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ABSTRACT

To guarantee safe operation and mission completion, any fault in an automatic sys-
tem has to be diagnosed as early as possible. Model-based techniques have been
widely recognized as feasible and powerful approaches for diagnosing faults and re-
quire a mathematical model of the monitored system. A prerequisite for successful
model-based fault diagnosis is satisfactory robustness with respect to modelling un-
certainties. This thesis examines and develops further the theory and application of
robust residual generation techniques in model-based fault diagnosis, beginning with
a study and review of basic principles of model-based fault diagnosis. A number of
strategies for the design of robust residual generators are then proposed. The thesis
proposes a new full-order unknown input observer structure for robust residual gen-
eration and this structure is then used to design directional and minimum variance
residuals. This is followed by a very thorough presentation of the eigenstructure
assignment approach to fault diagnosis. A new algorithm to assign right observer
eigenvectors in disturbance de-coupling design is presented. The disturbance de-
coupling residual generation is then used for diagnosing faults in a jet engine system
example. To facilitate this application, several techniques are proposed to derive an
approximate disturbance distribution matrix. These techniques enlarge the appli-
cation domain of disturbance de-coupling residual generation approaches. Robust
residual generation can be treated as a multi-objective optimization problem in
which fault sensitivity is to be maximized, whilst the sensitivity to modeffing un-
certainties is to be minimized. The thesis defines a number of performance indices
in observer-based residual generation and the multi-objective optimization is solved
by a combination of the method of inequalities and genetic algorithms. Finally, the
thesis studies the design of optimally robust parity relations using multi-criterion
optimization. The techniques developed in this thesis are well illustrated using either
academic or practical application examples and the results show the effectiveness of
the developed techniques.
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Chapter 1

INTRODUCTION

1.1 Background

1.1.1 Importance of fault diagnosis

Modern control systems are becoming more and more complex and control algo-

rithms more and more sophisticated. Consequently, the issues of reliability, oper-

ating safety and environmental protection are of major importance, especially for

safety-critical systems like chernica]. plants, nuclear reactors, spacecraft, aircraft,

computerized banking systems and high speed transportation systems. If faults

occur, consequences can be extremely serious in terms of human mortality, envi-

ronmental impact and economic loss. Hence, there is a growing need for on-line

supervision and fault diagnosis to increase the reliability of such safety-critical sys-

tems. Therefore, early indications concerning which faults are developing can help

avoid system breakdown, mission abortion and catastrophes.

Over the last two decades, the research on fault diagnosis has gained increasing

consideration world-wide. This development was (and still is) mainly stimulated by

the trend of automation towards more complexity and the growing demand for higher

availability and security of control systems. However, a strong impetus also comes

from the side of modern control theory that has brought forth powerful techniques

of mathematical modelling, state estimation and parameter identification that have

been made feasible by the spectacular progresses of computer technology.

1
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1.1.2 Fault diagnosis terminology

A "fault" is to be understood as an unexpected change of system function', although

it may not represent physical failure or breakdown. Such a fault or malfunction

hampers or disturbs the normal operation of an automatic system, thus causing

an unacceptable deterioration of the performance of the system or even leading to

dangerous situations. We use the term "fault" rather than "failure" to denote a mal-

function rather than a catastrophe. The term failure suggests complete breakdown

of a system component or function, whilst the term fault may be used to indicate

that a malfunction may be tolerable at its present stage. A fault must be diagnosed

as early as possible even it is tolerable at its early stage, to prevent any serious

consequences.

A monitoring system which is used to detect faults and diagnose their location and

significance in a system is called a "fault diagnosis system". Such a system normally

consists of the following tasks:

. Fault detec ion: to make a binary decision - either that something has gone

wrong or that everything is fine.

. Fault isolation: to determine the location of the fault, e.g., which sensor or

actuator has become faulty.

. Fault identification: to estimate the size and type or nature of the fault.

The relative importance of three tasks are obviously subjective, however the detec-

tion is an absolute must for any practical system and isolation is aLmost equally

important. Fault identification, on the other hand, whilst undoubtedly helpful, may

not be essential if no reconfiguration action is involved. Hence, fault diagnosis is

very often considered as fault detection and isolation, abbreviated as FDI, in the

literature.

'An alternative definition given by Isermann (1984): a "fault" is defined as "a non permitted
deviation of a characteristic property which leads to the inability to fulfil the intended purpose".
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1.1.3 Fault diagnosis in intelligent fault-tolerant control

There is an increasing need for controlled systems to continue operating acceptably

to fulfil specified functions following faults in the system being controlled or in the

controller. A control system with this kind of fault-tolerance capability is defined

as a fault-tolerant control system. There may be some graceful performance degra-

dation for a fault-tolerant system to operate under a faulty condition, however the

primary objective is to maintain system operation and give the human operator

(or automatic monitoring system) reasonable time to repair the system or to use

alternative measures to avoid catastrophes. Fault-tolerant control has received in-

creasing attention recently, motivated by the need to achieve high levels of reliability,

maintainability and performance in situations where the controlled system can have

potentially damaging effects on the environment if faults in its components take

place. For instance, in hazardous chemical and nuclear plants, the consequences

of an improper control action following a control system component fault can be

disastrous. In the case of flight control systems, safety is the greatest priority, which

implies that even in the presence of failed components the aircraft must be able to

land safely.

A fault-tolerant control system is designed to retain some portion of its control

integrity in the event of a specified set of possible component faults or large changes

in the system operating conditions that resemble these faults. This can only be done

if the control system has built in an element of automatic reconfiguration, once a

malfunction has been detected and isolated. Fault diagnosis plays an important role

in the fault-tolerant control, as before any control law reconfiguration is possible the

fault must be reliably detected, isolated, and the information should be passed to a

supervision mechanism to make proper decision.

Fault-tolerance is considered as one of characteristics of intelligent systems. Ac-

cording to Stengel (1991): "By design or implementation, failure-tolerant control

systems are intelligent systems". Aström (1991) has also stated: "Fault diagnosis is

an essential ingredient property of an intelligent control system". Many important

issues in fault-tolerant control systems can be found in a recent plenary paper by

Patton (1993).



1.1 Background
	

4

1.1.4 Model-based fault diagnosis

In practice, the most frequently used diagnosis method is to monitor the level (or

trend) of a particular signal, and taking action when the signal reached a given

threshold. This method of limit checking, whilst simple to implement, has serious

drawbacks. The first drawback is the possibility of false alarms in the event of noise,

the input variations and the change of operating point. The second drawback is that

a single fault could cause many system signals to exceed their limits and appear as

multiple faults, and hence fault isolation is very difficult. The use of consistency

checking for a number of system signals which can eliminate the above problems,

is an important way of enhancing the detection and isolation or fault diagnosis

capability of an automated system. However, a mathematical model which gives

functional relationships among different system signals is needed.

A traditional approach to fault diagnosis in the wider application context is based

on "hardware (or physical/parallel) redundancy" methods which use multiple lanes

of sensors, actuators, computers and software to measure and/or control a particular

variable. Typically, a voting scheme is applied to the hardware redundant syste' to

decide if and when a fault has occurred and its likely location amongst redunuant

system components. The use of multiple redundancy in this way is common, for

example with digital fly-by-wire flight control systems e.g. the AIRBUS 320 (Favre,

1994) and in other applications such as in nuclear reactors. The major problems

encountered with hardw are recluixc1aucj are the extra e rcie'iit &v

cost and, furthermore, the additional space required to accommodate the equipment.

In view of the conflict between reliability and the cost of adding more hardware,

it is sensible to attempt to use the dissimilar measured values together to cross

check2 each other, rather than replicating each hardware individually; this is the

concept of "analytical (functional) redundancy" which uses redundant analytical

(or functional) relationships between various measured variables of the monitored

process (eg inputs/outputs; outputs/outputs; inputs/inputs). Fig.1.1 illustrated

the hardware and analytical redundancy concepts. No additional hardware faults

are introduced into an analytical redundant scheme, because no extra hardware is

required, hence analytical redundancy is potentially more reliable than hardware

redundancy (van Schrick, 1991; van Schrick, 1993).

2This procedure is sometimes referred to as data reconciliation.
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Figure 1.1: Hardware vs analytical redundancy

In analytical redundancy schemes, the resulting difference generated from the con-

sistency checking of different variables is called as a residual signal. The residual

should be zero-valued when the system is normal, and should diverge from zero

when a fault occurs in the system. This zero and non-zero property of the residual

is used to determine whether or not faults have occurred. Analytical redundancy

makes use of a mathematical model of the monitored process and is therefore often

referred to as the "model-based approach" to fault diagnosis.

Consistency checking in analytical redundancy is normally achieved through a com-

parison between a measured signal with its estimation. The estimation is generated

by the mathematical model of the system being considered. The comparison is done

using the residual quantities which give the difference between the measured sig-

nals and signals generated by the mathematical model. Hence, model-based fault

diagnosis can be defined as the determination of faults of a system from the com-

parison of available system measurements with a priori information represented by

the system's 7,thematical model, through generation of residual quantities and their

analysis. A r€ idual is a fault indicator or an accentuating signal which reflects the

faulty situation of the monitored system.

The major advantage of the model-based approach is that no additional hardware

components are needed in order to realize an FDI algorithm. A model-based FDI
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algorithm can be implemented in software on the process control computer. Fur-

thermore, the measurements necessary to control the process are, in many cases,

also sufficient for the FDI algorithm so that no additional sensors have to be in-

stalled. Under theses circumstances, only additional storage capacity and possibly

greater computer power is needed for the implementation of a model-based FDI al-

gorithm. Immense developments in computer technology have made such methods

very feasible and practicable.

1.1.5 Robustness in model-based fault diagnosis

Model-based FDI makes use of mathematical models of the supervised system, how-

ever a perfectly accurate and complete mathematical model of a physical system

is never available. Usually, the parameters of the system may varying with time

in an uncertain manner, and the characteristics of the disturbances and noise are

unknown so that they cannot be modelled accurately. Hence, there is always a

mismatch between the actual process and its mathematical model even if there are

no process faults. Apart from the modelling used for the purpose of control, such

discrepancies cause fundamental methodology difficulties in FDI applications. They

constitute a source of false and missed alarms which can corrupt the FDI system

performance to such an extent that it may even become totally useless. The effect of

modelling uncertainties is therefore the most crucial point in the model-based FDI

concept, and the solution of this problem is the key for its practical applicability

(Frank, 1991a).

To overcome the difficulties introduced by modelling uncertainty, a model-based FDI

has to be made robust, i.e. insensitive or even invariant to modelling uncertainty.

Sometimes, a mere reduction of the sensitivity to modelling uncertainty does not

solve the problem because such a sensitivity reduction may be associated with a

reduction of the sensitivity to faults (Frank, 1991a). A more meaningful formula-

tion of the robust FDI problem is to increase robustness to modelling uncertainty,

whilst without losing (or even with an increase of) fault sensitivity. An FDI scheme

designed to provide satisfactory sensitivity to faults, associated with the necessary

robustness with respect to modelling uncertainty, is called a robust FDI scheme

(Frank, 1991a). The importance of robustness in model-based FDI has been widely

recognized by both academia and industry. The development of robust model-based

01 methods has been a key research topic during the last 10 years. A number of
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methods have been proposed to tackle this problem, for example, the unknown in-

put observer, eigenstructure assignment, optimally robust parity relation methods.

However, the research is still under the way to develop the practically applicable

methods.

An important task of the model-based FDI scheme is to be able to diagnose incipient

faults in a system before they are manifested as problems require either human

operator or automatic system intervention. The diagnosis of hard and abrupt faults

is relatively easy, because their effects on the FDI system are larger than modelling

uncertainty and can be diagnosed by placing an appropriate threshold on the resid-

ual. However, incipient faults have a small effect on residuals, and can be hidden

as a consequence of modelling uncertainty. This highlights the need of robustness

in FDI. The effect of an incipient fault on the monitored system is very small and

almost unnoticeable when it occurs. However, it may develop slowly to cause very

serious consequences, although it may be tolerable in its early stage. It is impor-

tant to note that a soft fault is a malfunction condition which is non-serious (in

its present state) and which often develops in a continuous way (i.e. which does

not contain discontinuous signal characteristics brought about as a consequence of

abrupt changes). The presence of soft faults may not necessarily downgrade the per-

formance of the plant significantly, however, such faults will indicate that the sensor

(or other component) should be replaced, or that the system should be re-configured

before the probability of more serious malfunction increases. Prompt indication of

incipient faults can give the operator (or an automatic monitoring system) enough

information and time to take decisive actions to prevent any serious failure in the

system. The successful detection and diagnosis of soft faults can therefore be con-

sidered as the hardest challenge for the design and evaluation of algorithms working

in a safety-critical environment.

1.1.6 Brief history of model-based fault diagnosis

Although many approaches to fault diagnosis using the model-based concept have

been proposed over the last two decades, it is not possible to mention all o them.

In the author's opinion, the following list presents some of the key develop nents in

model-based fault diagnosis:

3 Small and slowly developing faults are normally defined as incipient faults, and sometimes
called soft faults.
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1971: The idea of replacing hardware redundancy by analytical redundancy was

originated by Beard (1971) at MIT. Beard developed fault (failure) detection

filters which generate directional residuals for FDI. For recent developments,

see Park and Rizzoni (1994).

1971: Mehra and Peschon (1971) introduced a general procedure for FDI using inno-

vations (or residuals) generated by a Kalman filter. The faults are diagnosed

by statistical testing on whiteness, mean and covariance of residuals.

1974: Willsky and Jones (Willsky and Jones, 1974; Willsky and Jones, 1976) devel-

oped an FDI strategy which uses Generalized Likelihood Ratio (GLR) testing

on a residual generated by a Kalman filter to diagnose faults.

1974: The multiple model adaptive filter approach, which involves multiple hypoth-

esis testing on residuals generated by a bank of Kalman filters, should be at-

tributedto a number of investigators, including Willsky et al. (Wilisky, Deyst

and Crawford, 1974; Willsky, Deyst and Crawford, 1975) and Montgomery

and Caglayan (1976).

1975: Clark, Fosth and Walton (1975) used Luenberger observers for fault detec-

tion, and various sensor fault isolation schemes were later developed by Clark

(Clark, 1978a; Clark, 1978b; Clark, 1979).

1979: The parity relation approach to generate the residual (or parity vector), based

upon consistency checking on system input and output data over a time win-

dow, was originally proposed by Mironovski (1979) although he used a different

terminology. Unfortunately, this paper has not received enough attention due

to its limited availability. The approach was later, independently proposed by

Chow and Willsky (1984), and has been expressed in several different versions.

For example, Gertler (1988) gave a parity relation design method in z-domain,

Chen and Zhang (1990) developed a stochastic system FDI approach based

upon a direct development of the parity vector concept used in hardware re-

dundancy.

1980: The two stages of model-based FDI structure were first described by Chow

and Willsky (1980) and restated in Chow and Willsky (1984).

1981: Leininger (1981) pointed out the impact of moc1ling errors on FDI perfor-

mance. The first attempt of improving robustness of observer-based FDI ap-

proaches is attributed to Frank and Keller (1981).
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1982: FDI based on parameter estimation: this approach directly uses system iden-

tification and hence it is difficult to identify its origin. According to Isermann

(1984), Geiger (1982) was the first to apply this approach.

1982: Watanabe and Himmelblau (1982) introduced a robust sensor detection

method using an unknown input observer (UTO). Robust FDI based on UlOs

has been studied extensively by Frank's group at the University of Duisburg,

Germany, and many contributions have been made by this group, for example,

Frank and Wiinnenberg (1987), Frank and Wiinnenberg (1989), Wiinnenberg

(1990), Frank (1990), Frank (1991a), Frank and Seliger (1991) and Seliger and

Frank (1991a). Chen and Zhang (1991) proposed a robust actuator fault isola-

tion scheme and demonstrated using a chemical process. Ge and Fang (Ge and

Fang, 1988; Ge and Fang, 1989) developed a robust component FDI approach

using the so-called robust observation method which is similar to UlOs, in

principle. Viswanadham et al. (Viswanadham and Srichander, 1987; Phatak

and Viswanadham, 1988) proposed an actuator fault isolation scheme which is

an important original contribution, however they did not consider robustness

issues.

1986: Patton, Wilcox and Winter (1986) proposed an FDI method based on eigen-

structure assignment and this approach has been studied extensively by Pat-

ton et al.. Many developments have been made, for example, Patton (1988),

Patton and Kangethe (1989) and Patton and Chen (199lg).

1986: Lou, Willsky and Verghese (1986) developed a strategy to design "optimally

robust parity relations" for diagnosing faults in systems represented by multi-

ple models.

1987: Viswanadham, Taylor and Luce (1987) introduced a new residual generation

method based on a factorization of the system transfer matrix. This approach

was later developed by Ding and Frank (1990) and is normally regarded as a

frequency domain residual generation approach.

1988: Viswanadham and Minto (1988) proposed solutions for improving the robust-

ness of frequency domain residual generation using H°° optimization tech-

niques. Studies on this problem have been extended by Ding and Frank in a

series of papers, e.g., Ding and Frank (1991), Frank and Ding (1993), Ding,

Guo and Frank (1993) and Frank and Ding (1994). Recently, Qiu and Gertler

(1993) also solved the same problem with a different solution.
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1988: When residuals cannot be made robust against system uncertainty, the robust

FDI can be achieved by robust decision making using adaptive thresholds.

Emami-Naeini, Akhter and Rock (1988) introduced the threshold selector con-

cept to generate adaptive thresholds and the approach was later generalized

by Ding and Frank (Ding and Frank, 1991; Frank and Ding, 1993; Ding et al.,

1993; Frank and Ding, 1994). Note that, Clark (1989) also proposed a method

to produce adaptive thresholds, based on empirical rules.

1989: Gertler and colleagues proposed a scheme to design robust parity relations us-

ing the "orthogonal parity relations" concept (Gertler and Luo, 1989; Gertler,

Fang and Luo, 1990; Gertler and Singer, 1990; Gertler, 1991; Gertler and

Kunwer, 1993).

1991: A generalized residual generator structure was described by Patton and Chen

(1991e).

1991: Patton and Chen (Patton and Chen, 1991f; Patton and Chen, 1991b; Patton,

Chen and Zhang, 1992) proposed several schemes to represent modelling un-

certainties from various sources as additive disturbances with an estimated dis-

tribution matrix. Robust FDI is thus achieved using disturbance de-coupling

approaches. To date, this is the most important contribution in robust FDI.

So far, most robust residual generation methods based on the assumption that

disturbance distribution matrices are known, however this assumption is not

valid for most real systems. The contributions by Patton and Chen have paved

a way for real application of robust FDI techniques.

1991: Robust FDI for nonlinear dynamic systems using nonlinear unknown input

observers (Seliger and Frank, 1991a; Seliger and Frank, 1991b).

1992: Robust FDI using p synthesis (Mangoubi, Appleby and Farrell, 1992; Appleby,

Dowdlle and Vander Velde, 1991).

1994: Chen, Patton and Liu (1994a) developed a numerical optimization method to

design observer-based residual generators.

During the development of model-based FDI, many excellent survey and tutorial

papers have been published. Different papers discussed varied aspects of the problem

from different prospectives. Some of the most notable survey papers are commented

upon briefly as follows:
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• Willsky (1976) was the first survey paper on model-based FDI which presents

key concepts of analytical redundancy. The emphasis of the paper was on

stochastic systems and jump detection.

• The survey paper by Mironovski (1980) focused on a group of methods in which

the diagnosis is carried out by checking the algebraic relations between system

signals. The relations to be checked are generated by either parity relations or

Luenberger observers. The paper gave a residual generation structure which

was also used by Basseville (1988) and the classification of diagnostic methods

was also discussed in the paper.

• Isermann (1984) illustrated that process fault diagnosis can be achieved us-

ing the estimation of unmeasurable process parameters and/or state variables.

Both parameter estimation and observer-based methods were discussed. The

paper gave a generalized structure of FDI based on process models and un-

measurable quantities. This structure has been referred to in many subsequent

papers, e.g. Frank (1990).

• Isermanu (1987) reported some experiences in the use of parameter estir

for process FDI.

• Frank (1987) gave a comprehensive survey on observer-based FDI methods.

Many different schemes using both linear and nonlinear observers are re-

viewed. The paper also discussed the parameter sensitivity reduction problem

in model-based FDI. Some application results were presented. The paper gave

a list of application examples of model-based FDI, and a brief historical review.

• Basseville (1988) addressed the problems of detection, estimation and diagno-

sis of changes in dynamical properties of signals or systems, with particular

emphasis on statistical methods for detection, to provide a general framework

for change detection in signals and systems.

• The survey paper by Gertler (1988) was not very comprehensive, however it

presented basic concepts and gave some essential definitions. Some problems

discussed in this paper, such as isolability conditions and sensitivity and ro-

bustness, are still of tutorial value today.

• Frank (1990) outlined the principles and most important techniques of model-

based residual generation using parameter identification and state estimation

methods with emphasis upon the latest attempts to achieve robustness with
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respect to modelling uncertainty. The possibility of combining model-based

and knowledge-based techniques for FDI was also discussed.

• Isermann and Freyermuth (1990) studied on-line FDI expert systems with

analytical (parameter estimation) and heuristic process knowledge. This paper

was followed by their another survey paper (Isermann and Freyermuth, 1991a),

and an application paper (Isermann and Freyermuth, 1991b).

• Tzafestas and Watanabe (1990) reviewed two major approaches for FDI, the

mathematical model (or analysis) approach and the knowledge-based (or ex-

pert system) approach. The techniques of the former approach were presented

in two groups, namely "statistical techniques" and "analytical redundancy"

techniques, whereas the techniques of the latter approach are classified as

"shallow" and "deep" knowledge-based techniques. The most distinguish fea-

ture of this paper was its excellence on the survey of stochastic techniques.

• Patton (1991) emphasised aerospace applications of model-based FDI and an-

alytical redundancy.

• Frank (1991a) has shown how to enhance robustness in observer-based FDI

by reviewing disturbance de-coupling observers, optimal parity relations, H°°

observers and adaptive thresholds.

• Gerticr (1991) presented a tutorial on residual generator synthesis methods.

The best known residual generation methods, including parity equations, di-

agnostic observers and Kalman filtering, were presented in a consistent frame-

work. The discussion was organized along two residual enhancement concepts,

namely structured and fixed direction residual sets. A numerical example was

used to show how parity relation and observer based designs lead to equivalent

residual generators, once the design objectives are specified. Robustness issues

were also addresses in this paper.

• Patton and Chen (1991e) unified the observer-based and parity relations ap-

proaches under a common parity space format. The model-based FDI has

been re-stated by them as the generation and analysis of residual signals in

the parity space. Their paper pr >ented a generalized framework of residual

generators and provided some important definitions, as well as demonstrating

robust fault diagnosis methods using two tutorial examples. The paper also

formally proved the equivalence between observer-based and parity relation

approaches in residual generation.
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• The survey paper by Patton and Chen (1992b) followed the same philosophy

given by Patton and Chen (1991e). The emphasis was on different synthe-

sis methods for residual generators with a particular reference on aerospace

applications.

• Isermann (1993a) gave a tutorial for parameter estimation FDI methods based

a number of real or laboratory applications. This was an application-oriented

tutorial paper.

• Frank (1993) reviewed the advanced methods of observer-based FDI. The pa-

per discussed the issue of improving decision-making robustness using fuzzy

logic. The paper, however was limited in its scope to research developments

within Frank's group.

• The paper by Gertler and Kunwer (1993) studied both perfect and approxi-

mate disturbance de-coupled residual generator designs, with an emphasis on

z-domain parity relation design methods and with a numerical example to

demonstrate approximate de-coupling.

• Patton (1993) studied the robustness issues in fault-tolerant control systems,

including diagnosis and reconfiguration issues. The paper pointed out that

the best way forward in fault-tolerant control is to integrate together FDI

and controller functions in analysis and design, so that joint stability and

performance robustness properties can be optimized.

• Patton and Chen (1993b) reviewed robustness issues against modelling uncer-

tainty from different sources and a number of solutions in robust FDI were

also presented.

• Isermann (1993b) discussed the applicability of different FDI methods based

on their requirements and results from simulations. The work was followed

by a more comprehensive paper (Isermann, 1994) in which the integration of

different FDI methods was also studied.

• Patton, Chen and Nielsen (1994) presented some guide-lines for engineers in

the choice of different model-based FDI methods.

• Patton (1994) presented an up-dated review of the state of the art of robust

model-based FDI techniques.
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The above list is inconclusive and there are many other survey papers which em-

phasise on different aspects of the problem, e.g., Walker (1983); Himmelblau (1986);

Tzafestas (1989); Frank (1991b); Ray and Luck (1991) Frank (1992b); Frank and

Köppen (1993); Martin (1993); Patton and Chen (1993a); Stein (1993); Stengel

(1993).

There are three encyclopedia articles on model-based FDI techniques available,

Frank (1992a) presented basic principles, Patton and Chen (1992c) discussed ro-

bustness issues and Labarrère and Patton (1993) emphasised aerospace applications.

Model-based FDI techniques have been summarized in the following books: Pan

(1975); Himmelblau (1978); Basseville and Benveniste (1986); Singh, Hindi, Schmidt

and Tzafestas (1987); Singh et al. (1987); Viswanadham, Sarma and Singh (1987);

Patton, Frank and Clark (1989); Brunet, Jaume, Labarrère, Rault and Verge (1990);

Basseville and Nikiforov (1993) and Patton, Frank and Clark (1995). It should be

pointed out that most of the books on model-based FDI are multi-authored books,

this is mainly because this technique is still in a developmental stage.

Papers on model-based FDI techniques can be found in many engineering journals

and IFAC, IMACS, IEEE, TEE and other conferences. There are three recent sym-

posia specially dedicated to fault diagnosis: SAFEPROCESS'91 (Isermann, 1991),

TOOLDIAG'93 (Labarrère, 1993) and SAFEPROCESS'94 (Ruokonen, 1994). It is

interesting to notice that, in SAFEPROCESS'94 there were many short reviews,

comparison studies and benchmark testing for a number of techniques. This is a

sign that model-based FDI techniques are moving towards a mature status.

1.2 Outline of the Thesis

To detect and isolate faults in a dynamic system, based on the use of an analyt-

ical model, a declarative or residual signal must be used, which is derived from a

combination of real measurements and estimates (generated by the model). The

robustness problem can be tackled by defining the independent sensitivifes of the

residual to uncertainties and faults. Following from the definition givei above, a

robust FDI scheme is one whose residual is insensitive to uncertainties whilst sen-

sitive (in a certain way) to faults. The aim of robust design of the FDI scheme

is to reduce the effects of uncertainties on the residuals, and (or) to enhance the
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effects of faults acting on the residuals. The success of fault diagnosis depends on

the quality of the residuals. A preliminary requirement of residuals for successful

diagnosis is the robustness with respect to modelling uncertainty. The main aim

of this thesis is to develop robust residual generation strategies for model-based fault

diagnosis of dynamic uncertain systems. The thesis consists of 8 chapters and the

main contributions are presented in Chapters 2-7. Each chapter is devoted to a

particular problem in robust residual generation, and hence the chapters are rela-

tively independent although they are related in some ways. The thesis is organized

as follows:

Chapter 2 reviews the state of the art of model-based fault diagnosis techniques.

The fault diagnosis problem is formalized in an uniform framework by presenting the

mathematical description and definitions. This properly defined framework gives a

clear picture of the principles and problems associated with model-based fault diag-

nosis. The fundamental issue of model based methods is the generation of residual

signals using the mathematical model of the monitored system. By analysing the

fault-indicating signal residual, the nature of faults can be obtained. A generalized

structure of the residual generator is presented in this chapter. This gives ideas of

how to design and implement the residual generation. The residual generator can

be purposely designed for achieving the required diagnosis performances, e.g, fault

isolation, disturbance de-coupling and residual frequency response shaping.

In order to design a robust residual generator, we need to make some assumptions

about the modelling uncertainty. The most frequently used assumption is that the

modelling uncertainty is expressed as a disturbance term in the system dynamic

equation. Although the magnitude of the disturbance is unknown, its distribution

(or direction) is assumed known a priori. Based on this assumption, the disturbance

de-coupling residual generator can be designed using unknown input observer the-

ory or via the eigenstructure assignment technique. Robust fault diagnosis is then

achievable using disturbance de-coupled residuals. Follow this philosophy, Chap-

ter 3 and Chapter 4 present some strategies for designing disturbance de-coupling

residual generators.

Chapter 3 studies the approach to robust residual generation with the aid of the

unknown input observer (UlO). The principle of the UlO is to make the state esti-

mation error kipled from the disturbance. Since the residual is defined as the

weighted output estimation error, the residual is also de-coupled from disturbances.

This chapter presents a new full-order unknown input obse r structure. The nec-
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essary and sufficient conditions for a UTO to exist presented in this chapter are very

easy to verify and the design procedure is very simple. Robust sensor and actuator

fault isolation schemes based on UlOs are presented in this chapter and a chemical

reactor is used to illustrate the robust actuator isolation principles. This chapter

also presents a method to make the residual have both disturbance de-coupling and

directional properties, by combining the unknown input observer and fault detection

filter theories. The directional property makes fault isolation achievable. Another

contribution of this chapter is the optimal state estimation of stochastic systems

with unknown inputs. It is proved that the design freedom left after disturbance de-

coupling can be used to make the state estimation error have minimal variance. The

use of this optimal disturb auce de-coupled. observer iu fault d.etectiou is Ulustrated.

using a simplified flight control example.

Chapter 4 focuses on the disturbance de-coupled residual generator design via

eigenstructure assignment. The most challenging problem in fault diagnosis is the

correct design of the residual. State estimation is not necessary in FDI, and hence

the state estimation error does not needed to be de-coupled from the disturbance.

What is actualir required is that the disturbance be de-coupled from the residual.

The correct disturbance de-coupling can be achieved by assigning left observer eigen-

vectors orthogonal to disturbance directions or assigning right observer eigenvectors

parallel to disturbance directions. The most important contribution of this chapter

is the proposal of a new method for assigning right eigenvectors of the observer.

This is equivalent to the assignment of left eigenvectors for a controlled system, a

problem which is rarely studied in the literatures. The principles, existence condi-

tions and the design procedure for the eigenstructure assignment approach to robust

residual generation are presented in Chapter 4, where it is also shown that the re-

maining design freedom, after the disturbance de-coupling has been satisfied, can

be utilized to optimize other performance indices (such as fault sensitivity). For

a discrete-time design, a dead-beat disturbance de-coupling residual generator can

be designed which has a direct correspondence with parity relations. Two numer-

ical examples are presented in this chapter to illustrate the design procedure and

de-coupling principles.

The theory of disturbance de-coupling for robust fault diagnosis has being developed

for some years, however few investigators have shown how to apply this method to

real applications. The difficulty is caused by the mis-match between the theoret-

ical assumptions and practical reality. In most practical systems, the disturbance

distribution matrix is not known. Disturbance de-coupling methods which require
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the disturbance distribution matrix cannot be applied directly to the system with

unknown disturbance distribution matrix.

Chapter 5 demonstrates how to apply the disturbance de-coupling method to a

system with modelling uncertainty. It is proved that an approximate disturbance

term with an estimated distribution matrix can be used to represent the effect of

modelling uncertainty on the system. Using this approximate distribution matrix

in the disturbance de-coupling residual design, the nearly robust fault diagnosis is

achievable. A number of methods for finding the approximate distribution matrix

are given to deal with different uncertainty cases, based on either optimization or

identification techniques. The methods developed in Chapter 5 are applied to a

jet engine simulation system to demonstrate the effectiveness of robust residual for

detecting incipient faults. The simulation shows satisfactory results. This jet engine

is a complex, highly nonlinear and high order system and, any techniques applicable

to this system should also be applicable to other complex non-linear and uncertain

dynamical systems.

The purpose of robust residual design is to make the residual maximally sensitive

to faults and minimally insensitive to modelling uncertainty. Chapter 6 develops a

new approach to the design of optimal residuals for detecting incipient faults, based

on multi-objective optimization and the genetic algorithm. In this approach the

residual is generated via an observer. To reduce false and missed alarm rates in

fault detection, a number of performance indices are introduced into the observer

design. Some performance indices are expressed in the frequency domain to take

account of the frequency distributions of faults, noise and modelling uncertainties.

All objectives are then reformulated into a set of inequality constraints on the per-

formance indices. The genetic algorithm is thus used to search an optimal solution

to satisfy these inequality constraints on performance indices. The approach de-

veloped is applied to a flight control system example and simulation results show

that incipient sensor faults can be detected reliably in the presence of modelling

uncertainty.

Chapter 7 studies the robust residual generation using optimally robust parity

relations. The system parameters are considered to vary within known bounds,

representative points in uncertainty regions are chosen to represent the uncertainty.

The system dynamics are effectively describable using multiple linear models. A

robust residual should be insensitive to changes in these models. This objective is

achievable by minimizing a defined performance index. To avoid the reduction of
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fault sensitivity during the minimization of the sensitivity to uncertainty, the fault

sensitivity is also used as a performance index to be maximized. Thus, the robust

residual design is formulated as a multi-criterion optimization problem. The chapter

shows a number ways of mixing these two performance indices together to form a

single objective optimization problem. This problem is then solved using singular

value decomposition and the computation of the generalized eigenstructure. Other

developments in the design of robust parity relations are also discussed. A numerical

example is used to demonstrate the method developed in this chapter.

Chapter 8 summarizes the contributions and achievements of the thesis, and pro-

vides some recommendations for possible further research topics as an extension of

this work.



Chapter 2

BASIC PRINCIPLES OF
MODEL-BASED FAULT
DIAGNOSIS

2.1 Introduction

The model-based approach to fault diagnosis in automated processes has been re-

ceiving considerable attention over the last two decades, both in a research context

and also in the domain of application studies on real processes. There are a great

variety of methods in the literature, based on the use of mathematical models of the

monitored processes and modern control theory.

The most important issue in model-based fault diagnosis is the robustness against

modelling uncertainty which arises from incomplete knowledge and understanding of

the monitored processes. Robust fault diagnosis has become a central research issue

over recent years. As this thesis focuses on the development of robust model-based

fault diagnosis techniques, this chapter studies basic principles of model-based fault

diagnosis. Attention is first turned to the modelling of the system with all possible

faults. Residual generation is then identified as an essential problem in model-based

FDI, as an information processing procedure which, if not designed correctly could

lose some fault information. A general framework for the residual generator is also

presented. Residual generators based on different methods, such as observers and

parity relations, are just special cases in this general framework. This chapter also

shows that, to fulfil FDI tasks successfully, the residual signal has to satisfy fault

detectability and isolability conditions. Some most important residual generation

19
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methods are discussed. One of the most important contributions of this chapter

is to give some general guide-lines about the applicability of different model-based

FDI approaches.

The robust FDI issue is discussed in this chapter and some commonly used robust

approaches are presented. This formalizes a basis for the studies described in later

chapters. The use of adaptive thresholds in FDI is also discussed. Finally, a dis-

cussion of fuzzy logic, qualitative modelling and knowledge based approaches in

FDI is given. Some perspectives in the future development of Ff1, by combining

quantitative and qualitative techniques are also discussed.

2.2 Model-based Fault Diagnosis Methods

Model-based fault diagnosis can be defined as the detection, isolation and charac-

terization of faults in components of a system from the comparison of the system's

available measurements, with a priori information represented by the system's math-

ematical model.

Faults are detected by setting a (fixed or variable) threshold on a residual quantity

generated from the difference between real measurements and estimates of these

measurements using the mathematical model. A number of residuals can be de-

signed with each having special sensitivity to individual faults occurring in different

locations in the system. The subsequent analysis of each residual, once a threshold

is exceeded, then leads to fault isolation.

Fig.2.l illustrates the general and conceptual structure of a model-based fault diag-

nosis system comprising two main stages of residual generation and decision making.

This two-stages structure was first suggested by Chow and Willsky (1980) and now

is widely accepted by the fault diagnosis community. These two main stages are

described as follows:

(1) Residual Generation: Its purpose is to generate a fault indicating signal -

residual, using available input and output information from the monitored system.

This auxiliary signal is designed to reflect the onset of a possible fault in the ana-

lyzed system. The residual should be normally zero or close to zero when no fault is

present, but is distinguishably different from zero when a fault occurs. This means

th the residual is characteristically independent of systeminputs and outputs, in
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input I	 output
System	 f

_________________________________________ fault

information
Residual ____________	 _______________

	

I residuals 
J Decision	

rGeneration I	 I Making

Model-based Fault Diagnosis

Figure 2.1: Conceptual structure of model-based fault diagnosis

ideal conditions. The algorithm (or processor) used to generate residuals is called

a residual generator. Residual generation is thus a procedure for extracting fault

symptoms from the system, with the fault symptom represented by the residual

signal. The residual should ideally carry only fault information. To ensure reli-

able FDI, the loss of fault information in residual generation should be as small as

possible.

(2) Decision-Making: The residuals are examined for the likelihood of faults, and

a decision rule is then applied to determine if any faults have occurred. A decision

process may consist of a simple threshold test on the instantaneous values or moving

averages of the residuals, or it may consist of methods of statistical decision theory,

e.g., generalized likelihood ratio testing or sequential probability ratio testing (Will-

sky, 1976; Basseville, 1988; Basseville and Nikiforov, 1993; Tzafestas and Watanabe,

1990).

Most of the work in the field of quantitative model-based fault diagnosis is focused

on the residual-generation problem because the decision-making based on well de-

signed residuals is relatively easy. However, this does not imply that the research on

decision-making is not important. The thesis will concentrate on the quantitative

residual generation stage of fault diagnosis by proposing a number of new strategies

in the enhancement of residual robustness.
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2.3 On-line Fault Diagnosis

Model-based FDI is concerned mainly with on-line fault diagnosis, in which the

diagnosis is carried out during system operation. This is because the system input

and output information required by model-based FDI is only available when the

system is in operation. Opening of feedback loops in the system being tested or

supplying test actions leading to incorrect functioning are considered inadmissible.

The relationship between the fault diagnosis (or supervision) with the control loop

is shown in Fig.2.2.

reference________________	
input

command +	 Feedforward ____________ 
Actuators

Controller	 u(t) Iu (t)	 - ____________	 ________

Feedback L
Controlle_j

controller

Figure 2.2: Fault diagnosis and control ioop

The information used for FDI is the measured output from sensors and the input

to the actuators. The measured output is normally needed in the feedback control,

whereas the input to the actuators is the required control action generated by the

controller, which is normally implemented in the micro-processor. Hence, we do not

normally require extra hardware resources to implement the fault diagnosis function

with the exception of requiring some additional computing power.

From Fig.2.2, it can be seen that the system model required in model-based FDI is

the open-loop system model although we consider that the system is in the control

loop. This is because the input and output information required in model-based

FDI is related to the open-loop system. Hence, it is not necessary to consider the

controller in the design of a fault diagnosis scheie. This is consistent with the

separation principle in control theory because fault diagnosis can be broadly treated

as an observation problem. Once the input to the actuaf' s is available, the fault

diagnosis problem is the same no matter how the system i working in open-loop or
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in the closed-loop.

In the cases when the input to the actuator u(t) is not available, we have to use

the reference command u(t) in FDI. Hence, the model involved is the relationship

between the reference command u(t) and the measured output y(t), i.e., the closed-

loop model. For those cases, the controller plays an important role in the design

of diagnostic schemes. A robust controller may desensitize fault effects and make

the diagnosis very difficult. This problem has been recognized by some researchers,

e.g. Wu (1992), and the best solution is to design the fault diagnosis scheme and

the controller simultaneously (Nett, Jacobson and Miller, 1988; Jacobson and Nett,

1991). The interconnection between fault diagnosis and robust control is a topic for

future research and is not considered further in this thesis.

2.4 Modelling of Faulty Systems

The first step in the model-based approach is to build a mathematical model of the

system to be mitored. This thesis is concerned with multiple-input and multiple-

output linear dynamic systems. In the case of a non-linear system, this implies a

model linearization around an operating point.

As discussed in the previous section, we use the open-loop system model in model-

based FDI. For the purposes of modelling, an open-loop system can be separated

into three parts: actuators, system dynamics and sensors as illustrated in Fig.2.3.

input I
—'I Actuators

u(t)

actuation

uR(t)

Plant	 output

Dynamics I 
YR(t) Sensors

measured
output

y(t)

Figure 2.3: Open-loop system

The system dynamics shown in Fig.2.4 can be described by the state space model

as:

11 th(t) = Ax(t) + BUR(t)

yR(t) = Cx(t) + DuR(i)
(2.1)

where x E 7?]' is the state vector, uR E r is the input vector to the actuator

and YR E 7k,"' is the real system output vector; A, B, C and D are known system
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matrices with appropriate dimensions.

component faults

f(t)

actuation	
I System	 I output

uR(t) 1 
Dynamics__L

parameter faults

Figure 2.4: The system dynamics

When a component fault occurs in the system (see Fig.2.4), the dynamic model of

the system can be described as:

= Ax(t) + BuR(t) + f(t)	 (2.2)

The component fault is represented as the case when some condition changes in the

system rendering the dynamic relation invalid, for example a leak in a water tank

in the three tank system (Wiinnenberg, 1990). In some cases, the fault could be

expressed as a change in the system parameter, for example a change in the ii,, row

and 3th column element of the matrix A, the dynamic equation of the system can

then be described as:

th(t) = Ax(t) + BuR(t) + I1 Lax(t)	 (2.3)

Here, x j (t) is the ti element of the vector x(t) and I, is an n-dimensional vector

with all zero elements except a 1 in the 	 element.

Generally speaking, the actual output yR(t) of the system is not directly accessible,

and sensors are then used to measure the system output. This is shown in Fig.2.5

and can be described mathematically as (when the sensor dynamics are neglected):

y(t)	 YR(t) + f3 (t)	 (2.4)

where f8 E 7,m is the sensor fault vector. By choosing the vector f8 correctly,

we can then describe all sensor fault situations. When the sensors are "stuck at a
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sensor faults

Jrmeasured

outputoutput 
J

YR(t) I 
sensorsi
	 y(t)

Figure 2.5: Sensors, output and measured outputs

particular value" (say at zero), the measurement vector is y(t) = 0 and the fault

vector is f3 (t) = -yR(t). When there is a variation in the sensor scalar factors

(multiplicative faults), the measurement becomes y(t) = ( 1 + L )yR(t) and the fault

vector can be then written as f3 (t) = LyR(t).

actuator faults

Jrfa(t)

input I	 I actuation
I Actuators I-

u(t)	 I	 I	 uR(t)

Figure 2.6: Actuator, input and actuation

It is also true that the actual actuation (uR) of the system is often not directly

accessible. For a controlled system, UR is the actuator response to an actuator

command u(t), this is shown in Fig.2.6 and can be described as (when the actuator

dynamics are neglected):

UR(t) = u(t) + fa(t)	 (2.5)

where fa 
E ,r is the actuator fault vector and u(t) is the known control command.

Similar to sensor fault situations, all different kinds of actuator fault situations can

be represented by a proper fault function fa(t).

If the system input is unknown (e.g., in an uncontrolled system), an input sensor

can be used to measure the input to the actuator, this is shown in the Fig.2.7 and

can be represented by the model:

u(t) = UR(t) + f 8 (t)	 (2.6)



Modelling of Faulty Systems	 26

actuation
uR(t)

Input I	
f (t)

Sensors
faults

measured actuation

Figure 2.7: Input sensor, actuation and measured actuation

or
uR(t) = u(t) + [— f33 (t)}	 (2.7)

When the system has all possible sensor and actuator faults (this is the most common
situation to be considered), the system model is described as:

J th(t) = Ax(t)+B(t)+Bfa(i)

j y(t) = Cx(t) + Du(t) + Dfa(t) + f(t)	
(2.8)

Considering the general cases, a system with all possible faults can be described by
the state space model as:

	

f th(t) = Ax(t) + Bu(t) + R1f(t)	
(2.9)

y(t)	 Cx(t) + Du(t) + R2f(t)

where f(t) 7?)' is a fault vector, each element f1 (t) (i = 1, 2, , g) corresponds
to a specific fault. From a practical point of view, it is unreasonable to make
further assumptions about the fault characteristics but consider these as unknown

time functions. The matrices R1 and R2 are known as fault entry matrices which
represent the effect of faults on the system. The vector u(t) is the input to the

actuator or measured actuation, and the vector y(t) is the measured output, and

both vectors are known for FDI purpose.

In the FDI Ii crature, the vectors u(t) and y(i) are simply called the inputs and
outputs of th monitored system. The terminology is not very precise, aihough no
confusion arises and it is accepted widely in the FDI literature and in this thesis
unless it is specifically stated.

An input-output transfer matrix repiesentation for a system with possible faults is
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then described as:

y(s) = G(s)u(s) + Gf(s)f(s)	 (2.10)

where
{ Ge(s) = C(sI—A)-'B+D

(2.11)
G1 (s) = C(sI - A)-'Ri + R2

The general model for a faulty system described by Eq.(2.9) in the time-domain and

by Eq.(2.10) in the frequency-domain has been widely accepted in the fault diagnosis

literature, e.g. in survey papers (Frank, 1990; Frank, 1991a; Patton and Chen,

1991e; Gertler, 1991; Frank, 1993; Patton, 1993; Gertler and Kunwer, 1993; Patton,

1994). However, most papers have just accepted them without any clue of how a

particular individual fault fits into this model. Gertler and Luo (1989) and Gertler,

Fang and Luo (1990) considered all possible fault sources in the monitored system

and Chen and Patton (1994a) discussed briefly the modelling structure presented in

this section.

2.5 . A General Structure of Residual Generation
in Model-based FDI

In practice, the most frequently used FDI approach uses information known a priori

about the characteristics of certain signals (e.g. amplitude and frequency proper-

ties). As an example, we can take checking the level or the dynamic range of the

signal, the maximum rate of its variation and its spectrum. The main shortcomings

of this group of methods can be listed as: (a) the necessity to have a priori infor-

mation about the characteristics of the signals, (b) the unavoidable dependence of

these characteristics on operating states of the system which are not known a priori

and can change beforehand.

To eliminate the shortcomings of the traditional methods, the most significant con-

tribution in modern model-based approaches is the introduction of residuals which

are independent of the system operating state and respond to faults in characteris-

tic manners. Residuals are quantities that represent the inconsistency between the

actual system variables and the mathematical model. Based on the mathematical

" del, many invariant relations (dynamic or static) among different system variables

c n be derived, and any violation of these relations can be used as residuals.
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Figure 2.8: Redundant signal structure in residual generation

The residual generation can be interpreted in terms of redundant signal structure

as illustrated in Fig.2.8 (Mironovski, 1980). In this structure, the system (processor

or algorithm) Fi (u, y) generates an auxiliary (redundant) signal z which, together

with y generate the residual r which satisfy the following invariant relation:

r(t) = F2(y(t),z(t)) = 0	 (2.12)

for the fault-free case. When any fault occurs in system, this invariant relation will

be violated and the residual will be non-zero.

The simplest approach to residual generation is the use of system duplication, i.e.

the system F1 is made identical to the original system model and has the same input

signal as the system. In this case, the signal y is not required in the system block

F1 which is then simply a system simulator. The signal z is the simulated output

of the system, and the residual is the difference between z and y. The simplicity

is the advantage of this method, but the disadvantage is that the stability of the

simulator cannot be guaranteed when the system being monitored is unstable, as a

consequence of the use of the open-loop system model in FDI (although it is under

feedback control) (see Fig.2.2).

A direct extension to the simulator-based residual generation is to replace the sim-

ulator by an output estimator which requires both system inputs and outputs. In

this case, the system F1 (u, y) uses both signal u and y to generate a estirtion of

a linear function of the output y, say My, and the system F2 can be ci 'fined as

F2 (y, z) = Q(z - My) with Q as a static (or dynamic) weighting matrix.

No matter what type of method is used, a residual generator is just a linear processor

whose inputs are both inputs and outputs of the system being monitored. A general
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structure for all residual generators is shown in Fig.2.9 (Patton and Chen, 1991e).

Residual generator

Figure 2.9: The general structure of a residual generator

This structure is expressed mathematically as:

I u(s)
r(s) = [Ha (s) Hg(s)]

L 
y(s) ] 

= H(s)u(s) + (2.13)

Here, Ha(s) and Ho (s) are transfer matrices which are realizable using stable linear

systems. According to the definition, the residual is designed to become zero for the

fault-free case and nonzero for faulty cases, i.e.:

r(t)=O	 ifandonlyif	 f(t)=O
	

(2.14)

To satisfy this condition, the transfer matrices Ha(s) and Hg (s) must satisfy the

constraint condition:

H(.․ ) + H(s)G(s) = 0
	

(2.15)

Eq.(2.13) is a generalized representation of all residoal generators (Patton and Chen,

1991e). The design of the residual generator results simply in the choice of the

transfer matrices Ha(s) and Hg (s) which must satisfy Eq.(' 15). The various ways of

generating residuals correspond to different parameteriza ons of Ha(s) and Hg(s).
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One can obtain different residual generators using different forms for He(s) and

Ha (s). Using the design freedom, the desired performance of the residual can be

achieved by suitable selection of He(s) and Hg(s).

A fault can be detected by comparing the residual evaluation function J(r(t)) with

a threshold function T(t) according to the test given in below:

f J((r(t)) ^ T(t)

J((r(t)) > T(t)

for	 1(t) = 0

for	 f(t)	 0

If this test is positive (i.e. the threshold is exceeded by the residual evaluation func-

tion), we can hypothesize that a fault is likely. There are many ways of defining

evaluation functions and determining thresholds. As an example, the residual eval-

uation function is chosen as a norm of the residual vector and the threshold can be

chosen as a constant positive value (fixed threshold).

2.6 Fmlt Detectability

When faults occur in the monitored process, the response of the residual vector is:

r(s) = H(s)Gj (s)f(s) = G 1(s)f( s ) =	 {G1(s)]f(s)	 (2.16)

where Grj () = H(s)G1 (s) is defined as a fault transfer matrix which represent the

relation between the residual and faults, [Grj (S)]j is the th column of the transfer

matrix G f (s) and ft (s) is the th component of f(s). The above relationship is well

illustrated by Fig.2.10.

2.6.1 Fault detectability condition

The fault transfer matrix plays an important role in FDI and must be examined in

detail. In order to detect the ti, fault f in the residual r(s), the ti, column [Grj()]j

of the transfer matrix Grj(S) should be non-zero:

[Grj (S)] i	 0	 (2.17)
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Figure 2.10: Faults and the residual

If this condition holds true, the th fault f, is detectable in the residual r. This is

defined as the fault detectability condition of the residual r to the fault f . One

must ask whether this condition is enough for detecting faults? This question will

be answered using the following example.

Example: The laboratory inverted pendulum system (described in Appendix A) is

used as an example to illustrate the fault detectability (Chen and Patton, 1994b).

The simulated fault detection results are shown in Fig.2.1l.

