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Modular forms for GL(2) over an imaginary quadratic field K are known as
Bianchi modular forms. Standard modularity conjectures assert that every

weight 2 rational Bianchi newform has either an associated elliptic curve over K
or an associated abelian surface with quaternionic multiplication over K. We
give explicit evidence in the way of examples to support this conjecture in the

latter case. Furthermore, the quaternionic surfaces given correspond to genuine
Bianchi newforms, which answers a question posed by J. Cremona as to whether

this phenomenon can happen.



Contents

Introduction v

1 Background 1

1.1 Abelian varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Abelian varieties . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Isogenies and the Tate module . . . . . . . . . . . . . . . . 2

1.1.3 Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Bianchi modular forms . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Quaternion algebras . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Orders in quaternion algebras . . . . . . . . . . . . . . . . 10

1.3.3 Quaternion algebras over local fields . . . . . . . . . . . . 11

1.3.4 Quaternion algebras over global fields . . . . . . . . . . . . 12

2 Surfaces with quaternionic multiplication 13

2.1 Surfaces with quaternionic multiplication . . . . . . . . . . . . . . 14

2.2 Shimura curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Families of surfaces with quaternionic multiplication . . . . . . . . 19

iii



iv

2.3.1 Baba-Granath . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 QM-families . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Galois representations attached to abelian surfaces with quater-
nionic multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Genuine aspects 29

3.1 Base change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Base change . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Inner twists . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Genuine QM-surfaces and newforms . . . . . . . . . . . . . . . . . 33

3.3 Explicit examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Connection with the Paramodularity Conjecture . . . . . . . . . . 42

4 The Faltings-Serre-Livné method 45
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Introduction

One of the crowning achievements of mathematics in the 20th century was the
proof of Fermat’s last theorem. Whilst the result itself is of huge importance in
the mathematical community for historical reasons, perhaps of equal importance
are the striking techniques that were used in order to achieve the proof. Broadly
speaking, Wiles, Taylor-Wiles et al. [Wil95,TW95,BCDT01] proved a deep con-
jecture asserting a correspondence between two of the central objects in number
theory: elliptic curves and modular forms over the rationals. One direction of
this correspondence was established by Eichler and Shimura. The converse direc-
tion, from elliptic curves to modular forms, was the content of the so-called the
Taniyama-Shimura-Weil conjecture and is now called the modularity theorem.
Fermat’s last theorem followed from this result.

The modularity theorem is in fact part of a large network of conjectures and
correspondences known as the Langlands Programme. This framework connects
objects such as abelian varieties, modular forms, Galois representations and L-
functions and it is fair to say that a huge part of modern number theory sits within
this framework. The methods initiated by Wiles and Taylor-Wiles sparked much
activity and progress in the Langlands programme. It is expected that some
version of the modularity theorem generalises to varieties over different fields
and arbitrary dimensions. To date there has been progress in this direction, for
example: elliptic curves over totally real fields [FLHS15]; GL2-type varieties over
Q [KW09]; Q-curves [ES01] Calabi-Yau threefolds [GY11] and abelian surfaces
over Q [BCGP18].

Whereas there has been a lot of work done in the totally real case (cf. [BDJ10]),
there has been comparatively little done beyond such fields. This is because there
is a dichotomy between the two cases which make them qualitatively different to
study. For example, for fields which are not totally real the associated locally
symmetric spaces does not have a complex structure and so the techniques of
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algebraic geometry cannot be applied.

This thesis is primarily concerned with the objects involved for modularity in the
imaginary quadratic field setting. Note that a modular form over an imaginary
quadratic field is called a Bianchi modular form.

It was first noted by J.-P Serre [Ser70] that there could be an analogous connec-
tion between elliptic curves over imaginary quadratic fields and Bianchi modular
forms. There is computational evidence for this conjecture starting with [GM78]
and including [Cre84, CW94, Byg98, Lin05]. Very recently, there has been a ma-
jor breakthrough in proving modularity lifting theorems over imaginary quadratic
fields [ACC+18].

As opposed to totally real fields, in the case of imaginary quadratic fields it is not
necessarily the case that a weight 2 rational Bianchi newform has to correspond
to an elliptic curve. It is possible that it might instead correspond to an abelian
surface with quaternionic endomorphisms, i.e. a QM-surface. Note that these
objects are often referred to fake/false elliptic curves based on the observation
that such a surface is isogenous to the square of an elliptic curve modulo every
prime of good reduction. This makes for the following conjectural diagram:

{
weight 2 rational

Bianchi newforms/K

}
{

non-CM by K
elliptic curves/K

up to isogeny

}
t{

QM surfaces/K
up to isogeny

}1:1

The conductor of the elliptic curve or false elliptic curve should be equal to the
level or the square of the level of the Bianchi newform respectively.

This connection between QM surfaces and Bianchi newforms was first explicated
by P. Deligne in a letter to J. Mennicke in 1979 [Del79]. It was further studied
by J. Cremona [Cre92] who gave explicit examples of QM-surfaces which are
modular by using the following construction: let f be a classical newform of
weight 2 with a real quadratic Hecke eigenvalue field Kf = Q({ai}) and denote
〈σ〉 = Gal(Kf/Q). Suppose that f has an inner twist, i.e. fσ = f ⊗ χK where
χK is the quadratic Dirichlet character associated to some imaginary quadratic
field K. It follows that f and fσ must base change to the same Bianchi newform
over K.
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The abelian surface Af/Q associated to f is of GL2-type in the sense that
End0

Q(Af ) ' Kf . Moreover, L(Af/Q, s) = L(f, s)L(fσ, s) and the base-change
surface A⊗Q K is a QM surface such that L(A/K, s) = L(F, s)2, where F is the
induction from Q to K of f .

We use the term genuine for Bianchi newforms that are not (the twist of) base-
change of a classical newform and similarly for abelian surfaces. The above
construction motivates the following question (cf. [Cre92, Question 1’]):

Question. Is it possible for a QM surface over an imaginary quadratic field to
be genuine?

The results of this thesis are twofold:

• Genuine QM-surfaces over imaginary quadratic fields exist and explicit ex-
amples are given.

• These examples are verified to be modular.

The thesis will be laid out in the following way. In Chapter 1 background ma-
terial is presented on abelian varieties, Bianchi modular forms and Quaternion
algebras. Chapter 2 is devoted to aspects of QM-surfaces, including the family of
QM-surfaces used to find the genuine examples mentioned above. Furthermore,
arithmetic aspects of Galois representations attached to QM-surfaces will be dis-
cussed. The third chapter is where the main result of the thesis is presented: that
genuine QM-surfaces exist. A detailed overview on how the explicit examples were
found is included, as is a brief discussion on the connection the Paramodularity
Conjecture. Finally, in the last chapter the method of Faltings-Serre is applied to
show that the genuine QM-surfaces presented in the thesis are modular. This is
achieved by proving that the attached Galois representations are isomorphic via
the tools of class field theory and comparing the traces of Frobenius at a carefully
chosen finite set of primes.
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during my PhD. Firstly for suggesting this interesting topic which has kept me
eager to learn over the past four years, but also for the constant encouragement
and guidance on how to do mathematical research.



viii

I am hugely indebted to many people for variously sharing their wisdom, lend-
ing their code and all being generous with their time. Specifically, I would like
to thank John Cremona, Christopher Doris, Lassina Dembélé, Aurel Page and
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Chapter 1

Background

§ 1.1 Abelian varieties

We begin this chapter by reviewing the basic notions around abelian varieties. A
classical reference for the theory when the base field is not algebraically closed
is [Mil86].

1.1.1 Abelian varieties

Let K be a field, not necessarily of characteristic zero. A group variety G is an
algebraic variety that is also a group such that the multiplication and inversion
operations

m : G×G −→ G;

ι : G −→ G,

are defined by regular maps on G.

There is an important disctinction between algebaic groups which are projective
– these encompass abelian varieties – and those that are affine: linear algebraic
groups. The theories differ somewhat considerably and we will not pursue the
affine case, which one can think of as subgroups of GLn.

Definition 1.1.1. An abelian variety is a complete connected group variety.

1
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Thankfully, the terminology is consistent:

Proposition 1.1.2. Any abelian variety is commutative.

Proof. For an abelian variety A consider the map

A(K)× A(K) −→ A(K)

(x, y) 7−→ y · x · y−1 · x−1.

The restriction of this operation to A(K)× eA or eA ×A(K) is just the identity.
We can then apply the Rigidity Theorem (cf. [Mil86, Theorem 1.1]).

Proposition 1.1.3. A group variety is an abelian variety if and only if it is
projective.

1.1.2 Isogenies and the Tate module

Recall that if f : X → Y is a surjective morphism of algebraic varieties over K
then the degree of f is the degree of the finite field extension of the function field
K(X) over f ∗K(Y ).

Definition 1.1.4. A K–isogeny A → B of abelian varieties over K is a homo-
morphism such that the kernel is finite. The degree of an isogeny is equal to the
order of the kernel.

For a homomorphism f : A→ B the following are equivalent:

1 f is an isogeny;

2 dim(A) = dim(B) and f is surjective.

Definition 1.1.5. The K–rational endomorphism ring of A is defined as

EndK(A) = {f : A→ A | f is a homomorphism defined over K}.

There is an injection of the integers into the ring of endomorphisms Z ↪→ EndK(A)
since for a positive integer n one naturally defines

[n] : A −→ A

x 7−→ x+ · · ·+ x.
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The map [−1] is just defined to be the inverse and by composition we deduce
that any integer can be viewed as an endomorphism of A. We will follow the
convention that A has trivial endomorphisms over K if EndK(A) ' Z. Given an
isogeny f : A → B of degree d there exists an isogeny g : B → A such that
g ◦ f = f ◦ g = [d].

Definition 1.1.6. For a positive integer n we define the n–torsion points of A
to be A[n] = Ker([n] : A(K)→ A(K)).

If K has characteristic prime to n then as a group A[n] ' (Z/nZ)2g.

Definition 1.1.7. Let ` be a prime number different from the characteristic of
K. The `–adic Tate modules of A are defined to be

T`A = lim
←n

A[`n] and V`A = T`A⊗Z`
Q`.

The Tate module is isomorphic to T`(A) ' Z2g
` .

There is a natural action of the absolute Galois group GK on A(K)

GK × A(K) −→ A(K)

(σ, P ) 7−→ σ(P ).

The action restricts to the `–torsion points and hence we can define the residual
Galois representation

ρA,` : GK −→ Aut(A[`]) ' GL2g(F`)

and the full `–adic continous representation

ρA,` : GK −→ Aut(T`(A)) ' GL2g(Z`).

The representations are compatible in the sense that if π : Z` → F` is the natural
projection map then ρA,` = π ◦ ρA,`.

1.1.3 Jacobians

An important source of abelian varieties is to take the Jacobian of a curve. Let
us explain this construction.
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By a curve over K we shall mean a smooth, projective, geometrically integral K–
algebraic variety of dimension one. For the remainder C will be used to denote a
curve over a perfect field K.

Given a set of points Pi ∈ C(K) for i = 1 . . . k, the formal linear combination∑k
i=1 niPi where ni ∈ Z, is called a divisor. These form a group DivC called the

group of divisors. The group GK acts on DivC in a natural way. The fixed points
of this action are called K–rational divisors and form a subgroup DivC(K).

The degree of a divisor D =
∑k

i=1 niPi is simply the integer

deg(D) =
k∑
i=1

ni

and the degree map is a homomorphism DivC → Z. The kernel of this map is
denoted by Div0

C .

For f ∈ K(C)\{0} a rational function on C, the divisor of f is defined to be

div(f) =
∑

P∈C(K)

vP (f)P,

where vP (f) is the order of vanishing of f at P . A divisor is said to be principal
if it is of the form div(f) for some nonzero rational function f ∈ K(C). It turns
out that principal divisors have degree 0 so we denote by PrincC the subgroup of
Div0

C of principal divisors.

Definition 1.1.8. The Picard groups are the quotients

PicC = DivC/PrincC

and
Pic0

C = Div0
C/PrincC .

Theorem 1.1.9. As a GK–module Pic0
C is isomorphic to an abelian variety de-

fined over K. This is called the Jacobian of C, denoted by Jac(C). The dimension
of Jac(C) is equal to the genus of C.

Broadly speaking, the dual abelian variety A∨ of A parameterises particular line
bundles on A. It is an abelian variety over K which is isogenous to A. See [Mil86,
Chapter 1.8] for a precise definition. In general, an abelian variety and its dual
are not necessarily isomorphic.
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A K-polarisation of the abelian variety A/K is a K–isogeny λ : A −→ A∨ such
that over K it is of the form λL for some ample line bundle L. A principal
polarisation is one which induces an isomorphism A ' A∨ and we say that A is
principally polarisable if such an isomorphism exists. It is not true that principal
polarisations necessarily exist, however, the Jacobian of a curve is principally
polarisable.

Definition 1.1.10. For a K–polarisation λ : A → A∨ of degree d with dual
isogeny λ̂ : A∨ → A such that λ̂ ◦ λ = [d], the Rosati involution is defined on the
endomorphism algebra by

† : End0
K(A) −→ End0

K(A)

ϕ 7−→ 1

d
λ̂ ◦ ϕ̂ ◦ λ.

Let us finally note that Torelli’s theorem states that the Jacobi map from the
moduli space of curves of genus g to the moduli space of principally polarised
abelian varieties of dimension g is injective. For g = 2 the dimension of each
moduli spaces is 3.

§ 1.2 Bianchi modular forms

We give a brief overview on Bianchi modular forms. These are modular forms
for imaginary quadratic fields; we shall focus on Bianchi newforms of weight 2
as this is what will be needed for the purposes of the thesis. An excellent and
concise account is given in [CW94, §2].

Let K be an imaginary quadratic field of class number 1 with ring of integers
OK . The notation n will be used for a non-zero ideal of OK . Many of the notions
in the theory of classical newforms have an analogue here.

Denote by H3 the model of hyperbolic 3-space

H3 = { (z, t) | z ∈ C, t ∈ R, t > 0 }.

