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Abstract

The aim of this PhD thesis is to illustrate the development a computational model
for speech synthesis, which mimics the behaviour of human speaker when they
adapt their production to their communicative conditions.

The PhD project was motivated by the observed differences between state-of-the-
art synthesiser’s speech and human production. In particular, synthesiser outcome
does not exhibit any adaptation to communicative context such as environmental
disturbances, listener’s needs, or speech content meanings, as the human speech
does. No evaluation is performed by standard synthesisers to check whether their
production is suitable for the communication requirements.

Inspired by Lindblom’s Hyper and Hypo articulation theory (H&H) theory of
speech production, the computational model of Hyper and Hypo articulation
theory (C2H) is proposed. This novel computational model for automatic speech
production is designed to monitor its outcome and to be able to control the effort
involved in the synthetic speech generation.

Speech transformations are based on the hypothesis that low-effort attractors
for a human speech production system can be identified. Such acoustic
configurations are close to minimum possible effort that a speaker can make in
speech production. The interpolation/extrapolation along the key dimension of
hypo/hyper-articulation can be motivated by energetic considerations of phonetic
contrast. The complete reactive speech synthesis is enabled by adding a negative
perception feedback loop to the speech production chain in order to constantly
assess the communicative effectiveness of the proposed adaptation. The distance
to the original communicative intents is the control signal that drives the speech
transformations.

A hidden Markov model (HMM)-based speech synthesiser along with the
continuous adaptation of its statistical models is used to implement the C2H model.



Abstract

A standard version of the synthesis software does not allow for transformations of
speech during the parameter generation. Therefore, the generation algorithm of
one the most well-known speech synthesis frameworks, HMM/DNN-based speech
synthesis framework (HTS), is modified. The short-time implementation of speech
intelligibility index (SII), named extended speech intelligibility index (eSII), is
also chosen as the main perception measure in the feedback loop to control the
transformation.

The effectiveness of the proposed model is tested by performing acoustic analysis,
objective, and subjective evaluations. A key assessment is to measure the
control of the speech clarity in noisy condition, and the similarities between the
emerging modifications and human behaviour. Two objective scoring methods are
used to assess the speech intelligibility of the implemented system: the speech
intelligibility index (SII) and the index based upon the Dau measure (Dau).

Results indicate that the intelligibility of C2H-generated speech can be
continuously controlled. The effectiveness of reactive speech synthesis and of
the phonetic contrast motivated transforms is confirmed by the acoustic and
objective results. More precisely, in the maximum-strength hyper-articulation
transformations, the improvement with respect to non-adapted speech is above 10%
for all intelligibility indices and tested noise conditions.
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Chapter1
Introduction

The observation that human talkers adapt their speech according to their listening
situation was established more than a century ago by Lombard (Lombard, 1911).
According to theories such as Lindblom’s Hyper and Hypo articulation theory
(H&H) theory of speech production (Lindblom, 1990), such modifications are
caused by the need to transfer information from the talker to the listener while
minimising the effort and maximising the effectiveness of their communication.

The most common examples of adjustments are:

• speech rate modification,

• pitch shifting,

• spectral energy reallocation.

That is, humans make continuous adjustments, continuously assessing the
effectiveness of their modifications. Similarly, in Levelt’s Perceptual Loop theory
(Levelt, 1989), this adaptation is described as a talker’s inner process, driven by
a perceptual loop which constantly monitors the spoken outcome to assure the
success of the communication process.

1.1 Limitations of current speech synthesis systems

Standard automatic speech synthesis systems still exhibit a rather limited range of
speaking styles as well as an inability to adapt to the listening conditions in which
they operate (Moore, 2007b; Moore and Nicolao, 2017).
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Whilst the raw technical performance of contemporary spoken language systems
has improved significantly in recent years (as evidenced by corporate giants such as
Microsoft and IBM continuing to issue claim and counter-claim as to whose system
has the lowest word error rates (Xiong et al., 2016; Saon et al., 2017)), in reality,
users’ experiences with such systems are often less than satisfactory. Not only can
real-world conditions (such as noisy environments, strong accents, older/younger
users or non-native speakers) lead to very poor speech recognition accuracy, but the
‘understanding’ exhibited by contemporary systems is rather shallow. As a result,
after some initial enthusiasm, users often lose interest in talking to Siri or Alexa,
and they revert to more traditional interface technologies for completing their tasks
(Moore, 2016).

One possible explanation for this state of affairs is that, while component
technologies such as automatic speech recognition and text-to-speech synthesis
are subject to continuous ongoing improvements, the overall architecture of a
spoken language system has not changed for quite some time. Indeed, there is a
W3C ‘standard’ architecture to which most systems conform (W3C-SIF, 2000), as
shown in Figure 1.1. Standardisation is helpful because it promotes interoperability
and expands markets, however it can also stifle innovation by prescribing sub-
optimal solutions.

Figure 1.1: Structure of the W3C ‘standard’ Speech Interface Framework. Figure adapted from
(W3C-SIF, 2000).

2
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In the context of spoken language, there are a number of issues with the standard
architecture depicted in Figure 1.1.

• The standard architecture reflects a traditional open-loop stimulus-response
(‘behaviourist’) view of interaction; the user utters a request, the system
replies. This is known as the ‘tennis match’ metaphor for language,
where discrete messages are passed back and forth between interlocutors
– a stance that is nowadays regarded as somewhat restrictive and old-
fashioned (Bickhard, 2007; Fusaroli et al., 2014). Contemporary ‘enactive’
perspectives regard spoken language interaction as being analogous to
the continuous coordinated synchronous behaviour exhibited by coupled
dynamical systems: that is, more like a three-legged race than a tennis match
(Cummins, 2011).

• The standard architecture suggests complete independence between the
input and output components, whereas there is growing evidence of the
importance of ‘sensorimotor overlap’ between perception and production in
living systems (Wilson and Knoblich, 2005; Sebanz et al., 2006; Pickering
and Garrod, 2007).

• The standard architecture fails to emphasise the importance of ‘user
modelling’ in managing an interactive communication: that is, successful
interaction is not only conditioned on knowledge about users’ directly
observable characteristics and habits, but it also depends on inferring their
internal beliefs, desires and intentions (Friston and Frith, 2015; Scott-
Phillips, 2015).

• The standard architecture neglects the crucial teleological/compensatory
nature of behaviour in living systems (Powers, 1973). In particular, it
fails to acknowledge that speakers and listeners continuously balance the
effectiveness of communication against the effort required to communicate
effectively (Lombard, 1911) – behaviour that leads to a ‘contrastive’ form of
communication (Lindblom, 1990).

As an example of context-dependant effort control, Hawkins provides an
informative illustration of such regulatory behaviour in everyday conversational
interaction (Hawkins, 2003). On hearing a verbal enquiry from a family member
as to the whereabouts of some mislaid object, the listener might reply with any of
the following utterances:

“I! ... DO! ... NOT! ... KNOW!”
“I do not know”

3
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“I don’t know”
“I dunno”
“dunno”

[@̃fl@̃@̃fi]

where the last utterance is barely more than a series of nasal grunts. Which
utterance is spoken would depend on the communicative context; the first might
be necessary if the TV was playing loudly, whereas the last would be normal
behaviour for familiar interlocutors in a quiet environment. Such responses
would be both inappropriate and ineffective if the situations were reversed;
shouting in a quiet environment is unnecessary (and would be regarded as socially
unacceptable), and a soft grunt in a noisy environment would not be heard (and
might be regarded as an indication of laziness).

Such adaptive behaviour is the basis of Lindblom’s H&H theory of speech
production (Lindblom, 1990), and it provides a key motivation for the model
proposed in this thesis. It has been suggested that a new generation of talking
agents should be developed that can adjust their speech quality and start to address
behaviours exhibited by human talkers such as the H&H speech (Moore, 2007a, b;
Moore and Nicolao, 2017).

The computational model of Hyper and Hypo articulation theory (C2H) (Moore
and Nicolao, 2011; Nicolao et al., 2012, 2013), which is proposed in this thesis,
represents the first context-aware model, that I know of, for reactive speech
synthesis. Further, this synthesiser is embedded in a more general model of
interaction between human or artificial agents (Moore and Nicolao, 2017). The
general principle of reactive speech synthesis (or ‘synthesis-by-analysis’) exploits
the ability of negative feedback control processes to monitor and adjust behaviour
to achieve an intended perceptual effect (Powers, 1973).

The underlying idea of the C2H model is illustrated in Figure 1.2. Key features of
this architecture are the active control on the text to speech synthesiser (TTS),
and the comprehension model (or emulation of the human speech recogniser,
(HSR) that is part of the negative feedback loop, which aims to minimise the .
This emulation, which is effectively an automatic speech recognition (ASR), is
crucial for the artificial production model to adapt the speech production in order
to maximise the receiver’s reception.

Hence, a C2H synthesiser monitors the effect of its output and modifies its speech
characteristics in order to maximise its communicative intentions.

In human speech, hyper/hypo-articulation behaviour is intrinsically related to the
effort used by talkers during speech production. In synthesised speech, however, a
valid effort measurement is less easy to achieve. In this thesis, phonetic-contrast
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TTS HSRs ww

d n+d

ASR

+

-

Figure 1.2: Architecture for a reactive speech synthesizer, in which words (w) are converted to speech
(s) which is subjected to noise (n) and disturbance (d). The synthesizer estimates the words perceived
by the listener (w) using a feedback path involving Automatic Speech Recogniser ASR. A control loop
compares w and w and the error signal drives the text-to-speech synthesis (TTS) to alter its output in

such a way as to maximize recognition accuracy. The output of the reactive speech synthesiser is
optimised to be received by a Human Speech Recogniser (HSR). Figure adapted from (Moore, 2007a).

motivated transform is proposed to control the amount of energy (i.e., effort) that
is used in the synthetic realisations. The hypothesis is that there are some speech
configurations in the human speech production, named low-energy attractors,
and that an interpolation/extrapolation along the key dimension of hypo/hyper-
articulation can be obtained by controlling the distance to such attractors.

One of the key properties of the negative feedback loop is that it needs to
provide a very efficient mechanism for assessing arbitrary disturbances. The
implementation of the C2H model, presented here, measures the effectiveness of
the communicative process in terms of speech intelligibility in noise conditions.

Recently, several studies have been proposed to tackle the adaptation of speech to
environmental conditions (Tang and Cooke, 2010). A signal processing approach
acting on the energy distribution and organisation and performed experiments
with both natural and synthetic speech. Further studies concern automatic speech
synthesis only, extending HMM-based synthesis to focus on optimisation of
generated features in known noise conditions (Valentini-Botinhao et al., 2012),
on data-driven adaptation of glottal source signal (Raitio et al., 2011a), and on
interpolation/extrapolation of ‘ad-hoc’ trained models (Picart et al., 2011).

In order to test the degree of control on hypo/hyper-articulation speech,
an implementation of the C2H model, with HMM-based parametric speech
synthesiser (Zen et al., 2009) and STRAIGHT vocoder (Kawahara et al., 1999),
is also developed in this thesis, and the intelligibility of the resulting speech
utterances are evaluated.

5
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Several hypotheses on the nature of the previously-introduced low-energy
attractors are tested by modifying vowel and consonant production in an
HMM-based synthesiser with scalable adaptation of its statistical models. The
effectiveness of the proposed implementation is tested by performing acoustic
analysis, objective, and subjective evaluations. A key assessment is to measure the
control of the speech clarity in noisy conditions. Secondly, it is chosen to examine
the similarities between the emerging system modifications and human behaviour
itself. Different objective scoring methods are used in this thesis to assess the
speech intelligibility: the speech intelligibility index (SII) and the index based upon
the Dau measure (Dau). Among these metrics, the short-time implementation of
SII, named eSII, is also chosen as the main perception measurement in the feedback
loop to control the transformation.

1.2 Research questions

The context-aware speech synthesis model results from the search to answer some
fundamental research questions on synthetic speech production.

1. The first research question regards the key human speech production
characteristics that are missing in a standard speech synthesiser. What are
the characteristics that would allow a speech synthesiser to be aware of
the communicative context? An analysis of the principal theories of human
speech production is reported.

2. The second fundamental question asks how the human production
characteristics that are missing in synthesisers can be integrated in a
speech synthesiser. Particular attention is given to Lindblom’s H&H theory
(Lindblom, 1990) and Powers’ Perceptual Control Theory (PCT) (Powers,
1973). How can standard theories of human speech production be integrated
in a traditional synthesis system? A computational model for speech
synthesis is proposed to answer this question.

3. Another research topic concerns the transformations that can be applied
to the synthesiser in order to balance the amount of energy and clarity of
speech. Can speech production energy be estimated in synthesisers? To what
extent can phonetic contrast be a measure of the degree of effort in synthetic
speech production? Acoustic and intelligibility analyses are conducted to
answer these questions.

4. The proposed energy-motivated transform predicts some expected
modifications in the speech production. These have to be validated

6
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against typical human behaviour. Can the features of human speech in
adverse conditions emerge from a phonetic-contrast transform? Acoustic
comparison between human and synthetic speech production is used to
answer this question, comparing synthetic speech in adverse conditions with
human speech in noise (Lombard, 1911).

5. The context-aware synthesiser should be able to track and follow the
subsequent changes of the environment condition. The effects of adding
a PCT-inspired perceptual feedback loop are investigated. Can a perceptual
feedback loop enable continuous adjustments of synthesiser production to
follow the communicative context?

Each question is addressed in a specific part of the thesis, as detailed next.

1.3 Thesis overview

Chapter 2 reports an overview of the salient aspects of human speech production.
Some computational models of human speech production are also described.

Chapter 3 presents an overview of the state-of-the-art techniques for speech
synthesis by machines.

Chapter 4 describes the main components of the C2H model. The fundamental
principles behind its design are reported, its relevance to the research questions of
this thesis are discussed.

In Chapter 5, an implementation of the C2H model is described using an HMM-
based statistical parametric speech synthesiser. The implementation choices to
create the voices, the transforms, and the control mechanisms are also detailed.

Chapter 6 presents the results of experiments assessing the effectiveness of the
C2H model. Characteristics of human and C2H speech in adverse condition are
considered and compared. Objective and subjective measures of intelligibility are
also used to assess the quality of the proposed speech adjustments.

Chapter 7 summaries the main findings of this thesis, discussing the results, the
effectiveness of the model, and some comments on future developments of the
C2H approach.
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Chapter2
Speech Production in Humans
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In order to model human speech production, some key characteristics of this
behavioural phenomenon is described in this chapter. Some of the most affirmed
theoretical explanations of the process that control human speech production are
also reported. The main objective of this chapter is to highlight the behaviours that
allow human speech to adapt to different contexts, addressing the research question
n. 1 of this thesis.

2.1 Human speech production

The capability of conveying information using articulated sounds is a peculiar
behaviour that characterises many living beings. Across many years of evolution,
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human beings have specialised in the use of these vocal sounds, and some complex
speech mechanisms have been developed. Understanding the behaviours that
control speech production and perception has always been of interest to research
fields such as medicine, cognitive science, biology and computer science.

2.1.1 Speech communication

Speech communication identifies that set of behaviours that humans adopt to pass
information among members of the group.

The main goal of speech communication is to transfer information from a speaker
to a listening audience. Both talkers and listeners are active part of the process.
The success of the communication might depend on the diverse motivation and
communicative goal of the participants. Human speech communication has been
so refined in centuries of evolution that people acquired the ability of transferring
information with any level of abstraction, from concrete phenomena to ideas,
concepts, and emotions. People are capable of compensating for most of the
communicative conditions: noise, impairment, and disruptions.

Human speech relies on a combination of fundamental communicative units. These
units may consist of articulatory gestures, phones, or morphemes. The range
of gestures that can be produced by humans is quite wide and their extension
can be scalable in a continuous space. Despite the continuous gesture space
humans may use a relatively small number of configurations to render their speech
vocalizations (Oudeyer, 2004). The set of gestures is also greatly language and
cultural dependent.

Multi-modality

Human speech communication can use several parallel channels to exchange
information (Levinson and Holler, 2014), rather than relying on the speech audio
signal alone. Visual cues, such as hand or body gestures, posture, and other non-
verbal modes, can communicate a lot of extra information to complete the speaker’s
or listener’s communicative message. In particular, visual cues transferred by lip
reading or in the listener’s body language, can greatly increase the possibility of
successful communication, when the environment channel is distorted by adverse
conditions.

Finally, communication is also conducted via non-speech sound. For example,
listener’s backchannel responses are non-verbal sounds, a continuous assessment
feedback to the speaker about the quality of a primarily one-way communication.
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2.1 Human speech production

In principle, a context-aware computational model of speech production should
also take these channel into account. In this thesis, however, only the main speech
modality is modelled.

2.1.2 Variation in human speech

Variation is a crucial part of speech production in humans (Lindblom et al., 1992).
When requested, speakers often fail to produce the same utterance twice, even
in a controlled environment. Therefore, it is reasonable to assume that some
innate component of the production system must generate chaotic variations in the
speech signal, but without these variations affecting the general significance of the
utterance. Moreover, even when speech is supposed to be neutral, it carries some
additional information that listeners are able to decode, such as characteristics of
the speaker, the listener, their relation, or the environmental conditions. Given
that it is possible for humans to extract such information from the speech signal,
it appears likely that speech variations thus constitute an additional fundamental
dimension of communication.

Two main categories of variation can be identified in relation with the part of speech
that is modified. The first type of variation includes the changes that speakers make
on the information transferred. For example, a concept can be verbally expressed
in several different ways, and variations in lexicon, language, grammar, intonation,
gesture, and emotions, all contribute to the degree of complexity and abstraction in
which the concept is uttered.

The second type of speech variation affects the acoustic characteristics of the sound
itself, such as speech loudness, accent or inflection, spectral energy reallocation,
production rate, and clarity. Exemplifying this, the Lombard speech reflex,
described in § 2.1.2, explains a class of sound modifications that occur in presence
of noise.

Lombard speech

The Lombard reflex (Lombard, 1911) is one of the earliest and more
comprehensive description of variational behaviour in speech production. It
describes the adjustments that a speaker performs in the presence of noise to
compensate for the environment’s influence and complete their communication
with the listener. It is an unconscious reflex that occurs automatically, and is
almost impossible to suppress, without specific training. It seems to be directly
linked to the speaker’s auditory feedback that analyses self-speech production,
known as self-monitoring (Levelt, 1983). Evidence of the reflexive nature of
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this phenomenon has been gathered from experiments in which speakers (but not
listeners) are exposed to noise over headphones. The talkers produce Lombard
speech, despite the conscious awareness that potential listeners may not be
experiencing the same noise (Junqua, 1996).

Several studies report the changes in speech that can be described as Lombard
speech (van Summers et al., 2005; Garnier et al., 2006; Drugman and Dutoit, 2010).
Common properties are:

• increased amplitude,

• mean word duration increment,

• changes in the fundamental frequency,

• changes in spectral tilt

• changes in format frequencies.

Most of these effects on speech can be explained by the observation that speech
articulator movements that are more extensive than in quiet speech. This is known
as hyper articulation.

When talkers try to enunciate clearly in noisy conditions, the Lombard reflex
appears to be closely connected to the speech production energetics. In order to
maintain the quality of the communication in adverse conditions, a certain quantity
of energy has to be applied to speech realisations. This is reflected in more ample
and precise articulatory movements, along with more intense airflow pressure, than
in neutral speech realisations. This concept can be extended, and the most widely
accepted approaches to speech communication modelling view production as only
one side of the speech chain (Denes and Pinson, 2016). The additional energy
that is observed in Lombard speech production is only a component of the total
energy that both speaker and listeners have to balance to compensate the adverse
effect of noise. The listener’s energetic component is revealed in measurements
of high level of cognitive load (i.e. neural activity level), when listening in noisy
conditions.

Finally, an important characteristic of the Lombard reflex is that it is a source of
speech variation that has specific causes and effects. Different degrees of noise
perturbation produce proportional speech variation effects, and the predictability
of these relationships allows repeatable experiments to be designed. Objective
measures can therefore be used to quantify the degree of Lombard speech
modifications subjected to multiple experimental conditions.

In this thesis, Lombard speech is considered the type of speech that a context-aware
synthesiser should be able to produce in presence of a noise environment.
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2.1 Human speech production

Sources of variation

Common sources of variation can be arranged in four categories (Hofe, 2011):
inter-personal, intra-personal, associated with clinical conditions, and listener-
specific. The first three variations arise from the speaker’s physiology and
education, social pragmatics, compensation of channel distortion, and any speech
difficulties. Finally, the listener-specific category includes variation that a speaker
produces to meet the needs of a specific audience, such as child-directed or acted
speech.

Most speech variations are not fixed throughout the communication process, but
evolve continuously due to ongoing changes of the context characteristics.

Some of the principal sources of variation are listed below (Hofe, 2011).

Emotions Emotional speech is one of the most prominent examples of speech
variation in the literature concerned with speech technology. Some researchers
try to investigate specific emotional states individually (Barra et al., 2006; Lee
et al., 2005), other researchers build general frameworks within which specific
emotions can be described in relation to each other (Scherer, 2003; Schröder,
2001). Several models place emotions in a 3-D emotional space, whose
dimensions relate to specific voice characteristics (Grimm and Kroschel, 2007),
such as, activation (active/passive), evaluation (positive/negative), and power
(powerful/weak). Emotions in speech have also been investigated in conjunction
with other modalities, such as facial expressions (de Gelder et al., 2013) and music
(Juslin and Laukka, 2003).

Social pragmatics Speakers are known to vary their production depending on
their social environment (Brown and Levinson, 1987). This results in dedicated
speaking styles that individuals adopt in specific situations, for example with
their family members or friends, in the presence of superiors, and at the
workplace. Lindblom affirms the importance of modifying speech articulation
for social acceptance (Lindblom et al., 1992), suggesting that phonetic reductions
presumably also serve to reduce the “social distance” between the two speakers.
That is, maximising speech clarity might not be the best communicative policy in
every communicative context.

Errors and error compensation Speakers frequently make errors when they
talk. This can be due to several cognitive and physiological causes, such as
tiredness, low attention level, or articulatory movement obstruction. A number
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of typical speech behaviours that arise from errors, error correction, and error
prevention are described in the literature: stop and restart due to speech disruptions
(Levelt, 1983), or introduction of pauses and/or turn holders between words to reset
the speech planning (Clark, 2002).

Coarticulation Coarticulation identifies the acoustic influence that neighbouring
speech gestures within an utterance exert on each other (Hardcastle and Hewlett,
2006; Hura et al., 1992). This effect is not limited to direct neighbours but can
also spread over longer segments. Generally, a speech sound influences preceding
sounds more than succeeding ones, so coarticulation is therefore assumed to be
connected to the planning of speech gestures. Coarticulation effects modify the
speech signal consistently, when the production effort is reduced. Increment of
speech rate and minimal amplitude of articulatory movements increase phone
assimilation and approximation (van Bergem, 1993).

Environment compensation Environment conditions can influence speech
production enormously. Several acoustic-phonetic consequences are observed
in presence of communication barriers (Hazan and Baker, 2011) such as
environmental noises (Lu and Cooke, 2007; Cooke, 2003) or the talker/listener’s
language proficiency (Lecumberri et al., 2016; Cooke et al., 2008). Such barriers
define the linguistic and acoustic space from which speakers must sample their
speech, if they want the communication to be successful.

Adaptation to the audience The speaker may also change their speaking style
according to the audience that they are addressing. When adults – particularly
parents – talk to children, they modify their speech (parentese or motherese)
presumably to support infants in their language learning process. When teachers
address a class, they may also change their linguistic and speech clarity style to
help the students to minimise the learning effort.

Accommodation Communication accommodation (Giles, 2016) describes the
tendency of two speakers involved in a speech interaction to converge towards
a common acoustic and linguistic space. After a certain exposure to different
accent, language proficiency, or semantic use of words, a speaker might adapt their
production style to it, temporarily or permanently. These changes normally require
prolonged two-way communication. As such, they are therefore not considered
further in this thesis.
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Effects on speech understanding

Listeners are normally aware of most of the effects of the previously described
sources of variations in speech production. In presence of such variations,
communication recipients adapt their understanding effort in order to successfully
decode the speech message, as part of a joint communicative effort (Denes and
Pinson, 2016). Noise and language barriers, production errors, etc. are normally
classified as adverse conditions from the listener perspective, as understanding a
spoken message in such disruptive conditions can be challenging task. If distortion
is too severe, for example, no information can be transferred, regardless of any
variation that is introduced by the speaker, A loud noise that completely masks
the speech audio may force the listener to request a complete restart of the
communication, or the switch to a different communicative modality. Moreover,
decoding a message in a language with which the listener is unfamiliar may also
require a too high cognitive effort, and this may impede any communication.

A complete description of the effect of speech variations on the listener’s reception
is beyond the scope of this thesis. However, the effects of adverse conditions on the
listener that a talking agent (human or machine) must be aware of for successful
speech comprehension to take place.

2.1.3 Context-awareness

Speakers are able to adapt their production continuously in reaction to the diverse
sources of variations that are listed in the previous section. These circumstances
influence an individual’s speech dynamically, producing a communicative variation
semantic that is typically shared by the members of the same language community.
Effective communicators are normally fully aware of these context-derived
variations, and can, where possible, exploit them proficiently to control the
communication efficiency.

A crucial part of the human communication process is the ability of the speaker
to assess the quality of their production in relation to the communicative context.
One of the most well-accepted models of human speech production (Levelt, 1983)
asserts that this is due to the mechanisms that detect (and correct) production errors
(Postma, 2000; Hartsuiker and Kolk, 2001). This function is mainly devoted to the
talker’s auditory system that enables them to be aware of their own production
– or self-monitoring (Levelt et al., 1999), – as well as sensing the environmental
conditions. The auditory loop allows them to assess their outer speech quality
against disturbances, and moreover to predict the quality of their production even
before producing the actual sound. Humans seem thus to be able to use the internal
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representation of speech – or inner speech (MacKay, 1992) – and predict if it can
correctly convey the desired information.

This prediction normally allows to adjust the linguistic and phonetic plan in order
to increase the communication success.

Speech has evolved to be understood by humans and therefore speaker and
listener share compatible tools to predict the success of communication. In direct
communications, speakers are also able to detect the listener’s requirements, that
can be implicit (e.g., lack of attention), or explicit (e.g., spoken feedback). In
a context-aware approach to speech production, the optimal speech outcome can
therefore be modelled as the product of the reaction to an environmental context,
rather the simple outcome of a set of behavioural rules. This will be discussed
further in § 2.2.2.

2.1.4 Active control factors

Speech production can vary according to the level of awareness with which a
speaker is willing to communicate.

This level of awareness can be compared to the motivation that drives the
communicative intent. Each of the sources of variation that was previously reported
(cf. § 2.1.2) can have larger or smaller effect on the talker’s speech, depending on
how much effort the speaker is willing to invest for optimising the variations. The
talker’s motivation influences the amount of effort that agents (talkers and listeners)
are willing to invest in the communicative process. Depending on the degree of
motivation, a talker, for instance, adopts more or less variations in their production
to change the degree of clarity and the amount of errors.

2.2 Theoretical speech production models

The observations of speech behaviours that are described in the previous sections
have led to several explanatory theories of speech production, and one of the
most famous and controversial views on speech production, which is often also
reflected in the standard speech synthesis systems, is the traditional open-loop
stimulus–response (‘behaviourist’) view of interaction (Skinner, 1948). The
verbal field is defined by Skinner as “that part of behavior which is reinforced
only through the mediation of another organism”. Therefore, another organism
has to reinforce the speaker’s behaviour, and direct their interaction modalities.
That is, the speaker learns from experience and applies these techniques to
the communication. In this approach, the speaker utters a sentence and waits
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for listener’s response. Discrete messages are passed back and forth between
interlocutors: a stance that is nowadays regarded as somewhat restrictive and
old-fashioned (Bickhard, 2007; Fusaroli et al., 2014). Contemporary ‘enactive’
perspectives regard spoken language interaction instead as being analogous to the
continuous coordinated synchronous behaviour exhibited by coupled dynamical
systems: that is, more like a three-legged race than a tennis match (Cummins,
2011). Whereas the traditional speech production approach suggests complete
independence between the input and output components, there is a growing
importance of ‘sensorimotor overlap’ between perception and production in living
systems (Wilson and Knoblich, 2005; Sebanz et al., 2006; Pickering and Garrod,
2007).

The computational model C2H that is proposed in this thesis is based on two
main hypotheses. The first hypothesis states that the speaker’s goal is to convey
information to listeners. The second hypothesis is that there is a continuous
trade-off between the effectiveness and the energetic cost of the communication.
According to these hypotheses, speakers should try to maximise information
throughput and minimise their energy expenditure.

The theories that contribute to modelling these behaviours are therefore discussed
next in some details: the H&H and the PCT theories.

2.2.1 H&H theory

The most important inspiration for C2H derives from Lindblom’s Hyper and
Hypo articulation theory (H&H) theory of speech production (Lindblom, 1990).
Lindblom proposes that speakers change their speech, according to different
constraints, along a continuum that defines the degree of speech articulation: from
hypo- to hyper-articulation. The constraints consist of energy consumption and
information output. The mechanisms of control that are included in the H&H
theory are defined as output-oriented and system-oriented control, as illustrated in
Figure 2.1. The output-oriented control aims to maximise the clarity of the speech

System-oriented
control

(energy efficient)

Output-oriented
control

(maximise clarity)

Realisation

Hypo Hyper

Articulation continuum 

Figure 2.1: According to H&H theory, both system- and output-oriented control influence the
realisation of speech on the articulatory continuum. Adapted from (Lindblom, 1996).

signal in order to support the listener’s speech understanding. The system-oriented
control aims, contrastively, to minimise the energy used in the speech signal
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production. The two control goals interact in a perception loop, in which speakers
monitor their speech outcome, its effects on the listener, and the effort used in the
realisation. Corrections are made to adjust the error distance between the perceived
communicative outcome and their prior intention. The resulting speech varies
along a continuum from full-strength hypo-articulation to full-strength hyper-
articulation.

When the production is pushed near the full-strength articulation extremes, it often
results either extremely unintelligible or unreal-sounding speech.

Most of the types of variation, mentioned in the previous section (cf § 2.1.2),
can be predicted by a theory such as H&H, in which energy and clarity are the
driving forces. First, coarticulation and the Lombard reflex are motivated by
energetics and clarity. Furthermore, characteristic accents that present language
barriers may be linked to the specific articulatory strategies that allow speakers to
produce sounds of their native language efficiently. It is hypothesised that the use of
these energy-optimised strategies in another language produces the typical native-
language dependent accents. Communication efficiency may cause talkers to cease
to discriminate between specific sounds or to create new lexicon for specific tasks
related to a specific community of people. Speech behaviour in different social
contexts can also be related to energetics. For example, people may invest energy
in the communication ans use a rather clear and well-formulated production when
they communicate with their superiors to gain their approval.

Criticism of H&H theory

The main criticism against the H&H theory is motivated by the delay that such
constant readjustments would require. Critics of speech production theories that
rely on auditory feedback point out that there is a delay of around 60 ms between
the generation of the motor command and the auditory feedback response in the
brain (Guenther et al., 2005). This delay seems too long to allow for an immediate
adaptation of articulatory gestures. This behaviour is more critical for consonants,
that usually have much shorter duration, than for vowels, which typically are longer
than 100ms (Junqua, 1996) and therefore can manage a similar delay. However,
some forms of variation, such as the Lombard reflex, exhibit phone (particularly
vowel) elongation as one of the most prominent features (Garnier et al., 2006). This
lengthening may facilitate the accommodation of auditory feedback adjustment
delays in adverse conditions.

Moreover, other feedback loops seem feature in the human communication
process. For example, a short-latency feedback is proposed for the articulatory
gestures from the sensory-motor system (Nasir and Ostry, 2006). As mentioned
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before, there is evidence of an internal loop that simulates the interaction between
inner speech and the external environment (Borden, 1979; MacKay, 1992). This
allows consequences of speech actions to be predicted, based on experience, even
before the motor stimuli is generated (Levelt, 1983; Blackmer and Mitton, 1991).
Auditory feedback measures of the clarity of past speech can be used to provide
valuable predictions for the articulation of future speech. One of the most important
criticisms originates from the work of Tabain. They studied particular languages
with a high number of stop consonants (Tabain and Butcher, 1999). They found
that the amount of variability of stop consonants is comparable to that observable
in other languages with fewer stop consonants. These findings seem to confute
the H&H theory, since a small articulatory distance between speech sounds should
result in a reduced variability during production in order to maintain a sufficient
perceptual distance between them. The clarity constraint of H&H theory relates
to perceptual distances and the relationship to specific acoustic features may be
non-linear. In a following study, Tabain analyses the influence of vowel sounds on
preceding fricatives (Tabain, 2001), and reported small vowel-dependent variations
in both articulatory and acoustic features. This seems to be contrary to the H&H
theory, in which coarticulation should raise energy efficiency, taking advantage of
allowable articulatory imprecisions. However, the H&H theory affirms that the
overall energy expenditure must be minimised. No constraints about local energy
behaviour are specified. It can be expected that certain gestures may inherently
require more articulatory precision (and consequently energy) than others.

Evidence in favour of H&H theory

The presence of an output-oriented control system has been strongly evidenced
(Lindblom, 2004). For example, the Lombard reflex seems to be originated by the
need of maintaining the information flow. Moreover, it is an unconscious reflex
that requires great effort to be suppressed (cf. § 2.1.2).

Speech acts, such as social pragmatics or acting, can represent another proof of
output-oriented control. Speakers consciously modify their production to deliver
a carefully crafted spoken performance that contains all the parameters (clarity,
expressiveness, emotions, etc.) that match the audience expectations. Despite
being a conscious effort, it can still be considered a further proof of the existence
of an output-oriented control structure.

Though the Lombard reflex is listed as one of the main pieces of evidence in favour
of the output-oriented control in the H&H theory, it remains true that a higher
amount of energy is required to produce Lombard (rather than non-Lombard)
speech. In a noisy environment, speech is loud and hyper-articulated (Garnier et al.,
2006). For a given speech rate, related articulatory movements tend to produce
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both further and faster displacements of the articulators in Lombard speech. Since
the articulators have a certain mass, movement amplitude is directly linked to
energy consumption. Articulatory displacement is not the only energy expenditure,
however, though speech production may initially seem to involve very few parts the
human body, the cognitive load and brain resources that are needed to produce are
quite remarkable. The air stream that is produced by lungs also requires energy.
Both vocal effort and speech rate influence the amount of oxygen consumed by a
speaker and hence require more calories to perform the related gestures (Moon and
Lindblom, 2003).

The effects of output-oriented and system-oriented controls of the H&H theory
may be quite difficult to quantify in some cases. A measure of the speech
clarity can be inferred from analysing speech in noisy environment and assessing
the Lombard reflex similarities. On the other hand, an energy consumption
quantification may be more complicated to obtain as it is normally too intrusive
to access the articulators and record their displacement.

The scientific objective of this thesis is to investigate the effectiveness of a
computational model that can control the energy consumption and the clarity
in speech production, based on pure acoustic motivations. This constitutes the
proposed computational model of Hyper and Hypo articulation theory (C2H).

2.2.2 Perceptual Control Theory

H&H theory was introduced in the previous section (cf. § 2.2.1). It explains the
variation in human speech behaviour as the result of a control loop architecture
which monitors an internal and an external variable: energy and clarity. Powers’
Perceptual Control Theory (PCT) formalises such an architecture by claiming that
“behaviour is the control of perception” (Powers, 1973). That is, living organisms
use their control structures to behave in such way that it would induce the desired –
perceived – effects on the environment. This theory affirms that organisms do not
aim to perform sequences of actions, but their goal is to achieve specific results.

It is commonly accepted that similar actions may generate different results,
depending on external and internal factors, such as the environmental context
or the individual’s intent. Planning of an action for an individual could be a
draining process, if it had to take into account of all those influences during the
planning process. In PCT, managing results instead of actions is energetically
convenient. Results are an internal representation of the desired state, that is
simpler to visualise. Results are assessed by the perception loop that organisms
use to perceive the environment.
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The key PCT postulation is that the brain does not plan actions, but desired
outcomes. This concept can be naturally transferred to speech production. When
speakers produce speech, their brain does not explicitly plan any articulatory
movement, but rather a representation of what the speech result should be. This
representation allows for different degree of abstraction. It spans from the
accurate assessment of the speech samples (i.e., signal similarity) to very high-level
descriptions (e.g., expressiveness or clarity). The speech output is monitored by
an auditory feedback loop. Translated into the H&H theory terminology, humans
adjust their behaviour in an output-oriented way, controlling the effect of speech
production (clarity). The feedback from the sensing organs is compared with the
intentions, and if differences are detected, then appropriate actions are performed
to reduce the discrepancy.

The PCT approach to speech production can explain the mechanisms of both the
H&H theory and the Lombard reflex. It can also predict how clear speech can still
be produced by test subjects in jaw perturbation experiments.

Application of PCT mechanisms to speech has caused some controversy. Some
critics note that speakers with acquired deafness continue to speak, even though
their auditory feedback path has been eliminated. It is emerging that the PCT
feedback indicates a more general feedback loop, not only the auditory one. A
wide range of possible feedback paths are available in humans. These include the
tactile feedback from the speech articulators (Nasir and Ostry, 2006), the internal
simulation of the speech process (Borden, 1979), and the observation of listener
back-channelling reactions, which provide the perceived representation to compare
with the intention. As a result, deaf speakers can actually provide supporting
evidence of the self-monitoring auditory loop, as regular speech therapy to assist
them to maintain the clarity of their speech (Brainard and Doupe, 2000).

The perception feedback loop of complex organisms monitors aspects of the
environment as well as of the organism itself (e.g. external clarity and internal
energy). In this theory, the brain reacts to all sources of feedback to produce
targeted actions in response to some perturbation of the desired state. The existence
of an ideal reference condition is a fundamental requirement to specify the desired
state.

However, there are many cases in which the type of action and the intensity of its
application are not unique. Actions can be then selected from a range of options.
Experience or prediction of the action effect can help to select the optimal action.
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2.2.3 Environment prediction

In the previous section, it is reported that the PCT can track the ongoing evolution
of the environment (e.g., background noise changes) by trying to control the
outcome of the interaction (e.g., maintaining speech clarity).

In this context, the uncertainty regarding the future evolution of the environment
might be mitigated by the use of a predictive model of it. This is normally derived
from experience, It should not be considered as set of rules for action planning,
but instead as a set of constraints on the states in which the environment can
evolve. In this way, the estimated reaction applied to maintain speech clarity
can be interpreted as a form of mental simulation (or predictor) that emulates the
consequences of possible actions prior to action selection (Hesslow, 2002; Grush,
2004). Another insight to emerge from this approach is that the depth of the search
for a possible action can be the observed consequences regarded as analogous to
effort, i.e., the amount of energy devoted to finding a solution (Moore and Nicolao,
2017).

In the H&H theory, a predictive model of the environmental effects on speech
might help to reduce the latency of the reactions, and to exclude useless actions
at an early inner-loop level. A speaker’s previous experience can help them to
estimate the environmental and contextual conditions and to change their speech
output, accordingly. Listeners do not always need to extract every information
detail from the speech signal. Prior knowledge of the listener is often combined
with the signal information to decode the intention of the speaker (Lindblom,
1996). The role of knowledge becomes more important when the signal becomes
more hypo-articulated. This mechanism is referred to as the signal+knowledge
approach to speech decoding.

2.3 Computational models of speech production

This section describes some of the principles in the theoretical models in
the previous sections can be translated into algorithms and function to define
computational models of speech production. Computational modelling is the use
of algorithms to simulate and study the behaviour of complex systems. It can be
particularly effective when the internal mechanism of the systems is unknown, and
only the inputs and outputs are measurable. In such cases, a computational model
can be used in simulations in which the outcome has to be coherent with the system
observations.

One of the earliest models of speech production can be identified in the source-filter
representation (Fant, 1970) that is depicted in Figure 2.2. This model describes
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approach is generally called ‘‘unit selection,’’ and various
systems including commercial systems were developed
resulting in a higher level of reading-style synthetic speech
[4]–[8].

For applications, such as screen reader and newspaper
readout functions, reading-style synthetic speech may be
sufficient. However, there are other potential applications
where TTS systems are required to read out texts with
expressivity. The unit selection method, however, restricts
the output speech to the same style as that in the original
recordings as no (or few) modifications to the selected
pieces of recorded speech are normally done. If we need to
generate synthetic speech with various speaking styles and
emotions with this method, larger speech databases con-
taining different speaking styles are always required. IBM’s
stylistic synthesis [9] is a good example; however, the size
of the speech database becomes exponentially larger and
further recording of a large quantity of speech with various
speaking styles and emotions is obviously cost inefficient
and time consuming [10].

With such a need for more control over speech ‘‘varia-
tions,’’ another data-driven approach called ‘‘statistical pa-
rametric speech synthesis’’ emerged in the late 1990s and
has grown in popularity in recent years [11]–[14]. In this
approach, several acoustic parameters are modeled using a
time-series stochastic generative model. Statistical param-
etric speech synthesis which uses a hidden Markov model
(HMM) as its generative model is typically called HMM-
based speech synthesis. HMMs represent not only the
phoneme sequences but also various contexts of the lin-
guistic specification in a similar way to the unit selection
approach, and acoustic parameters generated from HMMs
selected according to the linguistic specification are used
to drive a vocoder, which is a simplified speech production
model, in which speech is represented by vocal tract pa-
rameters and excitation parameters, in order to generate a
speech waveform.

