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Abstract

A diverse set of hazards are posed by the world’s ∼1500 subaerial volcanoes, yet the

majority of them remain unmonitored. Measurements of deformation provide a way to

monitor volcanoes, and synthetic aperture RaDAR (SAR) provides a powerful tool to

measure deformation at the majority of the world’s subaerial volcanoes. This is due

to recent changes in how regularly SAR data are acquired, how they are distributed

to the scientific community, and how quickly they can be processed to create time

series of interferograms. However, for interferometric SAR (InSAR) to be used to

monitor the world’s volcanoes, an algorithm is required to automatically detect signs

of deformation-generating volcanic unrest in a time series of interferograms, as the

volume of new interferograms produced each week precludes this task being achieved

by human interpreters. In this thesis, I introduce two complementary methods that

can be used to detect signs of volcanic unrest.

The first method centres on the use of blind signal separation (BSS) methods to iso-

late signals of geophysical interest from nuisance signals, such as those due to changes in

the refractive index of the atmosphere between two SAR acquisitions. This is achieved

through first comparing which of non-negative matrix factorisation (NMF), principal

component analysis (PCA), and independent component analysis (ICA) are best suited

for solving BSS problems involving time series of InSAR data, and how InSAR data

should best be arranged for its use with these methods. I find that NMF can be used

with InSAR data, providing the time series is formatted in a novel way that reduces

the likelihood of any pixels having negative values. However, when NMF, PCA, and

ICA are applied to a set of synthetic data, I find that the most accurate recovery of

signals of interest is achieved when ICA is set to recover spatially independent sources

(termed sICA). I find that the best results are produced by sICA when interferograms

are ordered as a simple “daisy chain” of short temporal baselines, and when sICA is

set to recover around 1 − 3 more sources than were thought to have contributed to

the time series. However, I also show that in cases such as deformation centred under

a stratovolcano, the overlapping nature of a topographically correlated atmospheric

phase screen (APS) signal and a deformation signal produces a pair of signals that are

no longer spatially statistically independent, and so cannot be recovered accurately by
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viii Abstract

sICA.

To validate these results, I apply sICA to a time series of Sentinel-1 interferograms

that span the 2015 eruption of Wolf volcano (Galapagos archipelago, Ecuador) and

automatically isolate three signals of geophysical interest, which I validate by comparing

with the results of other studies. I also apply the sICA algorithm to a time series of

interferograms that image Mt Etna, and through isolating signals that are likely to be

due to instability of the east flank of the volcano, show that the method can be applied

to stratovolcanoes to recover useful signals. Utilising the ability of sICA to isolate

signals of interest, I introduce a prototype detection algorithm that tracks changes in

the behaviour of a subaerial volcano, and show that it could have been used to detect

the onset of the 2015 eruption of Wolf.

However, for use in an detection algorithm that is to be applied globally, the signals

recovered by sICA cannot be manually validated through comparison with other studies.

Therefore, I seek to incorporate a module into my detection algorithm that is able

to quantify the significance of the sources recovered by sICA. I achieve this through

extensively modernising the ICASO algorithm to create a new algorithm, ICASAR,

that is optimised for use with InSAR time series. This algorithm allows me to assess

the significance of signals recovered by sICA at a given volcano, and to then prioritise

the tracking of any changes they exhibit when they are used in my detection algorithm.

To further develop the detection algorithm, I create two synthetic time series that

characterise the different types of unrest that could occur at a volcanic centre. The first

features the introduction of a new signal, and my algorithm is able to detect when this

signal enters the time series by tracking how well the baseline sources are able to fit

new interferograms. The second features the change in rate of a signal that was present

during the baseline stage, and my algorithm is able to detect when this change in rate

occurs by tracking how sources recovered from the baseline data are used through time.

To further test the algorithm, I extended the Sentinel-1 time series I used to study the

2015 eruption of Wolf to include the 2018 eruption of Sierra Negra, and I find that my

algorithm is able to detect the increase in inflation that precedes the eruption, and the

eruption itself.

I also perform a small study into the pre-eruptive inflation seen at Sierra Negra

using the deformation signal and its time history that are outputted by ICASAR. A

Bayesian inversion is performed using the GBIS software package, in which the inflation

signal is modelled as a horizontal rectangular dislocation with variable opening and

uniform overpressure. Coupled with the time history of the inflation signal provided

by ICASAR, this allows me to determine the temporal evolution of the pre-eruptive

overpressure since the beginning of the Sentinel-1 time series in 2014. To extend this

back to the end of the previous eruption in 2005, I use GPS data that spans the entire
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interruptive period. I find that the total interruptive pressure change is ∼13.5 MPa,

which is significantly larger than the values required for tensile failure of an elastic

medium overlying an inflating body. I conclude that it is likely that one or more

processes occured to reduce the overpressure within the sill, and that the change in

rate of inflation prior to the final failure of the sill is unlikely to be coincidental.

The second method I develop to detect volcanic deformation in a time series of

interferograms uses a convolutional neural network (CNN) to classify and locate de-

formation signals as each new interferogram is added to the time series. I achieve

this through building a model that uses the five convolutional blocks of a previously

state-of-the-art classification and localisation model, VGG16, but incorporates a clas-

sification output/head, and a localisation output/head. In order to train the model, I

perform transfer learning and utilise the weights made freely available for the convo-

lutional blocks of a version of VGG16 that was trained to classify natural images. I

then synthesise a set of training data, but find that better performance is achieved on

a testing set of Sentinel-1 interferograms when the model is trained with a mixture of

both synthetic and real data. I conclude that CNNs can be built that are able to dif-

ferentiate between different styles of volcanic deformation, and that they can perform

localisation by globally reasoning with a 224×224 pixel interferogram without the need

for a sliding window approach.

The results I present in this thesis show that many machine learning methods can

be applied to both time series of interferograms, and individual interferograms. sICA

provides a powerful tool to separate some geophysical signals from atmospheric ones,

and the ICASAR algorithm that I develop allows a user to evaluate the significance of

the results provided by sICA. I incorporate these methods into an deformation detection

algorithm, and show that this could be used to detect several types of volcanic unrest

using data produced by the latest generation of SAR satellites. Additionally, the CNN

I develop is able to differentiate between deformation signals in a single interferogram,

and provides a complementary way to monitor volcanoes using InSAR.
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Chapter 1

Introduction

This thesis seeks to develop machine learning methods that can be used to automatically

detect signs of deformation-generating volcanic unrest in a time series of interferograms.

Consequently, the remainder of this chapter is divided into Section 1.1, which introduces

volcano monitoring using InSAR, and Section 1.2, which introduces machine learning.

1.1 Volcano monitoring using InSAR

1.1.1 Volcano monitoring

The world’s ∼1500 subaerial volcanoes (Siebert and Simkin, 2013) pose a variety of haz-

ards to both those living in the immediate vicinity of a volcano, and those living further

afield. The hazards posed by volcanoes are diverse, and whilst they are commonly as-

sociated with eruptions, also include events such as highly destructive flank collapses

(Ramalho et al., 2015), and secondary lahars (Machado et al., 2015). Eruptive hazards

have a wide range of spatial impacts, with processes such as lahars (Smith and Lowe,

1991), pyroclastic density currents (Druitt, 1998), ash falls (Bond and Sparks, 1976),

lava flows (Bagnardi et al., 2016), and gas clouds (Othman-Chandev, 1987) causing

loss of life and damage to property in the area surrounding a volcano. At larger scales,

ash produced by explosive eruptions can close airspace to aviation (Sigmundsson et al.,

2010), and gas clouds can drift across continents (Carboni et al., 2012), whilst large

eruptions can have impacts on global scales (Schmidt et al., 2012).

However, volcanoes also bring benefits to humanity, such as the nutrient rich soils

which are produced through weathering of the edifices that subaerial volcanoes com-

monly form (Small and Naumann, 2001). As a result, humans can be drawn to living

on, or near, volcanic centres, and there are currently 457 Holocene volcanoes with over

one million people living within a 100km radius of them (Small and Naumann, 2001).

For a more general overview, Figure 1.1 shows the global distribution of Holocene volca-
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2 Chapter 1: Introduction

noes and human population. Since the 17th century, this proximity has resulted in over

300, 000 deaths due to disasters caused by volcanoes (Small and Naumann, 2001; Till-

ing, 2008). Eruptions have also created significant economic costs, such as the airspace

closure associated with the Eyjafjallajökull eruption which created a multitude of costs,

including those to the aviation industry which reached approximately $250 million per

day (Gudmundsson, 2012).

Due to the combination of human and economic costs from volcanic hazards, humans

have sought to constrain the likeliness of damage causing events. A requisite for this

has been systematic monitoring of volcanoes, and some have now been monitored for

over 100 years (Sparks et al., 2012). In addition to improving forecasts of events such as

volcanic eruptions, systematic monitoring has also provided data for humanity’s more

philosophic quest to understand the processes occurring at volcanoes.

Monitoring is commonly performed using data gathered from approaches such as

levelling, tiltmeters, seismology, strain gauges, satellite derived thermal imagery, satel-

lite derived gas emissions, satellite derived deformation measurements, and geochemical

analysis of fumarolic gases (Sparks et al. (2012), and references therein). Changes that

can be detected using these methods or instruments can be indicative of a volcano

entering a period of unrest, and eruptions are almost always preceded by a period of

volcanic unrest (Tilling, 2008). Therefore, through monitoring a volcano, we hope to

ascertain what the baseline behaviour of a volcano is, and to then detect if it has entered

a period of unrest. Knowledge of the changes defining the period of unrest can then be

used to forecast eruptions, and hopefully reduce the human and economic losses that

may result from one. Additionally, data recorded during periods of unrest can also be

used to test hypotheses on the physical processes occurring at volcanoes.

However, despite the motivation to forecast volcanic hazards creating a requirement

for systematic monitoring of subaerial volcanoes, the majority remain unmonitored

(Sparks et al., 2012). This is likely to be due to a combination of factors, of which the

cost of extending the monitoring methods mentioned in the previous paragraphs is likely

to be key. At present, most systematic measurement is performed using seismometers,

Global Positioning System (GPS) receivers, and tiltmeters (Sparks et al., 2012), and the

extension of these monitoring techniques requires the procurement of new instruments,

their installation and upkeep, and the expertise required to interpret the data they

produce. Figure 1.2 shows a GPS installation at Sierra Negra (Galapagos Archipelago,

Ecuador), which produces relatively temporally dense but spatially sparse data.

In contrast to the incremental costs of expanding current common monitoring meth-

ods to new volcanoes, deformation measurements produced by the latest generation of

synthetic aperture RaDAR (SAR) satellites now provide a novel opportunity to per-

form near-global monitoring of subaerial volcanoes. Interferometric SAR (InSAR) has
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Figure 1.1: Distribution of human population and Holocene volcanoes from Small and Nau-
mann (2001). Volcanoes that have been active during historical times are marked as circles,
whilst the remaining volcanoes are marked as crosses. A logarithmic scale is used for popula-
tion. Note the coexistence of high population densities and active volcanoes in areas such as
Indonesia and Japan.
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Figure 1.2: Deformation measured using GPS at Sierra Negra (Galapagos Archipelago,
Ecuador). Red dots indicate the locations of the 10 GPS stations, whilst the lower subplots
(GV06 and GV09) show the East/North/Up components of the deformation measured, and the
ratios of each combination of components. Despite several times during which there are no data,
the majority of the data is temporally dense and shows deformation that can be interpreted as
pre-eruptive uplift.
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Figure 1.3: Deformation measured using InSAR at Sierra Negra (Galapagos Archipelago,
Ecuador). The first tile shows the digital elevation model (DEM), with water masked in the
top left corner, and vegetated areas with poor coherence masked in the lower right corner. The
remaining nine tiles shows the change in line of sight (LOS) for a random selection of 12 day
interferograms, with master and slave dates shown in the format YYYYMMDD. The signal
contained in the later interferograms can be interpreted as pre-eruptive uplift (i.e. ground to
satellite shortening).

been used as a tool for retrospective analysis of volcano deformation since the mid

1990s (Massonnet et al., 1995), and has been used to measure signals that have been

attributed to processes such as pre-eruptive inflation of a magma chamber (e.g. Mt.

Sinabung - Chaussard et al. (2013)), subsidence due to flank loading by new material

(e.g. Arenal and Santiaguito - Ebmeier et al. (2013)), and subsidence due to cooling

of a magma body below a volcano (e.g. Torfajökull - Ofeigsson et al. (2011)). InSAR

also provides other advantages over methods that require the installation of sensors on

a volcano, such as its ability to measure deformation in areas that are remote or poten-

tially dangerous (e.g. Nyiragongo, in The Democratic Republic of the Congo (Wauthier

et al., 2012)). Figure 1.3 shows a selection of interferograms that image Sierra Negra

and, in contrast to the GPS data shown in Figure 1.2, provides data that is relatively

spatially dense but temporally sparse. The expansion of these measurements to cover

all the volcanoes of the Galapagos Archipelago is relatively straightforward, as a single

Sentinel-1 track images the majority of the main island, and contrasts with performing

the same expansion using GPS, which would require the installation of tens of receivers.

An insight into the expected results of monitoring a large number of volcanoes with

InSAR is provided by Biggs et al. (2014). Here, the authors completed an extensive

literature search of measurements of volcanic deformation made using InSAR and com-

pared this with whether the volcano had erupted or not. The truth table in Figure

1.4 shows that 46% of volcanoes that deformed also erupted. However, of the 34 that
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Figure 1.4: “Contingency table linking volcanoes that deformed and erupted”, reproduced
from Biggs et al. (2014). Two important cases from the table are that very few volcanoes
that do not deform also erupted (9/(9 + 135)), and that approximately half (25/(25 + 29)) of
volcanoes that deformed also erupted.

erupted, only 25 also deformed, leaving 9 (or ∼ 25%) volcanoes that did not show de-

formation recorded with InSAR but did also go on to erupt (i.e. false negative results).

False negatives are of particular concern as these are cases in which measurements made

with InSAR did not record any deformation and would not have flagged the volcano as

having entered a period of unrest, yet the volcanoes did erupt. However, when using

the lack of deformation as a predictor (in the sense of predicting a result, rather than

implying eruption followed deformation) for a lack of eruption, these results show that

it is correct in 94% of cases, for a specific time interval. Considering these statistics,

it can be argued that if a volcano is monitored solely using InSAR based deforma-

tion measurements, the presence of a deformation signal is not a “strong diagnostic

of imminent eruption” (Biggs et al., 2014). However, this study was performed before

Sentinel-1 data were available, and the reduced revisit time that these satellites pro-

vide may strengthen the link between deformation observed with InSAR and eruptions.

Additionally, as many of the world’s volcanoes are currently not monitored, the rate of

false positives suggests that monitoring using deformation measurements derived from

InSAR may still provide valuable constraints on the behaviour of many volcanoes.

1.1.2 InSAR for hazard monitoring

In the previous section, the arguments for monitoring all of the world’s subaerial volca-

noes were described, and the potential for InSAR to be used to achieve this introduced.

In this section, the recent changes that have allowed InSAR to evolve from a retrospec-

tive tool are discussed, and a brief introduction to the method given.

Individual SAR images consist of complex numbers, detailing the phase and ampli-

tude of the return from a given area of land (Hanssen, 2001). Whilst the phase appears

random, the amplitude information can be viewed as a grayscale image of the Earth,

though the oblique look angle of SAR satellites causes features to be slightly distorted.
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Figure 1.5: SAR amplitude image of Mt. Sinabung (Indonesia) acquired by the Radarsat-2
satellite. Note the asymmetric nature of the volcano’s edifice is a feature of the right looking
nature of the SAR antenna used to create this image during a descending (approximately north
to south) portion of the orbit. Data provided as part of the “Sinabung Supersite” by UNAVCO.

As SAR images are produced through active illumination using electromagnetic waves

that can penetrate cloud, SAR images can be acquired at night and in weather condi-

tions that preclude the use of optical imagery. Figure 1.5 shows an example of a SAR

amplitude image of a stratovolcano, and images like this can be used to image dome

growth (Wang et al., 2015), and estimate the volume of lava flows (Arnold et al., 2017).

Pairs of SAR images can be combined through differencing the phase values of each

pixel to create an interferogram, which commonly contains a combination of signals:

ϕ = W {ϕdef + ϕorb + ϕatm + ∆ϕθ + ϕN} (1.1)

where ϕdef is the phase change due to deformation of the ground surface, ϕorb is the

phase due to errors in the location of the satellite at each acquisition, ϕatm is the phase

change due to changes in the atmospheric delay, ∆ϕθ is the phase due to misestimation

of the look angle, ϕN is the phase noise, and W is a wrapping operator that results

in the phase lying between −π and π (Hooper et al., 2012). Deformation is generally

the signal of interest for geophysical applications, and a variety of methods exist to

reduce the contribution from other signals, such as the TRAIN toolbox that can be

used to reduce the contribution from changes in the atmosphere (Bekaert et al., 2015).

Additionally, the combined signal expressed in an interferogram is modulo 2π, or more

commonly termed “wrapped”. Unwrapping solves for the phase ambiguity created

each time wrapped phase progresses above π, and algorithms exist to do this (Chen

and Lapusta, 2009; Hooper, 2010). The deformation signals within interferograms are

also relative measurements, requiring a reference area to be set outside the deforming

region of interest, and due to the look angle of the SAR satellites presently operating,
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they remain relatively insensitive to north-south movement (Wright, 2004).

When two SAR images fall either side of an event of geophysical interest, the re-

sulting interferogram that spans these dates can be used to infer details about the

event. This was originally applied to tectonic events (e.g. Massonet et al. (1993)),

but has also been applied to volcanic events (e.g. González et al. (2015)). However,

through the creation of multiple interferograms, time series can be produced to study

additional processes, such as continued uplift prior to an eruption (Chaussard and

Amelung, 2012), or those such as interseismic strain which feature low magnitude sig-

nals (Wright et al., 2001). Approaches to the creation of time series fall into two broad

categories. Persistent scatter (PS) methods (Ferretti et al., 2001; Hooper et al., 2007)

seek pixels that are have a RaDAR return dominated by a single scatterer that reamins

stable on a time scale of years, and create interferograms relative to a single master.

In contrast, short baseline methods (Berardino et al., 2002; Hooper, 2008) seek to

minimise the decorrelation of pixels that do not feature a dominant scatterer through

producing pairs of interferograms with either short temporal baselines, or small offsets

between the satellites at the time of each acquisition. Signal processing methods have

also been succesully applied to the resulting time series in order to isolate signals of

geophysical interest, such as principal component analysis (Chaussard et al., 2014), and

independent component analysis (Ebmeier, 2016).

Whilst these methods have allowed InSAR to flourish as a tool for retrospective

analysis, it has not been widely suitable for hazard monitoring. Obstacles included the

cost of acquiring data, the latency in the availability of data, the lack of data over some

regions of geophysical interest, the long revisit times between acquisitions, and the time

consuming nature of the creation of interferogarms. However, the latest geneartion of

SAR satellites such as the European Space Agency’s Sentinel-1 constellation provide

free and open data that are made available quickly due to the creation of the European

Data Relay System, and the 250km wide swaths produced by “Terrain observation with

progressive scans” (TOPS, De Zan and Guarnieri (2006)) allows for the revisit time to

be reduced to around 12 days. These advances have been mirrored by the creation of

facilities to automatically create interferograms from the SAR images (e.g. González

et al. (2016) and Meyer et al. (2016)), and in refinements to the algorithms used to

create interferograms (e.g. Spaans and Hooper (2016)). Figure 1.6 shows the areas

that are covered by interferograms created automatically by the LiCSAR processor

(González et al., 2016), and the length of the time series at each of these locations.

In addition to producing time series of unwrapped interferograms, these facilites also

produce associated products, such as coherence images, that have previously been used

to perform tasks such as mapping fresh lava flows (Ebmeier et al., 2018).

Of the signals that combine to form an interferogram (Equation 2.1), the at-

mospheric component is commonly challenging to separate from deformation signals
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Figure 1.6: Areas for which Sentinel-1 interferograms are automatically created by the LiC-
SAR processor. Cool colours indicate areas with relatively short time series, whilst warmer
colours indicate longer time series, such as over Europe and Turkey. Figure modified from the
COMET-LiCS Sentinel-1 InSAR portal (González et al., 2016).

(Hooper et al., 2012). When producing interferograms, it is initially assumed that the

electromagnetic waves propagate at uniform velocity between the satellite and ground.

However, for most geodetic InSAR applications, microwaves must travel through the

Earth’s atmosphere and, consequently, the assumption of uniform wave velocity is bro-

ken. For C-band satellites, the effect of the ionosphere can be regarded as minimal

(Hooper et al., 2012), and the delay to the electromagnetic waves depends on their

angle of inclination, and the integral of the refractive index with height, which in turn

depends on pressure (P), temperature (T), and the partial water vapour pressure (e):

N = k1
P

T
+
(
k

′
2

e

T
+ k3

e

T 2

)
(1.2)

and three coefficients, k1 , k
′
2 and k3 (Hanssen, 2001). As the first term is not

influenced by water vapour, it is often termed the dry or hydrostatic delay, whist the

later two combine to be termed the wet delay. The hydrostatic delay is several times

larger than the wet, but, as temperature and pressure vary smoothly throughout the

atmosphere (in contrast to partial water vapour pressure), differential interferograms

often contain signals with length scales of the order of 10 km due to changes in the

wet delay. Additionally, changes in the dry delay or changes in vertically stratified

water vapour can produce signals in differential interferograms that are correlated with

topography (Pavez et al., 2006).

Over the last 20 years, a suite of methods have evolved to correct for atmospheric

delays. GNSS receivers have been used to measure the total delay above them (Williams

et al., 1998), weather models have been used to calculate the parameters required to cal-
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culate N (Wadge et al., 2002), and other spectrometers (such as MERIS and MODIS)

have been used to measure the wet component of the delay (Walters et al., 2013).

Methods have also been designed that do not require additional data and rely solely

on the interferometric phase. Topographically correlated delays have been corrected

using linear methods (Wicks, 2002; Elliott et al., 2008) and, more recently, with a

variable power law relationship (Bekaert et al., 2015; Shen et al., 2019). Of particu-

lar importance to volcanic studies are topographically correlated delays as, due to the

conic shape of many volcanoes, the delay may appear in a pattern very similar to that

expected from a change in volume of a magma chamber below the volcano. Conse-

quently, they are likely to be one of the largest challenges in designing an algorithm to

detect deformation-generating volcanic unrest.

To summarise, the latest generation of SAR satellites produce imagery that spans

the majority of the world’s active volcanoes, and is made freely available to the scien-

tific community in a timely manner. These amplitude images can be useful for volcano

monitoring, but the subtle deformation signals that can be measured through the cre-

ation of time series of interferograms are most applicable for volcano monitoring due

to the preliminary results on the link between deformation measured using InSAR and

volcanic eruptions (Biggs et al., 2014). However, future work may also be able to utilise

other products associated with SAR imagery, such as coherence maps, and changes in

SAR amplitude. In the remainder of this chapter, I provide a brief introduction to

machine learning, as this field provides many methods that may be suitable for use in

an detection algorithm.

1.1.3 Characteristics of displacement signals in interferograms of vol-

canic centres

Measurements of ground deformation provided by satellite based InSAR are tradition-

ally spatially dense but temporally poor. The reduction in revisit time provided by

the Sentinel-1 satellites has increased the temporal density of measurements, with 6

or 12 day revisit times for areas of geophysical interest. Deformation signals can be

divided based on whether they are contained within a single revisit pair, or if they span

multiple pairs. In the case that they span multiple pairs, time series methods can be

used to determine rates of deformation, but in the case that the deformation event is

contained within a single revisit period, the calculated deformation rate is likely to be

an underestimate.

Additionally, for a signal to be detectable, it must be visible above noise contained

within an interferogram, which was previously described in Equation 2.1 and the ac-

companying text. Signals due to the turbulent atmosphere commonly have magnitudes

of the order 1 − 2 cm (Lohman and Simons, 2005), but due to their spatially random

nature, the stacking of multiple interferograms to create time series can minimise their
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Figure 1.7: Examples of Sentinel-1 data used in this study, showing line of sight displacement
in cm. Left to right, (1) Sierra Negra (Galapagos Archipelago) with the vegetated southern
side of the volcano masked showing pre-eruptive uplift of ∼3 cm in 12 days. (2) Sierra Negra,
as per (1), interpreted as showing a similar deformation signal to (1), but due to a stronger
atmospheric signal, the deformation is less clear. (3) Wolf (Galapagos Archipelago) with the
vegetated western side of the volcano masked, showing co-eruptive deformation captured by a
12 day interferogram spanning the start of the 2015 eruption. (4) Wolf, as per 3, showing no
obvious deformation, but a signal that can be interpreted as a topographically correlated APS
can be seen to show the “upturned soup bowl” shape of the volcano. (5) Campi Flegrei (Italy)
with areas of low coherence masked and a signal that can be interpreted as a turbulent APS
visible, but deformation is not visible in this 12 day interferogram.

impact (e.g. Wright et al. (2001)). However, of particular importance at volcanic cen-

tres are atmospheric signals that are topographically correlated, which, due to their

persistent location, cannot be removed through a simple stacking approach, yet may

not be independent of deformation. In the case of stratovolcanoes, delays of ∼9 rad/km

over ∼4000 m of topography can create an apparent deformation signal of 17 cm (Pinel

et al., 2011).

For a deformation signal to be detectable in a single 12 day interferogram, a signal

of at least a magnitude greater than the turbulent APS is required. Examples of these

include the signal associated with the 2015 eruption of Calbuco which featured ∼12 cm

of deformation (Delgado et al., 2017), and the 2014/15 eruption of Fogo, which featured

∼25 cm of deformation associated with the intrusion of a dyke (González et al., 2015).

Figure 1.7 also shows examples of single interferogram pairs that are used within this

thesis. Subplots (1) and (2) show 12 day interferograms of Sierra Negra (Galapagos

Archipelago), in which a deformation signal of magnitude ∼3 cm can be seen both

clearly (1), and more subtly in (2) due to what is likely to be a strong turbulent APS.

Subplots (3) and (4) show 12 day interferograms of Wolf (Galapagos Archipelago), in

which (3) shows a larger signal (∼30 cm of motion away from the satellite) associated

with the 2015 eruption, whilst (4) shows what is likely to be a strong topographically

correlated APS, producing ∼3 cm of apparent deformation.

The deformation of ∼3 cm/12 days measured in the Sentinel-1 interferograms of

Sierra Negra is equivalent to ∼90 cm/year, and demonstrates that for persistent sig-

nals to be visible in individual interferograms, large deformation rates are required (see

Figure 2b of Ebmeier et al. (2018) for a summary of deformation rates measured with

InSAR) . Subplot (5) of Figure 1.7 shows Campi Flegrei (Italy), and lower rate defor-
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Figure 1.8: Pre-eruptive inflation at Sinabung (Indonesia), reproduced from Chaussard et al.
(2013). The black points show the deformation for Sinabung, with inflation before and deflation
after the 2010 eruption visible. In contrast, no deformation is observed at the inactive volcano
Sibayak (grey squares).

mation that is not visible in a single 12 day interferogram above what is likely to be a

turbulent APS with magnitude of 1− 2 cm.

However, lower deformation rates that produce signals that may not be visible in

single interferogram pairs have been measured using time series approaches. In Indone-

sia, the use of L-band ALOS SAR has allowed pre-eruptive inflation of 2.1 cm/year at

Sinabung prior to the 2010 eruption to be measured (Chaussard et al., 2013), which is

shown in Figure 1.8. Additionaly, deformation of 2.1 cm/year has been measured at

Kernici, and 7.8 cm/year at Agung (Chaussard et al., 2013). In other regions, exam-

ples of the use of L-band SAR include the measurement of a subsidence signal of ∼5.5

cm/year seen on a patch of size ∼5.5 km2 in the Par̀ıcutin lava fields (Chaussard, 2016).

Using C-band SAR, examples include deformation of ∼3 cm/year that was measured at

lava flows on the flanks of Sierra Negra produced by the 1979 eruption (Amelung et al.,

2000), and of ∼28 cm/year at Paka (East African Rift) that was measured over a nine

month period (Biggs et al., 2009). Consequently, some of the rates of deformation that

will be encountered by a detection algorithm are likely to be low enough that the signals

they produce are not visible above the noise within a single 12 day interferogram, and

a detection algorithm that uses a time series of data may be required to detect them.

1.2 Machine learning

The data used to train machine learning algorithms can be either labelled or unlabelled.

Unlabelled data consists of a packet of information (such as an image of a handwritten

letter), but this can be converted to labelled data through the application of an anno-

tation detailing a point of interest in the data (such as what the letter is). Algorithms

that use labelled data are termed supervised, whilst those that use unlabelled data
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Figure 1.9: An example of labelled data from the ImageNet database (Deng et al., 2009). In
addition to the bounding boxes visible in the image, the left hand image has also been labelled
as “Kit fox”, and the right hand as “croquette”.

are termed unsupervised and, more recently, a third class of algorithms that use both

labelled and unlabelled data has been developed, which are termed semi-supervised.

