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to Dr. Marco Pereañez for his help and guidance, without whom I would not
have been able to complete the research work presented in this thesis.

I also need to thank to Prof. Steffen Petersen from Queen Mary University of
London, Prof. Stefan K. Piechnik, and Prof. Stefan Neubauer from Univeristy
of Oxford for their clinical feedback and for providing almost all the CMR
imaging data presented in this thesis.

Finally, I am deeply grateful to my parents and sister for their constant support
and love, who have given me all the strength and courage to follow my dreams.



Abstract

Cardiac magnetic resonance (CMR) images play a growing role in diagnos-
tic imaging of cardiovascular diseases. Left Ventricular (LV) cardiac anatomy
and function are widely used for diagnosis and monitoring disease progres-
sion in cardiology and to assess the patient’s response to cardiac surgery and
interventional procedures. For population imaging studies, CMR is arguably
the most comprehensive imaging modality for non-invasive and non-ionising
imaging of the heart and great vessels and, hence, most suited for population
imaging cohorts. Due to insufficient radiographer’s experience in planning a
scan, natural cardiac muscle contraction, breathing motion, and imperfect trig-
gering, CMR can display incomplete LV coverage, which hampers quantitative
LV characterization and diagnostic accuracy.

To tackle this limitation and enhance the accuracy and robustness of the au-
tomated cardiac volume and functional assessment, this thesis focuses on the
development and application of state-of-the-art deep learning (DL) techniques
in cardiac imaging. Specifically, we propose new image feature representa-
tion types that are learnt with DL models and aimed at highlighting the CMR
image quality cross-dataset. These representations are also intended to esti-
mate the CMR image quality for better interpretation and analysis. Moreover,
we investigate how quantitative analysis can benefit when these learnt image
representations are used in image synthesis.

Specifically, a 3D fisher discriminative representation is introduced to identify
CMR image quality in the UK Biobank cardiac data. Additionally, a novel
adversarial learning (AL) framework is introduced for the cross-dataset CMR
image quality assessment and we show that the common representations learnt
by AL can be useful and informative for cross-dataset CMR image analysis.
Moreover, we utilize the dataset invariance (DI) representations for CMR vol-
umes interpolation by introducing a novel generative adversarial nets (GANs)
based image synthesis framework, which enhance the CMR image quality
cross-dataset.
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Chapter 1

Introduction

1.1 Why Population Imaging?

Images represent complex object mappings, and when digitized, they can be as multidi-
mensional data containing discrete image pixels. Such images, when generated for specific
purposes using suitable data processing systems to elucidate physical factors and human
tissues, do not suffer from the limitations that are present in the previously used clinical
diagnostic methods such as auscultation and touching.

Population imaging has become an indispensable component of disease prediction,
treatment, and risk prevention and is becoming increasingly important. Magnetic reso-
nance imaging (MRI), positron emission tomography (PET), computed tomography (CT),
cone beam CT, and ultrasound imaging are the most commonly used population imaging
technologies in clinical examination, diagnosis, treatment, and decision making. These
technologies are widely used in medical practice because they enable visualization of body
without inflicting trauma and are evolving into a unique branch of medical science.

In today’s world of big data, we are rapidly accumulating various types of population
imaging data. In this section, we consider several characteristics of population imaging
data and describe why these data are important in both engineering and clinical analysis.

1.1.1 High Number of Dimensions

Due to the influence of imaging sources, modalities, parameters, imaging times, and
other factors, population imaging data are complex, diverse, and context-rich [270]. Such
data involve many variables that reflect different aspects of the same object, i.e., they are
high-dimensional. Detailed descriptions of objects can be obtained given the characteristics
of various aspects of the objects and the relationships among these characteristics. Con-
sequently, many variables are generated to create abstract descriptions of complex objects,

1



and vector data are created to form an abstract high-dimensional data space, which is the
basis of the descriptions of various characteristics of the objects and the interrelationships
among these characteristics.

1.1.2 Data Mining

Population imaging can reflect the most basic and intuitive information about the human
body. For example, population imaging can provide basic and intuitive information about
the heart, brain, and liver at the organ level, as well as about the cardiovascular and nervous
systems at system and cell levels. The relationship between different types of diseases,
diseases and occupations, and blood groups and other factors can be extracted from massive
population imaging data. For example, based on texture features, important association
rules can be determined from massive image data sets, and these rules can be applied to
identify hidden information in mammograms [52].

1.1.3 Data Fusion

Although many clinical diagnoses are based on single modality imaging, the appear-
ance and description of single modality feature information on population imaging are in-
sufficient to be the basis of accurate diagnosis in case of specific diseases, such as multiple
sclerosis (MS) lesion detection and segmentation. Combining population imaging data
from different sources, modalities, and representations, i.e., image fusion, is often required
to synthesize image features from different imaging mechanisms as well as to preserve and
strengthen respective feature information, and to display an image to obtain a more accurate
description of the object [130]. Image fusion facilities a comprehensive analysis and ex-
traction of target features. For example, fusion results of MRI and PET images of the brain
can provide information about soft tissue structure (MRI) and metabolism (PET) [83]. In
tumor localization tasks, PET/CT can help accurately locate lesions and can provide tissue
and cellular metabolic information [186].

Population imaging has broad application prospects in disease diagnosis and treatment.
Currently, for many diseases, population imaging has been helping clinicians achieve more
accurate diagnosis. In future, it is expected that independent population imaging diagnostic
systems will be used to provide reliable evaluations of pathological sections, which will
reduce the cost of human resources in hospitals. In addition, the quality and efficiency
of pathological diagnosis will improve. The improvement and practicality of population
imaging diagnosis will help achieve standardization and quality diagnoses under different
conditions.
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Although population imaging diagnosis has broad application prospects, it can only
be applied to a narrow spectrum of diseases, and its accuracy needs to be improved. At
present, problems associated with population imaging diagnosis are primarily attributed
to the difficulty involved in acquiring sufficient training data. Population imaging data
have the characteristics of single access and condition; thus, such data have high intellec-
tual property and economic value. Integrating resources, solving the problems associated
with intellectual property rights, and obtaining large amount of data required by artificial
intelligence technology are key issues faced by population imaging diagnosis technology
research. Solving these problems will allow population imaging diagnosis technology to
move rapidly from laboratory to clinical environments, thereby benefiting an increasing
number of patients.

1.2 Clinical Background and Motivation

In this section, we briefly introduce the anatomy and physiology of the human heart,
with a particular focus on electromechanical events that occur during the cardiac cycle. In
addition, we discuss MRI, highlighting the specific techniques that are used particularly in
cardiac MRI, such as electrocardiogram (ECG) gating, respiratory motion compensation,
and cine imaging. We briefly summarize the criteria used to evaluate the cardiac magnetic
resonance (CMR) image quality, and describe a numerical score that is obtained for each
type of imaging sequence to show the image quality of its modules and the image quality of
the overall CMR study. Specifically, we describe the criteria used to evaluate the quality of
cine steady-state free precession (SSFP) images and the quantitative indices used in cardiac
function analysis.

1.2.1 Anatomy and Function of the Heart

The human heart pumps blood to the entire body via the circulatory system, which pro-
vides oxygen and nutrition to tissues and removes carbon dioxide and other wastes [223].
The human heart has four chambers, i.e., two atria (upper chambers) and two ventricles
(lower chambers), as shown in Figure 1.1. The antrioventricular septum separates the two
sides of the heart. Unless there is a septal defect, the two sides do not interact directly;
however, they function together.

There are two separate circulatory pathways through the heart [175]: i.e., the pulmonary
circuit and the systemic circuit. In the pulmonary circuit, deoxygenated blood goes to the
right side of the heart, i.e., the right ventricle (RV). From there, the blood goes to the lungs
and the oxygen is absorbed. Finally, the oxygenated blood returns to the left atrium (LA)
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Figure 1.1: Anatomy of the human heart (blood vessels, ventricles and atria). The arrows
show the flow of blood 1.

through the pulmonary vein. In the second pathway, the systemic circuit, the left ventricle
(LV) pumps the oxygenated blood into the aorta and arterial circulation. The atria and the
ventricles are separated by the bicuspid (mitral) and tricuspid atrioventricular (AV) valves.
The papillary muscles are projections of the ventricular muscles and they attach to the cusps
of the AV valves (Figure 1.2). There are four stages in a healthy heart contraction. First, the
heart is relaxed in early diastole. Second, in the atrial systole stage, the atrium contracts to
push blood into the ventricles. Third, the ventricles keep the volume constant and contract
until the ventricles are empty. In the last stage, they stop contracting, relax, and repeat the
loop. Valves maintain blood flow in one direction and prevent its backflow.

The ventricular wall comprises three layers: the outermost (epicardium), middle (my-
ocardium), and inner (endocardium) layers; the myocardium contains the muscle cells [77].
As seen in Figure 1.2, the ventricular wall primarily comprises muscle cells and the LV wall
is thicker than the RV wall, because sufficient blood pressure is required to pump oxygen-
containing blood to different parts of the body. [167].

1The figure has been adapted from: https://www.thoughtco.com/evolution-of-the-human-heart-1224781,
accessed on 5 January, 2019
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Figure 1.2: Layers of tissue that comprise the heart wall: 1. epicardium 2. myocardium 3.
endocardium2.

1.2.2 Cardiac Magnetic Resonance Imaging

MRI is a noninvasive and nonionizing imaging technique that can produce tomographic
images with unmatched soft tissue contrast. Unlike X-ray and CT, MRI is based on the
absorption and emission of energy in the radio frequency (RF) range of the electromagnetic
spectrum rather than on ionizing radiation [43]. MR images are produced based on the
frequency of the RF energy being absorbed and emitted by the anatomical tissues and the
spatial variations in the phase. Under the influence of a strong magnetic field, magnetically
aligned hydrogen nuclei generate transverse magnetization as a response to applied RF
pulse sequences, which is captured by the scanner and then reconstructed as an image.
The magnetic response of the tissues across time is shaped by atomic properties that differ
depending on tissue type [19].

Cardiac MRI produces detailed images of the heart’s interior and surrounding struc-
tures using powerful magnetic fields, radio waves and computers. Cardiac MRI is used to
detect or monitor heart diseases and to assess cardiac anatomy and function in patients with
congenital and postnatal heart diseases [227]. In some cases, cardiac MRI can provide the

2The figure has been adapted from: https://www.easynotecards.com/notecard-set/89049, accessed on 8
January, 2019
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Figure 1.3: MRI Scanner and cardiac MRI time series acquisition3.

best image of the heart. In the past, imaging difficulties associated with cardiac and res-
piratory motion and long acquisition time have limited the use of technology. However,
with recent advancements in spatial and temporal resolution and reduced scanning times,
CMR imaging has been increasingly applied to diagnose cardiovascular disease (CVD)
[25]. In particular, parallel imaging is commonly used to reduce imaging time [150], and
ECG gating is often required to reduce cardiac motion artifacts.

Cine cardiac MRI: The temporal dynamics of the heart chambers can be visualized
using cine MRI, which can be also used for functional assessment. Data points for each
cardiac phase are acquired at multiple time points by filling separate k-space lines over sev-
eral cardiac cycles, which results in the reconstruction of an image for all cardiac phases.
The images can be viewed as a movie sequence. Breath-holding cine MRI allows acqui-
sition of k-space data in segments for each cardiac phase. Thus, acquisition times can be
further reduced albeit at the expense of reduced temporal resolution, which can be circum-
vented with echo-sharing [64].

As a pulse sequence, spoiled gradient echo (GE) technique has been preferred for func-
tional imaging because it requires very short repetition times. With the GE sequence, the
blood-pool (BP) appears bright and the contrast between the endocardium and BP makes
it suitable for ventricular function assessment and analysis [193]. An alternative to the GE
approach, SSFP [106] enables relative independence of contrast from blood flow and high
speed acquisition, which has been a limitation due to very short RF repetition times [24].

3The figure has been adapted from: https://devblogs.nvidia.com/nvidia-digits-alzheimers-disease-
prediction/, accessed on 9 January, 2019.
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Figure 1.4: Three standard cardiac cine imaging planes [78]: vertical and horizontal long-
axis planes, (i.e., two-chamber and four-chamber views respectively4), and the short-axis
mid-ventricle plane.

On the other hand, a spin echo (SE) sequence is more suitable for anatomical imaging.
An SE sequence requires longer acquisition times; however, relatively few metal artifacts
are introduced. SE plays a secondary role in CMR imaging; however, it is used for some
procedures, such as structural assessment of ventricular abnormalities [64].

Cardiac MRI planes: Three-dimensional (3D) high-resolution cine imaging of the
heart is challenging due to long acquisition times, cardiac motion, and repeated breath
holds. Therefore, stacks of thick two-dimensional (2D) slices are acquired from different
imaging planes for multiple cardiac phases. Standard cardiac cine imaging planes (Figure
1.4) include one short-axis (SAX) plane and two long-axis (LAX) planes (four and two
chamber views, respectively) [78]. To identify these planes during acquisition, first scout
imaging is performed with a fast single-shot sequence; then, the LAX planes are identi-
fied along a line extending from the cardiac apex to the center of the mitral valve (MV).
Finally, the SAX plane is determined. The SAX plane extends horizontally perpendicular
to the LAX of the heart in the middle of the LV. Since ventricular volume measurements

4The figure has been adapted from: https://slideplayer.com/slide/8700066/, accessed on 11 January, 2019.
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produce cross-sectional sections that are almost perpendicular to the myocardial boundary,
typically, SAX stacks are used to measure ventricular volume. In this way, partial volume
effects can be reduced and ventricular measurement accuracy can be improved [88]. Typi-
cally, the in-plane and through plane resolutions of the SAX stacks are 1-2.5 mm and 8-10
mm respectively.

1.2.3 Criteria for CMR Image Quality Evaluation

To assess cardiovascular pathologies, ventricular volume and mass must be quanti-
fied. Note that CMR is the stanard reference imaging technique for quantitative analysis
[235][126]. Cine SSFP, late gadolinium enhancement (LEG) images, and first-pass stress
perfusion images are commonly used CMR image modules for medical image analysis.
However, cine CMR image quality is limited by known common image artifacts and other
factors and, image quality evaluation criteria were first defined a priori. Each type of im-
age sequences, such as the CMR image modules mentioned above, can be evaluated using
specific criteria that return a numerical score that indicates the image quality of the overall
CMR study and its three modules. In a study [114], a numeric scoring system (0∼3) was
used to assess 35 qualitative criteria. In this system, a higher number indicates a poorer
image quality (as shown in Figure. 1.5). Among these qualitative criteria, twelve criteria
were used to evaluate the quality of cine SSFP images, specifically, the stack of SAX cine
images was assessed using criteria 1∼11 and the criteria 12 refer to the LAX cine image.

LV coverage: The first quality criterion assesses the stack of SAX cine images, i.e., the
LV coverage. To measure the cardiac volume and function accurately, the full LV coverage
from the basal slice to apical slice is required. If the basal slice is missing, atrial chamber
is not visible in end-systole (ES); consequently, it cannot be ensured that the heart is fully
covered from base. A missing apical slice, which is defined as the LV cavity still visible at
ES, is another frequent realistic limitation regarding the LV coverage. A missing basal slice
will have more significant impact on the cardiac volume calculation; thus, the image quality
score will be higher for a missing basal slice than for a missing apical slice. Except for basal
and apical slices, a missing mid-ventricular slice will also result in a penalty. Specifically,
a missing basal slice (or when >1 additional slice(s) missing) is assigned a score of 3, and
a missing basal slice is given a score of 2. However, to ensure that the influence of this
criterion is balanced by other criteria, the maximum score for this criterion is limited to
five. Regarding the remaining quality criteria, i.e., criteria from 2 to 7, which include wrap
around artifacts, respiratory ghost, cardiac ghost, image blurring/mis-triggering, metallic
artifacts, and shimming artifacts, a single SA slice is assigned a score of 1 if the artifact
impedes the visualization of more than one-third of the LV endocardial border at ES and/or
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Figure 1.5: CMR image quality definition (adapted from [114]). The total qualitative score
is the sum of the SSFP, LGE and perfusion images scores.
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Figure 1.6: Top: A typical two-chamber view cardiac MRI with eight slices fully covered
from base to apex and SAX view volume with whole coverage (slice 1 is the basal slice);
Bottom: A typical two-chamber view cardiac MRI with eight slices incompletely covered
from base to apex and SAX view volume with missing basal slice (slice 1 is not the basal
slice). In each rectangle, from top to bottom, rows correspond to adjacent axial slices.

ED. Scores of 2 or 3 scores are assigned if the artifact involved 2 slices or >3 slices. In this
assessment, the quality of RV coverage was not measured (see Figure 1.6).

Wrap around artifacts: A wrap-around artifact (criterion 2) is one of the most common
MR artifacts. Such artifacts are usually recognized as anatomic parts that intrude into the
area of interest [114], such as an object whose dimensions exceed the defined field-of-
view (FOV) (Figure 1.7).

Respiratory and cardiac ghosts: Typically, in clinical MRI, ghost artifacts occur due
to patient-related causes, such as cardiac and respiratory motion (criteria 3 and 4), and they
usually occur during image acquisition. For example, data sampling and reconstruction
causes a mis-mapping of the signal when a spin moves during the time of excitation. When
the amplitude of the periodic motion or the signal intensity of the moving tissue increases,

Figure. 1.7 ∼ Figure. 1.10 are adapted from [114].
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Figure 1.7: Wrap-around in a cine SSFP
sequence. The chest wall, which is
outside the FOV, protrudes into the LV
(shown as red arrows).

Figure 1.8: Image blurring or mis-
triggering in a cine SSFP sequence.
Blurred aspects are indicated by red ar-
rows.

Figure 1.9: Metal artifact in a cine SSFP
sequence. Ferromagnetic material dis-
turbs the magnetic field locally.

Figure 1.10: Shimming artifact in a cine
SSFP sequence. Magnetic field inhomo-
geneities produce a dark band and flow-
related artifacts on the LV (red arrows).
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the intensity of these ghost artifacts will increase. Diffuse image noise will be generated
and propagate widely along the phase-encode direction. However, discrete ghosts will not
be formed if the motion is nonperiodic (e.g., peristalsis).

Image blurring or mis-triggering: This artifact (criterion 5) is primarily caused by ex-
trasystoles, irregular heartbeats related to atrial fibrillation, mis-triggering of the R-wave, or
respiratory motion. Regarding the standard for retrospectively gated cine imaging, blurring
in SSFP images generally occurs because signals that are collected in the different phases
of the cardiac cycle are used to reconstruct a specific phase of the cardiac cycle (see Figure
1.8).

Metal artifacts: Metal (primarily iron) can deflect the magnetic field, which causes
metal artifacts (criterion 6) and changes the resonance frequency beyond a given range.
Consequently, protons do not react properly to the excitation pulse, i.e., they are not prop-
erly excited, resulting in signal degradation/image distortion (Figure 1.9).

Shimming artifacts: Shimming artifacts (criterion 7) are caused by the inhomogeneity
of the main magnetic field, which particularly influences SSFP acquisition schemes and
may lead to band artifacts (dark bands on images caused by non-frequency sound) and/or
flow-related artifacts (Figure 1.10).

1.2.4 Indices of Cardiac Function

Quantitative analysis of the cardiac ventricles using imaging data begins with the de-
lineation of the endocardial and epicardial boundaries of the myocardium. Once contours
are defined for each slice in the stack of images, local and global volumetric measure-
ments can be performed to assess ventricular function and mass [88]. These measurements
have clinical importance in the diagnosis of cardiac pathologies, such as cardiac hyper-
trophy and dilated cardiomyopathy [192]. Myocardial mass (M) is a particular example.
Here, M corresponds to the weight of the heart muscle and is calculated by multiplying
the ventricular volume (V) calculated from the contours by the density of the myocardium
(ρm = 1.05g/cm3) [66]. LV myocardial mass is calculated as: MLV =VLV ·ρm.

Global functional indices indicate the overall ability of cardiac ventricles to supply
blood to the rest of the body [68]. They require myocardial contouring at at least two
points in the cardiac cycle: end-diastole (ED) and end-systole (ES). As a global functional
index, the stroke volume (SV) corresponds to the volume of oxygenated blood pumped from
the LV in each cardiac cycle, which is equal to the difference between the LV volumetric
measurements at ED and ES phases: SV = VED−VES. The ejection fraction (EF) is the
fraction of SV (ejected blood) with respect to the volume of the filled heart (VED) and is
defined as EF = SV/VED. Cardiac output (CO) is a functional index that is defined as the
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amount of blood ejected from the LV per minute and is equal to the SV multiplied by the
heart rate. Although global indices are good indicators of functional abnormalities, they do
not convey specific information regarding the parts of the ventricle that have a reduced or
altered contractile function. In addition, there may be instances where global measurements
fall within the healthy range while the wall motion is abnormal. Therefore, local functional
analysis of the ventricular wall, including wall thickening and strain analysis, is performed.
Such analyses can precisely identify reversibly injured yet viable parts of the myocardium
[26]. A survey study [68] on local cardiac wall motion provides more detailed information.

1.3 Challenges in CMR Image Quality Assessment

For population imaging studies, CMR imaging provides a noninvasive access to cardiac
anatomy and function [182]. Quantification of ventricular anatomy and function from large
population imaging studies or patient cohorts from extensive clinical trials is vital to assess
cardiovascular pathologies. Such quantification requires automatic image quality assess-
ment and image analysis tools. The technical limitations of imaging systems necessitate
designing of robust and accurate image analysis frameworks for quantitative assessment.
In addition, accurate predictive performance, ease of use, and interpretability are essential
if such frameworks are to be used in clinical diagnostics.

Limited imaging artifacts in CMR imaging. Few guidelines, clinical or otherwise,
objectively establish what constitutes a good medical image and a good CMR study [242].
To ensure consistent quantification of CMR data, automatic assessment of complete LV
coverage is the first step. LV coverage is still assessed by manual visual inspection of CMR
image sequences. However, manual assessments are subjective, repetitive, error prone, and
time consuming [9]. An automatic coverage assessment that can intervene promptly and
adjust the data acquisition process, and/or discard images with incomplete LV coverage is
required. Analysis of a set of images that includes images with incomplete LV coverage
would return inaccurate aggregated statistics for a cohort. The most common causes of
incomplete LV coverage are lack of basal slices (no atrial chamber visible in ES, thus
no certainty that the base of the heart is covered completely) and lack of an apical slice
(LV cavity still visible at ES) [114]. Technological advances in MRI hardware and pulse
sequencing have helped achieve faster CMR acquisition, full heart imaging, and motion
compensation; however, certain challenges remain. For example, the CMR protocol of the
UK Biobank (UKBB) flags 4% of all CMR examinations as unreliable or non-analyzable
image data due to incomplete heart coverage [21]. While 4% may be a small proportion,
the challenge is to automatically sift through the entire database to identify and exclude
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these cases from further quantitative analysis. Methods for objective detection of basal and
apical imaging planes are relevant because absence affects diagnostic accuracy as well as
anatomical and functional LV quantification.

Limited quality assessment methods in video processing. In video processing, auto-
matic image quality assessment represents a well-developed corpus of techniques to detect
image distortions that commonly occur in multimedia communication [202] [264]. How-
ever, these distortions generally differ significantly from those that occur in medical im-
agery. No-reference based image quality assessment [87], [164] is relevant for medical
imaging data because it is not possible to collect data that does not contain artifacts or
have some level of image degradation. Typically, in practice, only images with incomplete
LV coverage are available as input to CMR image processing applications. While assess-
ment methods attempt to compare an available image to a hypothetical high-quality image
[110], the final image quality is estimated based solely on the characteristics of the assessed
image.

Idenfitication of correspondences in cross-modality imaging data. In medical image
analysis, for image quality assessment purposes, it is sometimes convenient or necessary to
infer an image in one modality from an image in another modality. A significant challenge
for CMR slice pose estimation comes from differences between data sources. These dif-
ferences involve tissue appearance and/or the spatial resolution of images that are sourced
based on different physical acquisition principles or parameters. Such differences make it
difficult to generalize algorithms trained on specific datasets to other data sources. This is
problematic when the source and target datasets differ and even more problematic when
the target dataset contains no labels. Under such conditions, it is highly desirable to learn
a discriminative classifier or other predictor in the presence of a shift between training and
test distributions, which is called dataset invariance. Various approaches to achieve dataset
adaptation have been explored under many facets. Among the existing cross-dataset learn-
ing studies, dataset adaptation has been adopted for re-identification based on the expecta-
tion that labeled data from a source dataset can provide transferable identity-discriminative
information to a target dataset. A previous study [97] explored the possibility of generat-
ing multi-modal images from single-modality imagery. Other existing studies [134] [151]
have employed multi-task metric learning models to benefit the target task. However, these
studies primarily focus on linear assumptions.
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1.4 Thesis Contributions

The following sections present the primary contributions of this thesis to the analysis
of cardiac cross-dataset imaging data. In addition, how the aforementioned challenges can
be addressed is considered.

Figure 1.11: Primary contributions (from the CMR image quality detection to image quality
recovery).

Full LV Coverage Assessment in CMR imaging with Fisher Discriminative 3D CNN.

Full LV coverage is a basic criterion for CMR image quality. Complete LV cov-
erage from base to apex is required to assess functionality and to measure cardiac vol-
ume accurately. Incomplete LV coverage is identified manually through visual inspection,
which is time consuming and is usually done retrospectively when assessing large imaging
cohorts. In this regard, we propose a novel automatic method to determine LV cover-
age from CMR images using Fisher-discriminative 3D (FD3D) convolutional neural net-
works (CNN). Compared with our previously proposed method [271] that used 2D CNN,
this approach utilizes spatial contextual information in CMR volumes, extracts more rep-
resentative high-level features, and enhances the discriminative capability of the baseline
2D CNN learning framework, thereby achieving superior detection accuracy. A two-stage
framework is proposed to identify missing basal and apical slices in CMR volume measure-
ments. First, the FD3D CNN extracts high-level features from the CMR stacks. Then, these
image representations are used to detect missing basal and apical slices. Compared with
the traditional 3D CNN strategy, the proposed FD3D CNN minimizes within-class scatter
and maximizes between-class scatter. We constructed a large dataset with more than 5,000
independent volumetric CMR scans and performed extensive experiments to validate the
proposed method. The proposed approach outperformed previous methods that rely on 2D
CNN. In addition, the proposed method can be adapted for LV coverage assessment of
other types of CMR image data. After the quality control for missing slice detection, we
can classify the images into good/bad image quality. However, we still do not know the
position of each slice, especially the missing slice position. We continue our work from
missing slice detection to the next step - regression for slice pose (position and orientation).
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Automatic Plane Pose Estimation Across Cardiac Cine MRI Datasets via Deep Adver-
sarial Ranking Nets with Privileged Information.

Cardiac function parameters, such as the EF and CO of both ventricles, are the most
immediate indicators of normal/abnormal cardiac function. To compute these parameters,
accurate measurement of ventricular volumes at ED and ES is required. Accurate vol-
ume measurements depend on the correct identification of the ventricle pose, particularly
the positions and orientations, in CMR sequences that provide full LV and RV coverage.
This thesis proposes an adversarial learning (AL) CNN-based approach that detects and
localizes the CMR slices in an image volume independent of image acquisition related
idiosyncrasies, such as the imaging device, magnetic field strength and variations in pro-
tocol execution. Furthermore, we incorporate additional information, such as cross-view
information, into the training phrase. Note that such information has been referred to as
privileged information (PI). The proposed model is trained on multiple cohorts of different
provenance and unified using PI loss with different MRI viewing planes to learn the appear-
ance and localize the short-axis view planes of the heart. To the best of our knowledge, this
is the first study to tackle fully-automatic detection and pose localization of bio-ventricular
slices in CMR volumes in a dataset-invariant manner. We achieve this by maximizing the
ability of a CNN to ordinarily regress the positions and orientations of short-axis view
planes within a single dataset, while minimizing the ability of a classifier to discriminate
image features between different data sources. The regression parameters are important
since they provided the information for people to understand the ’where’ and ’how’ the
sub-optimal image quality is. With the development of generative adversarial models, we
can use these information to synthesis the missing slice and recover the incorrect cardiac
slice pose.

Quality-Aware Generative Adversarial Nets for Cross-Dataset Cardiac Cine MRI Syn-
thesis.

Accurate ventricular volume measurements depend on complete heart coverage and
correct cardiac orientation in CMR sequences that provide the most immediate indica-
tors of normal/abnormal cardiac function. However, incomplete heart coverage, especially
missing basal/or apical slices, and the slices in CMR sequences with incorrect cardiac
orientation (ICO) are substantial problems that affect volume calculation, but are not suf-
ficiently addressed in current clinical research. In this thesis, we propose two new deep
architectures. One is called the missing slice imputation generative adversarial network
(MSIGAN), which is used to learn the features of cardiac SAX slices across different po-
sitions and to consider the features as conditional variables to effectively infer missing
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slices in query volumes. The other one is called unsupervised cycle-consistent adversarial
network (SPSGAN), which provided with a SAX slice with ICO, automatically generates
images under correct orientation. In a MSIGAN, slices are first mapped to latent vectors
with position features through a regression net and then the latent vector with the desired
position is projected onto the slice manifold, conditional on slice intensity, through a gen-
erator net. The latent vector preserved with the slice features (i.e., intensity) and the desired
position condition control generation versus. regression. Two adversarial networks are im-
posed on the regressor and generator, forcing the generation of more realistic slices. In a
SPSGAN, we address this challenge by dividing the problem into two subtasks. First, we
consider using a bidirectional generator that maps the initially rendered image back to an
image with input cardiac orientation, which can be directly compared with the input image
without requiring any GT images. Second, to generate high perceptual quality images, we
propose a novel loss function that incorporates intensity and orientation terms.

In this thesis, we only focus on the cardiac ventricle coverage (point 1 in Figure. 1.5)
and orientation (point 9 in Figure. 1.5). Although we have listed and explained the other
criteria for CMR image quality evaluation in Section 1.2.3 and Figure. 1.5, there are also
some other criteria that are easily to be assessed automatically, such as checking slice thick
and gaps. Meanwhile, the artifacts (point 2 and 8 in Figure. 1.5) are less obvious in CMR
image analysis.
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Chapter 2

Deep Learning Methods in Cardiac
Image Analysis

The limitation of hardware devices used in medical imaging systems impedes the di-
agnosis and treatment of heart-related pathologies. For example, the cardiac ventricular
volume cannot be calculated directly using the imaging system, and various imaging equip-
ment and the patient related reasons lead to poor image quality. To solve these problems
and provide better clinical outcomes, computer-aided image analysis frameworks have been
developed. Recently, significant progress has been made in DL. This progress is primarily
due to the continuous improvement of computational capacity and the amount of available
annotated data, as well as availability of improved DL models and algorithms. The essence
of the application is to build a multi-hidden layer machine learning model, train the model
using extremely large amounts of sample data, learn more accurate features, and ultimately
improve classification or prediction accuracy. This chapter provides a brief overview of
the previously developed analysis frameworks and their applications in medical imaging
for classification, lesion detection, and segmentation across multi-modal images. These
computation methods have the same goal, i.e., time efficiency and objective quantitative
analysis, as well as the evaluation, enhancement, and analysis of multi-modal imaging
data.

In this chapter, we first focus on the principles of DL, highlight the popular CNNs
and summarize image classification and segmentation frameworks. Then, we describe DL-
based state-of-the-art medical image analysis methods. Finally, we discuss the challenges
involved in practicable DL strategies for medical image analysis as well as open research
directions.
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2.1 Why Deep Learning?

DL has made significant progress in various fields and is the basis of artificial intelli-
gence (AI) technology [123]. DL has helped achieve impressive results in medical image
analysis [113]. In the current clinical workflow, medical image datasets are suitable for
using DL technologies because of their large sizes compared with that of other medical
data modalities, i.e., text. DL can be applied to analyze various multimodal medical im-
ages, including X-ray, MRI, CT, and ultrasound as well as pathology and cell images. In
addition, DL can help detect abnormal manifestations or lesions in a large number of data.
For example, CT scan data have yielded positive results for larger lymph node and colonic
polyp classification tasks [196]. In breast cancer screening, automatic classification of
breast density using DL-based methods can help doctors predict the risk of breast cancer
and prescribe the complementary screening [163]. In addition, DL technology can reduce
the current high review rate for providing diagnostic support [3]. DL has helped achieve
remarkable results in the research into new quantitative risk markers for breast cancer.

Traditional medical image analysis is primarily based on clinical experience, and tra-
ditional computation-based medical image analysis is primarily dependent on features that
are manually extracted as features based on predefined calculation formulas. However, us-
ing manual features to describe medical images is extremely difficult because many mean-
ingful image features are qualitative and extracted empirically. Using a data-driven method
based on DL can can reduce the difficulty. For example, CNN models can automatically
and autonomously extract and organize effective image features from large-scale labeled
medical image data. Various CNN-based studies have provided evidence that low-level im-
age features can be shared and fine-tuned among neural network models, such as transfer
learning models. On the basis of this mechanism, medical image analysis can benefit from
networks trained using a large number of natural images. For example, many studies have
used ImageNet, which contains more than a million images to pretrain DL models, which
are then effectively applied to medical image analysis tasks.

The emergence of DL will further the development of early screening techniques for
diseases and deep mining of large population imaging databases will greatly facilitate the
study of biomarkers. DL will also improve our ability to analyze and interpret large-scale
datasets. In conclusion, recent developments in DL have shown a tremendous impact on
medical image analysis and have helped achieve acceptable clinical levels using some im-
portant tasks that otherwise cannot be accomplished using non-DL methods. We expect
that in the near future, research and clinical transformation in this area will flourish.
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2.2 Conventional Deep Learning Models

This section discusses commonly used DL models, including stacked autoencoder (SAE),
deep belief networks (DBNs), deep Boltzmann machines (DBMs), CNNs, and recurrent
neural networks (RNNs). We focus on how various models learn multi-level image fea-
tures from sample training data.

2.2.1 Supervised Learning Model: Convolutional Neural Networks

In 1989, LeCun proposed a CNN model in order to make better use of spatial struc-
ture information. CNNs can be used to capture visual local information because they take
2D or 3D image blocks as input. Typically, CNNs comprise several alternating convolu-
tional and pooling layers, as well as fully-connected layers at the end of the network, as
shown in Figure 2.1. Specifically, CNNs combine three different architectural concepts,
i.e., local receptive fields, weight replication (or shared weights), and spatial or temporal
sub-sampling, to ensure the invariance of shift, scale and distortion. The feature maps that
are approximately size-normalized and centered in a small neighborhood in the previous
layer are received as the input plane to the current layer [124].

In a typical convolutional layer, the input is convoluted by convolution kernels and
by adding bias terms. Finally, the feature map is generated using a nonlinear activation
function. By denoting the ith feature map of the lth layer as hl

i and the kth feature map of
the previous layer as hl−1

k , a convolution layer is formulated as:

hhhl
i = σ(∑

k
hhhl−1

k ∗WWW l
ki +bbbl

i), (2.1)

where WWW l
ki and bbbl

i are the filter and bias terms that connect the feature maps between ad-
jacent layers, ∗ denotes a convolutional operation, and σ(·) is an element-wise non-linear
activation function [58].

Each feature map can be operated independently with pooling, which can gradually
reduce the size of the representation space. Therefore, in CNN architectures, pooling layers
are usually inserted between successive convolution layers to reduce the parameters and the
computational burden in the network. Note that max pooling is the most common pooling
method [214].

At the end of a convolutional network, typically, fully-connected layers are used for
classification. In a CNN, all activations in the previous layer are connected to neurons
in the fully-connected layer. Therefore, these activations can be calculated using matrix
multiplication followed by a bias offset. A CNN is essentially an input-to-output mapping,
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Figure 2.1: CNN architecture comprises convolutional, pooling and fully-connected layers.
Each plane represents a feature map. This figure has been adapted from [124].

which enables the network to have input-to-output mapping capabilities via an end-to-end
learning approach. Generally, training CNN network parameters is similar to training a
traditional backpropagation algorithm. The output value is calculated by forward propa-
gation. Then, the error between the output value and the ground-truth value is optimized
using a gradient descent method to minimize the error, and finally the CNN parameters are
adjusted by gradient backpropagation [252].