Thanks to efficient and well-established machine learn-
ing algorithms, which mostly originated in the automatic
speech recognition (ASR) field, such as Baum–Welch,
Viterbi, and clustering algorithms [15] and various open-
source toolkits that cover text analysis, signal processing,
and HMMs [16]–[19], HMM-based speech synthesis has
been a major topic in speech synthesis research and used
worldwide by both academic and commercial organiza-
tions. About 76% of speech synthesis papers presented at
Interspeech 2012, which is a major international confer-
ence on speech information processing, have used HMM-
based approaches, and this trend strongly confirms the
need for and potential of this new approach.

The quality of HMM-based synthetic speech has been
improving, e.g., [20]–[23], and many techniques for con-
trolling speech variations, e.g., [1] and [24]–[35], have also
been proposed. Commercial products based on the HMM-
based speech synthesis approach, e.g., [36]–[39], have
been available in the market.

The aim of this paper is to give a general overview of
popular techniques used in HMM-based speech synthesis.
Although many research groups have contributed to the
recent progress in HMM-based speech synthesis, note that
the description given here is somewhat biased toward
implementation of the HMM-based Speech Synthesis
System (HTS) [11], [40].

The rest of this paper is organized as follows. Section II
introduces the fundamentals of the HMM-based speech
synthesis system. Section III describes the flexibility of HMM-
based speech synthesis, and open source software tools are
introduced in Section IV. The relation between the HMM-
based and unit selection speech synthesis approaches is
discussed in Section VI, and the recent development is
described in Section VII. Future directions are described in
Section VIII. Concluding remarks are presented in Section IX.

II . HMM-BASED SPEECH SYNTHESIS

A. Speech Production and Vocoder
It is well known that the speech production process

(Fig. 1) may be approximated using a digital filter shown in
Fig. 2. This implementation is based on the source filter
theory of voice production [41] and is therefore called the
source filter model. The most straightforward such model
uses a white excitation (pulse train or noise) filtered with a

Fig. 1. Overview of human speech production.

Fig. 2. Source-filter model that simulates human speech production

shown in Fig. 1.
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Figure 2.2: Source-filter model of human speech production. Figure reproduced from (Tokuda et al.,
2013)

speech production as a two-stage process that originates from the generation of a
sound excitation signal by the vocal cords, which is then shaped or filtered by the
resonant properties of the vocal tract. The two parts of the model act independently.
Most of the source spectrum shaping thus occurs in the oral cavity and optionally
the nasal cavity. Although it has often been pointed out that, for various reasons, the
linearity assumption is not strictly true, the model has been extremely influential
in speech sciences for decades, forming the theoretical foundation for most of the
parametric speech synthesis (see § 3.2) and for a wide range of applications in
speech signal processing.

Other advanced computational models for speech production exploit the idea of the
auditory feedback loop. Some of these further include somatosensory feedback,
such as DIVA (Guenther and Perkell, 2004; Lane et al., 2007). The DIVA model
of speech production assumes that lexical retrieval of strings of words leads to
sequential activation of speech-sound map cells, each corresponding to a word,
syllable, or phoneme. When one of these cells is activated, it sends signals to cells
in the model’s auditory, somatosensory, and primary motor cortical areas. These
signals lead to production of the speech sound through a feed-forward system and
a feedback system.

Some speech production models also produced physical or software
implementations of the hypothesised processes. For example, Hofe’s AnTon
(animatronic tongue and vocal tract) (Hofe and Moore, 2008; Hofe, 2011) is a
physical model of speech production that creates speech sounds that result solely
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2 Speech Production in Humans

from the anatomical structures that are implemented, rather than being artificially
engineered. It applies the basic principles of the H&H theory by measuring the
energy involved in the production as a function of the physical movements of the
artificial articulators.

Atrianaki’s MAGE system (Astrinaki et al., 2013) is one of the first
implementations of continuous adjustments in a speech synthesiser framework,
allowing reactive speech synthesis with short-latency control of the speech
outcome characteristics. Although it allows modifications pf speech production
that are compatible with Lombard speech, the outcome control is not driven by
any human-related (auditory or somatosensory) feedback. Rather, the outcome is
controlled by an interactive user interface, thus , this system cannot be regarded as
a proper computational model in the sense required here.

Moore’s PRESENCE (Moore, 2007a, b) is also a computational model for speech
production which is designed to be applied to speech synthesis systems. His
first challenge suggested that systems should talk ‘clearly’, and he noted that no
contemporary text to speech synthesiser (TTS) had addressed the classic H&H
behaviour exhibited by human talkers. Moore went on to develop this particular
idea further and proposed a new approach to speech generation that

1. selects speech characteristics that are appropriate to the needs of the listener,

2. monitors the effect of its own output,

3. and modifies its behaviour according to its internal model of the listener.

The computational model C2H, which is proposed in this thesis, represents the
first comprehensive model for reactive speech synthesis (Moore and Nicolao, 2011;
Nicolao et al., 2012). This synthesiser is presented within a more general model
of interaction between human or artificial agents (Moore and Nicolao, 2017). The
general principle of reactive speech synthesis (or ‘synthesis-by-analysis’) exploits
the ability of negative feedback control processes to monitor and adjust behaviour
in order to achieve an intended perceptual effect (Powers, 1973).
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This chapter discusses various approaches to artificial speech generation,
considering their usefulness for the specific focus of this work, which is to create a
speech synthesiser that can react to external stimuli, such as environmental noises,
and adjust its speech production.

Firstly, a historical overview of the different techniques that have been applied
to speech generation is presented. Secondly, recent parametric speech synthesis
methods are described, introducing the mechanisms and the terminology relevant
to the creation of the context-aware speech synthesiser. The most crucial
limitations of current speech synthesisers are highlighted, addressing the research
question n. 1 of § 1.2. The final section overviews processes by which artificially-
generated speech can be modified to reproduce some of the context adaptations
that are observed in humans.



3 Speech Production in Machines

3.1 Speech synthesis

Speech synthesis is the process which enables machines (or talking agents) to
generate speech-like audio output. Voice interaction is a common feature of many
human-computer interfaces (HCIs). Speech synthesisers are used in a wide range
of application areas, such as

• embodied virtual assistants (Amazon Echo, Google Home, Apple HomePod,
etc.),

• speech enabled intelligent personal assistant (Siri, Alexa, etc.),

• automatic translation system output (Google Translate),

• language tutoring systems (correct pronunciation feedback),

• information access by telephone: interactive voice response (IVR),

• assistive technologies (aid to visually impaired users, voice reconstruction),

• interactive systems (e.g. games, simulators, toys).

Speech synthesisers have linguistic classes (a message or concept), normally
expressed with formatted text, as input, and a speech waveform as output.

Speech synthesis can be regarded as the “inverse” process of speech recognition.
In speech recognition, the redundant complexity of the audio signals is reduced to
low-dimensional linguistic classes by clustering common speech characteristics, as
depicted in Figure 3.1.

linguistic classes

Figure 3.1: Speech recognition

On the other hand, in speech synthesis is a large-scale inverse problem: highly
compressed linguistic classes (e.g., ideas, words, phones, etc.) are “decompressed”
into audio, as depicted in Figure 3.2.

The objective of speech synthesis is to create a waveform which is:

• Meaningful: speech should be able to convey a message to the listener

• Intelligible: the message should be audible and clearly understandable

26



3.1 Speech synthesis

linguistic classes

Figure 3.2: Speech synthesis

• Expressive: the intelligible message should be sound acceptable to listeners
(in terms of naturalness, expressiveness, emotions, etc.)

The general diagram of an automatic speech synthesis pipeline is depicted in
Figure 3.3. The descriptions of concept and natural language generations are

natural 
language 

generation

concept

linguistic 
analysis

waveform
generation

text to speech

formatted
text

abstract
linguistic 

description

synthetic 
speech

Figure 3.3: Automatic speech synthesis

outside the scope of this thesis, but are assumed to result in a formatted text string
plus some attributes referring to the quality of the intended speech production. The
text to speech synthesiser (TTS) box contains the elements commonly referred to
by the term “speech synthesis”. The linguistic analysis stage maps the input text
string into a standard form; determines the structure of the input, and finally decides
how to pronounce it. The waveform generation or synthesis of the speech signal
converts the symbolic representation into an actual waveform.

3.1.1 History of speech synthesis

Human interest in speech production has led many researchers to attempt to
produce artificial speech. The first production systems were mechanical devices
that generated human-like sounds, normally no longer than a monosyllabic word.
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3 Speech Production in Machines

The apparatus by von Kempelen (Dudley and Tarnoczy, 1950) is one of the earliest
examples of these machines. However, only a limited range of speech sounds could
be reproduced, such as the consonants [b], [p], [m], and [n].

Technological advances in the field of electronics allowed the development of
electrical speech synthesis in the early 20th century. Electronic circuits, such as
oscillators and filters that can manipulate a waveform, substituted the physical
resonators. Vowels could be produced by combining periodic waveforms with
different frequencies and amplitudes, producing the characteristic vowel formant
frequencies. The first formant synthesisers were then created, including the
Vocoder by (Dudley, 1939), in the 1930s.

The most successful way to produce artificial speech is based on the source-filter
model described in the previous chapter (cf. § 2.3). In Figure 3.4, the functional
block diagram of such a model is depicted. Recently, the term parametric synthesis

approach is generally called ‘‘unit selection,’’ and various
systems including commercial systems were developed
resulting in a higher level of reading-style synthetic speech
[4]–[8].

For applications, such as screen reader and newspaper
readout functions, reading-style synthetic speech may be
sufficient. However, there are other potential applications
where TTS systems are required to read out texts with
expressivity. The unit selection method, however, restricts
the output speech to the same style as that in the original
recordings as no (or few) modifications to the selected
pieces of recorded speech are normally done. If we need to
generate synthetic speech with various speaking styles and
emotions with this method, larger speech databases con-
taining different speaking styles are always required. IBM’s
stylistic synthesis [9] is a good example; however, the size
of the speech database becomes exponentially larger and
further recording of a large quantity of speech with various
speaking styles and emotions is obviously cost inefficient
and time consuming [10].

With such a need for more control over speech ‘‘varia-
tions,’’ another data-driven approach called ‘‘statistical pa-
rametric speech synthesis’’ emerged in the late 1990s and
has grown in popularity in recent years [11]–[14]. In this
approach, several acoustic parameters are modeled using a
time-series stochastic generative model. Statistical param-
etric speech synthesis which uses a hidden Markov model
(HMM) as its generative model is typically called HMM-
based speech synthesis. HMMs represent not only the
phoneme sequences but also various contexts of the lin-
guistic specification in a similar way to the unit selection
approach, and acoustic parameters generated from HMMs
selected according to the linguistic specification are used
to drive a vocoder, which is a simplified speech production
model, in which speech is represented by vocal tract pa-
rameters and excitation parameters, in order to generate a
speech waveform.

Thanks to efficient and well-established machine learn-
ing algorithms, which mostly originated in the automatic
speech recognition (ASR) field, such as Baum–Welch,
Viterbi, and clustering algorithms [15] and various open-
source toolkits that cover text analysis, signal processing,
and HMMs [16]–[19], HMM-based speech synthesis has
been a major topic in speech synthesis research and used
worldwide by both academic and commercial organiza-
tions. About 76% of speech synthesis papers presented at
Interspeech 2012, which is a major international confer-
ence on speech information processing, have used HMM-
based approaches, and this trend strongly confirms the
need for and potential of this new approach.

The quality of HMM-based synthetic speech has been
improving, e.g., [20]–[23], and many techniques for con-
trolling speech variations, e.g., [1] and [24]–[35], have also
been proposed. Commercial products based on the HMM-
based speech synthesis approach, e.g., [36]–[39], have
been available in the market.

The aim of this paper is to give a general overview of
popular techniques used in HMM-based speech synthesis.
Although many research groups have contributed to the
recent progress in HMM-based speech synthesis, note that
the description given here is somewhat biased toward
implementation of the HMM-based Speech Synthesis
System (HTS) [11], [40].

The rest of this paper is organized as follows. Section II
introduces the fundamentals of the HMM-based speech
synthesis system. Section III describes the flexibility of HMM-
based speech synthesis, and open source software tools are
introduced in Section IV. The relation between the HMM-
based and unit selection speech synthesis approaches is
discussed in Section VI, and the recent development is
described in Section VII. Future directions are described in
Section VIII. Concluding remarks are presented in Section IX.

II . HMM-BASED SPEECH SYNTHESIS

A. Speech Production and Vocoder
It is well known that the speech production process

(Fig. 1) may be approximated using a digital filter shown in
Fig. 2. This implementation is based on the source filter
theory of voice production [41] and is therefore called the
source filter model. The most straightforward such model
uses a white excitation (pulse train or noise) filtered with a

Fig. 1. Overview of human speech production.

Fig. 2. Source-filter model that simulates human speech production

shown in Fig. 1.
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Figure 3.4: A source-filter model that simulates the human speech production model reported in
Figure 2.2. Adapted from (Tokuda et al., 2013).

has become widely used to describe synthesisers which are driven by a set of
input parameters, typically those that define the excitation signal and the waveform
spectral envelope. Formant frequencies, articulatory parameters, linear predictive
coefficients (LPC), and Mel-generalized cepstral (MGC) coefficients are among
the most popular parameters used to define the waveform spectral envelope.

In the reminder of this section, brief descriptions of the principal synthesis methods
are reported. These methods are typically based on the source-filter model, but the
unit selection synthesis method discussed below is an exception to this rule.

Formant synthesis Formant synthesisers (Klatt, 1987; Holmes, 1983) were the
first form of synthesiser that were based on the source-filter model of speech
production (Fant, 1970), shown in Figure 3.4. The control parameters of a typical
formant synthesiser are:

source parameters These describe the excitation signal, voiced/unvoiced
characteristics, fundamental frequency, and intensity (loudness);
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3.1 Speech synthesis

filter parameters These include the resonance frequencies (formants),
bandwidth, and amplitude of the filters that shape the vocal tract.

A typical excitation signal is a pulse train, which is suitable for formant
synthesisers due to its spectrum flatness (Oppenheim and Schafer, 2014). The
pulses can also be shaped in such a way that they mimic the pulses produced by the
vocal cords. However, the design of a more realistic excitation signal is not trivial
as in humans it has highly non-linear characteristics (Drugman and Dutoit, 2010).
The number of pulses per second controls the fundamental frequency of the speech
signal, i.e., the voice pitch. In the case of unvoiced phones, an alternative excitation
function is used, a random white noise signal, and filter parameters instead are
responsible of the control of the synthesised speech spectrum. Rather good voice
quality and intelligibility can be achieved using the formant synthesisers (Holmes,
1983, 1986), but adaptation to different speech styles or speaker identities is not
easily achievable. Format synthesisers were quite popular until mid the 1990s, but
were used mainly for research purposes.

Articulatory synthesis Articulatory synthesisers use the properties of human
articulatory system models to generate vocal tract filters that shape the speech
signal spectrum. Generation parameters are derived from physiology instead of
acoustic properties of the vocal tract. The articulator positions, or the states of
muscles controlling them are some of the most commonly used parameters. Two
methods can be applied to synthesise speech from an articulatory model:

• the vocal tract filter can be computed from the articulatory configuration, and
a standard source-filter model can be applied;

• the shape of the vocal tract can be modelled, and finite-state analysis of
the air-stream behaviour in the vocal tract for that configuration is used to
produces the speech waveform.

In the first approach, the challenge is to create a reliable mapping function between
the articulatory movements and the vocal tract filter. The second approach requires
a huge amount of knowledge and computational resource in order to derive
solutions to the turbulence air-stream model.

These two synthesis approaches can also be regarded as parameter-to-sound
systems, or vocoders. A vocoder is a system that takes a parametric representation
of sound and generates a related speech waveform. Neither the formant nor the
articulatory synthesisers provide methods to generate the sequences of parametric
representations that will be needed to compose the speech message. Instead, this
type of synthesisers are normally used for copy-synthesis or re-synthesis of speech.
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3 Speech Production in Machines

In order to produce a more complete model of speech production, a speech
synthesiser also has to provide the capability to generate the parametric
representations from text (or concepts). For this reason, since the mid-1990s,
several systems have been proposed to analyse the input text information, to
convert it into linguistic and phonetic components, and to generate the sequence
of parametric commands that produce the final waveform. These systems can be
categorised into two main approaches: waveform-based or model-based.

Unit selection The waveform-based synthesisers do not use the source-filter
approach to create speech audio. Instead, libraries of pre-recorded sound segments
(units) that are concatenated to form the utterances (Taylor, 2009). In the mid
1950s, the first studies regarding the possibility of using sub-word segments of
recorded speech to form new utterances were proposed (Harris, 1953). At the
time, the recorded speech was segmented, cut, and recomposed mechanically from
speech units that were stored on magnetic storage devices.

This type of synthesis is called also concatenative synthesis, as one of its
fundamental components is the method that is used to concatenate individual units
to form a new utterance.

Another challenge of unit selection synthesis is the algorithms that are used to
choose the units to be concatenated. The objective function of the process aims
to create a transition between two units that is minimally obtrusive. In Figure 3.5,
the basic technique for selecting the best segments from a pre-recorded data set
is displayed. It relies on the notions of target cost, which describes the similarity
between the database sample and the required unit, and concatenation cost, which
defines the degree of obstruction between the two units. Since this type of synthesis
uses real speech samples, the output tends to sound very natural. For this reason,
unit selection synthesisers are still the most widely used commercial synthesisers,
e.g., Alexa and Siri. The main limitations of the unit selection synthesis are that
they have large data storage requirements and proportionally large computational
costs for the unit search algorithm.

Adaptation of unit selection speech to render specific expressiveness or new
speaker identity, is normally difficult and often requires the creation of a new unit
dataset for each speech style generated (Holmes and Holmes, 2001).

Statistical parametric speech synthesis In direct contrast to the selection of
actual instances of speech from a database, in the model-based approach, a set of
generative models such as HMMs, are used to map the linguistic analysis directly
into the parametric space (Yoshimura et al., 1999; Ling et al., 2007; Black et al.,
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1. Background

With the increase in the power and resources of com-
puter technology, building natural-sounding synthetic
voices has progressed from a knowledge-based approach
to a data-based one. Rather than manually crafting each
phonetic unit and its applicable contexts, high-quality syn-
thetic voices may be built from sufficiently diverse single-
speaker databases of natural speech. We can see progress
from fixed inventories, found in diphone systems (Moulines
and Charpentier, 1990) to more general, but more resource
consuming, techniques of unit-selection synthesis where
appropriate sub-word units are automatically selected from
large databases of natural speech (Hunt and Black, 1996).

ATR m-talk was the first to demonstrate the effectiveness
of the automatic selection of appropriate units (Sagisaka
et al., 1992), then CHATR generalized these techniques
to multiple languages and an automatic training scheme
(Hunt and Black, 1996). Unit-selection techniques have
evolved to become the dominant approach to speech syn-
thesis. The quality of output derives directly from the qual-
ity of recordings, and it appears that the larger the
database the better the coverage. Commercial systems have
exploited these techniques to bring about a new level of
synthetic speech (Breen and Jackson, 1998; Donovan and
Eide, 1998; Beutnagel et al., 1999; Coorman et al., 2000).

However, although certainly successful, there is always
the issue of spurious errors. When a required sentence hap-
pens to need phonetic and prosodic contexts that are
under-represented in a database, the quality of the synthe-
sizer can be severely degraded. Even though this may be a
rare event, a single bad join in an utterance can ruin the lis-
teners’ flow. It is not possible to guarantee that bad joins
and/or inappropriate units will not occur, simply because
of the vast number of possible combinations that could
occur. However, it is often possible to almost always avoid
these for particular applications. Limited domain synthe-
sizers (Black and Lenzo, 2000), where the database has
been designed for the particular application, go a long
way toward optimizing almost all synthetic output. Despite
the objective for optimal synthesis all the time, there are
limitations in unit-selection techniques. As no (or few)
modifications to the selected pieces of natural speech are
usually done, this limits the output speech to the same style
as that in the original recordings. With the need for more
control over speech variations, larger databases containing
examples of different styles are required. IBM’s stylistic
synthesis (Eide et al., 2004) is a good example but this is
limited by the number of variations that can be recorded.

Unfortunately, recording large databases with variations
is very difficult and costly (Black, 2003).

In direct contrast to this selection of actual instances of
speech from a database, statistical parametric speech syn-
thesis has also grown in popularity over the last years
(Yoshimura et al., 1999; Ling et al., 2006; Black, 2006;
Zen et al., 2007c). Statistical parametric synthesis might
be most simply described as generating the average of some
sets of similarly sounding speech segments. This contrasts
directly with the target in unit-selection synthesis that
retains natural unmodified speech units, but using para-
metric models offers other benefits. In both the Blizzard
Challenge in 2005 and 2006 (Tokuda and Black, 2005; Ben-
nett, 2005; Bennett and Black, 2006), where common
speech databases were provided to participants to build
synthetic voices, the results from subjective listening tests
revealed that one instance of statistical parametric synthe-
sis techniques offered synthesis that was more preferred
(through mean opinion scores) and more understandable
(through word error rates) (Ling et al., 2006; Zen et al.,
2007c). Although even the proponents of statistical para-
metric synthesis feel that the best examples of unit-selection
synthesis are better than the best examples of statistical
parametric synthesis, overall it appears that the quality of
statistical parametric synthesis has already reached a level
where it can stand in its own right. The quality issue comes
down to the fact that, given a parametric representation, it

All segments

Target cost

Concatenation cost

Fig. 1. Overview of general unit-selection scheme. Solid lines represent
target costs and dashed lines represent concatenation costs.

1040 H. Zen et al. / Speech Communication 51 (2009) 1039–1064

Figure 3.5: Overview of the general unit-selection scheme. Solid lines represent target costs and
dashed lines represent concatenation costs. Figure reproduced from (Zen et al., 2009).

2007; Zen et al., 2007b). A detailed description of this statistical parametric speech
synthesis (SPSS) is reported below in § 3.2.

End-to-end systems Following the recent increase in research applying neural
networks to speech technologies, a new and effective type of synthesiser seems to
be emerging: the end-to-end (E2E) synthesiser.

The best performing neural systems to date are WaveNet (van den Oord
et al., 2016), a flexible model for audio generation which uses dilated, causal
convolutions (with residual/skip connections) to form a conditional probability for
the next time step value. For TTS tasks, WaveNet is conditioned on linguistic
features from an existing TTS system and so is not fully end-to-end. In addition,
its conditional model is auto-regressive and thus is prohibitively slow for many
real-time applications. In return for these limitations, however, WaveNet produces
very high-quality audio samples, surpassing strong concatenative and parametric
baselines in naturalness.

Another attempt to move towards E2E system is DeepVoice (Arik et al., 2017)
in which the entire TTS pipeline is implemented with neural networks. The
computational time required is reduced from WaveNet, but the approach still
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requires separate training for the many different steps of the pipeline. The great
complexity of training and deploying these models makes it harder to adapt the
pipeline to new environmental contexts.

The field of the E2E synthesisers is an active research area, however the only
fully E2E model so far seems to be Tacotron (Wang et al., 2017). Tacotron is
able to produce samples of reasonable naturalness with much more efficiency than
other systems as it has the significant advantage of operating at frame-level. The
adaptation techniques and tuning of such complex system are still unexplored.

3.2 Statistical parametric speech synthesis

Statistical parametric speech synthesis (SPSS) (Zen et al., 2009) is one of the major
approaches in the TTS systems. SPSS uses an acoustic model to represent the
relationship between linguistic and acoustic features and a vocoder to render a
speech waveform given a set of acoustic features. This approach offers various
advantages over concatenative speech synthesis (Hunt and Black, 1996), such as
a small generation model and the flexibility to change its voice characteristics
(Yoshimura et al., 1997; Tamura et al., 2001; Miyanaga et al., 2007). However,
the naturalness of the synthesized speech from SPSS is not as convincing as that of
the best samples from concatenative speech synthesizers. Three major factors are
reported that can degrade the naturalness: quality of vocoder, accuracy of acoustic
model, and effect of over-smoothing (Zen et al., 2009).

Although there have been many attempts to develop a more accurate acoustic
model for SPSS (Yoshimura et al., 1999; Zen et al., 2006; Shannon et al., 2013;
Koriyama et al., 2014; Cai et al., 2015), the hidden Markov model (HMM)
(Rabiner, 1989) remains the most popular approach.

SPSS still represents the high quality and flexible TTS method that offers full
control over every aspect of the synthesised speech. The SPSS training and
generation processes are described in Figure 3.6.

Vocoder 
analysis

Text 
analysis

Model 
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Text

o

l

Feature 
prediction

Text 
analysis
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Vocoder 
synthesis Speech

Text

o'Acoustic 
model

Λ'

Figure 3.6: Flowchart of a typical SPSS system. Adapted from (Zen, 2015).
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The training process aims to statistically model the relationship between linguistic
and acoustic features. An acoustic model Λ̂ is trained to model the conditional
distribution of an acoustic feature sequence ô, given a linguistic feature sequence
l̂, as per:

Λ̂ = arg max
Λ

p(o|l,Λ) (3.1)

The model Λ in SPSS is normally described by HMMs (Rabiner, 1989).

At the generation or synthesis stage, a text to be synthesized is first converted
to the corresponding linguistic feature sequence. Then the most probable acoustic
feature sequence ô for the linguistic feature sequence l is predicted from the trained
acoustic model Λ̂ as:

ô = arg max
o

p(o|l, Λ̂) (3.2)

Finally, a speech waveform is rendered from the predicted acoustic feature
sequence using a vocoder.

3.2.1 HMM-based speech synthesis

HMMs are commonly used in speech synthesis to generate parameter streams
for parametric synthesis (Tokuda et al., 2000, 2013). The main improvement
in comparison with earlier rule-based formant synthesisers is the generation of
the control parameters by statistical models. This allows the extensive statistical
modelling tool-set developed for automatic speech recognition to be employed
in speech synthesis. An example of such tool-sets is HMM/DNN-based speech
synthesis framework (HTS) (HTS working group, 2012) which is model-based
generative set of tools, based on HMM Toolkit (HTK) (Young et al., 2002), that
has also been extended to generate articulatory parameters (Ling et al., 2008), as
well as hybrid solutions using unit selection (Taylor, 2006; Black et al., 2007).
However, the speech waveforms themselves are still generated by a source-filter
structure akin to the one used in early formant synthesis methods. “Whilst most
approaches aim to generate cepstral parameters, some generate formants and, in
this sense, the HMM approach can be seen as a direct replacement for the provision
of these rules by hand” (Taylor, 2009).

A significant benefit of HMM-based speech synthesis is that is has great flexibility
in changing speaker identities, emotions, and speaking styles. The training and
synthesis parts of a standard HMM-based speech synthesiser are depicted in
Figure 3.7 and described next.
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2003). However, continuity may also be affected with more
join points. Various publications have discussed the superi-
ority of different-sized units, i.e., from frame-sized (Hirai
and Tenpaku, 2004; Ling and Wang, 2006), HMM state-
sized (Donovan and Woodland, 1995; Huang et al.,
1996), half-phones (Beutnagel et al., 1999), diphones (Black
and Taylor, 1997), to much larger and even non-uniform
units (Taylor and Black, 1999; Segi et al., 2004).2

In all, there are many parameters to choose from by vary-
ing the size of the units, varying the size of the databases,
and limiting the synthesis domain. Black highlighted these
different directions in constructing the best unit-selection
synthesizer for the targeted application (Black, 2002).

The mantra of ‘‘more data” may seem like an easy direc-
tion to follow, but with databases growing to tens of hours
of data, time-dependent voice-quality variations have
become a serious issue (Stylianou, 1999; Kawai and Tsu-
zaki, 2002; Shi et al., 2002). Also, very large databases
require substantial computing resources that limit unit-
selection techniques in embedded devices or where multiple
voices and multiple languages are required.

These apparent issues specific to unit-selection synthesis
are mentioned here because they have specific counterparts
in statistical parametric synthesis.

3. Statistical parametric synthesis

3.1. Core architecture of typical system

In direct contrast to this selection of actual instances of
speech from a database, statistical parametric speech syn-
thesis might be most simply described as generating the

average of some sets of similarly sounding speech segments.
This contrasts directly with the need in unit-selection syn-
thesis to retain natural unmodified speech units, but using
parametric models offers other benefits.

In a typical statistical parametric speech synthesis sys-
tem, we first extract parametric representations of speech
including spectral and excitation parameters from a speech
database and then model them by using a set of generative
models (e.g., HMMs). A maximum likelihood (ML) crite-
rion is usually used to estimate the model parameters as

k̂ ¼ arg max
k

pðOjW; kÞf g; ð5Þ

where k is a set of model parameters, O is a set of training
data, and W is a set of word sequences corresponding to O.
We then generate speech parameters, o, for a given word
sequence to be synthesized, w, from the set of estimated
models, k̂, to maximize their output probabilities as

ô ¼ arg max
o

pðojw ; k̂Þ
n o

: ð6Þ

Finally, a speech waveform is reconstructed from the para-
metric representations of speech. Although any generative
model can be used, HMMs have been widely used. Statis-
tical parametric speech synthesis with HMMs is commonly
known as HMM-based speech synthesis (Yoshimura et al.,
1999).

Fig. 3 is a block diagram of an HMM-based speech syn-
thesis system. It consists of parts for training and synthesis.
The training part performs the maximum likelihood esti-
mation of Eq. (5) by using the EM algorithm (Dempster
et al., 1977). This process is very similar to the one used
for speech recognition, the main difference being that both
spectrum (e.g., mel-cepstral coefficients (Fukada et al.,
1992) and their dynamic features) and excitation (e.g.,
log F 0 and its dynamic features) parameters are extracted
from a database of natural speech and modeled by a set
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& duration models
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Labels
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Excitation
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TEXT
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Excitation
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parameter
extraction

Excitation
parameter
extraction

SPEECH
DATABASE

Fig. 3. Block-diagram of HMM-based speech synthesis system (HTS).

2 Note that a zero-cost join results from maintaining connectivity of
units drawn from a unit-selection database and that implicitly yields a
non-uniform unit-selection synthesizer.
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Figure 3.7: Block-diagram of an HMM-based speech synthesis system. Figure reproduced from (Zen
et al., 2009).

Training

HMM-based synthesis with single Gaussian state-output distributions uses a
statistical model described by (Zen, 2015)

p(o|l,Λ) =
∑
∀q

p(o|q,Λ)P (q|l,Λ) (3.3)

'
∑
∀q

T∏
t=1

p(ot|qt,Λ)P (qt|qt − 1, l,Λ) (3.4)

=
∑
∀q

T∏
t=1

N (ot;µqt ,Σqt)aqtqt−1 (3.5)

where ot is an acoustic feature vector at frame t, T is the number of frames,
q = qt, . . . , qT is a sequence of hidden discrete states, qt is a hidden state at frame
t, µqt and Σqt correspond to the mean vector and covariance matrix associated
with the state-output distribution at qt, aij is the transition probability from state
i to j, aq1q0 is the initial state probability of state q1, l = l1, . . . , lP is a sequence
of linguistic features associated with o, lp is a linguistic feature vector associated
with p-th phoneme, and Λ denotes a set of context-dependent HMMs. Figure 3.8
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3.2 Statistical parametric speech synthesis

shows an exemplar structure of an observation vector, ot. The static observations
are often accompanied by their dynamic description to constraint the maximum
variability permitted. Some computational simplifications are used to efficiently
train different-order feature derivatives (reported in § 3.2.4 below).

single resonance filter to model the acoustic speech pres-
sure wave, where spectral envelopes of the glottal flow,
vocal tract resonance, and lip radiation effect are modeled
all together by the single resonance filter. This model
comprises: 1) voicing information; 2) fundamental fre-
quency ðF0Þ; and 3) spectral envelope represented by, e.g.,
mel-cepstral coefficients [42], and speech waveforms can
be reasonably reconstructed from the sequence of these
acoustic parameters. In HMM-based speech synthesis,
HMMs predict these vocoder parameters from the given
text. By concatenating spectral and excitation parameter
vectors at each frame, we can form an observation vector at
each frame. A typical form of the observation vector, which
includes not only static but also dynamic features, will be
mentioned in detail in Section II-C and is shown in Fig. 3.
In addition to the mel-cepstral coefficients, various spec-
tral representations, such as line-spectral pairs (LSPs) [43],
mel-generalized cepstral coefficients [44], and various
excitation parameters (e.g., aperiodicities [45]) can also
be used.

B. Hidden Markov Model
Fig. 4 shows an example of a three-state left-to-right

HMM. An N-state HMM ! (e.g., corresponding to an ut-
terance) is characterized by sets of initial-state probabil-

ities f"igN
i¼1, state-transition probabilities faijgN

i;j¼1
, and

state-output probability distributions fbið$ÞgN
i¼1. The

fbið$ÞgN
i¼1 are typically assumed to be single multivariate

Gaussian distributions for simplicity

biðotÞ ¼N ðot;Mi;2iÞ (1)

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2"Þdj2ij

q exp % 1

2
ot % Mið Þ>2%1

i ot % Mið Þ
" #

(2)

where Mi and 2i are a d-by-1 mean vector and a d-by-d
covariance matrix, respectively; d is the dimension of the
acoustic parameters; and ot is an observation vector, which
consists of the vocoder parameters at frame t.

Since the HMM is a generative model, the basic con-
cept of HMM-based speech synthesis is straightforward.
Let O ¼ ½O>1 ;O

>
2 ; . . . ;O>T '

>
, and W be a set of speech

parameters and corresponding linguistic specifications
(such as phoneme labels) to be used for the training of
HMMs, respectively, and o ¼ ½o>1 ; o>2 ; . . . ; o>T0 '

>
and w be

speech parameters and corresponding linguistic specifica-
tions that we want to generate at synthesis time. The
training of HMMs and synthesis from HMMs are simply
written as follows:

Training: !max ¼ arg max
!

pðOj!;WÞ (3)

pðOj!;WÞ ¼
X

8q
"q0

YT

t¼1

aqt%1qt bqtðOtÞ (4)

Synthesis: omax ¼ arg max
o

pðoj!max;wÞ (5)

where q ¼ fq1; q2; . . . ; qTg is a state sequence.

C. Speech Parameter Generation From HMM

1) Problem of Parameter Generation: The basic idea of the
speech parameter generation algorithm is simple. The
most probable speech parameter vector sequence given a
set of HMMs and a text to be synthesized is determined as

omax ¼ arg max
o

pðoj!max;wÞ (6)

¼ arg max
o

X

8q
pðo; qj!max;wÞ (7)

( arg max
o;q

pðo; qj!max;wÞ (8)

¼ arg max
o;q

pðojq; !maxÞPðqj!max;wÞ (9)

( arg max
o

pðojqmax; !maxÞ (10)

¼ arg max
o

YT0

t¼1

N ðot;Mqmax;t
;2qmax;tÞ (11)

Fig. 3. Example of an observation vector at each frame.

Fig. 4. Example of a three-state, left-to-right HMM.

Tokuda et al. : Speech Synthesis Based on Hidden Markov Models
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Figure 3.8: Example of an observation vector. Figure reproduced from (Tokuda et al., 2013).

The parameters of the HMMs can be estimated with the maximum likelihood (ML)
criterion by the expectation-maximization (EM) algorithm (Rabiner, 1989). It can
be seen from eq. 3.5 that ot depends only on qt; generative model statistics remain
unchanged if the associated discrete states do not change. It is well known that the
acoustic features of a particular phone in human speech are not only determined
by the individual phonetic content but also affected by various background events
associated with the phone. The background events which can affect the acoustic
realization of a phone are referred to as its contexts. There are normally around
fifty different types of contexts used in SPSS (Tokuda et al., 2002). The standard
approach to handling contexts in HMM-based acoustic modelling is to use a
distinct HMM for each individual combination of contexts, referred to as a context-
dependent HMM. The amount of available training data is normally not sufficient
for robustly estimating all context-dependent HMMs, however, since there is rarely
sufficient data to cover all of the context combinations required. To address these
problems, top-down decision- or regression-tree based context clustering (Odell,
1995) is widely used.
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3 Speech Production in Machines

Synthesis

The generation stage of the HMM-based synthesis aims to find the most probable
acoustic feature sequence ô given a linguistic feature sequence l and a set of trained
context-dependent HMMs Λ̂ (Zen, 2015). Eq. 3.2 can be approximated as

ô = arg max
o

p(o|l, Λ̂)

= arg max
o

∑
∀q

p(o, q|l, Λ̂) (3.6)

≈ arg max
o,q

p(o, q|l, Λ̂) (3.7)

= arg max
o,q

p(o|q, l, Λ̂)P (q|l, Λ̂) (3.8)

≈ arg max
o

p(o|q̂, Λ̂) (3.9)

where q̂ is the predetermined state sequence derived from P (q|l, Λ̂).

If the HMMs have left-to-right topologies and single Gaussian state-output
distributions, the solution of eq. 3.9, when ot has uniquely static features, becomes

ô = arg max
o

T∏
t=1

p(ot|q̂t, Λ̂) (3.10)

= arg max
o

T∏
t=1

N (ot;µq̂t ,Σq̂t) (3.11)

= arg max
o

N (o;µq̂,Σq̂) (3.12)

= µq̂ (3.13)

where µq̂t and Σq̂t are the mean vector and covariance matrix associated with q̂t,
and µq̂ = [µᵀq1 , . . . , µ

ᵀ
qT ]ᵀ and Σq̂ = diag[Σᵀ

q̂1
, . . . ,Σᵀ

q̂T
]ᵀ are the mean vector and

the covariance matrix over the entire utterance given q.

Since this solution produces speech with clear discontinuities at the phone
boundaries, dynamic feature smoothing (Tokuda et al., 1995a) is introduced. The
derivatives of the vector in Figure 3.8 are addressed as functions of the static
observations, i.e., ot = Wc. With this assumption, eq. 3.12 becomes

ĉ = arg max
c

N (Wc;µq̂,Σq̂) (3.14)

A method to implement such vector generation is described in § 3.2.4 below.
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3.2 Statistical parametric speech synthesis

The optimal generative model HMM is derived from the phonetic sequence and it is
selected using a linguistic-based decision tree. A representation of such generation
process is depicted in Figure 3.9.

generated spectral and excitation parameters using excita-
tion generation and a speech synthesis filter (e.g., mel log
spectrum approximation (MLSA) filter (Imai et al.,
1983)). The following describes details of the speech
parameter generation algorithm.

To simplify the notation here, we assume that each
state-output distribution is a single stream, single multi-
variate Gaussian distribution as

bjðotÞ ¼Nðot; lj;RjÞ; ð7Þ

where ot is the state-output vector at frame t, and bjð$Þ; lj,
and Rj correspond to the jth state-output distribution and
its mean vector and covariance matrix. Within the HMM-
based speech synthesis framework, Eq. (6) can be approx-
imated as6

ô ¼ arg max
o

pðojw ; k̂Þ
n o

ð8Þ

¼ arg max
o

X

q

pðo; qjw ; k̂Þ

( )

ð9Þ

% arg max
o

max
q

pðo; qjw ; k̂Þ
n o

ð10Þ

¼ arg max
o

max
q

P ðqjw ; k̂Þ $ pðojq; k̂Þ
n o

ð11Þ

% arg max
o

pðojq̂; k̂Þ
n o

ð12Þ

¼ arg max
o

Nðo; lq̂;Rq̂Þ
n o

; ð13Þ

where o ¼ o>1 ; . . . ; o>T
! ">

is a state-output vector sequence
to be generated, q ¼ fq1; . . . ; qTg is a state sequence, and

lq ¼ l>q1
; . . . ; l>qT

h i>
is the mean vector for q. Here,

Rq ¼ diag Rq1
; . . . ;RqT

! "
is the covariance matrix for q and

T is the total number of frames in o. The state sequence,
q̂, is determined to maximize its state-duration probability
as

q̂ ¼ arg max
q

P ðqjw ; k̂Þ
n o

: ð14Þ

Unfortunately, ô will be piece-wise stationary where the
time segment corresponding to each state simply adopts
the mean vector of the state. This would clearly be a poor
fit to real speech where the variations in speech parameters
are much smoother. To generate a realistic speech-param-
eter trajectory, the speech parameter generation algorithm
introduces relationships between static and dynamic fea-
tures as constraints for the maximization problem. If the
state-output vector, ot, consists of the M-dimensional static
feature, ct, and its first-order dynamic (delta) feature, Dct,
as

ot ¼ c>t ;Dc>t
! "> ð15Þ

and the dynamic feature is calculated as7

Dct ¼ ct & ct&1 ð16Þ

the relationship between ot and ct can be arranged in matrix
form as

ð17Þ

where c ¼ c>1 ; . . . ; c>T
! ">

is a static feature-vector sequence
and W is a matrix that appends dynamic features to c.
Here, I and 0 correspond to the identity and zero matrices.
As you can see, the state-output vectors are thus a linear
transform of the static features. Therefore, maximizing
Nðo; lq̂;Rq̂Þ with respect to o is equivalent to that with re-
spect to c:

ĉ ¼ arg max
c

N Wc; lq̂;Rq̂

# $n o
: ð18Þ

By equating @ logNðWc; lq̂;Rq̂Þ=@c to 0, we can obtain a
set of linear equations to determine ĉ as

W>R&1
q̂ Wĉ ¼W>R&1

q̂ lq̂: ð19Þ

Because W>R&1
q̂ W has a positive-definite band-symmetric

structure, we can solve it very efficiently. The trajectory
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Fig. 5. Overview of HMM-based speech synthesis scheme.