In the simulation, the same fault signal is applied to three sensors. However, the

residual response for the fault in the first sensor is significantly different from the

faults in the other sensors. The responses for the faults in sensor 2 and sensor 3

almost reproduce the shape variations of the fault signal. However, the response

for the fault in the sensor 1 only reflects the change in the fault level. After a

short transient, the residual returns back to zero, although the fault is still present

in the system. It is possible to give a misinterpretation of faults if this observer-

based residual generator is used to detect faults in the first sensor. To examine

the fault detectability, we find that: [G 1 (s)] 1 	 0, [Grj ()] 2	 0, [Grj ()]3	 0,

i.e. the faults in three sensors are all detectable from the residual designed. This

example illustrates that fault detectability alone is not enough to achieve reliable

fault detection. On examining the steady state gains of the residual generators, we

find that: [Grj (0)] i = 0, [Grj (0)] 2 0 and [Grj (0)] 3 0. This easily shows why

the effect of the fault in sensor 1 on the residual generator disappears after a short

transient period.
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Figure 2.11: Fault and residual norms
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2.6.2 Strong fault detectability condition

The example shows that fault detectability is not enough to achieve reliable fault

detection. Hence, the strong fault detectability is introduced here as:

[Grf (0)] z	0
	

(2.18)

If this condition is satisfied, we define that the th fault f, is strongly detectable in

the residual r. This condition can also be defined as the strong fault detectability

condition of the residual r to the fault f2.

The misinterpretation problem due to the undesirable residual response has been

noticed in the FDI research of a number of investigators (Patton and Kangethe,

1989; Frank, Ding and Köppen, 1993). There were some discussion in a bench-

mark testing session at the International Conference of Fault Diagnosis at Toulouse

(TOOLDIAG'93) following a presentation by Frank et al. (1993). One explanation

for this problem is that the effect of a fault on the system disappears, although the

fault itself still exists. This is not a satisfactory explanation and the correct expla-

nation is that the effect of the fault on the residual disappears, although the fault

effect on the system still exists. That is to say, the residual generator which is used

for FDI is not a good design.

We now examine the inverted pendulum system in more detail. Referring to the

Appendix A, we find that the strong detectability for faults in the first sensor cannot

be achieved no matter what observer gain matrix is used, if the residual generator is

based on a full-order observer. It is also interesting to note that a residual generator

based on a 1st or 2nd order parity relation also gives similar residual responses (the

results are not shown in this thesis as they are very similar to the results shown in

Fig. 2.11).

The question arises as to how the above problem (for the inverted pendulum ex-

ample) can be solved? One way is to design other residual generators which could

satisfy the strong fault detectability, and this requires comprehensive research. The

other possibPity is to shape the frequency response of the residual according to the

frequency di, tribution of the faults. For example, if the residual generated by the

observer is filtered through a filter with transfer function 1/(s + 0.01), the filtered

residual can produce a satisfactory response for the fault given in Fig.2.11. This

simple operation shows that the fr' quency response of the fault transfer function
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should also be studied in the residual design. If the frequency band of a certain

fault is available, the residual can be designed maximally sensitive to this fault by

frequency-shaping. This can be done by maximizing the following criterion:

inf	 {Grs (j)}	 (2.19)
wE[wi ,w2]

where {•} denotes the minimal singular values, and [w1 , w2 ] denotes the frequency

range in which the fault is most likely to occur. This problem will be studied in

Chapter 6. Other investigations are described in papers by Frank and Ding (Ding

and Frank, 1989; Frank and Ding, 1993; Frank and Ding, 1994).

2.7 Fault Isolability

The successful detection of a fault is followed by the fault isolation procedure which

will distinguish (isolate) a particular fault from others. Whilst a single residual

signal is sufficient to detect faults, a set of residuals (or a vector of residuals) is

usually required for fault isolation. If a fault is distinguishable from other faults

using one residual set (or a residual vector), it can be said that this fault is isolable

using this residual set (or this residual vector). If the residual set (or the residual

vector) can isolate all faults, we can then say that the residual set (or the residual

vector) has the required isolability property.

2.7.1 Structured residuals set

One approach to fulfil the fault isolation task is to design a set of structured residu-

als. Each residual is designed to be sensitive to a subset of faults, whilst remaining

insensitive to the remaining faults. The residual set which has the required sensi-

tivity to specific faults and insensitivity to other faults is known as the structured

residuals set (Gertler, 1991). The design procedure consists of two steps, the first

step is to specify the sensitivity and insensitivity relationships between residuals

and faults according to the assigned isolation task, and the second is to design a set

of residual generators accordiitg to the desired sensitivity and insensitivity relation-

ships. The advantage of the structured residual set is that the diagnostic analysis

simplified to determining which of the residuals are non-zero. The threshold test

i1ay be performed separately for each residual, yielding a Boolean decision table,
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and the isolation task can be fulfilled using this table.

If all possible faults are to be isolated, a residual set can be designed according to

the following fault sensitivity conditions:

r(t) = R(f1 (t));	 i E {1,2,. ,g}
	

(2.20)

where R( .) denotes a functional relation. This is called as a dedicated residual se

which is inspired by the dedicated observer scheme proposed by Clark (1978a). A

simple threshold logic can be used to make decision about the appearance of a

specific fault by the logic decision according to:

r(t) > T2 ==	 f1 (t)	 0;	 i E {1,2,..,g}

where T1 (i = 1,... , g) are thresholds. This isolable residual structure is very simple

and all faults can be detected simultaneously, however it is difficult to design in

practice. Even when this structured residual set can be designed, there is normally

no design freedom left to achieve other desirable performances such as robustness

against modelling errors (Wiinnenberg, 1990). A most commonly used and better

scheme in designing the residual set is to make each residual sensitive to all but one

fault, i.e.
ri(t) = R(f2(t),,fg(t))

r(t) =
	

(2.21)

rg(t) = Rtj1 (t'), . . .

This is defined as a generalized residual set. If all residuals of the generalized residual

set are generated using a bank of observers (observer-based residual generators), the

structure is known as the generalized observer scheme (Patton et aL, 1989). The

isolation can again be performed using simple threshold testing according to the

following logic:

r(t) ^ T	

...	 }	
,' f1 (i)	 0; for i = L2,",g

r3 (t) > 2 j 'v/i E {1,. ,i - 1,i + 1,	 ,g}

As a simple example, we will isolate three different faults {fl, f2, f3} by designing a

residuals set {r i , r2 , r3} using the following two methods:

In the tables above, a "1" in	 row and th column denotes that the residual r3 is
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L r1 	r2

fi	 1	 0	 0

I	 0	 1	 0

Li	 0	 0	 1

	

I r	 r2	 r3 I

fi	 0	 1	 1 I

	

1	 0	 1	 I
f	 1	 1	 0

Method 1	 Method 2

Table 2.1: Structured Residual Sets

sensitive to the fault Ii, whilst a "0" denotes insensitivity. Faults can be uniquely

isolated using either of the above methods.

2.7.2 Fixed direction residual vector

An alternative way of enhancing the isolability of faults is to design a directional

residual vector which lies in a fixed and fault-specified direction (or subspace) in the

residual space, in response to a particular fault. This is to make:

r(t f(t))	 a(t)1 1 ;	 i	 {1,2,. ,g}	 (2.22)

where the constant vector 1, is the signature direction of the th fault in the residual

space and a is a scalar that depends on the fault size and dynamics. With the fixed

directional residual, the fault isolation problem is one of determining which of the

known fault signature directions the generated residual vector lies the closest to. To

isolate faults reliably, each fault signature has to be uniquely related to one fault.

Fig. 2.12 illustrates this fault isolation approach using a directional residual vector

in which the residual is closed to l and the fault is most likely associated with the

direction 11.

2.7.3 Sensor and actuator faults isolation

If we are only interested in sensor faults, the system nutput is given by:

y(s)	 G(s)u(s) + f8 (s)	 (2.23)
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Fault direction 3
"---'	 4ion 2

esidual

11
Fault direction 1

Figure 2.12: Directional residual vector for fault isolation

If one wants to design a residual signal which is sensitive to one group of faults in

ft(s) and insensitive to another group of faults in f(.․ ), the above equation can be

decomposed into:

[] 
=G(s)u(s)+ []

	
(2.24)

The residuI generator then takes on the following format:

r'(s) = H(s)u(.․ ) + H(s)y'(s)
	

(2.25)

On substituting y'(s) into the above equation, we have:

r'(s) = [H,(s) + H(s)G(s)]u(s) + H(s)f(s)
	

(2.26)

The residual will then be only sensitive to the fault group ft(s), when the transfer

function matrices of the residual generator satisfy:

	

f H,(s)	 —H(s)G(s)

	

H(s)	 0
(2.27)

This is the normal requirement for a residual generator as shown in Eq.(2.15). That

is to say that there is no additional requirement for the sensor fault isolation problem.

The transfer matrix H (s) can be chosen freely according to specific requirements.

The only constraint on H(s) is that it should be stable and realizable. Once it has

been chosen, H(s) can be determined by H(.․ ) = —H(s)G(s). As the transfei

matrix H (s) can be chosen freely, sensor fault isolation is always possible.
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When actuator faults occur in the system, the system output is:

y(s)	 G(s)[u(s) + fa()J
	

(2.28)

If we want to design a residual signal which is sensitive to one group of faults

f(s) and insensitive to another group of faults f(s), the above equation can be

decomposed into:

y(.․ ) = G(s)[u'(s) + f(s)} + G( s)[u2 (s ) + f(s)}
	

(2.29)

The residual generator is now:

r'(s) = H,(s)u 1 (s) + H(s)y(s)
	

(2.30)

On substituting y(.․ ) into Eq.(2.30), we have:

r'(s) = [H(s) + H'(s)G(s)]u'(s) + H(s)G(s)f(s) + H'(s)G(s)[u2(s) + f(s)]

(2.31)

To make the residual only sensitive to the fault group f(s), we need the following

conditions:
= —H(s)G(s)

H(s)G(s) = 0
	

(2.32)

H(s)G(s)	 0

These equations illustrate that an extra constraint (H(s)G(s) = 0) is required for

the actuator isolation problem. A stable and implementable transfer matrix H (s)

does not always exist. That is to say, we do not have full freedom to achieve the

required actuator fault isolation performance. Hence, actuator fault isolation is not

always possible.

2.8 Residual Generation Techniques

The generation of residual signals is a central issue in model-based fault diagnosis.

A rich variety of methods are available for residual generation and this Section

discusses briefly some of the most common approaches. It must be pointed out that

most residual generation approaches are applicable for both continuous and discrete

system models, however some approaches can only work for discrete models. In this

thesis, if the continuous model is used, it implies that the technique can be applied



Fz(t) + Ky(t) + Ju(t)

Gz(i) + Ry(t) + Su(t)
(2.33)
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to both continuous and discrete model, otherwise the technique is only applicable for

discrete model. The parity relation approach is developed specially for the discrete

model. There have been some studies into the use of the parity relation approach for

continuous models (Mironovski, 1979; Magni and Mouyon, 1991), however they have

not been fully recognized by the FDI community because of the use of impractical

differential operations on input and output data.

2.8.1 Observer-based approaches

The basic idea behind the observer or filter-based approaches is to estimate the

outputs of the system from the measurements (or a subset of measurements) by

using either Luenberger observer(s) in a deterministic setting (Beard, 1971; Clark et

aL, 1975; Clark, 1979; Frank, 1987; Frank, 1990; Frank, 1993; Patton and Kangethe,

1989; Patton, 1994) or Kalman filter(s) in a stochastic setting (Mehra and Peschon,

1971; Willsky, 1976; Frank, 1987; Basseville, 1988; Basseville and Benveniste, 1986;

Tzafestas and Watanabe, 1990). Then, the (weighted) output estimation error (or

innovations in the stochastic case), is used as a residual. The flexibi1it ti selecting

observer gains has been fully exploited in the literature yielding a rich variety of FDI

schemes, the most recently development can be found in various survey papers: e.g.

Frank (1993), Frank and Köppen (1993), Patton (1994), Krishnaswami and Rizzoni

(1994b), Patton and Chen (1994), and conference proceedings such as, Isermann

(1991), Labarrère (1993), Ruokonen (1994).

What we are interested in FDI is the estimation of outputs using an observer, whilst

the estimation of the state vector is unnecessary. Indeed, a functional observer is

suitable for this task. In practice, the order of the functional observer is less than

the order of a state observer. It is desired to estimate a linear function of the state,

i.e. Lx(t), using a functional (or generalized) Luenberger observer with the following

structure:

f 
(t)

w(t)

where z(t) E 'R is the state vector of this functional observer, F, K, J, R, G and S

are matrices with appropriate dimensions. The output w(t) of this observer is said

to be an estimate of Lx(), for the system described in Eq.(2.9), in an asymptotic
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sense if in the absence of faults:

lim [w(t) - Lx(t)] = 0	 (2.34)
t-400

To introduce a transformation matrix T, the observer shown in Eq.(2.33) will gener-

ate the estimate Lx(t) in the asymptotic sense if and only if the following conditions

hold (O'Reilly, 1983):
F has stable eigenvalues

TA—FT= KG

J = TB - KD	 (2.35)

RC+GT=L

S+RD=0

The necessary and sufficient condition for the existence of the observer given by

Eq.(2.33) for the system Eq.(2.9) is that the pair (C, A) is observable (O'Reilly,

1983). In order to generate residuals, we need to estimate the system output. If we

assign:

L=C
	

(2.36)

We have the output estimation as:

9(t) = w(t) + Du(t)	 (2.37)

The residual vector r(t) is defined as:

r(t) Q[y(t) - 9(t)] = L i z(t) + L2 y(t) + L3u(t)	 (2.38)

where:
L1=—QG

= Q—QR

= —Q(S+D)

Now, the residual generator based on a generalized Luenberger is illustrated in

Fig. 2.13 and given by the following equation:

f (t) = Fz(t) + Ky(t) + Ju(t) 	
(2.39)

) r(t) = Li z(t) + L2 y(t) + L3u(t)



!zt)

+	 residual

r(t)
+
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And the matrices in this equation should satisfy the following conditions:

F has stable eigenvalues

TA—FT= KG

J=TB—KD

L 1 T+L2 C= 0

L3 + L2 D = 0

The Laplace transformation of the residual is thus:

r(s) = [L i (sI - F) 1 K + L2 ]y(s) + [Li (sI - F)'J + L3}u(s)

(2.40)

(2.41)

fault	 f(t)

input	 {S3Tst
u(t)	 __________

II

output

y(t)

Figure 2.13: Residual generation via a generalized Luenberger observer

The residual generator based on a generalized Luenberger observer is shown in

Fig. 2.13. It can be seen that there is a feedback structure imbedded within it.

The feedback can be used to improve the dynamic behaviour of residuals.

When we apply the residual generator described by Eq. (2.39) to the system described
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by Eq.(2.9), the residual will be:

f é(t) = Fe(t) - TR1 f(t) + KR2f(t)	
(2.42)

r(t) = Li e(t) + L2R2I(t)

where e(t) = z(t) —Tx(t). It can be seen that the residual depends solely and totally

on faults.

The simplest method in observer-based residual generation is to use a full order

observer, in this case the observer dimension q equals n and we have:

T = I	 = QC

F=A—KC

J=B—KD	 L3=QD

Hence, the transfer function matrices for a full-order observer based residual gener-

ator are given by:

f H,(s) = Q{C{sI - (A - KC)] - 'K - I}

II(s) = Q{C[sI—(A—KC)]'(B—KD)+D}	
(2.43)

To alter the frequency response of the residual, the residual weighting matrix Q can

be changed into a dynamic weighting Q(s).

For any dynamic system, the observer-based residual generator always exists. This

is because any input-output transfer function matrix has the observable realization.

That is to say, the output estimator always exists although a suitable state observer

cannot always be designed. The minimal order qo of a functional observer satisfies

the inequality (O'Reilly, 1983; Mironovski, 1979; Mironovski, 1980):

qo^j — 1	 (2.44)

where ,i is the observability index of the system which is defined as the minimum

number for which:

rank[CT, (CA) T , ..., (CAP) T] =

For observable systems the observability index lies within the limits:

—<i<n—m+l

Inequality (2.44) gives only the minimum possible order of a functional observer.
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In the real situation, the order is larger than this minimum possible order. For the

residual generation problem, an additional condition must be satisfied, that is that

the residual must be sensitive to faults to be diagnosed.

To isolate faults, the observer-based approaches can be used to design structured

residual sets or fixed residual vectors. For sensor faults, the design of a structured

residual set is very straightforward. If we require that a residual is sensitive to faults

in all but one of the sensors, the observer used to generate this residual should be

driven by outputs excluding that single sensor measurement. To be more specific,

if we replace the output vector y = (yi, , y,) by (yl, . . , y+i, • , y3, the

residual will be insensitive to the fault in the th sensor. However, the design of a

structured residual set for actuator fault isolation is more difficult. This problem can

be solved via unknown input observers (Viswanadham and Srichander, 1987; Phatak

and Viswanadham, 1988; Frank, 1990) and eigenstructure assignment (Patton et

al., 1986; Patton, 1988; Patton and Chen, 1991g), however the isolation of actuator

faults is not always possible. The problem of designing structured residual set

via unknown input observers will be discussed in Chapter 3. The schemes used

in designing observer-based structured residual set have being called the dedicated

observer scheme and the generalized observer scheme etc. (Frank, 1987; Frank,

1990; Patton et al., 1989; van Schrick, 1994a). The fixed residual vector can be

designed by the so-called "fault (or failure) detection filter" originated by Beard

(1971) and this problem is studied in Chapter 3.

2.8.2 Parity vector (relation) methods

In the early development of fault diagnosis, the parity relation approach was applied

to static or parallel redundancy schemes (Potter and Sunman, 1977; Gal, Harrison

and Daly, 1978; Daly, Gal and Harrison, 1979; Desai and Ray, 1984) which may be

obtained directly from measurements or from analytical relations. Ray and Luck

(1991) gave a survey of these schemes. There are typically two cases, one is the

use of sensors having identical or similar functions to measure the same variable,

another is the use of dissimilar sensors to measure different variables but with their

outputs being relative to each other. The basic idea of the parity relation approach

is to provide a proper check of the parity (consistercy) of the measurements of the

monitored system. To begin with this problem, let us consider a general problem

of the measurement of an n-dimensional vector using m s" sors. The measurement
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(algebraic) equation is:
y(k) = Cx(k) + f(k) + (1c)

	
(2.45)

where y(k)	 is measurement vector, x(k) E R,' is the state vector, and f(k) is

the vector of sensor faults, (k) is a noise vector and C is an rn x n measurement

matrix.

With hardware (direct) redundancy there are more than the minimum number of
sensors (eg., two or more for scalar state variables, and four or more for three-
dimensional state variables). And thus, in this case, the state vector can be deter-
mined directly using the redundancy measurements. The dimension of y(k) is larger

than the dimension of x(k), i.e.

m> n; and rank(C) = n

For such system configurations, the number of measurements is greater than the
number of variables to be sensed. Inconsistency in the measurement data is then
a metric that can be used initially for detecting faults and, subsequently for fault

isolation. Thi echnique has been successfully applied to fault diagnosis schemes for
inertial navigaLIon (Potter and Sunman, 1977; Gai, Harrison and Daly, 1978; Daly
et aL, 1979; Desai and Ray, 1984) where relationships between gyroscope readings
and/or accelerometer assemblies provide analytical forms of redundancy.

For FDI purposes, the vector y(k) can be combined into a set of linearly independent

parity equations to generate the parity vector (residual):

r(k) = Vy(k)	 (2.46)

The residual generation scheme based on direct redundant measurements is shown

in Fig.2.14.

Figure 2.14: Residual generation via parallel redundancy

In order to make r(k) satisfy the usual requirement for a residual (zero-valued for
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the fault-free case), the matrix V must satisfy the condition:

vc=o
	

(2.47)

When this condition holds true, the residual (parity vector) only contains informa-

tion on the faults and noise:

r(k) = vi [fi (k) + 1 (k)] +	 + vm[fm( k) + m(k)J	 (2.48)

where v is the th column of V, f1 (k) is the tj, element of f(k) which denotes the

fault in the th sensor.

Eq.(2.48) reveals that the parity vector only contains information due to faults and

noise (uncertainty), and is independent of the unmeasured state x(k). Eq. (2.48)

also shows that the parity space (or residual space) is spanned by the columns of V,

i.e. the columns of V form a basis for this space. Moreover, the following attractive

property can also be exploited: a fault in the th sensor implies a growth of the

residual r(k) in the direction v. This ensures that a fault in the th sensor, implies
a magnification of the norm of r(k) in the direction v. The space span{V} is called

a "parity space". The term "parity" was first used in connection with digital logic

systems and computer software reliability to enable "parity checks" to be perforiuecl

for error checking. In the fault diagnosis field, it has similar meaning in the context

of providing an indicator for the presence of a fault (or error) in system components.

Using the notation of Daly et al. (1979), a fault detection decision function is defined

as:

DFD(k) = r (k)Tr(k)	 (2.49)

If a fault occurs in the sensors, DFD(k) will be greater than an predetermined

threshold.

The fault isolation decision function is then:

DFI1 (k) = v ir(k); i E {1,2,... ,m}	 (2.50)

For a given r(k), a malfunctioning sensor is identified by computing the in values of

DFI1 (k). If DFI3 (k) i the largest one of these values, the sensor corresponding to
DFI(k) is the one which is most likely to have become faulty.

In the parity space point of view, the columns of V define m distinct fault signature



5 x(k+1)

y(k)

Ax(k)+Bu(k)+Rif(k)

Cx(k)+Du(k)+R2f(k)
(2.54)
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directions (vi , i = 1,2, .. , in). After a fault has been declared, it can be isolated

by comparing the orientation of the parity vector to each these signature directions.

Indeed, the fault isolation function DFI1 (k) is a measure of the correlation of the

residual vector with fault signature directions. In order to isolate faults reliably,

the generalized angles between fault signature directions should be "as large as

possible", i.e., to make vrv (i $ j) "as small as possible". Thus, optimal fault

isolation performance will be achieved when v determined by:

fmin{v'v3 }; ij, i,jE{1,2,...,m}

1 max{v'v}; iE{l,2,...,m}
(2.51)

The traditional sub-optimal solution of the matrix V is to make (Ray and Luck,

1991):

VVT Imfl	 (2.52)

A further consequence of conditions (2.47) and (2.52) is that:

VTV = Im - C(CTC)CT
	

(2.53)

The condition for the existence of a solution V for Eq.(2.47) is that rank(C) n <
m. This implies that the rows of C are linearly dependent, i.e., the outputs of the

sensors are related by a static relation. For the case rank(C) = in < n, the direct

redundancy relation does not exist however, we may construct redundancy relations

by collecting sensor outputs over a time interval (data window) (say, {y(k - s), y(k -

.s + 1),. .. , y(k)}). This is known as "temporal redundancy" or "serial redundancy".

The dynamic model must be known and used in ^his case, as t'he redundancy Is

related to time. Here, we consider that the system is given by the linear discrete

state space equations as follows:

where x E 7??' is state, y E 7?, is output, u E 7?? is input, f W' fault, and A, B,

C, D, R1 and R2 are real matrices of compatible dimensions.

As a direct extension of the case of parallel redundancy, the parity relation concept

was first generalized by (Chow and Willsky, 1984) using the temporal redundancy

relations of the dynamic system. Extended researches have been done by various
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other authors as, Lou et al. (1986), Massoumnia and Vander Velde (1988), Frank

and Wiinnenberg (1989),Wiinnenberg (1990), Gertler and Singer (1990),Patton and

Chen (1991e). It is important however, to note that essentially the same scheme

has been suggested by the Russian expert Mironovski (1979) (see also: Mironovski

(1980) and Basseville (1988)). Although he did not use the term "parity relation",

the essential ideas are the same as those of the remaining authors.

The redundancy relations are now specified mathematically as follows. Combining

together Eq.(2.54) from time instant k - s to time instant k yields the following

redundant relations:

I y(k - s)	 1	 I u(k - s)	 1	 1 f(k - s)	 1
I y(k—s+1) I	 I u(k—s+1) I	 I f(k—s+1)

I —H I	 I = Wx(k - s) + M	 :	 i (2.55)

[y(k) ____	 [u	 [f(k)

U(k)	 F(k)

where
D

GB

GAS- i B

0

D

GA2B

0

E

D

IG	 1

'GA
w = I	 E p,(8+1)mXn

ICAB]

and the matrix M is constructed by replacing {D, B} with {R2 , R1 } in the matrix

H.

To simplify the notation, Eq.(2.55) can be rewritten as:

Y(k) - HU(k) = Wx(k - s) + MF(k)
	

(2.56)

Accordin? o Chow and Willsky (1984) and Lou et al. (1986), a residual signal can
be defined as:

r(k) = V[Y(k) - HU(k)]	 (2.57)

where V E px(s+1)m and p is the residual vector dimension. Eq.(2.57) is termed
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an 5th order parity equation or parity relation. It is the computational form of a

residual generator which shows the residual signal as a function of measured inputs

and outputs of the monitored system. Substituting Eq.(2.56) into Eq.(2.57), we

have:

r(k) = VWx(k - s) + VMF(k) 	 (2.58)

This is the evaluation format of the residual. In order to make the parity vector

useful for FDI, one should make it insensitive to system inputs and states, i.e.

VW = 0	 (2.59)

To satisfy the fault detectability condition, the matrix V should also satisfy the

following condition:

VM 0	 (2.60)

Once we have the matrix V, the residual signal can be generated using Eq. (2.57).

The residual generator design depends on solutions of Eq.(2.59). For an appropri-

ately large s (for example s = n), it follows from the Cayley-Hamilton theorem that

the solution V of Eq. (2.59) always exists. This means that a parity relation-based

residual generator for fault detection always exists. An appropriate value for s can

be found by the designer by a systematic increase in s.

Of particular interest are those parity relations for which the order .s (length (s + 1)

of the data window) is minimal. The minimum order SO of the parity relations

satisfies the two-sided inequality (Mironovski, 1979; Mironovski, 1980):

rank(W0)
<rank(W0) - rank(C) + 1

rank(C)

where W0 is the observability matrix of the pair (C, A). If the system is observable
and the rows of the matrix C are linearly-independent, then the inequality takes the

form:
n
—so^n—m+1m

The parity relation approach for residual generation of dynamic system is shown in

Fig.2.15. Here, we discussed the construction of parity relations based on a state

space model which is suggested by Chow and Willsky (1984) and Mironovski (1979).

However, it must be pointed out that the parity relation can also be constructed

using a z-transformed input-output model (or discrete transfer matrix representa-
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Figure 2.15: Residual generation via temporal redundancy

tion). Gertler et al. (Gertler and Luo, 1989; Gertler, Fang and Luo, 1990; Gertler,

Luo, Anderson and Fang, 1990; Gertler and Singer, 1990) first introduced this de-

sign approach, preferring to call it the "parity equation" method. Gertler (1991)

presented an excellent tutorial on this approach. Note that this input-output model

based design method has also been studied by Mironovski (1980) and Massoumnia

and Vander Velde (1988).

The parity relation approach can be used to design structured residual set for fault

isolation (Massoumnia and Vander Velde, 1988; Gertler, 1991; Patton and Chen,

1991e). The design for isolating sensor faults is very straightforward. If we use c1'

(the	 row of C) and y (the ti, component of y) instead of C and y, the parity

relation will only contain the sensor's output together with all inputs. This form

of parity relation has been called a single-sensor parity relation (Massoumnia and

Vander Velde, 1988) and the residual generated by this relation is only sensitive to

the fault in the sensor. For the actuator isolation problem, the structured residual

set is more difficult to design. Massoumnia and Vander Velde (1988) studied this

problem and pointed out that the isolation of actuator faults is not always possible.

This conclusion is consistent with the observer-based approaches. Gertler et al.

(Gertler and Luo, 1989; Gertler, Fang and Luo, 1990; Gertler and Singer, 1990)

suggested a so-called "orthogonal parity equation" approach in desigL ug structured

residual sets. The idea is to make the parity equation (and residual) orthogonal to

a particular fault direction if we want the residual insensitive to this fault. It is

not easy to design directional residual vector using parity relations. Gertler (1991)

studied this problem and illustrated the possibility based on examples, however a
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systematic approach still does not exist.

It is clear therefore that some correspondence exists between observer-based and par-

ity relation approaches. Massoumnia (1986a) first pointed out this correspondence,

and this was later demonstrated by Frank and Wiinnenberg (1989), Wiinnenberg

(1990) and Magni and Mouyon (1991). A full derivation of this equivalence has been

given by Patton and Chen (1991e). Patton and Chen (1991d) have re-examined this

problem in detail and the equivalence under different conditions and in different

meanings have been discussed. It has been shown by Frank and Wiinnenberg (1989),

and more fully by Patton and Chen (1991e), that the parity relation approach is

equivalent to the use of a dead-beat observer. A residual signal generated by a non

dead-beat observer is equivalent to a post-filtered residual which generated by a

dead-beat observer. This implies that the parity relation method provides less de-

sign flexibility when compared with methods which are based on observers without

any restriction.

2.8.3 Factorization methods for residual generation

A residual generator can also be synthesized in the frequency domain via factor-

ization of the transfer function matrix of the monitored system. This method was

initiated by Viswanadham, Taylor and Luce (1987). A more comprehensive study

and extension was made by Ding and Frank (1990), in which the FDI problem was

systematically formulated and solved via factorization techniques. This approach

is also studied by other investigators such as Marquez and Diduch (1992) and Yao,

Schaefers and Darouach (1994). The most recent developments including robustness

issues can be found in (Frank and Ding, 1993; Ding et al., 1993; Frank and Ding,

1994).

This approach is based on a fact that any in x r proper rational transfer function

matrix Ga(s) can be factorized as (Vidyasagar, 1985):

Ga(s) = M'(s)N(s)	 (2.61)

where M(s) and N(s) are rational and realizable transfer function matrices. Based

on this factorization, a residual generator can be designed as:

r(s) = Q(s)[M(s)y(s) - N(s)u(.․ )]	 (2.62)



f 
M(s)

J N(s)

.9 Model-based FDI via Parameter Estimation	 51

where Q(s) denotes a dynamic residual weighting. It was pointed out quite early on

Section 2.4 that the system output is:

y(s) = G(s)u(s) + G1 (s)f(s)
	

(2.63)

On substituting Eq.(2.63) into Eq.(2.62) together with Eq.(2.61), the residual is:

r(s) = Q(s)M(s)G1 (s)f(s)
	

(2.64)

which is only affected by the fault. The weighting factor Q(s) can be used to improve

the residual performance responding to faults in a particular frequency region.

Note that Eq.(2.62) is a special representation of residual generators which can also

fitted into the general framework given by Eq.(2.13) and Fig.2.9. The design of

a residual generator is to construct the transfer function matrices M(s) and N(s)

which can be given by (Nett, Jacobson and Balas, 1984):

—C[sI - (A - KC)]- 1 L + I
(2.65)

C[sI - (A - KC)]-'(B - KD) + D

On comparing the above equations with the transfer function matrices for a full-

order observer-based residual generator given in Eq.(2.43), one can see that they

are almost identical. This demonstrates the correspondence between observer-based

and factorization approaches. Recently, Ding, Guo and Frank (1994) presented a

study on the design of linear observers, based on the transfer matrix factorization.

2.9 Model-based FDI via Parameter Estimation

Model-based FDI can also be achieved by the use of system identification tech-

niques (Isermann, 1984; Isermann, 1987; Isermann and Freyermuth, 1990; Isermann,

1993a). An input-output mathematical model of a system can be described in the

following form:

y(t) = f(P,u(t))	 (2.66)

where, P is the model coefficient vector which is directly related to physical parame-

ters of the system (e.g. friction, mass, viscosity, resistance, inductance, capacitance).

The function f( . ,.) can take both linear or non-linear formats.
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The basic procedure for carrying out FDI using parameter estimation is:

. Establish the process model using physical relations.

• Determine the relationship between model coefficients and process physical

parameters.

• Estimate the normal model coefficients.

• Calculate the normal process physical parameters.

• Determine the parameter changes which occur for the various fault cases.

By carrying out the last step for known faults, a database of faults and their symp-

toms can be built up. During run time, the coefficients of the system model are

periodically identified from the measurable inputs and outputs, and compared with

the normal and faulty model parameters.

To generate residuals using this approach, an on-line parameter identification algo-

rithm should be used. If one has the estimation of the model coefficient at time step

k - 1 as Pk_i, the residual can be defined in either of the following ways:

f r(k) = fk-P0
r(k) = y(k) - f(Pk1,u(k))	

(2.67)

where P0 is the normal model coefficient.

2.10 Fault Diagnosis for Stochastic Systems

For stochastic systems, the FDI is based on statistical testing of the residuals (Will-

sky, 1976; Basseville and Benveniste, 1986; Basseville, 1988; Tzafestas and Watan-

abe, 1990; Basseville and Nikiforov, 1993), for example:

• The weighted sum-squared residual (WSSR) testing (Wilisky et al., 1975;

Tzafestas and Watanabe, 1990).

• x2 testing (Willsky, 1976; Da, 1994).
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• Sequential probability ratio testing (SPRT) (Wald, 1947; Willsky, 1976;

Tzafestas and Watanabe, 1990) and modified SPRT (Gai and Gurry, 1977;

Speyer and White, 1984; Tzafestas and Watanabe, 1990).

• Generalized likelihood ratio (GLR) testing (Willsky and Jones, 1974; Willsky

and Jones, 1976; Tanaka and Muller, 1990).

In order to suppress the effect of noise on the residuals, the residual generator has

to be specifically designed to deal with the noise. A common approach is the use

of Kalman filter-based residual generators. Whilst using a similar structure to the

observer, approaches based on the Kalman filter comprise a residual generation

mechanism derived by means of a stochastic model of the dynamic system. In

normal operation the Kalman filter residual (or innovation) vector (the difference

between the measurements and their Kalman filter estimates), is a zero-mean white

noise process with known covariance matrix. Mehra and Peschon (1971) proposed

the use of different statistical tests on the innovation to detect faults in the system.

Many variants of the idea of hypothesis testing for FDI have been published since

(Willsky, 1976; Basseville, 1988; Tzafestas and Watanabe, 1990). The idea which

is common to all these approaches is to test, amongst all possible potheses, that

the system has a fault or is fault-free. As each fault type has its own signature, a

set of hypotheses can be used and checked for the likelihood that a particular fault

has occurred.

Some Kalman filter-like state estimators are developed especially for FDI of stochas-

tic systems, e.g:

• Multiple model adaptive filters (MMAFs) (Willsky et al., 1974; Willsky et

al., 1975; Montgomery and Caglayan, 1976; Loparo, Buchner and Vasudeva,

1991).

• Two-stage bias-correction filters (Friedland and Grabousky, 1982; Chen, Zhang

and Zbang, 1990).

2.11 Robust Residual Generation Problems

The reliability of fault diagnosis must be higher than the monitored system. The

model-based fault diagnosis is based upon the use of mathemacal models of the



J ±(t)

y(t)

2.11 Robust Residual Generation Problems	 54

supervised system. The better the model used to represent the dynamic behaviour

of the system, the better will be the chance of improving the reliability and perfor-

mance in diagnosing faults. However, modelling errors and disturbances in complex

engineering systems are inevitable, and hence there is a need to develop robust fault

diagnosis algorithms. The robustness of a fault diagnosis system means that it must

be only sensitive to faults, even in the presence of model-reality differences (e.g. pa-

rameter variations, turbulence, and the effects of manoeuvres). Usually, parameter

variations and disturbances act upon a real process in an uncertain way, so that it

may be difficult to design a fault diagnosis system which is highly sensitive to faults,

whilst insensitive to uncertainty and unmodelled disturbances.

The heart of model-based fault diagnosis is the generation of residuals. Both faults

and uncertainty affect the residual, and discrimination between their effects is dif-

ficult. The task in the design of a robust PUT system is thus to generate residuals

which are insensitive to uncertainty, whilst at the same time sensitive to faults, and

therefore robust (Frank and Wiinnenberg, 1987; Frank, 1990; Frank, 1991a; Frank,

1993; Patton et al., 1989; Gertler, 1991; Gertler and Kunwer, 1993) (Patton and

Chen, 1991e; Patton and Chen, 1992c; Patton and Chen, 1992c; Patton and Chen,

1992d; Patton and Chen, 1993b; Patton and Chen, 1994; Patton, 1993; Patton,

1994). The robustness is of course only proved if the residual of interest remains

insensitive to uncertainty over the whole range of operation of the system being

monitored.

To approach the problem from the general point view, one must start with a math-

ematical description of the monitored system that includes all kinds of modelling

uncertainty that can occur in practice and affect the behaviour of the system. There-

fore, the state space model of the system is given by:

(A + LA)x(t) + (B + LB)u(t) + E1 d(t) + R1f(t)	
(2 68

(C + C)x(t) + (D + zD)u(t) + E2d(t) + R2f(t)

here d(t) E is an unknown input (disturbance) vector, however the unknown

input distribution matrices E1 and E2 are assumed to be known. The matrices

AA, 6, zC and LD are the parameter errors or variations which represent the

mode ing errors. The transfer function description of the system is then:

y(s) = (Ge(s) + LG(s))u(s) + Gd(s)d(s) + Gf( s )f(s )	 (2.69)

Here Gd(s)d(s) represent tEc disturbance effect and Gd( s) = E2 + C(sI - A)'E1,
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L.G(s) is used to described modelling errors. The terms Gd(s)d(s) and LG(s)u(s)

together represent modelling uncertainty. If we substitute the system output y(s)

into the residual generator Eq.(2.13), the s-domain residual vector is:

r(s) = H(s)G1 (s)f(s) + H(s)z\G(s) + H(s)Gd(s)d(s)	 (2.70)

Both faults and modelling uncertainty (disturbance and moc1eliuig error) affect the

residual, and hence discrimination between these two effects is difficult. This is the

heart of the robustness problem in FDI.

2.11.1 Robustness to disturbances

If the residual generator has been designed to satisfy:

H(s)Gd (s) = 0
	

(2.71)

i.e., the disturbance is totally de-coupled from the residual r(t), the residual is

robust to the disturbance. This is the principle of disturbance de-coupling for robust

residual generation.

Disturbance de-coupling designs can be achieved by using the unknown input ob-

server (Watanabe and Himmelblau, 1982; Frank and Wünnenberg, 1987; Frank and

Wiinnenberg, 1989; Chen and Zhang, 1991) or alternatively, eigenstructure assign-

ment approaches (Patton et al., 1986; Patton, 1988; Patton and Chen, 1991f; Patton

and Chen, 1991e; Patton and Cixen, 1lg). These t'o 	 dxes e

greater detail in Chapters 3 and 4. As far as the design of robust residuals is con-

cerned, these methods are formally equivalent whilst using different mathematical

tools to achieve the same goal in robustness (Gertler, 1991). Gertler et al. (Gertler

and Luo, 1989; Gertler, 1991; Gertler and Kunwer, 1993) proposed the disturbance

de-coupling design based on the so-called orthogonal parity equations. Disturbance

de-coupling can also be achieved using frequency domain design techniques (e.g

H°°-norm optimization) (Ding and Frank, 1991; Frank, 1991a; Frank and Ding,

1993; Frank and Ding, 1994).

If the condition (2.71) does not hold, perfect (accurate) de-coupling is not achiev-

able. One can consider an optimal or approximate de-coupling by minimizing a

performance index containing a measure of the effects of both disturbances and
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faults. One suitable choice of performance index can be defined in the frequency

domain as (Ding and Frank, 1991):

IHY(jw)Gd(jw)M	
(2.72)

- IIH(iw)Gi(iw)lI

By minimizing the performance index J over a specified frequency range, an approxi-

mate de-coupling design can be achieved (Ding and Frank, 1991; Frank, 1991a; Frank

and Ding, 1993; Qiu and Gertler, 1993; Frank and Ding, 1994). The optimal ap-

proximate disturbance de-coupling design can also be defined and solved in the

time domain (Frank and Wiinnenberg, 1989; Wiinnenberg, 1990; Chen, Patton and

Zhang, 1993) and this is studied in Chapter 7.

2.11.2 Robustness to modelling errors

For modelling errors represented by G(s), the robust problem is more difficult

to solve. Two main approaches have been proposed. One, based on an attempt to

account for uncertainty in designing the residual is known as active robustness in FDI

(Patton and Chen, 1991f; Patton and Chen, 1991e; Patton and Chen, 1991b; Patton

and Chen, 1992c; Patton and Chen, 1993b). The second approach is called passive

robustness in FDI (Patton and Chen, 1992c), which makes use of adaptive threshold

at the decision-making stage and this is discussed in Section 2.12.

The active way of achieving a robust solution is to obtain an approximate structure

for the uncertainty, i.e. to represent approximately modelling errors as disturbances:

z\G(s)u(s)	 G(s)d1 (s)	 (2.73)

where d1 (s) is an unknown vector and Gd1 (s) is a estimated transfer function matrix.

When this approximate structure is used to design disturbance de-coupling residual

generators, a suitably robust FDI is achievable. As the attempt is made to render

the actual residuals robust with respect to uncertainty, we call this active robustness

in FDI (Patton and Chen, 1991e; Patton and Chen, 1992c; Patton and Chen, 1993b).

As an example, let's assume that the parameter errors can be appi )ximated as:

N	 N

L\A	 aA	 LiB	 bB,
1=1	 1=1
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N	 N
LC R >2cjC,
	 z\D Ed2D

where A,, B, C, and D are known matrices and have the same dimension as matrices

A, B, C, D respectively, a2 , b, c and d are scalar factors. In this case, the modelling

error can be approximated by the disturbance term as:

aix(t)

E1 d1 (t) = Ax(t) + Bu(t) = [A 1 ... AN B1 ... BN] aNx(t)
bix(t)

L 
bNx(t)

cix(t)

CNX(t)
DNJ

d1 x (t)

dN x (t)

E2 d2 (t) = ACx(t) + ADu(t) = [C 1 ... CN D1

The Laplace transformed representation is:

Gd(s)d(s) E2 d2 (s) + C(sI - A)'Eidi(s)

2.11.3 Discussion on robust FDI

The disturbance de-coupling method for robust FDI has been studied extensively,

however its effectiveness has not been fully demonstrated in real problems. The main

difficulty arises as most of the disturbances only account for a small percentage of

the uncertainty. The disturbance de-coupling method cannot be directly applied to

the system with other uncertainties such as modelling errors. The approximate rep-

resentation of modelling errors and other uncertain factors as the disturbance term

provides a practical way to tackle the robustness issue for real systems. Chapter 5

studies different approaches for representing rtodeffing errors and other uncertain

factors via the disturbance term with an approximate or estimated distribution ma-

trix. With this estimated distribution matrix, the dr urbance de-coupled residual

can be designed and the robust FDI problem is solvab The study given in Chapter
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5 covers all possible uncertain situations and the methods are assessed using realistic

system simulation models. To extend the application domain of robust model-based

FDI, the modelling uncertainty should have a very general format without structural

constraints. Chapter 6 studies this problem, in which the robust design is reformu-

lated into a multi-objective optimization problem and solved by a combination of

the method of inequalities and genetic algorithms. Another way to tackle robust-

ness problem against modelling errors is via the use of multiple models to cover all

possible system operating ranges. This approach, which was originated by Lou et

al. (1986) is further developed in Chapter 7.

2.12 Adaptive Thresholds in Robust FDI

Efforts to enhance the robustness of FDI can be made at the decision-making stage

(Emami-Naeini, Akhter and Rock, 1986; Emami-Naeini et al., 1988; Ding and Frank,

1991; Frank, 1991a; Frank and Ding, 1993; Ding et aL, 1993; Frank and Ding, 1994).

Due to i vitable parameter uncertainty, disturbance and noise encountered in a

practical application, one will rarely find a situation where the conditions for a

perfectly robust residual generation are met. This is especially true for modelling

errors. It is therefore necessary to provide sufficient robustness not only in the

residual generation stage but also in decision-making. When the decision-making is

made robust against uncertainty, we can speak of passive robustness in FDI (Patton

and Chen, 1991e; Patton and Chen, 1992c; Patton and Chen, 1993a) in which case

it may not be necessary (or it may be difficult) to make the residual robust. Passive

robustness is thus an alternative to active robustness which should be used when

there is very limited system information available.

The goal of robust decision-making is thus to minimize the false and missing alarm

rates due to the effects that modelling uncertainty and unknown disturbances will

have on the residuals. This can be achieved in several ways, e.g. by statistical data

processing, averaging, or by finding and using the most effective threshold.

In practical situations, the residual is never zero, even when no faults occur. A

threshold must then be used in the residual evaluation stage. Normally, the threshold

is set slightly larger than the largest magnitude of the residual evaluation function

for the fault-free case. The smallest detectable fault is a fault which drives the

residual evaluation function to just exceed the threshold. Any fault which produces
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a residual response smaller than this magnitude is not detectable. From our point of

view, the purpose of the robust design is to decrease the magnitude of the fault free

residual and maintain (even increase) the magnitude of faulty residuals. From this

setting, "adaptive threshold" methods are not really robust FDI methods. They can

however be grouped into the class of passive methods for robust FDI.

The decision-making stage normally involves a thresholding process, the choice of

the threshold is not at all a straightforward issue, as pointed out by Gai, Adams,

Walker and Smestad (1978). When fixed thresholds are used, the sensitivity to

faults will be intolerably reduced if the threshold is chosen too high, whereas the

false alarm rate will be too large when the threshold is chosen too low. The proper

choice of the threshold is a delicate problem. Clearly, there should be an optimum

choice of threshold level and Walker et al. (Gal, Adams, Walker and Smestad,

1978; Walker and Gal, 1979; Walker, 1989) showed how this can be achieved using

the theory of Markov processes. Ding and Frank (Frank and Ding, 1993; Ding et

al., 1993; Frank, 1993) proposed a way to calculate the minimum detectable fault in

the frequency domain, with the threshold set just slightly higher than the residual

evaluation function in response to the minimum detectable fault. The determination

of the threshold in the time-domain is studied by Seliger and Frank (1993) and has

also discussed by Frank (1993). Recently, Faitakis, Thapliyal and Kantor (1994)

studied the computation of thresholds using vector and matrix norm operations.

In the case of large manoeuvres, these changes might be large enough so that there

is no fixed threshold that allows satisfactory FDI at a tolerable false and missed

alarm rates. The solution for such problems is to use adaptive thresholds (Clark,

1989), where thresholds are varied according to the control activity and the noise

and the fault signal properties of the monitored system. This concept is illustrated

in Fig.2.16 which shows the typical shape of an adaptive threshold for direct residual

evaluation.

An interesting question is how should we determine the functional form of the adap-

tive threshold law? Clark (1989) used an empirical adaptive law, whilst Emami-

Naeini et al. (Emami-Naeini et al., 1986; Emami-Naeini et al., 1988) proposed the

threshold selector (or threshold adaptor) method and Ding and Frank (1991) devel-

oped this concept further in connection with frequency domain approaches. This

was also developed by Isaksson (1993). All the recent research has shown that the

adaptive threshold can be obtained in a systematic way and it presents a new and

innovative tool for analysis and synthesis of FDI systems.
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As a simple example for determining adaptive thresholds, assuming that the distur-

bance de-coupling condition for the uncertainty arising from disturbances is achieved

(see Eq.(2.71)), and the residual uncertainty is only caused by modelling errors, i.e.

the fault-free residual is:

r(s) = H(s)LG(s)u(s)
	

(2.74)

Assuming that the modelling errors are bounded by a limiting value S, i.e.

jLG(iw))	 S
	

(2.75)

In this situation, the frequency response of the fault-free residual will be bounded

as:

IIr(i')I =

<	 <SHy(jw)u(j)ll	 (2.76)

Therefore, an adaptive threshold T(t) can be generated by a linear system as follows:

T(s) = SH(s)u(s)	 (2.77)

It is readily seen that the threshold T(t) is no longer fixed but depends on th

input u(i), thus being adaptive to the system operation. A fault is declared if

II r (t )II > II T (t )II . A robust FDI scheme with the threshold adaptor or selector is

shown in Fig.2.17.
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u(t)	 y(t)

Residual	 r(t)
Generator	 Fault
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(Selector)

U

FDI System

Figure 2.17: A FDI system with the threshold adaptor (selector)

As discussed above, the use of adaptive thresholds is a passive approach to robust

FDI. By this we mean that no effort is made to design a robust residual. The robust

problem is tackled by reliable decision-making under the situation of uncertain resid-

uals. A combination of active and passive approaches can offer potential for real

robustness, especially when considering practical applications. It is believed that

the success of an FDI scheme depends on the accuracy and choice of modeffing of

the monitored process. Hence, some attention in the field of robustness studies must

be paid to ensure that sufficient modeffing of the monitored process is achieved.

2.13 Applicability of Model-based FDI Methods

Many model-based FDI approaches have been developed so far. An engineer may

find himseff/herself in a dilemma when he/she wants to chose an approach to suit his

problem. Some research attempts have been made in identifying the applicability of

model-based FDI methods (Isermann, 1993b; van Schrick, 1994b). Recently, Patton,

Chen and Nielsen (1994) presented some general guide-lines on the choice of FDI

meth' ds. Some of the author's opinions on the applicability of model-based FDI

are pisented in this Section. It must be stressed that the stateiients are only of a

preliminary nature and there is no claim for their completeness.

A fault diagnosis technique should be able to complete the following important tasks:
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• Detect and isolate faults in sensors, actuators and components.

• Detect and isolate incipient faults as well as abrupt faults.

In the design of fault diagnosis system, the following tasks and questions should be

considered:

. How to handle noise in the system?

How to handle multiple faults?

. How to handle disturbances (additive uncertainty)?

. How to handle modelling errors (multiplicative uncertainty)?

. How to handle nonlinearity?

. How to cope with detection delay?

• How to overcome complexity in the FDI algorithm design?

• How to minimize the complexity in FDI algorithm implementation (or execu-

tion)?

• What arc the requirement for a priori modelling information?

How good are self learning and adaptive capabilities?

The applicability of different model-based FDI approached are listed as follows.

Observer-based approaches

• The isolation task can be fulfilled via

- a structured residual set designed by a dedicated or a generalized observer

scheme.

- a directional residual vector designed via a fault detection filter.

• Reaction to incipient faults is very fast.

• Very suitable for detecting and isolating faults in actuators and sensors.
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Possibility of detecting and isolating faults in parameters, although compli-

cated to achieve.

• Design procedure is systematic and simple.

• Easy to implement and execution algorithm is simple.

. Easy to handle multiple faults if the measurement number is sufficient.

Handling noise in the system:

- Statistical properties are unknown: An additional filter can be applied to

the residual, based on assumptions on fault and noise frequency bands.

- Statistical properties are known: A Kaiman filter can be used to produce

the fault-free residual with minimum variance and, consequently reducing

false and missed alarms.

Nonlinearity:

- The application of linear observers to a linearized model is simple but

difficulties may be encountered for complex and highly nonlinear systems.

- Non-linear observers are direct and accurate, however they are only ap-

plicable for particular classes of nonlinearities. The approach is not yet

mature.

• Robustness: there are many mature techniques available, e.g.

- Unknown input observer.

- Eigenstructure assignment.

• Requirements for a priori modelling:

- A reasonably accurate model is required.

• Adaptive and self-learning capability:

- Adaptive observers can be employed for systems with unknown or time

varying parameters.

The applicability of factorization methods is almost the same as the observer-based

methods, however it can only be applied to linear or linearized models.

Parity relation approaches
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As pointed out in Section 2.8.2, the parity relation approach is equivalent to the

observer-based approach in certain conditions. Hence, most of their applicability

conditions are the same. In the following, only the differences are listed.

• Fault isolation:

- Structured residual set designed by orthogonal parity relations.

- Directional residual is possible but difficult.

Handling noise in the system:

- An additional filter can be applied to a residual, based on assumptions

on fault and noise frequency bands. It is not easy to incorporate noise

statistics into the design.

Nonlinearity:

- Only linearized models can be used, simple but difficulties may be en-

countered for complex and highly nonlinear systems.

. Robustness: there are many mature techniques available, e.g.

- Orthogonal parity relations for additive uncertainty.