2.2.2 Unsupervised Learning Model: Stacked Autoencoder

An autoencoder is a type of unsupervised learning structure with an input layer, a hidden
layer, and an output layer as shown in Figure 2.2. The process of training an autoencoder
comprises an encoder and a decoder. The encoder is used to map the input data to a hidden
representation, and the decoder is used to reconstruct the input data from the hidden repre-
sentation. Given an unlabeled input dataset {xn}N

n=1, where xn ∈ Rm×1, hn represents the
hidden encoder vector calculated from xn, and x̂n is the decoder vector of the output layer,
the encoding process is expressed as follows:

hn = f (W1xn +b1), (2.2)

where f is the encoding function, W1 is the weight matrix of the encoder, and b1 is the bias
vector.

The decoder process is defined as follows:

x̂n = g(W2hn +b2), (2.3)

where g is the decoding function, W2 is the weight matrix of the decoder, and b2 is the
bias vector. The autoencoders parameter sets are optimized to minimize the reconstruction
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Figure 2.2: Structure of autoencoder.

Figure 2.3: Structure of stacked autoencoders.

error:

φ(Θ) = argmin
θ ,θ ′

1
n

n

∑
i=1

L(xi, x̂i), (2.4)

where L represents the loss function L(x, x̂) = ‖x− x̂‖2, xi and x̂i are the input image and
output image, respectively, W1 and W2 are the weight matrices of the encoder and decoder,
respectively, n is the total of the training samples.

As shown in Figure 2.3, the SAE structure involves stacking n autoencoders into n

hidden layers using an unsupervised layer-wise learning algorithm. The SAE structure is
then fine-tuned using a supervised method [138]. The SAE-based method can be divided
into three steps.
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1. Train the first autoencoder using input data and obtain the learned feature vector;

2. The feature vector of the former layer is used as the input for the next layer. This
procedure is repeated until training is finished.

3. After all hidden layers are trained, the backpropagation algorithm is used to minimize
the cost function and fine-tune the weights using a labeled training set.

The SAE extracts the input image features from pixel-level data using an automatic
coding-decoding network to improve the representation of the model. It has been widely
used in dimensionality reduction and feature learning. The image data are not both the input
and output of the SAE; thus it can detect whether the features learned by the middle layer
of the network satisfy the requirements. If we restrict sparsity to each layer in the SAE,
we can obtain a stacked sparsely autoencoder (SSAE), which can provide the model with
a certain anti-noise ability and better generalization [216] [247]. When input images are
represented by the SSAE, different network layers represent different levels of features, i.e.,
the lower layers of the network represent simple patterns, and the higher layers represent
intrinsic patterns that are more complex and abstract in the input vectors.

2.2.3 Fine-tuning Network

For a given a DL task, e.g., a classification problem that involves training a CNN (Con-
vNet) model on the ImageNet dataset, our first instinct is to begin training the network from
scratch. However, deep neural networks (e.g., ConvNet) have a large number of parameters,
typically in the range of millions. It is difficult to train deep-seated neural networks from
scratch (i.e., complete training). First, training ConvNet from scratch is difficult because it
requires a large amount of labeled training data and expertise to ensure proper convergence
[231]. Second, training deep CNN requires significant computing and memory resources,
and without sufficient resources, the training process will be very time consuming [60].
Training Covnet on small datasets (smaller than the number of parameters) significantly
affects its generalizability and frequently leads to overfitting. Therefore, it is tedious and
time consuming to train the network from scratch, which requires diligence, patience and
professional knowledge.

Commonly, researchers fine-tune existing networks via continual training using back-
propagation. Pretrained networks are typically trained on a large-scale dataset (e.g., Ima-
geNet; 1.2 million labeled images) and have been successfully applied in many computer
vision tasks, such as feature extractor or as a baseline in transfer learning [212] [11] [180].
If there is no significant difference between the natural image dataset and the context of
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Figure 2.4: Filter of AlexNet’s first layer by (a) training from scratch on interstitial lung
diseases (ILD) CT scans data, (b) fine-tuning pretrained on ImageNet version. This figure
has been adapted from [5].

the original dataset (e.g., ImageNet), the pretrained model demonstrates learning charac-
teristics related to the target classification problem. Generally, if a given dataset does not
differ from the dataset used by the pretrained model, we should fine-tune the network. If
the target datasets come from very specific domains, such as medical images or handwrit-
ten Chinese words, we should consider training a deep network from scratch. There are
several additional considerations. 1) If the target dataset is small, fine-tuning the pretrained
network on this small dataset will lead to over fitting, especially in case of the VGG net-
work, which only has a few fully-connected layers in the last few layers of the network. 2)
If the target dataset has several thousand samples, fine-tuning could achieve a better result
using common data augmentation methods, such as translation, rotation, and flipping. 3)
If the target dataset is very small (less than 1,000 samples), we could preselect the output
of intermediate layers prior as bottleneck features and input them to a linear classifier (e.g.,
an SVM). An SVM is particularly effective in identifying decision boundaries on a small
dataset.

In the medical image processing domain, recent transfer learning methods can be di-
vided into two categories. The first category is typically considered a pretrained CNN as
a feature extractor [13] [243] [6]. For example, we can take an image as the input to a
pretrained CNN and extract the features from certain layers of the network as the input
of a new pattern classifier. This method has been applied widely. For example, Bar et al
[13] used pretrained CNNs as a feature extractor for chest pathology identification. An-
other study [243] demonstrated that combining CNN-based and handcrafted features can
improve the performance of dedicated nodule detection even though the pretrained CNNs
demonstrate worse performance on it.
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The second category involves adapting pretrained CNNs to target application. For ex-
ample, Carneiro et al. [22] replaced the fully-connected layers in pretrained CNNs with a
new logistic layer. Then, they retained the rest of the network and trained the new network
using labeled data. This method helped achieve promising results in the classification of
unregistered multi-view mammograms. In addition, a fine-tuned pretrained CNN has been
utilized in the localization of the standard planes in ultrasound images [30]. Gao et al. [71]
fine-tuned all layers of a pretrained CNN using an attenuation re-scale scheme for auto-
matic classification of interstitial lung diseases. The attenuation re-scale scheme converts
single-channel CT slices to RGB-like images, which is required to fine-tune a pretrained
model. Ciompi et al. [39] proposed the automatic detection of pulmonary fissure nodules
using a pretrained CNN by ImageNET and fine-tuning the network using a small number
of labeled CT data sequences. Tajbakhsh [231] demonstrated that the performance of deep
fine-tuning is better than that of shallow fine-tuning, and that the importance of fine-tuning
a network is enhanced when the size of the training dataset is reduced. Differing from
the above approaches, Schlegl et al. [207] utilized a fine-tuning method in an unsuper-
vised network. They developed unsupervised approaches to pretrain CNNs and injected
information from images and sites without annotations. This type of cross-site pretrain-
ing demonstrated improved classification compared with the methods that initialize model
parameters randomly.

Some general guidelines for fine-tuning implementation are summarized as follows.

1. The common approach is to drop out the last layer (e.g., the softmax layer) of the
pretrained network. This dropped layer is then replaced with a new logistic layer that
is related to the target problem. For example, a softmax layer with 1000 classes is
connected to the pretrained network with the ImageNet dataset. If the target problem
is a classification task with 10 categories, the original 1000 categories of the softmax
layer are replaced with softmax layers with only 10 categories. Then, the backpropa-
gation method is used to fine-tune the pretrained network’s parameters. Meanwhile,
we should employ cross-validation to ensure that the new network can generalize
well.

2. Using a smaller learning rate, such as 10 times smaller than that used for scratch
training, to train the network is beneficial. Here we expect the parameters of the
pretrained network to be sufficient compared with randomly initialized parameters
and we do not want to distort them too quickly or too much.

3. Another common approach is to freeze the parameters in the first few layers of the
pretrained network. On one hand, we wish to keep the parameters constant because
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the first few layers can capture general features, such as the curves and edges that are
relevant to the target problem. On the other hand, we will make the parameters in the
subsequent layers more related to the dataset-specific features.

2.3 Generative Adversarial Networks

Generative adversarial network (GAN) [81] has become a hot research topic in the
field of AI, especially the DL. The basic idea of a GAN comes from two-person zero-sum
game theory, which compromises a generator and a discriminator and is trained using an
adversarial approach. The aim is to estimate the potential distribution of data samples and
to generate new data samples from the same distribution. In the fields of image and visual
computing, voice and language processing, information security, chess games, etc., GANs
have been widely studied and have great application prospects. In this section, we focus on
the research progress and prospects of GANs, and summarize the background, theory and
implementation model; application fields; advantages and disadvantages; and development
trends of GANs.

2.3.1 The Conventional GAN Model

The core idea of a GAN [81] comes from game theory. It sets the players as a generator
and a discriminator. The purpose of the generator is to learn the distribution of real data
as much as possible, whereas the purpose of the discriminator is to distinguish as correctly
as possible whether the input data is from the real data or from the generator. To win the
game, the two players need to constantly optimize and improve their ability to generate and
discriminate. Figure. 2.5 shows the structure of a GAN. We use differentiable functions D

and G to represent the discriminator and the generator, respectively. Their inputs are real
data x and random variables z, respectively. G(z) is the samples generated by G that match
the distribution of real data as much as possible. If the input of the discriminator comes
from real data, the output of D is 1, otherwise the output is 0. Here the goal of D is to
achieve the binary classification for data sources: true (from the distribution of real data x)
or false (from the generator’s fake data G(z)). The goal of G is to make the distribution
D(G(z)) of the generated fake data G(z) on D match with that of real data x on D(x).
These two processes of confrontation and iterative optimization improve the performance
of D and G. When the discriminant ability of D improves to a certain extent and the data
source cannot be correctly identified, it means that G has learned the distribution of real
data [185].
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Figure 2.5: Computation procedure and structure of GAN

First, given the generator G, we consider that the optimization of the discriminator D is
also a process of minimizing cross-entropy based on sigmoid. The loss function is defined
as follows:

Ob jD(θD,θG) =−
1
2

Ex∼pdata(x)[logD(x)]− 1
2

Ez∼pz(z)[log(1−D(g(z)))] (2.5)

where x is sampled from the real data distribution pdata(x), z is sampled from the prior
distribution pz(z), e.g. the Gaussian noise distribution. The training dataset of the discrim-
inator comes from two parts: the real dataset distribution pdata(x) (labeled as 1) and the
generated data distribution pg(x) (labeled as 0). θD and θG are the learned parameters in
D and G, respectively. Given a generator G, we need to minimize Eq. (2.5) to obtain the
optimal solution.

On the other hand, D(x) represents the probability that x comes from real data or gener-
ated data. When the input data is sampled from the real data x, the goal of D is to make the
output probability value D(x) approach 1. When the input of D comes from the generated
data G(z), the goal of D is to correctly classify the data, so that D(G(z)) approaches 0, and
the goal of G is to make the generated data approach 1 [8]. This is actually a zero-sum
game about G and D, so the loss function of G is Ob jG(θG) = −Ob jD(θD,θG). So the
optimization problem of a GAN is a minmax problem. The objective function of a GAN
can be described as follows:

min
G

max
D
{ f (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]} (2.6)

In summary, during the GAN learning process, we need to train D to maximize the
accuracy of its discriminating ability that distinguishes whether the input data comes from
real data or the generated data distribution G(z). On the other hand, we need to train G

to minimize log(1-D(G (z)). An alternate optimization method can be used for the entire
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process: fix G and optimize D to maximize the discriminating ability of D and then fix D

and optimize G to minimize the discriminating ability of D. When pdata = pg, the model
is optimized using the global optimal solution.

2.3.2 GAN based derivative models

Since Goodfellow et al. [81] proposed a GAN in 2014, various GAN based derivative
models have been proposed. The innovations in these models include model structure
improvement, theoretical expansion, and application.

Odena et al. [173] proposed semi-GAN, which added the annotation information of
real data to the training process of the discriminator D. Furthermore, conditional GAN
(CGAN) [162] was proposed by adding additional information y to G, D and real data
to model, where y can be labels or other auxiliary information. Traditional GANs learn a
generative model to map the data distribution of hidden layers to the distribution of complex
real data. Donahue et al. [55] proposed a bidirectional GANs (BiGANs) to map complex
data to the space of hidden layers so as to realize feature learning. In addition to the basic
framework of GANs, BiGANs add an additional decoder Q to map real data x to hidden
layer space, and its optimization problem is converted to min

G,Q
max

D
f (D,Q,G).

Information GAN (infoGAN) [34] is another important extension of a GAN. A GAN
can learn effective semantic features, but the relationship between the input noise variable z
and the specific semantic meaning is not clear. An infoGAN can obtain mutual information
between input variables and specific semantics. The specific implementation is to divide
the input of generator G into two parts: z and c, where z is the same as the input of the GAN
and c is used to represent the implicit relationship between structural hidden variables and
specific semantics. A GAN sets pG(x) = pG(x | c), but in fact, c and the output of G have
a strong correlation. G(z,c) is used to represent the generator’s output. The authors in [34]
proposed that mutual information I(c;G(z,c)) is used to represent the correlation of c and
G, and the objective function is

min
G

max
D

fI(D,G) = f (D,G)−λ I(c;G(z,c)) (2.7)

Odena et al. [174] proposed the auxiliary classifier GAN (AC-GAN), which can realize
multi-classification problems. The discriminator outputs the corresponding label proba-
bility. In practical training, the objective function contains the likelihood of the real data
source and of the correct classification label. It can adjust the loss function further so that
the classification accuracy is higher. The key of an AC-GAN is that the corresponding im-
age label can be generated using the label information of the generator, and simultaneously
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it can expand and adjust the loss function, which can further improve the generating and
discriminating ability of the GAN.

Considering that a GAN’s output is a continuous real number distribution and cannot
generate a discrete space distribution, Yu et al. [268] proposed a generative model Seq-
GAN, which can generate a discrete sequence. They used an RNN to implement generator
G, a CNN to implement discriminator D, and the probability output of D to update G

through reinforcement learning.

2.3.3 Advantages and Disadvantages of GANs

GANs are of great significance to the development of generative models. As a gen-
erative method, a GAN effectively solves the problem of data generation that can be in-
terpreted naturally. Especially for high-dimensional data generation, the adopted neural
network structure does not restrict the data generation dimension, which greatly broadens
the scope of generating data samples. The neural network structure can integrate all kinds
of loss functions and increase design flexibility [204]. The adversarial training method
abandons the direct replication or mean of real data and increases the diversity of gener-
ated samples. It is easy to understand these generated samples in practice. For example, the
ability to generate sharp, clear images provides a possible solution to creatively generate
data that is meaningful to humans.

GANs not only contribute to generative models but also inform semisupervised learn-
ing. The GAN learning process does not require data labels. Although a GAN is not
designed for semisupervised learning, the training process of a GAN can be used to im-
plement the pretraining process with unlabeled data in semisupervised learning [185]. In
particular, a GAN is pretrained with unlabeled data to understand the data. Then a small
number of labeled data items are used to train the discriminator for traditional classification
and regression tasks.

GANs solve some problems of generative models and help in the development of other
methods, but GANs are not perfect. They also introduce some new problems when solving
the existing ones. A GAN adopts the criterion of AL, and it is theoretically difficult to judge
the convergence of the model and existence of equilibrium points. The training process
should ensure the balance and synchronization of the two adversarial networks, otherwise
it is difficult to achieve good training results [174]. In practice, the synchronization of two
adversarial networks is not easy to control, and the training process may be unstable. In
addition, a GAN is a kind of generative model that is based on a neural network; it has the
general disadvantage of a neural network model, i.e., its interpretability is poor.
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Although GANs exhibit these problems, it is undeniable that the progress in the re-
search on GANs has shown that GANs have broad prospects for development. For ex-
ample, the Wasserstein GAN [8] completely solved the problem of training instability and
solved the phenomenon of collapse mode [80]. How to thoroughly solve the collapse mode
phenomenon and optimize the process are the research directions of GANs. In addition,
the theoretical inference of GAN convergence and the existence of equilibrium points are
important research topics for the future. These research directions aim to better solve the
disadvantages of GANs. From the perspective of development and application of GANs,
how to generate diverse and interactive data from a simple random input is a recent direc-
tion for application development. From the perspective of the cross-integration of GANs
and other methods, how to better integrate a GAN with feature learning, imitation learning,
reinforcement learning and other technologies, develop new AI applications; and promote
the development of these methods are meaningful directions. In the long run, how to use
GANs to promote the development and application of artificial intelligence (AI), to en-
hance the ability of AI to understand the world, and to even stimulate the creativity of AI
are questions worthy of consideration.

2.4 Deep Learning in Medical Image Analysis

In recent years, DL has demonstrated excellent performance for natural image pro-
cessing in computer vision and has facilitated breakthroughs in medical image analysis.
Currently, most scholars in this field explore CNNs for image classification, which is pri-
marily used for medical image analysis tasks, such as lesion recognition, detection and
segmentation. In 2016, an IEEE Trans on Medical Imaging special issue on DL presented
recently developed CNN architectures and DL applications in medical imaging processing.
This special issue contains 18 papers by various research scholars from around the world.
A variety of classical tasks were presented, including detection and classification problems,
such as lesion detection, image segmentation, shape modeling, and image registration. In
addition, some new application domains were proposed in these studies. With the exception
of classical tasks, the exploration of networks and insight into these architectures were also
included for some specific tasks, parameters, the selected training sets, and more [82]. Ta-
ble 2.1 lists the classical CNN-based frameworks for computer vision classification tasks.
In this section, we first introduce the CNN framework for classification and segmentation
in medical image analysis. Then, we summarize the research status of DL in medical image
classification, detection, and segmentation and other applications.
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Table 2.1: Classical CNN frameworks for computer vision classification tasks
Model Novelty Application, Remarks

LeNet [124] Multiple convolution layers and sub-
sampling layers

US handwritten digit recognition

AlexNet [118] Proposed ReLU and Dropout Refreshed the world record of the 2012 Ima-
geNet ILSVRC object classification compe-
tition

VGGNet [218] Using small convolution kernels
achieve deeper network and multi-
scale fusion

The ILSVRC 2014 localization task cham-
pion, classification task runner-up

GoogleNet [229] Network with 22 layers and one more
Inception in series

The ILSVRC 2014 detection and classifica-
tion tasks champion

ResNet [85] Introducted the residual network, and
the skip connection, 152 layers

Object detection and object recognition
champion in the 2015 ILSVRC competition

Inception ResNet
[228]

Combined the architecture of Incep-
tion and Residual Net

The performance is comparable to ResNet
and the speed of convergence is faster

FCN [144] Pixel level classification is achieved in
dense prediction

The problem of repeated convolution calcu-
lation is avoided from overlapping of image
blocks

DenseNet [96] There is a direct connection between
any two layers

Alleviating gradient disappearance, enhanc-
ing feature propagation, supporting feature
reuse, and reducing the number of network
parameters

SqueezeNet [98] Simplifying network structure and re-
ducing network parameters

Only need 1/50 parameters in AlexNet can
achieve the same accuracy as AlexNet

DCNN [45] A deformable deep convolution neural
network is proposed

Enhance the modeling ability of network for
geometric transformation

DPN [35] Combined the advantages of ResNet
and DenseNet

Object detection and object recognition
champion in the 2017 ILSVRC competition

SENet [94] Learn the importance of each feature
channel and enhance useful features

2017 ILSVRC image classification compe-
tition champion
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2.4.1 Medical Image Classification

(1) Image screening

Image screening is one of the earliest applications of DL in medical image analysis. It
involves taking one or more examination images as the input, predicting them using trained
models, and outputting a diagnostic variable that indicates whether a disease or severity
has been classified [136]. Image screening is a type of image-level classification, and the
DL models used to solve this task initially focus on SAE, DBN, and DBM networks and
unsupervised pretrained methods. Many studies have examined neuroimaging analyses,
such as the diagnosis of Alzheimer’s disease (AD) or mild cognitive impairment [225]
[226] [141]. These algorithms typically use multimodal images as the input to extract
complementary feature information from MRI, PET, and CSF.

Figure 2.6: Overview of BoNet architecture. The architecture comprises five convolutional
and pooling layers (to extract low and middle-level visual features) one deformation layer
facing bone nonrigid deformation and two fully connected layers for bone age regression.
This figure has been adapted from [222].

Recently, CNNs have been applied in many fields, and they have gradually become a
standard image classification technology. For example, Arevalo et al. [7] proposed a rep-
resentation learning framework for breast cancer diagnosis. This framework automatically
uses a CNN to learn discriminate features to classify breast X-ray lesions. Kooi et al. [116]
compared traditional handcrafted feature extraction and automatic CNN feature extraction
methods, where both methods were trained on a large dataset (45,000 mammograms). The
results indicated that the CNN extracted features were superior to the traditional hand-
crafted features at low sensitivity and that the two methods were equivalent at high sensi-
tivity. Spampinato et al. [222] applied a deep CNN to automatically evaluate skeletal age
(as shown in Figure 2.6). Xu et al. [263] studied the classification of colon cancer from
histopathological images using a deep CNN and multi-instance learning method to extract
features automatically with only a few manual annotations. Gao et al. [74] discussed the
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Figure 2.7: Schematic overview of massive-training artificial neural networks (MTANN)
training. Non-overlapping patches are depicted in the region of interest (ROI) to avoid
clutter. Image patches are extracted densely from each ROI, which results in a massive set
of training patches. This figure has been adapted from [232].

importance of DL techniques, particularly CNNs, in brain CT image classification tasks,
which provide supplementary information for early diagnosis of AD. Payan et al. [179]
and Hosseiniasl et al. [93] used a 3D CNN to diagnose AD in neuroimaging. In addition,
Abdi et al. [2] used a CNN to automatically assess echocardiogram quality (apical four-
chamber view). Gao et al. [72] combined two 2D CNNs to extract the temporal and spatial
features of echocardiograms, and then classified the viewpoints of echocardiograms to help
diagnose heart disease.

In addition, some studies have combined CNNs and RNNs for medical image screening
tasks. For example, Gao et al. [73] adopted a CNN to extract low-level local feature
information from slit lamp images and further extracted high-level features using an RNN
to classify nuclear cataracts.

(2) Object or lesion classification

Object or lesion detection and classification can assist doctors in disease diagnosis, such
as the classification of benign or malignant breast lesions. This process first identifies or
marks the specific region using image preprocessing methods. Then, objects or lesions in
the specific region are classified. Accurate classification requires both local information
about lesion appearance and global context information about the location.

CNN-based frameworks are widely used in lesion classification tasks. For example,
Anthimopoulos et al. [5] used a CNN to design a multi-classification framework to distin-
guish the patterns of interstitial pulmonary diseases, such as ground-glass disease, honey-
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comb disease, calcification, and pulmonary nodules. This method helped achieve 85.5%
accuracy. Kawahara et al. [112] used a multi-processing flow-based CNN to classify skin
lesions, where each flow processed images at different resolutions. Jiao et al. [104] used
a CNN to extract deep features at different levels to improve classification accuracy for
breast cancer. Tajbakhsh et al. [232] detected lung nodules on CT images to distinguish
benign and malignant pulmonary nodules. In addition, they compared the performance of
massive-training artificial neural networks (MTANNs) and CNNs (as shown in Figure 2.7).
The experimental results demonstrated that the MTANNs performance was much better
than that of the CNNs when using limited training data.

Some researchers have combined a CNN with other basic models to achieve good per-
formance in medical image classification tasks. For example, Kallenberg et al. [107] com-
bined a CNN and an SAE to construct the convolutional sparse autocoder (CSAE) model.
Then, they used an unsupervised pretrained CSAE model to perform breast density seg-
mentation and breast risk assessment. Van et al. [245] combined the discrimination ability
of a CNN and the generation ability of the restricted Boltzmann machine (RBM) to con-
struct a CRBM to analyze lung CT images. Zhang et al. [275] developed a two-layer CNN
architecture comprising a pointwise gated Boltzmann machine and an RBM for shear-wave
elastography feature extraction. Compared with statistical features that quantify image in-
tensity and texture, deep features learned by a CNN helped achieve a better classification
performance (93.4% accuracy). Shi et al. [215] used a new deep polynomial network to
classify a small number of ultrasound datasets, and the classification accuracy of the chest
and prostate datasets was 92.4% and 90.28%, respectively, which are better than the results
achieved using DBN and SAE-based methods.

2.4.2 Object or Lesion Localization and Detection

Accurately locating specific biomarkers or anatomical structures in medical images is
of great significance in clinical treatment and is directly related to treatment effects. To
process 3D data using DL algorithms, in some methods, the 3D space as a combination
of 2D orthogonal planes such that the location task can be converted into a classification
task and processed using a general DL framework. For example, Yang et al. [265] com-
bined CNN-learned features from three orthogonal directions to identify the markers of the
femoral end, where the 3D position of the marker is defined as the intersection of three 2D
images. Chen et al. [29] extended the fully-convolutional network (FCN) to a 3D FCN and
proposed a 3D FCN-based localization and segmentation method that helped achieve very
good results in the 2015 vertebral disk localization and segmentation challenge. Vos et al.
[50] identified the 3D rectangular bounding box by resolving the 3D CT volume into a 2D
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Figure 2.8: Multi-modal recognition for lumbar spine imaging. The modalities are uni-
formly trained and detected in one unifed recognition system, in which features from dif-
ferent modalities are fused and enhanced by each other via a deep network. This figure has
been adapted from [20].

form and locating the anatomical regions of the heart, aortic arc and descending aorta of
interest. In addition, LSTM was used to process the time information contained in medical
videos. Kong et al. [115] combined an LSTM-RNN and CNN to detect ED and ES frames
in cardiac MRI videos. Cai et al. [20] [127] used a deep CRBM to extract and fuse image
features from different modalities in an unsupervised manner in order to identify vertebrae
in MR and CT images.

Detecting the ROI or lesion in medical images is important for diagnosis. It has a long
research history in the development of computer-aided detection systems. This work is
typically designed to detect lesions automatically to improve detection accuracy or reduce
expert reading time [136]. The implementation process comprises two steps, i.e., locating
the ROI in the entire image space and identifying small lesions in the ROI.

As early as 1995, Lo et al. [142] proposed the first object detection system using an
ANN that utilized a four-layer CNN to detect nodules in X-ray images. Ciresan et al. [42]
successfully detected mitotic cells in breast cancer pathological tissue images using a deep
CNN as a pixel classifier. Sirinukunwattana et al. [219] used a spatially constrained CNN
and neighborhood ensemble predictor to improve the accuracy of detecting and classify-
ing colon cancer cell nuclei on pathological images. Li et al. [128] proposed a glaucoma
detection method based on a deep CNN classification network. Roth et al. used a deep
CNN to improve the object detection accuracy on CT images. Their main idea was to
extract ROI candidates using existing methods, and then learn the high-level features of
the object based on the deep CNN in order to ultimately detect and segment the object
using the learned features. They significantly improved the object detection accuracy of
several applications, such as automatic lymph node detection on abdominal CT images
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[197] and sclerotic metastasis and colon polyp detection [196] [198]. Wang et al. [249]
used a 12-layer CNN to detect breast artery calcification in mammograms. The results of a
quantitative analysis of calcium quality demonstrated that the detected calcium quality was
close to the gold standard, and the accuracy reached 96.24%. Quellec et al. [190] proposed
a solution to automatically detect referable diabetic retinopathy (DR) and DR-related le-
sions. Referable DR is detected at the image-level using trained ConvNets; furthermore,
the pixels that play a role at the image-level predictions are detected. Finally, a heatmap
with the size of the image is visualized and obtained. To produce high quality heatmaps,
e.g., reducing attenuation artifacts, they proposed enhancing the sparsity of the heatmaps
while training the ConvNets; good results were achieved using this method in the 2015
Kaggle DR competition.

Pixel classification is the key to detect image ROIs or lesions. Currently, most DL-
based object detection systems use a CNN to perform pixel classification tasks, followed
by using postprocessing methods to obtain the object. CNN-based frameworks and meth-
ods are similar to general pixel-level classification methods and must be combined with
the neighborhood context or 3D information of the image to improve classification accu-
racy, such as integrating multi-view information [221] or multi-modal images [234] using
multiple CNNs. Albarqouni et al. [4] used a multi-scale CNN method to detect mitosis on
breast cancer pathological images. Chen et al. [32] approximately expressed the features of
3D medical images using 2D deep features combined with an SVM classifier, which real-
ized the automatic detection of cerebral microbleeds (CMB) using susceptibility weighted
imaging. Dou et al. [58] improved the work reported in the literature [32] by adopting a
cascaded 3D CNN framework to make full use of the spatial context information in MR
images to extract high-level features that can better represent CMBs. This method was
verified extensively on a large dataset with 320 MR images and achieved high sensitivity
(93.16%). This group also used a multi-level 3D CNN framework to detect pulmonary
nodules on CT images, which was validated by the Luna 16 Challenge in ISBI 2016. The
algorithm achieved the highest results relative to reducing false positive indicators [57].
Van Grinsven et al. [244] used a CNN to extract features and adopted a positive and nega-
tive sample equalization strategy to effectively detect hemorrhage on color fundus images.

Several studies have used other DL methods to achieve interesting object or lesion
detection results. For example, Shin et al. [216] applied an SAE to detect abdominal
organs on MRI. First, spatial features were learned in an unsupervised manner; then, multi-
organ detection was performed based on the learned ‘interest points’. Xu et al. [261] used
an SSAE network to learn deep features from histopathological images for breast cancer
nuclei identification to determine the stages of breast cancer. Masood et al. [157] proposed
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a semi-supervised learning algorithm based on a DBN and SVM to recognize dermoscopic
melanoma automatically. This solution can help solve problems when a limited amount
of labeled training data is available. Differing from the traditional CNN method, Li et
al. [131] used a Sobel edge contour and a Gabor texture feature as input and adopted a
CNN for feature fusion and deep feature extraction, which improved automatic detection
accuracy for lumbar vertebrae from C-arm X-ray images.

Recently, some studies have applied CNN-based methods to develop detection and lo-
calization tools in surgical videos. For example, Girshick et al. [79] and Sarikaya et al.
[205] proposed architectures using multi-modal CNNs for fast detection and localization
tools for understanding robot-assisted surgery videos. Twinanda et al. [239] designed a
new CNN-based framework (EndoNet) to learn visual features automatically from chole-
cystectomy videos, while performing phase recognition and detection tasks in a multitask
manner. Chen et al. [31] proposed a method that combines a CNN and LSTM to detect
multiple standard planes in ultrasound images automatically, which is helpful for substan-
tive biometry and diagnosis.

2.4.3 Medical Image Segmentation

(1) Organ and tissue segmentation

Segmentation of organs and their substructures in medical images can be used to quan-
titatively analyze clinical parameters that are related to their volume and shape (i.e. ventric-
ular volume and EF of the heart). DL is widely used in these tasks, such as cardiac ventricle
segmentation, vascular segmentation, histopathology and microscopic image segmentation.

LV segmentation from cardiac MRI is an important step in calculating the ventricu-
lar volume and EF of the heart. Manual contouring is a tedious, operator-dependent, and
time-consuming task; thus, researchers have studied semiautomatic and automatic ventri-
cle segmentation approaches to obtain consistent and accurate delineations from SAX and
LAX images, as shown in Figure 2.9. Carneiro et al. [23] used a DBN to learn the features
and model the appearance of the LV. They then segmented the LV automatically on an ul-
trasonic image of the heart using a supervised learning approach. Avendi et al. [10] used
SAE learned deep features to preliminarily infer the shape of the LV and then combined
with a deformation model to improve the accuracy and robustness of LV segmentation. Ngo
et al. [169] combined a DBN using the level-set method to segment the LV from cardiac
MRI automatically. The FCN-based deeply supervised network framework and conditional
random field refinement method proposed by Dou et al. [59] have achieved state-of-the-art
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Figure 2.9: Examples of automatic cardiac MR image (SAX and LAX images) segmenta-
tion results obtained using a CNN. The top row shows the automated segmentation results
for all ED and ES frames. The bottom row shows the manual segmentation. Manual anal-
ysis only annotates ED and ES frames; thus, the automated method only shows the ED and
ES frames. The cardiac chambers are represented by different colors. The number of pixels
labeled as BP and myocardium classes is calculated to obtain clinical measurements, such
as EF and ventricular mass. This figure has been adapated from Ref. [12].

performance in heart and aorta segmentation. Tan et al. [233] parameterized the com-
plete (all short axis slices and phases) LV segmentation task in terms of the radial distances
between the LV center point and the endo- and epicardial contours in polar space. They
then utilized CNN regression to infer these parameters. Zhen et al. [195] used a multi-
scale CRBM for unsupervised learning, and then trained regression forest predictors using
labeled data to estimate the biventricular volume directly from MR images.

DL has also been applied to challenging vascular segmentation tasks. For example,
Nasr-Esfahani et al. [168] proposed the use of a CNN to detect vessel regions in angiog-
raphy images, and Wu [257] presented a generic approach for vascular structure identi-
fication from medical images, which can be used for multiple purposes. This proposed
method uses the state-of-the-art deep CNN to learn the appearance features of the target. A
principal component analysis-based nearest neighbor search is then utilized to estimate the
local structure distribution, which is further incorporated into the generalized probabilistic
tracking framework to extract the entire connected tree. Liskowski [135] proposed a su-
pervised segmentation technique that uses a deep neural network trained on a large (up to
400,000 images) dataset. The networks significantly outperform previous algorithms with
respective to the area under ROC curve metric (up to > 0.99) and classification accuracy
(up to > 0.97). Wang [251] proposed a supervised method that combined a CNN and the
random forest to solve the segmentation problem relative to retinal vascular disease. Most
of these methods are supervised feature extraction approaches that are combined with other
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existing techniques and classifiers to improve segmentation accuracy. Differing from such
classification-based segmentation methods, Li et al. [129] remolded the segmentation task
as a problem of cross-modality data transformation from a retinal image to a vessel map,
where a wide and deep neural network with strong induction ability was used to model the
transformation. The experiment results demonstrated that it is an efficient training strategy.

Computer-assisted image feature extraction from surgical and biopsy specimens can
benefit the prediction of the extent of disease aggressiveness and can be further used for
disease diagnosis and classification. The key components of such predictors are image fea-
tures extracted from histopathological images [153]. Currently, most segmentation meth-
ods for histopathological and microscopic images are based on DL, and many studies have
achieved excellent segmentation results using CNN-based networks. Ciresan et al. [40]
used a special type of deep artificial neural network as a pixel classifier for automatic seg-
mentation of neuronal structures in stacks of electron microscopy images. The label of each
pixel (membrane or nonmembrane) is predicted from raw pixel values in a square window
centered on it. Kumar et al. [121] proposed a DL-based technique in which a CNN is used
to produce a ternary map for segmenting nuclei from hematoxylin and eosin (H&E) patho-
logical images. Xu et al. [262] transferred features extracted from CNNs trained using a
very large general image database (ImageNet) to the medical image challenge and achieved
97.5% classification accuracy and 84% segmentation accuracy in the MICCAI 2014 Digital
Pathological Challenge of Brain Tumors. Qaiser et al. [189] used a CNN to extract image
features and construct a continuous homology distribution based on topological features
for automatic tumor segmentation in histology whole-slide images. To achieve good seg-
mentation results, some studies take CNN classification results as the initial segmentation
value and improve the cell nucleus segmentation results using a level-set model [220] or
sparse shape model [260].

(2) Lesion and tumor segmentation

Prior to treating lesions or tumors, the key step is to accurately segment the lesion or
tumor to ensure that tumor cells can be killed and normal tissues or organs can be pro-
tected during treatment [54]. To segment the lesion and tumor accurately, multi-modal
image information and global and local context information are usually combined. There-
fore, some studies have employed multi-modal image information as inputs, with multi-
processing flow networks being adopted for different image scales [84], and 3D CNN [59]
and nonuniform sampling block strategies [84] [18] being utilized for segmentation tasks.