6 The Case 2 and 3 algorithms in (Tokuda et al., 2000), respectively,
maximize Eqs. (9) and (8) under constraints between static and dynamic
features.

7 In the HTS English recipes (Tokuda et al., 2008), second-order (delta–
delta) dynamic features are also used. The dynamic features are calculated
as Dct ¼ 0:5ðctþ1 & ct&1Þ and D2ct ¼ ct&1 & 2ct þ ctþ1.
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Figure 3.9: Overview of HMM-based speech synthesis process based on decision tree clustering.
Figure reproduced from (Zen et al., 2009).

Vocoder

Various types of source-filter vocoder are typically used in HMM-based speech
synthesis (Hu et al., 2013).

The simplest example of waveform generation from parameters is represented by
the Mel-generalized cepstral (MGC) vocoder. A simple pulse/noise excitation is
used for this vocoder. Although straightforward, this excitation model cannot fully
represent natural excitation signals and often generates “buzzy” speech. Different
types of coefficients may be used to represent the spectrum. Mel-cepstra are often
used, providing a good approximation to the human auditory perception scale.
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3 Speech Production in Machines

The Mel-generalised log spectral approximation (MGLSA) digital filter is also
commonly used to filter the excitation signal to synthesise speech.

A more sophisticated method of analysis and re-synthesis of speech is represented
by STRAIGHT (Kawahara et al., 1999). This method is successful in removing
the periodicity effects of fundamental frequency (F0) on the vocal tract spectral
shape. For spectral envelope extraction, both F0 adaptive spectral smoothing and
compensatory time windows are used to transfer the time frequency-smoothing
problem to the frequency domain. Aperiodicity of the signal is computed as the
difference between the upper and lower envelope of the spectrum. For voiced
frame, noise is calculated by modulating the randomness of the phase component
according to aperiodicity. Finally, all parameters are sent to a minimum-phase filter
with group delay phase manipulation to synthesise speech. Although STRAIGHT
uses both aperiodicity and F0 adaptive spectral smoothing to solve the “buzzy”
voice problem, the number of parameters required for both the spectrum and
aperiodicity components is unsuitable for statistical modelling as it is the same size
as the fast Fourier transform (FFT) length used. (Zen and Toda, 2005) proposed
instead to use other lower dimensional parameters such as MGC or line spectral
pairs (LSP) coefficients to represent the spectrum. In standard HMM-based SPSS,
MGC is chosen for spectral parametrisation. Here, aperiodicity parameters are
compressed by averaging the whole spectrum into sub-bands (e.g., 5 or 25 equally
distributed sub-bands).

An alternative vocoder is WORLD (Morise et al., 2016), which allows generation
of waveforms for real-time applications. Its sound analysis and manipulation are
less accurate than STRAIGHT, but it is adopted very often due to its computational
efficiency.

Other available vocoders that have been tested on HMM-based SPSS (Hu et al.,
2013) are: Harmonic plus noise model (HNM) vocoder based on Mel-frequency
cepstral coefficients (MFCC) and F0 (Erro et al., 2011); adaptive harmonic vocoder
(Degottex and Stylianou, 2012); and harmonic vocoder with fixed parameters
(Stylianou, 1996). For the source-filter vocoders, the deterministic plus stochastic
model for residual (DSMR) vocoder (Drugman and Dutoit, 2012).

More recently, deep neural network (DNN)-based autoencoders such as WaveNet
(van den Oord et al., 2016), allow substitution of the SPSS vocoder and the acoustic
model at the end of the TTS pipeline. It still requires linguistic analysis and sample-
level feature generation. This method can generate a high-quality voice, and it is
controllable with input conditioning features, but it shows similar unpredictability
as end-to-end systems due to its autoregressive nature. Moreover, it operates at
speech sample level, which requires a great computational load.
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3.2 Statistical parametric speech synthesis

Adaptation

When a speech synthesis system is trained, it is generally speaker-dependent, and
exhibits a very limited speech style. These limitations derive from training the
voice models on single-speaker data. Hence, voice timbre and prosody are learned
for the average characteristics of the recorded data.

Different adaptive approaches have been developed to create new voice identities
(Yamagishi and Kobayashi, 2007; Yamagishi et al., 2009), or unseen speech styles,
including enhanced emotions (Schröder, 2001; Nicolao et al., 2006; Tesser et al.,
2010).

A target speaker’s voice can be created by adapting an average voice model,
trained on multiple-speaker data. Speech style adaptation normally operates on
single-speaker models and aims to change the expressiveness without affecting
the speaker identity. All adaptation techniques normally require training with
additional small amounts of target speech.

Several speaker adaptation techniques that were initially developed for HMM-
based automatic speech recognition, can also be applied to synthesis. Traditional
approaches, such as vocal tract linear normalisation (VTLN) (Saheer et al., 2009),
maximum likelihood linear regression (MLLR) (Leggetter and Woodland, 1995),
and maximum a-posteriori (MAP) (Gauvain and Lee, 1992; Lee and Gauvain,
1993) can be applied to the statistical models (or features) that generate the acoustic
realisations.

Transforms can operate on ô, or on Λ̂ directly, and these aim to adapt the Gaussian
mixture model (GMM) parameters to move the source acoustic space into the target
one. The most common type of transform for HMM-based speech synthesisers, is
MLLR that allows spectral, excitation, and duration parameters to be adapted.

3.2.2 DNN-based speech synthesis

As mentioned in the previous section, the clustered context-dependent acoustic
models can be interpreted as large regression or decision trees that map linguistic
features into statistics of acoustic features. Zen et al. proposed an alternative
scheme that is based on a deep architecture (Zen et al., 2013), where the regression
tree is replaced by a multi-layer artificial neural network.

Several differences can be observed between neural networks and traditional
decision trees. While neural networks can compactly represent any relation learned
from data (Bengio, 2009), decision trees cannot efficiently express extremely
complex relations of input features. The partition of the input space operated by
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decision trees produces a poor generalization due to the reduction in local region
data observations. Neural networks provide better generalization as weights are
derived from all available training data (Hinton et al., 1984). Neural networks
are therefore said ot provide a more analogous representation of the layered
hierarchical structures of human speech production system.

The same adaptation techniques as in HMM-based synthesis can be applied to the
output generative models that are produced by the DNN-based regression. More
advanced techniques use conditioning vectors, such as i-vector (Wu et al., 2015), or
d-vector (Doddipatla et al., 2017). These methods require an auxiliary conditioning
vector to be added to the DNN input to obtain the appropriate adaptation. DNN
synthesisers are trained with multi-speaker data, using a one-hot identity or style
vector to condition the training.

Compared to an HMM-based speech synthesiser, the DNN-based synthesiser has
some peculiar differences (Zen, 2015).

As previously mentioned, the mapping from a linguistic feature vector to an
acoustic feature vector is provided by a network, rather than a decision tree. So,
dynamic features are only used at the synthesis stages. The training of the DNN-
based synthesiser is efficient as the phoneme- or state-level alignments are fixed
during the process. The latency is O(T ), which is similar to the HMM-based
approach. The synthesis of an entire utterance is computationally much more
expensive than the HMM. Visiting a decision tree is much faster than propagating
though the DNN structure. The DNN-based synthesis seems to have a better degree
of naturalness than the normal HMM (Zen et al., 2013). Finally, the weights in the
DNN structures are of more difficult interpretation than the HMM decision tree
coefficients.

In conclusion, DNN-based synthesis can generate better quality speech in
comparison to HMM-based synthesis, but adaptation techniques, computational
load, and structure interpretability are still more advantageous in the traditional
HMM-based approach.

3.2.3 Software tools

The HMM/DNN-based speech synthesis framework (HTS) (HTS working group,
2012) is a statistical framework to train parametric synthetic voices and to use
them to generate speech parameter sequences. This system has been used for
decades as it is one of the most robust, flexible, and well-documented methods
for synthesising speech. HTS has been mainly developed by the HTS group. The
training part of HTS is implemented as a modified version of the HTK, which is a
portable toolkit for building and manipulating HMMs. HTK is primarily used for
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speech recognition research, but has also been used for numerous other statistical
modelling applications.

Merlin (Wu et al., 2016b, a) is a toolkit for building DNN models for SPSS.
Merlin is written in Python and uses the Theano library for numerical computation.
Detailed recipes are provided to build state-of-the art synthesis systems.

The HTS and Merlin tools must be used in combination with a front-end text
processor such as Festival or MaryTTS as described below (cf. § 5.1.1), and a
vocoder such as STRAIGHT or WORLD as already described (cf. § 3.2.1).

3.2.4 Standard HTS generation algorithm

The standard generation algorithm in the HTS software framework represents one
of the most efficient implementations of the method for solving the parametric
synthesis problem formulated in § 3.2.1.

As expressed in eq. 3.9, the generation process consists of finding the feature
sequence ô that maximises p[o|Λ]. Conditioning upon the total number of frames
(i.e. the duration of the utterance) T in addition to HMM model Λ̂ of eq. 3.2, the
optimal phone label sequence l̂, is given by

ô = arg max
o

p(o|̂l, Λ̂, T ) (3.15)

where ô and o are the PT×1 observation vector sequences and P is the dimension
of each vector. T , which is the overall state duration derived from a dedicated
statistical model, can be used to stretch the final spoken utterance to have the
desired duration. Hence, o can be expanded into the sequence of vectors,

o =



o1

o2

...
ot
...
oT


(3.16)

Along with the M × 1 vector of static features, ct = {ct(1), ct(2), . . . , ct(M)}>,
the first n-order derivatives of the features are also considered. These are
dynamically computed using:

∆(n)ct =
L(n)∑

i=−L(n)

ω(n)(i)ct+i (3.17)
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In the standard HTS settings, n = 2. This is, the dimension of the vectors becomes
3MT × 1 and a single observation vector ot can be written as:

ot =

 c>t
∆c>t
∆2c>t

 =



ct(1)

ct(2)
...

ct(M)

∆ct(1)

∆ct(2)
...

∆ct(M)

∆2ct(1)

∆2ct(2)
...

∆2ct(M)



(3.18)

For the purpose of this discussion, it is assumed that the output feature vector is
zero outside the utterance duration, e.g., ct = 0M for t < 1 and t > T . Further, c
and ∆(n)c are assumed to be statistically independent.

The maximisation part of eq. 3.15 can be rewritten as

max
o

P [o|Λ̂, T, l̂] = max
c

P [o|Λ̂, T, l̂] = max
c

∑
all q

P [o, q|̂l, Λ̂, T ] (3.19)

where c is the static feature sequence and q is the state sequence which can be:

q =

{
{q1, q2, · · · , qT } for HMM with single pdf
{(q1, i1), (q2, i2), · · · , (qT , iT )} for HMM with pdf mixture

(3.20)

Eq. 3.19 can be approximated as

max
o

P [o|Λ̂, T, l̂] = max
c

∑
all q

P [o, q|̂l, Λ̂, T ] ≈ max
c

max
q

P [o, q|̂l, Λ̂, T ] (3.21)

The optimisation of eq. 3.21 should be done both for q and o simultaneously,
however, this is impractical, since there are too many combinations of states q and
mixtures i (Tokuda et al., 2000). Thus, some further simplifications must be used
to reduce the complexity of the problem.
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First, only the case of a single-mixture pdf HMM is considered.

Second, P [o, q|̂l, Λ̂, T ] can be further simplified. According to the definition of
conditional probability, it can be rewritten as

P [o, q|Λ̂, T, l̂] = P [q|Λ̂, T, l̂]P [o|q, Λ̂, T, l̂] = P [q|Λ̂, T, l̂]P [o|q, Λ̂] (3.22)

Now, the problem is separated into two parts: a) the maximisation of the state
sequence probability, P [q|Λ̂, T, l̂], given the text l̂ and the required overall duration
T , and b) the maximisation of acoustic parameter sequence probability, P [o|q, Λ̂].
The second maximization no longer depends on T , as it is only conditioned on the
optimal state sequence q. T is used to stretch the overall sentence duration, which
impacts the total number of states in the utterance.

Consequently, the optimisation of eq. 3.21 can be computed as the maximisation
of the two elements of eq. 3.22 separately:

max
o

P [o|Λ̂, T, l̂] ≈ max
c

max
q

P [o, q|̂l, Λ̂, T ] ≈ max
q

P [q|Λ̂, T, l̂] max
c

P [o|q, Λ̂]

(3.23)

In the standard HTS approach, the optimal feature vector sequence c is estimated
after the computation of the most probable state sequence q, which itself contains
all the linguistic information about phone sequence and time duration.

Determining the state sequence q

Assuming that the HMM model Λ is a left-to-right model with no skip, then the
probability of the state sequence q is characterised only by explicit state duration
distributions. Once the phone sequence is known – from the linguistic analyser –
and the duration of each state has been estimated, the sequence of possible states
can be determined.

The computation of the state duration is done by independently training a statistical
model. If the following expression for the logarithm of P [q|̂l, Λ̂, T ] is used:

logP [q|̂l, Λ̂, T ] =

K∑
k=1

log pqk(dqk) (3.24)

where the probability of d consecutive observation vectors for state qk are described
by a single Gaussian pdf

pqk(d) =
1√

2πσ2
qk

e
−

(d−mqk )2

2σ2qk (3.25)
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under the constraint of

K∑
k=1

dqk = T (3.26)

that the duration of each state in the optimal stare sequence, q̂, which maximises
logP [q|̂l, Λ̂, T ] under the above constraint can be obtained by using the Lagrange
multipliers method (Yoshimura et al., 1998):

dqk = mqk + ρ · σ2
qk

(3.27)

ρ =
T −

∑K
k=1mqk∑K

k=1 σ
2
qk

(3.28)

wheremk and σk are the mean and variance of the duration distribution of state qk.
The parameter ρ can be used to control the speaking rate, in addition to the total
frame length T . When ρ is set to zero, speaking rate becomes equal to the mean
value. When ρ is set to a positive or negative value, speaking rate becomes faster
or slower.

Equations for a single HMM Gaussian mixture

The probability of o, eq. 3.16 given state sequence q̂ = {q1, q2, · · · , qT }, with a
single HMM Gaussian pdf and the derivative order n = 2, is described by:

P [o|q̂, Λ̂] = bq1(o1)bq2(o2) · · · bqT (oT ) (3.29)

where the function {bqt(ot)} is the product of the static and dynamic feature pdfs,

bj(ot) = N (ct;µj ,Σj) · N (∆ct; ∆µj ,∆Σj) · N (∆2ct; ∆2µj ,∆
2Σj) (3.30)

and N (x;µj ,Σj), for the generic vector x at state j, is the Gaussian function:

N (x;µj ,Σj) =
1√

(2π)MT |Σj |
· e(− 1

2
(x−µj)>Σ−1

j (x−µj)) (3.31)

Computing the logarithm of P [o|q̂, Λ̂] the following equation is obtained:

logP [o|q̂, Λ̂] =

1

2

T∑
t=1

log |Σqt | −1
2(Wc− µ)>Σ−1(Wc− µ)− 3MT

2 log(2π) (3.32)
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where the vector µ is the 3MT × 1 sequence of all the mean vectors,

µ =



µq1
µq2

...
µqt

...
µqT


(3.33)

Σ is the diagonal 3MT × 3MT covariance matrix,

Σ =



Σq1 03M×3M · · · 03M×3M · · · 03M×3M

03M×3M Σq2 · · · 03M×3M · · · 03M×3M

...
...

...
...

03M×3M 03M×3M Σqt 03M×3M

...
...

...
...

03M×3M 03M×3M · · · 03M×3M · · · ΣqT


(3.34)

and o is expressed asWc, whereW is the 3MT ×MT matrix

W =



w>1
w>2

...
w>t

...
w>T


(3.35)
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In more detail, wt is a 3M ×MT matrix defined as

wt =
[

w
(0)
t , w

(1)
t , w

(2)
t

]
= (3.36)

=



oM×M oM×M oM×M

oM×M oM×M oM×M
...

...
...

w(0)(−L(0)) · IM×M w(1)(−L(1)) · IM×M w(2)(−L(2)) · IM×M
...

...
...

w(0)(0) · IM×M w(1)(0) · IM×M w(2)(0) · IM×M
...

...
...

w(0)(+L(0)) · IM×M w(1)(+L(1)) · IM×M w(2)(+L(2)) · IM×M
...

...
...

oM×M oM×M oM×M



1st
2nd

...
(t-L)-th

...
t-th

...
(t+L)-th

...
T-th

where w(n)(i), with i in [−L(n) . . . L(n)], are the window coefficients used to
compute the n-th dynamic features from the static ones and L(n) is the relative
length.

The scalar value ε is defined as follow,

ε(c) = (Wc− µ)>Σ−1(Wc− µ) (3.37)

Maximising the function in eq. 3.32 requires finding the solution to the following
equation system:

∂ logP [o|q̂, Λ̂]

∂c
= 0TM (3.38)

Since only ε, eq. 3.37, in eq. 3.32 depends on the observation, the sequence c that
maximises eq. 3.38 is equivalent to the one that maximise eq. 3.37 and hence

∂ε(c)

∂c
=
∂
(
(Wc− µ)>Σ−1(Wc− µ)

)
∂c

= 0TM

∂
(
c>W>Σ−1Wc− µ>Σ−1Wc− c>W>Σ−1µ− µ>Σ−1µ

)
∂c

= 0TM

(3.39)

and this happens when

W>Σ−1Wc−W>Σ−1µ = 0TM (3.40)

from which comes

W>Σ−1Wc = W>Σ−1µ (3.41)

Rc = r (3.42)
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where

R = W>Σ−1W (3.43)

r = W>Σ−1µ (3.44)

This set of linear equations can be solved efficiently with the Cholesky
decomposition with O(T ) operations.

HTS software implementation

In HTS, three modes are implemented to find the best sequences of states and
observations formalised by eq. 3.19, (Tokuda et al., 2000).

mode 1 maximizing P (o|q̂, Λ̂) with respect to o. The state sequence is a
conditional observation. Pitch and spectral trajectories are computed by
solving eq. 3.42 with the Cholesky matrix inversion. This method is fast
and the whole utterance is generated at once.

mode 2 maximizing P (o, q|Λ̂) with respect to o and q. The best state sequence is
determined by the duration models with eq. 3.25. If state output probabilities
are assumed to be single-Gaussian, the solution is obtained by solving
eq. 3.42 in the same way as mode 1.

mode 3 maximizing P (o|Λ̂) with respect to o. This mode uses an algorithm
based on expectation maximisation (EM), which finds a critical point of the
likelihood function P (o|Λ̂). State sequences and mixture indices are both
considered unobservable and are determined iteratively. Finally, the spectral
characteristics are determined with the Cholesky decomposition.

Despite the different strategies available in the HTS software, these methods all
eventually converge on using the Cholesky decomposition to solve the equation
system in eq. 3.42. However, every mode implemented in the latest versions of
HTS has some limitations when it comes to including it in a reactive framework
which needs to modify its parameters during the generation process. In particular,
one of these methods permits a fast modification in the generated features and
nor a constant adjustment of the generative models. In HTS, speech features
are generated utterance-by-utterance. Thus, modifications in the HMM statistical
descriptions – e.g., adaptation – can only be applied at the beginning of the
generation process.

This highlights the emerging need for a more flexible generation algorithm that
allows frame-by-frame modifications of the generative models.
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3.2.5 Recursive search generation algorithm

A recursive algorithm was proposed in the initial implementation of SPSS: the
recursive search generation algorithm. This method yields the same performance
as the latest Cholesky-based method, in term of quality of the generated feature
sequence, but its computational complexity is higher, which results in a hundred-
fold increase in generation time.

The recursive search algorithm was first introduced by Tokuda for a single GMM
(Tokuda et al., 1995a), and later generalised to multiple GMMs (Tokuda et al.,
1995b). This algorithm permits generative models to be selected in almost real
time, allowing them to be manipulated with different transforms at each step of the
synthesis process.

The recursive search generation algorithm was originally developed to compute the
best acoustic feature sequence by comparing different sub-optimal state sequences
derived from the concatenation of GMM choices, but some simplification can
reduce the complexity of its implementation. As in the HTS standard generation
algorithm described previously in § 3.2.4, it is assumed that the state sequence is
already given (cf. eq. 3.25), and that the HMM has a single Gaussian per state.

First, the general algorithm for the optimal sub-sequence choice is described.
Assuming that an initial feature sequence c is given, and that the state qt is updated
to q̂t, the system in eq. 3.42 can be written as

R̂ĉ = r̂ (3.45)

in which the variable evolution is described by

R̂ = R+wtDw
>
t (3.46)

r̂ = r +wtd (3.47)

D = Σ−1
q̂t
−Σ−1

qt (3.48)

d = Σ−1
q̂t
µq̂t −Σ−1

qt µqt (3.49)

These updating functions are similar to those of an adaptive filter such as the
recursive least squares filter (Haykin, 2014). A recursive algorithm to obtain ĉ from
c can be derived. The principal steps are listed in Table 3.1, with the substitution
P = R−1.

The sequence of steps needed to apply the algorithm of Table 3.1 are described in
the following list:

1. determine an initial state sequence q,

48
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Table 3.1: Algorithm to replace the sub-state qt of a frame t with q̂t

Substitute ĉ, P̂ and ε̂ obtained by the previous iteration to c, P and ε respectively,
and calculate:
π = Pwt (T.1)
ν = w>t π (T.2)

κ = π {I3M +Dν}−1 = π
{
I3M +

(
Σ−1
q̂t
−Σ−1

qt

)
ν
}−1

(T.3)

ĉ = c+ κ
{

Σ−1
q̂t

(µq̂t −w
>
t c)−Σ−1

qt (µqt −w
>
t c)
}

(T.4)

ε̂ = ε+ (µq̂t −w
>
t ĉ)
>Σ−1

q̂t
(µq̂t −w

>
t c)− (µqt −w

>
t ĉ)
>Σ−1

qt (µqt −w
>
t c) (T.5)

P̂ = P − κDπ = P − κ
(
Σ−1
q̂t
−Σ−1

qt

)
π (T.6)

2. given the initial state sequence, obtain a sequence c, P and ε,

3. for each frame t = 1, 2, . . . , T :

(a) calculate (T.1) and (T.2),

(b) for each possible state of the frame t, calculate (T.3)-(T.5) and obtain
logP [o, q|̂l, Λ̂, T ] using eq. 3.32,

(c) choose the best state in the sense that logP [o, q|̂l, Λ̂, T ] is most
increased by the state replacement,

4. choose the best frame in the sense that logP [o, q|̂l, Λ̂, T ] is most increased
by the state replacement.

5. if logP [o, q|̂l, Λ̂, T ] cannot be increased by the state replacement at the best
frame, stop iterating.

6. replace the state of the best frame by calculating (T.1)-(T.6) and obtain ĉ, P̂
and ε̂.

7. go to 2.

The most critical step is the choice of the initial c,P and ε elements. These vectors
can be chosen by assuming the existence of initial states {q̄t} with parameters
related to the static features only:

µ̄q̄t =

 µ
(0)
qt

0M×1

0M×1

 (3.50)
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and

Σ̄
−1
q̄t =

 Σ
(0)
qt 0M×M 0M×M

0M×M 0M×M 0M×M

0M×M 0M×M 0M×M

 (3.51)

The M × 1 vector µ(0)
qt and the M × M matrix Σ

(0)
qt are the mean vector

of the static features ct, respectively. From eq. 3.43 and given that Σ̄
−1

=
diag{Σ̄−1

q̄1 , . . . , Σ̄
−1
q̄t , . . . , Σ̄

−1
q̄T
}, it happens that ε(c) = 0 and the following results

are obtained:

P̄ = R̄
−1

= (W>Σ̄
−1
W )−1

=



Σ
(0)
q1 0M×M · · · 0M×M · · · 0M×M

0M×M Σ
(0)
q2 · · · 0M×M · · · 0M×M

...
...

...
...

0M×M 0M×M Σ
(0)
qt 0M×M

...
...

...
...

0M×M 0M×M · · · 0M×M · · · Σ
(0)
qT


(3.52)

and

c̄ = R̄
−1
r̄ = (W>Σ̄

−1
W )−1W>Σ̄

−1
µ

=



Σ
(0)
q1 (Σ

(0)
q1 )−1µ

(0)
q1

...

Σ
(0)
qt (Σ

(0)
qt )−1µ

(0)
qt

...

Σ
(0)
qT (Σ

(0)
qT )−1µ

(0)
qT


=



µ
(0)
q1
...

µ
(0)
qt
...

µ
(0)
qT


(3.53)

Using eq. 3.52 and 3.53 in the algorithm, and the original definition ofµqt and Σqt ,
for every t in [1..T ], the initial sequence of acoustic vectors from which to start the
optimisation can be computed. It must be noted that this initialisation gives the
optimised sequence c if the optimisedQ sequence is given.

Since most of the elements in wt are zeros, (T.6) has the higher computational
complexity, which is O(T 2M3). When Σqt is diagonal, it reduces to O(T 2M)
and finally, if only the S neighbouring frames (S � T ) are assumed to influence
the generation of the feature vectors, then it reduces further to O(S2M). Often S
has an heuristically derived value around 30.
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3.3 Artificial speech in adverse conditions

Since the beginning of electronic speech technology, a great deal of effort has been
devoted to the enhancement of speech signals. One of the first examples (Blesser,
1969) used dynamic range compression to improve the quality of speech that
was distorted by channel transmission. More recent approaches aim to reproduce
the variations observed in humans (cf. § 2.1.2), and, in particular, to ultimately
reproduce the effects of the Lombard reflex (cf. § 2.1.2). Indeed, the main objective
of all these methods is to control the quality of produced speech in different
levels and types of adverse conditions. Almost all models of speech production
aim to increase the speech-in-noise intelligibility to its maximum available level.
As pointed out already in § 1.1, however, very little attention has been given to
balancing the overall amount of effort (energy), involved in the production.

An overview of some of the latest speech-in-noise techniques, and their
performance is reported in (Cooke et al., 2013a). Three main categories can
be identified among these approaches: a) ‘near-end’ enhancement of natural
or synthesised speech, b) model-based synthesis with adaptation learned from
human data, and c) model-based synthesis with adaptation emerging from human
behaviour. The third of these us particularly critical for the work presented in this
thesis; all are briefly introduced next.

Near-end speech enhancement This speech modification is the most commonly
adopted approach and comprises all those techniques that can be applied to an
already-available speech signal. Several degrees of complexity can be used to
manipulate the signal at this stage: from a trivial loudness increment based on
average signal-to-noise ratio (SNR) optimisation, to the analysis and modified
re-synthesis of speech. A speech signal can be modified in order to reallocate
its spectral energy in the most critical sub-bands (Tang and Cooke, 2010). The
speech spectrum can be reshaped in combination with time stretching and dynamic
range compression as in (Zorila et al., 2012). A linear time-invariant filter has
also been proposed to redistribute speech energy across frequency in order to
maximise the speech intelligibility index (SII) (Taal et al., 2013). Speech can be
also parametrised into its fundamental components. Operating in the parametric
domain allows efficient signal processing to redistribute spectral energy or modify
the speech rate (Godoy et al., 2013; Koutsogiannaki and Stylianou, 2016). This
type of modifications is normally very effective when it operates on clear speech
recordings. However, when it is used to transform synthetic speech, which are
more likely to contain distortions, the results might worsen the artefacts along with
enhancing the speech signal.
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Enhanced synthesis from human data Another approach that allows speech to
be generated dynamically involves applying modification to a TTS system. Here,
transforms are learned from observation of human data such as speech recordings.
Previous section § 3.1.1 described that unit selection synthesisers can produce
adequate clear speech, but require new voice inventories, i.e., pre-recorded data
sets, for each specific style, statistical parametric synthesis allows more flexible
adaptation. Transforms can be learned from ‘ad-hoc’ recorded audio (Picart
et al., 2011, 2014) and datasets can be designed to contain different speech styles,
including both hyper- and hypo-articulated speech. The transformation magnitude
can be scaled such that interpolated versions can be generated to have different
degrees of articulation. Transforms can be applied to different parts of the source-
filter synthesis model. Thus, in addition to adapting spectral and phone-duration
components, the glottal source signal can also be manipulated (Raitio et al., 2013).
Different datasets can be recorded with breathy, normal, and Lombard speech and
the specific glottal signal modifications can be learned for each speech style.

Enhanced synthesis from human behaviour The transforms that are applied to
speech synthesisers can also be inspired by the observation of human behaviour.
The idea is to embed computational human production models in the training
and synthesis of synthetic speech. SPSS is the most typical method in which
this approach can be applied. Speech modifications are the results that emerge
from optimisation of the model parameters with respect to the selected modelled
behaviour. In (Valentini-Botinhao et al., 2012), for example, an objective measure
of speech intelligibility, Glimpse Proportion measure (GP) (Cooke, 2006), is
introduced in the HTS objective function for parameter training. Created voices
are then optimised to compensate for distortions measured with this index. The
limitations of this method are that it only compensates for noises that are introduced
during the training stage, and it does not allow for scaling of the degree of the
compensation.

The computational model and its implementation, proposed in Chapter 4 and
Chapter 5 of this thesis respectively, are developed following the third of these
approaches (Moore and Nicolao, 2011; Nicolao et al., 2012, 2013). That is, C2H
speech adjustments should emerge in reaction to the environment interferences. In
principle, they should not be noise-dependant, and moreover they should enable
both enhancement and reduction of speech quality.
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This chapter introduces C2H, a computational model that incorporates the
principles of Lindblom’s H&H theory (cf. § 2.2.1) and Powers’ PCT (cf. § 2.2.2).
This model mainly represents the answer to the research question n. 2 of this thesis,
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and constitutes the basis on which context-aware automatic speech synthesis can
be enabled.

The computational model is designed to account for the generation of diverse styles
of speech (expressive, neutral, colloquial, clear, etc.) in reaction to the dynamic
evolution of the communicative conditions. In this chapter, all these speaking styles
are reduced to two main classes along the same energy-motivated dimension: high
and low-effort (hyper/hypo-articulated) speech.

The following sections present all the principal components of the model are
presented. In order to graphically illustrate some of the concepts of the C2H
model, a simplified model, trajectory generation simulation model (TGSM), which
is detailed in Appendix A, is used.

4.1 Context-aware speech synthesis

Lindblom’s H&H theory models the human speech production process as the
balance of two driving objectives, as discussed in § 2.2.1. The primary goal is
for the talker to achieve their communicative intent, i.e., to deliver a meaningful
concept to the listener. The second objective regards the amount of energy involved
in the process. The talker aims to optimise the completion of the primary goal
minimising the amount of energy involved. In order to assess the success of their
communication, talkers must be aware of the context, in which speech occurs, and
reacts to this with continuous adjustments to its speech production strategies.

As discussed in section 1.1, very few speech synthesisers are aware of the
environment in which they operate, and can react to compensate for its changes.
The C2H context-aware computational speech production model aims to emulate
the human H&H behaviour (Moore and Nicolao, 2011; Nicolao et al., 2012, 2013;
Moore and Nicolao, 2017).

If it is to reproduce the speech production process according to the H&H theory,
a computational model must include the capabilities to assess the success of the
communication, as well as to measure the amount of energy required in the process.
In machines, the communicative effort might no longer be a limited resource to be
optimised. However, an unsuitable amount of energy in production often reflects
in a higher-than-required effort on the listening side (Mattys et al., 2009), as
discussed in § 2.1.2. Hence, in order to sound more human-like, machine-to-human
communication must follow the same optimisation principles as human-to-human.

The general diagram of the C2H model is depicted in Figure 4.1. The model serves
as a framework for speech synthesis and as such, its core component is the speech
generation process. The objective of the model is to assess to what degree the
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Speech Synthesiser
(Process)

Perception
(Feedback)

Controller

Speech 
realisation

Error Control
signal

Communicative
state

Conceptualiser

World

Listener’s state Disturbances

Communicative 
Intent

Comparator

Figure 4.1: High-level diagram of the C2H components. Square blocks represent the functional
processes. Communication signals between blocks are also highlighted.

communication process outcome matches the pre-defined intent, and it is based on
the fundamental components of control theory: comparator, controller, process,
and feedback, as shown in reactive speech synthesiser diagram of Figure 1.2.

The communicative intent, which originates from the conceptualiser consists of
the motivations and goals that drive the whole communication process. These two
inputs play a crucial role in speech generation as they can completely change the
objective function to maximise/minimise. The range of possible intents can be
very diverse. The goal of an automatic speech synthesis communication is often
to transfer a text message to the listener. In order to deliver each single word of
the text, the synthesiser objective is to produce extremely clear and intelligible
speech. However, the goal could also be different, such as delivering the gist of the
message. In this situation, only the intelligibility of a few meaningful key words
of the message needs to be ensured. Therefore, different constituent parts of the
utterance realisation can have different degrees of intelligibility. The message to
deliver could also be an emotion rather than an informative content. In this case,
it is voice expressiveness that needs to be optimised rather than speech clarity.
A complete description of the range of possible intents is outside the scope of
this thesis. However, it is noteworthy that some communicative goals may lead to
reduced speech quality. If the system intent is to confuse the audience or hide some
information from them, a muffled unintelligible speech signal might indeed be the
optimal output. It is therefore necessary that the C2H model can control speech
production in both directions of the hyper/hypo-articulation dimension.
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The comparator assesses the distance between the communicative intent and
the actual communicative state which results from the speech realisation. Such
comparison is not trivial, and is heavily intent-dependent, potentially including an
evaluation of the intended degree of intelligibility, and the number of elements of
speech realisation that are successfully recognised by listeners among other viable
dimensions. The C2H model assumes that each dimension of the communication
that is measured by perception has a correspondent reference value from the
conceptualiser intent.

The difference between the communicative intent and the communicative state
(error) is transformed into control signals that drive the speech production via
the controller. The control signals select the type of adjustment that optimise the
generation process in order to achieve the goal. The degree of sensitivity of the
controller can be varied by the motivation component of the intent. Motivation
determines the level of attention that the model pays to the error. If the motivation
is low, the controller neglects the error and no goal intent is pursued. That is, no
message is delivered. Vice-versa, high motivation generates speech that aims to
minimise every error component.

The awareness of the synthesiser is enabled by the perception loop (feedback).
Linking the process and controller components of the model allows the speech
production to be continuously assessed and adjusted even when the generation
process is not yet complete. The perception loop is designed to probe the main
dimensions of speech production. First, it can assess the level of communicative
energy that results from the speech realisation. Second, it can observe or predict
the effect of the realisation on the listener. Finally, since speech produced in a real
environment is affected by disturbances, the model is also capable of analysing the
communication channel conditions and measuring how these affect the quality of
speech produced.

Each of the components of Figure 4.1 is fully described below.

4.2 Process: speech synthesis

The speech synthesiser is the core component of the C2H model. It generates the
speech realisations on which the proposed model acts to improve the quality of the
communication.

In principle, C2H is designed to be applied to any speech synthesis system. The
model is sufficiently flexible to allow different TTS architectures, as long as they
provide adequate techniques to allow control of their production. Some basic
requirements are however necessary. Such speech synthesisers must:
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• have access to the generation parameters during the entire synthesis process.
C2H must be aware of its speech outcome during synthesis, even before the
actual waveform is produced.

• allow continuous adjustment of the generation parameters. C2H must be
able to modify the speech outcome at any step of the generation process.

• implement robust scalable modifications. C2H adjustments must be scaled
depending on the effort/energy that needs to be applied to the production.
Modified synthetic speech must always be consistent with a realistic
production (without speech artefacts) and must be similar to the original
speech characteristics in terms of same speaker identity, gender, language
phone inventory, etc.

In summary, C2H requires a synthesis system which can react to the variation of
the communication context at any stage of the speech production and can do so
with variable intensity.

An overview of the several types of TTS and their characteristics is reported below
in § 5.1. SPSS, emerges as the most suitable method in term of simplicity and
flexibility. For this reason, in this chapter, SPSS is implied to be the underlying
speech synthesis method of C2H.

4.2.1 Speech production adjustment

The TTS component of a context-aware speech synthesis model, such as C2H,
must provide a way to act on its generation process and modify its outcome.
The modifications must be controllable by a control signal and scalable in
correspondence to the degree of energy required for the successful communication.
The TTS must operate on reaction to the control signal originated in the controller
(cf. § 4.5), which is dependent on the communicative error detected by the
comparator (cf. § 4.4). The synthesis process is formalised as per eq. 4.1.

speech = Fsynthesis(control signal) (4.1)

In order to function in C2H, the TTS adjustment components are required to have
some important characteristics. They must be:

• consistent with the type of synthesiser. Speech modifications must be
in the range that the generation algorithm is designed to achieve. For
example, concatenative synthesisers might only allow signal post-processing
modifications, whilst SPSS provides a larger set of controllable parameters.
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• effective at changing the speech quality such that the communicative intent
can be achieved. The operational points of the TTS modifications must be
located on a dimension which affects the impact of speech on the listener.
Magnitude, versus, and direction of the adjustments need to be controllable.

• continuously updated. The environmental conditions may vary during the
TTS production and the perception feedback loop (cf. § 4.3), returns the
communicative state with a relatively low latency. Speech modifications
must therefore continuously follow the error signal and react to it.

Clearly, a large family of adjustments that comply with these requirements can be
selected at diverse levels of communicative abstraction. Changes can be operated
a) at the conceptualiser stage, by trying to express the goal in different modalities,
b) at the phonetic planning level, by changing the driving commands to the
synthesiser, or c) at the signal level, by keeping the linguistic information fixed
and adapting the sound. Most synthesisers can only control their speech signal
characteristics (intonation, speaker identity, expressiveness, etc.). Few of them can
change their input phone sequence, and fewer are still able to reword the whole
message.

Despite the possibility that all these modifications could, in principle, be
implemented in C2H, the model currently focuses on the signal level actions alone.
The speech transform proposed in this thesis is based on the adaptation capabilities
that almost every standard speech synthesiser allows, using changes in speech
duration, pitch, and spectral shape.

The idea behind the adjustment process in speech generation is also illustrated in
Appendix A.3.3 with the exemplar TGSM.

4.2.2 Effort and degree of articulation in speech production

In human speech production, a speech sound is assumed to be clearly recognisable
by a listener when its realisation is similar to an ideal production (i.e., phonemic
target). The development of phonemic systems in a language are motivated by
acoustic contrast. Speech sounds are categorised with diverse phonemic identities
when their realisations are sufficiently separated, acoustically. The distinction of
phonetic sounds (clarity) is correlated to the complete realisation of the related
articulatory gestures. As reported in (Browman and Goldstein, 1992), “gestures
can function as primitives of phonological contrast. That is, two lexical items will
contrast if they differ in gestural composition”. Hence, if the gesture is not fully
realised, it may overlap with other gestures, and the resulting phones produced
can exhibit reduced phonological contrast. For clear speech, realisation requires
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complete articulatory gestures so larger articulator movements are required, and
consequently a higher amount of effort is needed from the talker.

This well-established relationship between the effort of the communicative
process, the degree of articulation, and the resulting phonetic contrast constitutes
the basis of the C2H transformations, as was shown in Figure 4.2. This represents
the answer to the research question n. 3 on this thesis (cf. § 1.2).

The most intuitive dimension along which the production energy can be controlled
is the speech signal amplitude. The loudness level of a speech signal can be directly
linked to the airflow pressure involved in its production. Therefore, the amplitude
of a discrete-time signal x[t] can be directly correlated to the amount of energy of
the signal, Ex:

Ex =
∑
t

|x[t]|2 (4.2)

In order to reproduce well-established behaviours (e.g., the Lombard reflex) other
speech signal characteristic, such as formants, spectral shape, phone duration,
etc., must be affected by the transformation. Hence, a transform that can modify
these components is designed. As in the loudness control example, an important
assumption in designing the required transform is that a metric can be defined
to compute the distance between competing phonetic configurations, and the
direction, along which the speech realisations are transformed.

Rather than focus on single characteristics of speech signal such as loudness, pitch
or spectral energy, a more general motivating principle is proposed here whose
effects on speech production imitates those that are observed in human speech
behaviour.

4.2.3 Adjusting the phonetic contrast

Inspired by the H&H principles espoused by (?), adaptation of the C2H output is
motivated by both articulatory and energetic manifestations of phonetic contrast.
In particular, the notion of low-energy attractors is introduced.

