automatic Control and Systems Engineering, The University of Sheffield 

4.  Duration of project 

 

The duration for this project is one year, from 1st December 2016 to 30th November 

2018. 

 

4.  Why have I been chosen?  

 

Participants are normally limbed adults without any neuro-muscular problems, aged 

between 20-50 years old, chosen on a voluntary basis, and the number of participants 

will be approximately 10 people.  

 

5.  Do I have to take part?  

 

Deciding to take part in this research is up to you. If you wish to participate, this 

information sheet will be given for you to keep. You will be asked to sign a consent 

form. You can withdraw from this research at any time if you wish to, and you are not 

required to provide a reason for your withdrawal. 

 

6.  What will happen to me if I take part?  

 

When you agree to take part in a research study, the information about your health and 

care may be provided to researchers running other research studies in this organisation 

and in other organisations. These organisations may be universities, NHS organisations 

or companies involved in health and care research in this country or abroad. Your 

information will only be used by organisations and researchers to conduct research in 

accordance with the UK Policy Framework for Health and Social Care Research. 

The principle researcher will contact you to arrange a suitable date and time to conduct 

the experiment. During the course of the experiment, your weight, height, and hand 

length will be measured. You will be asked to sit on an armchair in an upright position 

with your forearm (dominant hand) supported and fixed at one position. In this 

experiment, surface EMG electrode is used to detect the EMG signal. It is non-invasive 

technology that allows user to easily place EMG electrodes with stickers to the skin. 

Figure A.5: Participant information sheet page 2-amended version in 2018 due to the ethical policy
changes
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The skin (area is based on the respective muscle) is scrubbed with a paper towel to 

remove skin oil and moisture.  You will then have six electrode patches placed on the 

skin around your forearm and upper arm. (Please refer to Figures 1(a) and 1(b) for the 

electrode patch placement) 

Figure 1 Example of electrode placement for a) forearm and b) upper arm muscles. 

A cable is attached to each electrode to connect the electrodes with the LabQuest mini 

data acquisition. You are then asked to grasp/pinch the hand dynamometer at certain 

strength at various wrist angles. A protractor is used to measure the wrist angle. (Please 

refer to Figure 2 for the experiment set up) 

 

Figure 2: Experimental set-up. 

Figure A.6: Participant information sheet page 3-amended version in 2018 due to the ethical policy
changes
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You can ask for complete experimental procedures for detail information. 

 

 

7.  How will this affect me?  

 

There will be no restriction or change in your normal lifestyle as a result from 

participating in this research. 

8.  What are the possible disadvantages and risks of taking part?  

 

You might feel a little muscle stiffness and fatigue due to continuous hand/finger 

grasping. However this will not be painful in any way. Rest sessions (for 5 seconds) are 

incorporated within the experiments to prevent muscle fatigue. Multiple published 

work is available which uses this similar approach.  

 

9.  What are the possible benefits of taking part?  

 

Whilst there are no immediate benefits for participants, your contribution is essential to 

this research as we are optimistic that development of upper-limb exoskeleton will 

assist stroke survivors/amputee to regain their hand strength and functionality, and 

improve their quality of life.  

 

10.  What happens if the research study stops earlier than expected?  

 

We will duly inform participants of any changes in circumstances that will affect 

participants in any way. 

 

11.  What if something goes wrong?  

 

All equipment used are tested for safety tocol. 

Risk assessment for the equipment have also been conducted and approved by the 

If you have any dissatisfaction towards the way researchers 

Figure A.7: Participant information sheet page 4-amended version in 2018 due to the ethical policy
changes
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supervisor who is listed at the end of this information sheet. Your complaint will be 

escalated through the appropriate channels.  

 

 

 

12.  About your data? Will my taking part in this project be kept confidential?  

 

We will be using information from you in order to undertake this study and will act as 

the data controller for this study. This means that we are responsible for looking after 

your information and using it properly. We will keep identifiable information about you 

and will keep it confidential. 

Your rights to access, change or move your information are limited, as we need to 

manage your information in specific ways in order for the research to be reliable and 

accurate. If you withdraw from the study, we will keep the information about you that 

we have already obtained. To safeguard your rights, we will use the minimum 

personally-identifiable information possible. 

You can find out more about how we use your information by contacting us as stated 

at the end of this document. 

As any information that we collect about you during this research will be kept 

confidential. You will not be identified in any reports or publications.   

 

13.  What type of information will be sought from me and why is the collection of this 

 

 

We will only require information of you age, height, weight, gender and the 

measurements of hand length. This is required as part of the data used in this research.  