- Optimally robust parity relations which can be used for systems with

parameters within known error bounds.

• Adaptive and self-learning capability:

- No available research on this aspect yet.

The observer-based and parity relation approaches can be designed not only in the

time domain, but also in the frequency domain by factorizing the transfer matrix of

the monitored system. The latter approach can make full use of the advantages in the

frequency domain. The robust design can be achieved by enhancing fault responses

and reducing noise and modelling uncertainty responses, based on the information

on frequency distribution of faults, noise and modeffing uncertainty. The residual

response for a particular fault can also be shaped in the frequency domain according

to performance requirements. The frequency domain design normally requires less

accurate models than the time domain.

Parameter estimation approaches
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• The isolation is normally achieved by analysing the sensitivity matrix corre-

sponding to the prediction errors with physical parameters. Fault isolation is

not very easy because the physical parameters do not uniquely correspond to

model parameters. The directional residual is not normally possible to design.

. Reaction for incipient faults is slow.

• The detection and isolation of faults in actuators and sensors are possible but

complicated.

. The detection and isolation of faults in parameters are very straightforward.

• The design procedure is systematic but not simple.

. Implementation complexity:

- Requires a large amount of computation.

. The detection and isolation of multiple faults is an not easy task unless a large

number of sensors are installed.

• IN 'i'e is easy to handle in the parameter estimation procedure.

• Nonlinearity:

- Possible to handle using identification techniques for non-linear systems.

• Robustness:

- Dependent on the robustness properties of the estimation method.

Requirements for a priori modelling:

- Model structure, do not require model parameters.

• Adaptive and self-learning capability:

- Excellent, if the parameter estimation method is adaptive.

Discussion on applicability

Some guide-lines about applicability of different methods have been given. However,

the choice of FDI methods is still a complicated problem. The main factor to be

considered is the availability of system information. Some information about the
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normal system operation (normal behaviour) is necessary. This will serve as a refer-

ence base to be compared with. The information of the normal system behaviour is

usually expressed in terms of models, i.e. a model is necessary for FDI. The "black-

box" assumption is not very suitable for advanced fault diagnosis and analysis and

control reconfiguration. Some investigators argue that the observer-based methods

require models, but parameter estimation methods do not require models. This is

not really true because the principle of the parameter estimation approach is to

compare estimated with known parameters of the system. Moreover, the modelling

procedure is necessary to establish relationships between physical and model param-

eters. The system model can taken a different formats, e.g., state space, parametric,

frequency domain, qualitative model, etc. Hence, different methods require differ-

ent model formats, and the first criterion in choosing model-based methods is the

availability of the model type. As pointed by Gertler and Costin (1994), most of

the time spent in developing a fault diagnosis scheme is spent in understanding the

process to be diagnosed. It is hard to say whether a particular method is better than

another method because one may be good in one aspect but bad in others. Hence,

the second criterion in the choice of FDI method is dependent on the problem to be

solved.

When we don't have a priori modelling information, what kind of model should we

build for fault diagnosis purposes? This question is very difficult to answer, as the

designer's experience and background play an important role. Sometimes, it depends

just entirely on the designer's personal preference. If a particular criterion is needed,

the more accurate and detailed the model, the better will be the fault diagnosis

performance. If possible, a detailed state space model derived from physical laws is a

best choice. However, accurate modelling would involve a large amount of work and,

sometimes this is impossible. A cost effective way is to identify a parametric model

using identification techniques, based on input and output data of the system under

normal condition. However, fault diagnosis performance could be degraded if the

identified model is not very accurate. Moreover, in-depth analysis of fault location

and cause is not very easy if input-output models are used. If the quantitative

(analytical) model is very difficult to obtain or, if uncertain factors are dominant

in the system, one can consider building qualitative (heuristic) models which only

require crude description. Some human knowledge about the system can also be

expressed in heuristic format and included in the qualitative model. This would

lead to the use of qualitative model-based approaches or even the use of a knowledge

base.
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When using a real life application of a FDI scheme, whose feasibility has been

demonstrated (including the use of a laboratory demonstrator), many practical and

unforeseen difficulties present themselves. To overcome these difficulties, one must

understand the detailed design of the fault diagnosis scheme, as well as the nature of

the practical problems. This usually requires the fault diagnosis designer to follow

his work into the specific engineering field, either doing the implementation himself

or working closely with those who do it. For this reason we should also include the

application domain as far as possible into our research in this field.

There have been a significant number of application studies of fault diagnosis tech-

niques, including some actual application to either process plant or laboratory ex-

periments using real-time equipment. The book by Patton et al. (1989) provides

some useful pre-1989 application examples. More recent application examples can

be found in recent survey papers and the recent conference proceedings (Isermann,

1991; Labarrère, 1993; Ruokonen, 1994). However, there is a great need for academia

and industry to work together very closely to put fault diagnosis into the more useful

setting of real application.

2.14 Integration of Fault Diagnosis Techniques

Many FDI methods have been developed and they show different properties with

regard to the diagnosis of different faults in a process. To facilitate reliable FDI,

taking advantages of different methods, a proper integration of several methods is

a good solution (Isermann, 1994). Furthermore, a comprehensive fault diagnosis

require a knowledge based treatment of all available, analytical and heuristic infor-

mation. This can be performed by an integrated approach to knowledge-based fault

diagnosis.

2.14.1 Fuzzy logic in fault diagnosis

The problem of robust decision-making can be treated in a novel way with the aid of

fuzzy logic. To outline briefly the basic idea let us again consider the case that the

residual due to faults is also contaminated by noise and the effect of uncertainty due

to incomplete de-coupling, so that the residual will be non-zero even in the absence

of faults. Typically, these effects will be time varying, i.e., the r'sidual will fluctuate
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depending on the unknown time functions of the disturbances, noise and inputs of

the process. This is a common situation, and hence fuzzy logic seems to be a natural

tool to handle the decision making in a complicated and uncertain situation; based

on incomplete information. The appealing feature of fuzzy logic is that it constitutes

a powerful tool for modelling vague and imprecise facts and is therefore highly suited

for applications where complete information about the system is not available to the

designer.

Much effort has been spent on trying to decrease the uncertainty associated with

quantitative residual generation. However, it is impossible to fully eliminate the ef-

fect of uncertainty. Based upon this limitation, the problem encountered in residual

evaluation is to make the correct decisions on the basis of uncertain information.

Non-Boolean reasoning (e.g. fuzzy logic) can be a suitable tool for this task. Con-

trary to classical logic which only allows a definite classification of fixed values, the

fuzzy logic offers a form for the description of tolerances, i.e. fuzzy values, heuristic

rules and their combination. There are, for instance, a lot of processes and experi-

ences which can be grasped by humans heuristically, but which cannot be described

analytically. The question of how this expert knowledge can be put into the form of

a rule-based knowledge format has been answered partly through the use of fuzzy

logic. Fuzzy logic endows machine intelligence with such human traits as the ability

to make decisions based on shades of grey, instead of black-and-white information.

Fuzzy processing can be divided into essentially the following stages. In the first,

the residuals are compared with membership functions (or degree-of-belief curves)

which are often assumed to be of triangular shape. In the second stage the lower

of the two antecedent outputs is selected. Then the output of all rules is combined.

Finally, the centre of gravity (or another averaging methods) is used to defuzzify

the output and lead to the possibility of definite decision-making. The introduction

of fuzzy logic can improve the decision-making, and in turn will provide reliable and

sufficient FDI which are applicable for real industrial systems. However, difficulty

arises in the training of the algorithm in the inference mechanism.

Frank and his co-workers (Frank and Kiupel, 1993; Frank, 1993; Frank, 1994) use

fuz y logic for residual evaluation. The aim is to release weighted alarms instead of

yesno decision. Such information can, if necessary, be given to a human operator

to make the final yes-no decision or even train a specialist to perform the task.

A similar approach was proposed by Ulieru and Isermann (Ulieru, 1993; Ulieru

and Isermann, 1993), where analytical fault detection was integrated with fuzzy

diagnostic decision-makirg. The approach solves the problem at two levels: first
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analytical redundancy is used to generate symptoms and then fault detection and

isolation is achieved using heuristic techniques based on fuzzy logic.

2.14.2 Qualitative fault diagnosis

It may often be difficult and time consuming to develop a good mathemaical model,

there have been many attempts to use cruder descriptions (Lunze, 1994). Fault

diagnosis of dynamic systems can also be based upon declarative knowledge of the

system which is available in qualitative (rather than quantitative) form (Dvorak,

1992; Leitch, Kraft and Luntz, 1991; Leitch, 1993; Leitch and Quek, 1992; Shen and

Leitch, 1993; Lunze, 1991; Lunze and Schiller, 1992; Zhang, 1991). This approach is

based upon the concept of a qualitative model which unlike the quantitative coun-

terpart only requires declarative (heuristic) information e.g. the sign of variables,

the tendencies of variables (increasing, decreasing or constant), order and/or rel-

ative magnitude, and hence can be robust with respect to uncertainty in a well

defined sense. Clearly, this can be a significant advantage and qualitative methods

can serve to confirm hypotheses already tested using the quantitative methods. The

qualitative approach to fault diagnosis is motivated by the following circumstances

encountered in practical applications:

• Faults cannot be reasonably described by analytical models, e.g. a valve is

blocked or a pipe is broken.

• The on-line information available is not given by quantitative measurements

of the system output but by qualitative assessments of the current operating

conditions. For example, the information "the water level is high" cannot

be unambigously transformed into quantitative measurement data. Likewise,

alarm messages are qualitative in nature because they do not provide precise

state information. No analytical model can be used to process this kind of

on-line information.

• If the system structure or parameters are not precisely known and diagnosis

has to be based primarily on heuristic information, no quantitative model can

be set up.

In these cases a qualitative approach to fault diagnosis is necessary. There have

been several approaches in qualitative fault diagnosis, e.g. fault tree diagnosis and
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association-based diagnosis. The fault tree approach uses the evolution of the fault

through the dynamic system which is described by a fault tree, event trees or causal

networks. The association-based approach uses the relations among faults and the

faulty system observations which are described by rules. The current attention is

mainly focused on the qualitative model-based approach which uses the qualitative

model derived directly from the physical laws of the system under consideration.

One of the disadvantages of the qualitative approach to fault diagnosis is the pos-

sibifity of ambiguity which can arise when manipulating two or more declarative

variables, for example the sum of a positive variable and a negative variable can

either be negative or positive! This is clearly a situation to avoid when using these

methods. Another disadvantage is that qualitative methods are relatively crude

and usually cannot, on their own, be used to detect soft faults as the diagnosis

is symptom-based. Quantitative and qualitative approaches have a lot of com-

plementary features and can be suitably combined together to capitalize on their

advantages by increasing the robustness of quantitative methods (Handelman and

Stengel, 1989). This combination can also minimize the disadvantages of the two

approaches; in particular it is important that ambiguity arising in qualitative rea-

soning is reduced or eliminated. Hence, one of the main aims of future research

on model-based fault diagnosis is to find the way to combine these two approaches

together to provide highly reliable diagnostic information.

2.14.3 Integrated fault diagnosis systems

Quantitative model-based fault diagnosis generates symptoms based on the analyti-

cal knowledge of the process. In most cases this is, however, not enough information

to perform efficient FDI, i.e. to indicate the location, and the size of the fault. In

such cases, fault diagnosis requires the use of a knowledge-based treatment (Milne,

1987; Isermann and Freyermuth, 1991a; Isermann and Freyermuth, 1991b; Tzafes-

tas, 1989; Tzafestas and Watanabe, 1990). The intention is to transfer the exist-

ing knowledge of engineers, operators and maintenance staff into the supervision

methodology and to develop on-line integrated expert systems f fault diagnosis.

Fig.2.18 shows a typical integrated fault diagnosis system. Both analytical nd

heuristic knowledge are used in the system. Analytical knowledge includes: a quan-

titative model, normal process behaviour, process history and fault statistics (if

quantifiable), state estimation, parameter estimation, parity relations, etc. Heuristic
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Figure 2.18: An integrated knowledge-based system for fault diagnosis

knowledge (available from physical law and experience) includes: fault tree (connec-

tion of symptoms and faults), process history and fault statistics (if only qualitatively

known), etc. The knowledge will be processed in terms of residual generation and

feature extraction. The processed knowledge is then given to an inference mechanism

which comprises residual evaluation, symptom observation and pattern recognition.

For the last part of the problem solving, a certain amount of human expertise and

judgement, expressed in rules and facts can be used. This can be formulated, for

example, by different levels of diagnostic reasoning and different kinds of models.

2.15 Summary

This chapter has presented a tutorial treatment on the basic principles of model-

based FDI. The FDI problem has been formalized in a uniform framework by present-

ing mathematical descriptions and definitions. Within this framework, the residual

generation has been identified as a central issue in model-based FDI. By analysing

a properly designed residual signal, FDI tasks can be performed. The residual gen-
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erator has been summarized in a generalized structure which can cover all residual

generation methods. The concept of fault detectability to guarantee reliable fault

detection has been defined in this chapter. The ways of designing residuals for

isolation have also been discussed. The most commonly used residual generation

methods have been presented in a tutorial setting and the applicability of model-

based FDI techniques have been discussed. The success of fault diagnosis depends on

the quality of the residuals. A prerequisite of residuals for successful diagnosis is the

robustness with respect to modelling uncertainty. The robust FDI problem has been

discussed in this chapter and a foundation has been laid down for further studies

in the following chapters of the thesis. Other FDI methods such as fuzzy logic and

qualitative modelling have been discussed briefly and some perspectives in forming

an integrated knowledge-based fault diagnosis, utilising all available analytical and

heuristic information have been discussed.



Chapter 3

ROBUST RJSIDUAL

GENERATION USING

UNKNOWN INPUT
OBSERVERS

3.1 Introduction

The generation of robust residuals is the most important task in model-based fault

diagnosis techniques. As pointed out in Section 2.11, one of the dominant ap-

proaches for robust residual generation is the use of the disturbance de-coupling

principle. In this approach, uncertain factors in system modelling are considered

to act via an unknown input (or disturbance) on a linear system model. Although

the unknown input vector is unknown, its distribution matrix is assumed known.

Based on the information given by the distribution matrix, the unknown input (dis-

turbance) can be de-coupled from the residual. Robust FDI is thus achievable using

the disturbance de-coupled residual. This chapter focuses on the robust residual

generation problem via unknown input observers. The principle of the unknown

input observer (UlO) is to make the state estimation error de-coupled from the un-

known inputs (disturbances). In this way, the residual can also be de-coupled from

each disturbance, as the residual is defined as a weighted output estimation error.

This approach was originally proposed by Watanabe and Himmelblau (1982) who

considered the robust sensor fault detection and isolation problem for the system

with modelling uncertainty. Later, Frank & Wiinnenberg (Wiinnenberg and Frank,

1987; Frank and Wiinnenberg, 1989; Wiinnenberg, 1990) generalized this approach

73
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for detecting and isolating both sensor and actuator faults by considering the case

when unknown inputs also appear in the output equation. In parallel with this

development, a robust scheme for diagnosing actuator faults via UJOs is proposed

by Chen and Zhang (1991). A very important contribution of the paper by Chen

and Zhang (1991) was to demonstrate the robust FDI approach via to a realistic

chemical process system example. Note that Viswanadham and Srichander (1987)

and Phatak and Viswanadham (1988) also studied the actuator fault detection and

isolation problem via UlOs, however they failed to consider robustness issues. Many

other investigators have considered the use of UlOs for robust FDI: e.g. lou and

Muller (1991), lou and Muller (1994b), Frank and Seliger (1991), Seliger and Frank

(1991a), Keller, Nowakowski and Darouach (1992), Chang and Hsu (1993a), Ragot,

Maquin and Kratz (1993), Saif and Guan (1993), Wang and Daley (1993), Chen

and Patton (1994b), Shields (1994), Yu, Shields and Mahtani (1994b).

The first step to generate robust (in the sense of disturbance de-coupling) resid-

uals is to design a TJIO. The problem of UIO design dates back to 1975 (Wang,

Davison and Dorato, 1975). Darouach, Zasadzinski and Xu (1994) and lou and

Muller (1994a) reported the recent developments, and different meT i ds for design-

ing UlOs are discussed in Section 3.2. This chapter proposes a new full-order UlO

structure. A rigourous mathematical foundation in designing a full-order UlO has

been laid down and the necessary and sufficient existence conditions are presented

and thoroughly proved. When compared with other TJIO design methods, the ex-

istence conditions are very easy to verify and the design procedure is simple. This

avoids some of the unnecessary and complex computation that is otherwise required

for UlO design. An example of a typical complexity is the Kronecker canonical form

transformation method (Frank and Wünnenberg, 1989) which can also suffer from

numerical conditioning problems.

Robust FDI schemes based on UlOs have been studied further in Section 3.3 where

an application example of isolating actuator faults in a nonlinear process is pre-

sented. Unlike some other work in which the reduced order structure has been used,

this chapter is based exclusively on the use of the full-order UlO. The unknown in-

put de-coupling conditions for a full-order UlO are not very different from those of

the reduced order counterpart. However, for a full-order UlO, there is more design

freedom available to achieve other required performances, after the disturbance de-

coupling conditions have been satisfied. This is easy to understand, since the number

of free parameters will increase if the observer order is increased. This chapter ex-

ploits the remaining design freedom to design directional residualf (Section 3.4), and
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to produce the minimal variance state estimation (Section 3.5).

As pointed in Section 2.7, one of the approaches for fault isolation is to design a

directional residual vector, i.e. to make the residual vector lie in a fixed and fault-

specific direction in the residual space in response to each fault. With directional

residual vectors, the fault isolation problem is one of determining which of the known

fault signature directions the residual vector lies the closest to. The most effective

way to generate directional residual vectors is the use of the Beard fault detection

filters (BFDF) (Beard, 1971; Jones, 1973; Massoumnia, 1986b; White and Speyer,

1987; Park and Rizzoni, 1993; Park and Rizzoni, 1994). It should be pointed out

that this class of observers has been known as the "failure detection filter" (Beard,

1971; Jones, 1973; White and Speyer, 1987) in the early development of fault (fail-

ure) diagnosis. Fault detection filters are a special class of full-order Luenberger

observers with a specially designed feedback gain matrix, which can make the out-

put estimation error (residual vector) have uni-directional characteristics associated

with some known fault directions. This is the main and most appealing feature of

fault detection filters. However, the robustness issues have not been considered in

the context of BFDFs up to now. Hence, this approach does not account for the

effects of disturbances, non-linearities, modelling errors, parameter variations and

other uncertain factors in the system. There would be false or missed alarms when

this approach is directly applied to industrial systems, in which the uncertain factors

are unavoidable in modelling (specially for systems such as mechanical, eletrome-

chanical, thermofluid and aircraft systems). The application of BFDFs has been

obstructed by the lack of robustness. Section 3.4 proposes a new strategy for the

design of robust fault detection filters which ensures that the residuals have both

disturbance de-coupling and uni-directional properties. This is done by combing

the UIO and the BFDF principles. By the use of the UlO principle, the residual

has been made robust against unknown inputs (disturbances). The uni-clirectional

property is achieved based on BFDF techniques using the design freedom available

after the disturbance de-coupling conditions have been satisfied. A filter which can

produce disturbance de-coupled and directional residuals is called a "robust (distur-

bance de-coupled) fault detection filter". The robust fault detection filter developed

i this section is also demonstrated via a realistic example.

Section 3.5 considers the optimal filtering and robust fault diagnosis probiems for

stochastic systems with unknown disturbances. An optimal observer is proposed,

which can produce disturbance de-coupled state estimation with minimum variance

for time-varying systen with both noise and unknown disturbances. The output
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estimation error with disturbance de-coupling and minimum variance properties is

used as a residual signal. A statistical testing procedure is then applied to examine

the residual and hence to diagnose faults. The method developed is applied to an

illustrative example and simulation results show that the optimal observer can give

good state estimation; the fault detection approach taken is able to detect faults

reliably in the presence of both modelling errors and noise. One of the important

contributions of Section 3.5 is the development of optimal disturbance de-coupled

observers for systems with both unknown disturbance and noise. The scope of

applications of the optimal observer extends to a wide range of stochastic uncertain

systems and is not confined to the fault diagnosis problem domain.

The primary requirement for a UIO or other disturbance de-coupling based robust

residual generation approaches is that the unknown input distribution matrix must

be known a priori, although the actual unknown input itself does not need to be

known. If the uncertainty is caused by the disturbance, this requirement is easy

to meet and hence the robustness in FDI with respect to unknown disturbances

can be easily solved. However, the disturbance de-coupling approach cannot be

directly applied to systems for which the uncertainty is caused by modelling errors,

linearization errors, parameter variations etc. This is because the distribution matrix

for such uncertain factors is normally unknown. This problem has obstructed the

application of these robust FDI approaches in real industrial systems. To solve

this problem, some investigators led by Patton & Chen (Patton and Chen, 1991f;

Patton and Chen, 1991b; Patton, Chen and Zhang, 1992; Patton, Zhang and Chen,

1992; Gertler and Kunwer, 1993; Gertler, 1994) have suggested an approach in

which modelling errors and other uncertain factors are represented approximately

as unknown disturbances, with an estimated distribution matrix. In this way, an

optimally robust solution is achievable. This approximate strategy has extended

the application domain of disturbance de-coupling based robust residual generation

approaches. All three application examples presented in this chapter illustrate how

different kinds of uncertain factors can be represented approximately as unknown

input terms. These uncertain factors are, for example, the nonlinear terms in the

dynamic equation of a nonlinear process (Section 3.3), the linearization error in a

system as complex as a jet engine (Section 3.4) and parameter variations in a flight

control system (Section 3.5). The simulation results in all three examples show the

power of these proposed methods. The problem of representing modelling errors as

an unknown input term is examined in more detail in Chapter 5.
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3.2 Theory and Design of Unknown Input Ob-
servers

This section deals with the observer design for a class of systems, in which the

system uncertainty can be summarized as an additive unknown disturbance term in

the dynamic equation described as follows:

f i(t) = Ax(t) + Bu(t) + Ed(t)

y(t) = Cx(t)	
(3.1)

where x(t) E 7 is the state vector, y(t) E 7Z.m is the output vector, u(t) e R,' is the

known input vector and d(t) E R' is the unknown input (or disturbance) vector. A,

B, C and E are known matrices with appropriate dimensions.

Remarks:

(a) There is no loss of generality in assuming that the unknown input distribution

matrix E should be full column rank. When this is not the case, the following

rank decomposition can be applied to the matrix E (see Appendix B):

Ed(t) = E1E2d(t)

where E1 is a full column rank matrix and E2 d(t) can now be considered as a

new unknown input.

(b) The term Ed(t) can be used to describe an additive disturbance as well as

a number of other different kinds of modelling uncertainties. Examples are:

noise, interconnecting terms in large scale systems, nonlinear terms in system

dynamics, terms arise from time-varying system dynamics, linearization and

model reduction errors, parameter variations. Some examples of this problem

are presented in the following sections of this chapter and a detailed study can

be found in Chapter 5.

(c) The disturbance term may also appear in the output eq ition, i.e.,

y(t) = Cx(t) + Ed(t)

This case is not considered here because the disturbance term Ed(t) in the

output equation can be nulled by simply using a transformation of the output
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signal y(t), i.e.

yE(t) = Ty(t) = TCx(t) + TEd(i) = TCx(t)

where TE = 0, if one replaces y(t) and C with yE(t) and TC, the problem

will be equivalent to one without output disturbances.

(d) For some systems, there is a term relating the control input u(t) in the system

output equation, i.e.

y(t) = Cx(t) + Du(t)

As the control input u(t) is known, a new output can be constructed as:

(t) = y(t) - Du(t) = Cx(t)

If the output y(t) is replaced by (t), the problem will be equivalent to the

one without the term Du(t). For brevity, the term Du(t) is omitted in this

chapter as this does not affect the generality of the discussion on the observer

design.

Definition 3-1: {Unknown Input Observer (UIO)} An observer

is defined as an unknown input observer for the system described by

Eq.(3.l), if its state estimation error vector e(t) approaches zero asymp-

totically, regardless of the presence of the unknown input (disturbance)

in the system.

The problem of designing an observer for a linear system with both known and un-

known inputs has been studied for nearly two decades (Wang et al., 19Th). The

problem is of considerable importance as, in practice there are many situations

where disturbances are present. Alternatively, some of the system inputs are in-

accessible (or unmeasurable), and therefore a conventional observer which uses all

input signals cannot be used. It is more useful to assume no a priori knowledge

about unknown inputs. Wang et al. (1975) proposed a niiuirnal-order IJIO for the

system (3.1). The existence conditions for such an (n - m)th-order observer were

shown by Kudva, Viswanadham and Rain akrishna (1980). After the work of Wang

et al. (1975), many approaches for designing unknown input observers have been

proposed, for example, the geometric method by Bhattacharyya (1978), the inver-

sion algorithm by Kobayashi and Nakamizo (1 	 , the matrix algebra method by



8.2 Theory and Design of Unknown Input Observers 	 79

Watanabe and Himmelblau (1982), the generalized matrix inversion approach by

Miller and Mukundan (1982), and the singular value decomposition technique by

Fairman, Mahil and Luk (1984). Park and Stein (1988) studied the simultaneous

estimation problem for both states and unknown inputs. The problem of designing

reduced order UlOs has been revisited by lou and Muller (1992) and Guan and

Saif (1991) using algebraic approaches. In their studies, the state vector is divided

into two parts, via a linear transformation onto the state equation, a part can be di-

rectly obtained from the measurements, and another part has to be estimated using

a reduced order disturbance de-coupled observer. More recently, lou and Muller

(1994a) presented a unified viewpoint in designing UlOs.

Unlike all the above mentioned 'work in which the resftuce1 other observer structure

has been used, Kurek (1982) proposed a full-order unknown input observer structure.

Yang and Richard (1988) gave a direct design procedure for full-order UlOs and

have showed, through an example, that the reduced-order observer may restrict

the convergence rate in estimation. However, the design procedure they presented

is very complicated and involves some trial-and-error exercises. Furthermore, the

exisi ce conditions are not very easy to verify. This full-order UlO structure is

re-exnined by Darouach et al. (1994). It has been shown that the minimal order of

a UlO is (n - in), any order between (n - m) to n is possible for a UlO to be exist.

The disturbance de-coupling conditions for a full-order UIO are not very different

from those of a reduced-order UlO. That is to say, there are no significant differences

between two UlO structures, as far as unknown input (disturbance) de-coupling is

concerned. However, there is more design freedom available for a full-order UlO to

achieve other required performances such as the rate of convergence and minimal

variance. This is easy to understand since the number of free parameters will increase

if the observer order is increased.

In this study, a full-order UlO structure is used since extra design freedom is re-

quired for generating directional residuals in fault isolation. A rigorous mathematical

foundation in designing full-order UlOs is presented. The necessary and sufficient

conditions for this observer to exist are given and thoroughly proved in this chapter.

These conditions are easy to verify and the design procedure is systematic and easy

to implement. Moreover, one of the contributions of this chapter is to show that the

remaining freedom can be used to make the residual have directional properties (or

make the state estimation error have minimal variance), after unknown input (or

disturbance) de-coupling has been achieved.
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3.2.1 Theory of UlOs

The structure for a full-order observer is described as:

f (t) = Fz(t) + TBu(t) + Ky(t)	
(3.2)

(t) = z(t)+Hy(t)

where i E R? is the estimated state vector and z E 7?' is the state of this full-order

observer, and F, T, K, H are matrices to be designed for achieving unknown input

de-coupling and other design requirements. The observer described by Eq.(3.2) is

illustrated in Fig.3.1.

unknown input

d(t)
input1	

1 System	 fl_-	
output

I	 I
u(t)

TTB I__ ____ __

fK	 1state
________	

F	

I estimates

Unknown input observer

Figure 3.1: The structure of a full-order unknown input observer

When the observer (3.2) is applied to the system (3.1), the estimation error (e(t) =

x(t) - (t)) is governed by the equation:

é(t) = (A - HCA - K1 C)e(t) + [F - (A - HCA - K1C)]z(t)

+ [K2 - (A - HCA - K1C)HJy(t)

+ [T - (I - HC)]Bu(t) + (HG - I)Ed(t)	 (3.3)

y(t)

where

K = K1 + K2	(3.4)
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If one can make the following relations hold true:

(HG - I)E = o	 (3.5)

T	 I—HG	 (3.6)

F = A—HCA—K1 C	 (3.7)

K2 = FH	 (3.8)

The state estimation error will then be:

é(t) = Fe(t)
	

(3.9)

If all eigenvalues of F are stable, e(t) will approach zero asymptotically, i.e. -+ x.

This means that the observer (3.2) is an unknown input observer for the system

(3.1) according to Definition 3-1. The design of this UlO is to solve Eqs.(3.4) -

(3.8) and making all eigenvalues of the system matrix F be stable. Before we give

the necessary and sufficient conditions for the existence of a UlO, two Lemmas are

introduced.

Lemma 3-1: Eq.(3.5) is solvable if

	

rank(CE) = rank(E) 	 (3.10)

and a special solution is:

E[(CE)TCE}_ l (CE) T	 (3.11)

Proofi Necessity: When Eq.(3.5) has a solution H, one has HCE = E or

(CE)THT = ET

i.e., ET belongs to the range space of the matrix (CE)T and this leads to:

rank(ET ) <rank((CE)T)

i.e.

rank(E) rartk(CE)
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However,

rank(CE) <min{rank(C),ranlc(E)} ^ rank(E)

Hence, rank(CE) = rank(E) and the necessary condition is proved.

Sufficiency: When rank(CE) = rank(E) holds true, CE is a full column rank
matrix (because E is assumed to be full column rank), and a left inverse of CE
exists:

(CE) = [(CE)TCE](CE)T

Clearly, H = E(CE) is a solution to Eq.(3.5).

QED

Lemma 3-2: Let:

C1=
CA

then the detectability for the pair (C1 , A) is equivalent to that for the

pair (C,A).

Proofi If s 1 E C is an unobservable mode of the pair (C1 , A), we have:

rank{I	 =	 C	 I}<nF 
sI A ]} rank{[ s

1 1—A 1

Cl	
CA]

This means that a vector a E C will exist such that:

F sI—A 1
C	 Ia=O

LCA]
This leads to:

F s 1 1—A s11—A 1

[ c ]a=O	 or	 rank{[	 ]}<n

That is to say that s is also an unobservable mode of the pair (C, A).
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if 2 E C is an unobservable mode of the pair (C, A), we have:

rank{I s

2 1—A 1

C

This means that a vector /3 E C can always be found, such that:

[s2I_A]/3O

This leads to:

(s21—A),3=0	 C3=O

CA3 = Cs2 3 = s2 Cf3 =0

Hence:
Fs21—Al	

F521_A
I	 c	 I[ 

C1	
]/30

LCAJ

i.e., 2 is also an unobservable mode of the pair (C1 , A).

As the pairs (C1 , A) and (C, A) have the same unobservable modes, their detectabil-

ity is formally equivalent.

QED.

An alternative way to prove the Lemma 3-2 can be found in Appendix C. Note

that the detectability (Chen, 1984) is a weaker condition than observability. A pair

(C, A) is detectable when all unobservable modes for this pair are stable.

Theorem 3-1: Necessary and sufficient conditions for (3.2) to be a UlO

for the system defined by (3.1) are:

(i) rank(CE) = rank(E)

(ii) (C, A 1 ) is detectable pair, where

A1 = A - E[(CE) TCEI(CE)TCA	 (3.12)

Proof Sufficiency: According to Lemma 3-1, the Eq. (3.5) is solvable when condition
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(i) holds true. A special solution for H is H* = E[(CE) TCE]_ l (CE) T . In this case,

the system dynamics matrix is:

F=A—HCA—K1C=A1—K1C

which can be stabilized by selecting the gain matrix K1 due to the condition (ii).

Finally, the remaining UlO matrices described in (3.2) can be calculated using

Eqs.(3.4) - (3.8). Thus, the observer (3.2) is a UlO for the system (3.1).

Necessity: Since (3.2) is a UlO for (3.1), Eq. (3.5) is solvable. This leads to the fact

that condition (i) hold true according to Lemma 3-1. The general solution of the

matrix H for Eq.(3.5) can be calculated as:

H = E(CE) + Hü[Im - CE(CE)]

where H0 E	 is an arbitrary matrix and (CE) is the left inverse of CE which

is:
(CE) = {(CE)TCEI(CE)T

Substituting the solution for H into Eq.(3.7), the system dynamics matrix F is:

F A—HCA—K1C

[I - E(CE)C]A - [It'i

IC1
A1 —[K1 H0]I	 I

LCAi]

A—KiCi

H0]1	
C	

]L 
[Im - CE(CE)]CA

where

= [K1 H0] and

Since the matrix F is stable, the pair	 A1) is detectable, and the pair (C, A1)

also is detectable according to Lemma 3-2.

KQED

C

CA1

One should note that the number of independent rows of the matrix C must not

be less than the number of the independent columns of the matrix E to satisfy



3.2 Theory and Design of Unknown Input Observers 	 85

condition (i). That is to say, the maximum number of disturbances which can be

de-coupled cannot be larger than the number of the independent measurements. It

is very interesting to note that observer (3.2) will be a simple full-order Luenberger

observer by setting T = I and H = 0, when E = 0 (i.e. no unknown inputs in

the system). In this situation, condition (i) in Theorem 3-1 clearly holds true and

condition (ii) is simply changed to that of (C, A) being detectable. This is a well

known result in the design of a full-order Luenberger observer.

Condition (ii) can be verified in terms of the structural properties of the original

system. In fact, this condition is equivalent to the condition that the transmission

zeros from the unknown inputs to the measurements must be stable, i.e.

.sI—A E

C	 0

is of full column rank for all s with Re(s) ^ 0. This can be proved as follows:

It can be verified that:

In - E(CE)'C

0
E(CE)*C

sE(CE)*
sI - A

Irn	
C_sE(CE)*

El	 I sI—A1	 ol
C	 01

_E(CE)*CA E]

As the first matrix in the left side of the above equation is a full column rank matrix,

we have:

rank[sIn—A E1C	 0]

sI—A1	 0

= rank	 C	 0
_E(CE)*CA E

sI—A1

= rank	 C	 + rank(E)
_E(CE)*CA

We have assumed that E is a full column rank matrix. Hence, condition (ii) is

equivalent to the case when the matrix of the left side of the above equation is full

column rank for all s with Re(s) ^ 0. This is because the condition for pair (C, A1)

to be detectable is equivalent to the follcwing matrix

[sI_Au
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haveing full column rank for all s with Re(s) ^ 0.

From the above analysis, it can be seen that K1 is a free matrix of parameters in the

design of a UlO. After K1 is determined, other parameter matrices in the UTO can

be computed by Eqs.(3.4) - (3.8). The only restriction on the matrix K1 is that it

must stabilize the system dynamics matrix F. The matrix K1 which stabilizes the

matrix F is not unique due to the multivariable nature of the problem. That is to

say there is still some design freedom left in the choice of K1 , after unknown input

disturbance conditions have been satisfied. In the following sections, this freedom

is exploited further to make the diagnostic residual have directional characteristics

or minimum variance properties.

3.2.2 Design procedures for UlOs

One of the most important steps in designing a 1510 is to stabilize F = A1 - K1C

by choosing the matrix K1 , when the pair (C, A 1 ) is detectable. If (C, A1 ) is observ-

abb, this can be achieved easily by using a pole placement routine which is widely

aval ble in any control system design packages such as Control System ToolBox

for MATLAB. If (C, A 1 ) is not observable, an observable canonical decomposition

procedure (Chen, 1984) should be applied to (C, A1 ), which is:

IA11	 0 ]

	

PA1P' 
= L Al2 A22 j	

A11 E R1Xfh

CP1 = [C* 01	 C* E grnXni

where n 1 is the rank of the observability matrix for (C, A1 ), and (C*, A 11 ) is ob-

servable. The choice of the transformation matrix can be found in Appendix C and

Chen (1984). If all eigenvalues of A22 are stable, (C, A1 ) is detectable and the matrix
F can be stabilized.

F = Ai - K1 C = P'[PAp-' - PK1CP']P
(IA11	 0	 ]	 [i'1P [C	 0]

= -' 
I L Al2 A22 - K]	

} P
=

	 L

IAii — Ici c* 0
Al2 - 1ç2C* A22] P
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where:

K=PK1= Kp	
K,

{Eigenvalues of F} = {Eigenvalues of A22 } {Eigenva1ues of (A11 - KC*)}

As (C* , A11 ) is observable, K' can be determined via the pole placement. The

matrix Is? can be any matrix, because it does not affect the eigenvalues of F. The

design procedure of a UlO is thus given as below:

1 0 Check the rank condition for E and CE: If rank(CE) rank(E), a UlO does

not exist, go to 100.

2° Compute H, T and A1:

H = E{(CE) TCE](CE)T	T = I - HG	 A1 = TA

3° Check the observability: If (C, A1 ) observable, a UlO exists and K1 can be

computed using pole placement, go to 9°.

4° Construct a transformation matrix P for the observable canonical decompo-

sition: To select independent n 1 = rank(Wo) (W0 is the observability matrix

of (C,A1 )) row vector p ' ," ,p from W0 , together other n - n 1 row vector

p to construct an non-singular matrix as:

P—[p	 .	 ' T- i,",Pno,Pno+i,",Pnj

50 Perform an observable canonical decomposition on (C, Ai)):

IA 11 	0	 1

	

PA1P' 
= L Al2 A22]	

CP' = [C* 
01

6° Check the detectability of (C, Ai ): If any one of the eigenvalues of A22 is

unstable, a UlO does not exist and go to 10°.

7° Select n 1 desirable eigenvalues and assign them to A11 - IsC* using pole

placement.

8° Compute K1 = P1Kg = P_ l [(K, ) T (I2)T]T, where K1 can be any (n -

n i ) x m matrix.
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90 ComputeFand K: F=Ai—K1C,K=K1+K2=K1+FH.

100 STOP.

Example: Consider the example used in (Wang et al., 1975; Miller and Mukundan,

1982; Yang and Richard, 1988; lou and Muller, 1992) with the following parameter

matrices:

—1	 1	 0

A=—i 00

0 —1 —1

r —1 1

C=11 0

L 
001]	

E=	 O

L oJ

1°: It can easily be checked that rank(CE) = rank(E) = 1.

2°: The matrices H, T and A1 are calculated as:

	

10	 000	 0	 0	 0

	

H= 00	 T= 010	 A1 = —1 0 0

	

0 0	 0 0 1	 0 —1 —1

3°: The pair (C, A 1 ) is observable, a UlO exists, and the matrix K1 can be deter-

mined via the pole placement procedure.

12

K1 = —1 —6
	 which assigns eigenvalues at: {-1, —2, —3}

04

Note that the gain matrix K1 is not unique for assigning the same set of eigenvalues.

9°: The matrices F and K are calculated as:

	

—1 0 —2
	

02

	

F= 0 0 6
	

K= —1-6

	

0 —1 —5
	

04

Remarks: Due to the multivariable nature of the observer design problem, the

choice of the gain matrix K1 E 7.3x2 is not unique. That is to say there is some design

freedom left after the unknown input de-coupling conditions have been satisfied.

This example was also studied by IIou and Muller (1992) in which a first order UlO

was designed. The gain for their reduced order UlO is a scalar, and there is no des
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freedom left after the satisfaction of unknown input de-coupling and the assignment

of the single eigenvalue. This demonstrates the advantage of the full-order UlOs in

terms of design freedom.

3.3 Robust Fault Detection and Isolation
Schemes based on UlOs

3.3.1 Robust fault detection schemes based on UlOs

The main task of robust fault detection is to generate a residual signal which is

robust to the system uncertainty. To detect a particular fault, the residual has

to be sensitive to this fault. The detailed discussion about fault detectability has

been presented in Section 2.6. According to the study in Section 2.4, a system with

possible sensor and actuator faults can be described as:

f (t) = Ax(t) + Bu(t) + Ed(t) + Bfa(t) 	 (3.13)
j y(t) = Cx(t)+f(t)

where fa E 7?] denotes the presence of actuator faults and f8 E l?, denotes sensor

faults. To generate a robust (in the sense of disturbance de-coupling) residual, a

UlO described by Eq.(3.2) in Section 3.2 is required. When the state estimation is

available, the residual can be generated as:

r(t) = y(t) - C(t) = (I - CH)y(t) - Cz(t) 	 (3.14)

When this UlO-based residual generator applied to the system described in

Eq.(3.13), the residual and the state estimation error (e(t)) will be:

{

ê(t) = (A1 - K1 C)e(t) + TBfa (t) - K1 f8 (t) - Hf8(t)	
(3.15)

r(t) = Ce(t)+f3(t)

From Eq.(3.15), it can be seen that the disturbance effects have been de-coupled

from the residual. To detect actuator faults, one has to make:

TBO



kr j = 1,2,..• ,m	 (3.17)
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More specifically, the fault in the th actuator will affect the residual iff

Tb0

where b is the th column of the matrix B. Similarly, the residual has to be made

sensitive to f8 (t) if sensor faults are to be detected. This condition is normally

satisfied, as the sensor fault vector f8 (t) has a direct effect on the residual r(t). The

robust residual can be used to detect faults according to a simple threshold logic:

5 IIr(t)M
r(t)j

< Threshold

^ Threshold

for fault-free case

for faulty cases
(3.16)

3.3.2 Robust fault isolation schemes based on UlOs

The fault isolation problem is to locate the fault, i.e., to determine in which sensor

(or actuator) the fault has occurred. As pointed out in Section 2.7, one of the

approaches to facilitate fault isolation is to design a structured residual set. The term

"structured" here means that each residual is designed to be sensitive to a certain

group of faults and insensitive to others. The sensitivity and insensitivity property

makes isolation possible. The ideal situation is to make each residual only sensitive

to a particular fault and insensitive to all other faults. However, this ideal situation

is normally difficult to achieve (Patton et al., 1989). Even when the ideal situation

can be achieved, the design freedom will be used up and no freedom will be left for

achieving robustness. This problem was encounterea 'by 'Wiinnen'berg 1O'). 10

exploit the maximum design freedom for robustness, a commonly accepted scheme

(Patton et al., 1989) in fault isolation is to make each residual to be sensitive to

faults in all but one sensors (or actuators).

Robust sensor fault isolation schemes:

To design robust sensor fault isolation schemes, all actuators are assumed to be

fault-free and the system equations can be expressed as:

(t) = Ax(t) + Bu(t) + Ed(t)

y(t)	 Cx(t)+f?(t)

y3 (t) = cx(t) + f83(i)

where c3 E R' >° is the 3th row of the matrix C, C	 R.(m1) is obtained from
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the matrix C by deleting j row cj , y, is the th component of y and y' E is

obtained from the vector y by deleting th component y. Based on this description,

rn UJO-based residual generator can be constructed as:

J i(t) = Fz'(t)+TBu(t)+I7y'(t)

1 r3 (t) = (I - C'H)y3 (t) - C'z'(t)
for j=1,2,...,m	 (3.18)

where the parameter matrices must satisfy the following equations:

H'CE = E

P = I—H'C'

F' = PA - KC to be stabilized	 for j = 1, 2, , rn	 (3.19)

K = FIV

K' = Kj7+K

It is clear that each residual generator is driven by all inputs and all but one outputs.

When all actuators are fault-free and a fault occurs in the th sensor, the residual

will satisfy the following isolation logic:

J
Jr'(t)	 T1	

(3.2C1
L. rk (t)M ^ T FJ	 for k=1,..,j-1,j+1,•,m

where TFI (j 1 . . , m) are isolation thresholds. A robust and UlO-based sensor

fault isolation scheme is shown in Fig.3.2.

input	 I	 iURI	 lb YR'
ACTUATORS	 PLANT	 SENSORS

UI

+1HI

y	 output

__J Signal
yl Grou,J

r 1 (t) I

Figure 3.2: A robust nsor fault isolation scheme
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Robust actuator fault isolation schemes

To design robust actuator fault isolation schemes, all sensors are assumed to be

fault-free and the system equation can be described as:

ii(t) = Ax(t) + B2u2(t) + B 1f(t) + b2 (u1 (t) + fai(t )) + Ed(t)

= Ax(t) + B 1 u 1 (t) + B1f,(t) + Ed(t)
	

(3.21)

y(t) = Cx(t)	 for i=1,2,..,r

where b E 7?] is the th column of the matrix B, B' E _1) is obtained from

the matrix B by deleting the th column b1 , u is the tj, component of u, u E ?-'

is obtained from the vector u by deleting the it,, component u 2 , and

E2 =[E b2]
d(t)	 1

d1(t)= [	 I
L u 1 (t) + fai(t)]

for i=1,2,•",r

Based on the above system description, r UlO-based residual generators can be

constructed as:

I 1 (t) = F 1z 1 (t) + T 1B 1u 1 (t) + K1y(t)	
for i = 1,2,••• ,

r1 (t) = (I - CH1 )y(t) - Cz1(t)

The parameter matrices must be satisfy the following equations:

(3.22)

H' CE'

T2

F2

K1

=E'
= I—HC

= T1A—KC

F'Ht

= K+K

to be stabilized	 for i = 1,2,.. ,r (3.23)

One can seen that each residual generator is driven by all outputs and all but one

inputs. When all sensors are fault-free and a fault occurs in the actuator, the

residual will satisfy the following isolation logic:

	

{

r1 (t)M < TFJ	
(3.24)

	

Ir lc (t)I ^ T FI	 for k=1,•••,i-1,i+1,•••,r

where Tj 1 (i = 1,... , r) are isolation thresholds. A robust and UlO-based actuator

fault isolation scheme is shown in Fig.3.3.

Remarks: The isolation schemes presented in this section can only isolate a single
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Figure 3.3: A robust actuator fault isolation scheme

fault in either a sensor or an actuator, at the same time. This is based on the fact

that the probability for two or more faults to occur at the same time is very small in

a real situation. If simultaneous faults need to be isolated, the fault isolation scheme

should be modified based on a regrouping of faults. Each residual will be designed

to be sensitive to one group of faults and insensitive to another group of faults.

Frank and Wiinnenberg (1989) have studied this problem. The way of grouping

faults is dependent on the system and the faults to be isolated. The isolation of

sensor faults is normally possible, however it is impossible to isolate two actuator

faults which have the same distribution direction. To isolate such actuator faults,

other fault information such as fault frequency distributions should be utilised. FDI

schemes are related to particular systems, a general scheme cannot expected to suit

any system without any modification.

3.3.3 A practical example (Robust actuator fault detection
and isolation for a chemical reactor)

Watanabe and Himmelblau (1982) studied the sensor fault detection problem for

a well-stirred chemical reactor with heat exchanger. This system is used here to

demonstrate the robust actuator fault detection and isolation scheme developed in

Section 3.3.2.
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System representation: The state, input and output vectors for the considered

chemical reactor are:

F x1(t)

x2(t)
x(t) = I

I x3(t)

x4(t)

C0(t)

T0(t)

T(t)

Tm(t)

ui(t)	 3.6C1(t)

u(t) = U2(t) =	 3.6T1(t)

u3 (t)	 36T1(t)

yi (t)	 C0(t)

y(t) =	 = T0(t)

y3 (t)	 T(i)

where:
Co i-+ concentration of the chemical product

T0 '-+ temperature of the product

T
	

i-+ temperature of jacket water of heat exchanger

Tm i- coolant temperature

ci	 i- inlet concentration of reactant

T,	 '-+ inlet temperature

coolant water inlet temperati e

According to Watanabe and Himmelblau (1982), the system is modelled as:

f 
th(t) = Ax(t) + Bu(i) + Ed(t)

1 y(t) = Cx(t)

where the term Ed(t) is used to represent the nonlinearity in the system, and

1.2515 x io	 1.2515 x 107}
d(t) = 3.012 x lO12exp{—	 } = 3.012 x 10' 2 exp{-

T0	x2(t)

	—3.6	 0.0	 0.0	 0.0

	

A -
	 0.0 —3.6702	 0.0	 0.0702

	

-	 0.0	 0.0 —36.2588	 0.2588

	

0.0	 0.6344	 0.7781 —1.4125

1.0

E = 
20.758

0.0

0.0

[1 0
Ii 0 0 ol

B=0 1 0	
C=0 1001

lo 0 ii

L 0 0 0]	
Lo 0 1 0]

Note that the system matrices are not exactly the same asgive by Watanabe and
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Himmelblau (1982), this is because the time scale has been changed to hours for the

sake of convenience.

UlOs design and residuals generation: Both control inputs u i (t) (C1 (t)) and

u2 (t) (T1 (t)) are related to the inlet chemical substance, and any fault in u(t) or

u2 (i) will cause a similar consequence. Hence it is not necessary to isolate faults

between u i (t) and u2 (t). Two UlOs are designed here, the first UJO is driven by

u i (t) and u2 (t) and the second UTO is driven by u3 (t). These two UlOs are robust

to the nonlinear factor in d(t).

UlO 1: The dynamic equation for the first UlO is:

= F'z(t) + K'y(t) + T'[b1 b2] 
[ui(t) 1
L 

U2(t) j

where b1 and b2 are the first two columns of B, and the parameter matrices for this

UlO are:

	

21.758 -1.0 0.0	 -20.758
	

1.0 0.0 0.0

111=	 0.0
	

1.0 0.0	
T'=	

0.0
	

0.0 0.0 0.0

	

0.0
	

0.0 1.0
	

0.0
	

0.0 0.0 0.0

	

-2075.8 100.0 0.0
	

2075.8 -100.0 0.0 1.0

	

-10 0.0 0.0	 0.0702	 -278.5724
	

13.3496	 0.0

F'=	
0 -A 1 	 0.0	 0.0
	

0.0
	

0.0	 0.0

0
	

0.0 -A 2	0.0
	

0.0
	

0.0	 0.0

	

0 0.0 0.0 -8.4325
	

10031.304 -475.5956 0.7781

The sub-observer for z and z (element of vector z') has no inputs of y, u 1 and u2,

and has no coupling with z11 and z, hence z and z will stay at zero if the initial

values of z and z are zero and the observer matrix F1 is designed to be stable.

The full-order UlO can be reduced to:

F	 1	 F -10.0	 0.0702 1 F 
z1' ] + [ -

278.57236	 13.3498	 0.0 ]

Ii	 1	 0.0 -8.4325 j I z	 10031.3035 -475.5956 0.7781

-20.758	 1.0	 u1
+	

2075.8 -100.0	 u2
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The state estimation is:

Zi + 21 •'758Yi - Y2

'4	 Y2
x =

y3

- 2075.8y + 100Y2

The residual is generated by:

r'(t) = yi (t) -	 = yi (t) - 1 (t) = y2 (t) - z(t) - 20.758y1(t)

UlO 2: The dynamic equation for the second UlO is:

2 (i) = F2z(t) + K2 y(t) + T2b3u3(t)

where b3 is the third column of B, and the parameter matrices for this UlO are:

	

1.0 0.0	 0.0

H2 - 0.0 1.0 0.0

-	 0.0 0.0	 0.0

0.0 0.0 40.0

	

0.0 0.0	 0.0 0.0

T2	
0.0 0.0	 0.0 0.0

-	 0.0 0.0	 1.0 0.0

0.0 0.0 -40.0 0.0

-)	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0

F2 =
	 0.0	 A 2	0.0	 0.0	 K2 = 0.0	 0.0	 0.0

	0.0	 0.0 -10.0	 0.2588	 0.0	 0.0 -15.9068

	

0.0	 0.0	 0.0 -11.7645	 0.0 0.6344 980.5501

Similar to the first UlO, the UlO 2 can also be reduced as:

F	 1	 F -10.0	 0.2588	 F z 1

[]	 [	
0.0 -11.7645] L]

+1	 Iy+
1 0.0	 0.0 -15.9068 1	

[	

1.0

	

L 
0.0 0.6344 980.5501]	 -40.0 ] u3(t)

T

=	 Y2 Z Z + 40y3}

The iesidual is generated by:

r2 (t) = y3 (t) - p3 (t) = y3 (t) - i 3(t) = y3 (t) - z(t)



are:

34.632

U = 1641.6

29980

0.3412

525.7

472.2

496.2

The initial values for UlOs are:
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Simulation: The above UlOs is applied to the nonlinear chemical reaction process

to detect and isolate faulty actuators. The system input and the initial state vectors

z(0) = 518.6174	 z(0) = —51365.5370	 z(0) = 472.2 z(0) —18391.8

The sampling interval is set as 0.05 hour, and the simulation is carried out for t = 10

hours. Various types of faults are introduced to the system at t = 4 hours. The list

of the simulated faults is:

(a) A fault occurs in the inlet reactant when t > 4 hour, the fault signal in the

first input is 20%ui(t).

