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Abstract

High frequency, or HF, coastal radars collect a vast amount of data on ocean cur-

rents, winds and waves. The technology continuously measures the parameters,

by receiving and interpreting electromagnetic waves scattered by the ocean sur-

face. Formulating the methods to interpret the radar data, to obtain accurate

measurements, has been the focus of many researchers since the 1970s.

Much of the existing research has been in monostatic radar theory, where the

transmitter and receiver are stationed together. However, a larger, higher quality

dataset can be obtained by utilising bistatic radar theory, whereby the transmitter

and receiver are located at separate sites.

In this work, the focus is on bistatic radar, where the most commonly used math-

ematical model for monostatic radar is adapted for bistatic radar. Methods for

obtaining current, wind and wave information from the model are then described

and in the case of winds and waves, tested. Investigating the derived model shows

that it does not always fit the real data well, due to undesirable effects of the

radar. These effects can be incorporated into the model but then the existing

methods used to obtain ocean information may not be applicable. Therefore, a

new method for measuring ocean waves from the model is developed.

The recent advances in machine learning have been substantial, with the neu-

ral network becoming proficient at finding the link between complexly related

datasets. In this work, a neural network is used to model the relationship be-

tween the developed radar model and the directional ocean spectrum. It is shown

to successfully invert both monostatic and (for the first time) bistatic HF radar

data and with this success, it becomes a viable option for obtaining ocean surface

parameters from radar data.
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Introduction

Research Background

Covering over 70% of the Earth’s surface, the ocean is imperative to life. The ocean regulates

our climate, is a key food source, provides renewable energy, is a vital part of many countries’

economies and is a hub of recreation and beauty. It can also cause devastation; when a home

is lost to the ocean due to coastal erosion, when a tsunami hits, or when its climate-change-

driven rising temperatures and ocean levels cause flooding and freak weather events. Gaining

insight into its behaviour can help us to harness or counter its power. High frequency, or

HF (3-30 MHz), coastal radars are a tool that can provide such insight, by either analysing

the datasets of ocean surface parameters derived from the radar data or assimilating the

measurements into wave models, the importance of which has been documented by Cavaleri

et al. [14].

HF radars can continuously provide information about the ocean, exceeding distances of 200

km from the coast, with high resolution. Compared to a wave buoy, which only provides data

in one location, or a satellite, which only provides data sporadically, it is an attractive option

as long as the information is accurate.

In 1955, Crombie [19] hypothesised about the relationship between the ocean and HF radar

signals. He backed his claim up numerically but it was not formally proven until 1972, when

Barrick [5][7], applied the perturbation analysis of Rice [78] to the moving ocean and presented

the radar cross section of the ocean, to second order, in terms of the ocean spectrum. Since

then, many researchers have formulated methods for inverting Barrick’s equations, to obtain

accurate ocean information on currents, winds and waves from HF radar data.

The radar cross section expression of Barrick [5][7] is only applicable to monostatic radar,

whereby the transmitter and receiver are co-located. A bistatic radar, on the other hand,

corresponds to a radar where the transmitter and receiver are separated by a distance, so

that the scatter is reflected at some angle, θ . The advantages of employing such a radar

xxvii
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setup are (1) it can reduce the cost of setting up/maintaining a HF radar and (2) it can

increase spatial coverage and data quality as shown by Whelan & Hubbard [99].

In 1975, Johnstone [50] and then, in 2001, Gill and Walsh [27] presented radar cross section

expressions of the ocean surface for bistatic radar. However, neither of the expressions reduce

exactly to the monostatic term of Barrick [5][7] (which many operational radar inversion

programs depend on) when θ = 0. Johnstone’s derivation appears to have a notable error

which causes the difference in the resulting expressions; Gill and Walsh followed a more

complicated method, however, it has been shown that the monostatic form of their radar

cross section is similar to Barrick’s and it is, therefore, unnecessary to adapt the existing

operational monostatic inversion programs, which are based on Barrick’s expression, to use

theirs instead.

A bistatic radar cross section that reduces exactly to the monostatic term of Barrick [5][7]

would be beneficial to systems that are based on Barrick’s expression as, in the radar coverage

area, the scattering angle θ can vary between 0° and 90° , so the discontinuity between the

monostatic and bistatic radar cross section expressions would cause a discontinuity in the

inversion program used and perhaps, then, the results. Therefore, in this work, we follow the

method of Barrick, whilst retaining θ , to derive the bistatic radar cross section of the ocean

surface.

Inversion methods for obtaining current, wind direction and wave measurements, historically

applied to monostatic radar data, are then described. The theory of obtaining bistatic current

measurements is included for completeness, however, no experimental results are presented in

this work. In the case of wind direction measurements, the maximum likelihood method of

Wyatt et al. [108] is adapted and used to obtain wind directions from a bistatic radar dataset.

Wyatt et al. [109] outlined the limitations of the wave inversion methods when large sidelobes

are coupled with a strong surface current. When this happens, the radar cross section model

does not apply and therefore the existing wave inversion methods - which are based on the

radar cross section model of Barrick [5][7] - cannot reliably invert these data. A similar

problem has been shown to occur for bistatic HF radars by Grosdidier et al. [29], when a radar

has low spatial resolution and one wishes to analyse the signal measured at a location where

the value of θ varies substantially. At such a location, an assumption made in the derivation

of the radar cross section expression is invalid and thus, again, the inversion methods cannot

reliably invert these data. Grosdidier et al. attempted to model the expected radar return in

such a situation, by including the effects of the radar, and achieved good results. However,

no attempt has yet been made at inverting the model.

In this work, a method different from that of Grosdidier et al. [29] is proposed to model both
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monostatic and bistatic radar data that includes the radar effects. A method for inverting the

model is then proposed and tested. The proposed model is not expressed analytically, due to

its complexity, and hence finding an analytical/numerical solution is not feasible. Artificial

neural networks have become increasingly popular when one wishes to find the mapping

between two datasets with a complex relationship, and they are hence tasked, here, with

inverting the proposed radar data model to obtain the directional ocean spectrum. To test

the method, a neural network is trained using simulated radar data and then a measured

radar dataset is inverted and the results compared to those from a directional wave buoy; this

experiment is carried out for monostatic radar data, where the radar effects are not included,

and bistatic radar data, where the radar effects are included.

Research Aims

To summarise, the research aims of this thesis are:

1 To derive an expression for the bistatic radar cross section of the ocean surface which

reduces to the monostatic expression of Barrick [5][7], when θ = 0.

2 To model bistatic radar data where the radar effects are included.

3 To infer values of ocean surface parameters - namely wind direction and directional wave

spectrum information - from bistatic radar data.

4 To see whether machine learning, in particular, artificial neural networks, can be used

to estimate ocean surface parameters from HF radar data.

Thesis Outline

Chapter 1 gives an introduction to both radar theory and oceanography as well as a brief

history of how HF radar is used to remotely measure ocean surface parameters.

In Chapter 2, an expression for the bistatic radar cross section of the ocean surface is derived,

analogously to the method of Barrick [5][7] where the equivalent monostatic radar cross section

was derived. The limitations of the theory are discussed and the derived term is shown to

reduce to the monostatic expression of Barrick under the appropriate scattering conditions.

In Chapter 3, the bistatic radar cross section is numerically calculated so that one can simulate

the expected radar return for any directional ocean spectrum. A new simulation method is

then proposed which includes the effects of the radar and the local geography, which are shown
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to substantially affect some bistatic HF radar data. Both simulation methods are validated

using measured radar data.

Chapter 4 gives an overview of inversion methods for currents, wind directions and waves. A

new inversion method for obtaining wave information from HF radar data is then proposed,

which uses an artificial neural network trained on simulated HF radar data. To accompany

the proposed method, an introduction to neural networks is given.

In Chapter 5, the results of the inversion experiments are presented. Firstly the maximum

likelihood method of Wyatt et al. [108], is tested on bistatic HF radar data and the results

are validated with ASCAT scatterometer data. Secondly, the artificial neural network wave

inversion method for two experimental datasets is tested: (1) Monostatic radar data and (2)

Bistatic radar data where the effects of the radar are substantial. In both cases, the results

are validated using directional wave buoy data.

Finally, in Chapter 6, the key findings of the work are summarised and the scope for any

future work is discussed.



Chapter 1

Introduction to Remote Sensing of

the Ocean Using HF Radar

§ 1.1 Introduction to Radar

In 1866, the notion of a radar became a possibility when the theories of Maxwell were ex-

perimentally tested by Heinrich Hertz, who demonstrated that radio waves embody the same

characteristics as light waves. Hertz showed that analogous to light waves, radio waves can

be reflected by metallic bodies. These reflected waves contain information about the target,

as was then shown in the key works of Hülsmeyer [47], Marconi [65] and Taylor et al. [87],

and their theory was first utilised in World War II when the radar was established.

When a radio wave hits an object, it is reflected - or reradiated - in many different directions.

The reflecting of a radio wave off a target is the fundamental idea behind radar. To detect

a target, a radar transmitter emits radio waves, towards the reflecting object which then

scatters the wave. The portion of energy that radiates back to the radar, is picked up by the

receiving antennas and is then directed into the processor, which transforms the data into a

meaningful form. The output data contains information such as the distance, direction and

speed of a target, which has many direct applications.

Radar has been used in many applications since detecting enemy vessels in WWII. A few

notable examples are air traffic control, speed guns, weather monitoring [70], remote sensing

of the Earth e.g. project RADAM (mapping of the Amazon rainforest) [93], oil/gas discov-

ery [95], underground probing [16] and, as studied in this work, ocean sensing [107].

In this section, important aspects of radar, relevant to the chapters to follow, will be intro-

duced; the differences between monostatic and bistatic radar will be made clear and methods
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for obtaining information from the two radar setups will be presented. For further informa-

tion, more rigorous accounts of radar theory and its history can be found in the works of Skol-

nik [81][82], Kingsley and Quegan [53] and, with an emphasis on bistatic radar, Willis [100].

1.1.1 Radar Setup

A radar can be monostatic, where the transmitter and receiver are co-located or it can be

bistatic, where the transmitter and receiver are situated some distance apart. The combination

of both, i.e. having one receiver and multiple transmitters or vice versa is called a multistatic

radar. The geometry of monostatic and bistatic radars is shown in figure 1.1 and a possible

multistatic setup, for two transmitters and one receiver is shown in figure 1.2.

(a) Monostatic (b) Bistatic

Figure 1.1: Comparison of monostatic and bistatic radar geometries. In both cases, the
transmitter is shown at point (0, 0) and the receiver is shown by the blue circle (which, in
the monostatic case, is also at point (0, 0)). An example scatter point is shown by the red
star and the path the signal takes is shown by the solid black line. The line of constant range
for each particular range is shown by the dashed black line and the angle shown, ϕbi , is the
bistatic angle.

For a monostatic radar, a transmitted signal hits a target and the received signal is backscatter.

The lines of constant range are therefore circles around the radar location where the signal

has travelled a distance of twice the radius of the circle. On the other hand, for a bistatic

setup, the transmitted signal hits the target and the received signal is no longer backscatter,

it is the signal scattered at a non-zero angle, here 2ϕbi (for the bistatic angle ϕbi ) as shown in

figure 1.1, in the direction of the transmitter. The lines of constant range are ellipses, where

the transmitter and the receiver are located at the foci of the ellipse; see figure 1.3 for the
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Figure 1.2: Possible multistatic radar geometry including one transmitter and receiver operat-
ing in monostatic mode (shown at point (0, 0)) and a further transmitter, situated a distance
away, at point (−30, 0), operating in bistatic mode. An example scatter point is shown at the
intersection of the two dashed rings - both of which represent a line of constant propagation
distance.

lines of constant range for both monostatic and bistatic radars.

(a) Monostatic (b) Bistatic

Figure 1.3: Lines of constant propagation distance for a monostatic and bistatic radar. In
both cases, the ranges are in 10 km increments from 40 km to 100 km. The transmitter
and receiver are shown by the markers where, for the bistatic radar, they are separated by
a distance of 30 km. The Bragg bearings, as discussed in section 1.1.2, for different radar
beams are shown by the arrows.

1.1.2 Calculating Target Distance, Speed and Direction

For monostatic and bistatic radars, the different geometries mean that the calculations for a

target’s distance, speed and direction are different.

The distance is conventionally measured as the distance from the radar to the target (in the

case of monostatic radar), however, for bistatic radar, this must be altered to account for the
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separated sites. This is also the case when calculating the speed and direction of a target.

When a radio wave interacts with a moving object, the motion of the object causes a change,

or shift, in the frequency of the incident radio wave. This is due to the Doppler effect. The

magnitude of the frequency shift depends on the speed and the propagation direction of the

target and also the radar setup.

1.1.2.1 Monostatic

The distance to the target from the radar, RM , is found by calculating

RM =
ct

2
, (1.1)

where c is the speed of light and t is the time the signal takes to travel from the transmitter

to the object and then back to the receiver.

For a monostatic radar, if the object is travelling toward the receiver, the returned signal

will be emitted from a point closer to the radar meaning each successive wave will take less

time to travel back to the receiver than the one before. This means that the frequency of the

returned signal increases and thus a positive shift occurs. Analogously, an object travelling

away from the receiver will cause a negative shift. The monostatic Doppler shift, 4fM , of a

radio wave when interacting with a moving object is found by calculating [82]

4fM =
2νR
λ0

, (1.2)

where 4fM is in Hz, νR is the velocity of the object in the radial direction, in m/s, and λ0

is the wavelength of the transmitted signal, in metres. Rearranging equation 1.2 gives νR in

terms of the measurable 4fM and thus one can measure a target’s speed. Furthermore, the

radial velocity is related to the actual velocity of the target, ν , by

νR = ν cos θ,

where θ is the angle between the direction of motion and the radar beam.

The direction of motion relevant to the Doppler shift (in this case, the radial direction) is

henceforth called the Bragg bearing. An object moving perpendicularly to the Bragg bearing

will cause no change in frequency as there is no movement towards or away from the radar,

in this case, i.e. cos θ = 0. Additionally, for one radar with one measurement, the velocity ν

cannot be resolved; to resolve the direction, one can use multiple radars in different locations.
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1.1.2.2 Bistatic

The distance to a target, RB , as measured by a bistatic radar is calculated by

RB =
1

2
(RR +RT ), (1.3)

where RR and RT are the distances from the receiver and transmitter to the scatter point,

respectively. If RR = RT , then RB = RM , from equation 1.1, as expected.

From Willis [100], the bistatic Doppler shift, 4fB , is defined by

4fB =
1

λ0

(
d

dt
(RT +RR)

)
. (1.4)

As
dRR
dt

and
dRT
dt

define the rate of change of the target’s distance from the receiver and

transmitter, respectively, they are equivalent to the target’s velocity, ν , projected onto the

respective paths. Therefore, defining δ as the angle between the Bragg bearing and the

target’s direction as shown in figure 1.4,

dRR
dt

= ν cos(δ + ϕbi) and
dRT
dt

= ν cos(δ − ϕbi)

which, upon substitution into equation 4.2, gives

4fB =
2ν

λ0
cos δ cosϕbi.

By letting νE = ν cos δ , namely the velocity component in the elliptical direction, the Doppler

shift, in Hz, can be written as

4fB =
2νE cosϕbi

λ0
. (1.5)

Therefore, in this case the Bragg bearing is in the elliptical direction as shown in figures 1.1,

1.3 and 1.4. In equation 1.5, under monostatic conditions (when cosϕbi = 1), 4fB = 4fM
from equation 1.2 as expected.

1.1.3 Waveforms

Radar systems are designed to emit radio waves in a particular form depending on the purpose.

Perhaps the most simple type is the pulse radar. In a pulse radar, the transmitting antenna

is switched on for a predetermined amount of time to emit waves. It is then switched off

for another set time whilst the receive antenna is switched on to receive the scattered waves.
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δ

ϕbi

Figure 1.4: Geometry for calculating the bistatic Doppler shift. The transmitter and receiver
are shown by the cross and the circle respectively, the third triangle vertex is at the scatter
point. The arrow depicts the target velocity and the bistatic angle is shown by ϕbi . The
Bragg bearing is shown perpendicular to the dashed line and δ is the angle measured from
this to the direction of motion of the target.

The reason for this alternating process is to avoid interference between the transmitted and

scattered signals; if the radar was both sending and receiving signals at the same time, they

would be hard to separate. The duration of the pulse must be long enough to ensure that

echoes from all possible ranges are received; if the duration of the pulse is too short, echoes

from more distant targets may arrive during sequential pulses causing ambiguities in the

received data. For a certain number of pulses per second sent (i.e. the pulse repetition

frequency), pf , the maximum unambiguous range, R , is

R =
c

2pf
.

Alternatively, a continuous signal of a fixed frequency can be emitted. This is known as a

continuous waveform (CW). In this case, the transmitting and receiving antennas are both

constantly on so isolating the return signal is a greater challenge than for a pulse radar. The

benefit of using a CW is that the mean power is higher and so greater distances can be

achieved. However, as there is no time mark, the distance to the target cannot be calculated

and, thus, this mode is not ideal for most radar applications. To enable distance calculations,

the signal must be modulated in some way. The signal can be modulated in either amplitude

or frequency (AM or FM radio waves). In ocean radar, frequency modulated continuous

waveforms (FMCW) and frequency modulated interrupted continuous waveforms (FMiCW)

are used and are described below.

An FMCW is a continuously emitted signal of varying frequency. The emitted signal is
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‘swept’ through a range of frequencies - the size of which is the bandwidth of the signal - in a

repeated pattern. The distance to the target is found by detecting the frequency difference,

4ft , between the transmitted and received signals, where echoes from targets close to the

radar return with a smaller change in frequency than those coming from further away. Any

motion of the target imparts an additional shift of 4fd to the signal. Figure 1.5 depicts

how the two shifts affect the incident waveform. Sawtooth modulation is shown in the figure,

although there are a number of other modulation forms.

4ft

4t

4fd

Figure 1.5: A frequency modulated continuous waveform, with linear sawtooth modulation.
The emitted waveform is shown by the solid line and the received, shifted, waveform by the
dashed line. The time delay is denoted by 4t and the frequency shift associated with 4t is
denoted by 4ft . The frequency shift caused by the motion of the target is denoted by 4fd .

The main drawback of FMCW radar is that the transmitted signal will leak into the receiver.

To reduce the transmitter noise, two methods can be used in HF radar systems. Firstly

a null can be created in the direction of the receiver, which cancels out the transmitted

signal. However, this process is never perfect and thus is a motivation of bistatic radar,

where the null is not as important due to the increased distance between the transmitter and

receiver. Secondly, the transmitted waves can be ‘interrupted’, where - like a pulse radar - the

transmitter is intermittently switched off in order to receive signals. More commonly known

as FMiCW radar, higher transmission power can be used meaning greater distances can be

achieved.

In this work, data from two HF FMCW radars are used.

1.1.4 Wave Propagation

Wave propagation describes how a radio wave travels from one point to another; the frequency

(where a wave is classified as shown in table 1.1), the polarisation and the mode - whether it be

direct (line-of-sight), along the Earth (ground wave) or via reflection from the ionosphere (sky
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wave) - are all defining characteristics. These characteristics affect how far the radio waves

can travel and what types of object they can detect, due to processes such as polarization,

reflection and diffraction. Therefore, depending on the radar application, one must choose

appropriate wave characteristics.

Both ground waves and sky waves are used in HF radar for remote sensing of the ocean. In

sky wave propagation, the transmitted wave is reflected off the ionosphere, which is the layer

of the Earth’s atmosphere made up of ionised, or charged, atoms. At some HF frequencies

the ionosphere becomes a reflective surface for the waves and Maresca et al. [66] and Georges

et al. [26] have shown that good measurements of sea state can be achieved through skywave

radar. Barrick [6], however, states that the window where propagation via the ionosphere

is possible is fairly small, in the HF band, and even then it can be unusable due to the

randomness of the charged particles. Due to this, ground wave radars are more commonly

used in this application; they are also assumed in this work.

In ground wave propagation, the radio waves propagate along a path following the curvature

of the Earth by interacting with the conductive properties of the ground/sea. As the wave

travels, it is attenuated due to a number of factors. One of the major contributing factors

is frequency, where a higher frequency constitutes a greater loss of energy. The conductivity

of the ground, which is positively correlated with the salinity level of the water, also affects

how well the wave can propagate via ground wave. The more conductive the ground, the less

energy will be attenuated and so greater distances can be reached. Therefore, the ocean -

a highly conductive medium - is ideal. Polarisation, which represents the orientation of the

electric field in the radio wave, is also a contributing factor. Vertical polarisation (i.e. a wave

with a vertical electric field) is much more suitable for ground wave propagation as the electric

field of a horizontally polarised wave would short circuit due to the conductivity of the ground

and hence not be able to sustain energy over any notable distance.

Frequency Band

30 GHz - 300 GHz Extremely High Frequency - EHF
3 GHz - 30 GHz Super High Frequency - SHF

300 MHz - 3 GHz Ultra High Frequency - UHF
30 MHz - 300 MHz Very High Frequency - VHF

3 MHz - 30 MHz High Frequency - HF

300 kHz - 3 MHz Medium Frequency - MF
30 kHz - 300 kHz Low Frequency - LF
3 kHz - 30 kHz Very Low Frequency - VLF

Table 1.1: Radio wave bands.
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1.1.5 Radar Resolution

The accuracy with which a radar can resolve where a scattered signal has arrived from is

known as the spatial resolution of the radar. Spatial resolution can be divided into two

categories; range resolution and azimuthal resolution.

The range resolution of a radar, 4r , is defined as the distance that the radar can distin-

guish measurements from. For an FMCW wave with chosen bandwidth, Bw kHz, the range

resolution in km is found by calculating

4r =
c

2Bw
, (1.6)

where c ≈ 300 ms−1 . Therefore, to get finer resolution, one needs higher bandwidth.

The bandwidth is specified by the operator but must be licensed by the local government

and, generally, the wider the bandwidth, the more vulnerable it is to interference from other

radio waves. This means it can be hard to achieve broader bandwidths; at frequencies under

10 MHz it can be challenging to get more than 50 kHz of bandwidth [101].

The azimuthal resolution is analogous to range resolution but the physical distance that the

angular resolution represents will increase with range. The resolution depends on the size of

the main lobe of the antenna pattern, which in turn depends on the type of receiver and the

signal processing methods used.

For remote sensing of the ocean, there are two main types of receiver (1) compact radar (2)

phased array radar. The main difference between the two radar systems is how they direct the

radar beam. The phased array system creates a narrow - more concentrated - beam, directed

in a desired direction, whereas the compact system directs a broad beam.

For a phased array radar, the antenna pattern is governed by how the receiving antennas

are set up. The receiver consists of a number of antennas usually placed in a straight line,

perpendicular to the direction required for the main radar beam, with (ideally) λ0/2 spacing,

for radar wavelength λ0 . Then, to create a narrow beam, a process called beamforming, as

explained in section 1.1.6, can be used. Direction finding methods are an alternative option

and details can be found in the work of Gurgel et al. [30].

In the case of the compact radar, beamforming cannot be used and the received signal must

be processed using direction finding methods.
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1.1.6 Beamforming

In a phased array radar, each antenna receives a time series of complex valued amplitudes

from signals returning from a number of directions. At antenna j , the received discrete signal,

Aj(t), can be written as

Aj(t) =

M−1∑
l=0

xj(t)δ(t− lt0), (1.7)

where M is the number of samples taken, t0 is the sampling interval and x(t) is the signal

measured at time t . To filter the signal received from a desired direction, the time series must

be combined in a particular way. One method is beamforming, which delays each time series

by a specific amount to separate the signals.

If a plane wave is parallel to and travelling towards the linear array of antennas, it will reach

the antennas at the same time. However, if it is travelling at an angle θ , which is not parallel

to the array (see figure 1.6 for orientation), the signal will arrive at the antennas at different

times. For an equispaced array with spacing d between the antennas, the extra distance the

signal must travel between antennas, 4d , is

4d = d sin θ.

Therefore, the time delay between adjacent antennas1 is

4τ =
d sin θ

c
. (1.8)

To get the signal from a direction θ (as shown in figure 1.6), the signals expressed in equa-

tion 1.7 are delayed by an amount proportional to their distance from the end of the array

before they are summed. The time delay at antenna j is given by j4τ , where 4τ is given

in equation 1.8. Thus, the time domain signal received from a direction θ is given by

A(θ, t) =

N−1∑
j=0

M−1∑
l=0

wjxj(t− j4τ)δ(t− lt0 − j4τ), (1.9)

where wj is an amplitude weight at antenna j used to control the width of the mainlobe

and to minimise the sidelobes, by tapering the complex signals to avoid spectral leakage as

explained by Harris [34]. The weights w are values from a windowing function and there are a

number of different possible windows; three commonly used windows are shown in figure 1.7.

1Note that if the array is not linear and/or not equispaced, then a different formula for 4t must be used.
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︸︷︷︸
d

Figure 1.6: Beamforming geometry for a plane wave with angle of arrival, θ , and N antennas
as shown by the crosses along the x axis, with spacing d .

Figure 1.7: Different windowing functions as described by Harris [34], for a receive array
comprising 16 antennas. In each case, a 16 point sample of the function has been taken to
show the weight at each antenna.

A delay in time in the time domain is equal to a phase shift in the frequency domain, such
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that

F{g(t− a)} = G(f)e−2πifa, (1.10)

where a is the time shift and G(f) is the Fourier transformed g(t). Furthermore, a useful

property of the delta function is

F{f(t)δ(t− t0)} = f(t0)e−2πift0 (1.11)

which, alongside equation 1.10, gives the Fourier transform of the time delayed signal, from

angle θ , in equation 1.9, as

F{A(θ, t)} =

N−1∑
j=0

M−1∑
l=0

wlwjxj(lt0)e−2πifj4τe−2πiflt0 , (1.12)

where wl is the lth component of a second windowing function, this time applied across the

time series to minimise spectral leakage when the Fourier transform is taken. Figure 1.8 shows

the beam patterns for two phased array radars, each with a different number of antennas,

where the above beamforming method has been used.

(a) 0° (b) 30°

Figure 1.8: Beam patterns for two linear phased array radars, with 8 and 16 antennas,
operating at 16.512 MHz with λ0/2 antenna spacing for radar wavelength λ0 . A phased
shift beamformer with a Taylor window has been used to steer the beam to 0° and 30°
(noting that boresight - namely the direction perpendicular to the antenna array - is at 0°).
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1.1.7 Radar Cross Section and the Radar Equation

The term that defines the relationship between a target and the amount of energy it scatters

is the radar cross section, σ . With units of area (m2 ), it measures how much power a target

will re-radiate in a particular direction (usually toward a receiver). The value of σ depends

on the characteristics of the target such as its size, shape, reflectivity and electrical properties.