 

14.  What will happen to the results of the research project? Where data is intended to or 

likely to be used for future research  

 

It is expected that results of this research will be published within two years in reputable 

publications.  We will ensure that your identity is anonymous in all of the publications. 

You can contact the person listed at the end of this information sheet to get further 

information on how to obtain published reports. It is also very likely that data collected 

Figure A.8: Participant information sheet page 5-amended version in 2018 due to the ethical policy
changes
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in this work will be of interest and useful for future research activities. We will ask for 

your consent for your data to be shared, and if you agree to do so, we will ensure that 

the data collected about you is untraceable back to you before allowing others to use it. 

This information will not identify you and will not be combined with other information 

in a way that could identify you. The information will only be used for the purpose of 

health and care research, and cannot be used to contact you or to affect your care. It will 

not be used to make decisions about future services available to you, such as insurance. 

 

15.  Who has ethically reviewed the project?  

 

This project have been ethically approved by the department of automatic control and 

systems e ethics review procedure.  

 

 

16.  Contact for further information  

 

Principle Researcher: 

 

Norafizah Abas & Wan Mohd Bukhari Wan Daud 

Department of Automatic Control and Systems Engineering, the University of 

Sheffield, Mappin Street, S1 3JD, Sheffield, United Kingdom 

Email: nabas1@sheffield.ac.uk wmbbinwandaud1@sheffield.ac.uk 

Telephone: 0114 222 5659 

 

Research Supervisor: 

 

Professor Mahdi Mahfouf / Dr Osman Tokhi 

Department of Automatic Control and Systems Engineering, the University of 

Sheffield, Mappin Street, S1 3JD, Sheffield, United Kingdom 

Email: m.mahfouf@sheffield.ac.uk o.tokhi@sheffield.ac.uk 

 

 

 

Note:  Participants will be given a copy of the information sheet and signed consent form. 

Figure A.9: Participant information sheet page 6-amended version in 2018 due to the ethical policy
changes
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Figure B.1: Average power for each muscles.

182



183

Figure B.2: (a)Bar, and (b) box plot; comparisons study for the muscle average power perfor-
mances.
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Table B.3: Average wavelet scales and their true frequency based on mother wavelet

Muscle Wave
Name

Scale True Fre-
quency
(Hz)

Muscles Wave
Name

Scale True Fre-
quency
(Hz)

FDS

Gaussian

128 0 FDS

Meyer

128 0
FCR 48 20.833 FCR 66 20.833
ECRL 48 20.833 ECRL 66 20.833
EDC 48 20.833 EDC 66 20.833
BB 128 0 BB 128 0

FDS

Morlet

128 0 FDS

DMeyer

128 0
FCR 78 20.833 FCR 64 20.833
ECRL 78 20.833 ECRL 64 20.833
EDC 78 20.833 EDC 64 20.833
BB 128 0 BB 128 0

FDS

Symlet

128 0 FDS

Haar

128 0
FCR 69 20.833 FCR 96 20.833
ECRL 69 20.833 ECRL 96 20.833
EDC 69 20.833 EDC 96 20.833
BB 128 0 BB 128 0

FDS

Daubechies

128 0 FDS

Coiflet

128 0
FCR 69 20.833 FCR 67 20.833
ECRL 69 20.833 ECRL 67 20.833
EDC 69 20.833 EDC 67 20.833
BB 128 0 BB 128 0
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Table B.5: Subjects compilation classification and processing time based on their average from 3
trials

Subject Domain
Classification rate Time (s)

PCA ULDA PCA ULDA

1 TD 89.55 91.76 1.0021 1.2355
2 TD 88.9 92.43 1.2001 1.3652
3 TD 87.65 93.65 1.1002 1.3982
4 TD 87.89 92.77 1.032 1.2541
5 TD 86.98 91.22 1.1004 1.2852
6 TD 87.55 92.45 1.165 1.3254
7 TD 84.56 93.54 1.0251 1.2552
8 TD 85.77 91.77 1.124 1.322
9 TD 87.98 94.22 1.0322 1.214