(b) A fault occurs in the inlet reactant when t > 4 hour, the fault signal in the

second input is 20% sin(2(t - 4))tt2(t).

(c) A fault occurs in the coolant circular when i > 4 hour, the fault signal in the

third input is —2%u3(t).

The simulation results are shown in Fig.3.4, from which one can seen that the resid-

ual is almost zero throughout the 10 hours simulation run for fault-free residuals.

The residuals of the respective UTO increase in magnitude considerably, when ac-

tuator faults occur at t 4 hours. The faults can be easily isolated using the

information provided by residuals.

Robustness analysis: From the above analysis and simulation, we know that the

fault detection and isolation scheme is robust to nonlinearity in d(t). The robustness

with respect to parameter variations is analysed below. The system with parameter

variations is described as:

(t) = Ax(t) + Bu(t) + Ed(t) +	 Iw1 (x(t), iSA)

where: I, is the th column of identity matrix, w represent the variatiofls in jh row
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Figure 3.4: Residuals for two UlOs (without parameter variations)
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elements of A. This equation can be rewritten as:

(t) Ax(t) + Bu(t) + Ed(t) + Ew 1 + 12 (w2 - 20.758w 1 ) + 13w3 + 14w4

Parameter variations in the form of Ew 1 and 13w3 will not affect the first UlO,

because T'E = 0 and T'13 = 0. Similarly, the parameter variations in the form of

Ewj and 12 (w2 - 20.758w 1 ) will not affect the second UlO, because T2 E = 0 and

T2 12 = 0. In all cases, the sensitivities to process parameter variations have been

decreased. The robustness of UlOs to process parameter variations can be assessed

by the simulation in which the matrix A is changed to:

—4.14
	

0.0	 0.0
	

0.0

A=	
0.0 —4.22073	 0.0 0.08073

0.0
	

0.0 —36.4401
	

0.2601

0.0
	

0.9516	 1.1672 —2. 1188

The residuals for three types of faults are shown in Fig.3.5, from which one can

conclude that the robust FDI scheme can reliably detect and isolate faulty actuators

even in the presence of process parameter mismatch.

Remarks: Robust actuator fault detection and isolation based on UlOs has been

demonstrated in a chemical reactor example. The UlO is a time-invariant linear

filter but can also be applied to a class of non-linear time-variant systems if the

nonlinear function is separated from the linear function and can be treated as an

unknown input term. The robust FDI based on UlOs has also a certain degree of

robustness against parameter variations.

3.4 Robust Fault Detection Filters and Robust
Directional Residuals

Fault detection filters (Beard, 1971) are a particular class of the full-order Luen-

berger observer with a specially designed feedback gain matrix such that the output

estimation error (residual vector) has uni-directional characteristics associated with

some known fault directions. To be specific, the residual vector of a fault detection

filter is fixed along with a predetermined direction for an actuator fault or lies in a

specific plane for a sensor fault. Since the important information required for iso-
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Figure 3.5: Residuals for two UlOs (with parameter variations)
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lation is contained in the direction of the residual rather than in its time function,

the use of a Beard fault detection filter (BFDF) does not require the knowledge of

fault modes. The fault isolation task can be facilitated by comparing the residual

direction with pre-defined fault signature directions (or planes), and only one (or

the minimum number of) observers required for fault isolation due to directional

characteristics of the residual. This is the main and most appealing advantage of

fault detection filters. However, the main drawback of the BFDF is that the robust-

ness problem has not been considered. This section presents a method to design a

robust fault detection filter which is based on the combination of TJIO and BFDF

theories. The main principle is that the remaining design freedom, after disturbance

de-coupling conditions have been satisfied, can be used to make the residual vector

have directional characteristics. A realistic simulation example of isolating faulty

sensors in a jet engine system is presented. This is a nonlinear system and the lin-

earization error can cause mis-isolation if the robustness issue is not considered. A

way of representing linearization errors as an unknown input term is presented and

its distribution is estimated using a least-squares procedure. The simulation results

shows that faults are correctly isolated using the technique developed.

3.4.1 Basic principles of fault detection filters

The BFDF was first developed by Beard (1971) using a matrix algebra approach

and later reformed by Jones (1973) in a vector space notation. The theory of BFDFs

has been extended by many researchers, for example, Massoumnia (l986b) used a

geometric interpretation, White and Speyer (1987) improved the design procedure

using a spectral approach which is suitable for the isolation of multiple faults, and

more recently Park & Rizzoni (Park and Rizzoni, 1993; Park and Rizzoni, 1994)

developed a closed-form expression of BFDFs using eigenstructure assignment.

In order to describe the BFDF theory, let us consider a system without disturbances

in the state space format as:

f (t) = Ax(t) + Bu(t) + bifai(t) 	
(3.25)

y(t) = Cx(t)+If(L)

The term bfa*(t) (i = 1, 2, . .. , r) denotes that a fault has occurred in the th actua-

tor, b E 7?] is the th column of the input matrix B and is defined as the fault event

vector of the	 actuator fault, and f0 (t) is an uflknown scalar time-varying func-
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tion which represents the evolution of the fault. The term If83 (t) (j = 1, 2, . . , m)

denotes that a fault occurs in the th sensor, I E is a unit vector corresponding

to a fault with the th sensor. Note that component faults appear in the system

equation in the same way as the actuator fault and hence are not discussed further

here.

A BFDF is just a full-order observer and its structure and the residual can be

described as:

5 (t) = A(t) + Bu(t) + K(y(t) - C(t)) 	
(3 26)

r(t) = y(t) - C(t)

where r E 'Rjm is the residual vector, i E R' is the state estimation, and K E ?Zn2Xn

is the observer gain matrix which has to be specially designed to make the residual

have restricted uni-directional properties in the presence of a particular fault. If the

state estimation error is defined as: e(t) = x(t) - (t), the residual and e(t) will be

governed by the following error system, when a fault occurs in the th actuator:

5 è(t) = (A - KC)e(t) + bifai(t)

1 r(t)	 Ce(t)

When a fault occurs in the th sensor, the error system will be:

5 ê(t) = (A - KC)e(t) -

r(t) = Ce(t) + If8(t)

where k3 is the th column of the detection filter gain matrix.

(3.27)

(3.28)

The task of BFDF design is to make Ce(t) have a fixed direction in the output space

responding to either bf1(t) or kf3 (t). Both actuator and sensor fault situations

can be considered in the following general error system equation:

{

è(t) = (A - KC)e(t) + l(t)

r(t) = Ce(t)	
(3.29)

where i E R] is called the fault event direction. The definition of the isolability of

a fault with known direction I is given by Beard (1971) as stated below:
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Definition 3-2: {Isolability of a fault with a given direction}:

The fault associated with l in the system described by Eq.(3.29) is

isolable if there exists a filter gain matrix K such that:

(a) r(t) maintains a fixed direction in the output space, and

(b) (A - KG) can be stabilized.

Condition (a) which guarantees that the residual has uni-directional characteristics,

is equivalent to ensuring that the rank of the controllability matrix of (A, l) pair is

one, i.e:

rank[l1 (A - KC)l •. (A - KC)"'l] = 1

Condition (b) ensures the convergence of the filter. In the original definition of Beard

(1971), condition (b) requires arbitarily assignment of eigenvalues of (A—KG). This

condition has been modified as the stability requirement is sufficient if the residual

response time does not need to specified. This definition was referred to as "fault

detectability" by Beard (1971) and others (Jones, 1973; Massoumnia, 1986b; White

and Speyer, 1987). In the author's view, the term "isolability" is more appropriate,

because the directional property of the residuals is especially desirable for fault

isolation purposes, although it can also be used for fault detection. Hence, the

BFDF is designed to satisfy the fault isolability.

Here the abbreviation BFDF is reserved for a filter (an observer) with residual having

uni-directional properties. If a fault associated with the direction b is isolable, the

residual of the BFDF will be fixed in the direction parallel to Gb2 , when a fault

occurs in the ij, actuator. Similarly, the residual will lie somewhere in the plane

defined by Ck3 and I, when a fault occurs in the ti sensor.

To isolate faults associated with p isolable fault event directions l (i = 1,... ,

the following output separability condition (Beard, 1971) must be satisfied.

Definition 3-3: {Output Separability of F&ults}: The faults asso-

ciated with p fault event directions i (i = 1,2,... ,p) are separable in the

residual space if the vectors Cl 1 , Cl2 ,... , Gl are linearly independent.

Output separability is necessary for a group of faults to be isolated in the residual
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space according to their signature directions. The directions Cl1 (i = 1,2,	 ,p) are

then known as the fault signature directions in the residual space.

Definition 3-4: {Mutual Isolability}: The faults associated with

the fault event vectors 1 (i = 1,2, • ,p) are mutually isolable if there

exists a filter gain matrix K which satisfies the isolabiity conditions of

Definition 3-2 for all l (i = l,2,...,p), i.e.

rank[l 1 (A - KC)1 2 ... (A - KC) 1 l1] = 1	 for all i = 1,2,..• ,p

A group of mutually isolable faults can be isolated. usiu, the residiial euetated. 1 j a

single BFDF by comparing the residual direction with the fault signature directions,

when there are no simultaneous faults. The condition for mutual isolability can be

found in the well known literature (Beard, 1971; Jones, 1973; White and Speyer,

1987). If a group of faults is not mutually isolable, it can be divided into a number

of subgroups and each subgroup is mutually isolable. For such cases, a few BFDFs

are required to fulfil the fault isolation task. In any case, only a minimum number

of filters are required for fault isolation. This is the most important and appealing

advantage of the BFDF approaches.

In conclusion, the task of designing a fault detection filter is to make the residual

have a uni-directional property by choosing the gain matrix K. Design techniques

can be found in the classical literature on fault detection filters (Beard, 1971; Jones,

1973; White and Speyer, 1987).

3.4.2 Disturbance de-coupled fault detection filters and
robust fault isolation

It can be seen that uncertain factors associated with a dynamical system such as

disturbances and modeffing errors have not be considered in the design of BFDFs.

This is the main disadvantage of BFDFs, becau. uncertain factors are unavoidable

in real systems and any FDI scheme has to be m.de robust against disturbances and

modelling errors. Now, consider a system with disturbance term Ed(t) and possible
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sensor and actuator faults described as:

f (t) = Ax(t) + Bu(t) + Ed(t) + bifai(t)	
(3.30)

y(t) = Cx(t)+If8(t)

If a standard BFDF described by Eq.(3.26) is applied to such a system, the state

estimation error and residual will be:

f 
é(t) = (A - KC)e(t) + Ed(t) + bifai(t) - kf83(t)	

(3.31)
r(t) = Ce(t) + If8(t)

It is clear from Eq.(3.31) that all faults and disturbances affect the residual. It is

not easy to discriminate between faults and disturbances if this residual is used to

detect and isolate faults. Hence, it is necessary to de-couple disturbance effects from

the residual for reliable diagnosis.

It has been shown that the disturbances can be de-coupled from the state estimation

error using an unknown input observer (see also Section 3.3.1). This inspires us to

generate the residual using the unknown input observer described in Eq.(3.2). The

residual is thus defined as:

r(t) = y(t) - C(t) = (I - CH)y(t) - Cz(t) 	 (3.32)

When this UlO-based residual generator is applied to the system described by the

model Eq.(3.31), the residual and the state estimation error (e(t)) will be:

f é(t) = (A1 - K1 C)e(t) + Tbf0(i)	
(3.33)

r(t) = Ce(t)

when a fault occurs in the th actuator.

Similarly,

{

è(t) = (A1 - K1 C)e(t) - k1 f83 (t) - h3j5(t)	
(334)

r(t) = Ce(t) + If8(t)

when a fault occurs in the th sensor. Where k13 is the jt column of the matrix Is

and h3 is the th column of the matrix H. From Eq.(3.33) & (3.34), it can be seen

that the disturbance effects have been de-coupled from the residual. This robust (in

the disturbance de-coupling sense) residual can be used to detect faults according
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to a simple threshold logic:

{

llr(t)
IIr(i)I

< Threshold

^ Threshold

for fault-free case

for faulty cases
(3.35)

As pointed out in the introduction, fault isolation can be facilitated using uni-

directional residual vectors. So, one has to make the residual generated by a UTO,

have the directional properties in order to achieve robust fault isolation. From the

design of UlOs, it is known that the matrix K1 can be designed arbitrarily after

the robust (in the sense of disturbance de-coupling) conditions have been satisfied.

This design freedom can be exploited to make the residual have the uni-directional

property.

Comparing the error system Eq. (3.33) with Eq.(3.27), it can be seen that the

actuator fault is expressed in the same way for a UlO or a standard BFDF. Hence,

the theory for the design of a BFDF (Beard, 1971; Jones, 1973; White and Speyer,

1987) can be directly used to design the matrix K1 , if the vector b is replaced by

Tb, and the matrix A is replace by A1.

Comparing the error system Eq.(3.34) with Eq.(3.28), it can be seen that the sensor

fault is also expressed in a similar way for both the BFDF and TJIO, except an extra

term hf93 (t) occurs in the error equation of the TJIO. Fortunately, this term can

be treated in the same way as an actuator fault. Hence, the theory of BFDF can

be adopted for the design of K1 in the sensor isolation problem. However, it iiiust

be pointed out that the residual will lie in a subspace spanned by vectors I,, Ck13

and Ch3 when the residual uni-directional property has been satisfied. For constant

sensor faults, the term hf33 (t) will disappear from the error system and the residual

will lie in the plane spanned by the vectors Ij and Ck13 , this is same as the BFDF.

It is necessary to combine the theory of UlOs with the theory of BFDFs to design

a robust (disturbance de-coupled) fault detection filter. The design procedure can

be summarised as follows:

• Compute the matrices H and T using Eqs. (3.11) & (3.6), to satisfy distur-

bance de-coupling conditions.

• Compute A1 using Eq.(3.12).

• Compute K1 to satisfy a uni-directional property using the theory of BFDFs.
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• Compute the observer gain matrix K using Eqs.(3.8) & (3.4).

The key step is then to design the matrix K1 . Once this matrix is available, the

computation of other matrices is very straightforward. The BFDF design procedure

can be found in the well known literature (Beard, 1971; Jones, 1973; White and

Speyer, 1987) and is not presented in this chapter. To show the basic idea, an ideal

situation is discussed now, in which the number of independent measurements is

equal to the number of states, i.e. rank(C) = n. In this situation, all eigenvalues of

the matrix A 1 - K1 C can be assigned to the same value u> 0, i.e.,

A1—K1C=—crl

This can be achieved by setting K1 as:

K1 = ( A 1 + o.I)C*	 (3.36)

where C* is the pseudo-inverse of C. For this design, the residual will be:

r(t) = Ce(t) + 13f8(t)
ft

= If3 (t) + Ce_t_t0)e(to) + Cf e_(t_T)[Tbjfa (r) - k 1 f8 (t) - hf3(t)]dT
to

rt
= Ce_t_t0)e(to) + CTbJ e_t_T)fa(r)dr

to

+If(t) - Ck1 ft e_ t_T)f3 (r)dr - Ch [ e_t_/6(r)dT
to	 Jt0

= Ce_0(t_t0)e(to) + CTb 1c(t, t0)

+If8 (t) + Ck13/3(t,t0) + Chç,'(t,to)

Clearly, the residual is parallel to CTb, after the transient has settled down following

a fault in the th actuator. Similarly, the residual will lie in the subspace spanned

by vectors 13 , Ck13 and Ch, when a fault occurs in the Jth sensor.

Due to the residual directional property, the fault can be isolated by comparing the

residual direction with the fault signature directions (or subspaces).

Definition 3-5: The direction of CTb1 is termed a signature direction

of the th actuator fault.
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The directional relationship between two vectors CTb1 and r(t) can be quantified

by the correlation parameter CORR1:

I (CTb1)Tr(t)
CORR2 (t) = (3.37)

CTb1 fl 2 r(t) 112

if CORRJ > CORRk , the fault is more likely in the th rather than in the kth

actuator.

Definition 3-6: The signature subspace of the th sensor fault is defined

as:

R3 = Span{13 , Ck13 , Ch3 }	 ( 3.38)

The relationship between the vector r(t) with the subspace R3 can be measured by

the relationship between the vector r(t) with its projection r(t) in the subspace R3.

This is quantified by:
(r*\Tr(t'

CORR3(t) =	 " 11	 (3.39)
l r II2ll rI	'I2

where the projection r(t) of r(t) in R3 is:

r(t) =	 (TjY'Tr(t)	 (3.40)

where

= [I) Ck13 Ch3]

If CORR3 > CORRk , the fault is more likely in the th rather than in the kth sensor.

The relationship between a residual vector with the signature subspace can also be

judged by the normalized projection distance which is defined as:

Il r (t) - r'(t)112
NPD3 =	 (3.41)

Ilr(t)112

when NPD3 is the smallest one amongst all NFL), (j = 1,2,... , rn), the fault is

most likely in the jr,, sensor. The idea of fault isolation by comparing the residual

direction with the signature subspace is illustrated in Fig.3.6.



I
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Figure 3.6: Fault isolation based on directional residuals

3.4.3 Robust isolation of faulty sensors in a jet engine
system

To control a jet engine efficiently and to monitor its health effectively, the sensors

have to be perform reliably. However, the sensors in a jet engine work in a very

harsh environment and could fail during normal engine operation. This is especially

true of the thermocouple (gas temperature) sensors. Hence, the detection of sensor

faults in jet engine systems is very important and has become an active research field

(Merrill, 1985; Merrill, 1990; Meserole, 1981; Patton and Chen, 1991f). A simplified

nonlinear dynamic model of a jet engine control system can be described as:

= f1(X1,X2,X3)
5T2 (t) = f2(X1,X2,X3)

= 10(U - X3)

where:
X1 =	 '-+ Low pressure rotor speed

X2 =	 -+ High pressure rotor speed

X3 = WI '-+ Main burner fuel flow

U = Wíe i-+ Fuel flow command

The jet engine is a very complicated nonlinear dynamic system. Nonlinear functions

such as f1 (X1 ,X2 ,X3 ) and f2 (X1 ,X2 ,X3 ) cannot be written out analytically. The

system behaviur is normally expressed in a nonlinear dynamic simulation package
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(Merrill and Leininger, 1981; Merrill, 1990; Meserole, 1981; Meserole, 1981). This

package is capable of simulating the entire operating envelope of the engine, and can

also generate linearized models for any operating points. It is useful here to define

the following non-dimensional variables:

x1-x
	

x2 -
x1=	 = Yo

- X
	

U—U0
yO
	

Uo

where superscript "0" denotes the values at equilibrium. The system can be lin-

earized around an operating point. If u is small (e.g. 1%), x 1 , x2 and x3 will

be small, i.e. all variables have a small variation around the equilibrium and the

following linear model is derived:

J (t)	 Ax(t)+bu(t)

1 y(t) = Cx(t)

where the state is x = [x 1 x2 x3]T and the measurement vector is:

y	 [x 1 X2 X3 P2 P4 t4]T

in which
P2_P2O	 P4—P40	 T4—T4°

P2	
P°	 T

where
P2 i—+ High pressure compressor discharge pressure

P4 '-4 Turbine discharge pressure

T4 i—+ Turbine exit temperature

When the equilibrium is set at NL = 450(rpin), the linear model matrices are:

	

—1.5581	 0.6925 0.3974	 0

A =	 0.2619 —2.2228 0.2238	 B =	 0

	

0	 0	 —10	 10
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	1 	 0	 0

	

0	 1	 0

	

0	 0	 1

	

0.55107	 0.13320 0.30603

0.55217	 0.13526 0.32912

—0.25693 —0.23625 0.61299

A BFDF described by Eq,(3.26) is designed to isolate sensor faults. If all eigenvalues

of the filter are set to —3, the gain matrix can be determined as K = (31 + A)C*

because rank(C) = 3. The fault isolation scheme is applied to the nonlinear sim-

ulation model. A reliable diagnostic scheme sJ2ouJd perform we)1 for wide te

of operating conditions, and hence the input is set at u = 20% in the simulation.

The sensor fault is simulated as 2% offset around the normal measurement. In the

simulation, we only consider the fault in sensor Nos.1, 2 and 3, i.e. the low pres-

sure rotor speed sensor, the high pressure rotor speed sensor and the main burner

fuel flow sensor. After the transient has settled down, the normalized projection

distances for different faulty situations are shown in Table 3.1.

Faulty sensor	 No.1	 No.2	 No.3
NPD1	0.37090 0.77783 0.66389
NPD2 	 0.93117 0.95527 0.42455
NPD3	 0.96529 0.71161 0.31559

Table 3.1: Fault isolation using Beard fault detection filter

From Table 3.1, it can be seen that the fault in sensor No.1 (or No.3) can be correctly

isolated as the corresponding normalized projection distance NPD1 (or NPD3 ) is

the smallest. However, the fault in the sensor No.2 will be mis-reported as a fault in

sensor No.3 as NPD3 is the smallest amongst all normalized projection distances.

Moreover, the smallest NPD is not significantly different from other NPDs, and this

could make isolation difficult when there is noise in the system.

The example in Table 3.1 illustrates the importance of robustness in fault isolation.

The mis-isolation problem is possibly caused 1w the linearized errors, as the fault

isolation scheme is based on the linear mod and this scheme is applied to the

original nonlinear system. In the model linearization, only the first order terms in

the Taylor expansion have been considered. To model a system more accurately,

one can consider to the inclusion of the second order terms in the syFtem dynamic
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equation as follows:

(t) = Ax(t) + Bu(t) + Ed(x(t))

where the matrices A and B are the same as for the linear model. The term Ed x)

represents modelling errors and the vector d(x) consists of the second order terms

of x(t) as:

d(x) = [x x x x1s2 x1x3

The distribution matrix E can be obtained using an identification procedure based

on the least-squares method. Given a series of values	 u 2), ..., u(N) for input u,,

we can obtain the corresponding steady responses x( 1)	 ..., x(N) and	 dt2,
.., d( N ) , which are related by the following steady state equations:

Ax' + Bu 1 + Ed 1 = 0

Ax 2 + Bu 2) + Ed 2 = 0

= 0

If N is greater than the &mensi<nt of d(r), the eas-s<jiares estAniae cf

E is given as:
E* = (F)T

where I' is the pseudo-inverse of I' and

(d( 1 ) ) T 1	 [ (Ax( ' ) + Bu( 1 ))T 1
(d(2))T I	 (Ax) + Bu(2))T

(d(N)) T j	 [AXN + But))Tj

From the simulation, the following estimate is obtained:

	

1.3293	 3.4440	 0.1375 —5.1304 —1.7826 —1.8719

	

E5 = 5.6812	 —0.5281	 —0.3385 —1.6193	 0.5229	 0

	

0	 0	 0	 0	 0	 0

Es is not a full column rank matrix (rank(E*) = 2) and should be decomposed as

= E1 E2 . Here E1 is a full column matrix and will be used in the robust fault
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detection filter design.

	

6.2006	 2.8639

E1 = 4.1048 -4.3262

	

0	 0

All eigenvaiues of the robust fault detection filter are set to -3. Using the design

procedure presented in this chapter, with E replaced by &, the parameter matrices

of the robust fault detection filter are as follows:

	

0.6117 -0.1170	 0 0.3215 0.3220 -0.1295

	

H = -0.1170	 0.9382	 0 0.0605 0.0623 -0.1916

	

0	 00	 0	 0	 0

0
	

0 -0.1251

T=	 0 0	 0.0783

0
	

0	 1.0000

-0.0708	 0.0443	 0.5658	 0.1400	 0.1531	 0.3540

K =

	

	 0.0443 -0.0277 -0.3540 -0.0876 -0.0958 -0.2215

0.5658 -0.3540 -4.5229 -1.1193 -1.2239 -2.8297

This robust fault detection filter is also applied to the nonlinear simulation model to

isolate faults in sensor Nos.1, 2 and 3. To compare the isolation performance with

the BFDF, the system and fault simulation have been set as exactly the same. The

normalized projection distances for different faulty situations are shown in Table

3.2.

Faulty sensor	 No.1	 No.2	 No.3
NPD1	 0.00621 0.86727 0.90677
NPD2	 0.88625 0.00213 0.56602
NPD3	 0.89433 0.02092 0.00159

Table 3.2: Fault isolation using robust fault detection filter

From Table 3.2, one can seen that NPD (i = 1,2,3) is the smallest one amongst

all normalized projection distances when a fault occurs in the th sensor. Moreover,

the smallest NPD is significantly different from other NPDs. This simulation shows

that the fault can be correctly isolated using a robust fault detection filter, even in

the presence of modelling errors.

Remarks: This section has studied the design of a robust fault detection filter, and
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its application in the sensor fault isolation problem for a jet engine control system.

The jet engine is a highly nonlinear system, and hence the linearization error causes

unreliable isolation if the robustness issues are not considered at the design. To

cope with this problem, this section has developed a second order model to account

for the linearization errors. Based on this model, a robust fault detection filter is

designed and applied to the nonlinear jet engine simulation model and the results

show the effectiveness of the robust fault isolation strategy developed in the paper.

The technique can be applied to the robust fault isolation for a wide range of systems

with uncertain factors.

3.5 Filtering and Robust Fault Diagnosis of
Uncertain Stochastic Systems

The problem of detecting and isolating faults in systems with both modelling un-

certainty (including unknown disturbances and modelling errors) and noise has not

attracted enough research attention, although most systems actually suffer from

both modelling uncertainty and noise. This is partly due to a lack of techniques for

designing disturbance de-coupling (unknown input de-coupling) optimal (minimum

estimation error variance) observers for systems with both unknown disturbances

and noise. Recently, some progress has been made in the design of optimal filters for

stochastic systems with unknown disturbances. Darouach, Zasadzinski and Keller

(1992) proposed an approach for the design of unknown input de-coupled optimal

observers by transforming a standard system with unknown inputs into a singular

system without unknown inputs, however they only considered time-invariant sys-

tems. Chang and Hsu (1993b) also made a contribution in the design of unknown

input de-coupled optimal observers for time-invariant systems. lou and Muller

(1993) studied the unknown-input de-coupled filtering for descriptor (singular) sys-

tems with unknown inputs. In their study, two transformations were used to remove

the unknown inputs. The first transformation transforms the descriptor system with

unknown inputs into a descriptor system without unknown inputs, the second step

is to transform the singular system into an ordinary system. The filtering algorithm

in their approach is very complicated due to the involvement of two transformations.

Moreover, the transformation could introduce extra restrictions and result in loss of

design freedom.
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This section studies optimal filtering and robust fault diagnosis for stochastic sys-

tems with unknown disturbances (or unknown and inaccessible inputs). This sec-

tion proposes a new optimal full order observer with a simple structure, with which,

the disturbance de-coupling is easily satisfied. This avoids some of the unneces-

sary and complex computation involved in some unknown input observer design

methods. This section proves that the remaining design freedom, after disturbance

de-coupling, can be utilised to ensure that the state estimation has the required

minimal variance when noise (with known statistics) acts upon the system. This

forms a solution for the optimal observer problem when the system has both un-

known disturbance and noise. This section also presents the existence condition

and the design procedure for the optimal observer. The existence condition for dis-

turbance de-coupling can be easily verified. Unlike other studies (Darouach et al.,

1992; Chang and ilsu, 1993b), this section focuses on time-varying systems. To

compare the algorithm given by lou and Muller (1993), the filtering algorithm pre-

sented in this section is simpler and more straightforward. It should be also pointed

out that the optimal observers presented in (Darouach et al., 1992; Chang and Hsu,

1993b; Iou and Miller, 1993) have not as yet been applied to robust fault diagnosis.

The optimal observer proposed in this section is app.ied to the robust fault diagnosis

problem. The optimal output estimation can easily be produced using the principle

of disturbance de-coupling state estimation. To detect and isolate faults, the output

estimation error is used as a residual which is robust against unknown disturbances

and has minimal variance. A hypothesis-testing procedure is then applied to examine

the likelihood of residuals, and to indicate whether or not a fault has occurred in the

system. A simplified flight control system is used to illustrate the method presented

in the section. It has been shown that the state estimation obtained by the developed

method is an improvement over the estimation obtained using a standard Kalman

filter, when modelling errors occur. This is, of course, an advancement which is

not confined to FDI problems. The simulation results also show that the method

developed is able to detect faults in the presence of both modeffing errors and noise.
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3.5.1 Optimal observers for systems with unknown distur-
bances and noise

Consider the following discrete-time mathematical description of the system:

fXIc.f = Akxk+Bkuk+Ekdk+Ck	 (3.42)
= Ckxk+rlk

where xk E 7? is the state vector, y, € m is the output vector, Uk E R, is the

known input vector and dk E is the disturbance (or unknown input) vector, Ck

and 77k are independent zero mean white noise sequences with covariance matrices

Q k and Rk. Ak , Bk, Ck and Ek are known matrices with appropriate dimensions.

The term Ek dk can be used to describe a number of different kinds of modelling

uncertainties, e.g., interconnecting terms in the large scale systems, nonlinear terms

in system dynamics (Frank and Wünnenberg, 1989; Chen and Zhang, 1991; Patton

and Chen, 1993b), and also linearization and model reduction errors and parameter

variations. A detailed study can be found in Chapter 5. It should be pointed

out, however, that there are some problems which need to be studied further in

the representation of modelling errors as disturbances. One problem is that the

distribution matrix could be time varying and this is considered here as the study

focuses on stochastic time-varying systems.

In order to estimate the state of the stochastic system with unknown disturbances

described by Eq.(3.42), an optimal observer with the following structure is proposed:

{

Zk+1 = Fk+lzk+Tk+lBkuk+Kk+lyk 	 (343)
Xk+1 = Zk+1 + Hk+lYk^1

where the matrices Fk+1, Tk+1, Kk+1 and Hk+1 are to be designed to achieve distur-

bance de-coupling minimum variance estimation. The block diagram to illustrate

this optimal observer is shown in Fig.3.7.

When the proposed observer is applied to a stochastic system with unknown distur-

bances, the state estimation error (ek = xk - xk) is as follows:

ek+1 = Xk^1 - ( zk+1 - Hk^lyk+1)

= (I - Hk^lCk+l)xk+ 1 - Zk+1 - Hk^177k+1

=
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disturbance	 noise

-

F	 L	 'state
k-i-i I	 estimates

Optimal Disturbance
De-coupling Observer

Figure 3.7: Optimal disturbance de-coupling observer and residual

-'-1	 '-2
— [Fk^l zk + Tk+lBkuk + ( It k+ l + Itk+1)yk]

= (I— Hk^l Ck+1) xk+1 - Hk+117k+1 - 7+1Bkuk

—Fk+ 1 (xk - ek - Hkyk) - K' 1 (Ckxk + 17k) - hT^1yk

= Fk+lek - It J+l 17k - Hk+117k+1

-	 - [Fk+1 - (I - Hk+lCk+l)Ak + Kk+lCk]xk

- Hk+lCk+1)Ekdk -	 - Fk+lHk]yk

—[Tk+1 - (I - Hk+lCk+l)]Bkuk	 (3.44)

where
(3.45)Kk^1 = R' 1 + K^1

If one can make the following relations hold true:

Ek = Hk+lCk+lEk

Tk+1 = I—Hk+lCk+l
A	 17' 1'

Fk+1 = "k Ifk+lCk+ l Ak - 1kk+,1k

r72	 r'	 rr
=

(3.46)

(3.47)

(3.48)

(3.49)



= Im(Ck+1Ek)(Ck+1Ek)

Ti.0	 rr1 ri.2lTL k+1 =	 k+1+Uk+1lk+1

=

(3.52)

(3.53)

(3.54)
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the estimation error will be:

Ck+1 Fk^l ek - Kk+l llk - Hk+1 17k+1 + Tk+lCk	 (3.50)

Loosely speaking, if the matrix Fk+1 is stable, e{ek} -^ 0 and E{k} -+ E{}

(where E{.} denotes the expectation or mean operator). That is to say, the state

estimation will approach the real state asymptotically, in the mean sense. From

Eq. (3.50), it can be seen that the unknown disturbance vector has been de-coupled

once Eqs. (3.46)—(3.49) hold true. To design the disturbance de-coupled observer,

one needs to choose the matrix Hk+1 to satisfy Eq.(3.46) and to choose the matrix

R',+ 1 to stabilize the matrix Fk^1. Once Hk+1 and K,+1 have been chosen, other

matrices can be determined using Eqs.(3.47) to (3.49).

Lemma 3-3: The necessary and sufficient condition for the existence of

a solution to Eq. (3.46) is:

rank(Ck+ l Ek) = rank(Ek )
	

(3.51)

The proof is the same as that for Lemma 3-i (see Sedibn 3.2.1].

Eq. (3.51) is the only condition for achieving disturbance (unknown input) de-

coupling. To satisfy this equation, the number of independent rows of the matrix

Ck+l must not be less than the number of independent columns of the matrix Ek.

That is to say, the maximum number of disturbances which can be de-coupled cannot

be larger than the number of independent measurements. When condition (3.51)

holds true, the general solution for Eq. (3.46) can be constructed as:

and	 7,flXm can be arbitrarily chosen. To simplify the observer design, the
matrix H^1 can be set zero for most cases, i.e.,

Hk+l = Ek (Ck+ 1 Ek)	 (3.55)



3.5 Filtering and Robust Fault Diagnosis of Uncertain Stochastic Systems 	 119

The stability (or convergence) of the observer is dependent on the matrix Fk^1, once

the matrix Hk+1 is obtained, the system dynamic matrix can be determined by:

Fk+ 1 = A^ 1 - Kk1+l Ck	 (3.56)

where:

=	 - Hk^lGk+lAk	 (3.57)

The matrix I' should be designed to stabilize the observer. On considering the

simplest case, i.e., when the system is time-invariant, the matrix F can easily be

stabilized using pole placement if the matrix pair {A 1 , C} is observable. For time-

varying systems the stability is more difficult to verify, however divergence should

not be a problem if the eigenvalues of the each matrix Fk^1 have been assigned

within the unite circle in the complex plane via the gain matrix K.

It is clearly of interest to know how good the estimate k is. The variance of this

estimation can be measured using the error covariance matrix Pk defined as:

Pk =	 - XkJ[[Xk - Xk]}	 (3.58)

From the Eq.(3.50), it is easy to seen that the update of the covariance matrix is:

= (A 1 - K^l Ck)Pk(A 1 -

+I,4C+IRk(K +l )T +Tk+lQ kT 1 + Hk+IRk+lH1

The best (optimal) state estimation should have minimal variance. From Eq.(3.59),

it can be seen that the covariance matrix of the estimation error is controlled by the

matrix K^1 . The following theorem is now used to give the design of the matrix

K 1 , for achieving the minimum variance estimation.

Theorem 3-2: To make the state estimation error ek+1 have the mini-

mum variance, the matrix It^ should be determined by:

= AL^lPkC,'[CkPkC,' + Rk]1	 (3.60)
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Proof: For brevity, some subscripts are omitted in the following proof.

Pk+l = A1Pk(Al)T + TQ kTT + HRk+1HT

—K'CPk (A1 ) T - A1PkCT(Kl)T + K'[CPkCT + Rk](Kl)T

As Rk is a positive definite matrix, CPkCT + Rk is also positive definite and there

exists an invertible matrix S, such that:

= CPkCT + Rk

Let D A 1 Pk CT {ST]_ l , the covariance matrix is:

Pk+1 = A1Pk(Al)T + HRk+1HT - DDT

- D][K'S - D]T + TQkTT

To minimize var{ ek+,} = trace { Pk+l}, one should make K'S - D = 0, this leads

to Eq.(3.60) and we have that:

Pk, =	 i-	 + Hk^,Rk+l H 1	 (3.61)

where
1 'T

- Pk - K + l Ck Pk(Ak+,)	 (3.62)k+1 -

QED

From the above derivation and theorem, the computational procedure for the opti-

mal filtering algorithm can be listed as follows:

10 Set initial values: Po = P(0), zo = xo - CoE0 (CoEo)yo, H0 = 0 and k=0.

2° Compute Hk+1 using Eq. (3.55).

3° Compute Kk'+ l and	 using Eqs. (3.60) and (3.62).

4° Compute Tk+,, Fk+ 1 ,	 and Kk+1 using Eqs. (3.47), (3.48), (3.49) and

(3.45).

5° Compute the state estimate k+1 and zk+1 using Eq. (3.43).

6° Compute Pk+1 using Eqs. (3.61) & (3.62).

70 Set k = k + 1 go to step 2°.
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It is important to note that the optimal filtering algorithm proposed in this section

is equivalent to a standard Kalman filter for systems without unknown disturbances,

by setting the matrices Hk+1 = 0 and Tk+1 I when there is no disturbance, i.e.

E = 0. From Eq.(3.52), it can be seen that the solution for the matrix Hk+1 is not

unique as the matrix H,^ 1 can be set arbitrarily. By choosing this free matrix H,^1,

the variance of the estimation error may be decreased slightly further, however this

will result in a very complicated algorithm. Hence, it is more practical to fix the

solution for Hk+ 1 using Eq.(3.55).

3.5.2 Robust residual generation and fault detection

In order to diagnose faults, a fault indicating signal, i.e. residual, can be generated

using the output estimation as follows:

rk = Yk - yk = (I - CkHk) Yk - CkZk	 (3.63)

The system with possible actuator and sensor faults can be described as:

{ Xk+1 = Akxk + BkUk + Ek dk + Cic + Bk 
fz	

(3.64)
= Ckxk+qk+f

where f	 7j is the actuator fault vector and f E	 is the sensor fault vector.

For this system, the state estimation error and the residual are governed by the

following equations:

5 ek = Fk ek_1 + iii7k_ 1 - Hkijk + Tkk_1 + K,f,_ 1 - Hkf, + TkBk_lf_1

rk =
(3.65)

It can be seen that the unknown disturbance term Ek dk does not affect the residual,

i.e. the residual is robust against unknown disturbances. As the state estimation

error ek has minimum variance, the residual is also optimal with respect to noise

(with assumed statistics). For the residual, the two hypotheses to be tested can be

identified as H0 , the normal mode, and the faulty mode H1 . Under the normal (no

fault) condition, the statistics of the residual are:

H0 : { 
E{rk} = 0

covariance{rk} = Wk = CkPkC + Rk	
(3.66)
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When a fault occurs in the system (H1 ), the statistics of the residual will be dif-

ferent from the normal mode. The task of fault detection is to distinguish between

two hypotheses H1 and H0 . Any of the well-known hypothesis-testing methods, e.g.

Generalized Likelihood Ratio (GLR) testing and Sequential Probability Ratio Test-

ing (SPRT) (Willsky, 1976; Basseville, 1988) can be used to examine the residual

and, subsequently to diagnose faults. if one assumes that the noise sequences Ck

and ik are Gaussian white, the residual will also have the Gaussian distribution. To

construct a detection decision function (the test statistic) Ak:

Ak = r 'l4,rk	(3.67)

which is x2 distributed with m degrees of freedom (rn is the dimension of rk). The

test for fault detection is then:

I 'k^ TD fault

A < TD no fault	
(3.68)

where the threshold TD is determined from the x 2 distribution table and:

Probability{A k < TD I H0} = P1	 (3.69)

where P1 is the probability of false alarm which is given by the designer.

The detection function Ak is constructed using only a single sample of the residual.

To increase the reliability of statistical testing, a residual sequence over a time

window can be used. It is easy to verify that the covariance{rk , rk_1} 0, i.e.

the resulting residual sequence is not white, although both noise signals ç and 17k

are white. This will increase the difficulty and complexity in testing the residual

sequence, however this penalty is worth paying in order to ensure that the unknown

disturbance has been de-coupled from the residual. This is especially true when

the unknown disturbance has a more dominant effect on the residual than the noise

does.
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3.5.3 An illustrative example

The linearized discrete-time model of a simplified longitudinal flight control system

is as follows:	
JXk4 = Akxk+Bkuk+Ck+Ekdk

Yk = Ckxk+k

where the state variables are: pitch angle &, pitch rate w and normal velocity i,,

the control input is elevator control signal. The system parameter matrices are:

	

0.9944	 —0.1203 —0.4302
	

0.4252

	

Ak = 0.0017	 0.9902 —0.0747
	

Bk = —0.0082

	

0	 0.8187	 0
	

0.1813

Ck = I3x3	 x=[i,w 8iTz zJ

The covariance matrices for input and output noise sequences are: Qk

diag{0.1 2 , 0 . 1 2 , 0 . 01 2 } and Rk = 0.12 13X3. The term Ekdk is used in here to

represent the parameter perturbation in matrices Ak and Bk:

LAkxk + zBkuk

E{	
aii La12

La21 La22
I Xk +

	

La13 1	

[ 

zb1

	

a23]	 b2 ] Uk}

with
1 0

E= 0 1

0 0

where, La1 and Lb, (i = 1,2; j = 1,2, 3) are perturbations in aerodynamic and

control coefficients. They are unknown and can be time-varying. The perturba-

tions can affect the estimation accuracy. In this section, their effects on the system

have been modelled as unknown disturbances and can be de-coupled from the state

estimation using the method given in Section 3.5.1.

The simulation is used to assess the usefulness of the optimal observer for estimating

states. In the simulation, the input and initial conditions arc set as k = 10,

= 0 and Po = 0.12 13X3 . The aerodynamic coefficients are perturbed by ±50%,

i.e. = — O.Sa and Lb = 0.5b3 . Fig.3.8—Fig.3.10 shows the absolute values of

the state estimation errors.
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Figure 3.8: The state estimation error absolute values for i) (ODDO: op
-timal Disturbance De-coupling Observer; KF: Kalman Filter)
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Figure 3.9: The state estimation error absolute values for w (ODDO: Op-
timal Disturbance De-coupling Observer; KF: Kalman Filter)
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Figure 3.10: The state estimation error absolute values for S (ODDO:
Optimal Disturbance De-coupling Observer; KF: Kalman Filter)

The estimation errors achieved by the traditional Kalman filter (not disturbance

de-coupled) are also shown in the Fig.3.8-Fig.3.10. It can be seen that the method

developed in this section can give better state estimation, even when the system

parameters have large perturbations. A number of situations when aerodynamic

coefficients have time-varying (e.g. sinusoid function) perturbations (the results are

not shown in this section) have also been simulated. For such cases, the estimation

error using the Kalman filter is always divergent even if the perturbation magnitude

is very small. However, the disturbance de-coupling method given in this section

can give satisfactory estimation. This is expected, since the perturbation effects on

the estimation error have been de-coupled.

Fig.3.11 shows the detection function )'k when an incipient (small and slow) fault

occurs in the sensor for . Fig.3.12 shows the fault detection function )'k when a

step fault occurs in the actuator. It can be seen that the faults are detected very

reliably by setting a threshold (TD) on the fault detection function.

Remarks: This section has proposed a systematic approach to designing optimal

disturbance de-coupled observers for systems with both unknown disturbance and

noise. This optimal observer is used to estimate the system state and to generate

residuals for detecting faults in stochastic uncertain systems. It is the first time such

consideration has been addressed and solved in a fault diagnosis design. The method

has been applied to detecting sensor and actuator faults in a simplified flight control

system and the simulation results show the effectiveness of the method. Considering
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the extreme difficulty in enhancing the fault diagnosis performance under modelling

uncertainty and noise, any improvement in the robustness of residual design is very

welcome. The scope of applications of this work extends to a wide range of stochastic

uncertain systems and is not confined to the fault diagnosis problem domain.

3.6 Summary

The purpose of this chapter has been the study of UlO-based robust residual gener-

ation methods. A new full-order UlO structure has been proposed in this chapter.

The existence conditions and design procedures for such UTOs have also been pre-

sented and soundly proved. When compare with other techniques in designing UlOs,

the existence conditions presented in this chapter are very easy to verify. The de-

sign procedure proposed in this chapter is very straightforward, because it can be

implemented using the pole placement routine (PLACFI) in Control Toolbox for

MATLAB, together with a few simple matrix manipulation routines which are also

available in MATLAB. The robust FDI schemes based upon UlOs have also been

studied in this chapter. A chemical reactor has been used to illustrate the robust

actuator fault detection and isolation schemes.

The main advantage of full-order UlOs over other commonly used reduced-order

UlOs is that there is more design freedom available after the unknown input de-

coupling conditions have been satisfied. This chapter has exploited the remaining

freedom to achieve other performance requirements for FDI, and has proposed a

method to design a robust fault detection filter which can generate disturbance de-

coupled directional residuals for fault isolation. This is achieved via a combination

of the UlO and the BFDF principles. The effectiveness of robust fault detection

filters in robust fault isolation has been demonstrated by a highly nonlinear jet

engine system example. The remaining freedom has been also used in this chapter

to produce the minimum variance state estimations and residuals for stochastic

systems with unknown disturbances. The optimal disturbance de-coupled observer

is a by-product of the main work presented in this chapter. The application of this

optimal observer is beyond the robust FDI domain. It can be used for the optimal

filtering problem for a wide range of uncertain stochastic systems.

Robust FDI based on UlOs have been studied for many years. However, the number

of reported applications is very F1 ted. The main argument is that the unknown
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input distribution matrix, required for designing UlOs, is actually unknown for

most practical systems. The chapter has demonstrated, by means of a number of

examples, how UlO-based robust FDI methods can be used in practical systems in

which the unknown input distribution matrix is not directly known. The success of

such application studies could give some guide-lines for real industrial applications.



Chapter 4

ROBUST RESIDUAL
GENERATION BY THE
ASSIGNMENT OF OBSERVER
EIGENSTRUCTURE

4.1 Introduction

In Chapter 3, various approaches for generating robust residual via unknown input

observers have been studied. The underlying principle of these approaches is to

make the state estimation error be independent of disturbances (or unknown inputs).

The residual is defined as the (weighted) output estimation error which is a linear

transformation of the state estimation error. The residual generated by UlOs is

also independent of disturbances, if the disturbance term does not appear in the

output equation or the disturbance term in the output equation has been nulled.

In model-based FDI, the state estimation is not necessarily needed, because the

required information is the diagnostic signal - residual. Hence, it is not necessary

to de-couple the state estimation error from disturbances in model-based FDI. A

direct approach to design disturbance de-coupled residuals is then required. In

this approach, the residual itself is de-coupled from disturbances, however the state

estimation error may not be. It can be expected that existing conditions for such a

'lirect approach could be relaxed compared with those required for UlOs.

The most important direct approach to design robust (in the disturbance de-coupling

sense) residual generators is the use of eigenstructure assignment in which some left

129
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eigenvectors of the observer are assigned to be orthogonal to the disturbance distri-

bution directions. In this way, the residual can be made robust against disturbances.

This approach was initially proposed by Patton and colleagues in 1986 (Patton et

al., 1986) and has been studied and developed extensively by Patton et al. (Patton

and Wilcox, 1987; Patton, 1988; Patton and Kangethe, 1989; Patton and Chen,

1991h; Patton and Chen, 1991c; Patton and Chen, 1991e; Patton and Chen, 1991b).

A mathematically sound treatment and new results are given by Patton and Chen

(Patton and Chen, 1991g; Patton, Chen, Millar and Kiupel, 1991; Patton and Chen,

1992c). The approach has been successfully applied to robust FDI of flight control

systems (Patton and Wilcox, 1987; Patton and Kangethe, 1989), jet engine systems

(Patton and Chen, 1990; Patton and Chen, 1991f; Patton and Chen, 1991b; Patton

and Chen, 1991a; Patton and Chen, 1992e; Patton, Chen and Zhang, 1992; Patton,

Zhang and Chen, 1992) and nuclear reactors (Patton, Chen and Millar, 1991; Patton,

Chen and Millar, 1992). Note that Daley and Wang (Daley and Wang, 1991; Daley

and Wang, 1992; Wang, Kropholler and Daley, 1993) have also presented a different

approach to generate robust residuals via the assignment of observer left eigenvec-

tors. Magni et al (Magni and Mouyon, 1991; Magni and Monyon, 1992; Magni,

Mouyon and Arsan, 1993; Arsan, Mouyon an Magrü, .L994) have also proposed

another approach in the robust residual generation by assigning eigenvectors for

so-called "one-dimensional" (or elementary) observers.

This chapter gives a detailed treatment of the eigenstructure assignment approach

for robust residual generation. The principle and existence conditions are presented

in. a number of theorems, and the design procedure is also given. The remaining

design freedom after disturbance de-coupling has been satisfied is used to optimize

other performance indices such as fault sensitivity. When the left eigenvectors of

the observer are not assignable, the approximate assignment problem and the design

procedure is studied in this chapter.

One of the recent developments in the eigenstructure assignment method for design-

ing robust residual generators is the assignment of some right eigenvectors parallel

to the disturbance distribution directions. This method was proposed by Chen and

Patton in (Patton and Chen, 1991g; Patton and Chen, 1992c) and a complete and

sound mathematical treatment is given in this chapter. Note that the observer de-

sign is a dual of the control design problem. The assignment of right eigenvectors in

an observer design is equivalent to the assignment of left eigenvectors in a controller

design. Apart from an intuitive method proposed by Zhaug, Slater and Allemang

(1990), this problem has rarely been considered. This chapter develops and extends
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Ax(t) + Bu(t) + R 1 f(t) + Ed(t)

Cx(t) + Du(t) + R2f(t)
(4.1)
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the new method proposed by Chen and Patton (Patton and Chen, l991g; Patton and

Chen, 1992c) for assigning right observer eigenvectors by presenting the existence

conditions and the design procedure.

The chapter is mainly based on the use of continuous-time system models, although

the techniques developed can be directly applied to discrete-time system models.

The dead-beat design has unique characteristics in the discrete time domain. To

take advantage of the dead-beat design, this chapter also includes a study of the

robust residual generation problem in the discrete time domain. It can be seen

that the dead-beat design makes the principle and design procedure very simple.

The dead-beat design also gives a direct correspondence between the observer-based

and parity relation approaches in residual generation and this phenomenon has

been discussed by Patton and Chen (Patton and Chen, 1991h; Patton and Chen,

1991c; Patton and Chen, 1991f; Patton and Chen, 1991e). Two numerical examples

are used in this chapter to demonstrate the eigenstructure assignment approach in

robust residual generation, and real applications are given in Chapter 5.

4.2 Residual Generation and Responses

In a similar way to Chapter 3, it is also assumed in this chapter that the system is

disturbed by an additive unknown input term as follows:

where x(t) E	 is the state vector, y(t) e	 is the output vector, u(t)

is the known input vector and d(t) E 7 is the unknown input (or disturbance)

vector, f(t) 7 represents the fault vector which is considered as an unknown

time function. A, B, C, D and E are known matrices with appropriate dimensions.