Similar to the attractors in the theory of dynamical systems, these are hypothesised
to be acoustic configurations toward which speech tends to be evolve if no extra
effort is introduced in the communication. In the TGSM example of Appendix A,
these configurations appear from the combination of two or more Gaussian mixture
zone (GMZ). The interaction among equipotential Gaussian functions, where no
outstanding effort (i.e., high weighting factor) is applied to any of these, generates
virtual targets often in between the original GMZ targets (cf. Figure A.5).
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energy

effort

phonetic contrast

articulation

acoustic distance

hyper/hypo articulated speech

Figure 4.2: Relationship chain between effort and synthetic speech production in order to create
H&H speech.

In C2H, the low-energy attractors in the acoustic configurations are the low-
contrastive (LC) acoustic realisations towards which at least two competing
phones tend to converge. The opposite high-contrastive (HC) configurations are
realisations in which the acoustic differences of competing phones are enhanced.
For example, in the utterances “This is my pet” versus “This is my pot”, the
ease with which a listener can distinguish between “pet” and “pot” depends on
the effort put in to the pronunciation of the vowel by the speaker. A speaker is
likely to produce very clear high-effort hyper-articulated output when there is poor
contextual support and/or environmental noise: [pEt] or [p6t]. However, if the
context is strong and/or the environment is quiet, a speaker is likely to produce a
much less clear low-effort hypo-articulated output: close to [p@t] (the neutral schwa
vowel) for both “pet” and “pot”.

The adaptation process of the synthesiser in C2H focuses on low-level signal
modifications, but, due to the nature of the speech synthesis generation process,
it must also be aware of the phonetic content of speech production.

Most languages have studies reporting lists of competing phones that constitute
a source of confusion for human speech intelligibility. Language-dependent LC
attractors are hence hypothesised for every phone to define the direction for the
hyper/hypo-articulated speech transformation. These attractors are the most likely
acoustic realisations towards which speech production converges when the effort
reduces – HYO speech – and from which it moves when the intelligibility has to be
increased – HYP speech. Once selected, an LC attractor in the acoustic space
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defines a specific direction along which each phone parametric representation
should allow potential movements in order to decrease or increase the degree of
articulation. It also defines a distance that specifies the maximum strength that can
be used to scale the transform.

Interpolation/extrapolation along the key dimension of hypo/hyper-articulation in
the domain of parametric speech synthesis can thus be obtained by controlling
the distance from such attractors. The proposed adaptation is achieved with a
linear transformation that allows for continuous adjustments of the speech output.
The hypothesis is thus that by manipulating the acoustic distance between the
realisation of different phones, it is possible to vary the output from HYO speech
(i.e. by moving towards the LC attractor) to HYP speech (i.e. by moving in the
opposite direction away from the LC attractor) with appropriate consequences for
the clarity of the resulting output.

In this thesis, two sets of LC attractors are proposed for two languages: English
and Italian, showing that the same energy-motivated transform can be applied to
different languages. The success of the transformations is further examined in the
experiments of Chapter 6.

Attractors for English

It is observed that both human (van Bergem, 1995) and synthetic (Picart et al.,
2010) hyper-articulated (HYP) speech corresponds to an expansion of the vowel
F1-F2 chart and, conversely, hypo-articutated (HYO) speech corresponds to a
contraction of the vowel space. Figure 4.3 shows how formants of read vowels,
which tend to be HYP, shift with respect to those of spontaneous ones, which tend
to be HYO, in human speech. The clear trend movement towards the centre can be
exploited to identify an LC position for English vowels. The hypothesis is that the
mid-central schwa vowel [@], which is phonetically distinct in the English language,
defines the single LC attractor for all vowels. When communicative effort is
diminished, vowel phonetic contrast is reduced, and they tend to converge to this
point. Figure 4.4 illustrates an example for the phone [I] of the transformation
vectors along the hypo/hyper-articulation dimension.

The principle is that, whilst it is the case that a given vocalic speech sound can be
changed in any direction in the high-dimensional space defined by its parametric
representation, the particular location of the neutral schwa vowel [@] defines a
specific vector (Figure 4.4) along which it should be possible to produce output
with either hypo-articulation – by moving towards [@] – or hyper-articulation – by
moving in the opposite direction away from [@]. This idea is named English Vowel
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Figure 4.3: Vowel chart in read (HYP) and spontaneous (HYO) human speech. Note that the vertical
axis is inverted with respect to the normal vowel chart of Figure A.1. Figure reproduced from (van Son

and Pols, 1999).

IHC

ILC

Figure 4.4: Graphical representation of the transform vectors describing the English vowel HYO
reduction (blue arrow, ILC) and the HYP expansion (red arrow, IHC). The dashed grey line shows the

competitors used to define the transformation.

Production Control (E-VPC), and was first introduced by (Moore and Nicolao,
2011) and (Nicolao et al., 2012).

The transform for consonants cannot be defined following the single low-
contrastive configuration principle. The glottal plosive [P] or glottal fricative [h]
can be hypothesised as unique attractors, but their acoustic characteristics are
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quite different in term of spectral shape and pitch. Therefore, a simple vector
transformation between any consonant and these phones cannot be defined easily.

Another approach to the consonant reduction cab be hypothesised by observing
the confusion matrices of consonants in noise (van Son and Pols, 1999). Each
consonant is considered to have a particular competitor that is acoustically very
close, and hence potentially confusable. Once an acoustically similar competitor
for every consonant is identified, it is assumed that every intermediate realisation
generated along the dimension identified by each consonant-competitor pair is less
contrastive than the original phones themselves. The low-contrastive point for each
confusable pair of consonants is defined to be half-way between their realisations,
as depicted for [d] and [i] in Figure 4.5, representing the LC – and hence low-
energy – configurations. On the other hand, HC realisations are generated by

[d] [t]dLCdHC tLC tHC

Figure 4.5: Graphical representation of the English consonant transformation vectors describing the
hypo-articulation (blue arrows, dLC and tLC) and the hyper-articulation (red arrows, dHC and tHC)

phonetic productions. The dashed grey line shows the competitors used to define the transformation.

moving to the opposite direction away from the half-way point.

To create this transformations, highly-confusable consonant pairs must be
identified in English. The transforms that are trained to convert one phone into
another are named English Consonant Production Control (E-CPC). Pair choices
can be motivated by different needs: the control of voiced-unvoiced contrast (e.g.,
[t] vs. [d]) or of confusion in noise (e.g., [t] vs. [p]) as per confusion matrices in
(Miller and Nicely, 1955). A detailed map of the adopted contrastive phone pairs
used in this thesis is reported in § 5.4.1, below.

Attractors for Italian

The vowel adaptation in the previous section takes advantage of some
characteristics of the English language in which a vowel exists, [@] that is
widely recognised as the most common reduced phonetic configuration in hypo-
articulated speech (Nicolao et al., 2012). The question therefore arises whether
LC configurations can be also found in other languages, such as Italian, where
low-energy phones cannot be explicitly labelled.

Italian is a seven-vowel language with some specific differences to English, such
as
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• the absence of low-energy phonemes such as /@/ and /h/ in its phonemic
inventory;

• vowel acoustic realisations, which typically stand close to the vocalic
triangle outer border (F1-F2 chart);

• the variability of stress position in the word, along with the contrastive use
of it;

• the contrastive use of consonant geminations.

Even though Italian language does not exhibit schwa in his vocalic system, it can
be observed as allophones of some unstressed vowels in spontaneous speech, in
some reduction phenomena or in some local dialects (Leoni et al., 1995). Thus,
the Italian hypo-articulated speech is also assumed to contain one (or more)
LC configurations towards which vowels are reduced. The contrastive use of
stressed/unstressed vowels and the consonant gemination, which mostly affects the
phone duration, can be also exploited to reduce or increase the acoustic distance
between similar phones.

In order to model both Italian Vowel Production Control (I-VPC) and Italian
Consonant Production Control (I-CPC) reduction, the same approach used with
English consonants is proposed (Nicolao et al., 2013). Phonetically relevant
competitors are identified for all phones, and the LC configuration is achieved by
applying the half-strength transformation towards them. Ideally, this technique
maps both competitors into the same acoustic realisation. As in the E-CPC, the
HC configuration is achieved by moving the operational point along the same
dimension but in the opposite direction. The main difference with English is the
use of multiple target phones to train the speech transformation.

In the Italian transforms, the sole difference between vowel and consonant
transforms consists of the criteria by which the competitors are selected. The
Italian consonant competitor pairs are selected, analogously to English, by listing
the most confusable pairs. The consonant competitors and transformations are
similar to those of Figure 4.5. A comprehensive list of the consonant pairs can
be found in the literature that studies the perceptual confusion/discrimination of
Italian consonants in noise, see e.g., (Caldognetto et al., 1988). For vowels, the
competitor is the opposite phone across the F1-F2 chart, as shown in Figure 4.6.
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i

e o

a

u

ɛ ɔ
eLC

eHC

ɔLC
ɔHC

Figure 4.6: An example of adaptation for Italian vowels, considering [e] and [O]. The blue line refer
to the transformations towards the LC point (HYO), the red line to the ones towards the HC

configurations (HYP). The dashed grey line shows the competitors used to define the transformation.

4.3 Perception: enabling context-aware speech
synthesis

Speech is intended to be understood by human listeners. Therefore, its quality
must be maximised with respect to the capability of a human audience to receive
the message in it. Humans can assess the quality of the communication when
they speak (Levelt, 1983), using a complex perception system to estimate how
a listening audience will receive the spoken message. The quality of the world
auditory scene, in which the communication takes place (e.g., the presence of
noise, and/or language barriers) needs to be evaluated. If listeners are thought
to face adverse conditions that prevent them from receiving the correct message,
human speakers will adapt their production further (Hazan and Baker, 2011).
Perception, which is continuously active during human communications, derives its
information either from direct observations or from predictive models a) of the self,
b) of the communication channel, and c) and of attitude of the listening audience.
If direct observation is not possible, it is assumed that a prediction model may be
used for the talking agent to estimate the communicative state of the audience. The
degree of accuracy of the estimation depends on quality of the prediction models.
Models are more accurate if the talker has prior experience about the same category
of stimuli, as are commonly spoken and heard.

In control theory, monitoring the system state evolution is key to achieve stability of
the desired behaviour. Continuous assessment of the auditory scene state provides
the multi-dimensional feedback loop signal that allows the error computation. The
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feedback loop of C2H aims to estimate the effort involved in the synthetic speech
realisation and the degree of success of such speech at delivering the intended
message. It hence enables the model to be context-aware and reactive when the
context in which it operates changes. This part of the C2H model addresses the
research questions n. 2 and 5 of § 1.2.

The C2H monitoring loop represents the perception equivalent of the model. It
encapsulates diverse layers of sensors that probe the multiple dimensions that
contribute to estimating the communicative state. The measured state at a specific
time constitutes the input to the comparator (discussed further in § 4.4). The
comparator then computes the error against the communicative intent and produces
the control signals that drive the speech synthesis transformations (as discussed
further in § 4.5).

C2H sensors are designed to estimate the success of the synthetic speech at
delivering the intended message. Analogously to humans, a model of the listening
audience’s perception is therefore used to assess the suitability of each specific TTS
realisation.

The C2H model of the listeners requires a) the self-monitoring of synthetic speech
production, b) the direct or indirect probing of environmental disturbances, and
c) the assessment of the listener’s state. The perception function is described by
eq. 4.3.

communicative state = Fperception(world) (4.3)

= Fperception(speech, environment, listener)

As highlighted by Moore’s PRESENCE (Moore, 2007a) and MBDIAC (Moore,
2014) models, intentional speaking agents are currently lacking a model to predict
the listener’s needs (Moore and Nicolao, 2017).

An example of environment awareness in the exemplar TGSM space is reported in
Appendix A.3.1.

4.3.1 Auditory system emulation

In humans, the auditory system is responsible for sensing environmental
disturbances. Similarly, in C2H, information about the communication channel
conditions can be gathered through sensors that assess the environment such as
microphones. Continuous listening to the environmental acoustic scene allows
the speech synthesis system to be aware of any adverse conditions that its speech
needs to overcome. Alternatively, an inventory of previously-acquired disturbance
descriptions can be used. Such models would be selected depending on prior

66



4.3 Perception: enabling context-aware speech synthesis

knowledge such as the location description (e.g., train station, street, lecture
theatre, silent room, etc.) or the communication medium (direct speech, radio,
phone, etc.). In contrast to listening to the acoustic scene, using pre-defined noise
models allows the agent to compensate only for average channel disturbances,
since continuous reaction to environment condition changes is not available at
the time of speech generation itself. A straightforward example of a disturbance
estimation model assumes that channel noise energy is constant. Providing the
expected noise energy level to the synthesiser allows the system to adjust the speech
energy to maintain a constant signal-to-noise ratio (SNR). If the change in noise
dynamics is large, part of the speech production may be either insufficiently under-
or over-amplified.

Several features can be considered to directly measure disturbances that prevent a
listener from receiving the synthesised message. The most commonly accessible
quantity is the short-term noise energy level. Energy can be assessed across the
whole frequency spectrum or the calculation could focus on specific critical bands
that affect the speech frequency range. Perceptual importance functions are often
used to emphasise parts of the spectrum that are the most important for human
speech understanding, since different environmental disturbances can affect the
speech spectrum differently.

Other quantities can be measured to assess the environmental state. The rhythm,
evolution, and nature of the disturbances influence the ability of the synthesiser to
deliver the complete message to listener.

4.3.2 Self-monitoring

The sensory-motor system, combined with the auditory system, allows humans to
listen to their own speech production (Levelt, 1989; Postma, 2000). This ability is
fundamental in allowing them to be aware of their own speech production and in
assessing the effects of any adjustment made to their speech.

Moreover, humans predict the quality of their production in their mind before
producing overt speech. Short latency correction can be applied at the inner speech
– or planned speech – level to create realisations which are compatible with the
intent (Levelt, 1983).

The C2H model must also be aware of its speech production during the
communicative process. Analogously to the trajectory generation of the TGSM
model (see Appendix A.3.4), in C2H the agent must be able to query the speech
generation algorithm at each step of the communication process to assess weather
the communicative intents are being fulfilled.
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It is preferable to apply C2H to TTS systems that have accessible parameters.
If available, synthetic inner speech can be used to estimate overt speech quality.
Access to the internal state of the synthesiser allows the observation window to
be reduced. This analogy with the human inner loop (Levelt, 1983) allows C2H
to link once more to actual human behaviour. The latency of the system reaction,
in terms of number of steps that need to be processed by the model before having
an estimation, is determined by the speech generation frame rate. This latency is
normally in the order of 50-100 ms, similar to the 100 ms or one-word latency
observed in humans (Levelt, 1989).

As mentioned in § 4.2, not all TTS methods allow for direct access to the speech
generation models. Standard SPSS system consists of three parts: lexical analyser,
parameter generation, and waveform synthesis (cf. Chapter 3). This separation
provides a parallel to human speech self-monitoring. The outcome of the parameter
generation stage provides enough speech information, such as the energy spectrum
and fundamental frequency, to build a meaningful representation of the speech
quality, without having to synthesise the complete waveform. Having thus quality
estimation available before the speech signal is generated enables C2H to start
sending the perception signals to the comparator – and hence to the controller –
with considerably reduced latency.

4.3.3 The listener’s state

The listener’s attitude on receiving a message further influences the success or
otherwise of a communicative process. If listeners are motivated, they are inclined
to put more effort into compensating for communication errors, compared to when
they are not interested in the communication (Moore and Nicolao, 2017). If the
speech synthesiser intent is to deliver a message to an unattentive listener, extra
effort needs to be applied, e.g., increased loudness and clearer articulation. Human
talkers continuously observe their speech recipients’ cues (through audio and visual
backchannel signals) and estimate their level of engagement in the communication.

A model is considered in C2H to describe the audience’s reaction to the
communicative process. The main purpose of this model is to establish the
listener’s motivation level. The presence and demographic metadata of listeners
are information that can straightforwardly be acquired. For example, if a listener
walks away from the communication scene, simple sensors can return a signal
to prevent further speech production. If synthetic speech is deployed to deliver
announcements in a school, the audience is likely to be young people whose
main focus is unlikely to be listening out for school announcements. The first
example represents an instantaneous (at phone- or word-level) signal. The second
is longer term, as it might be valid for the entire use of the synthesiser. Short-term
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measures allow for faster feedback on the speech quality such that inadequacy can
be detected – and corrected – quickly. The level of attention may gradually vary
during speech production (e.g., a lecture-long speech), so continuous assessment
(at the sentence or paragraph level) of the audience’s attitude is then needed.

These measurements are quite complex to achieve with an automatic talking
agent. They require either prior knowledge about the audience or direct access
to their location. The direct method involves direct observation of signals such
as listener’s backchannel and gestures, or spoken confirmation of the message
delivery. These signals are often adopted by dialogue systems to measure the
level of engagement. They require several layers of automatic speech recognition,
speech understanding, and, where possible, face expression analysis and emotion
recognition. Gesture detection requires the speech synthesiser to be able to “see”
the listener and interpret their actions. Listening to the communication feedback
from the listener adds a great deal of complexity to the synthesiser, as it requires
also understanding rather than just hearing capabilities. As such, these direct
methods are accompanied by long (sentence-level) latency.

On the other hand, indirect methods mimic the prediction capability of humans to
estimate the listener’s state. In this case, a speech synthesis system needs to have
access to a model that describes how the listener is behaving. This prediction model
is stored in the perception block and is used to emulate how the listener is reacting
to the synthesised speech. The prediction accuracy depends on the quality of the
model. Synthetic speech and environmental conditions are input to this model. The
measured level of attention is often computed by estimating the degree of cognitive
load that is required by the listener to process the message. The main advantage
of this indirect methods is that the listener’s supposed behavioural state can be
assessed during the speech production. Thus, a divergence in the reception of the
delivered message is immediately detected, and countermeasures may be adopted
before the speech generation is complete.

4.3.4 Automatically assessing the communicative state

The three types of environmental sensors described above can be analysed
singularly and passed to the controller separately. In this way, a threshold on the
energy of the noise and the speech, or a speech signal artefact detector can, for
example, be used as control signals to drive the speech production.

The most effective way however to analyse the communicative state is to combine
the information gathered through different sensors into a concise metric that
summarises the degree of effectiveness at delivering the message. Communicative
state quality can vary consistently depending on which operational point of the
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auditory scene at which the communication unfolds. This is depicted in Figure 4.7.
The synthetic speech outcome may be processed in relation with the specific
environment and listener’s attitude, in order to model how effectively the listener
is perceiving and parsing it.

Sensor data measures are closely entangled. For example, the speech outcome can
be sufficiently effective in a quiet environment, but it can be completely unheard
in a noisy context. If a language barrier is affecting the communication, even in
a quiet environment, extra articulation effort is required for the listener to receive
message.

Several methods exist to estimate the extent to which the intentional message has
been received. In the following section, some of the methods that can be integrated
into C2H are described.

Intelligibility indices

The easiest – yet effective – criterion to predict if a spoken message is successfully
received is based upon the intelligibility of each element of the audio signal.
The concept of speech intelligibility, however, involves several dimensions of the
communication. First, the speech signal must be heard by the listener completely.
Second, the message in the signal must have an appropriate code on which talker
and listener agree (being grammatically correct, in a known language, etc.). Third,
the speech signal must have a meaning that the listener can understand (for
example, a comprehensible message).

Transferring this level of complexity to an automatic speech synthesiser can be
challenging, and two types of approximations are illustrated that simplify the
modelling of the listener’s perception. The first type considers the intelligibility
of the signal (a signal-processing approach). The second involves the capability of
correctly recognising the content of the message (a model-based approach).

Speech signal clarity has proved to be a good prediction of the communicative error
(Hazan and Baker, 2011). This technique is widely used in literature to evaluate
speech audibility and to infer understanding properties (Tang et al., 2016). The
intelligibility of speech can be regarded as a measure of the degradation of the
audio signal at the listener’s ear. Hence, signal processing techniques that measure
the degree of distortion are often adopted. Though they neglect the semantic
content of speech, these analyses allow speech intelligibility to be assessed with
good correlation to human listener’s subjective tests (Valentini-Botinhao et al.,
2011). Moreover, the assessment can be done with relatively low latency. This
is important because, to be as close as possible to the human auditory system, the
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Figure 4.7: Main components of the communicative states.

C2H perception loop needs to capture communicative state variations and transfer
them to the comparator instantaneously.

The most accurate intelligibility scores include several elaborate auditory
processing stages (Tang et al., 2016). These measures compare an internal
representation of the clean reference speech signal with an internal representation
of the noisy signal in order to predict how intelligible the noisy signal is (Valentini-
Botinhao et al., 2011).

Several procedures can be used for estimating speech intelligibility in normal-
hearing listeners (Kates and Arehart, 2005). The articulation index (AI) (Kryter,
1962) was one of the first to be proposed. It has been further developed to produce
some of the following indices,

The speech transmission index (STI) (Steeneken and Houtgast, 1980) is
calculated by detecting the modulation amplitude for each sub band in the
environment. The estimation of the SNR is formed by a weighted sum
across frequency. STI uses speech-shaped noise or speech as the stimulus.
The STI can be used for reverberating environment.

The speech intelligibility index (SII) The ANSI Standard (ANSI, 1997)
calculates the signal-to-noise ratio (SNR) on a decibel (dB) scale for
each frequency band in the frequency domain, considering the masking
effects and specific auditory thresholds. The weighted SNRs are then
summed to produce the intelligibility estimation. SII is effective with
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stationary, additive noise, and for bandwidth reducing filtering. The SII
procedure contains a model of the auditory periphery, with known auditory
thresholds for normal and impaired hearing. SII is an utterance-level
average estimation. Since the C2H model requires real time measures, the
eSII (Rhebergen and Versfeld, 2005) is proposed. Figure 4.8 shows the
measurement of such an index when the environmental noise is fluctuating.
The implementation of the time-varying intelligibility index will be reported
in § 5.6.1.

subjects, several papers report for this condition an SRT
around !12 dB !Festen and Plomp, 1990; ter Keurs et al.,
1993; Versfeld and Dreschler, 2002; Neijenhuis et al., 2002",
when the noise level is between 60 and 80 dBA. Computa-
tions with the existing SII model yield a score of 0.089,
which is far too low. Figure 3 displays the results of the
calculations with the extended SII model, similar to the pre-
vious section. The upper panel displays the waveform of a
speech signal !again, taken as a stationary speech-shaped
noise signal" with a duration of 2 seconds, presented at a
level of 48 dBA. The middle panel shows a 2-s sample of the
modulated speech noise masker, at a level of 60 dBA. The
lower panel in Fig. 3 shows the resulting instantaneous SII,
where, in contrast to the findings in Fig. 2, the SII value
greatly varies over time. It ranges from values close to zero
!at points in time where the speech is entirely masked by the
masking noise" to values near unity !at points where the
masking noise is momentarily absent". The lower panel thus
denotes the amount of speech information available to the
listener as a function of time. Averaging across time results
in an SII score of 0.35. Because large fluctuations exist over
time, a suitably long period has to be chosen to average
across. The time interval required to reach stable values for
the SII depends on the periodicity, or alternatively, random-
ness, of the signal as well as on the modulation frequencies
in the masking signal. With the present type of masking
noise, where the modulations are most prominent near 4 Hz,
a period of 2 s appears to be long enough to reach a between-
samples standard deviation for the SII of 0.0056. Increasing
the period to 4 s decreases the standard deviation of the SII
to 0.0030.

Figure 4 displays the SII as a function of the SNR. Here,
the masking noise has been kept fixed at 60 dBA, and the
level of the speech has been varied between 30 and 80 dBA
!thus between SNRs of !30 and "20 dB". With stationary
speech noise !denoted as filled symbols in Fig. 4" the SII

starts to deviate from zero as the SNR reaches a value of
!15 dB and increases almost linearly with the SNR up to a
value of "15 dB. At this value, the speech level is about 75
dBA, and the distortion factor in the SII model prevents the
SII from reaching unity. The behavior of the SII as a function
of SNR with stationary noise is identical for the existing and
the extended SII model. Differences between the two models
arise when fluctuating noise is used as a masker. Since the
existing SII model does not take the amplitude modulations
in the noise masker into account, the SII as calculated with
the existing SII model will be identical to that calculated for
stationary noise. The SII as a function of SNR for fluctuating
noise predicted by the extended SII model is given with open
symbols in Fig. 4. Even at very low signal-to-noise ratios,
there is still some speech information available to the listener
and the SII exceeds zero. Increasing the SNR causes the SII
to increase, but the slope of the function is not as steep as
that calculated for speech in stationary noise. Again, at
higher speech levels, the distortion factor of the SII model
causes the function to level off, such that the SII does not
reach unity. An important observation seen in Fig. 4 is that a
constant SII value of 0.35 !the information required to reach
threshold" results in an SRT of !4.5 dB for stationary mask-
ing noise and !12 dB for fluctuating masking noise.

C. Interrupted speech noise

de Laat and Plomp !1983" measured SRTs for sentences
in interrupted !gated" speech noise with a duty cycle of 50%.
Modulation frequency was 10 Hz. Masking noise was pre-
sented at 65, 75, or 85 dBA. Figure 5 displays the calcula-
tions with the extended SII model, similar to Figs. 2 and 3.
The upper and middle panel show the speech signal and
masking noise signal, respectively. Signal and noise level are
42 and 65 dBA, respectively. The SNR thus is !23 dB. The
lower panel shows the SII as a function of time. As seen
earlier, the SII is close to zero when the masking noise is
present, and is close to unity when the masking noise is
absent. Due to the longer integration times in the lower fre-

FIG. 3. Representation of the SII with the extended SII model for a speech-
in-noise sample of 2 s. The upper panel represents a speech signal of a
female speaker. The middle panel represents a fluctuating speech-shaped
masking speech noise, as used by Festen and Plomp !1990". The noise has
been scaled to 60 dBA. The target has been scaled to 48 dBA, which results
in an SNR of !12 dB. The lower panel displays the resulting instantaneous
SII as a function of time. The SII averaged across time is equal to 0.35.

FIG. 4. SII as a function of SNR as calculated with the extended SII model.
Filled symbols denote calculations with a stationary noise masker with the
long-term spectrum of the female target speaker. Open symbols denote cal-
culations with a fluctuating noise masker with the long-term spectrum of the
female target speaker and a speech-like modulation spectrum. The level of
the noises was set to 60 dBA.

2185J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 K. S. Rhebergen and N. J. Versfeld: Speech intelligibility index

Figure 4.8: Example of eSII analysis in relation to a speech signal in fluctuating noise. The upper plot
shows a female speaker’s speech signal. The middle plot represents a fluctuating speech-shaped

masking noise. The lower plot displays the resulting index as a function of time. The SII averaged
across time is equal to 0.35. Figure reported from (Rhebergen and Versfeld, 2005).

Perceptual Evaluation of Speech Quality (PESQ) (ITU-T, 2001; Rix et al.,
2001) is a measure designed for predicting the quality of speech signals
transmitted over a telephone line. The measure includes an auditory
transform and considers the masking phenomena for the comparison of
this transformed representation, but cannot handle wideband speech signals
because it was specially designed for narrowband signals.

Dau index (Dau et al., 1996a) is based on the human auditory model developed
in (Dau et al., 1996b). The model is a time domain representation that
incorporates aspects of temporal adaptation. The measure corresponds to the
normalized correlation coefficient of the internal representation derived by
the Dau model for reference and noisy signals. The correlation is evaluated
over sliding window frames, computing the average of the values in high
energy frames.
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4.3 Perception: enabling context-aware speech synthesis

Glimpse Proportion measure (GP) (Cooke, 2006) derives from the Glimpse
model for auditory processing. The assumption underlying this model is that
listeners can reconstruct a speech signal in noise by listening out for short
glimpses of speech that are relatively unmasked. The internal representation
is derived using Gammatone filter banks, and measures the proportion of
spectro-temporal regions in which speech is more energetic than noise. The
GP value is also computed on a frame-wise basis.

Another model-based approach is to use pronunciation assessment analysis of
the synthetic speech outcome. For example, the approach described in (Nicolao
et al., 2015) can successfully pinpoint the phone and word level distance of a
specific speech production to an ideal target example. In addition to the measure of
intelligibility, this internal detection can also help to identify competing realisations
that would generate word- and phone-level confusions. The competitor identity
could also be used as a signal to the controller to determine the correct action to
take in order to minimise that specific confusion (Cooke, 2009). The alternative is
to use a statistical description of normal phonetic confusion.

Some of these methods are used in C2H to measure speech intelligibility.

The understanding models

The mere fact that a speech message is heard by the listener does not assure that
the message is meaningful or that it can be understood. For example, it may
contain nonsense words, or language, education, and cultural barriers can create
misunderstanding. In order to design a speech synthesis system that checks the
linguistic and semantic quality of its speech, an accurate model of the listener’s
speech recognition is required.

The recogniser model aims to replicate how the audio message is processed by the
listening audience, assuming that the signal is audible at their ears. Several model-
based sensors that predict the perception of the listener can be considered, each
of them focusing on different aspects of the communicative intent. Some relevant
speech understanding models are listed below.

The most immediate model that can be considered consists of automatic
speech recognition (ASR), which is tailored to the key listener’s characteristics,
considering native language, regional accent, and lexical vocabulary. A carefully
trained automatic speech recognition (ASR) can emulate the understanding
capability of a specific listener, and hence predict to what extent the message
content is correctly received. Significantly low ASR performance might be an
indicator that some synthetic speech production characteristics, such as speech
rate, coarticulation effects, sound volume, or regionally accented voices, are not
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4 C2H, a Computational Model of H&H behaviour

compatible with the recognition models. Hence, it is likely that the listener,
modelled by the ASR, is not able understand the synthetic speech. Once the
speech audio has been decoded and a written transcript is obtained, a semantic
analyser can read the ASR output and extract the semantic content of the message
to summarise its general meaning. Sometimes the communicative intent can be
understandable even if the audio cannot be decoded entirely. Other aspects of the
communicative intention can be detected with a pitch/stress analyser which can
detect what type of intonation is perceived an emotion detector which can check
what type of the expressiveness is conveyed, and a speaker recogniser which can
predict whatever the listener can recognise the identity of the speaker.

The parametric speech synthesisers that are suitable for C2H, are based on
statistical parametric acoustic models of speech. As a result, SPSS internal
generative structure can be inspected to provide the basis of possible source error
predictors. Confusion networks (Mangu et al., 2000) or confidence measures (Zha,
2014) extracted from the speech generative process can help to predict the degree
of confusion that competing speech realisations might generate in listeners. A
high number of active parallel hypotheses during the SPSS generation stage, is
proportional to high uncertainty that an ASR would experience at recognising
that speech outcome. The hypothesis here is that ASR and a human listener’s
uncertainties are proportional when the acoustic model is accurate.

An ASR-based perception loop can also return information about the identity
of competing phones and words that generate recognition confusion. Such
information can then be used to adjust the realisation effort in correspondence to
those speech elements only.

The sensor implementation adds another layer of complexity. The models used
in the prediction must be carefully tailored to the listener’s characteristics. They
need to be aware of what knowledge is available to listeners, what their cultural
and linguistic backgrounds are, what their level of attention is, and their native
language, etc. Model mismatch can become a source of measurement errors.
This presents another analogy with the human communication process, since the
human-to-human communication is also more effective when the speakers are
aware of their audience in terms of their characteristics and needs (Hazan and
Baker, 2011). Similarly, the C2H model produces a more successful speech
outcome when it has access to accurate models of the listening audience (Moore
and Nicolao, 2017). If direct access to the listener is unavailable, an approximate
model, which incorporates some basic dimensions of speech, may be selected
instead.
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4.4 Comparator: assessing realisations

4.3.5 A synthesiser that evaluates the quality of its outcome

The perception part of C2H, in which the synthesiser can evaluate the quality of its
outcome, represents the auditory feedback loop of the complete C2H system.

Perception consists of three main types of sensors: acoustic environment probing,
self-monitoring of inner speech, and detection of listener’s state. The data acquired
through these sensors contributes to create a listening audience emulation. Such
models normally aim to predict the level of intelligibility and/or understanding
of the communicative process. The dimensions along which the prediction must
operate are determined by the communicative intent (to maximise speech clarity, to
deliver complete message, to transfer an emotional content, etc.) and by the quality
of the assessing measures (reliability of intelligibility measure and awareness of the
listener’s needs).

4.4 Comparator: assessing realisations

A continuous connection between perception (§ 4.3) intent, and controller (§ 4.5)
is essential for the C2H model to achieve a synthetic speech production system
which reacts to the environmental disturbances with relatively short latency.

At every step of the speech synthesis process, C2H has the capability of checking
to what degree the speech realisation is fulfilling the communicative intents.

The communicative state measured or predicted by the perception block needs to
be contrasted with the goal of the communicative intent. This comparison happens
in the comparator and is expressed by

error = Fcomparator(communicative state, communicative intent) (4.4)

Here, the communicative state, communicative intent, and error are all multi-
dimensional vectors, in which each component addresses a specific aspect of the
intent: intelligibility, appropriateness, expressiveness, loudness, etc. The system
distance to the intent is the error signal that drives the controller block, and that
consequently causes the control signal which transforms the speech realisation.

In the TGSM example (cf. Appendix A.3.2) the comparator is essentially
represented by the Euclidean distance between the trajectory and the target.

4.4.1 Multiple layer comparator

In standard control theory, a comparator only computes the difference between
the reference and measured signals. In C2H, however, the conceptualiser intent
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4 C2H, a Computational Model of H&H behaviour

can account for several dimensions. As a result, the comparison between
communicative state and intent needs to allow multiple layers of control. For
example, the perception block can return information related to self-monitored
speech, to the outer environment, and to the listener’s state. If a specific goal
layer is prescribed in the communicative intent, the comparator must be tailored
to compute the error prioritising that specific domain. Error layers belong to
different domains: audibility, expressiveness, understanding. Perception layers
that can be checked depend on the definition of intent and include a) the speech
outcome semantic content that is planned in the intent (the text message), b) the
production artefacts in the speech realisation (when clear speech is required),
c) the audibility level of speech waveform in loud noise (when the goal is to be
above an intelligibility threshold), d) the listener’s word error rate (WER), that
could not reflect audibility (when message transfer is the goal) and e) the speech
expressiveness coherence with the goal.

The C2H multi-layer comparator error is input to the controller part of the model.
This is theoretically also capable to handle multi-layer control signals, however,
in the current design, the comparator is limited to the determining the distances
of text message from completion, and of the speech waveform intelligibility from
minimum goal threshold. The distance from complete text message is determined
by how far in the synthesis the TTS is.

4.5 Controller: adjusting the communicative effort

As previously stated, the C2H model aims to produce Lindblom’s H&H production
model (see § 2.2.1). In the same way, the speech synthesiser in C2H constantly
balances the effort applied to the transform (i.e., the transformation strength)
against the effectiveness of the communication (i.e., matching the intent). The
controller part of the model is thus designed to target the research question n. 5 of
§ 1.2.

Humans do not aim to maximise communicative success at all time. Lindblom’s
model and general linguistic observations state the minimal effort that achieves the
desired degree of success is the optimal choice. Since listeners are accustomed
to this speech behaviour, a speech synthesiser that is perceived as unnecessarily
hyper-articulating would be received as unrealistic, if not irritating. The
appropriateness of realisation loudness and articulation is more important than
its maximisation. Depending on the communicative intent, a reduction of the
production effort can counter-intuitively be the optimal strategy, for instance in
cases where the goal is for the speech to sound friendly and colloquial rather
than assertive and patronising. In the computer assisted language learning (CALL)
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4.5 Controller: adjusting the communicative effort

context, for example, a friendly tone can be more appropriate than an impersonal
reading voice.

Scaling the speech synthesiser transform is the role of the controller block of C2H,
shown in Figure 4.1. The component behaviour is formalised in:

control signal = Fcontroller(error,motivation) (4.5)

The comparator error is converted into the control signal to appropriately scale the
transform of § 4.2.1. As expressed in § 4.4, the error signal is multi-dimensional.
The error components that are considered for the optimisation and the amount of
energy that the system should invest in trying to minimise the error and increase
the success rate of the communication are selected by the conceptualiser through
its motivation component. The motivation component models the level of attention
that talking agents use in the communicative process.

The conceptualiser can in principle modify the motivation level during production.
However, in C2H, it is assumed to be selected before speech production starts, and
it is constant throughout the entire communicative process.

Proportional–integral–derivative (PID) controller is a control mechanism widely
used in classical control theory (Lipták, 2003). A PID controller continuously
transforms the error e(t) between intent and perception into the correction signal
u(t), based on proportional, integral, and derivative terms.

u(t) = KP e(t) +KI

∫
e(τ)dτ +KD

de(t)
dt

(4.6)

In the C2H controller, the proportional KP and integration KI coefficients are
normally considered. For example, the error signal can directly act on the output
signal amplitude and incrementally build the spectral adjustment variations.

As described in Appendix A.3.4, in the TGSM domain, the trajectory generation
adaptation is normally a linear function of the error derived by the proximity
functions.

4.5.1 Moving along the H&H dimension

The main purpose of the control in the C2H model is to compute a correction vector
to adjust the transform and minimise the system error. The maximum correction
that the system is allowed to produce is a function of the input motivation (effort)
that is set in the communicative intent.

In the C2H model, the synthesiser intention and its communicative goal are
assumed to be set with prior knowledge, and are defined externally. These
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4 C2H, a Computational Model of H&H behaviour

input configurations are also presumed to be fixed for the entire duration of the
communication, though the C2H model is sufficiently flexible to allow them to
additionally evolve through time.

The error signals computed by the comparator determine the intensity of the
correction signals. In C2H, these normally consist of loudness adjustments and
speech parameter adaptations, as described in § 4.2.2.

As listed in § 4.3.4, many types of errors are expected to be measured by C2H.
Consequently, the controller needs to address corrections on each of these error
dimensions.

The motivation, which drives the controller, selects the aspects of the
communication to maximised and the effort involved. Three foundation layers
can be identified.

Audibility analyses the ratio between the produced speech and the environment
disturbance energies. Inner speech needs to be accessed separately from
the background noise. Transformations at this level are signal-based and
they resemble the speech enhancement techniques. This layer neglects the
semantic content message and the speech nature of the signal. E.g., SNR
results are equivalent if applied on direct or time-inverted signals.

Intelligibility The most important frequency bands that are expected to carry the
largest part of speech signal information are identified. Control along this
dimension might result in spectral energy reallocation to enhance the contrast
among critical bands of competing phones. This control again neglects
the message content, and indeed extreme transformation which alter the
phonetic identity as a result of such control. For example, “but, /b 2 t/”
might be adapted into “bit /b i t/”: the new phone sequence might be more
intelligible, but the message changes.

Understanding controls the meaning mismatch between intentional and
perceived messages. The semantic content of speech, its expressive
valence, its appropriateness, and the listener’s attitude can all be
evaluated. This approach requires sophisticated human understanding
models. Transformations can act at a linguistic level, e.g., by changing the
word sequence. The main limitation here is that the whole reaction time
increases considerably, and it can at times even require a complete restart of
the whole production.

If the goal is to optimise speech intelligibility, the measured index in the current
environment (e.g., the eSII value) can be controlled by changing the adaptation
strength proportionally to eq. 4.6. If speech understanding must instead be
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4.6 The complete C2H model

increased, the correction signal should act on the generative parameters (e.g.,
acoustic models in SPSS) such that the message is delivered in its entirety (e.g.,
maximising the accuracy of the ASR transcription).

One of the most important characteristics for creating a reactive C2H is that
the control link between the perception and generation processes must have low
latency. That is, any measurement received from the perception loop must be
translated into a control signal with low latency. Here, the delay is proportional
to the length of the observation needed to produce a control decision. High
level perception signals, such as emotion, attitude, understanding require long
observation windows. On the other hand, low-level perceptions, such as audibility
and intelligibility, can generate an almost immediate reaction.

Not all errors can be corrected by a PID controller based on a gradient descent.
Similarly to the human monitoring and self-repair mechanism (Levelt, 1983), if
the error signal is too large, then volume change or speech adaptation are no longer
adequate reactions. A very large error may need to trigger a different action such
as the interruption-and-restart of the speech generation with the corrected version.
Even if it is not listed in the set of available transforms, C2H can account for this
type of major self-repair.

4.6 The complete C2H model

In this chapter, the complete C2H model structure is described.

The goal of C2H is to create a speech synthesiser that is aware of the context in
which operates, and that is able to adapt to any changes of the communicative
context. State-of-the-art synthesisers currently lack this capability. Therefore,
the C2H model proposes adding a perception feedback loop to a standard TTS
framework. Such negative control loop enables adjustment of the speech realisation
according to the perceived communicative error.

The model design follows the principles of Levelt’s perceptual loop theory (Levelt,
1989) and Powers’ PCT (Powers, 1973). The perception module estimates the
communicative state, a comparator computes the error with respect to the input
intentions, and a motivation-driven controller modifies the speech production to
minimise the error (cf. § 4.5).

The speech production adjustment mechanism is designed to model the principles
of Lindblom’s H&H theory, as discussed earlier in § 4.2.1. The communication
process is the result of balancing the degree of success against the effort involved
in the production.
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4 C2H, a Computational Model of H&H behaviour

The main idea of Lindblom’s theory revolves around the observation that the effort
that communicative agents adopt in their speech production is proportional to the
degree of articulation of the phones (cf. Figure 4.2). An acoustic approach to
transform the degree of articulation is proposed, where control of the phonetic
distance in the acoustic space (phonetic contrast) is coupled with the control of the
degree of articulation.