For comparison, we have combined several excellent representative algorithms that
have been validated by the public dataset of the Brain tumor image segmentation bench-
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Table 2.2: Comparison of methods for brain tumor segmentation (validation on BRATS
database)

Reference Method
DICE

Total tumor Core tumor Active tumor

Expert evaluation Medical training and experience 0.88 0.93 0.74

Urban [241] Muiltimodal input, training with 3D
CNN

0.87 0.77 0.73

Zikic [281] The 3D cube image block is transformed
into 2D image block, and training the
2D CNN network.

0.837 0.736 0.69

Havaei [84] 2D multi-modal input, dual path cascade
CNN architecture, integrated local de-
tails and global information.

0.88 0.79 0.73

Pereira [181] 3 × 3 small convolution kernels, more
CNN layers and nonlinear operation,
and less filter weights.

0.88 0.83 0.77

Kamnitsas [109] A dual path network framework witus-
ing 3D CNN with 11 layers and small
filters.

0.898 0.75 0.721

mark (BRATS)5 over the past three years, as shown in Table 2.2. These algorithms are
designed based on CNNs. Kamnitsas et al. [109] proposed the use of 3D CNNs with a dual
pathway architecture to process input images with multiple scales simultaneously. This
architecture incorporates both local and global contextual information. Three challenging
lesion segmentation tasks, including traumatic brain injuries, brain tumors, and ischemic
stroke, were evaluated using multi-channel MRI patient data. This method has demon-
strated excellent performance beyond expert delineation level. Yu et al. [267] constructed
a fully-convolutional residual network using a residual network and a full convolution neu-
ral network, which automatically segmented melanoma in dermoscopic images and won
second place in the ISBI 2016 challenge.

In lesion segmentation tasks, we also observe the application of U-net, as well as the
global and local similar framework. For example, Wang et al. [248] used a U-net structure
with the same downsampling and upsampling paths; however, no jump connections were
used in the network (as shown in Figure 2.10). Another framework similar to U-net was
adopted to segment multiple sclerosis lesions using 3D convolution, and there was a single

5https://www.smir.ch/
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Figure 2.10: ConvNet architecture for automatic wound segmentation results. (a) End-to-
end approach for wound segmentation. (b) Wound regions cropped from raw images by
modified GrabCut [199]. The cropped images are used as inputs and pixel-wise probabili-
ties of the wound segment masks are taken as outputs (lighter means higher probability). A
threshold of 0.5 is set to obtain the final masks on each pixel. This figure has been adapted
from [248].

jump between the first convolution layer and the last deconvolution layer [18].
Note that most pixels in the image belong to normal tissues. One major challenge in

lesion segmentation is imbalance in the class distribution. The coping strategies for class
distribution imbalance are discussed in the section 2.4.

2.5 Analysis and Interpretation of Cardiac MRI Data

In clinical cardiology, cardiac function analysis plays an important role in patient man-
agement, disease diagnosis, risk assessment and treatment decision-making. Evaluating a
set of complementary indices calculated from different structures of the heart using digital
images is a routine task in cardiac diagnosis. Because CMR, which is constructed from
the SAX view, has the ability to recognize different types of tissues, it is considered as the
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golden standard of cardiac function analysis and helped evaluate the LV/RV Ejection frac-
tion (EF) and SV, LV mass and myocardial thickness. This requires accurate delineation
of LV endocardium and epicardium, as well as ED and ES conditions of the RV endo-
cardium. In clinical practice, because the automatic cardiac segmentation method lacks
accuracy, semiautomatic cardiac segmentation is still a standard practice. However, this
can be time-consuming, easily lead to differences within and across observers.

Several difficulties have been identified in CMR segmentation. First is the poor contrast
between the myocardium and surrounding structures and the high contrast between blood
and the myocardium. Second, because of the blood flow, brightness heterogeneities ex-
isted in LV/RV chambers. Third, the intensities between trabeculae and papillary muscles
are similar to the myocardium. In addition, nonhomogeneous partial volume effects arise
because of limited CMR resolution along the long-axis, and there is inherent noise due to
motion artifacts and heart dynamics. Finally, banding artifact exist.

In 2015, an estimated 17.7 million people died of CVDs, accounting for 31% of all
deaths worldwide [176]. More people die from CVDs each year than because of any other
cause. Clinicians have always relied on manual methods of tracking ventricular contours to
obtain quantitative measurements, such as volume and mass. Generally speaking, a trained
expert needs 20 min to analyze the images of a single subject at two time points of the
cardiac cycle: ED and ES. This process is time consuming, tedious, and prone to subjec-
tive errors. Advances in medical imaging technology have led to a variety of non-invasive
research options for CVDs, including echocardiography, CT and CMR. Each of these tech-
niques has its advantages and disadvantages. Because of its good image quality, good soft
tissue contrast and non-ionizing radiation. CMR has established itself as the non-invasive
gold standard for evaluating the volume and quality of various CVDs [194][63][158].

Machine learning algorithms, especially DL networks, have shown great potential for
many visual tasks. They can achieve or surpass human performance in many applications,
including object recognition in natural images [86], game playing [217], tumor classifica-
tion [61], and ocular image analysis [143]. In recent decades, DL based approaches have
been applied in CMR image analysis [10][169][238][132]. Because of the limited size of
the dataset, the majority of these works have used neural networks with relatively shallow
architectures. In 2016, Kaggle provided 700 subjects for the second Data Science Bowl. In
this challenge, all the data had no annotation [160]. Another challenge was organized by
MICCAI, which provided 100 subjects with manual annotation [15]. Lieman Sifry et al.
have compiled a dataset comprising 1143 SAX image scans [132]. Most of these images
are labeled with LV and RV endocardium contours, with only 22% of them being labeled
with LV epicardium contours.
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2.6 Challenges in Deep Learning and Research Directions

2.6.1 Challenges in Deep Learning for Medical Image Analysis

DL is a data-driven approach for learning abstract features at all levels. DL demon-
strates a very strong representation ability and robustness in many applications. Although
DL demonstrates excellent performance in computer vision tasks where natural images are
analyzed and processed, applying DL to medical image analysis is challenging. Various
challenges are summarized as follows.

1. Natural images have higher spatial resolution and contrast than most medical images;
furthermore, natural images have many visual features, such as brightness, color, and
texture. Most medical images only have the intensity of a particular signal and a
very low signal-to-noise ratio. Therefore, the boundaries between anatomical struc-
tures of organs and lesion areas in most medical images are unclear, with the texture
differences not being obvious. Simultaneously, medical images differ significantly
from natural images due to imaging principles. Thus, medical image analysis is more
difficult than natural image analysis.

2. There are limitations in various medical imaging methods. Medical images obtained
using different modalities can only provide specific anatomical and functional in-
formation of the human body, each having unique advantages and disadvantages.
Different imaging devices and image reconstruction methods differ significantly, and
different imaging principles and methods are typically used in clinical practice. Thus,
automatic medical image analysis is more complicated than natural image process-
ing.

3. Currently, many computer vision classification tasks are image-level tasks; however,
medical images are used for image-level disease screening and pixel and voxel-level
treatment planning. For example, intensity modulated radiation therapy (IMRT) re-
quires accurate detection, identification, and localization of tumors, dangerous tis-
sues, and organs. IMRT also requires high-precision segmentation of tumor areas
and their surrounding normal tissues or organs from CT, MRI, PET, and other medi-
cal images. Moreover, the abnormal lesion area (e.g., tumor) is very complex, and the
locations, sizes, and shapes of abnormal lesion areas vary greatly. Therefore, detec-
tion, recognition, and segmentation of an abnormal lesion area are more challenging
compared with those of normal tissues and organs. The computation for medical
image analysis is more complex than that for natural image analysis; thus, many DL
algorithms in computer vision cannot be applied directly to medical image analysis.
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4. In image classification tasks in computer vision applications, industry has established
large-scale training datasets with manual labeling, such as the MNIST, CIFAR, and
ImageNet datasets. However, it is very difficult to obtain a large training dataset
when applying DL models to medical image analysis, especially for a lesion sample
dataset because it varies a lot and requires clinical experts for annotation; thus, the
available labeled data is limited [255] [254] [73]. However, detection, identification
and segmentation of abnormal lesions are important in clinical applications, such as
automatic screening, automatic diagnosis, and automatic treatment planning.

5. It is difficult to construct large annotated datasets for medical data analysis. For ex-
ample, it is difficult to obtain financial support to build such datasets, and highly paid
medical experts are required to annotate high-quality medical image data. Medical
images are primarily located in private databases in hospitals, and privacy regulations
may hinder access to such data, making sharing of medical data more difficult than
sharing of natural images [82]. Medical image analysis is widely used, and many
different datasets corresponding to different applications are required.

2.6.2 Coping Strategies

To improve feature representation and classification accuracy, large medical image
training datasets are needed. However, several challenges must be considered. How do
we deal with the shortage of training data? How do we use small amounts of training data
in the most effective manner? How do we improve medical image classification accuracy
using complementary information and image spatial context information? How do we ob-
tain and annotate large medical image datasets? The current strategies for addressing such
questions are summarized as follows.

(1) Transfer learning and weakly-supervised learning

The primary potential of a CNN lies in its ability to extract a series of discriminative
features from multi-layer neural networks. As mentioned previously, a CNN is a supervised
learning model, and training a CNN from scratch is a significant challenge. To address this
issue, CNN models are typically pretrained in a supervised manner using natural images
or datasets from different medical fields using the transfer learning method. There are two
typical transfer learning strategies.

• Using pretrained network as feature extractor. A CNN model trained by ImageNet
can be used in medical image recognition despite the differences in imaging princi-
ples and the appearance between medical and natural images [22]. For example, Bar
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et al. [13] [14] used a pretrained network as a feature extractor for chest pathology
recognition, and Ginneken et al. [243] combined CNN features with handcrafted
features to improve nodule detection performance.

• Using target medical data to fine tune the pretrained network. A pretrained CNN
has been used as the initial network, with the network parameters fine-tuned via a
supervised approach with limited annotated data to adjust parameters in several or
all network layers [91] [28]. Ciompi et al. [39] proposed to automatically detect
pulmonary fissure nodules using a CNN pretrained by ImageNET and fine-tuning
the network with a small number of labeled CT data sequences. Tajbakhsh [231]
demonstrated that the performance of deep fine-tuning is better than that of shallow
fine-tuning and that the importance of fine-tuning a network is enhanced when the
size of the training dataset is reduced.

Both strategies have been widely used. The first strategy has an additional advantage,
i.e., it does not require training the deep network and allows extracted features to be in-
serted easily into existing image analysis pipelines. However, few studies have thoroughly
investigated which of the two strategies yields better results [136].

In addition to transfer learning, another strategy is weakly-supervised learning, which
effectively combines the advantages of unsupervised and supervised learning. Although
the number of medical images with available annotations is small, the unlabeled data scale
may be large. We can make full use of unlabeled data and adopt pretraining technology
to extract features for images in an unsupervised manner. Then the extracted features can
be used as the initial value for a supervised learning network, and the classifier can be
trained using the limited labeled data. For example, Kallenberg et al. [107] used a CSAE
for breast density segmentation and breast risk assessment. The main difference between
the CSAE and a classical CNN is that the convolution layers of the CSAE are pretrained
layer by layer in an unsupervised manner as an SAE. The combination of multiple instance
learning (MIL) and DL is also a feasible alternative in case the acquisition of annotated
data is very expensive. Xu et al. [263] studied MIL frameworks combining supervised and
unsupervised feature learning approaches. The results demonstrated that the performance
of MIL-based frameworks is superior to that of handcrafted features and close to that of
supervised methods.

(2) Regularization and equalization

CNN training is an iterative process of parameter optimization. In each iteration, a
sample is selected randomly from the training data as the input to the network, and the
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Figure 2.11: Dropout neural net model. Left: standard two-layer neural network. Right:
dropout is applied in the standard network.

parameters are updated by backpropagation to minimize the objective function. The differ-
ences in medical imaging equipment and image reconstruction methods may cause uneven
gray level and inconsistent offset field problems [276]. Although supervised learning tech-
niques have demonstrated great potential in experiments using standardized imaging pro-
tocols, performance may deteriorate rapidly with new input images captured under slightly
different conditions. In light of such issue, we should consider the following processes to
weaken the adverse effects.

• Batch normalization: By normalizing the mean and variance of each training sam-
ple, we can avoid gradient disappearance, gradient overfitting, and accelerate con-
vergence. This process can be used as a regularization technique to improve the
network’s generalization ability [99].

• Regularization: Regularization is an effective strategy to reduce overfitting. By
adding regularization terms L1 or L2 to the model’s cost function, the complexity
of the model is reduced, which, in turn, reduces overfitting [84].

• Dropout: In each iteration, the output of partial neurons whose proportion is p is
randomly set to 0 (i.e., some nodes are disconnected). Dropout is a random regu-
larization strategy to avoid overfitting of the network, and it can be considered for
implicit model integration [89], as shown in Figure 2.11.

Classification tasks in medical image analysis typically need to distinguish between the
normal tissue and lesion area. In each case, the data distribution of various tissue types is
unbalanced, and most normal tissue and organ samples are highly correlated and possess
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a large amount of information; thus, the normal tissue and organ can get overrepresented.
For example, brain tumor segmentation is a highly data-unbalanced problem, in which the
voxels of healthy tissue account for approximately 98% of the total voxels, and the remain-
ing 2% voxels of pathological tissue include 0.18% belonging to necrosis, 1.1% belonging
to edema, 0.12% belonging to non-enhanced tumors, and 0.38% belonging to enhanced tu-
mors [84]. Treating these data equally in the learning process will result in many iterations
wasted on non-information samples, thereby rendering the training process unnecessary.
Simultaneously, this type of training, i.e., training dominated by healthy tissue samples
will lead to problems in the CNN model. To address this problem, van Grinsven et al.
[244] improved the learning efficiency of a CNN and reduced training time by identify-
ing normal samples with large amounts of information and dynamically selecting negative
samples with misclassification in the training process. Havaei et al. [84] proposed a two-
time training strategy, i.e., initially selecting all kinds of images with equal probability for
training, and then keeping all layers’ kernels fixed using the more representative true dis-
tribution of the samples to retrain the output layer. As a result, the diversity of all classes
can be balanced, and the output probability can be corrected by retraining the true distri-
bution of the data labels. Brosch et al. [18] adjusted the loss function and defined it by
combining weighted sensitivity and specificity. The greater the specific weight, the less
sensitive it is to data heterogeneity. There are also ways to balance data distribution via
data augmentation of the positive samples [109] [181].

(3) Integrating multi-modal complementary image information and image spatial
context information

Due to the limitations of medical imaging, medical image data of different modalities
can only reflect the specific information about the human body, and each modality has its
advantages and disadvantages. For example, CT and MRI complement each other in bone
and soft-tissue imaging, and CT, MRI, and PET complement each other in anatomical and
functional imaging. Different contrast enhancement methods offer different advantages
even when used with the same imaging method. For example, different MRI modalities
produce images with different tissue contrasts, thereby providing valuable structural infor-
mation and enabling diagnosis and segmentation of tumors and their clinical regions. The
complementary information contained in multi-modality medical images can provide clear
functional and anatomical structure information, which improves the accuracy of analy-
sis. Therefore, most segmentation algorithms use multi-modality medical images as inputs
[278] [224].
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To achieve pixel-level medical image classification/segmentation, classifying only the
pixels is insufficient; thus, we must also combine neighborhood pixels to provide better
context information. Most medical images provide 3D information. To better consider
voxel context information, in addition to adopting a deeper CNN model, using multi-scale
and multi-processing flow CNN methods, we must also consider how to model 3D infor-
mation. Currently, there are two different ways to handle 3D information modeling.

• Transforming 3D information into 2D image block information. Taking the classified
voxels as the block center, the 3D neighborhood context information is expressed ap-
proximately using multi-view 2D profiles, and the computation is simplified via 2D
convolution; thus, computational efficiency is improved [197] [281]. By consider-
ing each section as an information source, all section information can be integrated
via a multi-channel or multi-processing flow to improve classification accuracy. For
example, Roth et al. [197] used three individual and separately trained CNNs on
each orthogonal image slice, with a subsequent fusion of their predictions to detect
colonic polyps or suspicious lymph nodes. Setio et al. [211] used a CNN-based mul-
tiprocessing flow to classify the points of interest of chest CT images. By extracting
the features from nine different directions of the points of interest as the input, these
features were merged at the fully-connected layer to obtain the final classification
results.

• Processing with a 3D CNN. Taking classified voxels as the block center, 3D cube
blocks are extracted and processed via 3D convolution. This method considers the 3D
neighborhood information comprehensively and helps extract more discriminative
features; thus, classification accuracy is increased. This method has a disadvantage
that too many 3D elements may be involved in the computation and computational
efficiency is low [109]. With increased computing speed, 3D CNNs have been widely
adopted in the past couple of years. For example, Nie et al. [171] trained a 3D CNN
using 3D information to evaluate the survival rate of patients with severe glioma.

In addition, we can improve the accuracy of the classification and refine the boundary
of the region for segmentation by combing different algorithms. For example, we can use
the super-pixel segmentation method to extract the candidate regions of interests. Then
deep learning is used to extract deep features for these regions. This method can reduce
the search space to improve computational efficiency and classification/segmentation ac-
curacy [221] [197] [196]. Ngo et al. [169] proposed a method for automatic and accurate
segmentation of LV from cardiac MRI using DL and level-set method .
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2.6.3 Open Research Directions

In summary, DL models can automatically learn more discriminative features from data.
DL models have been applied to many medical image analysis tasks and they have helped
achieve significant breakthroughs. In most studies, DL methods have been used to demon-
strate their leading performance, such as successful application of several computational
challenges in medical image analysis. In addition, with the development of cloud comput-
ing and high-performance multi-graphics processing unit parallel computing, it is possible
to learn deep features from massive medical image data. Finally, the emergence of publicly
accessible medical image databases, such as the brain tumor MRI dataset (BRATS), the
Alzheimer’s disease neuroimaging dataset (ADNI), the ischemic stroke dataset (ISLES),
and various medical image segmentation challenge datasets, has facilitated effective vali-
dation of DL-based segmentation algorithms [214], [200].

Most of the advanced DL methods are supervised learning approaches, specifically
CNN-based frameworks. Previous studies have focused on pretrained CNNs and using
CNNs as a feature extractor that can be downloaded easily and used directly for medical
image analysis. End-to-end training for CNNs has become a priority in medical image
analysis. However, obtaining annotated data for supervised learning is a significant chal-
lenge compared with applying DL methods in medical data analysis [254] [200]. Under the
condition of limited labeled training data, it is important to make full use of non-labeled
images in medical image analysis. In addition, it is expected that weakly supervised learn-
ing methods that combine the advantages of unsupervised and supervise learning will yield
practical benefits.

The text reports of medical experts and electronic medical records contain rich clinical
information, which can be used to supplement labeled image data. In the computer vision
field, it is expected that natural image subtitle generation methods combined with RNNs
and CNNs will soon be applied to medical image analysis.

These challenges provide tremendous opportunities to medical image analysis researchers.
We believe that through improvements in DL algorithms, the development of high-performance
parallel computing technology, the increasing quality of medical images, and the growing
amount of labeled medical image data, DL-based medical image analysis will achieve great
success in the future.

2.7 Quantitative CMR Image Analysis of UK Biobank

Quantitative assessment of cardiac function is essential for appropriate preventive care
and early CVD treatment. In large-scale population imaging data, the analysis and in-
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terpretation of cardiac structural and functional indicators can help identify patterns and
trends in different population groups and thus reveal the key risk factors of CVD before
comprehensive CVD development. UK Biobank (UKBB) is one of the largest prospec-
tive population studies worldwide, which aims to investigate the determinants of a disease
[183]. UKBB data include a wide range of baseline questionnaire data, biological samples,
physical measurements and CMR images to establish cardiovascular imaging derived phe-
notypes [182]. In many UKBB imaging centers, CMR is an important part of multi-organ
and multi-modality imaging visits for patients. The centers will acquire and store imaging
data from 100,000 participants by 2022.

Cardiac ventricle segmentation has always been a hot topic in the field of medical image
processing. The purpose of cardiac ventricle segmentation is to derive quantitative mea-
surements of cardiac ventricles, such as LV EF, volume and mass, which can be calculated
from segmentation results to evaluate cardiac function. Image segmentation is the process
of dividing an image into several specific, unique regions and processing the object of in-
terest; it is the key step from image processing to image analysis. Automatic segmentation
is designed to reduce the tedious, time-consuming and error-prone tasks. So far, many
related algorithms have been developed, ranging from the most basic region partitioning
technology and graph-based segmentation algorithms to machine learning [47] and CNN
based deep learning (DL) algorithms [12]. We will give a detailed literature review on DL
based medical image segmentation methods in section 2.3.3.

2.8 Thesis Overview

In the previous chapter, we reviewed background information regarding cardiac im-
age analysis problems and state-of-the-art analysis methods focusing on DL. In particular,
we discussed some proposed methods that involve a CNN for cardiac image segmenta-
tion, multi-modal registration problems. Chapter 3 introduces the intensity representation
learned by a CNN for LV coverage assessment in the UKBB. In Chapter 4, we extend a
previously proposed 2D CNN to a 3D CNN and introduce the Fisher-discriminative (FD)
criterion. In addition, we experimentally demonstrate the applicability of the FD criterion
in a framework with a small amount of training data. In Chapter 5, we explore the concept
of AL based LV and RV coverage assessment and experimentally demonstrate its benefits
on LV+RV coverage assessment for datasets with no label information. In Chapter 6, we
propose a strategy for CMR plane pose estimation and a multitask regression model with
PI, which encourages CNN models to make more meaningful pose predictions automat-
ically. Then, in Chapter 7, we propose using quality aware GANs for CMR images to
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synthetize the missing slice. Finally, in Chapter 8, we summarize the work presented in
this thesis and discuss future work.
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Chapter 3

Automated LV Coverage Assessment for
Cardiac MR Images Using
Convolutional Neural Networks

This chapter is based on:

• Le Zhang, Ali Gooya, and Alejandro F. Frangi, Semi-supervised assessment of in-
complete LV coverage in cardiac MRI using generative adversarial nets, MICCAI

Workshop on Simulation and Synthesis in Medical Imaging (SASHIMI), pp. 61-68.

Springer, Cham, 2017

• Le Zhang, Ali Gooya, Bo Dong, Rui Hua, Steffen E. Petersen, Pau Medrano-Gracia,
and Alejandro F. Frangi, Automated quality assessment of cardiac MR images using
convolutional neural networks, MICCAI Workshop on Simulation and Synthesis in

Medical Imaging (SASHIMI), pp. 138-145. Springer, Cham, 2016

Authors’ contributions: L.Z., A.G., B.D. and A.F.F. conceived and designed the study;
S.E.P. provided support on clinical aspects and he also provided the UK Biobank data
resource to be used for training and testing; R.H. provided the image mask for the data.
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read and approved the manuscript.
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3.1 Introduction

In this chapter, we present a new problem in medical images analysis, namely image
quality assessment (IQA), and its specific problem in cardiac MR image analysis tasks such
as LV coverage assessment. In video processing, Automatic Image Quality Assessment
(AIQA) is a well-developed corpus of techniques usually concerned with detecting image
distortions characteristic of multimedia communications [202] [264]. These distortions
are generally very different to those affecting medical imagery. No-reference based image
quality assessment (NR-IQA) [87], [164] is relevant for medical imaging data since while
it is easy to get access to abundant data sets of mixed quality, it is infeasible to collect data
without some level of image degradation or artifacts.

Visual quality is a very complex yet inherent characteristic of an image. In principle, it
is the measure of the distortion compared with an ideal imaging model or perfect reference
image. The characters of LV are useful to identify the position, which the slice belongs to,
since the LV in each slice shows a different shape and size. Recent work [67], [259] has
focused on learning data-driven features in order to more accurately detect shape differ-
ences. Among them, convolutional neural networks (CNNs) are one of the most regularly
used deep learning schemes to meet the challenges of discriminative shape detection [237]
[136].

Based on these observations, we explore using a CNN to learn discriminant features
for the LV coverage assessment task for cardiac MR images. Recently, deep neural net-
works have gained researchers attention and achieved great success on various computer
vision tasks. Specifically, CNN has shown superior performance on many standard object
recognition benchmarks [111] [118] [41]. One of CNNs advantages is that it can take raw
images as input and incorporate feature learning into the training process. With a deep
structure, the CNN can effectively learn complicated mappings while requiring minimal
domain knowledge.

We demonstrate two different methods of deep learning for LV coverage assessment
in cardiac MR images: (1) 2D convolutional neural network, (2) Semi-coupled generative
adversarial networks (SCGAN). All the two methods make use of the UK Biobank dataset
by focusing on the analysis of short axis (SA) cine MRI. At the end of the chapter, we
demonstrate the desighed framework can achieve effective generalization properties, when
applied to complex classification problems such as identifying missing SA slices.
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Figure 3.1: Left: A typical two-chamber view cardiac MRI with eight slices covering from
base to apex; Right: (a) a volume with whole coverage (slice 1 is the basal slice), and (b) a
volume with missing basal slice (slice 1 is notthe basal slice). In each rectangle, from top
to bottom, rows correspond to adjacent axial slices.

3.2 Automated Quality Assessment of Cardiac MR Im-
ages Using Convolutional Neural Networks

Cardiac Magnetic Resonance Imaging (CMRI) can not only reflect anatomic informa-
tion of the heart but also provide physiological information associated with cardiovascular
diseases. Although low image quality can be minimized by careful design of the imaging
acquisition protocols, it cannot be fully avoided; particularly in large-scale imaging studies,
where data is acquired at different imaging sites, across subjects with a diverse constitution
and at a big pace [62].

On the other hand, few objective guidelines exist, clinical or otherwise, that establish
what constitutes, in general, a good image and, in particular, a good CMRI study [242].
To ensure that the quality of data collected in such imaging studies is maintained, Image
Quality Assessment (IQA) is crucial. Surprisingly, IQA is still usually carried out by vi-
sual inspection of the images which can be exhaustive, costly, subjective, error prone, and
time consuming [9]. Thus, Automatic IQA (AIQA) methods are required to detect devi-
ations from the desired quality, intervene to correct problems in data collection as soon
as possible, and discard low-quality images, whose analysis would otherwise impair any
aggregated statistics over the cohort. Additionally, a priori and objective knowledge on
image quality of a given dataset (and possibly the type of artifact affecting it) could assist
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in choosing the most appropriate image analysis method to be used. This paves the way to
“quality-aware image analysis” [253].

In multimedia, AIQA is a mature research field and usually concerned with detecting
specific image distortions [202] [264]. Unfortunately, most of these methods cannot be
directly translated to medical imaging due to different properties in image statistics and the
more complex nature of image artifacts [119]. Thus, AIQA remains as a relatively unex-
plored research area in medical imaging. It is acknowledged that lack of basal and/or apical
slices is probably the most common problem affecting image quality in CMRI and has a
major impact on the accuracy of quantitative parameters of cardiac performance [114]. In
this study, we mainly focus on short axis (SA) cine MRI. More specifically, we aim to iden-
tify missing apical slice (MAS) or missing basal slice (MBS). To address this problem, we
are motivated by the success of deep learning techniques and, in particular, Convolutional
Neural Network (CNN) [15][32]. They can achieve effective generalization properties,
when applied to complex classification problems such identifying missing SA slices.

To the best of our knowledge, this is the first study tackling the problem of detecting
the missing slices in CMRI. Apart from introducing a new application for the CNN’s, and
addressing a pressing need, we propose an effective strategy for their training. In practice,
the lack of sufficient number of CMR data sets with MBS/MAS deficiencies imposes a
severe class imbalance problem. To alleviate this issue, only the bottom and top SA slices
are examined to ensure the full coverage of the heart. This allows us to use the middle slices
as non BS/AS training samples. We present results for various depth of the networks, and
identify the optimal number of the layers. We also compare our framework with an array
of other deep learning methods such as Deep Boltzman Machines (DBM) and Stack Auto
Encoders (SAE), and show its better performance. In the next section, we briefly introduce
the architecture of our networks and provide the specification of our data sets. We then
present our classification results and conclude the study in the final section.

3.2.1 Methodology

As mentioned, we are interested in detecting missing apical and basal slices in CMRI
data sets. To this end, for each cardiac subject, the top and bottom SA slices in the scan are
classified using two CNNs, each particularly trained for detecting missing slices in basal or
apical positions. Each CNN is composed of alternating convolutional and sampling layers,
and one fully-connected output layer. Figure 3.2 shows the configuration of CNNs with
total number of 5 layers (showing overall the best classification performance). Here, we
briefly review the various components in the proposed CNNs with a further detail.
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Figure 3.2: Overview of our proposed deep learning model for cardiac MRI quality assess-
ment. The CNNs are composed of 5 layers: four multi perceptron convolutional layers plus
one fully-connected layer. The bottom and top SA slices are examined individually.

Convolutional Feature Layers: Convolutional layers implement kernels that are used to
detect discriminative features from input images [177]. During the training, these kernels
are optimized to compute some salient features (such as edges, corners, etc.) that are
relevant for discrimination of the observed categorical variables. We define Xl−1

i and Xl
i as

input and output ith feature map of the lth layer. Let m× n and k× k be the size of input
maps and the convolution kernel for layer l. With this setting of parameters, we can get N

output maps with the size (m− k+1)× (n− k+1). The output of a convolutional layer l

is given by

Xl
j = f

(
∑

i∈M j

Xl−1
i ∗kl

i j +bl
j

)
, (3.1)

where kl
i j denotes the convolution kernel linking the ith input to the jth output map; bl

j

is the bias vector for the jth output-feature-map of lth layer; f is the activating function
1/(1+ e−x), and M j is the input feature map in the former layer.
Sampling Layers: These layers are designed to reduce the number of kernel parameters,
minimize the computational complexity, and make the features robust to zoom, shift and
rotation. The output of convolution layers are divided into sub-regions having the size
of w× h pixels. Then, each output pixel of a sampling layer is defined as the maximum
value in the corresponding input sub-region. These operations can be formulated using the
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following relationship

Xl
j = f

(
β

l
jdown

(
Xl−1

j

)
+bl

j

)
, (3.2)

where down(·) symbolizes the down sampling function; j, l, β and b denote the feature
map index, the layer number, the weighting coefficients, and the bias vector, respectively.
Softmax classifiers: To predict the final labels, the CNN detected low-dimensional fea-
tures are used to train softmax classifiers. Given the feature vector x(i), we computed the
posterior probabilities for k = 1,2, ...,K classes using

p(y(i) = k|x(i)) = eθθθ
T
j x(i)

∑
K
l=1 eθθθ

T
l x(i)

, (3.3)

where θθθ denotes the parameters of the softmax classifier, obtained from the pre-trained
CNN network. The neural network was trained over 3 days for 100 epochs with a fixed
learning rate 0.01. In the framwork, Rectified Linear Unit (ReLU) [118] was used as a
activation function, and back-propagation technique [201] was used for adjusting weights
of connections in the network. To test a single image with size 100× 100, it only took
approximate 0.2 seconds.
Combining outputs from the classifiers: As mentioned, we are interested in detecting
missing apical and basal slices in CMRI data sets. In the second quality estimation step, the
final Cardiac MRI subjects were classified into different classes using a logical classifier.
Figure 3.2 illustrates the process of the classification of cardiac images subjects quality.

To this end, for each cardiac subject, the top and bottom SA slices in the scan are
classified using two CNNs, each particularly trained for detecting missing slices in basal or
apical positions. To obtain the final classification, we then combine the predicted outcomes
of each classifier to receive the final quality category of each subject. For the two steps
framework training, we firstly identify whether our input stacks miss the apical or the basal
slice, then take outputs from each pre-trained CNN as inputs of the logical classifier, which
combines the two CNN outputs to have the final image quality category.

3.2.2 Experiments and Results

Region of Interest Extraction: Since the heart is the object of interest for quality as-
sessment and minimize the influence from the background region,, a mask covering the
heart and its surrounding structures was globaly employed to remove unnecessary infor-
mation in the background. The region of interest was extracted by detecting the area of
cardiac motion as follows: the average absolute image intensity difference was computed
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Figure 3.3: The learned convolution kernels on basal and mid-slices of the first (a) and the
second (b) layers of the trained CNN.

for the whole sequence and used for thresholding the image sequence producing a binary
mask. It is assumed that the largest region in this binary image is relevant to the heart. as
observed in the image. Thus, the binary mask can be further refined by removing regions
which are far from the cardiac region. Finally, the ROI was obtained as the region covering
the detected cardiac region.

CMRI Quality Criteria: In the apical slice, the LV cavity is still visible at end-systole,
and the left ventricular outflow tract (LVOT) is existing in the basal slice [114]. The absence
of basal slices has an important impact on the volume calculation, and missing middle slice
and apical slice can result in a penalty as well. Thus, we define four classes of qualities in
this study: MAS, MBS, missing apical and basal slices (MABS), and no missing (normal).
The last label is obtained by logical combination of the results from the MAS and MBS
classifiers.

Table 3.1: The average precision and recall rates of each type of missing slices using dif-
ferent deep learning models.

Precision Rate Recall Rate

MAS MBS Normal MAS MBS Normal

SAE 79.08% 68.63% 78.54% 88.48% 88.72% 88.15%

DBM 66.67% 70.09% 71.47% 88.38% 88.71% 88.32%

3-CNNs 80.77% 70.92% 78.43% 88.52% 88.75% 87.85%

5-CNNs 81.61% 74.10% 79.42% 88.73% 88.75% 88.01%

7-CNNs 82.19% 69.43% 75.06% 88.62% 88.76% 87.01%

We apply our framework to 100 UK Biobank (UKBB) cardiac MRI pilot data sets.
These data sets are obtained by 1.5T MR scanners [183][182] and show overall good quality
and no missing slices. Therefore, to generate synthetic deficiencies in the data, we manually
removed basal slices from 50 subjects and apical slices from another 50 subjects. For each
kind of the considered defect, we randomly selected 80% of generated data sets as training

58



sets and the left the rest as the testing sets. In order to evaluate our proposed framework’s
performance, we use

Precision Rate =
T P

T P+FP
, (3.4)

Recall Rate =
T P

T P+FN
, (3.5)

where T P, FP, and FN are the numbers of the true positive, false positive, and false nega-
tive samples, respectively.

Evaluation and Comparison to other Deep Learning Models We systematically
compared our proposed CNNs framework with different types of CNNs architectures and
traditional deep learning methods. Table 3.1 lists the results for different CNNs architec-
tures and other state-of-the-art deep learning methods. As seen, the CNNs with a total
number of 5 layers shows the best precision rate and recall rates.

Figure 3.4: The distributions of the error, precision, and recall rates over 100 training
epochs, showing a superior performance of the CNNs with 5 layers.

We also visually examined the learned convolution kernels, and found only a few ker-
nels present structure related appearances. Figure 3.3 shows the kernels learned for classi-
fying missing basal slices. It is not surprising that some of these kernels show noisy, rather
than strong structural and interpretable patterns. This is because our features are trained to
be discriminative. In fact, to obtain user interpretable features, generative models such as
those outlined in [125] is usually considered.
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Figure 3.5: Sample test slices and their probability values of being apical (top row) or basal
slice (bottom row) are shown. ‘PA’ means the Probability value of being Apical slice; ‘PB’
means the Probability value of being Basal slice. The ‘correct’ and ‘wrong’ subscripts
indicates the classification results. Red segmentation shows the difference of ventricular
contour for each subject.

Furthermore, to demonstrate the convergence behaviour of the compared methods, in
Figure 3.4 we show the distributions of the error, precision, and recall rates over 100 train-
ing epochs. It can be seen the CNNs with 5 layers outperforms other CNN architectures
and learning models.