Interferograms are unlabelled data. To perform supervised (or semi-supervised)

learning, labels are required for deformation patterns due to a variety of geophysical

processes (such as flank instability, or uplift), and for cases where no deformation is

present and an interferogram is dominated by atmospheric signals. Labelling interfero-

grams must be performed by a domain expert as features due to tectonic processes are

often subtle, which contrasts with other machine learning datasets such as ImageNet

(Deng et al., 2009), in which the labelling of everyday images is relatively straightfor-

ward. Figure 1.9 shows an example of ImageNet data that has both class labels, and

location labels detailing where in the scene the item of interest resides.

Consequently, the creation of a large scale database of labelled deformation patterns

for use with machine learning methods is likely to be prohibitively expensive. However,

interferograms spanning periods of volcanic unrest are likely to be the focus of scientific

research and so it is possible that the data could be labelled using published findings

at very little extra effort. Therefore, whilst the majority of data used to train an

algorithm would be unlabelled, it is possible that some cases of labelled data will exist.

The remainder of this section introduces both unsupervised and supervised learning.

1.2.1 Unsupervised learning

The two most common approaches to unsupervised learning are cluster analysis and

latent variable models. Of latent variable models, the several methods to perform blind

signal separation (BSS) are often cited as ways to extract features from large databases

of images (e.g. Delac et al. (2005)).

BSS is the process of using several observations of a mixture of signals to reconstruct

what the original signals were. A traditional blind signal separation problem is the
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“cocktail party problem”. In this problem, a listener at a cocktail party is is tasked

with separating a linear mixture of sounds from within the party (e.g music, background

conversation, and an immediate conversation) in order to listen to the one of interest

(Cherry, 1953).

Mathematically, this is commonly written in the form:

X = AS (1.3)

Where X is a matrix containing the mixtures as row vectors, A is a mixing ma-

trix, and S is a matrix containing the latent sources as row vectors. Given that only

the mixtures, X, are available to the BSS algorithm, the problem is also commonly

expressed as:

S = WX (1.4)

Where W is the unmixing matrix, or inverse of A. When performing matrix mul-

tiplication in the mixing case, the first column of A controls the contribution of the

first latent source (row one of S) to each of the mixtures, and is often termed a “time

course” in BSS literature. Figure 1.11 shows an example of BSS from Lee and Seung

(1999) in which a database of faces are considered as linear mixtures of the constituent

parts of a face using non-negative matrix factorisation (NMF), whilst Figure 1.11 shows

my results from applying BSS methods to a database of faces to recover the underly-

ing parts/sources. Other studies have also used different BSS methods on different

types of data, such as McKeown et al. (1998) who used spatial independent component

analysis (sICA) to show that fMRI data can be considered as a mixture of spatially

independent brain regions, Frappart et al. (2011) who used sICA to show that Gravity

Recovery and Climate Experiment (GRACE) data are made up from geophysical data

in addition to a more prominent striping pattern, Chaussard et al. (2014) who used

principal component analysis (PCA) to separate long term and season deformation in

interferograms, Ebmeier (2016) who used both spatial and temporal ICA (sICA and

tICA) to isolate signals of geophysical interest in interferograms featuring volcanoes,

Amato et al. (2008) who used PCA and ICA to mask clouds in optical imagery, Barnie

and Oppenheimer (2015) who used ICA to extract the radiance of high temperature

events imaged by geostationary satellites, and Liu et al. (2015) who used PCA and ICA

to isolate signal of geophysical interest in GPS time series.

Interferograms of volcanoes are usually composed of signals from several sources,

such as deformation, the atmosphere, and orbital inaccuracies. An algorithm to auto-

matically detect volcanic unrest needs to separate the tectonic deformation signal from
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Figure 1.10: Schematic depicting the separation of mixtures into sources and a mixing matrix.
A database of 2429 19×19 pixel images are flattened to row vectors in X, which is decomposed
into a mixing matrix, A, and a matrix of sources or parts, S. In NMF literature, it is common
to visualise the row vector of the mixing matrix as a square, with each element corresponding
to one of the sources/parts. Modified from Lee and Seung (1999).

the composite signal (the interferogram) in order to interpret it accurately. This prob-

lem falls within the category of “blind signal separation”, where several observations

are made of a signal that is the product of several component signals, of which there

is no information of what they are, or how they are mixed. Consequently, my work on

unsupervised machine learning has focussed on three blind signal separation methods

- non-negative matrix factorisation (NMF), principal component analysis (PCA), and

independent component analysis (ICA).

1.2.2 Supervised learning

In contrast to unsupervised learning, supervised learning algorithms must first be

trained using a selection of labelled data, before they can then be used to perform

tasks such a predicting the labels of new data. In order for the algorithm to train, it

must incorporate some system that allows it to adjust parameters within it in order

to correctly label the training data, and this adjustment is commonly referred to as

learning. Currently, there exist a suite of supervised learning algorithms, such as sup-

port vector machines (SVMs), neural networks (NNs), and decision trees. However, of

this suite of methods, convolutional neural networks are currently the state-of-the-art

for working with images (Zhou and Kainz, 2018), and their introduction forms the

remainder of this section.

The Perceptron was introduced by Rosenblatt (1958) and built on the mathematical

description of biological neurons described in McCulloch and Pitts (1943) to produce

a machine that was able to learn to classify images of letters and numbers. Figure

1.12 shows an example of a perceptron, which considers a set of binary values, x, as its

inputs. In the case of the Mark 1 Perceptron built using custom hardware, the input

was a 20× 20 array of photocells which each produced a binary output. These inputs



16 Chapter 1: Introduction

Figure 1.11: Results of applying NMF to a database of faces. The right hand square shows
the 49 sources/parts that are recovered, whilst the “coding” matrix shows how these can be
used to reconstruct a face. Note that some of the sources/parts can be interpreted as intuitive
elements of a face, such as the eye of part 47, and the mouth of part 46.

are each scaled by one of a set of weights, w, before testing to see if the result exceeds a

threshold which produces an output that can be used for binary classification problems.

Mathematically, this can be written as:

Binary output =

1 if w.x > threshold

0 if w.x ≤ threshold
(1.5)

However, this can be simplified by considering an extra parameter termed bias, b,

and removing the threshold term:

Binary output =

1 if w.x + b > 0

0 if w.x + b ≤ 0
(1.6)

Therefore, for a perceptron with a high bias, b, only a small input, w.x, is required

for it to produce a high output, or in biological parlance, to “fire”. Through using a set

of labelled training data, the perceptron was able to use a simple update rule to change

the weights, and learn to approximate a function that mapped the 20 × 20 inputs to

the correct label. However, despite successes in pattern recognition provided by the

Perceptron (Minsky et al., 1969), the threshold that divides the two outputs is w.x+ b,

which can be thought of as the equation of a hyperplane. Additionaly, the change

from one binary output to another which is triggered at a certain threshold can also

be considered as a step activation function, which is shown Figure 1.14. Consequently,

the perceptron is only a linear binary classifier, and was therefore unable to approxi-
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Figure 1.12: Left: Simple model of a perceptron in which the “neuron” (circular element)
multiplies the three binary inputs, x1, x2, x3 with three real weights (not shown), before passing
the output through a step function displaced in the x direction by a certain threshold. Right:
Perceptrons can be stacked to produce multi-layer perceptrons, which are commonly termed
artificial neural networks due to the differences in the neurons used to construct them and
the original perceptron/neuron proposed by Rosenblatt (1958). Figure modified from Nielsen
(2015)

mate some simple but non-linear functions, such as exclusive OR (XOR). Figure 1.13

demonstrates the OR function, and the decision boundary that the perceptron could

learn to approximate this function, and the XOR function, which it cannot.

This shortcoming of an individual perceptron can be overcome by building multi-

layer networks of individual perceptrons (Minsky et al., 1969), an example of which

is shown in Figure 1.12. Whilst these multilayer perceptrons can learn more complex

functions such as XOR, they cannot be trained in the manner originally described in

Rosenblatt (1958) (Nielsen, 2015), due to the step activation functions contained within

individual perceptrons causing training to be highly unstable, as small changes in the

weights of early layers produce either no or drastic changes in the subsequent layers,

depending on if the threshold of the step activation function is exceeded. However, this

limitation was overcome with the development of backpropagation (Rumelhart et al.,

1986), which substituted the step activation function used in the original perceptrons

for a differentiable sigmoid function (shown in Figure 1.14), and allowed for multi-

layer models to be trained using differentiation. Due to the multi-layer nature of these

models, they are commonly termed “deep models”, and their utilisation termed “deep

learning”.

The performance of multilayer models was further improved through the use of

convolutional neural networks (CNNs), in which the 2D structure of an image can be

utilised by a network through its learning filters that can be convolved across an image.

This contrasts with earlier approaches in which an image is flattened to be a 1D vector,

before each input (i.e. pixel) is connected to subsequent neurons. When larger images

are used, the large number of weights to be learned for each of these connections can be

challenging, but through using only a small number of weights that are convolved across

all the pixels of an image, CNNs greatly reduce the complexity of training a model, for

a given size of input image. This approach was used by LeCun et al. (1998) to create a
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Figure 1.13: Comparison of a linearly separable function, OR, and a more complex function
that cannot be separated linearly, XOR (except OR). A linear decision boundary has been
added to the OR function, but cannot be added to the XOR function.

Figure 1.14: A comparison of several common activation functions. The step function was
used in perceptrons, before the differentiable sigmoid and hyperbolic tangent (tanh) functions
were used in multilayer networks. The rectified linear unit (ReLu) is also a common activation
function due to its low computational cost.

model with sate-of-the-art performance for classifying hand written digits, but it was

not until AlexNet (Krizhevsky et al., 2012) that this approach was successfully scaled

to larger problems involving more classes and larger input data. Figure 1.15 shows

an overview of a model similar to AlexNet termed VGG16 (Simonyan and Zisserman,

2014), in which convolutional layers produce successively deeper representations of an

image, before it is assigned a class label.

Subsequently, deep learning has permeated through many aspects of society, rang-

ing from search engines to content filtering on social media to scientific applications

(LeCun et al., 2015). The introduction of graphical processing units (GPUs) and

computationally inexpensive activation functions such as rectified linear units (ReLus,

shown in Figure 1.14) has reduced the time required to train models, whilst easy to use

optimisers such as NADAM (Dozat, 2016) do not require the time consuming choice
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Figure 1.15: An overview of the VGG16 (Simonyan and Zisserman, 2014), reproduced from
Sugata and Yang (2017). A three channel image of size 224× 224 is converted into a series of
successively spatially smaller but deeper feature maps, culminating in a 7 × 7 × 512 represen-
tation. This is flattened to become a vector, which is connected to a series of fully connected
layers, which are similar to the traditional neural network shown in Figure 1.12.

of a learning rate. Additionally, high level application programming interfaces (APIs),

such as Keras, allow for different model architectures to be explored easily, and the

availability of weights learned in successful models allows for new and complex models

to be constructed using relatively little data (e.g. Anantrasirichai et al. (2018)).

The application of unsupervised learning is central to the work featured in chapters 2

and 3, whilst supervised learning is used in 4. The remainder of this chapter introduces

the aims and objectives of this thesis.

1.3 Aims and Objectives

With many of the requirements for InSAR to evolve from a tool used for retrospective

analysis into one used for hazard monitoring having been met (e.g. the automatic

creation of Sentinel-1 interferograms (González et al., 2016)), I aim to develop an

algorithm to detect deformation-generating volcanic unrest that produces deformation.

I envisage that this algorithm will utilise a time series of interferograms, and so be

able to detect small signals that are not apparent in single interferograms. As the

separation of nuisance atmospheric signals from deformation signals has traditionally

been important for geophysical studies, I envisage that a key part of the algorithm will

be its ability to determine if signals present in new interferograms are atmospheric, or
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due to deformation.

The objectives of this thesis are:

1. Determine how to characterise the baseline signals present in a time series of

interferograms of a volcanic centre.

2. Develop a monitoring algorithm to both detect when the signals present in new

interferograms deviate from the baseline signals, and to display this information

in a form that is easily interpretable to a domain expert.

3. Develop a separate monitoring algorithm that can be used to ascertain if individ-

ual interferograms contain deformation signals.

4. Perform a small study into a volcanic process that is initially investigated during

the construction of a monitoring algorithm.

1.4 Thesis outline

The subsequent chapters in this thesis are organised as follows:

• Chapter 2 details determining which of a suite of blind signal separation methods

are best suited to recovering signals of geophysical interest from a time series

of interferograms, and how time series should be organised for the best results.

Spatial independent component analysis (sICA) is found to be the most suitable

method, and it is applied to a time series of Sentinel-1 interferograms that image

Wolf volcano (Galapagos Archipelago, Ecuador), and Mount Etna (Italy). sICA

is then used in a prototype detection algorithm, which we show would have been

able to detect the 2015 eruption of Wolf volcano. This chapter has been published

in the Journal of Geophysical Research: Solid Earth.

• Chapter 3 details the development of an algorithm, ICASAR, to robustly apply

sICA to time series of interferograms in order to identify the spatial patterns and

time histories of the signals that formed them. The spatial and temporal nature

of the signals that this algorithm is able to extract at a volcanic centre is used as

a component of a more complete detection algorithm, which we apply to a time

series of Sentinel-1 interferograms that image the lead up to the 2018 eruption of

Sierra Negra (Galapagos Archipelago, Ecuador). Additionally, one of the signals

extracted by our algorithm is attributed to the inflation of a sill, and modelling to

calculate the pre-eruptive overpressure within this sill is performed. This chapter

is in review with the Journal of Geophysical Research: Solid Earth.

• Chapter 4 details the development of a convolutional neural network that is able

to classify several types of deformation that may be present at a volcanic cen-

tre, and to locate the deformation within the interferogram. Additionally, the
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optimal format for InSAR data to be used with models trained on natural im-

ages is investigated. This chapter is pending submission to Geophysical Journal

International.

• Chapter 5 discusses the work contained within the preceding chapters in relation

to the goal of using InSAR to automatically monitor the majority of the world’s

subaerial volcanoes.
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Pedersen, Matthew J Roberts, Nı́els Oskarsson, Amandine Auriac, Judicael De-
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Keypoints:

• Spatial independent component analysis (sICA) outperforms principal compo-

nent analysis (PCA) and non-negative matrix factorisation (NMF) as the best

blind source separation method for identifying sources in InSAR time series, but

difficulties remain in applying it to stratovolcanoes.

• sICA is able to automatically isolate three previously documented signals that

were present at the 2015 eruption of Wolf Volcano (Galapagos Archipelago, Ecuador).

• We present a prototype automatic detection algorithm, which identifies the initi-

ation of the 2015 eruption of Wolf Volcano.

Abstract

There are some 1500 volcanoes with the potential to erupt, but most are not instru-

mentally monitored. However, routine acquisition by the Sentinel-1 satellites now fulfils

the requirements needed for InSAR to progress from a retrospective analysis tool to

one used for near real time monitoring globally. However, global monitoring produces

vast quantities of data and consequently, an automatic detection algorithm is therefore

required that is able to identify signs of new deformation, or changes in rate, in a time

series of interferograms.

On the basis that much of the signal contained in a time series of interferograms

can be considered as a linear mixture of several latent sources, we explore the use of

blind source separation methods to address this issue. We consider principal component

analysis (PCA) and independent component analysis (ICA) which have previously been

applied to InSAR data, and non-negative matrix factorisation (NMF) which has not.

Our systematic analysis of the three methods shows independent component analysis

(ICA) to be best suited for most applications with InSAR data. However, care must

be taken in the dimension reduction step of ICA not to remove important smaller

magnitude signals. We apply ICA to the 2015 Wolf Volcano eruption (Galapagos

Archipelago, Ecuador) and automatically isolate three signals, which are broadly similar

to those manually identified in other studies. Finally, we develop a prototype detection

algorithm based on ICA to identify the onset of the eruption.

2.1 Introduction

The world’s ∼ 1500 subaerial active volcanoes (Siebert and Simkin, 2013) pose a di-

verse set of geophysical hazards, which range from those such as pyroclastic flows, which

impact people living near the volcano, to those such as ash clouds, which can impact

people across the globe. Data gathered from methods or instruments such as seismol-
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ogy, tiltmeters, strain gauges, levelling lines, satellite derived thermal imagery, satellite

derived gas emissions, satellite derived deformation measurements, and geochemical

analysis of fumarolic gases can be used to identify the signs of volcanic unrest that are

indicative of a certain hazard (Sparks et al. (2012), and references therein). However,

the majority of the world’s volcanoes are not routinely monitored (Sparks et al., 2012),

and the vast majority of the methods previously mentioned would be prohibitively ex-

pensive to extend to all volcanoes, due to the requirement for more instruments to be

acquired and deployed.

The ability of interferometric synthetic aperture radar (InSAR) to measure ground

displacements allows deformation of both a volcano’s flanks and the area surround-

ing it to be constrained (e.g. Pinel et al. (2014) and references therein), and these

measurements of displacement can be a valuable indicator of volcanic unrest that may

lead to an eruption (Biggs et al., 2014; Ebmeier et al., 2018). Therefore, a satellite

with a suitable acquisition strategy could provide the measurements that would allow

monitoring of all of the world’s subaerial volcanoes.

Until recently, InSAR was not suited to real-time global monitoring as SAR satellites

in operation before 2015 rarely routinely acquired images over areas of geophysical

interest, and data were generally not available until days after it was acquired. However,

the European Space Agency’s most recent SAR satellites (the Sentinel-1 constellation)

have addressed the limitations previously listed and have allowed InSAR to evolve from

a retrospective analysis tool into one that can be used for near real time monitoring.

Other advances that make this possible include the construction of new processing

facilities to automatically and rapidly create interferograms for large parts of the globe

(e.g. González et al. (2016) and Meyer et al. (2016)), and new methods for rapidly

updating a time series when new interferograms are created (e.g. Spaans and Hooper

(2016)).

However, using data derived from the Sentinel-1 satellites to monitor the world’s

subaerial active volcanoes produces too many interferograms for them to be manually

inspected for signs of unrest. Consequently, we present results of work to construct an

algorithm to automatically detect signs of unrest in a time series of interferograms over

a given volcano. To avoid the time consuming nature of labelling data (e.g. manually

inspecting interferograms and assigning information such as “contains deformation”),

our algorithm must be an unsupervised one (i.e. one that is trained on unlabelled data).

One class of unsupervised learning algorithms are termed blind signal separation (BSS)

methods, and one of these (ICA) has been utilised to isolate signals of geophysical

interest in an InSAR time series by Ebmeier (2016). Therefore, we aim to construct

an algorithm based on the BSS premise that latent sources of interest can be extracted

from a time series of interferograms.
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However, as ICA is one of a suite of BSS methods, we endeavour to ascertain which

of the methods is best suited to InSAR data. We do this by first introducing the

fundamentals of several BSS techniques (Section 2.2), explaining our novel method for

applying a new BSS method to InSAR data (Section 2.3),and comparing the results

of applying several BSS methods to a synthetic dataset (Section 2.4). In Section 2.5

we validate that the chosen method works with real data through the use of two time

series of Sentinel-1 interferograms, before describing and demonstrating our prototype

automatic detection algorithm in Section 2.6.

2.2 Blind Signal Separation

2.2.1 Interferograms as mixtures of signals

Interferograms consist of measurements of amplitude and phase at pixel locations. After

correcting for geometric terms, the phase consists of contributions from several sources:

ϕ = W {ϕdef + ϕorb + ϕatm + ∆ϕθ + ϕN} (2.1)

where ϕdef is the phase change due to deformation of the ground surface, ϕorb is the

phase due to errors in the location of the satellite at each acquisition, ϕatm is the phase

change due to changes in the atmospheric delay, ∆ϕθ is the phase due to misestimation

of the look angle, ϕN is the phase noise, andW is a wrapping operator that results in the

phase lying between −π and π (Hooper et al., 2012). In geophysical applications ϕdef

is usually the signal of interest and a suite of methods exist to reduce the contributions

from other terms. Signals that are considered to be dominated by deformation have

been attributed to a variety of volcanic processes, including pre-eruptive inflation of a

magma chamber, subsidence due to flank loading by new material, subsidence due to

cooling of a magma body below a volcano, and subsidence due to changes in a volcano’s

geothermal system (Ebmeier et al., 2018).

If multiple latent signals combine in unknown quantities to form an interferogram,

recovering the original signals can be viewed as a blind signal/source separation problem

(BSS, Jutten and Herault (1991)). In this class of problems, the observed mixed signals

are assumed to be generated using the following mixing model:

X = AS (2.2)

Where, using the standard nomenclature of BSS literature, X contains the mixtures

as row vectors, S contains the unknown sources as row vectors, and A is the unknown

mixing matrix that combines varying amounts of the sources to create each mixture.
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In this work, we refer to scalars as lower case letters (e.g. a), row vectors as bold case

lower letters (e.g. a), and matrices as bold upper case letters (e.g. A). The sources, S,

can be recovered if we could calculate the unmixing matrix, W:

S = WX (2.3)

where:

A = W−1 (2.4)

The preceding description of linear mixing can also be expressed in terms of Eu-

clidean geometry and is demonstrated in Figure 2.1. m variables measured at n time

points can be considered as points in an m dimensional (mD) space (e.g. two 105 pixel

interferograms would be 105 points in a 2D space). If the sources are stored in a data

matrix (S) with each row containing a new variable, each column of this matrix is a mD

position vector determining that observations point in the space. Matrix multiplication

of these sources (S) by a mixing matrix (A) is equivalent to the inner product of the

row vectors of A, and the column vectors of S. Consequently, the row vectors of A can

be considered as the axes defining a new subspace that the data (S) are projected into.

The unmixing process (S = WX) can be considered in a similar way, with the rows of

W containing the basis vectors required to recover the sources. The goal of BSS is to

find the basis vectors required to recover each source from the mixtures (i.e. the rows

of W). However, it must be noted that the sign of the sources that are recovered by

BSS methods (the rows of S) remains ambiguous, as the opposing sign may be present

in the column of the mixing matrix that controls the strength of a given source in each

mixture.

Linear mixing can be complicated by differences in the number of mixtures relative

to the number of latent sources. In the simplest case, the number of mixtures is equal

to the number of latent sources and the mixing and unmixing matrices (A and W)

are square. However, in what is termed the over-complete case (under-determined in

inverse theory terminology) there are more latent sources than mixtures, and in the

under-complete case there are more mixtures than latent sources (Amari, 1999). A

time series of InSAR data at a subaerial volcano is likely to consist of tens to hundreds

of interferograms but of substantially fewer latent sources (such as deformation and a

topographically correlated atmospheric phase screen), and we therefore expect it to be

under-complete.

In this line of reasoning we do not expect the unique turbulent atmospheric phase

screens (APS) present in each interferogram to be recoverable as sources. An attempt



34
Chapter 2: Blind Signal Separation Methods for InSAR: The Potential to

Automatically Detect and Monitor Signals of Volcanic Deformation

to recover the turbulent APSs would increase the number of sources to more than

the number of mixtures (a significant change), and shift the problem from the under-

complete to over-complete case. The sparse nature of the time course for each turbulent

APS and the huge increase in the number of sources that would have to be sought leads

us to discount the turbulent APSs as sources, and instead treat them as noise terms in

the under-complete case. However, other atmospheric signals such as those due to at-

mospheric pressure gradients associated with weather systems or the rain shadow effect

are not unique, and we may therefore expect to recover them as components. Methods

to correct for atmospheric phase screens are also routinely applied to InSAR data, but

as these can introduce new and erroneous signals, we apply BSS to uncorrected time

series.

BSS for the under-complete case requires extra processing when certain algorithms

are used and these caveats are discussed for each method. To implement BSS, we have

investigated non-negative matrix factorization (NMF), principal component analysis

(PCA), and independent component analysis (ICA). These methods are introduced

in the following subsections, before our novel application of NMF to InSAR data is

demonstrated in Section 2.3.

2.2.2 Organising and synthesising data

Before considering how to apply NMF, PCA, and ICA, we must first transform a

time series of interferograms into a form that these methods can be applied to. The

three methods consider the statistics of multiple observations of several variables and

consequently do not require the spatial (or temporal) relationships between pixels (or

interferograms) to be conserved. Therefore, the information contained within the time

series can be converted to row (or column) vectors, providing that this reorganisation

is performed consistently. We also refer to the time history of a spatial map (which

can be as small as one pixel, or more commonly as large as a latent source) as a time

course, in the style of BSS literature.

How these row vectors are formed has important implications, and consequently

the two different approaches are termed as architecture I and architecture II in BSS

literature (Bartlett et al., 2002). However, this nomenclature is opaque when applied to

InSAR data and we instead refer to architecture I as spatial organisation, as when ICA

is applied to architecture I data, the recovered latent sources are spatially independent .

When ICA is applied to architecture II data the discovered latent sources are temporally

independent, so we instead refer to architecture II as temporal organisation.

In spatial organisation, each image contains multiple realisations of a single random

variable, with the number of random variables being equal to the number of images,

whilst in temporal organisation, each pixel is a random variable, with as many observa-
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Figure 2.1: Linear mixing for spatially and temporally organised data. Top row: Spatial
organisation, in which a deformation signal (S1) is mixed with a topographically correlated
signal (S2, generated from the topography of Campi Flegrei, Italy) through re-projecting the
data in the directions A1 and A2, to produce two mixtures, M1 and M2. The sources can be
recovered from the mixtures by reprojecting the data in the directions W1 and W2. In this
architecture, the mixture space has as many dimensions as there are interferograms, and as
many points in the space as there are pixels in the interferograms. Bottom row: Temporal
organisation, in which a pixel with a phase change due to deformation over 20 epochs (S1) is
mixed with a pixel with a phase change due to a topographically correlated atmospheric signal
(S2) in a similar manner to the spatial case to produce two pixels (M1 and M2) that exhibit
both deformation and atmospheric signals. In this architecture, the mixture space has as many
dimensions as the interferograms have pixels, and as many points in this space as there are
interferograms. Progression from blue to yellow is used to indicate areas of high point density
in these (and any following) scatter plots.
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tions as there are images. In this work, we adhere to the conventions of BSS literature

and place variables as rows in our data matrix, and each observation of these variables

occupies a new column. Therefore, for a time series of t interferograms each of p pix-

els, our data matrix would be t × p for spatial organisation, and p × t for temporal

organisation. In Euclidean space, a time series organised spatially is likely to consist

of 101 − 102 interferograms and require a space of equal dimensions, whilst for tempo-

ral organisation, an interferogram is likely to consist of 103 − 107 pixels and require a

space of very high dimensionality. Figure 2.1 demonstrates the difference of spatial and

temporal organisation, and how the (un)mixing vectors described in the previous sec-

tion can be interpreted. As the number of interferograms controls the number of data

points when the data are organised temporally, a hypothetical time series of only three

interferograms would provide a very sparsely populated space in which to perform the

analysis, and would be equivalent to the scatter plots in Figure 2.1 having only three

data points.

To both introduce and compare PCA, ICA and NMF, we generate a synthetic

time series using equation 2.2, with one matrix (either A or S) containing the spatial

patterns of the two synthetic InSAR signals, whilst the other matrix contains the

strengths (termed time courses) with which each spatial pattern contributes to a each

interferogram. To generate spatially-organised data, we postulate that the spatial maps

are statistically independent and so place these in S, whilst for temporally organised

data we postulate that the time courses are statistically independent and so place these

in S. We choose our two synthetic InSAR signals to be ground deformation due to a

volcanic process, and apparent ground movement due to a topographically correlated

atmospheric phase signal (APS) as separation of signals of this type has been shown to

be important (e.g. Delacourt et al. (1998)).

The spatial pattern of the two synthetic signals is shown in Figure 2.2 and, as these

are sources when the data are organised spatially, provides insights into the challenge

of recovering them. The area corresponds to Campi Flegrei (Italy), with the subaerial

caldera walls apparent in the atmospheric signal. The surface deformation is created

by modelling the inflation of a point source in an elastic half space (Mogi, 1958) as

this has been used to successfully model observations of deformation at Campi Flegrei

(Lundgren et al., 2001), and is strongly non-Gaussian by all the measures utilised.

The spatial patten for the topographically correlated delay is synthesized by assuming

a linear relationship between phase and altitude for each pixel (calculated using the

SRTM 30m DEM (Farr et al., 2007)).