There is a transitive isometric action of SL2(C) on H3. Given the quaternion
algebra presentation of the Hamiltonians

(−1,−1
R

)
, we can consider H3 to be con-

tained inside of the Hamiltonians via (z, t) 7→ z + tj. Then the action takes the
familiar form (a b

c d

)
· τ = (aτ + b)(cτ + d)−1.
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Let

β =

(
−dz
t
,
dt

t
,
dz̄

t

)
be a basis for the left invariant differential forms on H3.

Define the congruence subgroup

Γ0(n) =
{ (a b

c d

)
∈ SL2(OK) | c ≡ 0 mod n

}
.

Definition 1.2.1. A Bianchi cusp form F ∈ S2(Γ0(n)) of weight 2 and level n is
a function

F : H3 −→ C3

such that

• F · β is a harmonic differential one-form on H3 which is invariant under
Γ0(n).

•
∫
C/OK

(F |σ)(z, t)dz = 0 for all σ ∈ SL2(OK).

Bianchi cusp forms have Fourier expansions of the form

F = (F1, F2, F3) =
∑
p

c(p)t2K

(
4π|p|t√
|D|

)
ψ

(
pz√
D

)
,

where ψ(z) = exp(2πi(z + z̄)) for z ∈ C and

K(t) =

(
− i

2
K1(t), K0(t),

i

2
K1(t)

)
for t ∈ R>0. The two functions K1 and K2 are hyperbolic Bessel functions.

As in the classical theory, the space of cusp forms S2(Γ0(n)) is a finite dimensional
complex vector space. There is a commutative algebra of Hecke operators that
act on S2(Γ0(n)) and for prime ideals p - n, the Hecke operator takes a form with
coefficients c(α) to one with coefficients N(p)c(αp) + c(α/p).

Definition 1.2.2. A Bianchi newform for S2(Γ0(n)) is a cusp form which is an
eigenform for all of the Hecke operators {Tp}p-n and is not induced from a form
of strictly smaller level m, with m|n. It is assumed to be normalised in the sense
that c(1) = 1 and hence TpF = c(p)F for all p - n.
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Attached to F is the formal Dirichlet series

L(F, s) =
∑
p

c(p)N(p)−s.

It has an Euler product expansion

L(F, s) =
∏
p

(1− c(p)N(p)−s + χ(p)N(p)1−2s)−1

where

χ(p) =

{
0 if p|n;

1 if p - n.

Remark 1.2.3. The account of Bianchi newforms above as vector valued func-
tions is perhaps the most intuitive given a knowledge of classical modular forms.
However, it is possible to interpret these objects in a variety of ways: see [Tay94]
for a treatment of these forms as regular algebraic cuspidal automorphic repre-
sentations of GL2(AK) and see [Har75] to view them as certain classes in the
cohomology of quotients of hyperbolic three space by congruence subgroups of
GL2(OK).

§ 1.3 Quaternion algebras

In this section we present a self-contained introduction to the theory of quaternion
algebras. We will follow the concise treatment given by [MR03]. Two excellent
classical references are [Vig80,Piz76] and a more recent compendium of all things
quaternion algebra related is [Voi19].

1.3.1 Overview

Let F be a field with algebraic closure F . Recall that an algebra over F is a ring
B with an embedding F ↪→ B such that the image is in the center of B.

Definition 1.3.1. A quaternion algebra B over a field F is an algebra of dimen-
sion 4 over F which is:

• Central : the centre of B is exactly F , and
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• Simple: B contains no non-trivial two-sided ideals.

From now on we suppose that F is a field of characteristic different from 2. The
above definition is equivalent to saying that B has an F -basis denoted by 1, i, j
and k subject to

i2 = a, j2 = b and ij = −ji = k, (1.1)

with a, b ∈ F×. Such a quaternion algebra is denoted by the Hilbert symbol

B =

(
a, b

F

)
.

One readily sees that the presentation is unique up to squares, i.e
(
a,b
F

)
'(

ax2,by2

F

)
for x, y ∈ F×, that a and b can be swapped, or one of a or b replaced

by −ab since k2 = −ab and i, j and k anti-commute.

Example 1.3.2. The set of two by two matrices M2(F ) is a quaternion algebra
isomorphic to

(
1,1
F

)
. An explicit map is given by

i 7→
(−1 0

0 −1

)
, j 7→

(0 1
1 0

)
and one can easily check the identity (1.1). More generally,

(
1,a
F

)
'
(
a,−a
F

)
'

M2(F ).

Recall that Wedderburn’s Structure Theorem states that a simple algebra of finite
dimension over a field F is isomorphic to the matrix algebra Mn(D) where D is
a division algebra over F . The fact that the quaternion algebra B has dimension
4 over F and dimF (Mn(D)) = n2· dimF (D) forces n = 1 or 2 in this case. Hence
we distinguish between the two possibilities.

Definition 1.3.3. A quaternion algebra B over F is said to be split if it is
isomorphic to M2(F ) and non-split otherwise.

It is clear that if F is algebraically closed then B is split. However, it is possible
to extend scalars by a quadratic extension and get the matrix algebra. In this
regard note that if K is a field extension of F then(

a, b

F

)
⊗F K '

(
a, b

K

)
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and we say that K splits B if B ⊗F K 'M2(K).

An important aspect of quaternion algebras is that they have a notion of trace
and norm.

Definition 1.3.4. For an element w ∈ B write

w = a0 + a1i+ a2j + a3k, a0, . . . , a3 ∈ F (1.2)

and define the conjugate of w to be

w = a0 − a1i− a2j − a3k. (1.3)

Then we define the (reduced) trace and (reduced) norm functions respectively as

tr : B −→ F (1.4)

w 7−→ w + w; (1.5)

nm : B∗ −→ F× (1.6)

w 7−→ w · w. (1.7)

These agree with the usual trace and norm maps on a matrix algebra. Further-
more, they are in fact homomorphisms so the set of invertible elements B∗ are
precisely those with non-zero norm. We will denote

B1 = { w ∈ B | nm(w) = 1 } ⊆ B∗.

The element w ∈ B satisfies the quadratic equation

x2 − tr(w)x+ nm(w) = 0.

Proposition 1.3.5. Let B be a division quaternion algebra over F . Then for ev-
ery element w ∈ B\F , the quadratic extension F (w) splits the quaternion algebra
as B ⊗F F (w) 'M2(F (w)).

Proof. F (w) is a commutative subring of B and also a division ring so is hence
a field. As B is central there are strict inclusions B ⊃ F (w) ⊃ F and w satisfies
the quadratic equation above so F (w) is a quadratic extension of F .

To show that F (w) splits B, let us pick an element y ∈ F (w)\F such that y2 ∈ F.
Now −y = zyz−1 for some element z ∈ B by the Skolem Noether Theorem. Since
F (w) is commutative it is clear that z /∈ F (w). Thus {1, y, z, yz} is an F -basis of

B. Finally, the fact that y is square in F (w) means that B⊗F F (w) '
(

y,z
F (w)

)
'(

1,z
F (w)

)
'M2(F (w)).



10

1.3.2 Orders in quaternion algebras

In this subsection we briefly introduce the theory of orders in quaternion algebras,
which are an important aspect when looking at quaternion algebras over a global
field. Throughout let R denote a Dedekind domain whose field of quotients k is
either a number field or a local field.

Definition 1.3.6. An R-lattice L of a vector space V/k is a finitely generated
R-module contained in V , which we say is complete if L⊗R k ' V.

Definition 1.3.7. An element w in the quaternion algebra B/k is an integer if
R[w] is an R-lattice. This is equivalent to having tr(w), nm(w) ∈ R.
Definition 1.3.8. For the quaternion algebra B/k:

1 An ideal of B is a complete R-lattice.

2 An order of B is an ideal which is also a ring.

3 An order is maximal if it is maximal with respect to inclusion.

For an ideal I ⊂ B, the order on the left and right of I are defined respectively
as

Ol(I) = {w ∈ B|wI ⊂ I}, Or(I) = {w ∈ B|Iw ⊂ I}
which are indeed both orders as one would expect. The ideal I is said to be
two-sided if Ol(I) = Or(I). The norm of an ideal is the fractional ideal of R
generated by { nm(w) | w ∈ I }.

Orders are characterised as rings of integers O in B which contain R and are such
that kO = B. It is a fact that maximal orders exist and every order is contained
in a maximal order. In the case that B = M2(k) then one maximal order is M2(R)
and if R is a PID then all maximal orders are conjugate. Let us define a special
class of orders.

Definition 1.3.9. An Eichler order is an order that is the intersection of two
distinct maximal orders.

Example 1.3.10. M2(R) is a maximal order of M2(k) as one might hope. For
any ideal J of R, an Eichler order is{ (a b

c d

)
| a, b, d ∈ R, c ∈ J

}
.

As above we set O1 = { w ∈ O | nm(w) = 1 }.
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1.3.3 Quaternion algebras over local fields

Quaternion algebras over local fields are in many ways simpler than those over
global fields. In fact, they are used to classify quaternion algebras over global
fields up to isomorphism by looking at their structure under completion.

Throughout this subsection let k be a non-archimedean local field, R its ring of
integers, π a uniformiser such that P = πR is the unique maximal ideal. Let
B be a quaternion algebra over k. Write ν : k∗ → Z for the non-archimedean
valuation and define

υ : B∗ −→ Z (1.8)

w 7−→ ν(nm(w)) (1.9)

where nm is the norm function on B.

Lemma 1.3.11. The map υ : B∗ −→ Z defines a valuation on B∗.

The valuation gives us two important features:

O = { w ∈ B | υ(w) ≥ 0 },

which is the unique maximal order of B and

J = { w ∈ B | υ(w) > 0 },

a two-sided ideal. It is a principal ideal given by J = Oj and any two-sided ideal
of O is a power of J .

The main theorem about quaternion algebras over non-archimedean local fields
is the following.

Theorem 1.3.12. There is a unique division quaternion algebra over k which is
isomorphic to

(
π,u
k

)
, where k(

√
u) is the unique unramified quadratic extension of

k.

An immediate consequence of this theorem is that a quaternion algebra over k
is either isomorphic to M2(K) or the unique division quaternion algebra over k.
When B is the unique division quaternion algebra it is often useful to embed it
into the matrix algebra. This will be especially useful when comparing Galois



12

representations in Chapter 4. To this end, we make use of the fact that L = k(
√
u)

splits B. There is an explicit isomorphism of k-algebras

B '
{( α β
πβ′ α′

)
| α, β ∈ L, ′ : L→ L is conjugation in L/k

}
⊆M2(L); (1.10)

i 7→
(√u 0

0 −
√
u

)
, j 7→

(0 1
π 0

)
. (1.11)

1.3.4 Quaternion algebras over global fields

We can use the results of the previous section to classify quaternion algebras over
global fields. Let K denote a number field throughout this subsection and ν a
valuation of K. The completion of K at ν will be denoted by kν . The behaviour
of the quaternion algebra B/K over completions of K is an important notion.
Define the quaternion algebra Bν = B ⊗K kν .

Definition 1.3.13. The quaternion algebra B/K is said to be ramified at ν if
Bν is the unique division quaternion algebra over kν .

The following local-to-global result tells us that the splitting behaviour of B can
be interpreted in terms completions.

Theorem 1.3.14. The quaternion algebra B/K is split if and only if Bν is split
for every place ν.

The set of places at which B ramifies is finite and of even cardinality. Let us
make the following important definition.

Definition 1.3.15. The set of places at which B is ramified is denoted by Ram(B)
and the discriminant of B is the ideal∏

ν non-archimedean

pν

where pν is the prime ideal of K corresponding to ν.

Theorem 1.3.16. The quaternion algebras B and B′ over K are isomorphic if
and only if Ram(B) = Ram(B′).

Conversely, for any finite set of an even number of places ofK there is a quaternion
algebra ramified at exactly these places.



Chapter 2

Surfaces with quaternionic
multiplication

In this chapter we shall discuss various aspects of abelian surfaces with quater-
nionic endomorphism algebras. We will give an overview of these objects and
in the last section present a detailed analysis of the arithmetic of the associated
Galois representations.

Furthermore, a thorough description of the family used to obtain the main result
in the next chapter will be presented here. For the interested reader a collection
of other families of QM-surfaces will be reviewed in brief.

Let K be an imaginary quadratic field. A simple abelian surface over K whose
algebra of K-endomorphisms is an indefinite quaternion algebra over Q is com-
monly known as a QM-abelian surface, or just QM-surface. In 1970, in his Mas-
ter’s thesis, Y. Morita [Mor70] proved that modulo every prime of good reduction
a QM-surface splits as the square of an elliptic curve over Fp. This was then im-
proved by H. Yoshida [Yos73, Lemma 6] to show that in fact a QM-surface defined
over a finite field is isogenous to the square of an elliptic curve over this finite
field. The proof of this fact is shown in the next section and makes good use of
J. Tate’s work on abelian varieties over finite fields [Tat66].

This important fact means that whilst a QM-surface might not globally be a
product of elliptic curves, locally it looks like one in the sense that it has similar
arithmetic. In particular, the Euler polynomial of a QM-surface is the square of a
quadratic polynomial with rational coefficients. This observation led J.-P. Serre

13
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to coin the name fausses courbes elliptiques [DR73, §0.7]. Hence these objects
are commonly referred to as false/fake elliptic curves in the literature.

Whilst it was becoming clear what type of automorphic object a GL2-type variety
should correspond to, it was not until a few years later that this question would be
considered for QM-surfaces. The novelty in this situation is compounded by the
fact that QM-surfaces only exist over totally complex fields. Bianchi newforms -
the automorphic objects for imaginary quadratic fields - were not well understood
at the time.

The correspondence between QM-surfaces and Bianchi newforms was first ob-
served by P. Deligne in a letter to J. Mennicke in 1979 [Del79]. The letter was
written in response to the article [GM78], in which they assume the conjectural
existence of a bijection between elliptic curves over imaginary quadratic fields and
Bianchi newforms. The original manuscript remains unpublished (cf. [GHM78, §8]
where this correspondence is discussed by the authors).

P. Deligne explains that he is ‘sceptical’ about being able to assert bijectivity
since there should be a similar automorphic representation for abelian surfaces
‘with multiplication by a quaternion algebra D, split at∞’. He also remarks that
whilst it is not clear how to construct such a correspondence, D must be split by
K because the associated Lie algebra is a K-linear 2-dimensional representation
of D.