10 TD 88.53 93.12 1.0541 1.322
11 TD 87.12 92.12 1.054 1.3963
12 TD 85.78 92.34 1.054 1.2004
13 TD 87.98 94.33 1.1542 1.225
14 TD 88.4 91.55 1.0236 1.3224
15 TD 88.7 91.65 1.2452 1.3875
1 FD 88.15 90.24 1.4226 1.855
2 FD 86.34 89.54 1.3885 1.6254
3 FD 85.55 88.78 1.4203 1.855
4 FD 85.88 90.12 1.4001 1.547
5 FD 84.63 89.76 1.6332 1.6225
6 FD 85.99 90.77 1.5224 1.322
7 FD 85.76 91.54 1.844 1.6241
8 FD 84.76 89.454 1.411 1.5332
9 FD 85.34 92.77 1.3289 1.5221

10 FD 86.34 91.45 1.4884 1.3021
11 FD 85.23 90.33 1.523 1.4223
12 FD 84.76 90.98 1.432 1.8233
13 FD 85.66 92.9 1.3952 1.6325
14 FD 84.55 88.7 1.522 1.5241
15 FD 86.33 89.67 1.4562 1.4257
1 TFD 90.23 91.44 1.2001 1.3552
2 TFD 88.9 90.17 1.3002 1.2582
3 TFD 88.76 92.13 1.1925 1.3147
4 TFD 87.09 93.12 1.2445 1.2514
5 TFD 87.54 92.17 1.1092 1.3698
6 TFD 88.87 92.76 1.1924 1.274
7 TFD 87.99 92.45 1.325 1.1014
8 TFD 87.65 90.87 1.2001 1.235
9 TFD 87.77 92.55 1.1547 1.1654

10 TFD 84.65 92.98 1.3223 1.2014
11 TFD 88.26 91.34 1.0241 1.1458
12 TFD 86.55 92.77 1.2011 1.2532
13 TFD 87.98 91.48 1.2365 1.3258
14 TFD 86.88 92.04 1.1548 1.2145
15 TFD 89.76 91.76 1.2582 1.3214
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Table B.6: Average statistical classification performance based on different domain and feature
reductions.

Domain Reduction Mean Standard Deviation Variance Minimum Median Maximum

TD
PCA 85.83067 2.48163 6.15851 80.86 85.77 89.4
ULDA 90.35667 3.498 12.23601 82.25 91.55 94.78

FD PCA 83.852 2.86323 8.19806 75.85 84.76 86.34
ULDA 88.28693 2.97713 8.86333 80.21 88.98 92.77

TFD PCA 87.32533 1.7244 2.97357 83.54 87.77 89.76
ULDA 91.35333 1.68363 2.83462 86.54 91.76 93.12

Table B.7: One-way ANOVA analysis for classification performances

DF Sum of
Squares

Mean
Square

F Value Prob¿F

Model 6 82531.1489 13755.19 1571.66003 4.96E-95
Error 98 857.69743 8.75201
Total 104 83388.8463

Null Hypothesis: The means of all levels are equal.
Alternative Hypothesis: The means of one or more levels are differ-
ent.
At the 0.05 level, the population means are significantly different.

Table B.8: Two-way ANOVA analysis for classification performances

DF Sum of
Squares

Mean
Square

F Value P Value

Factor A 1 25080.8629 25080.86 60.03541 1.80E-10
Factor B 1 22158.2003 22158.2 53.03951 1.07E-09
Model 2 47239.0632 23619.53 56.53746 2.95E-14
Error 57 23812.7656 417.7678 – –
Corrected Total 59 71051.8287 – – –

At the 0.05 level, the population means of Factor A are significantly
different.
At the 0.05 level, the population means of Factor B are significantly
different.
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Table B.9: Average statistical processing time performance based on different domain and feature
reductions.

Domain Reduction Mean Standard Deviation Variance Minimum Median Maximum

TD
PCA 1.09108 0.07282 0.0053 1.0021 1.0541 1.2452
ULDA 1.30056 0.06781 0.0046 1.2004 1.322 1.3982

FD
PCA 1.47919 0.12556 0.01576 1.3289 1.432 1.844
ULDA 1.57575 0.1734 0.03007 1.3021 1.547 1.855

TFD
PCA 1.20771 0.0801 0.00642 1.0241 1.2001 1.325
ULDA 1.25248 0.0779 0.00607 1.1014 1.2532 1.3698

Table B.10: One-way ANOVA analysis for processing time performances

DF Sum of
Squares

Mean
Square

F Value Prob¿F

Model 6 576.5053 96.08422 33.51516 1.06E-21
Error 98 280.9551 2.86689
Total 104 857.4604

Null Hypothesis: The means of all levels are equal.
Alternative Hypothesis: The means of one or more levels are
different.
At the 0.05 level, the population means are significantly differ-
ent.
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