The temporal nature of the two synthetic signals is also shown in Figure 2.2 and,

as these are sources when the data are temporally organised, provides insights into

the challenge of recovering them. The time course for the deformation is generated

to approximate a period of inflation at a volcano by varying in strength around a
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mean value that is above zero. The time course is generated by drawing values from

a hyperbolic secant distribution with mean of 0.1 and variance of 1. This distribution

is chosen as its excess kurtosis (k = 2) is similar to that found during analysis of

the size of changes in displacement over 6 day intervals at a variety of GPS stations

(k = 2.4) that experienced deformation due to volcanic unrest, using a method similar

to that described in Liu et al. (2018). Whilst some of the deformation that occurred

within these 6 day intervals was generally smaller than could be detected in a single

interferogram, the use of GPS instead of InSAR as the source for this data allowed

for these smaller signals to be more easily detected. Additionally, our choice of a time

series approach is motivated by the ability to detect signals that may not be visible in a

single 6 or 12 day interferogram, and therefore we believe that synthesising time courses

that match these smaller magnitude signals creates more realistic synthetic data (see

supplementary material for further details).

The time course for the topographically correlated tropospheric phase delay is syn-

thesised as a sinusoidal wave (wavelength: 1 yr, amplitude: 4 rad/km) combined with

Gaussian noise as this closely resembles the temporal evolution of the delay/elevation

ratio at Colima Volcano measured by Pinel et al. (2011). Whilst this function may not

be applicable to all volcanoes, it provides a challenging example for our synthetic tests

as when a daisy chain of interferograms is formed, the long term sinusodial trend is

removed and only the synthetic Gaussian noise remains.

In Section 2.2.1 we also addressed why the signal introduced by the turbulent at-

mospheric phase screen (APS) could only be treated as a noise term (in contrast to

recovering the turbulent APS for each interferogram). For synthetic tests, we generate

turbulent APSs as spatially correlated noise, and then difference pairs of these to make

signals that would be expected in either a single master or daisy chain time series. As

the turbulent APS acts as noise and complicates the recovery of latent sources, we do

not include it in the examples presented in this section. However, in the more complex

synthetic tests performed in Section 2.4, a turbulent APS is included. Figures 2.3 and

2.4 show examples of spatially organised and temporally organised synthetic data, and

the results of applying ICA and PCA to them.

2.2.3 Principal Component Analysis

Principal component analysis (PCA, also termed the Karhunen-Loéve expansion (Karhunen,

1947), the Hotelling transform (Hotelling, 1933), and empirical orthogonal functions

(Lorenz, 1956)) has been applied to InSAR data by several authors, such as Kositsky

and Avouac (2010), Rudolph et al. (2013), Chaussard et al. (2014), and Kositsky and

Avouac (2010) to isolate signals of geophysical interest. The first principal component

is the direction in which the maximum amount of variance in the mean centered mix-

tures can be explained, the second seeks the same result given that it is orthogonal to
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Figure 2.2: Sources and estimated PDFs for synthetic deformation source (left) and atmo-
spheric source (right). Top row: The spatial pattern of the two sources, corresponding estimated
PDF (Gaussian kernel density estimate), and measures of non-Gaussianity (Introduced in Sec-
tion 2.2.4) of sources, where J is approximate negentropy (0 for Gaussian), k the excess kurtosis
( 0 for Gaussian), and s the skewness (0 for Gaussian). Campi Flegrei was used for this syn-
thetic example, with the Gulf of Pozzuoli visible as the masked (white) pixels in the lower part
of the image. The spatial pattern of the deformation source is highly non-Gaussian for all mea-
sures, whilst the atmospheric source is closer to Gaussian. Middle row: Temporal nature of the
synthetic sources when a daisy chain of interferograms are created. The estimate of the PDF
is generated from 100 synthetic time courses each of 40 interferograms, but for clarity only the
first time course is shown in the left hand plots. Bottom row: Temporal nature of the synthetic
sources when a single master is used to create the interferograms. The deformation time course
appears non-Gaussian as it approximates a uniform distribution, whilst the atmospheric source
is again closer to Gaussian. Note that the non-Gaussian nature of the temporal signals is a
result of how they were synthesised, and that the temporal trend in the atmospheric source
is due to the sinusoidal term described in the text, which is intended to approximate seasonal
changes in the signal’s strength.
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the first, and so on. The data can then be projected in the basis defined by the prin-

cipal components, with the result that the data are now uncorrelated. The principal

components can be found in a variety of ways (e.g. singular value decomposition), but

are routinely found by calculating the eigenvectors and eigenvalues of the mean centred

data’s covariance matrix. Once the eigenvectors have been calculated, the change of

basis can be achieved using:

Sreco = ETX (2.5)

where Sreco are the reconstructions of the sources, E is a matrix of eigenvectors as

columns (termed W in equation 2.3), and X is the matrix of mixtures. A consequence

of PCA requiring the data to be first mean centred, is that a reference pixel need not be

chosen for the time series as all the interferograms are adjusted so that when the data

are spatially organised each interferogram has a mean of zero, and when temporally

organised the time history for each pixel has a mean of zero. The strength of PCA lies in

the nature that the first principal components (or eigenvectors) contain the majority of

the variance of the data, and so by discarding the later components, a large proportion

of the variance of the data can be expressed in relatively few dimensions. However, due

to the orthogonality of the principal components, it is apparent that should the rows

of A not be orthogonal, PCA cannot separate the two sources fully. Consequently,

in some fields independent component analysis (ICA, Comon (1994) and Jutten and

Herault (1991)) is preferred to PCA.

PCA can be applied to both spatially-organised data (to find uncorrelated images),

and temporally organised data (to find uncorrelated time courses). However, when per-

forming PCA on images (such as interferograms) organised temporally (that is, where

each pixel is a variable), many datasets will have more dimensions than points popu-

lating the space (e.g. for a time series of 19 interferograms, each of 10, 000 pixels, this

would result in 19 points in 10,000 dimensions). Consequently, both the calculation

of the covariance matrix (of size 10, 000 × 10, 000 in this example) and its eigende-

composition becomes very computationally expensive. Previous applications of PCA

to temporally organised interferograms by Ebmeier (2016) have circumvented this by

spatially down-sampling the data, and so reducing the number of pixels and therefore

dimensions. However, we instead calculate the principal components of these sparsely

populated high dimensional spaces using the PCA “compact trick” (Solem, 2012), which

is computationally efficient as it uses the constraint that when the number of dimen-

sions is greater than the number of samples, s, there will only be s − 1 eigenvectors.

Considering PCA performed on two data points in 3D (i.e. the case in which there are

more dimensions than data), we can see that the direction of maximum variance lies

along the line joining the two points. However, the second principal component cannot



40
Chapter 2: Blind Signal Separation Methods for InSAR: The Potential to

Automatically Detect and Monitor Signals of Volcanic Deformation

be defined, as there are an infinite number of vectors which are perpendicular to the

first in a 3D space. Therefore, the number of principal components is limited to be

one less than the number of data points, and when considering temporal InSAR data,

as there are significantly more dimensions than data, much computational cost can be

avoided through finding only the reduced number of principal components.

Minimal considerations of whether the data are complete or under-complete are

required when applying PCA. In the complete case, all the eigenvectors are retained and

ET is square. In the noiseless under-complete case withmmixtures and s latent sources,

the observations of the mixtures will lie on an sD hyperplane (demonstrated in Figure

2.3) and the last m−s eigenvalues will be zero, indicating the corresponding eigenvalues

can be discarded (reducing ET to an s×m matrix). In the noisy under-complete case,

the data create a volume of equal dimension to the space and all eigenvalues are non-

zero, but further interpretation depends on the signal-to-noise ratio (SNR). In the

case that the SNR is high enough, the first s eigenvalues are significantly larger than

the remaining m − s and the number of sources can be identified, but as the SNR

decreases, the difference between the two sets of eigenvalues decreases until separation

and constraint of the number of sources becomes difficult. The difficulty in choosing

the number of components to retain is demonstrated in McKeown et al. (1998), where

a small but interesting signal was identified in a very low eigenvector. Spatially small

signals contained within large (250 km wide) Sentinel-1 interferograms may contribute

little to the overall variance of the time series and be at risk of omission due to occurring

in a low ranked eigenvector, yet may be of geophysical interest. We expect the strength

of a signal, the proportion of an image that it covers, and the number of interferograms

that it features in, to determine how highly the signal is ranked within the eigenvectors

extracted by PCA. Consequently, we postulate that in order to maximise the chance of

a signal of a given strength and spatial size to be retained in the highest eigenvectors,

the interferograms should be cropped to the smallest practical area of interest around

a volcano. Given that deformation sources are commonly offset from a volcanic centre

(Ebmeier et al., 2018) by tens of kilometres, the smallest practical area is likely to be

around 20−50 km in size, but to remain a parameter that is tuned for each application

of a BSS method to a volcanic centre.

2.2.4 Independent Component Analysis

ICA provides a new basis for the mixtures such that they are no longer statistically

dependent (i.e. the independent components, or sources, have been recovered), and

is the dominant method to apply BSS (Stone, 2002). In a similar fashion to PCA,

it has been applied to InSAR data by Ebmeier (2016) in order to isolate signals of

volcanic interest. ICA can be used to identify latent sources as these usually have

probability density functions (PDFs) that are less Gaussian than mixtures. This is due
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to the central limit theorem, which stipulates that by summing several independent

sources, the resulting mixture has a more Gaussian PDF than any of the constituent

sources (Hyvärinen and Oja, 2000). ICA algorithms measure the Gaussianity of linear

combinations of the mixtures, before adjusting this mixture in order to create a signal

that has maximum non-Gaussianity, and is therefore likely to be one of the original

sources. This point also highlights the limitation that ICA algorithms cannot be applied

to Gaussian signals (or random variables), as the latent sources would not be more

non-Gaussian than the mixtures. The wealth of successful applications of ICA to BSS

problems can be used to justify the expectation that it would outperform PCA as two

physical processes that are unrelated (such as deformation at a volcano and atmospheric

delay) are likely to be statistically independent, as opposed to merely uncorrelated.

However, signals such as deformation and atmospheric delay at a stratovolcano may

be physically unrelated, but are likely to be spatially similar. We explore the search

for spatially uncorrelated and independent sources at a stratovolcano in more detail in

Section 2.4.5.

Several measures of the non-Gaussianity of random variables exist and have been

used by various ICA algorithms. Kurtosis provides one of simplest measures to im-

plement and measures how “peaked” a distribution is. As Gaussian random variables

have a kurtosis of three, it is common for kurtosis to instead refer to excess kurtosis,

which is a measure in which all values are reduced by three, shifting the kurtosis of

a Gaussian distribution to zero. A random variable with a high kurtosis (i.e. k > 0)

has a “peaked” or “spikey” PDF with many values closely grouped together and long

tails, whilst a random variable with a low kurtosis (i.e. k < 0) has a very broad PDF

(such as a uniform distribution, with a kurtosis of −1.2). Gradient descent can be used

to maximise the non-Guassianity of the signals to be recovered, but the more complex

fixed-point iteration presented as FastICA in Hyvärinen and Oja (1997) has two ad-

vantages in that it has been shown to converge more quickly, and also does not require

a learning rate to be chosen.

Whilst kurtosis is an intuitive and computationally efficient way of measuring the

non-Gaussian nature of a random variable, it is not robust and can be heavily influenced

by outliers (Hyvärinen, 1999). Therefore, differential entropy is used as a measure of

non-Gaussianity in more recent versions of the FastICA algorithm (Hyvärinen, 1999).

Differential entropy is a measure of the information that a variable conveys and is

largest for more unpredictable (or random) variables, and lowest for more predictable

ones (in the case of a coin that always landed on heads, the entropy would be 0).

For a collection of random variables with equal variance, the maximum differential

entropy is achieved by that with a Gaussian distribution (Hyvärinen et al., 2001).

Therefore, it can be used as a measure of how Gaussian a random variable is. This

can be simplified by defining a new quantity, negentropy, which is 0 for a Gaussian
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random variable and always non-negative. However, as differential entropy (and so

negentropy) requires the PDF of a variable to be known, it remains difficult to measure

efficiently. Therefore, approximations for differential entropy have been developed for

the FastICA algorithm, but a full discussion of these is outside the scope of this paper

(see e.g. Hyvarinen (1998) and Hyvärinen et al. (2001)). As per using kurtosis, gradient

descent can be used to maximise the approximated negentropy, but a faster and more

robust fixed-point algorithm is presented in a newer version of FastICA in (Hyvärinen,

1999).

As per PCA, ICA can be applied to both spatially and temporally-organised data.

When ICA is applied to spatially-organised data, spatially independent sources and

unconstrained time courses are recovered, and the method is referred to as spatial ICA,

or sICA. When ICA is applied to temporally-organised data, independent time courses

and unconstrained spatial sources are recovered, and the method is referred to as tem-

poral ICA, or tICA. The independent sources that ICA seeks to recover are similar to

the uncorrelated sources that PCA seeks to recover, but as independence is a more ro-

bust measure than the uncorrelatedness which PCA seeks (discussed further in Section

S3), we may expect the sources recovered by ICA to be more faithful reconstructions

of the latent sources that generated the data. ICA has been applied across a varity

of fields, ranging from tICA on speech data (Bell and Sejnowski, 1995), tICA on elec-

troencephalographic (EEG) data (Makeig et al., 1996), sICA on functional magnetic

resonance imaging (fMRI) data (McKeown and Makeig S, 1998), and sICA on facial

images (Bartlett et al., 2002). More recently, sICA and tICA have also been performed

on geophysical data using the FastICA algorithm (Frappart et al., 2010; Ebmeier, 2016;

Chaussard et al., 2017; Cohen-Weber et al., 2018).

Unlike PCA, applying ICA to under-complete data requires extra considerations.

FastICA can only operate with square mixing and unmixing matrices and, whilst this

makes them very suitable for the complete case, it makes their application to the

under-complete case more challenging. An example of performing ICA with rectan-

gular matrices is presented in Porrill and Stone (1998) and termed under-complete

ICA (or uICA), whilst the error-gated Hebbian rule (EGHR) proposed by Isomura

and Toyoizumi (2016) retains square mixing and unmixing matrices, but is capable

of recovering repeated versions of the original sources if the data are under-complete.

However, we choose to implement the commonly used method of dimension reduction,

as the uICA method presented in Porrill and Stone (1998) has not been applied to data

similar to geophysical data, and the EGHR ICA algorithm of Isomura and Toyoizumi

(2016) requires tuning of a learning rate, which may prohibit the automating of the

implementation of ICA that is required for ICA to be used in an automatic detection

algorithm.

Dimension reduction seeks to compress the data by expressing it using a new and
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smaller set of variables which, in the ideal case, are still able to convey the essential

features of the data. Using this as a preprocessing step for ICA allows us to reduce

the number of input variables to equal the number of sources that we wish to recover,

and then allows ICA to be performed on the new lower dimension data (i.e. where

A and W are now square). PCA is commonly used for this process, but includes the

important caveat that some signals may be discarded in dimensions that were thought

of as unimportant (McKeown et al., 1998). Most ICA algorithms require the data to be

whitened (or sphered) prior to ingestion as this greatly simplifies the unmixing matrix

as it changes from a full rank to orthogonal matrix (Hyvärinen and Oja, 1997), and as

PCA can be used to perform whitening, it is usually incorporated into the dimension

reduction step. As tICA requires temporally organised data to be whitened, we again

use the “compact trick” (discussed in Section 2.2.3)to allow tPCA to be performed

without downsampling the data.

2.2.5 PCA and ICA example

To demonstrate the functioning of PCA and ICA we present a low dimension example

of under-complete data (three mixtures of two sources). Whilst these are of significantly

lower dimension than would be encountered for real data, they remain useful examples

as they allow for the data and (un)mixing vectors to be plotted clearly, and the role of

PCA as a pre-processing step for ICA to be demonstrated. For the time series to be of

such low dimension that it can be plotted in 3D, spatially-organised data must consist

of three interferograms, whilst temporally organised data must consist of three pixels

(in a similar fashion to the 2D case shown in Figure 2.1). Whilst three mixtures could

be generated from more than two sources, this is the opposite of the under-complete

case that we expect to encounter with InSAR data. Therefore, we use two sources

and a 3× 2 mixing matrix (A) to generate under-complete data. To generate spatially

organised data, the spatial pattern of the two sources (deformation and topographically

correlated delay) are placed as rows in S, and the time courses placed as columns in A

(see equation 2.2), whilst for temporal data, the opposite is performed.

Figure 2.3 shows the Euclidean representation of mixing sources to create spatially

organised data, and the results of using PCA and ICA to attempt to recover the sources.

As only two sources and a negligible amount of noise (visible as PC3 in Figure 2.3) are

used to generate the data, the data lie on a plane in the 3D space of the three mixtures.

The first two principal components (PCs) lie in this plane, and due to the orthogonality

constraints imposed on the un-mixing vectors of PCA, the third lies perpendicular to the

plane. This results in the variance accounted for by the third PC being approximately

zero, and we are therefore able to conclude that the three mixtures were generated by

two sources. To perform ICA, we rescale the data projected in the direction of the first

two PCs such that the variance in each direction is one (i.e. the data are whitened),
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and then seek two un-mixing vectors in this 2D space. Should noise be added to the

above case, the three mixtures would no longer lie in a plane and would instead create

a volume within the 3D space. If the signal is of significantly larger magnitude than

the noise, identifying the plane in which the sources lie remains possible, and ICA is

able to recover the sources accurately. However, as more noise is added, the plane that

the sources creates becomes harder to identify using PCA, and if the vectors found by

PCA are not aligned correctly (i.e. the first 2 lie in this plane), some signal may be

present in the 3rd PC. When this component is discarded the signal it contained is also

lost, and ICA may therefore fail to recover the original sources faithfully.

Figure 2.4 shows the Euclidean representation of mixing sources to create temporally

organised data, and the results of using PCA and ICA to attempt to recover the sources.

As this scenario is limited to 3 pixels, these do not have any spatial meaning, so the

elements of A are chosen from uniform distributions −0.5 to +0.5. In a similar manner

to the spatial example discussed in the previous paragraph, the very low variance of

the third principal component (1.85× 10−15% of the total variance) indicates that it is

numerical noise and should not be retained for use by ICA. Whilst comparison of the

original and recovered sources is not as clear as for the spatial patterns, examination

shows that the sources recovered by PCA are visibly different to the original sources,

whilst those recovered by ICA are not.

2.2.6 Non-negative Matrix Factorisation

Non-negative matrix factorisation (NMF) developed from positive matrix factorisation

(Paatero and Tapper, 1994) and factorises a non-negative data matrix of mixtures,

X, into two non-negative matrices, A and S (often termed W and H in NMF liter-

ature). Non-negative matrix factorisation became well known when Lee and Seung

(1999) showed that a collection of 2500 facial images, each of 361 pixels, could be

expressed as 49 sources that were easily interpretable to a human observer (i.e. the

sources corresponded to parts of a face, such as eyes or a nose). In terms of Euclidean

geometry, this corresponds to a 361 dimensional space populated by 2500 points being

condensed to a 49 dimensional space, and corresponds with the under-determined case

described in Section 2.2.1. However, to our knowledge, NMF has not been applied to

InSAR data.

The multiplicative update rules of Lee and Seung (1999) find the local minimum of

an objective function that measures the misfit between X and A× S. If the mixtures

are linear combinations of a smaller number of latent sources, gradual identification of

these sources (and their mixing matrix) occurs as the objective function reduces. In

the case of noiseless data, the objective function may approach 0.

However, in the complete case (i.e. the number of sources and mixtures are equal)
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Figure 2.3: Column 1: A scatter plot comparing the values for each pixel in the two sources
(row one), and the two sources (rows two to three). These are mixed with the 3 mixing vectors
of A (plotted in red). As per the previous scatter plots, yellow indicates areas of high point
density. Column 2: Scatter plot of the 3 mixtures (top), and the three mixtures. As the data
lie on a plane in the 3D space, colour is used to for the third axis. The three 3D un-mixing
vectors found by PCA are plotted with the colour indicating their vertical component. PC1,
and PC2 progress through the colour spectrum of the vertical axis at the same rate as the
data points, and consequently lie in the plane. However, PC3 progresses through the colour
spectrum more rapidly as it lies perpendicular to the plane. Column 3: The three components
recovered by PCA, and the variance in each direction. As PC3 can be seen to correspond to
noise, only components 1 and 2 are retained for use by ICA. The upper scatter plot shows
PC1 and PC2 rescaled in such a way that the variance in each direction is 1 (i.e. the data are
whitened). The un-mixing vectors found by ICA are shown in red. Column 4: The two sources
recovered by ICA, which can be seen to be a good approximation of the original sources. Note
that due to the ambiguity of the sign of the recovered sources found by BSS methods, some of
the recovered sources are sign-flipped versions of the original. However, to aid in quick analysis
of the recovered sources, we remove any obvious sign flips from figures within this work.
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Figure 2.4: Column 1: The two temporal sources that are mixed with the 3 mixing vectors
of A (plotted in red). As per the previous scatter plots, yellow indicates areas of high point
density. Column 2: Scatter plot of the 3 mixtures (top), the unmixing vectors found by PCA,
and the three mixtures. These show the same features as those discussed in detail in Figure 2.3,
but the salient point remains that the points lie on a plane, with PC1 and PC2 in the plane, and
PC3 orthogonal to it. Column 3: The three components recovered by PCA, and the variance
in each direction. PC2 can be seen to recover source 2 well, but PC1 is a poor approximation
of source 1. As component 3 can be seen to correspond to noise, only components 1 and 2 are
retained for use by ICA. The un-mixing vectors found by ICA are shown in red. Column 4:
The two sources recovered by ICA. Visual inspection shows these to be a good approximation
of the original sources.
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any positive and non-linearly dependent vectors can be used to fit the data exactly,

providing the values of S are adjusted correctly by the algorithm. Consequently, the

original sources are not recovered, and the data are instead reconstructed from near

random permutations of the latent sources. This situation can be demonstrated by

considering observations of 3 mixtures that are fit when the rows of A contain vectors

in the direction of the space’s coordinates (i.e. [1, 0, 0] etc.), and the 3 recovered sources

would be the 3 mixtures. This arrangement would be able to reconstruct the data

exactly, but would not recover meaningful or accurate sources. Therefore, unlike PCA

and ICA, NMF can only be applied to under-complete data.

2.3 Application of NMF to InSAR time series

As NMF cannot be used on data that contains negative values, we instead construct a

time series of interferograms relative to a single master. This master image is chosen

to be the date on which either the strongest/weakest topographically correlated atmo-

sphere occurs as this ensures that this signal is either entirely positive/entirely negative.

We synthesise a volcanic signal that is steadily inflating/deflating at a varying rate, to

ensure that all the data after/before the master is positive. NMF can then be applied

to regions of the time series in which both signals are positive, or by applying a trivial

sign flip, both signals are negative. Figure 2.5 demonstrates these possible scenarios

which, whilst somewhat limited, we believe remain useful. Dates on which strong to-

pographically correlated APS signals occur may be estimated from outside deforming

regions, but more complex methods are required for cases in which the deformation is

not of a constant sign before or after the master image, which are outside the remit of

this initial study.

Figure 2.6 shows the results of applying NMF to spatially-organised under-complete

3D data that corresponds to any of the green regions of Figure 2.5. Very slight corre-

lations remain between the two sources due to incomplete separation, but NMF can be

seen to recover the sources well (mean residual per pixel: 0.0001). For brevity, we do

not show the results of applying the same process to temporally organised data as it is

very similar to Figure 2.4. The addition of noise in the form of a turbulent APS and

any associated negative values is addressed in Section 2.4.1 through adding small values

to all of the pixels within an interferograms (or time points within a time courses, if

the data are temporally organised).

2.4 Comparison of PCA, ICA and NMF

To determine which of the BSS methods is most suited to isolating signals of geophysical

interest, we construct a collection of differing time series in which we vary whether (1)

the interferograms are constructed as a daisy chain or relative to a single master, (2) the



48
Chapter 2: Blind Signal Separation Methods for InSAR: The Potential to

Automatically Detect and Monitor Signals of Volcanic Deformation

Figure 2.5: Possible scenarios for application of NMF to single master InSAR time series. Top
left: Uplift (black points) and a topographically correlated APS (red points) with the master
interferogram on the acquisition with the minimum atmosphere (number 4). Data after the
master (green shading) is non-negative and can be used, whilst data before the master contains
both positive and negative data and cannot be used (red shading). Top right: As above, but
with subsidence. Data before the master data is non-negative. Bottom left: Uplift and a master
chosen for the maximum atmosphere (number 10). The data before the master is non-positive,
and can be utilised by NMF providing a trivial sign flip is performed. Bottom right: Subsidence
and a master chosen for the maximum atmosphere. A sign flip of the data after the master
facilitates application of NMF.
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Figure 2.6: Results of application of NMF to spatially-organised data. Column 1: To create 3
mixtures from 2 sources, 3 2d vectors are required (rows of A). Column 2: Scatter plot of the 3
mixtures. The points form a plane in the 3d space which allow them to be visualised adequately
using colour for the 3rd axis. Column 3: The 2 recovered sources and mixing vectors, showing
the near exact recovery of the original sources.
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number of sources recovered, (3) the length of the time series, and (4) the strength of

the turbulent atmospheric phase screen (APS). These time series consist of three types

of synthetic signals aimed to mimic those seen in real data, with one corresponding to

a deformation source, a second to a topographically correlated APS, and a third to a

turbulent APS. Whilst this is not a comprehensive list of types of APS seen in InSAR

data, it contains enough complexity for illuminating experiments with BSS methods to

be performed.

To evaluate the fidelity of the sources recovered by a BSS method, we first multiply

each time course by its associated spatial map to construct a time series of only that

signal. The mean residual per pixel is then calculated between each synthesised source

and each recovered source, before finally calculating the total residual when different

recovered sources are used to match each synthesised source (i.e. one recovered source

cannot be used to fit both synthesised sources).

2.4.1 Single master vs daisy chain time series

When creating interferograms from SAR acquistions, the interferograms can be con-

structed to show the signal between two acquisitions with a short spatial or temporal

baseline, or between each acquisition to a single master acquisition (see Hooper et al.

(2012) for a more complete description). In the case that spatial baselines remain

small, interferograms can be created between acquisitions with the shortest temporal

baselines, making what is often termed a daisy chain of interferograms. Figure 2.7

shows how the same signals manifest themselves when constructed using either the

daisy chain or single master approach, whilst Figure 2.8 shows the results of using the

BSS methods described previously on each case.

For the single master case, NMF can be seen to recover the sources poorly as even

though the deformation source is successfully isolated in one recovered source, the

second recovered source contains a mixture of the two synthetic sources. This incorrect

separation creates a high residual (RMS error: ∼ 1.2 rad). We interpret this as a result

of the addition of a turbulent APS in the more complex synthetic data that we use

in this experiment (in contrast to that used in Section 2.3) introducing some pixels

that are negative, which requires constants to be added to the entire interferogram to

allow it to still be used with NMF. As the linear mixing model of NMF does not allow

for this, our result of poor performance by NMF when a turbulent APS is added is

unsurprising, and consequently we do not pursue its use through the remaining tests.

When applied to single master data, sPCA and sICA are also able to recover the de-

formation signal accurately and the topographically correlated APS poorly, producing

a moderate to high overall error (RMS error: ∼ 0.8 rad and ∼ 1.1 rad, respectively).

This result seems plausible as when the data are organised relative to a single master,
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Figure 2.7: Comparison of a synthetic time series of interferograms arranged as either a daisy
chain of interferograms (left), or relative to a single master (right) formed from 20 acquisitions.
The top row shows the signal due do inflation of a Mogi source (and its associated time course),
the second due to a topographically correlated atmospheric signal (and time course), the third
due to a turbulent APS, and the fourth due to the combination of these. In the single master
time series, the master date was chosen to be when the topographically correlated atmospheric
signal was a minimum, in order to ensure it remains positive in all the interferograms and
NMF can be used. The phase is wrapped to between −π and π as the scale varies significantly
between the two cases. In the daisy chain case, the signal due to the Mogi source is of comparable
magnitude to the other signals, but in the single master case dwarfs them. Figure 2.8 shows
the results of applying the suite of BSS techniques to each case.

the deformation signal becomes around an order of magnitude larger than the topo-

graphically correlated APS signal (see the time courses on the upper right of Figure

2.7). In the daisy chain case, both synthetic signals have a comparable magnitude and

are recovered well, producing a low overall error (RMS error: ∼ 0.5 rad). We therefore

conclude that through organising the data in a daisy chain both atmospheric and de-

formation signals retain comparable variances, and are more accurately recovered than

in the single master case. Consequently, we select this method as optimal and use it

in the following scenarios. It should be noted that when comparing the RMS error,

both the recovery of the deformation source and the topographically correlated APS

are weighted equally, as we wish to judge the algorithms not only on their ability to

isolate deformation, but to also constrain the strength of the topographically correlated

APS in any given interferogram.
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Figure 2.8: The results of applying PCA, ICA, and NMF to the spatially-organised version of
the data (i.e. sPCA and sICA) shown in Figure 2.7. To ease interpretation and comparison of
the recovered time courses, the single master cases are differentiated to produce the equivalent
daisy chain time courses. Application of the BSS methods to temporally organised data (i.e.
tPCA and tICA) produced very poor results and so are omitted for clarity, but further figures
(e.g. 2.9, 2.10, and 2.11) show these methods. The time courses recovered by NMF (lower right)
only show the signals after the master date as these signals are predominantly positive, but are
generally very poor reconstructions of the synthetic sources. In the daisy chain case, both PCA
and ICA are seen to recover both the sources well, whilst in the single master case PCA and
ICA are seen to recover the deformation source well and the topographically correlated APS
poorly.
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2.4.2 Number of sources sought

In Section 2.2.1 we introduced the under-complete nature of InSAR data, and dis-

cussed the importance of PCA as a pre-processing step for ICA. In the noiseless case

introduced in Figure 2.3, using PCA to reduce the dimensionality of the data to equal

the number of sources was trivial as the sudden change in variance between the 2nd

and 3rd components suggested that the data formed an almost flat 2D feature in the

3D space. In the example shown in Figure 2.9, the data are very under-complete (25

interferograms from 2 sources) and contain significant noise (in the form of a turbulent

APS), which presents a more realistic challenge for PCA and ICA.