The matrices R 1 and R2 are fault distribution matrices which are known when the

designer has been told which faults should be diagnosed. Similar to Chapter 3, the

matrix E is assumed to be full column rank.

Tite residual generator based on a full-order observer fflust.ated in Fig.4.1, is de-
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disturbance	 faults

output

y(t)

D

B	
Ii I(t)	 _____	 residual

Irn(

Residual Generator

Figure 4.1: Robust observer-based residual generation

scribed as:

(t) = (A - KC)(t) + (B - KD)u(t) + Ky(t)

(t)	 C(t) + Du(t)	 (4.2)

r(t) = Q[y(t) -

where r E 7?] is residual vector, and are state and output estimations. The

matrix Q E 7V m is the residual weighting factor. Note that, the residual is a

linear transformation of the output estimation error. Hence, the residual dimension

p cannot be larger than the output dimension m. This is because the linearly

dependent extra residual components do not provide additional useful information

in FDI.

When the residual generator represented by Eq.(4.2) is applied to the system de-

scribed by Eq.(4.1), the state estimation error (e(t) = x(t) - (t)), and the residual

are governed by the following equations:

J è(t) = (A - KC)e(t) + Ed(t) + R1f(t) - KR2f(t)	
(4 3)

r(t) = He(t) + QR2I(t)

where H = QC. The Laplace transformed residual response to faults and distur-
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bances is thus:

r(s)	 QR2f(s) + H(sI - A + KC)'(R1 KR2)f(.․ )

+H(sI - A + KCY'Ed(s)
	

(4.4)

One can seen that the residual r(t) and the state estimation error are not zero,

even if no faults occur in the system. Indeed, it can be difficult to distinguish the

effects of faults from the effects of disturbances acting on the system. The effects

of disturbances obscure the performance of FDI and act as a source of false and

missed alarms. Therefore, in order to minimize the false and missed alarm rates, one

should design the residual generator such that the residual itself becomes de-coupled

with respect to disturbances. Chapter 3 has studied the UlO-based approaches in

which the state estimation error e(t) and hence the residual are de-coupled from

disturbances. This chapter focuses on the technique which de-couples r(t) from d(t)

directly. It is clearly not important whether or not e(t) is de-coupled d(t) as e(t)

itself is not required in robust Ff1.

4.3 General Principle for Disturbance De-
coupling Design

In order to make the residual r(i) be independent of disturbances, it is necessary

to null the entries in the transfer function matrix between the residual and the

disturbance. That means:

Grd(S) QC(sI - A + KC) 1 Ed(s) = 0
	

(4.5)

This is a special case of the output-zeroing problem which is well known in multi-

variable control theory (Karcanias and Kouvaritakis, 1979). Once E is known, the

remaining problem is to find the matrices K and Q to satisfy Eq.(4.5), in addition

to choosing the suitable eigenvalues to optimize the FDI performance.
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4.3.1 Disturbance de-coupling design via invariant

subspaces

The solvability condition for matrices Q and K in Eq.(4.5) can be determined in

the context of the invariant subspace theory (Morse, 1973; Antsaklis, 1980). The

transfer matrix can be expanded' as follows:

H(sI - AC)'E = H[ai (s)I + a 2 (s)A +	 + a(s)A1]E

H

HA
= {ai (s)I a2 (s)I ••. a(s)I]	 :	

E

HA'

I a i (s)I, 1
a2(s)Iq

= H[E AE • . A'E]	 :

[a(s)4j

(4.6)

where A = A - KG and a,(s),.. . ,a,(s) are functions of s. From the above rela-

tion, it is easy to see that Eq.(4.5) can be solved by satisfying one of the following

conditions:

(a) If the {H , A} - invariant subspace lies in the left zero space of E, Eq. (4.5)

holds true.

(b) If the {A , E} - invariant subspace contained in the right zero space of H,

Eq.(4.5) holds true.

The above two conditions give general guide-lines for designing disturbance de-

coupling residuals (Patton and Wilcox, 1987), however it is not easy to achieve

these conditions without further assistance of design tools such as eigenstructure

assignment.

'This expansion can be proved by using the Taylor expansion of	 and the matrix Cayley-
Hamilton theorem.
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4.3.2 Disturbance de-coupling design via eigenstructure
assignment

In multivariable systems, there is extra design freedom available beyond eigenvalue

assignment (Moore, 1976) and which can be used to assign eigenvectors to achieve

the required system performances. In the residual generator design problem, the

design freedom is used to assign the observer eigenstructure (eigenvalues and eigen-

vectors) to achieve disturbance de-coupling property. To study this technique, two

Lemmas which relate to the properties of the system observer eigenstructure, should

be introduced.

Lemma 4-1: A given left eigenvector li" which is corresponding to eigen-

value A, of A is always orthogonal to the right eigenvector v3 correspond-

ing to the remaining (n-i) eigenvalue A, of A where A A, (Patton

and Kangethe, 1989).

Proof: For the left eigenvector l' of A, we have:

lTA - AlT for i - 1,2,.,n

Post-multiplying both side of the above equation by v3 (j ^ i):

lTAvj=Ajlvj for i1,2,...,n; j4i

As the vector v3 is right eigenvector of A, we have Av3 = A,v3 , and the above

equation can be rewritten as:

AjlTv,=A1 1"v3 for il,2,...,n; j$i

Hence, if A 2 A3 , the only solution to the above equation is the trivial solution and

it thus follows that:

1"v3 = 0 for i j	 (4.7)

i.e. the left and right eigenvectors corresponding to mutually distinct eigenvalues

are orthogonal.	 <>QED
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Lemma 4-2: Any transfer function matrix can be expanded in term of

eigenstructure:

(sI—A)'= vilT + v2l	
•••	

vl'	
(4.8)

s - A 1	s - A2	.s - A,1

where v2 and l,' are right and left eigenvectors of A respectively, corre-

sponding to the eigenvalue A1.

Note that this Lemma is only valid for cases when all eigenvectors of the observer are

distinct, however this requirement does not impose any restriction on the observer

design.

Proof: Define the left eigenvector and right eigenvector matrices as:

1

L=	 v=[v1,v2,...,vn]

According to Lemma 4-1, we have the following relation:

iTt l V1

0
LV=

0

o ...	 0

0

o...

If vectors 1 and v (i = 1, 2,.. , n) are properly scaled, the above equation become:

LV=I

This means that:

It is well-known that, the matrix A can be decomposed as:

= VAV'



.8 General Principle for Disturbance De-coupling Design	 137

where A diag{A i , A 2 ,. . . A,}. From the above equation, we have:

eAct Ve1tV1 =

this leads to:

(sI -	 = Laplace{e t } = Laplace{ etvjlT} =
	

sv__li

QED

Based on Lemma 4-2, Eq.(4.5) can be rewritten as:

Grd(S ) =
	 Hv11TE	 (4.9)

1=1

Thus, it can be noted that the disturbance de-coupling is possible if and only if

R1 =HvlE=0 for i=1,2,,n	 (4.10)

This implies that:

= H(>vlT)E = HVLE = HE = QCE = 0 	 (4.11)

Hence, one of the necessary conditions for designing disturbance de-coupled residuals

is given by the above equation and restated in the following theorem:

Theorem 4-1: A necessary condition for achieving disturbance de-

coupling design is:

QCE = HE =0	 (4.12)

If CE = 0, any residual weighting matrix can satisfy this necessary condition.

However, this is not always the case. Loosely speaking, the column number of

E cannot be larger than the independent row number of C to satisfy the above

necessary condition, i.e. the number of independent disturbances can be de-coupled

cannot larger than the number of independent measurements. If this necessary

condition cannot satisfied, an approximate de-coupling procedure should be used,

this is to approximate the matrix E by a lower rank matrix. This problem is studied
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in Chapter 5.

A general solution for Eq.(4.12) is given by:

Q = Qi[Im - CE(CE)]	 (4.13)

where Qi E 7pXn1 is an arbitrary design matrix and (CE)+ is the pesudo-inverse of

CE and is given by the following equation if rank(CE) = q:

(CE) = [(CE)T(CE)]_l(CE)T	 (4.14)

The maximum independent row number of the matrix Q satisfying Eq.(4.12) is m -

rank(CE). As the linearly dependent rows do not provide any useful information,

hence the row of the residual weighting matrix Q is normally chosen as:

p = in - rank(CE) <in	 (4.15)

4.4 Disturbance De-coupling by Assigning Left
Eigenvectors

The first method which was initially proposed and developed by Patton et al (Patton

et al., 1986; Patton and Kangethe, 1989; Patton and Chen, l991g) for disturbance

de-coupling design via eigenstructure assignment is to assign left observer eigenvec-

tors orthogonal to all columns of E. This method is summarized by the following

theorem:

Theorem 4-2: The sufficient conditions for satisfying the disturbance

de-coupling requirement Eq.(4.5) are:

(1) QCE=O.

(2) All rows of the matrix H = QC are left eigenvectors of (A - KG)

corresponding to any i al distinct eigenvalues.
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Proof: According to condition (2), the matrix H is constructed as:

IT
11

H=
1T
p

where iT (i = 1, 2,.. , n) are the left eigenvectors of A - KC. Using the relation

given in Lemma 4-1, we have:

Hv1 =O for i=p+1,..,n

where v (i = 1, 2,... , n) are the right eigenvectors of A - KC. According to

condition (1) above, we have:

1TE=O for i=1,,p

From Lemma 4-2, the transfer matrix from the disturbance to the residual is ex-

pressed as:	
(Hvj)1TE =	 Hv1(iE) =

Grd(S) =	 -	
i=1 s - A,i=1

QED

The main principle utilized in this proof can be illustrated graphically by Fig.4.2.

This diagram shows the orthogonal relationships of eigenvectors and matrices H

and E. According to condition (2) in Theorem 4-2, the rows of the matrix H

are orthogonal to the lower partition of the right eigenvectors and hence the lower

partition is nulled. Similarly, the top partition part is also nulled due to condition

(1).

The procedure for the design of the disturbance de-coupling residual generator via

left eigenvector assignment is thus as follows:

(a) Compute the residual weighting matrix Q so that QCE = 0.

(b) Determine the eigenstructure of the observer: The eigenvalues of the observer

are chosen according to the desired dynamic property of residuals. The rows

of QC must be the p left eigenvectors of the observer. The remaining (n - p)

left eigenvectors will be chosen so that one can ensure a design with good

conditioning.
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(sI-A)'	 E

Figure 4.2: Disturbance de-coupling via eigenvector assignment

(c) Compute the gain matrix K using suitable eigenstructure assignment tech-

nique.

The observer feedback eigenstructure assignment problem can be handled by means

of a transformation of the dual control form. On assignment of the right eigenvectors

to the dual control problem, these eigenvectors become the left eigenvectors of the

observer system (Andry, Chung and Shapiro, 1984; Sobel and Banda, 1989; Burrows

and Patton, 1992). The assignment of the right eigenvectors for the control prob-

lem is a well-developed technique (Moore, 1976; Fahmy and O'Reilly, 1982; Andry,

Shapiro and Chung, 1983; Kautsky, Nichols and Van Dooren, 1985; Roppenecker,

1986; Mudge and Patton, 1988; Owens, 1988; Owens and O'Reilly, 1989; White,

1991; Burrows, Patton and Szymanski, 1989; Burrows and Patton, 1991; Sobel,

Shapiro and Andry, 1994). The assignability condition is that, for each eigenvalue
), the corresponding left eigenvector i" must belong to the row subspace spanned

by [C(\1 I - A)'J. That is to say the vector 1 should lie in the column subspace
spanned by [(A 1 1 - AT)_1CT].

If 1 lies in the subspace span{[(A 1 1 - AT ) l CT]}, a vector w exists which satisfies
the following equation:

ii	 for	 i = 1,... ,p	 (4.16)
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where:
P(A2)=_(AI_AT)_lCT for i=1,..,p

	
(4.17)

One can inspect if i is in the subspace span{P(A 1 )} by comparing i with its pro-

jection in this subspace, denoted by:

l=P(Aj)w	 for i=1,...,p
	

(4.18)

where:
= [pp.)Tp(\.)I-1pp.)Tl. for	 1,. ..	 (4.19)

if 1, l, 1, is in span{P7)} and is assignable. Otherwise, an approximate proce-

dure must be taken, i.e. to replace 1 by its projection l. In observer-based residual

generator design, there are no other restrictions on the choice of eigenvalues apart

from stability. Hence, one can choose stable eigenvalues to minimize the distance

between a required eigenvector with its projection in the assignable subspace. The

approximate disturbance de-coupling can be achieved by minimizing the following

performance index:

J1	 =	 lI h i 	 j112

=	

-
	 (4.20)

where	 (i =	 ,p) are the required left eigenvectors to be assigned for the

disturbance de-coupling design. It is possible the J1 can be made zero by properly

chosen eigenvalues ) (i =	 ,p).

Because (l.)T (i	 , p) are left eigenvectors of A - KC corresponding to eigen-
values ), we have:

(lflT(A - KG) = A(1*)T for j =	 ,p
	

(4.21)

i.e.

for i=1,...,p
	

(4.22)

Comparing Eq.(4.22) with Eq.(4.18), we have:

w = KT 1	 for il,...,p	 (4.23)
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For a disturbance de-coupling design, only p left eigenvectors are specified, the

remaining n - p eigenvectors can be chosen freely from the assignable subspace, i.e.

1 1 =(AI_A)_ l CTw, for i=p+1,,n	 (4.24)

where
w=KTi1 for i=p--1,...,n	 (4.25)

Hence, the observer feedback gain matrix is computed by:

K = [WL_ l ] T = [WV] T = VTWT	 (4.26)

where

W	 [w . . . w;	 . . . wn] 7mXn

1- - 11* . . . 1*.11 - ti	 1p+i	 1,] E 7?,nXn

and V = L- 1 is the right eigenvector matrix. Note that the first p eigenvalues cor-

responding to the required eigenvectors i" (i = 1 , p) must be real because all

these eigenvectors are rea1-valur, The remaining n - p eigenvalues and correspond-

ing eigenvectors can be real as ll as complex-conjugate.

Disturbance de-coupling does not place any restriction on the choice of eigenvectors

1" (i = p+l, .. . ,n) and corresponding eigenvalues ) (i = p+l, . . . ,n). Hence, these

free parameters can be used to maximize the fault effect on the residual. Consider

the transfer function between residuals and faults as:

Grf (S) = QR2 + H(sI - A + KC'(R 1 - KR2)

= QR2 + H	 1(R1 - KR2)

=	 (4.27)

As pointed out in Section 2.7, the most important factor in fault detectability is the
steady-state gain matrix Gr(0), hence a performance index to be maximized for
increasing fault detectability, is defined as:

p
J2 (A,W) = IIQ R2 + H >J --, --( R1 - VTWT R2 )II F	 (4.28)

i=1

where . IF denotes the Frobenius norm, A p, 	 A] and W = [w+1, ..., w]
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are designing parameters. To maximize the fault effect and, subsequently fault de-

tectability, the performance index J2(A, W) should be maximized. The optimization

problem may be solved by any suitable numerical search method. The genetic algo-

rithm is a generic optimization technique because it has minimum degree of problem

dependence, and hence can be used to solve this problem. In Chapter 6, the use of

genetic algorithms is discussed in detail.

The maximization of J2 (A, W) is a constrained optimization problem because all

elements of A must be in the left hand side of the complex plan. To remove this

constraint, the eigenvalues are assumed in a pre-defined wide region [L1, U1] and

introduce a simple transformation (Burrows and Patton, 1991):

= L + (U1 - L 1 )sin 2 (z1 )	 (4.29)

where z2 e 1?. (i 1 . . . , n) can be freely chosen. Now, the performance index J2 is

a function of the parameters Z = [z1,	 z,,] and W.

If the required left eigenvectors are assignable, the performance index J1 is zero and

only the index J2 needs to be maximized. If the assignability conditions cannot be

satisfied, one alternative is to assign all the columns of E as right eigenvectors and

this is studied in Section 4.5. Another alternative is to use approximate de-coupling,

i.e. to minimize J1. The best FDI performance can be achieved by maximizing J2

and minimizing J1, this is a multi-objective optimization problem and can be solved

by minimizing a single mixed objective. The objectives can be iriixed-up in one of

the following ways:

J(Z, W) =
	

(4.30)

p_____________________________________	
(4.31)J ( Z , W ) =ai > jl1— 2

1=1	

1*11 

+ IIQR2 + H 1 	 (R1 - VTWTR2)IF

The multi-objective optimization problem can also be solved via the method of

inequalities which is discussed in Chapter 6.
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4.5 Disturbance De-coupling by Assigning Right
Eigenvectors

If the left eigenvector assignability conditions are not satisfied, an alternative ap-

proach can be used is to assign the columns of the matrix E as right eigenvectors of

the observer dynamics. This approach is given by the following theorem:

Theorem 4-3: The sufficient conditions for satisfying the distnrbauce

de-coupling requirement Eq.(4.5) are:

(1) QCE=0.

(2) All columns of the matrix E are right eigenvectors of (A - KG)

corresponding to any real distinct eigenvalues.

Patton and Kangethe (1989) pointed out the possibility of assigning columns of

the matrix E as right eigenvectors for disturbance de-coupling design, however they

did not describe an algorithm for achieving this. This approach only became im-

plementable when Chen and Patton (Patton and Chen, 1991g; Patton and CJei,

1992c) proposed a new algorithm for assigning observer right eigenvectors. The as-

signment of the right observer eigenvectors (left eigenvector of dual controller) is

a relatively new problem, only considered by few investigators, e.g. Zhang et al.

(1990). The assignment method proposed by Chen and Patton is thus presented

and extended in this section.

Theorem 4-4: A vector v2 can be assigned as a right eigenvector of

(A - KG) corresponding to only if one of the following necessary

conditions is satisfied:

(1) v, is not the right eigenvector of A corresponding to A 2 and Cv2 0.

or

(2) v, is the right eigenvector of A corresponding to ) and Cv2 = 0

Proof: For the right eigenvector v of (A - KC), we have

(A - KC)v1 = A2v1
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This leads to:
KCv1 = (A - )tI)v2

The assignment of v as the right eigenvector of A - KC is to find the matrix K to

satisfy this equation. This equation has solutions only if either condition in Theorem

4-4 holds true.	 QED

For the cases when a number of right eigenvectors must be assigned, the gain matrix

K must satisfy a set of equations. If one wants to assign all columns e (i =

1,2,..• , q) of E as the right eigenvectors of (A - KC) corresponding to eigenvalues

the following equation must be satisfied.

KCe1 = (A - )tI)e1	 for i = 1,2,... , q	 (4.32)

Therefore
KCE = A
	

(4.33)

where
AA = [(A - ) i I)e 1 (A - ) 2 I)e2 ... (A - \q I)eq]	 (4.34)

Now, the right eigenvector assignment problem is to solve the Eq.(4.33) whilst en-

suring that the observer is stable.

Lemma 4-3: The necessary and sufficient condition for a solution of

Eq.(4.33) to exist is:

AA1
rank(CE) = rank( [ CE]

Subject to this condition, the general form of the solution to Eq.(4.33)

K = AA (CE) + Ki[Im - CE(CE)]

where K1 E 7nxm is an arbitrary design matrix and (CE) is the

pseudo-inverse of CE. When rank(CE) = q, (CE) is given by:

(CE = [(CE)T(CE)]'(CE)T

Proof: Eq.(4.33) has solutions if any row of the matrix A, is a linear combination of

rows of the matrix (CE). Hence Eq.(4.35) is the necessary and sufficient condition

for a solution of Eq.(4.33) to exist. It can be easily veffied that the matrix K given
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by Eq.(4.36) is a solution of Eq.(4.33).

QED

Remarks: A matrix equation can be decomposed into a number of linear equations,

and hence Eq.(4.33) can be decomposed into nq equations with nm parameters to

be determined. When m > q, the solutions for these equations normally exist.

Some detailed discussion about the solution of matrix equations can be found in

Basilevsky (1983, Chapter 6).

When the all q (^ m) eigenvalues ), (i = 1,2,. , q) are set as the same, i.e.,

the necessary and sufficient condition for solving Eq.(4.33) is simpler and can be

given by the following Lemma.

Lemma 4-4: If q eigenvalues to be assigned to the corresponding q

columns of E are same and this eigenvalue is not an eigenvalue of A, the

necessary and sufficient condition for solution of Eq.(4.33) to exist is:

rank(CE) = rank(E)	 (4.38)

Note that the condition given in this Lemma is the same as that given in Lemma

3-1 and the method of proof used in Lemma 3-1 can be used to prove this Lemma.

However, this proof is not presented here. The similarity between Lemma 4-4 and

Lemma 3-1 demonstrates the correspondence between unknown input observers with

eigenstructure assignment in robust residual generation.
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Theorem 4-5: The necessary and sufficient conditions to assign all

columns of E as right eigenvectors of (A - KG) with a stabilizing feed-

back gain K are:

(i) rank(CE) = rank( [

(ii) (C1 , A1 ) is a detectable pair, where:

A1 = A - AA(CE)C

C1 = [Im - CE(CE)JC

Proof.' All columns of E are right eigenvectors of (A - KG) iffEq.(4.33) holds true.

Eq.(4.33) has solutions if the condition (i) is true. For a general solution given by

Eq.(4.36), the system dynamics will be:

A - KG = A - A A (CE)C - Ki[Im - CE(CE)]C = A 1 - K1C1

Hence, the observer can be stabilized if the condition (ii) holds.

QED

Now, the right eigenvector assignment problem is to find a matrix K1 which assigns

eigenvalues of the observer dynamic matrix (A - KG) = (A 1 - K1 C1 ) in the left

hand side of complex plane. This is only possible when (C1 , A1 ) is a detectable pair.

The problems of assessing the detectability and assigning eigenvalues of a detectable

pair have been studied in Section 3.2. As q eigenvalues ) (i = 1, 2,.. , q) have been

assigned as the eigenvalues of (A - KG) = (A 1 - K1 C1 ) in the assignment of right

eigenvectors, the maximum number of eigenvalues of (A - KG) = (A1 - K1 C1 ) that

can be moved by changing the design matrix K1 is n - q. This is proved via the

following Lemma.

Lemma 4-5: The eigenvalues ) (i = 1,2,. . . , q), which used in the

assignment of right eigenvectors e, (i = 1, 2, . . . , q) for (A - KG), are

unobservable modes of the pair (C1 , A1).

Proof: As the vector e (i =	 , q) are right eigenvectors of (A - KG) =
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(A 1 - K1 C1 ) corresponding to eigenvalues A2 (i = 1,2,..., q), we have:

{A - AA(CE)C - Ki[Im - CE(CE)]C}e = Ae, for i = 1,2,.• , q

This equation holds true for any arbitrary matrix K1 , if we set K1 = 0, we have:

{A 1 1 - [A - AA (CE)C]}eI = {A 1 I - Ai }e1 = 0 for i = 1,2,. . . , q

Therefore,

Ki[Im —CE ( CE)] Cei = K1 C1 e1 -0 for i= l,2,..,q

As this relation is valid for any matrix K1 , thus,

C1 e 1 =0 for i=1,2,...,q

Hence,
[ 

AI—A1 ] e = 0 for i = 1,2,..•,q
C1

i.e., the eigenvalues A 2 (i = 1, 2,. . . , q), are unobservable modes of the pair (C1 , A1),

and the maximum number of eigenvalues of (A1 - K1 C1 ) that can be moved by K1

is n - q.

KQED

The eigenvalues for right eigenvector assignment in disturbance de-coupling design

are not unique. Moreover, the solution for the matrix K1 is also not unique, even if

the eigenvalues have been fixed, due to the multivariable nature. The design freedom

beyond right eigenvector assignment can be utilized to maximize the fault effect on

residuals, as discussed in Section 4.5. The matrix K1 can also be parameterized via

eigenstructure in the design. The problem of maximizing fault effects utilizing the

remaining design freedom is studied in future research and is not discussed here.
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4.6 Dead-Beat Design for Robust Residual
Generation

The observer-based residual generation techniques developed for continuous-time

system models can also be used for the systems described by discrete-time models.

However, some special characteristics such as dead-beat design are only valid for

discrete-time domain. The dead-beat design can make the derivation of the distur-

bance de-coupling principle very simple and gives very prompt residual responses.

Consider systems described by discrete-time models:

f x(k+1) = Ax(k)+Bu(k)+Rif(k)+Ed(k)

y(k) = Cx(k) + Du(k) + R2f(k)

For this system, a discrete observer is used to generate residuals:

5(k + 1) = (A - KC)5(k) + (B - KD)u(k) + Ky(k)

(k) = C(k)+Du(k)

r(k) =

The Z-transformed residual response to faults and disturbances is thus:

r(z) = QR2 f(z) + H(zI - A + KC)'(R1 - KR2)f(z)

+H(zI - A + KC)'Ed(z)

(4.39)

(4.40)

(4.41)

The transfer matrix between the residual and the disturbance can be expanded as:

H(zI - A)'E = z'H(I + Az' + Az 2... + . . .)E	 (4.42)

where A = A - KC and H = QC. It can be seen that this transfer matrix is nulled

if the following sufficient conditions are satisfied:

HE	 0	 (4.43)

HA = 0	 (4.44)

Choose H and K in such a way that the rows of H are the left eigenvectors of A

corresponding to zero-valued eigenvalues, Eq.(4.44) then holds true. The Eq.(4.43)

means that the left eigenvectors to be assigned are orthogonal to the disturbance

directions, and the residual weighting matrix Q will be computed using this equation.
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Alternatively, the disturbance de-coupling can also be achieved using the following

sufficient conditions:

HE=0
	

(4.45)

AE=0
	

(4.46)

Eq. (4.46) holds true when each column of E is assigned as a right eigenvector of

A corresponding to a zero-valued eigenvalue. Eq.(4.45) will determine the residual

weighting matrix Q.

Because of the assignment of zero-valued eigenvalues, the residual will have dead-

beat (minimum-time) transient performance and this feature can be exploited to

good use in the aim to provide a high sensitivity to soft (incipient) faults.

When the left eigenvector assignment condition in Eq.(4.44) for disturbance de-

coupling holds true, the residual response to faults will be:

r(z)	 QR2f(z) + H(zI - A + KC) 1 (R1 - KR2)f(z)

= QR2 f(z) + z'H(Ri - KR2 )f(z)	 (4.47)

i.e.

r(k) QR2 I(k) + H(R1 - KR2)f(k - 1)	 (4.48)

Hence, the fault signal is transmitted directly into the residual, i.e. the residual

response to faults is very fast and this can avoid the detection delay. When a fault

occurs in the element of fault vector f(k) and other elements of f(k) are zeros,

the residual will be:

r(k) = [QR2]f(k) + [H(R - KR2)]f1 (k - 1)	 (4.49)

where [QR2] is the th column of QR2 and [H(R1 KR2 )] 2 is the ih column of

H(R1 - KR2 ). This equation shows that the residual vector lies in a fixed subspace,

i.e.,

r(k) E 8, = span1jQR 2] 2 , [H(R1 - KR2 )] 2 }	 (4.50)

This relation shows the robust residual has a directional property which can be used

for fault isolation. The fault can be isolated by comparing the residual direction

with the fault signature subspace S (i = , g) as reported by Chen and Patton

(Patton and Chen, 1991h; Patton and Chen, 1991c). If the fault function is constant,
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the residual will be parallel to the vector {QR2 + H(R1 - KR2 )] 1 and the fault

isolation will be easier to achieve. Note that the problem of fault isolation using

robust directional residual vectors has been studied in Section 3.4.2.

From the residual generation relations given in Eq.(4.40), the computational form

of the residual is:

r(z) = [Q - H(zI - A) 1 K]y(z) - [QD + H(zI - A)'(B - KD)]u(z) (4.51)

If the left eigenvector assignment condition in Eq.(4.44) (not the right eigenvector

assignment condition) holds true, H(zI - As)' = z 1 H. Thus the computational

form of the residual vector r(z) can be re-written as

r(z) = (Q - z'HK)y(z) - [QD + z'H(B - KD)]u(z)	 (4.52)

i.e.

[y(k)	 1	 r(k)	 1

r(k) [Q - HK]

	

	 [QD H(B - KD)] 
L 

u(k - 1) j	
(4.53)

Lyk-1i

It can be seen that Eq.(4.53) is a 1 order parity equation (parity relation) (Chow

and Willsky, 1984; Lou et al., 1986; Patton and Chen, 1991e) which can be im-

plemented directly to generate residuals for FDI. This residual generation method

using the 'st order parity relation is illustrated in Fig.4.3.

It is very interesting that disturbance de-coupling is achieved by the assignment of

left observer eigenvectors, however the robust residual generator can be implemented

in the form of the parity relation given by Eq.(4.53). That is to say that the observer

is not required in robust residual generation, and this has significance for real-time

application aspects. The direct link between eigenvector assignment and parity

relations was discovered by Patton and Chen (Patton and Chen, 1991h; Patton and

Chen, 1991c; Patton and Chen, 1991f; Patton and Chen, 1991e; Patton and Chen,

1992c; Patton, Chen, Millar and Kiupel, 1991).

Note that the link between eigenvector assignment and the parity relation approach

cannot be derived for the right eigenvector assignment case (Eq. (4.46)).
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disturbance	 fault

'I,input	 output
System

u(k)	 L	 _JJ y(k)

H H(B-KD)	 -HK

-Th

1st order parity relation	 r( )
residual

Figure 4.3: Robust residual generation via the 1st-order parity relation

4.7 Two Numerical Examples in Eigenstructure
Assignment

Example 4-1: Consider the discrete-time system given by,

0.25 0	 0	 0

A	 0	 0.50	 B= 1

0	 0	 0.375	 1

The disturbance distribution and the measurement matrices are:

1
110

E= 1
011

0

The weighting matrix Q to satisfy QCE = 0 can be easily found as:

Q=[-1 2]

so that, the desired left eigenvector is:

H=QC=[-1 1 2]



0749] 
Fy(k)	 1- .	 —u(k)
L 

y(k —1)]
r(k) = [- 1 2 0.249

i.e.
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corresponding to the eigenvalue 0. This left eigenvector is assignable as HT be-

longs to the subspace span{_ATCT}. The remaining two eigenvalues are chosen

as {0, 0.1}. Using the eigenstructure assignment technique (Mudge and Patton,

1988; Burrows et aL, 1989; Burrows and Patton, 1991), the gain matrix is derived

as:
0.0165 —0.3330

K =	 0.4670	 0.6661

—0.3502 —0.1246

It can be seen that H(A - KG) = 0 and QCE = 0, i.e., the de-coupling conditions

(4.43) & (4.44) are satisfied and:

H(zI - AC)'E = 0

The z-transform of the residual in response to the sensor fault f3 (t) and actuator

fault fa(t) will be:

r(z) = [Q - QC(zI - A) 1 K]f8 (z) + QC(zI - Ac)1Qfa(z)

= [-1 2]f3 (z) - [-0.249 0.749]z'f8 (z) - z1fa(z)

Clearly, the disturbance term is not present and the residual is only a function of the

faults. This means that a robust design has been achieved. According to Eq.(4.53),

the computational form of the residual can be:

r(z) = [- 1 2]y(z) - [-0.249 0.749]z 1 y(z) - z'u(z)

This is a 1st order parity relation.

Example 4-2: Now consider changing the matrix A to

0.3 0	 0
A= 0 0.6 0

0	 0	 0.9

In this case, the required left eigenvector of the observer H is not assignable (as HT

does not belong . 3ubspace span{_ATCT}). We must use the alternative approach
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of assigning right eigenvectors, as given in Section 4.5. The eigenvalues are chosen as

{ 0, 0, 0.1}. The observer right eigenvector can then be assigned as a single column of

E (corresponding to eigenvalue 0), in this case, the resulting gain matrix computed

using right eigenvector assignment is:

	

0.098304	 0.103392

K = 0.589304 —0.596608

	

—0.8	 1.6

The z-transform of the corresponding residual response to actuator and sensor faults

is:

2'	 3 - 1.8z
r(z) = 

(-1 + 1.2z 1 - 0.27z 2 )(2 2.7z 1 + 0.81z 
' f8 (z) +	 f(z)

1 - 0.1z'	 1 - 0.1z'

The disturbance de-coupling has also been achieved. However, although this residual

signal is robust to disturbances, it is a recursive structure and does not directly

correspond to a parity relation.

4.8 Conclusion and Discussion

This chapter has studied the robust (in the sense of disturbance de-coupling) resid-

ual generation via observer eigenstructure assignment. The disturbance de-coupling

is achieved by the assignment of either left or right observer eigenvectors. Given a

design problem, the designer can check the assignability to decide the assignment

of left or right eigenvectors. If the number of independent disturbances to be de-

coupled is smaller than the number of independent measurements, a disturbance

de-coupling solution is very likely achievable via either left or right eigenvector as-

signment. If the required eigenstructure (left or right) is not perfectly assignable, an

approximate approach should be taken. That is to choose assignable eigenvectors

close, in a least-squares sense, to the desired eigenvectors. This can be achieved

via the left eigenvector assignment. In this situation, the residual is not de-coupled

from disturbances but has a low sensitivity to disturbances due to approximate

de-coupling.

The chapter studies mainly the robust residual generation problem. For fault iso-

lation, one way is to design structured residual sets and this can be done using an
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approach similar to that presented in Section 3.3. For the dead-beat design, when

the rows of the matrix H = QC are assigned as left eigenvectors of the observer

corresponding to zero-valued eigenvalues, the residual can be generated by a or-

der parity relation, and the resulting residual has directional property which can be

used for fault isolation.

The eigenstructure assignment approach for designing disturbance de-coupled resid-

ual generators has been studied by Patton et al. for many years since 1986. However,

the author's main contributions to this approach are:

. To present a mathematically sound proof for eigenstructure assignment ap-

proach in disturbance de-coupling design.

• To propose a new algorithm on the assignment of right observer eigenvectors.

• To point out and prove the direct link between eigenstructure assignment with

parity relations in residual generation.

• To discuss the possibility of improving fault sensitivity utilizing the remain-

ing design freedom, after the disturbance de-coupling conditions have been

satisfied.



Chapter 5

DETERMINATION OF
DISTURBANCE
DISTRIBUTION MATRICES
FOR ROBUST RESIDUAL
GENERATION

5.1 Introduction

It is difficult to develop a highly accurate model of a complex system and hence the

interesting question is just what is a reasonable model to enable good performance in

FDI. It would be attractive to develop a robust FDI technique which is insensitive to

modeffing uncertainty, without the use of a very accurate model. However, in order

to design a robust FDI scheme, one should have a description (i.e. some information

or knowledge) about the system uncertainty, e.g. its distribution matrix or spectral

bandwith, etc. Furthermore, this description should provide assistance for robust

FDI design, i.e. it can be handled in a systematic manner.

As pointed out in Chapters 3 & 4, a typical description for the system uncertainty

makes use of the concept of "unknown inputs" acting upon a nominal linear model

of the system as described by:

$ (t) = Ax(t) + Bu(t) + R 1 f(t) + Ed(t)	
(5.1)

y(t) = Cx(t) + Du(t) + R2f(t)

156
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where the disturbance term Ed(t) is used to represent uncertainties acting upon

the system, in which the vector d(t) E 7q is an unknown "input" or "disturbance"

vector. The distribution matrix E E 7! is assumed known. In robust model-based

FDI, this description of the system uncertainty is defined as structured uncertainty.

It is clear from Eq.(5.1) that Ed(t) and R1 f(t) act on the system in the same way,

and thus one cannot discriminate between their effects unless the structure of E is

known. It is therefore a common practice to assume that E is known, in so called

robust FDI approaches which are based on the disturbance dc-coupling principle

(see Section 2.11). Once E is known, the residual can be made to have the distur-

bance dc-coupling (robust) property, i.e. the residual is totally dc-coupled from the

disturbance (uncertainty). The robust residual can then be used to achieve reliable

FDI. The dc-coupling design can be achieved using the unknown input observer (see

Chapter 3), or alternatively using eigenstructure assignment (see Chapter 4), or fre-

quency domain approaches (Ding and Frank, 1991; Frank, 1991a; Prank and Ding,

1993; Frank and Ding, 1994; Qiu and Gertler, 1993), or orthogonal parity equation

approaches (Gertler, Fang and Luo, 1990; Gertler, 1991; Gertler and Kunwer, 1993).

The theories underlying the robust residual generation based on the disturbance de-

coupling principle have been well developed, but for real applications the following

problems remain unsolved:

• How well can the term Ed(t) characterize the real uncertainty, if there is no

knowledge of the uncertainty?

• How can the term Ed(t) and the structure of E be determined, even approxi-

mately?

This chapter answers the above questions and provides some simulation examples to

test some developed theoretical results. These question must be answered, otherwise

the application domain of the disturbance dc-coupling approach for robust FDI is

very limited. In fact, very few researchers have presented the application results of

robust FDI.

As mentioned above, a primary requirement for disturbance de-coupled robust FDI

methods is that the disturbance distribution matrix must be known. However, in

most practical systems the uncertainty can be expressed in many different ways (e.g.

modelling errors) and the distribution matrix E is not known. To apply the distur-

bance dc-coupling robust residual generation techniques to systems with wide rang-
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ing uncertainties such as modelling errors and parameter variations, an approximate

distribution matrix E is needed to represent the effects of uncertainty. Within the

framework of international research on this subject, there have been few attempts to

address the problem of determining this distribution matrix. Until recently, this lack

of information obstructed the application of disturbance de-coupling for robust FDI

in real engineering systems. The work of determining the disturbance distribution

matrix has been led by Patton & Chen (Patton and Chen, 1991f; Patton and Chen,

1991b; Patton, Chen and Zhang, 1992; Patton, Zhang and Chen, 1992). They have

demonstrated their techniques for a jet engine system (Patton and Chen, 1991f; Pat-

ton and Chen, 1991b; Patton and Chen, 1991a; Patton and Chen, 1992c; Patton,

Chen and Zhang, 1992; Patton, Zhang and Chen, 1992) and in a nuclear reactor core

(Patton, Chen and Millar, 1991; Patton, Chen and Millar, 1992). The technique pro-

posed by Patton and Chen (1991f) was later used by Shields et al (Shields, 1994; Yu

and Shields, 1994; Yu, Shields and Mahtani, 1994a; Yu et al., 1994b). The problem

has been attracting world-wide attention and other investigators have followed this

line of research, e.g. Gertler and Kunwer (1993), Gertler (1994), Keviczky, Bokor,

Szigeti and Edelmayer (1993) and Saif and Guan (1993). Note that the determina-

tion of the optimal disturbance distribution matrix E is a common problem for all

disturbance de-coupling robust residual generation approaches including the orthog-

onal parity equation approach (Gertler, Fang and Luo, 1990; Gertler, 1991; Gertler

and Kunwer, 1993) and frequency domain approach (Ding and Frank, 1991; Frank,

1991a; Frank and Ding, 1993; Frank and Ding, 1994; Qiu and Gertler, 1993).

This chapter presents the research developments surrounding the determination of

the disturbance distribution matrix for robust residual generation. A number of

approaches for obtaining this matrix (albeit approximate) for real uncertain systems

are proposed. An example of a '7th thermodynamic order simulation model of a jet

engine system has been used to illustrate some approaches developed.

Clearly, the basis for the model-based FDI technique is the use of mathematical

models. The model used should have certain accuracy. In order to make a diagnosis

algorithm robust against modelling uncertainty, some knowledge about the mod-

elling uncertainty should be available. Otherwise, what do we need a model for if an

algorithm can be made robust enough without a priori modelling information? This

highlights the need to make some modelling assumptions. To be useful in a robust

design, these assumptions should be easily handled in a systematic manner. The

disturbance representation of uncertainty can be handled by means of the unknown

input observer or the eigenstructure assignment. However, this assumption is not



5.2 Direct Determination & Optimization of Disturbance Distribution Matrix 159

realistic, i.e., the distribution matrix cannot be obtained directly. in practice, we can

make some more realistic assumptions about uncertainty, for example, parameters

of the system are within a certain bound, etc. However, these assumptions are not

normally easy to handle in designing robust FDI algorithms. The aim of this chapter

is to present some techniques to bridge the gap between theoretical assumption and

practical reality. This aim is fulfilled by approximate modelling of uncertainty, in

which a disturbance description with an approximate distribution matrix is used to

model uncertainty approximately. A number of situations covering a wide range of

possibilities for uncertainty are considered in the following sections.

5.2 Direct Determination & Optimization of
Disturbance Distribution Matrix

In most situations, the distribution matrix is not readily available. However, there

are cases for which some a priori knowledge about uncertainty is available and can

be used for a direct derivation of the distribution matrix E. This Section discusses a

number of situations in which some realistic assumptions about uncertainty can be

used for this direct derivation. Normally, this directly obtained matrix has a high

rank (i.e. too many disturbances or unknown inputs) and disturbance de-coupling

is not achievable. Hence, a low rank matrix which approximates the distribution

is used in the design of optimally robust residual generators. This is an unknown

input consolidation procedure, i.e., the unknown inputs with similar directions are

combined and hence the number of unknown inputs is reduced. Note that, in some

situations, the matrix E can be determined by simple inspection. If the uncertain

factors appear in the row of matrices A and B, it is most likely the matrix E

should contain a column as follows:

o . . 0	 1	 0 ... 0 1T

th

This direct inspection method for determining the matrix E was used in the example

presented in Section 3.5.3 an' also showed by Saif and Guan (1993) and lou and

Muller (1994b). This method may not be very effective, however it is simple and

can be useful for some systems.
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 [

,u(t) 	 1
f(x(t),u(t),i)) j

Ed(t) = [G (5.3)
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5.2.1 Noise and additive non-linearity

Consider the following dynamic equation of the monitored system:

(t) = Ax(t) + Bu(t) + Gj(t) + Qf(x(t),u(t),t)) 	 (5.2)

where p(t) is a noise or external disturbance vector. In this equation, the non-

linearity is considered as an additive non-linear term Qf(x(t),u(t),t)), i.e., the sys-

tem dynamics can be separated into linear and non-linear parts. This kind of non-

linear dynamic structure exists in some non-linear chemical processes (Watanabe

and Himmelblau, 1982; Chen and Zhang, 1991) and has been used in Section 3.3.3.

For the system described above, the uncertainty can be modelled as an additive term

Ed(t) and where:

5.2.2 Bilinear systems

The study of bilinear systems has theoretical importance because they are a special

class of nonlinear systems. Many practical nonlinear systems such as ecological

systems, nuclear systems, hydraulic systems and heat exchanger systems can be

modelled by a bilinear system model(Yu et al., 1994a):

(t) = Aox(t) + Bu(t) +	 Au1 (t)x(t)
	

(5.4)

where u(t) (i = , r) is the component of u(t), and A, (i = 0, 1,. .. , r) and

B are known matrices. The nonlinear term can be treated as the disturbance term

with the distribution matrix and the unknown input vector as follows:

ui(t)x(t)

E[A1 A2 ... ArJ
	

d(t)=
	

(5.5)

Ur(t)X(t)

A linear disturbance de-coupled residual generator can be designed to generate ro-

bust residuals for FDI. This avoids the complexity involved in the design of bilinear

observers (Shields, 1994; Yu and Shields, 1994; Yu et al., 1994a; Yu et al., 1994b).
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5.2.3 Model reduction

Most systems can have significantly higher order dynamics than their models. Con-

sider, for example, the system described by a higher order model as:

[ 
x 1	 IA11 Al2	 [B1]

Lhi
=	 ]x(i)+[ju(t)

[A21 A22

where x(t) E 'J? is a partial state vector corresponding to dominant dynamic part of

the system. xh (t) represents the higher order dynamics in the system, and frequently

neglected in practice. For ease of design and implementation in control arid fault

diagnosis, the following reduced-order model is used to approximate this system:

th(t) = Ax(t) + Bu(t) + (A 11 - A)x(t) + (B1 - B)u(t) + Al2xh(t)

= Ax(t) + Bu(t) + Ed(t)
	

(5.7)

where:
x(t)

Ed(t) = [(A 11 - A) (B1 - B) Al2 ] u(t)
	

(5.8)

Xh(t)

A typical application of this partitioned state-space structure arises when comparing

a reduced order model with the full-scale system, for example, in an observer used for

FDI. For this case, the nominal model represented by (A, B) is the reduced order

model and the remaining modelling errors are considered to be lumped together

within an additive term Ed(t). It is assumed that the n reduced order state variables

correspond to N state variables of the full-scale system.

5.2.4 Parameter perturbations

A system model with time-varying parameter perturbation can be described as:

(5.6)

th(t) = (A + A(t))x(t) + (B + B(t))u(t) 	 (5.9)
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The parameter perturbations considered in the robust control field are sometimes

approximated as:

N	 N
zA(t)	 a(t)A1	 zB(t)	 b1(t)B1

i=1	 1=1

where A and B are known constant matrices with proper dimensions, a(t) and

b(t) are unknown scalar time-varying factors. In this case, the modelling error can

be approximated by the disturbance term as:

a (t)x(t)

I aN(t)x(t)
E1d1(t) = LA(t)x(t) + LB(t)u(t) = [A1 ... AN B1 ... BNJ

	bi(t)u(t)

bN(t)u(t)

Now, consider the situation where the system matrices are functions of the parameter

vector a E 7j':

th(t) = A(a)x(t) + B(a)u(t) 	 (5.10)

If the parameter vector is perturbed around the nominal value a = ao, this equation

can be expanded as:

= A(ao)x(t) + B(ao)u(t) + 	 +	 Sa1u}
	

(5.11)

In this case, the distribution matrix and unknown input vector are:

- 15a1	5a1	5a9	 ôag
	 (5.12)

d(t) = [aixT I Saiu' I	 I 8agxT I 5aguT]T
	

(5.13)

5.2.5 Low rank approximation of distribution matrix

Section 4.3 has shown that one of the necessary conditions to design robust residuals

(in the disturbance de-coupling sense) using eigenstructure assignment, is to nd a
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matrix H E	 which satisfies the following equation:

HE=0
	

(5.14)

where p is the residual dimension and can be chosen by the designer. To satisfy this

equation, the rank of the matrix E must be less than its row number (i.e. the system

order n). Chapters 3 & 4 have also shown that the maximum number of indepen-

dent disturbances (= rank(E)) cannot be larger than the maximum independent

measurement number m. This discussion highlights the point that the most critical

condition for achieving disturbance de-coupling in the residual generation is:

rank(E) <m	 (5.15)

It has been shown that the distribution matrix can be derived directly from the

available uncertainty information. If rank(E) m, Eq.(5.14) has solutions and

exact de-coupling is possible. However, for most situations, this matrix obtained

does not satisfy the rank condition (5.15), and thus approximate de-coupling must

be taken. The procedure will be o compute a matrix E* that is as close as possible

to E, and rank(E*) = q rn, i. to find the solution of following optimization

problem:

mm E - E*Jl	 subject to: rank(E*) = q ^ m	 (5.16)

Here	 denotes the Frobenius norm, defined as the root of the sum of squares of

the entries of the associated matrix. The matrix E" is thus chosen so that the sum

of the squared distances between the columns of E and E* is minimized, subject to

the constraint that: rank(E*) <m.

The problem of approximating a matrix by a low rank matrix was first suggested

by Eckart and Young (1936). More recently, Tufts, Kumaresan and Kirsteins (1982)

and Lou et al. (1986) demonstrated its use. This optimization problem can be solved

via the Singular value Decomposition (SVD) (Golub and Van Loan, 1989) of E:

E=STT
	

(5.17)

where

E - 
[ diag{a1 ,...,crk} 101

0
(5.18)

and S and T are orthogonal matrices, k is the rank of the matrix E, and o ^ o ^



(5.21)
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^ o'k are the singular values of E. According to the theorem given by Eckart

and Young (1936) (shown in Appendix D, also see Tufts et al. (1982) and Lou et al.

(1986)), a low rank approximation for the matrix E which minimizes lIE - E*JI is

given by:

Et SETT

where
I diag{0,...,0,ak_q,...,k} 0 1

0	 oJ

(5.19)

(5.20)

and q is the rank of the matrix E* which is not larger than m to satisfy the dis-

turbance de-coupling conditions. To achieve approximate disturbance de-coupling

design, the matrix H should be made to satisfy the relation HE* 0. It is easy to

see that an orthonormal solution for the matrix H is:

H*=

T
i
T

T
8k-q-1

where s 1 , . .. , are the first k - q - 1 columns of S. Once again, the residual

dimension p can be freely chosen by the designer. If p < k - q - 1, the residual

weighting matrix H can be constructed by chosing any p rows from the optimal

matrix H*. If p > k - q - 1, any extra rows of H should be linear combinations

of the rows in H*. This does not provide any independent information, hence p

should not be larger than k - q - 1. The greater the residual dimension, the more

information one can obtain. Hence, an optimal solution is to set p = k - q - 1.

An alternative statement of the optimization problem can be given as follows. As-

sume that:

E = [e 62 ... e 7 ,]	 (5.22)

where e is the column of the matrix E. An ideal matrix H should make He1 = 0

for all i = 1, 2, . . . , n 1 . This is not always possible. Hence, it makes sense to choose

a matrix H that is "as orthogonal as possible" to all e (i = , n i ), i.e. to

make each He1 (i = 1, 2,... , n 1 ) as closc to zero as possible. As orthogonality is a

directional property, it is not affected by the magnitude of H. There is no loss of

generality in applying an orthonormal constraint to the matrix H, i.e. HHT =
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The optimization criterion can then be defined as:

J 
=	

II He1II	 (5.23)

The optimal solution for H follows by minimizing J, subject to HHT = I. Lou et

al. (1986) showed that the choice of H given in (5.21) also minimizes J, yielding the

minimum value as

=	 (5.24)

This new statement of the optimization problem provides some very useful insight as
J can be used as a robustness measure which is clearly relative to the rank number

q of matrix E* and the singular values of the matrix E.

It will typically be the case that some components of the unknown input vector d are

larger than others. Furthermore, certain components of the unknown input vector

have more effect on the residual. To take account of this, the diferent attention must

be paid to the different components of the disturbance signal in the optimization

procedure. For example, if the th component of the disturbance is significantly

larger than the th component, the term He will be more important than the term

He1 . Hence, the criterion J must be replaced by:

= 1 a1I HejI 	 (5.25)

where a, (i = 1,2,.. . , n 1 ) are positive weighting factors. The relative magnitudes of

the c correspond to relative magnitudes of components of the disturbance weighting.

By rewriting the weighted optimization criterion as:

=	
II H(viI	 (5.26)

this optimization problem can be solved using the procedure described above, but

with e replaced by	 and with E replaced by E' = [ ,/jei Je2 ... J7e1 1.

5.2.6 Bounded uncertainty

Now, consider the case when the full-order system model is riot available. An iden-

tification procedure is used to obtain the nominal model {A0 , B0 , CO3 D0 } with the



5.8 Estimation of Disturbance and Disturbance Distribution Matrix 	 166

estimation error {L\A, iB, C, LD}. Normally, LA and LB are unknown but

bounded:

	

A1 ^	 A <A2	 (5.27)

	

B1 <	 B <B2	 (5.28)

where A1 , A2 , B1 and B2 are known and zA A2 denotes that each element of

LA is not larger than the corresponding element of A2 . This typifies the case where

the uncertainty is bounded. Consider LA and L\B in a finite set of possibilities, say

{LA1 , LB2 } (i = 1,2, .. , M) within the interval A1 LA ^ A2 and B1 <LB <
B2 . This might involve choosing representative points, reflecting desired weighting

on the likelihood or importance of particular sets of parameters. In this situation,

a set of unknown input distribution matrices is obtained:

	

E, = [zA1 , i.B]	 i = 1,2,. .. , M	 (5.29)

In order to make the disturbance de-coupling valid for a wide range of model

parameter variations, an optimal matrix E* should be as close as possible to all

E2 (i = 1,2, . .. , M). The optimization problem is thus defined as:

	

{s.t. rank(E*)<m} 
IIE*	 - [E1 E2 ... EMJI	 (5.30)

E* is then used to design disturbance de-coupling robust residual generators. As
E* is close to all E, approximate de-coupling is achieved over the whole range of

parameter variations.