If the properties of the target are such that it reflects all of the incident power isotropically,

then the radar cross section would be equal to the target’s cross-sectional area as seen by the

transmitter. However, this is not usually the case and more importantly, for this work, it is

not true for the scattering of radio waves off the ocean surface. To find σ for a scatterer such

as the ocean, Skolnik [81] defines the radar cross section as

σ = lim
R→∞

4πR2 |Es|2

|E0|2
, (1.13)

where R is the distance from the target to the receiver, E0 denotes the strength of the electric

field of the incident wave and Es denotes that of the scattered wave. The radar cross section

alone does not provide the measurement one would expect to receive at a radar though, as

other factors (such as attenuation of the radio waves over the travel path) affect the returned

signal. Therefore σ is used in a larger equation, which takes all of the other contributing

terms into account, called the radar equation.

The bistatic radar equation, which calculates the expected power at the receiver, Pr , when

radio waves are scattered off a particular target is given by

Pr =
PtGtGrλ

2
0σ

(4π)3R2
tR

2
rLtLrLs

, (1.14)

where Pt is the transmitted power, Gr and Gt are the receiver and trasmitter gains respec-

tively, σ is the radar cross section as in equation 1.13, λ0 is the radar wavelength, Rr and Rt

are the distances from the target to the receiver and transmitter respectively, Ls represents

system losses (such as transmission losses) and, Lr and Lt are the propagation losses over the

receiver-to-target and transmitter-to-target paths respectively (caused by attenuation due to

finite conductivity, etc.).

This is not usually the only source of power at the receiver, though. Signals from other

undesirable sources may also be received, which are categorised as noise and these provide a

noise floor. The strength of a desired signal in relation to the noise floor is measured by the



14

signal to noise ratio, or SNR. By definition, it is the ratio

SNR =
Psignal

Pnoise
,

which in dB becomes

SNR = 10 log10 Psignal − 10 log10 Pnoise,

where Psignal is the power in the signal and Pnoise is the average noise level.

§ 1.2 Introduction to Ocean Waves

In this section, an introduction to ocean waves is given. Although the works of Kinsman [54]

and Holthuijsen [44] can provide the reader with more in-depth discussions of ocean waves, the

key points, necessary for the chapters to follow, are provided. Firstly, the notion of an ocean

spectrum is introduced before different ways of measuring and modelling the spectrum are

discussed. Important ocean statistics, such a significant waveheight and mean wave direction

are also defined in terms of the spectrum.

1.2.1 Waves in The Ocean

The turbulence of the wind produces random pressure fluctuations at the sea surface. These

fluctuations cause small waves to appear, known as capillary waves, which surface tension

acts on to try and restore the ocean to a flat state. The wind acts further on these capillary

waves, causing them to become larger, and once the wavelength exceeds ∼1.73cm, they are

called gravity waves, where gravity is now the restorative force. Both capillary and gravity

waves are labelled as wind waves because they are created by the wind, however, they are

distinguished by how the Earth tries to restore the ocean to a flat state. An example of wind

waves in the ocean is shown in figure 1.9, where (in this particular example) the larger gravity

waves are dominant.

The wind continues to act on the gravity waves causing them to become larger, in both length

and height, however, there is a limit to their growth. The limit is dependent not only on the

wind speed but on the distance the wind blows over (the fetch) and the duration of the wind

too. As stated by Kinsman “the wind needs not only strength, but also time and elbowroom,

to do its work”. Energy is imparted to the waves through the direct wind but frictional

drag of the wind and pressure differences in the air also contribute. Energy is lost through

the turbulent motion and viscosity of the water and wave-breaking. Once the energy-in is

balanced with the energy-out, the waves have reached their limit and the sea is said to be
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Figure 1.9: Wind waves in the ocean.

fully developed.

For changes to occur to the ocean after it is fully developed, there must be a change in the

energy level of the wind. If the speed of the wind, increases, the waves will continue to grow.

If the wind subsides, or the waves leave the area the wind is blowing in, the remaining waves

become swell, as shown in figure 1.10, which can travel hundreds of miles.

Figure 1.10: Swell waves in the ocean.

By linear wave theory [17], the dispersion relation of ocean waves in water of finite-depth, is

ω =
√
gk tanh(kd). (1.15)

for acceleration due to gravity g , wavenumber k , ocean depth d and angular frequency ω .
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From equation 1.15, phase speed, cp , can be calculated using cp = ω/k as

cp =

√
g

k
tanh(kd). (1.16)

Equation 1.16, alongside λ = k/(2π), for ocean wavelength λ , shows that the longer the

ocean wave, the faster it propagates. Consequently, as swell waves propagate, the longer

waves travel faster and the different frequencies become spread out.

Both swell and wind wave systems may be present in the ocean at the same time and by

looking at the ocean, one can see that waves of different heights and periods occur. At any

given point, the ocean height is due to a superposition of a large number of waves, of varying

amplitudes and wavelengths, travelling in different directions. This complexity makes the sea

a completely random process and due to the range of different sized waves present in the

ocean, a convenient way to describe the ocean surface is with an energy spectrum, denoted

by S(f, θ), for frequency f and direction θ .

1.2.2 Measuring Ocean Spectra

Measuring the ocean spectrum is predominantly done in two ways: (1) in-situ techniques,

where a measuring device is deployed into the ocean directly or (2) remote sensing techniques,

where a device (such as a HF radar) is situated a distance away from the ocean.

1.2.2.1 In-situ Measurements

In-situ devices, such as a wave buoy, record a time series of the vertical motion of the ocean

in one place. Different types of wave buoy measure this differently, however, one option is

to use an accelerometer which measures the vertical acceleration of the buoy. The recorded

acceleration data is then integrated twice to produce a time series of vertical displacement as

shown in figure 1.11.

Figure 1.11: An example of a wave-buoy measured time series of the ocean wave height as
depicted by Holthuijsen [44].
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To obtain directional information, the buoy must record horizontal movement as well as

vertical movement. This can be done, for example, by an inclinometer, which measures the

tilt of the buoy. The raw buoy data can then be used to estimate the directional spectrum

which can be done using a method such as the maximum entropy or maximum likelihood

method. The methods have different advantages and disadvantages, as different assumptions

are made in order to maximise the functions. More details on these techniques, amongst

others, can be found in the works of Kahma et al. [37] and Hashimoto [35]. A directional

spectrum, obtained from a wave buoy using a MATLAB toolbox [13] is shown in figure 1.12.

Figure 1.12: An example of a wave buoy directional spectrum, from the Wave Hub dataset
described in section 5.2.1. The colour shows the wave energy in m2 /Hz/deg.

To average out the randomness of the ocean, longer time series are desirable. However, the

data should only be collected for a time when the ocean is statistically stationary, which is

more likely for a shorter period. Therefore, measuring an ocean spectrum becomes a balance

of maximising the size of the data sample whilst minimising the effects of the changing ocean

conditions. In Kahma et al. [37], the typical measuring time is said to be 30 minutes, and in

Holthuijsen [44], is said to be 15-30 minutes.

The main advantages of a wave buoy are the accuracy of the derived parameters and its ability

to provide continuous measurements. Due to their accuracy, wave buoys are often used to

validate remote sensing methods in one location, as is the case in Chapter 5. Compared to a

satellite, which may only pass over a given location once a day, a buoy provides the user with

a vast, continuous dataset. On the other hand, the fixed location of the buoy means that only

data for its exact position is measured and furthermore, if the device becomes damaged, it is
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not in a convenient location to repair it.

To combat the disadvantages mentioned for in-situ devices, remote sensing tools are an alter-

native method of measuring the ocean spectrum and a number of techniques are used.

1.2.2.2 Remote Sensing Measurements

Ground-based radar methods, such as monostatic HF radar, have been showed to measure

accurate directional spectra from back-scattered Doppler spectra. HF radar is not limited

to measuring in one position, like a wave buoy, and can measure across a larger expanse

of the coastal ocean, over an area of the order of 100 km2 . Marine radars, which operate

in the X frequency band (8-12 GHz), are another ground-based radar used to measure the

directional spectrum, just on a smaller scale (of a few km2 ). The marine radar measures the

wave pattern of the ocean by exploiting the relationship between the radio waves and the

wind-driven ripples on the sea surface. A time series of these ‘images’ are collected and then

the series is analysed to obtain the directional spectrum. With this method, the propagation

of individual waves and wave groups can also be measured.

As an alternative to ground-based radar, spaceborne altimeters use microwaves to measure

the distance between the measuring device which is attached to a satellite and the sea surface.

From these data, measurements of significant waveheight can be made, as described by Cheney

et al. [83]. If the altimeter is instead attached to an aircraft, the device is called a scanning

altimeter and measurements of the directional spectrum can be made.

Synthetic aperture radar, also known as SAR, is an airborne/spaceborne method able to pro-

vide continuous measurements of the directional ocean spectrum on a global scale. Operating

in one of the X (8-12 GHz), C (4-8 GHz) or L (1-2 GHz) bands, SAR (like the marine radar)

measures wave patterns with high resolution and then image processing and wave retrieval

methods are used to estimate the directional ocean spectrum.

A more thorough introduction to each of the remote sensing methods mentioned, where further

references are cited, is given by Kahma et al. [37].

1.2.3 Statistics of Ocean Spectra

A directional ocean spectrum S(f, θ), can contain too much information for many appli-

cations. One usually cares more about statistics, derived from S(f, θ), which describe the

general size and direction of the waves. Firstly, the nondirectional spectrum, E(f) is calcu-
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lated from S(f, θ) by

E(f) =

∫ 2π

0
S(f, θ) dθ (1.17)

and the first Fourier coefficients a1 and b1 (see Kuik et al. [56]) are

a1 =

∫ 2π

0
S(f, θ) cos θ dθ (1.18)

and

b1 =

∫ 2π

0
S(f, θ) sin θ dθ. (1.19)

From Tucker [94], the historical measure of the height of ocean waves was defined as the

average height of the largest 1/3 of the waves. However, this definition has largely been

abandoned and the current, universally acknowledged, measure of the significant waveheight,

hs , is defined as

hs = 4

√∫
E(f) df. (1.20)

Unlike hs , the period of the ocean is measured in a number of ways. In this work, peak

period, tp , which is the inverse of the spectral peak frequency, fp , and the energy period, tE ,

which measures approximately where the power is based in frequency, defined by Wyatt [104]

as

tE =

∫
f−1E(f) df∫
E(f) df

, (1.21)

are used.

To capture directional information from the spectrum, the peak direction, θp , which is the

direction of the most energetic waves in the spectrum is defined as

θp = arctan

(
b1(fp)

a1(fp)

)
, (1.22)

for fp = 1/tp , and a1 and b1 as in equations 1.18 and 1.19. The mean wave direction, on the

other hand, is defined as

θm = arctan

(∫
b1(f) df∫
a1(f) df

)
. (1.23)
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For uni-modal spectra, θm and θp will be similar. However, for bi-modal spectra, perhaps for

a sea including a locally wind driven spectrum alongside a swell spectrum, the two may be far

apart and in this case neither parameter will represent the distribution particularly well. In a

situation such as this, partitioning methods can be used, whereby the different systems which

the sea state comprises are separated as shown in figure 1.13. Image processing methods can

be used to separate the spectra, as described by Vincent and Soille [96].

Figure 1.13: A directional ocean spectrum comprising one wind-sea system and three swell
systems, where each system has been partitioned as shown by colour and label, by Tolman et
al. [92]. The partitioning method used here is based on the work of Vincent and Soille [96].

1.2.4 Modelling Directional Ocean Spectra

Sometimes it is not feasible to have a measurement device at all - perhaps due to financial

constraints or location issues. In such circumstances, a Wave Model can be used instead,

which uses fluid dynamics and numerical techniques to create predictions of the sea state in

a desired area. Three notable Wave Models are

• WaveWatch III, henceforth referenced to as ‘WW3’ [92][91],

• SWAN [12], and

• WAM [55].

All three of these third-generation models consider the physical processes that govern wave

development to create hindcasts and forecasts of the ocean spectrum. Initial conditions are

input into the model, the governing equations are solved and then wavenumber-direction

spectra are output, on a grid of user-defined resolution. Data acquired from various sources,



CHAPTER 1. INTRODUCTION TO REMOTE SENSING OF THE OCEAN
USING HF RADAR 21

such as satellite measured wind data, can be used as the input to the model to make accurate

predictions, however, if no data are available, earlier model data can be input instead.

Depending on the simulation, the outputs can be full directional spectra or ocean spectrum

statistics, such as hs , tp and θm (single or partitioned), as outlined in section 1.2.3. If only

the statistics are returned, ocean spectrum models can be used to simulate an ocean spectrum,

which is useful in simulating HF Doppler spectra as shown in Chapters 3-5. Two of the most

common models for the non-directional ocean spectrum E(f), the Pierson Moskowitz and

JONSWAP spectra, are introduced below.

1.2.4.1 Pierson Moskowitz Spectrum

The Pierson Moskowitz spectrum models how energy is distributed throughout different fre-

quencies in a fully developed sea. It was developed empirically by Pierson and Moskowitz [72][77],

using data collected by accelerometers on British weather ships in the North Atlantic. The

collected ocean data were processed and averaged by Moskowitz [72] to create a set of power

spectra for wind speeds between 20 and 40 knots (see figure 1.14). These spectra were then

used to fit an idealised ocean wave spectrum, which Tucker [94] writes as

EPM (f) =
αg2

(2π)4f5
exp

(
−5

4

(
fp
f

)4
)
, (1.24)

where fp is the spectral peak frequency, f is ocean wave frequency in Hz and where α =

8.1× 10−3 is a dimensionless parameter. Figure 1.15 shows EPM (f) for various wind speeds

where the similarities between the real data, in figure 1.14, and the model are evident.

Figure 1.14: The averaged ocean spectra of Moskowitz [72], for different wind speeds.
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Figure 1.15: Pierson Moskowitz spectra for various wind speeds.

In Chapters 3 and 5, in order to simulate HF radar data, a value of E(k) for wavenumber

k is necessary. To transform the Pierson Moskowitz spectrum given in equation 1.24, to be

in terms of k , we use the dispersion relation in equation 1.15, alongside the transformation

equation

E(k) =

(
df

dk

)
E(f), (1.25)

to give

E(k) =
α2

(
tanh(kd) + kd sech2(kd)

)
2k3 tanh3(kd)

exp

(
− 20π4

g2t4pk
2 tanh2(kd)

)
, (1.26)

where

α2 =
5h2

sπ
4

t4pg
2
.

1.2.4.2 JONSWAP Spectrum

Another commonly used empirical model is the JONSWAP spectrum of Hasselmann et al. [36],

which does not assume that the ocean is fully developed. For a partially developed sea,

either because of limited fetch (i.e. the length of water over which the wind has blown) or

limited duration, there is a greater energy concentration around the peak frequency and this

is accounted for, in the JONSWAP model, by a peak enhancement factor. The model is given
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by Tucker [94] as

EJ(f) =
αg2

(2π)4f5
exp

(
−5

4

(
fp
f

)4
)
γ
rj
j ,

where γj = 3.3 and

rj = exp

(
−(f − fp)2

2σ2f2
p

)
,

in which

σ =

0.07 if f ≤ fp

0.09 otherwise.
(1.27)

Fetch, Lf , in metres, and wind speed 10 metres above the surface, U10 , in m/s, can be

incorporated into the model using the relation

fp =
(3.5gLf/U

2
10 − 0.33)g

U10
.

Figure 1.16 shows how different fetch sizes affect the JONSWAP model and how the model

compares to the Pierson Moskowitz model. In figure 1.16 (a), the peak enhancement factor

is evident in the modelled JONSWAP spectrum.

(a) Comparison of the JONSWAP and Pierson
Moskowitz models.

(b) The affect of different fetch sizes on the
JONSWAP model.

Figure 1.16: Simulated JONSWAP spectra for a wind speed of 20.6 m/s.

In the following chapters, a Pierson Moskowitz spectrum is used to model the ocean wave

spectrum due to difficulties in calculating fetch, in the relevant locations, for the JONSWAP

model.
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1.2.4.3 The Directional Spectrum

The Pierson Moskowitz and JONSWAP spectra show how the ocean’s energy is distributed

across a range of frequencies but not across direction. As waves with different frequencies

will be propagating in different directions, a directional distribution should be included. The

directional ocean spectrum is defined by

S(f, θ) = E(f)G(f, θ),

where E(f) is the omnidirectional ocean spectrum and G(f, θ) is the normalised directional

distribution, such that ∫ 2π

0
G(f, θ) dθ = 1.

To ensure that G(f, θ) is normalised, it includes a normalisation factor D , where

D =
1∫ π

−π G(f, θ) dθ.
(1.28)

As with the non-directional spectrum, there are a number of models to choose from. An

often-used model for G(f, θ) is the half cosine squared distribution, of Longuet-Higgins [62],

given by

G(f, θ) = D cos2s

(
θ − θ∗

2

)
, (1.29)

where θ∗ is the mean wind direction and s is a spreading function which describes the spread

of the distribution. Figure 1.17 depicts the distribution for example values of s .

Another widely used model is the hyperbolic secant distribution of Donelan [20] which includes

a small amount of energy in the direction opposite to the mean wind direction. Explicitly,

G(f, θ) = 0.5Dβ sech2(β(θ − θ∗)), (1.30)

where β denotes the spread of the waves.

1.2.4.4 Modelling Swell

As stated before, the ocean can consist of both wind wave and swell systems. Therefore,

in the modelled spectrum, swell must also be included. The superposition of the spectra is
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Figure 1.17: Half cosine squared directional distribution, of equation 1.29, with θ∗ =
3π

4
and

varying values of s .

written

S(f, θ) = Swind(f, θ) + Sswell(f, θ),

where Swind(f, θ) defines the wind-sea spectrum and Sswell(f, θ), the swell spectrum. As

before, a number of models can be used to model Sswell(f, θ), where different models will be

more suited to different environments.

When ocean waves leave the area they were generated in, the dispersion relation of waves

(equation 1.15) states that the low frequency waves will travel faster. Therefore, after propa-

gating for some time, the ocean system will have lost most of its high frequency components

as is shown in figure 1.10. As a result, the spectrum will be more narrow and focussed around

the frequency peak. As a JONSWAP model features a more narrow peak for developing

seas, this is seemingly a better choice than the broader Pierson Moskowitz model. A general

Gaussian distribution - symmetrical about a point with changeable width - could also be a

good option. Lucas and Soares [64] compared a Gaussian model for swell with the JONSWAP

model, using swell data measured off the coast of Nigeria and the west coast of New Zealand.

In this particular case, they found that the JONSWAP model fitted the measured spectra bet-

ter; an example of a JONSWAP modelled swell spectrum and its combination with a Pierson

Moskowitz wind-sea spectrum can be seen in figure 1.18.
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Figure 1.18: The top figure shows a Pierson Moskowitz spectrum for a wind speed of 13 m/s.
The middle figure shows a JONSWAP swell spectrum, for a hs value of 1.4 m and the bottom
figure shows the superposition of the wind wave and swell spectra.

§ 1.3 Radar and The Ocean

The relationship between radar and the ocean was first observed during WWII when radar

systems had been implemented to track approaching aircraft and ships [10]. During the war,

the interest in the returned signal was the identification of a vessel, however, there was other

information in the signal too. At the time it was deemed to be noise and was discarded but

the majority of the extra information was actually backscatter from the ocean.

The amalgamation of many different-sized waves travelling in different directions in the ocean

means that, due to the Doppler effect, an incident wave of a single frequency will return a

power spectrum (usually referred to as a Doppler spectrum to reflect the importance of the

Doppler effect), consisting of a range of frequencies, when scattered off the ocean surface. An

example Doppler spectrum, when HF radio waves are scattered from the ocean, is shown in

figure 1.19. HF radio waves are a subset of radio waves with a frequency of between 3 and 30

MHz, or equivalently with wavelengths of between 100 and 10 metres (see table 1.1). Although

HF is the most commonly used frequency for this particular radar system, measurements are

also possible using radio waves in the MF band [7]. To explain why these bands are the most

appropriate, the scattering process must first be analysed.

The first substantial contribution in understanding the relationship between radar and the

ocean came in 1955, when Crombie [19] found that when HF radio waves are scattered from
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Figure 1.19: An example of a HF radar Doppler spectrum obtained by a monostatic WERA
radar operating at 8.512 MHz in Guilderton, Western Australia [38].

the ocean surface, the backscattered signal produces a Doppler spectrum with defining charac-

teristics. When observing a spectrum similar to figure 1.19, Crombie noticed two well-defined

peaks (as are highlighted in figure 1.19 by the dotted lines) and recognised that this indicated

scattering from two identifiable, distinct targets. He speculated at an explanation for this

which he backed up experimentally, but not theoretically.

Crombie said that, due to resonance as shown in figure 1.20, an ocean wave scatterer of

wavelength λ would reflect a large signal if λ is half that of the radar wavelength, λ0 . Then,

as one of the peaks is positive and the other negative, Crombie speculated that the two

identifiable targets were ocean wave trains travelling towards and away from the radar with

a wavelength of λ0/2. To test his hypothesis, Crombie used the equation for calculating the

Doppler shift given in equation 1.2.

Figure 1.20: How resonance and Bragg scattering are related as depicted by Wyatt [101].
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From equation 1.16, the phase speed of a deep water wave (so letting d→∞ in equation 1.16)

is

cp =

√
λg

2π
. (1.31)

Therefore, substituting λ = λ0/2 into equation 1.31 and then the resulting expression into

equation 1.2 gives the Doppler shift in terms of radar wavelength as

4f =

√
g

λ0π
. (1.32)

Crombie substituted the wavelength of the carrier frequency into equation 1.32 and found

that it was approximately equal to where the peaks were in the spectrum. The position of

the dashed lines in figure 1.19 were obtained in the same manner and do, indeed, line up with

the prominent peaks of the spectrum.

Then, in 1972, Barrick [5][7] theoretically showed that Crombie’s prediction was correct,

using the perturbation analysis of the scattering process first presented by Rice [78]. Barrick

presented a monostatic radar cross section of the ocean, σ , to second order, which is in terms

of the ocean spectrum S(k) and radar wavenumber k0 . The expression for σ can be split

into the first and second order terms, σ(1)(ω) and σ(2)(ω) respectively. Explicitly,

σ(1)(ω) = 26πk4
0

∑
m=±1

S(mkB)δ(ω −mωB), (1.33)

and

σ(2)(ω) = 26πk4
0

∑
m,m′=±1

∞x

−∞
|ΓT |2S(mk1)S(m′k2)δ(ω −mω1 −m′ω2) dp dq, (1.34)

where the terms will be derived and explained thoroughly in Chapters 2 and 3. To summarise,

the strong signal produced by σ(1)(ω) is due, as Crombie said, to ocean waves with wavelength

λ/2 travelling towards and away from the radar. These waves will henceforth be referred to as

the Bragg waves and the signal that they produce is shown by the dashed lines in figure 1.19.

The signal shown around the highlighted peaks is caused by σ(2)(ω). Defining kB as the

wavevector of the Bragg wave travelling towards the radar, the signal produced by σ(2)(ω) is

due to pairs of ocean waves with wavenumbers k1 and k2 such that

k1 + k2 = kB.
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Equations 1.33 and 1.34 represent the forward problem of remotely sensing the ocean. That is,

given an ocean spectrum S(k), they model the expected radar Dopper spectrum σ(ω). Solv-

ing the inverse problem, i.e. obtaining ocean information from σ(ω), has enabled researchers

to measure ocean currents, winds and waves from HF radar Doppler spectra.

1.3.1 HF Radar Systems

The methods of inverting the measured Doppler spectrum for current, wind and wave mea-

surements are now reliable enough such that there are hundreds of coastal radar HF systems

worldwide, providing data. There are a number of different brands of radar for this purpose,

both compact and phased-array systems. The Seasonde [2], developed by CODAR, is the

most notable compact radar and they state that they have ‘produced approximately 80%

of all HF radars ever built worldwide, with a total operating time of over 2,000,000 hours’.

They mostly provide current measurements as shown in the works of Lipa et al. [75] and

Hodgins [42] due to the broad beam, however, directional wave information [60][25] is also

possible if one assumes that the ocean spectrum is stationary and homogenous for each radar

range. The Wellen and Pisces [74] radar systems are established phased array radar systems

and as Wellen radar data is used in this work, a more detailed description follows.

1.3.1.1 WERA Radar System

The Wellen Radar, henceforth referred to as WERA, was created by Gurgel et al. [31][3] at

the Univerity of Hamburg in the late 1990s. The WERA system is one of the most common

HF phased array radars around the world, especially for HF radars which measure ocean wave

spectra. The transmitter emits FMCW chirps and a receiver array (as shown in figure 1.21),

of up to 16 antennas placed along coastal regions, receives the scattered signals which are

beamformed, as in section 1.1.6, to provide good azimuthal resolution. For a particular radar

site, the radar frequency and bandwidth are chosen such that they are optimal for the local

conditions.

Identifying the optimal frequency and bandwidth depends on the ocean waves that exist in the

coverage area and the frequencies of any other interfering radio waves. From section 1.1.4, the

longer the radio wavelength the further the maximum range will be. However, for longer radio

wavelengths, the Bragg ocean waves will also be longer and in certain areas - perhaps due

to limited fetch or finite-depth - they may not appear frequently, if at all. Consequently, the

returned Doppler spectrum will have a low SNR and thus, wave information in the signal will

be hard to retrieve. Therefore an appropriate frequency must be chosen such that adequate
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Figure 1.21: Example of a WERA linear receive array on the coast, consisting of 16 anten-
nas [45].

SNR levels are achieved. Long-term observations of the radio band coverage using a spectrum

analyser are carried out before a frequency is selected; interference from other signals at the

same frequency would also have a negative impact on the SNR.

Gurgel [45] presented the working ranges for surface current measurements from WERA

radars, for particular carrier frequencies and salinity levels. The full list is shown in figure 1.22,

however it should be highlighted that wave measurements, due to the requirement of the

second order signal (which is less strong), do not achieve the same ranges. If the information in

the table is extrapolated to higher frequencies, the working range will soon become negligible.

At the other end of the spectrum, toward the MF band, the Bragg wave wavelengths become

uncommonly large and consequently, the signal will have a low SNR. In both cases, the data

becomes less useful and this is why HF radar is used for ocean sensing.

The capability of HF radar to provide accurate current, wind and wave measurements has led

to it being used in a number of important applications.

1.3.2 Applications

Remotely sensing the ocean has an impact on numerous coastal engineering topics, includ-

ing testing of and assimilation in operational wave models, sea vessel navigation, land/beach

erosion, designing offshore structures and, in supporting marine activities. Additionally, col-

lecting ocean data over a long period of time can be useful in climate change studies; the

same data can also be used to assess the potential of a coastal region to become a wave/wind

farm as shown by Wyatt [105].
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Figure 1.22: Table produced by Gurgel [45] showing the ranges possible for obtaining surface
current measurements from WERA HF radar Doppler spectra.