As the number of sources that PCA recovers does not vary, it is only applied once

to produce one set of recovered sources and time courses. In contrast to the data

used in the previous section, we increase the variance of the turbulent atmospheric

signal by 10% to visibly relegate the topographically correlated APS to the 3rd and

4th principal component (shown in Figure 2.9). Consequently, when sICA is performed

to recover two sources, the signal contained in the 3rd and 4th PCA component is

discarded and sICA can only recover the deformation source, producing a high RMS

residual. However, as sICA is performed on more of the first sPCA sources, the signal

contained in the higher sPCA sources is available to the FastICA algorithm and the

fidelity of the recovered sources increases (producing a lower residual). A consequence

of this is that the ICA algorithm then also recovers some sources that are just noise

(a turbulent atmospheric signal), but these can potentially be separated from those of

interest either by eye, or using clustering methods (Ebmeier, 2016). Figure 2.9 shows

that the minimum residual is found when three extra sources are sought.

When applying ICA to real world examples, the problem becomes more complex as

the number of sources is not necessarily known. However, this example shows that for

ICA to perform optimally, the number of sources need be known only approximately

so that the number to be recovered can be set correspondingly higher.

2.4.3 Length of time series

The length of a time series of interferograms over a volcanic centre can vary between a

single interferogram spanning an event, to a time series spanning several years. Whilst

the case of a single interferogram is not suitable for BSS methods to be applied, identifi-

cation of the most suitable BSS method for time series of different lengths is important

for an automatic detection algorithm. Consequently, in a similar fashion to the previ-

ous sections, we construct a suite of synthetic time series and crop these to different

lengths to analyse the performance of different methods. In light of the findings of

previous sections, we construct the time series as a daisy chain of interferograms and

set the FastICA algorithm to retrieve 4 sources (i.e. 2 more than the 2 used to create
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Figure 2.9: The results of sPCA, sICA, tPCA, and tICA applied to a time series of 25
daisy chain interferograms when the number of recovered sources is varied. The RMS residual
between each synthesised and recovered case is shown on the left after averaging the results
over 50 synthetic time series, whilst the right hand section shows the results from one particular
time series. The two sources (top row) each have variances of 1 and are mixed with a turbulent
atmospheric signal also of variance 1 to produce the time series of 25 interferograms in row 2.
The third row shows the 6 largest sPCA components, with the first showing elements of the
synthesised Mogi source, and the fourth showing a mixture of elements of the topographically
correlated APS and noise created by the turbulent APS. The remaining 3 rows show the results
of sICA when a decreasing number of sources are sought. As ICA does not place sources
in a significant order (unlike PCA), the recovered sources most like the synthesised sources
have been placed in the first 2 columns for clarity. sICA performs approximately equally well
when 5 or 6 sources are recovered, which we attribute to being a consequence of part of the
topographically correlated APS residing in PC4 and PC5 and only being accessible to the
FastICA algorithm when the number of sources to be recovered is increased. In contrast to the
preceding subsections, the length of the time series changes in this experiment, and consequently
the number of interferograms over which the RMS residual is calculated increases. This causes
the “well” seen at four interferograms, but if the RMS residual were to be standardised as “per
interferogram” it would be seen to continue to reduce. However, this would prohibit comparison
with the other figures presented within this section.
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Figure 2.10: The results of sPCA, sICA, tPCA, and tICA applied to time series of interfer-
ograms of increasing length. The mean residual per pixel in the differing cases is shown on
the left after averaging the results over 50 synthetic time series (with error bars showing the
variance), whilst the right hand section shows the results from one particular time series. The
top row shows the two synthesised sources and their associated time courses, whilst the second
to fifth rows show the results of sPCA and sICA applied to time series of different lengths.
Performance of all the BSS methods increases as the time series increases to around 5 interfero-
grams in length, before then remaining constant. In the time series depicted on the right hand
side, the results when using longer time series show some aspects of the turbulent APS signal
relegating the topographically correlated APS to below the 2nd component.

the time series).

Figure 2.10 shows the results of applying sPCA, sICA, tPCA, and tICA to these time

series. As per the previous experiments, application of PCA and ICA to temporally

organised data produces poor results (mean residuals of 0.6− 0.2, respectively), whilst

to spatially-organised data produces significantly improved results (mean residuals of

0.1 − 0.03, respectively). sICA is seen to outperform sPCA at all time series lengths,

though the difference decreases in magnitude as the time series increases in length.

2.4.4 Strength of turbulent atmosphere contribution

In contrast to a topographically correlated atmospheric signal, a turbulent atmospheric

signal cannot be retrieved by PCA, ICA, or NMF and consequently appears as noise in

the time series. To determine whether PCA or ICA are best suited to dealing with time

series with a strong turbulent atmospheric signal, we synthesise a suite of time series

with differing strengths of turbulent atmospheric signal. In light of the findings of the

previous section, we again arrange the time series as daisy chain of interferograms and

seek 4 sources with the FastICA algorithm.
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Figure 2.11: The results of sPCA, sICA, tPCA, and tICA applied to a suite of time series with
different strengths of turbulent APS. The strength of the turbulent APS signal is quantified
in terms of its variance which was set to 1 for the previous examples. The mean residual per
pixel in the differing cases is shown on the left after averaging the results over 50 synthetic time
series, whilst the right hand side shows 3 cases for differing strengths of turbulent APS. For each
case, the top row shows the time series of interferograms (showing the differing contribution
of the turbulent APS), whilst the second row shows the sources and associated time courses
recovered by sPCA and sICA.

Figure 2.11 shows the results of applying sPCA, sICA, tPCA, and tICA to these

time series. As per the previous experiments, the methods that are applied to spatially-

organised data produce results with significantly lower residuals. Of these, sICA is seen

to outperform sPCA in the majority of cases, although there are certain strengths of

atmospheric noise at which the results are comparable.

2.4.5 Spatial independence of sources

When using PCA and ICA to recover spatial maps (i.e. images) as sources, we are

seeking sources that are either uncorrelated or statistically independent. Consequently,

a key assumption of ICA is that the latent sources are statistically independent (or

uncorrelated for PCA), which may not be the case for signals that may be encountered

at certain volcanic centres. Figure 2.12 shows the results of performing PCA and ICA

in a similar manner as described in the preceding sections, but instead of at Campi

Flegrei, on Mt. Vesuvius (a ∼ 1000m high stratovolcano ∼ 15km east of Naples). In
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such a case, the topographically correlated APS is dominated by the signal produced by

the cone of the stratovolcano and, if the synthetic deformation source is located under

this cone, the two signals lie in the same location. When considering the pixels of the

interferograms, those at the top of the cone are now likely have high values in both the

deformation and topographically correlated APS, whilst those at the edges are likely

to have low values in the two sources. Consequently, the two sources are now no longer

statistically independent, and we would not expect PCA or ICA to be able to separate

them. This result is seen in Figure 2.12, which shows that as the two synthetic sources

are brought closer together, they cease to be statistically independent and the results

of sPCA and sICA decrease in quality. This issue is discussed and explored in more

detail in Section 2.5.2, in which sICA is applied to Mt. Etna.

Figure 2.12 also shows the results of performing tPCA and tICA on the data with

non-statistically independent spatial maps. The results of these methods remain gen-

erally constant at all spatial separations, which we interpret as being due to PCA and

the FastICA algorithm finding time courses that remain statistically independent re-

gardless of changes to the spatial sources. However, in accordance with the preceding

sections, the results of tPCA/tICA remain poor, and are worse than those found by

sICA when the sources are not statistically independent.

2.4.6 Comparison conclusions and method limitations

From the experiments carried out in the previous four subsections, we conclude from

the suite of BSS methods studied that sICA is the most suited to use with InSAR time

series. When sICA is used, performance is optimal when the number of sources sought

is set to be slightly larger than the number expected to exist (such as recovering five

sources when two are postulated to exist), and when interferograms are constructed to

minimise the temporal baselines, such as through creating a daisy chain of interfero-

grams.

However, limitations in the application of sICA remain. The performance of the

algorithm reduces significantly when the spatial statistical independence of the sources

is reduced, such as may happen at a stratovolcano where a topographically correlated

APS and a broad deformation signal may be spatially similar. This issue is explored

further through application of sICA to real data at a stratovolcano in Section 2.5.2. The

performance of sICA is also limited in cases where noise from the turbulent atmosphere

may dwarf signals of geophysical interest, but we do not discover any thresholds at

which sICA fails, and instead see a gradual degradation of the accuracy of the recovered

sources as the signal to noise ratio decreases.
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Figure 2.12: The results of sPCA, sICA, tPCA, and tICA applied to a suite of time series
in which the overlap of the two sources is varied. The left hand section shows the mean
residual per pixel decreasing for sPCA and sICA as the spatial separation is increased, and
changing little for tPCA and tICA. The upper right hand section shows the results with 6km
of separation. The two sources can be seen not to overlap and no correlations are seen in the
scatter plot comparing the two sources. The sources recovered by sPCA and sICA can be seen
to be good reconstructions, and the associated scatter plots shows the same lack of correlation
as the original sources. The lower right hand section shows the results with 0km of separation.
The two sources overlap and cause many of the pixels to be correlated (as demonstrated in
the scatter plot). The sources recovered by sICA are not good reconstructions as the scatter
plot shows that the FastICA algorithm has sought sources that are statistically independent
(and therefore uncorrelated, as seen in the scatter plot with the majority of the points now
lying along the coordinate axis). The results from sPCA are similar, except with one source a
negative version of the source found by sICA (causing the data in the scatter plot to be mirrored
around the y axis).
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2.5 Application to real data

To further explore the ability of sICA to recover latent signals from a time series of

interferograms, we present results from its application to two time series. The first

spans the 2015 eruption at Wolf volcano (Galapagos archipelago, Ecuador) and was

chosen as we further develop the use of sICA in an automatic detection algorithm that

is able to detect the onset of this eruption. The second is centred on Mount Etna, and

was chosen as an example of a stratovolcano at which application of sICA is likely to

be problematic, due to the considerations of spatial independence discussed in Section

2.4.5.

2.5.1 Wolf volcano

Several existing studies present detailed results of modelling the observed surface de-

formations (e.g. Novellis et al. (2017) and Xu et al. (2016)), but we instead focus on

the ability of sICA to automatically isolate the signals discussed in these papers. A

detailed schematic of the timing of Sentinel-1 acquisitions and the two phases of the

eruption is presented in Novellis et al. (2017), but we include the salient features and

an overview map (Figure 2.13) here. The first phase involved the opening of a cir-

cumferential fissure on May 25th (2015) on the south-eastern caldera rim. This fissure

produced two lava flows down the south eastern flanks of the volcano (Venzke, 2015),

but by June 2nd activity ceased (Bernard et al., 2015). The second phase initiated

around October 11th and involved an intra-caldera fissure with lava flows that covered

the caldera floor (Bernard et al., 2015). The surface deformation associated with these

events was attributed to two dykes (one circumferential and one intra-caldera) and two

magma chambers (∼ 1km and ∼ 5km below sea level) by Xu et al. (2016), and to one

dyke and one shallow magma chamber (∼ 1.5km below the caldera floor) by Novellis

et al. (2017).

We formed a time series of 20 daisy-chain descending Sentinel-1 interferograms

covering the Isabela and Fernandina islands in the western Galapagos archipelago from

December 13th, 2014, to October 21st, 2015. The unwrapped interferograms were

formed using LiCSAR (González et al., 2016) and include filtering with a Goldstein

filter (Goldstein and Werner, 1998). Figure 2.14 shows a subset of this time series

focussed on the eruptive period, with pixels with a post-filtering coherence of < 0.8

masked. The dominant features of this time series are range increase for the caldera floor

(interpreted as predominantly subsidence) and range decrease for the area around the

circumferential fissure (likely to be eastward motion). However, interferogram eight also

shows a broader signal (more visible in the wrapped interferogram), that corresponds

to a signal attributed to the deeper magma chamber by Xu et al. (2016).

Figure 2.15 shows the results of applying sICA to the time series. As around 3− 4
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Figure 2.13: A shaded relief DEM of the western isles of the Galapagos Archipelago, with the
calderas of 6 shield volcanoes visible as “upturned soup bowls”. Figure 2.14 focuses on Wolf
Volcano, and the extent of the figure is depicted by the red region. Topography is taken from
the SRTM DEM (Farr et al., 2007), and bathymetry from the GEBCO˙2014 Grid (GEBCO,
2015).

geophysical signals are expected, we set the FastICA algorithm to recover 6 components

(in light of the results of Section 2.4.2). Visual inspection of the higher order principal

components (6-20) suggests that these contain only turbulent atmospheric signals which

are not at risk of containing important geophysical signals. sICA is able to recover

the spatial pattern and time courses of the caldera floor subsidence, movement of the

region surrounding the circumferential dike, and broad subsidence around the volcano.

Recombination of the time courses and spatial patterns allows the time series to be

reconstructed with minimal atmospheric signals.

2.5.2 Etna volcano

Mount Etna is a stratovolcano located on the eastern edge of the island of Sicily. It

comprises of over ∼ 3300m of elevation between its summit and eastern flanks, and

is considered to be one of the world’s two most monitored volcanoes (González and

Palano, 2014). InSAR has been used to measure deformation centred under the cone

of Etna during the later portion of the 1991− 1993 eruption (Massonnet et al., 1995),

but a portion of the signals attributed to deformation by this study were later revised

to be due to a topographically correlated atmospheric phase screen (Delacourt et al.,

1998). Both the deformation and atmospheric phase screen (APS) described in these

studies were centred under the topographic expression of this volcano and, as they
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Figure 2.14: Top left: DEM showing the northern section of the island of Isabella (Galapagos
archipelago), and the cone of Wolf Volcano with the satellite line-of-sight (L.O.S.) vector in
the top right corner. Interferograms 3-11: A subset of the Sentinel-1 time series spanning the
period of unrest that occurred in May and June of 2015. Numbers in the top left of each
interferogram depict the dates of the two acquisitions that the image spans (mmdd-mmdd),
pixels with an average coherence < 0.8 are masked (predominantly removing the pixels on the
western vegetated slopes of Wolf), and line-of-sight (LOS) change is measured in mm, with
positive values indicating an increase in range (corresponding to subsidence of the ground).
Lower section: Interferograms 8-10 re-wrapped to the interval −50mm to 50mm in order to
highlight more subtle features of the deformation pattern (such as the broad deflation signal in
interferogram 8).
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Figure 2.15: Results of sICA applied to the time series shown in Figure 2.14, showing the 6
components recovered, and the strength of each one throughout a subset of the time series (lower
right). We interpret components 1,2, and 6 as representing deformation, and the remainder as
representing atmospheric signals. Component 1 appears to capture the signal near to the
circumferential fissure, component 2 the subsidence of the caldera floor, and component 6 the
broad subsidence associated with the deeper chamber. The remaining signals (3-5) contain
traces of the other signals (such as the circumferential dike signal), but we interpret them as
containing predominantly atmospheric signals.

are therefore unlikely to be spatially independent, we expect application of sICA at

Etna to be challenging. Subsequent geodetic studies at Etna have also measured other

deformation processes that may be recoverable by sICA, such as eastward movement

of sections of the faulted eastern flank (Solaro et al., 2010), and westward movement

of the western flank (Aloisi et al., 2007; Lundgren and Rosen, 2003)

We utilised a time series of Sentinel-1 interferograms that were formed as a prelimi-

nary result of work to use the LiCSAR processor (González et al., 2016) to automatically

form interferograms at all of the world’s volcanoes that have been active during the

Holocene. Data storage and processing was performed at the Climate, Environment

and Monitoring from Space (CEMS) facility and, as some images are not yet available

at this facility, our time series is split into two distinct sections (2016/09/03-2017/03/08

and 2018/01/14-2018/05/02). However, as we expect these two time series to contain

the same signals, we are able to perform sICA on them as a single time series. In con-

trast to the Galapagos time series used in the preceding section, the Etna time series

contains interferograms created between each acquisition and around three following it,

which created a network of overlapping interferograms. Pixels with a coherence below

0.7 in any of the interferograms were masked throughout the entire time series of 76

interferograms (which are shown in Figure S2). The time courses recovered by sICA

describe the strength that each component was used in each of the 76 interferograms,

and a simple least-squares inversion was performed to invert for the strength that each
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component was used in a daisy chain of 28 interferograms linking the acquisitions dates

in the manner described by Lundgren et al. (2001).

Figure 2.16 shows the independent components (ICs) recovered by sICA, their

strengths through the daisy chain of 28 interferograms, and a comparison between

each IC and the DEM. We interpret the spatial pattern of IC0 as capturing eastward

movement of the densely faulted eastern flank of the volcano. The cumulative nature

of this component’s time course is also indicative of it capturing deformation, but the

final value attained by the cumulative time course remains low when compared to the

changes at each time step, which is exemplified by the large change seen in the last

data point. Inspection of the interferograms used in this analysis (Figure S2) shows

the penultimate interferograms contain a broad negative signal, which is likely to have

caused this IC to have been used to attempt to fit it. Given the short nature of this

time series (∼ 12 months), the confidence in this measurement has the potential to

be improved upon through the use of longer time series, but this remains beyond the

scope of this paper. We also interpret IC2 as capturing broader east-west spreading

of the volcano due to both the spatial pattern seen, and the cumulative nature of the

time course. In contrast to IC0-2, the time courses of IC3 and IC4 do not show any

cumulative motion, and we conclude that these capture purely atmospheric signals.

When the correlations between phase and elevation are considered for each IC, only

IC1 is seen to exhibit a strong linear relationship, which we interpret as suggesting

that it may be capturing a topographically correlated APS. However, inspection of

its cumulative time course shows that, with the exception of the last data point, an

approximately linear increase occurs, which we interpret as suggesting that the IC is

capturing broad, volcano wide deformation of the type first measured by Massonnet et

al. (1995). Through use of a longer time series, we envisage that trends in the cumulative

time course would become clearer and, should the cumulative signal continue to return

towards zero as it does in the last data point, we would be more confident that the

signal is solely capturing a topographically correlated APS. However, in the case that

cumulative motion continues, we would be more confident that the IC contained a

signal due to deformation, but could not rule out a contribution from a topographically

correlated APS.

From our initial analysis, we conclude that when applying sICA at stratovolcanoes,

some signals of geophysical interest may be isolated, but separation of a broad infla-

tion/deflation signal that is centred under the cone from a topographically correlated

APS may not be possible. However, as we seek to use sICA as the foundation for an

automatic detection algorithm, these results do not dissuade us. Through isolating the

combination of broad deformation and a topographic APS to one IC, we are still able to

characterise the baseline behaviour of this combined signal through analysis of the IC’s

time course. Taking the example of a stratovolcano in which both a topographically
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correlated APS and a gradual inflation signal are isolated into one IC, any change in

the rate of inflation would lead to a change in the time course of the IC, which we could

then seek to flag as an indicator of the volcano entering a period of unrest. However,

further developments, such as the use of weather models to estimate the strength of the

topographically correlated APS independently, remain beyond the remit of this paper.

2.6 Use of sICA in a monitoring algorithm

Our initial hypothesis was that the signals present in an InSAR time series at a volcanic

centre could be expressed as a linear combination of a small number of latent signals,

and that through isolation of these signals we could implement a way to monitor signs

of unrest at a volcano. The results of the preceeding section and those of Ebmeier

(2016) have demonstrated the validity of this approach, and we now present results of

a prototype monitoring algorithm that incorporates sICA.

Tools such as LiCSAR (González et al., 2016) are now producing time series of

Sentinel-1 data at almost all of the world’s active volcanoes. With routine acquisitions,

a daisy-chain of interferograms is quick to build to the minimum six images required

for sICA to be applied in the manner described in the preceding section. sICA can be

applied to these six images to determine six latent components that characterise the

atmospheric and geophysical signals for a period of steady state activity at the volcano,

which may or may not include background deformation. When the next daisy-chain

interferogram is added to the time series, we perform a simple least squares inversion

to fit this image using a combination of the learned components, before calculating

the mean absolute residual for each pixel between the actual and recreated data. We

postulate that if no new deformation source is present, the mean absolute residual

(henceforth referred to as residual) will be low, as no new signals are present. However,

should the volcano enter a period of unrest leading to a new deformation source, the

residual is likely to increase, which can be used to flag potential activity. Alternatively,

if a background deformation source changes rate, this will lead to an uncharacteristic

contribution from the component in which it lies, which can also serve as a flag.

Figure 2.17 shows the results of applying this algorithm to the Wolf time series

presented in the previous section. Interferograms from before the period of unrest can

be fit using the sICA components with a residual of ∼ 1 mm2, yet when new signals

are encountered during the period of unrest (such as subsidence of the caldera floor),

the residual increases markedly and provides a clear flag that the volcano has entered

a period of unrest. After this abates, the residual returns to pre-unrest levels.
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Figure 2.16: Column two shows the five independent components (ICs) recovered by sICA
at Etna and the DEM covering the area processed. Pixels in the area makred “water” do not
have a useable radar return, whilst the remaining white areas of the DEM are masked due
to low coherence. Column one shows the results of plotting each IC against the DEM, with
IC1’s graph showing the clearest linear relationship which we interpret as being a result of IC1
capturing a topographically correlated APS. Column three shows the cumulative time courses,
with IC1-3 showing cumulative motion throughout the two time periods that the data span.
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Figure 2.17: Results of our prototype monitoring algorithm. The algorithm attempts to re-
construct a given interferogram (top row) using a linear mixture (second row) of six independent
components determined from the first six interferograms. The mean of the absolute value of
the residual is then calculated, and plotted for each new acquisition (bottom row). The five
interferograms in the top two rows correspond to the shaded region. Before the period of un-
rest, the residual is seen to hover around ∼ 0.005 mm2 as the reconstructions approximate the
originals well, but with the introduction of a new signal the residual increases approximately 6
fold.
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2.7 Discussion

From our comparison of NMF, (t/s)PCA, and (t/s)ICA we have found that in almost all

of the synthetic tests performed, sICA is the method most capable of recovering latent

signals from a time series of interferograms. In application to real data (the Sentinel-1

Galapagos time series), the results obtained using sICA were highly plausible as the

spatial patterns of the recovered sources agreed with signals identified as being due to

geophysical processes in other studies.

This result provides justification for the construction of an automatic monitoring

algorithm based on sICA, as it facilitates processes such as isolation of a signal of

interest, or separation of geophysical signals from atmospheric ones.

The recovery of temporally independent time courses initially appears the most

attractive approach as we are confident that the geophysical processes of interest at a

volcanic site are temporally statistically independent from atmospheric processes, yet is

hindered by two constraints: Firstly, the results presented in Pinel et al. (2011) suggest

that a topographically correlated APS signal will be Gaussian in time (rendering it

unrecoverable by ICA in most cases), and secondly (and more importantly) the large

number of pixels observed at relatively few times produces a data matrix which is

unsuited to ICA.

In contrast, spatially-organised data utilises the transpose of the temporal data

and is well suited for the FastICA algorithm. However, statistical independence of the

spatial nature of the sources is not to be expected in some cases (and in Section 2.4.5

we show that violation of this assumption does affect the fidelity of the sources recov-

ered) and, whilst many sources of geophysical interest are likely to be non-Gaussian,

this is not necessarily true for atmospheric signals. Despite these trade-offs, we show

that in the majority of the synthetic cases considered, sICA outperforms all the other

methods considered, and in all but the synthetic stratovolcano case, is able to recover

useful latent signals. The vulnerability of sICA to signals that are not independent

remains problematic for some applications, but as we seek only to characterise baseline

behaviour for our automatic detection algorithm, we believe sICA can still be used for

our goals. Through application of the method to other datasets in the future, we expect

that more information on the importance of these two potential limitations will come

to light.

Scope remains for the refinement of sICA with InSAR data. A key part of most

ICA algorithms is how the non-Gaussian nature of a signal is measured and various

approaches for this exist. In this study, we use a measurement similar to kurtosis, but

inspection of estimates of the PDFs of signals (e.g. Figure 2.2) suggests that for many

signals (such as a Mogi source), they may be more clearly identified through using a

measure such as skewness. This has been implemented for medical imaging data by
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Stone et al. (2002), and may be applicable for InSAR data.

ICA also requires the same pixels to be used throughout the time series. However, as

the number of coherent pixels changes between interferograms, our method of masking

all pixels with an average coherence < 0.8 does not make use of all the information

available. A more complex strategy to incorporate the information in pixels that are

only coherent in some interferograms remains beyond the scope of this work, but may

allow for more subtle signals to be recovered with sICA.

2.8 Conclusion

Our study suggests that sICA is the most suited BSS method for use with an InSAR

time series at a volcanic centre. This is shown through synthetic tests, and application

to a time series of Sentinel-1 data that spans the 2015 Wolf eruption, in which 3 signals

of geophysical interest were isolated. However, aspects of the FastICA algorithm appear

suitable for fine tuning to further increase its suitability for use with InSAR data. We

introduce a simple algorithm that incorporates sICA to detect when a volcano enters a

period of unrest, and demonstrate that it would have automatically identified the May

2015 eruption at Wolf volcano. Building from this point, future work on the automatic

detection algorithm could allow for identification of different types of unrest (e.g. caused

by the acceleration of a previously steady state process), and form an integral part of

a system to automatically monitor all of the world’s sub-aerial volcanoes.
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Time Series of Interferograms

Keypoints:

• We have developed an algorithm that incorporates spatial independent component

analysis (sICA) to detect signs of deformation generating volcanic unrest in a time

series of interferograms at a volcanic centre.

• When our algorithm is applied to a time series of Sentinel-1 data covering the

Galapagos Archipelago, we are able to detect the increase in inflation that pre-

ceded the 2018 eruption of Sierra Negra.

• One component of our algorithm performs sICA robustly in order to separate

geophysical and atmospheric signals in a time series of interferograms, and we

release this freely to the scientific community under the name ICASAR.

Abstract

The latest generation of SAR satellites produce measurements of ground deformation

at the majority of the world’s sub-aerial active volcanoes, and can be used to detect

signs of deformation generating volcanic unrest. We present a detection algorithm that

uses these data to automatically warn when deformation at a volcano departs from

the background. We demonstrate our approach on synthetic datasets, and the unrest

leading to the 2018 eruption of Sierra Negra (Galapagos). Our algorithm encompasses

spatial independent component analysis (sICA), and uses a significantly improved ver-

sion of the ICASO algorithm, which we term ICASAR, to robustly perform sICA. We

use ICASAR to isolate signals of geophysical interest from atmospheric signals, before

monitoring the evolution of these signals through time in order to detect the onset of

a period of volcanic unrest.

3.1 Introduction

There are ∼1400 volcanoes globally with the potential to erupt, but with only ∼100

volcano observatories, many volcanoes remain unmonitored (Loughlin et al., 2015).

However, the routine global acquisition of the latest generation of SAR satellites (e.g.

The European Space Agency’s Sentinel-1 constellation), combined with fast formation

of interferograms from newly acquired images (e.g. the LiCSAR processor (González et

al., 2016)), produces measurements of ground deformation that can be used to monitor

the majority of the world’s volcanoes. Though these measurements of ground defor-

mation may be easily interpretable to the human observer, the sheer volume of data

required for routine global monitoring would create an onerous task. Therefore, we seek

to develop an algorithm that is able to automatically detect signs of volcanic unrest in

a time series of interferograms. In contrast to the algorithm of Anantrasirichai et al.

(2018) which aims to identify any deformation, we aim to identify deformation that



§3.1 Introduction 77

departs from the background rate/patterns and, through using time series methods, to

detect signals that may not be clear in single interferograms. In previous work (Gaddes

et al., 2018), we investigated how best to use blind signal separation methods with

InSAR data, and demonstrated how the components these methods isolated could be

used in a simple detection algorithm. Here, we build on these results to produce a com-

plete detection algorithm and, as our algorithm contains information about the spatial

and temporal nature of deformation at a volcano, we also perform an exploratory study

into the inflation prior to the 2018 eruption of Sierra Negra (Galapagos Archipelago,

Ecuador).