The overall process that describes the C2H synthetic speech generation, can thus
be described by a recursive function in which all the principal components that
influence the process are listed,

speecht+1 = FC2H(speecht, listenert, environmentt, goalt,motivationt) (4.7)

New speech at time t + 1 is created by descriptors of the communicative state
at the t-th step (speecht, listenert, and environmentt), and by expressions of the
communicative intent (goalt and motivationt).

The high-level diagram of the C2H model was illustrated earlier in Figure 4.1. It
can now be expanded in a more detailed description of the constitutive elements.
The expansion shown in Figure 4.9 combines the arguments discussed in this
chapter with some of the ideas proposed in the models by (Levelt, 1989) and
(Hartsuiker and Kolk, 2001).

At the top of the Figure 4.9, the conceptualiser handles the communicative intent
that has to be achieved. Communicative intent consists of a goal to be achieved
(normally the synthesis of a text message), and a motivation that selects the
communicative effort and dimensions to be assessed by C2H.

In the speech synthesiser part, the characteristic TTS components are displayed
(cf. Figure 3.3). Three main stages are identified: lexical analysis, articulation,
and waveform generation. The control signal acts both at lexical and articulation
levels. The first produces the semantic content. The second contains the transform
that changes the degree of articulation.

The controller stage produces the signal that adjusts the speech transform. It
is driven by the error computation of the comparator. The error is generally
the difference between the expected message and level of motivation, and the
perception loop measurements.

The perception part of C2H mainly focuses on the signal intelligibility assessment.
The main reason behind this design choice is the need to minimise the system
feedback loop latency, and the fact that speech intelligibility measures can
sample the environment faster than an speech understanding model. The
perception sensors observe the inner speech generated by the synthesiser, and the
environmental disturbances. The listener’s feedback assessment is not directly

80



4.6 The complete C2H model

  C
om

pa
ra

to
r

  S
pe

ec
h 

Sy
nt

he
si

s
  W

or
ld

  P
er

ce
pt

io
n

  C
on

ce
pt

ua
lis

er
  C

on
tr

ol
le

r

Phonetic plan

Grammatical and 
phonological 

encoding

Articulation

Articulatory plan 

Inner speech

DisturbancesOvert speech

Effort and goal 
selection

+

Waveform 
generator

Error 
computation

Observations

Listener’s state

Motivation

Speech 
intelligibility and 

understanding

Goal

Listener

ErrorControl signals

Communicative 
state

Figure 4.9: The complete outline of the C2H model of speech production. The TTS constituents, on
the left-hand side, the auditory perception loop, on the right-hand side, and the adaptive control, in

the centre, blocks are highlighted. The framed boxes indicate the implementable functions. The
bracket boxes identify the signals.
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measured in C2H at present, but are derived mostly from prior information.
This helps to select the correct audience model (using age group, education,
demographic, etc.), and is assumed to remain constant. The inner speech can be
extracted either before or after the waveform is created. Articulation features, such
as energy spectrum envelope and pitch contour, transport enough information to
correctly estimate the speech qualities.

Communicative intent and environmental context characteristics are the sole
external inputs of C2H. The former is the intentional scope for which the synthetic
speech system is created. The latter contains all the elements that are external to
C2H and cannot be controlled by the model.
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HTS-C2H: a C2H Implementation
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The C2H model described in Chapter 4 is a flexible framework that enables a
speech synthesiser to reproduce the Hyper and Hypo articulation theory (H&H)
behaviour. This chapter introduces an implementation of the model so that



5 HTS-C2H: a C2H Implementation

experimental evidence can be gained to provide answers to the research questions
proposed in § 1.2.

C2H comprises several blocks and functions, as were depicted in the diagram
of Figure 4.9. However, not all of these functions are implemented. The main
objective of the current implementation focuses on the speech synthesis process
and its adjustment capabilities. Automatic assessment methods to evaluate the
communication success are also investigated. The C2H conceptualiser and some
parts of the perception feedback loop that would involve the direct observation of
the listener (cf. § 4.3.3) are not implemented at the present, as they require further
investigation that exceeds the scope of the research questions in this thesis.

This chapter addresses the answers to the research questions n. 2, 3, and 5, as it
demonstrates the possibility to implement and test the proposed C2H model in a
realistic scenario.

As suggested in § 4.2, statistical parametric speech synthesis (SPSS) is the most
suitable synthesiser to apply in the model. Its implementation named HTS-C2H
is therefore created to test to what extent the solutions described in the previous
chapter can reproduce behaviours observed in human communication.

As introduced in § 4.2.1, C2H can operate in diverse languages. Language-
dependent differences of the HTS-C2H implementation structure are therefore
highlighted in addition.

5.1 Speech synthesiser

Figure 4.9 of Chapter 4 shows that the speech synthesiser to which C2H can
be applied, must be in fact a TTS stage. Therefore, in order to provide an
implementation to test the effectiveness of the computational model, a suitable
TTS synthesiser must be selected. Such a synthesiser needs to be able to control the
spectrum and the duration of speech effectively, and this control must be scalable
and continuously applicable during synthesis (cf. § 4.2).

Table 5.1 summarises and compares the four most commonly available speech
synthesis methods, and reveals their applicability for the C2H framework. The
positive signs ‘+’ indicate that the related characteristics exist, and they are
reasonably accessible. The negative signs ‘-’ state that those attributes may
represent an obstacle against applying C2H to that synthesiser.

Most state-of-the-art TTS synthesisers generate their speech realisations in a
single pass. In these TTS systems, the input goal (message, expressiveness,
and motivation) is established at the beginning of the synthesis, along with the
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5.1 Speech synthesiser

Table 5.1: Comparison of the four most common automatic TTS methods. The number of positive “+”
and negative “-” signs indicates the degree of suitability of a TTS method for application in C2H.
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5 HTS-C2H: a C2H Implementation

generation models and the selected modifications. Once these synthesis parameters
are chosen, the outcome of the entire utterance is determined. An example of such
systems is the concatenative synthesiser. C2H cannot be applied to concatenative
synthesis, as the modifications to speech with this method are not easily scalable.
Partial realisations are not accessible before the entire speech signals are created.

All SPSS architectures might in principle be used in C2H, since they normally
allow for robust and scalable modifications of the generation parameters. However,
some amendments to the standard generative algorithm are required in order to be
able to control the adjustment strength of speech production during the generation
process (cf. § 3.2.5).

Other types of synthesiser, such as the physical-model and end-to-end synthesisers,
provide access to the state of the system at each production step. The outcome
of the physical-model synthesisers is theoretically scalable as they have a direct
correspondence to physical quantities such as articulatory movements, amplitude,
and airflow pressure. However, this relationship, which is generally learned from
experimental data, is heavily speaker dependent. Any modification can lead to
unstable and unintelligible speech as the re-synthesis methods for these parameters
are often inefficient.

End-to-end systems, on the other end, are innately autoregressive, therefore their
output is constantly processed to generate the next samples. However, the level of
complexity of such synthesisers requires a large amount of training audio. As a
novel development, further research is needed to implement effective conditioning
mechanisms to continuously scale the adjustment. In other words, such a system
might be able to produce two different voices, but it is unlikely that it can generate
unseen speech which is an interpolation between two models.

In conclusion, any TTS might be applied in the C2H model with differing degrees
of change to their standard algorithms. However, from the foregoing analysis
(summarised in Table 5.1), statistical parametric speech synthesis (SPSS) (Zen
et al., 2009) emerges as the most suitable method in term of simplicity and
flexibility of the implementation. In parametric synthesis, phone characteristics
can be altered continuously in any direction of the high-dimensional space defined
by their parametric representation, using any available adaptation techniques.
As described in § 3.2, state-of-the-art SPSS allows two types of approaches:
HMM-based (Tokuda et al., 2013) and DNN-based (Zen et al., 2013) parameter
generation. At present, the quality of SPSS methods such as the DNN-based speech
synthesis seems to outperform the HMM-based ones, but the computational load,
adaptation techniques, and training process do not show the required stability and
speed to be implemented in C2H.
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5.1 Speech synthesiser

TTS is composed of two main parts, depicted in § 3.1 and Figure 5.1: linguistic
analysis and waveform generation.

Figure 5.1: Block diagram of standard TTS system.

In particular, among the state-of-the-art SPSS waveform generators, HTS is
chosen, described in § 5.1.2 below. HTS does not include any linguistic analysers.
Valid text analyser options that can be combined with HTS are the Festival
speech synthesis system (English, Spanish, etc.), the DFKI MaryTTS system
(German, English, etc.), Flite combined with the hts engine (English), Open JTalk
(Japanese).

In the following paragraphs, the implementation choices for the linguistic analysis
and waveform generation components of HTS-C2H are described.

5.1.1 Linguistic analysis

Linguistic analysis maps an input text into the standard representation that drives
the parameter generation algorithm. It translates word-level information into phone
sequences, as well as deciding how the synthesiser should pronounce it.

In HTS-C2H, the linguistic analyser must fulfil certain requirements. The input to
this component is human readable text, perhaps with labels and tags to describe
the type of expressiveness intended. The output is a phone-level description of
the speech sound realisations: phone identities, durations, and positions in the
word/sentence.

The initial stages of the process are designed to normalise the text and to
disambiguate the sense of each word and symbol. The subsequent stages deal with
the translation of words and any additional syntactically or semantically derived
information, providing a compact description of the sounds to be generated.

In this thesis, two different frameworks for linguistic analysis are used,
corresponding to the two different languages that the experimental part considers:
English and Italian.
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5 HTS-C2H: a C2H Implementation

Festival

The linguistic analysis for the English language is provided by the standard Festival
Speech Synthesis system. Festival is a general multi-lingual speech synthesis
system developed at the Center for Speech Technology Research in Edinburgh
(Clark et al., 2012; Taylor et al., 1998). It offers a full text-to-speech system
with various software tools, as well an environment for the development and
research of speech synthesis techniques. It is written in C++ with a Scheme-based
command interpreter (Kelsey et al., 1998). Festival provides both lexical analyser
and waveform generator for a general-purpose concatenative TTS architecture that
uses the residual LPC synthesis technique.

In HTS-C2H, the lexical analyser for the English language is used. It is able to
transcribe unrestricted text to speech.

Festival lexical analysis operates with text and linguistic/prosodic processing. The
modules and the sequence of operations that need to be applied to perform a
Festival lexical analysis are reported in Figure 5.2.

Festival is multi-lingual and voices in many languages have been developed,
including English (UK and US), Spanish, Italian, and Welsh. The tools to build
English voices are the most advanced.

MaryTTS

The linguistic analysis for the Italian language is provided by the modified version
of the TTS software, MaryTTS (Multimodal Speech Processing Group, 2018;
Schröder et al., 2011). MaryTTS is an open-source, multilingual TTS platform
written in Java. It was originally developed as a collaborative project of DFKI’s
Language Technology Lab and the Institute of Phonetics at Saarland University. It
is now maintained by the Multimodal Speech Processing Group in the Cluster of
Excellence MMCI and DFKI. MaryTTS supports German, British and American
English, French, Italian, Luxembourgish, Russian, Swedish, Telugu, and Turkish.
It provides toolkits for quickly adding support for new languages and for building
unit selection and HMM-based synthesis voices.

Natural language processing (NLP) is responsible for the prediction of speech-
relevant data extracted from input text: phone symbols and intonation labels.
Similar to Festival, MaryTTS analysis is organised in a modular way. The sequence
of operation is reported in Figure 5.3. The output of the NLP component is a rich
MaryXML structure.
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5.1 Speech synthesiser

tokenize the text into an ordered list of tokens

chunk the tokens into utterances;

apply user defined functions to each utterance,
typically this is utt.synth and utt.play

the function utt.synth runs further analysis on each token
in an utterance converting it to one or more words

text modes allow a special filter for the whole file 
and the specification of mode specific parameters 

such as token-to-word functions

lexicons: mapping words to pronunciations

letter-to-sound rules: when no list of words is available

intonation: finding the tune

accent assignment: where are the accents and what are their type

F0 contour generation: by rule or statistical method

duration: specification of length of each segment

post-lexical rules: co-articulatory effects between words.

Figure 5.2: Sequence of Festival modules to perform the lexical analysis.

The Italian modules for MaryTTS (Tesser et al., 2013) have been developed by
the ISTC-CNR research institute (ISTC, 2019) and they include: a) Italian lexicon
and letter-to-sound rules, b) context dependent part-of-speech tagger, c) ToBI rules
(Silverman et al., 1992) to predict symbolic prosody from text, d) a customised
version of the Italian SAMPA phone set (UCL Phonetics and Linguistics, 1989).
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5 HTS-C2H: a C2H Implementation

part-of-speech POS tagger

chunker (a partial syntactic analysis)

grapheme-to-phoneme conversion using: a lexicon for the known tokens, 
grapheme-to-phoneme rules for the unknown tokens (using a morphological analysis), 

and syllabification, word stress and phonologic rules

intonation annotation with ToBI conventions, using punctuation, 
POS info, and the local syntactic info provided by the first parsing stage.

post-lexical phonological rules, modifying the phone symbols 
and/or the intonation labels as a function of their context.

Figure 5.3: Sequence of MaryTTS modules to perform the lexical analysis.

5.1.2 Waveform generation

Waveform generation converts the articulate symbolic representation that result
from the linguistic analysis into a speech waveform. The waveform generation
stage in SPSS must convert the sequence of allophone symbols from linguistic
analysis into a continuous speech waveform and apply the correct intonation to the
waveform.

This stage’s operations can be regarded as sequence-to-sequence regression task
between phone-level and signal-level sequences. In the first domain, one linguistic
specification vector is provided per each phonetic unit. In the second, the timeline
expands each linguistic vector into one parameter vector for each frame. The
regression task is followed by a vocoder stage in which the parameter sequence
is converted into speech waveform.

HTS-C2H uses HTS as parameter generator (cf. § 3.2.3) and STRAIGHT as
vocoder (cf. § 3.2.1).

Parameter generation

HTS 2.2 is chosen to provide the parameter generation functions of the HTS-
C2H implementation. A regression tree followed by context-dependant HMMs
represents the statistical models that drives HTS generation process. Since this
HMM model adopts Gaussian functions to describe the output vector space, simple
but effective adaptation techniques can be applied to the generation process to
allow for an effective way to control the speech production.

90



5.2 Synthetic voices

Vocoder

The vocoder part of the synthesiser is not included in the standard HTS release.
The MGLSA algorithm or STRAIGHT, see § 3.2.1, are compatible options to use
in HTS.

In this thesis, the STRAIGHT analysis/synthesis tool is chosen to be the waveform
parametrisation that is trained by the HTS-C2H statistical models. Compared
to other vocoders, this vocoder has been proven to be effective in reducing the
“buzzy” effect on the final speech realisation.

Since the C2H output speech parameters need to be transformed into the speech
waveform during the generation, the HTS-C2H vocoder needs to be able to
operate and synthesise limited portions of the signal. This can be achieved by
implementing a buffer, in which speech parameters are accumulated, and which
triggers the vocoding conversion when it contains sufficient speech material.

5.2 Synthetic voices

New English and Italian voices are developed for HTS-C2H, using the standard
recipe provided with Festival.

The training of a single-speaker voice in a new language requires addressing
the creation of linguistic analysis modules, such as: phone-set definition, token
processing rules, prosodic phrasing method, word pronunciation (lexicon and/or
letter to sound rules) and intonation (accents and F0 contour). On the other hand,
duration and spectral waveform characteristics are learned from audio examples by
training a set of context-dependent HMM using the HTK.

HTS-C2H uses the conventional HTS 2.2 (Zen et al., 2007a) training regime
to derive the specific acoustic models (cf. § 3.2.1). The parameters of the
HMMs can be estimated based on the maximum likelihood (ML) criterion by
the expectation maximisation (EM) algorithm. Spectral parameters are modelled
with Mel-generalized cepstral (MGC) features by context-dependent HMMs with
continuous distributions. Neither conventional discrete nor continuous HMMs can
be applied to F0 pattern modelling since F0 values are not defined in the unvoiced
regions. The HMM-based SPSS system therefore uses multi-space probability
distribution (MSD) distributions (Tokuda et al., 1999) for modelling F0. The
voicing strengths for mixed excitation (Yoshimura et al., 2001) with continuous
probability distribution.

All the steps of the voice training process in HTS are displayed in Figure 5.4. An
exhaustive description of this process is outside the scope of this thesis. However,
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5 HTS-C2H: a C2H Implementation

Figure 5.4: Overview of all the individual analysis steps that are required to provide the parameters
to train a new voice or synthesise a new utterance in HTS. Figure reproduced from (Cooper, 2019).

it is important to emphasise that the process heavily relies on a good-quality text
analysis (the full-context training labels), and alignment of speech and labels (the
master label files).

All voices are trained with: a) speaker-dependent models, b) the default HTS
parameter set, c) decision-tree based state clustering, and d) separate streams to
model each of the static, delta and delta-delta features, e) single Gaussian models.

5.2.1 The English audio data

A female voice (SLT ) and a male voice (Nick ) are created for English (Nicolao
et al., 2012; Nicolao and Moore, 2012b).

The SLT voice is trained on the ‘CMU-ARCTIC SLT’ corpus (Kominek and Black,
2003a), which consists of 1132 utterances spoken by an US English female. The
corpus was recorded in a 16 bit 32 KHz format, in a sound proof room. The
waveforms are stereo: one channel contains the actual acoustic waveform, the other
has the electro-glotto-graph (EGG) signal (which is not used in the training). The
database was automatically labelled using CMU Sphinx and the current FestVox
labelling scripts. No hand correction has been made.

The English voice Nick is developed using speech data available from the LISTA
Hurricane challenge (Cooke et al., 2012). The speech training corpus consists of
about 3 hours of unmodified natural speech, spoken by a male British English
speaker (Nick ). Material consists of three different texts: 2023 newspaper style
sentences, 300 sentences containing words from the modified rhyme test inserted in
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a carrier sentence (House et al., 1963), and 540 sentences from the Harvard corpus
(Rothauser et al., 1969). The third corpus contains sentences that are arranged into
phonemically-balanced subsets. Since the corpora are read speech by a highly-
intelligible speaker, they can therefore be considered as intrinsically rather clear,
i.e. hyper-articulated (Cooke et al., 2013a).

5.2.2 The Italian audio data

The two Italian voices used in the HTS-C2H experiments (Nicolao et al., 2013),
are developed in collaboration with the Italian ISTC-CNR research institute (ISTC,
2019).

The female and male voices (Lucia and Roberto ) are trained on two phonetically
and prosodic balanced speech corpora, also recorded by ISTC-CNR.

For Lucia , the speech corpus consists of about 2 hours of material (approximately
1400 sentences), recorded by a non-professional female speaker with a Northern
regional accent in a quasi-soundproof booth.

For Roberto , the voice is trained on a commercial corpus, available for research
purposes. It contains about 3 hours (approximately 1900 sentences) of read speech,
recorded by a professional male speaker in a quasi-soundproof booth.

Monophone and full context labels for both corpora are derived with the specific
linguistic MaryTTS front-end for Italian text analysis, developed by ISTC-CNR
(Tesser et al., 2013). HTK 3.4.1 (Young et al., 2002) toolkit is used to provide the
phonetic alignment to the audio.

5.3 Parameter generation

The standard generation algorithm of HTS takes advantage of the Cholesky
decomposition to increase the computational speed. As already expressed in
§ 3.2.4, this generation method allows fast computation, but eliminates the
possibility of adapting the model parameters as the process unfolds. Therefore,
an alternative generation method must be added to the HTS implementation of
HTS-C2H.

The recursive search generation algorithm described in § 3.2.5 is therefore
substituted for the standard HTS generation algorithm as it enables continuous
manipulation of the generative models at each step of the generation process.
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5.3.1 Speech parameter generation in HTS-C2H

The recursive search generation algorithm is adapted in the HTS-C2H
implementation. In particular, the output feature distributions are modelled
by single Gaussian functions, features are modelled with up to second order
derivatives, and the effect of the delay is considered between processing the input
linguistic features and the production of the output speech parameters.

The optimal sequence of states and mixtures {qt, it} with 1 6 t 6 T should be
chosen before parameter generation begins. To do this, the phone and the state-
duration sequences must be computed independently from the acoustic features.
For the phone sequence, an automatic text analyser such as the one in the Festival
Speech Synthesis System (Clark et al., 2012) is normally used. For the state-
duration sequence, the computation of the duration of each state is deduced
with eq. 3.27 using an independently-trained statistical model. If the HMM
comprehends multiple Gaussian mixtures, the mixture with the higher weight value
is chosen.

The implemented algorithm assumes that the input state sequence is optimal. Thus,
no state sequence optimisation is requested and the algorithm of Table 3.1 with the
following substitutions,

Σ−1
qt = 03M×3M and µqt = 03M (5.1)

Σ−1
q̂t

= Σ−1
t and µq̂t = µt (5.2)

can be changed into a simpler form. In this situation, eq. 3.48 and eq. 3.49 become

D = Σ−1
t (5.3)

d = Σ−1
t µt (5.4)

and the algorithm formula are those in Table 5.2.

Table 5.2: Algorithm to compute the output feature ĉ, given optimal state sequence.

π = Pwt (ST.1)
ν = w>t π (ST.2)

κ̃ = π {I3M +Dν}−1 Σ−1
t = π

(
I3M + Σ−1

t ν
)−1

Σ−1
t (ST.3)

ĉ = c+ κ̃(µt −w>t c) (ST.4)
ε̂ = 0 because no state optimisation is needed. (ST.5)
P̂ = P − κDπ = P − κ̃Σ−1

t π (ST.6)

The computing is done for every n-order derivative with 0 ≤ n ≤ 2, for each
dimensionm in 1 ≤ m ≤M and for each t in 1 ≤ t ≤ T . The number of elements
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used to compute the dynamic features with eq. 3.17 are L0 = 0, L1 = L2 = 1 and
the window coefficients:

ω(0) = 0

ω(1) = [−1/2 0 1/2] (5.5)

ω(2) = [1 − 2 1]

1 Tt

1 S

computation interval

t

Input timeline

Computational timeline

0 0 ... 0 0 0

Output timeline 1 T

μ    , Γ t t
(0) (0)

c t
t+SS T+S1Absolute timeline

0 0 ... 0 0 0Σ

Figure 5.5: Diagram of the relationship between the four different timelines (input timeline, output
timeline, computational timeline and absolute timeline) in the implementation of the recursive

algorithm.

Ideally, T would be∞ because the input stream could be endless, but, practically,
the number of influenced neighbouring vectors is limited to S. So, inside the
computation algorithm, the timeline, where range is [1, T ], is reduced to a small
portion, [1, S], as shown in Figure 5.5.

At input time t, the frame of interest is reinitialised, according to eq. 3.53 and
eq. 3.52 to have:

cs=1,m = µ
(0)
t,m, mean of the static features at state qt

P
(0)
0,s=1,m = Σ

(0)
t,m, covariance of the static features at state qt (5.6)

P
(n)
0,s=1,m = 0, ∀n ∈ [1, 2]
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∀m ∈ [0,M − 1]. Thus, the matrices and the vectors in Table 5.2 can be written
as:

π = {π(n)
u,m} and π(n)

u,m =

wr∑
j=wl

P
(n)
u−j,s+j,mw

(n)
j (5.7)

ν = {ν(n)
m } and ν(n)

m =

wr∑
j=wl

w
(n)
j π

(n)
j,m (5.8)

κ̃ = {κ̃(n)
u,m} and κ̃(n)

u,m = π(n)
u,m

Σ
(n)
s,m

1 + Σ
(n)
s,mν

(n)
m

(5.9)

P̂ = {P (n)
u,s,m} and P̂ (n)

v−u,s,m = P̂
(n)
u−v,s,m = κ̃(n)

v,mπ
(n)
u,m (5.10)

ĉ = {cs,m} and ĉs+u,m = cs+u,m + κ̃(n)
u,m

µ(n)
s,m −

wr∑
j=wl

w
(n)
j c

(n)
s+j,m


(5.11)

∀s ∈ [1, S], ∀u ∈ [−R,wr], ∀m ∈ [0,M − 1] and with wr = L(n) and wl =
−L(n). The first S steps of the algorithm are needed to fill the P matrix with the
initialisation values. After these steps, the oldest vector cs=S is ready to be sent to
the output. All the elements in the vector c and the matrix P are shifted one step
ahead (cs+1,m = cs,m and Pu,s+1,m = Pu,s,m ∀s and ∀m) and the place left empty
at the beginning of the vectors is filled with the parameters of next input model as
in eq. 5.6. The optimised feature vector can thus be given to the output after S
iterations from when the model parameters were first given to the input.

Though he computational complexity of the algorithm is initially O(T 2M3), this
reduces to O(T 2M), when Σqt and ∆Σqt are diagonal.

5.4 Phonetic contrast adaptation

The recursive generation algorithm of § 5.3.1 allows different acoustic model to be
selected at each step. This enables each model to be manipulated before it is used
in the algorithm. A strategy to train the phonetic-contrast motivated adjustments of
§ 4.2.3 is proposed next.

5.4.1 Adaptation of speech models

In C2H, a transform must be trained to map normal phone realisations onto low-
contrast (LC) attractor acoustics, as per § 4.2.3. The resulting transformation is
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used to generate new unseen speech. This transform should hypothetically reduce
the degree of perceived articulation of the synthetic speech. If the hypothesis is
correct, the outcome of the adaptation is fully hypo-articulated (HYO) speech.
Moreover, the inverse transformation should give rise to hyper-articulated (HYP)
speech.

The required adjustments of acoustic and duration models are obtained using
MLLR (cf. § 3.2.1). This technique is normally used to adapt HMM models to
render new speaker identities (Yamagishi et al., 2009).

The use of linear transformation such as MLLR or constrained maximum
likelihood linear regression (CMLLR) is crucial as their linearity allows to easily
scale the intensity of the transformation. Moreover, MLLR computational cost
is relatively low, thus the adaptation during the generation process can be done
without a big effect on performance.

However, a procedure needs to be developed to identify the direction – i.e. MLLR
parameters – along which the transform vector can be moved. In the following
paragraphs, the training and the scaling of such transformations are described.

MLLR training with data augmentation

The MLLR transformation is estimated using a relatively small corpus of synthetic
hypo-articulated speech. Two approaches are possible: collect new specifically-
recorded speech material (Picart et al., 2014; Raitio et al., 2013) or artificially
generated new audio (Nicolao et al., 2012; Nicolao and Moore, 2013b). The former
approach is unsuitable for achieving the transformation of § 4.2.3, as the extremely
unrealistic type of speech that is required from the speaker would be difficult to
deliver. The latter approach is hence chosen to train the MLLR transform. This
can be regarded as a data augmentation approach (Ragni et al., 2014). Data
augmentation is often used to train speech recognition model for low-resource
languages. It aims to increase the quantity of training data. This approach has an
important theoretical advantage of being able to produce data when real examples
are not available.

The artificially generated new audio consists of synthetic speech generated using
HTS with input control sequences forced to have only LC attractors in them. The
HTS synthesiser uses the speech models that are normally trained on the data set
of § 5.2. Using decision-tree based clustering, HTS finds the most likely context-
dependent acoustic model for all of the LC attractors, even those unseen in the
original training corpora.

In detail, the speaker-dependent training procedure consists of the following steps:
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1. Train speaker-dependent speech models using audio and transcription labels
from standard training data set.

2. Substitute selected phone labels with related LC attractors in the input
linguistic-analysis files.

3. Generate a hypo-articulated LC version of the original training corpus. No
constraints on the duration of these realisations are set.

4. Train the MLLR adaptation of acoustic and duration models to match the
new characteristics of the hypo-articulation corpus.

5. Repeat step 1-4 for each class of phones for which LC attractors need to be
differentiated: e.g., vowels and consonants.

The MLLR transform that is obtained consists of a set of context-specific functions
that modify the parameters of the context-dependent pdfs. The MLLR transform
normally operates on the Gaussian model mean vectors only, but the covariance
components can also be adapted. The resulting mean vectors and covariance
matrices for each i-th HMM pdf {µi,Σi} in the model can be written as, can
be written as:

µ′i = Aiµi + bi (5.12)

Σ′i = (H−1
i )ᵀgiH

−1
i (5.13)

where H iH
ᵀ
i = Σ−1

i and the P × P matrix Ai, and the P × 1 vectors bi and gi
are the transformation parameters. P is the size of the static feature vector plus, in
this case, its n-order derivatives.

Low-contrastive reference generation

Figure 5.6 shows the functional diagram of the data augmentation procedure used
to create the reference corpus to train the transformation parameters. Starting
with the set of full-context labels (L0) used to build the standard HMM-
based voice, a low-contrastive version of the labels (L1) is obtained through a
phonetic transformation. L1 labels are used to generate the acoustic features (P1)
representing the LC acoustic space. The most likely models for unseen-context
phones are selected from the standard HMM models using decision-tree clustering.
The time-aligned version of L1 (LA1) is mapped back into the standard phonetic
domain (LA0). These labels along with the target generated parameters (P1), are
used as reference to estimate the MLLR transform.

Phone substitutions, used to create the reference augmented data, are language
dependent, as expressed in § 4.2.3. LC attractors in English are selected to be the
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Figure 5.6: Schematic diagram of the data augmentation preparation. Figure reproduced from
(Nicolao et al., 2013).

schwa phone [@] for vowels, and the highest confusable competitor for consonants
(Miller and Nicely, 1955). LC attractors in Italian are the competing phones that
are more likely to be mistaken in adverse conditions. Vowel competitors are
the opposite phones with respect to F1-F2 chart. Similarly to (Miller and Nicely,
1955), Caldognetto (Caldognetto et al., 1988) listed the Italian consonants that are
undistinguishable in noise. Following these guidelines, confusable consonant pairs
are chosen to be the contrastive pairs. Another set of consonant pairs is motivated
by the contrastive use of gemination in Italian. Gemination is the consonant
lengthening that differentiate two homophonic words. Geminated consonants
are mapped into the corresponding non-geminated ones in order to increase the
phonetic contrast.

A summary of the contrastive pairs used in the English and Italian MLLR training
are displayed in Table 5.3 and Table 5.4 respectively.
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5 HTS-C2H: a C2H Implementation

Table 5.3: Vowel and consonant mapping in English. STD column contains the original phones and
CTR has the contrastive ones.

STD CTR STD CTR STD CTR

[a] → [@] [U] → [@] [v] → [f]

[@] → [@] [u] → [@] [T] → [D]

[A] → [@] [Y] → [@] [D] → [T]

[O] → [@] [w]→ [@] [s] → [z]

[aU]→ [@] [p] → [b] [z] → [s]

[@] → [@] [b] → [p] [S] → [Z]

[aI]→ [@] [t] → [d] [Z] → [S]

[E] → [@] [d] → [t] [h] → [h]

[@] → [@] [k] → [g] [m]→ [n]

[I] → [@] [g] → [k] [n] → [m]

[i] → [@] [tS]→ [dZ] [N] → [n]

[oU]→ [@] [dZ]→ [tS] [l] → [r]

[OI]→ [@] [f] → [v] [r] → [l]

Table 5.4: Vowel and consonant mapping in Italian. STD column contains the original phones and
CTR has the contrastive ones. Geminate consonants are not listed, but they are mapped to the

corresponding non-geminate ones.

STD CTR STD CTR STD CTR

[a] → [u] [f] → [p] [dz]→ [dZ]

[e] → [o] [t] → [k] [dZ]→ [dz]

[i] → [O] [k] → [t] [g] → [dZ]

[o] → [e] [ts] → [s] [z] → [g]

[u] → [a] [s] → [ts] [l] → [L]

[E] → [o] [tS]→ [s] [L] → [l]

[O] → [e] [S] → [tS] [m]→ [n]

[j] → [O] [b] → [d] [n] → [m]

[w]→ [a] [d] → [b] [J] → [m]

[p] → [f] [v] → [b] [r] → [m]
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5.5 Controlling the phonetic contrast

5.5 Controlling the phonetic contrast

The generative speech model of HTS-C2H can be controlled at each step with the
recursive generation algorithm of § 5.3.1. To achieve this, a method to control the
phonetic-contrast motivated adjustments of § 5.4 must be implemented.

The control mechanism described here operates on the MLLR transform. It aims
to scale the magnitude of the adaptation that is applied to the speech models. As
hypothesised in § 4.2.3, the scaling of the transform magnitude is proportional to
the degree of articulation, and hence to the speech production effort.

5.5.1 Scaling the MLLR transform

One of the important characteristic of MLLR transformation is its possibility to be
scaled with different strength. The previously trained MLLR transform identifies
the functions that change the acoustic space descriptors from the source {µi,Σi}
to the adapted space {µ′i,Σ′i} where i is the acoustic model index.

The transformation vectors {vi} that move the mean values of the i-th GMM to the
adapted space can be written as:

vi = µ′i − µi (5.14)

Combining eq. 5.14 and eq. 5.12, the vi becomes:

vi = (Ai − I)µi + bi (5.15)

where Ai and bi are the parameters of the MLLR for the i-th pdf, and I is the
identity matrix.

Finally, the scaled mean vector, µα
h

i , with the weighting factor αh > 0, can be
expressed as the partial movement of µi towards the target µ′i:

µα
h

i = µi + αh · vi (5.16)

Given the hypo-articulation transform parameters µ′i and Σ′i as per eq. 5.12 and
eq. 5.13, the scaled mean vector, µα

h

i and covariance matrix Σαh
i are computed as:

µα
h

i = µi + αh(µ′i − µi) = αhµ′i + (1− αh)µi (5.17)

Σαh

i = αhΣ′i + (1− αh)Σi = (H−1
i )ᵀ(αhgi − αh + 1)H−1

i (5.18)

When the transform is trained on contrastive pairs, the MLLR is applied with
diminished strength (usually 50%) to the HMM models to reduce standard (STD)
synthetic speech to the actual low-contrastive (LC) configuration, the mid-point
between competitor acoustic realisations.
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5 HTS-C2H: a C2H Implementation

5.5.2 Linear transform inversion

In § 4.2.3, it is stated that the transformation towards hyper-articulated speech is
hypothesised to be the inverse of the trained adaptation towards LC attractors:
same domain, same orientation, but opposite sense. Therefore the transformation
towards hyper-articulated speech could be regarded as the inverse of the MLLR
transform vector defined by eq. 5.14. The vector vi, that defines the transformation
orientation and sense towards hypo-articulated space, can then be inverted:

−vi = µi − µ′i (5.19)

Eq. 5.16 becomes

µα
h

i = µi + αh · (−vi), with αh ≥ 0 (5.20)

The inversion method transfers the negative sign of the vector to the weighting
factor, eq. 5.16 can be applied by changing sign to αh, αH = −αh.

µα
H

i = µi + αH · vi, with αH ≤ 0 (5.21)

For example, in the case of the same-magnitude inverse transform (αH = −1),
eq. 5.21 becomes

µ−1
i = −(Ai + 2I)µi − bi (5.22)

which means that the weighting factor should move towards negative values. Since
eq. 5.17 and eq. 5.18 are still defined for those range of values, a continuum in
which the formula exists is identified. From this point onwards, αh and αH will
therefore be simply addressed as α and (5.17) and (5.18) can be written as

µαi = µi + α(µ′i − µi) = αµ′i + (1− α)µi (5.23)

Σα
i = αΣ′i + (1− α)Σi = (H−1

i )ᵀ(αgi − α+ 1)H−1
i (5.24)

and they are defined ∀α ∈ R. The magnitude of the inverted transformation
towards hyper-articulation, in principle, has no phonetically-motivated constraints.
However, if the transformed acoustic models are too far from the STD realisations,
the feature domain becomes under-trained, and the synthetic speech sounds
unrealistic. A discussion about the range of values for α and the effects when
α > 0 (hypo-) and α 6 0 (hyper-articulation) can be found in Chapter 6.

In conclusion, adaptations are trained such that both the forward and the inverse
transformations can be applied with different magnitude, representing different
operating points along the derived H&H axis. Proofs of such scaling effectiveness
for the range of α values are shown in Chapter 6.
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5.5.3 The control of α

The parameter α appears to be the critical element to control the strength of the
hypo/hyper-articulation transform. Understanding how to handle this parameter is
therefore of utmost importance. The transform scaling factor α is by definition
time-varying, αt, as it has to change frame-by-frame to follow the error signal.

The value of αt is defined as a function of two main factors: the motivation m
from the conceptualiser, and the error signal e from the comparator and perception
feedback loop. This is,

αt = F(m, et) (5.25)

As previously expressed, motivation is assumed to be a fixed value, which
describes the “attitude” of the synthesis system to overcome language barriers.
It indicates the maximum amount of effort that can be involved in the process.
Thresholds can be modelled to limit the range of αt, i.e., the effort amplitude. The
thresholds, αHYO and αHYP, are selected as the maximum HYO and the minimum
HYP values respectively, with which the transform can operate. Hence, F(.) range
can be limited either globally,

αHYP ≤ F(m, et) ≤ αHYO (5.26)

or locally,

αHYP ≤
1

B

t∑
t−B
F(m, et) ≤ αHYO (5.27)

where B is the length of the observation window that it is used to limit the F(.)
values.

The αt range is determined by the intrinsic qualities of the trained adaptation, but it
is also a function of the motivation m. This factor can be included in the boundary
constants,

αmHYO = m · αHYO (5.28)

αmHYP = m · αHYP

where m ∈ [0, 1]. The αt range amplitude is then controlled by m, and it is [αmHYP,
αmHYO].

In the implementation of the HTS-C2H adaptation, the output of the perception
loop is the principal component of the error signal. The error is defined as the
difference between the measured and the intended intelligibility, eSIIt and eSIIintent
respectively:

et = eSIIintent − eSIIperception = eSIIintent − eSIIt
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5 HTS-C2H: a C2H Implementation

where eSIIt is the perceived intelligibility and eSIIintent indicates the intended
intelligibility. The latter is assumed to be fixed for the whole duration of the
synthesis, and it is derived from the conceptualiser intent.

Both the constant term, eSIIintent, and the observation term, eSIIt, vary between 0
and 1. Therefore, their difference et is in the range [−1, 1]. When et is positive,
the intelligibility is not high enough. Hence, the degree of articulation must be
increased to increase the communicative clarity (HYP, αt ≤ 0). Negative et
indicates that the speech is estimated to be clearer than is intended. The degree
of articulation can therefore be reduced to reduce the system effort (HYO, αt ≥ 0).

The parameters αht and αHt of eq. 5.16 and eq. 5.21 are both reduced to αt and are
expressed as

αt = F(m, et)

= F(αmHYO, α
m
HYP, eSIIintent, eSIIt) (5.29)

= F ′(et)

Since αmHYO, αmHYP, and eSIIintent are constants defined by the conceptualiser, F(.)
can be written F ′(.) and the only variable is the time-varying measure, eSIIt, from
the perception loop encapsulated in et .

Several mapping functions F ′(.) can be adopted to map the error into the scalar
control parameter, as long as these functions:

a) are monotonic,

b) allow some tolerance at the boundaries by mapping the error range [−1, 1]
into [αmHYP − ε, αmHYO + ε] with ε→ 0,

c) F ′(et) < 0, if et > 0 (HYP transform),

d) F ′(et) > 0, if et < 0 (HYO transform),

e) F ′(et ≈ 0.8) = αmHYP (maximum HC configuration),

f) F ′(et ≈ −0.8) = αmHYO (maximum LC configuration),

g) F ′(et ≈ 0) = 0.

In HTS-C2H implementation and its relative experiments, a heuristic incremental
function, inspired by PDI control principle, is chosen. It allows for small over-LC
(αt ≥ αmHYO) and over-HC (αt ≤ αmHYP) configurations. It can be expressed as

αt = F ′(et) =

{
αt−1 + ∆αt αmHYP ≤ αt−1 ≤ αmHYO

αt−1 elsewhere
(5.30)
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5.6 Monitoring speech quality

where α0 = 0 (no adaptation), and

∆αt = −0.1 ·
(

2

1 + e−9·e3t
− 1

)
(5.31)

The function of eq. 5.30 ensures that the αt is always contained within the defined
boundaries. The incremental component curve of eq. 5.31 is displayed in Figure
5.7 for the [−1, 1] domain interval of et.
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Figure 5.7: Incremental component ∆αt of αt = F ′(et). The HYO and HYP directions from the
equilibrium position are also displayed.

5.6 Monitoring speech quality

One of the key features in the C2H model is the perception feedback loop, that was
discussed in § 4.3. The aim of this part of the model is to evaluate the synthetic
speech quality.

Speech quality can refer to different dimensions of speech communication. The
C2H comparator (cf. § 4.4.1), ideally requires a broad spectrum of speech
quality measures, such as the audibility of the speech signal, clarity of the
content, expressiveness, etc. However, some of these dimensions are not easily
implementable and are themselves the topic of extensive research. In the
experiments of this thesis, the assessment is limited to the intelligibility dimension,
as it allows an automatic, low-resources, effective measure of how speech interacts
with the environment.
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5 HTS-C2H: a C2H Implementation

Automatic methods for intelligibility assessment can here be effectively regarded
as computational model of the listener.