A notable group of radar systems, collecting and providing ocean data is part of the Integrated

Ocean Observing System (IOOS), whose website shows real-time HF radar current data along

the American coast. Likewise, in Australia, the Integrated Marine Observing System (IMOS)

provides real-time coastal surface currents and wave parameters measured by HF radar. The

measurements are provided by the Australian Coastal Ocean Radar Network (ACORN) fa-

cility [38] which consists of 6 pairs of HF radars in four regions; the data for each radar can

be downloaded from the IMOS website [48] and is available from 2007, for some radars.

Coastal monitoring systems such as the IMOS and IOOS networks lend themselves to an

extremely important topic: the early warning of a tsunami. The use of HF Radar current

measurements in predicting a tsunami approaching has been investigated by Heron [39] and

Dzvonkovskaya [22], where it was shown to be a helpful, complementary tool. It is now

implemented in the ‘National Multi Hazard Warning Center’ in Oman along with data from

other sensor systems including seismic stations and tide gauges. Two 9 MHz and two 13 MHz

WERA ocean radar systems have been situated on the coast to provide tsunami warnings and

also to predict the size of the approaching waves.

Another important application of HF radar current data is in predicting the area an off-shore

oil spill will cover. The positive effect that HF radar current measurements have on the

mapping of a trajectory of an oil spill has been shown by Abascal [1]. In this work, the

trajectory of a buoy, along the Galician coast, was simulated using numerical wind data, with

and without the HF current data, to evaluate the effectiveness of HF radar in this scenario.
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When the simulations for both cases were run, the resulting area to be tracked when the HF

current data was included, was reduced by 62%. When a crisis such as an oil spill occurs, the

reaction time and accuracy of the search location is imperative. The decrease in the search

area by 62% in this experiment means that more resources can be devoted to the appropriate

area which will save time, money and, potentially, lives. The theory of forecasting the buoy

trajectory can be applied to other aspects such as human search and rescue, as shown by

Harlan et al. [33].

Final Remark

With important applications such as those mentioned in the preceding section, the methods

for obtaining ocean parameters from HF radar data must be accurate and reliable. In the

next chapter, the bistatic radar cross section of the ocean surface will be derived which will

then be used in the chapters that follow, to formulate methods to infer ocean parameters from

bistatic HF radar data.



Chapter 2

Derivation of the Bistatic Radar

Cross Section of the Ocean Surface

§ 2.1 Introduction

In this chapter, the bistatic radar cross section of the ocean surface, σ , is derived. From

equation 1.13, the radar cross section of a target is an expression in terms of the scattered

electric field, Es , and thus, in order to derive σ , we must first derive Es .

The scattered field, Es , has dependence on both the incident radio waves and the surface

properties. The ocean is a good conductor and hence, to maximise the range that radio waves

can reach, the incident waves defined in the problem will propagate as vertically polarised

ground waves (as will the resulting scattered waves). Furthermore, as the ocean varies in both

time and space, by assuming that these variations are periodic and the surface is of infinite

extent, the surface, f(x, y, t), can be defined as a Fourier series expansion. So, letting the

spatial period (in both the x and y directions) be L and the temporal period be T we can

then define

z = f(x, y, t) =

∞∑
mnl=−∞

P (m,n, l)eia(mx+ny)−iwlt, (2.1)

for wavenumber a = 2π/L , angular frequency w = 2π/T and Fourier coefficients P (m,n, l)

which are dependent on the integers m , n and l . In calculating the scattered field pro-

duced when the incident radio waves interact with surface f(x, y, t), we follow Rice [78], like

Barrick [5] and Johnstone [50]. A full derivation is given in section 2.2 for completeness,

as the referenced works derive the scattered field for horizontally polarised incident waves,

not vertical. Supplementary to Rice’s work, and similarly to Barrick and Johnstone, time

33
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dependence has been included in the scattering surface so that the results are applicable to

the (time-varying) ocean surface.

Both the scattering surface and the incident radio waves are assumed to be of infinite extent

in section 2.2. However, in practice, a radar will cover only a finite patch of this overall

surface and therefore the infinitely scattered fields must be related to finitely scattered fields;

this will be carried out in section 2.3. Once the finitely scattered electric field is derived,

the bistatic radar cross section is calculated in section 2.4. This follows the methodology of

Johnstone [50] but some discrepancies between the works of Johnstone and Barrick [5] have

been discovered and more detail is included for clarity. In sections 2.2 to 2.4, the surface is

assumed to be perfectly conducting to simplify the necessary boundary condition, however,

as the ocean surface is not a perfect conductor, this will be addressed in section 2.5.

§ 2.2 Derivation of the Scattered Electric Field

The scattered field created when the incident waves scatter from f(x, y, t), in equation 2.1,

consists of two components; the specular and nonspecular fields. The specular field occurs

when the incident plane wave, travelling in the positive x direction at an angle θ measured

from the z axis, impinges on a perfectly smooth plane (see figure 2.1). Therefore, the incident

electric field, with wavenumber k0 , angular frequency ω0 and magnitude E0 can be defined

as

E(i)
x = E0 cos θeik0(x sin θ−z cos θ)e−iω0t

E(i)
y = 0

E(i)
z = E0 sin θeik0(x sin θ−z cos θ)e−iω0t

(2.2)

and the specular scattered electric field as

E(s)
x = −E0 cos θeik0(x sin θ+z cos θ)e−iω0t

E(s)
y = 0

E(s)
z = E0 sin θeik0(x sin θ+z cos θ)e−iω0t.

(2.3)

Summing the incident and reflected fields (from equations 2.2 and 2.3) gives the total specular

field, with components

Ex = 0

Ey = 0

Ez = 2eik0xe−iω0t,
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where we have taken E0 = 1, for consistency with the existing literature1, and set θ = 90° , as

we are interested in ground wave propagation. The benefit of hindsight has been used here,

as setting θ = 90° at this point does not affect the final result but simplifies the calculations

to follow.

Figure 2.1: Specular scatter, of vertically polarised radio waves at incidence angle θ . The
electric field intensity in the relevant direction is shown by the blue wave.

Radio waves scattered by a rough surface make up the nonspecular fields. As the surface

defined in equation 2.1 is periodic, these scattered fields are also periodic in x and y with

period L and periodic in time with period T . Therefore, like the surface, the non specular

scattered fields can be defined by a three dimensional Fourier series expansion. Additionally,

to ensure the periodicity of the incident field, let

k0 = νa (2.4)

for some integer ν and surface wavenumber, a = 2π/L . Therefore, the components of the

total electric field strength, E = (Ex, Ey, Ez), above the surface (where the specular field has

been included) are defined as

Ex =
∑
mnl

AmnlE(m,n, z, l)e−iω0t

Ey =
∑
mnl

BmnlE(m,n, z, l)e−iω0t

Ez = 2eiaνxe−iω0t +
∑
mnl

CmnlE(m,n, z, l)e−iω0t,

(2.5)

where Amnl , Bmnl and Cmnl are Fourier coefficients to be found for integers m , n and l

1The value of E0 does not have an impact on the resulting expression, as the radar cross section equation
used (see equation 1.13) includes a 1/E0 term and, therefore, the two are cancelled.
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and,

E(m,n, z, l) = ei(a(mx+ny)+b(m,n)z)e−iwlt (2.6)

where w = 2π/T . The value of b(m,n) is found by ensuring that E satisfies the wave

equation,

∇2E− 1

c

∂2E

∂t2
= 0.

Differentiating the components of E in equation 2.5 with respect to t gives

∂2Ex
∂t2

= −(ω0 + wl)2Ex

∂2Ey
∂t2

= −(ω0 + wl)2Ey

∂2Ez
∂t2

= −2ω2
0eiaνxe−iω0t − (ω0 + wl)2

∑
mnl

CmnlE(m,n, z, l)e−iω0t.

(2.7)

By assuming the surface is slowly varying, wl will be much smaller than ω0 (which will be

at least to the order of 106 at HF), and so we can take ω0 +wl ≈ ω0 in the amplitude terms

of equation 2.7 with little impact. Thus,

∇2E + k2
0E = 0, (2.8)

which upon substituting E in, from equation 2.5, leads to

b(m,n) =

{
(k2

0 − a2m2 − a2n2)1/2 if m2 + n2 < k2
0/a

2

i(a2m2 + a2n2 − k2
0)1/2 if m2 + n2 > k2

0/a
2.

(2.9)

In the solutions for b(m,n), the positive root for the imaginary solution is chosen to ensure

the exponential decays in E , for increasing z .

To determine the Fourier coefficients Amnl , Bmnl and Cmnl in equation 2.5, Maxwell’s equa-

tions and properties of the scattering surface are used. Due to the complexity of the problem

and knowing that k0f , fx and fy are of the same order of smallness, the solution is perturbed

around the flat surface z = f = 0 and terms of up to second order are retained (where terms

such as k0f , fx and fy are O(f) and, k2
0f

2 and f2
x are O(f2)).

Firstly, from Maxwell’s equations for a source free volume, ∇ · E = 0. So, with E as in
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equation 2.5,

∇ ·E = amAmnl + anBmnl + b(m,n)Cmnl = 0. (2.10)

Secondly, the tangential electric field boundary condition for a perfectly conducting surface

is employed. In a perfect conductor, the electrons are free to move around and thus will

cancel out any potential tangential electric field which may occur along the surface. As the

tangential electric field at any point on the surface is found by deducting the electric field

normal to the surface from the total electric field,

E− n̂(E · n̂) = 0, (2.11)

where n̂ is the unit vector normal to the surface. As the surface is defined as z = f(x, y, t),

let

F (x, y, z, t) = z − f(x, y, t) = 0

and therefore, as the unit normal of the surface, n̂ , is given by

n̂ =
∇F
| ∇F |

=
(−fx,−fy, 1)√
f2
x + f2

y + 1
,

nx = −fx(1 + f2
x + f2

y )−1/2 = −fxnz,

ny = −fy(1 + f2
x + f2

y )−1/2 = −fynz,

nz = (1 + f2
x + f2

y )−1/2.

Since nz expands to 1 +O(f2),

nx = −fx +O(f3)

ny = −fy +O(f3)
(2.12)

and consequently, to second order, the tangential boundary condition components, of equa-

tion 2.11, become

Ex + fxEz = 0

Ey + fyEz = 0,
(2.13)

noting that the z component becomes trivially zero when these two equations are satisfied.

The individual terms in the total electric field components given in equation 2.5 are now also
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expanded to second order around the flat surface, f = 0. Namely,

E(m,n, f, l) = [1 + ib(m,n)f + · · · ]E(m,n, 0, l)

Jmnl = J
(1)
mnl + J

(2)
mnl + · · · ,

(2.14)

where the bracketed superscript of a Fourier coefficient, here Jmnl , denotes its order.

Therefore, the total electric field components in equation 2.5 become

Ex =
∑
mnl

(
A

(1)
mnl +A

(2)
mnl

)
[1 + ib(m,n)f ]E(m,n, 0, l)e−iω0t

(2.15)

Ey =
∑
mnl

(
B

(1)
mnl +B

(2)
mnl

)
[1 + ib(m,n)f ]E(m,n, 0, l)e−iω0t

(2.16)

Ez = 2eiaνxe−iω0t +
∑
mnl

(
C

(1)
mnl + C

(2)
mnl

)
[1 + ib(m,n)f ]E(m,n, 0, l)e−iω0t

(2.17)

and equations 2.15-2.17 are used in the two boundary conditions, in equation 2.13, to give

2fxeiaνx +
∑
mnl

(
A

(1)
mnl +A

(2)
mnl + fxC

(1)
mnl

)
[1 + ib(m,n)f ]E(m,n, 0, l) = 0 (2.18)

and

2fye
iaνx +

∑
mnl

(
B

(1)
mnl +B

(2)
mnl + fyC

(1)
mnl

)
[1 + ib(m,n)f ]E(m,n, 0, l) = 0. (2.19)

2.2.1 First Order Terms

First order terms, in both equations 2.18 and 2.19, are equated to determine A
(1)
mnl , B

(1)
mnl and

C
(1)
mnl . From equation 2.18,

2fxeiaνx +
∑
mnl

A
(1)
mnlE(m,n, 0, l) = 0 (2.20)

and equation 2.19 gives

2fye
iaνx +

∑
mnl

B
(1)
mnlE(m,n, 0, l) = 0. (2.21)

From equation 2.1,

fx =
∑
m′n′l′

iam′P (m′, n′, l′)eia(m′x+n′y)−iwl′t
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=
∑
m′n′l′

iam′P (m′, n′, l′)E(m′, n′, 0, l′)

and multiplying both sides by eiaνx gives

fxeiaνx =
∑
m′n′l′

iam′P (m′, n′, l′)E(m′ + ν, n′, 0, l′)

=
∑
mnl

ia(m− ν)P (m− ν, n, l)E(m,n, 0, l),

by setting m′ + ν = m , n′ = n and l′ = l . As aν = k0 ,

fxeik0x =
∑
mnl

ia(m− ν)P (m− ν, n, l)E(m,n, 0, l) (2.22)

and similarly,

feik0x =
∑
mnl

P (m− ν, n, l)E(m,n, 0, l) (2.23)

and

fye
ik0x =

∑
mnl

ianP (m− ν, n, l)E(m,n, 0, l). (2.24)

By use of equations 2.22-2.24, equation 2.20 becomes

A
(1)
mnl = (2ik0 − 2iam)P (m− ν, v, l) (2.25)

and equation 2.21 becomes

B
(1)
mnl = −2ianP (m− ν, v, l). (2.26)

The values for A
(1)
mnl and B

(1)
mnl , from equations 2.25 and 2.26, are now substituted into

equation 2.10 to find C
(1)
mnl , i.e.

C
(1)
mnl = −2i

(a(m− ν)k0 + b2(m,n))P (m− ν, n, l)
b(m,n)

(2.27)

where the definition of b(m,n) from equation 2.9 has been used to give a more convenient

form.
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2.2.2 Second Order Terms

The two expressions for the second order terms in equations 2.18 and 2.19 are, respectively,

∑
mnl

(A
(2)
mnl + iA

(1)
mnlb(m,n)f + C

(1)
mnlfx)E(m,n, 0, l) = 0 (2.28)

and

∑
mnl

(B
(2)
mnl + iB

(1)
mnlb(m,n)f + C

(1)
mnlfy)E(m,n, 0, l) = 0. (2.29)

These both include terms of the form J
(1)
mnlfiE(m,n, 0, l) and, for this, Rice [78] derives three

relations in the time invariant case which can be adapted to the time varying case. Namely,∑
mnl

fxJmnlE(m,n, 0, l) =
∑

mnlqrs

ia(m− q)JqrsP (m− q, n− r, l − s)E(m,n, 0, l), (2.30)

∑
mnl

fJmnlE(m,n, 0, l) =
∑

mnlqrs

JqrsP (m− q, n− r, l − s)E(m,n, 0, l) (2.31)

and ∑
mnl

fyJmnlE(m,n, 0, l) =
∑

mnlqrs

ia(n− r)JqrsP (m− q, n− r, l − s)E(m,n, 0, l). (2.32)

By using equations 2.30-2.32, equation 2.28 becomes

A
(2)
mnl = −i

∑
qrs

(
A(1)
qrsb(q, r) + a(m− q)C(1)

qrs

)
P (m− q, n− r, l − s)

= 2
∑
qrs

(a2(m− q)(ν − q)k0 + (k0 − am)b2(q, r))Q(m,n, l, q, r, s)
(2.33)

and equation 2.29 becomes

B
(2)
mnl = −i

∑
qrs

(
B(1)
qrsb(q, r) + a(n− r)C(1)

qrs

)
P (m− q, n− r, l − s)

= 2
∑
qrs

(
a2(n− r)(ν − q)k0 − anb2(q, r)

)
Q(m,n, l, q, r, s),

(2.34)

where

Q(m,n, l, q, r, s) =
P (q − ν, r, s)P (m− q, n− r, l − s)

b(q, r)
. (2.35)
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The value of C
(2)
mnl is now calculated using equation 2.10 with equations 2.33 and 2.34 to give

C(2)
qrs =

2

b(m,n)

∑
qrs

(
a3(q − ν)(m2 + n2 − qm− rn)k0

+ a(a(m2 + n2)−mk0)b2(q, r)
)
Q(m,n, l, q, r, s).

(2.36)

Substituting the first and second order Fourier coefficients (equations 2.25, 2.26, 2.27, 2.33,

2.34 and 2.36) into the total electric field components of equation 2.5 completes the derivation

of the total scattered field for vertically polarised waves. The components are

Ex =2
∑
mnl

E(m,n, z, l)e−iω0t

[
i(k0 − am)P (m− ν, n, l)

+
∑
qrs

{
a2(m− q)(ν − q)k0 + (k0 − am)b2(q, r)

}
Q(m,n, l, q, r, s)

]
,

(2.37)

Ey =2
∑
mnl

E(m,n, z, l)e−iω0t

[
−ianP (m− ν, n, l)

+
∑
qrs

{
a2(n− r)(ν − q)k0 − anb2(q, r)

}
Q(m,n, l, q, r, s)

] (2.38)

Ez =2eik0xe−iω0t

+ 2
∑
mnl

E(m,n, z, l)

b(m,n)
e−iω0t

[ (
− i(a(m− ν)k0 + b2(m,n)

)
P (m− ν, n, l) +

∑
qrs

{
(a3(q − ν)(m2 + n2 − qm− rn)k0)

+ a(a(m2 + n2)−mk0)b2(q, r)
}
Q(m,n, l, q, r, s)

]
.

(2.39)

§ 2.3 Transformation of the Field to Account for the Scattering Patch Size

2.3.1 Derivation of the Transformation Equation

The electric field in equations 2.37, 2.38 and 2.39 correspond to the scattering of infinite plane

waves from a surface of infinite extent. To transform the fields to finitely scattered fields, the

equation given by Johnstone [50] (therein credited to Stratton [86]) is used. The derivation

of the equation can be found in Johnstone’s work and further details are given by Stratton.

To summarise, for some volume, V , enclosed by a surface S on which the electric field E
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is known, then, by a combination of the divergence theorem, Stoke’s theorem and Green’s

second identity, we can calculate the electric field at any point within V .

This principle can then be applied to a volume, approximated by a hemisphere like that shown

in figure 2.2, whose surface consists of two parts: an infinite S , where E is zero, and a finite

portion of this, S1 where E is the infinitely scattered field from equations 2.37 to 2.39. Then,

whilst making sure the discontinuity on the surface is accounted for, we can again show that

we can find the electric field at any point within V using the value of E on S1 . Explicitly,

the finitely scattered electric field, at a point (x′, y′, z′), can be expressed as

E(x′, y′, z′) =
eik0R

4πR

∫
S1

{[(
∂Ex
∂z
− ∂Ez

∂x

)
âx +

(
∂Ey
∂z
− ∂Ez

∂y

)
ây

]
z=0

+ ik0

[
Ex cos θâx + Ey cos θây − (Ex sin θ cosϕ+ Ey sin θ sinϕ)âz

]
z=0

+

[(
∂Ez
∂x
− ∂Ex

∂z

)
sin θ cosϕ+

(
∂Ez
∂y
− ∂Ey

∂z

)
sin θ sinϕ

]
z=0[

sin θ cosϕâx + sin θ sinϕây + cos θâz

]}
e−ik0·ρdS1,

(2.40)

where ρ is the vector (x, y, z) on S1 , (R, θ, ϕ) are the radius, polar angle and azimuthal angle

measured from the origin to (x′, y′, z′), âx , ây and âz represent the x , y and z components

of E , respectively, and k0 is the radar wavevector given by

k0 = k0(sin θ cosϕ, sin θ sinϕ, cos θ).

Figure 2.2 gives a visual representation of these quantities.

Now, the scattered electric field, given in equations 2.37, 2.38 and 2.39, is substituted into

equation 2.40. The specular term 2eik0xe−iω0t in equation 2.39 is henceforth omitted, as

including it in the following radar cross section calculation proves unnecessary. The term

contributes to scatter at the incident frequency (i.e. zero Doppler) in the specular direction,

which is not relevant to ocean sensing because the zero Doppler frequency is usually contam-

inated with signals scattered from stationary objects, such as land. Furthermore, the receiver

tends not to be in the specular direction. The contibution of this term at zero Doppler is

somewhat intuitive though, as this particular term describes scatter from a perfectly smooth
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Figure 2.2: The finite scattering surface, S1 , with boundary C , as part of a hemispherical
surface. The vector ρ denotes the position on S1 (x, y, z); the vector rr is the vector from
(x, y, z) to some distant point (x′, y′, z′) where the scattered electric field is desired. The
vector k0 is the radar wavevector in the direction of the scattered radio wave, R .

surface. With this omission, equation 2.40 gives

Ex′(t) =
2ieik0R

4πR

∫
S1

∑
mnl

{ (
b(m,n)(1− sin2 θ cos2 ϕ) + k0 cos θ

)
{x terms}

+
∑
mnl

(−b(m,n) sin2 θ sinϕ cosϕ){y terms}

+
∑
mnl

(am(sin2 θ cos2 ϕ− 1) + an sin2 θ sinϕ cosϕ)
1

b(m,n)
{z terms}}

E(m,n, 0, l)e−ik0·ρdS1

(2.41)

where

{x terms} =− i(am− k0)P (m− ν, n, l)

+
∑
qrs

[
a2(m− q)(ν − q)k0 + (k0 − am)b2(q, r)

]
Q(m,n, l, q, r, s)

(2.42)

{y terms} =− ianP (m− ν, n, l)

+
∑
qrs

[
a2(n− r)(ν − q)k0 − anb2(q, r)

]
Q(m,n, l, q, r, s)

(2.43)

{z terms} =− i
(
a(m− ν)k0 + b2(m,n)

)
P (m− ν, n, l)

+
∑
qrs

[
a3(q − ν)(m2 + n2 − qm− rn)k0

+a
(
a(m2 + n2)−mk0

)
b2(q, r)

]
Q(m,n, l, q, r, s).

(2.44)
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Similarly,

Ey′(t) =
2ieik0R

4πR

∫
S1

∑
mnl

{ (
−b(m,n)(sin2 θ cosϕ sinϕ

)
{x terms}

+
∑
mnl

(b(m,n)(1− sin2 θ sin2 ϕ) + k0 cos θ){y terms}

+
∑
mnl

(
am sin2 θ cosϕ sinϕ+ an(sin2 θ sin2 ϕ− 1)

) 1

b(m,n)
{z terms}}

E(m,n, 0, l)e−ik0·ρdS1

(2.45)

and

Ez′(t) =
2ieik0R

4πR

∫
S1

∑
mnl

{
(−k0 sin θ cosϕ− sin θ cos θ cosϕb(m,n)) {x terms}

+
∑
mnl

(−k0 sin θ sinϕ− sin θ cos θ sinϕb(m,n)) {y terms}

+
∑
mnl

(am sin θ cos θ cosϕ+ an sin θ sinϕ cos θ)
1

b(m,n)
{z terms}}

E(m,n, 0, l)e−ik0·ρdS1.

(2.46)

To calculate equations 2.41, 2.45 and 2.46, the integral over S1 - or equivalently over x and

y (where the surface is size L × L) - must be evaluated. As the only terms with x and y

dependence are ei(a(mx+ny)) and e−ik0·ρ , we therefore need to calculate

L/2x

−L/2

ei(a(mx+ny))e−ik0·ρ dx dy,

which, using the definitions of k0 and ρ , is equal to

L2 sinc(XR) sinc(Y R), (2.47)

where XR =
L

2
(am− k0 sin θ cosϕ) and Y R =

L

2
(an− k0 sin θ sinϕ). Therefore the scat-
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tered electric fields from a finite surface, given in equations 2.41, 2.45 and 2.46, become

Ex′(t) =
2ieik0R

4πR
L2
∑
mnl

{[ (
b(m,n)(1− sin2 θ cos2 ϕ) + k0 cos θ

)
{x terms}

+
∑
mnl

(−b(m,n) sin2 θ sinϕ cosϕ){y terms}

+
∑
mnl

(am(sin2 θ cos2 ϕ− 1) + an sin2 θ sinϕ cosϕ)
{z terms}
b(m,n)

]
sinc(XR) sinc(Y R)

}
e−i(wl+ω0)t,

(2.48)

Ey′(t) =
2ieik0R

4πR
L2
∑
mnl

{[ (
−b(m,n)(sin2 θ cosϕ sinϕ

)
{x terms}

+
∑
mnl

(b(m,n)(1− sin2 θ sin2 ϕ) + k0 cos θ){y terms}

+
∑
mnl

(
am sin2 θ cosϕ sinϕ+ an(sin2 θ sin2 ϕ− 1)

) {z terms}
b(m,n)

]
sinc(XR) sinc(Y R)

}
e−i(wl+ω0)t,

(2.49)

Ez′(t) =
2ieik0R

4πR
L2
∑
mnl

{[
(−k0 sin θ cosϕ− sin θ cos θ cosϕb(m,n)) {x terms}

+
∑
mnl

(−k0 sin θ sinϕ− sin θ cos θ sinϕb(m,n)) {y terms}

+
∑
mnl

(am sin θ cos θ cosϕ+ an sin θ sinϕ cos θ)
{z terms}
b(m,n)

]
sinc(XR) sinc(Y R)

}
e−i(wl+ω0)t.

(2.50)

2.3.2 The Vertically Polarised Components

The scattered fields in equations 2.48-2.50 include components of all different polarisations.

As the receiver will be designed to receive only vertically polarised components, the rest must

be removed. To do this, we notice that the spherical unit vector θ̂ has the same orientation as

the defined vertically polarised electric field. Therefore, the vertically polarised components

are found by calculating E · θ̂ , i.e.

Eθ = Ex′ cosϕ cos θ + Ey′ sinϕ cos θ − Ez′ sin θ (2.51)
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and, using equations 2.48, 2.49 and 2.50, equation 2.51 becomes

Eθ =
ieik0R

2πR
L2
∑
mnl

{[
cosϕ(k0 + b(m,n) cos θ){x terms}

+
∑
mnl

sinϕ(k0 + b(m,n) cos θ){y terms}

−
∑
mnl

cos θ(am cosϕ+ an sinϕ
{z terms}
b(m,n)

]
sinc(XR) sinc(Y R)

}
e−i(wl+ω0)t.