In our simple detection algorithm (Gaddes et al., 2018), we applied spatial indepen-

dent component analysis (sICA) to Sentinel-1 data that spanned the 2015 Wolf volcano

(Galapagos Archipelago, Ecuador) eruption and were able to isolate three signals that

we interpreted as being of geophysical interest, and three more as being due to changes

in atmospheric conditions. A common problem when applying ICA is how to evaluate

the reliability of the sources recovered, and in this previous study we performed this

step by comparing our recovered sources with those found by other authors who applied

different methods to similar datasets. When utilising ICA in an automatic detection

algorithm, this approach cannot be relied upon, and we must instead implement other

methods to automatically assess the significance of the sources we recover before we

entrain them into later parts of our algorithm.

The need to ascertain how reliably ICA recovers sources stems from two issues. The

first is the more common issue that we wish to determine the statistical significance of

our results (i.e. whether it is plausible that they were not simply recovered by chance),

whilst the second is termed “computational reliability” by Hyvärinen (2012), and is a

product of the lack of guarantee that most ICA algorithms will find the global minimum

(or maximum) of their objective function.

The computational reliability of the FastICA algorithm can be addressed through

running the algorithm multiple times from different starting points (Himberg et al.,

2004). This is done in the ICASO algorithm (Himberg et al., 2004) by initiating the

unmixing matrix, W, randomly at each run of the FastICA algorithm, and seeks to

ensure that a variety of local minima are sampled. Himberg et al. (2004) argue that

as some sources are recovered accurately at all local minima, through sampling many

minima we can determine which sources are the most robust as these are the ones

that are likely to be recovered at the majority of minima. The sources recovered from

these multiple runs can then analysed using clustering methods, in which compact and

isolated clusters are deemed to contain robustly estimated sources.

To address the statistical significance of the results, Meinecke et al. (2002) and

Himberg et al. (2004) showed that through resampling the data before the FastICA
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algorithm was applied, the differences in the sources recovered could be used to estab-

lish which were the most reliable. The ICASO algorithm preforms this randomisation

using bootstrapping, in which subsets of the baseline data are generated through ran-

domly selecting (with replacement) a certain number of the original baseline data. The

multiple realisations of the recovered sources can then be analysed through the same

clustering approach that was discussed in the preceding paragraph. In practise, the

two methods can be used in parallel to produce a single suite of sources recovered from

multiple FastICA runs that then require clustering.

A subsequent approach is that of the ISCTEST algorithm (Hyvärinen, 2011; Hyvärinen

and Ramkumar, 2013), which tests the reliability of the recovered components on sepa-

rate datasets that are expected to contain the same underlying signals, and as a result is

able to ascertain which components are statistically significant. The original algorithm

performed the comparison through analysing the similarities of the mixing matrices

(Hyvärinen, 2011), but a subsequent version performs this analysis on the recovered

sources instead (Hyvärinen and Ramkumar, 2013). The algorithm was originally used

with inter-session or inter-subject medical imaging, but has been applied to InSAR data

by Ebmeier (2016), who subdivided the data used into two independent groups (i.e.,

interferograms in group one did not share any acquisition dates with those in group

two) before performing the analysis.

We choose to implement the ICASO algorithm rather than the ISCTEST algorithm

as our goal of creating a detection algorithm centres on characterising the baseline

behaviour of a volcano, instead of isolating a signal of geophysical interest for further

investigation. Consequently, we are less concerned with specific components that are

recovered, and instead focus more on the several sources that we require to characterise

a volcano’s background behaviour. The former approach would be more suited to the

ISCTEST algorithm as we could assign p-values to recovered components, but through

use of the ICASO algorithm we can recover latent sources confidently, and avoid the

need to subdivide our data into two independent datasets. In applications in which

the signals of interest are of low magnitude, the ability of the ICASO algorithm to

retain all of the input images is also likely to be useful as this approach increases the

signal-to-noise ratio.

3.2 Methods: Detection algorithm

Our detection algorithm can be divided into three sections. The first uses the FastICA

algorithm within our improved version of the ICASO algorithm to isolate signals of

geophysical interest from a time series of interferograms. The second uses the com-

ponents learned in stage one to characterise the baseline data, whilst the third then

ingests new interferograms as they are formed and determines if the signals present
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have deviated strongly enough from those in the baseline data to warrant flagging the

volcano as having entered a period of unrest. These three stages are described in more

detail in the following three subsections, whilst how to apply the FastICA algorithm to

InSAR data is discussed in Gaddes et al. (2018).

In the following description of our algorithm, we consider a “daisy chain” (Biggs

et al., 2009) of short temporal baseline Sentinel-1 interferograms of 105 pixels that are

being automatically created by a processor such as LiCSAR (González et al., 2016).

We wait until 15−30 interferograms have accrued (around 180−260 days of data when

new images are acquired every 12 days), and use these as our baseline data, whilst

interferograms created after this point we consider as testing data.

3.2.1 Robust recovery of latent sources

The original ICASO algorithm is described fully in Himberg et al. (2004) and has a

modular structure that implements several disparate machine learning methods. Since

its creation, the methods used for several modules of the algorithm have been surpassed

by newly published methods, which has led to our creation of a modernised Python ver-

sion that is specialised for use with InSAR data. We term our Python based algorithm

ICASAR, and make it freely available via GitHub (Gaddes, 2017).

Figure 3.1 shows the intermediate steps associated in running the ICASAR algo-

rithm with InSAR data to recover latent sources, and address their significance. In a

manner similar to the original ICASO algorithm, our ICASAR algorithm initially calls

the FastICA algorithm multiple times with either (1) different starting conditions for

the unmixing matrix, W, (2) bootstrapping of the input data, or (3) both of these

steps. When the ICA algorithm is set to recover 6 sources and run 100 times, we would

expect to have a suite of 600 sources, of which many are very similar and reflect true

latent sources, whilst others are recovered infrequently and reflect elements such as

combinations of two latent sources or noise. The ICASAR algorithm then performs

the following two steps in parallel with the aim of differentiating between the most and

least robust sources.

The first method uses a clustering algorithm to identify which sources are similar,

and label these as belonging to a cluster. This is performed in the ICASO algorithm

through the use of agglomerative clustering with average linkage criterion (Himberg et

al., 2004), whilst using the absolute value of the correlation between each source as the

distance metric. This is used as when clustering images, there are as many data points

as there are images, residing within a space with as many dimensions as there are pixels.

Whilst the Euclidean distance could be calculated between points, the ambiguity of the

sign of sources recovered by ICA would result in sign flipped versions of the same source

being treated as having a large distance between them, despite featuring essentially the
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same source. However, by using the absolute value of the correlation between images,

identical sources with a correlation of (1) and sign flipped versions with a correlation of

(−1) are treated in the same manner, whilst dissimilar sources have low correlations.

A trivial step can then be performed to transfer this measure of similarity into one of

distance (i.e. a high correlation translates to a low distance), which is discussed more

fully in the supporting information.

This method considers each source as an individual cluster, before sequentially

joining those that are most similar until a single cluster is formed. The resulting tree like

structure can then be cut at a level determined by the user selecting how many clusters

they wish to recover. However, this requires input from a user and is therefore not

suitable for use in an automatic detection algorithm. Consequently, we have exchanged

this section of the ICASO algorithm for the newer algorithm, hierarchical density-based

spatial clustering of applications with noise, or HDBSCAN (Campello et al., 2015).

This algorithm creates the full hierarchy of merges as clusters form, but is also able

to cut the tree based on the stability of clusters throughout the merging process, and

so automatically determine the optimal number of clusters. The cutting of the cluster

tree is calculated through considering how clusters decay in size as the algorithm moves

from the case in which all points are considered as one cluster, to the case in which

each point is an individual cluster. As the algorithm moves down the hierarchy, points

leave a cluster and, providing the number of points to leave a cluster in a step is lower

than the minimum cluster size hyperparameter, they are considered noise. However, in

the case that the number of points leaving per step is larger than the minimum cluster

size, the cluster can be said to have divided, with the exiting points having now created

a new cluster, instead of being labelled as noise. The tree can then be cut to maximise

the longevity of the clusters that it contains, as a compact and isolated cluster will

remain stable throughout much of the process, whilst a cluster comprised of two dense

regions is likely to divide into two clusters midway through the process, and therefore

be relatively short lived. An additional advantage of HDBSCAN over agglomerative

clustering is that it is able to determine points that do not belong to any cluster, and

to label these as noise.

The second method seeks to provide a representation of the similarities between

each recovered source in a manner that is easily interpretable to a human. This is

achieved through considering each recovered source as a sample within a space with as

many dimensions as the sources have pixels, and then fitting a 2D manifold through

this space which preserves the distances between pairs of points in the high dimensional

space and on the 2D manifold. In order to avoid the issue of sign flipped versions of a

source being treated as dissimilar, we use the same custom distance metric introduced

in the previous paragraph (the absolute value of the correlation between sources) when

finding the manifold. The original ICASO algorithm utilised curvilinear component
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analysis (CCA, Demartines and Herault (1997)), but in ICASAR we substitute this

algorithm for the newer t-distributed stochastic neighbour embedding (t-SNE, Maaten

and Hinton (2008)), as this has been shown to produce 2D maps that reveal structures

within the data more robustly than a variety of methods, including CCA (Maaten and

Hinton, 2008).

These two methods can be used in a complementary fashion to create the 2D plot

shown in part six of Figure 3.1, in which the points that represent each recovered

source are coloured depending on which cluster they are a member of, or if they are

noise. Whilst inspection of this plot is not required, it can be used by a human ob-

server to qualitatively ascertain the robustness of recovered sources. An advantage of

this approach over the ISCTEST algorithm is that it provides a simple and powerful

visualisation that allows a human interpreter to easily understand the relationships

between the latent sources recovered in each run of the FastICA algorithm. Himberg

et al. (2004) suggest that compact and isolated clusters are considered to contain ro-

bust sources, whilst those that form more indistinct clusters are considered to contain

more spurious sources. In addition, through colouring the points with the label at-

tached by the HDBSCAN algorithm, we can determine the level of agreement between

the two methods, and we postulate that this provides another method to ascertain the

robustness of each recovered source.

A quantitative approach to the robustness of each recovered source is also presented

in Himberg et al. (2004). They consider the most significant sources to be the ones that

form compact and isolated clusters, which they measure as the difference between the

mean intra cluster similarity (ideally 1), and the mean similarity between members of

the cluster and all other sources (ideally 0). They term this the cluster quality index,

Iq, and we use it to rank sources in importance before their use in subsequent stages of

the algorithm. The ICASO algorithm also allows for selection of a source that is most

representative of each cluster, which Himberg et al. (2004) term the centrotype. This

is calculated as the point within a cluster that minimises the distance between it and

the remaining points within that cluster. Combining the centrotypes with the cluster

quality index allows us to rank some sources as more robust and significant than others,

and to take these sources and their associated confidences into the subsequent stages

of our detection algorithm.

In the first part of our detection algorithm, we utilise the ICASAR algorithm with

both bootstrapping and random initiation of the unmixing matrix, and seek 200 runs

that converge. Choice of the number of components to recover with ICA when the

number of latent sources is unknown remains a difficult problem. In our previous study,

we found that when applying the algorithm to noisy data, the best results are generated

when the algorithm seeks around two sources more than present in the data, as this

ensures that the majority of the signals of interest that may exist in lower importance
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Figure 3.1: Depiction of the ICASAR algorithm when applied to a time series of InSAR data
that covers Sierra Negra (Galapagos Archipelago, Ecuador). This time series features uplift
of the caldera floor which is clearest in interferogram two, and poor coherence requiring the
masking of pixels on the south-eastern flank of the volcano (i.e. the white area). Interferograms
are chosen from the mean centred baseline data (1) randomly to create multiple bootstrapped
samples (2). PCA is performed on each of these samples (3), and lower order components
are discarded (shown with reduced opacity) to reduce the dimensionality to the required level.
sICA is then performed on each whitened sample (4), before the similarity/distance between
each recovered source is estimated (5). The distance matrix is then used in parallel by the
HDBSCAN clustering algorithm, and the t-SNE manifold learning algorithm to produce a 2D
visualisation of the recovered sources (6). The centrotypes of each cluster are then recovered
(7), and ordered by their cluster quality index, Iq.
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principal components are not discarded (Gaddes et al., 2018). Consequently, we set the

FastICA algorithm to recover around six sources, as we postulate that the majority of

the world’s volcanic centres are likely to contain several consistent atmospheric signals

(e.g. a topographically correlated atmospheric phase screen), and possibly persistent

deformation (e.g. subsidence, such as that measured by InSAR at Askja, Iceland,

since 1995 (Pagli et al., 2006)). However, in the case that independent information or

the inspection of interferograms suggests that several processes may be occuring at a

volcano, this value may need to be increased.

It should be noted that when bootstrapping our baseline data, we choose a subset

of the interferograms at random with replacement. However, we must have at least

as many independent interferograms in our baseline data as sources that we seek to

recover. To demonstrate this case, we consider n different interferograms are chosen

with replacement to create a sample containing m interferograms. The data now lie

within a nD hyperplane in the mD space, and only n principal components can be

found. If we seek s sources and s > n, the preprocessing step would fail and we would

not be able to perform ICA. Consequently, we reject any bootstrapped samples which

contain less than s independent interferograms.

As our goal is to automate the detection of periods of volcanic deformation, we

avoid any manual inspection of the results of the ICASAR algorithm through using the

number of clusters that is automatically selected by the HDBSCAN algorithm, and rank

these from most to least confident using the cluster quality index, Iq. At the conclusion

of our first step, we have recovered around six spatial maps that express the spatial

nature of both atmospheric signals and any deformation signals present at a volcanic

centre, and can rank these signals in terms of our confidence of their significance. It

should be noted that in the case that more than six sources generated the data, it is still

possible that all of them may be recovered, as the number of clusters that HDBSCAN

detects determines the number of sources that are selected, and this is not constrained

to be less than the number of sources that the ICA algorithm recovers.

3.2.2 Characterisation of the baseline data

The second stage of our algorithm seeks to characterise the temporal nature of the

sources recovered in the previous stage. Figures 3.2 and 3.3 depict the application of our

algorithm to synthetic data similar to that described in Chapter 2 (except also featuring

the addition of east-west phase ramps), and the points detailed in the remainder of

this section are illustrated in these figures. To determine the temporal nature of the

spatial signals, we perform a simple least squares inversion to fit each of the baseline

interferograms using the recovered spatial sources. The time history for each spatial

pattern is commonly termed a “time course” in ICA literature, and through summing

these we can ascertain the cumulative use of a given spatial pattern throughout the
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baseline data.

To characterise the use of these spatial patterns, we first fit a linear trend line

through the cumulative time courses that span the baseline stage, and calculate the

residuals between each data point and the line of best fit. For each source, we can

compute the standard deviations of the residuals, before classifying the number of

standard deviations each point is from the line. This is shown in Figures 3.2 and 3.3

as the colours of each point, ranging from black for points lying on the trend line, to

orange for points lying over five standard deviations from the trend line. In the work

presented in Chapter 2, only six interferograms were required for the baseline stage,

but given that sICA is able to recover sources more accurately with longer time series,

longer baseline stages are likely to be advantageous.

Our ability to fit the baseline data using our learned sources can be also charac-

terised through measuring the residual between each interferogram, and the results of

the inversion to fit it with the recovered sources. The introduction of a new signal will

decrease our ability to fit new interferograms using the existing recovered sources, and

so lead to a detectable increase in the residual. We measure the residual in two com-

plementary ways; in the first, we record the root mean square (RMS) of the residual

between each interferogram and the weighted sum of sources from the inversion, which

we term “RMS residual”. In the second, we sum the residual for each pixel throughout

time, before calculating the RMS of the residual at each time step, and term this “RMS

cumulative residual”. We believe that this second method will avoid the false positives

that may be caused by strong atmospheric signals in a specific SAR image, as the in-

terferograms before and after this image will show the signal with the opposite sign.

Consequently, the residuals produced when we are unable to fit this new signal in the

two interferograms will also be of opposite sign, and therefore sum to approximately

zero when considering each pixel. However, an added complication of this is that after

the RMS residual indicates a new signal has entered the time series, an additional inter-

ferogram is required before the algorithm can ascertain if it was caused by an unusual

atmosphere on the date shared by the two interferograms. As is the case for the time

courses, the onset of slow deformation will show as a change in rate for the cumulative

residual, although always as an increase rather than a decrease. A strong atmospheric

signal in a single acquisition would also cause a significant jump in both residual terms,

but the cumulative residual of the subsequent acquisition will then drop down again.

In a manner similar to that described for each spatial pattern’s baseline cumulative

time course, we fit lines to each type of residual, calculate the standard deviation of

the line to point misfits, and then use this to determine if future deviations from the

line of best fit are significant.
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3.2.3 Ingestion of new interferograms

When a new interferogram is formed, it is ingested into the algorithm and a simple

inversion is performed to fit it using the learned spatial components (i.e. in a manner

similar to the baseline data). For the cumulative time courses, RMS residual, and

RMS cumulative residual, the line of best fit is then extrapolated to the date that the

new interferogram spans, and the residuals calculated. This is then compared to the

standard deviation of the previous residuals, in order to determine how significant any

changes are. In the case of an individual component contributing significantly more or

less than before, the gradient of the cumulative time course will change, causing the

new point to lie a large distance from the line of best fit.

Following a sustained period of changed rate of either a cumulative time course or

RMS cumulative residual, the behaviour of the signals present in the time series may

return to that seen during the ingestion phase. Through periodically redrawing the

lines of best fit at the same gradient as learned during the baseline phase, but shifted

appropriately vertically, the data points after the period of transient deformation again

lie close to the line of best fit and are no longer flagged as expressing a significant

deviation from the baseline stage, providing that the physical process operating during

the baseline stage are again active in the same manner. This is demonstrated in the

time course of IC2 in Figure 3.2, and the RMS cumulative residual in Figure 3.3.

In the following two sections, we present two synthetic time series that cause either

a recovered sources’ cumulative time courses or the RMS cumulative residual to change

significantly. Both time series contain a deformation signal (modelled as the inflation

of a point source in an elastic half space (Mogi, 1958)), a turbulent atmospheric phase

screen (APS), an East-West phase gradient, and a topographically correlated APS

(discussed in Gaddes et al. (2018)).

Acceleration of an existing signal

This scenario aims to demonstrate our algorithm’s ability to detect a period of volcanic

unrest created when a relatively steady geophysical process changes in rate during

the time series. As this is a synthetic dataset, we know that only three signals were

used to generate the time series, whilst the turbulent APS contributes only noise.

Consequently, we set the FastICA algorithm to recover five sources, as this follows the

previously discussed point of searching for several more sources than we think were

used to generate the data. Figure 3.2 shows the results of applying first the ICASAR

algorithm and then our detection algorithm to these data, with the 2D plot showing

the results of these repeated ICA runs. All of the intermediate sources are seen to form

distinct clusters which are identified by both t-SNE (the 2D manifold learning method)

and HDBSCAN (the clustering algorithm), which we interpret as an indicator of the
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robust nature of each of the sources. Visual inspection of IC1, IC2, and IC3 suggests

that these are accurate reconstructions of the three synthetic sources (S1, S2, and S3),

whilst the fourth appears to capture an aspect of the turbulent atmosphere.

During the “Ingestion: baseline deformation” phase, the time series continues in

a manner similar to that of the baseline data and no significant deviations from the

extrapolated trend lines are seen for either the cumulative time courses and cumulative

residual. However, in interferograms 12 to 16, the strength of the deformation signal

in the synthetic time series is approximately doubled, to mimic a period of volcanic

unrest due to increased inflation caused by a process such as increased flux of magma

from depth to an area of shallow storage. This causes IC2 to be used more strongly

in the inversions to fit each of these algorithms, which has the effect of increasing the

gradient of the cumulative time course of IC2. As this deviates from the extrapolated

line of best fit, the points become further from the line and are flagged as showing more

significant deviations (orange to yellow colours). Insignificant deviations are seen in the

remaining cumulative time courses and RMS cumulative residual, as by increasing the

strength of IC2, we continue to fit the new interferograms well. After interferogram 16

the time series returns to the behaviour seen during baseline stage, and the algorithm

returns to assigning insignificant deviations to each data point.

Emergence of a new signal

This scenario aims to demonstrate our algorithm’s ability to detect a period of volcanic

unrest created when a new deformation signal enters the time series. Figure 3.3 shows

the results of applying first the ICASAR algorithm and then our detection algorithm

to this data. We observe that the two most significant sources recovered (IC1 and

IC2) correspond to the two synthetic sources, whilst we interpret the remaining two as

capturing aspects of the turbulent APS. Interferograms 12− 16 contain a deformation

signal that was not present in the baseline data, and consequently our algorithm is un-

able to fit these interferograms well, which produces an increase in the RMS cumulative

residual. This deviation is flagged as the orange/yellow points, and ceases when the

new deformation signal disappears from the time series.

3.3 Application to Sierra Negra

To demonstrate our detection algorithm’s ability to detect signs of volcanic unrest in

real data, we present results from Sierra Negra, a shield volcano in the Galapagos

Archipelago (Ecuador). This example was chosen as we expect it to contain the two

types of volcanic unrest we aim to detect: acceleration of uplift occurs before the

June-August 2018 eruption, and the eruption itself produces deformation signals not

previously seen in the baseline data.
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Figure 3.2: The results of applying the detection algorithm to a synthetic time series of 25
interferograms over the Campi Flegrei caldera complex (Italy), which features a change in rate
of the previously constant uplift to simulate a period of volcanic unrest. The interferograms
are shown on the top two rows, with the arrows highlighting that the lower left corner of each
interferogram is taken as its x value. The centrotypes of the four clusters are shown as IC1-IC4,
of which three can be seen to correspond to synthetic sources (S0-S2). The cumulative time
course of each recovered source is shown to its right, along with every fifth line of best fit drawn
at the gradient learned during the baseline stage. For comparison, the cumulative time courses
used to synthesis the data are shown in green. The deviations between each point and the line
of best fit are shown as both the colour of the data point, and as the height and colour the low
opacity bars (black to orange). Interferograms 12− 16 contain an increased contribution from
the deformation source (S0), and this synthetic period of unrest is flagged in the time course
for IC2 (purple to orange labelling of points). The fifth line graph shows the values for a pixel
outside the deforming region in black, and for a pixel within the deforming region in red.
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Figure 3.3: The results of applying the automatic detection algorithm to a synthetic time
series of 25 interferograms over the Campi Flegrei caldera complex (Italy), which features the
emergence of a new signal to simulate a period of volcanic unrest. The majority of the features
of this figure are consistent with Figure 3.2, with interferograms 12 − 16 again containing the
synthetic period of unrest. As these interferograms contain a new deformation signal, they
cannot be fit well by the background sources, and so the RMS cumulative residual is seen to
deviate from the baseline rate, causing the points to be flagged as showing significant deviations
from the baseline phae.
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Sierra Negra is a basaltic shield volcano located on the southern half of Isabela island

in the Galapagos Archipelago (Reynolds et al., 1995). Figure 3.4 shows an overview of

the area described, with the caldera of Sierra Negra visible within the box delimiting the

area shown by the following figures. The asymmetry of the area used in the following

figures is due to the difference in vegetation between the northern rocky slopes which

provide good InSAR coherence, and the densely vegetated southern slopes, which do

not. On the southern and western edges of the caldera floor, a second area of raised

topography is seen, which is attributed to the interplay of cycles of uplift and trapdoor

faulting (Jónsson et al., 2005).

Prior to the 2018 eruption, Sierra Negra last erupted in 2005. Inflation preceding

this eruption was imaged using both InSAR (Amelung et al., 2000; Jónsson et al., 2005;

Jónsson, 2009) and GPS (Chadwick et al., 2006), with total uplift between 1992 and

2005 reaching just below five metres prior to the eruption. During this period, uplift

was in part accommodated by trapdoor faulting, which may have acted to reduce the

build up of strain and delay the eventual eruption (Chadwick et al., 2006). Modelling

of the observed deformation by different studies suggested that it was caused by the

inflation of a sill at a depth of ∼2 km below the caldera floor, or ∼1 km below sea level

(Amelung et al., 2000; Yun et al., 2006; Chadwick et al., 2006; Jónsson, 2009).

Between the 2005 and 2018 eruptions, the deployment of a temporary broadband

seismic network termed the SIGNET array (Tepp et al., 2014) has provided additional

insights into the structure of the crust beneath Sierra Negra. Body wave tomography

has been used to infer the existence of large low velocity zone at depths of 8− 15.5 km

below sea level (BSL) coupled with smaller areas of high and low velocities at depths

of 3− 15.5 km BSL (Tepp et al., 2014), whilst attenuation tomography has been used

to infer the existence of separate low velocity zones from 0.5 − 3 km and 3 − 10.5 km

BSL (Rodd et al., 2016). Combining these measurements with the geodetic studies of

deformation before the 2005 eruption has led to the conclusion that both a shallow

magma chamber, and a deeper magma chamber embedded in a larger mush zone exist

below Sierra Negra (Rodd et al., 2016). This theory is in broad agreement with studies

of other Galapagos volcanoes, such as Bagnardi and Amelung (2012) which identified

at least two areas of magma storage below Fernandina Volcano, and Stock et al. (2018)

which identified two magma reservoirs beneath Wolf Volcano.

The 2018 eruption began in the afternoon of the 26th of June, with lava emitted

from four fissures (Sennert, 2018a), which primarily flowed down the northern flank to

reach the sea (Vasconez et al., 2018), but also flowed into the caldera (Sennert, 2018a).

Lava flows continued to be active throughout July and August, but by the 23rd of

August activity had ceased (Sennert, 2018b). During the eruption, SO2 emissions were

visible to the Deep Space Climate Observatory satellite (Carn et al., 2018).
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To test our detection algorithm on Sierra Negra, we first create a “daisy chain”

of the shortest possible temporal baseline interferograms from 98 Sentinel-1 synthetic

aperture RADAR images (shown in Figure S1) using the LiCSAR processor (González

et al., 2016), which includes filtering with a Goldstein filter (Goldstein and Werner,

1998) and unwrapping using SNAPHU (Chen and Zebker, 2001). The data span the

thirteenth of December 2014 to the first of July 2018, with the last 12 day interferogram

capturing the co-eruptive signal associated with the start of the 2018 eruption. The

average coherence for each pixel is calculated after filtering, and any pixels with a mean

coherence below 0.7 are removed. As the majority of the southern flank is densely

vegetated these pixels are removed, but the remainder of the volcano exhibits high

coherence and the majority of the pixels are retained.

We apply the ICASAR algorithm to the first 35 interferograms (Dec 2014 - April

2015) and recover the suite of sources shown in Figure 3.5. Visual inspection suggests

that the clustering performed by HDBSCAN and the manifold learning performed by

t-SNE are broadly in agreement, as the distinct clusters found by t-SNE are similar to

the clusters found by HDBSCAN. The order of the clusters is random, but the cluster

quality index (Iq) is displayed in the legend and can be used as a metric to rank the

sources based on their robustness, as discussed in Section 3.2.1. Whilst further human

analysis of these components is not required for our automatic detection algorithm, we

present a brief discussion here, as standalone use of the ICASAR algorithm to isolate

signals of geophysical interest may be useful for motives other than volcano monitoring.

Figure 3.6 shows the centrotypes of each cluster ordered by their cluster quality index,

and compares them against the Shuttle Radar Topography Mission Digital Elevation

Model (SRTM DEM, Farr et al. (2007)). A combination of visual inspection of the

sources and computation of the correlation coefficient between each recovered source

and the DEM suggests that as IC2 is very similar to topography, and it is likely that

this component is capturing a topographically correlated APS. Visual inspection of IC1

suggests that this signal contains the uplift signal centred at the caldera, whilst the re-

maining components show no easily interpretable patterns and are likely to correspond

to atmospheric signals.

Figure 3.7 shows the results of applying our detection algorithm to the time series.

The most striking feature is the flagging of the time course of IC1, as indicated by the

orange colouring of the points, due to the rate of inflation increasing. Closer to the

eruption, other time courses also exhibit unusual behaviour which is flagged as a sign of

unrest (e.g. the time course of IC3 from interferogram 88 onwards), and may be due to

processes such as slip on the intra-caldera faults causing slight changes in the shape of

the uplift pattern, which then requires different use of the baseline components during

the inversion step. Automatic detection of the new large signals associated with the

onset of the eruption captured in interferogram 97 is achieved through the inability of
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Figure 3.4: Overview of the Western Galapagos Islands of Fernandina and Isabella (Ecuador).
Sierra Negra is visible as the area of high topography delineated by the red box, which shows
the extent of the interferograms presented in the remaining figures. An arcuate area of high
topography is visible on the southern and western edges of the caldera floor, which has been
interpreted as the results of repeated trapdoor faulting events (Chadwick et al., 2006). The
GPS station used in Section 3.4 is labelled as GV01.

the learned components to fit these new signals, which causes both measures of the

residual to increase rapidly.