5.6.1 Extended SII

The extended speech intelligibility index (eSII) (Rhebergen and Versfeld, 2005;
Rhebergen et al., 2006) is an implementation of the SII, discussed in § 4.3.4, that
allows intelligibility indices to be computed on a short-term window of the signal.

Standard SII requires that both clear speech and noise signals are known for the
whole utterance duration to return an average intelligibility value. This model
in its present form (ANSI, 1997) accurately describes intelligibility for speech in
stationary noise but fails to capture the effects due to non-stationary disturbances.
The extension to the model, eSII, has been proposed to predict speech intelligibility
in both stationary and fluctuating noise. The basic principle of the extended
approach is that both the speech and noise signals are partitioned into small time
windows. Within each time window, the conventional SII is computed, yielding
the speech information available to the synthesis framework at that instant. If the
eSII values of these windows are averaged, the overall result remains coherent with
the conventional SII value for that particular condition.

noise !i.e., stationary Gaussian noise with the long-term av-
erage spectrum of speech" was used. The main reason for
this is that, in combination with stationary noise as a noise
masker, all SII values are identical to those obtained with the
existing SII model. This prerequisite is not easily fulfilled
when normal speech signals would be used.

The SII is in principle designed to predict the average
intelligibility of speech in noise and not the intelligibility of
individual words or phonemes. In any case, the SII is badly
defined in case of silent periods occurring within the normal
speech signal because, regardless of the masking noise, the
SII will always be zero. Thus, even when a speech signal is
presented at a clear level without any masking noise, the SII
based on regular speech never will reach unity, due to the
inherent silent periods in the speech signal. Moreover, prob-
lems will occur if one considers the silent periods between
sentences. It is clear that large differences in SII may occur
when the silent periods between sentences vary, whereas the
actual intelligibility should not be different.

The most straightforward approach to determine the SII
within small time frames is to window the speech and noise
signal at a given point in time, calculate the frequency spec-
trum !by means of a fast Fourier transform, FFT", and derive
an SII from the resulting speech and noise spectrum and the
threshold of hearing. However, in order to be able to track
the perceptually relevant fluctuations over time, the window
length should be small enough. This means that the time
window should have a duration of several milliseconds,
which is the temporal resolution for normal-hearing listeners
based on gap-detection thresholds in the higher frequency
bands !Plomp, 1964; Shailer and Moore, 1983, 1987; Glas-
berg and Moore, 1992; Eddins et al., 1992; Oxenham and

Moore, 1994, 1997; Moore et al., 1996; Plack and Oxenham,
1998; Moore, 1997". Unfortunately, such a short time win-
dow leads to the signal-analytical problem that the level in
the lower frequency bands is not estimated accurately. On the
other hand, a longer time window leads to a poorer grasp of
the temporal variations of the signal.

It is known that the temporal resolution of the auditory
system is frequency dependent !Shailer and Moore, 1983,
1987". Time constants !i.e., integration times" for the lower
frequency bands are larger than those for the higher bands.
To overcome the analysis problems on the one hand, and to
stay close to the characteristics of the auditory system with
respect to temporal resolution on the other hand, the signal
was first filtered into 21 critical bands, and the window
length was chosen to be relatively short in the higher bands
and relatively long in the lower bands. Since in the original
SII calculations the frequency bands are essentially nonover-
lapping !after all, the intensity within each filter band was
derived from the frequency spectrum", a FIR filter bank of
order 200 #MATLAB function firl!200,Wn"$ was used to filter
the entire speech and noise signal into the separate bands.
Within each band, the temporal envelope was determined by
means of a Hilbert transform. At a given time frame, rectan-
gular windows were used with window lengths ranging from
35 ms at the lowest band !150 Hz", to 9.4 ms at the highest
band !8000 Hz". These window lengths were taken from
Moore !1997, Chap. 4" for gap detection and have been mul-
tiplied by 2.5. The factor 2.5 was chosen to provide a good
fit to the present data set, as will be discussed below. The
windows were aligned such that they ended simultaneously.
Within each time frame the intensity was determined, and
these, together with the absolute threshold for hearing were
used as input to calculate the instantaneous SII, for that given
time frame. To calculate the SII, the so-called speech percep-
tion in noise !SPIN" weighting function !ANSI S3.5-1997,
1997, Table B.1" was used. This choice seems to be valid,
since the speech materials of Plomp and Mimpen !1979" are
closely related to the SPIN materials with respect to sentence
length and redundancy. Last, the SII for the speech-in-noise
condition under consideration was determined by averaging
across all instantaneous SII values.

C. Speech reception threshold

In the present paper, the proposed extension to the SII
model was evaluated using existing data from the literature.
The data differ from each other with respect to a number of
variables that all can have an effect on intelligibility, hence
on the parameter settings of the SII model. For example, it is
known that the type of speech material !monosyllables,
words, sentences, etc.", open or closed response set, and na-
tive or non-native language acquisition can have a large ef-
fect on intelligibility !Bosman and Smoorenburg, 1995;
Drullman and Bronkhorst, 2000; van Wijngaarden, 2003".
Next, similarity between masker and target, e.g., in the case
where both target and masker consist of a male voice
!Bronkhorst and Plomp, 1992; Bronkhorst, 2000", has a det-
rimental effect on the actual threshold !i.e., the signal-to-
noise ratio that results in just-intelligible speech". Also, the
experimental paradigm influences threshold to a large extent.

FIG. 1. Schematic overview of the calculation scheme for the extended SII
model. A detailed description is given in the main text. The input speech
signal !stationary Gaussian noise with the long-term average spectrum of
speech" and input noise !in this example interrupted noise with the long-
term average spectrum of speech" are separately filtered by a 21 critical-
band !CB" filter bank. The envelope of the input speech and noise are
estimated in every CB !1–21"; the instantaneous intensity is estimated in a
frequency-dependent time window, as indicated by the shaded bars
!CB1!35 ms to CB21!9.4 ms". Every 9.4 ms an SII is calculated as de-
scribed by ANSI S3.5-1997. For each of the approximately 200 steps !of 9.4
ms", the instantaneous SII!t" is determined !sentence of about 2 s". Last, the
SII for that speech-in-noise condition is determined by averaging across all
instantaneous SII!t" values.

2183J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 K. S. Rhebergen and N. J. Versfeld: Speech intelligibility index

Figure 5.8: Schematic overview of the calculation scheme for the eSII model. Figure reproduced from
(Rhebergen and Versfeld, 2005).

A block diagram of the calculation scheme of the eSII (Rhebergen and Versfeld,
2005) is presented in Figure 5.8 and can be described as follows:
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1. the input speech signal and the input noise are separately filtered by a 21-
critical-band (CB) filter bank;

2. the envelope of the input speech and noise are estimated in every CB; the
instantaneous intensity is estimated in a frequency-dependent time window,
as indicated by the shaded bars in Figure 5.8;

3. the window length is chosen to be relatively short in the higher bands and
relatively long in the lower bands (CB1 = 35 ms to CB21 = 9.4 ms);

4. every 9.4 ms an eSIIt is calculated as described by (ANSI, 1997);

5. for each 9.4-ms steps, the instantaneous eSIIt is determined;

6. the ANSI SII for that speech-in-noise condition is determined by averaging
across all instantaneous eSIIt values.

The eSII recipe that requires SII value for that particular speech-in-noise condition
is calculated by averaging across all instantaneous eSIIt values, to determine the.
However, in HTS-C2H, the instantaneous eSII values are used directly as the
perception measurement that is returned to the comparator so that the distance
from the communicative intent can be compared.

The eSII in HTS-C2H also slightly differs from the original because the filtering
of step 1 and the envelope computation of step 2 are done in the frequency domain
rather than in the time domain. These modifications do not affect the quality of the
intelligibility estimation however, as there is a direct correspondence between the
generated spectral features and the spectrum of the signal. Finally, the incremental
step is also changed from 9.4 ms to 10 ms in the HTS-C2H implementation to
synchronise the intelligibility assessment and the feature generation processes.

In Figure 5.9, an example of eSII estimation computed with the HTS-C2H
perception loop is displayed for a speech audio in noise.

107



5 HTS-C2H: a C2H Implementation

0.5 1 1.5 2 2.5

−0.3
−0.2
−0.1

0
0.1
0.2
0.3

Speech masked by disturbance

t [s]

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
SII computed in time domain

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
SII computed in frequency domain

frame number

“Mr Hall is believed to have a broken leg”
0.5 1 1.5 2 2.5

−0.3
−0.2
−0.1

0
0.1
0.2
0.3

Speech masked by disturbance

t [s]

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
SII computed in time domain

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
SII computed in frequency domain

frame number

t[s]

Figure 5.9: Example of eSII computation for a synthetic speech signal (red waveform) in noise (black
waveform). The corresponding eSII is displayed in the lower plot.

5.7 The HTS-C2H complete framework

The proposed implementation of C2H, HTS-C2H, is summarised in this section,
and connections between the functional blocks described in the above sections are
highlighted.

HTS-C2H uses an HMM-based synthesiser, HTS, with regression tree model
clustering. The standard generation algorithm is integrated with a specific recursive
method that was illustrated in § 5.3.1.

Figure 5.10 shows the detailed functional diagram of the context-aware speech
synthesiser implemented in this thesis with recursive short-latency system
waveform generation and eSII perception loop.

Some set-up data is required to configure a synthesis process with HTS-C2H. In
Figure 5.10, intent components such as the text message, the effort level, and the
required intelligibility level are given to the system to produce the overt speech
waveform. In this representation of the synthesis process, duration models are not
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Figure 5.10: The complete speech production process with HTS-C2H, using the recursive generation
algorithm and eSII-based perception loop. Gray blocks represent input and output data and functional
blocks are in blue. The delay S, deriving from the recursive generation, and the maximum waveform

size B, determined by the output buffer size, are highlighted.

adapted. The algorithm is synchronised with the generation output, as it is the
speech realisation window that needs to contrast the disturbance at time t.

Each functional step of Figure 5.10 is magnified in the following figures.
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Linguistic analysis translates the input text in a sequence of N words, and
eventually into a sequence of K labels. Each label is described by a 3-state HMM.
First, the standard (STD) duration model pdfs are used to generate the most likely
label duration sequence. The label list is expanded according to each duration
to create the sequence of T acoustic models that generate the speech parameters.
Linguistic analysis is displayed in Figure 5.11.
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Figure 5.11: Block diagram of the HTS-C2H linguistic analysis and phonological encoding.

At the same time, the perception feedback of HTS-C2H assesses the intelligibility
level of the already-produced speech, see Figure 5.12. The spectrum parameter
vectors of the latest B frames are contrasted against the measured environmental
disturbance with the eSII algorithm, see § 5.6.1.

eSII_t estimated
intelligibility
level

noise signal

disturbance sensors

eSII computation
B frames 

sp_(t-B)...sp_t

d_t

d_(t-B)

spectrum  
parameter 
buffer(B)

...

Figure 5.12: Block diagram of the HTS-C2H perception feedback loop. B is the size of the window
analysis that is used to compute the intelligibility index.

The acoustic model sequence {Λk} is adapted by the controller using the MLLR
transform that controls the degree of speech articulation, as shown in Figure 5.13.
The error, measured by the comparator between the estimated and the required
intelligibility levels subsequentially determines the magnitude of the transform.
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5.7 The HTS-C2H complete framework

The effort level is also a factor that determines the sign and the value of α (cf.
§ 5.5.1).

Controller

Λ_s2
t+S

Model adaptation

Λ'_s2 t+S

Error
computation Comparator

required
intelligibilityeffort level

intentmotivation

Figure 5.13: Block diagram of the HTS-C2H controller and comparator.

The adapted acoustic model sequence {Λ′k} is used by the recursive generation
algorithm to produce the speech parameters ct, as shown in Figure 5.14. A delay
S is introduced by this process. The phonological encoding therefore needs to
produce the acoustic models for the [t, . . . , t + S] frames in advance in order to
enable the generation of the speech parameters at time t.

Recursive Generation 
Algorithm

(delay = S frames)

Λ'_s1

c_t

...

t+S-1
Λ'_s1 t+S-2

parameter 
vector

Λ'_s2 t+S

Figure 5.14: Block diagram of the HTS-C2H waveform generation algorithm. The effect of the delay
S, originating from the recursive generation algorithm, is considered.

Speech parameters ct are converted into the three components of the STRAIGHT
analysis (spectrum, fundamental frequency, and a-periodic parameters) as
discussed in § 5.1.2. These are used by the vocoder to produce the final waveform,
as shown in Figure 5.15.
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5 HTS-C2H: a C2H Implementation

sp_(t-B)...sp_t
f0_(t-B)...f0_t
ap_(t-B)...ap_t

STRAIGHT waveform_(t/B)accumulate 
B frames

parameter 
conversion

overt speech

planned 
speech

c_t

Figure 5.15: Block diagram of the HTS-C2H vocoder stage with the STRAIGHT re-synthesis
algorithm. sp, f0, and ap represent the spectrum, fundamental frequency, and a-periodic analysis

parameters that are generated by HTS. B is the size of the output buffer.

5.8 The HTS-C2H implementation

This chapter introduced an implementation of C2H, named HTS-C2H. It is
designed upon the HMM-based SPSS TTS system, as it is considered to be the
most suitable for actively controlling the synthetic speech production in terms
of robustness and flexibility (cf. § 5.1). The HTS implementation of type of
synthesiser is used.

Intelligibility of the synthetic speech output is chosen from the available perceptual
domains to access the success of the communication (cf. § 4.3), as it provides
a good correlation with the listener’s capability of understanding the spoken
message, and can be calculated with low latency (cf. § 5.6.1).

The HTS-C2H implementation therefore includes a speech synthesiser, and an
automatic system using the eSII index to evaluate the synthesiser outcome.

An alternative recursive parameter generation algorithm is added to the standard
HTS Cholesky decomposition to solve the optimisation in eq. 3.42 (cf. § 5.3.1).
This alternative method is required to be able to adjust the generative model
parameters during the synthesis process. This provides a method to react to sudden
environmental changes (cf. § 5.7).

The next chapter considers similarities and differences between human behaviour
and the HTS-C2H components discussed in this thesis
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The HTS-C2H implementation, described in the previous chapter, is used in this
chapter to test the proposed C2H model in term of its control of speech production,
and evaluation of its outcome. The aim of this experimental part is to test the
difference between a standard good-quality synthesiser and its modified version
that is implemented according the C2H model. This chapter mainly answers the
research question n. 4 (cf. 1.2).

Firstly, an acoustic analyses is performed to compare the changes that are observed
with human speech in quiet and adverse conditions, to those observed on synthetic
speech in similar conditions. As reference, an acoustic analysis on a recorded
speech-in-noise corpus, P8-Harvard, is used (Stylianou et al., 2012). The complete
overview of these results is reported in Appendix B.2.1. This also addresses the
research question n. 1 (cf. 1.2), and provides an experimental validation of the
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answer, identified in § 2. Following this, the same analyses are carried out on the
HTS-C2H English and Italian realisations synthesised with full-HYO (fHYO) and
full-HYP (fHYP) strengths.

Secondly, the effectiveness of the energy-motivated transform is tested, specially
in terms of its scaling of the synthetic speech quality as a function of the energy
involved in the process (i.e., the parameter α of § 5.5.1). Synthesised speech
samples with different magnitudes of the MLLR adaptation are produced, and
both objective and subjective evaluations are then used to measure the degree of
intelligibility of the adapted synthetic speech when immersed in different types of
noise. This addresses the research questions n. 3 and 5 (cf. 1.2).

The HTS-C2H experiments are conducted on two languages: English and Italian.
Testing the model on multiple languages in this way illustrates the generalisation
capabilities of C2H, as well as highlighting the language-dependant performance
differences.

6.1 Experimental parameters

Four voice models – two (female and male) per language (English and Italian) – are
used in these experiments. These voices are trained on the speech data introduced
in § 5.2, using the standard HTS training method described in § 3.2.1. These models
are used to generate baseline speech references (STD) with use of the standard HTS
generation procedure (cf. § 5.1.2) against which the experimental modifications
can be compared. It should be noted that all these models are trained on clear
read speech, therefore the phonetic space described by these statistical models can
be considered to have a degree of articulation that is close to its physiological
maximum.

The English voice models are characterised by: a) ∼38000 and ∼77000
context-dependent models for SLT and Nick , respectively; b) acoustic models with
5-state HMMs, 6 streams for state, 1 Gaussian mixture per state c) 231-dimensional
parameter vectors (STRAIGHT spectrum + f0 + a-periodic components);
d) separate duration models with 5 states per model, 1 stream, 1 Gaussian mixture
per state, and 1-dimensional parameter vector.

Similar characteristics describe the STD Italian voices. They main difference is
represented by the size of these voice models, as Lucia and Roberto have ∼74000
and ∼120000 context dependent models, respectively. This implies a generally
higher complexity in modelling the available Italian training data compared to the
English data. Both female and male Italian voices have been shown to have high-
quality characteristics; Lucia was employed in robot-human interactions within
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6.1 Experimental parameters

the EU-funded project ALIZ-E (The ALIZ-E team, 2010), and the voice Roberto
was selected for the commercial product MiVoq (MIVOQ s.r.l, 2013). Both voices
have also received good scores in informal listening tests (Tesser et al., 2013).

The speech synthesis samples that are used in the current experiments are generated
from different sets of text material. The type of material is both language and
task dependent. 200 text sentences from the Blizzard Challenge 2010 (SynSIG
committee, 2010) are chosen to test HTS-C2H on the English SLT voice. The
experiments with the English voice Nick are conducted on the test data provided by
the Hurricane challenge § 5.2.1. These sentences serve as a common benchmark
for the extensive evaluation in the challenge, as they allow comparison of HTS-
C2H with other speech-in-noise synthesis methods. The Hurricane test set consists
of the first 180 phonetically balanced sentences of the Harvard corpus (Rothauser
et al., 1969). The test set for the Italian experiments consists of a set of 200 text
sentences coherent with the phonetically balanced training data material (but not
including it directly).

The analysis to generate the English linguistic labels from text is provided by the
standard Festival tool set (cf. § 5.1.1). Italian linguistic labels are generated with
MaryTTS (cf. § 5.1.1).

These test sentences are used as input to generate the full-strength direct transforms
(α = αHY O) and full-strength inverse transforms (α = αHY P ). Standard synthetic
samples (α = 0) of the same text set is provided as reference to compare the degree
of modification. These samples are addressed respectively as fully hypo-articulated
(fHYO), fully hyper-articulated (fHYP), and standard (STD) speech. The duration
control of the synthetic speech is also computed by the adapted statistical model.

As discussed earlier in § 5.5.1, the MLLR transformation has to be scaled
with the appropriate strength in order to reach the correct low-contrastive LC
and high-contrastive HC operational points. The range of α thus needs to be
assessed carefully. While the full-magnitude direct transform leads to a legitimate
LC point in English Vowel Production Control (E-VPC), the LC configuration
is obtained with half-strength transformation in English Consonant Production
Control (E-CPC), Italian Vowel Production Control (I-VPC), and Italian Consonant
Production Control (I-CPC). The α value to invert the MLLR transform has similar
restrictions. The minimum αHY P cannot be derived – as per αHY O – from training
motivation but must be assessed empirically for the different voice models. αHY P
is defined as the minimum value that does not generate unnatural artefacts in the
speech realisation. The boundaries for α are defined in preliminary tests: a range
of α values is applied, α ∈ [−2, 2], and the quality of the synthesis outcome is
evaluated by extracting F1 and F2 mean values for every vowel. The highest and
lowest values of α that still produce realistic vowels are chosen.

115



6 Experimental Results

The resulting admissible ranges of α values are [−0.8, 1] for E-VPC, and
[−0.7, 0.6], in E-CPC for the English voices. A brief analysis of the effect of
E-VPC on the first two vowel formants for the selected α values is displayed in
Figure 6.1.
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Figure 6.1: Modification of F1-F2 distribution for the SLT vowels with E-VPC adaptation. Ellipses
indicate the F1-F2 variance-radius areas surrounding the average F1-F2 values. fHYO
transformation effects are shown in 6.1(a), and fHYP transformation effects in 6.1(b).

The fHYO F1-F2 distribution is displayed in 6.1(a) with blue-dashed ellipses,
fHYP F1-F2 distribution is in 6.1(b) with red-dashed ellipses, and the reference
STD F1-F2 distribution is shown in black colour. Formants are extracted with
PRAAT software (Boersma and Weenink, 2018), and phones are displayed in the
“CMU Pronouncing Phoneme Set” format (Carnegie Mellon University, 2015). In
E-VPC reduction, the vowel space is effectively reduced, and the normal vowels
tend to converge to the central part of the Figure 6.1(a). However, this is not a
unique point, confirmed by the observation that schwa is not just a centralised
vowel in human speech production, but is a sound that is assimilated with its
phonetic and prosodic context (van Bergem, 1993). In the E-VPC expansion
of Figure 6.1(b), on the other hand, the modifications are typically smaller.
This is due to the almost-fully hyper-articulated characteristic of the STD vowel
space. Nonetheless, this plot provides the first evidence of the effectiveness of
the proposed MLLR transform. It modifies the vowel characteristics of synthetic
speech in a comparable manner with that observed when human spontaneous and
read speech are compared (cf. Figure 4.3).
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English tests assess the effectiveness of the HTS-C2H model by undertaking
acoustic analyses and objective evaluations of the intelligibility of the synthetic
speech outcome of SLT and Nick voices. A subjective evaluation of the behaviour
of Nick voice in adverse conditions is also reported. The Italian tests are similar to
the English ones, comprising acoustic analyses and objective evaluations for both
the Lucia and Roberto voices.

In order to test the synthetic speech signals in adverse conditions, all speech signals
are normalised to have a constant RMS (RMS = -24 dBFS), and these are mixed
with different noises. In the test with the English SLT and both Lucia and Roberto
Italian voices, audio is mixed with three noise recordings, derived from an open
source database of real sounds, such as

a) car engine noise recorded while driving (CAR),

b) babble noise recorded in a large hall (BAB),

c) competing speech from 2-3 English talkers (ECS).

The noise conditions for experiments using the Nick voice instead follow the
Hurricane challenge guidelines (Cooke et al., 2013a). Nonetheless, the two types of
disturbances are coherent with the previous experimental conditions. The masking
noises are:

a) a fluctuating masker which is competing speech (CS) from a female talker
producing read speech scaled to produce (utterance-wide) signal-to-noise
ratio (SNR);

b) a stationary masker which is speech-shaped noise (SSN) whose long-term
average spectrum matches that of the CS.

In order to normalise the speech energy with respect to the noise, the SSNR is
computed (Hu and Loizou, 2008; Ma et al., 2009). SSNR is defined as the mean
sound-to-noise ratio extracted only in the speech regions. It is computed using the
VoiceBox toolbox for MATLAB (Brookes, 2012).

SSNR =

10

K

M−1∑
m=0

log10

mN+M−1∑
n=mN

s2
R(n)

mN+M−1∑
n=mN

(sD(n)− sR(n))2

· VADm

 (6.1)
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where K is the number of speech segments in which there is speech activity, i.e.,
VADm = 1; M is the number of segments; N is the number of audio samples in
each segment; sR(n) is the reference clean speech signal; and sD(n) is the speech
corrupted by noise.

All noises are amplified to have fixed mean SSNR. Three SSNR levels are taken
into consideration for these experiments: high, mid, and low SSNRs. For CAR,
BAB, and SSN noises, these levels correspond to 1, -4, and -9 dB. For ECS and CS
noises, these are -7, -14 and -21 dB.

6.2 Acoustic analysis

This section describes, a series of acoustic analyses that are performed on the
various speech outcomes of the HTS-C2H implementation. The results are
compared with observations of human speech production in adverse conditions.

Much of the linguistic analysis in the literature uses the software PRAAT
(Boersma and Van Heuven, 2001; Boersma and Weenink, 2018) as it provides
state-of-the-art tools to measure the principal speech characteristics that are used
in phonetic analysis. In order to extend such analyses, a set of Matlab functions is
specifically implemented within the XPLIC8 software suite (Tang et al., 2012) in
collaboration with other researchers (Stylianou et al., 2012). XPLIC8 is a Matlab
graphic tool for performing a set of phonetic analyses on single or batch of signals.
The details of this software and its analysis algorithms are reported in Appendix B.

The acoustic-phonetic analyses, implemented in XPLIC8 , are used in assessing the
speech audio characteristics of human and HTS-C2H synthetic speech. Synthetic
speech acoustic correlates are analysed in the rest of this section, whilst an
extensive XPLIC8 analysis of a real human speech corpus in adverse conditions,
the P8-Harvard corpus (Stylianou et al., 2012), is reported in Appendix B.2.

6.2.1 English HTS-C2H output

The synthetic speech produced by the English voice model Nick , and controlled
by the HTS-C2H energy-motivated transform (cf. § 5.5.1) is acoustically analysed
in this section.

The first assessment of the MLLR adaptation effects on the synthetic speech signal
is done by measuring the vowel F1 and F2 formants on the outcome of HTS-C2H
with various degrees of articulation from HYP to HYO, with α ∈ [−1.2, 1.2].
Figure 6.2 and Figure 6.3 clearly depict the gradual control of the formant shift
towards and away from the LC attractor (@) respectively.
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(a) α = +0.2 (b) α = +0.4

(c) α = +0.6 (d) α = +0.8

(e) α = +1.0 (f) α = +1.2

Figure 6.2: Effect of the control of the E-VPC+E-CPC strength α toward hypo-articulation on vowel
F1 and F2 formants, using the English male voice Nick .
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(a) α = -0.2 (b) α = -0.4

(c) α = -0.6 (d) α = -0.8

(e) α = -1.0 (f) α = -1.2

Figure 6.3: Effect of the control of the E-VPC+E-CPC strength α toward hyper-articulation on vowel
F1 and F2 formants, using the English male voice Nick .
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An analysis similar to that reported for the P8-Harvard corpus in Appendix B.2.1 is
also performed on the Nick HTS-C2H outcome (Nicolao and Moore, 2013a). The
acoustic phonetic analysis parameters are:

speech duration parameters the mean word duration (MWD), along with the
mean sentence duration (MSD) and the mean pause duration (MPD);

spectral parameters the long term average spectrum (LTAS13), the spectral tilt
(Sp.Tilt), the spectrum Centre of Gravity (Sp.CoG), and the vowel space area
(F1F2 area);

pitch parameters the average fundamental frequency (F0), and its range (F0
range).

These values are extracted using the XPLIC8 software, as shown in
Appendix B.2.1. Following the work of other researchers (van Son and Pols, 1999;
Cooke et al., 2008; Hazan and Baker, 2011; Stylianou et al., 2012), these have been
proven to be significantly correlated to the degree of clarity of speech.

The extracted values for the Nick voice are reported in Table 6.1 and Table 6.2.

Table 6.1: Acoustic analysis of the three degrees of E-VPC adaptation for the Nick voice. The
elongation/reduction w.r.t STD is given in parenthesis.

Type of analysis fHYO STD fHYP

MSD [s] 2.98 (-14.9%) 3.5 3.91 (+11.7%)

MWD [s] 0.27 (-15.6%) 0.32 0.36 (+12.5%)

MPD [s] 0.13 (-13.3%) 0.15 0.17 (+13.3%)

LTAS13 [dB SPL] 33.6 (-7.2%) 36.2 41.1 (+13.5%)

Sp.Tilt [dB/dec] -6.2 (+6.9%) -5.8 -4.7 (-19.0%)

Sp.CoG [Hz] 712 (-13.3%) 821 1024 (+24.7%)

F1F2 area [Hz2] 1014 (-96.5%) 29021 70509 (+143.0%)

F0 [Hz] 172.6 (-0.9%) 174.1 174.7 (+0.3%)

F0 range [Hz] 146-185 (+21.9%) 151-183 145-190 (+40.6%)

The effects of the HTS-C2H control on the vowels (E-VPC, Table 6.1), and
the control on the consonants (E-CPC, Table 6.2), is measured separately. The
magnitude of the adaptation is chosen to be the maximum in both hyper- and hypo-
articulation direction: α = αHY P and α = αHY O respectively. Raw analysis
values along with the difference with respect to the appropriate STD reference are
shown.
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Table 6.2: Acoustic analysis of the three degrees of E-CPC adaptation of the English male voice Nick
. The elongation/reduction w.r.t STD is given in parenthesis.

Type of analysis fHYO STD fHYP

MSD [s] 3.43 (-2.0%) 3.5 3.6 (+2.9%)

MWD [s] 0.31 (-3.1%) 0.32 0.33 (+3.1%)

MPD [s] 0.14 (-6.7%) 0.15 0.16 (+6.7%)

LTAS13 [dB SPL] 35.4 (-2.2%) 36.2 38.4 (+6.1%)

Sp.Tilt [dB/dec] -6.1 (+5.2%) -5.8 -5.1 (-12.1%)

Sp.CoG [Hz] 547 (-33.4%) 821 1156 (+40.8%)

F1F2 area [Hz2] 1014 (+44.1%) 29021 70509 (+93.3%)

F0 [Hz] 174.1 (+0.0%) 174.1 173.4 (-0.9%)

F0 range [Hz] 144-185 (+28.1%) 151-183 150-184 (+6.3%)

It can be seen here that the synthetic speech production using the HTS-C2H-
controlled English male voice Nick follows the same trends as is seen with the
human speech production. When the system controls the degree of articulation
towards hypo-articulation (α > 0), sentence and phones are shortened (see MSD
and MPD in Table 6.1 and Table 6.2). The spectral energy distribution in the high
frequencies (LTAS13) decreases. The spectral tilt increases, and its Sp.CoG moves
towards the low frequency. The measured F1-F2 area also contracts, as expected.
The median F0 is lower, whilst the F0 range remains constant. When the system
instead controls the speech production towards hyper-articulation (α < 0), the
opposite behaviour is measured.

6.2.2 Italian HTS-C2H output

Similarly to the analysis reported in Appendix B.2.1 and in § 6.2.1, an acoustic
phonetic evaluation is also performed on the Italian HTS-C2H speech outcome, as
reported in (Nicolao et al., 2013).

For the Italian voices, the vowel F1 and F2 formants of the synthesiser outcome
are displayed for only the two extreme degrees of articulations (fHYP, fHYO), and
for the standard production (STD). Figure 6.4 and Figure 6.5 show these results for
the two Italian voices, Lucia and Roberto , respectively.

Stressed and unstressed vowel behaviours are measured separately, as stress in
Italian has a contrastive function. It is clear from these plots how both voices
move from the confused and centralised positions of the HYO configuration
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Figure 6.4: Effect of the HYO (a) and the HYP (c) adaptation applied to the Lucia voice. The plot for
STD voice vowels is also given for reference (b). SAMPA symbols are used in the legend. Units are Hz

for both axes.
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Figure 6.5: Effect of the HYO (a) and the HYP (c) adaptation applied to the Roberto voice. The plot
for STD voice vowels is also given for reference (b). SAMPA symbols are used in the legend. Units are

Hz for both axes.
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(Figure 6.4(a) and 6.5(a)) to the more separated and recognisable ones of HYP
(Figure 6.4(c) and 6.5(c)). In the HYP vowels, the stressed [O] (black cross + in
figures) tends to migrate towards the more articulated [a] (red asterisk *). The
stressed HYO vowels in Roberto aggregate in three main positions rather than a
unique central one. This confirms the idea that the low-contrastive configuration is
not a unique position close to [@], but takes an intermediate position depending on
the surrounding phones.

Transformations seem to achieve a more effective reduction/expansion on the
Roberto voice. It is noteworthy that the Roberto vowel variance (Figure 6.5)
is quite limited with respect to the Lucia one (Figure 6.4). Indeed, the former
is created using a professional speaker’s voice whereas the latter denotes some
regional accent influence. Moreover, the amount of recorded corpus is different:
Roberto training corpus is one-third bigger the Lucia one. Even though the two
adaptations, I-VPC and I-CPC, contribute to modify the signal simultaneously, the
vowel charts behave similarly to what is observed for the schwa-based ones in
(Nicolao et al., 2012).

The most common phenomena observed in Italian hyper/hypo-articulated speech
are the same as what observed in English: formant shifting, spectral energy
redistribution, speaking rate changes, and pitch modification. Therefore, an
acoustic analysis with the same XPLIC8 tools is also performed. Average result
values are shown in Table 6.3 for Lucia and in Table 6.4 for Roberto . In both
tables, the clearest modifications are observed in the vowel space (F1F2 area)
expansion/reduction. Even though this is imposed by design, nonetheless this
observation, together with Figure 6.4 and Figure 6.5, it shows that the adaptation
behaves correctly.

Table 6.3: Acoustic analysis of the three degrees of adaptation of the Italian female voice Lucia . The
elongation/reduction w.r.t STD is given in parenthesis.

Type of analysis HYO STD HYP

MSD [s] 5.75 (-5.1%) 6.06 6.38 (+5.3%)

MPD [s] 0.078 (-2.5%) 0.08 0.083 (+3.7%)

LTAS13 [dB SPL] 47.7 (-9.3%) 52.6 58.3 (+10.8%)

Sp.Tilt [dB/dec] -5.6 (+7.7%) -5.2 -4.7 (-9.6%)

Sp.CoG [Hz] 394.1 (-27.9%) 546.2 835.9 (+53.0%)

F1F2 area [Hz2] 14115 (-90.1%) 142401 203959 (+43.2%)

F0 [Hz] 197.3 (-3.4%) 204.3 210.3 (+2.9%)

F0 range [Hz] 138-225 (-23.6%) 133-247 134-276 (+24.8%)
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Other evident differences between the three sets of speech utterances appear in
the spectrum energy shift (e.g. Sp.CoG and Sp.Tilt) and in the duration (MSD
and MPD). The latter shows the tendency of the automatic system to elongate the
speech production to increase phonetic contrast and vice-versa.

Table 6.4: Acoustic analysis of the three degrees of adaptation of the Italian male voice Roberto . The
elongation/reduction w.r.t STD is given in parenthesis.

Type of analysis HYO STD HYP

MSD [s] 4.72 (-14.2%) 5.50 6.28 (+14.2%)

MPD [s] 0.06 (-16.7.5%) 0.072 0.083 (+15.3%)

LTAS13 [dB SPL] 44.7 (-6.9%) 48.0 56.3 (+17.3%)

Sp.Tilt [dB/dec] -6.3 (+8.6%) -5.8 -4.9 (-15.5%)

Sp.CoG [Hz] 434.5 (-30.6%) 625.8 947.0 (+51.33%)

F1F2 area [Hz2] 469 (-99.6%) 124518 143156 (+15.0%)

F0 [Hz] 119.7 (+2.9%) 116.3 112.7 (-3.1%)

F0 range [Hz] 73-143 (-6.7%) 68-143 67-162 (+26.6%)

It is again noteworthy that all the observed synthetic speech characteristics emerge
spontaneously from applying different degree of adaptation to the synthetic speech
production model. Aside from the control of the phonetic contrast, no assumption
or empirical rule in the adaptation training has been made to model these duration
and spectral behaviours.

From the acoustic analysis, it can be concluded that the proposed transforms,
acoustically-speaking, behave similarly to what is observed in human speech
production for both English and Italian languages.

6.3 Perception feedback loop evaluation

One of the crucial elements of C2H is the ability to react to environmental changes.
This ability is implemented via the perception loop that detects the evolution in
disturbance, and by the controller that translates these changes in disturbance into
a control signal.

If HTS-C2H is used with the conceptualiser motivation valuem set to 0 in eq. 5.28,
the α range collapses, and the synthesiser control mechanism is deactivated with
the result that no speech adaptation is performed. In the Figures 6.6, plot of a
speech signal generated in this way is displayed, mixed with a time-varying noise.
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Since the overall energy of the speech realisation is fixed at the beginning of the

“Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do:
once or twice she had peeped into the book her sister was reading, but it had no pictures or

conversations in it, ‘and what is the use of a book,’ thought Alice ’without pictures or conversation?’ ”

Figure 6.6: Example of speech synthesis signal in noise with inactive perception feedback. The
corresponding eSII is also plotted.

synthesis and cannot be changed, the speech waveform is completely masked by
the increasing loudness of the noise. This is clearly highlighted by the reduction in
eSII, see § 5.6.1 (Figure 6.6, lower plot). The measured eSII values are reduced to
almost zero (unintelligible) as the noise signal increases in amplitude.

If the HTS-C2H motivation m is greater than 0, the controller can transform
the error signal into a control signal. The effect of the controlling mechanism
of the speech production is shown in Figure 6.7. In this example, for clarity,
only the speech signal amplitude (i.e., loudness) is adjusted. In Figure 6.7, it
is evident how HTS-C2H operates to maintain the estimated intelligibility level
(eSII) at the specific value determined by the conceptualiser intent, eSIIintent of
eq. 5.29. When the HTS-C2H context-aware system is active, the perception loop
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“Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do:
once or twice she had peeped into the book her sister was reading, but it had no pictures or

conversations in it, ‘and what is the use of a book,’ thought Alice ’without pictures or conversation?’ ”
(same of Figure 6.6)

Figure 6.7: Example of speech synthesis signal in noise with active perception feedback. Adjustments
are applied to the speech signal loudness. The corresponding eSII is also plotted. The intent eSII

threshold is set to 0.4.

measures the intelligibility of the speech realisation, and if the value is below
the intended threshold, the speech loudness is increased. If eSII is above the
intelligibility required, the speech signal volume is reduced to allow the synthesiser
to minimise the effort. Here, the α value that controls the transformation increases
and decreases in reaction to the noise loudness. The peech signal and noise signal
are the same of those as Figure 6.6, but the reactive control allow the speech signal
to be audible and therefore more intelligible.
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6.4 Objective evaluation of intelligibility control

Intelligibility is directly correlated to the effort involved in speech production. In
the human speech analysis of Appendix B.2.1, it is observed that the degree of
adverse condition severity – i.e., no barrier (NB) → babble channel (BAB) →
vocoded channel (VOC) – is directly linked to the amount of required speech
adjustment for an intelligible communication. The hypothesis is that the amount
of adjustment observed in human speech emerges from an energy motivated
transform, which controls the degree of phonetic contrast in synthetic speech
production.

The following section illustrates the experimental results of an objective evaluation
of intelligibility. In these experiments, automatic methods for speech intelligibility
estimation (cf. § 4.3.4) are used to assess the degree to which the HTS-C2H
adaptation changes the intelligibility in adverse conditions.

The experiments investigate both sides of the hyper/hypo-articulation spectrum,
since, in some contexts (cf. § 4.5), fHYP speech might not be the optimal policy
to achieve the communicative intent (cf. § 4.1). Reducing speech intelligibility
often creates a friendlier and less assertive type of speech which might be more
positively accepted by the listener.

Three different kinds of speech signals corresponding to three degrees of
transformation magnitude (fHYP, fHYO, and STD) are mixed with the noises
at different SSNRs, which is computed as described in § 6.1. Two automatic
intelligibility estimation methods (SII and Dau) are used to analyse the HTS-
C2H synthetic audio samples. Automatic intelligibility estimation methods are
fairly reliable tools to score the speech synthesis clarity. Though most of them
measure the audibility of a signal without taking phonetic content into account,
some are proven to be highly correlated to human understanding performances.
The Dau index in particular is reported to have a high accuracy at predicting speech
clarity in noise (Valentini-Botinhao et al., 2011). Despite the lower correlation with
human perception than the Dau index, an SII analysis is also reported. Along with
the assessment of the speech control, the analogies with the more accurate Dau
index provide evidence of the HTS-C2H perception loop adequacy at predicting
the listener’s understanding.

The intelligibility differences (improvement or degradation) between the hypo and
hyper-articulated samples with respect to the standard ones are used as a metric to
test the effectiveness of the C2H transform motivated by phonetic-contrast.
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6.4.1 English HTS-C2H output

The English SLT and Nick voices are used to produce several speech samples with
different degrees of articulation: HYO, HYP, and STD. The objective intelligibility
measures evaluate the speech samples when they are mixed with the types of noises
described in § 6.1.

The intelligibility differences, due to the noise type, on the English female speech
samples SLT are summarised in Figure 6.8 and Figure 6.9, for the SII and Dau
measures, respectively. Both indexes are averaged across the whole test set, and
the results are illustrated in the two figures for the CAR, BAB, and ECS noises.
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Figure 6.8: Mean SII-differences (in percentage) between SLT STD speech and the HYO (below) and
HYP (above) versions. CAR (left), BAB (centre), and ECS (right) noises and high (black), mid (green),

and low (white) SSNR levels are considered.

The detailed experiment results for SLT are listed in Appendix C.1.

In SLT experiments, both indexes measure consistent speech clarity improvement,
when HTS-C2H is set to produce HYP speech: ∼ +30% and ∼ +15% with SII and
Dau respectively. Speech clarity is reduced, on the other end, when the synthesiser
produces HYO speech: ∼ -18% and ∼ -13% with SII and Dau respectively. No
major differences are observed for different types or intensity of noise. It is also
important to mention that SII and Dau indexes show a similar relative behaviour.
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Figure 6.9: Mean Dau-differences (in percentage) between SLT STD speech and the HYO (below) and
HYP (above) versions. CAR (left), BAB (centre), and ECS (right) noises and high (black), mid (green),

and low (white) SSNR levels are considered.