In Figure 3.5, a few apical (top row) and basal (bottom row) slices in the test datasets
along with their corresponding posterior probability values are shown. We can observe that
our framework correctly classifies a few challenging basal slices, but also fails in a few
other cases. Furthermore, the basal slices with existing LVOT’s indicate higher probability
values of being correctly classified. This shows that the training has been successful in
capturing the LVOT as a prominent feature in the correctly positioned basal slices.

We also designed a validation experiment with a second collection of CMR data sets to
show the generalization ability of our method. To this end, we trained the proposed model
using the UK Biobank datasets and tested it using the data sets available from Data Science
Bowl Cardiac Challenge data sets [17]. This experiment was repeated for 100 training
epochs and the values for error, precision and recall rates are shown in Figure 3.6. These
results show that our trained convolutional neural network achieves a good generalization
efficacy.

3.2.3 Conclusion

In this study, we tackled the problem of identifying the missing apical and basal slices
in large imaging databases. We illustrated the concept by applying the method to CMRI
studies from the UK Biobank pilot datasets. We designed slice classifiers and learned a
set of discriminative features directly by training Convolutional Neural Networks. Casting
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Figure 3.6: The error, precision, and recall rates in cross dataset test.

this problem as a slice classification task, we were able to alleviate the class imbalance is-
sue and effectively train the CNNs using the available data. Different numbers of network
layers were examined and compared to other deep learning models (such as Stacked Auto-
Encoder and Deep Boltzmann Machines). We showed that a CNN model with 5 layers
outperforms the other models. We also validated our model by training the 5-CNNs using
UKB pilot datasets and applying them to CMR data sets from Data Science Bowl Cardiac
Challenge. The proposed model shows a high consistency with human perception and be-
comes superior compared to the state-of-the-art methods, showing its high potential. In this
study, the kernel sizes in the convolutional layers of the network were selected somehow
arbitrarily. However, in principle these parameters can be optimized by performing exhaus-
tive cross validation experiments. In future, we will further refine the current structure of
our model by tuning such parameters.
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3.3 Semi-supervised Assessment of Incomplete LV Cov-
erage in Cardiac MRI Using Generative Adversarial
Nets

In medical imaging it is hard to have access to quality-labelled image databases due to
the diversity of image characteristics, and their artifacts, of diverse anatomical locations and
image modalities. Therefore, it is essential to devise techniques that do not require manual
labelling of visual image quality. Image synthesis models provide a unique opportunity
for performing unsupervised learning. These models build a rich prior over natural image
statistics that can be leveraged by classifiers to improve predictions on datasets for which
few labels exist [174]. Among them, generative adversarial networks (GAN) can synthe-
size adversarial examples, which increase the loss by a machine learning model [230].
Meanwhile, GAN can perform unsupervised learning by simply ignoring the component of
the loss arising from class labels when a label is unavailable for a training image [81].

In this study, we mainly focus on the analysis of short axis (SA) cine MRI. We aim to
identify missing apical slices (MAS) and/or basal slices (MBS) in cardiac MRI volumes.
In previous research, Le [271] used convolutional neural network (CNN) constructed on
single-slice images and processed them sequentially. But this solution needs large amount
of labelled data and lacks the ability to classify examples with perturbations correctly. In
this study, we exploit semi-coupled-GANs (SCGANs), a semi-supervised approach, for
incomplete LV coverage detection. To alleviate the lack of sufficient numbers of CMR
datasets with MBS or MAS, the proposed SCGANs use two generative models to synthe-
size adversarial examples. By learning adversarial examples, it improves not only robust-
ness to adversarial examples, but also generalization performance for original examples.
This work is the first work we know of to use adversarial examples to improve the robust-
ness of an attribute learning model.

3.3.1 Methodology

We present a novel technique of LV coverage assessment for CMRI by using SCGANs.
The motivation behind our proposed method is: In medical image quality assessment prob-
lems, we are always faced with a lack of quality-labelled data, especially images with
artifacts. Several deep learning models cannot classify the examples with perturbation cor-
rectly. Our semi-supervised SCGANs is proposed by using adversarial examples as the
outlying observations for discriminative model training. We generate adversarial samples
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by two generators separately, which confuse the discriminator into mistaking them for gen-
uine images. After that, we obtain the robust attribute classifiers by learning both original
data and synthetic data. Our proposed SCGANs represents a strategy to better handle the
typical LV coverage assessment problem.

3.3.1.1 Generative Adversarial Learning

Recently, GAN [81] was proposed as a novel way for adversarial learning. It consists
of a generative model and a discriminative model, both are realized as multilayer percep-
trons [140]. The aim of the discriminator is to correctly classify the original examples
and adversarial examples. By learning the adversarial examples, the network cannot only
becomes robust to adversarial examples, but also generalization improves for unmodified
examples. GAN does not need the label information when training the generator and then
the discriminator can estimates the probability that a sample came from the original data
rather than the generator.

We assume a probability distribution M, which is a black box relative to us. To realize
how the black box works, we construct two ‘adversarial’ models: a generative model G that
captures the data distribution, and a discriminative model D that estimates the probability
that a sample from the training data rather than G. Both G and D could be a non-liner
mapping function, such as a multi-layer perceptron. Our objective is to learn feature repre-
sentation to handle a wide range of visual appearances in cardiac MRI and identify images
with incomplete LV coverage. We regard adversarial examples as outlying observations
regarding other samples in training data. The generative model constantly produce new ad-
versarial samples and the discriminative model classify the positive and negative samples
by learning the new produced adversarial samples constantly. Given a particular describ-
able visual attribute - say ‘MBS’. An outlier image is expected to be mapped to negative
values, which indicates the absence of basal slice. This can happen for two reasons: (1) the
image does not belong to the basal slice, (2) the image belongs to the adversarial examples.
We consider them all as the outliers.

3.3.1.2 Semi-Coupled GANs

Here we introduce our model based on the above discussion. Our model is illustrated
in Figure 3.7 designed as a semi-coupled-GANs for attribute learning. It consists of a pair
of Generators− G1 and G2, which share a same discriminator. Each generator synthesizes
the adversarial samples Y1 and Y2 for positive and negative data, respectively.
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Figure 3.7: The Proposed Semi-Coupled-GANs Framework.

Generative Models: We firstly feed the two generators G1 and G2 noise data z, G1

and G2 learn probability distribution from the original positive and negative images respec-
tively, and generate the corresponding adversarial samples. Then, we give the adversarial
data to discriminator D. Denote the distributions of G1(z) and G2(z) by pG1 and pG2 . Both
G1 and G2 are realized as multilayer perceptions:G1(z) = G(m1)

1 (G(m1−1)
1 (...G(2)

1 (G(1)
1 (z))))

G2(z) = G(m2)
2 (G(m2−1)

2 (...G(2)
2 (G(1)

2 (z))))
(3.6)

where G(i)
1 and G(i)

2 are the ith layers of G1 and G2 and m1 and m2 are the numbers
of layers in G1 and G2. In our training process, m1 and m2 need not to be the same. In
traditional discriminative deep neural network, the feature information is extracted from
low-level features in first layers to the high-level features in last layers. While, through
multi-layer perceptron operations, our two generator models decode the information with
an opposite flow direction from abstract concepts to more material details.

Discriminative Models: Every generated sample has a corresponding class label and
the discriminator gives both a probability distribution over dataset and a probability distri-
bution over the class labels. We put both the original samples and the adversarial samples
into D for the discriminator training, D output multiple output values between 0 and 1. In
this process, if the training samples x is the positive/or real data, the discriminant D ensures
the output value is similar with the trained corresponding value, which represents the input
data is the positive/or real, while output values close to 0 indicates the input data is the
negative/or fake. The discriminant D equals a classifier with supervision situation, which
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returns to 1 or 0. Let D be the discriminative model given by:

D(x) = D(n)(D(n−1)(...D(2)(D(1)(x)))) (3.7)

where D(i) is the ith layer of D and n is the number of layers. The discriminator maps
each input image to a probability score which indicates the input is drawn from the positive
data or the negative data. In this process, the first layer of the discriminative model extracts
low-level features, while the last layer extracts high-level features.

Learning: The Semi-Coupled-GANs framework corresponds to a constrained minimax
game given by

max
D

min
G1,G2

V (G1,G2,D) = Ex∼pxdata
[logD(x | y)]+Ez∼pz[log(1−D(G1(z)))]

+Ez∼pz[log(1−D(G2(z)))]
(3.8)

There are two independent generators in Equation. 3.8, Ez∼pz[log(1−D(G1(z)))] and
Ez∼pz[log(1−D(G2(z)))], both of them share a same discriminator Ex∼pxdata

[logD(x | y)].
The two generative models synthesize a pair of adversarial samples for confusing the dis-
criminative models. The discriminator gives both a probability distribution over image data
and a probability distribution over the class labels, D(x | y). Here, there are four kinds of
samples for training the discriminator: the positive and negative samples from original im-
ages and their corresponding adversarial samples computed by two generators. The inputs
discriminative model is data and corresponding labels. Similar to GAN, our SCGANs can
be trained by back propagation with the alternating gradient update steps.

3.3.1.3 Quality Estimation

For a given cardiac volume, a dissimilarity score is computed for each representative vi-
sual attribute - MAS and MBS. Any visual attributes with a score below an optimal thresh-
old is classified as an artifact. After computing the visual attributes, we could verify the car-
diac MRI quality based on the corresponding attributes scores. Let xtarget = PMAS(Xtarget)

and ytarget = PMBS(Xtarget) be the outputs of the discriminator. If the quality of target car-
diac volume Xtarget is good, the values PMAS(Xtarget) and PMBS(Xtarget) from the target
cardiac volume should be similar with the trained corresponding positive attribute values.
We combine the output values so the verification classifier Q can make sense of the data.
To address the problem, we use the concatenation of these tuples for both MAS and MBS
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attribute classifier outputs form the input to the verification classifier Q [120]. Finally,
putting both terms together yields the tuples q(Starget):

q(Starget) = Q(< pMAS, pMBS >) (3.9)

Training Q requires pairs of positive examples and negative examples. For the classi-
fication function, we use SVM with an RBF kernel for X, trained using libsvm [27] with
the default parameters of C = 1 and γ = 1/ndims, where ndims is the dimensionality of
< pMAS, pMBS >.

3.3.2 Experiment and Related Analysis

Data specifications: In the UK Biobank (UKBB) dataset, we have 3400 subjects, each
with 50 time points covering the heart from the base to apex. We use the endocardial con-
tour as the main characteristic to identify the apical, middle and basal slices. For example,
we can find the Left Ventricular Outflow Tract (LVOT) in the basal slice. In other slices,
LVOT is nonexistant. As for the apical slice, we define it as the LV cavity is still visible at
end-systole. Besides the basal slice and apical slice, we can consider the rest slices as the
middle slices. To obtain the negative samples, we choose the middle slice as the negative
samples for each attribute learning.

Experimental set-up: All experiments used TensorFlow [1] on GPUs. With all 50 time
points consideration for each subject, we can obtain 170,000 and regarded as the ground
truth in our experiments. The architecture of the two generators G1 and G2 are consisted
of several ‘deconvolution’ layers that transform the noise z and class c into an image [174].
We train the model architecture for generating images at 120×120 spatial resolutions. The
discriminator D is a deep convolutional neural network with a Leaky ReLU nonlinearity
[152]. In our experiment, 10-fold cross-validation method is used to evaluate the final per-
formance of our attribute classifiers. To evaluate the classification algorithms, we use Accu-
racy, Precision Rate and Recall Rate defined as: Accuracy = (TP+TN)/(TP+FP+TN+FN),
Precision Rate = TP/(TP + FP) and Recall Rate = TP/(TP + FN). Where TP, TN, FP,
and FN are the numbers of the true positive, true negative, false positive and false negative
samples, respectively.

Performance and Discussion: We evaluate the quality of our semi-supervi-sed repre-
sentation learning algorithms by applying it as a feature extractor on supervised datasets.
Table 1 shows the test performance on UK Biobank Dataset with the state-of-art deep
learning methods. With supervised deep learning methods, 2D CNN, it achieved accu-
racies with 77.5% and 74.9%. With adversarial learning approach, traditional GAN, the
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Table 3.2: The accuracy, precision rate and recall rate between the state-of-art deep learning
approaches and our method.

Method
Accuracy Precision Rate Recall Rate

MAS MBS MAS MBS MAS MBS

2D CNN 77.5±0.7% 74.9±0.6% 82.6±0.7% 74.9±0.8% 87.7±0.8% 87.8±0.9%

3D CNN 93.1±0.6% 91.8±0.7% 90.1±0.6% 87.3±0.7% 89.9±0.7% 93.3±0.8%

GAN 90.4±0.7% 88.1±0.6% 85.9±0.5% 88.5±0.6% 89.1±0.4% 90.6±0.6%

Our SC-GAN 92.5±0.5% 89.3±0.4% 87.6±0.4% 89.1±0.3% 90.5±0.5% 91.7±0.4%

results are much better with 90.4% and 88.1% accuracies. Compared with the above two
methods, our SCGANs achieved performance with significant increase, 92.5% and 89.3%
accuracies. This is despite the state of the art models having no ability to discriminate the
adversarial samples, whereas our model requires to training the generative model to pro-
duce the adversarial examples and can correctly classify both unmodified and adversarial
samples. It improves not only robustness to adversarial examples, but also generalization
performance for original examples. Meanwhile, our SCGANs also achieved a comparable
result with the 3D CNN, which indicates opportunity for future 3D image synthesis models.

Our attribute classifiers are trained using nine folds and then evaluated on the remain-
ing fold, cycling through all ten folds. Receiver Operating Characteristic (ROC) curves are
obtained by saving the classifier outputs for each test pair in all ten folds and then sliding
a threshold over all output values to obtain different false positive/detection rates. In Fig-
ure 3.9, we demonstrate the ROC curve to show that our adversarial training (SCGANs)
method can achieve ideal results. These results reinforce that adversarial examples are
powerful samples for attribute leaning. In Figure 3.9 we can see our proposed method can
correctly classify a few challenging samples (True Positive) and adversarial samples (False
Negative). Experimental results obtained confirm that adversarial training approach makes
the model more robust to adversarial examples and generalization performance for original
examples. Although the results show that the accuracy of the proposed method is slightly
lower but comparable to that of 3D CNN, our SCGAN can reduce the computation cost,
which is especially important in population imaging. We provided the Figure 3.8 to show
the training time of each method for 2,000 images (1,000 positive vs. 1,000 negative).
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Figure 3.8: The computation cost comparison of different methods.

3.3.3 Conclusion

In this study, we tackled the problem of defining missing apical and basal slices in large
imaging databases. We illustrated the concept by proposing a SCGANs to CMR image
studies from the UK Biobank pilot datasets. By training the classifier with the adversar-
ial examples, our model can achieve a significant improvement in attribute representation.
A well-trained attribute classifiers are performed on the candidates to corresponding cate-
gories. We also validated our model by comparing with traditional deep learning methods
and applying them to UK Biobank data sets. The proposed model shows a high consistency
with human perception and becomes superior compared to the state-of-the-art methods,
showing its high potential. Our proposed semi-couple-GANs can also be easily applied
and boost the results for other detection and segmentation tasks in medical image analysis.

3.4 Limitations and Discussion

Multi-center studies are becoming more and more important (and technically feasible).
On the one hand, this requires techniques to compensate for inter-site differences in data
acquisition. On the other hand, pure quality assessment and discarding of data with in-
sufficient quality is of high necessity as well, and computer-aided methods to achieve this
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Figure 3.9: MAS and MBS detection performance (Top) and sample test slices and their
probability values (Bottom). PA means the Probability value of being Apical slice; PB
means the Probability value of being Basal slice.

are desirable if they operate with near-human or human-surpassing performance. Our first
proposed approach used two fully independent CNN tracks for binary classification of api-
cal and basal slices in the UKBB dataset, which has high relevance and addresses a very
important problem. Our general approach of quality-aware image analysis is very original,
few works exist on this important topic and could be very relevant also for other image
modalities such as ultrasound. In terms of methodology, CNNs are relatively novel in the
medical domain, a CNN approach is applied in different architectural configurations (3, 5
and 7 layers deep) and compared to SAEs and DBNs. Although we constructed a dataset
(i.e., including 100 annotated cardiac volumes), compared with the natural image domain
which usually employs millions of training samples (e.g., ImageNet challenge provides 1.2
million images [118]), we still face the risk of over-fitting when training the 2D CNN mod-
els. Meanwhile, our current CNN based method did not use the adaptation to the 3D nature
of the data, which could help in very difficult-to-assess borderline cases of MAS/MBS. A
few neighboring slices could provide critical information. Especially in borderline cases
(exactly those which are non-obvious and thus also difficult for humans), human observers
would scroll through a few slices at the top/bottom to observe how anatomical boundaries
are developing in 3D, before making a decision. In the future work, I would take sev-
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eral slices instead, in order to give the CNN some 3D context. One potential approach to
achieve this would be using parallel CNNs which are merged at the fully connected output
layers.

Meanwhile, we proposed the second method called SCGANs using the GAN architec-
ture to identify cardiac MR volumes which do not cover the heart in its entirety. A gen-
erative adversarial network was used with a pair of generators (one for negative examples,
one for positive examples) followed by a shared discriminator. The proposed framework
has two stages, First, the SCGANs generate adversarial examples and extract features from
the CMR images subsequently, these image attributes are used to detect missing basal and
apical slices. This method provide us a approach to generate more data for training the
deep learning network and experimental results obtained confirm that adversarial training
approach makes the model more robust to adversarial examples and generalization perfor-
mance for original examples. However, we can also see from the experiment results that
the accuracy of the proposed method is slightly lower but comparable to that of 3D CNN,
which means the 3D contextual information is more important for the missing slice detec-
tion. Thus, constructing the 3D deep learning network is the key in our next step work.

In addition to construct a larger dataset and implement 3D neural network in the next
step work, we also need to know what is the human error rate actually, and how long does
the classification task take for a human? For a trained examiner, checking the ultimate
two slices of a DICOM image stack should take only a few seconds, and should be very
reliable, even under fatigue. Precision of 79.4% and recall of 88% of our proposed CNN
method still seems like uncertainty, which does not yet provide any benefit for cross-center
studies like the UK Biobank dataset. There are several ways to improve the approach and
fix the problems we discussed in this section, and I will mention and give the solutions in
the following chapter.

3.5 Conclusion

In this chapter, we have presented a novel cardiac image quality assessment problem,
namely LV coverage assessment, that is helpful to calculate the cardiac parameters between
different imaging modalities. The characters of LV are useful to identify the position, which
the slice belongs to, since the LV in each slice shows a different shape and size. By testing
the top/or bottom slices in cardiac MRI volumes, we are able to identify the missing slice
categories. Recently, convolutional neural networks (CNNs) have been widely developed
and used as a learning data-driven features approach for shape differences detection. In this
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chapter, we proposed two methods for LV coverage assessment: (1) CNN based framework,
and (2) Semi-coupled generative adversarial networks (SCGANs).

Recent work [110] has shown that the learned features extracted by CNN can be used
for image quality assessment. Our initial experiments (first method) on the UKBB dataset
have shown that CNNs are able to learn more distinctive features and suppress false pos-
itive detections, compared with other deep learning methods. However, the current CNN
based structure and the SCGAN did not utilize the 3D information in cardiac volumes,
which is important for discriminative feature learning. Thus, our follow-up work could
investigate 3D CNN and the CNN based multi-modal feature space learning. This way one
could potentially extract an optimal feature space to better identify the multi-modal corre-
spondences. Although LV shape representation is experimentally shown to be a reasonable
approach to solve this problem [148], there is no need to hand-craft the intermediate image
representations, which can be learned implicitly through CNNs. In Chapter 4, we extend
the proposed CNN representation by introducing a new 3D CNN model, namely Fisher
Discriminative 3D CNN. The new approach enables us to learn population specific clas-
sification models, which results in improved accuracy with minimized within-class scatter
and maximized between-class scatter.
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Automatic Assessment of Full Left
Ventricular Coverage in Cardiac Cine
Magnetic Resonance Imaging with
Fisher-Discriminative 3D CNN
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Abstract: Cardiovascular magnetic resonance (CMR) imaging is a standard imaging modal-
ity for assessing cardiovascular diseases. Full coverage of the left ventricle (LV), from
base to apex, is a basic criterion for CMR image quality and necessary for accurate mea-
surement of cardiac volume and functional assessment. Incomplete coverage of the LV is
identified through visual inspection, which is time-consuming and usually done retrospec-
tively in the assessment of large imaging cohorts. This chapter proposes a novel automatic
method for determining LV coverage from CMR images by using Fisher-discriminative
three-dimensional (FD3D) convolutional neural networks (CNNs). In contrast to our pre-
vious method employing 2D CNNs, this approach utilizes spatial contextual information
in CMR volumes, extracts more representative high-level features and enhances the dis-
criminative capacity of the baseline 2D CNN learning framework, thus achieving superior
detection accuracy. A two-stage framework is proposed to identify missing basal and apical
slices in measurements of CMR volume. First, the FD3D CNN extracts high-level features
from the CMR stacks. These image representations are then used to detect the missing
basal and apical slices. Compared to the traditional 3D CNN strategy, the proposed FD3D
CNN minimizes within-class scatter and maximizes between-class scatter. We performed
extensive experiments to validate the proposed method on more than 5,000 independent
volumetric CMR scans from the UK Biobank study, achieving low error rates for missing
basal/apical slice detection (4.9%/4.6%). The proposed method can also be adopted for
assessing LV coverage for other types of CMR image data.

Keywords: 3D convolutional neural network · LV coverage · image-quality assessment ·
population image analysis · Fisher discriminant criterion.

4.1 Introduction

Left ventricular (LV) cardiac anatomy and function are widely used in the field of car-
diac medicine for diagnosis and monitoring disease progression and for assessing the pa-
tient’s response to cardiac surgery and interventional procedures. Cardiac ultrasound (US)
and cardiac magnetic resonance (CMR) imaging are arguably the most widespread tech-
niques for diagnostic imaging of the heart. For population imaging studies, however, CMR
remains the modality of choice. CMR is a single technique that provides access to cardiac
anatomy and non-invasive measurements of cardiac function [182]. In large population
imaging studies or assessment of patient cohorts from large clinical trials, the quantifica-
tion of LV anatomy and function requires automatic image quality assessment and tools for
image analysis. One basic criterion for cardiac image quality is LV coverage and detection
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of missing apical and basal CMR slices [118]. CMR may display incomplete LV coverage
because of insufficient radiographer experience in planning a scan, natural cardiac mus-
cle contraction, breathing motion, and imperfect triggering, all of which pose challenges
in efforts at quantitative LV characterisation and accurate diagnosis [188]. For example,
missing basal slices affect calculations of LV volume and derived LV functional measures
such as ejection fraction and cardiac output. Even if scout images are acquired, in order
to centre the LV in view and minimize this issue, incomplete coverage may result at any
point throughout the cardiac cycle because of changes in patient breathing and cardiac mo-
tion. Image quality assessment is traditionally performed by radiographers who ensure
that patients do not leave the scanner without providing diagnostically interpretable data.
However, there are limits to human attention. With CMR examinations becoming less ex-
pensive and increasingly commissioned, scanning loads at some centres may be insufficient
to maintain consistent standards. Quality assessment is of particular importance in large-
scale population imaging studies, where data are acquired across different imaging sites
before core lab analysis. For example, large volumes of data may be stored without being
checked by experienced staff prior to analysis [62] [253]. Automatic methods for these
repetitive quality assurance tasks provide the required consistency and reliability.

To ensure consistent quantification of CMR data, automatic assessment of complete
LV coverage is the first step. LV coverage is assessed by visual inspection of CMR image
sequences, which is a subjective, repetitive, error-prone, and time-consuming process [9].
Automatic coverage assessment is required to promptly intervene and correct data acquisi-
tion, and/or discard images with incomplete LV coverage whose analysis would otherwise
impair any statistics aggregated over the cohort. The most common causes of incomplete
LV coverage are lack of a basal slice (no atrial chamber visible in end-systole, hence no cer-
tainty that the base of the heart is completely covered) and lack of an apical slice (LV cavity
remains visible at end-systole). According to the criteria used in [118] for CMR quality as-
sessment, a missing basal slice carries a higher penalty than a missing apical slice, given its
impact on LV volume computation. Although technological developments in magnetic res-
onance imaging (MRI) hardware and pulse sequences have led to faster CMR acquisitions,
challenges remain with regard to ensuring full heart coverage and motion compensation.
In the UK Biobank’s CMR protocol, for instance, incomplete heart coverage is the reason
for flagging 4% of all CMR examinations as providing unreliable or non-analysable image
data [21]. While 4% may seem to be a small proportion, the challenge is to automatically
sift through the entire database to identify and exclude those cases from further quantita-
tive analysis. Methods for the objective detection of basal and apical imaging planes are
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relevant in this context, as their absence affects diagnostic accuracy as well as anatomical
and functional LV quantification.

In the field of video processing, Automatic Image Quality Assessment (AIQA) is a
well-developed corpus of techniques concerned with detecting image distortions character-
istic of multimedia communications [202] [264]. These distortions generally differ from
those affecting medical images. No-reference-based image quality assessment (NR-IQA)
[87] [164] is relevant for medical imaging data. While there is relatively easy access to
abundant data sets of mixed quality, it is not possible to collect data without some level
of image degradation or artefacts. Practical CMR image-processing applications do not
provide perfect versions of incomplete LV coverage images, but rather, only the image to
be assessed. While assessments attempt to highlight differences in our assessed data set re-
garding a hypothetical high-quality image [110], the final image quality is estimated solely
based on the characteristics of the assessed image.

UK Biobank’s CMR acquisitions are performed on a clinical wide bore 1.5T scanner
(MAGNETOM Aera, Syngo Platform VD13A; Siemens Healthcare, Erlangen, Germany)
and include piloting, sagittal, transverse, and coronal partial coverage of the chest and
abdomen. For measuring the cardiac function, three long-axis cines are acquired (viz. hor-
izontal long-axis (HLA), vertical long-axis (VLA), and LVOT in both sagittal and coronal
views). In addition, a complete SA stack is acquired. All acquisitions use balanced steady-
state free precession (bSSFP) MRI sequences, attempting full coverage of the LV and right
ventricle [183]. In this study, we will focus on SA bSSFP cine CMR data. To date, more
than 18,800 volunteers have been scanned. Voxel and matrix size of these CMR images
are, respectively, 1.8× 1.8× 8.0mm3, and 208× 187 with, approximately, 10 slices per
volume. Each volumetric sequence contains about 50 cardiac phases.

Quality-scored cardiac MRI data are available for approximately 5,000 volunteers of
the UK Biobank (UKBB) imaging resource. Following visual inspection, manual anno-
tation was carried out with a simple three-grade quality score [21]: (1) optimal quality
for diagnosis, (2) suboptimal quality yet analysable and (3) bad quality and diagnostically
unusable. In 5,065 SA cine CMR from the same number of volunteers, 4,361 sequences
correspond to a quality score of 1, an additional 527 sequences have a quality score of
2, and the remaining 177 sequences have a quality score of 3. All datasets with optimal
quality (score 1) had full coverage of the heart from base (LVOT existing) to apex (LV cav-
ity still visible at end-systole). These data were used to construct the ground-truth classes
for our experiments. Note that having full coverage should not be confused with having
top/bottom slices corresponding exactly to the base/apex.
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The current standard operating procedure in the UK Biobank, for instance, involves
the detection of missing basal/apical slices based on visual assessment by experts. Few
methods have been developed for automating this process, and prior work mostly adopted
approaches that require segmenting short-axis slices of LV [16] [279] or landmark local-
ization [90] [145] [49]. However, fast full LV coverage detection as the first step of an
image quantification pipeline is largely unexplored. Hoffmann et al. pioneered this field
[90] by initially localizing the heart in raw data prior to applying computer-aided diagnosis
algorithms. Lu et al. [147] proposed an approach to locate LV and prescribe long/short-
axis views before MR image acquisition, which could be used to evaluate cardiac coverage
in short-axis views. These methods detect missing basal/apical slices and largely rely on
the quality of LV segmentation and localization. de Vos et al. [48] proposed a method
that automatically identifies a slice of interest (SOI) in 3D images. A ConvNet regressor
was trained to determine the distance between each 2D slice and the SOI. However, this
solution does not consider 3D contextual information contained across slices.

The characteristics of the LV are useful in identifying the position that the slice belongs
to, since the LV in each slice shows a different shape and size. For example, the LV shape
is approximately circular in mid-slices, while it is more elliptical in basal slices (Fig. 1.6).
Recent work [67], [259] has focused on learning data-driven features to more accurately
detect shape differences. Among them, 3D convolutional neural networks (CNNs) are one
of the most regularly used deep-learning schemes to meet the challenges of discriminative
shape detection [237] [136]. Roth et al. [196] and Prasoon et al. [187] adapted 2D CNNs
for processing 3D volumetric data. However, these studies reported having difficulties
when attempting to employ 3D CNN on their data, since they often lack sufficient training
samples and computational resources to learn accurate 3D models. Although some authors
[108] [241] have utilized 3D CNNs to process medical images, their architectural settings,
convolution kernels, and prediction score volumes have not been disclosed in the detail
required to reproduce their results [58]. Some exceptions, however, include the work of
Kamnitsas et al. [109], who devised an effective dense training scheme based on 3D CNNs
for brain lesion segmentation and dealing with the computational burden of processing 3D
medical scans. Moreover, the 3D U-Net architecture of Cicek et al. [38] takes 3D volumes
as input and produces volumetric image segmentation. The architecture and data augmen-
tation of the U-net allow learning models with very good generalization performance from
only a few annotated samples. Owing to the success of 3D deep neural networks in med-
ical image segmentation, we are motivated to devise an end-to-end network optimization
without requiring manual annotations of the visual image quality. Meanwhile, we seek
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features maximally affected by partial image artefacts, which are also not very sensitive to
variability related to the intrinsic anatomy or image modality at hand.

In this chapter, we focus on the analysis of short-axis (SA) cine MRI, although the
technique can also be generalized to long-axis images. We aim to identify missing apical
slices (MAS) and/or basal slices (MBS) in 3D cardiac MRI volumes. In our previous work,
we used a 2D CNN constructed on single-slice images and processed them sequentially
[271]. However, this solution ignores contextual information contained across slices pro-
viding inferior performance compared to a 3D analysis. We assume that 3D CNNs can
easily and effectively deal with within-class variability and between-class similarity, which
are important sources of the detection error [36]. We seek to learn a feature representation
that achieves reliable classification results even with a small amount of training data or a
small number of iterations. In this chapter, we address incomplete LV coverage detection
using a Fisher-discriminative 3D (FD3D) CNN, which utilizes 3D convolution kernels and
exploits the spatial contextual information in volumetric data. The proposed FD3D CNN
uses the Fisher discriminant criterion [266] on the fully connected layer to render features
more discriminative and insensitive to geometric structural variations.

To the best of our knowledge, this is the first study tackling the problem of automatic
detection of missing basal and apical slices on a CMR dataset as extensive and challenging
as the UK Biobank. Besides introducing a novel FD3D CNN architecture, we propose
an effective cascaded detection strategy for incomplete coverage identification. In the first
stage, we train two separate FD3D CNN classifiers to detect the absence of basal and apical
slices. In the second stage, we combine the classification results from stage 1 to determine
the type of incomplete coverage found on the image.

The rest of this chapter is organized as follows. Section 4.2 introduces the proposed
FD3D CNN architecture and explains the learning strategy for its parameters. Section
4.3 presents experimental materials and metrics. Section 4.4 describes the experimental
design and classification results. Further analysis and discussion of the proposed method
are provided in Section 4.5. Conclusions are presented in Section 4.6.

4.2 Full LV Coverage Detection Method

4.2.1 Problem Formulation

During image acquisition, a sufficient margin ought to be left above and below the LV
cavity according to the established guidelines [209]. However, some image volumes may
lack sufficient information at the apical and basal levels, which can hamper or bias the
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Figure 4.1: Schematic LV shapes showing blood pool (light gray) and myocardium (dark
gray) for different slices from apex to base. Slice 1 (left) shows LVOT, which identifies the
basal slice.

subsequent statistical analysis of cardiac structural and functional parameters in popula-
tion imaging [184] [156]. In many LV quantification approaches, the LV cross section is
approximated using simple quasi-circular models [37] [161]. These methods can produce
a good approximation on LV mid-slices, but not on slices containing the left ventricular
outflow tract (LVOT), which is at or near the basal slice. Therefore, in our approach, we
treat the blood pool cross-section as a distinct model. Figure 4.1 depicts the LV shape of
several slices in one cardiac volume from the apex to base. In volumes with missing basal
slice, LVOT is usually not present.

We use a vector s to represent pixel values in each slice. A 3D cardiac MRI volume V
with full coverage with n slices can be described as follows:

V = [s1,s2, ...,sn] . (4.1)

Each cardiac volume, V= [sp, ...,sq], p≤ q∈ [1,n], can have a different or same number
of slices but cover a different portion of the LV.

To guarantee accurate cardiac volumetry and functional measurements [118], full LV
coverage is a basic requirement [156]. To address this problem, we propose a two stage
detection system that first computes image intensity representations by a FD3D CNN model
and then detects missing slices based on these representations. In the first stage, we encode
spatial contextual information and hierarchically extract high-level features, which indicate
intensity representations. Our FD3D CNN model is equipped with a fully connected Fisher
discriminative layer (F2) that takes the output of the fully connected layer (F1) as input. In
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the second stage, independent detection of any missing basal and apical slices is performed
and the results are combined to provide the final coverage assessment.

4.2.2 Three-dimensional Intensity Representations

Lu et al. [149] proposed a pattern recognition technique built on intra-segment corre-
lation, using a normalization scheme, which maps each LV slice to polar coordinates with
fixed size, shape level, and position. Intensity information and slice position are relevant
even with incomplete LV coverage detection. In our chapter, we define intensity represen-
tation for the missing slice in a high-level feature space where slices of cardiac MRI are
used to construct a representation of intensity. Each slice of the 3D volume is accounted
for and the similarity of neighboring slices determines the difference of the 3D intensity
distribution. Different characteristics in each slice and contextual information about spatial
relation between slices are used to compute intensity representations.

Which 3D intensity representations? Our intensity representations are computed as a
feature distribution matrix, which integrates information about LV shape and size. We
detect incomplete LV coverage by image classification using the distribution matrix. We
define two classes: missing apical slice (MAS) and missing basal slice (MBS).

Given a particular describable visual representation, we can formalize our notion of
3D intensity representations based on Equation 4.1. For example, if we are looking at the
volume from base to apex, MAS and MBS can be formalized as follows: VMBS = [sq, ...,sn],

VMAS = [s1, ...,sp],
(4.2)

where, p,q ∈ (1,n), s1 is the basal slice and sn is the apical slice. Our intensity represen-
tations classifiers can be thought of functions f (·) for mapping 3D stacks V to real value
pi. A positive value of pi indicates the presence or strength of the ith representation, while
negative values indicate its absence. Considering our intensity representations, if we de-
fine V1 and V2 as MBS and non-MBS samples, respectively, the representation function
fMBS (·) may map V1 to a positive value and V2 to a negative value. This is a binary classi-
fication function. Our 3D intensity representation classifiers are trained on the UK Biobank
dataset as they provide reliable ground-truth labels based on visual inspection and manual
annotation.
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4.2.3 Fisher Discriminative 3D CNN Model

In this subsection, we propose a FD3D CNN (shown in Figure 4.2b) to extract high-
level features, which represent 3D intensity representations. Our FD3D CNN model is
designed by adding a new Fisher-discriminative fully connected layer, F2, which uses the
output of the previous layer, F1, as input. The new layer is then stacked onto a conventional
3D CNN. To maximize inter-class distances between learned features while minimizing
intra-class distances of learned features, we train the newly added Fisher discriminative
layer F2 on CNN features based on a Fisher discriminant criterion [266].