Both the RMS residual and RMS cumulative residual also increase transiently dur-

ing interferograms 55 and 56. Inspection of these interferograms (shown in Figure 3.7),

shows that the lower left quadrant of each interferogram contains a strong signal of

opposite sign. We conclude that this is due to a strong APS in the SAR image that the

two interferograms share, and highlights the ability of our two measures of the residual

to determine this. Whilst the RMS residual rises for these two interferograms as each

cannot be fit well, the RMS cumulative residual rises for a single image, before falling

back to a level that does not indicate unrest. This is because the opposite sign of the

strong atmospheric contribution to each interferogram causes it to cancel when sum-

ming the residual for each pixel. Other than waiting for the next acquisition, setting a

higher threshold at which deviations from the baseline data are flagged to a user could

avoid events such as interferogram 55 being flagged as indicating unrest. Additionally,

increasing the length of the baseline data used at each volcano is likely to allow the ICs

selected to characterise more atmospheric signals, and therefore calibrate the expected

level of residual better. However, in the case presented here, the baseline stage could

not be extended significantly without shortening the ingestion phase before the change

in rate observed in mid 2017.
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Figure 3.5: Results from application of the ICASAR algorithm to the time series of Sentinel-1
data at Sierra Negra Volcano (Galapagos Archipelago). The sources that are recovered by the
multiple runs of the FastICA algorithm are expressed as dots in the central scatter plot, whilst a
random subset of these are shown in full around the edge of the plot. The position of each point
within the 2D scatter plot is found by the manifold learning method t-SNE, whilst the labels
and associated colours are found by the clustering algorithm, HDBSCAN. The two methods
can be seen to be broadly in agreement, with isolated clusters that are formed by t-SNE being
labelled homogeneously by HDBSCAN. The clusters are ranked by their cluster quality index,
Iq, with the highest value attained by the cluster that contains the caldera floor deformation
signal.
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Figure 3.6: The centrotypes of the six clusters from Figure 3.5 (top row), the topography as
described by the SRTM-1 DEM (Farr et al. (2007), bottom row), and 2D Gaussian kernel density
estimates between the pixels of the DEM and each source (middle row). Visual comparison
of the scatter plots of each IC versus DEM height indicates that IC2 most closely resembles
the DEM, whilst the IC2 to DEM scatter plot also shows a clear trend and has the highest
correlation coefficient (−0.76 ).

3.4 Modelling overpressure before the 2018 Sierra Negra

eruption

The pressure change in a magma chamber is of geophysical interest as an increase in

the pressure can overcome the tensile failure stress of the elastic crust overlying the

chamber, and so create an opening that allows magma to rise to the surface (Pinel

et al., 2010). As our InSAR time series contains significant deformation located within

the caldera, we postulate that the 2018 eruption was caused by an increase in magma

chamber overpressure, and seek to constrain how large this increase was. We expect

that future applications of our detection algorithm will identify volcanoes deforming in

a similar manner, and modelling of the overpressure could then allow for forecasts of

the timing of an eruption (Bato et al., 2017).

Through modelling IC1 as the signal of the caldera pre-eruptive uplift, we can infer

information about the source of this deformation, such as the pressure change. We

assume that the inflating sill that was modelled as the source of the 2005 eruption

remained active, and we seek to constrain the pressure change in this sill between the

2005 and 2018 eruptions.

Expected values for the overpressure in a magma chamber required for both a dyke

to form and magma within it not to freeze before reaching the surface vary widely, from

10− 100 MPa for silicic magmas to 1 Mpa for basaltic magmas (Manga and Brodsky,

2006). This wide range is due to variations of viscosity of magmas of different com-
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Figure 3.7: The results of applying our automatic detection algorithm to a time series of
Sentinel-1 interferograms which cover the final ∼3.5 years of inflation before the 2018 eruption
of Sierra Negra. Roughly every five interferograms are shown, but some liberty is taken to ensure
those of particular interest are visible (e.g. 55, 56, and 97). The components are initially used
in a similar fashion before and after the switch to the ingestion phase (marked by the black
vertical line), before more pronounced deformation from around interferogram 65 causes IC1 to
be flagged as having deviated significantly from the baseline data. The residual when the final
co-eruptive interferogram is fitted is an order of magnitude larger than seen previously, and is
omitted from the RMS residual plot for clarity. In the remaining plots, the point can be seen
in the extreme top right. The two high values of RMS residual for interferograms 55 and 56
are due to a strong atmospheric signal in the acquisition common to the two.
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positions, which impacts the ability of a dyke to continue to propagate without being

arrested due to freezing of its walls (Jellinek and DePaolo, 2003). In both endmember

cases, the overpressure is lower than values derived in laboratory experiments for the

stress required to fracture the elastic crust (8.6±1.4 MPa for basalt, to 13.8±2.1 MPa

for Granite (Touloukain, 1989; Albino et al., 2018; Pinel et al., 2010)). However, these

values are likely to be upper bounds, as volcanic processes such as the formation of

three-dimensional fracture networks due to contraction during cooling are likely to sig-

nificantly weaken the crust (Schultz, 1995). As Sierra Negra erupts iron rich tholeiitic

basalts (Reynolds and Geist, 1995), we expect an overpressure required for eruption

at the lower end of the reported values. Through calculating the pre-eruptive pressure

change using geodetic methods, we seek to determine if the pressure change is compa-

rable to the stresses required to rupture the elastic crust and allow a dyke to propagate

to the surface.

We originally modelled the deformation using a kinematic approach, with a horizon-

tal rectangular dislocation embedded within an elastic half space with uniform opening

(Okada, 1985), and perform a Bayesian inversion using the GBIS software (Bagnardi

and Hooper, 2018). Whilst the data can be fit using this approach, it does not constrain

the overpressure within the sill, which required the use of a physical model. We initially

tried to fit the deformation using a penny shaped crack (Fialko et al., 2001), but this

model’s requirement of radial symetery is not suitable for the rectangular deformation

pattern, and we instead used the boundary element approach detailed in Hooper et al.

(2011) to solve for spatially variable opening with uniform overpressure for a rectangu-

lar dislocation (Okada, 1992) implemented in GBIS. Using this approach, we solve for

the location (x,y,z), length, width, and pressure change. We use the total inflation due

to IC1 as the input to our inversion, which we reconstruct using its spatial pattern and

time course. The mean centred interferograms for the time spanned by the Sentinel-1

time series can be reconstructed using:

Xic1 = Aic1 × Sic1 (3.1)

Where Xic0 are the mean centered interferograms (i.e. the mixtures, in ICA termi-

nology), Aic1 is the first column of the matrix of time courses, and Sic1 is the first row of

the matrix of recovered sources. As the interferograms were originally created relative

to a reference pixel outside the deforming region (located at 91.2 west, 0.7 south) but

mean centred for use with ICA, we return the signal contained in Xic1 to be relative to

this reference pixel through performing the reverse of the mean centring processes. We

then sum the phase change for each pixel in our reconstructed time series to calculate

the cumulative motion of IC0 through the time series (shown in Figure 3.8), which we

use as the input for our modelling.
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Figure 3.8 shows the modelled deformation, and the residual between it and the

input data. Our best-fitting model places a 6.2×3.7 km2 rectangular dislocation within

the caldera at a depth of ∼2.0 km which, when the shear strength of the crust is set

as 10 GPa (Jónsson, 2009), has undergone a pressure change of 10.4 MPa (probability

density functions are provided for model parameters in the supporting information).

However, this modelling finds only the pressure change within the modelled sill between

the 2018 eruption and the first Sentinel-1 acquisition (2014/12/13), and not since the

end of the 2005 eruption. Whilst we could extrapolate the linear inflation seen in

the early part of the Sentinel-1 time series (shown as IC0’s cumulative time course in

Figure 3.7, and in Figure 3.9) back to the end of the 2005 eruption, we instead utilise

GPS data to first investigate if the spatial patterns remains constant, before using it

to extrapolate the InSAR time series.

To determine if the spatial pattern of the deformation source remains unchanged

prior the Sentinel-1 data, we examine the ratios of the east, north, and up components

for a selection of GPS stations across the caldera complex. We find that the ratios re-

main approximately constant from 2005 to 2018 (shown in the supporting information),

and conclude that the spatial pattern of the deformation is unlikely to have changed

significantly. Consequently, we are satisfied that we can extrapolate our model of an

inflating sill from the Sentinel-1 time series to the entire inter-eruptive time series.

To determine if the temporal nature remains comparable to that measured through-

out the Sentinel-1 time series, we use data from one of ten continuous GPS station

located on Sierra Negra (Blewitt et al., 2018). Station GV01 is not ideally placed in

that it lies on the edge of the caldera, but unlike the other nine GPS stations, contains

near daily data between 2005 and 2018. To combine this displacement data with our

InSAR results, we perform a simple inversion to find the two parameters required to

rescale and translate the cumulative eastward component of the displacement to match

the cumulative time course of IC1. As we solve for only one rescaling parameter, the

GPS derived deformation and InSAR derived deformation can only be fit before and

after the rate change if they feature the same proportional increase, which we observe

them to. We then apply this operation to the entire GPS eastward cumulative displace-

ment time series, and set the displacement to zero after the 2005 eruption. Figure 3.9

shows the results of this process, and visual inspection shows that GPS data is in broad

agreement with IC1’s time course, with features such as the change in rate in early 2017

occurring in both time series. For comparative purposes, we also fit a linear trend to

the initial part of IC1’s cumulative time course, and whilst this fits the majority of

the data well, it can be seen to underestimate the deformation due to period of faster

motion immediately after the 2005 eruption.

To calculate the total pre-eruptive pressure change, we rescale the pressure change

calculated during the Sentinel-1 time series by the ratio of the total GPS derived dis-
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Figure 3.8: Data: The signal contained in IC0 throughout the Sentinel-1 time series, showing
∼2.4m of motion towards the satellite during the Sentinel-1 time series. Model: The result of
our optimal forward model, which treats the magma chamber as a a 6.2× 3.7 km2 rectangular
dislocation at a depth of ∼2.0 km. Residual: The misfit between our model and the data,
which is dominated by a mottled pattern across the majority of the scene which ICA is unable
to remove from IC0, and our model is unable to fit.

placement, which we show as the y-axis of Figure 3.9. We find that between the 2005

and 2018 eruptions, the observed surface deformation would translate to a change in

magma chamber pressure of ∼30 MPa.

3.5 Discussion

3.5.1 Detection Algorithm

The ICASAR algorithm provides a method to apply sICA to InSAR data, and to assess

how robust the recovered sources are. The ICASAR algorithm differs from the older

ICASO algorithm through incorporating a newer manifold learning algorithm (t-SNE),

a newer clustering algorithm (HDBSCAN), and is optimised for the application of sICA

to InSAR data. When using ICASAR to recover signals of geophysical interest at a

given study site, the use of a manifold learning algorithm, a clustering algorithm, and

a measure of cluster quality (termed Iq) provide three independent measures of the

significance and robustness of the recovered sources. Those deemed of geophysical

interest can then be utilised for further investigation, in a manner similar to our use

of the deformation source in Section 3.4. We utilise ICASAR as an integral part of

our detection algorithm, and the ability of the HDBSCAN algorithm to automatically

detect the number of clusters allows for minimal intervention from a human user. The

cluster quality index, Iq, also provides a measure to automatically determine which

sources come from the most robust clusters.
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Figure 3.9: Temporal evolution of the modelled source. The cumulative time course for
component IC1 is shown as black points and is rescaled in terms of the pressure change in the
modelled rectangular dislocation, which can be seen to attain a maximum value of ∼30 MPa
before the 2018 eruption. The pre-acceleration section of this time course (prior to day ∼4200)
can be fit with a linear trend (grey line), and extrapolated back to the 2005 eruption. However,
using GPS station GV01 to constrain the temporal evolution of the deformation shows that
whilst the majority of the 2005− 2016 time series can be fit with a linear function, there is an
initial period of faster uplift, which increases the total pressure change by ∼4 MPa.
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The application of our detection algorithm to Sierra Negra’s pre-eruptive time series

has demonstrated its ability to detect both changes in established signals (i.e. the

acceleration of the caldera floor uplift), and to detect the emergence of new signals (i.e.

those associated with the movement of magma to the surface during the 2018 eruption).

Our algorithm is also computationally inexpensive, and can therefore be applied to

Sentinel-1 data as they are acquired in order to begin the monitoring of sub-aerial

volcanoes using InSAR. Our method differs from that of Anantrasirichai et al. (2018) as

instead of using only the most recently acquired interferogram, we use the full time series

and may therefore be able to detect subtle signals that are not clear in individual images

(discussed further in the following paragraph and supporting information [Appendix

B Text S2 and Figure 5.6]). Additionally, our algorithm’s central tenet of seeking

deviations from the baseline behaviour also allows it to avoid flagging interferograms

that contain deformation of the type that is normal for that volcano, unless there is

a change in their strength. In order to avoid excess false positives, our algorithm is

also able to detect when a new signal reverses in a subsequent interferogram, and to

interpret this as being due to a strong APS and not require flagging as indicative of

unrest.

It is inevitable that during routine monitoring, our algorithm will be faced with both

more subtle signals, and noisier interferograms. We envisage that our primary tool to

combat this will be adjustment of the frequency with which our extrapolated lines of

best fit are redrawn from the default value of every 10 interferograms. As discussed in

Section 3.2.3, the redrawing of the lines of best fit ensure that any small mis-estimations

in the baseline gradient do not cause the cumulative time courses/residual to gradu-

ally diverge from the line of best fit. However, in the case that existing deformation

changes in strength only slightly or a new signal is of small magnitude, the change

in rate of cumulative time course/residual increase will only be slight. If lines of best

fit are recalculated infrequently (e.g. every 60 interferograms), this slight change in

rate will become significant and be flagged. However, in the case that lines of best fit

are recalculated frequently (e.g. every five interferograms), the deviation between the

cumulative time course/residual and the line of best fit is likely to remain small, and

the unrest may not be flagged. An example similar to those shown in Section 3.2 but

featuring a more subtle unrest signal that is not visible in a single 12 day interfero-

gram is provided in the supporting information. During development of the detection

algorithm, initial tests suggested that a more sensitive algorithm (i.e. redrawing lines

infrequently) reduced the occurrence of false negatives, but increased the occurrence

of false positives. Therefore, tuning of the algorithm for use by a specific monitoring

agency may involve the calibration of this parameter to achieve the desired operation.
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3.5.2 Overpressure before the 2018 Sierra Negra Eruption

Our estimation of a pre-eruptive overpressure of ∼30 MPa in our modelled sill below

the Sierra Negra caldera is significantly larger than the overpressure values of ∼1 MPa

suggested by other authors required for the propagation of a dyke to the surface when

a magma chamber contains mafic magma (as discussed in Section 3.4). This value is

sensitive to the shear modulus used during the inversion, but even if we reduce this from

the value of 10 GPa used by Jónsson (2009) to the lower value of 4.5 GPa suggested

by Hooper et al. (2002), the pre-eruptive overpressure reduces to ∼13.5 MPa. Whilst

this value does decrease the difference between our calculated overpressure and existing

values of the overpressure required for an eruption, the disparity remains significant and

we believe it is unlikely that the 2018 eruption can be thought of simply as the result

of an inflating sill that has increased in pressure until the tensile failure stress of the

overlying elastic crust has been overcome.

Previous studies of Sierra Negra found that a trapdoor faulting event prior to the

2005 eruption reduced the pressure within the magma chamber by 3 MPa, which has

been postulated as a method to delay eruption (Jónsson, 2009). Interferograms that

both capture pre-eruptive inflation and span episodes of faulting within the caldera

would feature different spatial patterns to those that feature only inflation, and we

therefore expect that when our detection algorithm fits an interferogram containing

both signals, it would use the baseline components in a new manner. This is seen

in the time courses of IC3 and IC6 (Figure 3.7), as both deviate from their baseline

rates in the latter stages, and, whilst they are unlikely to represent faulting, may be

being used by the algorithm in a new way as it attempts to fit any new signals that

may be present in later interferograms. However, this could be due to other processes,

and further investigation of the type described in Jónsson (2009) would be required to

determine the reduction in overpressure caused by any potential slip events.

In addition to faulting reducing the overpressure within the chamber, viscoelastic

processes may occur in the country rock and also act to reduce the overpressure. Vis-

coelastic behaviour of the rocks surrounding the magma chamber below Sierra Negra is

likely, as the relatively long-lived nature of the chamber will have raised the temperature

of the surrounding country rocks, and this is thought to occur to such an extent that

they no longer behave purely elastically (Segall, 2016). Bonafede et al. (1986) showed

that for a magma chamber within a purely viscoelastic full space, lower overpressures

are required for a given deformation when compared to a model using a purely elastic

rheology. This is in agreement with the results of Jellinek and DePaolo (2003), who

find that a viscoelastic country rock can inhibit the formation of dykes around large

magma chambers through limiting the overpressure within a chamber. However, in this

study the authors consider longer time scales, such as 106 years, which are required

for catastrophic caldera forming (CCF) eruptions. The expectation that the omission
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of viscoelastic processes leads to overestimations of the overpressure within a chamber

is in broad agreement with the results presented in this study (i.e. we estimate an

unrealistically high overpressure), and our result provides motivation for further study

into viscoelastic processes at volcanoes with long-lived magma chambers.

Application of our detection algorithm also reveals an increase in the rate of inflation

through the change in slope of IC1’s time course at the end of 2016 (Figure 3.7). We

postulate that this is due to an increase in the influx of magma to the sill, which would

in turn cause the overpressure within it to increase at a rate that outpaced potential

pressure-reducing processes such as viscoelastic relaxation, and eventually caused the

failure in the crust required for the movement of magma to the surface seen during the

2018 eruption. However, the further analysis of the InSAR data required to further

explore this hypothesis remains beyond the scope of this paper, which seeks to primarily

address volcano monitoring using InSAR.

3.6 Conclusion

Our study demonstrates that the reliability of latent sources recovered when sICA is

applied to InSAR data can be assessed through use of an updated ICASO algorithm. We

term this new algorithm ICASAR, and note that it is particularly suited for application

to automation projects as, unlike the original ICASO algorithm, is able to automatically

determine the number of sources present in the recovered data.

We use our ICASAR algorithm as a constituent of a detection algorithm, which we

demonstrate is able to detect signs of volcanic unrest due to both a change in rate of

a pre-existing signal, and the emergence of a new signal. We apply this algorithm to

a time series of Sentinel-1 data that span the run-up to the 2018 eruption of Sierra

Negra, and show that we would have been able to flag this volcano as entering a period

of increased activity when the rate of inflation increased approximately one year before

the eventual eruption.

Combining the results of the ICASAR algorithm with a time series of GPS data

spanning the period between the 2005 and 2018 eruptions of Sierra Negra, we attribute

the inter-eruptive inflation to an increase in pressure of 30 MPa in a sill 2.0 km below

the caldera floor. This value is significantly larger than the values suggested for a

mafic dyke to propagate to the surface, and we postulate that the spatial pattern

of the measured deformation may have changed due to processes such as slip on the

intra-caldera faults acting to reduce the overpressure within the sill.
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Abstract

With the evolution of InSAR into a tool for active hazard monitoring, new methods are

sought to quickly and automatically interpret the large number of interferograms that

are created. In this work, we present a convolutional neural network (CNN) that is able

to classify types of deformation seen in interferograms, and to locate deformation signals

within an interferogram. We achieve this through creating a large dataset of synthetic

interferograms which feature labels of both the type and location of any deformation,

and can be used to train our model. We also find that our model’s performance in

improved through the inclusion of a small amount of real data. When building models

of this type, it is common for some of the weights within the model to be transferred

from other models designed for different problems. Consequently, we also investigate

how to best organise interferograms such that the filters learned in models such as

VGG16 are sensitive to the signals of interest in interferograms.

4.1 Introduction

In recent years, work to extend volcano monitoring to all of the world’s ∼1400 subaerial

volcanoes has resulted in the application of a diverse set of machine learning methods

to ground deformation maps produced by interferometric RADAR satellites (InSAR).

Work by Anantrasirichai et al. (2018) has used convolutional neural networks (CNNs)

to determine if individual interferograms contain deformation, whilst work by Gaddes

et al. (2018) has used blind signal separation methods to determine if a time series of

interferograms show signs of unrest. However, in both of the examples detailed above,

each algorithm demonstrates very limited knowledge of the diverse types of deformation

that may be measured at volcanoes. The algorithm presented in Anantrasirichai et

al. (2018) assigns all data containing deformation to one label, whilst the algorithm

presented in Gaddes et al. (2018) is only able to alert a user to changes in the signals

present. Consequently, we seek to improve upon these approaches by developing a CNN

that is able to differentiate between different types of deformation, and to detect the

spatial extent of it without using a sliding window approach.

Detecting the spatial extent of an object is referred to as localisation in machine

learning parlance, and a variety of methods exist to perform it. For the simple case

in which only one classification driving object features in an image, this is commonly

approached using one of two methods. In the first, the CNN is trained on relatively

small images of the objects of interest (e.g. 224×224), before the trained model is then

used on larger images (e.g. 1000×500) that are subdivided into smaller patches of equal

resolution to the original training data. This approach is utilised in Anantrasirichai

et al. (2018), who avoid the potentially large computation cost of the repeated forward

passes by using the AlexNet CNN (Krizhevsky et al., 2012), which requires relatively
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few operations to complete a forward pass through the model (Canziani et al., 2016).

Additionally, this approach has the limitation that the CNN does not need to learn how

to determine the location of the object of interest, and at a more fundamental level

remains a classification model which has not learned to evaluate the spatial extent of

different signals.

However, in the field of computer vision, CNNs have been developed that are able

to both classify an image as containing an object, and describe the object’s location.

The location of an object is either indicated through encompassing it in a rectangle

(e.g. Simonyan and Zisserman (2014) and Redmon et al. (2016) ) or, in more com-

plex algorithms, indicating the exact outline of an object by identifying which pixels

comprise it (e.g. He et al. (2017)). It would be expected that both types of models

would provide more detailed information on the spatial extent of a signal of interest

than a classification model that is repeatedly used on different areas of an image. Con-

sequently, we endeavour to develop an algorithm that is able to both classify types

of deformation, and localise it within an interferogram in one step. Figure 4.1 shows

our initial division of deformation patterns into different classes, and can be considered

similar to the WordNet hierarchy (Fellbaum, 1998) that underpins ImageNet (Deng

et al., 2009).

When seeking to build a CNN to perform a classification or localisation problem,

common approaches can be divided into one of three broad categories depending on the

utilisation of pre-existing models. In the most fundamental case, a new model is de-

signed before all the parameters within it are trained (e.g. Rauter and Winkler (2018)),

but this approach has the risk of failing to utilise the successful applications of CNNs

to other problems. Consequently, it is possible for the majority of the architecture of a

model that is (or was) state of the art for a certain problem to be re-trained to solve the

new problem. As many CNNs feature a fully connected network after the convolutional

layers, it is common to retain the convolutional layers and design a new fully connected

network that outputs the classes of interest. However, this approach still requires the

training of a CNN that is likely to contain tens of millions of parameters, which will be

both computationally expensive, and require a large volume of training data. AlexNet,

a previously state-of-the-art image classification CNN, has 60 million parameters, was

trained on 1.2 million images, and even when implemented on GPUs took around one

week to train (Krizhevsky et al., 2012). Therefore, a common approach termed transfer

learning is to retain both the structure and weights of the initial convolutional layers,

and to train only the last fully connected part of the network. This approach was

successfully used by Anantrasirichai et al. (2018), who evaluated several CNNs, before

using the structure and weights of AlexNet with their own fully connected classifier to

output whether an interferogram contained deformation or not.

The weights learned in the convolutional filters of a CNN are of great importance
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Figure 4.1: Proposed hierarchy for signals of interest in interferograms at volcanic centres.
We propose a model that is able to classify interferograms as either containing only atmospheric
signals, or as containing deformation due to inflating sills or opening dykes. We choose these
classes for our initial study as they are likely to present significantly different signals, in contrast
to the harder problem of differentiating between signals that are best modelled as spherical
chambers (i.e. Mogi sources) and those as sills. As our proposed model will work with only
data from one look angle, we envisage that deformation due to processes that could be modelled
as a Mogi source are likely to be incorporated in the inflating sill label. We do not present this
hierarchy as complete, and envisage that future studies may add further subtrees, such as signals
due to the cooling and contraction of emplaced lava flows.

to a network’s ability to detect features, as the filters must be sensitive to the patterns

that these features present in an image. As networks such as AlexNet (Krizhevsky

et al., 2012) and VGG16 (Simonyan and Zisserman, 2014) were originally developed to

compete in the ImageNet competitions (Deng et al., 2009), the filters have been trained

to detect the type of features present in natural images (e.g. photographs of a person,

or car). When performing transfer learning, it is these filters that must be sensitive

to the patterns presented in a deformation signal if the network is to correctly classify

and locate it. However, as interferograms can be expressed in differing formats we also

seek to explore which of these formats allows for the filters in models trained on natural

images to excel.

4.2 Classification with different data formats

As the most common CNNs for computer vision are trained on images comprising of

a channel for each of the red, green, and blue values for each pixel, other data that

are to be used with the network must also be the channel. However, when considering

an image of interferometric phase, these images contain only a single value for each

pixel, and so consist of only one channel, and are analogous to a greyscale image. This

difference in the number of channels can be circumvented through duplicating the one

channel interferogram in each of the three input channels of a CNN, but in this section

of our study we wish to determine if this approach can be improved upon.

When two SAR images are combined to form a single interferogram, the resulting
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image is a 2D array of complex numbers. Whilst the magnitude of each of these

complex numbers relates to the brightness of a given pixel, it is common for only the

argument to be displayed, as these phase values can be used to infer ground movement.

However, the phase values of an interferogram are wrapped in the range [−π π] as

only the fractional part of the phase value can be measured, but this ambiguity can

be solved for to produce an unwrapped interferogram (Chen and Zebker, 2001). We

postulate that in addition to the use of either wrapped or unwrapped data duplicated

to fill three channels, the original complex numbers of an interferogram could be used

in two channels in order for our network to also access information about the brightness

of each pixel.

However, this approach can be expanded to feed more data into the CNN. When

a human observer interprets an interferogram, they are likely to use data such as a

digital elevation model (DEM) as this can be used to help determine if a signal is

due to deformation, or due to a topographically correlated atmospheric phase screen

(Bekaert et al., 2015). Consequently, we postulate that the inclusion of a DEM to

our CNN will improve its performance, and seek to investigate this whilst varying the

inputs across different channels.

To perform this analysis, we first synthesise a dataset of 40, 000 labelled interfer-

ograms. The collection of enough labelled data to train a CNN is commonly time

consuming or expensive, and we find that the addition of localisation labels to our data

makes it more time consuming than in previous studies, due to the need to manually

draw rectangles that outline each deforming region. Additionally, due to the large num-

ber of data that CNNs require to train and our expansion to classification of different

types of deformation, procuring enough real data to do this may be not possible. Con-

sequently, we perform this analysis using only synthetic data. Following the hierarchy

proposed in Figure 4.1, we create interferograms that contain either no deformation,

deformation due to an opening dyke, or deformation due to an inflating sill. We model

the dykes and sills as approximately vertical and horizontal dislocations, respectively,

with uniform opening in an elastic half space (Okada, 1985). For the set of sills, we

randomly selects strikes in the range 0 − 359◦, dips in the range 0 − 5◦, openings in

the range 0.2 − 1 m, depths in the range 1.5 − 3.5 km, and widths and lengths in the

range 2− 6 km. For the set of dykes, we randomly select strikes in the range 0− 359◦,

dips in the range 75− 90◦, openings in the range 0.1− 0.7 m, top depths in the range

0 − 2 km, bottom depths in the range 0 − 8 km, and lengths in the range 0 − 10 km.

These deformation patterns are then combined with a topographically correlated atmo-

spheric phase screen (APS), and a turbulent APS, which we discuss generating in more

detail in Gaddes et al. (2018). We calculate the topographically correlated APS using

a random selection of DEMs that cover areas of volcanic interest from the the SRTM

90m DEM (Farr et al., 2007), and use the coastline information contained within the
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product to mask areas of water. We also synthesise areas of incoherence within our

interferograms as spatially correlated noise with different length scales, which we mask

in order for our synthetic interferograms to be as similar as possible to the Sentinel-1

interferograms automatically created by the LiCSAR processor (González et al., 2016).

Figure 4.2 shows the results of mixing these different elements to create our synthetic

interferograms.