The first time this suggestion appears in the literature is in [EGM82, p.267],
credited to P. Deligne (note the similar sounding article [EGMa82] by the authors
from a similar time period). A concise version of the expected correspondence
for QM-surfaces (and their generalisations to arbitrary dimension) is presented
in [Tay95, Conjecture 3].

§ 2.1 Surfaces with quaternionic multiplication

In this brief subsection we introduce QM-surfaces and reproduce perhaps the
most fundamental result relating to these objects.

For an abelian variety A defined over a field K, we will use the notation that the
endomorphism rings EndK(A) and EndK(A) will denote the endomorphisms of A
which are defined over K and the algebraic closure K respectively. Throughout
this chapter we shall assume that O is a maximal order in a rational indefinite
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quaternion algebra B.

As opposed to the name ‘false/fake elliptic curve’, we shall stick to the terminol-
ogy: A/K is a QM-surface if EndK(A) contains O and A has potential QM if the
action of O is defined over some extension of K. A more precise definition will
be given below.

Remark 2.1.1. For reasons of parsimony we restrict throughout to working with
maximal orders. For the most part this is because the work of B. Jordan [Jor86] on
Galois representations attached to QM-surfaces is for maximal orders. Nonethe-
less, there are many results relating to non-maximal orders. For example [DR04]
studies the field of definition of the quaternion action for so-called hereditary
orders.

Let D denote the discriminant on B and recall x 7→ x is the canonical anti-
involution on B as in §1.3. For any positive anti-involution ∗ : B → B, the
Noether-Skolem theorem tells us that ∗ is conjugate to the canonical involution,
which means that there exists µ ∈ B× such that

x∗ = µ−1xµ

for all x ∈ B. The trace of µ is zero so it satisfies a quadratic equation µ2 + δ = 0
for some δ > 0. In fact we can pick µ ∈ O such that µ2 +D = 0 (see [Rot03] for
more details).

Hence fix ∗ : B → B to be the positive anti-involution defined by x 7→ µ−1xµ,
where µ2 +D = 0. This element µ is often referred to as a principal polarization
of O. Recall that † : End0(A) → End0(A) is a canonical anti-involution called
the Rosati involution defined in Section 1.1.

Definition 2.1.2 (Cf. [Voi19], §43.6). We say that A/K has quaternionic mul-
tiplication (QM) by (O, µ) if there is an embedding ι : O ↪→ EndK(A) such that
the diagram

B End0
K(A)

B End0
K(A)

ι

∗ †

ι

commutes.
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The remainder of this subsection will be devoted to the proof of the striking fact
that QM-surfaces split as the square of an elliptic curve modulo every prime of
good reduction. The proof makes use of the following result.

Theorem 2.1.3 ( [Tat66, Theorem 2]). Let A be an abelian variety of dimension
n over a field k of characteristic p > 0 and π the Frobenius endomorphism of A
relative to k.

1 Q(π) is the centre of the semisimple algebra End0
k(A). The algebra is com-

mutative if and only if dimQ(End0
k(A)) = 2n and

2n ≤ dimQ(End0
k(A)) ≤ (2n)2.

2 The following are equivalent:

• The centre of End0
k(A) is Q;

• End0
k(A) ' Mn(Bp), where Bp is the rational quaternion algebra of

discriminant p;

• A is k-isogenous to the power of a super-singular elliptic curve whose
endomorphisms are all defined over k.

These properties can be used to show that the reduction of a QM-surface defined
over a number field will split as the square of an elliptic curve for almost all primes
because there is an injection of endomorphism rings under the natural reduction
map.

Theorem 2.1.4 ( [Yos73, Lemma 6]). Let A be a QM-surface defined over a
finite field Fq of characteristic p with O ⊂ EndFq(A) and p - Disc(O). Then A is
isogenous to E × E, where E is an elliptic curve over Fq.

Proof. It was shown by Y. Morita [Mor70] that A is isogenous to the square of
an elliptic curve E ′ over Fq. Let D = End0

Fq
(E ′). Then D is either isomorphic to

a quadratic field F or to Bp, the rational quaternion algebra of discriminant p.
We have that

B ⊆ End0
Fq

(A) ⊆M2(D).

If Q(π) ' Q then by the above theorem A is the square of a super-singular elliptic
curve and we are done.
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Suppose that Q(π) 6= Q. We know that 4 ≤ dimQ(End0
Fq

(A)) ≤ 16 but it cannot

be the case that dimQ(End0
Fq

(A)) = 4 or 16 because the centre is not Q so

dimQ(End0
Fq

(A)) = 8. Also since dimQ(End0
Fq

(A)) 6= 4 we know that End0
Fq

(A) is
not commutative.

If A is Fq-simple then End0
Fq

(A) is a quaternion division algebra over Q(π) ram-

ified at the places above p. But B ⊗Q Q(π) ' End0
Fq

(A) which contradicts the
fact that p - Disc(B).

§ 2.2 Shimura curves

In analogy to modular curves, Shimura curves are moduli spaces for abelian
surfaces with quaternionic multiplication.

We keep the notation that B is an indefinite rational division quaternion algebra.
Fix an embedding

ι∞ : B −→ B ⊗Q R 'M2(R)

and for a point z ∈ H, set vz = (z 1)t and construct the lattice Λz = ι∞(O)vz.
Then there is an abelian surface Az = C2/Λz. On Λz there is the Riemann form

Ez(ι∞(λ1)vz, ι∞(λ2)vz) = tr(λ∗1µλ2).

This defines a principal polarization ρz on Az such that the Rosati involution on
End(Az) corresponds to x 7→ x∗. Hence we have defined a triple

[Az, ρz, ιz]

from a point z ∈ H, where ιz : O ↪→ End(Az).

There is an equivalence relation on triples governed by [Az1 , ρz1 , ιz1 ] ∼ [Az2 , ρz2 , ιz2 ]
if there is an isomorphism φ : A1 → A2 such that φ∗(ρ2) = ρ1 and the isomor-
phism commutes with the action of ιz1(O) and ιz2(O).

Let
Γ1(O) = ι∞(O1)/{±1} ≤ PSL2(R)

and define the quotient
X1 = Γ1(O)\H.

It is compact since B is non-split.
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Theorem 2.2.1. There is a bijection

X1 ←→

{
Principally polarized abelian

surfaces with QM by O
up to isomorphism

}
Γ1(O)z 7−→ {[Az, ρz, ιz]}.

Proof. See [Voi19, Theorem 43.6.14] for a detailed exposition of this fact.

It has been mentioned already that QM-surfaces only occur over totally complex
fields. This result is due to Shimura, encapsulated in the following theorem.

Theorem 2.2.2. If B is a division algebra then

X1(R) = ∅.

Proof. This is a special case of a more general question considered in [Shi75].

There is an element η ∈ O× such that nm(η) = −1. This means that η2 ∈ O1

and η naturally defines an anti-holomorphic involution on X1.

Suppose X1(R) 6= ∅. Then there is z ∈ H such that

z = ι∞(η) · z =
az + b

cz + d

where ι∞(η) =

(
a b
c d

)
.

Hence az + b = c|z|2 + dz. Equating imaginary parts we deduce that tr(η) =
a + d = 0 and hence η satisfies the polynomial x2 − 1 = 0. Since B is indefinite
we conclude that η = ±1, which is a contradiction.

One of the striking facts about Shimura curves is that, despite the fact that they
have no real points, the quotient X1 is indeed a curve with a model defined over
the rationals.

Theorem 2.2.3 ( [Shi67]). There exists a projective non-singular curve X1
Q de-

fined over the rationals and an isomorphism

φ : Γ1(O)\H −→ X1
Q(C).
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§ 2.3 Families of surfaces with quaternionic multiplication

Here we present a list of families that specialise to give hyperelliptic curves whose
Jacobians have quaternionic multiplication. Whilst it transpired that only one of
the families was needed for the main results in Chapter 3, we display others found
in the literature in the hope that the interested reader might find it useful. Since
the Baba-Granath family played an important part in finding explicit models for
the genuine QM-surfaces in this thesis, a more detailed overview is given.

2.3.1 Baba-Granath

In [BG08] the authors construct genus 2 curves whose Jacobians are surfaces with
quaternionic multiplication in the case of discriminant 6 and 10. An overview of
some of the computational aspects used in this thesis is discussed in §3.4. In this
subsection we describe how the families were derived. We restrict to the case of
discriminant 6 since the discriminant 10 case is similar.

The distinct advantage of this family is that the genus 2 curves are directly related
to the moduli space via a parameterisation. This parameterisation is encapsulated
using a parameter j which has arithmetic properties that allow us to search for
the QM-surfaces we wish to find.

Let O be the maximal order of the rational quaternion algebra B6 of discriminant
6. As explained in the previous section, the quotient V6 = H/O1 is a Shimura
curve which is the moduli space for surfaces with QM by O. The strategy of the
authors was to make a correspondence between points z ∈ H and genus 2 curves
whose Jacobians have QM .

Let M2 denote the moduli space of genus 2 curves and A2 denote the moduli
space of principally polarized abelian surfaces. The Torelli map is an injective
mapM2 → A2 whose image is Zariski open. If Ẽ is the image of the natural map
V6 → A2 and E is the intersection with M2 then there is the following picture

A2 M2

V6 Ẽ E.
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The starting point is to take the QM-family derived in [HM95] (cf. QM-family 1).
It is a hyperelliptic curve Y 2 = f(X; t, s) ∈ Q(t, s)[X] subject to the parameters
satisfying a quadratic equation g(s, t) = 4s2t2 − s2 + t2 + 2 = 0. The authors
write down two simultaneous equations in the Igusa invariants [J2 : J4 : J6 : J10]
which are satisfied by the above curve. In particular, this allows them to get
an embedding E → P1 and in this way define an arithmetic j-function j : E →
P1\{0, 1}.

Now we wish to define an analytic j-function that coincides with this one. Let Γ̃
denote the normalizer group NB+(O) and Γ be the subgroup of this generated by
elements of norm 1. The space of holomorphic weight k forms for Γ is denoted by
Sk(Γ). Then S4(Γ) is generated by a form h4(z) and likewise S6(Γ) is generated
by h6(z). S12(Γ) is generated by h3

4, h
2
6 and h12. These satisfy h2

12 + 3h4
6 +h6

4 = 0.

The authors prove that as a graded ring

∞⊕
k=0

S2k(Γ) ' C[h4, h6, h12]/(h2
12 + 3h4

6 + h6
4).

They define the weight 0 modular form

jm =
4h2

6

3h3
4

.

It is an isomorphism jm : V6 → P1.

The authors then use knowledge of two abelian surfaces with CM that correspond
to CM points on the Shimura curve and by computing the value of j at these
points it is deduced that j = j2

m as functions on Ẽ [BG08, Proposition 3.9]. Hence
the map f : V6 → X6 = {X2 + 3Y 2 + Z2 = 0} is an isomorphism given by

f(z) = [h4(z)3 : h6(z)2 : h12(z)] = [4 : 3
√
j :
√
−27j − 16].

Define the genus 2 curve

Cj : y2 = (−4 + 3s)x6 + 6tx5 + 3t(28 + 9s)x4 − 4t2x3

+ 3t2(28− 9s)x2 + 6t3x− t3(4 + 3s),

where t = −2(27j + 16) and s =
√
−6j. Then the Jacobian of Cj has QM of

discriminant 6.
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2.3.2 QM-families

Here were present a few families of QM-surfaces found in the literature.

QM-family 1 ( [HM95]). The first family of QM-surfaces was derived by K.
Hashimoto and N. Murabayashi in the form of a hyperelliptic curve

Y 2 = f(X; t, s) ∈ Q(t, s)[X].

Let B be a rational indefinite quaternion algebra. The strategy was to embed the
Shimura curve SB into the moduli space of principally polarized abelian surfaces

SB −→ A2(C) ' Sp(4,Z)\H 'M2(C)

and describe the the image in the moduli space M2(C) of genus 2 curves via the
Torelli map.

This relates to classical work of Humbert who approached this for surfaces with
real multiplication. The authors then show that if two real multiplications generate
the maximal order O ⊂ B then the desired fibre space will be a component of
the intersection of two Humbert surfaces. This was done explicitly for the the
quaternion algebras of discriminant 6 and 10.

For discriminant 6 this is given by

S6(t, s) : Y 2 = X(X4 + (A−B)X3 +QX2 + (A+B)X + 1);

where A =
s

2t
, B =

1 + 3t2

1− 3t2
,

Q = −(1− 2t2 + 9t4)(1− 28t2 + 166t4 − 252t6 + 81t8)

4t2(1− 3t2)2(1− t2)(1− 9t2)

and

s2 + 3− 14t2 + 27t4 = 0.

This is in fact a variant [HT99] of the original family, which has the advan-
tage that the quaternionic multiplication is defined over the field of definition
Q(
√
−3 + 14t2 − 27t4).

This allowed the authors to produce the first known examples of geometrically
simple QM-surfaces.
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QM-family 2 ( [PS11]). Define the curve

C(λ) : w3 = z(z − 1)(z − λ1)(z − λ2)

where

λ = (λ1, λ2) ∈ Λ = { (λ1, λ2) ∈ C2 | λ1λ2(λ1 − 1)(λ2 − 1)(λ1 − λ2) 6= 0 }.

Every period of C(λ) is a Z[ζ3]-linear combination of three periods {η1, η2, η3}
given explicitly. One defines the matrix

H =

0 1 0
1 0 0
0 0 1


and chooses a vector c ∈ Z[ζ3]3 such cH tc > 0. Then the authors prove that

Jac(C(λ)) ' E0 × A(λ)

where E0 ' C2/(Z + η3Z) is an elliptic curve and A(λ) is a QM-surface with
quaternionic multiplication by (

−3, 〈c, c〉H
Q

)
.

QM-family 3 ( [DFL+16]). Let i, j, k,N be integers such that 1 ≤ i, j, k ≤ N .
For a fixed λ the generalized Legendre curve is defined by

C(λ)[N ;i,j,k] : yN = xi(1− x)j(1− λx)k.

The authors let J(λ)new denote the abelian variety of dimension ϕ(N) which is
the primitive part of Jac(C(λ)[N ;i,j,k]).