5.3 Estimation of Disturbance and Disturbance
Distribution Matrix

In some cases, there is insufficient available knowledge about the state space model

of the system and all we '-an get is a linearized low order model with matrices

(A, B, C, D). In order to ttcount for unavoidable modelling errors, it is assumed

that the system is described as:

(t) = Ax(t) + Bu(t) + d1(t)	
(5.31)

( y(i) = Cx(i) + Du(fl
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where d1 (t) is used to represent modelling errors. if the vector d1 (t) can be obtained,

one may be able to decompose d1 (t) into Ed(t) with E a structured matrix. It seems

reasonable to add d1 (t) to account for all uncertainties in the model. But can we

determine d1 (t) with sufficient accuracy? How should we decompose d1 (t) into Ed(t)

with E a structured matrix, to involve the disturbance de-coupling concept? The

following sections provide answers to these questions.

5.3.1 Estimation of disturbance vector using an aug-
mented observer

The states of an augmented observer can be used to estimate the direction of the

disturbance direction E. The first step is to assume that d1 (t) is a slowly time-

varying vector, so that the system model can be re-written in augmented form as:

th(t)	 -	 A

d1 (t)	 -	 0

y(t) = [C

Il l 
x(t) 1	 lB1

+1	 ]u(t)
0] Ldi(t)]	 L 0

I x(t) 1
O]I	 I+Du(t)

L d1(t) j

(5.32)

(5.33)

if we have the true system input and output data {u(t), y(t)}, an observer based on

the model described by Eqs.(5.32) (5.33) can be used to estimate the disturbance

vector d1 (t). Once cui (t) has been obtained, it is possible to obtain some information

about the distribution matrix E. The problem that could arise is that the augmented

system may not be observable. The observability matrix for this system is:

C	 0	 CO

CA C	 0 C

W0 = CA2 CA	 = 0 CA	
0

A I.

CA CA'	 0 CA'
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As the second matrix on the right hand side of the above equation is a full rank

matrix, it is easy to see that:

rank(Wo) rank(C) + rank(

C

CA

CA'

The system shown in Eqs.(5.32)&(5.33) is observable if and only if rank(Wo) = 2n.

From the above equation, it is clear that this system is observable if and only if

rarik(C) = n and the matrix pair (C, A) is observable. The requirement rank(C) =

n limits the use of this technique for estimating the disturbance vector, as it requires

that the system has n (state dimension) independent measurements. There is a

logical explanation of this requirement. When we want to estimate the modelling

uncertainty without any a priori knowledge about it, information is needed from

additional measurements. For the FDI purpose, there are sometimes a large number

of measurements available and the dynamics of the system can be approximated by

a relatively low order model. Hence, the condition rank(C) = n is not a strict

constraint for some FDI problems.

5.3.2 Derivation of disturbance distribution matrix

Section 5.3.1 presented the method for determining d1 (t), but the final goal is to

express d1 (t) as:

Ed(t) = di (t)	 (5.34)

Generally speaking, there are many combinations of E and d, but for the robust FDI

methods considered here, we only need to know the structure of E, and d(t) can be

chosen arbitrarily. There are two possibilities: one is that E is a vector and d(t) is

an arbitrary scalar function; another is that E is a matrix and d(t) is an arbitrary

vector function.

Using the augmented observer, one can get the estimation of the disturbance vector

d1 (t) as {d1(1),d1(2),d1(3),. ..,d1 (M)}. If the direction of the vector di (i) changes

slightly for all i = 1, 2,... , M, it can be believed that E is a vector and d(t) is

an arbitrary scalar function. In this case, the matrix E can be approximated as:

E=
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It is very likely the case that when d 1 (k) cannot be assumed to be a constant direction

vector, i.e., the directions of di (i) are very much different for all i = 1,2, , M. In

this case, it is still possible to express the vector d1 (k) as: d1 (k) = Ed(k), where

E e 7nXq is a constant matrix, d(k) E 7?,, d1 (k) E 'jj and q < n. In the robust FDI

method, E must be row rank deficient in order to have a left annihilating matrix

H such that the equation HE = 0 holds true. This is one of the conditions for

achieving robust FDI. To find the optimal distribution matrix, the following matrix

can be constructed:

= [d1 (1), c2i (2), ... ,11 (M)]	 (5.35)

The maximum rank of [ is n, i.e. there are at most n linear independent columns.

Hopefully, there are some vectors in Il which are very close to other vectors (or

nearly close to a combination of other vectors) and can be neglected. The q most

linearly-independent columns of 1 can then be used to construct E, i.e.

E = [d1 (i), c2(j), ..., ci' (k)] E	 nXq	 (5.36)

The procedure of the derivation of a low rank approximation to the matrix l is

discussed now. One way to find the q most linearly-independent columns is to

calculate the generalized angles between these vectors, i.e., L(di(i),di(j)) (i,j =

1,..., M;j i). if a vector di (i) has very small generalized angle with other

vectors, then c11 (i) can be discarded. The matrix E in (5.36) can be used to satisfy

HE 0. When E is constructed in this way it has advantage that all rows of the

matrix H are orthogonal to almost every unknown input direction. if the remaining

single direction is very near to other directions, then all rows of the matrix H are

also almost orthogonal to it. It should be expected that almost all unknown inputs

along these directions can be eliminated.

The way of obtaining the matrix E explained above involves the calculation of

the generalized angles between vectors {d1(1),d1(2),d1(3), ... ,d 1 (M)} which is a

complex and time-consuming procedure.

Another way to obtain a rank q matrix E is first to use an approximation matrix

Q0 with the same dimension as 1, such that:

mm	 J1l - 1loII	 (5.37)
rank(1 0 )=q

The solution to this optimization problem is readily obtained using the singular
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value decomposition of ft Suppose that:

=U[diag(oi,.••,a), O]VT
	

(5.38)

where o ^ a2	 ^ a,, are the singular values of Il. 	 is then constructed as:

=U[diag(cri ,...,crq, 0,., 0),	 OJVT
	

(5.39)

where q is determined by the magnitude of o (i = q + 1,. , n) such that: a,,

an_i	 ^ °q+i €. e is a small number determined by the designer. The error

of the approximation can be calculated as: 	 -	 = '=q+i o. For a good

approximation we should have that: 	 o >> '=q+1 o. The second step is to

obtain the required distribution matrix E is to decompose the rank deficient matrix

as:

= 12	 (5.40)

by the rank decomposition (see Appendix B). where ui 
7nxq is a full column

rank matrix, and 12 E qxM From the definition of l, one can obtain:

= [2(j)	 d(2), . • .

= [Ed(1), Ed(2), ... ,Ed(M)]

= E[d(1), d(2), ... ,d(M)]

(5.41)

However,

O12
	 (5.42)

Hence, an optimal approximation for the matrix E is Ii.

5.3.3 Estimation	 of	 disturbance	 vector	 using
de-convolution

FDI algorithm design and the determination of the disturbance distribution matrix

in the discrete-time domain can be carried in a similar way to that of the continuous-

time domain. However, some special properties exist in discrete-time design. The



J x(k+1)

y(k)

Ax(k) + Bu(k) + d1(k)

Cx(k) + Du(k)
(5.43)
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discrete-time model described the following equation is considered here:

where d1 (k) is used to account for all modelling uncertainties. The matrices

{A, B, C, D} are known nominal model parameters. {u(k)} is the model input which

is identical to the system input. {y(k)} is the model output which is normally not

equal to the true system output {y(k)} due to modelling uncertainty. The task

here is to determine the additional term d1 (k) using the nominal model parameters

{A, B, C, D} and real system inputs and outputs: {u(k), y(k)}. After an estimate

of the vector d1 (k) is obtained, it is possible to decompose it into Ed(k) with E as

a structured matrix for disturbance de-coupling FDI design.

From Eq.(5.43), it can be seen that:

y(k) = Cx(k)+Du(k)

= C[Ax(k - 1) + Bu(k - 1) + d 1 (k - 1)] + Du(k)

k	 k

= CA'x(0) + CA'Bu(k - i) + > CA'd 1 (k - i) + Du(k) (5.44)

Define (k) as the modelling output error (i.e. the difference between true system

output and model output):

(k) = y(k)—y(k)

= y(k) - CAkx(0) - CA 1 'Bu(/t - •1	 - i) -

= y*(k) -	 - i)	 (5.45)

where
k

y*(k) = yt (k) - CA"x(0) - > CA' 1Bu (k - i) - Du(k)	 (5.46)

If x(0) is known, y*(k) can be calculated from Eq.(5.46). Therefore, in the following

it will be assumed that y*(k) is known. A good model should represent the system

behaviour accurately, this means that the output modelling error should be zero,

i.e.

Q(k) —p 0	 (5.47)



n

n—g

1d2(k)1
d1 (k)=I	 I

L0]
(5.50)
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This is a starting point for computing the disturbance vector d1 (k). Let k = 1,. . . , M

and C1 = CA 1 ', from Eqs.(5.45), (5.46) and (5.47), one can get:

C1d,(0)

C1d1(1)+C2d1(0) =	
(5.48)

Cl dl(M-1)+ ... +CMd1( 0) = yt(M)

When rank(C) = n, and rn n (C E 7mxP), the solution for d,(k) is derived form

Eq.(5.48) as:

f d(0) = C+y*(1)

d(k) = C+[y*(k +1) - 	 d Ck+lIdl(i)}	
(5.49)

where C+ is an inverse of C for rn = n (C+ = C- '), or a pseudo-inverse of C when

m > n (C = (CTCY1CT).

To determine the disturbance vector d,(k), the number of independent measure-

ments should not be smaller than the state number. This requirement is the same

as the requirement in the augmented observer approach and may limit its applica-

tion. When rank(C) = g < n, the number of independent equations (gM) is less

than the number of unknown variables (nM) in Eq.(5.48), therefore the solution

of d1 (Ic), k = 1,. . . , M cannot be uniquely determined using the system input and

output data. A good approximation is to let (n - g) components of d1 (k) be zero,

i.e.

and then solve for d2 (k). For this purpose, the term Cd1 (k) in Eq.(5.48) can be

decomposed as follows:

C1 d1 (k) = [C 
Cfl [d2(k)] 

= Cd2 (k)	 (5.51)

where C E gmxg d2 (k) E 7?. Using C and d2 (k) to replace C1 and d1 (k), one can

obtain the solution of d2(k):

{ d2 (0) = (C1 )+ 
y*(i)	

(5.52)
= (CF)+[y*(k + 1) - >	 CL+1_1d2(i)]

Substituting (5.52) into (5.50) the solution for d1 (k) (k = 1,... , M) can be obtained.



5.8 Estimation of Disturbance and Disturbance Distribution Matrix	 173

A physical explanation of this approximation is that (n - g) components of d1 (k)

cannot be observed by y(k) and they also cannot be determined from y(k).

From Eqs.(5.46), (5.49) & (5.52), it can be seen that the computing and memory

requirements for determining d1 (k) are increasing very significantly when the time

index k increase. This growing complexity makes the implementation of algorithms

very difficult. This estimation approach is not very practical and some modification

and simplification measures must be taken.

Now, assume that the disturbance d1 (k) is a constant bias vector, i.e. d1 (k) = d1

for all k. From Eq.(5.48) and the definition of C1 , the following equation can be

derived:
Cd1 =

Cd1 + CAd1 =

Cd1 + ... + C'd1 =

This equation can be rewritten as:

C	 y*(i)

C+CA	
d1=

C+CA+...+CAM	 y*(M)
-----

G	 Y

(5.53)

(5.54)

where G E p,mMxn, d 1 E i, Y R,mM. There exists a least-squares solution for d1

if and oniy if rank(G) = n. The rank of C can then be determined as follows:

C	 Im

C+CA	 = Im

C+CA+...+CAM	 Im

o...o	 C

Im" . O	 CA

T	 T	 AM-i
.L m	 •

Because the first matrix on the right hand side of the above equation is full rank,

it is easy to see that: rank(G) = n if and only if M ^ n and the matrix pair

(C, A) is observable. Hencc ) for an observable system, one can estimate the constant

disturbance vector via the use of a limited rumber of computations and low memory

if M is not a very large integer number.

d1 = (GTG)_lGT	 (5.55)
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In this section, it has been assumed that the initial state vector x(0) is known a

priori. However, this is not always true. Hence, some approximation must be made

when x(0) is unknown. Consider the system output vector:

y(k) CAx(k - t) +	 CA11 Bu(k - i) + > CA11d1 (k - i)	 (5.56)

For a large it and for k > t, oiie has A —+ 0 and CAx(k - i) 0. In this case,

one can get:

CAd(k — i) = y*(k)
	

(5.57)

Where:

y*(k) y(k) -	 CA1 'Bu(k - i)
	

(5.58)

Assume that the disturbance vector d1 (k) is a piece-wise constant vector, i.e.

di(k-1)=d1(k-2)=...=di(k—ji)

Eq.(5.57) now can be re-written as:

[CA1 ']d1 (k —1) = y*(k)
	

(5.59)

Once again, a unique solution for the disturbance vector d1 (k) exists if and only if

rank(C) = n. This requires that the independent output dimension is not smaller

than the state dimension.

The de-convolution method presented in this section can be used, in some cases,

to estimate the disturbance vector. However there are certain limitatIons to this

method and some further research is still needed.

5.4 Optimal Distribution Matrix for Varied
Operating Points

Real r;rocess plants normally work at differeit operating points. The operating point

of the system varies according to different plant conditions. This is especially true for

the analysis of ion-linear systems because they are normally linearized around a wide

range of oper. ;ing points. In the design of model-based FDI schemes, investigators
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often use a single model for ease of implementation. The success of the single FDI

design depends on its robustness properties. When using a single model in this

way, different modelling errors arise corresponding to different operating points and

even the structure of these errors or perturbations can be quite different! Using the

terminology outlined in this chapter, it can be said that different operating points

correspond to different disturbance distribution matrices. One way to achieve good

robustness is to make disturbance de-coupling conditions hold true (in an optimal

sense) for all disturbance distribution matrices. This can be done by using a single

optimal disturbance distribution matrix to approximate all disturbance distribution

matrices.

Consider that the system works at a wide range of operating points, corresponding to

different unknown input distribution matrices, E, (i = 1,2,. . . , M). It is attractive

to be able design a single FDI scheme for a whole range (or a set) of operating

points. In order to make the disturbance de-coupling hold for all operating points,

the following relations should be satisfied:

HE2 =0, for i=1,2,..,M
	

(5.60)

or:

H[E1 E2 ... EM]=HP=0
	

(5.61)

If rank(P) m, Eq.(5.61) has solutions and exact de-coupling at all operating

points is achievable. Otherwise, approximate de-coupling must be used. This is

equivalent to the solution of Eq.(5.14) and can be solved by defining the following

optimization problem:

(( - P* II	 subject to: rank(P*) ^ m
	

(5.62)

This problem can be solved using the singular value decomposition of P as described

in Section 5.2.5. The matrices H and * should ensure that a fixed FDI scheme is

effective for different operating points.
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5.5 Modelling and FDI for a Jet Engine System

Modern engines and control systems have become very complex to meet ever-

increasing performance requirements. The rapid increase in complexity has made

it difficult to build sufficiently reliable, low-cost, light-weight hydromechanical con-

trols. If faults occur, the consequences can be extremely serious. For example, the

pilot can either be presented with incorrect information or he may find it difficult

to locate and diagnose a fault quickly enough to take any appropriate corrective

action, as described by Merrill (Merrill, 1985; Merrill, 1990; Merrill, DeLaat and

Abdelwahab, 1991). This highlights a great need for simple and yet highly reliable

methods for detecting and isolating faults in the jet engine.

Engine sensors work in a harsh environment and fault probabilities are high, thus

making the sensors the least reliable components of the system. In order to improve

the reliability of the engine sensors, analytical and hardware redundancy schemes

have been investigated over the last decade (Merrill, 1985; Merrill, 1990; Merrill et

al., 1991). The low reliability of the engine sensor module requires that augmentation

of the analytical structures be used in order to provide the reliability necessary to

cope with ever increasing engine complexity. For example, the rapid changes that

occur in the digital fuel control system must be reflected effectively in the sensor

system for the accurate detection of faults and the discrimination of false alarms.

The inclusion of a fault monitoring system as an integral part of the control system

provides the digital control with the necessary information about the faulty sensors.

The information is used to decide when to activate an accommodation filter, with the

function of reconfiguring the control laws in order to compensate for the occurrence

of a sensor malfunction and thus maintain the integrity of the control system. This

makes the digital control system attain an acceptable level of reliability.

As discussed in Chapter 1, traditional approaches to FDI in the wider application

context are based on hardware redundancy methods which use multiple lanes of

sensors, computers and software to measure and/or control a particular variable. A

typical jet engine has a degree of redundancy in hardware (eg duplex fuel lines, actu-

ators and speed sensors), however some components, for example the temperature-

sensing thermocouple pods, are only available in simple configuration. Moreover,

triplex or higher indices of redundancy are not at all realistic. Multiple redundancy

is harder to achieve due to lack of operating space. Such schemes would also be

costly and very complex to maintain. Severe operating conditions also lin' i the reli-
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ability of engine hardware (e.g. sensors) to the extent that it may not be worthwhile

using hardware redundancy alone as a means of diagnosing malfunctions.

The model-based FDI (analytical redundancy) is normally implemented in software

form in a computer, and hence very flexible and practical. This is certainly the case

for jet engine reliability. Hardware redundancy results in more costly, heavier, less

practical, and less potentially reliable systems than do various analytical redundancy

strategies. Because cost, weight, and reliability are important issues in turbine

engine control systems design, much research interest has been focused on model-

based strategies.

5.5.1 Background on fault diagnosis for jet engine systems

The use of model-based approaches for diagnosing faults in jet engine systems has

become a very active research topic for theoretical and practical reasons, for example

as reported by Merrill (Merrill, 1985; Merrill, 1990; Merrill et al., 1991) and Duyar

et al (Duyar, Eldem and Sari nan, 1990; Duyar and Merrill, 1992; Duyar, Eldem,

Merrill and Guo, 1994). Much of the work in the USA has been of a contract nature

under NASA Lewis and in collaboration with Pratt & Whitney (Fort Lauderdale)

and GE Gas Turbine Engines (Cincinnati). The most comprehensive and practi-

cally feasible study is the NASA Lewis program first reported by Beattie, La Prad,

McGlone, Rock and Ahkter (1981). Beattie et al. (1981) surveyed a wide range

of FDI schemes, and selected a Kalman Filter (KF) with a Generalized-Likelihood

Ratio Testing (GLR)-based scheme as a candidate for further development. Later

the whole scheme was rig tested, as reported by Merrill et al (Merrill, DeLaat,

Kroszkewicz and Abdeiwahab, 1987; Merrill, DeLaat and Bruton, 1988; Merrill, De-

Laat, Kroszkewicz and Abdelwahab, 1988; Merrill et al., 1991). This study has

shown that the theory of sensor FDI could be used in practical turbofan sensor

systems.

A gas turbine engine is a very non-linear system whose dynamics are rather uncer-

tain and difficult to model mathematically. Modeffing errors and system dynamic

uncertainty present a challenge to FDI designs due to the general requirement for

robustness. In this context, robustness means that the global (i.e. over the oper-

ating range of the process, in this case a jet engine) capability for discrimination

between faults and unmodelled effects must be well maintained. Some work in the

USA e.g. by Emami-Naeini et al. (1986), arising from the original NASA contract,
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addresses the robustness problem for FDI. In this work the authors go to the ex-

tent of including integral-action feedback according to the internal model principle

to compensate for the effect of so-called "standoff" biases commonly encountered

in the application of observer-based estimation for FDI. This leads to an improved

tracking of the states (and inherent robustness) but limited ability to detect and

identify slow drift fault types. They showed that a suitable compromise can be met

through an appropriate choice of integral action time. Also working in the USA,

Duyar et al (Duyar et al., 1990; Duyar, Eldem, Merrill and Guo, 1991; Duyar and

Merrill, 1992; Duyai et al., 1994) used an alternative approach to solve the robust-

ness problem. They attempted to derive accurate linearized models of jet engine

systems via the a—Canonical form parameterization identification method and the

nonlinear dynamic simulation data. The method has been applied in FDI schemes

for the Space Shuttle Main Engine in a project with NASA Lewis and Pratt & Whit-

ney. Under certain conditions, the identified linearized models are suitable for the

FDI purpose. Although it can be argued (and, indeed it is the view held here) that

the complexity involved in total identification of the system is unjustifiably complex

for the task in hand.

Other investigators, Goodwin et al (Smed, Carlsson, de Sonza and Goodwin,

1988; Villaneuva, Merringto, Ninness and Goodwin, 1991; Ninness and Goodwin,

1991) for example, have used an alternative approach to study the FDI problem

for jet engine systems, based on system identification methods. The robustness is-

sue is tackled by considering unmodelled dynamics in the identification procedure.

Viswanadham, Taylor and Luce (1987) also studied this subject using a frequency-

domain design technique. Piercy (1989) deals with the problem of maximising the

analytical redundancy of an FDI scheme, based on model-based detection filters.

His work examines the efficiency of FDI methods and proposes some new ideas of

design based on over-measured jet engine systems. However, he did not consider

robustness problem. The research led by Patton is aimed at keeping in step with

the very latest developments world-wide in this subject and on the provision of diag-

nosis schemes which can be applied very easily in real engine systems. This research

emphasises robustness issues using the eigenstructure assignment technique in de-

signing observer-based residual generators. To use robust approaches, the sensitivity

to faults in actuators and sensors in fault decision signals (or residuals) is maximised

over the appropriate dynamic range of operation. The residual response to uncertain

disturbance effects, for example due to modelling errors, is at best nulled or other-

wise optimally minimised. The research on jet engine FDI by Patton et al. have
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been widely published, see: Patton (1989), Patton and Kangethe (1989), Patton

and Chen (1990), Patton and Chen (1991a), Patton and Chen (1991b), Patton and

Chen (1991f), Patton and Chen (1992b), Patton and Chen (1992e), Patton, Chen

and Zhang (1992), Patton, Zhang and Chen (1992) and Patton and Chen (1995).

5.5.2 Jet engine system description

The gas turbine can be described essentially as a heat engine which uses atmospheric

air as a working medium to generate propulsive thrust and mechanical power (Pat-

ton, 1989; Patton and Kangethe, 1989; Patton and Chen, 1995). The central unit

of the mechanical arrangement comprises two main rotating parts, the compressor

and the turbine, and one or more chambers. The gas turbine engine provides a

continuous operation cycle which characterises the phases of energy exchange which

affect the gas mass as it passes through the generator. The phases can be expressed

as a variation of the gas pressure against volume. The compressor has the task of

converting the mechanical energy of the turbine into pressure energy of the air mass

flowing through it. The combustion chamber allows the formation of the fuel-air

mixture, in turn, depend on the flight conditions. The primary function of the tur-

bine is to drive the compressor using energy extracted from the hot, accelerated

exhaust gas. Further mechanical energy generated during the gas expansion phase

is used to drive various accessories such as the fuel pump, oil pump and the electric

generator.

The control system has the function of coordinating the main burner fuel flow and

the propelling exhaust nozzle. There are other control variables such as inlet variable

flaps and rear compressor variable vanes. Under normal operation the control lever

selects a desired fuel flow rate which, in turn determines the engine speed. The fuel

flow is proportional to the exhaust nozzle area. The coordination of the fuel flow

and the size of the exhaust nozzle area is particularly necessary for the afterburner

operation. Also, if the turbine jet has a thrust reversal an additional control lever is

used to give instinctive control of engine power during the thrust reversal operation.

The jet engine illustrated in Fig.5.1 has the measurement variables NL, NH, T7 , P6,

T29 . N denotes a compressor shaft speed, P denotes a pressure, whilst T represents

a measured temperature. The system has two control inputs, the main engine fuel

flow rate u1 and the exhaust nozzle area U2.
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Figure 5.1: Gas turbine jet engine

For the purpose of model-based FDI an accurate representation of the dynamic

behaviour of the jet engine is required. Modelling of a jet engine is a very diffi-

cult problem. One important difficulty lies in the fact that a fully non-linear jet

engine system has an iterative structure which means that the equations cannot

be written down in differential-algebraic equation form. Fortunately, a non-linear

thermodynamic simulation package of the jet engine has been kindly supplied by

Lucas Aerospace Ltd. This is a highly non-linear dynamic system which has grossly

different steady-state operation over the entire range of spool speeds, flow rates and

nozzle areas. Conceptual state space l7th order linearized models at different op-

erating points can be generated using this simulation package. The model has 17

state variables; these include pressure, air and gas mass flow rates, shaft speeds,

absolute temperatures and static pressure. The linearized l7th models at different

operating points are utilised as a testbed for the evaluation of FDI schemes. Each

high order linear model is then further simplified as a low order linear model using

balanced model reduction. The lineization error and model reduction are treated

as the modelling uncertainty.

Ji the study presented in this chapter, the nominal operating point is set at 70%

t.f the demanded high spool speed (NH). For practical reasons and convenience of



D = °5x2

5.5 Modelling and FDI for a Jet Engine System 	 181

design, a Sth order model is used to approximate the l7th order model. The model

reduction and other errors are represented by the disturbance term Ed(t). The 5th

order model matrices are:

—78

7

A= —1325

1081

2152

294

—28

5326

—4445

—8639

—22

2

—526

377

781

21

—2

221

—463

—575

—29

3

—477

403

782

- 0.0072

0.0035

B =	 1.2185

1.3225

—0.0823

0.0030

0.0003

—0.0329

0.0201

0.0244

C = '5x5

5.5.3 Application of direct computation and optimization
method

As explained in Section 4.3, one of the necessary steps for the robust residual gen-

eration design procedure is to find a matrix H to satisfy Eq.(5.14) (i.e. HE = 0)

(when the matrix E has been given). The emphasis here is on the derivation of

the matrix E which corresponds to uncertainty arising from the application of the

lower (5th) order model to the full (l7th) order plant. As discussed in Section 5.2.3,

this matrix is determined by a comparison of the full-order model and the reduced

model. According to Eq.(5.8), the matrix E is obtained as:

where:

E = [E1 E2 E3 E4] x

0.076 —0.294 0.022 —0.021

—0.008 0.026 —0.001 0.002

E1 = 1.309 —5.024 0.305 —0.333

—1.031 4.152 —0.255 0.274

—2.146 8.637 —0.787 0.611

0.029

—0.003

0.478

—0.403

—0.842
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0.0 0.0

0.0

0.0

0.093

-0.073

0.0

	

0.0	 0.0

	

0.0	 0.0

0.005 0.003

-0.015 -0.008

-0.001 -0.002

0.0

0.0
P23 = 0.003

-0.001

-0.001

0.004

0.0

0.0

0.0

-0.001

-0.003

0.0

0.0

0.0

-0.009

	

0.0	 0.0

0.0 0.0

0.004 0.0

-0.013 0.0

-0.003 0.0

	

0.0	 -0.0013	 0.0	 0.0

	

0.0	 -0.0002	 0.0	 0.0

E4 =	 0.0	 0.0269	 0.0	 0.0

	

0.0	 -0.0804	 0.0	 0.0

-0.0169 0.0025 0.0126 -0.0091

It can be easily checked that Rank(E) = 5 = n, and hence Eq. (5.14) has no solution,

the optimization procedure must be employed. The singular values of E are:

01	 1,	 02 = 5,	 02 = 60,	 U2 = 198,	 a2 = 11268

The matrices S and T are omitted for brevity. According to the optimization method

presented in Section 5.2.5, an optimal q rank approximation for the matrix E is to

set n - q smallest singular values as zero. A rank 4 approximation for E is thus

given as:
E*	 S[diag(0, 5, 60, 198, 11268) 05x14]TT

Based on this matrix, an observer-based robust residual generator can be designed.

To simplify the observer design, all eigenvalues are chosen as -100. In this case, the

gain matrix K = - ( 100I5x5 + A) as C is an identity matrix. The designed robust

FDI algorithm is used to detect faulty sensors in the jet engine. The engine data

are simulated by the '7th linearized model.

Fig.5.2 shows the output estimation error norm which is very large, and cannot be

used to detect the fault reliably. This represents the non-robust design situation.

Fig.5.3 shows the fault-free residual. Compared with the output estimation error,

the residual is very small, i.e., disturbance de-couplirig is achieved. This robust design
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can be used to detect incipient faults. In order to evaluate the power of the robust

FDI design, a small fault is added to the exhaust gas temperature measurement

(T7); this simulates the effect of an incipient fault, here the effect of which is too

small to be noticed in the measurements.

faulty temperature measurement

time (seconds)	 time (seconds)

E'igure 5.4: The faulty output and residual when a fault occurs in the
emperature sensor for T7

Fig.5.4 shows the faulty output of the temperature measurement (T7) and the cor-

responding residual. The fault is very small compared with the output, and conse-

quently, is not detectable in the measurement. It can be seen that the residual has

a very significant increase when a fault has occurred on the system measurement.

A threshold can easily be placed on the residual signal to declare the occurrence of

faults. Note that the initial peak in the response is not shown in Fig.5.4, this is be-

cause FDI is normally carried out after the initial transient has been settled down.

To compare the robust design with the non-robust design, the output estimation

error which represents a non-robust design is shown in Fig.5.5. The result in this

figure cannot easily be used to detect a fault.

The situation when faults occur in the pressure sensor for P6 is also simulated and

the result shown in Fig.5.6 also demonstrates the efficiency of the robust residual in

the role of robust FDI.
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Figure 5.5: The output estimation error when a fault occurs in the tem-
perature sensor for T7
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Figure 5.6: Faulty output of the pressure measurement P6 and correspond-
ing residual
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5.5.4 Application of augmented observer method

The Sth order jet engine linearized model is now discretized for a sampling period of

T = 0.026s. The model matrices are:

—0.981	 7.532	 —0.598 0.486 —0.698

0.284	 —0.083	 0.078 —0.062 0.093

A = —6.859 28.916 —2.056 1.608 —2.261

1.224	 —5.661	 0.402 —0.319 0.414

13.266 —53.405 4.739 —3.771 5.367

0.000139 0.000195

0.000067 —0.000005

B = 0.003188 0.000601	 C = 15x5 D = 05x2

0.007840 —0.000273

0.003123 —0.001516

Modelling errors are represented by the term Ed(k) in the dynamic equation. The

term d1 (k) = Ed(k) is now determined via the augmented observer approach, as

explained in Section 5.3.1. Assume that the input of the system is u = [1, 11T,

the "true" system output {y(k)} is generated using the 17th order continuous-time

model, then the data {u(lc), y(k)} is fed to an augmented observer to estimate

d1 (k). The result is shown in Fig.5.7.

disturbance estimation

k

Figure 5.7: The disturbance vector d1 (k) for the step input case

From this diagram, it can be seen that the elements of d1 (k) converge after a short
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transient. Our interest here is in the direction (distribution) of the term d1 (k), i.e.,

the relative magnitudes of all elements of this vector. It can also be seen the relative

magnitude of all elements of d1 (k) converge. It can then be assumed that:

d1 (k)	 E1d(k)

Here, E1 is a 5 x 1 vector, it is here used to represent the direction of the d1(k),

and d(k) is a scalar which is the magnitude of the d1 (k). In fact, all directions

of d1 (k)(k = 0, 1,2,...) are slightly different. An optimally representative direc-

tion vector E must be aligned to all the directions of d1 (k)(k 0, 1,2,...) "as

closely as possible". To obtain a reliable direction, the steady-state disturbances

{d1(200),d1(201),... ,d1 (251)} are used to compute this optimal direction. The

method of decomposing d1 (k) to E and d(k), using d1 (k) = Ed(k) and with E ma-

trix of rank less than n, is presented in Section 5.3.2. This technique is now used to

determine the rank one matrix E1 as:

E = [0.4126 - 0.0617 1.5659 - 0.2776 -

Normally, the estimation of the disturbance vector d1 (k) will be different for dif-

ferent inputs to the system. In order to check the generality of the direction of

the disturbance distribution using the simulation, the system input is changed to

u = [sin(irt/3), cos(irt/3)] T. The estimation of the disturbance signals is shown in

Fig. 5.8.

disturbance estimation
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k
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Figure 5.8: The disturbance vector d1 (k) for the sinusoidal input case
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Although the magnitude of d1 (k) is time-varying, its direction (the relative magni-

tude of all elements) is almost constant. Following the procedure described Section

5.3.2, the approximate direction has been obtained as:

E = [0.5334 - 0.0768 1.9658 - 0.3698 - 3•70681T

In general, for a complex non-linear system, the operating point will change ac-

cording to the process inputs and outputs. Hence, it is instructive to consider the

system to function at another operating point. In this study, this has been chosen

as 95%NH (or almost full dry power), using the non-linear thermodynamic engine

model to generate the linearised parameters. For this case of changed operation,

the direction of the disturbances will also be changed. If step inputs are applied to

both zt and u 2 , the approximate direction is obtained as:

= [1.0511 - 0.1545 4.3087 - 0.9646 - 7•82831T

For a sinusoidal input, the approximate direction is:

E = [1.1580 - 0.1644 4.3874 - 0.8722 - 8•20101T

Although there are differences between E, E, E and E, the generalized misalign-

ment angles between them are very small. In fact, the generalized misalignment

angles are: L(E,E) = 0.3764°, L(E,Efl = 1.5633° and L(E,E) = 0.5712°. So,

it is reasonable to say that the disturbance direction is almost constant (E is used

as a representative in the study) for the system studied here, although the system is

a fully non-linear gas turbine model. The results in an interesting basis for further

study.

A Sth order discrete-time observer is used to generate the disturbance de-coupling

residuals. The first step to complete a disturbance de-coupling (robust residual

generation) design is to compute the residual weighting matrix Q (see Section 4.3),

such that QCE = 0 holds true. This weighting matrix is obtained as:

—0.367 —0.441 0.656 0.409 0.270

Q = — 0.116 0.895 0.334 0.245 0.121

0.879 —0.050 0.350 —0.034 0.316

which ensures that QCE = 0, QCE = 0, QCE 0 and QCE 0. The desired

eigenvalus .)f the observer are {0, 0, 0, 0, 0} such that the observer has a state dead-
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beat structure. The desired left eigenvectors of the observer are the rows of the

matrix H = QC = Q . The observer gain matrix can be derived using eigenstructure

assignment. In this example, as all eigenvalues of the observer are zero, the gain

matrix is simply derived as K A. Because QCE = 0, QCE = 0, QCE	 0,

QCE 0 and the rows of the matrix QC H are the left eigenvectors of the

observer corresponding to zero-valued eigenvalues, i.e. the robustness conditions

hold true, the fault detection scheme is then always robust (such that disturbance

de-coupling always holds) when the system works at different operating points and

different types of inputs.

The designed robust FDI scheme is applied to detect faulty sensors in the jet engine

system. Simulation is based on the l7 th order thermodynamic jet engine continuous-

time model. A particular emphasis of this assessment study is the power of the

method to detect soft or incipient faults which are otherwise unnoticeable in the

measurement signals. These attributes are well illustrated in the following graphical

time response results. As the FDI scheme has been made robust against modelling

errors, the scheme is able to detect incipient faults under conditions of modelling

uncertainty. The uncertainty of the jet engine system has been increased further by

simulating the effect of random noise generated through a small malfunction in the

fuel flow regulator system - to emulate the possibility of a high interference level

arising in the electronic system. This has been achieved by adding a zero-mean

Gaussian random signal with variance of 1% of demanded fuel-flow, to the fuel flow

actuation signal in the model. The inputs to the system are u = [1, 1]T, and initial

values are zero. The linear model used has been based on a per-unit scaling of the

engine dynamics and hence the final results have been scaled to give meaningful

magnitudes.

Fig.5.9 shows the residual norm and the output estimate error norm for both fault-

free and faulty cases.

The result in Fig.5.9 shows that the residual is very small in the fault-free case, i.e.,

disturbance de-coupling is achieved. The output estimation error which represents

the non-robust design is very large, even when no faults occur, and this cannot be

used to detect faults reliably.

Fig.5.10 shows the faulty output of the pressure sensor F6 ; the fault is very small

compared with the output, and consequently, which cannot directly be detected in

the output. The corresponding residual and the output estimate error for this faulty
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Figure 5.9: The residual (r(k)) norm and the output estimation error (e(k))
norm

faulty pressure measurement

8

7

0-6

(0
0-5

4

2	 4	 6	 8

time (seconds)
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case are shown in Fig.5.9. It can be seen that the residual has a very significant

increase when the fault occurs. Despite the actuation noise, a threshold can easily

be placed on the residual signal to declare the occurrence of faults. But, one cannot

be sure whether a fault has even occurred in the system when using the information

from the output estimate error.

residual	 output estimation error

time (seconc	 time (seconds)

Figure 5.11: The residual norm and the output estimation error norm for
the case a parabolic fault on the spool speed sensor for NH

Fig.5.11 shows the fault detection performance of the residual for detecting a

parabolic fault in spool speed sensor NH. The results show the fault can be reliably

detected from the residual, but cannot be detected using the output estimation er-

ror. This result has proved once again the importance of a robust residual in fault

diagnosis.

In general, for a complex non-linear system, the operating point changes according

to the process operation. Hence, it is instructive to consider the system to function

at different operating points. A robust FDI scheme should work well for a range of

operating points. In order to assess the robustness performance, the scheme is used

to detect the fault when the system is working at another operating point (in the

presence of demanded changes in high compressor speed NH), the result is shown

in Fig.5.12. Note that, although the magnitude of the residual is changed, the fault

can also be easily detected from the significant increase of the residual.
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Figure 5.12: Residual when a fault occurs in the temperature measureme
T7 with operating condition changed

5.6 Conclusion

One critical limitation of the model-based approach to fault diagnosis is that mod-

elling uncertainty is inevitable. For complex systems such as a jet engine, the effects

of uncertainty are more pronounced compared with other systems. In order to de-

sign robust FDI schemes, we should have a mathematical description of modelling

uncertainty. Furthermore, it is necessary to make sure that this description can be

handled in a straightforward and systematic manner. Modelling uncertainty can be

accounted for using an additional term in the dynamic equation of the system; this

additional term has a certain structure. Normally, it is assumed that the distribution

of this additional term is known a priori. Based on this description, the disturbance

de-coupling approach is used to design a robust FDI scheme. For most real sys-

tems, the distribution matrix which represents the information about uncertainty

is unknown. This chapter has studied the methods for determining the disturbance

distribution matrix for uncertainty. The main aim has been to bridge theoretical

assumptions with practical realty. Two principle methods for determining distur-

bance distribution matrix have been presented. The first method is the direct de-

termination & optimization method, whose strength is simple and direct and does

not require real or simulated system input and output data. Its disadvantage is that

it requires some a priori information about modelling uncertainty. However, this
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2.0
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chapter has presented ways to determine disturbance distribution matrices for a wide

range of possible situations. Hence, it can be claimed that the method is general in

application. The second method is the estimation and de-convolution method. One

disadvantage is that it requires that the system has more than n (state dimension)

independent measurements. However, for many fault diagnosis problems, e.g., the

jet engine example, there are usually a large number of measurements available and

the dynamics of the system can be approximated by a relatively low order model.

The method can be used for a number of fault diagnosis problems and, as real or

simulated system input and output data are used, the results can be affected by the

system inputs; different inputs may give arise different distribution matrices. This

is a disadvantage of this estimation method. It can be seen that the two methods

have compromising properties. One can choose which method is more suitable for

a particular problem. In this chapter, a jet engine example has been used to illus-

trate the application of the techniques developed. The jet engine is a very complex

system and the nonlinearities and modelling errors are inevitable. This presents a

big challenge for achieving reliable FDI using model-based approaches. Excellent

results have been obtained and these indicate the effectiveness of the method for

detecting soft (small) and hence incipient faults.



Chapter 6

ROBUST RESIDUAL

GENERATOR DESIGN VIA
MULTI- OBJECTIVE
OPTIMIZATION AND
GENETIC ALGORITHMS

6.1 Introduction

In safety-critical systems such as aircraft and nuclear reactors, hard faults in system

components may not be tolerable and must be detected before they actually occur.

Hopefully, faults are detected during the maintenance stage. However, the situation

is different for soft (incipient) faults. Their effect on the system is very small and

almost unnoticeable during their incipient stage. They may develop slowly to cause

very serious effects on the system, although these incipient faults may be tolerable

when they first appear. Hence, the most important issue of reliable system operation

is to detect and isolate incipient faults as early as possible. An early indication of

incipient faults can give the operator enough information and time to take proper

measures to prevent any serious consequence on the system.

The detection of incipient f tults presents a challenge to model-based FDI techniques

due to the inseparable mixture between fault effects and modelling uncertainty (Pat-

ton et al., 1989; Frank, 1990; Patton and Chen, 1991e; Gertler, 1991). Hard or

sudden faults normally have a larger effect on the 'letection residual than the effect

194
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of modelling uncertainty. Hence the fault can be detected by placing an appropriate

threshold on the residual. However, incipient faults have a lower effect; the effect

can even be lower than the response due to modelling uncertainty, so that thresh-

olding cannot be directly used to diagnose incipient faults reliably. As discussed in

previous chapters, the residual has to be designed to be robust against modelling

uncertainty to detect incipient faults.

Although many approaches have been developed, robust FDI is still an open problem

for further research. One of the most important approaches for robust FDI is the

use of disturbance de-coupling principles, which have been studied in Chapters 3 &

4. One should recall that the idea is to treat modelling uncertainty as exogenous

disturbances and de-couple their effect from the residual. The main disadvantage

is that the distribution of disturbances is required to facilitate designs, although

the disturbance itself is assumed unknown. For most uncertain systems, the mod-

elling uncertainty is expressed in terms of modelling errors. Hence, the disturbance

de-coupling approach cannot be applied directly. Chapter 5 proposes many ways

on representing modelling errors as unknown disturbance with an approximate dis-

tribution matrix. In this way, robust FDI is partially achievable. There are some

successful applications, however it would be better to relax the restriction on the

assumption about modelling uncertainty in the design of robust residual generators.

In this chapter, the modelling uncertainty is simply treated as an additive distur-

bance term in the dynamic equation. There are no requirements to use information

about the distribution (structure) of the disturbance or uncertainty, although this

information can be used if it is available.

For disturbance de-coupling approaches in FDI, the aim is to completely eliminate

the disturbance effect from the residual. However, the complete elimination of dis-

turbance effects may not be possible due to the lack of design freedom. Moreover, it

may be problematic, in some cases, because the fault effect may also be eliminated.

Hence, an appropriate criterion for robust residual design should take account of the

effects of both modelling errors and faults. There is a trade-off between sensitivity

to faults and robustness to modelling uncertainty and hence this is an issue of prime

concern. Robust residual generation can be then considered as a multi-objective

optimization problem, i.e. the maximization of fault effects and the minimization

of uncrtainty effects. The problem of maximizing fault effects and at the same

time minimizing disturbance effects was studied by Frank & Wünnenberg (Frank

and Wünnenberg, 1989; Wiinnenberg, 1990) in the time domain and Frank & Ding

(Ding and F:irk, 1989; Ding and Frank, 1991) in the frequency domain. In their
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studies, a ratio between disturbance effects and fault effects is minimized. The main

problem is that they only considered the cases when the disturbance distribution

matrix is known. The multi-objective design in the time-domain for systems with

bounded parameter uncertainty and disturbances has been studied recently by Chen

et al. (1993) and is extended in Chapter 7.

This chapter develops a new approach to the design of optimal residuals for detect-

ing incipient faults, based on multi-objective optimization and genetic algorithms.

In this approach the residual is generated via an observer. In order to make the

residual become insensitive to modelling uncertainty and sensitive to sensor faults,

a number of performance indices have been defined to achieve good fault diagno-

sis performance. Some performance indices are defined in the frequency domain to

account for the fact that modelling uncertainty effects and faults occupy different

frequency bands. Robust control design in the frequency domain is attracting enor-

mous attention in the control community. However, there is currently very little

research on the use of frequency domain techniques for robust FDI. Patton et al.

(1986) first discussed the possibility of using frequency distribution information to

design FDI algorithms, however they did not give further guidance as to how this

could be achieved. Ding and Frank (1989) proposed an optimal observer design

method for FDI in the frequency domain. Viswanadham, Taylor and Luce (1987)

and Ding and Frank (1990) later studied the frequency domain residual generation

method via factorization of the system transfer matrix, however the robustness issue

is not their primary concern in design. More recently, Frank and Ding (1993) and
Qiu and Gertler (1993) made some important contributions in robust FDI design by

using H°°-optimization. Mangoubi et al. (1992) also applied the H/ji technique to

the design of a robust FDI algorithm, however the effect of faults has not been con-

sidered in their performance criterion. In this chapter, the numerical optimization

technique is used for the robust residual design which is different from the previous

investigations. The performance indices used in this chapter are also different from

previous studies, and one of the main contributions is the joint optimization of fault

effects and disturbance rejection.

In the approach presented in this chapter, frequency-dependent weighting factors

are introduced in the performance indices (cost functions), based on knowledge cf

the frequency band of the modelling uncertainty and faults. The main principle o

robust FDI is to distinguish faults and the uncertainty effects in residuals, and this

is only possible when they are "physically" distinguishable. Otherwise, no matter

what mathematical method is chosen, one cannot discriminate between these two
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effects. Moreover, some information about both faults and disturbances must be

available. In the previous chapters of this thesis, the faults have been assumed to

have different distribution directions from those of the uncertainty. In the technique

presented in this chapter, the information on frequency distribution ranges of faults,

noise and modelling uncertainty (once known) can be incorporated into a robust

residual design.

To design robust residuals, a multi-objective optimization problem needs to be

solved. This chapter uses the method of inequalities to solve this multi-objective

optimization problem. All objectives are reformulated into a set of inequality con-

straints on performance indices. The genetic algorithm is thus used to search an

optimal solution to satisfy these inequality constraints. The use of genetic algo-

rithms obviates the requirement for the calculation of cost function gradients and

also increases the possibility of finding global optimum. A flight control example

is used in this chapter to illustrate the technique developed. The fault detection

performance is examined in the presence of modelling errors. The simulation results

show that the fault detection algorithm designed by the proposed method can detect

incipient sensor faults very effectively.

6.2 Residual Generation and Performance
Indices

6.2.1 Residual generation and responses

Consider the following mathematical description of the monitored system:

f ±(t)	 Ax(t) + Bu(t) + R 1 f(t) + d(t)	
(6 1)

y(t) = Cx(t) + Du(t) + R2f(t)

where x(t) 7? is the state vector, u(t) E r is the control input vector and

y(t) 7?,m is the measurement vector, f(t) E 'jy represents the fault vector which is

considered as an unknown time function. The matrices A, B, C and D are system

parameter matrices and the pair {A, C} is assumed observable.

The vector d(i) is the disturbance vector which can also be used to represent mod-
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el]ing errors such as:

d(t) = LAx(t) + /Bu(t)

Note that this form of uncertainty representation is very general as the distribution

matrix is not required. The matrices R1 and R2 are fault distribution matrices which

represent the influence of faults on the system. They can be determined if one has

defined which faults are to be diagnosed. For two most common cases: sensor and

actuator faults, these matrices are:

The residual generator studied in this chapter, shown in Fig.6.1, is based on a

disturbance d(t)	 fault f(t)	 noise

Residual Generator

Figure 6.1: Robust residual generation via a full-order observer

full-order observer. The basic idea is to estimate the system output from the mea-

surements using an observer. The weighted output estimation error is th€ used as

a residual. The flexibility in selecting the observer gain and the weightii g matrix

provides freedom to achieve good detection performance. The residual generator is
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thus described as:

(t)	 (A - KC)5(t) + (B - KD)u(t) + Ky(t)

i(t) = C5(t)+Du(t)
	

(6.2)

r(t) = Q[y(t) -

where r E 7f' is the residual vector, and are state and output estimations. The

matrix Q E 7?f >°" is the residual weighting factor which, in most cases, is static

but can also be dynamic. When this residual generator is applied to the monitored

system described by Eq.(6.1), the state estimation error (e(t) = x(t) - (t)), and

the residual are governed by the following equations:

J è(t) = (A - KC)e(t) + d(t) + R1 f(t) - KR2f(t)

1 r(t)	 QCc(t) + QR2I(t)

The residual response to faults and disturbances is thus:

r(s) = Q{R2 + C(sI - A + KC)'(R 1 - KR2)}f(s)

+QC(sI - A + KC)'[d(s) + e(0)1

Grf(S, K, Q)f(s) + Grd(S, K, Q)[d(s) + e(0)]

where e(0) is the initial value of the state estimation error.

6.2.2 Performance indices in robust residual generation

Both faults and disturbances affect the residual, and discrimination between these

two effects is difficult. To reduce false and missed alarm rates, the effect of faults

on the residual should be maximized and the effect of disturbances on the residual

should be minimized. One can maximize the effect of the faults by maximizing the

following performance index, in the required frequency range [wi,w21:

11 (K, Q)	 inf p{QR2 + QC(jwl - A + KC)'(R1 - KR2)}
WE[Wi ,W2

This is equivalent to the minimization of the following performance index:

J1(K, Q) = sup {[QR2 + QC(jwl - A + KC)'(R1 -
wE[wi ,w4

where {.} and {.} denote the minimal and maximal Lgu1ar values.
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Similarly, one can minimize the effects of both disturbance and initial condition by

minimizing the following performance index:

J2 (K, Q) = sup {QC(jwI - A + KC)'}
	

(6.7)

wE[wj ,w2]

Besides faults and disturbances, noise in the system can also affect the residual.

To illustrate this, assume that ((t) and i7(t) are input and sensor noise signals, the

system equations in this case is:

Ax(t) + Bu(t) + d(t) + R 1 f(t) + (t)	
(6.8)

Cx(t) + Du(t) + R2 f(t) + ij(t)

It can be seen that the sensor noise as well as faults acting through R2 f(t) affect the

system at the same excitation point and hence affect the residual in the same way.

To reduce the noise effect on the residual, the norm Q—QC(jwl—A+KC) 1 K II

should be minimized. This contradicts the requirement for maximizing the effects of

faults on the residual. Fortunately, the frequency ranges of the faults and noise are

normally different. For an incipient fault signal, the fault information is contained

within a 1oi frequency band as the fault development is slow. However, the noise

comprises mainly high frequencies signals. Based on these observations, the effects of

noise and faults can be separated by using different frequency-dependent weighting

penalties. In this case, the performance index J1 (K, Q) is:

J1(K, Q) = sup {Wi (jw)[QR2 + QC(jwl - A + KC)'(R1 - KR2)]'} (6.9)
w€ [w ,(.)2]

To minimize the effect of noise on the residual, a new performance index is introduced

as:

J3(K, Q) = sup {W3(j)Q[I - C(jwl - A + KC) 1 K]}	 (6.10)
E[wj ,w2}

In order to maximize the effects of faults at low frequencies and minimize the noise

effect at high frequencies, the frequency-dependent weighting factor W1 (jw) should

have large magnitude in the low frequency range and small magnitude at high fre-

quencies. The frequency effect of W3(jw) should be opposite to W1 (jw) and can

be chosen as W3 (jw) = Wj(jw). The disturbance (or modelling error) and input

noise affect the residual in the same way. As both effects should be minimized, the

performance index J2 does not necessarily need to be weighted. However, modelling

uncertainty and input noise effects may be more serious in one or more frequency

bands. The performance index should reflect this fact, and hence a frequency-
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dependent weighting factor must also be placed on J2 (K, Q), in some situations.