This process creates unwrapped data which can be converted to wrapped data

through finding modulo 2π of the unwrapped phase. However, to synthesise both the

real and imaginary part of a complex interferogram requires knowledge of both the

brightness of a pixel and its phase. To achieve this, we again use the SRTM DEM, and

calculate the intensity of reflected electromagnetic radiation at the angles of incidence

used by the Sentinel-1 satellites (29.1−46.0◦), before adding speckle noise. As inputs to

CNNs that are to be trained using transfer learning must be rescaled to the inputs used

in the original training, we use only relative values in the range (−1)−1] for the synthetic

intensities. With knowledge of the modulus (relative intensity) and argument (wrapped

phase) of each pixel of our synthetic interferogram, the real/imaginary components are

simply the products of the modulus and cosine/sine of the argument, respectively.

Figure 4.3 shows five different ways we can represent an interferogram using the three

channels available.

The CNN we build to classify the synthetic interferograms uses the five convolu-

tional blocks of VGG16 (Simonyan and Zisserman, 2014), with our own fully connected

network after this. When an interferogram of shape (224× 224× 3) is passed through

the convolutional layers of VGG16, it is transformed into a tensor of shape (7×7×512).

This is then flattened to make a vector of size 25088, before being passed through fully

connected layers of size 256, 128, and an output layer of size three (i.e., dyke, sill, or no

deformation). To produce a set of outputs that can be used as probabilities, we use a

softmax activation for the last layer (Bridle, 1990), as for a given input this produces a

set of outputs that sum to one, and represent the confidence that the model places on

its prediction. For the remaining layers we use rectified linear units (ReLus) to reduce

computation time (Agostinelli et al., 2014). As our model seeks to solve a classification

problem, we use categorical cross entropy for the loss function, which we seek to reduce

using the Nadam optimizer as this does not require the choice of a learning rate (Dozat,

2016).

A common problem of CNNs that are used for classification can be overfitting of

the training data, which results in a model that generalises to new data poorly. We

endeavour to limit this through the use of dropout (Srivastava et al., 2014) before both

the 256 and 128 neuron layers, as through randomly removing some connections during

each pass of the data through our model, we hope that our model is forced to learn

more robust representations of the training data. As we use synthetic data, we are not
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limited by the usual cost of collecting labelled data, and therefore are able to generate

20000 unique interferograms without the use of data augmentation.

Figure 4.4 shows the results of training five models with each of the data formats

previously discussed. The highest classification accuracy achieved is ∼0.95, which is

achieved when the models are trained with either wrapped or unwrapped data repeated

across the three input channels. Inclusion of the DEM as the third channel appears to

reduce classification accuracy, whilst very low accuracies are achieved in the real and

imaginary channel case. We discuss these results in more detail in Section 4.4, but for

the remainder of the paper we choose to work with data that is unwrapped and repeated

across the three input channels. We choose this approach as no significant differences

are seen between the classification accuracy ultimately achieved with either wrapped

or unwrapped data, but the use of unwrapped data may allow for a model to be used

with unwrapped time series, and so detect subtle signals produced by low strain rate

processes. Additionally, a model that works with unwrapped data may also provide

the opportunity to be expanded to locate and classify unwrapping errors automatically,

but it should be noted that unwrapping is a computationally expensive process.

4.3 Classification and localisation

4.3.1 Using synthetic data

In the previous section, we demonstrated that when using VGG16 with convolutional

weights learned on ImageNet data, optimal performance for classifying synthetic in-

terferograms is achieved when the unwrapped phase is repeated across the three input

channels. In this section, we build on the model used to perform classification by adding

localisation output. We also endeavour to ascertain if the expense of collecting labelled

data can be avoided entirely through the continued use of synthetic data when training

our model.

We achieve both classification and localisation through dividing the fully connected

section of our model to produce two distinct outputs. One output returns the class of

the input data in the manner described in Section 4.2, whilst the second returns the

location of any deformation within the scene. In machine learning parlance, models of

this type are termed double headed, and we subsequently refer to either of the outputs

and their corresponding preceding layers as either the classification head or localisation

head. Figure 4.5 shows the structure of the two heads, and how they diverge after

the output of the fifth block of VGG16 has been flattened. The localisation head

is structured in a similar manner to the model described in Simonyan and Zisserman

(2014), in which the model conveys the location of any deformation through outputting

a column vector containing four values. Two of these values determine the centre of the

deformation pattern and two display its horizontal and vertical extent, and together
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Figure 4.2: An example of the constituent parts of seven synthetic interferograms. Two of the
interferograms do not feature deformation (e.g. interferogram 3), a third feature deformation
due to an inflating sill (e.g. 1), and a third feature deformation due to an opening dyke
(e.g. 2). These signals are geocoded and areas of water masked, before being combined with a
topographically correlated APS, and a turbulent APS. Areas of incoherence are also synthesised,
and these are used to mask the combination of the three signals to create the final synthetic
interferograms.
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Figure 4.3: Organisation of an interferogram into three channel form. Columns one and two
feature unwrapped data that is repeated, and in column two the DEM is included as the third
channel. In column three the real and imaginary elements of the complex values of each pixel
of an interferogram occupy channels one and two, whilst the DEM is included in the third.
Columns three and four feature wrapped data that is repeated, and in column five the DEM is
included as the third channel.
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Figure 4.4: Accuracy of classifying validation data during training using three channel data
arranged in different formats. “u”: unwrapped data, “w”: wrapped data, “d”: DEM, “r” real
component of interferogram, “i”: imaginary component of interferogram. Low accuracy is seen
for the “rid” data, and in both the wrapped and unwrapped cases inclusion of the DEM in the
third channel is seen to degrade classification accuracy. At the end of the 20 epochs of training,
only a small difference is seen in accuracy between wrapped and unwrapped data, with both
classifying ∼95% of the validation data correctly.
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can be used to construct a box encompassing a deformation pattern.

However, we find the localisation problem significantly harder to solve than the

classification problem, which results in a more complex classification head. To reduce

the time taken to develop and test possible localisation heads, we perform what is

termed bottleneck learning in machine learning literature. This involves first computing

the results of passing our entire dataset through the first five blocks of VGG16, before

then training only the fully connected parts of our network. As the pass of the data

through the convolutional layers of VGG16 is computationally expensive yet we do not

seek to update the weights within these layers, this method avoids these costly and

unnecessary repeat passes. Experimentation finds that the simplest model capable of

good performance is achieved with five layers consisting of 2048, 1024, 512, 128, and 4

neurons.

When training our model, we use the mean squared error between the predicted

location vector and the labelled location vector as our localisation loss function, which

we seek to minimise. However, when using a double headed network, training is compli-

cated by the fact that the model’s overall loss is now a combination of the classification

and localisation loss, which must be balanced using a hyperparameter commonly termed

loss weighting. We experiment with this hyperparameter, and find that a value of 0.95

for the classification loss and 0.05 for the localisation loss provides a good balance be-

tween the two outputs. We believe that this value proves optimal as the localisation loss

is significantly larger than the classification loss, but by weighting them unequally they

then contribute to the overall loss approximately equally. In a similar manner to the

design of a localisation head, the time required for the repeated model runs required to

fine tune this hyperparameter is greatly reduced by first computing bottleneck features.

Figure 4.6 shows the results of training our classification and localisation model,

which due to the computation of bottleneck features took under two days without the

use of GPUs (a machine equipped with dual core Intel Xeon E5-2640s was used). During

the training of our model, inspection of both the training and validation loss does

not show the characteristic minima in validation loss being passed, despite continued

decrease in the training loss that is indicative of a model that is overfitting. To improve

the performance of our network, we also seek to improve the filters learned within the

convolutional blocks in order for them to be better suited to our task. We perform

this by changing the style of learning after the 10th epoch, and switch from updating

only the fully connected layers, to also including the 5th convolutional block in our

updates. However, if we were to resume training the network with an optimiser such

as Nadam, which features an adaptive learning rate, only a small number of initial

steps at too high a learning rate would quickly destroy the finely tuned values in

both the convolutional blocks of VGG16, and our fully connected classification and

localisation heads. We circumvent this through switching the optimizer to stochastic
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gradient descent (SGD) and setting the learning rate manually. However, as we are

now updating the convolutional blocks of VGG16, we cannot simply use the bottleneck

features we previously computed, and must instead perform the time consuming pass

of the data through VGG16 at each step. This complicates the search for an optimal

learning rate, but we find that a value of 1.5× 10−8 does not degrade the performance

already gained during training, but still allows for an increase in the performance of

the localisation head.

Figure 4.7 shows the results of applying our trained classification and localisation

model to a random selection of the testing data (i.e., data that the model was not

exposed to during training). In each case, the classification can be seen to be accurate,

and the localisation approximately correct. When considering entire test set of data,

the classification accuracy is 0.89, whilst the localisation loss is 169. It should be noted

that we could also report the classification loss (0.31), but we believe this is less useful

than the accuracy. However, in the localisation case, accuracy is not a meaningful

measure of the fidelity of the output, as it is instead a regression problem in which

we aim to approximate the correct values which are continuous in nature. As the

localisation loss is the mean squared error of the difference between the localisation

coordinates and the predicted coordinates, a value of 169 indicates that the predictions

are typically misplaced by around 13 pixels, which translates to 1.2 km when using 3

arcsecond pixels.

4.3.2 Application to real data

Whilst the model described in the previous section achieved good performance when

classifying and locating deformation in synthetic interferograms, for use in automatic

detection algorithms we wish for our CNN to be able to work with Sentinel-1 data.

To test this, we apply our CNN to a collection of 52 Sentinel-1 interferograms on

which, to allow for easier evaluation, we have performed the time consuming task of

labelling both the class and location of deformation within them. However, in some

examples assigning a single class to a complex deformation pattern is difficult, and we

instead assign what we deem the dominant class to be. This problem is most evident

in interferograms seven, nine and ten of Figure 4.7 that span the 2015 eruption of Wolf

Volcano (Galapagos, Ecuador), in which signals were attributed to both the deflation

of a sill and the opening of a dyke (Novellis et al., 2017; Xu et al., 2016).

The interferograms used come from either a collection of time series that were ei-

ther created by the authors of this study, or by the LiCSAR automatic interferogram

processor, and feature the volcanoes Campi Flegrei, Agung, Wolf, Sierra Negra, and

Alcedo, and contain interferograms that feature both inflating sills, opening dykes, and

topographically correlated atmospheric signals. For the Galapagos volcanoes (Wolf,

Sierra Negra, and Cerro Azul), deformation is visible in some of the 12 day inter-
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Figure 4.5: Structure of our classification and localisation CNN. Input interferograms are
first passed through the first five convolutional blocks of VGG16 to transform them from size
(224 × 224 × 3) to size (7 × 512). These are flattened to create a large fully connected layer
featuring 25088 neurons, which is connected to both the upper branch/head which performs
classification, and the lower branch/head which performs localisation. We find the localisation
problem more complex than classification, and consequentially our localisation branch/head
features more layers each of more neurons. The output of the localisation head is a vector
of four values determining the position and size of the deformation, whilst the output of the
classification head is a vector of three values which indicate the probability for each class and
sum to one.
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Figure 4.6: Summary of training the two headed model with synthetic data. The upper plot
shows the accuracy of the classification head, whilst the lower plot shows the loss function for the
localisation head. After the ninth epoch (marked by the vertical dashed line) the optimizer is
switched from Nesterov Adam (NADAM) to stochastic gradient descent (SGD) with a manually
chosen learning rate, and the weights in the fifth convolutional block of VGG16 are unfrozen.
This extra learning stage allows the localisation loss for the validation data to decrease from
∼400 to ∼300. This step can also be seen to initially damage the classification head, but this
gradually recovers to an approximately equal accuracy (∼0.95).

Figure 4.7: Results of our classification and localisation CNN on the testing data. Black
class labels and location boxes were generated with the synthetic data, whilst red depicts those
predicted by the CNN. As the model outputs a probability for each label, these are included as
decimals with the predicted classes. Inspection of the results shows that in all of the randomly
chosen cases, the classification is correct, and the localisation appears broadly correct.
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ferograms, and only filtering with a Goldstein filter (Goldstein and Werner, 1998),

unwrapping using SNAPHU (Chen and Zebker, 2001), and masking of pixels with an

average coherence below 0.7 is required. However, the deformation signal at Campi

Flegrei is more subtle, and we are required to manually create interferograms with

temporal baselines of 24/36/48/60 days in order for the deformation to be visible in a

single interferogram. The deformation signal at Agung was attributed to the opening

of a dyke (Albino et al., 2019), but due to the short lived nature of this event, is only

visible in a relatively small number of the “daisy chain” of short temporal baseline

interferograms. To increase the number of interferograms available, we again produce

a selection of 24/36/48/60 day interferograms that span the event. In a manner similar

to the Galapagos interferograms, we mask pixels with an average coherence below 0.7.

Figure 4.7 shows the results of applying our trained classification and localisation

model to a quasi-random selection of Sentinel-1 interferograms. Interferograms such as

3 show a very clear inflation signal at Sierra Negra, and are correctly classified by the

CNN, whilst the localisation is broadly correct. Other promising results include the

labelling of the three Wolf coeruptive interferograms (seven, nine and ten) as containing

a sill, which is also localised well. However, some interferograms are poorly classified,

such as the signal in interferogram eight which shows what we interpret to be a strong

topographically correlated APS. The divergent nature of our CNN’s two heads also leads

to outputs that show disagreement between them. Interferogram zero demonstrates

this, in which it is correctly classified as containing a sill, but features no localisation

output.

When considering the entire test set of real data, the classification accuracy is 0.46,

whilst the localisation loss is ∼2500. However, Table 4.1 shows that the distribution

of accuracy between classes is strongly heterogeneous, with a high accuracy for the

classification of sills (0.88), but a low accuracy for dykes and no deformation cases

(0.33 and 0.25, respectively). We discuss the results of this model more fully in Section

4.4, but in the following section we seek to improve the performance of our model

through the inclusion of real data during the training stage.

4.3.3 Using Sentinel-1 data

To increase the performance of our model further, we seek to incorporate real data into

the training. We do this through revisiting the time series mentioned in the previous

section, and labelling a further 173 interferograms which we use for training, whilst

retaining the original set for further testing. It should be noted that the majority of

these feature only atmospheric signals, and so are significantly less time consuming

to label than those that feature deformation and require four localisation coordinates.

However, 20000 synthetic interferograms were used to train the previous model, and

the inclusion of 173 new interferograms is unlikely to impact the model significantly
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Figure 4.8: Results of our classification and localisation CNN on our testing set of Sentinel-1
interferograms. The labelling convention is as per the previous figure, but labels in black were
manually created. Inspection of these results show that they vary between both the label and
localisation being correct (e.g. 3, 10, 11), the localisation correct but the label incorrect (e.g.
2), the label correct but the localisation incorrect (e.g. 0), and both the label and localisation
incorrect (e.g. 4). Interferograms 0− 1 feature Campi Flegrei, 2 features Agung, 3− 5 feature
Sierra Negra, 6− 10 feature Wolf, and 11 features Cerro Azul.
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as these could still be classified poorly with minimal increase in the loss function. We

therefore apply data augmentation, which involves creating random flips, rotations,

and translations of the interferograms to extend our set of real training data to feature

20000 unique, though often highly correlated, Sentinel-1 interferograms.

Figure 4.9 shows the results of applying our CNN to the same set of test inter-

ferograms used in Section 4.3.2. Inspection shows greatly improved localisation, with

very small errors for interferograms zero, two and three. False positives have also now

been reduced, with the strong topographically correlated APS of interferogram eight

now correctly classified as “no deformation”. However, some false positives remain,

such as interferogram one, and the subtle signal seen in interferogram four is classified

incorrectly. The complex deformation signals of interferograms seven, nine and ten also

prove challenging as the deformation is not localised well by the model, but the CNN’s

label of “dyke” is reasonable given that signals spanning the 2015 eruption of Wolf

were attributed to both changes in the volume of a sill, and propagation of magma to

the surface (Xu et al., 2016). Considering the entire real training dataset, performance

has now increased, and the classification accuracy has risen to 0.62, whilst the locali-

sation loss has decreased to 472. Table 4.1 shows that the inclusion of interferograms

that image the opening of a dyke greatly increase the classification accuracy for this

class (0.33 to 1.00), and that the relatively low overall classification accuracy remains

a product of the model’s poor classification of interferograms that contain only atmo-

spheric signals (0.62). Results of this type may be termed “false positives”, as they

would cause a detection algorithm to erroneously flag interferograms as containing de-

formation, and methods to generate more complex synthetic atmospheres for training

is discussed further in the following section.

4.4 Discussion

From the analysis performed in Section 4.2 we conclude that the incorporation of a

DEM into our CNN cannot be achieved through the relatively easy step of using it

as one channel in multichannel data. We believe this is because the weights in the

first five convolutional blocks our model were transferred from VGG16 and, as this

model was trained using natural images which are broadly similar across all three

channels, they are not well suited for the case in which each channel is very different.

However, if in future work the weights within the convolutional blocks of a classification

and localisation model are trained from scratch, then these may easily allow for the

incorporation of extra data in the different input channels. Should this approach not

be feasible, information such as the DEM may be best incorporated through the use

of a two input model, in which one set of convolutional filters are applied to the phase

information, whilst a second is applied to the DEM. These two networks could then

be merged at the fully connected stage, in much the same way as our fully connected
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Figure 4.9: Results of our second classification and localisation CNN on our testing set of
Sentinel-1 interferograms. Interferograms are shown with LOS displacement in cm, and with
incoherent areas masked. The labelling convention and interferograms are as per Figure 4.8.
This model can be seen to outperform the first, with improved classification and localisation.
However, several errors remain; Interferogram four features a comparatively subtle uplift signal
in comparison to others that preceded the 2018 eruption of Sierra Negra and is classified as “no
deformation” by the model, whilst the complex co-eruptive signal of interferogram nine is not
located accurately.
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Classification Accuracy Synthetic Synthetic and Real

Dyke (3) 0.33 1.00
Sill (17) 0.88 0.82
No deformation (32) 0.25 0.47
Combined (52) 0.46 0.62

Localisation Loss Synthetic Synthetic and Real

Dyke (3) 533 68
Sill (17) 1589 514
No deformation (32) 3164 528
Combined (52) 2498 497

Table 4.1: Summary statistics for CNNs trained either with synthetic data, or with synthetic
and real data. For both cases, the models can be seen to achieve good accuracy when classifying
interferograms that contain deformation, but to misclassify interferograms that contain only
atmospheric signals (accuracies of 0.46 and 0.62). The most significant reduction in localisation
loss is also seen for interferograms that do not contain deformation (3164 to 528), suggesting
that the inclusion of real data improves the model’s ability to correctly refrain from interpreting
atmospheric signals as the location of deformation.

model diverges into two outputs. Should this be successful, it may also provide a

method to add further inputs to a model, such as those outputted by a weather model,

which may reduce false positives due to occurrences such as a strong topographically

correlated APS. However, training the weights of a model from scratch and exploring

more complex multi-input model architectures remains beyond the remit of this study.

The results presented in Figure 4.8 show that a model trained only with synthetic

data is able to classify and locate deformation signals in Sentinel-1 data. However,

it is only successful in cases with particularly clear deformation patterns, and is poor

at classifying interferograms that contain only strong atmospheric signals. It is possi-

ble that both of these limitations may be overcome through the use of more realistic

synthetic data, which our preliminary study may warrant further research into. The

generation of more realistic deformation patterns may be achieved through steps such

as more intelligent sampling of the parameters used in the forward models used to

generate the deformation patterns, the use of different types of deformation models

such as penny-shaped cracks (Fialko et al., 2001), and the superposition of multiple

deformation patterns in a single interferogram such as was observed prior to the 2005

eruption of Sierra Negra (Jónsson, 2009). The generation of more realistic atmospheric

signals could be achieved through increasing the complexity of synthetic data, such

as through the use of phase-elevation ratios that are non-linear or spatially variable,

or through using data from different sources. Interferograms that image regions with

little deformation could be used to increase the complexity of the set of “no deforma-

tion” data, or combined with synthetic deformation patterns to produce more complex

semi-synthetic data.
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The results presented in Figure 4.9 show that a convolutional neural network model

can be used to both classify different types of deformation, and to localise this within an

interferogram. However, much scope for improvement remains, with several classifica-

tion and localisation errors visible in this figure. The majority of the localisation errors

are either in cases in which the deformation signal is slight (e.g. interferogram four of

Figure 4.9), or in interferograms that span the 2015 eruption of Wolf volcano. In the

former case, it is natural for a threshold in the signal to noise ratio to exist below which

a method is not able to identify the signal of interest, and these interferograms appear

to represent that. In the latter case, the interferograms in question contain complex

deformation patterns due to both the opening of a dyke and the removal of magma

from a sill below the caldera (Novellis et al., 2017), and the inclusion of either real of

synthetic training data that contains multiple deformation patterns may alleviate this

shortcoming.

The divergent nature of the two heads (classification and localisation) of our network

also allows for discrepancies between their outputs. This is seen in interferogram 10

of Figure 4.9, in which a plausible label of “dyke” is attributed to the co-eruptive

deformation signal, but the localisation head produces an erroneous location. However,

we postulate that it may be possible to avoid errors of this type by using more complex

model architectures. Models such as YOLO (Redmon et al., 2016) produce bounding

boxes and classifications in one step, and have the added bonus of being able to work

with images that contain multiple signals. If successfully applied to interferograms, a

model of this complexity may avoid the discrepancy errors we encounter, and be able

to handle interferograms that contain multiple deformation patterns.

Our approach to localisation avoids the need for repeated classification using a

sliding window approach, and allows for our network to reason using the entire image.

Whilst we believe this approach is beneficial, one caveat reamains in that building a

network that is able to utilise large interferograms can be complex. In our model, we

use pixels of three arc second size and, with an input size of 224 × 224, the resulting

model is able to “see” an approximately 20km square around a volcano. If we wish to

proceed at this resolution, our model’s visual field could be increased through changing

the input size to around 400× 400 which would not impact our ability to use VGG16’s

filters (or convolutional blocks), but would increase the size of the first layer of the fully

connected part of our network.

At present, an input with side length 224 is reduced to a feature map with side length

7 (shown in Figure 4.5) which, combined with a depth of 512, produces a flattened layer

of size 7 × 7 × 512 = 25088. However, doubling the input side length would double

the feature map side length, increasing the flattened layer to a size of 14× 14× 512 =

100352. Whist our model contains millions of free parameters, connecting this layer

to a subsequent layer would produce a significant increase in the total, and is likely to
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require either more ingenuity or more data to be trained successfully. Analysis of the

offsets of deformation patterns at volcanic centres by Ebmeier et al. (2018) finds that

8% of signals are located more than 10km from a volcanic edifice, and would therefore

be missed by our current model. Future models that wish to perform localisation using

a global approach may therefore require slight increases in size in order to capture all

signals of interest, but the work required to train these larger models remains outside

the remit of this study.

4.5 Conclusion

Our study finds that either wrapped or unwrapped data are approximately equally

suited for use with the weights of VGG16’s filters that were trained on ImageNet data,

whilst more complex use of the three channel format that these models support degrades

performance. However, this may not be the case if the weights within VGG16’s filters

are trained from scratch. We combine the five convolutional blocks of VGG16 with two

fully connected networks to perform both classification and localisation, which allows

our network to reason using the whole interferogram, and does not require a sliding

window approach. Additionally, our network is able to differentiate between several

different forms of deformation.

To minimise the costly nature of labelling data, we initially train our model using

only synthetic data. We find that our model generalises well to some cases of Sentinel-1

data, but produces several false positive results when using interferograms that contain

strong atmospheric signals. We alleviate this problem through the inclusion of a small

amount of real data during the training phase, and present a model that is able to both

classify and locate deformation within an interferogram of ∼20km side length.
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inferred from Sentinel 1-A DInSAR deformation maps and pre-eruptive ENVISAT

time series”. In: Journal of Volcanology and Geothermal Research 344, pp. 246–256.

issn: 0377-0273. doi: 10.1016/j.jvolgeores.2017.05.013.

Okada (1985). “Surface deformation due to shear and tensile faults in a half-space”. In:

International Journal of Rock Mechanics and Mining Sciences Geomechanics Ab-

stracts 75.4, pp. 1135–1154. issn: 00371106. doi: 10.1016/0148-9062(86)90674-1.

url: http://linkinghub.elsevier.com/retrieve/pii/0148906286906741.

Rauter, Matthias and Daniel Winkler (2018). “Predicting Natural Hazards with Neu-

ronal Networks”. In: arXiv Electrical, pp. 1–14. arXiv: arXiv:1802.07257v1.

Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi (2016). “You only

look once: Unified, real-time object detection”. In: Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pp. 779–788.

Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional networks

for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-

dinov (2014). “Dropout: a simple way to prevent neural networks from overfitting”.

In: The Journal of Machine Learning Research 15.1, pp. 1929–1958.
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Chapter 5

Discussion and Conclusions

In this thesis, my objective was to develop an algorithm to detect signs of deformation-

generating volcanic unrest in a time series of interferograms. In Chapter 1 I divided

this objective into four smaller aims, which I revisit in Section 5.1. In Section 5.2 I

discuss the opportunities for further work on this topic, and in Section 5.3 I present

my concluding remarks.

5.1 Project aims and key findings

5.1.1 Characterising baseline signals

In Chapter 2, I explored the potential to characterise the baseline signals of a volcano

imaged using InSAR by treating the individual interferograms as the combinations of

several latent sources. This produced a set of spatial maps for each signal, and a set

of vectors in which each value determined how each spatial map contributed to a given

interferogram. If the interferograms are ordered temporally, the contribution vectors

can be termed “time courses”, and viewed as a line graph. However, it should be

noted that these line graphs determine the contribution per the temporal baseline of a

given interferogram, and therefore it can be more intuitive to integrate a time course

to produce cumulative time courses, such as are shown in Figure 2.16.

There exist a multitude of methods to decompose a time series of interferograms

into spatial signals and (cumulative) time courses. The analysis that I performed in

Chapter 2 found that independent component analysis set to recover spatially indepen-

dent sources (sICA) using the FastICA algorithm (Hyvarinen, 1999) performed best

in a selection of tests with synthetic data. However, this analysis detected two issues

of potential concern. The first was concerned with the choice of the hyperparameter

which determines the number of sources to be recovered. When considering n mixtures

made from m sources, the mixtures will create m−hypervolume in the nD space, and
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ICA requires that the dimensionality is first reduced to m using PCA. However, in the

case with noise, the mixtures instead fill a n − hypervolume, and in reducing this to

m dimensions using PCA, some aspects of the sources may be lost, depending on the

signal to noise ratio. This problem is complicated as we do not generally know how

many sources contributed to the mixtures, and in Chapter 2 I find that the best results

are produced when the number of sources to be recovered (i.e. m) is set to be ∼2 more

than the estimated number of sources. This ensures that components in which signals

of interest reside are not discarded, but also that the FastICA algorithm is not faced

with too much noise. Whilst this approach provides satisfactory results, and is broadly

similar to the approach utilised by Ebmeier (2016), scope remains for its improvement

in further work. The new ICA algorithm presented in Isomura and Toyoizumi (2016)

does not require any preprocessing in the case in which the number of sources and

mixtures is not equal, and may therefore greatly simplify the application of ICA to

data in which the number of sources is not known.

The second issue of concern that my analysis detected was the application of sICA

to situations in which a topographically correlated atmospheric phase screen (APS) is

spatially similar to a deformation signal. This case is likely to occur at a stratovolcano

undergoing broad, volcano wide, inflation or deflation, as this signal is likely to lie under

the topographic expression of the volcano, which will also create a topographic APS

in the same location. This issue is introduced in Section 2.7, in which I conclude that

further work may be required to use sICA for in-depth studies at a stratovolcano, but

for volcano monitoring in which I seek to only characterise baseline behaviour, slight

inaccuracies in the sources recovered are not likely to be an issue.

After decomposing the baseline signals into a set of spatial patterns and associated

time courses, a method was required to quantify baseline behaviour in terms of these.

This is addressed in Sections 2.6 and 3.2, which detail how the algorithm I developed

quantifies the use of spatial patterns through fitting lines of best fit through their cu-

mulative time courses, and through the cumulative residual between each interferogram

and its reconstruction made using the recovered sources. In this work, I fitted poly-

nomials of order 1 (i.e. y = ax + b), which provided adequate performance for all of

the cases encountered. However, as the length of time series available from satellites

such as Sentinel-1 increases, it is likely that the time courses of signals that capture

atmospheric processes may be revealed to be non-linear. An example of such a case is

provided by Pinel et al. (2011), who find that the strength of a topographically corre-

lated APS at Colima volcano is best modelled as a sinusoid, due to seasonal changes

in the atmosphere. Other processes, such as the cooling and contraction of a magma

body below a volcano, are likely to produce a signal that is detected by my detection

algorithm, and also feature a time course that, on long enough time scales, cannot

be treated as linear. Therefore, further testing of my detection algorithm is likely to
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indicate that it may also need to solve for the most appropriate type of line of best fit

to characterise the temporal behaviour of the baseline data.