Fix the notation

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

where Γ(s) is the the standard gamma function. Then the main result that the
authors prove is that for N = 3, 4, 6 and N - i+ j + k, the endomorphism algebra
of J(λ)new contains a quaternion algebra if and only if

B
(N − i

N
,
N − j
N

)
/B
( k
N
,
2N − (i+ j + k)

N

)
∈ Q.
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§ 2.4 Galois representations attached to abelian surfaces with
quaternionic multiplication

In this section we describe the Galois representation attached to a QM surface. In
particular, we shall investigate the arithmetic properties of the representations in
the case that the prime ` divides the discriminant of the quaternion algebra. This
will be necessary for Chapter 4, where we prove modularity of the QM-surfaces
using the Faltings-Serre-Livné method at the prime ` = 2.

Let K be an imaginary quadratic field and A/K be a QM surface with O ↪→
EndK(A) a maximal order in the quaternion algebra B/Q. As in §1.1.2 the Tate
module is denoted

T`A = lim
←n

A[`n] and V`A = T`A⊗Z`
Q`.

We will write σ` : GK −→ GL4(Z`) for the representation coming from the action
of GK on T`A.

Denote by O` = O ⊗Z Z` and B` = B ⊗Q Q`.

Proposition 2.4.1. For each prime ` the Tate module T`A is free of rank 1 as
a left O`-module.

Proof. See [Oht74]. It was also found independently by [Jak74].

Recall that for the ring R ⊂ EndR(A) and the natural map ι : R ↪→ End(T`A)
we define

EndR(T`A) = { φ ∈ End(T`A) | φ ◦ ι(r) = ι(r) ◦ φ ∀r ∈ R }.

It follows from the above proposition that AutO(T`A) ' O×` where O×` acts on
T`A by right multiplication.

The action of GK commutes with ι(R) and so there is an associated `-adic rep-
resentation

ρ` : GK −→ AutO(T`A) ' O×` ⊆ B×` .

Furthermore, the ρ` form a strictly compatible system of `-adic representations
[Jor86, §5]. The image ρ`(GK) is an open subgroup of AutO(T`A) and is surjective
for almost all ` [Oht74].
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Theorem 2.4.2. If ` - Disc(B) this precisely means that O×` ' GL2(Z`) and in
this case there is a decomposition

σ` ' ρ` ⊕ ρ`.

Proof. This is a specialisation of [Chi90, Theorem A] to abelian surfaces, which
states that as a GK-module the Tate module of an abelian variety of ‘Type II’ is
the sum of two isomorphic submodules.

The prime ` does not divide the discriminant of B, so fix an isomorphism B` −→
M2(Q`). Under this identification, M2(Q`) acts on V`(A) and commutes with the
action of GK .

Let t and v be two elements of M2(Q`) such that

t2 = v2 = 1 and tv = −vt.

For example

t =
(1 0

0 −1

)
and v =

(0 1
1 0

)
.

Write e = 1/2(I + t) =
(

1 0
0 0

)
and put U = eV`(A) and W = (1− e)V`(A). From

the identity (t− 1)(t + 1) = t2 − 1 = 0 one sees that U is the eigenspace for the
eigenvalue 1 of t. Similarly, W is the eigenspace for −1 of t. Furthermore,

v : U −→ W

is an isomorphism due to the fact that (t+1)(v)(1+ t) = tv+ tvt+v+vt = v(1−
t2) = 0 and the inverse is v−1 = v. Hence we can conclude that V`(A) ' U ⊕W
as GK-modules and Dim(U) = Dim(W ) = 1/2 Dim(V`(A)) = 2.

The reason we can pick v and t with the desired properties in the proof above is
because of the description of B` as a quaternion algebra: M2(Q`) '

(
1,1
Q`

)
. This

would not be possible if `|Disc(B), although if we extend scalars by a field that
splits B` we would obtain the same result.

For the remainder of the section let ` be a prime that divides Disc(B). This
means that ` is ramified in B and so B` is isomorphic to the unique division
quaternion algebra over Q`. It can be represented as(π, u

Q`

)
' Q` · 1 + Q` · i+ Q` · j + Q` · ij; i2 = u, j2 = π;
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where π is the uniformiser of Z` and Q`(
√
u) is the unique unramified quadratic

extension of Q`.

Any quadratic extension of Q` splits the ramified quaternion algebra. So let us
denote L = Q`(

√
u) and RL as its ring of integers. Then B ⊗Q`

L ' M2(L) and
there is an explicit isomorphism of Q`-algebras

B` '
{( α β
πβ′ α′

)
| α, β ∈ L, ′ : L→ L is conjugation in L/Q`

}
⊆M2(L); (2.1)

i 7→
(√u 0

0 −
√
u

)
, j 7→

(0 1
π 0

)
. (2.2)

It will often be useful to consider the representation ρ` as having its image in
M2(L).

Define λ` ⊆ O to be the unique two-sided ideal of reduced norm ` such that
λ2
` = (`).

Proposition 2.4.3. If `|Disc(B) then A[λ`] is the unique proper O-submodule
of A[`] and it has order `2.

Proof. As explained in [Jor86, §4], A[`] is free of rank 1 over the algebra O/` and
there is a bijection between non-zero proper O-submodules of A[`] and non-zero
proper left ideals of O/`. Since O/` has exactly one non-zero proper left ideal
the result follows.

In the terminology of B. Jordan, A[λ`] is called the canonical torsion subgroup.

Proposition 2.4.4. The torsion subgroups A[`] and A[λ`] are free of rank 1 over
the F`-algebras O/` and O/λ` respectively. Explicitly, these have the structure

O/` '
{(

α β

0 α`

)
| α, β ∈ F`2

}
⊆M2(F`2),

O/λ` ' F`2 .

Proof. This is because T`A is free of rank 1 as a left O`-module and the structure
is deduced from (2.1).
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Denote the residual representations by

τ ` : GK −→ AutO(A[`]) ≤ GL2(F`2),
ρ` : GK −→ AutO(A[λ`]) ' F×`2 .

One can think of ρ` as a character with the following property:

Proposition 2.4.5 ( [Oht74]). Let Kab denote the abelian closure of K in K.
Then there is a commutative diagram

GK F×`2

F×`

χ`

ρ`

NF
`2

/F`

where χ` : Gal(Kab/K)→ F×` is the `-cyclotomic character.

As noted above, the representations {ρ`} form a strictly compatible system of
representations with values in the algebraic group H defined such that H(Q) =
B×. The set of primes S of bad reduction for A is the smallest set such that ρ`
is unramified at every prime not in S and any prime above `.

For an element σ ∈ GK we define

P`(σ) = NB`/Q`
(1− ρ`(σ)t) ∈ Q`[t].

At Frobenius elements Fυ with υ /∈ S the Hecke polynomial is given by

P`(Fυ) = NB`/Q`
(1− ρ`(Fυ)t) = 1− aυt+Nυt

2.

The polynomial P`(Fυ) is independent of ` and has integer coefficients.

We can attach an L-series by setting

Lρ(s) =
∏
υ/∈S

P`(Fυ)(N
−s
υ )−1

and L(A/K, s) = Lρ(s)
2 [Jor86, Proposition 5.1].

There is a commutative diagram:
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GK AutO(T`A)

AutO(A[λ`]).

ρ`

ρ`

Hence we see that

Pρ`(Fυ) mod ` = (1− aυt+Nυt
2) mod ` = (1− ρ`(Fυ)t)(1− ρ`(Fυ)`t).

Under the quaternion algebra identification (2.1) and projecting as in the commu-
tative diagram, the image of ρ` can be thought of to lie in GL2(F`2). We describe
its image under this identification. First though, we note that the image can be
assumed to lie in GL2(F`) due to the following lemma.

Lemma 2.4.6 ( [Jon16, Lemma 3.1]). Let ρ : GK −→ GL2(Q`) be a Galois
representation with rational traces of Frobenius and ρ : GK −→ GL2(F`) be the
residual representation. Then there exists an element t ∈ GL2(F`) such that
tρ(g)t−1 ∈ GL2(F`) for all g ∈ GK.

We give a precise description of the image of the residual representation.

Proposition 2.4.7. As a representation ρ` : GK −→ GL2(F`) the image is
contained in the non-split Cartan subgroup of GL2(F`) up to conjugation, i.e. the
unique cyclic subgroup of order `2 − 1.

Proof. The traces of Frobenius are all integral hence we can assume that the
image lies in GL2(F`) rather than GL2(F2

`) by the previous lemma. Then note
that F`2 is a 2-dimensional F` vector space and there is a natural map F×`2 →
AutF`

(F`2) ' GL2(F`) given by left multiplication.

It may be desirable to be able to find the image of ρ` from prior knowledge
of τ `, which is often more amenable to computation. The images of the two
representations are related in the following way.

Theorem 2.4.8. Let A be a geometrically simple abelian surface defined over
an imaginary quadratic field K such that EndK(A) is isomorphic to a maximal
order O in an indefinite quaternion algebra B/Q. Suppose that the prime `
divides Disc(B) and τ `, ρ` are the residual Galois representations on the torsion
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subgroups A[`] and A[λ`] respectively. Then there is a short exact sequence of
groups

1 −→ ε −→ Im(τ `) −→ Im(ρ`) −→ 1,

where ε ≤ F+
`2 .

Proof. Since AutO(A[`]) ' (O/`)× and AutO(A[λ`]) ' (O/λ`)× ' F×`2 it is
enough to show that there is a short exact sequence

1 −→ F+
`2 −→ (O/`)× −→ F×`2 −→ 1.

Let r be the projection r : (O/`)× → (O/λ`)×. Then ker(r) consists of the cosets
φ + ` such that φ ∈ λ` + 1. It follows that ker(r) ' (1 + λ`)/(1 + `) which is
isomorphic to F+

`2 .

Remark 2.4.9. If F is a weight 2 Bianchi newform with rational coefficients
which corresponds to a QM surface, then by definition the attached Galois repre-
sentations are isomorphic. It is worth noting that this means for primes ` dividing
the discriminant of the acting quaternion algebra, the residual representation ρF,`
will have cyclic image and ρF,` cannot have its coefficient field conjugated into
Q`.

Given a weight 2 Bianchi newform with rational coefficients, it would be desirable
to have a criterion which determines whether f should correspond to an elliptic
curve or a QM surface which can be determined from computing the trace of
Frobenius for a finite set of primes. More generally, given an automorphic object
how can we determine whether it should correspond to a variety with quaternionic
multiplication?



Chapter 3

Genuine aspects

This chapter is concerned with presenting the most novel aspect of this thesis,
namely that genuine QM-surfaces exist. The term genuine is used to indicate
that they do not arise via base-change.

The motivation for this is that if we take a non-CM newform f with quadratic
coefficient field which has a non-trivial inner twist (σ, χK), then the base-change
to K of the abelian surface Af has a quaternionic multiplication over K. This
provides us with a source of QM-surfaces and was first studied in [Cre92]. Hence
it is natural to ask whether this is the only way QM-surfaces arise over imaginary
quadratic fields (see Question 3.2.3). In this chapter we show that it is not
necessarily the case that QM-surfaces only arise in this way.

Included are four explicit examples of QM-surfaces which are genuine. Also dis-
cussed will be the computational methods used to find these examples and their
relation to the Paramodularity Conjecture.

§ 3.1 Base change

Base-changing is a procedure that one can take on geometric objects, but this
will naturally have a counterpoint on the automorphic side, both of which we
need to consider. Whilst the geometric viewpoint is straightforward, deep work
of Langlands is necessary to establish the automorphic behaviour under base-
change.

29
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3.1.1 Base change

Let A be an abelian variety defined over the field K. For a field extension L/K
we say that A⊗K L is the base-change of A from K to L. If A is the base-change
of an abelian variety from a smaller field we simply say that A is base-change.

Slightly more generally, we will have to consider abelian varieties which are a
twist of base-change. By a twist of A we mean an abelian variety Aξ/K defined
by the element ξ ∈ H1(Gal(L/K),AutK(A)), which comes with an isomorphism
θ : Aξ → A defined over L such that

ξσ = θσ ◦ θ−1 for all σ ∈ Gal(L/K).

So we say that A is a twist of base-change if there is a twist Aξ of A which is
base-change. For a discussion on twists of abelian varieties see [Kid95].

Now we give a precise account of lifting modular forms to imaginary quadratic
fields [Asa78,GL79]. This can be described in the classical language of automor-
phic forms (cf. [Lan80,AC89]), however, we wish to be as explicit as possible.

Let f be a cusp form of weight 2 for Γ0(N) and K an imaginary quadratic field.
Then f lifts to a cusp form F of weight 2 for Γ0(n) over K as in §1.2. We call
such a form F base-change and if a form G is the twist of the form F ⊗ ψ for
some character ψ, we say that G is a twist of base-change.

We can describe the lifting in terms of the coefficients. Suppose that f is a
newform. Then the coefficients of the lift of f to K are indexed by prime ideals
p and for p - n these are given by

cp =


ap if χK(p) = 1, i.e. if p is split in OK ;

a2
p − 2p if χK(p) = −1, i.e. if p is inert in OK ;

ap if χK(p) = 0, i.e. if p is ramified in OK ,

where p is the prime ideal over p and χK is the quadratic character of K. A cusp
form of weight 2 for Γ0(n) is base-change if and only if cp = cp̄ for all primes p.

The Hecke polynomial of f at p can be written as

X2 − apX + p = (X − α)(X − β).

If p is inert in OK , then considering the trace of Frobenius we can explain the
above relation by the fact that ap = α2 + β2 = (α + β)2 − 2αβ = a2

p − 2p.
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Recall that f has CM by K if f ⊗χK = f . If this were the case then the lift of f
to K would be an Eisenstein series. However, if f does not have CM by K then
the lift of f is also a newform. Note that f and its twist f ⊗ χK lift to the same
form.

We can describe the level of the base-change form exactly (see [Ţur18, Lemma
5.2]). Suppose that the classical newform f of weight 2 has level N1 and its twist
f ⊗χK has level N2. Then f and f ⊗χK lift to the same newform over K of level
n with

NK/Q(n) =
N1N2

∆2
K

.

3.1.2 Inner twists

Let f =
∑
anq

n be a newform of weight 2 for Γ0(N) with nebentypus ε. Denote
by

Kf = Q({an})

the coefficient field of f . It is well known that Kf is a number field. For every
automorphism σ of Kf there is a newform of the same level defined as

fσ =
∑

σ(an)qn.