(2.52)

By defining

B(t) =
∑
mnl

cosϕ(k0 + b(m,n) cos θ) sinc(XR) sinc(Y R)e−i(wl+ω0)t
(2.53)

C(t) =
∑
mnl

sinϕ(k0 + b(m,n) cos θ) sinc(XR) sinc(Y R)e−i(wl+ω0)t
(2.54)

D(t) =
∑
mnl

− cos θ(am cosϕ+ an sinϕ)
sinc(XR) sinc(Y R)

b(m,n)
e−i(wl+ω0)t, (2.55)

and

{x terms} = −i(am− k0)P (m− ν, n, l)

+
∑
qrs

[
a2(m− q)(ν − q)k0 + (k0 − am)b2(q, r)

]
Q(m,n, l, q, r, s)

= −ix1P (m− ν, n, l) +
∑
qrs

x2Q(m,n, l, q, r, s)

(2.56)

{y terms} = −ianP (m− ν, n, l)

+
∑
qrs

[
a2(n− r)(ν − q)k0 − anb2(q, r)

]
Q(m,n, l, q, r, s)

= −iy1P (m− ν, n, l) +
∑
qrs

y2Q(m,n, l, q, r, s)

(2.57)

{z terms} = −i
(
a(m− ν)k0 + b2(m,n)

)
P (m− ν, n, l)

+
∑
qrs

[
a3(q − ν)(m2 + n2 − qm− rn)k0

+a
(
a(m2 + n2)−mk0

)
b2(q, r)

]
Q(m,n, l, q, r, s)

= −iz1P (m− ν, n, l) +
∑
qrs

z2Q(m,n, l, q, r, s),

(2.58)
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equation 2.52 can be written as

Eθ(t) =
ieik0R

2πR
L2
∑
mnl

(
B(t)

{
−ix1P (m− ν, n, l) +

∑
qrs

x2Q(m,n, l, q, r, s)

}

+ C(t)

{
−iy1P (m− ν, n, l) +

∑
qrs

y2Q(m,n, l, q, r, s)

}

+D(t)

{
−iz1P (m− ν, n, l) +

∑
qrs

z2Q(m,n, l, q, r, s)

} )
.

(2.59)

2.3.2.1 Second Order Hydrodynamic Scatter

In the perturbation method of Rice [78], used to derive the scattered electric field in sec-

tion 2.2, the Fourier coefficients of the field, Amnl , Bmnl and Cmnl , were expanded around

the flat surface to give an expression with first and second order components. The first order

components represent the single scattering of one electromagnetic wave, to the receiver, from

one ocean wave. The second order components represent doubly scattered electromagnetic

waves, to the receiver, from two single ocean waves. The order of the ocean wave, currently

denoted by P (m−ν, n, l), has not yet been considered and is assumed to be first order. How-

ever, in making such an assumption, a second order contribution from first order scattering

from second order ocean waves is missed, where a second order ocean wave is the result of

the nonlinear interaction between two first order ocean waves.

To allow for the second order hydrodynamic effects, Weber and Barrick [98] used a per-

turbation method to relate the second order coefficients P (2)(k, ω), of a surface defined by

z =
∑

k,ω P (k, ω)eik·r−iωt , to the first order coefficients P (1)(k, ω). Their method involved

expanding the surface height Fourier coefficients around the flat surface, i.e.

P (k, ω) = P (1)(k, ω) + P (2)(k, ω) + . . . ,

alongside boundary conditions from the equations of motion, also expanded to second order.

The solution was only valid for deep oceans, that is where the ocean depth, d , is greater than

the wavelength of the ocean wave to be extracted. Barrick and Lipa [11] then extended the

work of Weber and Barrick [98] to include the depth of the ocean, and verified it to be an

important inclusion for the longer second order waves that the radar receives scatter from.

As nonlinear interactions are more prominent in shallow waters [11] and most operational

HF radars will be situated on the coast where shallow waters are more likely, ocean depth

is an important inclusion. They showed that for ocean waves with wavevectors k1 and k2 ,
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with corresponding angular frequencies ω1 and ω2 (related by the ocean dispersion relation

in equation 1.15),

P (2)(k′′, ω′′) =
∑
k1k2

∑
ω1ω2

ΓH(k1, ω1,k2, ω2)P (1)(k1, ω1)P (1)(k2, ω2), (2.60)

where k′′ = k1 + k2 , ω′′ = ω1 + ω2 , and

ΓH =
1

2

{
k1 tanh(k1d) + k2 tanh(k2d) +

ω′′

g

(ω3
1 csch2(k1d) + ω3

2 csch2(k2d))

(ω′′2 − gk′′ tanh(k′′d))

+
(k1k2 tanh(k1d) tanh(k2d)− k1 · k2)√

k1k2 tanh(k1d) tanh(k2d)

(
gk′′ tanh(k′′d) + ω′′2

gk′′ tanh(k′′d)− ω′′2

) }
,

(2.61)

is called the hydrodynamic coupling coefficient, in which ki denotes the magnitude of wavevec-

tor ki .

To include the second order hydrodynamic effects in the scattered electric field, we expand

P (m − ν, n, l) into P (1)(m − ν, n, l) + P (2)(m − ν, n, l) and then substitute in the value of

P (2)(m− ν, n, l) using equation 2.60. The expansion gives

Eθ(t) =
ieik0R

2πR
L2
∑
mnl

{
− i(B(t)x1 + C(t)y1 +D(t)z1)

(
P (1)(m− ν, n, l) + P (2)(m− ν, n, l)

)
+
∑
qrs

(B(t)x2 + C(t)y2 +D(t)z2)Q(m,n, l, q, r, s)

}
,

and as per equation 2.60 (by letting k′′ = (m− ν, n) and ω = l),

P (2)(m− ν, n, l) =
∑

mnlqrs

ΓHP
(1)(q − ν, r, s)P (1)(m− q, n− r, l − s)

and so

Eθ(t) =
ieik0R

2πR
L2
∑
mnl

{
− i(B(t)x1 + C(t)y1 +D(t)z1)P (1)(m− ν, n, l)

+
∑
qrs

{
− i(B(t)x1 + C(t)y1 +D(t)z1)ΓHb(q, r)

+(B(t)x2 + C(t)y2 +D(t)z2)

}
Q(m,n, l, q, r, s)

}
,

(2.62)

using the definition of Q from equation 2.35.
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§ 2.4 Calculate the Radar Cross Section from the Scattered Electric Field

2.4.1 Radar Cross Section Expression

The radar cross section, σ , definition was given in equation 1.13. Redefining σ as the radar

cross section per unit area, where in this case the scattering surface is of size L× L ,

σ = lim
R→∞

4πR2 |Es|
2

L2
, (2.63)

where σ has been redefined to σ/L2 and, as in section 2.2, E0 = 1. As the surface is

time-varying and the motion induces doppler shifts on the incident radio frequency, the radar

cross section will be a frequency spectrum, defined as σ(ω). Therefore, the scattered electric

field, appearing in the radar cross section, is replaced with power spectral density which will

lead to a distribution over radio wave frequency, ω . Explicitly,

σ(ω) = lim
R→∞

4πR2 Φ(ω)

L2
, (2.64)

where Φ(ω) is the power spectral density. By the Wiener-Khinchin theorem, the power

spectral density of an ergodic function of time, f(t), is defined as the Fourier transform of the

autocorrelation of the function. The ocean is often assumed to be ergodic (see Kinsman [54]

for a discussion on the subject), and so the power spectral density can be calculated by

Φ(ω) =
1

2π

∫ ∞
−∞
〈f(t1)f∗(t2)〉e−iωτ dτ, (2.65)

where the Fourier transform2 is defined as

F(f(τ)) =
1

2π

∫ ∞
−∞

f(τ)e−iωτ dτ, (2.66)

and an ensemble average is denoted by 〈〉 . Additionally, the definition of the power in the

signal, σ0 , using the inverse Fourier transform, is

σ0 =

∫
σ(ω) dω.

2Rice [78] and Barrick [5] define their Fourier transforms with a factor of 1/π , however Johnstone [50] defines
his with a factor of 1/2π . This is the cause of the scalar difference in the radar cross section expressions derived
by Barrick and Johnstone.
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By substituting Eθ(t) for f(t) in equation 2.65, and then substituting the resulting expression

into equation 2.64, the radar cross section per unit area per unit frequency is given by

σ(ω) = lim
R→∞

4πR2F [〈Eθ(t1)E∗θ (t2)〉]
L2

. (2.67)

In equation 2.67, firstly the average of the term Eθ(t1)E∗θ (t2) is calculated, where Eθ is that

in equation 2.62. Therefore, the average of

Eθ(t1)E∗θ (t2) =

L4

4π2R2

∑
mnl

{
− i(B(t1)x1 + C(t1)y1 +D(t1)z1)P (1)(m− ν, n, l)

+
∑
qrs

[−i(B(t1)x1 + C(t1)y1 +D(t1)z1)ΓHb(q, r)

+(B(t1)x2 + C(t1)y2 +D(t1)z2)]Q(m,n, l, q, r, s)

}
∑
m′n′l′

{
i(B′∗(t2)x′1 + C ′∗(t2)y′1 +D′∗(t2)z′1)P (1)′∗(m′ − ν, n′, l′)

+
∑
q′r′s′

[
i(B′∗(t2)x′1 + C ′∗(t2)y′1 +D′∗(t2)z′1)ΓHb

∗(q′, r′)

+(B′∗(t2)x′2 + C ′∗(t2)y′2 +D′∗(t2)z′2)
]
Q′∗(m′, n′, l′, q′, r′, s′)

}
,

(2.68)

is required, where ′ denotes the definition of the relevant function in terms of m′ , n′ , l′ , q′ ,

r′ and s′ . To calculate the average of equation 2.68, the averages of the Fourier coefficients

P (m,n, l) and Q(m,n, l, q, r, s) must be known. Recalling that Q , defined in equation 2.35,

is the product of two P terms, the relevant averages are

1 〈PP ∗〉

2 〈QP 〉 = 〈PPP 〉

3 〈QQ∗〉 = 〈PPP ∗P ∗〉

and in order to calculate these averages, the following properties of P are used.

• Firstly, assume that the random surface fluctuations that these Fourier coefficients rep-

resent are normally distributed about zero. Therefore,

〈P (m,n, l)〉 = 0. (2.69)



CHAPTER 2. DERIVATION OF THE BISTATIC RADAR CROSS SECTION
OF THE OCEAN SURFACE 51

• Secondly, as the surface is real-valued, f(x, y, t) must be equal to f∗(x, y, t) which is

true when

P (−m,−n,−l) = P ∗(m,n, l). (2.70)

• Thirdly, from Thomas [89],

〈P1P2P3〉 = 〈P1〉〈P2P3〉+ 〈P2〉〈P1P3〉+ 〈P3〉〈P1P2〉 (2.71)

and

〈P1P2P3P4〉 =〈P1P2〉〈P3P4〉+ 〈P1P3〉〈P2P4〉+ 〈P1P4〉〈P2P3〉

− 2〈P1〉〈P2〉〈P3〉〈P4〉.
(2.72)

By equation 2.69, 〈Pi〉 = 0 and therefore equations 2.71 and 2.72 become

〈P1P2P3〉 = 0 (2.73)

and

〈P1P2P3P4〉 = 〈P1P2〉〈P3P4〉+ 〈P1P3〉〈P2P4〉+ 〈P1P4〉〈P2P3〉. (2.74)

• Finally (see Appendix A for the proof),

〈P (m,n, l)P (q, r, s)〉 =


(2π)3Ss(p, q, wl)

L2T
if q, r, s = −m,−n,−l

0 otherwise
(2.75)

where Ss(p, q, wl) is the surface roughness spectrum given in terms of

p = am q = an. (2.76)

These averages can now be used to find the average of equation 2.68. By equation 2.73,
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〈P1P2P3〉 = 0, and so

〈Eθ(t1) E∗θ (t2)〉 =

L4

4π2R2

∑
mnl
m′n′l′

{
−iζ(t1)iζ ′∗(t2)

〈
P (1)(m− ν, n, l)P (1)′∗(m′ − ν, n′, l′)

〉
+
∑
qrs
q′r′s′

{
[−iζ(t1)b(q, r)ΓH + ξ(t1)]

[
iζ ′∗(t2)b∗(q′, r′)Γ′H + ξ′∗(t2)

] 〈
QQ′∗

〉 } }
,

(2.77)

where, for brevity,

ζ(t) = B(t)x1 + C(t)y1 +D(t)z1 ξ(t) = B(t)x2 + C(t)y2 +D(t)z2

and the arguments of Q(m,n, l, q, r, s) have been omitted. Inputting equation 2.77 into the

radar cross section calculation in equation 2.67, then gives

σ(ω) =
1

π
F

L2
∑
mnl
m′n′l′

{
ζ(t1)ζ ′∗(t2)

〈
P (1)(m− ν, n, l)P (1)′∗(m′ − ν, n′, l′)

〉

+
∑
qrs
q′r′s′

{
[−iζ(t1)b(q, r)ΓH + ξ(t1)]

[
iζ ′∗(t2)b∗(q′, r′)Γ′H + ξ′∗(t2)

] 〈
QQ′∗

〉} }  .
(2.78)

In equation 2.78, the average involving two P terms represents first order scatter and that

involving two Q terms represents second order. Therefore, the radar cross section can be

written as

σ(ω) = σ(1)(ω) + σ(2)(ω), (2.79)

where the bracketed superscript denotes the order.

2.4.2 First Order Radar Cross Section

From equation 2.78, the first order radar cross section is

σ(1)(ω) =
1

π
F

L2
∑
mnl
m′n′l′

{
ζ(t1)ζ ′∗(t2)

〈
P (1)(m− ν, n, l)P (1)′∗(m′ − ν, n′, l′)

〉} ,
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which can be denoted as

σ(1)(ω) =
1

π
Φζζ′∗ ,

where the factors L2 and PP ′∗ are implied. More precisely,

σ(1)(ω) =
1

π
Φ

(1)

(Bx1+Cy1+Dz1)(B′∗x′1+C′∗y′1+D′∗z′1)

which is equivalent to finding

σ(1)(ω) =
1

π

(
Φ

(1)
Bx1B′∗x′1

+ Φ
(1)
Cy1C′∗y′1

+ Φ
(1)
Dz1D′∗z′1

+ Φ
(1)
Bx1C′∗y′1

+ · · ·
)
. (2.80)

To calculate the individual terms in equation 2.80, equation 2.70 is used to enforce restrictions

on the summation indices and then equation 2.75 is used to introduce the roughness spectrum,

S . For completeness, a walkthrough of the calculation of Φ
(1)
Bx1C′∗y′1

is given in Appendix B,

along with all of the other individual terms. Upon calculation of equation 2.80,

σ(1)(ω) = 24πk4
0(sin θ − cosϕ)2Ss(k0 sin θ cosϕ− k0, k0 sin θ sinϕ, ω − ω0) (2.81)

and, since we are interested in ground wave propagation, let θ = 90° and equation 2.81

becomes

σ(1)(ω) = 24πk4
0(1− cosϕ)2Ss(k0 cosϕ− k0, k0 sinϕ, ω − ω0). (2.82)

As the bistatic angle, ϕbi , (see figure 2.3) is

ϕbi =
1

2
(π − ϕ) (2.83)

and the Bragg wavevector is

kB = −2k0 cosϕbi(cosϕbi,− sinϕbi), (2.84)

equation 2.82 can then be written in terms of ϕbi and kB as

σ(1)(ω) = 26πk4
0 cos4 ϕbiSs(kB, ω − ω0). (2.85)

The dispersion relation of ocean waves, discussed in section 1.2, relates an ocean wavenumber,
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Figure 2.3: Scattering geometry for a bistatic radar where Tx , Sp and Rx denote the trans-
mitter, scatter patch and receiver respectively, ϕbi is the bistatic angle, k0 is the radar
wavevector and, p and q are spatial wavenumbers where p is in the direction of the emitted
radio wave. The Bragg wavevector kB is shown along with the wavevectors k1 and k2 where
kB = k1 + k2 .

k , and ocean depth, d , to its unique angular frequency, ωg , by

ω2
g = gk tanh(kd). (2.86)

Therefore, Barrick [5] related the ocean spectrum term Ss(k, ω) to the more simple spectrum,

Ss(k), by redefining the surface height, originally given in equation 2.1, as

f(x, y, t) =

∞∑
mn=−∞

P+(m,n)eia(mx+ny)−isgn(m)ωgt

+

∞∑
mn=−∞

P−(m,n)eia(mx+ny)+isgn(m)ωgt,

(2.87)

where P+(m,n) and P−(m,n) represent waves travelling in the positive and negative x

directions respectively. He then calculated S+(p, q) and S−(p, q) in the same way as Ss(p, q, ω)

(see Appendix A) and equated the results to give

Ss(p, q, ω) = S+(p, q)δ(ω − sgn(p)wg) + S−(p, q)δ(ω + sgn(p)wg). (2.88)
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Implementing equation 2.88 in equation 2.85, and relabelling the Doppler shift ω − ω0 to ω

gives

σ(1)(ω) = 26πk4
0 cos4 ϕbi

∑
mB=±1

Ss(mBkB)δ(ω −mBωB), (2.89)

where

ωB =
√

2gk0 cosϕbi tanh(2k0d cosϕbi) (2.90)

is the Bragg frequency and mB has been introduced to write the expression in a more conve-

nient form.

The spectrum Ss(k) is symmetrical, however the oceanographer-measured spectra, S(k), is

asymmetrical. Therefore, like Barrick [8], the relation

Ss(k) =
1

2
S(k), (2.91)

is used, which upon substitution into equation 2.89 gives

σ(1)(ω) = 25πk4
0 cos4 ϕbi

∑
mB=±1

S(mBkB)δ(ω −mBωB). (2.92)

2.4.3 Second Order Radar Cross Section

In calculating the second order radar cross section contribution, σ(2)(ω), the relevant term

from equation 2.78 is

1

π
F

L2
∑
mnl
qrs

∑
m′n′l′
q′r′s′

[−iζ(t1)b(q, r)ΓH + ξ(t1)]
[
iζ ′∗(t2)b∗(q′, r′)Γ′H + ξ′∗(t2)

] 〈
QQ′∗

〉 , (2.93)

which can be denoted by

σ(2)(ω) =
1

π
Φ(ω)

(2)

[−iζb(q,r)ΓH+ξ][iζ′∗b∗(q′,r′)Γ′H+ξ′∗]
, (2.94)

where L2 and QQ′∗ are implied. To simplify the calculation, equation 2.94 can split into four

separate terms, namely

σ(2)(ω)1 =
1

π
Φ(ω)

(2)
ξξ′∗ , (2.95)
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σ(2)(ω)2 =
1

π
Φ(ω)

(2)
ζζ′∗b(q,r)b∗(q′,r′)ΓHΓ′H

, (2.96)

σ(2)(ω)3 =
1

π
Φ(ω)

(2)
−iζb(q,r)ξ′∗ΓH

(2.97)

and

σ(2)(ω)4 =
1

π
Φ(ω)

(2)
iξζ′∗b∗(q′,r′)Γ′H

, (2.98)

whereby

σ(2)(ω) = σ(2)(ω)1 + σ(2)(ω)2 + σ(2)(ω)3 + σ(2)(ω)4. (2.99)

From equation 2.35 and by utilising equation 2.70,

〈QQ′∗〉 =
〈P (q − ν, r, s)P (m− q, n− r, l − s)

b(q, r)

P (ν − q′,−r′,−s′)P (q′ −m′, r′ − n′, s′ − l′)〉
b∗(q′, r′)

,

(2.100)

which is the average of 4 independent random variables. From equation 2.74,

〈P1P2P3P4〉 = 〈P1P2〉〈P3P4〉︸ ︷︷ ︸
T1

+ 〈P1P3〉〈P2P4〉︸ ︷︷ ︸
T2

+ 〈P1P4〉〈P2P3〉︸ ︷︷ ︸
T3

, (2.101)

where the three terms, T1 , T2 and T3 , give three different sets of conditions for non zero

averages by equation 2.75. Therefore each σ(2)(ω)i in equation 2.99, where i ∈ {1, . . . , 4} , is

the sum of three different averages,

σ(2)(ω)i = (σ(2)(ω))i,1 + (σ(2)(ω))i,2 + (σ(2)(ω))i,3, (2.102)

where the subscripts 1, 2 and 3 denote the different conditions imposed by T1 , T2 and

T3 . The details of calculating the terms are described in Appendix C. By carrying out the

calculations, (σ(2)(ω))i,1 is found to be representative of specular scattering at the carrier

frequency, for all i , and is therefore not included. For the term (σ(2)(ω))1 in equation 2.95,
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(σ(2)(ω))1,2 and (σ(2)(ω))1,3 are calculated, θ set to 90° , and summed to give

σ(2)(ω)1 = 24πk4
0

∞y

−∞

{[
(k0 − p cosϕ− q sinϕ)(k0 − p)− (1− cosϕ)b2(p, q)

]
b(p, q)b∗(p, q)

2

+

[
(k0 − p cosϕ− q sinϕ)(k0 − p)− (1− cosϕ)b2(p, q)

b(p, q)

]
[

(k0 cosϕ− p)(cosϕ(k0 − p)− q sinϕ)

b∗(k0 cosϕ− p+ k0, k0 sinϕ− q)

−(1− cosϕ)b2(k0 cosϕ− p+ k0, k0 sinϕ− q)
b∗(k0 cosϕ− p+ k0, k0 sinϕ− q)

] }
Ss(k0 cosϕ− p, k0 sinϕ− q, ω − ω0 − Ω)

Ss(p− k0, q,Ω) dp dq dΩ.

(2.103)

By substituting in ϕbi (in equation 2.83) and setting

k1 = (p− k0, q) (2.104)

and

k2 = (−k0 cos(2ϕbi)− p, k0 sin(2ϕbi)− q), (2.105)

equation 2.103 can be written as

σ(2)(ω)1 = 24πk4
0

∞y

−∞

a1

b1

(
a1

b∗1
+
a2

b∗2

)
Ss(k1,Ω)Ss(k2, ω − ω0 − Ω) dp dq dΩ, (2.106)

where

a1 = −k1x(k2 · â)− 2 cos2 ϕbi(−k2
2 + 2k0 (k2 · â)) , (2.107)

a2 = −k2x(k1 · â)− 2 cos2 ϕbi(−k2
1 + 2k0 (k1 · â)) , (2.108)

b1 =
√
−k2

2 + 2k0(k2 · â) (2.109)

and

b2 =
√
−k2

1 + 2k0(k1 · â) (2.110)
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where b1 and b2 can be real or imaginary depending on the respective argument and â is a

unit vector in the direction of the receiver from the scattering patch (see figure 2.3), namely

â = (− cos(2ϕbi), sin(2ϕbi)).

Johnstone [50] showed that in the case of second order scatter, equation 2.88 is not strictly true;

explicitly, an ocean wave train propagating in the positive x direction does not necessarily

impart a negative Doppler shift on the incident radio wave. It was instead shown that an ocean

wave with wave vector k1 , defined in equation 2.104, imparts a shift of ω1 =
√
gk1 tanh(k1d)

and, similarly, an ocean wave with wave vector −k1 imparts a shift of −ω1 . The results for

wave vectors ±k2 are analogous, and each wave Doppler shifts the incident radio wave by

±ω2 , respectively, for ω2 =
√
gk2 tanh(k2d). Therefore,

Ss(k1,Ω) =
∑

m1=±1

Ss(m1k1)δ (Ω−m1ω1)

and

Ss(k2, ω − ω0 − Ω) =
∑

m2=±1

Ss(m2k2)δ (ω − ω0 − Ω−m2ω2) ,

and then by
∫
δ(x− y)δ(z − y) dy = δ(x− z),

Ss(k1,Ω)Ss(k2, ω − ω0 − Ω) =
∑

m1,m2=±1

Ss(m1k1)Ss(m2k2)δ(ω −m1ω1 −m2ω2) (2.111)

where ω − ω0 has been relabelled as ω .

Furthermore, for a function f of k1 and k2 (which are both functions of p and q ), summed

over the whole p ,q -plane,

∑
pq

f(k1,k2) =
∑
pq

f(k1,k2) + f(k2,k1)

2

and by this,

a1

b1

(
a1

b∗1
+
a2

b∗2

)
=

1

2

(
a1

b1
+
a2

b2

)(
a1

b∗1
+
a2

b∗2

)
=

1

2

∣∣∣∣a1

b1
+
a2

b2

∣∣∣∣2 .
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Therefore define the electromagnetic coupling coefficient, ΓE , as

ΓE =
1

22 cos2 ϕbi

(
a1

b1
+
a2

b2

)
(2.112)

and using this definition alongside equation 2.111, whilst introducing the spectrum S(k) from

equation 2.91, means that equation 2.106 can be written as

σ(2)(ω)1 = 25πk4
0 cos4 ϕbi

∑
m1,m2=±1

∞x

−∞
|ΓE |2S(m1k1)S(m2k2)

δ(ω −m1ω1 −m2ω2) dp dq.

(2.113)

A similar process reveals

σ(2)(ω)2 = 25πk4
0 cos4 ϕbi

∑
m1,m2=±1

∞x

−∞
Γ2
HS(m1k1)S(m2k2)

δ(ω −m1ω1 −m2ω2) dp dq,

(2.114)

σ(2)(ω)3 = −25iπk4
0 cos4 ϕbi

∑
m1,m2=±1

∞x

−∞
ΓHΓ∗ES(m1k1)S(m2k2)

δ(ω −m1ω1 −m2ω2) dp dq

(2.115)

and

σ(2)(ω)4 = 25iπk4
0 cos4 ϕbi

∑
m1,m2=±1

∞x

−∞
ΓHΓES(m1k1)S(m2k2)

δ(ω −m1ω1 −m2ω2) dp dq.

(2.116)

Substituting equations 2.113-2.116 into equation 2.94 gives

σ(2)(ω) = 25πk4
0 cos4 ϕbi

∑
m1,m2=±1

∞x

−∞

(
|ΓE |2 + Γ2

H − iΓHΓ∗E + iΓHΓE

)
S(m1k1)S(m2k2)δ(ω −m1ω1 −m2ω2) dp dq

and as, for a ∈ C and b ∈ R ,

|a− ib|2 = |a|2 − iba∗ + iba+ b2,
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the total second order radar cross section is

σ(2)(ω) = 25πk4
0 cos4 ϕbi

∑
m1,m2=±1

∞x

−∞
|ΓE − iΓH |2 S(m1k1)S(m2k2)

δ(ω −m1ω1 −m2ω2) dp dq.

(2.117)

§ 2.5 Finite Conductivity of the Ocean

The bistatic radar cross section, explicitly in equations 2.92 and 2.117, was derived on the

assumption that the ocean is a perfect conductor. However, the ocean is not a perfect con-

ductor, hence why radio waves are attenuated by the surface. Barrick [5] showed that the

finite conductivity of the surface can be included by finding the radar cross section for a

perfectly conducting surface and then multiplying the result by a loss factor, describing the

ohmic losses due to the surface.

However, by assuming the surface is a perfect conductor, the derived electromagnetic cou-

pling coefficient, given in equation 2.121, contains two singularities. The singularities occur

when either b1 or b2 is equal to zero, given in equations 2.109 and 2.110 respectively. The

terms b1 and b2 both represent the z component of the propagation constant, defined in

equation 2.6, and therefore the singularities occur when the propagation of the wave is solely

in the x ,y -plane or equivalently when the electric field is completely normal to the surface.