When utilising sICA, a common problem encountered is how to assess the statisti-

cal significances of the sources recovered (Hyvärinen, 2012). In Chapter 3 I addressed

this through creating the ICASAR algorithm, which showed promising results when it

was applied to both synthetic data, and a time series of Sentinel-1 data that imaged

the pre-eruptive inflation of Sierra Negra (Section 3.3). Through using two indepen-

dent methods in parallel, the ICASAR algorithm creates powerful visualisations of the

similarities in the sources recovered by multiple runs of the FastICA algorithm, and

so allows a user to easily build an understanding of which of the recovered sources are

the most significant. Additionally, for use in an automatic detection algorithm, the

ICASAR algorithm is able to automatically determine the number of sources that have

been recovered, and to rank these recovered sources based on their robustness.

5.1.2 Detecting and displaying deviations from baseline behaviour

The prototype detection algorithm that I presented in Chapter 2 was able to detect the

onset of the 2015 eruption of Wolf volcano by extrapolating the line of best fit for the

cumulative residual, and determining how significant the discrepancy between a new

value and the extrapolated line was (shown in Figure 2.17). In Chapter 3, I presented a

more complete detection algorithm that applied the same approach to the cumulative

time courses of each recovered source, and showed that this algorithm was able to

detect the increase in uplift seen prior to the 2018 eruption of Sierra Negra (shown

in Figure 3.7). As mentioned in the previous section, more complex lines of best fit

(e.g. sinusoids) may be required to accurately describe the shapes of cumulative time

courses/residuals, but this should not impact my algorithm’s ability to meet this aim,

providing that the function can be extrapolated to future dates. Figure 3.7 shows the

output displayed when the monitoring algorithm is applied to a time series of Sentinel-

1 interferograms that image Sierra Negra before and during the 2018 eruption. This

figure provides a tool for a user who is familiar with deformation processes at a volcano

to easily interpret this signals contained within the time series, and determine that a

change in the style of deformation observed at the volcano had occurred around the

middle of 2017 (interferogram ∼67 in Figure 3.7).

However, one limitation of this method is that the lines of best fit that are learned in

the baseline stage must be redrawn periodically, as otherwise any small misestimation

in the gradient of the cumulative time course/residual gradually leads to the flagging of

all points as a large distance from the line, and so the algorithm producing false positive

results. However, this approach introduces a hyperparameter to control how often the

lines of best fit are redrawn. If the value is too low (e.g. the lines are redrawn every five

interferograms), large changes in the time courses may not be detected producing false
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negatives, whilst in the case that it is too high (e.g. the lines are redrawn every 100

interferograms), the false positives case previously mentioned occurs. I envisage that

further testing of the algorithm at more volcanoes will provide insights into whether

this parameter needs to be changed, and speculate that a separate module may be

required to adaptively change this value for each volcano.

5.1.3 Complementary monitoring algorithm

I have refined my detection algorithm by producing a complementary model that works

in parallel to it, which I detail in Chapter 4. In contrast to my detection algorithm

that uses a time series of interferograms, this model is similar to that proposed by

Anantrasirichai et al. (2018), and instead classifies new interferograms as they are pro-

duced by an automatic interferogram processing tool. My automatic detection model

is a convolutional neural network that is able to classify interferograms as either not

containing deformation, containing deformation due an inflating sill, or containing de-

formation due to an opening dyke. Additionally, the model is able to reason globally

about an interferogram of size 224×224 pixels, where each pixel is around 3 arcseconds

in size, to locate a deformation signal within the image.

The outputs of this model are also optimised for use in hazard monitoring. The

classification output uses a softmax function, which ensures that instead of producing

one class label, the model outputs the probabilities for each type of class label. There-

fore, in cases in which the model is relatively uncertain about a new interferogram, this

information is also encoded into the classification output, and can be used to determine

which interferograms need to be manually inspected as a priority. It is likely that if only

one interferogram in a time series is labelled as containing deformation, and that label

is associated with a high uncertainty, then the time series is of low priority for manual

inspection, or a warning to be issued. However, if multiple interferograms contain the

same label with low uncertainty, then the time series is of high priority for manual

inspection, or a warning to be issued. Additionally, the model’s ability to determine

the spatial extent of a new signal works in a similar fashion, with signals with a large

spatial extent likely to indicate a process that may pose a significant hazard.

However, whilst the model advances the state of the art through demonstrating

that it is able to differentiate between different types of deformation, the classification

output remains limited. It is likely that roughly symmetric processes such as the

inflation of a magma chamber at depth would be classified as “sills” by the model,

but other more complex processes would not be. In Chapter 2, I used sICA to isolate

eastward movement of the eastern flank of Mt Etna, and signals such as these are likely

to prove problematic for the model. In Section 5.2 I discuss how this model could be

improved, including through providing more classification outputs.
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5.1.4 Study of a volcanic process

During development of my automatic detection algorithm, I tested parts of the algo-

rithm on Wolf and Sierra Negra volcanoes. When sICA was applied to a time series

of Sentinel-1 interferograms that spanned the 2015 eruption of Wolf, three signals of

geophysical interest were automatically isolated. These are shown in Figure 2.15, and

include a subsidence signal located in the caldera, an eastward movement signal located

on the caldera floor, and a broader subsidence signal located under the edifice. Mod-

elling by other studies (Novellis et al., 2017; Xu et al., 2016) attributed these signals to

a deflating shallow sill (∼2 km below the caldera floor), an opening dyke on the caldera

rim, and a deflating sill at greater depth (∼6 km below the caldera floor), respectively.

However, given the multitude of co-eruptive studies, and that the time series of seven

pre-eruptive interferograms was relatively short, I did not feel that this presented the

best opportunity to study a volcanic process.

However, in contrast to the 2015 eruption of Wolf, the 2018 eruption of Sierra Negra

provided a long time series of ∼100 pre-eruptive interferograms. This allowed for the

study into the pre-eruptive overpressure that I describe in Chapter 3, in which I find a

value for the inter-eruptive pressure change of ∼13.5 MPa. This value is significantly

larger than the values thought to be required to cause the overlying elastic crust to

fail in tension and mafic magma propagate to the surface, which are typically ∼1 MPa

(Manga and Brodsky, 2006; Jellinek and DePaolo, 2003), even though I use a relatively

low shear modulus of 4.5 GPa (Hooper et al., 2002) during the inversion to reduce the

overpressure value I calculate. Previous studies of Sierra Negra have shown that prior

to the 2005 eruption, movement on the faults at the edges of the caldera floor reduced

the overpressure within the sill below by 3 MPa (Jónsson, 2009), which may provide

a process to reduce the overpressure within the sill, and so postpone the eventual

eruption. Evidence of this process occurring prior to the 2018 eruption is provided

by the “RMS of cumulative residual” of Figure 3.7, in which the later interferograms

(∼65 onwards) cannot be fit as well by the six components learned during the baseline

stage. This suggests that the signals present in the later interferograms differentiate

from those earlier in the time series that can be fit well with the learned components,

and may be due to a new signal entering the time series due to movement on the caldera

floor faults.

The potential change in deformation pattern that is indicated by the decrease in my

algorithm’s ability to fit the new interferograms using the components learned during

the baseline stage also coincides with an increase in the rate of uplift that is seen as

IC1’s time course in Figure 3.7, and in Figure 3.9. With the exception of a short period

of time after the 2005 eruption, the rate of inflation remains approximately linear for

10 years (days ∼500 to ∼4200 in Figure 3.9), but within approximately one year of the

change in rate, the volcano erupts. In light of this, I postulate that when the sill is
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inflating at the lower rate, a process is occurring which limits the growth in overpressure

within the sill. When the rate of inflation increases, this process cannot keep pace, and

pressure within the sill grows, leading to events such as faulting within the caldera,

and eventual eruption. However, further analysis of the processes occurring prior to

the eruption of Sierra Negra remain beyond the scope of Chapter 3.

5.1.5 Further Remarks

In the examples considered within this thesis, both the detection algorithm that uses

a time series approach (Chapter 3) and the detection algorithm that uses single inter-

ferograms (Chapter 4) are applied to similar data with similar results. However, tests

with synthetic data show that the time series based detection algorithm may be able

to detect changes due to signals that are not visible in a single interferogram, and may

therefore be more applicable to the vast majority of deformation causing unrest events,

in which significantly lower rates of deformation would be expected than those observed

prior to the 2018 eruption of Sierra Negra. For a deep learning approach to also be

applicable to such events, it is likely that further work will be required to advance from

CNNs that use single interferograms, to those that can use a time series of data.

For each of the detection algorithms presented, further work is required for them

to become fully automated. For the time series based approach, I envisage that a

separate algorithm would be required to fulfil the role of a human interpreter analysing

that data displayed by the algorithm (e.g. Figure 3.7). In the simplest case, this

could merely collate the outputs from each time course and the cumulative residual

at each time step, and determine if any of these show significant deviations. However,

a more complex algorithm may allow for features such as a warning threshold to be

set depending on the temporal stability of any deviations (i.e. if they persist through

successive interferograms), or to determine if short-lived deviations are likely to be

due to atmospheric signals. For the CNN approach, a relatively simple output that

displays the probability of an interferogram containing deformation, and the spatial

extent of any deformation it contains may allow for it be used for automatic detection.

However, a more complex algorithm that is able to reason based on information such

as if the location of the deformation has shifted, or if interferograms are consistently

being labelled as containing deformation, may prove to be more useful for a non-expert

user.

For application of the time series based detection algorithm to other volcanoes,

tuning of the frequency with which lines of best fit are redrawn may be required to

detect lower magnitude signals successfully. Additionally, as the application of sICA

at stratovolcanoes was found to be challenging due to the lack of spatial independence

between deformation and atmospheric sources (Chapter 2), the use of weather models

to first remove a proportion of the topographically correlated APS may vastly improve
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the functioning of the detection algorithm. The size of the interferogram that the

algorithm is also applied to may also require tuning, as some deformation patterns may

be larger than the sizes currently considered.

5.1.6 Key Findings

My work to construct an automatic detection algorithm resulted in several key findings:

1. sICA outperforms NMF, s/tPCA, and tICA to isolate signals of geophysical in-

terest in a time series of interferograms.

2. The relative significance of the sources recovered when sICA is applied to InSAR

can be automatically calculated using the ICASAR algorithm.

3. Convolutional neural networks can be trained to differentiate between different

types of common volcanic deformation, and used to determine the spatial size

and location of a deformation signal within an interferogram.

4. The overpressure within the sill that inflated before the 2018 eruption of Sierra

Negra cannot be thought of in simple terms of a gradual increase in pressure until

the tensile strength of the overlying crust is overcome.

5.2 Future work

During the research I have performed to construct an automatic detection algorithm,

three distinct avenues for further work have become apparent. The first deals with

refinements to my automatic detection algorithm, the second deals with further study

of the 2018 eruption of Sierra Negra, and the third deals with the construction of more

complex convolutional neural networks.

Refinements to my automatic detection algorithm are likely to be required to ad-

dress issues that will be revealed during testing on a wider range of volcanoes. At

present, the algorithm has only been tested on two Galapagos volcanoes, and these

both provide large areas that remain coherent on long time scales. However, the ICA

algorithm is central to my automatic detection algorithm, and has been tested at Etna

(Chapter 2), and Calbuco and Paŕıcutin Lava Fields (Ebmeier, 2016), which suggests

that the detection algorithm is likely to generalise well to other volcanoes. However,

tropical volcanoes of the type discussed in Ebmeier et al. (2013), which feature strong

atmospheric signals and densely vegetated flanks, may prove challenging for sICA. Time

series methods such as StaMPS (Hooper et al., 2012) may be required, or the use of

L-Band data from planned SAR missions, such as NISAR (Rosen et al., 2015). Time

series methods such as StaMPS require for a consistent set of pixels to be considered

throughout the analysis, and therefore information may be discarded if pixels are co-

herent in only a few interferograms. However, a consistent set of pixels throughout
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the time series is required when using FastICA/ICASAR, and therefore it is likely that

removing noisy pixels using a method such as StaMPS may increase the performance

of the ICASAR algorithm. Further work to combine these approaches in order to study

signals with either smaller magnitudes than the 2015 eruption of Wolf such as the 2017

dyke intrusion at Agung, or with lower rates of pre-eruptive inflation than Sierra Negra,

may illuminate previously overlooked signals.

The extension of the algorithm to cover volcanoes that feature periodic snow cover,

such as those described in Spaans et al. (2015), may also prove challenging. The

ICA algorithm requires a consistent choice of pixels throughout the time series under

consideration, which results in the need to include pixels that are incoherent in snow

covered images, if a user wishes to use the pixels in the remainder of the time series.

The large areas of incoherent signal that significant snow fall would produce in a newly

formed interferogram may therefore cause the automatic detection algorithm to try to fit

it using unusual contributions of the baseline sources, which would then be highlighted

as unrest. It remains to be seen, however, if through using a baseline of several years,

the signals associated with snow falls may be incorporated into the baseline behaviour

of a given volcano, allowing the algorithm to avoid false positive results.

Through separating signals of geophysical interest from other nuisance signals, such

as those produced by changes in the atmosphere between SAR acquisitions, ICA can be

considered as one of many methods that can reduce the impact of atmospheric phase

delays on measurements made using InSAR. Other methods, such as the incorporation

of data from weather models, may allow for some atmospheric signals to be removed

prior to the application of ICA, and so allow it to recover signals of geophysical interest

more accurately. However, a more complete analysis of how to use ICA with other

tools designed to reduce the impact of atmospheric signals lies beyond the scope of this

work.

As discussed in Section 5.1.1, tuning the frequency at which the lines fit to the

cumulative time courses/residual are redrawn, and the use of more complex functions

for the lines may allow for more accurate characterisation of baseline behaviour, and

so improve the accuracy of the automatic detection algorithm. New ICA algorithms,

such as the EGHR algorithm proposed in Isomura and Toyoizumi (2016), may improve

the components recovered by ICA, and so the performance of the automatic detection

algorithm.

The convolutional neural network described in Chapter 4 provides many avenues for

future work due to the large number of deep learning models produced each year by the

computer vision community. Whilst the model I describe advances the state-of-the-art,

errors are still produced when it is faced with some interferograms. Additionally, the

design of a model that can only assign a single class label to each image is applicable
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to many interferograms, but it is not uncommon for an interferogram to include defor-

mation due to multiple processes. This is seen in Figure 4.9, in which the co-eruptive

interferogram of Wolf volcano features areas deforming due to the deflation of a sill,

and areas deforming due to the opening of a dyke.

To address these issues, future work could involve the use of significantly more

complex CNNs, such as YOLO9000 (Redmon and Farhadi, 2017), or R-CNN (Girshick

et al., 2013). These CNNs outperform older models such as VGG16 (used in Chapter

4), and AlexNet (used by Anantrasirichai et al. (2018)), by first proposing regions

that objects lie in, before then classifying the object found in each region. Figure 5.1

shows an example of the results produced by YOLO9000, in which it can be seen to

accurately determine the location of a diverse set of objects, and to classify them using

a prodigious set of classes. Should a model of this performance be implemented with

InSAR data, it may be able to detect regions containing deformation, before classifying

these in a manner similar to that described in Chapter 4. Working in parallel to a time

series approach, models of this complexity could provide a powerful tool for monitoring

volcanoes.

The performance of deep learning models that use data such as the frames of a

video, suggests that their application to a time series of interferograms may provide a

novel way to monitor volcanoes. Models such as PredNet (Lotter et al., 2016) are able

to predict subsequent frames of a video, and may also provide tools to forecast the likely

evolution of a period of unrest. In addition to using more complex neural networks,

it may also be possible design models that use domain specific inputs in a manner

similar to a human interpreter of InSAR data. Inputs such as DEMs would allow a

network to consider if a signal is likely to be due to deformation or a topographically

correlated APS, whilst inputs such as both wrapped and unwrapped data may allow a

network to identify unwrapping errors. The ability to train CNNs using only synthetic

data (demonstrated in Chapter 4) may also provide an avenue for further exploration,

and through generating training dataset of a similar size to ImageNet, it may become

possible to train CNNs from scratch, and so develop filters specifically designed for

identifying deformation signals.

5.3 Concluding remarks

In this thesis, I have presented two methodologies to monitor the world’s subaerial

volcanoes using InSAR. The first uses several different machine learning methods to

detect changes in a time series of interferograms, of which sICA is the most fundamental.

The nascent nature of the application of ICA to InSAR data coupled with the promising

results generated, suggests that further application and refinement is likely, which may

provide for ways to increase the performance of the automatic detection algorithm.
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Figure 5.1: Results from YOLO9000, reproduced from Redmon and Farhadi (2017). The
figure shows the results of the CNN when applied to ImageNet data, and its ability to both
locate and classify multiple objects in a single image.



REFERENCES 141

The second methodology I have presented uses deep learning to produce a model with

a basic understanding of the signals that are present in an interferogram, and so could

be used to detect signs of unrest.

The possibility to undertake this endeavour is a result of the new era of SAR,

in which open data policies, vast acquisition strategies, short revisit times, and the

automatic creation of interferograms are but several of the many recent advances that

is allowing SAR to advance into a tool used for hazard monitoring. The recent advances

in deep learning, such as the development of high level APIs such as Keras, and the

availability of models with pre-trained weights to facilitate transfer learning, have also

provided a vast array of tools that can be used to automate the interpretation of

interferograms created during routine monitoring. At present, the future of applying

powerful deep learning methods to the vast volumes of new SAR data produced looks

full of promise.
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inferred from Sentinel 1-A DInSAR deformation maps and pre-eruptive ENVISAT

time series”. In: Journal of Volcanology and Geothermal Research 344, pp. 246–256.

issn: 0377-0273. doi: 10.1016/j.jvolgeores.2017.05.013.

Pinel, V., A. Hooper, S. De la Cruz-Reyna, G. Reyes-Davila, M. P. Doin, and P. Bas-

cou (2011). “The challenging retrieval of the displacement field from InSAR data for

andesitic stratovolcanoes: Case study of Popocatepetl and Colima Volcano, Mex-

ico”. In: Journal of Volcanology and Geothermal Research 200.1-2, pp. 49–61. issn:

03770273. doi: 10.1016/j.jvolgeores.2010.12.002.

Redmon, Joseph and Ali Farhadi (2017). “YOLO9000: better, faster, stronger”. In:

Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 7263–7271.

Rosen, Paul A, Scott Hensley, Scott Shaffer, Louise Veilleux, Manab Chakraborty,

Tapan Misra, Rakesh Bhan, V Raju Sagi, and R Satish (2015). “The NASA-ISRO

SAR mission-An international space partnership for science and societal benefit”.

In: 2015 IEEE Radar Conference (RadarCon). IEEE, pp. 1610–1613.
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Xu, Wenbin, Sigurjón Jónsson, Joël Ruch, and Yosuke Aoki (2016). “The 2015 Wolf
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Appendix A: Supporting

information for Chapter 2

Contents of this file

1. Text S1 to S3

2. Figures S1 to S2

Introduction When synthesising temporal sources for testing with various blind signal

separation methods (e.g. temporal ICA), an approximation of the temporal nature of

a volcanic source during a period of unrest was required. The small study performed

on GPS data to ascertain this is detailed in Text S1 and Figure S1. When performing

ICA, the input data need to first be whitened. Whilst this is a routine step, we provide

details of this in Text S2. ICA seeks statistically independent sources, whilst PCA

seeks uncorrelated sources, and the differences between these two terms are explained

in Text S3. Figure S2 contains the interferograms covering Mt Etna.

Text S1

The temporal nature of the synthetic deformation source was chosen such that a sample

of the change per 6 days (i.e. the deformation per 6 days) had a kurtosis of 2. The

choice to deviate from a Gaussian distribution was the result of a small study conducted

using GPS data.

Six Volcanoes (Soufriére Hills (Montserrat), Mount Ruapehu (New Zealand), Long

Valley Caldera (California), Mt. St. Helens (S.W. Washington), Piton de la Fournaise

(Reunion Island), and Santorini (Greece)) were used for the analysis, in which the

vertical displacements at several GPS stations for each volcano were calculated for six

day steps (to mimic the acquisition rate of the Sentinel-1 constellation). These time

series were divided into either times of activity or quiescence using independent data,

and the kurtosis for each type of period calculated. The average kurtosis for all stations

at all volcanoes was then calculated, yielding a value of 2.46 for times of activity, and
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1.12 for times of quiescence. Figure 5.4 shows part of this process for Piton de la

Fournaise.

GPS data for Santorini was provided by Xanthos Papanikolaou (Dionysos Satellite

Observatory of National Technical University of Athens), for Piton de la Fournaise by

Dr Aline Peltier (Piton de la Fournaise volcano observatory), for Mount Ruapehu by

the New Zealand GeoNet project, and for the remaining North American volcanoes by

UNAVCO and the USGS.

Text S2

Whitening the input data is required as an input for ICA and for completeness is is

summarised here. Consider a linear transformation of the mixtures, X, such that they

will then be whitened:

Z = VX (5.1)

Where Z are the whitened mixtures, and V is the whitening matrix. For Z to be

whitened, the covariance matrix, CZ , is equal to:

CZ = ZZT = I (5.2)

If we set E to be a matrix with the normalised principal component axes as columns

(i.e. the eigenvectors of XXT for a t dimensional space), the least important column

vectors can then be discarded such that only s remain, where s is the number of sources

to be recovered. Scaling of the data to ensure unit variance can also be achieved through

use of the corresponding eigenvalues D, where D = diag(d1, d2, ..., ds):

V = D(− 1
2
)ET (5.3)

Text S3

Implementing ICA to recover statistically independent sources is very closely related to

applying PCA to recover uncorrelated sources. Informally, two signals are statistically

independent if knowledge of the value of one signal does not convey any information

of the value of the other, which contrasts with correlation that merely measures the

linear relationship between variables. A similar measure applied to signals is that of

correlation, and two signals are said to be uncorrelated if their covariance is 0. The

difference between uncorrelatedness and the more important statistical independence

can be demonstrated with two random variables that, when plotted in 2d space, form a
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Figure 5.2: Top: Time series of the vertical component of displacement at four GPS stations
at Piton de la Fournaise, with major periods of activity numbered and delimited by dark black
lines. Bottom: histograms for the six day displacements during active phases two and three,
with Gaussian distributions overlaid for comparison. Data from all of the three GPS stations
were used to construct the histograms, and normalisation involved the mean centering of the
data and scaling to unit variance in order to allow comparison between the six different volcanoes
studied.

circle around the origin. Whilst the correlation of these values is 0, it is clear that they

are not statistically independent as knowledge of one signal conveys information about

the second signal (e.g. signal 1 attaining its maximum value conveys the information

that signal 2 must also be at its median value). Therefore, two uncorrelated variables

can still provide information about each other. The wealth of successful applications of

ICA to BSS problems can be used to justify the expectation that it would outperform

PCA as two physical processes that are unrelated (such as deformation at a volcano and

atmospheric delay) are statistically independent, as opposed to merely uncorrelated.
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Figure 5.3: The two time series of interferograms covering Mount Etna that sICA was applied
to. The area to the east of the volcano which is marked ”W” in the DEM (upper left pannel)
is masked as if does not include a usable radar return, whilst the remaining areas and pixels
are masked due to low coherence.



Appendix B: Supporting

information for Chapter 3

Contents of this file

1. Text S1 to S3

2. Figures S1 to S4

Introduction S1 contains a more complete discussion of clustering images, S2 and

Figure S3 describe a synthetic example with a lower magnitude signal than used in the

main text, S3 describes the attached animations, Figure S1 shows all the interferograms

in our Sentinel-1 time series, Figure S2 shows the displacements recorded by several

GPS stations surrounding Sierra Negra, and Figure S4 shows the probability density

functions for the parameters estimated by our Bayesian inversion.

Text S1

When clustering data it can be intuitive to think of each sample of our dataset as a

vector with a length determined by the number of variables we have. Each sample can

then be thought of as a point in a space with as many dimensions as we have variables

and, our samples may form clusters that our algorithm of choice can identify. In the

case of a dataset with 100 samples of three random variables, these clusters could be

visualised in relative ease in a 3D space. However, when we wish to perform clustering

with images (as are the output of sICA), our samples have as many variables as pixels,

which in the case of interferograms tends to be of the order ∼ 104. Consequently, we

have relatively few samples in a very high dimensional space, and clustering becomes

difficult. Therefore, clustering with images generally requires a specialised distance

metric instead of using measures such as the Euclidean distance.

The ICASO algorithm uses the absolute value of the correlation between source

pairs as a similarity measure. Through taking the absolute value, sign flipped versions

of the same source attain a high similarity and do not form duplicate clusters. A trivial
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step can be performed to convert similarities to distances (e.g. D = 1− S, where D is

the distance matrix, and S is our similarity matrix).

Text S2

Figure S3 displays the results of applying our automatic detection algorithm to a time

series similar to that used in Section 2 which features a more subtle signal and requires

tuning of the frequency with which the lines of best fit are redrawn. The new signal

which enters the time series from interferogram 90 onwards is of very small magnitude,

and significant deviations from the lines of best fit are only observed for the RMS cu-

mulative residual when the lines of best fit are redrawn every 60 interferograms, and

not in the case when they are redrawn every 20 interferograms. However, in the case

that the lines of best fit are redrawn infrequently, the algorithm flags several events

erroneously (“false positive” results), such as the peaks of IC3’s time course. We believe

this demonstrates the importance of the correct configuration of the parameter, as our

algorithm’s sensitivity to small signals is achieved at the expense of an increased likeli-

hood of false positive results. Further use of our algorithm during its future application

to other volcanoes is likely to shed further light on this issue, but remains beyond the

scope of this initial study.

It should also be noted that the sinusoidal trend in IC3’s time course is due to

the strength of our synthetic topographically correlated APS varying seasonally. The

less sensitive case in which the lines of best fit are redrawn every 30 interferograms is

more successful in avoiding the false positives that are seen when the lines are redrawn

every 60 interferograms. This seasonal variation is an intrinsic part of our the nature of

the baseline data, and through fitting a linear trend we fail to accurately characterise

it. Therefore, we postulate that in future use, more complex functions may allow us

to characterise the temporal nature of certain atmospheric signals, and so ultimately

increase the sensitivity of the detection algorithm.

Text S3

Implementing ICA to recover statistically independent sources is very closely related to

applying PCA to recover uncorrelated sources. Informally, two signals are statistically

independent if knowledge of the value of one signal does not convey any information

of the value of the other, which contrasts with correlation that merely measures the

linear relationship between variables. A similar measure applied to signals is that of

correlation, and two signals are said to be uncorrelated if their covariance is 0. The

difference between uncorrelatedness and the more important statistical independence

can be demonstrated with two random variables that, when plotted in 2d space, form a

circle around the origin. Whilst the correlation of these values is 0, it is clear that they
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are not statistically independent as knowledge of one signal conveys information about

the second signal (e.g. signal 1 attaining its maximum value conveys the information

that signal 2 must also be at its median value). Therefore, two uncorrelated variables

can still provide information about each other. The wealth of successful applications of

ICA to BSS problems can be used to justify the expectation that it would outperform

PCA as two physical processes that are unrelated (such as deformation at a volcano and

atmospheric delay) are statistically independent, as opposed to merely uncorrelated.
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Figure 5.4: Time series of Sentine-1 interferograms (0− 97) and the corresponding DEM.
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Figure 5.5: GPS data spanning the 2005 − 2018 inter-eruptive period. For each station
(GV01, GV04, GV06, and GV09) the top plot shows the cumulative displacement in either
East/North/Up directions, whilst the lower plot shows the ratios of each possible pair of direc-
tions (e.g. East vs. North). With the exception of a brief period around day 2500, the ratios
remain constant, which we conclude shows that the style of deformation observed during the
Sentinel-1 time series is likely to have remained similar for the entire inter-eruptive period.
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Figure 5.6: Application of our automatic detection algorithm to a synthetic time series similar
to that presented in Figure 3. The upper and lower halves of the figure show the effects
of redrawing the lines of best fit every 20 and 60 interferograms, respectively. The first 90
interferograms contain signals from a topographically correlated APS (recovered as IC3), an
east-west phase gradient (recovered as IC2), and a turbulent APS. The remaining interferograms
(90−198) contain a small synthetic deformation signal in the centre of the frame which is difficult
to identify by eye. However, as we are unable to fit this new signal with the learned components,
the RMS cumulative residual increases in slope, but this is only detected (orange and yellow
highlighting of points) when the lines of best fit are redrawn every 60 interferograms.
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Figure 5.7: Results of our Bayesian inversion for our variable opening constant pressure
horizontal dislocation. Red lines indicate the optimal values, which we report in the main text.
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