The collection of newforms obtained from all automorphisms of Kf is called the
Hecke orbit of f .

Definition 3.1.1. Suppose that f =
∑
anq

n ∈ S2(Γ0(N), ε) is a newform and
there is a Dirichlet character χ such that

σ(ap) = χ(p)ap

for almost all primes p. Then f has an inner twist by (σ, χ).

This is of course the same requirement that fσ and f ⊗χ are the same newform.
We will assume from now on that f does not have complex multiplication.

The ‘inner twist’ phenomenon was first studied by K. Ribet [Rib80] with an
emphasis on the effect on endomorphism algebras and also independently by F.
Momose [Mom81]; many of the facts we recall here are first seen in these papers.
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It is clear from comparing nebentypus that we have the relation εχ2 = σ(ε). The
conductor of χ is only divisible by the primes dividing N and if ε is trivial then
χ must be a quadratic character.

The field Kf is either totally real or a CM field depending on whether ε is trivial
or non-trivial respectively. Now let Γ be the group of automorphisms of Kf which
give rise to an inner twist. Then Γ is an abelian group. The fixed field F = KΓ

f

is a totally real field generated by

{a2
p/ε(p)}p-N .

If the level N is square-free and ε is trivial then f has no inner twists. In fact
we can be even more precise: the primes p dividing the level of a newform with
trivial nebentypus and an inner twist have exponent [Has96, Proposition 2]

2 ≤ νp(N) ≤ 10 if p = 2;

2 ≤ νp(N) ≤ 5 if p = 3;

νp(N) = 2 if p ≥ 5.

Furthermore, N is divisible by 25 or a prime p such that p ≡ 3 mod 4.

For the newform f ∈ S2(Γ0(N), ε), Shimura attached to f an abelian variety Af
that is of GL2-type [Shi71]. It has dimension equal to [Kf : Q] and End0

Q(Af ) '
Kf . The variety Af factors up to isogeny over Q as a product of r copies of a
simple abelian variety Bf . These Bf are called building blocks as introduced
by [Rib94, Pyl04]. The group of inner twists measures how Af factors into its
building blocks and the field extensions over which this splitting happens.

The endomorphism algebra End0
Q̄(Bf ) is a division algebra which is either iso-

morphic to the totally real field F and dim(Bf ) = [F : Q] or a quaternion algebra
over F and dim(Bf ) = 2[F : Q]. For a discussion on the field of definition of the
building blocks and how these are computed see [Que09].

We will be interested in the case where End0
Q̄(Bf ) is a quaternion algebra over

Q and the quaternionic action descends to an imaginary quadratic field. Hence,
suppose that ε is trivial, Kf = Q(

√
m) is a (real) quadratic field and f has an

inner twist by (σ, χ) where 〈σ〉 = Gal(Kf/Q).

Denote by K = Q(
√
d) the quadratic field associated to χ. Now Af is an abelian

surface over Q. Its full endomorphism algebra is described in [Cre92] as the
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quaternion algebra

End0
Q̄(Af ) ' End0

K(Af ) '
(
m, d

Q

)
.

Hence Af is geometrically a QM-surface if and only if
(
m,d
Q

)
is non-split, otherwise

it is a product of two elliptic curves.

Proposition 3.1.2. If Af is geometrically a QM-surface then K is imaginary
quadratic.

Proof. This is [Cre92, Theorem 2].

Remark 3.1.3. There is a conjecture attributed to R. Coleman that states that
up to bounded dimension g and degree d there should be only finitely many rings
that occur as the endomorphism ring of an abelian variety of dimension g over
a number field of degree d. For the case of abelian surfaces with quaternionic
multiplication this is investigated in [BFGR06,Rot08]. More recently it has been
shown how this relates to other conjectures in arithmetic geometry [OSZ18].

§ 3.2 Genuine QM-surfaces and newforms

Let K be an imaginary quadratic field.

Definition 3.2.1. We say that a Bianchi newform is genuine over K if it is not
(the twist of) base-change of a classical newform over Q. Similarly, an abelian
variety is defined to be genuine over K if it is not a simple factor of a twist of
base-change.

As predicted by the Langlands programme, there is a conjectural connection
between Bianchi newforms and QM-varieties [Tay95, Conjecture 3].

Conjecture 3.2.2. Let F be a weight 2 Bianchi newform over K of level n with
coefficient field EF and [EF : Q] = n. Then there is a 2n-dimensional abelian
variety AF defined over K with Cond(A) = n2n and quaternionic multiplication
by a (possibly split) quaternion algebra over EF such that

L(AF , s) =
∏

σ:EF ↪→C

L(F σ, s)2.
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The case where the quaternion algebra is split is the most frequently occuring
and this happens precisely when AF is the square of a GL2-type variety. We will
be mostly interested in Bianchi newforms that have rational coefficients since
conjecturally attached to these are QM-surfaces.

As explained in the previous subsection, one source of QM-surfaces over imaginary
quadratic fields is the base-change of GL2-type surfaces which are attached to
classical weight two newforms with quadratic coefficients and a non-trivial inner
twist.

It is natural to ask whether all QM-surfaces over imaginary quadratic fields arise
this way. Motivated by the conjectural connection to Bianchi newforms, J. Cre-
mona asked whether this is the case [Cre92, Question 1’], phrased in the following
way (see also [DGP10, Conjecture 1]).

Question 3.2.3. If f is a rational weight 2 Bianchi newform over K for Γ0(n),
is there either an elliptic curve E/K with L(f, s) = L(E/K, s), or a quadratic
character χ of GK such that f ⊗ χ is base-change?

The answer, as the examples in the next section show, is that a genuine Bianchi
newform does not necessarily correspond an elliptic curve.

Theorem 3.2.4. There exists QM-surfaces over imaginary quadratic fields that
are not twists of base-change.

Remark 3.2.5. One can interpret this statement in terms of rational points
on Shimura curves. For m|D there is a quotient curve defined by the Atkin-

Lehner involution X
(m)
D = XD/〈ωm〉 and a natural projection map πm : XD →

X
(m)
D . A rational point on X

(m)
D represents a GL2-type surface over Q with real

multiplication by Q(
√
m) and quaternionic multiplication of discriminant D over

K [BFGR06]. Hence the above theorem implies that
⋃
m|DXD(K)\π−1

m (Q) 6= ∅
for some imaginary quadratic field K and discriminant D.

Question 3.2.6. For which pairs (K,D) is the set
⋃
m|DXD(K)\π−1

m (Q) non-
empty?

Remark 3.2.7. As it turns out, it is possible for a QM-surface not to be a
quadratic twist of base-change. Rather, it could be a simple factor of the twist
of a GL2-type variety of dimension at least 4. This is the contents of [CDP+19].
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§ 3.3 Explicit examples

Theorem 3.3.1. The Jacobians of the following genus 2 curves are QM surfaces
which correspond to a genuine Bianchi newform as in Conjecture 3.2.2.

1 C1 : y2 = x6 + 4ix5 + (−2i− 6)x4 + (−i+ 7)x3 + (8i− 9)x2− 10ix+ 4i+ 3,
Bianchi newform: 2.0.4.1-34225.3-a;

2 C2 : y2 = x6 + (−2
√
−3− 10)x5 + (10

√
−3 + 30)x4 + (−8

√
−3− 32)x3

+ (−4
√
−3 + 16)x2 + (−16

√
−3− 12)x− 4

√
−3 + 16,

Bianchi newform: 2.0.3.1-61009.1-a;

3 C3 : y2 = (104
√
−3− 75)x6 + (528

√
−3 + 456)x4 + (500

√
−3 + 1044)x3

+ (−1038
√
−3 + 2706)x2 + (−1158

√
−3 + 342)x− 612

√
−3− 1800,

Bianchi newform: 2.0.3.1-67081.3-a;

4 C4 : y2 = x6 − 2
√
−3x5 + (2

√
−3− 3)x4 + 1/3(−2

√
−3 + 54)x3

+ (−20
√
−3 + 3)x2 + (−8

√
−3− 30)x+ 4

√
−3− 11,

Bianchi newform: 2.0.3.1-123201.1-b.

Proof. See Chapter 4.

At the time of writing there are 161343 rational Bianchi newforms of weight 2
in the LMFDB [LMF13] and these are for the quadratic fields Q(

√
−d) with

d = 1, 2, 3, 7, 11. Among these, up to conjugation and twist there are only four
genuine newforms for which no corresponding elliptic curve has been found. These
are all accounted for by Theorem 3.3.1.

Curve 1. Let C1 be the genus 2 curve as in Theorem 3.3.1:

C1 : y2 = x6 + 4ix5 + (−2i− 6)x4 + (−i+ 7)x3 + (8i− 9)x2 − 10ix+ 4i+ 3.

• The surface A = Jac(C1) has conductor p4
5,1 · p4

37,2 with norm 342252.

• O ↪→ EndQ(i)(A) where O is the maximal order of the rational quaternion
algebra of discriminant 6.

• There is a genuine Bianchi newform f ∈ S2(Γ0(p2
5,1 ·p2

37,2)) which is modular
to A and is listed on the LMFDB database with label 2.0.4.1-34225.3-a.

http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.4.1/34225.3/a/
http://lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/61009.1/a/
http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/67081.3/a/
http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/123201.1/b/
http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.4.1/34225.3/a/
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Curve 2. Let C2 be the genus 2 curve as in Theorem 3.3.1:

C2 : y2 =x6 + (−2
√
−3− 10)x5 + (10

√
−3 + 30)x4 + (−8

√
−3− 32)x3

+ (−4
√
−3 + 16)x2 + (−16

√
−3− 12)x− 4

√
−3 + 16.

• The surface A = Jac(C2) has conductor p4
13,1 · p4

19,1 with norm 610092.

• O ↪→ EndQ(
√
−3)(A) where O is the maximal order of the rational quaternion

algebra of discriminant 10.

• There is a genuine Bianchi newform f ∈ S2(Γ0(p2
13,1·p2

19,1)) which is modular
to A and is listed on the LMFDB database with label 2.0.3.1-61009.1-a.

Curve 3. Let C3 be the genus 2 curve as in Theorem 3.3.1:

C3 : y2 =(104
√
−3− 75)x6 + (528

√
−3 + 456)x4 + (500

√
−3 + 1044)x3

+ (−1038
√
−3 + 2706)x2 + (−1158

√
−3 + 342)x− 612

√
−3− 1800.

• The surface A = Jac(C3) has conductor p4
7,1 · p4

37,2 with norm 670812.

• O ↪→ EndQ(
√
−3)(A) where O is the maximal order of the rational quaternion

algebra of discriminant 10.

• There is a genuine Bianchi newform f ∈ S2(Γ0(p2
7,1 ·p2

37,2)) which is modular
to A and is listed on the LMFDB database with label 2.0.3.1-67081.3-a.

Curve 4. Let C4 be the genus 2 curve as in Theorem 3.3.1:

C4 : y2 =x6 − 2
√
−3x5 + (2

√
−3− 3)x4 + 1/3(−2

√
−3 + 54)x3

+ (−20
√
−3 + 3)x2 + (−8

√
−3− 30)x+ 4

√
−3− 11.

• The surface A = Jac(C4) has conductor p12
3 · p4

13,1 with norm 1232012.

• O ↪→ EndQ(
√
−3)(A) where O is the maximal order of the rational quaternion

algebra of discriminant 6.

• There is a genuine Bianchi newform f ∈ S2(Γ0(p6
3 · p2

13,1)) which is modular
to A and is listed on the LMFDB database with label 2.0.3.1-123201.1-b.

http://lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/61009.1/a/
http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/67081.3/a/
http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/123201.1/b/
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§ 3.4 Computational aspects

Here we explain in detail how the examples in the previous section were found
using computational tools. The majority of the work was carried out in MAGMA
[BCP97].

3.4.1 Overview

The aim is to find examples of QM-surfaces which are

1 genuine;

2 of small conductor.

The second condition is to ensure that the corresponding Bianchi newform will
be in the realms of what it is possible to compute. This is quite a strict limita-
tion because the typical QM-surface will have a very large conductor due to the
following:

Proposition 3.4.1. Let A/K be a QM-surface. Then any prime ideal dividing
the conductor of A appears to at least exponent 4.

Proof. This is [GMŞ16, Proposition 2.4].

The strategy will be to use a family of QM-surfaces and try to run a large search
by varying the parameters and catching those with the desired properties.

To this effect, the family given by [HT99] (see §2.3.2) would seem ideal: it is given
as a two-parameter family S6(t, s) of genus two curves such that the Jacobian of
each curve is a QM-surface. However, it turns out that this family is not useful for
our purposes since it would seem by checking numerically that all specialisations
of S6(t, s) are (a twist of) base-change.

Hence we instead make use of two families of discriminant 6 and 10 found in
[BG08], which in turn were derived from the family above. The big advantage
with these two families is that they are derived from the moduli space and there
is a parameterisation in which we can control the arithmetic properties of the
resulting genus 2 curves.
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For a detailed overview of the two families of QM-surfaces worked out by S. Baba
and H. Granath, including how they were constructed, see §2.3. Let us quote
the main result here for the quaternion algebra of discriminant 6, the case of
discriminant 10 is similar.

Let the maximal order of B6 be denoted by O and the set of norm 1 elements
denoted byO1. These act properly discontinuously as isometries on the upper half
plane H2 via an embedding B6 ↪→M2(R) and the resulting quotient X6 = H2/O1

is the Shimura curve which is a moduli space for abelian surfaces with quaternionic
multiplication by O. An explicit model for this curve is X6 : X2 + 3Y 2 +Z2 = 0.

Theorem 3.4.2. Let

Pj = (4 : 3
√
j :
√
−27j − 16) ∈ X6

be a point on the conic X6 which is parameterised by P1. Define the genus 2 curve

Cj : y2 = (−4 + 3s)x6 + 6tx5 + 3t(28 + 9s)x4 − 4t2x3

+ 3t2(28− 9s)x2 + 6t3x− t3(4 + 3s),

where t = −2(27j+16) and s =
√
−6j. Then the Jacobian of Cj is a QM surface.

The curve is defined over the field Q(
√
j,
√
−6) and the field of moduli for Cj is

Q(j).