For a vertically polarised ground wave, near grazing, propagating along a perfectly conducting

surface (as was assumed in the preceding sections) there will indeed be no tangential com-

ponent of the electric field. However, the ocean is not a perfect conductor and some of the

energy is lost to the surface and so there must be a tangential component of the electric field

and thus a z component in the propagation constant.

To include the tangential component of the electric field, Johnstone [50] replaces b(p, q) in

the denominator of his monostatic electromagnetic coupling coefficient with

b(p, q) + δkz,

where δkz corresponds to the z component of the propagation constant caused by the ocean’s

finite conductivity, say σc . To find δkz , using the method of Jordan [51], Maxwell’s equation

are used to form two sets of equations - one for the air and one for the finitely conducting

ocean, where the differing properties of each medium are included. Boundary conditions are

then used to find the value of δkz . The mathematical details are spared here, but can be

found in the work of either Johnstone or Jordan. By following the method, whilst changing
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the appropriate terms to account for differing definitions in the plane wave formulations of

the electric field, it can be shown that

δkz = −k04

where

4 =
Zs
Zη
,

is the effective surface impedance, in which Zs is the conductor surface impedance given by

Zs = (1− i)
√
ω0µ0

2σc
(2.118)

and Zη is the characteristic impedance of free space given by

Zη =

√
µ0

ε0
, (2.119)

where, in equations 2.118 and 2.119, µ0 and ε0 are permeability and permittivity of free

space.

The value for 4 is dependent on ocean conductivity, σc and hence no fixed value will be

completely accurate, given that temperature change, for one, affects the conductivity of the

ocean and that frequently changes. However, in order to elicit calculation of the radar cross

section, in this work we will use the value presented by Barrick [9] of

4 = 0.011− 0.012i. (2.120)

Therefore, the electromagnetic coupling coefficient in equation 2.121 becomes

ΓE =
1

22 cos2 ϕbi

(
a1

b1 − k04
+

a2

b2 − k04

)
, (2.121)

where 4 is given in equation 2.120.

§ 2.6 Monostatic Radar Cross Section of the Ocean Surface

To check that the radar cross section expression derived in the preceding sections reverts back

to the monostatic result presented by Lipa and Barrick [59], let ϕ = 180° and equations 2.92

and 2.117 become

σ(1)(ω)(M) = 25πk4
0

∑
mB=±1

Ss(mBkB
(M))δ(ω −mBω

(M)
B ), (2.122)
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where ω
(M)
B is the monostatic Bragg frequency, ω

(M)
B =

√
2gk0 tanh(2k0d), kB

(M) is the

Bragg wavevector defined by (−2k0, 0), and

σ(2)(ω)(M) = 25πk4
0

∑
m1,m2=±1

∞x

−∞
|Γ(M)
T |2Ss(m1k1)Ss(m2k2)δ(ω −m1ω1 −m2ω2) dp dq,

(2.123)

respectively. In equation 2.123,

k1 = (p− k0, q) k2 = (−k0 − p,−q)

and

Γ
(M)
T = Γ

(M)
E − iΓH ,

represents the monostatic coupling coefficient, in which

Γ
(M)
E =

1

2

(
(k1 · k0)(k2 · k0)/k2

0 − 2k1 · k2√
k1 · k2

)
is the monostatic electromagnetic coupling coefficient. Both radar cross section expressions

in equations 2.122 and 2.123 are a factor of 2 smaller than the results of Lipa and Barrick [59]

due to differing Fourier transform definitions. Both Rice [78] and Barrick [5] use a Fourier

transform of

F (ω) =
1

π

∫ ∞
−∞

f(τ)e−iωτ dτ

which is a factor of 2 larger than the one used in this work, given in equation 2.66. The

resulting difference in the radar cross section is expected, and when the inverse Fourier trans-

form is taken to calculate the power in the spectrum, σ0 , the results are the same. Explicitly,

Barrick calculates

σB0 =
1

2

∫
σB(ω) dω

whereas we, here, calculate

σH0 =

∫
σ(ω) dω,

which - accounting for the factor of 2 differences in σB(ω) and σ(ω) - leads to σB0 = σH0 . Ad-

ditionally, as will be explained in future sections, the Doppler spectrum is usually normalised

before it is inverted and hence the scale factor of 2 becomes irrelevant anyway.
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The derived monostatic radar cross section expression in equations 2.122 and 2.123 also differs

to that of Johnstone [50]. In this work, like Barrick [5], the coupling coefficients are combined

as ∣∣∣Γ(M)
E − iΓH

∣∣∣2 ,
however Johnstone combines them as (

Γ
(M)
E

)2
+ 4Γ2

H .

This is due to the difference in how the second order scattering processes were combined in

the derivations. The second order electromagnetic and hydrodynamic scattering processes

include the same two sets of ocean wavetrains, at the same time and place. Therefore, in

this work, like that of Barrick, they were combined coherently and consequently the terms in

equations 2.97 and 2.98 contributed to the second order radar cross section. In the work of

Johnstone, the processes were combined incoherently which resulted in the differing, incorrect,

form.

Summary

In this chapter, the bistatic radar cross section of the ocean surface has been derived and the

derived term was shown to uniquely equal the monostatic radar cross section of Barrick [5][7]

when ϕbi = 0. In the following chapter, the numerical solution is calculated and the results

verified using measured monostatic and bistatic radar data.



Chapter 3

Evaluation and Simulation of the

Radar Cross Section

§ 3.1 Introduction

To summarise the key results of Chapter 2, the bistatic radar cross section of the ocean surface

is given by

σ(ω) = σ(1)(ω) + σ(2)(ω),

where

σ(1)(ω) = 25πk4
0 cos4 ϕbi

∑
mB=±1

S(mBkB)δ(ω −mBωB) (3.1)

and

σ(2)(ω) = 25πk4
0 cos4 ϕbi

∑
m1,m2=±1

x
|ΓE − iΓH |2

S(m1k1)S(m2k2)δ(ω −m1ω1 −m2ω2) dp dq,

(3.2)

in which ΓE is the electromagnetic coupling coefficient given in equation 2.121 and ΓH is

the hydrodynamic coupling coefficient given in equation 2.61. The Bragg frequency, ωB , was

given in equation 2.90 as

ωB =
√

2gk0 cosϕbi tanh(2k0d cosϕbi). (3.3)

Figure 3.1 shows a WERA Doppler spectrum and is a depiction of what equations 3.1 and

3.2 are modelling. The two peaks highlighted by the dashed lines show the first order scatter,

64
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modelled by equation 3.1, and the surrounding, lesser, continuum shows the contribution from

second order scatter, modelled by equation 3.2.

Figure 3.1: Example of a radar Doppler spectrum from the bistatic WERA dataset, described
in section 3.2, measured on 12/07/2014 03:21. The spectrum shown is for a bistatic range of
22.18 km and a beam angle of 190° from the receiver (as measured clockwise from north) and
hence ϕbi ≈ 18.6° . The dashed lines highlight the first order scatter modelled in equation 3.1.

In this chapter, the forward problem will be solved numerically, with a method analogous

to the numerical solution of the monostatic radar cross section presented by Holden and

Wyatt [43]. That is, for some ocean spectrum, S(k), the corresponding Doppler spectrum,

σ(ω), will be calculated, using equations 3.1 and 3.2.

The datasets used in the chapter are described in section 3.2. The numerical details are given

in section 3.3, however, when the resulting simulated Doppler spectra are compared to real

spectra, substantial differences occur for large values of ϕbi . In an attempt to reduce the

differences, a more sophisticated simulation method is proposed in section 3.4.

§ 3.2 Datasets

3.2.1 Bistatic WERA Data

To validate the Doppler spectra simulations, a bistatic HF radar dataset has been acquired.

The radar site which recorded the data is shown in figure 3.2. The site consists of two

WERA systems, maintained by the Mediterranean Institute of Oceanography, who provide
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real-time sea surface current monitoring [68]. Situated on the south coast of France, the

transmitter is located at (42.98°N, 6.20°E) with a transmission frequency of approximately

16.127 MHz and a bandwidth of 50 kHz. The receiver is located 17.36 km away from the

transmitter at (43.09°N, 6.36°E), at Cap Bénat. The receiver comprises 8 vertical electric

monopoles with 0.45 EM spacing, placed about 400 m away from shore, at an altitude of 165

m. Boresight is at 200° , measured clockwise from north, and the received time series each

consist of 4096 samples with a sample rate of 0.26 seconds. In this work, the time series are

processed using a beamforming method, using a Taylor window over the antennas, and a 75%

overlapping Nuttall window of size 512 for the Fourier transform. These windows were chosen

based on simulated tests, where signals from different direction were simulated and combined

appropriately at identically setup antennas; different window combinations were then tested

using a phase shift beamforming method, where the windows which recovered a signal from

a particular direction the best, were chosen. Additionally, the radar has a range resolution of

3 km and data for 64 ranges are available.

The dataset consists of 280 Doppler spectra, one every 20 minutes, from 00:01, for the dates

09/07/2014, 10/07/2014, 12/07/2014 and 13/07/2014. This dataset will henceforth be re-

ferred to as the bistatic WERA dataset.

Figure 3.2: Geometry of the bistatic WERA data radar setup on the south coast of France;
the transmitter and receiver are shown by the pink diamond and blue circle respectively and,
the location of the wave buoy is shown by the black cross. The depth of the Mediterranean
sea from the EMODnet database [23] is shown by colour, in metres.

3.2.2 Directional Wave Buoy Data

A directional wave buoy situated in the radar coverage area (6.28°E, 42.97°N), where the

ocean depth is 95 m, is used to validate simulated Doppler spectra in this chapter and, to

simulate Doppler spectra and validate inversion results in Chapter 5. In both cases, the data
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is linearly interpolated when necessary. The Waverider buoy is situated at a bistatic range

of 10.9 km with a bearing of 204° from the receiver. Spectra estimated from the buoy data,

provided by CANDHIS [73], are in 30 minute intervals for the same time period as the bistatic

HF radar data. The specifications of the dataset are given in table 5.2.

Dates 09-10/07/2014 and 12-13/07/2014
Time resolution 30 minutes
Frequency resolution non linear spacing in [0.025-0.5 Hz] (40 measurements)
Directional resolution 0.087 rads in [0-2π] (72 measurements)

Table 3.1: Specifications of the CANDHIS wave buoy dataset.

3.2.3 Simulation Data

In section 3.4, Doppler spectra are simulated using the local conditions for the bistatic WERA

data radar site. As it will be shown in section 3.3, ocean depth, the ocean current and the

directional spectrum are all necessary to produce an accurate Doppler spectrum and each has

been obtained from a different source.

• Ocean depth data from EMODnet [23] has been used, which has a resolution of approx-

imately 115 m. A contour plot of the data, for the relevant area, is shown in figure 3.2.

• Local current data has been obtained from the Globcurrent database [28], with a tem-

poral resolution of 6 hours and a spatial resolution of 1/8 degree.

• The directional ocean spectra have been modelled using WW3 data from the IOWAGA

database [49], input into a Pierson Moskowitz model. The dataset provides values for

significant waveheight, peak period, wave spread and wave direction, on a grid with a

resolution of ∼3.5 km. Data is available with a 3 hour resolution, for the same dates

as the bistatic radar data, although the entire dataset spans a larger period of time

(2013-2016 are used in Chapter 5).

All three datasets have been linearly interpolated, where necessary.
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§ 3.3 Numerical Solution of the Radar Cross Section

3.3.1 First Order

The delta function in equation 3.1 shows that the first order contribution will appear as two

peaks, localised at ±ωB . The contributing wave vectors are ±kB , where

kB = −2k0 cosϕbi(cosϕbi,− sinϕbi),

for the bistatic angle, ϕbi , as shown in figure 2.3. These wavevectors travel in the direction

of the Bragg bearing, both toward and away from the radar set-up, also shown in figure 2.3.

Furthermore, the magnitude of kB , kB , is 2k0 cosϕbi . Recalling Crombie’s hypothesis [19],

discussed in Chapter 1, these particular signals are amplified due to resonance by a process

known as Bragg scattering. Unlike the monostatic expression, kB includes a factor of cosϕbi ;

this means that for one radar, using a single carrier frequency, there will be a number of

different Bragg waves, dependent on the radar beam range and angle. Figure 3.3 shows the

value of ϕbi for the bistatic WERA data radar coverage area. The area where ϕbi → 90° , is

known as the forward scatter region and for these values of ϕbi , both ωB and kB tend to

0. Consequently, the wavelengths of the Bragg waves in this region become infinitely long,

which is unrealistic. Furthermore, the cos4 ϕbi factors in the radar cross section expressions

in equations 3.1 and 3.2 will tend to zero, causing a low SNR.

Figure 3.3: Values of the bistatic angle, ϕbi , shown by colour for the bistatic WERA data
radar setup.

As can be seen in figures 3.1 and 3.4, the peaks are not ideal delta functions, appearing

exactly at the Bragg frequency, they are broadened. This is due to ocean current variations

and general system noise. Furthermore, specifically for bistatic systems at a scattering location



CHAPTER 3. EVALUATION AND SIMULATION OF THE RADAR CROSS
SECTION 69

where ϕbi can be large, additional first order peak broadening can occur. This can happen for

a radar with a wide main lobe and low range resolution as, in one measurement location, the

Bragg frequency can vary substantially. The variation then causes a number of Bragg peaks to

occur, which combine to form one broad peak. An example of this, for a measured spectrum,

is shown in figure 3.4, where the broadened Bragg peaks are evident. A similar effect can also

occur from prominent sidelobes and a large current as was shown, in the monostatic case, by

Wyatt et al. [109].

Figure 3.4: A radar Doppler spectrum from the bistatic WERA dataset, described in sec-
tion 3.2, measured on 09/07/2014 01:01. The bistatic range is 11.7 km and the beam angle is
200° , measured clockwise from north. At this location, ϕbi ≈ 44° . The dashed lines show the
values of ±ωB .

3.3.2 Second Order

The second order contribution, given in equation 3.2, is produced by the nonlinear interaction

between two first order ocean waves and by double electromagnetic scattering from two first

order ocean waves. The contributing wave vector pair k1 and k2 sum to give the Bragg

wavevector kB and an infinite number of pairs (theoretically) exist in the p ,q wavenumber

plane; an example pair of such wavevectors are shown in figure 3.5. To find the values of k1

and k2 , the delta function in equation 3.2, namely,

δ
(
ω −m1

√
gk1 tanh(k1d)−m2

√
gk2 tanh(k2d)

)
, (3.4)
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β
k1

k2

kB

Figure 3.5: Geometry of second order scattering in the wave vector plane, spanned by p and
q , where the emitted radar beam is in the direction of the p axis. The wave vector pair k1

and k2 , at angles θ1 and θ2 , respectively, as measured from the p axis, are shown, along
with the bistatic angle, ϕbi , and Bragg wave vector, kB .

is used, by finding the values for which

ω −m1

√
gk1 tanh(k1d)−m2

√
gk2 tanh(k2d) = 0 (3.5)

is satisfied. For a given value of ω , the set of solutions of k1 and k2 defines a frequency

contour in the p ,q -plane. As m1 and m2 can both take the values of 1 or −1, equation 3.5

can take on four different forms, however it is only necessary to investigate the cases m1 = m2

and m1 6= m2 to understand all four.

3.3.2.1 Case m1 = m2 :

Squaring equation 3.5 gives

ω2 = g
(
k1 tanh(k1d) + k2 tanh(k2d) + 2

√
k1 tanh(k1d)k2 tanh(k2d)

)
and it can be shown that

ω2 ≥ (k1 + k2)g tanh((k1 + k2)d).

As the sum of two sides of a triangle is greater than the third (figure 3.5),

k1 + k2 > 2k0 cosϕbi



CHAPTER 3. EVALUATION AND SIMULATION OF THE RADAR CROSS
SECTION 71

and therefore

ω2 > 2gk0 cosϕbi tanh(2k0 cosϕbid).

Taking the square root gives

|ω| >
√

2gk0 cosϕbi tanh(2k0 cosϕbid),

recognisable as the Bragg frequency, ωB , given in equation 3.3. This leads to two conditions;ω > ωB m1 = m2 = 1

ω ≤ −ωB m1 = m2 = −1.

(a) ϕbi = 0° (b) ϕbi = 25°

Figure 3.6: The frequency contours of equation 3.5 shown for m1 = m2 = 1 and two values
for ϕbi . The colour shows the value of the normalised frequency, η = ω/ωB , for a range of p
and q values. The two red stars show the values of ±k0 cosϕbi and the white contour shows

the value of η =
1

ωB
2
√
gk0 cosϕbi tanh(k0d cosϕbi).

Figure 3.6 shows the frequency contours, defined by equation 3.5, for two different values of

ϕbi . Close to the Bragg frequencies (i.e. where normalised frequency η = 1), the contours are

circular in shape and centred around the values of ±k0 cosϕbi . As η increases, the contours

become more oval in shape until |η| =
1

ωB
2
√
gk0 cosϕbi tanh(k0d cosϕbi) (shown in white)

where they separate.

A non-zero value of ϕbi causes the contours to rotate clockwise from being symmetrical about

the p and q axes to being symmetrical about some axes, say p′ and q′ . The additional black

lines in figure 3.6 (b) show the p′ and q′ axes.
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3.3.2.2 Case m1 6= m2 :

When m1 6= m2 , squaring equation 3.5 gives

ω2 = g
(
k1 tanh(k1d) + k2 tanh(k2d)− 2

√
k1 tanh(k1d)k2 tanh(k2d)

)
,

and it can be shown that

ω2 ≤ (k2 − k1)g tanh((k2 − k1)d).

In the right hand plane, when k1 and k2 lie in opposite directions along the p′ axis, meeting at

a point past the Bragg frequency, k2−k1 reaches its maximum value of 2k0 cosϕbi . Therefore,

ω2 ≤ g(2k0 cosϕbi tanh(2k0 cosϕbid))

and this leads to the conditions0 < ω ≤ ωB m1 = −1,m2 = 1

−ωB < ω ≤ 0 m1 = 1,m2 = −1.

In the left hand plane, where k2 < k1 , the result is reversed giving0 < ω ≤ ωB m1 = 1,m2 = −1

−ωB < ω ≤ 0 m1 = −1,m2 = 1.

Figure 3.7 shows the normalised frequency contours when m1 6= m2 for cases of ϕbi = 0° and

ϕbi = 25° . Again, the contours are symmetrical about the p′ and q′ axes. However, in this

case, they do not cross the q′ axis for any value of ω . The contours are tight circles around

the Bragg frequencies, growing in size and becoming less circular as the frequency approaches

zero.

The frequency contours for all four possible combinations of m1 and m2 are symmetrical

about the q′ axis. Therefore, the integration in equation 3.2 can be taken over one half of

the symmetric plane and doubled. Thus, taking the integration of equation 3.2 over the right

hand p′ -plane, gives

σ2(ω) = 26πk4
0 cos4 ϕbi

∑
m1,m2=±1

∫ ∞
−∞

∫ ∞
q′
|ΓE − iΓH |2S(m1k1)S(m2k2)

δ(ω −m1ω1 −m2ω2) dp dq.

(3.6)
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(a) ϕbi = 0° (b) ϕbi = 25°

Figure 3.7: The frequency contours of equation 3.5 shown for m1 6= m2 (where m1 = 1)
for two different values for ϕbi . The colour shows the value of the normalised frequency,
η = ω/ωB , for a range of p and q values.

In this plane, where k1 ≤ k2 , the integration can be carried out in terms of polar coordinates

k1 and θ1 , where θ1 is the angle between k1 and the p axis (see figure 3.5). Explicitly,

σ2(ω) = 26πk4
0 cos4 ϕbi

∑
m1,m2=±1

∫ θ+L

−θ−L

∫ ∞
0
|ΓE − iΓH |2S(m1k1)S(m2k2)

δ(ω −m1ω1 −m2ω2)k1 dk1 dθ1,

(3.7)

where θ−L and θ+
L are the integration limits of θ1 and vary with frequency.

3.3.2.3 Integration Limits

The general integration limits vary with ϕbi such that

θ−L = −(π + ϕbi) and θ+
L = π − ϕbi. (3.8)

However, a particular set of ω values requires different limits. It was stated in the discussion

of frequency contours that when m1 = m2 and |ω| > 2
√
k0g cosϕbi tanh(k0d cosϕbi), the

frequency contours cross the q′ axis and no longer complete full rotations in the right half

of the p′ -plane. By symmetry, when the contours cross the q′ axis, k1 and k2 are the same

length. Therefore, when k2 = k1 and m1 = m2 , the delta constraint of equation 3.5 becomes,

ω = ±2
√
gk1 tanh(k1d) (3.9)
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and squaring equation 3.9 then gives

ω2

4g
= k1 tanh(k1d), (3.10)

which can be solved numerically for k1 . Introducing a term, β , as the angle between k1 and

kB (see figure 3.5), the integration limits are given by

θ+
L = π − ϕbi − β, (3.11)

and

θ−L = −θ+
L − 2ϕbi. (3.12)

Therefore, as

β = cos−1

(
kB
2k1

)
, (3.13)

where the solution for k1 from equation 3.10 is used,

θ+
L = π − ϕbi − cos−1

(
kB
2k1

)
(3.14)

and

θ−L = −π − ϕbi + cos−1

(
kB
2k1

)
.

3.3.2.4 Integration Variables

As the integration variables are k1 and θ1 , k2 and θ2 must be expressed in terms of k1 and

θ1 . By the cosine rule,

k2 =
√
k2

1 + k2
B + 2kBk1 cos(θ1 + ϕbi) (3.15)

and, again by the cosine rule whilst using the result from equation 3.15,

θ2 = π + θ1 − cos−1

(
k1 + kB cos(θ1 + ϕbi)

k2

)
. (3.16)



CHAPTER 3. EVALUATION AND SIMULATION OF THE RADAR CROSS
SECTION 75

3.3.2.5 Reducing the Integral

The next step in calculating σ(2)(ω) is to reduce the double integral in equation 3.7 to a single

integral using the delta function integration property,∫
f(x)δ(x− a) dx = f(a).

To do this, define

ys =
√
k1,

h(ys, θ1) = m1ys
√
g tanh(y2

sd) +m2

√
gk2 tanh(k2d) (3.17)

and

I(ys, θ1) = 27π|ΓE − iΓH |2k4
0 cos4 ϕbiS(m1k1)S(m2k2)y3

s .

which can be used to write equation 3.7 as

σ2(ω) =

∫ θ+L

−θ−L

∫ ∞
0

I(ys, θ1)δ (ω − h(ys, θ1)) dys dθ1. (3.18)

In order for the delta function integration property to be valid, equation 3.18 should have an

integration variable of h . Therefore, ys is transformed into h to give

σ2(ω) =

∫ θ+L

−θ−L

∫ ∞
0

I(ys, θ1)δ (ω − h(ys, θ1))

∣∣∣∣∂ys∂h
∣∣∣∣
θ1

dh dθ1, (3.19)

where ∣∣∣∣ ∂h∂ys
∣∣∣∣
θ1

=
√
g

{
m1

(√
tanh(y2

sd) +
y2
sd(sech2(y2

sd))√
tanh(y2

sd)

)

+
m2(y3

s + yskB cos(θ1 + ϕbi))

k
3/2
2

{√
tanh(k2d) + k2d

sech2(k2d)√
tanh(k2d)

}}
,

whose reciprocal is

∣∣∣∣∂ys∂h
∣∣∣∣
θ1

and where k2 =
√
y4
s + 2y2

skB cos(θ1 + ϕbi) + k2
B .

To simplify the double integral in equation 3.19 to a single integral, the solution, y∗ , to

ω − h(y∗, θ1) = 0 (3.20)
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is required, which can be sought using a numerical method. For timely convergence in the

numerical method, a good initial guess for y∗ is important. As the solution for shallow water

should not be too different to that for deep water, an initial solution will be found for the deep

water case and used as a starting point for the shallow water case. Labelling the expression

to be solved for zero as f(y), and substituting equation 3.17 into 3.20,

f(y) = ω−

(
m1y

√
g tanh(y2d) +m2

{(
y4 + 2y2kB cos(θ1 + ϕbi) + k2

B

)1/4
·
√
g tanh

((
y4 + 2y2kB cos(θ1 + ϕbi) + k2

B

)1/2
d
)})

,

(3.21)

and by letting d→∞ , equation 3.21 becomes

f(y) = ωm1 − y
√
g − L√g

(
y4 + 2y2kB cos(θ1 + ϕbi) + k2

B

)1/4
, (3.22)

where L = m1m2 has been used. Equation 3.22 can be solved exactly in two cases:

• L = 1 and θ1 = −ϕbi :

In this case, f(y) becomes

f(y) = m1ω − y
√
g −√g

(
y4 + 2kBy

2 + k2
B

)1/4
= 0,

which can be rearranged to

(m1ω − y
√
g)4 = g2

(
kB + y2

)2
and this can then be solved to give

y∗0 =
ω2 − gkB
2m1ω

√
g
. (3.23)

• L = −1 and θ1 = π − ϕbi :

In this case, f(y) becomes

f(y) = m1ω − y
√
g +
√
g
(
y4 − 2kBy

2 + k2
B

)1/4
= 0.

This can be written as

(m1ω − y
√
g)4 = g2

(
kB − y2

)2
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and then taking the square root, noting that the
(
kB − y2

)
root is taken on the right

hand side to ensure it’s positive, gives

(m1ω − y
√
g)2 = g(kB − y2).

The solution is then found to be

y∗0 =
m1ω +

√
2gkB − ω2

2
√
g

, (3.24)

where the positive root has again been taken to ensure y∗0 is positive.

3.3.2.6 Calculating the Single Integral

Upon finding y∗ , the second order cross section calculation in equation 3.19 reduces to

σ2(ω) =

∫ θ+L

−θ−L
I(ys, θ1)

∣∣∣∣∂ys∂h
∣∣∣∣
θ1

∣∣∣∣
ys=y∗

dθ1, (3.25)

which can be calculated using a numerical integration method such as the Trapezoid/Simp-

son’s rule. To ensure convergence and to speed up the simulation, the value of y∗0 is updated

to the previous y∗ value for increasing θ1 . Additionally, in order to compute the integral,

there are expressions in the coupling coefficient that need to be expressed in terms of k1 and

θ1 :

• k1 · â = −k1 cos(2ϕbi + θ1),

• k2 · â = kB cosϕbi + k1 cos(2ϕbi + θ1) and

• k1 · k2 = −k1kB cos(θ1 + ϕbi)− k2
1 .