J2 (K, Q) = sup {W2 (jw)QC(jwI - A + KC) 1 }	 (6.11)
w E[w, ,(h12]

Now, considering the steady state value of the residual:

r(oo) = QR2 f(oo) + QC(A - KC) 1 (KR2 - Ri )f(oo) - (A - KC)'d(oo) (6.12)

After the transient period, the residual steady state value plays an important role

in FDI. Ideally, it should reconstruct the fault signal. The disturbance effects on

residual can be minimized by minimizing the following performance index:

J4(K) =11 (A - KG) - ' II
	

(6.13)

When J4 is rniniraized, the matrix K is very large and the norm II (A - KC)-'K II

approaches to a constant value. This means that the fault effect on the residual has

not been changed by reducing the disturbance effect. This is what is required for

good FDI performance.

6.2.3 Remarks on performance indices

The choice of norms: In the definition of performance indices, the infinity norm

of matrices are used. However, other matrix norms (such as the Frobenius norm)

are also useful. To examine the function of different matrix norms, let's consider

the disturbance effect on the residual.

r(s) = Grd(S,K,Q)d(S)

It is well known that the residual norm is bounded by:

ll r ( s )ll ^ II Grd( S , K•, Q)lI lld(s)II

If the infinity norm is used, this inequality becomes:

lI r ( s )lI	 lKrd(3,K,Q)IlooIId(8)IIoo

This measures the worst effects, i.e., the largest component of the residual due to the

largest component of disturbance will be minimized if II Grd(S , K, Q)1100 is minimized.
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If the Frobenius norm is used, the corresponding relations is:

Ir(s)M2 ^ IIGrd(3, J(, Q)MFIId(s)M2

This measures the average effects, i.e., the energy of the residual due to the distur-

bance will be minimized if II G,.i( .s K, Q)JIF is minimized. Different norm measures

have different characteristics, however if one format of norm for a particular matrix

is minimized, other kind of norms for the same matrix are unlikely to be large. This

can be proved using the following inequality (Golub and Van Loan, 1989, p.57):

dli	 ^ Il GrdllF ^	 llGrdMoo

where p is the row number of Grd and n is column number. From this relation, it can

be seen that the Frobenius norm will be bounded if the infinity norm is minimized

and verse versa.

Disturbance distribution: In this chapter, there is no requirement on the dis-

turbance distribution. However, this information can also be incorporated into per-

formance indices, if it is available. If the disturbance distribution matr is known,

i.e.

d(t) = Ed'(t)

where E is a known matrix and d'(t) is an unknown vector. In this case, the

performance index J2 can be modified as:

J2 (K, Q)	 sup {W2 (j)QC(jwI - A + KC)'E}	 (6.14)
wE[i ,W2]

Fault isolation: As discussed in Sections 2.7.1 & 3.3, a structured residual set

should be generated to isolate faults. The word "structured" here signifies the

sensitivity and insensitivity relations that any residual will have, i.e. whether it is

designed to be sensitive to a group of faults whilst, insensitive to another group of

faults. The faults contained in the vector f(t) can be divided into two groups f'(i)

and f2 (t) and the system equation in this case is:

f th(t) = Ax(t) + Bu(t) + RIf'(t) + Rf2 (t) + d(t)

y(t) = Cx(t) + Du(t) + Rf'(t) + Rf2(t)	
(6.15)

If the residual is to be designed sensitive to f'(t) and insensitive to f2 (t), the
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performance index J1 should be modified as:

J1(K, Q) = sup {Wi (jw)[QR + QC(jwl— A+ KC) 1 (R - KR)]'} (6.16)
uE[wi ,w2]

In addition to the four performance indices defined, a new performance index

J5(K, Q) which is to be minimized should be introduced to make the residual insen-

sitive to f2(t).

J5 (K, Q) = sup {W5 (jw)[QR + QC(jwl - A + KC)'(R - KR)]} (6.17)
wE [w, ,W2]

If only sensor faults are to be isolated, the design problem is easier to solve. This

is because, if the residual is to be sensitive to a group of sensor faults, only the

measurements from this set of sensors will be used in the residual generation. The

detailed discussion on robust sensor and actuator fault isolation can be found in

Section 3.3.

6.3 Parameterization In Observer Design

Four performance indices J1 (K, Q), J2(K, Q), J3(K, Q) and J4 (K, Q) have now been

defined. To achieve robust FDI (in terms of minimizing false and missed alarm

rates), one has to solve a multi-objective optimization problem. One of the param-

eter sets to be designed is the observer gain matrix K which must guarantee the

stability of the observer. This leads to a constrained optimization problem which

is difficult to solve. Within the context of control system design, this stability con-

straint is normally changed to the assignment of eigenvalues in the left hand side of

the complex plane (or within the unit disc, for the discrete-time domain). The ob-

server design is a dual of the controller design problem and all techniques in control

design can be applied. Here, the eigenstructure assignment method is chosen to give

the parameterization of the gain matrix K (Burrows and Patton, 1991; Patton and

Liu, 1994; Liu and Patton, 1994; Chen et al., 1994a; Chen, Patton and Liu, 1994b).

Note that the gain matrix can also be parameterized in other ways. However, the

parametric epresentation in terms of eigenstructure has many advantages, the most

important one is that the eigenvalues can be specified in predefined points or regions

according to required residual responses.

The eigenvalues of the observer cn be real or complex-conjugate. Assume that
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there are r real eigenvalues ) (i = 1,... , n,.) and n pairs of complex-conjugate
eigenvalues ),re ±JAj,im (j	 1 . , ne ), and r and n satisfy the following relation:

nr + 2fl n

Real eigenvalue case: Assume that v is the th right eigenvector of (AT - CTKT)

corresponding to the th eigenvalue of (AT - CTKT ) , we then have that:

(AT cTIT)v = Ày1	 (6.18)

or

V1 = —(;\ I - AT 
)_1 

CT KT
	

(6.19)

To define a design parameter vector w 1 as:

Wi = JTy	 (6.20)

The eigenvector v can expressed via this design parameter vector:

v, = — (Àj - AT)_lCTw2	 (6.21)

Complex-conjugate eigenvalue case: Assume that Vj,re + jv,, is the th right

eigenvector of (AT - CT KT ) corresponding to the jth eigenvalue Aj,re + jÀj,im of
(AT - CTKT), we have:

(AT - CTKT)(yi,re + jvj, im)	 (Àj,re + jAj,im )(Vj,re + jv,im)

This equivalent to:

f(AT - CT KT ) yj,re = Aj,re Vj,re - Àj,irnVj,im

) (AT - CT KT )Vj,im = Aj,im Vj,re + Àj,reVj,im

or

{

(À ,re I - AT)y j,re - Aj,im V j,im = CTKTVLj,rC

À3,im Vj,re + (Àj,re l - AT ) Vjsm = _CTKTVj,jm

To define:

I Aj,rel - AT	 Àj,jrnI 1	 CT 0

= [	 Àj,1m 1	Àj,rel AT]	
L 

0 CT]

(6.22)

(6.23)

(6.24)



6.8 Parameterization In Observer Design
	

205

and
JWj,re = KTVJ,re

Wj,jm = KTV3,im

this leads to:

[

i3,re ] = —
A'C [ 

Wyre ]

Vj,jm	 W3,jm

(6.25)

(6.26)

To put Eqs.(6.20) & (6.25) together, the parametric representation of the observer

gain matrix K is given by:

K = [WVIT
	

(6.27)

where

W = [wi . . Wn,.	 • Wn,re W i,im	 Wnc,iinI 7mXn

is the design parameter matrix whose elements can be determined arbitrarily.

V	 [v . . . vn,. ; V1,re	 Vn,re V1,jm	 Vn,im]	 RnXn

Any column vector of this matrix is a function of the corresponding column vector

in the matrix W. All columns in this matrix can be calculated via either Eq.(6.21)

or Eq.(6.26).

Eigenvalue specifications: The eigenvalues ) (i = 1,.. , Tlr) and Aj,re + jAj,im

(j = 1,... , n) have to be given by the designer prior to the design procedure.

In practice, the eigenvalues do not need to be assigned at a specific point in the

complex plane. However, we do need to assign eigenvalues in predeflned regions to

meet stability and response requirements, i.e.

) E [L 1 , U]	 i = 1,",flr

for real eigenvalues. For complex-conjugate eigenvalues, the relations will be:

Aj,re E [Lj,re , Uj,rel

e [L.j,im , Uj,iml
for j=1,".,n

The assignment of eigenvalues in regions rather than at specific points increases the

design freedom. However the inequality constraints on eigenvalues are int oduced by

doing this. To remove these constraints, a simple transformation for a real eigenvalue

can be introduced (Burrows and Patton, 1991):

= L• + (U - L).sin2 (z1 )	 (6.28)
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where z E fl. (i = , ne.) can be freely chosen. Similar to the real eigenvalue

case, the real and the imaginary parts of a complex-conjugate eigenvalue pair can

be expressed by:

J)j,re = Lj,re + (Uj ,re	 Lj,re)sin2(zj)

)tj , im = Ljtm + (Ujj , irn - Lj,im)ifl2(Zj+i)
(6.29)

where zj , z31 , can be determined arbitrarily. Now, the constrained performance

indices J(K, Q) (j = 1, 2, 3,4) have been transformed into unconstrained perfor-

mance indices JJ (Z, W, Q), where W and Z = [zi . . z,j e R. iXn can be chosen freely.

The multi-objective optimization problem for robust FDI is solved in the following

sections by combining the method of inequalities and the genetic algorithm.

6.4 Multi- Objective Optimization and the
Method of Inequalities

6.4.1 Multi-objective optimization

The use of multi-objective optimization is very common in engineering design prob-

lems. Generally speaking, a solution does not exist which minimizes all performance

indices simultaneously. A set of parameters which minimizes a particular perfor-

mance index may let other performance indices become very large and unaccept-

able. Hence, some compromises and trade-offs must be taken account in the design.

The trade-off is based on the relative importance of objectives. As the number of

objectives increases, trade-offs between objectives are likely to become complex and

less easily quantifiable. There is, therefore, much reliance on the intuition of the de-

signer and his ability to express preferences throughout the optimization cycle. This

is easier to be solved using numerical search algorithms, as the designer can alter

his preference throughout the optimization cycle and enter them into a numerically

tractable and realistic design problem.

Mixed objective strategies: A commonly used approach in multi-objective opti-

mization is the mixed objective approach, for example, Burrows and Patton (1991)

applied this approach to control system design. In this approach, all objective func-

tions are mixed together according to different weighting f ,ors. The emphasis on
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different objectives can be made using different magnitudes of weighting factors. For

the optimization problem presented in this chapter, the performance indices can be

mixed together in the following ways:

J= sup
w E[wi ,W2]

J(Z,W,Q) =	 a1Jj(Z,W,Q)
	

(6.30)

-2 cjJ1 (Z, W, Q)
J(Z,W,Q)=;w-_--

W, (iw )[Q R2 + QC(jI - A + KC)'(R1 - KR2)]-'

W2(jw)QC(jwl - A + KG)-'

W3 (jw)Q[I - C(jwl - A + KG)'K]

(A—KC)'

where c, ^ 0 (i = 1,.•• , 4) are weighting factors which should be decided according

to the relative importance of objectives. The multi-objective optimization problem is

now reformulated into the minimization of the mixed single cost function J(Z, W, Q).

The mu. max optimization: The multi-objective optimization problem can also

be solved via a minimax optimization procedure in which the largest normalized

performance index is to be minimized:

J1(Z,W,Q)
mm J(Z, W, Q) = min{max }Ci

(6.33)

where C (i = 1 • , 4) are the normalizing factors. The preference on different

objectives can be achieved by altering the normalizing factors. It is interesting to

note that, minimax optimization considers the worst case which is the same as the

use of infinity norms.

6.4.2 The method of inequalities

A more attractive approach for solving the multi-objective optimization problem

in control system design is the method of inequalities, proposed by Zakian (Zakian

and Al-Naib, 1973; Zakian, 1979). The main philosophy behind this approach is

to replace the minimization of the performance index by an inequality constraint

on the performance index. The simultaneous minimization of all performance in-

dices is normally impossible. However, in. engineering design problems, what is one
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normally required is the restriction of the performance index within a pre-defined

region. The optimization problem is posed as the satisfaction of a set of inequalities,

rather than the minimization of some objective functions with inequalities acting

as side-constraints. The shift of emphasis from objective functions to a set of in-

equalities gives a more accurate formal representation of many design problems, and

leads to an iterative design procedure in which the designer changes the "trade-off"

between confficting constraints by adjusting the inequalities, rather than some ob-

jective functions. This is attractive, because it is usually much easier to understand

the physical implications of changes in constraining inequalities than changes in an

objective function.

Optimization is still required in the method of inequalities, but the shift of emphasis

from minimization to inequality satisfaction means that the usual ideas on the choice

of the optimization algorithms have to be revised: speed of convergence in the

neighbourhood of a minimum becomes much less important than the likelihood of

finding at least one feasible point - namely one at which all the inequalities are

satisfied.

For the problem presented in this chapter, the multi-objective optimization problem

is being reformulated into that of searching for a parameter set {Z, W, Q} to satisfy

the following inequalities:

J1(Z,W,Q)^e2,	 for	 i=1,2,3,4	 (6.34)

where the real number e represents the numerical bound on the performance index

J1 (Z, W, Q) required by the designer. If the minimal value of J1 (Z, W, Q) achieved

by minimizing J1 (Z, W, Q) itself is J1 , the objective bound must be set as: E >

J. This is based on the fact that a parameter set which minimizes a particular

performance index can make other performance indices very large. If J(Z", W, Q)

is the minimal value of JI (Z, W, Q) achieved at the parameter set {Z, W, Q}, the

following inequalities hold true:

J(Z,W',Q) ^ J(Z,W*,Q)	 (6.35)

where j	 i, j E {1, 2, 3, 4}; for i	 1,2, 3,4. As a general rule, the performance

boundaries e should be set as:

<&* < max {J(Z,W,,Q)	 (6.36)
- j^i,j€[1,4]



J

x

C2
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Multi-Objective Optimization and the Method of Inequalities 	 209

for i = 1, 2,3,4. The problem of multi-objective optimization is to find a parameter

set to make all performance indices lie in an acceptable region. By adjusting the

bounds e, one can place a different emphasis on each of the objectives, if the

performance index J3 is important for the problem, one can let Ej near to J7. if the

performance index Jk is less important, one can let 6k be far away from J.

Example of the method of inequalities: A simple example show in Fig.6.2 is

used to illustrate the use of the method of inequalities.

mutual allowable region

Figure 6.2: An example of the method of inequalities

In this example, two performance indices Ji (x) and J2 (x) are to be minimized. It

can be seen that x b is the minimization point for Ji (x), however this point is not

acceptable for J2 (x). The point which minimizes both Ji (x) and J2 (x) does not

exist. To solve this problem, the requirement for optimization should be relaxed.

In stead of the minimization of Ji (x) and J2 (x), the problem is transformed to the

satisfaction of the following inequalities:

f 
Ji (x) < C1

J2 (x)	 C2

Any point in the region [xe, xdl can satisfy the design requirements. Within this

region, one can also improve the optimization performance further using either the

mixed-objective method or the minimax method, if the minimax principle is used,
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the optimal point will be xd . If the mixed-objective method is used, the optimal

point will be close to the average point of the region [xe, xdI.

Moving-boundaries algorithm: Zakian (Zakian and Al-Naib, 1973; Zakian,

1979) suggests an algorithm for satisfying the inequalities which he calls the moving-

boundaries algorithm (Maciejowski, 1989, pp.341-346). The procedure of this algo-

rithm which provides the solution to the problem presented, is given below.

Let us firstly normalize the performance indices as follows:

cbi(ZWQ)={
J(Z,W,Q)	 for e	 0

J(Z,W,Q)+1 for E=O
(6.37)

The problem is now to satisfy the following normalized inequalities:

q(Z,W,Q)^1
	

(6.38)

Let 8, be the set of parameters (Z, W, Q) for which the th objective is satisfied:

S = {(Z,W,Q) : qf 1 (Z,W,Q) ^ 1}
	

(6.39)

Then the admissible or feasible set of parameters for which all objectives hold is:

S = S1flS2flS3flS4

= {(Z,W,Q) : mtx{4 1 (Z,W,Q)} ^ 1}
	

(6.40)

which shows that the search for an admissible parameter set (Z, W, Q) can be pur-

sued via optimization, in particular by solving:

mm {mtx{ 2 (Z, 14/, Q)} ^ 1(Z,W,Q) i (6.41)

Now, let (Zk , Wc, Qk) be the values of the parameters at kth step, and define:

S={(Z,W,Q):q5i(Z,W,Q)<zVc} for i=1,•,4
	

(6.42)

where

max {1(Zk,WIc,Q!c)}
i=1,2,3,4

(6.43)



(6.44)

(6.45)

(6.47)
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and also define

= sflsflsfls
Ek =	 cb(Z',W')

Hence	 is the kth set of parameters for which all objectives satisfy:

(Z,W,Q)L	 for (6.46)

It is clear that sC contains both (Z c , Wk, Qk) and the admissible set S. Ec is a

combined measurement of all objectives. The task now is to find a new parameter

set which moves objectives towards the final feasible set. The strategy for finding

the new parameter set is to minimize the largest performance index, i.e., LV. If the

largest performance index & cannot be improved, the improvement of the combined

performance index EIC is considered. If one now finds new parameters (7", Wc, k)

such that:

or
—kk	

and
	

(6.48)

—k	 —Ic	 k	 k	 —k —k —k
where	 and E are defined similarly to L and E , then we accept (Z , W , Q )

as the next set of parameters, i.e., (Zk+ l , W l , Q i ) = (kWkk) This leads

to:
1(Zc,T4TIc,Qk), for i = 1,... ,4

	
(6.49)

and

SCS' CSk
	

(6.50)

So that the boundary of the set in which the parameters are located has been

moved towards the admissible set, or rarely, has remained unaltered. The process

of finding the optimization solution is terminated when both LVC and Ek cannot be

reduced further. But the process of finding an admissible parameter set (Z, W, Q)

is terminated when t" < 1, i.e., when the boundaries of have converged to the

boundaries of S. The process of the moving-boundaries algorithm is illustrated in

Fig.6.3.

If the LC persists in being larger than 1, this may be taken as an indication that the

objectives may be inconsistent, whilst their magnitudes give some measure of how
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So

/

Figure 6.3: The 'moving-boundaries' process

closely it is possible to approach the objectives. In this case, some of the inequality

constraints should be relaxed until they are satisfied. From a practical viewpoint,

the approximate optimal solution is also useful if the absolute optimal solution is

not achievable.

The difficult part of the algorithm is the generation of a trial parameter set

(
-k---k-k	 k	 k kZ , W , Q ), given (Z , W , Q ). Many methods have been proposed since Zakian

introduced the method of inequalities and a short review can be found in Maciejowski

(1989, p.345). It is suggested that the relatively crude direct search methods such

as the simplex method can be used to solved this problem. Patton and Liu (1994)

suggested a method to generate the trial parameter set via genetic algorithms in

the design of robust controllers. This method is extended by Chen et al. (1994a) to

the robust FDI problem. The combination of genetic algorithms with the method

of inequalities for solving the multi-objective optimization problem, defined in this

chapter is discussed Section 6.5.

6.5 Optimization via Genetic Algorithms

Most optimization techniques can be classified broadly into calculus-based tech-

niques or direct-search methods. In recent years, the direct-search techniques, which

are problem-independent, have been widely used in optimization. Unlike calculus-

based methods (gradient descent, etc.), direct search algorithms do not require the

use of derivatives. Consequently, it eases the analytical analysis in the calculation of
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derivatives and it is less likely for direct search algorithms to get "trapped" into local

minima. Gradient-descent methods, on the other hand, calculate the slope of the

objective surface at the current position in all directions and move in the direction

with the most negative slope. This works well when the objective surface is relatively

smooth, with few local minima. However, real-world data are often multimodal and

contaminated by noise which can further distort the objective surface.

6.5.1 Introduction to genetic algorithms

The most important direct search algorithm in optimization is the genetic algorithm

(GA) which was invented to mimic some of the processes observed in natural evo-

lution. The technique was pioneered by Holland and his associates in the 1970's

(Holland, 1975), and in the last six years has been receiving growing interest in

both research and application (Goldberg, 1989; Frenzel, 1993). GAs are parame-

ter search procedures based upon the mechanics of natural genetics. All natural

species survive by adapting themselves to the environment. This natural adaption

is the underlying theme of GAs. GAs search combines a Darwinian survival of the

fittest strategy to eliminate unfit characteristics and uses random information ex-

change, with exploitation of knowledge contained in old solutions, to effect a search

mechanism with surprising power and speed.

Genetic algorithms are different from other optimization techniques in many ways,

notably they are:

• GAs constitute a parallel search of the solution space, as opposed to a point-

by-point search in gradient-descent methods. By using a population of trial

solutions, the genetic algorithm can effectively explore many regions of the

search space simultaneously. Optimization methods more usually provide it-

erative progress (global or local) solution, based on a single region in the

parameter space; the region may only include a local minimum and another

region must then be used to locate a global minimum. This is one of the

reasons why GAs are less sensitive to local minima.

• GAs manipulate representations (or codings) of the parameter set, rather than

the parameters themselves.

• GAs do not require derivative information or other uxi1iary knowledge con-

cerning problems to be solved. The only problem-s i ecific requirement is the
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ability to evaluate the trial solutions on objective function, and the relative

fitness levels influence the directions of search.

• GAs use probabilistic rather than deterministic transition rules.

A genetic algorithm is an exploratory procedure that is able to locate close-to-global

optimal solutions to complex problems. It maintains a set of trial solutions (often

called individuals), and forces them to "evolve" towards an acceptable solution. The

procedure starts with an initial random population and employing survival-of-the-

fittest and exploiting old knowledge in the gene pool. Each generation's ability to

solve the problem should be improved. The computational structure of a genetic

algorithm is shown in Fig.6.4.

OBJECTIVE FUNCTION	 J PARAMETER 19 J INITIAL POPULATION
DEFINITION	 I1 1 CODING	 I 1	 GENERATION

INITIAL POPULATION
OBJECTIVE FUNCTION EVALUATION

INITIAL SET UP

SELECTION BASED ON	 CROSSOVER BASED ON	 MUTATION BASED ON
OBJECTIVE FUNCTION	 PROBABILITY OF	 PROBABILITY OF

	

EVALUATION	 I	 CROSSOVER	 MUTATION

	

NO	
ERGED

YES

STOP

Figure 6.4: Computational structure of genetic algorithms

The main stages involved in GAs discussed in Frenzel (1993) and Davis (1991) are

shown in below:

Representation (or coding): The parameter set is represented by a coding

scheme which can be recognized by computers. These representations are normally
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referred to as chromosomes. The most common coding scheme is the use of binary

strings, where selections of the string represent encoded parameters. The number

of digits assigned to strings will determine the numerical accuracy.

Evaluation: To evaluate the objective fitness of the current chromosomes in each

generation. Each chromosome in the population is decoded and evaluated on how

well it solves the problem. The fitness measure is used in the next step to determine

how many offspring will be generated from any particular chromosome.

Reproduction: In this stage, a new population is created based on the evaluation of

the current one. For every chromosome in the current population, a number of exact

copies are generated with the best chromosomes producing the most copies. This

is the step that allows GAs to take advantage of a survival-of-the-fittest strategy.

There are several ways to calculate the number of offspring that each chromosome

will be allocated. The two most popular methods are referred to as ratioing and

ranking.

In ratioing, each individual reproduces in proportion to its fitness. So, an individual

whose fitness is ten times better than another will produce ten times the number of

offspring. This way as superior chromosomes emerge they can guide the population

quickly. The disadvantage is that if a superior individual surfaces early and domi-

nates the population, then the population may converge prematurely on a possible

suboptimal (or local minimal) solution.

For the ranking method, the number of offspring each chromosome will generate is

determined by how it ranks in the population. For example, the top 20% of the

population might generate two offspring each, the bottom 20% of the population

generate no offspring, and the rest generate just one offspring apiece. Using this

method, no one chromosome can overpower the population in a single generation.

Also, no matter how close the actual fitness values are, there is always constant

pressure to improve. The primary disadvantage of ranking is speed because better

chromosomes are not capable of guiding the population easily. This forces good

solutions to develop more slowly.

Recombination: The reproduction creates a population whose member are cur-

rently the best soluticn for the problem, however many of the chromosomes are

identical and no-one is different from the previous generation. The reproduction

simply produces multiple copies of existing chromosomes. Recombination combines

chromosomes from the population and produces new chromosomes that, while they
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did not exist in the previous generation, maintain many of features of the previ-

ous generation. In natural evolution, recombination and reproduction occur in the

same step. However, in GAs they are often separated to facilitate experimentation

with different methods. The most important method for recombination is crossover

in which two individuals are randomly selected from the population and, governed

by a specified crossover probability or rate, subsection of the two chromosomes are

swapped about a randomly chosen crossover point. During recombination, GAs ex-

ploit knowledge of the gene pool by allowing good chromosomes to combine with

chromosomes that aren't as good. This is based on the assumption that each in-

dividual, no matter how good it appears, doesn't contain the complete answer to

the problem. The answer is contained in the population as a whole, and the best

solution can only be found by combining chromosomes.

Mutation: This step in creating a new generation is motivated by the possibility

that the initial population didn't contain all of the information necessary to solve the

problem. Moreover, it is possible that the individuals that produce no offspring may

have had some information that is essential to the solution. The injection of new

information into the population is called mutation. One of methods t. implement

mutation is to change randomly a fixed number of bits every generatic based upon

a specified mutation probability.

Elitism: It is possible that the best member of the population may fail to produce

offspring in the next generation. The elitist strategy fixes this potential source of loss

by copying the best member of each generation into the succeeding generation. The

elitist strategy may increase the speed of domination of a population by a super

individual, but on balance it appears to improve genetic algorithm performance.

More specifically, the elitist can improve the speed of convergence, but it could give

a local minimum due to the domination of a super individual. The use of the elitist

strategy depends on problems, if the performance index has many local minimums,

it is not good idea to use it.

ENETIC ALORITHM PARAMETERS: The best values for mutation

rate, crossover percentage, and other parameters are problem specific. It is even

possible to find the best values using genetic algorithms! However, certain gener-

alizations can be made (Frenzel, 1993). If the population is too small, relative to

the size of the search space, it will be difficult to effectively search the entire region.

Furthermore, large mutation rates tend to disrupt the steady improvement resulting

from crossover and reproduction. Researchers have found that a population of 30



6.5 Optimization via Genetic Algorithms 	 217

individuals, a crossover probability of 60%, and a mutation probability of 3% seems

to be a good starting point (Frenzel, 1993).

6.5.2 Procedure of genetic algorithms in satisfying perfor-
mance inequalities

In the implementation of genetic algorithms, it is not necessary to include all main

stages given above. There are many variations in the implementation. Some stages

may need to be modified to best suit particular problems. The genetic algorithm

is used here to search the optimal solutions in the moving-boundaries process of

satisfying performance inequalities. The procedure of the optimal search via GA

is first suggested by Liu and Patton (1994) and later modified to suit robust FDI

design by Chen et al. (1994a). This optimization procedure includes the following

steps:

Step 1: Chromosomal representation. Each solution in the population is rep-

resented as a real number string rather than as a binary string. For W E 7?,mXfl,

Z E and Q E pxm, the chromosomal representation may be expressed as an

array:

This kind of chromosomal representation has two advantages. One is that it guar-

antees that the domain expertise embodied in the representation will be preserved.

The other is that the algorithm to be developed will feel natural to the designer.

Step 2:	 eneration of the initial population. N (an odd number) sets of

parameter string P for the initial population are randomly generated.

Step 3: Evaluation of the performance functions. Evaluate the performance

function (P) (i = 1,2, 3,4) for all N sets of the parameter P and determine:

=	 iax{ç5i(P,),q2(Pj),çb3(P3),q54(P)}

= q5i(P3)+q2(Pj)+q3(P3)+q4(P3)

forj=1,2,...,N.

Step 4: Selection. Accordixig to the fitness of the performance functions for each

set of parameters, cull the (N - i)/2 weaker members of the population and reorder
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the sets of the parameters. The fitness of the performance functions is measured by:

for j=1,2,.",N

Step 5: Cross-over. Perform the Cross-over using an average cross-over function

to produce the (N - 1)/2 offsprings. The average cross-over operator takes two

parents which are selected in step 4 and produces one child that is the result of

averaging the corresponding fields of the two parents. In other words, the average

Cross-over function is defined as:

N—i
Pcj=+1+	 for j1,2,•.., 

22

Step 6: Mutation. A real number mutation operator, called real number creep, is

used. The function we are optimizing is a continuous one with hills and valleys, if

we are on a good hill, we want to jump around on it, to move nearer to the top. Real

number creep can have that effect. What it does is to sweep along the chromosome,

creeping any value up or down a small random amount. The maximum amount that

this operator can alter the value of a field is a parameter of the operator. Hence it

is the probability of altering any field. The mutation operation is defined as:

N—i
PM =	 + din j, for j = 1, 2,..., 2

where d is the maximum value to be altered and	 [-1,1] is a random variable

with zero mean.

Step 7: Elitism. The elitist strategy copies the best parameter set into the succeed-

ing parameter sets. It prevents the best parameter set from loss in the succeeding

parameter sets. It may increase the speed of domination of a population by a super

individual, but on balance it appears to improve genetic algorithm performance.

The best parameter set Pb is defined as one satisfying:

Eb = rnin{z :	 - o(L i - Lm), andLi	 m + S}

where

min{L1, 2, 3, z4}

E and E1 are corresponding to m and , c > 1 and 5 is a positive number,

which are given by the designer, for example a = 1.1 and S = 0.1.
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Step 8: New offsprings. Add the (N - i)/2 new offsprings to the population

which are generated in a random fashion. Actually, the new offsprings are formed

by mutating the best parameter set Pb with a probability, i.e.

N—i
PN3 = Pb + d	 for j = 1, 2,...	

2

where d is the maximal value to be altered and j E [-1, 1] is a random with

zero mean. Thus, the next population is formed by the parameter set PM3 (j =

i,2,...,(N— l)/2), PN3 (j = i,2,.,(N— 1)/2) and Pb.

Step 9: Termination checking. Continue the cycle initiated in Step 4 until

convergence is achieved. The population is considered to have converged when

for j:=i,2,...,N

where E is a positive number.

Take the best solution in the converged generation and place it in a second "initial

generation". Generate the other N—i parameter sets in this second initial generation

at random and begin the cycle again until a satisfactory solution is obtained or

and >ib cannot be reduced any further.

6.6 Detection of Incipient Sensor Faults in
Flight Control Systems

As modern aircraft and onboard equipment become more and more complex, the

probability of potential faults increases. One of the biggest challenges in the design

of flight control systems is a requirement for the flight of the aircraft to recover

safely from structural damage and/or system faults. Regardless of whether the

aircraft is equipped with a special control reconfiguration capability, reliable fault

diagnostic information is extremely important to the pilot. Prompt presentation of

fault information to the pilot could enable him to take accommodating action to the

malfunction, using system redundancy. Sensors are the most importan components

for flight control and aircraft safety due to their role in flight control and navigation.

Any sensor fault must be detected as early as possible to prevent serious accident.

The problem of detecting and isolating faults in flight control systems has been



where the state vector and control input are:

v	 sideslip

p	 roll rate

r = yaw rate

bank angle

yaw angle
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studied for many years (Deckert, Desai, Deyst and Willsky, 1977; Deckert, Desai,

Deyst and Willsky, 1978; Bundick, 1985; Weiss and ilsu, 1985; Bundick, 1991), and

model-based approaches have been demonstrated to be capable of detecting and

isolating faults very quickly and reliably. The main challenge is the detection and

isolation of incipient faults in the presence of modelling uncertainty and noise. To

diagnose incipient faults, a FDI systems have to be made robust against modelling

uncertainty and noise. The technique presented in this chapter is used to design

robust residuals to diagnose incipient sensor faults in a flight control system.

The flight control system example considered here is the lateral control system of a

remotely-piloted aircraft (Mudge and Patton, 1988). The linearized lateral dynamics

are given by the state space model matrices:
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0
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0

0

0

0

C=	 0

0

The system is unstable and needs to be stabilized. Since the purpose of the example

is to illustrate the fault detection capability, the system is simply stabilize using a

state feedback controller provided by Liu and Patton (1994). The FDI system in the

flight control system is illustrated in Fig.6.5 in which the input signal to actuators

and the output from sensors are available for fault detection and isolation. Note

that the control reconfiguration issues are not considered in this chapter, although

they are very important.
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Figure 6.5: FDI in Flight Control Systems

An observer is designed to generate residual signal for FDI. To make the residual have

the requires 'esponse, the observer eigenvalues are constrained within the following

regions:

—5<A1<-0.2 —15<A2<-3

10	 A3,re ^ 2 0.2	 '3,im	 4

—30	 ^ —8

Note that the eigenvalue A4 is the conjugate of the eigenvalue A 3 , i.e., A4 = A. The

weighting penalty factors for the performance functions J1 and J3 are chosen as:

500
Wi (jw) =	 W3(jw) =

(jw + 10)(jw + 50)'	 Wi(jw)

which places emphasis on J1 at low frequencies and J3 at high frequencies. By

minimizing Ji and J3 , the fault effect can be maximized and the noise effect can be

minimized. To simplify the optimization procedure, the residual weighting matrix

is set as Q = 13 . Table 6.1 lists the performance indices for different observer gains.

In this table, K" (i = 1, 2,3,4) is the observer gain matrix which minimizes J1

(i = 1, 2, 3,4). It can be seen that a design which minimizes a particular performance

function makes all other performance functions unacceptably large. Hence, multi-

objective optimization must be used to reach a reasonable compromise. In order

to use the method of inequalities to solve this problem, a set of performance index
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bounds e (i = 1, 2, 3,4) are chosen as shown in the Table 6.1.

J4

K	 189.58	 2.5949 24.8288	 0.00935
It	 3865.26 0.07576	 23.415	 0.00798
K	 3274.55 0.11232	 22.40	 0.00798
K	 3.9 x 106	 10700	 34600 2 x iO

Bounds	 2000	 0.16	 22.5	 0.006
Koptirnai	 1950.7	 0.1492	 22.420	 0.00512
Kpiace	 2800.39	 0.1784	 22.668	 0.00965

Table 6.1: Performance indices for different designs

The genetic algorithm is used to search for solutions which satisfy all performance

index boundaries. The optimal observer gain matrix found is:

-189.1419

17.9317

A optima1 = 15.4684

-0.7606

-1.2303

0.8083 18.8392

-0.7936 -0.7943

	

2.8543	 7.6140

	6.9329	 0.1537

	

0.2329	 9.8678

with corresponding eigenvalues:

{-1.5371, -4.7045, -3.4973 + 2.1194i, -19.9994}

The performance indices under this gain are shown in Table 6.1. This design is an

acceptable compromise. To demonstrate the effectiveness of the developed method,

an observer gain matrix Kpiace using the MATLAB routine place, to assign eigen-

values at: {-0.5, -14, -4.8 ± 1.6i, -20} is also designed. The performance indices

for this design are also shown in the Table 6.1.

The simulation is used to assess the performance of the observer-based residual

generator in the detection of incipient sensor faults. The control commands for

both inputs are set as a unit sinusoid function. The sensor noise comprises a random

summation of multi-freqmncy signals with all frequencies larger than 20rad/s. In

the simulation, all aerodynamic coefficients have been perturbed by ± 10%. The

fault is a slowly developing signal whose shape is shown in Fig.6.6.
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Figure 6.6: The fault signal shape

The simulated fault is added to the roll rate sensor. To illustrate the small nature of

the incipient fault, Fig.6.7 shows the plot of both faulty and normal measurements of

the roll rate p. It can be seen that the fault is hardly noticeable in the measurement

and cannot be detected easily, without the assistance of the residur'.l'

time (seconds)

Figure 6.7: The faulty and normal measurements for roll rate p

Fig.6.8 shows the residual response for the case when a fault occurs in the roll rate

sensor. The residual responses for other faulty cases are similar to the response

shown in Fig.6.8. The residual response demonstrates that the residual changes

very significantly after a fault occurs in one of the sensors. Hence, the residual can

be used to detect incipient sensor faults reliably even in the presence of modelling

errors and noise. To reduce the effect of noise further, the residual signal has been
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filtered by a low-pass filter.
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Figure 6.8: The residual norm when a fault occurs in the roll rate sensor

Note that this example only considers the robust residual generation for fault detec-

tion, as it is believed that the design of an optimal residual is the most important

task to be considered. Fault isolation can be achieved by designing structured resid-

ual sets. For the system considered in this chapter, one can design four different

observer-based residual generators to generate four residual vectors. The four ob-

servers are driven by different subsets of measurements, namely, {p, q , }, {r, q, },
{p,r,çb} and {p,q,r} (Patton and Kangethe, 1989). This chapter has only con-

sidered the design of one of these observers, although the principle is valid for the

design of the other observers.

6.7 Conclusions

This chapter has described a systematic approach to the design of optimal resid-

uals which satisfy a set of objectives. These objectives are essential for achieving

robust diagnosis of incipient faults. Some performance indices are expressed in the

frequei; cy domain which can take account of the frequency distribution of differ-

ent facors that affect the residuals. It is the first time such a consideration has

been addressed and solved in a fault diagnosis design. It has been proved that the

frequency-dependent weighting factors incorporated into performance indices play

an important role in the opti r ial design. They are problem-dependent and must
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be chosen very carefully. The multi-objective optimization problem has been re-

formulated into one of satisfying a set of inequalities on the performance indices.

The genetic algorithm has been used to search the optimal solution to satisfy these

inequalities on the performance indices. The method has been applied to the de-

sign of an observer-based residual generator for detecting incipient sensor faults in a

flight control system and the simulation results show the effectiveness of the method.

Considering the extreme difficulty in enhancing the fault diagnosis performance un-

der modelling uncertainty and noise, any improvement in the robustness of residual

design is very useful. The scope of application of this work extends to all systems

with possible incipient faults.



Chapter 7

ROBUST RESIDUAL
GENERATION USING

OPTIMAL PARITY
RELATIONS

7.1 Introduction

In Chapters 3-6, robust observer-based residual generators have been studied. This

chapter focuses on the problem of robust residual generation via optimal parity re-

lations. The parity relation is one of the most commonly accepted approaches for

generating residuals. To achieve robustness for this approach, Chow and Willsky

(1984) reformulated the design of parity relations for robust residual generation as a

minmax optimization problem. The optimal criterion they defined specifies robust-

ness with respect to a particular operating point, thereby allowing the possibility

of adaptively choosing the best parity relations. However, the main drawback of

their method is that it leads to an extremely complex optimization problem for

which there is no analytical solution. Lou et al. (1986) proposed an alternative

method to find "optimally robust parity relations" for generating robust residuals.

They used multiple models to describe the modelling uncertainty due to parameter

variations so that the residual becomes minimally sensitive to sys; m parameters

variation. The introduction of the multiple model description in parity relation de-

sign and the provision of an analytical strategy for solving the optimization problem

are the main contributions of Lou et al. (1986). However, the optimal criterion they

proposed seems inappropriate, because they only considered the minimization of

226
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effects of parameter variations. A residual designed to be insensitive to modelling

uncertainty may also be insensitive to faults. An appropriate criterion for robust

residual design should take account of both effects of modelling uncertainty and

faults. Following this philosophy, Wiinnenberg and Frank (Wiinnenberg and Frank,

1988; Frank, 1990; Wiinnenberg and Frank, 1990; Wiinnenberg, 1990) studied the

design of optimal parity relations by adopting a modified criterion which is the ratio

of the modelling uncertainty response effect to that of the fault effect. However,

the modelling uncertainty description they used was the unknown input (or distur-

bance) description which, as discussed in Chapters 2-5, cannot be used to represent

a wide range of uncertain situations without any modification and approximation.

This disappointing feature was due to the lack of application study even in a simple

academic exercise or simulation setting.

This chapter re-examines the design of optimal parity relations for robust residual

generation by considering the modelling uncertainty due to both parameter varia-

tions and disturbances. To generate robust residuals, two objective functions for

the design of parity relations are defined. The optimization criteria are the mm-

imisation of effects due to the modelling uncertainty and the maximization of fault

effects. Together these lead to a multi-criterion optimization problem which is solved

by forming a "mixed" criterion optimization problem. This criterion represents the

trade-off between two design criteria, its solution is obtained using the matrix the-

ory of generalized eigenstructure and singular value decomposition. The method

used in this chapter utilizes advantages offered by studies of Lou et al. (1986) and

Wiinnenberg and Frank (Wiinnenberg and Frank, 1988; Frank, 1990; Wiinnenberg,

1990). An example is used to illustrate the method proposed, and the results show

that the method is very effective for robust residual generation.

7.2 Objective Indices for Optimal Parity
Relation Design

The basic principle of the parity relation approach for residual generation has been

presented in Section 2.8.2. Here, the parity relation for dynamic systems with mod-

elling uncertainty is examined. Consider the discrete-time system model with the
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(7.1)
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following description:

f 
x(k+1) = Ax(k)+Bu(k)+E'd(k)+Rf(k)

y(k) = Ctx(k)+Dtu(k)+Ed(k)+Rf(k)

where u(k) E 7 is the input vector, y(k) E R.m is the output vector and x(k) E 7ZJ

is the state vector, f(k) E 7 denotes a fault vector which may contain actuator,

component or sensor faults, d(k) 7?J' is the unknown input (or disturbance) vector.

{A, B, C, D, E, E, R, R} are system model matrices with appropriate dimen-

sions. These matrices are not known precisely due to the modelling uncertainty

and the subscript "t" denotes variation. These matrices have nominal values as:

{ A, B, C, D, E', E 2 , R', R2 }, although their exact values are unknown.

As pointed out in Section 2.8.2, the redundancy relations can be constructed by

collecting a batch of data with window length s as follows:

y(k—s)	 u(k—s)

y(k—s+1)	 u(k—s+1)

y(k)	 u(k)

U(k)

d(k—s)

d(k - S + 1)

d( k)

D(k)

= Wx(k—s)+L

+Mj

f(k—s)

f(k—s+1)
.

f(k)

F(k)

(7.2)

where
0

H= CB	 D	
E s+1)mx(s+1)r	 (7.3)

CA'B CA2B

and

Ct

W= CA	 E 7?,(8+1)m	 (7.4)

CA

and the matrix M is constructed by replacing {D, B} with {R, R'} in Eq.(7.3),
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similarly the matrix L is constructed by replacing {D, B} with {E, E'} in

Eq.(7.3).

To simplify the notation, Eq.(7.2) can be rewritten as:

Y(k) = HU(k) + Wx(k - s) + LD(k) + MF(k) 	 (7.5)

According to Chow and Willsky (1984) and Lou et al. (1986) and from Section 2.8.2,

a residual signal is defined as:

r(k) vT [Y(k) - HU(k)]	 (7.6)

where v E 7,(s+1)m is the residual generating vector which can also be a matrix (see

Section 2.8.2). The matrix H is the nominal value of II and can be constructed by

replacing {A, B, C, D} with their nominal values in Eq.(7.3).

Eq. (7.6) is the computational form of a residual generator which shows the resid-

ual signal as a function of measured inputs and outputs of the monitored system.

Substituting Eq.(7.5) into Eq.(7.6), we have:

r(k)	 vT[wx(k - s) + (lie - H0 )U(k) + LD(k) + MF(k)]

x(k - s)
= vT [w (H - H0 ) L]	 U(k)	 + vTMtF(k)

D(k)

= vTzx(k) + vTMtF(k)
	

(7.7)

where

[W (H - H) L] E

IIt E	 (s-I-1)mx(s+1)g

In order to detect faults, we should make the residual signal r(k) become zero for

the fault-free case and non-zero for the faulty case; this requires that:

vTZt = 0	 (7.8)

VTMt z4 0	 (7.9)

Normally, Z and M are unknown and time-varying, so that Eq.(7.8) cannot hold

true for a wide range of modelling uncertainty. Here the uncertainty is considered

as bounded, i.e. the parameter variations are contained within a pre-defined bound,
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e.g.

A—LA<At<A+A; B—zB<B^B+LB

C—zC<C<C+zC ; D—tD<D<D+zD

E' - LE 1 <	 < E' + zE' ; E - ZE 2 <	 < E + zE2

R'—zR' < R < R'+LR' ; R2 —LR2 < R < R2+LR2

where A1 < A2 means that all elements of the matrix A1 is not larger than the

corresponding element in the matrix A2 . The real system matrix can be

any values within the pre-defined bounds. This statement is absolutely correct,

however it does not provide any aids for design. To achieve a realistic design,

let us consider {A, B, C, D, E, E, Re', R} in a finite set of possibilities, say

{A, B1 , C, D1 , Es', E?, Re', R} (i = 1,2,..., N) within their bounds. In practice,

this might involve choosing representative points out of the actual continuous range

of parameter values, reflecting any desired weighting on the likelihood or importance

of particular sets of parameters. This finite selection corresponds to a multiple model

system representation. In this situation, a set of corresponding matrices Z1 and M1

(i = 1,... , N) are obtained, and an ideal residual generation vector v s'.tu1d satisfy

the following equations:

vTZ1 = 0 ; i=1,2,...,N

vTM1	 0 ;

The above equations can be rewritten as:

vTZ=O

vTMo

(7.10)

(7.11)

(7.12)

(7.13)

where:

z = [zr , z2 ,	 , ZN]	 E pJs+1)rnxN(n+(s+1)r+(s+1)q)

[Mj, M2 , ...	 MN]	 (s+1)mxN(s41)g

The condition for a solution of Eq.(7.12) to exist is that:

rank(Z) (a + 1)m - 1 (7.14)

When this condition is satisfied, a solution v for Eq.(7.12) exists. if this solution also

satisfies Eq.(7.13), it can be used to form an optimal parity relation 'or generating
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robust residuals. However, the above condition cannot normally be satisfied for cases

when the parameter variations are very significant. For such cases, it is necessary

to find a rank deficient matrix Z which is a close approximation to the matrix Z,

i.e.

mm jZ - ZtIIF subject to rank(Z*) ^ (s + 1)m - 1	 (7.15)

It can be proved that the above optimization problem is equivalent to the following

(Lou et aL, 1986):

minJ1 = min	 vZ1 11 2= minvTZZTv s.t. VTV = 1	 (7.16)

A solution to this problem can only minimize the sensitivity to modelling uncer-

tainty, it cannot guarantee the maximal sensitivity to faults. Hence, to achieve an

optimally robust design, it is necessary to introduce another design objective as

follows:

N

maxJ2 = max	 II v 'L 11 2 = max vTMMTv s.t. VTV = 1	 (7.17)

A mutually optimal solution v' for the above two optimization problems can be used

to generate robust residuals which are insensitive to modelling uncertainty. This is

because we have already taken the modelling uncertainty (in the form of multiple

models) into account in the problem formulation.

7.3 Robust Residual Design via Multi-Criterion
Optimization

In Section 7.2, it was shown that the robust residual design is achievable by solving

two optimization problems. This is a multi-criterion optimization problem and the

simultaneous optimal solution may not exist. As discussed in Section 6.4, the multi-

criterion optimization can be solved by the method of inequalities, combined with

a prop r numerical search algorithm. However, this chapter considers analytical

solutio. s for multi-criterion optimization.
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7.3.1 Solving optimization problems via SVD

The optimization problem defined in the last section is similar to the optimization

problem studied in Section 5.2.5 and can also be solved via Singular Value Decom-

position (SVD). Let the SVD of Z be:

Z=F[diag{o-i,o-2,...,o-}, 010T

F and 0 are orthogonal matrices, oi ^ a2	 az are singular values of Z.

As shown in Lou et al. (1986), the vector v which minimizes Ji lies in a subspace

spanned by the matrix:

P = [y1,",'yk1]	 (7.18)

where 'Yi, , 'y are first k1 columns of F and k1 {= (s + 1)m - rank(Z*)} is a

pre-defined constant which is the possible independent solution number of the vector

v of the optimization problem mm Jj. In this situation, the minimum of J1 is:

Jj1. =

Similarly, the vector v which maximizes J2 lies in a subspace spanned by the matrix:

Q =	 (7.19)

where , ,	 are last k2 columns of the orthogonal matrix t and M =

The optimal solution v for minimizing J1 and maximizing J2 is:

v e span{P} fl span{Q}	 (7.20)

Note that this solution is relevant to constants k 1 and k2 , and different optimal

solutions can be obtained by changing these constants.

7.3.2 Solutions for multi-criterion optimization

The simultaneous optimal solution for the multi-criterion optimization does not

exist, if there is no intersection between the solution spaces P and Q, i.e. span{P} fl

span{Q} = {0}. For most problems, this would be the case. Hence, a compromise

should be made, i.e. one needs to find a solution which does not optimize both
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performance indices, but gives an acceptable design. Three methods are presented

here to produce a compromised optimal solution.

Method 1: Multi-criterion optimization via optimal projection.

As a vector v which minimizes Ji lies in span{P}, an acceptable vector v should

be near to the subspace span{P}. Hence, the distance between the vector v to this

subspace can be used as a measure to evaluate the satisfactory degree of the vector

v to the performance index J1 . A mixed criterion J which accounts for both Ji and

J2 is defined as:

J = a v - t4, 112 +/3 II v - v 1 2 =: a v - P1 v 112 +/ v - Q i v 112

s.t. a + /3 1 and vTv = 1	 (7.21)

where v and v are projections of the vector v onto subspaces span{P} and

.span{Q} respectively, and

p1 = p(pTp)1pT	 Q = Q(QTQ)1QT

The weighting factors a and /3 can be adjusted to satisfy different design goals.

For example, if a low missed-detection rate is required one can increase /3, on the

other hand if a low false detection rate is required, one can increase a. This mixed

criterion formulation can be extended to include more terms (sub-indices), e.g., the

residual response to noise etc. The robust residual design can be achieved by solving

the following optimization problem:

minJ = minllv—Pi v 112+ 
II v -Qiv 112

= mm vT[a(I - p1)T(j - P1 ) + /3(1 - Q)T(i - Q1)]v

s.t. a + /3 = 1 and vTv = 1	 (7.22)

Once again, this problem can be solved via the Singular Value Decomposition of the

matrix [/(I - p)T /(I - Q)T]

Method 2: A two-stage procedure for solving multi-criterion optirc zation problem.

As pointed outed, an optimal solution of minimizing J1 should lie in the subspace
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spanned by the matrix P given by Eq.(7.18), i.e. an optimal solution is given by:

V Pv
	

(7.23)

where v 1 E 7?jd1 is an unknown vector and subject to the constraint v?'vj = 1.

Substituting v into the J2 given by Eq.(7.17), we have

maxJ2 = maxvT( PTM)(PTM) Tv i s.t. vv1 = 1	 (7.24)

This optimization problem can also be solved using the SVD of the matrix PTM.

Once v 1 has been obtained, the optimal residual generator v which minimizes the

sensitivity to modelling uncertainty and maximizes the sensitivity to faults can be

determined by Eq.(7.23).