Proof. See [BG08, §3.5].

In this way we can generate numerous QM surfaces over various number fields
by, for example, taking any j ∈ Q. However, for the purposes of modularity we
need to fix an imaginary quadratic field K and try to define a QM-surface over
this field.

3.4.2 Computation

In order to find a genuine QM-surface with QM of discriminant 6 (the case of
discriminant 10 is very similar) one can take the following steps:

1 Fix a field K such that X6(K) 6= ∅ and K ↪→ B6.

2 Find a point P0 ∈ X6(K)
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3 Fix a parameterisation X6(K) from the base point P0.

4 Find a point P = (a : b : c) on the conic X6(K) using the parameterisation.

5 Define the quantity j = ( 4b
3a

)2.

6 Create the hyperelliptic curve Cj in Theorem 3.4.2 which is defined over
Q(
√
j,
√
−6).

7 Use the commands IgusaClebschInvariants() and
HyperellipticCurveFromIgusaClebsch() to find a model C of Cj which
is defined over K.

8 For a set S consisting of split primes p, p of K which do not divide the
discriminant of C, reduce the curve C modulo p and p.

9 Use the commands Jacobian() and EulerPolynomial() to get Euler poly-
nomials of the form (X2 − apX +N(p))2.

10 If ap 6= ±ap for any prime p ∈ S then the surface Jac(C) is genuine over K.

If Jac(C) is genuine then the set of primes S needed to verify this should not be
too large in general. By searching for points P ∈ X6(K) using a parameterisation
and following the above procedure it is reasonably straight forward to find a QM-
surface which is genuine. However, if we are trying to find a QM-surface with
small or prescribed conductor the process is more involved.

In the steps above we require that K ↪→ B6 to ensure the Cj has a model defined
over K. Let us explain this point.

For a non-singular genus 2 curve C, Igusa defined invariants {Ji(C)}i=2,4,6,10 which
are homogeneous polynomials in the coefficients of C. Two curves are isomorphic
if and only if they define the same point [J2, J4, J6, J10] in weighted projective
space.

Definition 3.4.3. The minimal field over which the point [J2, J4, J6, J10] is de-
fined is called the field of moduli of C. The minimal field over which a model for
C is defined is called the field of definition of C.

J.-F. Mestre [Mes91] solved the problem of how to construct a model for the genus
2 curve C from its Igusa invariants. If the field of moduli of C is K, then assuming
that C does not have any automorphisms other than the hyperelliptic involution,
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C cannot be defined over K in general. There is a quaternion algebra HC , called
the Mestre obstruction, such that for a field extension L/K, it is possible to define
C over L if and only if L splits HC . In our specific case there is a simple criterion.

Proposition 3.4.4. The Mestre obstruction of Cj is the quaternion algebra(
−6j,−2(27j + 16)

Q(j)

)
.

In particular, Cj has a model defined over K if and only if K splits B6.

Proof. The Mestre obstruction is derived in [BG08, Proposition 3.13]. The second
statement just follows from the fact that(−6j,−2(27j + 16)

Q(j)

)
'
(−6, 2

K

)
' B6 ⊗Q K.

In order to find explicit examples of genuine QM-surfaces which are amenable
to computation we wish to find curves with nice models and whose Jacobians
have small conductors. This is done by searching over values of j by using a
parameterisation as above.

One would hope that values of j that are of small height correspond to curves Cj
with small arithmetic invariants. This is indeed the case as we can see from the
Igusa invariants, which in terms of j are ( [BG08, Proposition 3.6])

[12(j + 1), 6(j2 + j + 1), 4(j3 − 2j2 + 1), j3].

We can also use the following to control ramification properties.

Proposition 3.4.5. Let Cj/K be a genus 2 curve as above. Then Cj has poten-
tially good reduction at a prime p - 6 if and only if νp(j) = 0.

Proof. See [BG08, Proposition 3.19].

The models which the function HyperellipticCurveFromIgusaClebsch() pro-
duce are typically very large, often many pages long. This is of practical impor-
tance because of the discrepancy between the discriminant of the curve C and
the conductor of the surface Jac(C).
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Lemma 3.4.6. Let C be a genus 2 curve over a number field K with integral
coefficients. Then there is an invariant ∆min �OK called the minimal discrimi-
nant of C defined in [BSS+16, §2] and we say that C is a global minimal model
if (∆(C)) = ∆min(C). It has the property that Cond(Jac(C))|∆min [Liu94].

The converse is not necessarily true and if p divides ∆min but not the conductor of
the Jacobian, p is typically large [BSS+16, Remark 5.3.3]. If K has class number
1 then C has a global minimal model, but not necessarily otherwise.

It is necessary to know the conductor exactly since we wish to find the conjec-
turally associated Bianchi newform. The odd part of the conductor can be found
using MAGMA. Computing the even part has recently been made possible using
machinery developed in [DD19]. The support of the ideal generated by the dis-
criminant of a genus 2 hyperelliptic curve contains the support of the conductor
of its Jacobian and the inclusion can in fact be strict. This phenomenon arises
especially when one works with curves that have very large coefficients.

To find small models for the curves in §3.3 it was required to use as yet unpub-
lished code by L. Dembélé. The input is:

1 A list of sufficiently many Euler polynomials;

2 The field cut out by the 2-torsion of the surface Jac(C).

The Euler polynomials are computed from the conjecturally corresponding Bianchi
newform. To compute the 2-torsion we use the following fact.

Proposition 3.4.7. The field of 2-torsion of the surface Jac(C) is the same as
the splitting field of the hyperelliptic polynomial of C.

Proof. See [Wil98, Lemma 4.4.2].

Example 3.4.8. Let us illustrate how this is done with the field K = Q(i) and
the curve C1 in §3.3.

Fix the base point
P = (−i, 0, 1)

from which we will make the parameterisation. Then there is a map

ϕ : P1(K) −→ X6(K)

(g : h) 7−→ (ig2 − 3ih2, 2igh,−g2 − 3h2).
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with inverse (X, Y, Z) 7→ (X − iZ, Y ). The base point corresponds to (1 : 0).
Hence we can set h = 1 and search over values of g. The point (g : 1) corresponds
to the value j = ( 8ig

ig2−3i
)2. One can then do a search over values of g of bounded

height.

Let g = −1636i+248
4107

which corresponds to the point

Pj = (4 :
48i+ 66

37
:
−176i+ 54

37
)

with

j =
704i+ 228

1369
.

As an ideal j factorises as (j) = p4
2 · p2

5,1 · p−2
37,2. This allows us to write down

the hyperelliptic curve Cj which is defined over K(
√
−6). By taking the Igusa-

Clebsch invariants and using the function above we can define a hyperelliptic
curve C which is defined over K and is isomorphic to Cj over some extension of
K.

Now that we have a model C we can compute the field cut out by the 2-torsion of
Jac(C) by computing the splitting field. This then allows us to define a smaller
model for C using the code of L. Dembélé. Hence we produce the curve

C1 : y2 = x6 + 4ix5 + (−2i− 6)x4 + (−i+ 7)x3 + (8i− 9)x2 − 10ix+ 4i+ 3

and Jac(C1) is a genuine QM-surface.

§ 3.5 Connection with the Paramodularity Conjecture

The genuine QM-surfaces we present also have an interesting connection to the
Paramodularity Conjecture. Recall that the original Paramodularity Conjec-
ture posits a correspondence between abelian surfaces A/Q with trivial endomor-
phisms and genus 2 paramodular rational Siegel newforms of weight 2 that are
not Gritsenko lifts [BK14, Conjecture 1.1]. Let us briefly state the details.

Under the general Langlands framework, H. Yoshida conjectured that for every
abelian surface over Q with trivial endomorphisms there should be a discrete
group Γ ≤ Sp4(Q) and a certain Siegel modular form of weight 2 for Γ with the
same L-function as the abelian surface [Yos84].
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Definition 3.5.1. For a natural number N define the paramodular group

K(N) = Sp4(Q) ∩


∗ ∗ ∗/N ∗
∗N ∗ ∗ ∗
∗N ∗N ∗ ∗N
∗N ∗ ∗ ∗

 .

Let Sk2 (K(N)) denote the C-vector space of Siegel cusp forms of weight k and
degree 2 for K(N) called paramodular forms.

One can lift Jacobi forms of index N to paramodular forms for K(N) of weight
2 via the Gritsenko lift Grit: J cusp2,N −→ S2

2(K(N)). These lifts are not interesting
for applications to arithmetic geometry because the eigenvalues are too large.

It was conjectured that there is a bijection between lines of paramodular newforms
f ∈ S2

2(K(N)) with rational eigenvalues that are not Gritsenko lifts and isogeny
classes of abelian surfaces A with trivial endomorphisms and conductor N . In
this correspondence

L(A, s,Hasse-Weil) = L(f, s, spin).

Evidence for the conjecture is given in [PY15] by computing spaces of cusp forms
for primes N less than 600.

It has been recently pointed out by F. Calegari et al. [BCGP18, §10] that this
conjectural correspondence needs to be amended. In the bijection the geomet-
ric side needs to take into account abelian 4-folds B/Q with EndQ(B) ⊗ Q an
indefinite quaternion algebra over Q . This can be illustrated using our genuine
QM-surfaces.

Let C/K be any of the four curves given in Theorem 3.3.1. Define A/K to be the
QM surface Jac(C) with EndK(A)⊗Q ' D/Q an indefinite quaternion algebra.
Then the Weil restriction B = ResK/Q(A) of A from K to Q is a simple abelian
4-fold such that EndQ(B)⊗Q ' D/Q.

We prove in Chapter 4 that there is a genuine rational weight 2 Bianchi new-
form f over K such that L(A/K, s) = L(f, s)2. Now let F be the paramod-
ular rational Siegel newform of weight 2 that is the theta lift of f . It follows
from the properties of Weil restriction [Mil72] and theta lifting [BDPŞ15] that
L(B/Q, s) = L(A/K, s) = L(f, s)2 = L(F, s)2.
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In analogy to the case of QM surfaces, at any prime ` unramified in D, the 8-
dimensional `-adic Tate module of B/Q splits as the square of a 4-dimensional
submodule [Chi92, §7]. Then the 4-dimensional `-adic Galois representation has
similar arithmetic to one that arises from an abelian surface over Q with trivial
endomorphisms. Indeed, our example above shows that via the representation
afforded by the submodule, B/Q corresponds to a Siegel newform of the type
considered in the Paramodularity Conjecture.

Let us then state the modified paramodularity conjecture [BK19].

Conjecture 3.5.2. Let AN denote the set of isogeny classes of abelian surfaces of
conductor N with trivial endomorphisms and BN denote the set of isogeny classes
of QM-fourfolds of conductor N2. Then there is a bijection between paramodu-
lar newforms of level N up to scaling that are non-lifts and AN ∪ BN . In this
correspondence

L(A, s,Hasse-Weil) = L(f, s, spin) if A ∈ AN

and
L(A, s,Hasse-Weil) = L(f, s, spin)2 if A ∈ BN .



Chapter 4

The Faltings-Serre-Livné method

In this chapter we shall prove that the genuine QM-surfaces in Theorem 3.3.1 are
modular in the sense that the attached Galois representations are isomorphic to
ones coming from Bianchi newforms. This will be achieved by using what is often
called the Faltings-Serre method, although we shall actually use a criterion of R.
Livné because the residual image of the Galois representations will be absolutely
reducible in this case.

The method is used for determining the equivalence of two Galois representations

ρ1, ρ2 : G −→ GL2(Q`).

This comes out of Faltings’ seminal work [Fal83] and is elaborated upon by J.-
P. Serre in a letter to J. Tate dated 26th October 1984 [Ser15, pp.699-705]. It
gives an effective method to check whether two representations are isomorphic by
computing the trace of Frobenius for only finitely many primes. As an example
of its utility Serre shows that the elliptic curve of conductor 11 is modular using
these relatively simple techniques.

The contribution of Livné [Liv87] to this topic was to give an analogous treatment
for representations which are absolutely reducible at ` = 2.

This overall method for verifying whether two representations are isomorphic was
extended to imaginary quadratic fields by [DGP10], which we shall follow. Note
that many properties of Galois representations can be computed from a finite
number of traces of Frobenius using the algorithms developed in [AGC18].
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For the remainder of the chapter, unless stated otherwise let K be an imaginary
quadratic field and

ρ1, ρ2 : GK −→ GL2(Q2)

be two 2-adic Galois representations with residual representations

ρ1, ρ2 : GK −→ GL2(F2).

§ 4.1 Galois representations attached to Bianchi newforms

Let π be any regular cuspidal automorphic representation π of GL2(AK) with uni-
tary central character ω (cf. [Tay94] for definitions). By the Langlands philosophy,
one expects that attached to π is a compatible family of continuous irreducible
Galois representations {ρ`} such that the associated L-functions agree. That is,
the Frobenius polynomials of ρ agree with the Hecke polynomials of π at each
place.

Under the assumption that ω is equal to its complex conjugate, it is possible
to relate π to a holomorphic Siegel modular form via the theta lift and get a
version of the predicted correspondence. In [HST93,Tay94], with some technical
assumptions the authors succeeded in attaching to π a compatible family of 2-
dimensional Galois representations with the Frobenius and Hecke polynomials
agreeing outside of a density zero set of places.

This result was then strengthened by [BH07] in which the authors removed the
technical assumptions and proved the equivalence of polynomials outside of a
finite explicit set. This was then improved by [Mok14] who also extended the
result to CM fields.

We quote the result here.

Theorem 4.1.1. Let S denote the set of places of K which divide ` or where
π is ramified and assume that ω = ωc. Then there is a compatible system {ρ` :
Gal(K/K)→ GL2(Q`)} of continuous irreducible representations such that if the
prime v /∈ S then the characteristic polynomial of ρ`(Frobv) agrees with the Hecke
polynomial of π at v. In other words, L(ρ`, s) = L(π, s) away from S.

It will be important in the following sections to control the field of definition of
the image of these representations, for which we can use the result below due
to R. Taylor. Let the notation be as in the previous theorem. Then for v /∈ S,
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{αv, βv} ⊂ C× are the Satake parameters of π. Define the field Fπ as the subfield
of C generated by αv + βv and αvβv for v /∈ S. In fact, Fπ is a number field.