3.3.2.7 Electromagnetic Singularities

The electromagnetic coupling coefficient given in equation 2.121, contains two singularities;

either when b1 or b2 is equal to zero. As

b1 = b(p, q) =
√
k2

0 − p2 − q2

and

b2 = b(k0 cosϕ− p+ k0, k0 sinϕ− q) =
√
k2

0 − (k0 cosϕ− p+ k0)2 − (k0 sinϕ− q)2,
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setting both equal to zero, squaring and rearranging reveals that the singularities lie on two

circles in the p ,q -plane, namely

p2 + q2 = k2
0 (3.26)

and

(k0 cosϕ− p+ k0)2 + (k0 sinϕ− q)2 = k2
0. (3.27)

(a) Bistatic (ϕbi = 45°) (b) Monostatic (ϕbi = 0°)

Figure 3.8: Contours in the p ,q -plane defined by equation 3.5 when m1 = m2 = 1. The
electromagnetic singularities are shown for both monostatic and bistatic radars. The yellow
dashed circle shows the singularities defined by equation 3.26 and the magenta dotted circle
shows those defined by equation 3.27. In the monostatic case, equations 3.26 and 3.27 are
equal and hence both circles are in the same location. The frequency contours that are
tangential with the singularities are shown in white.

Both singularities are shown in figure 3.8(a), and each singularity will be most prominent

when a frequency contour is tangential to the singular circle. In order to find the frequen-

cies for which this is true, we seek the solutions for p and q such that the gradient of the

frequency contour expression of equation 3.5 is equal to the gradient of each circle function

in equations 3.26 and 3.27. Knowledge of the geometry of the contours and the radii of the

circles is exploited to find the solutions for p and q and then the solutions are substituted

into equation 3.5 to give the tangential frequencies. The four solutions for p and q are

p = k0 sinϕbi and q = k0 cosϕbi, (3.28)
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p = −k0 sinϕbi and q = −k0 cosϕbi, (3.29)

p = k0 sinϕbi + 2k0 sin2 ϕbi and q = k0 cosϕbi + 2k0 sinϕbi cosϕbi (3.30)

and

p = −k0 sinϕbi + 2k0 sin2 ϕbi and q = −k0 cosϕbi + 2k0 sinϕbi cosϕbi (3.31)

and each solution can be readily verified by substitution into the relevant derivative functions.

Substituting the solutions for p and q , from equations 3.28-3.31 into equation 3.5 gives two

distinct tangential frequencies: one for the solutions of p and q in equations 3.28 and 3.29,

ω = 23/4ωB

√√
1− sinϕbi
cosϕbi

√
tanh(d

√
2k2

0(1− sinϕbi))√
tanh(2k0 cosϕbid)

(3.32)

and one for the solutions of p and q in equations 3.30 and 3.31,

ω = 23/4ωB

√√
1 + sinϕbi
cosϕbi

√
tanh(d

√
2k2

0(1 + sinϕbi))√
tanh(2k0 cosϕbid)

. (3.33)

These values for ω are highlighted in figure 3.6 by the white contours and are shown to be

tangential to the circles expressed in equations 3.26 and 3.27. Both sigularities are highlighted

in a simulated Doppler spectrum in figure 3.9 by dashed vertical lines. For deep water, or

when d→∞ , the values for ω become

ω = 23/4ωB

√√
1± sinϕbi
cosϕbi

, (3.34)

which agree with the results of Gill and Walsh [27].

Setting ϕbi = 0 in equation 3.34 gives the monostatic electromagnetic singularity, namely

ω = 23/4ω
(M)
B ,

which is shown in figure 3.8(b), noting that ω
(M)
B in the monostatic Bragg frequency defined

in section 2.6. In terms of k1 and k2 , the singularity occurs when

b(p, q) =
√

k1 · k2

and hence is due to a corner reflector, as k1 is perpendicular to k2 .
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3.3.3 Ocean Currents

An ocean current can affect how an ocean wave propagates, both in direction and speed. The

angular frequency, ω , of an ocean wave was given in equation 1.15; it is known as the relative

velocity and applies if the frame of reference is moving with the current. Holthuijsen [44]

likens this to a wave moving as it would but in a tank of water being carried with the speed

and direction of the ambient current. However if the frame of reference is fixed, as in the case

of an observation of a patch of the ocean from a fixed point, the propagation velocity of the

wave with the ambient current included, cabs , is found by adding the current vector, U , to

the velocity propagation vector of the wave, crel , i.e.

cabs = crel + U. (3.35)

Therefore, as the current is causing a change in speed to the waves, the Doppler effect causes

an additional shift, 4ω , to the entire returned spectrum. From equation 1.5, the additional

shift is

4ω = 2k0νE(ϕ) cosϕbi, (3.36)

where νE(ϕ) is the component of the current velocity in the elliptical direction for beam angle

ϕ .

To include the current effects in the simulation, the current speed and direction are input and

the respective Doppler shift is calculated as per equation 3.36.

3.3.4 Simulation

A Python 3 code has been written to simulate Doppler spectra, following the method in this

section. In the code, there are two options for the input values of S(k); either partition values

for hs , tp , s (for the directional cos2s model) and θm are input and a Pierson Moskowitz

spectrum is used to model the values of S(k), or a pre-determined matrix of the values for

S(k) can be used, which is linearly interpolated for the calculations. The current speed and

direction are also input, as well as general radar information such as the carrier frequency and

the distance between the transmitter and receiver. To make the simulation more realistic, the

calculated σ(ω) is convolved with a Nuttall window [34] and noise, randomly generated from

a Gaussian distribution with a user-defined variance and floor level, is added to emulate the

signal processing effects.
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An example of a Doppler spectrum, simulated by the program, is shown in figure 3.9. The

timing of the simulation varies, depending on the resolution of the integration in both θ1 and

ω , as shown in figure 3.10. A recommended compromise is to simulate a 512 point Doppler

spectrum, between -1.27 and 1.27 Hz (a range which encapsulates the important parts of the

spectrum with some surrounding noise), with 50 θ1 points per frequency value; a simulation

with these settings takes approximately 0.31 seconds (executed on a machine with an Intel

Core i5 processor and 8 GB of RAM).

Figure 3.9: A bistatic Doppler spectrum where the Tx and Rx are set 60 km apart, with
ϕbi ≈ 20° . The directional spectrum S(k) is modelled with hs ≈ 4 m, tp ≈ 10.2 s with
θm = 170° , clockwise from north, and s = 2. The carrier frequency is set to 16 MHz and
in this case no current has been added. The spectrum has been calculated over 768 evenly
spaced points between -1.27 Hz and 1.27 Hz and for each frequency, a 500 point integration
has been carried out over θ1 . The electromagnetic singularities are highlighted by the dashed
lines and a noise floor has also been added.
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(a) Varying number of θ points in the simula-

tion, with the number of frequency points set to

512.

(b) Varying number of frequency points in the

simulation, with the number of θ points set to

100.

Figure 3.10: Running time (in seconds) of the simulation code with the labelled parameter
varied.

§ 3.4 Simulation Incorporating the Radar Effects

3.4.1 Introduction

Measured HF radar data are now used to check the validity of a spectrum simulated using the

method of section 3.3. This can be done in a location where both HF radar and directional

wave buoy data are available; the directional wave buoy data (which provides S(k)) is used

as input to the simulation and the resulting simulated Doppler spectrum is then compared

with the measured Doppler spectrum.

To ensure the simulation is correct, a monostatic HF radar data set has been acquired along-

side directional wave buoy data in the coverage area. Both datasets are described in detail

in section 5.2.1. Figure 3.11 shows both simulated and measured Doppler spectra for an

overlapping time and the resulting spectra are very similar.

The simulation was also tested using the bistatic WERA dataset and the directional wave

buoy off the south coast of France, described in section 3.2. At the location of the wave buoy,

ϕbi = 43° and the differences between the measured and simulated Doppler spectra are large.

An example is given in figure 3.12. In the simulated spectra, the first order peaks are clear

and narrow. However, in the measured spectra, the first order peaks are visibly broadened

and therefore, as first highlighted by Grosdidier [29], the radar cross section expression is not

representative of these Doppler spectra for large ϕbi .

When equations 3.1 and 3.2 are not representative of the data, they cannot be reliably used to
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Figure 3.11: Comparison of measured and simulated monostatic Doppler spectra on
01/11/2012 20:05. The figure shows a comparison of a spectrum from the Wave Hub HF
dataset at the location of the wave buoy, and a Doppler spectrum simulated using equa-
tions 3.1 and 3.2 with S(k) from the wave buoy input.

Figure 3.12: Comparison of measured and simulated bistatic Doppler spectra on 09/07/2014
01:00. The figure shows a spectrum from the bistatic WERA dataset at the location of the
wave buoy, and a spectrum simulated using the ocean spectrum, S(k), measured by the wave
buoy, as input to equations 3.1 and 3.2. At this location, ϕbi = 43° .

invert measured spectra, to obtain S(k). Therefore, as the ultimate aim is to invert measured

bistatic Doppler spectra, the equations must be modified so that they represent the data more
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accurately.

Grosdidier et al. [29] address the problem by including the radar effects in the simulation. In

their work, they define the measured radar cross section at a given cell, σexp(ω), as

σexp(ω) =

∫
sea
Gσ(ω) dA

where

G =
Peλ

2
0FtGtFrGrW

(4π)3R2
tR

2
r

is the cell weighting function, similar to the radar equation in equation 1.14. In the expression,

Pe is emitted power, G is gain, F represents path losses, R is is distance, λ0 is the emitted

radiowave wavelength and W is a weighting value of a window convolved with range. A

subscript of r refers to the receiver and t , to the transmitter. By including the antenna gains,

the beam pattern of the radar in included in the simulation and thus too is the variation in the

Bragg frequency with bistatic angle. Their results show an improvement in the simulations

and the first order peaks are appropriately broadened.

3.4.2 Methodology

Here, similarly to Grosdidier et al. [29], a method is proposed to create more realistic simulated

Doppler spectra by including the radar effects. However, instead of a weighted sum of the

Doppler spectra in the frequency domain, the individually simulated Doppler spectra are

converted to time series and combined in the time domain at the receiving antennas. Then,

when a signal is required from a particular angle, the data is beamformed in the same way as

the measured radar data. This method has been chosen, instead of that of Grosdidier et al.,

for two reasons. Firstly, by generating time series at the antennas, there is an opportunity

for testing different beamforming methods in the future. Secondly, the size of the final data

structure is smaller and from this, a signal from any direction can be obtained by beamforming,

unlike the rigidity of a fixed grid.

The method is tested using the radar setup of the bistatic WERA dataset; the results can

then be validated by comparing the simulated Doppler spectra against the measured Doppler

spectra, described in section 3.2.1. There are a number of islands in the vicinity of the receiver

meaning that the radar does not receive scatter from some areas. Therefore, after consulting

with Dr. Yves Barbin, who worked on the radar, a map of valid scattering locations has been

created, as shown in figure 3.13.
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Figure 3.13: Scatter weights for the bistatic WERA radar. White indicates areas of viable
scatter and black, not.

With a 1° and 1 km resolution, angles 110° through to 290° , for ranges of 1-39 km, are all

considered for contributing to the resulting signal. To begin, each cell is checked against the

scattering locations in figure 3.13, then, if the cell is viable, a Doppler spectrum is simulated.

In the simulation, current data from the Globcurrent dataset is used to calculate the Doppler

shift, alongside WW3 data which is used as input to a Pierson Moskowitz spectrum, with a

cos2s directional model, to model S(k). The bistatic geometry, along with the radar frequency

and ocean depth is also input. The simulated spectrum is then multiplied by a weight, which

is inversely proportional to its distance to the receiver and to the transmitter, namely

1

R2
RR

2
T

.

Once all of the Doppler spectra have been simulated, the set of Doppler spectra for each

beam angle is convolved with a Blackman-Harris window to emulate the effects of the signal

processing methods used to obtain the range-resolved time series. Then, for each beam,

spectra in groups of three (namely for each 3 km) are averaged, to mimic the real data which

has a range resolution of 3 km.

Finally, for each range, the simulated Doppler spectra are Fourier transformed into the time

domain and then, using the range and angle of the scatter location from the eight receive

antennas, the time series are delayed appropriately (in a way analogous to beamforming) to

produce eight time series. All of the simulated time series at each antenna are then summed
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and an array of eight complex time series for every range is output.

3.4.2.1 Limitations

Although, ideally, the transmitter gain would have been included in the simulation process,

we were unable to obtain the information and this has therefore been omitted. Also, following

Grosdidieret al. [29], the path attenuation factors, FR and FT , have also been included as

binary values, whereby they equal 0 when an island is encountered and 1 otherwise. Having

accurate values for both path loss and antenna gain would improve the simulation further and

would be something to consider in future experiments.

Another issue is the speed/resolution tradeoff of the simulation method. Preferably the orig-

inal spectra would be 4096 point spectra, to mimic the bistatic WERA data with which it is

being compared, however, this is infeasible due to calculation time. To counter this, simula-

tions of 676 points from -1.27 to 1.27 Hz (which is a subset of the measured spectra range)

have been generated which are then beamformed, before the resulting time series are pro-

cessed using 75% overlapping windows of size 338. Over this interval, both the measured and

simulated spectra comprise 338 points and are directly comparable.

Finally, the resolution of the simulations may not be fine enough. Particularly at long ranges,

the spatial difference between 1° will be more significant and information may be missed.

However, to increase the resolution means to slow the simulation down. Keeping in mind that

the more complex simulation process is more important at shorter ranges, where ϕbi is larger,

the resolution can be justified.

3.4.3 Results

The simulation method was tested on the dates where overlapping radar and WW3 data was

available, namely the 9, 10, 12 and 13 July 2014. The results depend on the accuracy of

the WW3 data for the period and also how well a Pierson-Moskowitz spectrum with a cosine

directional distribution models the real directional spectrum. For some of the dates tested,

there were obvious differences between the actual ocean spectrum and the modelled spectrum,

as the ratio of the first order peaks (or the Bragg ratio) of the simulated and measured Doppler

spectra were substantially different. In such circumstances, where the WW3 model does not

accurately represent the ocean state, the simulated Doppler spectrum has not been compared

with the measured Doppler spectrum as they will be substantially different.

Figure 3.14 shows the results of the simulation for 12/07/2014 03:21 at two different locations,

where the Bragg ratios of the measured and simulated data were in agreement. In each
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example, the simulated and measured Doppler spectra have been adjusted to have the same

maximum magnitude, for easy comparison; additionally, the spike at zero Doppler, for each

measured spectrum, is due to land return which is not simulated in this work. For the chosen

time, hs ranges between 2 and 4 m so it is large enough to generate substantial second order

sidebands. Both examples show that the Doppler peaks become broadened, as in the measured

data, when the radar effects are included in the simulation.

As was also found by Grosdidier et al. [29], the second order contribution to the spectrum

did not change much. This does suggest that the existing wave inversion methods could work

if they only rely on the second order sidebands. More work must be done to investigate this

point, however, the results of Wyatt et al. [109] showed that inversion of similar spectra was

not possible.

Summary

In this chapter, the numerical solution of the bistatic radar cross section was calculated,

enabling one to simulate the expected bistatic radar return for any given ocean spectrum.

When validating the theory and simulation, the resulting signal was compared against real

bistatic HF radar measurements and large differences occurred, in scattering locations where

ϕbi substantially varied. In such scenarios, the radar effects cannot be ignored and a method

of including them was presented. The method was shown to improve the simulations and the

resulting simulated spectra were much more similar to the measured data.

In the next chapter, inversion methods are discussed and proposed, so that we can obtain

current, wind and wave measurements from bistatic HF radar data, by using the results of

this chapter.
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(a) Spectra at a bistatic range of 10.2 km and a bearing of 220 ° . At
this location, ϕbi ≈ 30° .

(b) Spectra at a bistatic range of 16.2 km and a bearing of 200 ° . At
this location, ϕbi ≈ 25° .

Figure 3.14: Simulated Doppler spectra compared with measured Doppler spectra, from the
bistatic WERA data, on 12/07/2014 03:01:00. In both figures (a) and (b), the top plot shows
a simulated Doppler spectrum using the ‘standard’ method of section 3.3 and the bottom plot
shows a simulated spectrum using the method outlined in section 3.4.2, where radar effects
are included. In each plot, the simulated data are shown by the dashed line and the measured
spectrum by the solid line. The y axis shows the power in the spectrum in dB.



Chapter 4

HF Radar Inversion Methods

In Chapter 2, a model for the bistatic radar cross section of the ocean, σ(ω), was derived

and then, in Chapter 3, its numerical solution was presented. In other words, a solution to

the forward problem was given. In this chapter, methods for solving the inverse problem -

for currents, wind directions and waves - are discussed. In section 4.1, methods for retrieving

current measurements from bistatic data are described and then in section 4.2, wind direction

inversion methods are outlined, with a focus on the maximum likelihood method of Wyatt et

al. [108]. In section 4.3, an introduction to wave inversion is given before a new method for

obtaining the directional ocean spectrum, using a neural network, is proposed. To support

the proposal, an introduction to neural networks is given in section ??, before the details of

the neural network inversion method are given in section 4.4.

§ 4.1 Ocean Surface Currents

In 1974, Stewart and Joy [85] showed that near-surface ocean currents displace the first order

Bragg peaks from their predicted frequencies. The displacement was shown, in equation 3.36,

to be

4ω = 2k0νE(ϕ) cosϕbi, (4.1)

where νE(ϕ) is the component of the current velocity in the normal elliptical direction for a

radar beam angle, ϕ . Therefore, νE(ϕ) can be obtained by calculating

νE(ϕ) =
4ω

2k0 cosϕbi
. (4.2)

89
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For high quality radar data, with high resolution and low sidelobes, identifying the first

order peaks necessary to measure the shift, 4ω , is straightforward. However, for data with

large sidelobes, current shear or low resolution with a varying bistatic angle (as seen in

figure 3.12), the first order peaks are broadened and hence it becomes more difficult to identify

the appropriate Bragg peaks’ positions.

If the peaks can be successfully identified, then the corresponding elliptical component can

be calculated using equation 4.2. However, with just one measurement, there is not enough

information to compute the total current vector. Usually, to compute this, Doppler spectra

measured by at least 2 different radars are used. If one obtains two elliptical components,

νE(ϕ1) and νE(ϕ2) (for radar beam angles ϕ1 and ϕ2 , measured clockwise from north), then

a current, ν , travelling in a direction, θ , can be calculated absolutely. With u = ν sin θ and

v = ν cos θ , the east and north components of ν , the two radar measurements can be written

in terms of u and v by

νE(ϕ1) = v cos θ1 + u sin θ1 νE(ϕ2) = v cos θ2 + u sin θ2, (4.3)

where θ1 and θ2 are the respective Bragg bearings for the radar beam angles, ϕ1 and ϕ2 ,

calculated by θi = ϕi + [ϕbi]i (where [ϕbi]i is the bistatic angle for radar beam ϕi ). The east

and north components can then be recovered from νE(ϕ1) and νE(ϕ2) in equation 4.3 by

u =
νE(ϕ1) cos θ2 − νE(ϕ2) cos θ1

sin(θ1 − θ2)
v =

νE(ϕ1) sin θ2 − νE(ϕ2) sin θ1

sin(θ2 − θ1)
. (4.4)

If more than two measurements are available then least squares methods can be used as

explained by Paduan and Washburn [76].

This theory has been used and validated in many studies for monostatic radar (see Paduan

and Cook [76] or Chapman and Graber [15] for example) and is now operational all over

the globe, as discussed in section 1.3.2. Current measurement using bistatic radar has since

been introduced, where multistatic radars collect and use both radial and elliptical current

measurements. An outline of the theory, with validation, is given by Lipa et al. [75] and further

experiments have been carried out, for example, by Whelan and Hubbard [99] who showed

that the inclusion of elliptical current data, alongside the radials, reduced the uncertainty in

the total current measurements whilst substantially increasing the spatial coverage as shown in

figure 4.1. Real-time multistatic current measurements are also provided by the Meditteranean

Institute of Oceanography [69], where current vectors are available off the coast of Toulon,

every 20 minutes, from January 2012.
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Figure 4.1: A comparison of the percent coverage of total current vectors, when radial-only
measurements are used and when elliptical vectors are also included, for a multistatic radar
site, presented by Whelan and Hubbard [99]. Although they are imperceptible on the plot,
a Seasonde receiver is situated on the south coast of Sicily (top island) and two transmitters
(one of which also receives) are situated on the north-east coast of Malta (bottom islands).
Radial-only results are outlined in blue and the elliptical-inclusive results are outlined in
yellow. The colour bar represents the density of the data coverage for the elliptical-inclusive
data.

§ 4.2 Wind Directions

Extracting wind direction measurements from HF radar data was introduced by Long and

Trizna [61] and Stewart and Barnum [84], who showed how to get the mean wind direction,

θ∗ , from experimental data by analysing the ratio of the first order Bragg peaks (also known

as the Bragg ratio) of the Doppler spectrum. The Bragg peaks are used for this purpose as

the contributing Bragg waves are assumed to be short enough to be driven by local winds,

especially at higher radar frequencies.

The positive and negative Bragg peaks, B+ and B− , are given by σ(ωB) and σ(−ωB) in

equation 3.1; namely,

B± = 25πk4
0 cos4 ϕbiS(±kB).

The ratio of the first order peaks, R , is then found by calculating
B+

B−
, which, in dB, is

R = 10 log

(
S(kB)

S(−kB)

)
. (4.5)

From section 1.2.4.3, S(k) is defined by

S(k) = S(k, θ) = E(k)G(k, θ), (4.6)

where E(k) is the non-directional ocean spectrum and G(k, θ) is the normalised directional
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distribution. Therefore, using equation 4.6 in equation 4.5 gives

R = 10 log

(
G(θB + π)

G(θB)

)
, (4.7)

where θB is in the direction of the Bragg bearing, away from the radar setup.

To retrieve the wind direction, θ∗ , from equation 4.7, Stewart and Barnum [84] substituted

the cos2s model,

G(θ) = D cos2s((θ − θ∗) /2) (4.8)

(for normalisation factor D given in equation 1.28), into equation 4.7 to give

R = 10 log

(
tan2s

(
|θd|
2

))
, (4.9)

where θd = θ∗ − θB . Equation 4.9 can then be solved for θd , such that

|θd| = 2 tan−1
(

10
R
20s

)
and thus the mean wind direction can be obtained by calculating

θ∗ = θB ± |θd| = θB ± 2 tan−1
(

10
R
20s

)
. (4.10)

This solution, whose ambiguity is evident, depends on s which is, as yet, unknown. Figure 4.2

shows the relationship between R and θd in equation 4.9, using the cos2s model, for different

values of s . The figure shows how the value of s can affect the predicted values for any

wind direction not perpendicular to the Bragg direction; the error is as much as 40° for the

presented values of s .

Stewart and Barnum [84] used a model for the value of s , which in their case, produced good

results between predicted and measured wind directions. For a single radar setup, they used

any knowledge of local winds to resolve the ambiguity where possible and then resolved the

other directions by assuming continuity in the wind field. Heron and Rose [40] proposed an

alternative method of resolving the ambiguity, whilst finding a suitable value for s , which used

three radar beams, spaced 30° apart. This method, however, assumes that both θ∗ and s are

stationary over the - possibly large - area, which may pose a problem for nonhomogeneous

wind fields. A further potential problem is the choice of directional model; the cos2s model

may not be appropriate in some situations and the aforementioned method does not allow

for evaluation of the model. Wyatt et al. [108] therefore proposed a method which combats
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Figure 4.2: The ratio, R , of the Bragg peaks for a varying angle, θd , between the wind
direction and Bragg direction, calculated using equation 4.9. Two values for the spreading
value s in the cos2s model in equation 4.8 are shown.

these two specific problems. They use the maximum likelihood method to fit the direction

and spread parameters, where the stationarity requirements are relaxed to a 10 km2 area and

different models for G(θ) can be evaluated. The method was designed for use with two radars

so that the ambiguity is solved absolutely, however, the method can be applied to a single

radar setup, as neighbouring measurement cells are included in the calculations.

The methods outlined in the preceding paragraph, which were introduced and tested for

monostatic radars, can be easily adapted for use with a bistatic setup. The theory remains

the same, the only difference is the calculation of the Bragg bearing, θB . One thing to note

is that for large bistatic angles, the associated Bragg waves are longer. Therefore, a range of

different Bragg waves may be measured during an inversion of bistatic data and care must be

taken when interpreting the results.

Huang [46] has previously shown how to apply the method of Heron and Rose [40] to bistatic

radar data and backed it up with experimental results, which showed good agreement with

other data sources. In Chapter 5, the maximum likelihood method of Wyatt et al. [108] is

used to invert both simulated and measured bistatic HF radar data.

4.2.1 Maximum Likelihood Method For Estimating Wind Directions and their

Spatial Distribution

The maximum likelihood method, or MLM, finds values for the parameters of a model, based

on the likelihood of the data observed. Explicitly, given a data set, x , the MLM seeks to find
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the model parameters which maximise the probability of x occurring.

Following Wyatt et al. [108], the ratio of the Bragg peaks was previously found to vary

according to an F distribution. The probability density function, or pdf, of the measured

Bragg peak ratio is given by

P (r′i; ri(θ
∗, s)) =

1

ri
Γ(ν)

(
r′i
ri

)ν/2−1

[
Γ
(ν

2

)]2
(

1 +
r′i
ri
,

)ν , (4.11)

where Γ is the gamma function, ν is the degrees of freedom of the distribution (explained

below), r′i is the observed Bragg ratio and ri is the true Bragg ratio. The value of ri is

calculated using a directional model, which for illustrative purposes is here the cos2s model,

which depends on θ∗ and s . The degrees of freedom, ν , is determined by the signal processing

techniques used to obtain the Doppler spectrum. Namely,

1

ν
=

1

2M

[
1 + 2ρ2(75%) + 2ρ2(50%) + 2ρ2(25%)

]
− 1

M2

[
ρ2(75%) + 2ρ2(50%) + 3ρ2(25%)

]
,

where M is the number of data segments used in averaging the signal and ρ(n%) is the n%

overlap coefficient for the window used (given by Harris [34]).

The MLM thus tries to find the parameters, θ∗ and s , which maximise

P (r′; r(θ∗, s)) =

n∏
i=1

P (r′i; ri(θ
∗, s)), (4.12)

or, equivalently, the parameters which minimise

P (r′; r(θ∗, s)) =
n∑
i=1

− ln
(
P (r′i; ri(θ

∗, s))
)
, (4.13)

for n Bragg ratios. The n ratios are measured in an area where the wind distribution is

assumed to be stationary and may be from multiple radars. Wyatt et al. [108] assumed

a stationary wind distribution over 10 km2 grids where data from two radars were used.

Minimisation routines, such as the Scipy.optimize.minimize module in Python can then be

used to find the solution; in this case a Nelder Mead function has been used. The confidence

interval for each solution can be found by finding the inverse of a Hessian matrix as described

in detail by Wyatt et al..

Different models for G(θ) can be evaluated in this method by replacing the model used to

generate the r values in the code and rerunning the minimisation routine. The model which
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outputs a lower minimum for the same set of data is deemed the better choice.