1) 3D CNN: Learning feature representations in three dimensions is important for later
feature detection and image interpretation tasks in volumetric medical imagery. We employ
3D convolution kernels to encode richer spatial information in volumetric data. Here, fea-
ture maps are 3D blocks instead of 2D patches. Conventional 3D convolution is achieved
by convolving a 3D kernel, with the cube formed by stacking multiple contiguous slices.
With this construction, feature maps in the convolution layer are connected to multiple con-
tiguous frames of the previous layer [103] [95]. Given an input vl

k, the 3D convolution layer
output equates to a filtering operation with a filter Wl+1

ik . Computation of the 3D feature
volume hl+1

i is given by:

hl+1
i = f

(
∑
k

R−1

∑
r=0

S−1

∑
s=0

T−1

∑
t=0

Wl+1
ik (r,s, t)vl

k +bl+1
k

)
(4.3)

where Wl+1
ik (r,s, t) is the element-wise weight in the 3D convolution kernel, Wl+1

ik and bl+1
k

are the filter and bias terms connecting the feature maps of adjacent layers, and f (·) is the
element-wise, non-linear activation function.

2) Fisher Discriminative 3D CNN: To boost the discriminative power of 3D CNN
learned features, we impose a Fisher discrimination criterion [266] on them. Given the
3D input data Vt

i, where i is the representation class, with i = {1,2}, corresponding to
MAS and MBS; the superscript t in Vt

i indicates whether the representation is positive or
negative, i.e., t = {0,1}; Vt

i =
[
vt

i,1,v
t
i,2, ...,v

t
i,C

]
, vt

i, j is the input data of jth sample from
class i, for j = 1,2, ...,C. We denote Ft

i, j to be features in the fully-connected layer of the
3D CNN for class i and jth sample. F is the extracted features of V, which can be described
as F(V). Using the Fisher criterion, discrimination is achieved by minimizing within-class
scatter of Ft , denoted by Sw(Ft), and maximizing between-class scatter of Ft , denoted by
Sb(Ft). Sw(Ft) and Sb(Ft) are defined as follows:

Sw(Ft) =
I

∑
i=1

∑
Ft

i, j∈t
(Ft

i, j−mt
i)(F

t
i, j−mt

i)
T , (4.4)
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Sb(Ft) =
I

∑
i=1

ni(mt
i−mt)(mt

i−mt)T , (4.5)

where mt
i and mt are mean vectors of Ft

i and Ft , respectively, and ni is the number of
samples from class i. The Fisher discriminant regularization term Φ(Ft) is defined as
tr(Sw(Ft))− tr(Sb(Ft)). To obtain a discriminative classification result with deep learned
features, we propose modifying the objective function of the FD3D CNN model by insert-
ing a Fisher discriminant regularization term:

J∗(W,b) = argmin
W,b

1
I

I

∑
i=1

yt loga(Vt
i, j;W,b)+(1− yt) log

(
1−a(Vt

i, j;W,b)
)

+
1
2

λ ‖W‖2
2 +

1
2

η (tr(Sw(Ft))− tr(Sb(Ft))),

(4.6)

where J∗ is our new cost function that can minimize within-class scatter and maximize
between-class scatter, and y is the output label. Output activation a(Vt

i, j;W,b) = 1/(1+
e−WVt

i, j−b) is typically restricted to the open interval (0,1) by using a logistic sigmoid,
which is parametrized by W and b on the jth training sample. ‖W‖2

2 is a penalty term to the
loss function that prevents weights from getting too large and helps to prevent over-fitting.
Weights in each layer can be adjusted toward target classes and utilize input data close to
the corresponding classes in case of no large dataset or a small number of iteration. Here,
λ ,η ∈ [0,1] are two trade-off parameters that control the relative importance of each term
and are usually chosen by experiments, which can differ depending on different databases
and network structures.

For intensity representation Vt
i, j, we define:

J(W,b) = yt loga(Vt
i, j;W,b)+(1− yt) log

(
1−a(Vt

i, j;W,b)
)
, (4.7)

Φ(Ft) =
1
2

tr
(
(Ft

i, j−mt
i)(F

t
i, j−mt

i)
T)− 1

2
tr
(
(mt

i−mt)(mt
i−mt)T). (4.8)

Once the new cost function is obtained, we can employ the gradient descent method
[118] to solve this optimization problem. Our key problem is to calculate the error of
output units, which consists of output errors from two sub-functions J(W,b) and Φ(Ft).
To update parameters Wt and bt , we first calculate the error δ

L,t
i (L is the output layer)

of the output layer with forward propagation, and then adopt the back-propagation method
[100] to calculate the error δ

l,t
i (l < L) for other layers. Partial derivatives of the overall cost

function J∗(W,b) regarding Wt and bt are:

∂J∗(W,b)
∂W l,t =

C

∑
t=0

∑
Ft∈t

∂J(Wt ,bt)

∂W l,t +η

C

∑
t=0

∑
Ft∈t

∂Φ(Ft)

∂W
, (4.9)
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∂J∗(W,b)
∂bl,t =

C

∑
t=0

∑
Ft∈t

∂J(Wt ,bt)

∂bl,t +η

C

∑
t=0

∑
Ft∈t

∂Φ(Ft)

∂b
. (4.10)

Fl(Vt
i, j) = κ(W ·Fl−1(Vt

i, j) + b), where κ(x) = max(0,x). As shown on the partial
derivatives on equations (4.9) and (4.10), the parameters (W,b) (weights and biases) of the
Fisher regularization term Φ(Ft) iteratively optimized during the network training process.
In this stage, we use the 3D CNN model with architecture in Table 4.1. Algorithm 1
provides the pseudo-code to train this new network. In our 3D CNN implementation, a
rectifier linear unit (ReLU) [123] is utilized as a non-linear activation function in layers C
and F1.

Algorithm 1: FD3D CNN Training.
Input: input-target pairs (vt

i, j, yt), corresponding jth pairs from class i, t indicates
positive or negative sample; η .

Output: FD3D CNN weight and biases, respectively, W = [W1,t ,W2,t , ...,Wl,t ] and
b = [b1,t ,b2,t , ...,bl,t ].

Begin
Initialize Wt

i, j and bt
i, j

while stopping criterion has not been met do
1) Classification error:

argminW,b ∑
I
i=1 yt loga(Vt

i, j;W,b)+(1− yt) log
(

1−a(Vt
i, j;W,b)

)
.

2) Fisher discriminant: Φ(Ft) = tr(Sw(Ft))− tr(Sb(Ft)).
3) Discriminative objective function: argminW,b ∑

I
i=1 yt loga(Vt

i, j;W,b)+(1−
yt) log

(
1−a(Vt

i, j;W,b)
)
+ 1

2 λ ‖Wt‖2
2 +

1
2 η Φ.

4) Update Wt
i, j and bt

i, j with Equations (4.9) and (4.10).
end
return Wt

i, j and bt
i, j until values of J∗(W,b) in successive iterations are close

enough or the maximum number of iterations is reached.
End begin

4.3 Materials and Metrics

4.3.1 CMR Acquisition Protocol and Annotation

4.3.2 Training and Testing Set Definitions

Training set: To create a training dataset for learning intensity representations, we ex-
tract the three topmost slices as negative samples for MBS detection (i.e. containing the
cardiac base), and the three bottom most slices as negative samples for MAS detection. To
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Table 4.1: Architecture of the 3D Discriminative CNN Model

Layer Kernel Size Stride Output size Feature volumes

Input – – 120×120×3 1
C1 7×7×2 1 114×114×2 16
M1 2×2×1 2 57×57×2 16
C2 13×13×2 1 45×45×1 16
M2 3×3×1 1 15×15×1 16
C3 10×10×1 1 6×6×1 64
M3 2×2×1 1 3×3×1 64
F1 – 1 1×1×1 256
F2 – 1 1×1×1 4

Note: F2 is the Fisher Discriminant Layer.

create positive samples (i.e. not containing the cardiac base/apex), we choose three-slice
blocks, each starting from the middle slice towards the base/apex for MBS/MAS detection
training. We create the training set from images with optimal quality and with exclusively
full coverage.

We train using three-slice stacks (or triplets) to model the 3D context. the average num-
ber of slices per image volume is approximately 10. During training, we extract four triplets
(two samples including base/apex and two samples excluding the base/apex). To maximize
inter-class separation, it is wise to avoid intersection between the training samples; for ex-
ample, if we use four-slice stacks (for a ten-slice volume), there will be a two-slice overlap
between basal positive/negative examples and the apical region. By choosing the proposed
slice triplets, we ensure that there is no overlap and increase the discriminative power of the
FD3D CNN. Another important observation that supports the choice of slice triplets is that
the CMR scan volume is not acquired immediately. Instead, each slice is collected over
several cardiac cycles leading to some degree of slice-to-slice misalignment. This effect is
minimized when considering only slice triplets in contrast to using the full 3D volume.

Testing set: During testing, we extract every set of three adjacent slices from top to
bottom for each volume and apply these triplets to intensity representation classifiers. Data
with known MBS/MAS are created by manually removing the three topmost/bottom most
slices from images with optimal quality, as in the training set.

During training and testing, three-slice stacks are input to the proposed FD3D CNN.
Scores of the output layer can be interpreted as the probability that triplets correspond to
negative or positive MBS/MAS. The final output is the combination of two CNN outputs
(MBS and MAS). The three slice stacks input into our network are cropped centered images
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of dimensions 120× 120× 3 to extract the region of interest. Parameter setting of block-
size determination is explained in Section 4.4.1.

4.3.3 Training Set Augmentation

To prevent over-fitting due to insufficient training data and to improve the detection
rate of our algorithm, we employ data augmentation techniques to artificially enlarge our
dataset [92] [165]. In our application, we augment the data by applying a discrete set of
in-plane rotations and isotropic scalings to the training images. Unlike data augmentation
choices made for natural image datasets where variability in location and pose of objects
are relatively high, our data are comparatively constrained due to standard imaging proto-
cols and gross patient positioning on the MRI scanner. We therefore chose a set of realistic
rotations and scaling factors for MRI. Based on analysis of the in-plane orientation angle
distribution for 5,000 subjects for which manual segmentations were available (and there-
fore LVRV angle can be computed), we found that LVRV orientation ranges between−45◦

and 45◦. The set of rotations chosen was accordingly −45◦ and 45◦, with two scaling fac-
tors of 0.75 and 1.25. This increases the number of training samples by a factor of four,
while not adding significantly to the convergence time.

After data augmentation, we constructed 845,000 3D stacks comprised of 2D CMR
slices from 3,380 sequences each with 50 cardiac phases, with a quality score of 1. These
data are used for experiments in Section 4.4.1, 4.4.2, and 4.4.3. We set aside 981 sequences
and data with quality scores of 2 and 3 for later use, as described Section 4.4.4. In our
experiments, 10-fold cross-validation [120] was used to evaluate the performance of our
system. To the best of our knowledge, this is the largest annotated dataset available to date
for automatic CMR quality assessment.

4.3.4 Learning Performance Metrics

To evaluate the learning process, we use the following established classification metrics:

Precision = T P/(T P+FP), (4.11)

Sensitivity = T P/(T P+FN), (4.12)

Error Rate = (FP+FN)/N, (4.13)

where T P, FP and FN are numbers of true-positive, false-positive and false-negative sam-
ples, respectively, and N represents the number of subjects in the test set.
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Figure 4.3: Error rates and improvements for increasingly larger training sets: (a) MBS
detection, (b) MAS detection.

4.4 Experiments and Results

4.4.1 Performance Analysis

We experiment to characterize the performance of our FD3D CNN learning framework.
The error (cost) functions used in learning (Equations 4.6 and 4.7) remain within this range
[0,1]. In all experiments, the learning process was terminated when standard deviation of
the error function over the last five iterations is smaller than σ = 0.01.

1) Hyper-parameter selection: LeCun et al. [210] and Salah et al. [203] used CNN to
recognize handwritten digital numbers with different numbers of training samples on the
MNIST dataset. Their results illustrated that, when reducing training samples, the recogni-
tion rate of the algorithm drops sharply. To demonstrate the behaviour of our FD3D CNN,
we experiment with different percentages of training samples. We use improvement defined
as (1−ERD/ERT)× 100 to benchmark our method against a traditional 3D CNN, where
ERD and ERT are error rates of our FD3D CNN and the traditional 3D CNN, respectively.
Error rates of MBS/MAS representation learning are shown in Figure 4.3, where our pro-
posed method appears to achieve comparable results with less training data compared to the
conventional 3D CNN. We choose 80% of the 845,000 as the training samples and perform
testing on the remaining 20%. The results are shown in Table 4.2. Even when trained with
fewer iterations, our method achieves better results than the traditional 3D CNN.

With sufficient training samples and iterations, most machine learning methods can im-
prove their accuracy at a higher computational cost. However, we usually want to obtain a
trained network as quickly as possible. This is especially important in population imaging
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Table 4.2: Error rates versus Learning epochs

Epochs

Error Rate (%)
Improvement (%)

(MBS/MAS)
Traditional 3D CNN

(MBS/MAS)
Discriminative 3D CNN

(MBS/MAS)

1 32.4/30.7 28.8/27.4 11.1/10.8
10 25.4/24.2 19.2/17.6 24.4/27.3
20 19.2/18.7 11.3/10.8 41.1/42.2
30 12.7/13.1 8.3/8.6 34.6/34.4
40 6.3/5.6 4.9/4.6 22.2/17.9

as new datasets can become available and retraining might be required. Rapid training is
also a desirable feature during algorithmic development since finding an optimal architec-
ture may require multiple training procedures for different parameter settings. We illustrate
that our FD3D CNN has better error-reducting performance as a function of the number of
training samples and iterations than other competing techniques.

A 3D CNN requires a suitable receptive field (i.e. input size) to achieve the best dis-
crimination. Based on a random sample of 200 image volumes, we determine the smallest
crop size that ensures the coverage of the LV structure compared to three block-size config-
urations, namely, 120×120×3 (which removes redundant background information based
on the central point of original images), 180× 180× 3 (which is the original size as ex-
tracted and resized from the UK Biobank), and 80× 80× 3, which mostly contains the
LV at the centre. We test sizes smaller than the original block size of the classification
model because we want to determine whether a larger input block with more contextual
information can enhance the model’s discriminative capacity. The results obtained with
these settings are shown in Table 4.3. With a block size of 80×80×3, MBS/MAS detec-
tion precision rate reaches 89.01% and 88.36%, respectively. The detection performance
improves to a precision rate of 91.81% and 90.73% under block size 120×120×3, demon-
strating that increasing contextual information can enhance the discriminative capacity of
3D CNN. Without cropping, the detection precision rate decreases to 90.12% and 89.78%
for MBS and MAS detection, respectively. This may have been because too much redun-
dant contextual information clutters the actual LV signature, and hence degrades detection
performance. Based on these experiments, we set block size to 120× 120× 3, to achieve
optimal detection performance.

Typical classification results using the proposed FD3D CNN architecture are shown in
Figure 4.4. A few basal stacks (top row) and apical stacks (bottom row) in the test datasets
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(a) Sample volumes for MBS testing with automatic quality (AQ), expert cardiologist (VQ1) and cardiac
image expert’s visual (VQ2) qualities.

(b) Sample volumes for MAS testing with automatic quality (AQ), expert cardiologist (VQ1) and cardiac
image expert’s visual (VQ2) qualities.

Figure 4.4: Sample test volumes and their AQ, expert cardiologist (VQ1) and cardiac image
expert’s visual (VQ2) qualities for MBS detection (top row) or MAS detection (bottom row)
are shown. The left seven samples in each row show consistency between AQ and VQ1,
which means our algorithm yields an accurate prediction; The right two samples in each
row show the wrong quality prediction and show inconsistency between VQ1 and VQ2.

Table 4.3: Performance versus Block Size with Fisher Discrimination Criterion

Block Size
Precision Sensitivity

MAS MBS MAS MBS

80×80×3 89.01% 88.36% 88.24% 87.94%
120×120×3 91.81% 90.73% 90.92% 90.25%
180×180×3 90.12% 89.78% 89.63% 88.92%

with their AQ or corresponding posterior probability values are shown. High score values
on the stack correspond to the likelihood of being a correct basal or apical triplet. Basal
slices with existing LVOT indicate higher probability values of being correctly classified.
This shows that the training captures the LVOT as a prominent feature in correctly posi-
tioned basal slices.

2) Comparison to other machine learning methods: We compare our framework with
a traditional 3D CNN and with our previous 2D CNN study [271]. Table 4.4 lists the
results for these architectures.The architecture of a traditional 3D CNN is similar to that
of our FD3D CNN, replacing the Fisher layer (F2) with a traditional fully connected layer
including 256 ReLU activation neurons. We use the same training and testing approaches
for the 3D CNN and list the results obtained using the hand crafted features used in [148].
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In [148], the basal slice was identified following these steps: 1. Choose the mid-slice image
as the start image and process each image sequentially in the basal direction. 2. Apply the
optimal threshold method to convert the ROI to a binary image. 3. Identify the binary object
with blood pool, which shows an elliptical shape. 4. Calculate the length of the major axis
L of the ellipse that has the same normalized second central moments as the binary object.
5. If the ratio of the current to preceding L exceeds a predefined threshold (e.g. > 1.2 in
this work), then a basal slice is identified; otherwise, the basal slice is missing. We use a
similar method to identify the apical slice. We process each image sequentially from base
to apex. If the ratio of the current to preceding L is smaller than a predefined threshold
(e.g. < 0.2 in this study), an apical slice is detected; otherwise, the apical slice is missing.
We employ this feature extraction procedure for prediction. The proposed FD3D CNN
shows the best precision and sensitivity figures in each representation classifier, and full
LV coverage detection performance.

4.4.2 Inter-Observer Reliability

To contextualize the results of automatic full LV coverage assessment, we compare
it to the inter-observer full LV coverage detection rate obtained by expert readers. The
inter-observer agreement [69] of human experts is evaluated by reassessing a subset of 200
random CMR datasets. The quality distribution levels in this randomly selected subset
are compared to original data using Pearson’s χ2 goodness-of-fit test to confirm that it
represents the original data distribution (p > 0.05). The reassessed samples demonstrate
strong agreement with original qualities (Cohen’s κ = 0.76, p< 0.05).

To show how our results can be compared to the expected human detection error rates,
we present the error rates between an expert cardiologist (VQ1) and another cardiac image
expert (VQ2) for 200 re assessed samples. The confusion matrix of VQ1 versus VQ2 is
presented in Table 4.5. Use of the confusion matrix reveals 7 among the 200 re assessed
samples with inconsistent quality assessment between VQ1 and VQ2. These findings show
that the expert cardiologist’s visual results conflict with the cardiac image expert’s visual
assessment only 3% of the time. As shown in Table 4.2 epoch = 40, our automatic algo-
rithm’s error rate is just below 5%, which shows excellent agreement with human expert
assessments (two percentage points). Some examples of MBS/MAS test images are shown
in Figure 4.4 (panels a and b correspondingly). We have intentionally chosen to show seven
inter-observer agreement examples, plus two disagreement examples on each panel.
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Table 4.5: Confusion matrix of the expert cardiologist (VQ1) and cardiac image expert’s
visual (VQ2) results. Grey numbers indicate number and ratio of correct estimates.

VQ2

MBS MAS MBS∨MAS
Correct

MBS 67 0 3 0.96

MAS 0 65 2 0.97V
Q

1

MBS∨MAS 1 1 61 0.97

4.4.3 Cross-database Performance: Sunnybrook Cardiac Dataset

We evaluate the generalization of the performance of our full LV coverage detection
system on an independent database. We assess the sensitivity of our system to moderate
changes in imaging conditions, scanner vendors, image resolution, etc. To this effect, we
use Data Science Bowl Cardiac Challenge Data (Kaggle or Sunnybrook Cardiac dataset)
[160]. This dataset comprises 1,120 cardiac MRI volumes. Cine steady state free preces-
sion (SSFP) MR short-axis (SAX) images are obtained with a 1.5T GE Signa CV/i MRI
System (General Electric, Milwaukee, WI). All images are obtained during 10-15 second
breath-holds with a temporal resolution of 20 cardiac phases over the heart cycle (scanned
from the ED phase). Six to twelve SAX images are obtained from the atrioventricular ring
to the apex (resolution 1.25×1.25×8mm3, thickness = 8mm). Gold-standard full LV cov-
erage is obtained by an experienced reader and checked visually by inspecting slices from
base to apex. Original volumes are used for full LV coverage detection and triplets of top
and bottom slices are used, respectively, as negative examples for MBS and MAS. Posi-
tive examples of MBS/MAS are obtained from triples of mid-slices. This dataset is used
as a test set for the FD3D CNN that was pre-trained with 800,000 volumes from the UK
Biobank. Values for error, precision and sensitivity under various conditions are shown in
Table 4.6.

Table 4.6: Cross-dataset performance: Kaggle dataset.

Error (%) Precision (%) Sensitivity (%)

MAS 6.43 86.51 88.74

MBS 7.02 84.03 85.69

MBS∨MAS 6.64 85.74 87.01
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4.4.4 Missing Slice Rate per Visual Quality Score

To gain insight into the relation between missing slice rates and visual quality scores
achieved by experts [21], a third experiment is conducted. The system is trained on 3,380
random volumes from a total of 5,065. The testing set, as earlier indicated, has 1,685 CMR
volumes distributed among the quality scores (from 1 to 3: 981, 527 and 177). Table 4.7
gives the percentages of the full LV coverage class for each quality score. CMR data with a
quality score of 3 highly correlates with MBS, as missing basal slices highly affect accurate
quantitative analysis in CMR.

Table 4.7: Missing Slice Rate per Visual Quality Score.

Quality Score MAS (%) MBS (%) MBS∨MAS (%)

1 1.7 0.6 97.7

2 74.7 24.0 1.3

3 18.0 80.4 1.6

4.4.5 Clinical Impact

To assess the impact of incomplete LV coverage in real applications, such as measure-
ment of cardiac function based on blood volumes, we design an experiment where incom-
plete coverage is simulated and volume differences between full and incomplete coverage
are measured. We also compute two commonly used indexes of the cardiac function de-
rived from such volumes viz. stroke volume (SV) and ejection fraction (EF), and similarly
report the differences between the full and incomplete coverages. For this experiment, we
take 4,737 subjects for which manual annotations are available (both cardiac phase labels
and full coverage labels), and systematically remove the basal and apical slices to generate
incomplete MBS and MAS volumes. Then, we compute blood pool volumes at the ED
and ES phases, and from these, we obtain SV and EF. Finally, the average volumes and in-
dexes are computed across the sample, comparing full coverage and MBS/MAS. Table 4.8
shows that the largest effect of incomplete coverage is caused by MBS, where the missing
slice reduces ED and ES volumes by an average of 12% and 20%, respectively. In turn,
these differences cause a decrease in the computed SV by 6.7% and an increase in the EF
by 3.9%. The absence of the apical slice has a smaller yet non-negligible impact on the
volumes and derived indexes.
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Table 4.8: Effect of incomplete cardiac coverage (MBS/MAS) on the End-diastolic, End-
systolic, stroke volumes and ejection fraction. Values are shown as Mean ± standard devi-
ations.

Full MBS Effect(%) MAS Effect(%)

LVEDV(ml) 155.8±35.6 136.1±33.4 -12.6% 151.5±35.1 -2.7%

LVESV(ml) 66.8±21.2 53.0±19.0 -20.0% 64.3±20.9 -3.7%

LVSV(ml) 89.1±19.8 83.1±19.7 -6.7% 87.1±19.6 -2.2%

LVEF(%) 57.1±0.06 61.0±0.06 +3.9% 57.5±0.06 +0.4%

4.4.6 Implementation Considerations

The experiments reported here are conducted using the ConvNet library [51] on an Intel
Xeon E5-1620 v3 @3.50GHz machine running Windows 10 with 32GB RAM and Nvidia
Quadro K620 GPU. The networks are optimized using the gradient descent method [118]
with the fllowing hyper-parameters: learning rate = 0.01, momentum = 0.9, drop-out rate
= 0.1. Trainable weights are randomly initialized from a Gaussian distribution (µ = 0,
σ = 0.01) and updated with standard back-propagation. Models converge in about 6 hours
when training is performed with 800,000 volumes with size 120×120×3. Testing is rapid
and can process each volume in 3 seconds.

4.5 Discussion

Automatic identification of CMR volumes with incomplete LV coverage is important
in high-throughput image analysis of population imaging. The acquisition of thousands of
suboptimal CMR images for later image analysis can be avoided if such quality assessment
is performed online and a system provides immediate feedback to technical staff when
new images are acquired. Incomplete LV coverage influences the accuracy of anatomical
and functional LV parameters of clinical interest. Manual annotation of LV coverage is
laborious, time-consuming and error prone in current clinical routines. To automate this
labour-intensive task, we propose an efficient and robust two-stage framework for the au-
tomatic detection of missing slices at the LV base and apex. In the first stage, we train a
FD3D CNN that computes the corresponding intensity representation with high accuracy.
It can qualify CMR volumes based on two representations, and can assist radiologists by
automatically labelling the potentially incomplete volumes to mark them for closer inspec-
tion. The second stage robustly discriminates two quality categories (MBS and MAS),
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based only on the intensity representation classifiers, which are then used to recognize new
cardiac volumes with no further training. Specifically, to use the spatial information in vol-
umetric data, we use 3D CNN with shared 3D convolution kernels. Meanwhile, a Fisher
discriminant layer leads to small within-class scatter and large between-class scatter of fea-
ture vectors in that layer. Extensive experimental results illustrate the effectiveness and
efficiency of our method: its performance is superior to that of other methods with obvious
advantages.

In any AIQA system for population imaging, accuracy and robustness are key design
criteria. These methods must work without many false positives or false negatives, and
must cope with considerable variation in image quality. Most machine learning methods
can improve their recognition accuracy by increasing the number of iterations. However, an
increasing number of iterations comes at a high computational cost. This can be prohibitive
with large databases or when retraining is required as new data become available. In this
study, we used a very large dataset comprising more than 5,000 individually annotated
cardiac MRI scans of the same number of subjects, which is 50-fold the 100 cases used
in our previous study [271]. However, when compared to natural image datasets [118],
our cardiac MRI dataset is still relatively small. We had to design an efficient network
taking full advantage of the available data. Considering there were only a few labelled
images, there was no point in constructing a network with too many sub-sampling layers;
there would have been a higher computational cost with more layers of feature abstraction.
Three-dimensional CNN have been among the most promising solutions for object detec-
tion tasks. Thus far, most studies have focused on image segmentation and registration, and
little effort has been devoted to AIQA. We propose a FD3D CNN with an extra layer using
a Fisher discriminant criterion, which tackles the problem of detecting full LV coverage as
an important quality criterion. Our method can eliminate redundant convolutional compu-
tations during forward propagation and achieve a comparable result with a smaller number
of training samples and iterations. Specifically, our FD3D CNN can achieve a high preci-
sion rate of nearly 92%/91% for MBS/MAS detection with only 20 epochs, which is better
than traditional 3D CNN. Meanwhile, even with a small number of training samples (4 ×
10,000), our FD3D CNN can decrease the error rate by approximately 29.1% compared to
traditional 3D CNN approaches for MBS detection.

Our proposed automatic assessment framework for full LV coverage has great potential
to improve the robustness of subsequent population image parsing. One can imagine an ap-
proach whereby image analysis is adaptive to image quality and where different models are
used depending on whether the volume under analysis is missing basal or apical slices. In
our architecture, we focus on learning intensity representations and develop a FD3D CNN
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to describe those that best discriminate the missing apical or basal slices. We then use the
computed representation classifiers to identify the final image quality. The advantages of a
representation-based method for vision tasks are manifold: they can be composed to create
descriptions at various levels of specificity; they are generalizable, as they can be learned
once and then applied to recognize new objects or categories with no further training and
are efficient, possibly requiring exponentially fewer representations than explicitly naming
each category. In the future, we plan to investigate the possibility of detecting full LV cov-
erage for all slices, rather than just for basal/apical slices, so we can directly predict visual
quality scores. The difficulty of detecting missing middle slices lies in the similar shape of
contiguous LV slices, which makes training the representation classifier a non-trivial task.
Another future work is to extend deep-learning methods for multi-plane estimation, that is,
regressing one 3D volume to estimating missing slices acquired from different positions.
This is a limitation of our two-stage framework, which can only estimate the basal and
apical planes. One way to achieve 3D CNN for multi-plane estimation would be to apply
regression on each plane separately and then combine all regression results into a single
estimation.

4.6 Conclusion

In this study, we tackled the problem of detecting incomplete LV coverage in large pop-
ulation image databases. We illustrated the concept by proposing a Fisher discriminative
3D CNN tested on CMR data from the UK Biobank. Our FD3D CNN was proposed by
adding a new Fisher-discriminative fully connected layer into the network, which achieved
a significant improvement in intensity representation. The learned representation classifiers
were computed for candidates of corresponding quality categories. We also validated our
model by training with the UK Biobank dataset and cross-evaluating with data from the
Data Science Bowl Cardiac Challenge dataset. The proposed model shows high consis-
tency with human perception and is superior to state-of-the-art methods, showing its high
potential. Our proposed FD3D CNN can also be easily applied and boosts results for other
detection and segmentation tasks in medical image analysis.
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Chapter 5

Multi-Input and Dataset-Invariant
Adversarial Learning (MDAL) for Left
and Right-Ventricular Coverage
Estimation in Cardiac MRI

This chapter is based on:

• Le Zhang, Marco Pereañez, Stefan Piechnik, Stefan Neubauer, Steffen Petersen
and Alejandro F. Frangi, Multi-Input and Dataset-Invariant Adversarial Learning
(MDAL) for Left and Right-Ventricular Coverage Estimation in Cardiac MRI, In-

ternational Conference on Medical Image Computing and Computer-Assisted Inter-

vention (MICCAI), pp. 481-489, Springer, Cham, 2018.
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S.N. and S.P. provided support on clinical aspects and he also provided the UK Biobank
data resource to be used for training and testing; L.Z. designed the method, performed data
analysis and wrote the manuscript. All authors read and approved the manuscript.
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Abstract: Cardiac functional parameters, such as, the Ejection Fraction (EF) and Cardiac
Output (CO) of both ventricles, are most immediate indicators of normal/abnormal cardiac
function. To compute these parameters, accurate measurement of ventricular volumes at
end-diastole (ED) and end-systole (ES) are required. Accurate volume measurements de-
pend on the correct identification of basal and apical slices in cardiac magnetic resonance
(CMR) sequences that provide full coverage of both left (LV) and right (RV) ventricles.
This chapter proposes a novel adversarial learning (AL) approach based on convolutional
neural networks (CNN) that detects and localizes the basal/apical slices in an image vol-
ume independently of image-acquisition parameters, such as, imaging device, magnetic
field strength, variations in protocol execution, etc. The proposed model is trained on mul-
tiple cohorts of different provenance, and learns image features from different MRI viewing
planes to learn the appearance and predict the position of the basal and apical planes. To
the best of our knowledge, this is the first work tackling the fully automatic detection and
position regression of basal/apical slices in CMR volumes in a dataset-invariant manner.
We achieve this by maximizing the ability of a CNN to regress the position of basal/apical
slices within a single dataset, while minimizing the ability of a classifier to discriminate
image features between different data sources. Our results show superior performance over
state-of-the-art methods.

Keywords: Deep Learning · Dataset Invariance · Adversarial Learning · Ventricular Cov-
erage Assessment ·MRI.

5.1 Introduction

To obtain accurate and reliable volume and functional parameter measurements in CMR
imaging studies, recognizing basal and apical slices for both ventricles is crucial. Unfortu-
nately, current practice to detect basal/or apical slice positions is still carried out by visual
inspection of experts on the image. This practice is costly, subjective, error prone, and time
consuming [9]. Although significant progress [271] has been made in automatic assess-
ment of full LV coverage in cardiac MRI, to accurately measure volumes and functional
parameters for both ventricles where the basal/apical slices are missing, methods to esti-
mate the position of the missing slices are required [178]. Such methods would be critical
to prompt the intervention of experts to correct problems in data measurements, or to trig-
ger algorithms that can cope with missing data by, for instance, imputation [75] through
image synthesis, or shape based extrapolation. This paves the way to “quality-aware image
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analysis” [253]. To the best of our knowledge, previous work regarding image quality con-
trol has focused solely on coverage detection of the LV, but not on missing slice position
estimation.

In medical image analysis, it is sometimes convenient or necessary to infer an image in
one modality from another for image quality assessment purposes. One major challenge of
basal/apical slice estimation for CMR comes from differences between data sources, which
are tissue appearance and/or spatial resolution of images sourced from different physical
acquisition principles or parameters. Such differences make it difficult to generalize algo-
rithms trained on specific datasets to other data sources. This is problematic not only when
the source and target datasets are different, but more so, when the target dataset contains
no labels. In all such scenarios, it is highly desirable to learn a discriminative classifier
or other predictor in the presence of a shift between training and test distributions, which
is called dataset invariance [70]. The general approach of achieving dataset adaptation
has been explored under many facets. Among the existing cross-dataset learning works,
dataset adaptation has been adopted for re-identification hoping labeled data from a source
dataset can provide transferable identity-discriminative information for a target dataset.
[97] explored the possibility of generating multimodal images from single-modality im-
agery. [134] [151] employed multi-task metric learning models to benefit the target task.
However, these works are focused mainly on linear assumptions.

In this chapter, we focus on the non-linear representations and analysis of short-axis
(SA) and long-axis (LA) cine MRI for the detection and regression of the basal and api-
cal slices of both ventricles in CMR volumes. To deal with the problem where there is
no labeled data for a target dataset, and one hopes to transfer knowledge from a model
trained on sufficient labeled data of a source dataset sharing the same feature space, but
with a different marginal distribution we present these contributions: 1) We present a uni-
fied model (MDAL) for any cross-dataset basal/apical slice estimation problem in CMR
volumes; 2) We integrate adversarial feature learning by building an end-to-end architec-
ture of CNNs and transferring non-linear representations from a labeled source dataset to a
target dataset where labels are non-existent. Our deep architecture effectively improves the
adaptability of learning with data of different databases; 3) A multi-view image extension
of the adversarial learning model is proposed and exploited. By making use of multi-view
images acquired from short- and long-axis views, one can further improve and constrain
the basal/apical slice position. We evaluate our method on three datasets and compare
with state-of-the-art methods. Experimental results show the superior performance of our
method compared to other approaches.
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5.2 Methodology

5.2.1 Problem Formulation

The cross-dataset localization of basal or apical slices can be formulated as two tasks:
(i) Dataset Invariance: given a set of 3D images X s = [Xs

1, ...,X
s
N ] ∈ Rm×n×zs×Ns

of
modality Ms in the source dataset, and X t = [Xt

1, ...,X
t
N ] ∈ Rm×n×zt×Nt

of modality Mt

in the target dataset. m,n are the dimensions of axial view of the image, and zs and zt

denote the size of images along the z-axis, while Ns and Nt are the number of volumes in
source and target datasets, respectively. Our goal is to build mappings between the source
(training-time) and the target (test-time) datasets, that reduce the difference between the
source and target data distributions. An overview of the schematic of our dataset-invariant
adversarial network is depicted in Figure 5.1. (ii) Multi-view Slice Regression: In this task,
slice localization performance is enhanced by using multiple image stacks, e.g. SA and LA
stacks, into a single regression task. Let Xs = {xs

i ,r
s
i}Zs

i=1 and Ys = {ys
i ,r

s
i}Zs

i=1 be a labeled
3D CMR volume from source modality Ms in short- and long-axis, respectively, and xs

b,
xs

a, and ys
b, ys

a be the short-axis slices, and long-axis image patches of the basal and apical
views; let Xt = {xt

i}Zt

i=1 and Yt = {yt
i}Zt

i=1 represent an unlabeled sample from the target
dataset in short- and long-axis, i represents the ith slice and Z is the total number of CMR
slices. Our goal is to learn the discriminative features from xs

b, xs
a, and ys

b, ys
a to localize

the basal and apical slices in two axes for CMR volumes in the target dataset. We use
the labeled UK Biobank (UKBB) [183] cardiac MRI data cohort together with the MESA
and DETERMINE datasets, and apply our method to cross-dataset basal and apical slice
regression tasks.