Theorem 4.1.2. Let f be a Bianchi newform over the imaginary quadratic field
K. If for i = 1, 2, the vi /∈ S are places of K with αvi 6= βvi and if vi is split
then αvi 6= −βvi, we let E = Fπ(αv1 , αv2). Then E/Fπ is an extension of degree
at most four and the representation is defined over

ρ` : Gal(K/K)→ GL2(Eλ)

where Eλ is the completion of E at a prime λ above `.

Proof. See [Tay94, Corollary 1].

§ 4.2 Comparing residual representations

The strategy of the Faltings-Serre method is to first establish that the two residual
representations are isomorphic and given this, show that the full representations
are isomorphic. Much of the work is in this first step.

As usual let ρ1, ρ2 : GK −→ GL2(Q2) be two Galois representations. We briefly
outline how to define the residual representations ρ1, ρ2, borrowing from [Jon15,
§6.1].

It is well known that such a continuous representation ρ` : GK −→ GL2(Q`) has
its image contained in GL2(E), where E is a finite extension of Q`. Then one can
show that the representation ρ` : GK −→ GL2(E) fixes a lattice in E, i.e. an OE
module Λ such that Λ⊗OE

E ' E2. This means that up to isomorphism we can
realise it as a representation

ρ` : GK −→ GL2(OE).

Hence we can define the residual representation ρ` by composing with the natural
reduction map GL2(OE)→ GL2(k), where k is the residue field of OE.

However, the projection induced by OE → k introduces the subtlety that the
residual representation is dependent on the choice of lattice Λ. Two lattices differ
by an element of GL2(E), but as representations over k the two residual repre-
sentations need not be isomorphic.
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To remedy this, let A = k[GK ] and V ,W be the vector space k2 with k[GK ]-
action defined by two distinct lattices of E2. Whilst the lattices are distinct, the
full representations associated to them are equivalent up to conjugation which
means that they have equal characteristic polynomials with integral coefficients
in OE. In particular, the reduced characteristic polynomials over k associated to
V and W are equal.

The well known Brauer-Nesbitt theorem tells us that since the characteristic
polynomials of V and W are the same, their composition factors must be equal.
That is to say, in the composition series

V = V0 ) V1 ) · · · ) Vn = 0;

W =W0 )W1 ) · · · )Wn = 0

with simple composition factors Vi/Vi+1 andWi/Wi+1, that Vi/Vi+1 ' Wi/Wi+1.

Recall that the semisimplification of V is defined as

Vss =
n−1⊕

0

Vi/Vi+1

and Vss is unique up to isomorphism by a theorem due to Jordan-Hölder.

Definition 4.2.1. The residual representation ρ` : Gk −→ GL2(k) is defined
to be the semisimplification of the representation obtained by composing ρ` :
GK −→ GL2(OE) with the reduction map GL2(OE)→ GL2(k).

The residual representation is independent of the choice of lattice Λ.

From now on let us suppose that the representations have rational trace of Frobe-
nius. We can simplify the situation by assuming that the residual representations
have image in GL2(F2) by Lemma 2.4.6.

Let Li denote the fixed field of Ker(ρi) and note that Gal(Li/K) ' GK/Ker(ρi) '
Im(ρi).

By applying Brauer-Nesbitt it is enough to show that L1 ' L2 in order to prove
that the two residual representations are isomorphic. Hence we use the tools of
class field theory to test whether the two fields are isomorphic which is possible
because GL2(F2) ' S3 is solvable.
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The ray class group Cl(OK ,m) is defined as the group of fractional ideals of K
coprime to the ideal m, modulo the group of principal ideals coprime to m. It
is a finite abelian group and significantly there is an abelian extension K(m)/K
called the ray class field which is unramified away from the primes dividing m
and Gal(K(m)/K) ' Cl(OK ,m). The isomorphism sends a prime p to the Frobe-
nius element FrobK(m)/K(p) in Gal(K(m)/K). This is called the Artin map and
establishes a correspondence between subgroups of Cl(OK ,m) and subfields of
K(m)/K.

Theorem 4.2.2. Let K be an imaginary quadratic field and L/K an abelian
extension of prime degree p unramified outside of the finite set of places S. Define
the modulus

mK =
∏
p∈S

pe(p),

where {
e(p) = 1 if p - p;
e(p) = bpe(p/p)

p−1
c+ 1 if p|p.

Then Gal(L/K) corresponds to a subgroup of the ray class group Cl(OK ,mK).

Proof. This is [Coh00, Propositions 3.3.21-22].

Thus to test the isomorphism of field extensions of K we have to look at the ray
class group Cl(OK ,mK). The following will be used regularly to enumerate and
compare field extensions.

Proposition 4.2.3. Let K be an imaginary quadratic field and mK a modu-
lus. Then there is a (Z/nZ)-basis {ψ1, . . . , ψs, χ1, . . . , χt} of the characters of
Cl(OK ,mK) of order exactly n and a set {p1, . . . , pr} of prime ideals of OK
such that ψi(pj) = 0 for all i, j and the vectors {(χ1(pj), . . . , χt(pj))}1≤j≤r span
(Z/nZ)t.

For any such set of primes {p1, . . . , pr}, if χ is a non-trivial order n character of
Cl(OK ,mK) not lying in the span of {ψi}1≤i≤s, then χ(pj) 6= 0 for some prime
pj.

Proof. See [Jon15, Proposition 6.3.2].
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There are four distinct possibilities for the image: Im(ρ1) ' id, C2, C3 or S3. We
will restrict ourselves to looking at the third case since this is the situation for
the QM-surfaces in §3.3 by Proposition 2.4.7.

Assumption: Im(ρ1) ' C3.

Then there are two steps to show that ρ1 ' ρ2:

1 Prove that Im(ρ2) ' C3;

2 Show that the image of ρ2 factors through L1.

We will make frequent use of the fact that the elements of order 3 in GL2(F2)
are precisely those of odd trace and the elements of order 2 all have even trace
as can be seen from the following table.

Element

(
1 0
0 1

) (
1 1
0 1

) (
1 0
1 1

) (
0 1
1 0

) (
1 1
1 0

) (
0 1
1 1

)
Order 1 2 2 2 3 3
Trace 0 0 0 0 1 1

Table 4.1: Elements of GL2(F2).

As in Theorem 4.2.2 define the modulus

mK =
∏
p∈S

pe(p),

where

e(p) =


1 if p - 6;

2e(p/p) + 1 if p|2;

3bpe(p/p)
2
c+ 1 if p|3

and S is the set of primes at which ρ2 is unramified away from.

Step 1. First we establish whether L2 contains any quadratic subfields. If
Im(ρ2) contains an element of order 2 then there must be a quadratic character
of Cl(OK ,mK) corresponding to some quadratic subfield F2 of L2. Then for an
inert prime p of F2, ρ2(Frobp) must have order 2 and hence even trace.
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Let {χ1, . . . , χt} be a (Z/2Z)-basis for the quadratic characters of Cl(OK ,mK).
Suppose that the vectors {(χ1(pi), . . . , χt(pi))}1≤i≤r span (Z/2Z)t for some chosen
set of primes P = {p1, . . . , pr} of OK not dividing mK . From Proposition 4.2.3
we can infer that for any quadratic extension of K unramified outside of S with
associated character χ, there is a prime p ∈ P such that χ(p) 6= 0. In particular
there is a prime p ∈ P which is inert in this quadratic extension.

It follows from the above that if Tr(ρ2(Frobp)) is odd for all primes p ∈ P then
L2 cannot contain any quadratic subfields and hence Im(ρ2) ' C3.

Step 2. Let ψ1 be the character associated to the extension L1 which we have
assumed to be cubic and extend it to a (Z/3Z)-basis {ψ1, χ1, . . . , χt} of the cubic
characters of Cl(OK ,mK). As in Proposition 4.2.3, choose a set of primes P2 =
{p1, . . . , pr} of OK not dividing mK such that ψ1(pi) = 0 for all i and the vectors
{(χ1(pi), . . . , χt(pi))}1≤i≤r span (Z/3Z)t.

Now let ψ2 be the cubic character associated to L2. We can express the character
as

ψ2 = εψ1 +
t∑
i=1

εiχi, ε, εi ∈ Z/3Z.

If ψ2 6= εψ1 then by Proposition 4.2.3 there is a prime p ∈ P2 such that ψ2(p) 6=
0. This would mean that ρ2(Frobp) has order 3, whilst ρ2(Frobp) is the trivial
element. In particular we would have Tr(ρ1(Frobp)) 6= Tr(ρ2(Frobp)).

Hence if Tr(ρ1(Frobp)) = Tr(ρ2(Frobp)) for all primes p ∈ P2 we can conclude
that L1 ' L2 and hence ρ1 ' ρ2. Otherwise the two representations are not
isomorphic.

§ 4.3 Livné’s criterion

Once we have shown that the residual representations ρ1 and ρ2 are isomorphic, we
are now in a position to ascertain whether the full representations are isomorphic
up to semisimplification. We use the following result due to Livné in the case
that the image is cyclic.

Theorem 4.3.1. Let K be a number field, E a finite extension of Q2 and OE its
ring of integers with maximal ideal M. Let

ρ1, ρ2 : Gal(K/K) −→ GL2(E)
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be two continous representations unramified outside of a finite set of primes S
and K2,S the compositum of all quadratic extensions of K unramified outside of
S.

Suppose that

1 Tr(ρ1) ≡ Tr(ρ2) ≡ 0 (mod M) and Det(ρ1) ≡ Det(ρ2) ≡ 1 (mod M);

2 There is a finite set of primes T disjoint from S such that {Frobp |p ∈ T}
surjects onto Gal(K2,S/K).

If the characteristic polynomials of ρ1 and ρ2 are equal on {Frobp |p ∈ T} then ρ1

and ρ2 have isomorphic semisimplifications.

Proof. See [Liv87, Theorem 4.3] and also [Che08, Theorem 5.4.9] for this precise
statement.

As in the previous section, suppose that Im(ρ1) ' Im(ρ1) ' C3, which is the
case we are interested in. Denote by L ' L1 ' L2 the cubic extension of K cut
out by the residual representations. Then to apply the above theorem we have
to prove isomorphism (up to semisimplication) of ρ1|GL

' ρ2|GL
at the level of

GL = Gal(K/L).

If the representations are isomorphic (up to semisimplification) over a cyclic ex-
tension, the original representations can differ by a character. To prove that the
full representations are isomorphic (up to semisimplification) we have to show
that this character is trivial.

Proposition 4.3.2. Suppose that L is a cyclic extension of K and denote by
GL = Gal(K/L). If ρ1|GL

' ρ2|GL
, then ρ1 ' ρ2 ⊗ χ for some character χ

of GK whose restriction to GL is trivial. If Tr(ρ1(Frobp)) = Tr(ρ2(Frobp)) for
some prime p of K which is inert in L, then ρ1 and ρ2 are isomorphic up to
semisimplification.

Proof. This is essentially what is shown by [SW05, pp. 362], who found them-
selves in this situation whilst trying to apply Livné’s criterion to an elliptic curve
over Q(

√
509).

As explained in [Jon16, p. 161], by Frobenius reciprocity we know that ρ1 ' ρ2⊗χ
with the character χ being trivial on GL.
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Now suppose that p is inert in L and Tr(ρ1(Frobp)) = Tr(ρ2(Frobp)). Then clearly
χ(p) = 1. However, the fact that p is inert in L means the only possibility is that
χ is trivial and hence we can conclude that ρ1 ' ρ2.

§ 4.4 Proof of modularity

In this final section we shall apply the methods outlined in this chapter to prove
that the genuine QM-surfaces in §3.3 are modular. In particular we shall use
Livné’s criterion because the residual image of our representations are cyclic of
order 3. For computational reasons it is necessary to consider the `-adic repre-
sentations for the prime ` = 2. This is possible because 2 does not divide the
conductors of any of the QM-surfaces presented.

To compute coefficients of Bianchi newforms we use the implementation of D.
Yasaki’s work in MAGMA [Yas10].

For the sake of clarity and exposition we shall follow the proof for the second
QM-surface in §3.3. However, the list of primes needed to prove modularity of
the other three QM-surfaces will be included at the end.

So let K = Q(
√
−3), C2 be the genus 2 curve

C2 : y2 =x6 + (−2
√
−3− 10)x5 + (10

√
−3 + 30)x4 + (−8

√
−3− 32)x3

+ (−4
√
−3 + 16)x2 + (−16

√
−3− 12)x− 4

√
−3 + 16.

and A the Jacobian of C2. The surface A = Jac(C2) has conductor p4
13,1 · p4

19,1

with norm 610092 and O ↪→ EndQ(
√
−3)(A) where O is the maximal order of the

rational quaternion algebra of discriminant 10. The endomorphism algebra can
be independently verified using the machinery developed in [CMSV19].

Let f ∈ S2(Γ0(p2
13,1 ·p2

19,1)) be the genuine Bianchi newform which is listed on the
LMFDB database with label 2.0.3.1-61009.1-a. We will show that f corresponds
to A. As explained in §4.1, we can associate an `-adic Galois representation
ρf,` : Gal(K/K) −→ GL2(Q`) to f such that L(f, s) = L(ρf,`, s).

As in §2.4, attached to the QM-surface A is a Galois representation

ρA,2 : Gal(K/K) −→ (B ⊗Q Q2)×,

where B is the rational quaternion algebra of discriminant 10. First we have to
control the image of the two attached representations.

http://lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/61009.1/a/
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Lemma 4.4.1. The representations

ρA,2, ρf,2 : Gal(K/K) −→ GL2(Q2)

have image contained in GL2(E), where E is the unique unramified quadratic
extension of Q2.

Proof. For ρA,2 it follows from the fact that, whilst B⊗QQ2 is a division algebra,
any quadratic extension E of Q2 splits it as B ⊗Q E 'M2(E).

Let us now consider ρf,2. It is possible to directly apply the result 4.1.2 of Taylor.
So take the prime 31, which is split in Q(

√
−3) and whose Hecke eigenvalues at

the primes above it are distinct. We get the field Q(
√
−43,

√
−123) by adjoining

the roots of the Hecke polynomials. The completion at either of the primes above
2 in this field gives the unique unramified quadratic extension of Q2 and so we
can take this as the coefficient field E.

Now we can show that the residual representations are isomorphic.