§ 4.3 Waves

Wave measurements, both ocean surface parameters (such as significant waveheight) and the

directional spectrum, are routinely obtained from HF radar data. Works of Lipa [57][58][60],

Wyatt [103] and Hisaki [41], amongst others, are notable in the history of inverting σ(ω) for

S(k) numerically. Lipa and Nyden [60] adapt the radar cross section so that it is applicable to

broad beam radars - such as the CODAR Seasonde - and then perform a least squares fitting

on a linearized version of the radar cross section and the second order sidebands to predict

hs , tp and θm . However, due to the broad beam, they assume that the ocean spectrum is

homogeneous over a whole range annulus, which limits their wave inversion procedure to close

ranges. The method of Wyatt [103], which is applicable to narrow beam radars such as the

WERA phased array radar, is described in more detail in section 4.3.1. Empirical methods

such as that of Gurgel [32], who empirically fits waveheight to the second order sidebands

using a wave buoy, are also possible if one wants to avoid inverting the integral equation.

The methods mentioned in the preceding paragraph were designed and tested for monostatic

radar systems. In theory, and as stated by Anderson [4], the existing algorithms should work

for a bistatic system if the inverted integral equation is changed to the bistatic expression in

equations 3.1 and 3.2. Zhang and Gill [111] have developed an inversion algorithm to obtain

the nondirectional wave spectrum from bistatic radar data and when tested on simulated data,

they obtained good results. Silva et al. [80] have also presented results of simulated bistatic

HF radar data inversion where the directional wave spectrum was estimated using Tikhonov

regularization. They achieved good results for simulated data, yet the method is limited as

a model is assumed for the direction of the spectrum, which may not always be appropriate.

No results have thus far been presented of real bistatic HF radar data inversion; results of

this kind are presented for the first time in Chapter 5.

The Seaview inversion method, described in section 4.3.1, is currently being modified to allow

for bistatic radar wave inversion and results will be presented in the near future.

4.3.1 Seaview Inversion Method

As first presented by Wyatt [103], the Seaview inversion (so named because it is being further

developed by and is available from Seaview Sensing Ltd.) is an iterative method which begins

with an estimated directional spectrum and progressively modifies it to minimise the differ-

ence between the calculated and measured Doppler spectra. As explained by Wyatt [104],
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the initially estimated spectrum is modelled using a Pierson Moskowitz spectrum with a sech

directional model, using an empirically estimated waveheight and a wind direction derived

from analysis of the first order peaks. The monostatic second order radar cross section ex-

pression in equation 2.123 is used to calculate the Doppler spectrum using the estimated S(k)

and the output is compared to the measured Doppler spectrum. The spectrum S(k) is then

updated as by the rules of the algorithm, and the process is continued until an accepted level

of tolerance is achieved between the predicted and measured Doppler spectra. The method

is restricted to the frequencies close to the Bragg peaks, where the shorter wave, k2 , is as-

sumed to be approximately equal to the Bragg wavevector and thus driven by local winds.

The initially estimated spectrum can then be used to model k2 and then equation 2.123 is

simplified and the resulting expression is quasi-linear.

Two Doppler spectra are used at every location in order to resolve the directional ambiguity

and only the sidebands (±0.6 Hz) around the dominant Bragg peak are used. Furthermore,

a signal to noise ratio of 15 dB of the largest sideband is a minimum requirement and each

spectrum is normalised by the power in the first order peak, to remove radar effects such as

path loss.

4.3.2 Limitations and Motivation

The majority of the wave inversion methods mentioned use the second order sidebands to

obtain wave information. This means that the inversion is less reliable than the wind and

current inversions (whose methods mainly use the first order contribution) due to a lower

SNR. Furthermore, the perturbation method of Barrick [5], which was followed in Chapter 2,

to derive the radar cross section expression is used in the mathematical inversions but it is

only valid for small ocean wave heights in comparison to the radar wavelength. Hence the

theory breaks down for particularly high wave conditions. Therefore, if one wishes to observe

larger waves, lower frequencies should be used.

Alternatively, Wyatt et al. [106] explain how, in the Seaview method, the first order Bragg

peaks are scaled, such that the second order continuum is increased in comparison to the first,

for a given waveheight. The scaling is based on the work of Creamer et al. [18], who showed

that a second order contribution - due to the combination of first and third order ocean waves

- was missed in the derivation of the radar cross section by Barrick [5][7] and is significant at

larger waveheights. The improvement in the results when the scaling is included is shown in

the work of Wyatt et al. [106].

In addition to the low SNR and high sea state issues, the Doppler spectrum can be contam-
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inated by sidelobes, current shear, or variation due to low cell resolution - as described in

section 3.4. In these situations, the radar cross section is no longer representative of the data

and therefore these data are not suitable for the inversion methods based on the expression.

Therefore, if any potential, expected, inaccuracies of the radar data can be included in the

radar cross section expressions, then successful inversion of the updated radar cross section

should recover the information.

§ 4.4 Neural Network Inversion Method

With the limitations discussed in section 4.3.2 in mind, a new inversion method is proposed,

where an artificial neural network, or ANN, is used to invert radar Doppler spectra, σ(ω), to

infer S(k).

Fundamentally, an ANN is a nonlinear regression model, that learns by example, usually by

using a vast dataset of input and output pairs, (xi,yi). The ANN, such as that shown in

figure 4.3, consists of an input layer, a number of hidden layers and an output layer, each

of which comprises a varying number of nodes. In a process called forward propagation, a

single node receives input from either an external source or a number of other internal nodes

and then performs a weighted sum, where the weights represent the importance of the node

connection. A non-linear function, g , known as an activation function, is then applied to the

sum, which allows it to model non linear functions. Mathematically, at layer l , we compute

the value a(l) , in vectorised form, as

a[l] = g
(
z[l]
)

; z[l] = w[l]a[l−1] + b[l], (4.14)

where z[l] ∈ Rm×1 , w[l] ∈ Rm×n , a[l−1] ∈ Rn×1 and b[l] ∈ Rm×1 , for an additional bias vector

b[l] which makes the model more flexible. This process is continued, from left to right, until

the output layer is reached and a prediction, ŷ , is made, based on the input x .

The goal of a neural network is to learn appropriate values for randomly initalised weights

and biases, w and b , in order to accurately map some input vector x to an output vector

ŷ , in consideration of a metric C(y, ŷ), called the cost function. The cost function measures

how well a neural network is performing by quantifying how close the predicted values, ŷ ,

are to the desired values, y . Although there are a number of possible metrics to use [21], in

this work, we use the mean squared error cost function, which is given by

C(w,y) =
1

2M

M∑
i=1

|ŷ(w)i − yi|2 , (4.15)
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Figure 4.3: Basic neural network architecture with 3 input features, x , 4 and 2 nodes in two
hidden layers and 2 output features, ŷ . Additional bias nodes are shown at the top of the
first three layers which make the model more flexible. The weights are represented by the

lines connecting the nodes and weight w
[2]
2,4 is shown to highlight the notation.

where M is the total number of training examples. An accurate model corresponds to a

smaller value for C(w,y) and hence, the goal is minimise C(w,y).

To minimise the cost function, its derivatives, with respect to the weights and biases, are calcu-

lated in a process called backpropagation and then the weights are updated by an optimising

algorithm such as gradient descent, Adam [52] or RMSProp [90]. The training algorithm,

which consists of calculating forward and then backward propagation, before updating the

weights, is repeated over the data pairs, until either a set number of iterations are executed,

or a specific accuracy level, between the predicted ŷ and desired y , has been reached. An un-

biased test is then carried out, using a test set, which is a reserved portion of the dataset that

the neural network was not been trained on. The test set shows how well the neural network

performs on unseen data which is more of an indicator of how it will perform operationally.

The performance of the neural network largely depends on its architecture, and the following

hyperparameters can be influential: (1) the number of hidden layers, (2) the number of nodes

per layer, and (3) the number of iterations. Although, not technically hyperparameters,

in this work, we also treat the optimisation method and the activation function choice as

hyperparameters too, as we found the choice of these impacted the results. There is no

one rule on how to choose the optimal values of the hyperparameters, it is often a case

of investigating different combinations and finding one that is within a tolerance. In this

work, we use a genetic algorithm to search more intelligently through the solution space;

although omitted here, a rigorous introduction to the subject of genetic algorithms is given

by Mitchell [71].
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A third data set - known as the validation set - should be used to choose the optimal hyper-

parameters. The third set is used to avoid the algorithm becoming biased toward the test set,

and unable to accurately invert unseen data. Again, there is no set rule for how to split the

dataset, however, it is important that the ANN has enough data to be trained on, especially

if it is a complex function. Furthermore, each of the training/test/validation sets should have

similar characteristics to make the test fair.

In comparing how well the ANN performs on the training and test sets, we can diagnose

problems such as overfitting, which is where the model fits the training data too well and

cannot generalise to unseen data, or underfitting, where the model does not fit either the

training or test data well. To remedy overfitting, a regularization method can be used,

where the cost function is penalised, preventing it from becoming too near zero. To remedy

underfitting, we must adjust the neural network architecture.

In this work, the goal is to train an artificial neural network that can accurately predict

directional wave spectra, S(k), from radar Doppler spectra, σ(ω). To do this, the ANN is

trained on data pairs consisting of σ(ω) as the input and S(k) as the output. The values for

σ(ω) are generated using the simulation methods of Chapter 3 with measured/modelled S(k)

input. The motivation is that there is currently no reliable way to invert Doppler spectra that

cannot be accurately modelled by the radar cross section integral expression. As an ANN

learns by example, it should be able to learn to invert that data, as long as the problem is set

up correctly. It is also of interest to see how it compares with existing inversion methods.

Although this is the first time that a neural network has been used to invert Doppler spectra

for the directional ocean spectra, they have been used for obtaining wind speeds and predicting

the sea level. Mathew et al. [67], trained a neural network which used HF radar measured

values of significant waveheight, wave period, wave direction and wind direction as input, to

predict wind speed as measured by a wave buoy. Zeng et al. [110] did the same but removed

wave direction from the dataset. Similarly, Shen et al. [79] trained a neural network to predict

wind speed using the measurements of a local wave buoy and HF measured first order Bragg

peaks. Wahle and Stanev [97] trained a neural network to learn the relationship between tidal

gauge data and HF radar current measurements to predict sea level from HF current data.

They also trained a neural network to forecast sea level. Seemingly all of the previous neural

network applications in the field have used other measuring devices, such as wave buoys, to

train their algorithms. In this work, by using simulations, no other device is necessary and

thus the HF radar system remains independent, with no dependence on other devices.

In Chapter 5, the results of two experiments, both where an ANN is used to invert Doppler

spectra, are presented. In the first experiment, two ANNs are trained to invert monostatic
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Doppler spectra that are simulated using the numerical method of section 3.3. This experiment

is to test whether the ANN inversion method can invert Doppler spectra that can be accurately

modelled by the radar cross section equations. In the experiment, the established Seaview

inversion method, which has been validated on monostatic radar data, is used as a benchmark

for the ANN method. The method is further validated using directional spectrum data from a

wave buoy. A first ANN is trained on data in a single location, then a second ANN is trained

on a number of different locations in an effort to understand the effects of the radar beam

angles on the Doppler spectra.

A second experiment is then carried out to see if the inversion method can invert bistatic

Doppler spectra. Firstly, an ANN is trained on data simulated using the numerical method

described in section 3.3. A second ANN is then trained on data simulated using the method

in section 3.4, where the radar effects are included.

To summarise, four neural networks will be trained to invert:

1 monostatic Doppler spectra, simulated using the numerical method of section 3.3, in a

single location (SLNN);

2 monostatic Doppler spectra, simulated using the numerical method of section 3.3, in

multiple locations (MLNN);

3 bistatic Doppler spectra, simulated using the numerical method of section 3.3, in a single

location (BNN);

4 bistatic Doppler spectra, simulated to include radar effects using the simulation method

of section 3.4, in a single location (CBNN).

4.4.1 Method

Although it may be possible for a neural network to learn to resolve the directional ambiguity

that exists for a single radar, this is yet to be tested. Therefore, to resolve the directional

ambiguity, two radars will be used to provide two spectra for each location. Consequently,

in general, the neural network will have two radar Doppler spectra as the input and the

corresponding directional ocean spectrum as the output.

Depending on where the radars are situated, we define ϕ1 and ϕ2 as the beam angles,

measured clockwise from north, from each radar to a measurement point (see figure 4.4). As

the beam angles are different for each measurement location in the radar coverage area, the

resulting Doppler spectra are also different. Therefore, either a different neural network must
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be trained for every desired location, which will be referred to as the single location neural

network (SLNN), or a single neural network must be able to represent the relationship between

ϕ1 , ϕ2 and the related Doppler spectra, which will be referred to as the multi location neural

network (MLNN).

Figure 4.4: Beam angles ϕ1 and ϕ2 for two radars, shown by the blue and magenta diamonds,
where both are measured, clockwise from north, from the radar to a scatter point (which is
shown by the cross).

For both neural network experiments, the training/test data is generated in the same way.

Beginning with a large dataset of directional ocean spectra, whether modelled or measured,

we use a prescribed simulation method, to simulate the corresponding Doppler spectra at a

particular location, for both radars. The radar frequencies, the depth of the ocean and the

beam angles (ϕ1 and ϕ2 ) are fixed and two 512-point Doppler spectra ranging from −1.27 Hz

to 1.27 Hz are simulated. These simulations should mimic the real data as closely as possible

to make the neural network’s task less complicated and therefore, appropriate noise floor

and general noise levels have been included in the simulations, after analysing the available

measured radar data.

Then, any Doppler spectrum input to the neural network - so either the simulated data or the

measured validation data - are filtered and processed. Firstly, a SNR of 10 dB for the second

order peaks has been set as a minimum requirement for a Doppler spectrum to be used in

the neural network and anything below is discarded, as high noise levels may complicate the

neural network model. This is below the 15 dB limit used in the Seaview inversion and, from

experimenting, it is a variable that does impact the results. A number of neural networks were

trained to test the effect of the SNR limit and a higher value of 15 dB negatively impacted

the results, possibly due to the smaller resulting training dataset. Secondly, any Doppler

shifts induced by currents are removed and then the resulting Doppler spectra are normalised
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so that the first order peaks are set to 1 and -1, with the highest Bragg peak set to a fixed

value, here 70 dB. Thirdly, values ±0.6 around each peak are used as input to the neural

network, which in these experiments gives a 174 point array for each radar, say σ(η)1 and

σ(η)2 , resulting in a 348 point array when combined as [σ(η)1, σ(η)2] . This smaller subset

of points is retained so that the neural network focusses on the more important second order

peaks whilst ignoring the less important, more noisy, outer parts of the Doppler spectrum.

Finally, the output values, ŷ , the directional spectra, are interpolated onto a grid of 36× 98,

where there are 36 directional values in the range [0, 2π ] and 98 wavenumber values in the

range [0.004, 0.986]. The values are then each multiplied by the wavenumber k , for scaling

purposes, and the 2D matrix is flattened, to form a vector of size 3528, ready for processing.

In each ANN, an elu function, namely

g(x) =

x, x ≥ 0

α(ex − 1), x < 0

is used as the activation function in the final layer to encourage the output spectrum values to

be positive. The cost function, C(ŷ,y) is defined as the mean squared error of the predicted

and actual values, as given in equation 4.15. To implement the neural network, the Tensorflow

framework [88] for Python 3 has been used.

4.4.1.1 Single-location Neural Network

In training the neural network for a single location, so for the SLNN, BNN and CBNN

inversions, ϕ1 and ϕ2 are fixed and are therefore unnecessary to the learning process. Thus,

the ith input vector, xi , is defined as the two radar Doppler spectra subsets joined together,

[σ(η)1, σ(η)2] , and the ith output vector, yi , is defined as the directional ocean spectrum,

S(k), that was used to generate σ(η)i vectors (see figure 4.5).

4.4.1.2 Multi-location Neural Network

For a neural network being trained to understand location during the inversion, or the MLNN,

the beam angles ϕ1 and ϕ2 must also be passed into the algorithm. Thus the ith input,

xi is defined as the 350-point vector [ϕ1, σ(η)1, ϕ2, σ(η)2] and the ith output, yi , is the

corresponding, flattened, S(k); see figure 4.6. The values for ϕ1 and ϕ2 are also scaled to be

the same order as the Doppler spectra values.
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Figure 4.5: Neural network structure for the SLNN inversion, with input Doppler spectra,
[σ(η)1, σ(η)2] , and output directional ocean spectra, S(k). Note that bias nodes are omitted
in the figure but are included in the training process.

Figure 4.6: Neural network structure for the MLNN inversion, with input [ϕ1, σ(η)1, ϕ2, σ(η)2]
and output direction ocean spectrum, S(k). As in figure 4.5, the bias nodes have been omitted
but are included in the training process.

Summary

In this chapter, methods for obtaining current, wind direction and wave measurements from

bistatic HF radar data have been introduced. Details of how to adapt the existing monostatic

methods for use with a bistatic radar were given and then a new inversion method was

proposed for obtaining the directional wave spectrum. The method uses an artificial neural

network, with the motivation that it should be able to invert data where the radar effects

cannot be ignored, which is when the existing methods are not applicable.

In the next chapter, a number of the methods introduced in this chapter are tested. The max-

imum likelihood method is used to obtain wind direction distributions from both simulated

and measured bistatic HF radar data. The neural network inversion method is then tested

on monostatic radar data and validated using directional wave buoy data and the Seaview

inversion method. It is further tested on bistatic HF radar data where the effects of the radar

are included; the data of a directional wave buoy is again used to validate the results.



Chapter 5

HF Radar Inversion Results

In this chapter, wind direction and wave inversion algorithms introduced in Chapter 4 are

tested. In section 5.1, the maximum likelihood method, or MLM, is used to obtain wind

direction distributions from bistatic HF radar data and the results are validated using scat-

terometer data. In section 5.2, monostatic Doppler spectra are inverted using the neural

network inversion method described in section 4.4 and the results are validated with the

Seaview inversion method and a directional wave buoy. In section 5.3, the neural network

inversion method is tested on bistatic Doppler spectra and validated using a directional wave

buoy. Two neural networks are tested: (1) trained using bistatic Doppler spectra simulated

using the numerical method of section 3.3 and (2) trained using bistatic Doppler spectra

simulated using the method of section 3.4, where radar effects are included.

§ 5.1 Maximum Likelihood Method for Estimating Wind Direction and its

Spatial Distribution

As a preliminary test, the MLM (first applied to wind direction inversion by Wyatt et al. [108]

as explained in section 4.2.1) is used to invert simulated ratio values. This is done to see how

the algorithm performs on inverting data with varying degrees of freedom and for different

directional models. The method is then tested on the bistatic WERA dataset, described in

section 3.2.1, where ASCAT scatterometer data is available to validate the results. For both

the simulated and measured data experiments, the data is for a single radar. Hence this work

is a test of the ability of the algorithm to use only neighbouring cells to resolve, or not, this

ambiguity.

Like Wyatt et al. [108], Doppler spectra in ∼ 10 km2 grids have been used to calculate each

measurement which leads to 9 spectra for this data resolution and single radar setup. For

104
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both experiments, the Scipy.optimize.minimize module was used to find the best values for

the wind direction and spread parameters, using a Nelder-Mead algorithm. For each location,

the algorithm was initialised with a number of different wind directions so that it did not get

stuck in any local minima. Two directional models were evaluated in both experiments to see

which was more appropriate:

• G(θ) = D cos2s ((θ − θ∗)/2), where θ∗ and the spreading value, s , are sought;

• G(θ) = Dβ sech(β(θ − θ∗)), where θ∗ and the spreading value, β , are sought.

In both models, the factor D is the normalisation term given in equation 1.28.

5.1.1 Simulated Data

As the MLM method will also be tested on the bistatic WERA radar dataset, the bistatic

setup of that radar is emulated when testing the method on simulated ratio values. The range

resolution of the radar is 3 km so ratio values, in 3 km increments (by bistatic range), have

been simulated from 5 to 47 km; for each range, the ratios are simulated in 5° increments

from 160° to 235° , so that the coverage area is similar to the real dataset.

The ratio values are simulated using equation 4.7, explicitly

R = 10 log

(
G(θB + π)

G(θB)

)
, (5.1)

where θB is the Bragg bearing in the direction away from the radar setup. Both the sech

and cos2s directional models are substituted into equation 5.1 and individually tested. For

this preliminary test, a uniform wind field has been assumed. Noise is added to the simulated

ratios, which is randomly distributed from the F-distribution for varying degrees of freedom,

ν . The noisy ratio values are then inverted and the resulting θ∗ and spread values are

compared with the input values.

So that the results of the directional models are directly comparable, the spreading angle, σs ,

which indicates the directional variation of the waves from the mean direction, has been used.

From Hauser et al. [37], the spreading angle of the sech model is given by

σsech =

(
2

(
1− π

2β sinh(π/(2β)

))1/2

(5.2)
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and for the cos2s model, it is

σcos =

(
2

s+ 1

)1/2

. (5.3)

Using equations 5.2 and 5.3, values for s and β can be found such that σsech = σcos . An

example of the MLM inversion results where θ∗ = 88° and σs = 25° is shown in figure 5.1,

where the root mean square error, or RMSE, of the derived θ∗ and σs values are shown for

a range of ν values. A subset of the derived parameters are shown in figure 5.2, to show the

affect of the added noise.

Figure 5.1: RMSE values for the MLM derived wind directions and spreading angles, both
in degrees. A comparison of the results for the sech and cos2s models is shown. The dashed
vertical lines indicate the degrees of freedom used in the inversion of the bistatic WERA
dataset.

Both directional models perform similarly when inverting the spreading angle, however, the

sech model performs slightly better than the cos2s model, when θ∗ is measured. As expected,

the accuracy of the MLM results increase as the degrees of freedom increase, with values of

ν >∼ 30 performing well.

5.1.2 Real Data

To test the method further, the bistatic WERA data described in section 3.2.1 is inverted.

‘Advanced SCATterometer’ (ASCAT) data from EUMETSAT [24] for the same time period

is used to validate the derived wind directions. There are seven occasions when the radar and

ASCAT datasets overlap and due to the ASCAT having less fine resolution than the radar,
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(a) D(θ) = β sech(βθ) , where ν = 5. (b) D(θ) = β sech(βθ) , where ν = 100.

(c) D(θ) = cos2s(θ/2), where ν = 5. (d) D(θ) = cos2s(θ/2), where ν = 100.

Figure 5.2: MLM derived values for θ∗ and spread (in degrees), shown by the blue arrows
and background colour, respectively, for two directional models and two values of degrees of
freedom, ν . The simulated values of θ∗ , which should be 88° , are shown by the black arrows.
The simulated value of σc is 25° .

there are only 57 data points to compare in total. Directional ocean spectra from a local

CANDHIS wave buoy (described in section 3.2.2) were also obtained but, unfortunately, the

buoy is situated in an area where there is a substantial variation in the Bragg frequency (and

hence first order spreading) and a low SNR. It has, therefore, not been used for validating the

method, just for analysing the wave spectra in the area.

Determining the location of the Bragg peaks was challenging in parts of the radar coverage

area, due to broadened Bragg peaks. In an attempt to identify the appropriate peaks, pairs

of points at a distance of 2ωB apart were compared and then the pair with the largest

combined total amplitude was chosen. A SNR of 5 dB for both peaks was set as a minimum
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requirement for a spectrum to be inverted. The radar data - which has 3 km range resolution

- was beamformed onto a grid with 5° azimuthal resolution which corresponds to distances

of ∼ 2 km, at range 6 km, to ∼ 4 km, at range 57 km. The radar measured time series

consist of 4096 samples and to obtain the power spectrum, 75% overlapping Nuttall windows

of length 512 have been averaged; this results in the degrees of freedom, ν ≈ 40.6, and

figure 5.1 suggests that we should therefore expect results with an error of less than 10° , in

both direction and spread.

The results of the MLM algorithm, for one of the seven overlapping times, is shown in fig-

ure 5.3; in this example, the sech directional model has been used. The nearest ASCAT

data to this time is also shown for comparison. The derived winds are generally travelling in

an easterly direction, however, there are some clear cases where the ambiguity has not been

resolved correctly.

Figure 5.3: Derived wind direction and spread values using the MLM on the bistatic WERA
radar data described in section 3.2.1 on 12th July 2014 09:21. The sech directional model
has been used where the spreading angle, in degrees, is shown by the background colour and
the derived wind direction is shown by the black arrows. The blue arrows show ASCAT wind
direction data for the same date at 09:18.

To address this problem, the directions have been retrospectively rotated around their Bragg

bearing if it makes the wind field more consistent. The resulting wind directions, for both the

sech and cos2s models are shown in figure 5.4. The directions derived, using both models,

look to be fairly consistent with the ASCAT data, with the sech model slightly more so,

especially along the left-hand side. A numerical comparison was carried out for the whole
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dataset, where the derived directions closest to each of the ASCAT measured wind directions

in the coverage area were used. The results are shown in table 5.1, where the RMSE and

median error have been calculated. The sech model has a higher RMSE but a lower median

error than the cos2s model but both have a larger RMSE than median error value. The large

RMSE values are due to a small subset of the dataset having substantial discrepancies; this

is shown by the lower values for the median errors.

RMSE Median

sech 41.78° 14.19°
cos2s 30.85° 15.49°

Table 5.1: Numerical comparison of the wind directions derived by the MLM - for both the
sech and cos2s models and the directions measured by the ASCAT data [24]. The error is
quantified by the root mean square error (RMSE) and median error values of 57 results.

The cos2s and sech directional models were compared by the minimum value each model

achieved when running the minimising algorithm and the results, for the same example date

as in figures 5.3 and 5.4, are shown in figure 5.5. In 76% of the locations, the sech model

was found to have a lower minimum and hence be more suitable. In fact, the sech model was

found to be the more suitable model in every instance, where - on average - it was found to

be more appropriate for over 80% of the area. This could possibly be to do with the sech

directional model function being more suitable for mathematical minimisation, or because the

model is more appropriate for the area, due to the model allowing for waves in the direction

opposite to the wind direction.

The wind directions derived using the MLM show fairly good agreement with the validating

ASCAT data, especially considering that this was for data from a single radar. However,

after analysing the results, the algorithm seems to struggle at locations where the value of

ϕbi is large (see figure 5.6). For this particular dataset, there is a clear difference in the

derived wind directions along the right-hand side, and, in this area, the values of ϕbi are

larger than the rest of the coverage area. This is perhaps caused by a problem in the peak

finding algorithm, where sidelobes from other locations, for different values of ϕbi , have made

it difficult to identify the correct peaks. Another possible explanation is that the different

Bragg waves, that are being measured, are not all wind-driven. An analysis of CANDHIS

wave buoy spectra, shown in figure 5.7, shows how the Bragg wave frequency varies over the

experiment area in comparison to the measured wave spectra. Given the radar frequency of

16.127 MHz and the scattering geometry of the radar, the frequencies of the Bragg waves

vary between 0.34 and 0.41, which, by studying the spectra should, indeed, be picking out the

wind wave spectrum, not swell. Therefore, it is likely that it is a peak identification problem

and a more sophisticated method must be sought to solve it.
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(a) Sech model

(b) cos2s model

Figure 5.4: Comparison of the derived wind directions and spreading angles using the MLM
for two different directional models, for the same bistatic data as figure 5.3. Continuity of
the wind field has been added. In both cases, the spread value is shown in degrees by the
background colour and the derived wind direction is shown by the black arrows. The blue
arrows show ASCAT wind direction data.
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Figure 5.5: Results of the evaluation of the directional models G(θ ) for the bistatic data
described in figure 5.3. Where the sech model produced a lower minimum, the location is
coloured yellow and where the cos2s model did, the location is coloured red. The MLM-derived
values of θ∗ for the sech model are shown by the black arrows.