5.2.2 Multi-Input and Dataset-Invariant Adversarial Learning

Inspired by Adversarial Learning (AL) [81] and Dataset Adaptation (DA) [213] for
cross-dataset transfer, we propose a Dataset-Invariant Adversarial Learning model, which
extends the DA formulation into a AL strategy, and performs them jointly in a unified
framework. We propose multi-view adversarial learning by creating multiple input chan-
nels (MC) from images which are re-sampled to the same spatial grid and visualize the
same anatomy. An overview of our method is depicted in Figure 5.2. Given two sets of
slices {xs

i}N
i=1, {ys

i}N
i=1 with slice position labels {rs

i}N
i=1 for training, to learn a model that

Notation: Matrices and 3D images are written in bold uppercase (e.g., image X, Y), vectors and vec-
torized 2D images in bold lowercase (e.g., slice x, y) and scalars in lowercase (e.g., slice position label r).

http://www.cardiacatlas.org/studies/mesa/
http://www.cardiacatlas.org/studies/determine/
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Figure 5.1: Schematic of our dataset-invariant adversarial network.

Figure 5.2: System overview of our proposed dataset-invariant adversarial model with
multi-view input channels for bi-ventricular coverage estimation in cardiac MRI. Each
channel contains three conv layers, three max-pooling layers and two fully-connected lay-
ers. Additional dataset invariance net (yellow) includes two fully-connected layers. Kernel
numbers in each conv layer are 16, 16 and 64 with sizes of 7× 7, 13× 13 and 10× 10,
respectively; filter sizes in each max-pooling layer are 2×2, 3×3 and 2×2 with stride 2.
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can generalize well from one dataset to another, and is used both during training and test
time to regress the basal/apical slice position, we optimize this objective in stages: 1) we
optimize the label regression loss

L i
r = Lr(Gsigm(Gconv(xs,ys;θ f );θr),ri)

= ∑
i

∥∥ri−Gsigm(Gconv(xs,ys;θ f );θr),ri)
∥∥2

2 +
1
2

(∥∥θ f
∥∥2

2 +‖θr‖2
2

)
,

(5.1)

where θ f is the representation parameter of the neural network feature extractor, which
corresponds to the feature extraction layers. θr is the regression parameter of the slice re-
gression net, which corresponds to the regression layers. ri denotes the ith slice position
label. θ f and θr are trained for the ith image by using the labeled source data {Xs

i ,rs
i}Ns

i=1

and {Ys
i ,rs

i}Ns

i=1. 2) Since dataset adversarial learning satisfies a dataset adaptation mecha-
nism, we minimize source and target representation distances through alternating minimax

between two loss functions: one is the dataset discriminator loss

L i
d = Ld(Gdisc(Gconv(xs,ys,xt ,yt ;θ f );θd),di)

=−∑
i
I [od = di] log

(
Gdisc(Gconv(xs,ys,xt ,yt ;θ f );θd),di

)
,

(5.2)

which classifies whether an image is drawn from the source or the target dataset. od in-
dicates the output of the dataset classifier for the ith image, θd is the parameter used for
the computation of the dataset prediction output of the network, which corresponds to the
dataset invariance layers; di denotes the dataset that the example slice i is drawn from. The
other is the source and target mapping invariant loss

L i
f = L f (Gcon f (Gconv(xs,ys,xt ,yt ;θ f );θd),di)

=−∑
d

1
D

log
(
Gcon f (Gconv(xs,ys,xt ,yt ;θ f );θd),di

)
,

(5.3)

which is optimized with a constrained adversarial objective by computing the cross entropy
between the output predicted dataset labels, and a uniform distribution over dataset labels.
D indicates the number of input channels. Our full method then optimizes the joint loss
function

E(θ f ,θr,θd) = Lr(Gsigm(Gconv(xs,ys;θ f );θr),r)

+λL f (Gcon f (Gconv(xs,ys,xt ,yt ;θ f );θd),d),
(5.4)

where hyperparameter λ determines how strongly the dataset invariance influences the op-
timization; Gconv(·) is a convolution layer function that maps an example into a new repre-
sentation; Gsigm(·) is a label prediction layer function; Gdisc(·) and Gcon f (·) are the dataset
prediction and invariance layer functions.

101



5.2.3 Optimization

Similar to classical CNN learning methods, we propose to tackle the optimization prob-
lem with the stochastic gradient procedure, in which updates are made in the opposite di-
rection of the gradient of Equation (5.4) to minimize parameters, and in the direction of
the gradient to maximize other parameters [70]. We optimize the objective in the following
stages.

Optimizing the Label Regressor: In adversarial adaptive methods, the main goal is to
regularize the learning of the source and target mappings, so as to minimize the distance
between the empirical source and target mapping distributions. If so then the source re-
gression model can be directly applied to the target representations, eliminating the need to
learn a separate target regressor. Training the neural network then leads to this optimization
problem on the source dataset:

arg min
θ f ,θr
{ 1

Ns

Ns

∑
i=1

L i
r (Gsigm(Gconv(xs,ys;θ f );θr),ri)}. (5.5)

Optimizing for Dataset Invariance: This optimization corresponds to the true mini-

max objective (Ld and L f ) for the dataset classifier parameters and the dataset invariant
representation. The two losses stand in direct opposition to one another: learning a fully
dataset invariant representation means the dataset classifier must do poorly, and learning
an effective dataset classifier means that the representation is not dataset invariant. Rather
than globally optimizing θd and θ f , we instead perform iterative updates for these two
objectives given the fixed parameters from the previous iteration:

argmin
θd
{− 1

N

N

∑
i=1

L i
d(Gdisc(Gconv(xs,ys,xt ,yt ;θ f );θd),di)}, (5.6)

argmax
θ f
{− 1

N

N

∑
i=1

L i
f (Gcon f (Gconv(xs,ys,xt ,yt ;θ f );θd),di)}, (5.7)

where N = Ns +Nt being the total number of samples. These losses are readily imple-
mented in standard deep learning frameworks, and after setting learning rates properly so
Equation (5.6) only updates θd and (5.7) only updates θ f , the updates can be performed via
standard backpropagation. Together, these updates ensure that we learn a representation
that is dataset invariant. We summarize the proposed method in the following Algorithm 1.
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Algorithm 2: MIDL Algorithm.

Input: samples S∼ {(xi,yi,ri)}Ns

i=1 and T ∼ {xi,yi}Nt

i=1; adaptation parameter λ ;
learning rate µ;

Output: Neural network parameters {θ f ,θr,θd};
Initialize: θ f ,θy← random init; θd,yd ← 0;
while stopping criterion has not been met do

for i from 1 to N do
1) Calculate θ f and θr using (5.5);
2) Calculate θd using (5.6) with fixed θ f ;
3) Calculate θ f using (5.7) with fixed θd;

4) Update the parameters using θ f ← θ f −µ( ∂Li
r

∂θ f
−λ

∂Li
d

∂θ f
), θr← θr−µ

∂Li
r

∂θr
,

θd ← θd−µ
∂Li

r
∂θd

.
end

end

5.2.4 Detection and Regression for Basal/Apical Slice Position

We denote Ĥt , Ĝt as extracted query features, and Ĥs, Ĝs as extracted basal/apical
slice representations from SAX and LAX, respectively. In order to regress basal and
apical slices according to query features, we compute the dissimilarity matrix δi, j based
on Ĥt , Ĝt and Ĥs, Ĝs using the volume’s inter-slice distance as: δi, j(Ĥt ,Ĥs, Ĝt , Ĝs) =√

(Ĥ i
t −Ĥ j

s )
2
+(Ĝ i

t − Ĝ j
s )

2
. Then, ranking can be carried out based on the ascending

order of each row of the dissimilarity distance, i.e., the lower the entry value δi, j is, the
closer the basal/apical slice and the query slice are.

5.3 Experiments and Analysis

Data specifications: Basal slices including the left ventricular outflow tract, pulmonary
valve and right atrium, and apical slices with a visible ventricular cavity were labeled man-
ually. The distance between the actual location of the basal/apical slice to other slices
in the volume were used as training labels for the regression. We validated the proposed
MDAL on three target datasets: UKBB, DETERMINE and MESA (protocols of the three
datasets are shown in Table 3.2). To prevent over-fitting due to insufficient target data, and
to improve the detection rate of our algorithm, we employ data augmentation techniques to
artificially enlarge the target datasets. For this purpose we chose a set of realistic rotations,
scaling factors, and corresponding mirror images, and applied them to the MRI images.
The set of rotations chosen were −45◦ and 45◦, and the scaling factors 0.75 and 1.25. This
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Table 5.1: Cardiovascular magnetic resonance protocols for UKBB, MESA and DETER-
MINE Datasets.

Dataset View
Number of

Sequences

Cardiac

Phases

Matrix

Size

Slice

Thickness

Slice

Gap

Slice

Spacing

Slices

per Volume

UKB
SAX 4280 50 208×187 8 mm 2 mm 10 mm ca. 10

LAX 4280 50 208×187 6 mm n.a n.a 1

MESA
SAX 298 20∼30 256×160 6 mm 4 mm 10 mm ca. 10

LAX 298 20∼30 256×160 6 mm n.a n.a 1

DETERMINE
SAX 300 25 128×256 6 10 mm 6 2 mm 10 mm ca. 10

LAX 300 25 128×256 6 mm n.a n.a 1

increased the number of training samples by a factor of eight. After data augmentation,
we had 2400, and 2384 sequences for DETERMINE and MESA datasets, respectively. For
evaluating of multi-view models, we defined two input channels, one for SAX images, and
another for LAX (4-chamber) from the UKBB, MESA and DETERMINE. The LAX image
information was extracted by collecting pixels values along the intersecting line between
the 4-chamber view plane and corresponding short-axis plane over the cardiac cycle. We
extracted 4 pixels above and below the two plane intersection. We embedded the con-
structed profile within a square image with zeros everywhere except the profile diagonal
(see Figure 5.2 bottom channel).

Experimental set-up: The architecture of our proposed method is shown in Figure 5.2.
To maximize the number of training samples from all datasets, while preventing biased
learning of image features from a particular dataset and given that the number of samples
from the UKBB is at least an order of magnitude larger than from MESA or DETERMINE,
we augmented both the MESA and DETERMINE datasets, to match the resulting number
of samples from the UKBB. This way our dataset classification task will not over-fit to any-
one sample. Our MDAL method processes images with small blocks (120× 120), which
are crop-centered on the images to extract specific regions of interest. The experiments
here reported were conducted using the ConvNet library [51] on an Intel Xeon E5-1620
v3 @3.50GHz machine running Windows 10 with 32GB RAM and Nvidia Quadro K620
GPU. We optimize the network using a learning rate µ of 0.001 and set the hyper-parameter
parameter λ to be 0.01, respectively. To evaluate the detection process, we measure clas-
sification accuracy, and to evaluate the regression error between the predicted position and
the ground truth, we use the Mean Absolute Error (MAE).

Results: We evaluate the performance of the multi-view basal/apical slice detection
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Table 5.2: The comparison of basal/apical slice detection accuracy (Mean ± standard de-
viation) (%) between adaptation and non-adaptation methods, each with single (SAX)- and
multi-view inputs (BS/AS indicate basal/apical slice detection accuracy). Best results are
highlighted in bold.

Dataset
No dataset adaptation (BS/AS) With dataset Adaptation (BS/AS)

Single-view [271] Multi-view [271] Single-view [70] Multi-view (Ours)

UKBB 79.0±0.2/76.2±0.3 89.2±0.1/92.4±0.2 78.2±0.2/75.4±0.3 88.7±0.1/91.4±0.3

MESA 31.6±0.3/35.1±0.1 61.5±0.2/68.3±0.4 74.2±0.2/72.9±0.4 87.1±0.3/90.2±0.2

DETERMINE 48.3±0.2/51.1±0.3 75.6±0.3/78.4±0.3 77.2±0.3/76.5±0.2 89.0±0.2/91.2±0.2

Table 5.3: Regression error comparison between adaptation and non-adaptation methods,
each with single (SAX)- and multi-view inputs for cardiac SAX slice position regression
in terms of MAE (Mean ± standard deviation)(mm)(BS/AS indicate basal/apical slice re-
gression errors). Best results are highlighted in bold.

Dataset
No dataset adaptation (BS/AS) With dataset adaptation (BS/AS)

Single-view [271] Multi-view [271] Single-view [70] Multi-view (Ours)

UKBB 4.32±1.6/5.73±1.9 3.42±1.1/3.98±1.7 5.13±2.1/6.33±2.3 3.64±1.9/4.02±2.0

MESA 7.78±2.0/8.34±2.4 6.47±1.7/6.83±1.4 4.81±1.0/5.73±1.5 3.98±1.1/4.07±1.3

DETERMINE 6.43±1.9/6.81±2.0 6.01±1.3/6.17±1.4 4.73±1.6/4.81±1.3 4.24±1.0/4.45±1.3

and regression tasks with and without dataset invariance (adaptation vs non-adaptation), by
transferring object regressors from the UKBB to MESA and DETERMINE. To evaluate
performance on MESA and DETERMINE, we manually generated annotations as follows:
we checked one slice above and below the detected basal slice to confirm the slice is the
basal and record true or false, ditto for apex. We chose the CNN architecture in [271] for
single- and multi-view metrics with non-adaptation, and the GTSRB architecture in [70] for
single-view adaption method. Table 5.2 shows the detection accuracy for basal/apical slice
of the adaptation and non-adaptation from single and multi-view. For both test datasets,
the best improvements are the result of combining both of these features. For MESA the
detection accuracy was increased by 64%, and for DETERMINE best improvements are of
44% (right-most column). Table 5.3 shows the average regression errors of slice locations
in millimeter (mm). Even without using the multi-input channels, our dataset invariance
framework is able to reduce the slice localization error to less than half the average slice
spacing found on our test datasets, i.e., < 5mm. With multi-view we reduced the localiza-
tion errors to 4.24 and 4.45mm on average for both basal/apical slices. All the experiments
are significantly different at p <0.05.
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5.4 Discussion

Our proposed automatic image quality assessment framework for LV and RV coverage
estimation in cardiac cine MRI has great potential for the later robust population image
analysis. One could imagine that the image analysis methods are adaptive to image quality
and design depending on whether the image under analysis is incomplete ventricle cover-
age. In our architecture, we focus on learning common representation across datasets and
develop a regression network to localize the slice position.

There are diverse advantages of an adversarial learning based representation for visual
tasks, some of them are listed as follows: they can create common representations among
different specific datasets; they are generalizable since they only need to learn all datasets
once and then, apply them to identify new objects or categories without further training.
One of our future studies is to investigate the possibility of quantifying the ventricle cov-
erage with slice position and correct plane orientation, not specific for ventricle coverage
estimation. It is difficult to calculate the percentage of ventricle coverage accurately with
incorrect slice orientations and thus, training the volume classifier could be a non-trivial
task because of the different slice orientations. Another future study is to extend the deep
learning method for synthesizing the slices with correct orientation. One possible way to
achieve deep learning approach for image synthesis would be to apply generative adver-
sarial network and synthesize the standard cardiac plane using the adversarial approach on
UKBB.

5.5 Conclusion

In this chapter, we have proposed a Multi-Input and Dataset-Invariant Adversarial Learn-
ing (MDAL) framework capable of learning a common image representation, and using it to
detect and localize basal and apical CMR slices, we achieve this by: first, using a Dataset-
Invariant Adversarial Learning (DIAL) model to fit the joint distribution over the images
from different datasets with a minimax game. Second, extending the DIAL model to handle
multiple view input scenarios thereby obtaining better results for Left and Right-Ventricular
coverage estimation in Cardiac MRI. And third, by introducing a regressor network able
to predict the location of basal/apical slices. We evaluated our framework on two large
datasets MESA and DETERMINE and found that our approach significantly outperforms
state-of-the-art non-dataset-adaptive and single-input methods. Finally, Our MDAL frame-
work can be easily generalized to any anatomical structure or image modality.
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Chapter 6

Automatic Plane Pose Estimation Across
Cardiac Cine MRI Datasets via Deep
Adversarial Ranking Nets with
Privileged Information

This chapter is based on:
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6.1 Introduction

Cardiac Magnetic Resonance (CMR) imaging is the reference standard imaging tech-
nique used to evaluate morphology and functionality of the heart. After acquisition, auto-
matic techniques can extract volumetric information and derive clinical indexes that place
the subject within predetermined population ranges of normality. CMR image acquisition
is for the most part automatic, except for the initial localization and framing of the heart
done by a trained radiologist or image technician. Because the heart is a moving organ, and
the length of the procedure requires the patient to hold their breath multiple times during
the exam, resulting images may suffer from artifacts due to variability in the breath-hold
position adopted by the patient during each breath-hold. If the initial framing of the heart
does not allow a sufficient margin around the organ, these differences in breath-hold may
cause the heart to move out of frame, resulting in incomplete coverage either at the basal,
or apical region of the organ. A related source of organ coverage variability is the determi-
nation of what constitutes a sufficient margin around the heart. Though anatomical features
allow the precise localization of the base and apex of the heart, a “sufficient” margin above
and below base and apex may not be as precisely defined. This means that slightly different
practices may be in place at different imaging facilities or by different experts, resulting in
image volumes that while providing full coverage, some may present with one image slice
above/below the cardiac base/apex, while others with two image slices above/below the
cardiac base/apex. These variations in procedure may present problems for subsequent
image analysis algorithms trained under the assumption of consistent object coverage.

Related to object coverage, is consistent orientation of image planes regarding the car-
diac ventricles, where, if the slice orientation deviates significantly from expected values,
local image structure may change enough to cause subsequent image feature-based algo-
rithms to fail in localizing key features required for further morphological and functional
analysis.

These sources of variability may affect the subsequent application of automatic meth-
ods for the computation of tissue volumes, cardiovascular indexes, and statistics derived
from them. Typically, volume computations are performed on the output of image seg-
mentation algorithms. Whether these algorithms are generative or discriminative, hav-
ing incomplete or overcomplete organ coverage may cause incorrect segmentations lead-
ing to biased estimation of volume parameters. For example, 2D discriminative CNN-
based segmentation methods will grossly under/over-estimate blood volumes with incom-
plete/overcomplete image stacks. 3D generative-based models, such as ASMs, can handle
incomplete/overcomplete volumes as they are constrained by shape priors, however, the
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Figure 6.1: Potential issues affecting CMR image acquisitions. In the right and left vol-
umes, short axis slices are acquired with incorrect orientations; In the middle volume,
different slices show different position compared with basal slice. Best viewed in color.

performance of ASMs can be affected by incorrect model initialization if the initial shape
estimate is poorly positioned regarding the target structure, the algorithm may not converge
to the best solution.

Algorithms to robustly determine the expected location and pose parameters of the basal
and apical slices in CMR are necessary. Current practice to optimize CMR slice pose is car-
ried out manually, which can be tedious, subjective, error prone, and time consuming [9].
Although significant progress [271] has been made in automatic assessment of full LV cov-
erage in cardiac cine MRI, to accurately measure volumes for both ventricles from volumes
with missing basal/or apical slices, the missing slice position and orientation in short-axis
needs to be specified [178] to intervene and correct problems in the data soon. Such cor-
rections may include imputation of missing data, choosing the appropriate segmentation
method, or excluding faulty image volumes from being used in the computation of aggre-
gated statistics over large patient cohorts [75]. This paves the way to “quality-aware image
analysis” [253].

To the best of our knowledge, this is the first study tackling the problem of estimating
the slice pose for both ventricles in cardiac MRI. The main contributions of this work are
summarized:

109



1. This is the first study to exploit deep learning for automatic CMR slice pose es-
timation. The CNN sufficiently encodes spatial contextual image information and
hierarchically extracts high-level features in a data driven way.

2. To efficiently leverage CNN, we present an adversarial model (DIAL) to process any
cross-data set problems in cardiac MRI, which allows training based on annotated
data in the source data set, and test on un-annotated data in the target data set.

3. We propose an end-to-end MLMT regression network to jointly optimize slice pose
estimation with a set of related tasks (distance and orientation). Our proposed MLMT
model has great generalization capability and works well on data with different la-
bels.

4. We propose and formulate a new problem, which combines the DIAL and MLMT
models with a novel PI loss. We call the proposed method data set Adversarial Re-
gression Network with PI (DARN*). To the best of our knowledge, this is the first
work exploiting PI in cardiac MRI instead of using multi-view inputs and it is a much
more practical approach in real world applications.

5. We quantitatively assess the performance of our technique in three large-scale 3D
cardiac MRI databases achieving comparable results.

In Section 6.2, we review related work. In Section 6.3, we define the LVRV slice
pose estimation problem and introduce our proposed method. Experiments, results and
discussion of the proposed method are drawn in Sections 6.4 and 6.5, and we conclude the
study in Section 6.6.

6.2 Related Work

Recent work has been published automating LV apex/base detection [274], but no
existing research has proposed slice pose estimation based on both cardiac ventricles.
Paknezhad et al. [178], for example, proposed an automatic tool that uses the horizontal
long-axis (HLA) view to find the basal slice. The basal slice was detected using temporal
binary profiles created for each short-axis slice from the segmented HLA slice. Drawbacks
of this technique are its dependency on correct segmentation, and existence of the HLA
slice. Mahapatra et al. [154] proposes a learning-based method that trains a random for-
est classifier by extracting intensity, texture, and contextual features from a bounding box
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around the annotated points at both sides of the mitral valve. Lu et al. [146] propose an-
other learning-based method by introducing auxiliary markers along with the landmarks to
collect more contextual information from the image and help landmark detection. Utilizing
such methods for basal slice selection comes from the assumption that the basal slice is the
first short-axis slice below the line connecting the mitral valve points.

Real-world images can often be annotated with multiple labels, because an image nor-
mally abounds with rich semantic information, such as objects, parts, scenes, actions, and
their interactions or attributes. CNNs have been trained for single-label image regression
tasks such as age estimation [33], registration [159] and depth prediction [137]. In the field
of medical image analysis, Kong et al. [115] proposed a temporal regression network
(TempReg-Net) to accurately identify End-Diastole (ED) and End-Systole (ES) frames
from MRI sequences. Spampinato et al. [222] proposed a CNN based BoNet architecture
for bone age regression. These deep regression models are not suitable for our problem be-
cause they cannot process multiple regression tasks for a single image with different labels
at the same time in an end-to-end learning framework. Deep multi-label learning (MLL)
has been widely used in various computer vision problems, recent studies have proposed
MLL approaches [250] to solve image classification problems. In this study, we propose
a multi-label multi-task (MLMT) approach for cardiac MRI slice distance and orientation
estimation. Unlike the metric regression approaches that treat the single label in an indi-
vidual task as a proportional quantity, the MLMT regression approach can learn a shared
representation to predict all the factors with multi-labels from one image.

The general approach of achieving database adaptation has been explored under many
facets. Over the years, a large part of the literature has focused mainly on linear hypothesis.
Recently, some research [133], [258] has shown that non-linear neural networks can also be
successful at learning features in a data-driven way achieving promising and stable results
across domain changes, and can thus be applied to cross-domain transfer. Among them,
adversarial learning has been explored for cross-domain tasks, which choose an adversarial
loss to minimize domain shift, learning a representation that is simultaneously discrimina-
tive of source labels while not being able to distinguish between domains. [240] proposed
adding a domain classifier that predicts the binary domain label of the inputs and designed
a domain confusion loss to encourage its prediction to be as close as possible to a uniform
distribution over binary labels. The gradient reversal algorithm (ReverseGrad) proposed
in [70] also treats domain invariance as a binary classification problem, but directly maxi-
mizes the loss of the domain classifier by reversing its gradients. Motivated by these works,
we propose an adversarial learning approach for dataset adaptation, which seeks to directly
map source labeled images onto target unlabeled images.
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Data-driven approaches leverage large amounts of training data to determine the opti-
mal model parameters in a bottom-up fashion. Purely data-driven methods are often brittle
and prone to fail when learning with limited training data, due to over-fitting or an opti-
mization obstacle involved. In many applications, additional information is often available
in the training phase. Vapnik and Vashist [246] referred to such additional information as
privileged information (PI) and showed that PI can be utilized as a “teacher” to train more
effective models in traditional supervised learning problems. Recently, [155] presented a
regularized RNNs with additional information for RGB video sequences. This motivates
us to incorporate PI into our DARN model for LVRV slice pose estimation.

6.3 Methodology

6.3.1 Problem Formulation

We formulate our problem as two tasks:
1) Datasets invariance: given a set of 3D images X s = [Xs

1, ...,X
s
N ] ∈Rm×n×zs×Ns

and
corresponding labels Y s = [Ys

1, ...,Y
s
N ] of modality Ms in the source dataset, and X t =

[Xt
1, ...,X

t
N ] ∈ Rm×n×zt×Nt

of modality Mt in the target dataset. m,n are the dimensions of
axial view of the image, and zs and zt denotes the size of image along the z-axis, while Ns

and Nt are the number of elements in source and target datasets, respectively. Let {Xs,Y}=
{xs

i ,y
s
i}Zs

i=1 and {X∗s,Y}= {x∗si ,ys
i}Zs

i=1 be a labeled 3D CMR volume from source modality
Ms in short- and long-axis, respectively; let Xt = {xt

i}Zt

i=1 represent an unlabeled sample
from the target dataset in short-axis, Z is the total number of CMR slices. Our goal is to
build mappings between the source (training-time) and the target (test-time) datasets, so
that reducing the difference between the source and target dataset distributions;

2) Slice pose estimation: In this task, the performance of slice pose estimation is en-
hanced by using multi-label multitask (MLMT) learning, e.g. distance regression task and
orientation regression task, into a single deep regression neural network. In the context
of MLMT learning, assume there is an image sequence denoted by {X,Y} = {xi,yi}Z

i=1,
where each X has Z slices and y contains the labels (distance and orientation) associated
with x. We represent yi as a vector of length C, where C is the number of labels. For
example, the kth dimension yi(k) denotes the distance between basal slice and the ith slice.
Our goal is the training of a regression network processed with MLMT procedure, mapping

Notation: Matrices and 3D images are written in bold uppercase (e.g., image X,Y), vectors and vec-
torized 2D images in bold lowercase (e.g., slice x,y), and scalars are noted in lowercase (e.g., slice position
label r).
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from images to corresponding probabilities by the function η(·) : X → Y . We incorpo-
rate the long-axis patches X∗s as privileged information (PI) into the learning system at
training time and the testing stage continues to make use of only to Xt without any access
to X∗t . This training process produces a ConvNet with learnt parameters W that is effec-
tively a mapping between the input images X , X ∗ and the estimated output vector Y ,
represented by

Y = η(X ,X ∗;W). (6.1)

We use the annotated UK Biobank (UKBB) [183] cardiac MRI data cohort together
with the MESA1 and DETERMINE2 datasets, and apply our method to cross-dataset slice
position and orientation regression tasks. We describe the deep adversarial learning ap-
proaches and configure MLMT regression network incorporated with PI to perform au-
tomated slice pose estimation across datasets. At the training time, DIAL promotes the
emergence of features that are indiscriminate with respect to the shift between the datasets,
but discriminative for the main learning task on the source dataset. Instead of using metric
regression to identify the slice poses, the MLMT is trained to regress the distance and ori-
entation for each slice at the same time with the aim of mutual benefit. Our goal is to learn
the discriminative features from xs

i , and utilize x∗si as PI to train more effective models and
estimate the slice poses in short axis for CMR volumes in the target dataset.

6.3.2 Deep Adversarial Learning for Dataset-Invariant

Inspired by Adversarial Learning (AL) and Dataset Adaptation (DA) for cross-dataset
transfer, we propose a Dataset-Invariant Adversarial Learning (DIAL) model, which ex-
tends the DA formulation into a AL strategy, and performs them jointly in a unified frame-
work. We propose multi-view adversarial learning by creating multiple input channels
(MC) from images , which are re-sampled to the same spatial grid and visualize the same
anatomy. An overview of our method is depicted in Fig. 6.1. Given a set of slices {xs

i}Z
i=1

with corresponding labels {ys
i}Z

i=1 for training, to learn a model that can generalize well
from one dataset to another, and is used both during training and test time to regress the
basal/apical slice pose, we optimize this objective in stages: 1) we optimize the label re-
gression loss

arg min
w f ,wt

y

{ 1
Ns

Ns

∑
i=1

L i
y(Gsigm(Gconv(xs

i ;w f );wt
y),y

t
i)} (6.2)

where w f is the representation parameter of the neural network feature extractor, which
corresponds to the feature extraction layers. wt

y is the regression parameter of the slice

1http://www.cardiacatlas.org/studies/mesa/
2http://www.cardiacatlas.org/studies/determine/
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Figure 6.2: The proposed framework of PI-based DARN. Our approach consists of three
steps: 1) The CNN acts as a feature extractor to extract the spatial pattern of the cardiac
image volume to facilitate the dataset invariance phase; 2) We use a Dataset-Invariant Ad-
versarial Learning (DIAL) model to fit the joint distribution over the images from different
datasets with a minimax game; 3) We extend the DIAL model to handle MTRN model with
LUPI scenarios. The joint network can be trained to learn the complex spatial patterns of
the cardiac sequences cross different CMRI datasets, and give predictions for the slice pose
without any privileged information (PI) during testing. Best viewed in color.

regression net, which corresponds to the regression layers. yt
i denotes the ith slice position

label. w f and wt
y are trained for the ith image by using the labeled source data {xs

i ,y
s
i}Zs

i=1.
2) Since dataset adversarial learning satisfies a dataset adaptation mechanism, we min-

imize source and target representation distances through alternating minimax between two
loss functions: one is the dataset discriminator loss

argmin
wd
{− 1

N

N

∑
i=1

L i
d(Gso f t(Gconv(xs

i ,x
t
i, ;w f );wd),di)} (6.3)

which classifies whether an image is drawn from the source or the target dataset. od in-
dicates the output of the dataset classifier for the ith image, wd is the parameter used for
the computation of the dataset prediction output of the network, which corresponds to the
dataset invariance layers; di denotes the dataset that the example slice i is drawn from. The
other is the source and target mapping invariant loss

argmax
w f
{− 1

N

N

∑
i=1

L i
f (Gso f t(Gconv(xs

i ,x
t
i;wd);w f ),di)} (6.4)
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which is optimized with a constrained adversarial objective by computing the cross entropy
between the output predicted dataset labels, and a uniform distribution over dataset labels.
N = Ns+Nt being the total number of samples, D indicates the number of input channels.
Our full method then optimizes the joint loss function

E(w f ,wd,wt
y) = Ly(Gsigm(Gconv(xs;w f );wt

y),y
t)

+λL f (Gso f t(Gconv(xs,xt ;w f );wd),d),
(6.5)

where hyperparameter λ determines how strongly the dataset invariance influences the opti-
mization; Gconv(·) is a convolution layer function (feature extraction) that maps an example
into a new representation; Gsigm(·) is a label prediction (sigmoid) layer function; Gso f t(·)
is a dataset prediction (softmax) layer function.

Similar to classical CNN learning methods, we propose to tackle the optimization prob-
lem with the stochastic gradient procedure, in which updates are made in the opposite di-
rection of the gradient of Equation. (6.5) to minimize parameters, and in the direction of
the gradient to maximize other parameters [70].

6.3.3 MLMT Learning with Privileged Information

In this section, we provide the learning procedure of our MLMT* learning network for
slice position and orientation estimation, instead of using metric regression network. Then,
we show that our framework can be trained end-to-end by optimizing the regression and
spatial structured constraints.

1) Multi-label Multi-task Learning (MLMT): To fully capture the spatial information
relevant to the left- and right-ventricle in every slice, we employ a CNN as the feature
extractor in order to efficiently encode the spatial information. We choose DIAL model
to extract the features of each slice cross cardiac datasets and predict the corresponding
position and orientation with multiple regression tasks.

The traditional multi-task learning (MTL) [269] [277] seeks to improve the generaliza-
tion performance of multiple related tasks by learning them jointly. Suppose we have a total
of T tasks and the training data for the tth task are denoted as, (xt

i,y
t
i), where t = {1, ...,T},

with xi,yi ∈ {{xn
i ,y

n
i }Z

i=1}Ns

n=1 being the input image and label, respectively. The goal of the
MTL is to minimize

argmin
{wt}T

t=1

T

∑
t=1

N

∑
i=1

L (Gsigm(Gconv(xi;wt
f );wt

y),y
t
i)+Φ(wt) (6.6)

where wt = {wt
f ,w

t
y} is the weight vector for tth task and yt

i is the label for ith image for
tth task. The loss function is denoted by L (·). A typical choice is the mean square for
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regression and the cross-entropy loss for classification. Φ(wt) is the regularization term
that penalizes the complexity of weights.

In this work, we divided all the tasks into two groups: regression tasks td for distance
parameter d and regression tasks to for orientation parameters: θ and γ (the definition will
be discussed in experiment section). We follow [172] and adopt data specific scheme for
each task in the two groups, which obtains the distribution of sample number over their
distance and orientation, and set the importance parameters according to this distribution.
For our MLMT with multiple output, each of them corresponding to regression task for ith

image. Let αy denotes the importance coefficient of the label y (y ∈ {yd,yo}) in regression
tasks. In our approach, the importance parameters are set according to the reliability of
different regression parameters. In other words, we set α

td
y =

√
Nd
/
(∑D

d=1
√

Nd) for the

distance regression task and α to
y =
√

No
/
(∑O

o=1
√

No) for the orientation regression task,
where Nd is the number of samples with distance label d, No is the number of samples with
orientation label o. In particular, the td corresponds to a distance regression task, which
is trained to regress the slice distance d in a sequence. Thus, for the task td , the number
of samples with distances nearby d, e.g., samples with distance {(d− δd),d,(d + δd)},
(δd ∈ {0,1/Z}) is more important than other samples for the training of the task td output.
In other words, if more samples are with distance close to d, we could better train the
corresponding position features, and hence it is better to give a relatively larger importance
to it. To this end, the loss function of our regressioning network can be formulated as

argmin
{wt}T

t=1

T

∑
t=1

N

∑
i=1

αyβtL (Gsigm(Gconv(xi;wt
f );wt

y),y
t
i) =

argmin
{wtd }Td

td=1,

Td

∑
td=1

N

∑
i=1

α
td
y βtdL (Gsigm(Gconv(xi;wtd

f );wtd
y ),y

td
i )+

argmin
{wto}To

to=1

To

∑
to=1

N

∑
i=1

α
to
y βtoL (Gsigm(Gconv(xi;wto

f );wto
y ),y

to
i )

(6.7)

where Td and To indicate the total number of regression tasks for distance and orientation,
respective and T = Td + To; βt denotes the importance coefficient of tth task’s error; the
regularization terms are omitted for simplification.

2) MLMT with Privileged Information (MLMT*): In many image processing tasks,
there often exists additional information can help us learn a better model in the training
stage. We call this kind of information as privileged information (PI), such as image cap-
tions. In other words, the PI provide much more the correct information during training,
but in the test stage the model operates without the supervision of the PI. This paradigm is
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called Learning Using Privileged Information (LUPI) and was introduced by Vapnik and
Vashist [246]. In our model, we construct a two-stream framework, which train the first
stream model for SAX images, and the second stream model is trained for the PI (LAX
patches). With this configuration, our framework can not only effectively utilizes priv-
ileged LAX patches, but also can deal with different types of data flexibly, such as the
metadata.