Lemma 4.4.2. The residual representations ρA,2, ρf,2 are isomorphic and have
image C3 ⊂ GL2(F2).

Proof. Denote by LA and Lf the fields cut out by ρA,2 and ρf,2 respectively. It
is clear already from Proposition 2.4.7 that the image of ρA,2 is a subgroup of
C3. We compute that the field cut out by the 2-torsion of A is isomorphic to A4

which has only one proper normal subgroup. This subgroup has order 4 and so
applying the short exact sequence of Theorem 2.4.8, the image of ρA,2 must be
C3.

We first note that it can be assumed Im(ρf,2) ⊂ GL2(F2) by Lemma 2.4.6, due to
the fact that the traces of Frobenius are all rational. To show that Im(ρf,2) ' C3,
following §4.2 let m denote the modulus

m = p3
2 · p13,1 · p19,1.

If Im(ρf,2) is not equal to C3 there must be a quadratic extension of K contained
in Lf which corresponds to a quadratic character of Cl(OK ,m). We compute the
ray class group to be

Cl(OK ,m) ' (Z/2Z)2 ⊕ (Z/12Z)⊕ (Z/36Z).
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Let us choose {χ1, . . . , χ4} as an F2-basis for the quadratic characters of Cl(OK ,m).
Then the vectors {(χ1(p), . . . , χ4(p))}p∈P span F4

2, where P = {p7,1, p7,2, p13,2, p19,2, p5}.
If Lf contains a quadratic subfield then by Proposition 4.2.3 the associated
quadratic character must be non-zero for one of the primes in P . Hence there
must be a prime p ∈ P that is inert in this subfield and so ρf,2(Frobp) must have
order 2. However, we compute that the trace of Frobenius is odd for all primes
in P and therefore Lf is a cubic extension of K.

To show that the representations are isomorphic let ψA denote the cubic character
associated to LA. Extend this to an F3-basis {ψA, χ1} of the cubic characters of
Cl(OK ,m). We find that the prime p37,1 is such that ψA(p37,1) = 0 and χ1(p37,1) 6=
0. So if χf is the cubic character associated to Lf and χf is not in the span of
χA then ψf (p37,1) must be non-zero. In particular, ρf,2(Frobp) must have order 3
but we find that Tr(ρf,2(Frobp37,1)) = Tr(ρA,2(Frobp37,1)) and so we can conclude
that the residual representations are isomorphic.

Now that we have shown that the residual representations are isomorphic it re-
mains to show that the full representations are isomorphic up to semisimplifca-
tion. The residual images are cyclic and note that this will always be the case for
ρA,2 when the prime ` divides the discriminant of the acting quaternion algebra.
Since the images are absolutely reducible we can apply Theorem 4.3.1.

Theorem 4.4.3. Up to semisimplification, there is an isomorphism of Galois
representations

ρA,2 ' ρf,2.

Proof. Restricting the representations to the absolute Galois group of the cubic
extension L/K cut out by the residual representation, the residual image becomes
trivial. We are now in a position to apply Livné’s criterion.

Over LA we define the modulus

mLA
= p7

2 · p13,1 · p19,1

and compute the ray class group to be

Cl(OLA
,mLA

) = (Z/2Z)2 ⊕ (Z/4Z)2 ⊕ (Z/8Z)⊕ (Z/216Z).

Let {χ1, . . . , χ6} be a dual basis of quadratic characters of Cl(OLA
,mLA

). Any
set of primes {pi} for which the vectors {(χ1(pi), . . . , χ6(pi))} cover F6

2\{0} will
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satisfy the criterion. Following the algorithm [DGP10, §2.3, step (7)] we compute
the set

T (C2) ={3, 37, 43, 61, 67, 73, 97, 103, 127, 151, 157, 193, 211, 307, 313, 343, 373,

433, 463, 499, 523, 631, 661, 823, 1321, 2197, 2557, 2917}.

The traces of Frobenius agree on this set and so the GL representations are
isomorphic at the level of the cubic extension.

As explained in Proposition 4.3.2 this means that the full GK representations
could differ by a character. To show that the character is trivial we find that the
prime above 5 is inert in the cubic extension and that the traces of Frobenius
agree on this prime. Hence we can conclude that the two representations are
isomorphic up to semisimplification.

We finish with the main result:

Theorem 4.4.4. The Jacobians of the following genus 2 curves are QM surfaces
which are modular by a genuine Bianchi newform as in Conjecture 3.2.2.

1 C1 : y2 = x6 + 4ix5 + (−2i− 6)x4 + (−i+ 7)x3 + (8i− 9)x2− 10ix+ 4i+ 3,
Bianchi newform: 2.0.4.1-34225.3-a;

2 C2 : y2 = x6 + (−2
√
−3− 10)x5 + (10

√
−3 + 30)x4 + (−8

√
−3− 32)x3

+ (−4
√
−3 + 16)x2 + (−16

√
−3− 12)x− 4

√
−3 + 16,

Bianchi newform: 2.0.3.1-61009.1-a;

3 C3 : y2 = (104
√
−3− 75)x6 + (528

√
−3 + 456)x4 + (500

√
−3 + 1044)x3

+ (−1038
√
−3 + 2706)x2 + (−1158

√
−3 + 342)x− 612

√
−3− 1800,

Bianchi newform: 2.0.3.1-67081.3-a;

4 C4 : y2 = x6 − 2
√
−3x5 + (2

√
−3− 3)x4 + 1/3(−2

√
−3 + 54)x3

+ (−20
√
−3 + 3)x2 + (−8

√
−3− 30)x+ 4

√
−3− 11,

Bianchi newform: 2.0.3.1-123201.1-b.

Proof. We have proved this for C2. The same techniques are applied below to
show modularity of the other three QM-surfaces.

• C1: We define the modulus

mK = p5
2 · p5,1 · p37,2

http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.4.1/34225.3/a/
http://lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/61009.1/a/
http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/67081.3/a/
http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/123201.1/b/
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and compute the ray class group to be

Cl(OK ,mK) = (Z/2Z)2 ⊕ (Z/4Z)⊕ (Z/36Z).

Let {ψ1, . . . , ψ4} be a dual basis of quadratic characters of Cl(OK ,mK).
The set P of primes above {3, 5, 13} ensures that {(ψ1(p), . . . , ψ4(p))}p∈P
spans F4

2. The traces of Frobenius are all odd for the primes in P and hence
Im(ρf,2) ' C3.

There is only one cubic character so we can immediately deduce that LA '
Lf .

Over LA we define the modulus

mLA
= p3

2 · p5,1 · p37,1

and compute the ray class group to be

Cl(OLA
,mLA

) = (Z/2Z)4.

Let {χ1, . . . , χ4} be a dual basis of quadratic characters of Cl(OLA
,mLA

).
The primes needed to show that the full representations are isomorphic are
the ones above

T (C1) = {5, 17, 61, 73, 121, 125, 157}

since the vectors {(χ1(p), . . . , χ4(p))}p∈T (C1) cover F4
2\{0}. The traces of

Frobenius for the two representations agree on T (C1) so we can conlcude
that ρA,2 ' ρf,2 up to semisimplification.

• C3: We define the modulus

mK = p3
2 · p7,1 · p37,2

and compute the ray class group to be

Cl(OK ,mK) = (Z/2Z)2 ⊕ (Z/12Z)⊕ (Z/36Z).

Let {ψ1, . . . , ψ4} be a dual basis of quadratic characters of Cl(OK ,mK).
The set P of primes above {13, 19} ensures that {(ψ1(p), . . . , ψ4(p))}p∈P
spans F4

2. The traces of Frobenius are all odd for the primes in P and hence
Im(ρf,2) ' C3.

Let ϕA denote the cubic character associated to LA and set {ϕA, χ} to be
a basis for the cubic characters. The prime p43,1 is such that ϕA(p43,1) = 0
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and χ(p43,1) 6= 0. At this prime Tr(ρf,2(Frobp43,1)) = Tr(ρA,2(Frobp43,1)) and
so the cubic character associated to Lf must be in the span of ϕA. Hence
we can conclude that the residual representations are isomorphic.

Over LA we define the modulus

mLA
= p7

2 · p7,1 · p37,2

and compute the ray class group to be

Cl(OLA
,mLA

) = (Z/2Z)2 ⊕ (Z/4Z)2 ⊕ (Z/12Z)⊕ (Z/36Z).

Let {χ1, . . . , χ6} be a dual basis of quadratic characters of Cl(OLA
,mLA

).
The primes needed to show that the full representations are isomorphic are
the ones above

T (C3) = {3, 13, 19, 31, 43, 73, 79, 103, 157, 163, 181, 199, 307, 313, 397, 409, 457,

487, 643, 661, 673, 691, 823, 829, 997, 1063, 1447, 1621, 2377, 2689}

since the vectors {(χ1(p), . . . , χ6(p))}p∈T (C3) cover F6
2\{0}. The traces of

Frobenius for the two representations agree on T (C3) so we can conlcude
that ρA,2 ' ρf,2 up to semisimplification.

• C4: We define the modulus

mK = p3
2 · p3 · p13,1

and compute the ray class group to be

Cl(OK ,mK) = (Z/2Z)2 ⊕ (Z/4Z)⊕ (Z/12Z).

Let {ψ1, . . . , ψ4} be a dual basis of quadratic characters of Cl(OK ,mK).
The set P of primes above {7, 13, 19} ensures that {(ψ1(p), . . . , ψ4(p))}p∈P
spans F4

2. The traces of Frobenius are all odd for the primes in P and hence
Im(ρf,2) ' C3.

There is only one cubic character so we can immediately deduce that LA '
Lf .

Over LA we define the modulus

mLA
= p4

2 · p7,1 · p37,2
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and compute the ray class group to be

Cl(OLA
,mLA

) = (Z/2Z)2 ⊕ (Z/4Z).

Let {χ1, . . . , χ3} be a dual basis of quadratic characters of Cl(OLA
,mLA

).
The primes needed to show that the full representations are isomorphic are
the ones above

T (C4) = {7, 13, 61, 79, 97}

since the vectors {(χ1(p), . . . , χ3(p))}p∈T (C4) cover F3
2\{0}. The traces of

Frobenius for the two representations agree on T (C4) so we can conlcude
that ρA,2 ' ρf,2 up to semisimplification.
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[DR73] P. Deligne and M. Rapoport. Les schémas de modules de courbes elliptiques. pages
143–316. Lecture Notes in Math., Vol. 349, 1973.

[DR04] Luis V. Dieulefait and Victor Rotger. The arithmetic of QM-abelian surfaces through
their Galois representations. J. Algebra, 281(1):124–143, 2004.

[EGM82] J. Elstrodt, F. Grunewald, and J. Mennicke. On the group PSL2(Z[i]). In Number
theory days, 1980 (Exeter, 1980), volume 56 of London Math. Soc. Lecture Note Ser.,
pages 255–283. Cambridge Univ. Press, Cambridge-New York, 1982.

[EGMa82] J. Elstrodt, F. Grunewald, J. Mennicke, and and. PSL(2) over imaginary quadratic
integers. In Arithmetic Conference (Metz, 1981), volume 94 of Astérisque, pages
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Math., 73(3):349–366, 1983.

[FLHS15] Nuno Freitas, Bao V. Le Hung, and Samir Siksek. Elliptic curves over real quadratic
fields are modular. Invent. Math., 201(1):159–206, 2015.

[GHM78] F. Grunewald, H. Helling, and J. Mennicke. SL2 over complex quadratic number
fields. I. Algebra i Logika, 17(5):512–580, 622, 1978.

[GL79] P. Gérardin and J.-P. Labesse. The solution of a base change problem for GL(2)
(following Langlands, Saito, Shintani). In Automorphic forms, representations and
L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977),
Part 2, Proc. Sympos. Pure Math., XXXIII, pages 115–133. Amer. Math. Soc., Prov-
idence, R.I., 1979.

[GM78] F Grunewald and J Mennicke. SL(2,O) and elliptic curves. Manuscript Bielefeld,
1978.
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Sūrikaisekikenkyūsho Kōkyūroku, (942):142–152, 1996. Deformation of group
schemes and applications to number theory (Japanese) (Kyoto, 1995).

[HM95] Ki-ichiro Hashimoto and Naoki Murabayashi. Shimura curves as intersections of
Humbert surfaces and defining equations of QM-curves of genus two. Tohoku Math.
J. (2), 47(2):271–296, 1995.



REFERENCES 63

[HST93] Michael Harris, David Soudry, and Richard Taylor. l-adic representations associated
to modular forms over imaginary quadratic fields. I. Lifting to GSp4(Q). Invent.
Math., 112(2):377–411, 1993.

[HT99] Ki-ichiro Hashimoto and Hiroshi Tsunogai. On the Sato-Tate conjecture for QM-
curves of genus two. Math. Comp., 68(228):1649–1662, 1999.

[Jak74] M. I. Jakobzon. Two-dimensional Abelian varieties that have indefinite quaternions
as endomorphism algebra. Uspehi Mat. Nauk, 29(6(180)):185–186, 1974.

[Jon15] Andrew Jones. Modular elliptic curves over quartic CM fields. PhD thesis, University
of Sheffield, 2015.

[Jon16] Andrew Jones. Modular elliptic curves over the field of twelfth roots of unity. LMS
J. Comput. Math., 19(1):155–174, 2016.

[Jor86] Bruce W. Jordan. Points on Shimura curves rational over number fields. J. Reine
Angew. Math., 371:92–114, 1986.

[Kid95] Masanari Kida. Galois descent and twists of an abelian variety. Acta Arith., 73(1):51–
57, 1995.

[KW09] Chandrashekhar Khare and Jean-Pierre Wintenberger. Serre’s modularity conjecture.
I. Invent. Math., 178(3), 2009.

[Lan80] Robert P. Langlands. Base change for GL(2), volume 96 of Annals of Mathematics
Studies. Princeton University Press, Princeton, N.J.; University of Tokyo Press,
Tokyo, 1980.

[Lin05] Mark Peter Lingham. Modular forms and elliptic curves over imaginary quadratic
fields. PhD thesis, University of Nottingham, 2005.

[Liu94] Qing Liu. Conducteur et discriminant minimal de courbes de genre 2. Compositio
Math., 94(1):51–79, 1994.
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