Method 3: Multi-criterion optimization by minimizing a mixed performance index.

One of methods to solve the multi-criterion optimization problem is to optimize a

new cost function J which accounts for both J1 and J2 . A solution for minimizing

J cannot minimize J1 at the same time as maximizing J2 . However, it could lead to

a reasonable solution for robust residual design. A sensible mixture of performance

indices is their ratio (or relative magnitude), i.e.

Ji	 vTZZTv

	

J 
= = vTMMTv	 (7.25)

Hence, the robust residual design is achievable by minimizing J. This problem
can be solved by introducing the matrix pencil concept (Gantmacher, 1959, Vol.1,

pp.310-326) as follows:

Definition 7-1: Given two quadratic forms:

Ji = vT ZZTv ,	 = vTMMTv

the equation:

det(ZZT - AMMT)

is called the characteristic equation of the regular matrix pencil v2' ZZTv -
.\vTMMTv. The roots of this characteristic eçnation, denoted by:

)1 ^ A2 ^ ... ^ A(s+i)m
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are called the generalized eigenvalues of the matrix pencil.

Since (ZZT - AMMT ) is singular, there exists a nontrivial solution vector w of the

following equation:
(ZZT - ).MMT)w = 0

where w is called the generalized eigenvector (or principal vector) of the pencil.

Lemma 7-1: If W = [w i , w2 , , W(+1)m] is the generalized eigenvector

matrix of a regular pencil vTZZTV - AvTMMT v , the transformation

v = Wu can be applied to v TZZTv and vTMMTv simultaneously to

yield (Gantmacher, 1959, Vol.1, p.314):

(s+ 1 ) m	(s+1)m

Ji =	 Au	 J2z

Proof: See Gantmacher (1959), Vol.1, pp.310-314.

Theorem 7-1: The criterion J is bounded by:

vTZZTv
^ J vTMMTv

fwhen v=w1

(s+1)m when V = W(s+1)m

and

(7.26)

(7.27)

Proof: Using the results given in the Lemma 7-1, we have

)1u + A2 u + ... + A(s+l)mUs+l)m

U+U+"•+Us+l)m

It follows that:

A 1 u + i u +	 + iUs+l)m	 A 1 u + A2u + ... + (s+l)m(s+i)m

1 =	
= J

u + u2 + + U 8 i)m	 -	 u + u + + U(s+l)m

If:
u=[l,0,..,0]
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we get:

v=w1, and J=)1

The other side of the inequality (J ^ A(s+i)m) can be proved similarly.

QED

From this theorem, the solution which minimizes J can be obtained via the calcu-

lation of generalized eigenvalue-eigenvectors of the matrix pencil. The MATLAB

function "eig" can be used to find the generalized eigenvectors and eigenvalues.

Three methods for solving the multi-criterion optimization problem have now been

given. The advantage of the first method is that it can easily satisfy different design

goals (low missed-detection rate or low false detection rate) by adjusting weighting

factors a and 3. However, the solution procedure involves two optimization steps

and is very complicated. Method 3 has the opposite advantages and disadvantages

compared with Method 1. Although the way of mixing design criteria in Method 3

is the same as that given by Wiinnenberg and Frank (Wiinnenberg and Frank, 1988;

Frank, 1990; Wiinnenberg and Frank, 1990; Wiinnenberg, 1990), the way of handling

modelling uncertainty is completely different. The technique developed here can be

applied to systems with both modelling errors and unknown disturbances, whilst

the technique developed by Wiinnenberg and Frank can only be used to tackle

disturbances. Hence the technique developed here has wider application.

7.4 A Numerical Illustration Example

A problem of designing robust residual for a four-dimensional system operating at

a set-point with two actuators and three sensors is now considered. This example

is a modification to the example in Chow and Willsky (1984). The system matrices

are:

Fo 0]
0 1 0

00	 B=H 0	
C='0 10 H

10 0 0 1]
o.iI	 lo 

ii	
i

0.4]	 0

D = °3x2
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Consider the situation when the fault occurs in the first sensor, the corresponding

fault distribution matrices are:

1

Ri =:04i R2 = 0

0

Except for two elements in the A matrix, all parameters are known exactly. The

modelling uncertainty is denoted by the parameter -y whose nominal value is yo =
0.15 and the bound is -y E [0.1, 0.2]. Taking the parity relations of order .s = 2, the

residual is generated by the parity relation:

y(k-2)	 u(k-2)

r(k) = vT y(k - 1) - vTH u(k - 1)
	

(7.28)

y(k)	 u(k)

By choosing the uncertain parameter 'y with representative values of

0.1, 0.125,0.15,0.175,0.2 within the uncertainty bound, 5 sets of model matrices

are obtained. The residual generation vector v is designed by Method given in the

last section.

v=

0.2449

0.0375

0. 1022

—0.1749

—0.6686

—0.3415

0.3498

0.3945

0.2367

- 0.3530

—0.1749

and (vTH)T 
=	 0.3945

0.3498

0

0

For this design, the values of the objective functions are:

J1 = 1.6e 9, J2 = 1.0648,	 = 1.505e29

i.e., an almost perfect robust design has been achieved. Now the simulation is used

to assess the fault detection performance of the designed residual signal. The design

is carried out at the nominal point (-y = 0.15), but the simulation is carried out at

a non-nominal point (7 = 0.1875). Each control input is a unit step function with a
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smafl level of additive Gaussian white noise. Two faults have been added to sensor

1; one is a ramp up and ramp down signal and the other is a step signal.

faulty measurements

8

6

4

2

0

-2
0	 20	 40	 60	 80	 100

time instant (k)

Figure 7.1: Faulty measurement when -y = 0.1875

robust residuals

.03

05

.01

-.01
0
	

20	 40	 60	 80	 100

time instant (k)

Figure 7.2: Robust residuals for different operating points

Fig.7.1 SILC ws faulty measurements. It can be seen that the fault is very small and

is hardly noticeable from he output. However, it is very easy to detect from the

robust residual Fig.7.2. We have carried out a number of simulations in which the

uncertain parameter is assigned within its bound of 'y E [0.1., 0.2], and the results

(shown in Fig.7.2) are almost id€ ntical except for some fluctuation due to noise.



x(k+1) = Ax(k)+Btu(k)+[E' D'ltJ

y(k) = Cx(k)+Du(k)+[E2 D21tJ

+ 7(k)

+ Rj(k)

d( k)

f(k)

d( k)

f(k)
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Fig.7.2 also shows the result when the uncertain parameter is taken outside its

bound, say 'y = —0.1. It is interesting to see that the result is almost the same as

the case when the uncertain parameter lies within its bound. To extend this idea

further, if we let 'y = 1, the system is unstable for this setting. Very surprisingly,

the residual signal (Fig.7.2) is almost the same as the others. This shows that the

residual is robust over a wide range of parameter variations.

7.5 Discussion on Designing Optimal Parity
Relations

Robust fault isolation: Robust fault isolation can be achieved using robust struc-

tured residual sets. A robust structured residual is robust against modelling uncer-

tainty and sensitive to a group of faults, whilst insensitive to another group of faults.

if the fault vector f(k) is re-grouped as two sub-vectors 7(k) and f(k), the faults

and associated distribution matrices are:

Rf(k)=[	
[1(k) 

1
L f(k) ]

Rf(k)=[	 ]
L 
f(k) ]

In this case, the system equation can be rewritten as:

If a structured residual is to be designed to be insensitive to faults grouped in the

vector f(k), this vector can be treated in the same way as a disturbance vector

in an optimal parity relation design. The performance indices should be modified

correspondingly.

Probability distribution of multiple models: The probability that the system

works at a certain operating point may be larger than for other operating points.

This fact should be taken into consideration in the design of optimal parity relations.

The performance indices are thus modified accordingly, to place different emphases
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on the different model descriptions:

N

mm Ji = min	 II pv"Z1 12
	

s.t. v Tv = 1

mm J2 = ruin	 II p'v 'M, 112
	

s.t.	 1

where p1 is the probability that the system operates at the th model (i 1,2,	 , N),

and
N

?Pi=1

Orthogonal parity relations: This is an approach proposed by Gertler and col-

leagues (Gertler, Fang and Luo, 1990; Gertler and Luo, 1989; Gertler, Luo, Ander-

son and Fang, 1990; Gertler and Singer, 1990; Gertler, 1991; Gertler and Kunwer,

1993) to design robust and (or) isolable residual sets. The method is based on the

z-transformed input-output relationship of the monitored system, i.e.

'I'(z)y(z) = 4'(z)'u(z) + Wd( z ) d (z ) + l'f (Z)f(Z)	 (7.29)

where 1I1 (z), 'I'(z), 4'd(z) and Wj (z) are known z-polynomial matrices. A primary

residual vector can be directly obtained by rearranging the above equation as follow:

r'(z) - { 
'I'y(z)y(z) - 'F(z)u(z)

-	 d(Z)d(Z) + j(z)f(z)

computational form	
(7 30)

evaluation form

This primary residual can be used to detect faults, however it does not have robust

and isolable properties. To design robust and (or) isolable residuals, the primary

residual should be transformed as:

r(z) = T(z)r'(z)
	

(7.31)

where T(z) is a z-polynomial matrix to be designed for achieving required robust

and isolable properties. The response of this transformed residual to faults and

disturbances is:

r(z) = T(z)W d (z)d(z) + T(z)'I'j(z)f(z)	 (7.32)

To make the residual insensitive to the disturbance d(z), the tran,formation matrix

T(z) should be made orthogonal to 'I'd (z), this is the basic principle of the orthogonal

parity relation approach for robust residual generation. Similarly, the residual can

be designed to be insensitive to the th fault component, if T(z) is made to be
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orthogonal to the	 column of 'P j (z). If sufficient design freedom is available, a

totally robust and isolable residual can be designed if the matrix T(z) satisfies:

T(z)D(z) = 0 ; T(z)Wj(z) = I

This approach is, in principle simple, however it is not easy to implement because

the numerical operation of polynomial matrices is not an easy task. Moreover,

this approach is only effective to uncertainty caused by unknown disturbances and

cannot be directly applied to robust design against to modelling errors (Gertler,

1991; Gertler and Kunwer, 1993).

Design of robust parity relations via optimization: The design of robust

residuals can be treated as an optimization problem in which fault effects should be

maximized and modelling uncertainty effects should be minimized. This philosophy

has been adopted in many research studies, for example, Staroswiecki and colleagues

(Staroswiecki, Cassar and Cocquempot, 1993a; Staroswiecki, Cassar and Cocquem-

pot, 1993b) have defined a multi-criterion optimization problem in robust parity

relation design and the solution for this optimization has also be presented. How-

ever, they assumed that faults and/or disturbances are either pulse or step functions

in the calculation of residual sensitivity cost functions, this limits the application

domain of their approach. The approach presented in this chapter does not make

any assumptions concerning fault and disturbance functions and hence has a wider

application domain.

Kinnaert (1993a) formulated the robust parity relation design as a constrained op-

timization problem, the aim being to construct a number of parity relations, as

follows:

r1(k)=w1	
1

[u(k)]

Note that this residual definition is just a rearrangement of the definition given in

Eq.(7.6). The performance index and constraints are evaluated using the expectation

value of the residual under different hypothesis as follows:

mm lim E{r(k/no fault)}
w k-400
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subject to:

•	 çk/no fault ^
	 < 1hmk-*oo e{r(k/faUlt i)}

•	 k/fau1t)} <5<1 ; j E {1,...,i-1,i+1,",g}
hmk-+oo e{r(k/faU1t 1))

wTWI 1

where e{ . } denotes the expectation operator, 823 are design parameters to be de-

cided by designer. The first constraint is to assure the robustness and the second

constraint is to guarantee isolability. If the statistical properties of measurement

noise, disturbances and faults are known a priori the optimization problem can be

rewritten as:

subject to:

{ wT(o - Siii) <0

- Sijj) ^ 0

ww1 = 1

;jE{1,...,i-1,i+1,".,g}

where c, (i = 1,... ,g) are related to the statistical properties of measurement

noise, disturbances and faults and a complex computation procedure is presented

in Kinnaert (1993a) or Kinnaert (1993b). It can be seen that this is a constrained

optimization problem with a quadratic cost function under non-convex quadratic

inequality constraints. It is only possible to find a numerical solution for this opti-

mization problem through complicated search algorithms.

The main disadvantage of I<innaert's approach is that it requires the statistical prop-

erties of measurement noise, disturbances and faults which are normally unavailable.

Another disadvantage is that the optimization procedure is very complex and there

are no analytical solutions. With the cost of great complexity, there is no evidence

to show that it can give diagnostic performance better than the approach presented

in this chapter.

Closed-loop optimal parity relations: Wu and Wang (1993) suggested an ap-

proach to designing robust residuals based on parity checking on the output esti-

mation errors. The approach involved two stages: the first stage is to estimate the

system output and generate the output estimation error via a full-order state ob-

server, the second is to construct parity relations using the output estimation error.

As Se'tions 2.8.1 & 6.2.1, when a full-order observer is applied to a system without
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faults and modelling uncertainty, the state estimation error e(k) = x(k) - (k) and

the output estimation error e(k) = y(k) - (k) are driven by the following equation:

J e(k + 1) = (A - K0C)e(k)

e ,,(k)	 Ce(k)

where K, is the observer gain matrix. The output estimation error e(k) can be used

directly as a residual vector, however Wu and Wang (1993) construct the residual

as:
I e,,(k—s)

e(k—s+1)
r(k) = VT	 .	 (7.33)

e ( k)

where the vector VT satisfies the following equation:

C

C(A—KOC)

VT C(A—KO C) 2	.O

C(A - KOC)3

It can be proved that the residual generated by Eq.(7.33) is equivalent to the residual

generated by Eq.(7.6) when the observer gain matrix is zero, i.e. K0 = 0 (Wu and

Wang, 1993). This shows once again that the parity relation is a special case of the

observer-based residual generator in which the dynamic feedback is zero.

Wu and Wang (1993) demonstrated an optimization procedure to find K0 and v

for achieving residual robustness against modelling uncertainty. Because there is

more design freedom (i.e. the choice of K0 ) in the closed-loop parity relation design,

the robustness and sensitivity performances can be better those of than the original

parity relation design. However, the extra price to pay is the increased complexity

in implementation. Wang and Wu (1993) applied the closed-loop parity relations to

fault diagnosis of closed-loop control systems. They have shown that the feedback

controller can also be modified to achieve maximal diagnostic sensitivity to faults.

This jc consistent with the idea given by Wu (1992) in which the effect of a fault

in the residual is sensitized by means of feedback controller design. This also shows

that the fault diagnosis scheme and the robust controller should be designed together

to achieve maximal closed-loop reliability and performance.
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7.6 Summary

In this chapter, the problem of finding optimally robust residuals for systems with

bounded parameter variations and unknown disturbances has been studied. This

parity relation design problem has been formulated into a multi-criterion optimiza-

tion problem, yielding a robust residual which is maximally sensitive to faults, whilst

minimally sensitive to modelling uncertainty (including modelling errors and un-

known disturbances). Three methods for solving this multi-criterion optimization

problem have been proposed. The simplest method is to mix performance indices

as a single optimization criterion according to the design objective, which is solved

using the generalized eigenvalue-eigenvector concept. As the robust criterion has

been given quantitatively, the residual designed using different parity relations can

be ordered according to robustness. Both modelling errors (in term of parameter

variations) and disturbances have been considered in the robust residual design pro-

cedure, the technique developed can be used to diagnose incipient faults in a wide

range of systems with modelling uncertainty. This principle has been well illus-

trated using a numerical example. Some other developments in decigning optimal

parity relations for robust FDI have been discussed, and these devek . .mnents are also

compared with the technique developed in this Chapter.



Chapter 8

CONCLUSIONS AND

RECOMMENDATIONS FOR

FUTURE RESEARCH

This thesis concludes by first summarising the contributions towards the develop-

ment of robust model-based fault diagnosis strategies. After the summary, some

suggestions for future research are given which come to light during this work.

8.1 Contributions of Thesis

The main challenge in model-based fault diagnosis is to diagnose incipient faults in

complex and uncertain dynamic systems. This thesis has taken this challenge and

has set the main objective as:

• To develop robust model-based diagnostic methodologies for com -

plex and uncertain dynamic systems, and to demonstrate these
methodologies on realistic dynamic systems.

This ob ,ctive has required a number of intermediate goals to be achieved:

• To present a general framework for model-based fault diagnosis techniques and

give some basic definitions.

245
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• To develop and improve further existing strategies for robust residual gener-

ation, such as unknown input observers, eigenstructure assignment and opti-

mally robust parity relations.

• To propose new theory and techniques for generating robust residuals.

To bridge the gap between theoretical assumptions and practical reality.

• To demonstrate robust FDI techniques in realistic simulated systems.

The results presented in the previous Chapters indicate that these goals have been

met and that the overall objective of the thesis has been achieved. Excellent new

results arising from the research have been and continue to be published in the open

literature. It is important to note that, the results are of a general nature and are

applicable not only to particular systems but to a wide range of uncertain dynamic

systems. In the following, the contributions are summarized chapter by chapter.

1. Chapter 1 presented an introduction to the fault diagnosis problem and out-

lined the structure of the thesis, followed by a brief history of model-based

FDI techniques. Views expressed about different stages of international devel-

opments and contributions in this field are entirely the author's own opinion

and have not been stated elsewhere. Another contribution has been the review

of some important survey papers in the model-based FDI field. This provides

a general review and guide-line for a newcomer in this field.

2. The basic principles of model-based FDI have been studied in Chapter 2, in

which a general framework for model-based FDI has been presented. The

residual generation has been identified as the essence of this framework and

some basic definitions concerning residual properties have been given. The

modelling of systems with all possible faults has also be studied. This chapter

has provided comments upon some commonly used residual generation ap-

proaches. Their applicabilities have been discussed and a guide-line for the

selection of methods has also be given. The issue of robust residual gener-

ation has been introduced and this forms a basis for the subjects studied in

subsequent chapters. The chapter concluded with a discussion on integrat-

ing different diagnostic methods for diagnosing faults in complex uncertain

systems.

3. Chapter 3 has given a development of unknown input observer-based robust

residual generation methods. The main contributions of this chapter are the
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proposal of a new full-order unknown input observer structure and subse-

quently, the proof of existence conditions and the development of the design

procedure. Using this new structure, the robust (in terms of disturbance

dc-coupling) residuals can be also made to have directional properties. This

theory has been well illustrated using a jet engine simulation example. The

design freedom after the satisfaction of disturbance de-coupling conditions can

be used to make the state estimation error have minimal variance. This en-

ables optimal filtering and robust fault diagnosis for stochastic systems with

unknown disturbances as demonstrated by means of a simplified ffight control

example. Robust sensor and actuator fault detection and isolation schemes

have been given in this chapter and a non-linear chemical process example has

been used to demonstrate robust actuator fault isolation.

4. The eigenstructure assignment approach for robust residual generation has

been investigated in Chapter 4. This chapter has presented a complete and

mathematically sound proof for the eigenstructure assignment approach to

FDI, which has been lacking, although the approach has been developed for

more than 7 years. The most important contribution of this chapter was the

proposal of a new method for assigning right eigenvectors of an observer. This

has extended the application domain of this powerful robust FDI approach.

The chapter has also suggested and demonstrated the idea of optimizing some

performance indices such as fault sensitivity, utilizing design freedom left af-

ter disturbance dc-coupling conditions have been satisfied. This chapter has

studied a dead-beat robust residual generation strategy for discrete-time (or

sampled data) systems, and its relationship with parity relations has also been

presented. Two numerical examples have been used to illustrate the design

procedure and disturbance dc-coupling principles developed in this chapter.

5. To bridge the gap between theoretical assumptions and practical reality, Chap-

ter 5 has been devoted to the determination of disturbance distribution matri-

ces for robust residual generation. The most successful robust FDI approaches

developed so far are based on the disturbance dc-coupling principle. To achieve

a dc-coupling design, one has to assume that the disturbance distribution ma-

trix is known a priori although the disturbance itself car' be unknown. The

theory of disturbance dc-coupling has been well established, however one will

always face a big obstacle when the technique is applied to real uncertain sys-

tems. This obstacle is due to the mis-match between theoretical assumptions

and practical reality. For most real uncertain systems, the disturbance distri-
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bution matrix is unknown, or the system uncertainty is caused by modelling

errors rather than disturbances. To bridge this gap, this chapter has proposed

some ways of representing modelling uncertainty (including modelling errors)

via a disturbance term with an estimated approximate distribution matrix.

When this estimated distribution matrix is used in disturbance de-coupling

design, optimal robust FDI is achievable. This chapter has studied the de-

termination of distribution matrices for many different uncertain situations.

Hence, it can be claimed that the techniques are applicable (approximate) for

almost any uncertain systems. The methods developed have been assessed

using a jet engine simulation model. The jet engine is a non-linear system

with many uncertain factors in modelling, and the techniques developed have

been highly successful. The success of this study indicates that the techniques

will be applicable for a wide range of systems. The research presented in

this chapter represents the one of most important contributions made by the

author and colleagues and is highly regarded internationally.

6. A new approach to the design of optimal residuals for detecting incipient

faults, based on multi-objective optimization and the genetic algorithm has

been developed in Chapter 6. In this approach the residual is generated via

an observer. To reduce false and missed alarm rates in fault diagnosis, a

number of performance indices are introduced into the observer design. Some

performance indices are expressed in the frequency domain to take account

of the frequency distributions of faults, noise and modelling uncertainties.

All objectives are then reformulated into a set of inequality constraints on

performance indices. The genetic algorithm is thus used to search an optimal

solution to satisfy these inequality constraints. The approach developed has

been applied to a flight control system example and simulation results show

that incipient sensor faults can be detected reliably in the presence of modelling

uncertainty.

7. In Chapter 7, the robust residual was generated using optimally robust parity

relations. The robust design has been formulated as a multi-criterion opti-

mization problem, in which two criteria are: maximum sensitivity to faults

and minimum sensitivity to mod 'Uing uncertainty. Three methods have been

proposed to tackle this multi-critcrion optimization problem, all these methods

involved a procedure to mix all cost functions as a single performance index.

The most convenient way to mix performance functions is to use the ratio

between two performance indices. The optimization is oblem is thus solved
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via the generalized eigenvector-eigenvalue concept. A numerical example is

given to demonstrate the procedure for designing the robust residual. Simu-

lation results show that robust incipient fault detection is achievable by the

optimal design. Other developments of designing optimal parity relations have

also been commented upon. The approach developed in Chapter 7 is applica-

ble for a wide range of uncertain systems because both modelling errors and

disturbances have been taken into consideration in the design.

8. Model-based fault diagnosis is a very rich research field and there is a large

scope for new contributions. The author has, through collaboration with col-

leagues, studied many problems in this field. Evidence of this can be clearly

seen through the list of publications at the beginning of the thesis. Some of the

research conducted by the author beyond the scope of this thesis. To conclude

the thesis, some directions for future research are suggested in Section 8.2,

some of which are already topics being published by Prof. Patton's research

group.

8.2 Recommendations for Future Research

Model-based FDI has been studied for over 20 years, however it is still an open

research domain, and many problems are waiting to be tackled. The research of this

thesis has inevitably had to end before all the interesting avenues for future FDI

research could be explored. The author therefore lists those directions which, in the

author's opinion, are the most important topics for future research.

8.2.1 Frequency domain robust residual generation

techniques

The design of a residual generator in the frequency domain was first proposed by

Viswanadham, Taylor and Luce (1987) based on the factorization of the transfer

function matrix of the monitored system. This method was later extended and

developed by Ding and Frank (1990). In the early development, this approach

offered only an alternative interpretation of the residual generator, and hence it is

equivalent to the time-domain design such as observers (see Section 2.8.3).
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The frequency domain design really demonstrated its power in robust FDI when

Viswanadham and Minto (1988) incorporated H°° optimization techniques into the

frequency domain residual generator design.

As studied in this thesis, there are many ways, such as the unknown input ob-

server, eigenstructure assignment, optimally robust parity relations, for eliminating

or minimizing disturbance and modelling error effects on residual and hence achieve

robustness. While these techniques are different, one feature is common among

them, the original framework of these methods were developed for ideal systems or

with special uncertainty structure and then efforts have been made to include non-

ideal or more general uncertainties. In contrast, H°°-optimization is a robust design

method with the original motivation firmly rooted in the consideration of various

uncertainties, especially the modelling errors. H°°-optimization has been developed

from the very beginning with the understanding that no design goal of a system

can be perfectly achieved without being compromised by an optimization in the

presence of uncertainty, hence this technique is very suitable to tackle uncertainty

issues. After decades of development, it is now playing a leading role in tackling the

robustness problem in control systems. It is reasonable to seek the application of

these results in other areas, including the robust design of FDI systems.

After Viswanadham and Minto (1988) introduced the use of H°°-optimization in

robust FDI design, Ding and Frank (Ding and Frank, 1991; Frank and Ding, 1993;

Ding et al., 1993; Frank and Ding, 1994) have made many contributions for this

approach. The main aim of their research is to maximize the following performance

index:

j	 su IlQ(s)Gi(s)l

- Q(	 Q(s)Gd(s)I

over a frequency range. Where Q(s)Gj (s) is the transfer function matrix between
the residual and faults, whilst Q(s)Gd(.․ ) is the transfer function matrix between

the residual and disturbances. They have given a solution for this optimization

problem (Frank and Ding, 1994). Qiu and Gertler (1993) also revisited the problem

of designing robust FDI based on H°°-optimization with some new basic concepts.

They have demonstrated that lIQ(s ) Gi(s)II may be smaller than IIQ(s)Gd(s)IIoo

in certain frequency range even their ratio (as defined above) has been maximized.

This can cause difficulties in fault diagnosis. To overcome these difficulties, Qiu and

Gertler (1993) have suggested a new strategy to solve robust FDI design problem

which guarantees the lower bound of IIQ(s ) Gi(s)II is well above the upper bound

of Q(s)Gd(s)II in the required frequency range. This definitely offer a better
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diagnostic performance in the presence of disturbances.

It should be pointed that the transfer function matrix Gd(s) can only be defined for

disturbances, hence the techniques developed by (Frank and Ding, 1994) and Qiu

and Gertler (1993) can only deal with robustness against disturbances. The robust

problem with respect to modelling errors has still not been solved, although the

above investigators have claimed that their research aim was to tackle this problem.

The only solution suggested is to calculate the residual bound and set an adaptive

threshold (Frank and Ding, 1994). This is very disappointing because the optimal

disturbance de-coupling problem can be solved by time-domain approaches such

unknown input observer or eigenstructure assignment, H-optimization does not

provide anything extra with respect to the problem we expected.

Despite unsatisfactory results, we are still very confident in H-optimization be-

cause its full power for robust FDI has not been fully exploited. There have been

some researches to tackle robustness against modeffing errors directly using H—

optimization (Marquez and Diduch, 1992; Yao et at, 1994), however the results are

still far from successful. Appleby (Appleby et al., 1991; Farrell, Appleby and Berger,

1992; Mangoubi et aL, 1992) with colleagues at MIT have made .ne progress in

solving the robust FDI problem against modelling errors when they incorporated

p synthesis with H-optimization. Robust FDI design based on H-optimization

and p synthesis is still in its early development, some research is still needed. In the

author's opinion, this is a direction for future research which has great potential.

8.2.2 Adaptive residual generators

The system dynamics and parameters may vary or be perturbed during the system

operation. A fault diagnosis system designed for system model given at the nom-

inal condition may not perform well when applied to the system with perturbed

condition. An effective way to deal with this problem is to use adaptive residual

generators, i.e. to adapt or compensate the residual generators according to the

change of operating conditions.

Sidar (1983) proposed a residual generation scheme using adaptive observers, in

which the system parameter variations are estimated and compensated. Fig.8.1

illustrate the basic principle of this approach. The approach can be applied to

linear systems with parametric variations if stability and convergence conditions
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are satisfied. Ding and Frank (1993) presented an adaptive residual generation

approach for nonlinear uncertain dynamic systems using the adaptive observers given

by Bastin and Gevers (1988), and the application of a similar approach was reported

by Frank, Ding and Wochnik (1991). The main disadvantage of this approach is the

complexity.

u(t)	 SYSTEM	 y(t)

A(t) Iè (t) 	 (t)

ADAPTIVE
PARAMETER
ESTIMATION

Figure 8.1: Residual generation with adaptive observer

Patton and Chen (1992a) proposed an alternative way to generate adaptive residuals

by using so-called "on-line residual compensation method". The idea is to estimate

approximately the bias term in the residuals due to modelling errors, then compen-

sate it adaptively. These estimates are then used to form a compensated residual

to decrease the effect of modelling errors on residuals. The compensated residuals

are then used to make the FDI decision. The approach estimates the bias term in

the residual due to the combined effect of modelling errors rather than estimating

the modelling errors themselves, this avoids complicated estimation algorithms. A

similar idea has been developed by Hall, Motyka, Gal and Deyst (1983) for the case

of hardware redundancy generated from static models. Patton and Chen (1992a)

considered the temporal redundancy case which is generated using dynamic models.

This approach has been applied to a jet engine system (Patton and Chen, 1992a)

and pri aminary results have shown its effectiveness, however more research on this

topic stil necessary.

Adaptive residual generation can be achieved using any adaptive observers with some

necessary modifications. Slidir g mode (or variable structure) observers (Siraramirez

and Spurgeon, 1994; Edward. md Spurgeon, 1994) could be a promising candidate
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and this has been investigated by the author and colleagues. The state and param-

eter simultaneous estimation algorithm presented in Ljung and Söderström (1983,

pp.122-130) can also be used to generate adaptive residuals.

An adaptive residual generation algorithm normally involves both state and pa-

rameter estimation, and can be considered as a combination of observer-based and

identification-based FDI approaches. Hence, complementary advantages in both

approaches can be gained.

For all adaptive methods, a main problem to be tackled is that the fault effects may

be compensated as well as the compensation of modelling error effects. This makes

the detection impossible. This problem is very serious for incipient faults because

they develop very slowly. However, for hard and abrupt faults (the magnitudes

are relatively large and occur abruptly), the detection performance is acceptable

because the adaptive residual and/or the parameter estimation may jump rapidly.

To overcome the problem in diagnosing incipient faults, the fault function can be

considered as a slow time-varying parameter which can then be estimated along

with parameters (Isermann, 1994). Patton and Chen (1992a) proposed another way

to tackle this problem, that is to separate the estimation process into calibration

and diagnosis stages. During the calibration stage, both parameters and states are

estimated adaptively. After this stage, the parameter estimation should settle down

and the diagnosis stage commences. In the diagnosis stage, only the states are

estimated and the parameters are fixed. It is then necessary to re-calibrate when

faults have been diagnosed and corrected, and so on. This approach is based on

two assumptions: the system parameters only change slowly and the fault does not

occur in the calibration stage. Li and Zhang (1993) applied two different filters on

the state and parameter adaption gains, based on the assumption of the parameter

and the fault vary in different speed. Much research effort is still needed in the

theory and application of adaptive residual generation methods.

8.2.3 Integration of fault diagnosis and reconfigurable

control

A conventional feedback control design for a complex plant or vehicle systems may

result in unsatisfactory performance, or even instability, in the event of malfunctions

in system components. A closed-loop control system which tolerates component
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malfunctions, whilst still maintaining desirable performance and stability proper-

ties can be said to be a fault-tolerant or self-repairing control system which have

attracted the attention of many researchers (Stengel, 1991; Patton, 1993; Stengel,

1993). Fault-tolerant control involves the automatic detection and isolation of faults

in system components and the subsequent on-line reconfiguration of the control law,

subsequent to fault isolation.

The conventional approach to fault-tolerant control includes the design of three

separate system modules: control, FDI and reconfiguration. The control and FDI

modules, which are usually designed separately, are linked through the reconfigura-

tion module to achieve reliable control. After the FDI module detects and isolates a

fault in a specific component, the reconfiguration module specifies a reconfiguration

strategy for the control module. It is hoped that this will allow satisfactory control

performance to be maintained in the presence of the fault. The fundamental prob-

lem with this conventional approach lies in the independent designs of the control

and FDI modules and corresponding neglect of the rather significant interactions

which occur between these modules. An FDI module designed for an uncontrolled

system may not perform satisfactorily with the controlle ystem. Furthermore, a

reconfigurable controller designed for a fault isolated systua may fail to maintain

the stability and performance of the system due to inherent limitations inadvertently

imposed through the need to achieve diagnostic performance. There is therefore a

need for a research study into the interactions between the control and FDI parts

of the fault-tolerant system (Stengel, 1991; Nett et al., 1988; Jacobson and Nett,

1991).

Despite the apparent connections between the two subjects, most research into FDI

and reconfigurable control have evolved separately (Patton, 1993). Typically, in

the reconfiguration literature, it is usually assumed that a perfect FDI scheme is

available, but detection delays, false and missed alarms are difficult to avoid, in

practice. The requirements for achieving good system reconfiguration have also not

been considered in FDI research. This problem has been considered by some re-

searchers, e.g., Mariton (1989) discovered that detection delays could cause instabil-

ity in the reconfigured system, Srichander and Walker (1993) studied the design of a

fault-tolerant control system involving both FDI and reconfiguration as a stochastic

stability problem. Nett et al. (Nett et al., 1988; Jacobson and Nett, 1991) proposed

a four parameter controller approach to integrated control and FDI design.

Some investigators state the importance of the joint robustness problem which in-
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evitably arises as FDI and control functions are combined together. However, not

one published paper has taken up this issue from the point of view of an integrated

system. There is clearly a need to study these joint robustness properties within

the framework of robust fault-tolerant control (Patton, 1993). The main research

direction would be to develop a simultaneous design strategy to integrate together

the functions of fault diagnosis and robust control. It is expected that significant

progress will be made in improving stability and performance robustness as well as

fault tolerance by using the integrated design approach (Patton, 1993).

8.2.4 Fault estimation

Among fault diagnosis tasks, fault estimation is a very important one. Once the

fault is estimated, the detection and isolation can be easily achieved. The estimated

information of faults can help to clarify the nature of actual faults and enable the

operator to diagnose them. It can help to analyse the impact of faults on the

system, and can also help to recover system function under a faulty condition, i.e.

reconfiguration. The reconfiguration can enable continued operation of the system

under faulty situations, and give operators reasonable time to repair the system or

to use alternative measures to avoid catastrophes. However, the fault estimation

problem has not gained enough research attention.

Most fault diagnosis methods can be classified into two categories: parameter iden-

tification methods (Isermann, 1984; Isermann, 1993a) and parity space methods

(Patton and Chen, l991e; Patton and Chen, 1994). The latter includes the observer-

based methods. For parameter identification methods, the starting point is to as-

sume that faults appear in the system parameters. Through parameter identifi-

cation, deviations in parameters and hence component faults are estimated and

detected. This is one of the advantages of this approach. However, the method

cannot directly be used to estimate faults in sensors and/or actuators.

In connection with parity space methods, very little research has been done to deal

with the fault estimation problem. The Kalman filter can be used together with

the generalized likelihood ratio test to estimate faults (Willsky and Jones, 1976),

but the computation demand in this method is very high and has doubthil practi-

cal application. Friedland and Grabousky (1982) and Chen et al. (1990) used the

bias-separated estimation method for estimating faults. Ding and Frank (1990) pro-

posed the fault estin'ition filter, but for systems which do not satisfy the existence
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conditions for fault estimation filter, derivations of the output signal are involved,

this is not a practical solution.

'::: ____________

system

Li (
ri +
LJ

residual
generator

inversion

	

residual i	 L.	 f(s)
'J H1(S) L

	

r(s) I	 ]• faalt
estimation

fault
estimator

Figure 8.2: Fault estimation

Recently, Chen and Patton (1993) proposed a fault estimation scheme shown in

Fig.8.2. In their scheme, the fault estimation is treated as a system inversion

problem, i.e. to construct inputs to the system from the available outputs (Pa-

tel, 1982; Yoshikawa and Sugie, 1986). This is because the robust residual should

only contain fault information. The fault can be estimated using the residual vec-

tors and an inversion of the transfer matrix between the fault and residual. Chen

and Patton (1993) presented the conditions when perfect fault estimation is possi-

ble. Otherwise, they discussed the possibility of asymptotic or optimal estimation,

however satisfactory results have not been achieved yet.

8.2.5 Neural networks in fault diagnosis of nonlinear
dynamic systems

The central issue in model-based fault diagnosis is the residual generation. Most

residual generation techniques are based on linear system models. For nonlinear

systems, the traditional approach is to linearize the system model around the sys-

tem operating point. This approach is effective for many nonlinear systems, if the

operating range is limited and the residual generator has been designed to be robust

enough to tole:ant small perturbation around the operating point. However, for

systems with high nonlinearity and a wide dynamic operating range, the linearized

approach fails to give satisfactorily results. A linearized model is an approximate

description of the nonlinear system dynamics around the operating point. However,
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when the system operating range becomes wider, the linearized model is no longer

able to represent the system dynamics. One solution is to use a large number of lin-

earized models corresponding to a range of operating points. This means that a large

number of FDI schemes corresponding to each operating points is needed. This is

not very practical for real-time application. Hence, it is important to study the resid-

ual generation techniques which tackle nonlinear dynamic systems directly. There

are some research studies on the residual generation of nonlinear dynamic systems

(Wiinnenberg, 1990; Frank and Seliger, 1991; Seliger and Frank, 1991a; Frank et al.,

1991; Yu et al., 1994b; Yu and Shields, 1994; Krishnaswami and Rizzoni, 1994a).

However, most nonlinear techniques are applicable only to a very limited class of

nonlinearities, or require very strict assumptions about nonlinearity. Moreover, the

design procedure is very complicated and the stability of the residual generator is

not very easy to guarantee. Clearly, a generalized and effective tool is needed to

deal with the residual generation problem for nonlinear dynamic system. Neural

networks offer some promise due to their capability in handling nonlinear problems.

Based on residual information, the second stage of fault diagnosis is to determine

whether or not a fault occurs in the system and the fault location. The main task is

to discriminate effectively between normal and abnormal residuals. In the presence

of noise and system uncertainty, this task becomes difficult. Hence, there is a need

for an effective tool which can be used to classify the residual signal automatically.

To isolate faults, the residual has to be classified further to indicate which system

component is faulty. One residual signal is sufficient for fault detection, however a set

of residuals (or a residual vector) is needed to fulfil the fault isolation task. One com-

monly accepted approach for fault isolation is to generate a set structured residual

signals (see Section 2.7.1). There are a number of methods for designing structured

(or isolable) residuals, however most methods are only valid for linear systems. For

nonlinear systems, the joint sensitivity and insensitivity residual generation problem

becomes very difficult to design. Even for linear systems, the relationship between

faults and residuals can be nonlinear for parametric (or multiplicative) faults. This

shows the need to develop a new general tool for fault isolation. This inspires us

to use neural networks for fault isolation because neural networks can be trained to

have the required relationships between inputs and output.

The neural network, as an optimal approximate tool for handling nonlinear prob-

lems, can be used to overcome difficulties in conventional techniques for dealing with

nonlinearity. It is the author's opinion that there is little to be gained by apply-

ing neural networks to linear time-invariant systems. Neural networks are propei IY
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aimed at processes that are ill-defined, complex, nonlinear and stochastic. Neural

networks have many advantages and can be used in a number of ways to tackle fault

diagnosis problems for nonlinear dynamic systems.

Publications (Himmelblau, Barker and Suewatanakul, 1991; Kavuri and Venkata-

subramanian, 1994; Naidu, Zafiriou and McAvoy, 1990; Sorsa, Koivo and Koivisto,

1991; Sorsa and Koivo, 1993; Watanabe, Matsuura, Abe, Kubota and Himmelblau,

1989; Willis, Massimo, Montague, Tham and Morris, 1991) on the use of neural net-

works for fault diagnosis have demonstrated the promise of this new tool. However,

there are two main problems arising from these research studies. The first problem

is that most publications only deal with steady-state processes. To achieve on-line

fault diagnosis in the presence of transient behaviours, the system dynamics have

to be considered. The second problem is that the neural network is only used as

a fault classifier and other advantages and potential of neural networks have not

been fully exploited. In these applications, neural networks were used to examine

the possible fault or abnormal features in the system outputs and gives a fault clas-

sification signal to declare whether or not the system is faulty. It may be valid to

use only system outputs to diagnose faults for some static systems, however this is

not the case for diagnosing faults in dynamic systems because the change in system

inputs can also affect certain features of the system outputs. A diagnosis method

which only utilizes output information could give incorrect information about faults

in the system when the system input has been changed. This is especially true for

non-linear systems. It must be pointed that this problem has already been solved

in model-based fault diagnosis by using the residual generation concept in which

both inputs and outputs of the monitored system are used to generate a fault mdi-

• cator - the residual. The input effect has been isolated from the residual and hence

the residual only carries fault information. Fault diagnosis based on this properly

designed residual can give reliable diagnostic information.

Recently, Patton, Chen and Siew (1994) have reported a new development in the

use of neural networks for FDI. In this work, nonlinear dynamic systems have been

considered and neural networks have been used in both residual generation and de-

cision stages. This work is a significant improvement over their early work reported

in Hennerberger, Patton, Chen, Wolff and Köppen (1993). Many studies are still to

be done and the use of neural networks for FDI has been one of the current research

topics and new results are to be published.
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8.2.6 Fault diagnosis for partially-known physical systems

Model-based fault diagnosis for linear dynamic systems requires an analytical de-

scription of the system to be monitored, for example, state space equations and

transfer function matrices. These analytical descriptions are generic in the sense

that they can represent a wide range of physical systems including: electrical, me-

chanical, hydraulic, chemical and thermodynamic systems. This is the advantage of

analytical system descriptions. However, at the same time, the analytical descrip-

tions suffer from being abstractions of physical systems: the abstraction of generic

features means that system specific physical details are lost. Both the parameters

and states of such descriptions may not be easily related back to the original system

parameters. This loss is, perhaps, acceptable for two extreme cases: when the sys-

tem parameters are completely known, or when the system parameters are entirely

unknown. In the former case, the physical system knowledge is translated into, e.g.,

transfer function parameters. In the latter case, there is no physical knowledge to

be translated and extra modelling effort is required for system analysis and fault

diagnosis.

For partially known physical systems the analytical model alone cannot achieve

reliable fault diagnosis. No generic analytical descriptions are particularly suited to

including partial physical system knowledge, descriptions of which become problem

specific, not generic. Bond-Graphs have been recognized as an excellent tool to

model partially known physical systems (Nagy and Ljung, 1991; Gawthrop, 1991;

Gawthrop, Jones and MacKenzie, 1992b). There have been some studies in the

use of Bond-Graphs for design of nonlinear system observers (Gawthrop, Jones and

MacKenzie, l992a) and fault diagnosis (Marrison and Gawthrop, 1991; Linkens and

Wang, 1994). Many practical systems are partially known systems, hence it is very

important to study fault diagnosis problems for this class of systems.

8.2.7 Integration of fault diagnosis techniques

The increasing complexity of processes and their high reliability and performance

requirements have necessitated the development of more powerful methods for fault

diagnosis. In a complex industrial system, the information available about the pro-

cess may be in different formats, i.e. quantitative or qualitative, numeric or symbolic,

explicit modelling knowledge and implicit expert experience, etc. To tackle the corn-
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plicated diagnostic situations and to utilize diversified information, it is necessary

to develop an integrated FDI system which incorporates many diagnostic strategies.

To achieve the integration tasks, the following problems should be studied.

Combination of qualitative and quantitative techniques: The qualitative and

quantitative techniques have many complementary properties in diagnosis, the best

performance can be achieved by combined these two techniques. The combination

of both will allow the use of all available analytical and heuristic information for

performing diagnostic tasks and will alleviate the deficiencies with each approach.

Fuzzy logic decision-making for fault diagnosis: Due to the limitation of

monitoring equipment and the difficulty in modelling and symptom extraction, the

diagnostic system may need to make decisions based on incomplete information. In

the context of fuzzy theory this is a typical fuzzy situation, and hence fuzzy decision

logic seems to be a natural tool to handle decision-making. It may also be necessary

to involve a human operator to make final decisions based on all information avail-

able, his experience and the suggestions given can be automated in the diagnostic

system.

Development of a design toolbox: Many model-based fault diagnosis approaches

have been developed, however many techniques are very complicated to apply with -

out the assistance of design software. Hence, there is a great need to develop a design

toolbox which can be used for new applications and further research. This toolbox

should of course have a modular structure and a common information exchange

standard between modules. The user will be able to select the most appropriate di-

agnostic techniques to suit a particular problem. Moreover, the user should be able

to combine different modules to form a complete application for a given problem,

and the toolbox should provide the most efficient way to link and to assure data

communication between units.

Application and implementation issues: For all model-based fault diagnosis

approaches, the system has been treated as a mathematical model. Hence all ap-

proaches are generic and can be applied to across a wide range of real physical

systems. But, by using the model, we lose the physical reality. Many problems

can be better tackled in a practical application environment. FDI schemes are nor-

mally implemented in computer software. In order to meet real-time computational

constraints, the complexity of the algorithm must be considered. The residual gen-

eration stage requires more computation than the decision-making stage in FDI
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because after residuals have been properly designed, the decision making is just a

very simple logical judgment procedure. The design procedure for residual generator

is complicated for some cases, especially when robust properties are required, how-

ever the implementation format is relatively simple. In fact, it is only a processor

(linear in most cases) of input and output data of the monitored system. The corn-

plexity of a residual generator depends on the order of observers or parity relations

and hence can be reduced by decreasing the order of parity relations (or observers).



Appendix A: INVERTED
PENDULUM

The laboratory inverted pendulum system shown in Fig.A-1 has been used as a

benchmark system to demonstrate fault diagnosis techniques and concepts due to

its wide availability in the control laboratory.

INPUT u(t)	

J OBSERVER-BASED	
OUTPUT y(t)

I	 FDI SYSTEM

FAULTS

ACTUATOR
(MOTOR) ()
	

SENSORS

INVERTED PENDULUM

FEEDBACK
CONTROLLER

REFERENCE COMMAND

Figure A-i: The controlled inverted pendulum system

This is a nonlinear system with some uncertain factors such as friction etc. A

simplified linearized is used here to illustrate the fault detectability. The linearized
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state space model matrices are:

0

A= 
0

0

0

	

o	 i	 0

	

0	 0	 1

	

—1.93	 —1.99	 0.009

	

36.9	 6.26	 —0.174

B = [0 0 - 0.3205 - 10091T

1000

C=	 0 1 0 0	 D=031

0010

where the state variables are: the cart position perturbation Lix, the pendulum

angle , the cart velocity th and the pendulum angular velocity 4 . The system is

unstable and needs to be stabilized. Since the purpose of the example is to illustrate

the fault detection capability, the system is simply stabilized via a state feedback

controller.

A full-order observer with poles {-14, —20, —8 + 8i} is used to estimate the output

and the output estimation error is used as the residual signal. The steady-state gain

between the residual and the faults is:

Grj(0) = C(A - KC)'K + I

Where K E R4 X3 is the observer gain matrix. Assume that:

K = [k1 k2 k3]
	

(k, E '1Z4 ,i = 1,2,3)

A = [0 a2 a3 a4]
	

(a E 'R 4 ,i = 2,3,4)

(A— KC)' = [gl,g2,g3,g4]T	(gi E R,4 ,i = 1,..,4)

Now, Grf(0) C(A - KC)'K + I can be computed as:

1+g 'k	 gk2	 g"k

Grj (0)	 gk 1+g'k2

gk3	g'k2 1+k3
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However

I T

	

i	 I

	

I	 TI

	

(A - KC)'(A - KG) - i
	

' [—k1-I TI

	

I	 I

	

I	 TI
L g4 j

a2 - k2 a3 k3 a4] = 14

This leads to: g'ki = —1, g 'ki = 0 and g ' Jv 1 = 0. Substituting these relations into

Grf (0), we have:

Grf(0)	 U * *

This proves that the strong detectability for faults in sensor 1 cannot be achieved

no matter what observer gain matrix is used and what is the cart position, if the

residual generator is based on a full-order observer.



Appendix B: MATRIX
DECOMPOSITION

Proposition: Any p x q and rank r (r	 min{p,q}) matrix E E	 can be

decomposed as follows:

E=E1E2

where E1 E pXr, E2 E	 and

rarik(Ei ) = rank(E2 ) = r

Proof: According to the singular value decomposition (SVD) theorem, the matrix

E can be decomposed as:
E=UEVT

where U E 1PXP and V E 7,qxq are orthogonal matrices and:

F E

E = [O(pr)xr

Orx(q-r	 1 e pXq

°(p-r)x(q-r) ]
= diag{a,u",o}

where o, o, • , o are singular values of E.

The matrix E can be rewritten as:

E-UL Er-	 O(p_r)xr] [Er

i'r,T
Urx(q_r)J V

Define:
I	 Er	 1 = [u 1 , u2 , " U r] E E pxr

E1 =	
L °(p-r)xr

E2 = [Er Orx(q_r) ]VT = Er[Vl,V2,	 , Vr I T 	 E rXq
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where u 1 , U2, •• , Ur are first r columns of U and v1 , v2 ,••• , z are first r columns of

V. It can be easily see that E1 is a full column matrix and E2 is a full row rank

matrix.

QED.



Appendix C: PROOF OF
LEMMA 3-2

The observability matrix of (C, A) is defined as:

C

CA
wo=

CA'

The observability matrix of (C1 , A) is also defined as:

C

CA

CA14/rol=

CA'

CA'

From Cayley-Harnilton theorem, one can seen that CA can be represented by a

linear combination C, CA, , CA' and this leads to:

rarik(Wo) = rank(Wo 1 ) = n0

If we select n0 linear independent rows vectors ?'	 , p 0 from Wo matrix, these row

vectors ae also the rows of the matrix W01 . These row vectors are now combined

with another n - no arbitrary independent row vectors 	 , p to construct an
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non-singular matrix as:

Pi,.,pno;pno+i,.,pnIT

if one apply a transformation P to the system matrix pairs (C, A) and (C1 , A),

the standard observability decompositions of (C, A) and (C1 , A) are formulated as

(Chen, 1984):

PAP 
= A11 0	

A11 E lZfloXflo

Al2 A22

	CP1 = [C* 0]	 C* e 7tflXflO

= [C	 0]	 C E 2mXno

where (C* , A 11 ) and (Cr, A 11 ) are observable matrix pairs.

From the standardized observability decompositions shown above, it can be seen

that (C, A) or (C1 , A) are detectable if A22 is stable, i.e. the detectability of (C, A)

is equivalent to the detectability of (C1 , A).

K QED.



Appendix D: LOW RANK

MATRIX APPROXIMATION

Eckart-Young Theorem (Eckart and Young, 1936; Tufts et aL, 1982): Let A

be an rn x n matrix of rank r which has complex elements. The singular value

decomposition of the matrix A is:

A=UEV* ; UEC	 , VEC	 , EECm

The matrices U and V are unitary, and E is a rectangular diagonal matrix with real

and nonnegative diagonal entries. These diagonal entries, called the singular values

of A, are conventionally ordered in decreasing (or increasing) order.

Let S,, be the set of all m x ri matrices of rank p (<r). For all matrices B in 8,,,

A-All ^ IIA-BI

where	 A=uv*

and is obtained from the matrix E by setting to zero all but p largest singular

values. The matrix norm is the Frobenius norm. That is

IA - A ll = /trace[(A - B)*(A - B)]

Hence, in words, A is the best least squares approximation of lower rank p to the

given matrix.
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