Furthermore, we need a PI loss to replace the original MLMT loss in the training phase,
so that we can use the PI as a ”teacher” to train a more effective model. We propose to
utilize PI to model the loss of training data, penalize the difference of PI modeled loss and
true loss, and add the difference as a regularization term to Equation. (6.7). Specifically,
assume that for each training SAX image xi, we have a privileged LAX patch x∗i . We use
a second stream of network (called MLMT-PI) to model PI. Compared to the first stream
of network, which models the training SAX images, the goal of the second stream is not to
learn a regression model, but to model the loss of the first stream. Denote the output of the
second stream for an input privileged patch x∗i as f ∗(x∗i ), the two streams share the same
loss layer defined by

argmin
{wt ,w∗,tf }T

t=1

T

∑
t=1

N

∑
i=1

αyβtL (Gsigm(Gconv(xi;wt
f );wt

y),y
t
i)+

γ

∥∥∥αyβtL (Gsigm(Gconv(xi;wt
f );wt

y),y
t
i)−G∗conv(x

∗
i ;w∗,tf )

∥∥∥2

2

(6.8)

where x∗,ti is the ith privileged patch and parameterized by the weight vector w∗,tf , ‖·‖2
2

is the L2 norm. Our main hyperprameter is the tradeoff parameter γ , which is tune by
cross-validation in a small subset of the training data.

The proposed MLMT with PI can be optimized in an alternating fashion. Specifically,
we update the main stream while fixing the parameters of the privileged stream until it
converges, and subsequently update privileged stream while fixing the parameters of main
stream. This process is repeated for several times until the whole system converges.

In the following, we formulate our fully fledged DARN* model based on Equation.
(6.5) and (6.9). Suppose we have a set of feature vectors in a shared feature space across
tasks {xi}Z

i=1 and their corresponding labels {yd
i ,y

td
i ,y

tθ
i ,y

tγ
i }Z

i=1, where yd
i is the target of

dataset invariance and the remaining are the targets of slice pose regression, including in-
ferences of ’distance’ and ’orientation’. More specifically, yd

i ∈ {0,1} is binary dataset, ytd
i ,

ytθ
i and ytγ

i are multiple values that represent the distances and orientations in 3D space. It is
reasonable to employ the least square and cross-entropy as the loss functions for the main
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Algorithm 3: DIAL Algorithm.

Input: source data {xs
i}

Zs

i=1, {x∗si }
Zs

i=1;
target data {xt

i}
Zt

i=1, {x∗ti }
Zt

i=1;
ground-truth dataset label yd

i .
Initialize: w f ,wd,wd

y ← random init; d← 0;
while stopping criterion has not been met do

for i from 1 to Ns do
1) Calculate w f , wd

y using Eq.(6.2);
2) Calculate wd using Eq.(6.3) with fixed w f ;
3) Calculate w f using Eq.(6.4) with fixed wd;
4) Update the parameters using gradient descent method [70].

end
end
Output: Neural network parameters {w f ,wd,wd

y};

task (regression) and the dataset invariance task (classification), respectively. Therefore,
the objective function can be rewritten as

argmin
wd ,{wt ,w∗,t}T

t=1

T

∑
t=1

N

∑
i=1

1
2

αyβt
∥∥yt

i− f (xi;wt)
∥∥2

2

+ γ

∥∥∥∥1
2

αyβt
∥∥yt

i− f (xi;wt)
∥∥2 − f (x∗i ;w∗,t)

∥∥∥∥2

2

−
N

∑
i=1

λyd
i log

(
p(yd

i

∣∣∣xi;wd )
)
+

T

∑
t=1

(∥∥∥wd
∥∥∥2

2
+
∥∥wt∥∥2

2

)
,

(6.9)

where f (xi;wt)= (wt)>xi is a linear function. p(yd
i =m |xi )= exp{(wd

m)
>xi}

/
∑ j exp{(wd

j )
>xi}

is a softmax function, which models the class posterior probability (wd
j denotes the jth col-

umn of the matrix). In this work, we adopt the CNN to jointly learn the share feature space
x, since the unique structure of CNN allows for multitask and shared representation.

6.3.4 Model Implementation

1) Network Structure: As shown in Fig. 6.2, our network consists of three parts: Feature
Extraction, Dataset Invariance Learning (DIAL) and Pose Regression (MLMT*). Feature
extraction includes three 5×5 convolutional layers (C1, C2 and C3), each followed by a 2×
2 max-pooling layers (P1, P2 and P3) with stride 2. Followed by P3, there are two branches:
one is DIAL, which consists of two fully-connected layers (F1 and F2), each with 256
Rectified Linear Unit (ReLU) activations neurons; the other one is MLMT*, which includes
two fully-connected layers (F3 and F4). The fully connected layers (F5, F6) following two
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Algorithm 4: MLMT* Algorithm.

Input: training data {xs
i}

Zs

i=1, {x∗si }
Zs

i=1;
testing data {xt

i}
Zt

i=1;
ground-truth distance label ytd

i ;
ground-truth orientation label ytθ

i and ytγ
i .

Initialize: w f ,wt
y← random init;

while stopping criterion has not been met do
for i from 1 to N do

1) Calculate w f and wt
y using Eq.(6.7);

2) Calculate wt and w∗,tf with PI using Eq.(6.8);
3) Update the parameters using gradient descent method [70].

end
end
Output: Neural network parameters and predicted regressor for testing images

{η(xi;w f ,wt
y)}Z

i=1;

Table 6.1: Cardiovascular magnetic resonance protocols for UKBB, MESA and DETER-
MINE Datasets.

Dataset View
Number of
Sequences

Cardiac
Phases

Matrix
Size

Slice
Thickness

Slice
Gap

Slice
Spacing

Slices per
Volume

UKB
SAX 4280 50 208×187 8 mm 2 mm 10 mm ca. 10
LAX 4280 50 208×187 6 mm n.a n.a 1

MESA
SAX 298 20∼30 256×160 6 mm 4 mm 10 mm ca. 10
LAX 298 20∼30 256×160 6 mm n.a n.a 1

DETERMINE
SAX 300 25 128×256 6 10 mm 6 2 mm 10 mm ca. 10
LAX 300 25 128×256 6 mm n.a n.a 1

streams produces a feature vector , which is shared by the multiple tasks in the estimation
stage.

2) Implementation Considerations: The experiments here reported were conducted us-
ing the ConvNet library [51] on an Intel Xeon E5-1620 v3 @3.50GHz machine running
Windows 10 with 32GB RAM and Nvidia Quadro K620 GPU. Networks were optimized
using gradient descent method [118] with these hyper-parameters: learning rate = 0.01,
momentum = 0.9, drop-out rate = 0.1. Trainable weights were randomly initialized from a
Gaussian distribution (µ = 0, σ = 0.01) and updated with standard back-propagation.
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6.4 Experiment

6.4.1 Annotated Datasets

Cardiac MRI data with gold-standard image quality annotations is available for circa
5,000 volunteers of the UKBB imaging resource. On the basis of experts’ visual inspection,
a simple three-grade quality score [21] is used for manual annotation: (1) optimal quality
for diagnosis (4,361 sequences), (2) sub-optimal quality yet analysable (527 sequences),
and (3) bad quality and diagnostically unusable (177 sequences). Since these data have full
coverage of the heart from base to apex, all data with optimal quality was used to construct
the ground-truth classes in our experiments. It is worth noting that data with full coverage
of the heart does not mean the top or the bottom slice corresponds exactly to the base or
apex.

To evaluate the performance of dataset adversarial learning, we use 598 MRI subjects
obtained from the Cardiac Atlas Project (CAP) [65] (see Table. 6.1). The CAP is a web-
accessible resource (http://www.cardiacatlas.org/), which provides a resource for cardiac
image data sharing and atlas-based shape analysis for population studies. The datasets used
in this study are part of two cohorts: MESA and DETERMINE. The imaging protocols
included cine images acquired in short-axis planes from the base of the heart to the apex
and in three long-axis planes. We manually checked one slice above and below the detected
basal slice to make sure it is the right one and generate the annotations, ditto for apical slice
checking.

For evaluating of models with PI (LAX patches) input, the LAX image information
was extracted by collecting pixels values along the intersecting line between the 4-chamber
view plane and corresponding short-axis plane over the cardiac cycle. We extracted 4 pixels
above and below the two plane intersection. We embedded the constructed profile within
a square image with zeros everywhere except the profile diagonal (see Fig. 6.2a bottom
channel).

6.4.2 Data Augmentation and Resampling

Data Augmentation: To prevent over-fitting due to insufficient target data (DETER-
MINE and MESA), and to improve the detection rate of our algorithm, we employ data
augmentation techniques to artificially enlarge the target datasets. For this purpose we
chose a set of realistic rotations, scaling factors, and corresponding mirror images, and ap-
plied them to the MRI images. The set of rotations chosen were −45◦ and 45◦, and the
scaling factors 0.75 and 1.25. This increased the number of training samples by a factor of
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eight. After data augmentation, we had 2400, and 2384 sequences for DETERMINE and
MESA datasets, respectively.

Plane Pose Parameters: The ground-truth of the slice position db (the distance to basal
slice), da (the distance to apical slice) and orientation parameterized with deflection angles
θ in xoy plane and γ in z direction can be obtained from the 2D SAX images in the realistic
3D cardiac volumes. According to the Table. 6.1, the inter slice spacing value δd is
constant in each cardiac volume, thus we can represent da and db by multiple δd. The
orientation is chose based on θ and γ , which are calculated as the following process: 1)
Standard Cardiac Vector: we choose the LV apex point CA

L , the LV blood pool central
points of each middle slice, and the middle point of mitral valve CB

L in basal slice, using the
coordinate of these points to fit the standard cardiac vector ÔS

L [117]; 2) Normal Vector: the
normal vector ÔA

L is perpendicular to the SAX image plane; 3) Deflection Angles θ and γ:
θ is the angle between the x axis and the projection of the deflection vector at xoy plane, γ

is the angle between ÔS
L and ÔA

L , which is calculated as γ = ∠
〈
ÔS

L, Ô
A
L
〉
.

Training set: We choose the UKBB image data and construct the multi-label (ytd , ytθ ,
ytγ ) with a set of realistic distance and orientation values in the images for training our
model. For each cardiac volume, we normalize the distance between basal slice and apical
slice as unit 1, setting the distance label of basal slices as 0 and the distance label of apical
slice as 1, then the label of the rest slices can be synthesised using ytd

i = (i− Zb)/(Za−
Zb) (Za and Zb stand for the apical and basal slice numbers respectively in the sequence
Z). Here, the normalized ytd can not only represent db, but also represent da. Based on
analysis of the in-plane orientation angles distribution for 5,000 subjects for which manual
segmentations are available (and therefore ytθ , ytγ can be computed), we found that ytθ

ranges at the median value of 132.8◦ with standard deviation 8.0◦, ytγ ranges at the median
value of 7.1◦ with standard deviation 3.9◦. The set of orientation labels were chosen from
these realistic distributions and make all used labels balanced by data augmentation.

Testing set: During testing, we extract every slice from top to bottom for each volume
and apply them into the the DARN* model. Our model ouput gives the slice position in
millimeters and two angles (θ and γ) in degrees. There is no LAX patches (PI) in this
phase.

6.4.3 Evaluation Metrics

We verify the effectiveness of our DARN* model through two groups of experiments.
In the first experiment, the DIAL model is evaluated using a binary classification model in-
stead of the MLMT* to detect the basal/apical slice. In the second experiment, we evaluate
the MLMT* model using the fully fledged DARN*.
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To evaluate the detection process, we measure classification accuracy, we use the fol-
lowing established classification metrics: Precision = T P/(T P+FP), Sensitivity = T P/(T P+FN),
Error Rate = (FP+FN)/N, where T P, FP, and FN are numbers of true positive, false pos-
itive, and false negative samples, respectively, and N represents the number of subjects in
the test set.

To evaluate the regression error between the predicted pose and the ground truth, we
adopte Mean Absolute Error (MAE) and Cumulative Score (CS), which are two widely
used performance methods, to evaluate the different models in our experiments. MAE
computes the absolute costs between the exact and the predicted slice position or orienta-
tion (the lower the better): MAE = ∑

M
i=1 ei

/
M, where ei =

∣∣∣l̂i− li
∣∣∣ is the absolute cost of

misclassifying true label li to l̂i, and M is the total amount of testing samples. CS indicates
the percentage of data correctly classified in the range of (li−L, li +L), a neighbor range
of the exact position or orientation label li (the larger the better): CS(L) = ∑

M
i=1 [ei 6 L]

/
M,

where [·] is the truth-test operator and L is the parameter representing the tolerance range.
Also, we used paired t-test to demonstrate the statistical significance of our empirical com-
parison if our DARN* significantly outperforms other methods.

6.4.4 CMR Slice Pose Estimation Results

To fully evaluate the effectiveness of the proposed method in different datasets, we
conduct comprehensive comparison our approach with several state-of-the-art (related) ap-
proaches for cross datasets slice position estimation:

• MC+CNN: Metric Classification with CNN [271]

• MC+CNN*: MC+CNN with PI [122]

• MCDA+CNN: MC-CNN with dataset invariance [70]

• MCDA+CNN*: MCDA+CNN with PI

• MR+CNN: the metric regression CNN in [172]

• DARN-DA: DARN* without DA and PI (MLMT)

• DARN*-DA: DARN* without DA

• DARN: DARN* without PI

• DARN*-MLMT: DARN* without MLMT network [274]
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• DARN*: Fully fledged DARN* method

In particular, MC+CNN can be cast as a fundamental baseline only considering the
deep classification neural network and MR+CNN can be cast as a fundamental baseline
only considering the deep regression neural network. MCDA+CNN is the most relevant
and state-of-the art cross-dataset image classification approach. For clarity, ablation study
[101] is adopted to validate the effectiveness of our DARN* method by removing parts
of the fully fledged model. We consider three special cases of the proposed method by
excluding dataset invariance (DARN*-DA) or excluding privileged information (DARN*-
PI) or excluding MLMT regression neural network (DARN*-MLMT) [274] for proving
that each of the added term is useful for more accurate pose estimation.

1) Results Analysis for Basal and Apical slice Detection: To evaluate the performance
of Dataset Invariance (DI) and Privileged Information (PI), we propose a baseline method
dealing with the object detection problem, which only keeps the End-to-End CNN learn-
ing part and drops the part of transforming framework, i.e., it casts the basal/apical slice
detection problem as a metric classification problem, and addresses it with/without dataset
invariance (adaptation vs non-adaptation) and Privileged Information, by transferring ob-
ject classifiers from the UKBB to MESA and DETERMINE. For clarity, we compared the
Metric Classification with CNN (MC+CNN) in [271], MC+CNN* [122] and the GTSRB
architecture in [70] (MCDA+CNN) with our MCDA+CNN*. Table 5.2 shows the detec-
tion accuracy of the adaptation and non-adaptation for traditional CNN and CNN with PI.
For both target datasets, the best improvements are the result of combining both of these
features (DI plus PI). For MESA the detection accuracy was increased by 64%, and for
DETERMINE best improvements are of 44% (right-most column). All the experiments
are significantly different at p <0.05.

2) Results Analysis for Slice Pose Estimation: We propose another model, which only
keeps the End-to-End CNN learning part with dataset-invariance and PI, and drops the
part of transforming framework, i.e., it casts the metric classification module instead of a
regression module, which transforms slice pose estimation, including the distance and ori-
entation, into multi-label multi-task (MLMT) regression problem. To find out what factor
gives more contributions to the final improvement of performance and validate that our reg-
ularization terms are beneficial, we also compared our proposed DARN* with DARN-DA,
DARN*-DA, DARN*-PI and show a set of results in Table. 6.2 for position estimation
results and Table. 6.3 for orientation regression estimation results.

Table 6.2 shows the average estimation errors of slice distance by the MAE metric in
millimeter (mm). Even without using the PI-input channels, our dataset invariance frame-
work is able to reduce the slice distance estimation error to less than half the average slice
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Table 6.2: Regression error comparison between adaptation and non-adaptation methods,
each with single (SAX)- and PI inputs for cardiac SAX slice position estimation in terms
of MAE (Mean ± standard deviation)(mm). Best results are highlighted in bold. All ex-
periments trained with UKBB data.

Dataset
No dataset adaptation With dataset adaptation

MR+CNN [172] DARN-DA DARN*-DA DARN DARN*-MLMT DARN* (Ours)
UKBB 5.43±1.4 4.11±1.6 3.12±1.1 4.98±1.9 3.86±1.9 3.41±1.9
MESA 8.21±1.6 7.94±2.0 6.53±1.7 4.97±1.0 3.91±1.1 3.68±1.1
DETERMINE 7.42±1.3 6.47±1.9 5.96±1.3 4.77±1.6 4.27±1.0 4.05±1.0

spacing found on our test datasets, i.e., < 5mm. With PI in the training process we reduced
the MAE to 4.27 and 4.05mm on average for slice position estimation. Table 6.3 shows
the MAE of slice orientation estimation by regression θ and γ in degree (◦). Even without
using the PI-input channels, our dataset invariance framework is able to get smaller estima-
tion errors, i.e., ∆θ < 7◦ and ∆γ < 4◦. With PI input we reduced the estimation errors of
∆θ and ∆γ to 5.24◦ and 3.45◦ on average for each volume in DETERMINE.

The comparison in terms of CS of the five state-of-the-art methods and the different
combination of our algorithm. Clearly, DARN* outperforms all others across the entire
range of Ld , Lθ and Lγ from 1 to 10. Specifically for DETERMINE, DARN* can reach the
accuracy of 84.7% for Ld = 8mm, 80.1% for Lθ = 9◦ and 77.9% for Lγ = 6◦. The other fact
we notice is that four regression-based methods reach a higher accuracy for Ld = 10mm,
Lθ = 10◦ or Lγ = 10◦ than the others. All the experiments are significantly different at
p <0.05.

6.5 Discussion

Automatic LVRV coverage estimation of CMR volumes is important in high-throughput
image analysis of population imaging. Importantly, acquisition of thousands of suboptimal
CMR images for later image analysis could be avoided if such quality assessment is per-
formed on-line and a system provides immediate feedback to technical staff at the point of
acquiring new images. Incomplete LVRV coverage and incorrect cardiac orientation influ-
ences the accuracy of ventricle anatomical and functional parameters of clinical interest.
Manual annotation of cardiac pose is laborious, time-consuming and error prone in current
clinical routine. To automate this labor-intensive task, we propose an efficient and robust
framework for automatic across dataset estimation of CMR slice pose. Our framework
has two main tasks: in the first task, we train the DIAL model that computes the common
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representation for different datasets. It also learn image features from different MRI view-
ing planes across CMRI datasets to learn the appearance for the prediction of the different
slice planes pose. The second task robustly estimates the slice pose based on the learned
common representation using the MLMT* for the target cardiac volumes, and can also as-
sist radiologists by automatically labeling potentially incomplete volumes to mark them for
closer inspection. Extensive experimental results illustrate the effectiveness and efficiency
of our method: its performance is superior to other methods with obvious advantages.

In any automatic image quality assessment system for population imaging, accuracy
and robustness are key design criteria. These methods must work without many false
positives or false negatives for basal/apical slice detection and the MAE of the slice dis-
tance/orientation should be small, and have to cope with considerable image quality varia-
tion. Most machine learning methods can achieve a high recognition accuracy by training
and testing on single dataset. However, this can be prohibitive with different databases
or when retraining is required as new data comes available. In this work, we used a very
large dataset comprised of over 5,000 individually annotated cardiac MRI scans of the same
number of subjects and each with 50 time points, which is 50-fold the 100 cases used in
our previous work [271]. However, when transfer our well trained model to other CMRI
datasets, deep learning methods without dataset invariance cannot achieve a good perfor-
mance. We had to design an efficient network learning common representation across
datasets. Considering there is no label information in target datasets, we also need to
learn the discriminative information from source dataset and transfer them to our target
datasets. Adversarial learning has been amongst the most promising solutions for reducing
the difference between the training and test domain distributions and improve generaliza-
tion performance. However, most adversarial learning works have been focused on image
generative tasks, and little effort has been devoted to minimize an approximate domain
discrepancy distance. We propose a novel adversarial learning to detect and localize the
basal/apical slices across datasets, which incorporate the PI (cross-view information) into
the training phrase. Then a MLMT regression network is trained to estimate the slice posi-
tion and orientation. Specifically, our proposed DIAL and PI learning strategy can achieve
a high accuracy rate of nearly 87%/90% for MBS/MAS detection by training on UKBB
and testing on MESA, which is better than the CNN methods without dataset adaptation.
Meanwhile, with the MLMT network, DARN* can decrease the MAE by around 6% com-
pared with DARN*-MLMT [274] approaches for basal slice distance estimation in MESA
dataset.

Our proposed automatic plane pose assessment framework for cardiac cine MRI has
great potential to improve the robustness of later population image parsing. One could
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imagine an approach whereby image analysis is adaptive to image quality and where dif-
ferent models are used depending on whether the volume under analysis incomplete ven-
tricle coverage or incorrect cardiac orientation. In our architecture, we focus on learning
common representation across datasets and develop a MLMT regression network to detect
those that best discriminate slice positions and orientations. The advantages of an adver-
sarial learning based representation for vision tasks are manifold: they can be composed to
create common representations among various datasets of specificity; they are generaliz-
able, as they can be learned once across datasets and then applied to recognize new objects
or categories with no further training. One of our future work is to investigate the possi-
bility of quantifying the ventricle coverage, not specific for slice position and orientation
estimation, so we can predict the percentage of ventricle coverage directly. The difficulty
of calculating the percentage of ventricle coverage lies in the different shape of contigu-
ous ventricle slices, which makes the training of the volumes classifier a non-trivial task.
Another future work is to extend deep-learning method for synthesizing the missed slices,
i.e., synthesizing the basal/or apical slice if a cardiac sample without them and the missing
slices acquired from different positions. This is a limitation of our proposed framework,
which can only estimate the slice positions and orientations. One possible way to achieve
deep learning approach for image synthesis would be to apply generative adversarial net-
work and synthesis the missed slices using adversarial approach on UKBB.

6.6 Conclusion

In this chapter, we have proposed a Dataset Adversarial Regression Network with Priv-
ileged Information (DARN*) framework capable of learning a common image representa-
tion, and using it to detect and estimate CMR slice pose, we achieve this by: first, using
a DIAL model to fit the joint distribution over the images from different datasets with a
minimax game. Second, extending the DIAL model to handle PI input scenarios thereby
obtaining better results for slice pose estimation in cardiac MRI. And third, by introducing
a MLMT regression network to predict the slice poses. We evaluated our framework on
three large datasets UKBB, MESA and DETERMINE and found that our approach sig-
nificantly outperforms state-of-the-art non-dataset-adaptive and non-PI methods. Finally,
Our DARN* framework can be easily generalized to any anatomical structure or image
modality.
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Chapter 7

Quality-Aware Generative Adversarial
Nets for Cross-Dataset Cardiac Cine
MRI Synthesis

This chapter is based on:

• Le Zhang, Marco Pereañez, Stefan Piechnik, Stefan Neubauer, Steffen Petersen and
Alejandro F. Frangi, MSIGAN: Missing Slice Imputation for Cardiac Cine MRI via

Conditional Generative Adversarial Net, accepted by MICCAI 2019. (In Press)

• Le Zhang, Marco Pereañez, Stefan Piechnik, Stefan Neubauer, Steffen Petersen and
Alejandro F. Frangi, SPSGAN: Standard Plane Synthesis in Cardiac Cine MRI via

Unsupervised Cycle-Consistent Adversarial Networks, accepted by MICCAI 2019.
(In Press)

Authors’ contributions: L.Z., M.P. and A.F.F. conceived and designed the study; S.E.P.,
S.N. and S.P. provided support on clinical aspects and he also provided the UK Biobank
data resource to be used for training and testing; L.Z. designed the method, performed data
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7.1 Introduction

In this chapter, we present a new problem in medical image analysis, namely miss-
ing data imputation, and its specific problem in cardiac MR image analysis tasks, such
as missing slice imputation (MSI) and standard cardiac plane synthesis (SPS). In the real
world applications of big data processing, many tasks suffer a common drawback, miss-
ing or unknown data (incomplete feature vector). Specifically, in medical diagnosis, some
examinations cannot be carried out because hospitals lack necessary medical equipment
or some medical examinations are not suitable for some patients. Many studies have pro-
posed different approaches to solve the incomplete data problems. One of these approaches
is to impute or estimate the missing data, then, process the data using the edited set, i.e.,
complete data portion and incomplete patterns with imputed values.

Accurate ventricular volume measurements depend on the complete heart coverage and
correct cardiac orientation in CMR sequences that provide most immediate indicators of
normal/abnormal cardiac function. However, incomplete heart coverage, especially miss-
ing basal/or apical slice, and the slice in CMR sequences with incorrect cardiac orientation
(ICO) are substantial problems that are not sufficiently addressed in current clinical re-
search and have an important impact on volume calculation. In this chapter, we propose
two new deep architectures, one is called missing slice imputation generative adversarial
network (MSIGAN), to learn the features of cardiac SAX slices cross different positions,
and take the features as conditional variables to effectively infer the missing slices in the
query volumes. Another one is called standard plane synthesis in cardiac cine MRI via un-
supervised cycle-consistent adversarial networks (SPSGAN), which given a SAX slice with
ICO, automatically generates images under correct orientation. In MSIGAN, the slices are
first mapped to latent vectors with position features through a regression net, and then the
latent vector with desired position is projected to the condition on slice intensity through
a generator net. The latent vector preserved with the slice features (i.e., intensity) and the
desired position condition control the generation vs. regression. Two adversarial networks
are imposed on the regressor and generator, respectively, forcing to generate more realistic
slices. In SPSGAN, we address this challenge by dividing the problem into two subtasks.
First, we consider using a bidirectional generator that maps the initially rendered image
back to an image with input cardiac orientation, which can be directly compared to the
input image without requiring any GT images. Second, to generate high perceptual quality
images, we propose a novel loss function that incorporates intensity and orientation terms.
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7.2 MSIGAN: Missing Slice Imputation for Cardiac Cine
MRI via Conditional Generative Adversarial Net

Cardiac MRI can not only reflect anatomic information of the heart but also provide
physiological information associated with cardiovascular diseases. The EF and CO of the
both ventricle, defined by the difference between basal and apical slices, are the most com-
monly used clinical diagnostic parameters for cardiac myocardium function and cardiac
volume calculation. Most published studies have addressed this classification problem by
assuming that a complete data set with all features available for all samples. In practice,
this assumption is not valid because some tests may be missed due to high measurement
costs or lack of patient consent [236]. However, full set of features are required for every
sample in the training and testing datasets when training the discriminative classifiers (i.e.,
SVM).

A common strategy to deal with the incomplete data is to delete them from the study
cohort [256] [236]. However, removing data not only reduces statistical ability, but also
raises ethical concerns because the subject data obtained are not yet used. Recently, some
data imputation based methods are proposed to deal with this problem, such as using data’s
mean or model-based missing data estimation [75]. If the missing mechanism is random,
the missing variable can be imputed by the marginal distribution of the observed data us-
ing the maximum likelihood estimation (MLE) [56]. The stochastic regression imputation
method can make better use of the information provided by the data to solve the collinearity
problem caused by the high correlation of predicted variables [208]. when the data miss-
ingness is non-random, the missing variable cannot be predicted only from the available
variables in the database, and there is no general method of handling missing data properly
[75]. The performance of imputation approaches is ideally assessed by both the feature
error and the classification accuracy on the imputed features.

In this section, we adapt the developed generative adversarial net (GAN) to generate the
missing slices after applying the quality control (QC). We propose a MSI-based generative
adversarial network (MSIGAN) model to infer missing slice features from multi-position
images input. After inference, the feature of the desired position and the slice intensity
feature are concatenated for further generating real images in certain positions. The main
contributions of the MSIGAN are highlighted as follows:

(1) A novel deep MSIGAN architecture is proposed for generating missing SAX slices
for cardiac MRI across different positions. A regression net learns intrinsic features of the
input volume firstly. Conditioned on these features as well as a pre-computed feature of
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the expected position, generator and discriminator aim to generate real images of the same
volume in expected position.

(2) Given the feature of the slice in expected position, we design a conditional genera-
tive network to infer an image matching with the missing slice of the input cardiac volume.
The adversarial training mechanism and auxiliary slice position regressor is combined to
achieve effective feature generation.

(3) This is the first paper exploit the deep learning method, especially GAN, for missing
slice imputation in cardiac MRI, which is an important step after QC and before quantitative
medical image analysis. It can be learned once and then applied to synthesize the missing
slice for incomplete heart coverage without any further training.

7.2.1 Methodology

Problem Formulation: The overall target of MSI for cardiac MRI is similar with the
missing data imputation problem in the field of data mining [166]. Given a query cardiac
MR volume, a regression list of slice positions in the gallery set is desired, processing
images synthesis for the query volumes slices where it is missed. For each input a 3D
cardiac image X, we aim to map its feature to a representation f and synthesize the missing
slice x̂ by the following function:

x̂ = Γ(series({fn}N
n=1)) = Γ(series(R(X) · {ϒn}N

n=1)). (7.1)

Where the operator R (·) is to extract the features (i.e., intensity) of the input image X.
{ϒn}N

n=1 is obtained by the regression model to identify the slice position features, like the
distance to basal/or apical slice of the inferred slice. N is the number of slices. Moreover,
the operator Γ(·) denotes the transformation from the concatenated features to the inferred
slice features in the cardiac volume. Finally, we can synthesize the missed slice in a certain
position. Therefore, the most significant factor to achieve effective synthesis is how to
design and optimize the R (·), ϒ and Γ(·).

We formulate the image synthesis for MSI problem with the following three steps: first,
Given an 3D cardiac volume X = {x1,x2, ...,xn} and the corresponding slice position label
y = {y1,y2, ...,yn}, a regression net R (·) aims to learn the cardiac intensity feature fint and
the slice position maps ϒ. Second, exploiting the feature maps for different slice positions
and the intensities as conditions, we aim to generate desired slice features by Γ(·) with
an adversarial training architecture. A generative net takes the intrinsic slice features (i.e.,
intensity) and random vectors and position feature in desired position as inputs to synthe-
size the missed cardiac cine MRI. Third, a discriminative net distinguishes the generated
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Figure 7.1: Structure of the proposed MSIGAN network for cardiac MSI. The regressor R
maps each slice of the input volume to a vector containing intensity and position features.
Moreover, the central point feature of each position cluster over the whole training set can
be obtained and used for generator G. Concatenating the intensity feature and the random
noise to the inferred position cluster center feature, the new latent vector FC 3 is fed to
G. Both the R and G are updated based on the L2 loss between the original and synthetic
volumes. The discriminative net D forces the output slice to be realistic and plausible for a
given position label.

samples from the real images, and simultaneously tries to match the inferred slices with
correct features and positions. The network architecture is illustrated in Figure 7.1. The
synthesized slices can be directly adopted for imputing the missed slice in the target CMR
volumes.

Cardiac feature learning and slice position estimation: To generate CMR slices
in SAX view, a deep regression network R aims to learn CMR image features including
slice position fd and intensity fInt . Formally, XS denotes the input cardiac image stack
with full ventricular coverage. The trunk architecture of the regression net consists of 4
convolutional layers (kernel size = 5, padding = 2 and stride = 2) and 2 fully-connected
layers. The Leaky-ReLU is set after each layer. Leaky-ReLU includes a very small slope
for negative value inputs. This mitigates against dead neuros, as the derivative is always
non-zero, allowing gradient based learning to occur (however slow). Then, we configure
two layers for learning the 256-dimensional fInt with the intrinsic intensity features and
128-dimensional fd by inferred slice position regression separately, since we expect slice
position information weakened in fInt , but strengthened in fd . During training the regression
net, the loss function can be fast and well converged. Thus, we can easily learn each
position’s feature cluster from all the training data by k-means clustering, and compute the
feature in the center of each cluster, fdc, as a condition to generate slices in the missed
position.
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Conditional Cardiac GAN: Instead of generating real images by normal GANs, our
model aims to transform the features from CMR volumes with full ventricular coverage
into the query CMR volumes, which miss slices in certain positions, by a generative model.
The conditional generator is defined as G: RF ×RZ×RT →RS, where F is the dimension
of intrinsic cardiac intensity, Z is for random noise, T is the dimension of inferred slice
position and S is for cardiac slice. Besides, the discriminator is denoted as D: RS →
{0,1}×∏ li, where i= {1 : fInt ,2 : fdc}. li denotes the range of each label. The optimization
of the G and D can be reformulated as:

LD = Ex∼pdata(x)[logD(x)]−
2

∑
i=1
‖li−D(x))‖2

2 (7.2)

LG = EA;B;C[log
(

1−D(G(fT
dc,z, f

S
Int))

)
], (7.3)

where
A→ fT

dc ∼ pdata(fT
dc),

B→ z∼ pz(z),

C→{fS
Int} ∼ pdata(fS

Int).

The input of the generator G is the concatenation of the fS
Int , f

T
dc and a random noise prior

z ∼N (0,1). fS
Int can be regarded as intrinsic intensity features from the original slices,

while fT
dc are the desired position feature in the center of the cluster. A fully-connected layer

is set for better fusing the three vectors and then four deconvolutional layers are adopted
for generating synthesized slice samples. The hyper-parameter settings of the generative
net are reverse to that of the regression net R.

The discriminator D takes the generated samples and the real images in the target CMR
volume as inputs. The main structure of D has the similar structure in regression net. To
match the inferred slices with the same intensity features and correct slice position in the
query volumes, we add a fully-connected layer and simultaneously optimize the whole
discriminative net by slice position regression. The position label for the synthetic slice is
same with the expect position label in the query volume. Batch normalization and ReLU
are adopted for all the layers in the discriminator as well. Meanwhile, to ensure the output
slice sharing the intensity with the input image (during training), the input image and output
image are expected to be similar as expressed in Equation. (7.4), where L(·) denotes L2

norm.
LL2N = L(x,G(R(x))) (7.4)

Optimization: The training scheme for MSIGAN consists of three steps. In the first
step, R is trained using a deep regression net for slice feature learning. Then, the computed

133



different slice position features are obtained. In the second step, G is fed by the learned
real position features from different cardiac volumes, which is fused with the intensity
features fS

Int and the random noise z. Four deconvolutional layers are adopted for G to
generate synthesized slice samples. Both the regressor and the generator are updated based
on the L2 loss between the input and output volumes to ensure they are similar. In the
following step, the discriminative net D employs a general fully convolutional network to
distinguish the real images from the generated ones. Rather than maximizing the output of
the discriminator for generated data, the objective of feature matching [204] is employed to
optimize G to match the statistics of features in an intermediate layer of D. The objective
function is defined in the following equation:

LMSI =min
G

max
D,R

E(log
(

1−D(G({fS
Int ,z, f

T
dc}))

)
)+

2

∑
i=1
‖li−D(x))‖2

2

+
∥∥∥E(Dk({fS

Int , f
S
d}))−E(Dk(G({fS

Int ,z, f
T
dc})))

∥∥∥2

2
−L(x,G(R(x)))

(7.5)

where k means the kth layer in D (k = 4 in our setting). Moreover, D is trained with
slice position regression to better match generated position features with input volume’s
identities. We apply one more conv layer to output the final position features. For all the
conv layers in G and D, we adopt Leaky-ReLU activation and batch normalization. The
conditioned G and D nets can be optimized by LMSI to infer the missing features from
query input volumes.

7.2.2 Experiments and Analysis

Materials and Position Label Generation. Quality-scored CMR data is available for
circa 5,000 volunteers of the UKBB imaging resource. Following visual inspection, manual
annotation for SAX images was carried out with a simple 3-grade quality score [21]. 4,280
sequences correspond to quality score 1 for both ventricles, these had full coverage of the
heart from base to apex and were the source datasets to construct the ground-truth distance
label for our experiments. Note that having full coverage should not be confused with
having the top/bottom slices corresponding exactly to base/apex [274].