The intelligibility differences on the English male speech samples Nick are
summarised in Figure 6.10 and Figure 6.11, for the SII and Dau, respectively,
for the SSN, and CS noises. The detailed experiment results for Nick are listed
in Appendix C.2.

The observed behaviour with both indexes confirms the expected increment and
reduction of the speech clarity for each noise. However, this time a dependency
with SSNR levels is detected, such that the transform on this voice model increases
its effectiveness at low SSNR. SII improves from around +5 to +10 % for both
noises. Dau improves from ∼ +18 to +44 % for SSN, and from ∼ +6 to +17 % for
CS. Clarity reduction is between -5 and -10% in SII, and between -10 and -20% in
Dau. The SSNR dependency trend is similar in both SII and Dau.

6.4.2 Italian HTS-C2H output

Similarly to the English tests, the Italian Lucia and Roberto voices are used to
produce several speech samples with different degrees of articulation: HYO, HYP,
and STD. SII and Dau indexes are used to estimate the speech intelligibility of
these test samples mixed with the types of noise as per specifications in § 6.1.
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Figure 6.10: Mean SII-differences (in percentage) between Nick STD speech and the HYO (below)
and HYP (above) versions. CAR (left), BAB (centre), and ECS (right) noises and high (black), mid

(green), and low (white) SSNR levels are considered.
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Figure 6.11: Mean Dau-differences (in percentage) between Nick STD speech and the HYO (below)
and HYP (above) versions. CAR (left), BAB (centre), and ECS (right) noises and high (black), mid

(green), and low (white) SSNR levels are considered.
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The intelligibility differences on the Italian female speech samples Lucia are
summarised in Figure 6.12 and Figure 6.13, for SII and Dau respectively. As
before, both indexes are averaged across the whole test set, and the results are
illustrated in the two figures for the CAR, BAB, and ECS noises. The detailed
experiment results for Lucia are listed in Appendix C.3.
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Figure 6.12: Mean SII-differences (in percentage) between Lucia STD speech and the HYO (below)
and HYP (above) versions. CAR (left), BAB (centre), and ECS (right) noises and high (black), mid

(green), and low (white) SSNR levels are considered.

The SII returns contrasting values for this voice model, and there is no evidence
of a trend across SSNR. On the other hand, the Dau index shows a similar
pattern of results to those measured in Nick , with analogous SSNR dependency
also observed. Dau improvement spans from +3 to +70%, and the reduction is
from -5 to -31%. In these experimental conditions, the SII does not seem to be
coherent with the more reliable Dau. This may have happened due to some Lucia
synthetic speech characteristics observed in Figures 6.4 and 6.5, where Lucia vowel
realisations were less consistent than the ones for Roberto . This might be due to
the nature of the training speech that is used to build the Lucia voice and the related
transform. The recorded female speaker is not a professional voice talent, and her
production had higher variability, as well as a mild regional accent.

The intelligibility differences on the Italian male speech samples Roberto are
summarised in Figure 6.14 and Figure 6.15, for SII and Dau respectively. Both
indexes are averaged across the whole test set, and the results are illustrated in the
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Figure 6.13: Mean Dau-differences (in percentage) between Lucia STD speech and the HYO (below)
and HYP (above) versions. CAR (left), BAB (centre), and ECS (right) noises and high (black), mid

(green), and low (white) SSNR levels are considered.

two figures for the CAR, BAB, and ECS noises. The detailed experiment results
for Roberto are listed in Appendix C.4.

As for Lucia , the SII estimation again shows an opposite trend with respect
to previous experiments. Here, the CAR noise seems to benefit of the largest
improvement, whilst the BAB and ECS noises, mixed with high SSNR, exhibit
an actual clarity reduction regardless of which direction the transform is moving
to. On the other end, Dau index still shows a consistent trend which confirms
the expected transform clarity modifications. Speech signal adaptations are more
effective at mid/high SSNR levels. On average, the intelligibility deviation from
the STD voice is around ±10% for both HYO and HYP.

Overall, the intelligibility analyses of SLT , Nick , Lucia , and Roberto speech
transformed samples show a variation in intelligibility level with respect to the STD
speech production. This intelligibility changes are coherent with the commanded
degree of articulation in all types of noises for all four voices.
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Figure 6.14: Mean SII-differences (in percentage) between Roberto STD speech and the HYO (below)
and HYP (above) versions. CAR (left), BAB (centre), and ECS (right) noises and high (black), mid

(green), and low (white) SSNR levels are considered.
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Figure 6.15: Mean Dau-differences (in percentage) between Roberto STD speech and the HYO
(below) and HYP (above) versions. CAR (left), BAB (centre), and ECS (right) noises and high (black),

mid (green), and low (white) SSNR levels are considered.
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6.4.3 Scaling the control

The parameter α is used by the controller to adjust the magnitude of the
transformation. Speech intelligibility is evaluated for different α to test how
accurately the speech clarity can be controlled by such parameter.

Figure 6.16 reports the case of the Dau-estimated intelligibility results for the
English Nick test samples, mixed with the SSN noise, and shows that the increment
of |α| moves the speech clarity in noise towards the expected direction. Moreover,
the transform strength can be scaled proportionally to the control values.

(a) |α| = 0.2 (b) |α| = 0.4

(c) |α| = 0.6 (d) |α| = 0.8

(e) |α| = 1.0 (f) |α| = 1.2

Figure 6.16: Example of intelligibility control with the HTS-C2H transform. Intelligibility is estimated
with the Dau index for SSN noise. The range of α is between -1.2 (fHYP) and +1.2 fHYO. The results

of the transformation towards HYP (in red) and towards HYP (in blue) are displayed on the same plot.
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This experimental evidence demonstrates that the proposed HTS-C2H transform
can effectively control the degree of clarity of a speech synthesiser, with the use a
single parameter to reflect the desired degree of articulation.

6.5 Subjective evaluation results

Along with the objective evaluations of the HTS-C2H outcome reported in the
previous part of the chapter, a subjective evaluation of the synthetic speech in
noise is conducted to evaluate the effectiveness of the phonetic contrast-based
transformation in adverse conditions.

The subjective evaluation results reported here are derived from the outcome
of the Hurricane Challenge (Cooke et al., 2013a). The Hurricane Challenge
was a large-scale open evaluation, organised by the members of the LISTA
European project network, that aimed to assess 18 algorithms designed to enhance
speech intelligibility. Two types of entries were evaluated within this challenge:
algorithmically-modified and synthetically-generated speech waveforms. The
HTS-C2H entry competed in the context of synthetic speech.

A HTS-C2H synthetic voice was trained on the English male speech corpus Nick
that was provided to all the challenge entrants to train and adapt their systems, see
§ 5.2.1. A HTS-C2H fully hyper-articulated speech (fHYP) set was entered in the
challenge, and the intelligibility in different noise types and levels was measured
with extensive listening tests. Along with spectral adaptation, phone durations
were controlled by the acoustic models (no copy synthesis). However, overall
duration was kept within the imposed tolerance of ± 0.5s. The adapted speech
entry was combined with two maskers at three SSNR and evaluated by listeners.
Listeners could not change the output level at which the signals were played to
them. Masker noises and SSNR levels are similar to those used in the objective
evaluation, see § 6.1.

A total of 180 sentences x 2 maskers x 3 noise energy levels were submitted to
the listening test. The experimental conditions are described in detail in (Cooke
et al., 2013a). The evaluation used 175 participants who were native English
adults of 19-27 years of age. Listeners had no speech and/or language disorders
and passed an audiological screening. Stimuli were normalised to have the same
RMS energy level and were presented to participants in dedicated sound-attenuated
listening booths. Participants were instructed to transcribe what they could hear in
the stimuli. The number of content words correctly identified represents the final
score.
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Table 6.5 presents the results in terms of the absolute percentage of correctly
transcribed words for the unmodified natural speech (plain), the synthetic baselines
(TTS), and the HTS-C2H stimuli.

Table 6.5: Intelligibility subjective evaluation results of the Hurricane Challenge for the HTS-C2H
entry. The numbers represent the keywords correct scores expressed in absolute percentages for plain,

TTS, and HTS-C2H speech.

CS SSN
Type of speech snrHi snrMid snrLo snrHi snrMid snrLo

plain 85.1 ±1.5 57.0 ±2.4 24.8 ±1.9 88.3 ±1.3 63.0 ±2.2 17.3 ±1.8
TTS 59.7 ±2.3 31.3 ±1.9 11.7 ±1.3 63.7 ±2.2 32.8 ±2.1 6.8 ±1.2

HTS-C2H 45.6 ±2.1 24.7 ±1.7 10.8 ±1.4 46.3 ±2.0 22.4 ±1.6 7.6 ±1.1

Intelligibility differences of the HTS-C2H stimuli, relative to plain and TTS
speech, are subsequently shown in Table 6.6. Equivalent intensity changes (EICs)
are also computed (Cooke et al., 2013a). EIC indicates the amount in decibels by
which plain speech would need to be changed to acquire the same intelligibility as
a given synthetic type (Cooke et al., 2013b).

Table 6.6: Comparison between the HTS-C2H entry and the plain and TTS baselines. The score is
reported in terms of Equivalent intensity changes (EICs) [dB] and changes in keyword scores

[percentage points] in parentheses.

CS SSN
HTS-C2H vs snrHi snrMid snrLo snrHi snrMid snrLo

plain -10.42 (-39.5) -7.58 (-32.3) -5.48 (-14.1) -6.39 (-42.0) -5.23 (-40.6) -2.7 (-9.7)
TTS -3.09 (-14.1) -1.77 (-6.6) -0.52 (-1.0) -2.09 (-17.4) -1.56 (-10.5) 0.36 (0.8)

Table 6.6 shows that the intelligibility HTS-C2H fHYP stimuli appears to be
reduced with respect to both plain and TTS speech. Only in the SSN noise
condition with the lowest SSNR, the percentage of recognised word is higher than
TTS, even though the increase is not statistically significant.

The intelligibility score of both TTS and HTS-C2H are lower than plain unmodified
speech. This result is expected, due to the naturalness and intrinsic clarity of plain
speech. The absence of artefacts and the natural prosody of plain speech increase
the clarity of such speech with respect to any synthesised speech.

It is worth mentioning that the unmodified TTS voice, that represents the evaluation
baseline was trained by the challenge organisers, and it is not the same baseline
voice that constitutes the STD HTS-C2H voice Nick . The overall quality of
the unmodified TTS models seemed higher than the models that were the base
of the current set-up, and on which the hyper-articulation transform was applied.
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A further explanation of the general reduction of HTS-C2H intelligibility is that
the comparisons reported in the result tables are computed with respect to the
unmodified TTS and not to the actual STD voice.

Finally, this challenge addressed only one aspect of HTS-C2H. According to the
evaluation parameters, the disturbance RMS energy was imposed for the entire
duration of each sentence. There were no significant loudness variations within the
noise waveform, e.g., sudden increase or absence of disturbance, and no scaling of
the speech transformation magnitude was applied. Hence, this listening test does
not provide any information about the advantage of moving towards HYO speech.
In the future, part-of-speech (POS) dependent control function could have been
implemented to save energy – degree of articulation – in the function words and
redistribute it in the content words that are crucial to be recognised.
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Chapter7
Discussion and Conclusions

In this chapter, the major findings of the work presented in this thesis are
summarised and discussed. The final section presents an overview of the possible
directions in which this research could be extended in the future.

7.1 Summary of the main contributions

The research that has led to this thesis has produced several contribution, listed
below, which address research questions introduced in § 1.2.

These contributions are listed below.

A reactive speech synthesiser Inspired by the reasoning presented in (Moore,
2007a). This thesis presents the first computational framework that expands
the traditional feed-forward speech synthesis system, to create a reactive speech
synthesiser (Moore and Nicolao, 2011).

Active control of the degree of articulation The reactive speech synthesis
framework is the basis for the design of the main contribution that this work, the
computational model of Hyper and Hypo articulation theory (C2H), presented in
Chapter 4. C2H proposes that speech synthesisers should follow the principle of
balance between effort and communicative efficiency. This behaviour has been
widely observed in human production, and it is defined by Lindblom’s H&H theory
(cf. § 2.2.1). The proposed model introduces a negative feedback to mimic the
human perception loop. According to the Perceptual Control Theory (PCT) model
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of human behaviour (cf. § 2.2.2), the sensing feedback loop assesses whether the
effects of the speaker’s behaviour on the environment match their intentions. A
complex computational model, such as C2H, therefore has two main requirements:
the energy used in speech realisations must be controllable, and such adjustments
must be permitted in a continuous manner.

Phonetic-contrast motivated transform The main obstacle for an effective
implementation of such requirements is that standard speech synthesis does not
take into account the effort that is involved in the generation process. Since it
is not easy to directly quantify the effort/energy involved, this thesis postulates
a link between acoustic phonetic contrast, the degree of articulation, and hence
the total amount of effort (cf. Figure 4.2). The main idea that is proposed to create
such phonetic-contrast motivated transform is to map the acoustic characteristics of
normally articulated phones into low-contrastive configurations, see § 4.2.3. These
configurations are specifically selected from literature to be the least contrastive
among groups (vowels) or pairs (competitors) of phones.

TGSM In order to better understand the core principles to control the speech
production, a simplified approach to the problem is proposed in Appendix A. The
trajectory generation simulation model (TGSM) is a dimensionally-reduced model
that compares the vowel realisation to trajectory generation in a 2-D space that
simulates the F1-F2 chart. TGSM resulted an effective test environment to check
the effect of design solutions – such as the controller function – before deploying
them into C2H. This model allows, during the design stage, the importance of
control of the distance from competing targets to be highlighted. It is observed
that reaching the destinations of a set of targets is as important as avoiding passing
through unselected points. Moreover, a link is created here between the length of
the trajectory and the effort that is involved in the production.

HTS-C2H An implementation of the C2H model is created to test the behaviour
of this new speech synthesis approach. This synthesiser is underpinned by
an HMM-based statistical parametric speech synthesis (SPSS) implementation
(discussed in Chapter 5). The perception loop consists of an intelligibility measure,
such as the extended speech intelligibility index (eSII), which estimates the clarity
of the produced speech in relation to the environmental noises. The speech
generation algorithm is controlled by the value α that scales the magnitude of
the transform in the hyper/hypo-articulation continuum. The phonetic-contrast
motivated transform is trained on an artificially augmented dataset created by

142



7.1 Summary of the main contributions

conditioning a standard synthesiser to generate only low-contrastive speech, see
§ 5.5.

English and Italian voices Two languages are chosen to test the independence
of the C2H model from language-related features, such as the @ sound in English.
Four different voices were trained along with their specific transforms (cf. § 5.2).

Recursive HTS The HTS 2.2 synthesis software uses the Cholesky
decomposition to find the best speech parameter sequence. This method does
not allow for model adaption during synthesis. A special implementation was
therefore added to HTS in order to perform continuous adjustments in reaction
to noise changes (cf. § 5.3).

Acoustic analysis tools As part of a related study at the eNTERFACE workshop
in 2012, a set of specific tools for the analysis of speech-in-noise characteristics
were needed. In collaboration with other researchers, a Matlab software suite was
developed, named XPLIC8 , as shown in Appendix B. This software allows to
perform some acoustic and phonetic analysis that are proven to be significant for
understanding the modifications of speech in adverse conditions. The XPLIC8
tool, in addition to other analysis techniques, was used to process the P8-Harvard
corpus (Stylianou et al., 2012) and the speech outputs of the HTS-C2H systems
(cf. § 6.2). Correlation was observed between the modifications, operated by HTS-
C2H in presence of different types of noises and different SSNR, and the analysis
of natural speech in noise. The emerging modifications, measured on the fHYP
HTS-C2H speech, are compatible with the characteristics of Lombard speech.

Effective control of the degree of articulation The main finding derived from
the experiments of Chapter 6 can be summarised by the fact that the HTS-
C2H is able to control the degree of synthetic speech clarity. The objective
evaluation measures, SII and Dau indices, prove that the HTS-C2H full-strength
transformations (fHYO and fHYP) modify the speech production intelligibility in
the expected directions.

Finally, in § 6.3 an experiment showed how the HTS-C2H output adapts
continuously when exposed to follows the non-stationary noise.
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7.2 Discussion of the proposed model and research
questions

The first objective of the research reported in this thesis was to identify the
main behaviours that humans exhibit in speech communications that are not
reproduced by state-of-the-art speech synthesisers (cf. research question n. 1
in § 1.2). Particular attention has been paid to speech modifications required in
adverse conditions. The identified type of speech that humans are most likely to
reproduce is the result of the Lombard reflex. This behaviour is caused by the
negative auditory and sensorimotor feedback loop, applied to the feed-forward
direct production, and checks if the outcome has achieved the expected effect on
the environment (as per the PCT model of § 2.2.2). The control force that adjusts
the speech production aims to balance the correctness of communication and the
amount of energy that is used by the process, as per the H&H theory of § 2.2.1.
Here, the correct balance of the energy dictates the effort that the listener has to
make to understand the message. Therefore, a complete model that can mimic
the human speech production system must contain a mechanism to predict the
listener’s effort to understanding in addition.

The continuous speech production control and perception feedback loop is missing
in standard speech synthesisers, which led the computational model of Hyper and
Hypo articulation theory (C2H) proposed to answer to the research question n.
2 of § 1.2. The model formalises the modalities and the computational blocks
that need to be considered in order to create a context-aware speech synthesiser.
One important feature of the model is that it allows the synthesiser to modify
its production at multiple levels of abstraction. The complexity of the context
analysis is determined by two joint factors: the communicative intent and the
perceptual loop. The model, in principle, can operate on any component of the
synthetic pipeline: to transform the message in the conceptualiser, to change
the phonetic and prosodic prediction in the linguistic analyser, or to adapt the
spectral and temporal characteristics in the waveform synthesiser. For tractability
of the problem, the analysis of C2H mainly focuses on the control of spectral and
temporal characteristics.

In order to model the H&H control mechanism, the C2H model proposes a link
between the acoustic phonetic-contrast and the amount of energy that is used in
production. From the literature discussed in § 2.2.1, it is known that the degree of
articulation is directly linked to the amount of energy applied, and a higher degree
of articulation increases the phonetic distance between pairs of phones. This link
represents the answer to the research question n. 3 of § 1.2. Using this approach,
it is no longer necessary to train a model on a range of speaking styles and then
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select one style according to the prevailing communicative conditions, as had been
proposed by other researchers. Rather, the challenge now is to determine the
appropriate control strategy that would allow synthesised speech to be interpolated
and/or extrapolated along the required dimension.

Assuming the existence of low-contrastive (LC) phone configurations, in which
competing phones collapse into similarly perceived sounds, a transformation that
can map all phones into their respective LC configuration can be learned. Provided
that the transformation exhibits some specific properties such as linearity and
inversion, then speech adjustments can also be adapted across the continuum
range of styles from hypo- to hyper-articulation. The identification of the LC
configurations and the creation of the mentioned mapping function are the crucial
elements for the creation of such a transform.

In the HTS-C2H system, the LC configurations are language-dependent phone
pairs that are known to be confusable in noisy conditions. The mapping function is
an MLLR adaptation that is trained on artificially augmented data which is created
by swapping each phone with its competitor. It is observed that it is best practice
to train vowel and consonant adaptation functions separately.

An alternative method to define the mapping function, which can be applied only
to parametric speech synthesisers, operates in the acoustic model space. A distance
metric could be defined between the GMMs of a SPSS, and a set of linear functions
could be computed that convert a model into its competitor. This approach would
be almost equivalent to the one proposed in this thesis. An advantage of it may be
that the set of transforms maps well-trained models, without artefacts that derive
from the artificial data creation interfering with the learning process. On the other
hand, the augmented data creation allows an interpolation between the available
models to produce all required sounds, including unseen ones.

In principle, almost any speech synthesiser can be used in C2H. The only one
that cannot readily fit into the framework is the unit selection synthesiser, as this
does not allow for scalable style adaptation. If such synthesis had to be used, a
work-around solution would be to apply a near-end signal processing to its output.
DNN-based and end-to-end synthesisers can be used on this framework, but the
complexity of the voice training, the computational load, and limited availability
of scalable adaptation techniques has prevented being of use in this thesis. HMM-
based synthesis is preferred in the proposed implementation of HTS-C2H, because,
unlike the other synthesisers, it allows the speech production to be manipulated,
progressively. HMM-based synthesisers with MLLR transformations can indeed
perform the interpolation between two opposite degrees of articulation, as per
the H&H requirements. Due to the linearity of the adaptation and the generative
nature of the GMM, the speech output is also likely to maintain realistic speech-
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like characteristics even when it is transformed to its extreme hypo- and hyper-
articulated boundaries. The standard version of the HTS cannot adapt its generation
models continuously. Thus, in order to target the research question n. 5 of § 1.2,
the recursive generative method (Tokuda et al., 1994) was implemented in HTS.
This allows the speech outcome to be manipulated at any stage of the generation
process. The computational speed is indeed slower than the standard parameter
estimation, however the generation process can produce a waveform and correct it
in almost real-time on standard CPUs. The recursion algorithm also introduces a
reaction delay due to the necessity of accumulate a certain number of past samples
in order to generate new ones. This latency of 6 to 10 frames (60 to 100 ms) is
comparable with the timescale of delays observed in human speech production.

Acoustic analysis in § 6.2 points out a correlation between the HTS-C2H speech
outcome and human speech production recorded in adverse conditions (the P8-
Harvard corpus of Appendix B.2.1). This confirms the answer to the research
question n. 4 that a purely phonetic-contrast motivated speech adjustment may
generate Lombard-like synthetic speech.

7.3 Limitation of the approach

It would be argued that the overall quality of the implemented synthesiser is
limited. The generation of a high-quality standard voice model is in itself a quite
challenging task. Datasets for speech synthesis training consist of a limited-amount
of read speech recordings. The size of the data set and the limited variability of
the recorded data might result in a voice with limited phonetic variation. Moreover,
given that read speech is already quite clear (almost hyper-articulated), there is very
limited acoustic space for the transformation to increase the degree of articulation,
without ending up with speech that would sound unrealistic.

Another clear limitation of the implementation can be identified in the potential
feedback analysis, which considers only the speech intelligibility analysis.
Optimising the system with respect to intelligibility indexes generates speech with
characteristics similar to humans, but no information can be extracted about the
error between the perceived and the intentional messages. This limitation is mainly
due to implementation issues that would introduce a long computational latency in
the HTS-C2H adaptation control, if more advanced understanding models were
used.

The objective evaluation of § 6.4 considers the effectiveness of the proposed
transform. High SII and Dau values for low SSNR can be explained by the
limitations of such intelligibility indexes. When the noise is much louder than
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the speech, the index ranges are very small (almost 0) for both transformed and
standard speech. Hence, the ratio between these two values can easily diverge to
large numbers.

Finally, the subjective evaluation of the implementation of the hyper-articulated
output that was conducted in the Hurricane challenge has been reported, although at
a first glance, the method would seem to reduce the degree of intelligibility further
from the “standard” TTS. However, it must be kept in mind that a) natural speech
production was proven to outperform any evaluated speech synthesis methods;
b) the TTS baseline against which the intelligibility comparison is computed is
not the standard model on which the constant transformation is applied, and
unfortunately a direct comparison between the STD model and the Hurricane
TTS baseline is not available; c) Table 6.6 actually shows that the intelligibility
difference between baseline and HTS-C2H output decreases, when the adverse
conditions become more severe. It can be argued that in very low SNR conditions,
speech artefacts might interfere less with the intelligibility, and acoustic audibility
itself becomes a more prominent limitation.

7.4 Future directions

The model that is presented in this thesis still has a great deal of room for potential
improvement.

The C2H description of Chapter 4 comprises several layers of communicative
success, and indicates the possible strategies to adjust the speech production.
Several extensions to the model could include the implementation and testing of
these layers. Four principal dimensions, along which further research could be
done, are: the type of speech synthesiser, the voice and transform modelling, the
perception feedback, and the control mechanism.

First of all, C2H is flexible in terms of which speech synthesisers is used, as long
as the synthesiser complies with certain fundamental characteristics discussed in
§ 4.2. The speech synthesis field has been going through a huge transformation
since the arrival of end-to-end models. The intrinsic autoregressive characteristics
of these synthesisers, along with a potentially flexible conditioning mechanism
to generate speech samples seems to constitute a suitable synthesiser candidate
for C2H. The software and adaptation techniques available might still need some
further refinement.

Secondly, it is likely that more recorded speech data might be needed in order to
create more robust voice models and consequently more consistent transform. A
multi-speaker model approach could also be attempted as rich phonetic variations

147



7 Discussion and Conclusions

in the voice model would allow a creation of a more realistic augmented dataset
for the transform training stage.

Thirdly, the C2H perception loop describes several sensing levels. The
current HTS-C2H implementation considers the intelligibility dimension of the
communicative success. A further extension of the implementation could benefit
from adding a better model of the listener’s understanding of the speech, for
instance by including an automatic speech recogniser.

Finally, HTS-C2H controls its production with a single parameter. Despite the
simplicity and robustness of this control signal, it does not ensure the stability of
the controlled system. A more comprehensive control-theory inspired could be
researched to ensure the stability of the system.

HTS-C2H has recently been proven to be able to generate an impact outside the
laboratory. Interest has been shown in applying the model to real scenarios, such
as in manufacturing environments. Speech-enabled interfaces can be of potential
benefit in such environments, where operators might need both hands free to
follow prescribed instructions. A major challenge facing the deployment of speech
interfaces in manufacturing plants is the level of background noise. A standard
speech synthesiser often fails to be intelligible in adverse conditions, and thus an
implementation of C2H is a viable solution to increase the clarity of speech in such
challenging conditions.
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AppendixA
TGSM: a Trajectory Generation
Simulation Model

Speech synthesis is a very complex process, which involves the generation and
control of high-dimensional parameter vectors. In SPSS, for example, the feature
vectors that drive the speech waveform generation can contain more than 200
elements. In such high-dimensional acoustic space, the effects of any modification
to the generation process can be very difficult to visualise. Therefore, a trajectory
generation simulation model TGSM is proposed, which allows for generating
trajectories in a low-dimensional space that can be intuitively displayed. Visual
representation is useful to understand different optimisation strategies to design a
context-aware synthesiser and to test their effectiveness.

A.1 A phonetically-inspired trajectory space

Speech generation can be regarded as the evolution in time of a feature vector
which is input to the waveform generator. Understanding the effect of diverse
optimisation criteria on the trajectories is crucial to assess the quality and to tune
the parameters of the modifications that are the constituent parts of the complete
C2H model.

The simulation model, TGSM, is chosen to operate in a two-dimensional (2D)
space, and it is designed to visualise the effect of the different optimisation criteria
and control functions. In order to create an intuitive but yet effective model, which
maintains the link to the original speech synthesis problem, some principles have
to be ensured in its design.



A TGSM: a Trajectory Generation Simulation Model

• Since feature vectors in speech synthesis describe connected
high-dimension surfaces in the acoustic space, continuous trajectories
evolving in time are produced when reducing the number of dimensions to
2.

• Speech synthesis aims to realise a sequence of phone targets. The goal of
TGSM is to visit a series of target positions in a given order and with
predetermined accuracy.

• The 2D space is defined by a set of point coordinates that identify the
targets, and by other points that identify the competitors that the trajectory
needs to avoid.

• Proximity functions are defined to measure the precision with which the
trajectory visits the targets.

• Trajectory-evolution is defined by two components: velocity and direction.
Both are continuously updated as a reaction to the current trajectory
position and to the proximity function stimulus. An example is inspired by
observations on human behaviour (van Maanen et al., 2011). That is, the
speed at which the trajectory moves towards the target is directly
proportional to the distance from it.

• The optimal trajectory can evolve as function of the motivation with which
the trajectory reacts to the stimulus.

• The system evolves with a discrete time step. Some
physiologically-motivated constrains are applied to the maximum distance
that can be covered by a trajectory in a single time step.

Even if a strict relationship with the original acoustic space is not emphasised in the
above principles, the 2D resulting space can be regarded to have strong similarities
with the most common representation of the vowel space, the F1-F2 chart, see
Figure A.1 In such space, a vowel is identified by two coordinates: the values of
its first two formants. The variation of those values produces a modification of the
vowel identity. Therefore, the trajectory generation process can be also regarded
as a simple vowel sound generation.

Different strategies to navigate this reduced space are tested. Keeping in mind the
analogies to the vowel chart, visualisations in this space can be often extended to
the speech synthesis acoustic space.

The TGSM space is defined by a set of points, {pn}, n = 1, . . . , N . Those points
can be chosen randomly or to resemble the vowel positions in the F1-F2 chart. At
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A.1 A phonetically-inspired trajectory space
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 Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive           
Nasal           
Trill           
Tap or Flap           
Fricative           
Lateral 
fricative           
Approximant           
Lateral 
approximant           

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible. 

Clicks Voiced implosives Ejectives

 Bilabial  Bilabial  Examples: 

 Dental  Dental/alveolar  Bilabial 

 (Post)alveolar  Palatal  Dental/alveolar 

 Palatoalveolar  Velar  Velar 

 Alveolar lateral  Uvular  Alveolar fricative 
 

Front Central  Back
Close      

     
Close-mid     

     
Open-mid    

     
Open     

Where symbols appear in pairs, the one 
to the right represents a rounded vowel. 

 Voiceless labial-velar fricative   Alveolo-palatal fricatives

 Voiced labial-velar approximant   Voiced alveolar lateral flap

 Voiced labial-palatal approximant   Simultaneous and

 Voiceless epiglottal fricative 
Affricates and double articulations 
can be represented by two symbols 
joined by a tie bar if necessary. 

 Voiced epiglottal fricative 
 Epiglottal plosive 

 

 Primary stress 

 Secondary stress 

 Long  

 Half-long  

 Extra-short  

 Minor (foot) group 

 Major (intonation) group 

 Syllable break  

 Linking (absence of a break) 

LEVEL   CONTOUR

or Extra  or Risinghigh 

 High Falling

  Mid High
rising

  Low Low
rising

  
Extra Rising-
low falling

Downstep  Global rise 

Upstep  Global fall 

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2018) 
CONSONANTS (PULMONIC) © 2018 IPA

CONSONANTS (NON-PULMONIC)

OTHER SYMBOLS

DIACRITICS Some diacritics may be placed above a symbol with a descender, e.g.

VOWELS

SUPRASEGMENTALS

TONES AND WORD ACCENTS

 Voiceless    Breathy voiced    Dental   

 Voiced    Creaky voiced    Apical   

 Aspirated    Linguolabial    Laminal   

 More rounded    Labialized    Nasalized   

 Less rounded    Palatalized    Nasal release   

 Advanced    Velarized    Lateral release   

 Retracted    Pharyngealized    No audible release  

 Centralized    Velarized or pharyngealized     

 Mid-centralized    Raised  ( = voiced alveolar fricative) 

 Syllabic    Lowered  ( = voiced bilabial approximant) 

 Non-syllabic    Advanced Tongue Root      

 Rhoticity    Retracted Tongue Root      
 

Figure A.1: The IPA cardinal vowel chart representation. Adapted from (Association, 2019).

each generation, a subset of points is marked as targets, {phl}, l ∈ [1, L], L ≤ N .
The N − L inactive points represent the obstacles to avoid – the competitors – in
the trajectory generation, {ck}, k ∈ [1, T ]. The goal is for the trajectory xk to visit
every target in the correct order, avoiding to pass close to the competitors.

An external observer recognises that a point pn is visited by the trajectory, if
the trajectory distance from pn is smaller that the distances from all the other
competing points and it is below a fixed threshold ε:

pn is visited if ||pn − xk|| < ε

pn is not visited if ||pn − xk|| ≥ ε
(A.1)

where ||.|| is the Euclidean distance. Ideally, ε should be close to 0 to minimise
recognition errors.

The function that controls the trajectory generation must follow the same principle
of the recognition process of eq. A.1 to maximise the trajectory effectiveness. A
proximity function which emulates eq. A.1 and determines if the trajectory visits a
point must be available. It is also crucial that the function assesses the generation
process continuously.

At each k-th step, only one target, phl̂, is active. Consequently, all other points
are considered competitors. The target changes as soon as it is marked as visited.
The visiting sequence is fixed – similarly to the C2H intent –, and the following
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A TGSM: a Trajectory Generation Simulation Model

expression is chosen to decide when to switch the active target:

phk =


ph0 k ≤ 0

phl̂ if phk−1 = phl̂ and phl̂ is not visited
phl̂+1 if phk−1 = phl̂ and phl̂ is visited
ph0 k ≥ T

(A.2)

where ph0 represents an initial neutral position, l̂ is the index of the current target,
and T is the maximum time to visit all targets.

The details of the trajectory generation process are discussed later in this chapter
as an introduction to the C2H components. Here, two naive examples of trajectory
generation, that have no perception feedback, are introduced.

In the first example, the physiological constraint that limits the maximal speed of
the trajectory is removed. Therefore, the optimal trajectory consists of a sequence
of disconnected points whose coordinates correspond to the targets. The trajectory
visits the target {phl} for a fixed amount of time and has no transition paths. The
trajectory can be expressed as:

xk = phl ∀k, Dl−1 < k ≤ Dl−1 + dl (A.3)

where dl is the number of steps – time – for which the trajectory is allow to visit
the target, and Dl is the sum of previous durations Dl =

∑l−1
i=0 di.

In the second example, the trajectory generation is constrained to use the same
number of steps to transition between consecutive targets. Therefore, the trajectory
consists of fixed-length segments along the shortest path (w.r.t the Euclidean
distance) to the next target. The resulting trajectory is represented by:

xk =
k−Dl−1

dl
(phl − phl−1) ∀k, Dl−1 < k ≤ Dl−1 + dl (A.4)

in which the time dl defines the duration of the transition l. In this trajectory, the
time dl for the transition is pre-defined and no deviation from the shortest-path
direction is allowed.

Both above examples assume that a target phl̂ is visited when xk = phl̂, i.e., when
ε = 0 in eq. A.1. In the following paragraphs, two criteria are described that aim to
emulate eq. A.1 in order to predict whether the points can be considered as visited
by an external observer.

A.2 The proximity function

In order to visit an active target, the trajectory xk has to get closer to it than to
any other surrounding points. This proximity constraint which is specified by
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a metric or proximity function defines an area around each point pn (targets and
competitors), in which the trajectory is considered as visiting that point. Two types
of proximity functions are considered in TGSM, that respectively define two types
of areas: the safe zones and the Gaussian mixture zones.

A.2.1 The safe zones

In the TGSM first approximation the proximity function, a set of safe zones SZn
are defined and they are assumed to be circular. The SZn radius is different for each
point and it is defined as half of the distance between pn and its closest competitor.
An example of such space is displayed in Figure A.2.
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Figure A.2: Example of the 2-D TGSM space with 11 random points. SZ are displayed with
dashed-line circles. Four targets ({ph1,...,4}) and the neutral position, {ph0}, are also marked.

Given the sequence of L target vowels, SQ = {phl} with l ∈ [1, L], the proximity
of the k-th point in the trajectory, xk, to the target phl̂ is computed by

∆xl̂k = ||phl̂ − xk|| (A.5)

which reproduces the hard decision of eq. A.1.
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When the trajectory is inside a SZ, the related point is considered visited. In details,

pl̂ is visited if ∃k̂ | xk ∈ SZl̂
pl̂ is not visited if ∀k xk 6∈ SZl̂

(A.6)

Moreover, combining eq. A.5 and eq. A.6, the criterion becomes

xk ∈ SZl̂⇐⇒∆xl̂k < Rl̂ (A.7)

where Rl̂ is the SZl̂ radius.

The link with the correspondent vowel space is that all the points in a safe zone
SZn can be thought as a set of phonetic realisations of the phoneme phn and they
cannot hence be mistaken for any other phone.

Moreover, the neutral position represents a low-energy configuration toward which
trajectories tend to converge when the goal is fulfilled or the motivation is not a
sufficient stimulus.

A.2.2 The Gaussian mixture zones

The previous criterion represents a quite drastic simplification which has only a
weak link to the acoustic representation of speech. A further step towards the real
problem is then introduced, which is inspired by the affinity between the 2D space
and the F1-F2 chart, Figure A.1.

The positions of the points {pn} are explicitly selected to be vowels in the F1-
F2 chart. The mean formant values are extracted from the audio of the CMU-
arctic SLT corpus (American English female voice)(Kominek and Black, 2003b).
The mean values, µpn , along with their variances, σpn , define the GMZ which
represents the statistical proximity to the vowel most likely realisation, see Figure
A.3. The likelihood of each GMZ target – amplitude of each peak – varies
according the evolution of goal sequence.

In Figure A.3, the overlapping GMZ of four targets and the neutral position are
displayed. All competitors are assumed to have the same likelihood values. Colour
gradient areas describe the perceived proximity of the trajectory to the target. If the
trajectory enters a red area, normally the target is marked as visited. The red areas
that surround the targets are analogue to the safe zones of the previous paragraph.
The hard boundaries of the safe zones are replaced with soft likelihood-based ones.
Another important difference that can be observed in Figure A.3 is that the target
Gaussian functions overlap with other the competitor ones when their positions are
close. Also, subsequent targets interfere in the trajectory realisation detection. In
this scenario, visiting a target requires extra energy in order to avoid zones in which
the likelihood of two or more points is similar.
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Figure A.3: Example of the 2-D TGSM space representing 11 English vowels with the proximity
likelihood function. Four targets ph1,...,4 (/aa/, /iy/, /ae/, and /w/), along with the neutral position

ph0, /ax/, are also shown.

Inspired by the strategies adopted for the trajectory planning in physical
environments (Svenstrup et al., 2010), the proximity function to control the optimal
trajectory generation is designed as follows. In contrast to the hard decision of
eq. A.5, the GMZ proximity function of the k-th point in the trajectory, xk, to the
target phl̂ returns a soft decision as per,

∆xl̂k = GSQ(xk, l̂) (A.8)

where GSQ(x, l̂) is function of the current position and the current active target,
phl̂, and the target sequence, SQ, is fixed.

G(.) can be expanded in a sum of weighted Gaussian functions:

GSQ(x, l) =
N∑
n=0

an(SQ, l) ·Gn(x) (A.9)

where n ∈ [1, N ] is the index of all the points in 2-D space, and the functionsGn()
are pn-specific Gaussians that are learned from data examples. The coefficients,
{an(SQ, l)}, are the weighting parameters that depend on the target sequence and
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on the current active target l. These weighting factors allow the proximity function
to change when the targets in SQ are visited. Normally, an(SQ, l) ≥ 0 for the
target, and an(SQ, l) ≤ 0 for competitors. The parameters {an(SQ, l)} can also be
used to modify the overall motivation associated to the system. The enhancement
of a Gaussian function would increase the effort to keep the trajectory moving
towards the associated target for a longer time.

Although the control parameters in (A.9) are merely proportional, they are effective
in reproducing some formant generation behaviours that can be observed in
human speech. An example can be identified in the approximation of the vowel
realisations. When motivation (an) is low, Gaussian mixture is flat. That results in
a wide red areas that generate less precise trajectory.

A target phl̂ is assumed to be visited when current trajectory xk reaches a position
which maximises the mixture GSQ(x, l̂). Analogously to eq A.6, this relation can
be described as follow,

pl̂ is visited if ∃k̂ | ∆GSQ(k̂, l̂) ≤ ε
pl̂ is not visited if ∀k ∆GSQ(k, l̂) > ε

(A.10)

where ∆GSQ(k, l̂) = |GSQ(xk, l̂)−GSQ(xk−1, l̂)| and ε is a minimum-increment
threshold. Hence, if the ∆GSQ(k, l) moves closer with increment less than ε, the
target is considered as visited.

Once the sequence SQ and the motivation {an(SQ, l)} are defined, the GMZ space
is determined. The trajectory is hence generated to navigate such a space to reach
the closest local maxima starting from the low-energy configuration. Interesting
effects emerge when the GMZ space is left to evolve with different configuration
parameters. Since the trajectory direction is motivated by the local maximum, it
might not be just a straight line, but bend around the Gaussian surface. If two close
targets have comparable amplitude, the trajectory might end in an intermediate
point, similarly to the effect of phone approximation. If the motivation is low,
the trajectory might move and visit another competitor, resulting in what can be
regarded as a mispronunciation.

A.3 Similarities between TGSM and C2H

The simulation model TGSM was introduced to provide a simplified graphical
representation of the complex C2H model of § 4. In the following sections, a
detailed explanation is reported of the links between the principal components of
TGSM and C2H.

174



A.3 Similarities between TGSM and C2H

A.3.1 Proximity detection

In the simulation model TGSM, the complex communicative state estimation
translates into a much simpler task than in C2H (see § 4.3). The state of the system
is fully described by the position of the trajectory in the 2D space.

Since the goal of this system is to visit all the targets with a certain level of
accuracy, the distance between the trajectory and the active target can be regarded
as the effective description of the system state. In particular, TGSM sensors
need to extrapolate two pieces of information: the trajectory current position and
the distance to the target. The first measure can be directly derived from the
information that are accessible to the process. The current position estimation, or
self-monitoring, is direct query to the trajectory generation process, which returns
the coordinates of the current position. The second measure requires the non-
trivial assumption that the active target and all competitor positions are known by
the system. This estimation can be regarded as equivalent to the environment and
listener sensors in the C2H space. The distance to the target can be estimated
by the proximity functions described in Appendix A.2.1 and Appendix A.2.2.
Both conditional rules in eq. A.6 and eq. A.10 return measures of vicinity of the
trajectory to the targets. The two rules depend on the positions of targets and
competitors. These points can be perturbed by external causes (environmental
disturbances). Target SZ shapes can be resized due to external factors. The SZ
radius and the strength of the competitor influence are controlled by a scaling factor
which expands or reduces the ‘target-visited’ area and hence the sensitivity of the
sensor. Therefore, the trajectory has to move closer than in clean conditions to visit
it.

In the GMZ space description, the target Gaussian function can be masked
by a Gaussian mixture function that introduces a distance measure uncertainty.
Trajectory distance to the target needs to be reduced in order for proximity function
to detect the target as visited.

This estimation can be regarded as a simulated intelligibility model of the listener,
which returns the degree of confusion of an observer (the listener) at measuring the
distance of a trajectory realisation to the target (speech intelligibility).

In TGSM, the trajectory length (duration) is the main measure of the energy
involved in the generation. In the acoustic space, articulation loci and phone
durations can be also regarded as similarly linked to speech production effort.
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A.3.2 Trajectory position error

Analogously to the C2H comparator of § 4.4, a function that assesses the distance
to the target is also used in the TGSM domain. The TGSM comparator function
measures the error between the input target sequence and the trajectory position.
The error is expressed either as a binary value, which expresses whether the
proximity function labels the target as visited, or a real value that is used as
control signal to drive the controller. The error is computed from the measurement
about the trajectory state (equivalent to the perception output) and the prior
knowledge on the position of the targets (intents). The SZ and the GMZ criteria of
Appendix A.2.1 and Appendix A.2.2 respectively are the proximity functions that
generate the error. The related eq. A.6 and eq. A.10 express the binary decision
that a target is successfully visited.

A.3.3 Trajectory adaptation

In the TGSM 2D space, the trajectory generation needs to be modified according
to the proximity error signal. Such adaptation consists of a set of linear transforms
that can adjust direction and velocity of the trajectory path. In eq. A.3 and A.4, two
intuitive generation-control examples have been introduced. The output trajectory
either visits the target positions with no transitions (infinite speed and no direction),
or it moves to the targets in a fixed number of steps until the target coordinates are
reached (uniform duration and shortest-path direction), respectively. Both methods
cannot control the amount of energy involved in the process and the degree of
accuracy of the realisations.

In order to achieve that, the direction and velocity, at which the path xk moves,
must be controlled more effectively. Modifying these two trajectory parameters
results in a change of shape and length of the path in the 2D space. The points that
the trajectory visits, the durations of the transitions, and the proximity to the targets
are affected.

Two examples of trajectory transform are proposed to control the energy in the
generation. In the first one, expressed by eq. A.11, the velocity is uniform, but the
direction changes according to target positions and the proximity function values,
eq. A.6 and A.10.

xk = xk−1 +
k−Dl−1

dl
·A(θk) ·∆xlk−1 Dl−1 < k ≤ Dl−1 + dl (A.11)

where dl is the duration of each transition and Dl−1 is the overall number of time
steps to the previous target. ∆xlk−1 = (phl − xk−1) is the vector identifying the
shortest path to the next target, and A(θk) is the matrix representing the direction
rotation of θk-degree, θk ∈ [0, 2π]. θk is controlled by the error signal measured
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by the proximity functions. The error signal consists of the logic decision on
whether the next step visits a competing target. The rotation in eq. A.11 implies
that the position, xk−1, can potentially evolves towards any direction of the 2D
space at uniform speed. The rotation parameter θk is determined by a controlling
mechanism reacting to the trajectory position perception error. If xk visits the
active target, target is switched to the next.

The second type of transform is expressed by eq. A.12. The direction is fixed to
be the shortest path between targets, whilst the velocity is adapted reacting to the
trajectory position.

xk = xk−1 + v(ek−1) ·∆xlk−1 Dl−1 < k ≤ Dl−1 + dl (A.12)

The velocity v(.) is defined as a function of the trajectory error to target, ek−1,
which consists of the distance between target and trajectory. The Euclidean
distance is used to control xk speed, ek−1 = ||∆xlk−1|| = ||phl − xk−1||.
The function v(.) is inspired by the Pieron’s law (Piéron, 1913), which models
the relationship between stimulus and response in human sensorimotor system.
According to this model, the average human response-time is quicker when the
stimulus is stronger. In TGSM, Pieron’s law is designed as an exponential function,
in which the position error is the stimulus and the velocity is the response. The
function can be expressed by

v(dk) = a1 · e
(
dk+

b1·b2
b3

)2

(A.13)

in which a1, b1, b2, and b3 are control constants.

The transforms in the TGSM domain can be linked to those in the real acoustic
space. Both adaptations control the degree of accuracy of the input target
realisations. Modifications are driven by a control signal which is a function of the
realisation error. The different accuracy of both trajectory and speech generation
is controlled by coefficients applied to the generation parameters. The amount of
energy involved in a realisation emerges from accuracy optimisation motivations.
If a high degree of accuracy is required, this is proportional to an increment of the
standard effort involved in the trajectory realisation.

A.3.4 Dynamic trajectory generation

In the TGSM domain, trajectory generation and adaptation are controlled by the
error derived by the proximity functions. The sensitivity of the TGSM controller
can be interpreted as the correction parameter of the trajectory generation effort:
i.e., the motivation of the system to avoid external observer’s trajectory recognition
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errors. Controlling the trajectory x means to select the appropriate generation
parameters that minimise the distance to target.

As expressed in the previous section, Appendix A.3.3, the TGSM transforms
operate both on trajectory direction and velocity. The correction parameters are
chosen according to the error signal computed by the proximity functions.

Motivation in the TGSM controller modifies the parameters of the proximity
functions in order to change the course of x. When motivation is standard (STD),
the target phl safe zone SZn is a circle and its radius is half the distance to the
closest competitor. The SZ radius can be adjusted by the motivation to be larger or
smaller than this distance. These sensitivity changes influence how trajectory xk
moves towards phl. Generated trajectories can be very different as shown in later
examples.

If motivation is low (HYO), SZ is enlarged, and consequently proximity functions
consider a target as visited at a larger distance than with STD motivation. On the
other hand, if motivation is high (HYP), SZ size is reduced, and the trajectory is
forced to move for a longer time in order to visit a target. The recognition by
an external observer of the visited target sequence, eq. A.1, is clearly influenced
by this sensitivity change. In HYP mode, many points in xk are in the SZ and
therefore satisfy the recognition criterion of eq. A.1. The observer has a larger
amount of information (points) than with the standard SZ to determine the target
sequence. Even if observations are affected by measurement errors or perturbation,
they are more likely to produce a correct recognition. Vice-versa, in HYO mode,
the accuracy of external observations is decreased.

Motivation affects GMZ sensitivity similarly by changing the weights associated to
the Gaussian functions. If a target weight is increased (HYP), the surface gradient
of the surrounding area becomes steeper. Since the target-visited criterion for GMZ
is that ∆GSQ(k, l) ≤ ε in eq. A.10, more steps towards the target are needed to
obtain an increment smaller than ε. If the target weight is reduced, surface is flatter,
and the trajectory stops earlier than in STD mode.

The length of the trajectory (number of steps or duration) is hence directly
proportional to motivation.

Two transforms, eq. A.12 and eq. A.11, are tested to correct the generation process
in TGSM. Their application in relation to the SZ proximity function definition is
detailed below.

The first control criterion scales the trajectory speed and aims to find the shortest
path which visits each target. The second criterion controls the direction and makes
the trajectory to avoid the competitor SZ.

178



A.3 Similarities between TGSM and C2H

Minimising the distance to target

Minimising the distance between the trajectory xk and targets phn is the first
criterion used to compute the desired path. The trajectory speed is adjusted by
the transform in eq. A.12. The parameters that control speed are proportional to
the trajectory position error. The error derives from the proximity function and it
depends from the distance to the target. The trajectory point moves along a straight
line to the next target phl (the shortest path), until this is visited, then moves to the
phl+1 direction. The SZ size is determined by the motivation.

Examples of three trajectories, {xHYO
k }, {xSTD

k }, and {xHYP
k }, resulting from

applying low, standard, and high motivation respectively, are plotted in Figure A.4.
Different trajectory lengths and distances to final targets of the three paths are
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Figure A.4: Trajectory examples with different degrees of motivation to reach the same targets,
ph1..4, of Figure A.2, through the shortest path.

clearly visible. The diverse evolutions of these trajectories are solely motivated
by energy criteria.

This strategy represents a generation algorithm that aims to maximise one aspect
of the accuracy (the target distance) and it also controls the effort with which
the goal can be achieved. Accuracy is influenced by a motivation component,
which is defined as the maximum effort that the system is configured to invest
in the generation. The motivation component is added to TGSM to represent the
influence that such control parameter potentially has in the parallel domain of C2H
speech production.

This first control criterion is intuitive and effective, but it clearly has issues arising
from its naivety. For example, nothing prevents xk from crossing the other targets,
while it is moving towards its destination. Hence, some competitors might be
recognised as visited even though they are not real targets and the observer detects
a different path from the desired one.
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Example of STD trajectory generation that minimises the distance to the targets
in the 2D space defined by the GMZ is shown in Figure A.5. Trajectory velocity
at time k is proportional to the steepness of the Gaussian surface surrounding the
trajectory point xk.
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Figure A.5: STD path generated in the GMZ space using linear trajectory planning. Analogies with
the F1-F2 vowel space for 11 English vowels are highlighted. The target sequence is

[aa],[ah],[iy],[ao],[uw].

Maximising the distance from competitors

The previous strategy often creates trajectories which intersect some competitor,
before reaching the correct target. In order to avoid it, eq. A.11 is used, which adds
a rotation coefficient,A(θk), to change the trajectory direction.

The trajectory goal is still to move towards the next target with the minimum length
path, however, the control parameter, θk, is also function of the position error. This
parameter activates an extra dimension in the error signal. If a newly generated
point of the trajectory, xk+1, moving towards SZl, falls into a competitor zone,
SZm, an error is signalled.

Examples of the three trajectories, {xHY0
k }, {xSTD

k }, and {xHYP
k }, resulting from

applying low, standard, and high-effort respectively, are plotted in Figure A.6.

In this case, besides the target SZl size, motivation also inversely controls the
competitor SZm sizes. A high effort reduces the SZ size of the target and increases
the SZ area of the competitors to avoid. The trajectory always moves outside
all competing SZ. Generated path lengths are longer than those by the previous
method.

This strategy emphasises the importance of controlling the distance from
competitors as well as from the target, in order to minimise false target
recognitions. The main limitations of this method are represented by the binary
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Figure A.6: Trajectory with different degrees of motivation to reach the same targets, ph1..4, of
Figure A.2 by maximising the distance from competitors.

decision function that decides if the target phl is visited, and by the rotation matrix
that often selects the sub-optimal direction.

The clear analogy with speech production is that synthesisers need to achieve the
correct realisation of each element (phone) in the speech audio, but also ensure that
the closest competitors are avoided. The simulation model proves the importance
of such control as well as its feasibility.

Other interesting characteristics are that the same phone sequence can generate
different trajectories and that the same parametric model is used to generate the
vowels and to recognise them (speaker’s and listener’s model are shared). A
suitable recogniser’s model in the perception loop is therefore crucial.

A further example of optimal STD path generation that aims to maximise the
distance to competitors is shown in Figure A.7. Optimal direction is selected using
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Figure A.7: Trajectory planning using in the GMZ space. Analogies with the F1-F2 vowel space for
11 English vowels are highlighted. The target sequence is [aa], [ah], [iy], [ao], [uw].

the rapidly-exploring random tree (RRT) method (Ferguson and Stentz, 2006). The
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A TGSM: a Trajectory Generation Simulation Model

search random tree is displayed in red colour. Once the tree reaches the next target,
the first branch of that tree defines the direction of the next movement.
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AppendixB
The XPLIC8 analysis software

XPLIC8 is one of the output of the eNTERFACE 2012 project (Stylianou et al.,
2012). It consists of a MATLAB-based graphic tool for carrying out a series
of analyses on single or batch of signals. It comprises of a set of functions for
acoustic-phonetic measurement of speech, as typically used in speech science and
phonetics research.

XPLIC8 is able to perform the seven acoustic-phonetic analyses and the two
visualization methods on sentence, word and phoneme levels that are listed below:

• Analysis

– duration [s],

– F0 median [Hz],

– F0 range [Hz],

– long term average spectrum (LTAS) energy between a specified
frequency range [dB SIL],

– spectral tilt [dB/oct],

– vowel space: F1 [Hz] and F2 [Hz] values,

– centre of gravity Centre of Gravity (CoG) [Hz].

• Visualization

– Source features analysis (Raitio et al., 2011b)

∗ LPC Spectrum
∗ Harmonic-to-noise (HNR) ratio plot



B The XPLIC8 analysis software

∗ Average glottal flow waveform

– Vowel space plots

∗ Plot of F1/F2 of tense vs. lax vowels
∗ Plot of mean F1/F2 for all vowels
∗ Plot of centre of gravity for /i/-/6/-/O/

Figure B.1: The XPLIC8 GUI

Analyses can only be performed on certain levels of accuracy that relies on the
existence of corresponding annotation files for the signals. The detailed results
from the analyses can be exported in plain text format that can be used as direct
input for statistical applications such as the SPSS or R software for further analysis.

B.1 Analysis algorithms

The analysis algorithms, developed during this project and incorporated in the GUI
XPLIC8 , are described below.
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B.1 Analysis algorithms

B.1.1 F0 estimation

A rough F0 trajectory prediction is performed prior to actual pitch detection. This
is done in two stages: The first stage is to high-pass filter the speech signal in order
to remove possible low frequency noise, followed by defining the rough F0 range.
This is performed by using simple inverse filtering of the speech signal in order
to remove most of the formants and then integrating the signal in order to get a
signal close to glottal flow. This is done frame-wise with a 40-ms window. The
rough fundamental period is estimated by evaluating the autocorrelation sequence
of the signal and then finding the maximum peak that corresponds F0 between 50
and 500 Hz. Those frames with low energy or high zero-crossing rate (ZCR) are
classified as unvoiced. F0 range is defined as:

F0min = median(f0)
1.2
5 (B.1)

F0max = 2.2median(f0) (B.2)

The actual pitch detection takes place after the initial estimation of the F0 range.
The analysis window size is adjusted to the estimated F0 range so that it is
twice the lowest fundamental period (2/F0min). The glottal inverse filtering
method used in F0 estimation is iterative adaptive inverse filtering (IAIF) which
estimates the glottal flow signal of the frame using linear prediction such that the
fundamental period from the vibratory glottal flow waveform can be estimated.
The fundamental period is estimated again finding the maximum peak of the
autocorrelation sequence.

For post-processing, two highest peaks are saved: First, the post-processing
involves forming a continuous trajectory from the two trajectories. This is based
on the relative jump of the trajectories compared to a local F0 median. Second,
5-point median filtering is applied to smooth out outliers. Third, the unvoiced parts
are set to zero based on the energy, ZCR, autocorrelation peak value, and gradient
index. Fourth, the F0 trajectory is filtered with a 3-point medial filter. Finally, the
median F0 is defined as the median of the non-zero values of the trajectory. The
F0min and F0max are defined as the minimum and maximum non-zero F0 values
of the trajectory.

B.1.2 LTAS energy in specified frequency ranges

The energy is computed as the intensity in sound intensity level (SIL) dB on
the specified frequency range. The input sample is windowed with a 5-ms
rectangular window without overlap and a 1024-length Fourier transform (using
the fft() function) is computed for each frame. To obtain the normalized intensity
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B The XPLIC8 analysis software

for each frame, the energy in the specified frequency range is normalized by
the length of the FFT, the length of the window (in samples) and the sampling
frequency. Finally, the normalized intensities of all the frames are summed and the
corresponding decibel value is computed by using the reference value I0 = 10e12.

B.1.3 Spectral tilt

The average spectral tilt is computed by fitting a regression line to 1/3-octave band
energies of the LTAS in logarithmic scale. The LTAS is computed in 5-ms frames
without overlap. For each frame, a 2048-length Fourier transform (with the fft()
function) is computed and the LTAS is obtained as the mean of the absolute values
of the Fourier transforms over all frames. The average energy in the LTAS for each
third-octave band is computed and normalized with the width of the band. These
values are then transformed to logarithmic scale and a first-degree polynomial fit
is estimated (using function polyfit()). The average spectral tilt (in dB/octave) is
three times the value of the first coefficient of the polynomial.

B.1.4 Vowel space (F1, F2)

The formant extraction tool returns the formant values in the middle point of the
selected segment. It uses PRAAT (Boersma and Weenink, 2018) to extract the
formant values for each consecutive frame in the selected speech segment and
the cheapest paths through those values. Then, the values related to the centre
of the time interval are chosen. This function returns formant info for every
selected phone and this data is also used to plot the vowel space. Most of the
analysis options are already optimised and cannot be changed: Time step = 0.01
s, Maximum formant number = 7, Number of paths to tracks = 5, Formant search
range ceiling = 6500 Hz, Pre-emphasis filter lower limit = 50 Hz, Duration of the
analysis window (0.025 s). For a detailed description of these parameters, please
refer to the online PRAAT manual (Sound to Formant (Burg) and Formant Track)

Formant extraction The sound is re-sampled (Sound: Resample) to a frequency
of twice the value of maximum formant and a pre-emphasis filter is also applied
(Sound: Pre-emphasize (in-line)). For each analysis window, a Gaussian-like
window is applied and the LPC coefficients are as per the algorithm by Burg, as
(Childers, D.G., 1978) and (Press, W.H. et al., 1992). The number of ”poles” in this
algorithm is set as twice the maximum number of formants. The algorithm finds
the best peaks in the selected range of frequency (between 0 Hz and the maximum
formant value). Then, all formants below 50 Hz and above the ceiling minus 50 Hz
are removed because very low frequency (near 0 Hz) and very high frequency (near
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B.1 Analysis algorithms

the maximum) peaks cannot usually be associated with the vocal tract resonances
and they are likely to be artifacts of the LPC algorithm.

Formant tracking After the formant candidate extraction, a tracking on these
values is performed in order to rearrange the peaks to obtain the best formant
tracks. This command uses a Viterbi algorithm with multiple planes and chooses
the cheapest path through all the previously selected peaks (Formant Track). The
cost function for one track (e.g. 2) with proposed values F2,i (i = 1...N , where N
is the number of frames) is:

CostFunction =

N∑
i=1

frequencyCost
|F2,i − referenceF2|

1000

+
N∑
i=1

bandWidthCost
B2,i

F2,i
+

+
N−1∑
i=1

transitionCost|log2
F2,i

F2,i+1
|

(B.3)

where frequencyCost, bandWidthCost, transitionCost, and referenceF2 values are
fixed and all set to 1. Analogous formulas compute the cost of other tracks. The
procedure will assign those candidates that minimize the sum of all-track costs.

B.1.5 Centre of gravity (CoG)

The Centre of Gravity is a measure of the spectrum energy distribution. The
average spectrum on the speech segment is computed. It uses the PRAAT
software. Given the complex spectrum, S(f), f is the frequency, the CoG is
computed by ∫ ∞

0
f |S(f)|pdf (B.4)

divided by the“energy” ∫ ∞
0
|S(f)|pdf (B.5)

The value of p is chosen to be 2. For further details please refer to the online
PRAAT manual (Spectrum: Get the centre of gravity).
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B.1.6 Source features

For details of F0 prediction refer to F0 estimation. The polarity is estimated by
comparing the positive and negative energy of the glottal flow derivative signal. If
the negative energy is greater, the speech signal most likely has positive polarity
(and vice versa). After F0 and polarity detection, a suitable window size is selected
for estimating the parameters (3/F0min). Iterative adaptive inverse filtering (IAIF)
is applied to the speech signal to separate the vocal tract transfer function and the
voice source signal. Then, various parameters are extracted, such as:

• F0 and voiced/unvoiced decision 1

• LPC and FFT spectra of voiced speech

• LPC and FFT spectra of unvoiced speech

• LPC and FFT spectra of vocal tract

• LPC and FFT spectral of voice source

• Speech energy

• Harmonic-to-noise ratio (HNR)

• H1-H2 value of the glottal flow signal

• Normalized amplitude quotient (NAQ)

• Individual glottal flow pulses and their average

The harmonic-to-noise ratio is evaluated by peak picking of the harmonics and then
comparing the magnitude difference between the harmonics and the inter-harmonic
valleys. These values are averaged to five equivalent rectangular bandwidth (ERB)
bands. Normalized amplitude quotient is evaluated for each glottal flow pulse
and thus averaged to one value for each frame. Finally, all the estimated unique
glottal flow pulses are interpolated to constant length and averaged to estimate
the average glottal flow waveform. Parameters are post-processed with median
filtering. Statistics of the parameters are evaluated with 95% confidence intervals.

1Only available when single WAV file is selected and the analyses are performed on sentence
level.
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B.2 The P8-Harvard corpus acoustic analysis

B.2 The P8-Harvard corpus acoustic analysis

The acoustic-phonetic analyses, implemented in XPLIC8 , are used to assess the
audio characteristics of the human speech-in-adverse-condition corpus, named P8-
Harvard.

The P8-Harvard (Stylianou et al., 2012) corpus is a speech dataset that contains
audio recordings of speaker pairs (speaker A and speaker B) communicating
in adverse conditions. Three different communication barriers are presented to
speaker B, during the recordings: no barrier (NB), babble additive noise (BAB),
and vocoder speech filter (VOC). Diverse speaking styles are observed as a reaction
to the diverse communication conditions. Only speaker A’s output is considered in
this analysis, as they are not aware of the nature of speaker B’s barrier. Therefore,
their speech compensations to overcome the communication difficulties are entirely
extrapolated from experience and listener’s long-term feedback about successfully
understanding the message. A more detailed description of the P8-Harvard corpus
can be found in (Stylianou et al., 2012)

A summary of the extracted indices is reported below.

F0 extraction the F0 detection is based on glottal inverse filtering and
autocorrelation peak detection. The algorithm implemented to extract the
F0 and the F0 range from the speech signals is described in Appendix B.

LTAS XPLIC8 estimates the LTAS. This measure returns the energy level in
specified frequency ranges.

Formant extraction The XPLIC8 formant extractor algorithm computes the best
candidates in the selected segments and finds the cost-efficient paths
through those values. The function returns the formant value at the centre of
the selected speech segment.

Centre of gravity extraction The XPLIC8 function for measuring the CoG of
the average spectrum of the selected speech segment is also implemented in
XPLIC8 . CoG is an important measure of the spectrum energy distribution
and it also relies on the XPLIC8 tool.

F1-F2 chart In order to isolate the vowel instances in the corpora, all of the
speech is segmented using an HTK-based audio-to-text aligner. No manual
corrections are performed. For each vowel instance, formant analysis is
performed using the PRAAT algorithm. The representative pair of F1 and
F2 values for each vowel instance is then taken as the values at the centre of
the speech segment. For each vowel, the mean over all of the vowel
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instances is trimmed, with 95% of the data kept, in order to limit the
influence of potential outliers. Then, the convex polygon fit that
encompasses all of the data points is calculated in order to represent the
maximum area that the points in the vowel space span.

No-Speech detector A Matlab voice activity detection (VAD) function is also
implemented to detect parts of speech signal with no proper speech content
(NS, no-speech). They can be silence, or pauses between words, or
stop-consonant closures, etc. The NS detector relies on a low-loudness
detection function based on the perceptual speech quality (PSQ) measure
(ITU Radiocommunication Bureau, 2002). The function identifies NS
segments by selecting the parts in which the loudness is below a certain
threshold (15% of the normalised signal loudness). The phonetic and
linguistic annotations are used to label some of these NS chunks more
specifically. According to the linguistic context in which the NS part is
located, the function labels the following type of NS:

• S (speech): part of signal with loudness above threshold.

• NS (no-speech): generic low-loudness part of signal

• NS[SIL] (silence): low-loudness part of signal at the beginning/end of
the sentence

• NS[SC] (stop consonant pause): low-loudness part of signal, which is
part of a stop consonant inside a word

• NS[IW] (inter-word pause): low-loudness part of signal between two
separate words

Mean duration analysis The NS detector is also used to produce reliable
information about the duration of the S/NS parts of speech. This allows for
a more accurate measurement of different levels of mean duration analysis
for each type of condition, since the inter-word durations within utterances
can be subtracted to the annotated word durations. The mean word duration
(MWD) is the most common duration analysis.

Analyses as NS detection, and phone, word, and sentence duration computations
rely on the existence of corresponding annotations for the audio signals. The level
of accuracy is hence directly linked to the level of accuracy of the annotation.
In recorded speech, manual or automatic force-alignment between audio and text
must be performed.
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B.2.1 Results

The joint-effort acoustic and phonetic analysis conducted at the eNTERFACE 2012
workshop (Stylianou et al., 2012) is reported here below.

F0 These estimated values for the P8-Harvard corpus are evaluated with the
analysis of variance (ANOVA) technique. As expected, the F0 median is
significantly higher for the female speaker (p < 0.001) than for the male one.
It is also significantly higher in the VOC condition than in the NB (p < 0.001) and
BAB conditions (p < 0.001). In the BAB, F0 is also higher than NB conditions
(p < 0.001). F0 range also vary across conditions: it is broader in BAB than in
both NB (p = 0.018) and VOC (p < 0.001). However, F0 range do not seem to
differ between the NB and VOC conditions (p = 0.067).

LTAS Previous studies correlate the increase of clear speech intelligibility with
respect to casual speech to an increment of the LTAS value in the high frequency
band 1-3kHz (LTAS13). Figure B.2 depicts the LTAS for speakers A2 (left) and
A1 (right) of the P8-Harvard corpus for the three conditions of the P8-Harvard
corpus. The male speaker increases his energy above 1000Hz especially for the
VOC condition and less on the BAB. The female speaker slightly increases the
energy between 2000-4000Hz for the BAB condition and a significant increase
above 5000Hz.
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Figure B.2: LTAS of the male (left) and female speaker (right) for three different conditions NB, BAB
and VOC. Figure reproduced from (Stylianou et al., 2012).

LTAS13 for the corpus is evaluated with ANOVA. This measure depends on both
speakers and conditions. Post-hoc paired t-tests show that the BAB condition is
greater in intensity (mean= -3.1 dB) than the VOC (mean= -3.6 dB), and NB
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conditions (mean= -6.9 dB) (p < 0.001). There is also a significant interaction
of speaker and condition (p < 0.001). Post-hoc analyses show that there are
significant speaker-specific strategies in terms of intensity (p < 0.001): for A1, the
BAB condition has a greater intensity than the VOC condition (mean difference
between VOC and BAB = -2.3 dB), while for A2, the VOC condition has a greater
intensity than the BAB condition (mean difference between VOC and BAB = 1.2
dB).

F1-F2 chart Figure B.3 depicts the largest-area polygon fit that identifies the
vowel space in the three noise conditions for speakers A1 and A2. The picture
shows the 4 tense and 6 lax vowels (95% trimmed means). Per-vowel analysis is

Figure B.3: F1-F2 chart of the speaker A1 and A2 recordings in the three NB, VOC, and BAB
conditions. The largest-area polygon fit for the 4 tense and 6 lax vowels (95% trimmed means). Figure

reproduced from (Stylianou et al., 2012).

run on the values using a mixed-model ANOVA, with vowel as a between-subjects
factor, and condition (NB, BAB, VOC) as a within-subjects factor. The analysis
shows a significant condition effect on all three vowels /i/, /6/ and /O/ for speaker A1
(p = 0.0398) but no effect for speaker B. So, for speaker A, vowel space expands
as follows: NB < BAB < VOC.

To explain these results, it must be kept in mind that speakers A have no knowledge
on the type of disturbance to which speakers B are exposed. Therefore, they try to
adopt the best communicative strategy from their experience repertoire that allows
them to successfully transfer information. The success of their communication
attempts is determined by the spoken feedback from speakers B.

No-speech parts The No-Speech (NS) detector of XPLIC8 is applied to the
P8-Harvard database. Table B.1 contains the number of NS segments for each
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category, speaker and condition and Figure B.4 has the average number of the total
number of inter-word pauses per each utterance.

Table B.1: Instances of different types of NS returned by XPLIC8 No-Speech analysis. SIL identifies
start-/end-utterance silences, SC are the stop-consonant silences, and IW are inter-word pauses. NC

reports the number of not classified silences. Adapted from (Stylianou et al., 2012).

A1 A2

NS type NB BAB VOC NB BAB VOC

NS[SIL] 295 293 298 277 276 276
NS[SC] 437 492 529 433 470 520
NS[IW] 208 274 375 147 186 257

NS[NC] 1161 1386 1615 947 1059 1247

The results show an increasing number of NS parts in the speech along with the
difficulties in the communication. The instances of each type of NS follow the same
trend: #NS[.]VOC > #NS[.]BAB > #NS[.]NB for both speakers, even though the
male speaker tends to compensate less for the adverse conditions, as reported by
other analysis. A significant increase of NS[IW] is observed between the VOC
barrier and the other two conditions in both speakers, as Figure B.4 explicitly
shows. This confirms that when the communication channel is really destructive
and the speaker has no direct access to assess the channel, the most likely speaker’s
strategy is to greatly decrease the speaking rate.
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Figure B.4: Average number of inter-word pauses (NS[IW]) for each utterance in different conditions.
Figure reproduced from (Stylianou et al., 2012).

Further insight can be gained by looking at the durations of the different silence
categories. Figure B.5 shows that, apart from expected silences (NS[SIL]), all

193



B The XPLIC8 analysis software

types of silences – NS[IW] particularly – undergo duration increase from NB to
BAB to VOC. In contrast, speech durations remain stable, highlighting a possible
speaker strategy of reducing speech rate by detaching words.
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Figure B.5: Mean speech and silence durations for speakers A1 and A2 across NB, BAB and VOC.
Error bars are 95% confidence interval. Figure reproduced from (Stylianou et al., 2012).

MWD The mean word duration (MWD) for each type of condition is measured
accurately using the silent detector, since the inter-word durations within utterances
can be identified and subtracted to the word durations.
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Figure B.6: Longitudinal evolution of the MWD elongation for speaker A1. The MWD for all the
words is shown on the left, whereas there is the content-word MWD only. The 3rd-order polynomial

curve that fits the data is also displayed. Figure reproduced from (Stylianou et al., 2012).

Figure B.6 and Figure B.7 display the change of MWD (word elongation) in
the VOC and BAB conditions with respect to the NB condition, during the
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Figure B.7: Longitudinal evolution of the MWD elongation for speaker A2. The MWD for all the
words is shown on the left, whereas there is the content-word MWD only. The 3rd-order polynomial

curve that fits the data is also displayed. Figure reproduced from (Stylianou et al., 2012).

experimental sessions. First observation is that all speakers elongate their speech
production, especially in the worst condition (VOC). This evolves along the
sessions. However, this is not consistent between the two speakers for the BAB
condition. Speaker A2 maintains the all MWD and the content MWD stable.
Speaker A2 is found to be generally less effective in the compensation, he slightly
elongated the speech (∼ 20%), only in the VOC barrier case but he does not adjust
his speech any further. This lack of efficiency is confirmed by the amount of the
errors the listener made which are much more compared to the errors he made
during the session of speaker A1.

In Figure B.6 and Figure B.7 the red line is a 3rd-order polynomial fitting curve
that shows the data trend. Three different stages emerge in all sessions, particularly
for speaker A1 and the most stressful (VOC) condition. At the beginning, the
speakers start with their normal speech style (i.e. almost the same MWD as the NB
condition), but as soon as they receive intelligibility feedbacks from the listener,
they adapt their speech realisation by increasing the effort (i.e. word duration).
Hence, an elongation increment is seen at the beginning of the session. In the
central part, the elongation w.r.t NB is constant. The hypothesis is that speakers
and listeners agree that the current elongation is effective for the communicative
conditions, and no further adaptation is needed. In the final part of the experiment,
an increasing MWD elongation is measured, especially for speaker A1. It is
hypothesised that she is trying to overcome listener’s new difficulties. These
might be due to the listener’s fatigue after extensive exposure to such difficult
communicative conditions. Understanding a speech message in a severe adverse
condition requires considerable cognitive load. In the same conditions, speaker A2
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B The XPLIC8 analysis software

seems to cease making the effort to elongate, maybe due to a lack of motivation
towards the end of the session.
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AppendixC
Detailed objective results

This part reports the complete list of the objective evaluation results computed with
two different intelligibility-in-noise estimation methods: the SII (ANSI, 1997) and
Dau (Dau et al., 1996b) indexes.

Implementations of the SII and Dau indexes are used to estimate the intelligibility
of the HTS-C2H speech samples in high, mid, and low SNR noise conditions as
per the experimental settings in § 6.1.



C Detailed objective results

C.1 SLT

The audio samples produced with the English female voice SLT results are
evaluated with SII in Figure C.1, Figure C.2, and Figure C.3, and with Dau in
Figure C.4, Figure C.5, and Figure C.6.

(a) E-VPC - CAR - SSNR = 1dB (b) E-CPC - CAR - SSNR = 1dB

(c) E-VPC - CAR - SSNR = -4dB (d) E-CPC - CAR - SSNR = -4dB

(e) E-VPC - CAR - SSNR = -9dB (f) E-CPC - CAR - SSNR = -9dB

Figure C.1: Distribution of the SII value differences (in percentage) between HYO and STD speech
(blue-crossed histograms), and between HYP and STD speech (red-dotted histograms) controlled with

E-VPC and E-CPC separately. Speech signals are mixed with CAR noise with high, mid, and low
SSNR.
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C.1 SLT

(a) E-VPC - BAB - SSNR = 1dB (b) E-CPC - BAB - SSNR = 1dB

(c) E-VPC - BAB - SSNR = -4dB (d) E-CPC - BAB - SSNR = -4dB

(e) E-VPC - BAB - SSNR = -9dB (f) E-CPC - BAB - SSNR = -9dB

Figure C.2: Distribution of the SII value differences (in percentage) between HYO and STD speech
(blue-crossed histograms), and between HYP and STD speech (red-dotted histograms) controlled with

E-VPC and E-CPC separately. Speech signals are mixed with BAB noise with high, mid, and low
SSNR.
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C Detailed objective results

(a) E-VPC - ECS - SSNR = -7dB (b) E-CPC - ECS - SSNR = -7dB

(c) E-VPC - ECS - SSNR = -14dB (d) E-CPC - ECS - SSNR = -14dB

(e) E-VPC - ECS - SSNR = -21dB (f) E-CPC - ECS - SSNR = -21dB

Figure C.3: Distribution of the SII value differences (in percentage) between HYO and STD speech
(blue-crossed histograms), and between HYP and STD speech (red-dotted histograms) controlled with

E-VPC and E-CPC separately. Speech signals are mixed with ECS noise with high, mid, and low
SSNR.
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C.1 SLT

(a) E-VPC - CAR - SSNR = 1dB (b) E-CPC - CAR - SSNR = 1dB

(c) E-VPC - CAR - SSNR = -4dB (d) E-CPC - CAR - SSNR = -4dB

(e) E-VPC - CAR - SSNR = -9dB (f) E-CPC - CAR - SSNR = -9dB

Figure C.4: Distribution of the Dau value differences (in percentage) between HYO and STD speech
(blue-crossed histograms), and between HYP and STD speech (red-dotted histograms) controlled with

E-VPC and E-CPC separately. Speech signals are mixed with CAR noise with high, mid, and low
SSNR.
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C Detailed objective results

(a) E-VPC - BAB - SSNR = 1dB (b) E-CPC - BAB - SSNR = 1dB

(c) E-VPC - BAB - SSNR = -4dB (d) E-CPC - BAB - SSNR = -4dB

(e) E-VPC - BAB - SSNR = -9dB (f) E-CPC - BAB - SSNR = -9dB

Figure C.5: Distribution of the Dau value differences (in percentage) between HYO and STD speech
(blue-crossed histograms), and between HYP and STD speech (red-dotted histograms) controlled with

E-VPC and E-CPC separately. Speech signals are mixed with BAB noise with high, mid, and low
SSNR.
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C.1 SLT

(a) E-VPC - ECS - SSNR = -7dB (b) E-CPC - ECS - SSNR = -7dB

(c) E-VPC - ECS - SSNR = -14dB (d) E-CPC - ECS - SSNR = -14dB

(e) E-VPC - ECS - SSNR = -21dB (f) E-CPC - ECS - SSNR = -21dB

Figure C.6: Distribution of the Dau value differences (in percentage) between HYO and STD speech
(blue-crossed histograms), and between HYP and STD speech (red-dotted histograms) controlled with

E-VPC and E-CPC separately. Speech signals are mixed with ECS noise with high, mid, and low
SSNR.
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C Detailed objective results

C.2 Nick

The audio samples produced with the English male voice Nick results are evaluated
with SII in Figure C.7 and Figure C.8, and with Dau in Figure C.9, and Figure C.10
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(b) E-VPC+E-CPC - SSN - SSNR = -4dB

−75 0 75
0

25

50

O
cc

ur
re

nc
es

Mean
HYO−STD

: −12.89%  Mean
HYP−STD

: +11.07%

SII difference [%]

(c) E-VPC+E-CPC - SSN - SSNR = -9dB

Figure C.7: Distribution of the SII value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and
E-CPC simultaneously. Speech signals are mixed with SSN noise with high, mid, and low SSNR.
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C.2 Nick
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(c) E-VPC+E-CPC - CS - SSNR = -21dB

Figure C.8: Distribution of the SII value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and

E-CPC simultaneously. Speech signals are mixed with CS noise with high, mid, and low SSNR.
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Figure C.9: Distribution of the Dau value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and
E-CPC simultaneously. Speech signals are mixed with SSN noise with high, mid, and low SSNR.
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(a) E-VPC+E-CPC - CS - SSNR = -9dB
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(c) E-VPC+E-CPC - CS - SSNR = -21dB

Figure C.10: Distribution of the Dau value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and

E-CPC simultaneously. Speech signals are mixed with CS noise with high, mid, and low SSNR.
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C.3 Lucia

C.3 Lucia

The audio samples produced with the English male voice Lucia results are
evaluated with SII in Figure C.11, Figure C.12, and Figure C.13, and with Dau
in Figure C.14, Figure C.15 and Figure C.16.
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Figure C.11: Distribution of the SII value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and
E-CPC simultaneously. Speech signals are mixed with CAR noise with high, mid, and low SSNR.
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Figure C.12: Distribution of the SII value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and
E-CPC simultaneously. Speech signals are mixed with BAB noise with high, mid, and low SSNR.
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Figure C.13: Distribution of the SII value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and
E-CPC simultaneously. Speech signals are mixed with ECS noise with high, mid, and low SSNR.
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C.3 Lucia
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(a) E-VPC+E-CPC - CAR - SSNR = 1dB
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Figure C.14: Distribution of the Dau value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and
E-CPC simultaneously. Speech signals are mixed with CAR noise with high, mid, and low SSNR.
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Figure C.15: Distribution of the Dau value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and
E-CPC simultaneously. Speech signals are mixed with BAB noise with high, mid, and low SSNR.
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(b) E-VPC+E-CPC - ECS - SSNR = -14dB
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(c) E-VPC+E-CPC - ECS - SSNR = -21dB

Figure C.16: Distribution of the Dau value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and
E-CPC simultaneously. Speech signals are mixed with ECS noise with high, mid, and low SSNR.
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C.4 Roberto

C.4 Roberto

The audio samples produced with the English male voice Roberto results are
evaluated with SII in Figure C.17, Figure C.18, and Figure C.19, and with Dau
in Figure C.20, Figure C.21 and Figure C.22.
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Figure C.17: Distribution of the SII value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and
E-CPC simultaneously. Speech signals are mixed with CAR noise with high, mid, and low SSNR.
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Figure C.18: Distribution of the SII value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and
E-CPC simultaneously. Speech signals are mixed with BAB noise with high, mid, and low SSNR.
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Figure C.19: Distribution of the SII value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and
E-CPC simultaneously. Speech signals are mixed with ECS noise with high, mid, and low SSNR.
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(b) E-VPC+E-CPC - CAR - SSNR = -4dB
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(c) E-VPC+E-CPC - CAR - SSNR = -9dB

Figure C.20: Distribution of the Dau value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and
E-CPC simultaneously. Speech signals are mixed with CAR noise with high, mid, and low SSNR.
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(b) E-VPC+E-CPC - BAB - SSNR = -4dB
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(c) E-VPC+E-CPC - BAB - SSNR = -9dB

Figure C.21: Distribution of the Dau value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and
E-CPC simultaneously. Speech signals are mixed with BAB noise with high, mid, and low SSNR.
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(b) E-VPC+E-CPC - ECS - SSNR = -14dB
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(c) E-VPC+E-CPC - ECS - SSNR = -21dB

Figure C.22: Distribution of the Dau value differences (in percentage) between HYO and STD speech
(blue histograms), and between HYP and STD speech (red histograms) controlled with E-VPC and
E-CPC simultaneously. Speech signals are mixed with ECS noise with high, mid, and low SSNR.

214