The slice position labels are generated from the realistic distances to apex point and
base point. To obtain the apex point, we take last 2 apical 2D manual delineations and
fit a spline curve to extrapolate location of the apex. Then measure distance to apex for
all image slices; to obtain the base point, we use LA manual delineations on the 4CH LA
image view to define the center of the MV as the base. Then measure distance from this
point to all image slices. To make each slice label represents the distance to apex and base
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Figure 7.2: Example of synthesized images (left) generated by MSIGAN, compared to the
GTs (right).

simultaneously, we normalize the distance from base to apex as unit 1 for all cases (base as
0 and apex as 1), and label the middle slices with values equally increased from 0 to 1. For
the slices above base and below apex, we also use the equal interval to label them.

Experimental Settings. We performed two groups of experiments in this work. In
the first experiment, we aim to evaluate the quality of the images generated by MSIGAN.
The averaged peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index are
used to measure the image quality of those ground-truth (GT) and synthetic MR images.
In the second group, we evaluate the imputed cardiac volumes with corresponding GT
on both tasks of LV segmentation and measurement of cardiac function based on blood
volumes. Four parameters are used for performance evaluation, including two commonly
used indexes of the cardiac function derived from such volumes viz. SV and EF, and
similarly report the differences between the real and imputed coverages.

Performance of Image Synthesis Model. To evaluate the quality of the images gener-
ated by MSIGAN, we first train the MSIGAN model using 3,280 complete subjects from
the 4,280 cases with quality score 1 in UKBB, and test our model on the rest 1,000 sub-
jects. We take the 1,000 testing subjects for which the GT slices are available and randomly
remove the slices to generate incomplete volumes, and using our MSIGAN to synthesize
the missed slices. Several typical images with real and synthetic slices are shown in Fig-
ure. 7.2. We can observe that our synthetic slices look very similar to their corresponding
real images. Also, the mean and standard deviation of PSNR and SSIM values of synthetic
slice are listed in Table 7.1. Results indicate that MSIGAN performs much better than other
methods based on the other metrics of PSNR and SSIM for missing slice synthesis. These
results imply that our trained MSIGAN model is reasonable, and the synthetic cardiac MRI
scans have acceptable image quality (in terms of PSNR and SSIM).

Results of Cardiac Functional Parameters Calculation. To assess the impact of syn-
thetic images in real applications, such as measurement of cardiac function based on blood
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Table 7.1: Quantitative results for missing cardiac MRI synthesis based on PSNR and
SSIM. Higher values indicate better performance. Values in bracket represent standard
deviation across volumes. Absolute highest performing results seen in bold.

Mean GMM [256] SCGAN [272] MSIGAN (ours)

PSNR 20.49±5.21 22.17±3.75 17.49±3.46 24.49±3.69
SSIM 0.547±0.21 0.686±0.24 0.512±1.71 0.703±0.11

Table 7.2: Effect of incomplete cardiac coverage (MBS) on the ED, ES, SV and EF. Values
are shown as Mean ± standard deviations.

Ground
Truth

Missing Basal
Slice (MBS) Effect(%)

Synthetic
Image Effect(%)

LVEDV(ml) 155.8±35.6 136.1±33.4 -12.6% 151.7±33.7 -2.6%
LVESV(ml) 66.8±21.2 53.0±19.0 -20.7% 61.3±22.3 -8.2%
LVSV(ml) 89.1±19.8 83.1±19.7 -6.7% 90.4±18.7 +1.5%
LVEF(%) 57.1±0.06 61.0±0.06 +6.8% 59.6±0.06 +4.4%

volumes, we design an experiment where incomplete coverage is simulated and volume dif-
ferences between ground-truth, synthetic volumes and incomplete volumes are measured.
The experimental results achieved by seven different cardiac parameters using LV segmen-
tation method in [238] are reported in Table 7.2. For this experiment, we compute blood
pool volumes at the ED and ES phases, and from these, we obtain SV and EF. Then, the
average volumes and indexes are computed across the sample, comparing the ground-truth,
synthetic volumes and incomplete volumes. Table 7.2 shows that MBS reduces ED and
ES volumes by an average of 12% and 20%, respectively. In contrast, the synthetic values
are much closer than the GT values, with 2.6% and 8.2% reduction in volumes at ED and
ES phases. These results clearly demonstrate that the synthetic images generated by our
MSIGAN model are useful in clinical application. Significant differences between each
methods (p <0.05) are indicated respectively.

7.2.3 Conclusion

In this section, we proposed a deep MSIGAN to implement missing cardiac cine MRI
generation and contribute to the missing data imputation neglected by the medical imaging
community. The MSI adopts a slice position regression model and the adversarial training
architecture to impute those missing slices based on their corresponding distances to base
and apex, considering the relationship between neighbour slices scanned for the same sub-
ject. Extensive experimental results showed that our model could both achieve satisfactory
performance on missing slice generation and imputation compared to some baselines. Our
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method are reasonable to practical applications. Currently, only the complete images are
used for learning the segmentation models. Using these synthetic slice data could further
augment the training samples for improvement, which will be our future work.
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7.3 SPSGAN: Standard Plane Synthesis in Cardiac Cine
MRI via Unsupervised Cycle-Consistent Adversarial
Networks

Cardiac MRI can not only reflect anatomic information of the heart but also provide
physiological information associated with cardiovascular diseases. This requires the care-
ful selection of consistent orientation of short-axis (SAX) image planes with respect to the
cardiac ventricles such as the basal slice (BS) and apical slice (AS) plane that contain key
anatomical structures [273]. If the plane orientation deviates significantly from expected
values, local image structure may change enough to cause subsequent image feature-based
algorithms to fail in localizing key features required for further morphological and func-
tional analysis. However, it is challenging and time-consuming even for experienced MRI
scanner to manually navigate the machine to find the correct standard plane. The task is
highly operator-dependent and requires a great amount of expertise. With the advent of
cardiac MRI, 2D slice in SAX view can be acquired quickly with little training. But the
problem of locating diagnostically required standard planes for biometric measurements
remains. There is a strong need to develop automatic methods for 2D standard plane gen-
eration from existing 2D slices to improve clinical workflow efficiency.

Image Generation is a hot topic which has achieved great success in many vision tasks,
such as text-to-image generation [191] and image style transformation [140]. Generative
Adversarial Networks (GANs) [81] adopt a convolutional network (discriminator) to a de-
convolutional network (generator) in order to improve the performance of the generator in
learning a realistic data distribution while trying to confuse the discriminator. It has shown
impressive results in rendering new realistic images. Conditional Generative Adversar-
ial Networks (cGANs) [162] is more advanced in image generation and more suitable for
image translation tasks. It is developed by adding the input condition vector, which can
include vast amount of information, to the generator. Medical image synthesis is currently
an emerging area of interest for application of the latest image generation techniques men-
tioned above. Nie et al. [170] proposed a context-aware GANs by adding an image gradient
difference term to the loss function of the generator, with the aim of retaining the sharp-
ness of the generated images. Dar et al. [46] utilized CycleGAN and pix2pix technique in
generating T1-weighted MR contrast from T2-weighted MR contrast or vice versa.

Inspired by above ideas, we propose a GAN framework using fully unsupervised ap-
proach, which given a SAX slice with ICO, automatically generates images under standard
orientation. To train this model using unlabeled data (i.e., our training data consists of the
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query images and the images with correct orientation of different cardiac volumes), we pro-
pose a Cycle-GANs based architecture that combines a novel loss function that transfers
the plane orientation and generate new images of high perceptual quality [76]. The main
contributions of the SPSGANs are highlighted as follows:

(1) A novel deep SPSGAN architecture is proposed for generating SAX images with
correct plane orientation. To achieve this, we devised a novel loss function computed over
the images used in a Cycle-GANs for orientation transfer.

(2) Unlike the traditional Cycle-GANs, we proposed an unsupervised strategy that is
trained in the absence of paired examples for imageto-image translation.

(3) This is the first paper exploit the deep learning method, especially GAN, for ori-
entation based cardiac slice generation, which is an important step after QC and before
quantitative medical image analysis.

7.3.1 Methodology

Problem Formulation: In order to produce realistic standard orientation transforma-
tions of the input slice while retaining the intensity appearance, we use a single SAX slice
as input and train a GAN model using an unsupervised approach. Formally, we seek to
learn the mapping (xi

t , fθo, fγo)→ xi
o between an image xi

t ∈ RH×W×Z with incorrect plane
orientation < θt ,γt > and the image xi

o ∈ RH×W×Z with the standard plane orientation
< θo,γo > and same cardiac identity. Orientations are represented by < θ ,γ >, where θ

indicates the deflection angle in xoy plane and γ indicates the deflection angle in the z di-
rection of the 3D coordinate, respectively. The subscript o and t denote as the standard

(correct) and transformed (incorrect) orientations, respectively. The model is trained using
an unsupervised approach with training samples {xi

o,x
j
t }N

i, j=1, which do not include the GT
image x j

o.
SPS Unsupervised Cardiac GAN (SPSGAN): Figure. 7.3 shows the structure of our

SPSGAN model. It consists of five main modules: (1) The learned real orientation features
[fθ , fγ ] of images from different cardiac volumes, which are concatenated with the features
in the generator for better generating an image with desired orientations. (2) A generator
G(x

∣∣(fθ , fγ )) that maps one given slice under an incorrect orientation to an output slice
under the correct (standard) orientation with the same cardiac identity. Note that G is used
twice in our network, first to map the input image xi

tr→ xi
og and then render the latter back

to the initial orientation xi
og → x̂i

tg; (3) A regressor R responsible of estimating the slice
orientation of a given image. Note that R is different from the pre-trained regression net for
feature extraction in (1); (4) A discriminator D that tries to discriminate the generated and
real images; (5) A loss function that aims to preserve the cardiac intensity by computing
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Figure 7.3: The structure of our SPSGAN to generate standard plane of cardiac MRI in
SAX view. Our model consists of five main components: a generator G, a discriminator
D, an orientation regressor R, the transfer net T and the pretrained orientation features.
Neither GT image is considered.

without GT. To address this challenge, we propose a novel loss function that enforces in-
tensity content similarity of xi

tr and x̂i
tg, and orientation similarity between xi

og and x j
or. In

the following, we describe in detail each of the five modules.
Real Orientation Feature Embedding: The orientations of all volumes are linearly

distributed and categorized with two parameters < θ ,γ >. During training the regression
net, the loss of orientation regression can be fast and well converged. Thus, we can easily
learn the each orientation feature cluster from all the training data by k-means clustering,
and compute the feature in the center of the cluster, as a condition to generate images in
desired orientation. The feature of each orientation in an image xi

t ∈RH×W×Z is represented
as a probability density map f computed over the entire image domain as:

f = Γ(series({xn}N
n=1)). (7.6)

Where the operator Γ(·) is to extract the feature of the input image x. N is the defined
number of slices.

Generator: Given an input image x, the generator G(x
∣∣(fθ , fγ )) aims to render the

input slice of an incorrect orientation in a standard orientation with < θo,γo >. To condi-
tion the generator with the orientation features we consider the concatenation (x, fθ , fγ) ∈
RH×W×Z and feed this into a feedforward network, which generates output images of the
same size as x. To achieve an impressive results for the image-to-image translation, we
adopt the variation of the network from [105] to construct the generator.
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Image Discriminator: We adopt the PathchGAN [102] network as the discriminator
D(x), which maps from the input image x to a matrix Ys ∈ R26×26, and the discriminator
tries to classify if each 26×26 patch in an image is real or fake. Since a smaller PatchGAN
can generate high perceptual quality images with fewer parameters and less time [102], we
run the discriminator across the image with convolutional manner and average all responses
to provide the final output D.

Orientation Regressor: The D distinguishes the generated samples from the real im-
ages, and simultaneously we use an orientation regressor R tries to regress the inferred slice
with correct orientations. R is implemented with the ResNet architecture in [280].

Optimization: We have three terms to be optimized for the full loss function. An
generative adversarial loss that enforces the distribution of the generated image to be similar
to that of the training image. An orientation regression loss that enforces the orientation
of the generated images to be similar to the standard orientation. The transfer loss that
preserve the cardiac identity between the generated and the input images. Next, we will
describe each of these terms.

Generative Adversarial Loss: To optimize the parameters of generator G and learn the
distribution of the training data, we perform a standard minmax strategy game between
the generator and the image discriminator D. The generator and discriminator are jointly
trained with the objective function Ls(G,D,x, fθ , fγ) where D tries to maximize the prob-
ability of correctly classifying original and rendered images while G tries to foul the dis-
criminator.

Ls(G,D,x, fθ , fγ) = E[logD(x)]+E[log
(
1−D(G(x

∣∣(fθ , fγ))
))
] (7.7)

Orientation Regression Loss: The generator G not only reduces the generative adver-
sarial loss, but also must reduce the error produced by the orientation regressor R. In this
way, while learning to produce realistic samples, G also learns how to generate images
consistent with the standard orientation < θ ,γ >. This loss is defined by:

Lo(G,R,x, fθ , fγ) =
∥∥R(G(x

∣∣(fθ , fγ )))−< fθ , fγ >
∥∥2

2 (7.8)

Transfer Loss: With the two previously defined losses Ls and Lo, G is enforced to
generate realistic cardiac slices with correct orientation. However, in the absence of GT
supervision, there is no constraint to ensure the appearance identity. We derive inspira-
tion from the previously introduced content-style loss to maintain high perception quality
in image style transfer [76]. The loss mainly consists of two parts, one retains intensity
similarity and the other transfers orientation similarity. Inspired by this idea, we define two
sub-losses to maintain the identity between the input slice xi

tr and the rendered slice xi
og.
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For the intensity term, we define that G should be able to render-back the initial slice
xi

tr given the generated slice xi
og and the original orientation features < fθt , fγt >, that is

x̂i
tg ≈ xi

tr, where x̂i
tg = G(G(xi

tr
∣∣(fθo, fγo)

)∣∣(fθt , fγt )
)
. Nevertheless, even when using Patch-

GAN based discriminators, directly comparing xi
tr and x̂i

tg at a pixel level would struggle
to handle highfrequency details leading to overly-smoothed images. Instead, we compare
them based on their intensity content. Formally, we define the intensity loss to be:

Lintensity =
∥∥Tl(xi

tr)−Tl(xi
tg)
∥∥2

2 (7.9)

where Tl(·) represents the feature representation at the lth layer of the network.
In order to transfer the standard orientation information of the real slice into the ren-

dered one, we take over the spatial extent of the feature maps to design the feature space
for capturing texture information. As previous work [76] implement this by computing
the Gram matrix Ml ∈ RU×U , where Ml is the inner product between the vectorised fea-
ture maps of xi

og. The orientation loss is then computed as the mean square error between
visible pairs of Gram matrices of the same joint in both images xi

og and x j
or:

Lorientation =
1
L

L

∑
l=0

(
Mi,l

og−M j,l
or

UV

)2

(7.10)

where Mi,l
og and M j,l

or are the orientation representation in the layer l of the generated image
and the real image with standard orientation, respectively. In layer l, there is Ul feature
maps each of size Vl , where Vl is the height times the width of the feature map. Finally, we
define the transfer loss as the weighted sum of the intensity and orientation losses:

LT S = Lcontent(T,xi
tr, x̂

i
tg)+λLorientation(T,xi

tr,x
i
og,x

j
or) (7.11)

where he parameter λ controls the relative importance or the two components.
Full Loss: We take the full loss as a linear combination of all previous loss terms:

LSPS = argmin
G

max
D,R,T
{αLs(G,D,x, fθ , fγ)+βLo(G,R,x, fθ , fγ)+LT S} (7.12)

where α and β are the weighting factors for image adversarial and orientation regression
loss, respectively.

7.4 Experiments and Analysis

Materials and Evaluation Metrics. There are 5,000 CMR subjects available in the
UKBB imaging resource and each volumetric sequence contains about 50 cardiac phases.
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Based on analysis of the in-plane orientation angles distribution for the 5,000 subjects for
which manual segmentations are available (and therefore θ , γ can be computed), we found
that θ ranges at the median value of 132.8◦ with standard deviation 8.0◦, γ ranges at the
median value of 7.1◦ with standard deviation 3.9◦. Among them, there are 302 cases under
standard cardiac orientations (θ = 135◦,γ = 0◦). The set of orientation labels were chosen
from these realistic distributions and trained in a regression net to obtain the real orientation
features.

Since our SPSGAN model is trained using the unsupervised approach, we need to gen-
erate the slices with correct orientation as GT for the slices under incorrect orientations to
evaluate the synthetic images. The GT images are resampled from the interpolated 3D car-
diac volumes by Paraview1 . The resampled slices are chosen with correct orientations and
the same position (i.e., the distance to base and apex) compared with the original images.

Experimental Settings. We verify the effectiveness of our unsupervised SPSGAN
model through two groups of experiments. In the first experiment, the synthetic slice is
evaluated against the GT using rotation angles (δθ viz. δγ) between the planes. Im-
age similarity of the planes is also measured using peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM). In the second group, we evaluate the synthetic slices with
corresponding GT on both tasks of LV segmentation and measurement of cardiac function
based on blood volumes. Four parameters are used for performance evaluation, including
two commonly used indexes of the cardiac function derived from such volumes viz. SV
and EF, and similarly report the differences between the real and imputed coverage.

Performance of Image Synthesis Model. We train the SPSGAN model using the
302 subjects with correct orientation and same number of cases with incorrect orientations
in UKBB, and test the model on another 100 subjects with incorrect orientations and the
corresponding resampled GT. Training images are only associated to the original slices with
correct and incorrect orientations. No GT images are considered during training. Several
typical images with real and synthetic slices are shown in Fig. 7.4. We can observe that
our synthetic images show a slight different with their corresponding original images, but
similar with their corresponding GT images. This is because the local image structure
in planes with different orientations will change. Also, the orientation angles, SSIM and
PSNR between synthetic, original and GT slices are shown in Fig. 7.4. These results
imply that our trained SPSGAN model is reasonable, and the synthetic CMR images have
acceptable representation for the standard planes.

Results of Cardiac Functional Parameters Calculation. To assess the impact of syn-
thetic images in real applications, such as measurement of cardiac function based on blood

1https://www.paraview.org/
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Figure 7.4: Example of synthesized images generated by SPSGAN and the corresponding
original images with orientation angles, PSNR and SSIM values, compared to the GTs.

Table 7.3: Effect of ICO on the ED, ES, SV and EF. Values are shown as Mean ± standard
deviations.

Ground
Truth

Synthetic
Image Effect(%) ICO Image Effect(%)

LVEDV(ml) 159.6±32.7 151.5±34.9 -5.1% 142.9±31.5 -10.5%
LVESV(ml) 72.4±23.1 68.3±20.3 -5.7% 64.3±22.4 -11.2%
LVSV(ml) 87.2±17.6 83.2±18.4 -4.6% 78.6±17.9 -9.9%
LVEF(%) 54.6±0.08 54.9±0.09 +0.5% 55.0±0.08 +0.7%

volumes, volume differences between GT, synthetic volumes and volumes with incorrect
cardiac orientation are measured in this experiment. The experimental results achieved by
seven different cardiac parameters using LV segmentation method in [238] are reported in
Table 7.3. For this experiment, we compute blood pool volumes at the ED and ES phases,
and from these, we obtain SV and EF. Then, the average volumes and indexes are computed
across the sample, comparing the GT, synthetic volumes and incomplete volumes. Table
7.3 shows that the incorrect plane orientation reduces ED and ES volumes by an average
of 10% and 11%, respectively. In contrast, the synthetic images are much closer than the
GT values, with 5.1% and 5.7% reduction in volumes at ED and ES phases. These results
clearly demonstrate that the synthetic images generated by our SPSGAN model are useful
in clinical application.
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7.5 Conclusion

We have presented a novel approach for generating cardiac cine MRI under standard
plane orientation using a GAN model that can be trained using a fully unsupervised ap-
proach. Finding the correct standard plane is highly operator-dependent and requires a
great amount of expertise. To tackle this challenge, we proposed an new framework that
aims at retaining the cardiac orientation and intensity of the original image instead of train-
ing the data by optimizing a loss function that only depends on the input image and the GT.
Extensive experimental results showed that our model could both achieve satisfactory per-
formance on standard cardiac slice generation compared to some baselines. Our method
are reasonable to practical applications. In the future, we plan to further exploit our ap-
proach in other datasets (not only of UKBB) in different modalities for which supervision
is not possible.
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Chapter 8

Summary and Future Work

Here, we give a brief overview of the scope of the thesis and the related research prob-
lems. In addition, we summarize briefly the proposed and achieved technical contributions.
We also discuss the current limitations of the proposed algorithms and propose possible
directions for future research. Finally, we conclude the thesis with a general outlook on
possible cardiac image computing research.

8.1 Summary and Achievement

Biomedical imaging has become an indispensable and increasingly important compo-
nent of disease diagnosis and treatment. MRI is a well-established imaging modality that
is widely used in clinical examination, diagnosis, treatment, and decision-making; how-
ever, in practice, MRI is susceptible to a variety of artifacts that reduce image quality,
possibly leading to inefficient and/or inaccurate diagnoses. Sources of artifacts in MRI in-
clude nonideal hardware characteristics, intrinsic tissue properties and possible changes in
them during scanning, assumptions underlying data acquisition and image reconstruction
processes, and poor selection of scanning parameters [139]. To minimize or eliminate ar-
tifacts, automatic methods for such repetitive quality assurance tasks provide the required
consistency and reliability.

CMR imaging is an increasingly common technique for clinical diagnostic imaging of
the heart. For population imaging studies, CMR remains the modality of choice and pro-
vides all-in-one, noninvasive access to cardiac anatomy and function [182]. The quantifi-
cation of LV anatomy and function from large population imaging studies or from patient
cohorts from large clinical trials requires automatic image quality evaluation and image
analysis tools. Basic criteria for cardiac image quality include ventricle coverage and the
detection of missing apical and basal CMR slices [118]. However, full automation and
reliable ventricle coverage assessment for CMR images face certain challenges.
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• Detecting complete/incomplete ventricle coverage, especially missing basal slice and
missing apical slice, as well as finding the position of the basal and apical slices.

• Regression for SAX slices to find the distance and orientation of each slice.

• Synthesis of the missing slices to recover image quality based on detection and re-
gression results.

This thesis has focused on the adverse effects of such challenges imposed by CMR
images on common automated analysis tasks, such as image classification, regression, and
image synthesis. The experimental results demonstrate that the proposed frameworks can
yield more reliable solutions by overcoming the challenges observed in cardiac imaging.

8.1.1 Image Feature Learning for LV Coverage Assessment

CMR images are playing an increasing role in the diagnostic imaging of CVDs. Full
LV coverage, from base to apex, is a basic criterion for CMR image quality and is re-
quired for accurate cardiac volume measurement and functional assessments. Incomplete
LV coverage is identified through visual inspection, which is time consuming and typically
performed retrospectively in the assessment of large imaging cohorts. In Chapter 3, we
discussed using a 2D CNN constructed on single-slice images; the images were then pro-
cessed sequentially. However, this solution ignores the contextual information contained
across slices, which provides inferior performance compared with 3D analysis. In Chapter
4, we proposed an automatic method to determine LV coverage from CMR images using
an FD3D CNN. In contrast to our previous method that uses 2D CNNs, this approach at-
tempts to learn feature representations to achieve reliable classification results even with
small amount of training data or a limited number of iterations. Our FD3D CNN utilizes
3D convolution kernels and exploits spatial contextual information in volumetric data by
building an end-to-end architecture of CNNs. The proposed FD3D CNN uses the FD cri-
terion in the fully-connected layer to make the features discriminative and insensitive to
geometric structural variations.

At the end of the Chapter 4, we described extensive experiments performed to vali-
date the proposed method on more than 5,000 independent volumetric CMR scans from a
UKBB study. The result demonstrated low error rates for missing basal/apical slice detec-
tion (4.9%/4.6%). To the best of our knowledge, this is the first study to tackle the problem
of automatic detection of missing apical and basal slices in CMR imaging in an evaluation
using a very extensive and challenging population imaging dataset. The proposed method
may also be adapted for LV coverage assessment of other types of CMR image data. Future
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studies can benefit from the FD based classification method to investigate this problem in
more depth.

8.1.2 Adversarial Cross-dataset Feature Learning

Cardiac functional parameters, such as EF and CO of both ventricles, are the most
immediate indicators of normal or abnormal cardiac function. To compute these param-
eters, accurate measurement of ventricular volumes at ED and ES is required. Accurate
volume measurements depend on the correct identification of basal and apical slices on
CMR sequences that provide full LV and RV coverage. In Chapter 5, we proposed a CNN-
based AL approach that detects and localizes the basal/apical slices in an image volume
independently of image acquisition parameters, such as imaging device, magnetic field
strength, and variations in protocol execution. The proposed model is trained on multi-
ple cohorts of different provenance and learns image features from different MRI viewing
planes to learn the appearance and predict the position of the basal and apical planes. To
the best of our knowledge, this is the first study to address fully-automatic detection and
position regression of basal/apical slices in CMR volumes in a dataset-invariant manner.
This was achieved by maximizing CNN’s ability to regress the position of basal and apical
slices within a single dataset while minimizing the classifier’s ability to discriminate im-
age features between different data sources. The results demonstrate superior performance
compared with state-of-the-art methods.

8.1.3 Image Feature Learning for Slice Pose Estimation

CMR imaging is the standard imaging technique used to evaluate morphology and func-
tionality of the heart. After acquisition, automatic techniques can be used to extract volu-
metric information and derive clinical indexes that place a subject within the predetermined
population ranges of normality. Accurate volume measurements depend on the correct
identification of ventricle pose, especially the slice positions and orientations, in CMR se-
quences that provide full LV and RV coverage. In Chapter 6, we proposed a CNN-based
AL approach that regresses the pose of CMR slices in an image volume independently of
image-acquisition parameters, such as imaging device, magnetic field strength, and varia-
tions in protocol execution. We incorporate additional information, such as cross-view im-
age information into the training phrase, and refer to this information as PI. The proposed
model is trained on multiple cohorts of different provenance and unified by a novel PI loss
with different MRI viewing planes to learn the appearance and to correctly orient the short-
axis view planes of the heart. To the best of our knowledge, this is the first study to tackle
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fully-automatic detection and pose estimation of biventricular slices in CMR volumes in
a dataset-invariant manner. We achieve this by maximizing CNN’s ability to regress the
position and orientation of short-axis view planes within a single dataset while minimizing
the classifier’s ability to discriminate image features between different data sources. The
results show superior performance compared with the existing state-of-the-art methods.

8.1.4 Image Feature Learning for Missing Data Imputation

Accurate ventricular volume measurements depend on complete heart coverage and
correct cardiac orientation in CMR sequences that provide the most immediate indica-
tors of normal/abnormal cardiac function. However, incomplete heart coverage, especially
missing basal/or apical slices, and slices in CMR sequences with ICO are substantial prob-
lems that affect the volume, but are not sufficiently addressed in current clinical research.
In this thesis, we propose two new deep architectures. One is called MSIGAN, which is
used to learn the features of cardiac SAX slices across different positions and to consider
the features as conditional variables to effectively infer missing slices in query volumes.
The other one is called SPSGAN, which provided with a SAX slice with ICO, automat-
ically generates images under correct orientation. In a MSIGAN, slices are first mapped
to latent vectors with position features through a regression net and then the latent vector
with the desired position is projected to the slice manifold, conditional on slice intensity
through a generator net. The latent vector preserved with the slice features (i.e., intensity)
and the desired position condition control generation versus regression. Two adversarial
networks are imposed on the regressor and generator, forcing generation of more realistic
slices. In a SPSGAN, we address this challenge by dividing the problem into two principal
subtasks. First, we consider a bidirectional generator that maps back the initially rendered
image to the original orientation, hence being directly comparable to the input image with-
out the need to resort to any training image. Second, we devise a novel loss function that
incorporates intensity and orientation terms, and aims at producing high perceptual quality
images.

8.2 Limitations and Future Work

In this section, the most significant limitations of the presented image analysis methods
are discussed together with suggestions to tackle these limitations in future research. It is
important to note that the technical drawbacks are not limited to the items described in the
following sections.
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8.2.1 Transfer Learning

The most important potential of DL methods lies in their ability to extract a series of
discriminative features from multi-layer neural networks. As mentioned previously, a CNN
is a supervised learning model, and training CNNs from scratch requires extensive mem-
ory and computing resources, otherwise the training process will be extraordinarily time
consuming. DL requires a large number of labeled training data, and manual labeling by
medical experts is both time consuming and very expensive. In addition, in some cases,
such as tumors, few images are available. Training deep models often becomes very com-
plex due to over fitting and convergence problems. It is often necessary to repeatedly adjust
the learning parameters of the network. To overcome this challenge, future research could
focus on pretraining deep models in a supervised manner using natural images or could
employ the transfer learning method to enable the use of datasets from different medical
fields. For example, we can pre-train the deep model on ImageNet dataset and fine-tuning
the parameters, then use it for medical image classification problems.

8.2.2 Unsupervised/Weakly-Supervised Learning

The existing literature indicates that most of the advanced DL methods, particularly
CNN-based frameworks, involve supervised learning approaches. Previous studies have
focused on pretrained CNNs or on using CNNs as a feature extractor, which can be easily
downloaded and directly applied to medical image analysis. In medical image analysis,
end-to-end training of CNNs has become the preferred method. However, applying DL
methods in medical data analysis is problematic because obtaining sufficient annotated data
for supervised learning is a major challenge [254] [200]. Given that labeled training data
is limited, developing methods that can use non-labeled images will be the focus of future
work. In addition, future studies should focus on developing weakly supervised learning
methods that combine the advantages of supervised and unsupervised learning. For exam-
ple, we can use the limited lablled data in UKBB to develop the weakly-supervised model
and then test it on large number of unlabelled data.

8.2.3 Data Harmonization

Typically, datasets collected by researchers and clinicians, particularly those working in
different locations, are often recorded using different formats and protocols. Thus, without
previous reorganization and preprocessing, such datasets cannot be used directly by various
computing technologies, such as the algorithms developed in this thesis. Nevertheless,
consistently and completely achieving this remains a technical challenge. For example, in
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Chapters 6 and 7, we discussed automatically cleaning, computing and reorganizing the
data to include slice distance and orientation information in the UKBB such that the image
input can be read by the slice pose regression pipeline. Even while working with two widely
used public databases, MESA and DETERMINE, several challenges must be overcome.
Therefore, to utilize computational techniques being developed to analyze imaging data
and conduct effective large-scale data analysis, the development of automated methods to
clean and organize data is an important issue.

8.2.4 Metadata Generation

Another important challenge is a method to automatically generate and use appropriate
metadata to effectively describe how the data is recorded. Metadata is a powerful tool to
annotate and exploit image-related information for clinical and research purposes. Meta-
data can be used to organize and archive images and to retrieve images and associated data
from archives. Metadata organizing systems can minimize human burden and will enable
standardization of formats, which will facilitate subsequent data analysis. For example,
text-based reports of medical experts and electronic medical records contain rich clinical
information that could be used to supplement labeled image data. It is expected that, com-
bined with RNNs and CNNs, the natural image subtitle generation methods used in the
computer vision field will be applied to medical image analysis in the near future.

In this thesis, we have reported the development of techniques to extract intensity-level
anatomical information from large-scale cardiac image studies. However, this informa-
tion only describes a single aspect of health and disease. The environment, lifestyle, bio-
chemistry, and genetics can provide additional important complimentary information. As
population studies become established, an important research direction will be to integrate
different data sources and scales of biology and physiology to provide a systemic descrip-
tion of health and disease.

8.2.5 Knowledge Extraction and Interpretation

Once image data is suitably accessed by algorithms (supported by data harmonization
algorithms and standard metadata formats), processed to extract anatomical information,
and integrated with other sources of data, the next natural challenge for researchers will be
to interpret the data for clinical purposes. Analysis of patient data for knowledge extrac-
tion will help deliver better healthcare with regard to disease diagnosis and prognosis, as
well as treatment stratification. For example, in case of cardiac research, tools to extract
more advanced and more complex phenotypes of cardiac health and disease are required.
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Many studies have proven the importance of LV EF in predicting prognosis [44]. Other
studies have established the relationship between LV wall thickness and higher mortality
[53] [206]. Big data analysis will facilitate the study of new cardiac function indicators and
multi-source biomarkers, which, in turn, will enable early identification of patients at risk
for cardiovascular events, which will contribute to reducing mortality and morbidity rates
in developed countries.

In summary, big data analytics is an emerging trend that is creating new opportunities,
as well as challenges. In future, we will see rapid and extensive implementation and use
of big data analysis by healthcare organizations and healthcare industry. To that end, the
challenges highlighted above must be addressed in a holistic manner. As big data analyt-
ics becomes more widespread, it will attract more attention regarding the importance of
establishing standards and continually improving related tools and technologies.

In this context, proper analysis of large amounts of medical image data is an important
step toward developing methods to process and extract the information that can be derived
from this data. Thus, the quality assessment and analysis tools that have been presented in
this thesis represent an important step toward achieving effective big data analytics of all
medical related information. Big data analytics and its application in healthcare are at a
nascent stage of development; however, advances in tools can accelerate their maturation.
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• Le Zhang, Marco Pereañez, Christopher Bowles, Stefan Piechnik, Stefan Neubauer,
Steffen Petersen and Alejandro F. Frangi, Missing Slice Imputation in Population

CMR Imaging via Conditional Generative Adversarial Nets, MICCAI 2019, Ac-
cepted (AR < 30%).
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nik, Stefan Neubauer, Steffen E. Petersen, Alejandro F. Frangi, High Throughput

Computation of Reference Ranges of Biventricular Cardiac Function on the UK

Biobank Population Cohort, MICCAI Statistical Atlases and Computational Mod-
eling of the Heart (STACOM) Workshop, pp. 114-121, Springer, 2018.

• Le Zhang, Ali Gooya, and Alejandro F. Frangi, Semi-supervised assessment of in-

complete LV coverage in cardiac MRI using generative adversarial nets, MICCAI
Workshop on Simulation and Synthesis in Medical Imaging (SASHIMI), pp. 61-68.
Springer, Cham, 2017

• Le Zhang, Ali Gooya, Bo Dong, Rui Hua, Steffen E. Petersen, Pau Medrano-Gracia,
and Alejandro F. Frangi, Automated quality assessment of cardiac MR images using

convolutional neural networks, MICCAI Workshop on Simulation and Synthesis in
Medical Imaging (SASHIMI), pp. 138-145. Springer, Cham, 2016

All manuscripts consist of full-length, 8+ page papers that undergo double-blinded peer-review by 3-7
experts in the field, with highly competitive acceptance rates (AR), which are stated, where available. Top
Conferences, such as MICCAI, have lower acceptance rates than many top journals.

154



Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. F. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al. TensorFlow: Large-scale Machine Learning on
Heterogeneous Distributed Systems. arXiv preprint arXiv:1603.04467, 2016.

[2] A. H. Abdi, C. Luong, T. Tsang, G. Allan, S. Nouranian, J. Jue, D. Hawley, S. Flem-
ing, K. Gin, J. Swift, et al. Automatic Quality Assessment of Echocardiograms us-
ing Convolutional Neural Networks: Feasibility on the Apical Four-Chamber View.
IEEE Transactions on Medical Imaging, 36(6):1221–1230, 2017.

[3] S. S. Aboutalib, A. A. Mohamed, W. A. Berg, M. L. Zuley, J. H. Sumkin, and S. D.
Wu. Deep Learning to Distinguish Recalled but Benign Mammography images in
Breast Cancer Screening. Clinical Cancer Research, 24(23):5902–5909, 2018.

[4] S. Albarqouni, C. Baur, F. Achilles, V. Belagiannis, S. Demirci, and N. Navab. Ag-
gnet: Deep Learning from Crowds for Mitosis Detection in Breast Cancer Histology
Images. IEEE Transactions on Medical Imaging, 35(5):1313–1321, 2016.

[5] M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and S. Mougiakakou.
Lung Pattern Classification for Interstitial Lung Diseases using a Deep Convolu-
tional Neural Network. IEEE Transactions on Medical Imaging, 35(5):1207–1216,
2016.
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