Figure 5.6: MLM-derived values for θ∗ , modelled with a sech directional model, for bistatic
WERA data on 10/07/2014 09:01:00. The background colour shows the value of ϕbi , in
degrees, for each location. The blue arrows show the ASCAT wind direction values for
10/07/2014 09:06:01.



112

Figure 5.7: Measured wave spectra from the CANDHIS wave buoy, for a range of dates, are
shown by colour. The dotted vertical lines show the minimum and maximum frequencies of
the Bragg waves measured in the bistatic WERA experiment coverage area.

§ 5.2 Monostatic HF Radar Neural Network Inversion

In this section, the neural network inversion method is tested on monostatic HF radar data

using a local wave buoy for validation. The method is further validated by comparing the

results against the Seaview inversion method described in section 4.3.1.

In section 5.2.1, the datasets used in the experiment are described. The experimental details

are given in section 5.2.2, before the results for both the ANN and Seaview inversion methods

are presented in section 5.2.3.

5.2.1 Data

5.2.1.1 HF Radar

In the experiment, HF radar data, obtained by two monostatic WERA HF radar systems [31]

on the north coast of Cornwall (Conley 2013, unpublished data), are used to validate the

inversion methods. The radars, operated by Plymouth University, were set up to aid the

experiments at a test site for offshore renewable energy, known as Wave Hub. A full description

is given by Lopez et al. [63]. At the experiment site, shown in figure 5.8, one radar is

situated at Pendeen (50.16°N, 5.67°W), operating at approximately 12.355 MHz, and a second

radar is situated, approximately 40 km away, at Perranporth (50.33°N, 5.18°W), operating at

approximately 12.364 MHz. Radar data from November 2012 are used in this work with hourly

measurements available. Each transmitter consists of 4 elements arranged in a square, placed
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approximately parallel to the coast, and each phased array receiver consists of 16 antennas.

The received signals are digitally beamformed onto a rectangular grid with a resolution of 1

km per cell. This dataset will be referred to as the Wave Hub HF radar data.

Figure 5.8: Geometry of the Wave Hub HF radar, where the Pendeen radar is shown by the
blue diamond (left) and the Perranporth radar by the magenta diamond (right). The wave
buoy is shown by the white circle beneath the black cross, which shows the location of the
closest available HF radar data.

5.2.1.2 Wave buoy

A directional wave buoy situated in the radar coverage area (50.31°N, 5.61°W), where the

water depth is 53 m, is used to (1) provide sea-truth and (2) provide directional spectra to

train the neural network. Approximately 20 km from the Pendeen radar and 30 km from

the Perranporth radar, measurements from the ‘Seawatch Mini II directional buoy’ are in

30 minute intervals, and the directional spectra are calculated using a maximum entropy

method (see work of Lopez et al. [63] for details and figure 1.12 for an example spectrum

from the dataset). Two different datasets from the buoy have been used in this study; one for

simulating radar Doppler spectra, used to train the neural network, and one for validating the

method. The specifications of both datasets are given in table 5.2. The two datasets overlap,

every hour, in November 2012, so to avoid bias in the neural network the overlapping data

has been removed from the simulation dataset. Note that in the simulations, the buoy data

is linearly interpolated to calculate the radar cross section.
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Simulation Validation

Dates 01/09/2012-20/12/2012 01/11/2012-30/11/2012
Time resolution 30 minutes (with data overlap-

ping the validation set removed)
60 minutes

Frequency resolu-
tion

0.0078 Hz in [0-1 Hz] (129 mea-
surements)

0.0078 Hz in [0-1 Hz]

Directional reso-
lution

0.22 rads in [0-2π] (30 measure-
ments)

0.07 rads in [0-2π] (90 measure-
ments)

Data points 4830 648

Table 5.2: Specifications of the wave buoy datasets.

5.2.1.3 WaveWatch III

Wave Watch III data, or WW3 data, as introduced in section 1.2.4, from the IOWAGA

database [49], is used in this experiment, alongside the wave buoy data, to simulate Doppler

spectra. This particular dataset provides partition parameters for significant waveheight, peak

period and wave direction, on a grid with resolution ∼3 km. Data is available at a 3 hourly

resolution, for January 2010-December 2012, although there are some gaps. A total of 7058

directional spectra have been modelled using the WW3 data, where a Pierson Moskowitz

model with cos2s directional spreading (where s = 2), has been used.

5.2.2 Experiment Details

5.2.2.1 Single-location Neural Network (SLNN)

In order to validate the method, the location of the simulation is set to the position nearest

to the wave buoy where operational radar data is available. At this position, the beam angles

are ϕ1 = 15° and ϕ2 = 264° , and the ocean depth is 53 m.

In training and testing the ANN, Doppler spectra simulated using both the WW3-modelled

and wave buoy-measured directional spectra are included in the dataset. Both datasets are

used as the larger the training set is, the most robust the algorithm will be. After filtering

by the SNR limit, a total of 4804 training examples were available which were then split

into 66%/33% training/test sets for the learning phase. After some experimenting, the values

shown in table 5.3 were chosen for a genetic algorithm to search through. In this experiment,

as well as the other neural network inversion experiments in this work, the number of nodes

in each layer are equal; this is to limit the number of possible combinations that can occur.
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Number of Nodes [179, 256, 512, 880]
Number of Layers [6, 7, 8, 9]
Minimising Algorithm [RMSProp, Adam]
Activation Function [elu, relu]
Number of Iterations [2500, 3000, 3500]

Table 5.3: The sets of parameters for the genetic algorithm to search through, for the SLNN.

5.2.2.2 Multi-location Neural Network (MLNN)

For the MLNN, the experiment has been carried out on a relatively small scale, where 9

locations - including the location nearest to the wave buoy with available radar data - have

been chosen, as shown in figure 5.9. For the 9 positions, ϕ1 ranges between 9° and 42° and

ϕ2 ranges between 261° and 288° . At each position, Doppler spectra are simulated using

the wave buoy and WW3 data at the location nearest to the radar. Post filtering, the data

set contained 109, 971 data pairs which were then divided into the training/test sets by a

67%/33% split.

Figure 5.9: Geometry of the MLNN inversion method. For the Wave Hub HF radar, the
Pendeen radar is shown by the blue diamond (left) and the Perranporth radar by the magenta
diamond (right). The locations of the 9 radar data points, where the neural network is trained,
are shown by the black crosses and the wave buoy is shown by the white circle, coinciding
with the bottom left radar data location.

Similarly to the SLNN, some experimenting was carried out to decide on the parameters for

the genetic algorithm. The resulting parameters are shown in table 5.4.
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Number of Nodes [444, 497, 512, 666, 701, 768, 800, 999]
Number of Layers [4, 5, 6, 7, 8, 9]
Minimising Algorithm [RMSProp, Adam]
Activation Function [elu, relu]
Number of Iterations [2000, 2500, 3000, 3500]

Table 5.4: The sets of parameters for the genetic algorithm to search through for the MLNN.

5.2.3 Results

To measure the accuracy of the inversion, the values of mean wave direction, θm , peak wave

direction, θp , peak period, tp , energy period, tE , and significant waveheight, hs , defined

in section 1.2.3, are calculated from the buoy-measured and algorithm-predicted directional

wave spectra. To quantitatively compare the results, the root mean square error (RMSE) and

correlation coefficient (CC) of each parameter is calculated and presented for each inversion

method. Scatter plots of the predicted ocean parameters against the measured values are

given, as well as time series plots of the normalised residuals, to present the results qualita-

tively.

5.2.3.1 Seaview Inversion Method

The results of the inversion using the Seaview inversion method, for 501 spectra in November

2012, are shown in figures 5.11 and 5.10, and the scatter plot, inparticular, shows that the

majority of the waves are travelling from a westerley direction - where swell is arriving from

the Atlantic. The accompanying numerical results are given in table 5.7. The accuracy of

this method is evident across all parameters, and these results show why this method has

been chosen as the benchmark for the neural network algorithm. An example of derived

waveheights and mean wave directions across the whole radar coverage area, for a sample

date, is shown in figure 5.12, where high resolution detail is clear, in both θm and hs .

In figures 5.11 and 5.10, particularly for the values of θm and θp , the anomalous results

appearing around 16/11/2012 are due to low seas. In these cases, the linearisation struggles

and as such, the results are usually filtered out when the software is operational.

5.2.3.2 Single-location Neural Network Inversion Method

For the SLNN, the genetic algorithm was run for a total of 96 hours, on a GPU, in its search

for the optimal neural network parameters. The algorithm tested 173 combinations before the

parameters were chosen as summarised in table 5.5. The numerical results for the training
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Figure 5.10: Scatter plots showing the results of the Seaview inversion on the Wave Hub HF
radar data in November 2012. The wave buoy data, for the same period, is shown on the x
axis of each plot and the inverted radar data is on the y axis.

Figure 5.11: Time series plots, for November 2012, showing the residuals of the Seaview
inversion on the Wave Hub HF radar data. In each plot, the residual has been divided by the
mean of the relevant parameter (which is also shown in table 5.7).

and test sets are given in table 5.6 and scatter plots are shown in figure 5.13. The results show

a strong correlation between the simulated and predicted values of each ocean parameter.

The results of the trained neural network, when applied to the Wave Hub HF radar data, are

shown in table 5.8. The monthly comparisons of the ocean spectrum parameters are shown

in figures 5.14 and 5.15. Note that for this inversion method there are more available radar

data than the Seaview method due to a difference in the SNR restriction levels, however,

a comparison of the same dataset is given in table 5.7. The results show good correlation

between the predicted and measured values of each ocean parameter for both the wave buoy



118

Figure 5.12: Example of whole field inversion, for 20 November 2012 at 03:00, using the
Seaview inversion method on the Wave Hub HF radar data. Significant waveheight, measured
in metres, is shown by the background colour of each cell and the mean wave direction is shown
by the black arrows.

Figure 5.13: Scatter plots showing the results of the SLNN on the training (top) and test
(bottom) datasets. The simulated values are shown on the x axes and the predicted values
on the y axes.

and the Seaview inversion; the derived values of θm are particularly encouraging, with the

same westerley wave systems apparent, as in the Seaview inversion, however, on the other

hand, tE appears to be overestimated. Interestingly, the numerical comparison of the SLNN

and Seaview inversions, for the same dates, does not affect the results much indicating that

the SLNN is performing well on the data with a lower SNR.
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Figure 5.14: Scatter plots showing the results of the SLNN inversion on the Wave Hub HF
radar data in November 2012. The wave buoy data, for the same period, is shown on the x
axis of each plot and the inverted radar data is on the y axis.

(a) SLNN vs. wave buoy (b) SLNN vs. Seaview

Figure 5.15: Time series plots, for November 2012, showing the residuals of the SLNN inversion
on the Wave Hub HF radar data. Residuals of the SLNN-predictions compared with both the
wave buoy data and Seaview inversion predictions are shown, for comparison. In each plot,
the residuals have been divided by the mean of the relevant parameter (which are given in
tables 5.8 and 5.7 for the wave buoy measurements and Seaview inversion, respectively).

5.2.3.3 Multi-location Neural Network Inversion Method

For the MLNN inversion, the genetic algorithm was, similarly to the SLNN, run for a total

of 96 hours on a GPU. The algorithm tested 67 combinations before the parameters were

chosen as summarised in table 5.5. The results of the inversion, when applied to the training
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and test sets, are shown numerically in table 5.6 and visually in figure 5.16.

Figure 5.16: Scatter plots showing the results of the MLNN on the training (top) and test
(bottom) datasets. The simulated values are shown on the x axis and the predicted values
on the y axis.

The results of the trained neural network, when applied to the Wave Hub HF radar data, are

shown in table 5.8; the results of the direct comparison with the Seaview method are shown

in table 5.7. The monthly comparisons of the chosen ocean spectrum parameters are shown

in figures 5.17 and 5.18.

An example of derived waveheights and mean wave direction for the 9 trained locations is

shown in figure 5.19; the date and time of this example is the same as the Seaview inversion

example in figure 5.12. The map, seen in figure 5.20, shows the results of the MLNN inversion

at locations it has not been trained at, for significant waveheight and mean wave direction.

The values of θm are all very similar, in contrast to the more varied derived values from

the Seaview inversion. A possible reason for this is that in training the neural network, the

algorithm got stuck in a local minimum and learned to predict the average values for θm and

θp . This is further suggested by the results of the inversion of the entire dataset, shown in

figure 5.17, where θp , in particular, seems inclined to predict the mean value of the dataset.

To counter this, a training dataset with more varied locations could be used and perhaps a

larger neural network would also be beneficial.
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Figure 5.17: Scatter plots showing the results of the MLNN inversion on the Wave Hub HF
radar data in November 2012. The wave buoy data, for the same period, is shown on the x
axis of each plot and the inverted radar data is on the y axis.

(a) MLNN vs. wave buoy (b) MLNN vs. Seaview

Figure 5.18: Time series plots, for November 2012, showing the residuals of the MLNN
inversion on the Wave Hub HF radar data. Residuals of the MLNN-predictions compared with
both the wave buoy data and Seaview inversion predictions are shown, for comparison. In each
plot, the residuals have been divided by the mean of the relevant parameter (which are given
in tables 5.8 and 5.7 for the wave buoy measurements and Seaview inversion, respectively).

§ 5.3 Bistatic HF Radar Neural Network Inversion

5.3.1 Experiment Details

In this section, two single-location neural networks are trained to invert two bistatic HF radar

datasets, σB(ω). They are defined as:
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SLNN MLNN

Number of Layers 8 9
Number of Nodes 880 999
Minimising Algorithm Adam Adam
Activation Function elu relu
Number of Iterations 3000 3000

Table 5.5: The hyperparameters chosen by genetic algorithms for the SLNN and MLNN
inversion methods.

SLNN MLNN Data Statistics

Train Test Train Test Train Test

CC RMSE CC RMSE CC RMSE CC RMSE Mean SD Mean SD

hs 1.0 0.18 0.96 0.31 0.9 0.44 0.9 0.44 2.47 0.96 2.45 0.96
θm 0.96 0.15 0.91 0.19 0.86 0.28 0.87 0.28 1.89 0.65 1.85 0.61
tp 0.98 0.52 0.94 1.03 0.87 1.69 0.86 1.69 9.36 2.81 9.60 2.89
θp 0.95 0.16 0.88 0.26 0.82 0.32 0.82 0.33 1.90 0.64 1.85 0.61
tE 0.99 0.54 0.97 0.63 0.91 1.12 0.91 1.12 08.14 2.07 8.28 2.12

Table 5.6: Numerical results of the SLNN and MLNN inversion methods, on the training
and test datasets. The correlation coefficients (CC) and root mean square errors (RMSE) are
given. The mean and standard deviation of each parameter, for both the training and test
datasets, are also given to provide context for the RMSE values.

Seaview SLNN MLNN Wave Buoy Statistics

CC RMSE CC RMSE CC RMSE Mean SD

hs 0.93 0.4 0.88 0.46 0.77 1.49 2.66 0.93
θm 0.75 0.36 0.88 0.27 0.68 0.4 1.71 0.52
tp 0.83 1.47 0.84 1.46 0.77 3.15 9.82 2.52
θp 0.59 0.45 0.69 0.4 0.7 0.43 1.80 0.56
tE 0.85 0.85 0.83 1.48 0.83 2.52 8.26 1.61

Table 5.7: Numerical results of a direct comparison of 501 inversions, of the Seaview, SLNN
and MLNN inversion methods, tested on the Wave Hub HF radar data. The correlation
coefficients (CC) and root mean square errors (RMSE) are given. The results are for a subset
of the Wave Hub data, on which the Seaview inversion results are based. The mean and
standard deviation of each parameter, for the wave buoy dataset, are also given to provide
context for the RMSE values.

1 the ‘bistatic neural network’, or BNN, where the data is simulated using the numerical

method of section 3.3 and

2 the ‘complex bistatic neural network’, or CBNN, where the data is simulated using the

method of section 3.4, where the radar effects are included.

The first experiment is carried out to see if a neural network can learn the relationship between

a Doppler spectrum with a large bistatic angle, and the corresponding directional ocean spec-
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SLNN MLNN Wave Buoy Statistics

CC RMSE CC RMSE Mean SD

hs 0.87 0.47 0.8 1.51 2.50 0.94
θm 0.91 0.26 0.83 0.37 1.78 0.60
tp 0.82 1.56 0.75 3.18 9.77 2.55
θp 0.70 0.42 0.62 0.47 1.85 0.59
tE 0.80 1.64 0.82 2.53 8.18 1.62

Table 5.8: Numerical results of the SLNN and MLNN inversion methods, tested on the Wave
Hub HF radar data. The SLNN and MLNN results are for the inversion of 644 Doppler
spectra, where the correlation coefficients (CC) and root mean square errors (RMSE) are
given. The mean and standard deviation of each parameter, for the wave buoy dataset, are
also given to provide further context for the RMSE values.

Figure 5.19: Example of MLNN-derived values at each of the nine locations that the MLNN
was trained at, on 20 November 2012 at 03:00. Significant waveheight, measured in metres,
is shown by the background colour of each cell and the mean wave direction is shown by the
black arrows.

trum S(k). The second experiment is to see whether a neural network can learn to accurately

invert bistatic Doppler spectra that are contaminated with sidelobes or with a varying Bragg

frequency causing first order peak broadening. In both experiments, a monostatic dataset,

σM (ω), is also simulated using the numerical method of section 3.3 and is used to resolve the

wave directions; the input data are of the form [σM (ω), σB(ω)].

For both neural networks, the resulting algorithm will be tested on the bistatic WERA data

described in section 3.2.1. The results will then be validated using the directional wave buoy

data (at the same location) described in section 3.2.2. Four days of overlapping radar and

buoy data have been obtained in July 2012, however the SNR of the second order bands in

the radar data was too low, at the location of the wave buoy, to get meaningful results. An
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Figure 5.20: Example of a whole field inversion, for 20 November 2012 at 03:00, using the
MLNN inversion method, where Doppler spectra from untrained locations have also been
inverted. Significant waveheight, measured in metres, is shown by the background colour of
each cell and the mean wave direction is shown by the black arrows.

example of a Doppler spectrum from the wave buoy location is shown in figure 5.21(a). At this

location, which is shown in figure 5.22, the bistatic angle is ∼ 43° which, due to the cos4 ϕbi

factor in the second order radar cross section (equation 3.2), is the likely cause of the low

SNR spectra. Therefore, a location 9.98 km away from the wave buoy, shown in figure 5.22,

has been used to validate the method instead, where the SNR is adequate (see figure 5.21(b)

for an example of a Doppler spectrum measured at this location). In using this location to

validate the method, we must assume that the ocean spectrum is stationary between the two

locations and treat the results with caution.

(a) Spectrum measured at the location closest
to the wave buoy, at a bistatic range of 11.7
km and a beam direction of 202° .

(b) Spectrum measured at the test location,
where the bistatic range is 19.2 km and the
beam direction is 190° .

Figure 5.21: Bistatic Doppler spectra from the bistatic WERA dataset, described in sec-
tion 3.2.1, on 9th July 2014 at 04:01.
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To simulate the Doppler spectra for the training data of both neural networks, the locations

of the transmitter and receiver are retained, as shown in figure 5.22, however, an imaginary

receiver has been added at the same place as the transmitter to resolve the directional ambi-

guity, operating in monostatic mode. Consequently, in order to test the neural network on the

bistatic WERA data, a monostatic data set has been simulated, to accompany the measured

bistatic data, using the directional CANDHIS wave buoy spectra as the input. The scatter

geometry for both monostatic and bistatic modes is shown in figure 5.23, where ϕM = 144.4°

and RM = 14.3 km for the monostatic radar and ϕB = 190° and RB = 19.2 km for the

bistatic radar.

Figure 5.22: Geography of the bistatic neural network experiments. The radar on the left,
shown by the pink diamond, both transmits and receives signals (in monostatic mode). The
radar on the right, depicted by the blue circle, receives bistatic scatter from the transmitter.
The testing location is shown by the black triangle and the location of the wave buoy is shown
by the black cross.

In order to compare the neural network performance on the two differently simulated bistatic

datasets, the same values for S(k) are used as input to both simulation methods. To simulate

S(k), the WW3 dataset described in section 3.2.3 is used. A total of 4556 Doppler spectra,

during 2013 - 2016, were simulated using both methods, where single parameters for hs , tp ,

θm and s were input to a Pierson Moskowitz model with a cos2s directional spreading model.

After analysing the wave buoy and Pierson Moskowitz modelled wave spectra for the validation

period, the overlapping data have not been removed as they were deemed sufficiently different

and hence would not influence the results. For the training set used to train the CBNN, time

series were generated exactly as described in section 3.4 and they were then beamformed to

obtain the Doppler spectrum nearest to the location chosen in the experiment.

Post filtering, with a 10 dB SNR minimum, there were 4095 data pairs for training the BNN

and 4496 pairs for training the CBNN. For both experiments, the simulated data pairs were
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(a) Monostatic (b) Bistatic

Figure 5.23: The scattering geometry of the bistatic neural network experiments. In both
figures, the receiver is shown by the blue circle and, for the bistatic radar, the transmitter is
shown by the blue cross. The scatter point is shown by the red star and the Bragg bearing is
shown as the straight dotted line intersecting this point. The bistatic angle is also shown in
the bistatic figure.

split into 67%/33% training/test sets. Good results were achieved by testing just a few

neural networks with varying hyperparameters so a genetic algorithm was not necessary in

either case. The parameters chosen for each neural network are given in table 5.9.

BNN CBNN

Number of Layers 4 5
Number of Nodes 123 654
Minimising Algorithm Adam rmsprop
Activation Function elu relu
Number of Iterations 1750 550

Table 5.9: The hyperparameters used for the BNN and CBNN inversions.

5.3.2 Results

Similarly to the SLNN and MLNN results in section 5.2, the values of θm , θp , tp , hs and tE

are derived from the directional ocean spectra output by the neural network. These values

are then compared with either the simulated values (for the training and test datasets) or the

wave buoy measured values (for the bistatic WERA dataset). Scatter plots show the results

qualitatively and the RMSE and CC of each parameter are also given to 2 decimal places.

In the validation of the results, where the bistatic WERA dataset is inverted, a total of 184

spectra were available after the 10 dB SNR filter.
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5.3.2.1 Bistatic Neural Network

The results of the BNN inversion for the training and test datasets are shown in figure 5.24

and the numerical results are given in table 5.10. Together, they show that the neural network

can accurately invert the simulated Doppler spectra.

Figure 5.24: Scatter plots showing the results of the BNN on the training (top) and test
(bottom) datasets. The simulated values are shown on the x axis and the predicted values
on the y axis.

The results of the inversion of the bistatic WERA dataset are shown in figure 5.25, with

the accompanying numerical values given in table 5.11. These show that the algorithm is

performing reasonably well on real bistatic data, except for θp (and in some cases θm ) which

appear to be struggling.

Figure 5.25: Scatter plots showing the results of the BNN on the bistatic WERA data,
compared with the directional wave buoy. The wave buoy measured values are shown on the
x axis and the predicted values on the y axis.
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5.3.2.2 Complex Bistatic Neural Network

The results of the CBNN on the training and test datasets are shown in figure 5.26, with

the numerical values given in table 5.10. These show that the algorithm can invert Doppler

spectra including the radar effects reasonably well but to not the same level as the BNN

inversion.

Figure 5.26: Scatter plots showing the results of the CBNN on the training (top) and test
(bottom) datasets. The simulated values are shown on the x axes and the predicted values
on the y axes.

The results of bistatic WERA data inversion are shown in figure 5.27 and table 5.11. They

show increased performance on both θm and θp , with similar performance in obtaining the

other three parameters. However, in predicting hs , tp and tE , the inversion method appears

to be predicting a mean value for each parameter; a more varied dataset is necessary to

investigate this further. It should be noted that the poor correlation coefficients for both

directional parameters result from the small amount of variance in the values measured by

the wave buoy. The RMSE values must therefore be taken into account when evaluating the

performance of the method.

Summary

In this chapter, inversion methods for obtaining wind direction and wave measurements have

been tested. The MLM was used to infer wind direction distributions from bistatic data

for the first time and the results were validated with scatterometer data. A neural network

was used, also for the first time, to infer the directional wave spectrum and encouraging

results were presented. A first experiment was carried out where simulated and high quality

radar-measured monostatic data were inverted and the results were compared against those
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Figure 5.27: Scatter plots showing the results of the CBNN on the bistatic WERA data,
compared with the directional wave buoy. The wave buoy measured values are shown on the
x axes and the predicted values on the y axes.

BNN CBNN

Train Test Train Test

CC RMSE CC RMSE CC RMSE CC RMSE

hs 1.0 0.03 1.0 0.04 0.99 0.12 0.99 0.12
θm 0.96 0.1 0.96 0.1 0.94 0.26 0.96 0.27
tp 1.0 0.05 1.0 0.06 1.0 0.21 1.0 0.22
θp 0.96 0.12 0.95 0.12 0.96 0.26 0.96 0.29
tE 1.0 0.09 1.0 0.09 0.99 0.32 0.99 0.32

Table 5.10: Numerical results of the BNN and CBNN inversion methods, on the training and
test datasets. Values for the correlation coefficient (CC) and root mean square error (RMSE)
are given to 2 decimal places.

BNN CBNN Wave Buoy Statistics

CC RMSE CC RMSE Mean SD

hs 0.64 0.5 0.72 0.75 1.96 0.4
θm -0.18 0.57 0.04 0.18 1.5 0.07
tp 0.84 0.6 0.81 0.9 7.04 0.82
θp -0.02 0.57 -0.05 0.21 1.47 0.1
tE 0.85 0.74 0.85 0.46 6.17 0.62

Table 5.11: Numerical results of the BNN and CBNN inversion methods, tested on the bistatic
WERA HF radar data. The correlation coefficients (CC) and root mean square errors (RMSE)
are given to 2 decimal places.

obtained by the well established Seaview method. A second experiment was carried out,

where simulated and - for the first time - radar-measured bistatic data (along with simulated

monostatic data) were inverted. Radar effects were included in the simulations and it was

shown that a neural network can indeed learn to invert such radar Doppler spectra and

consequently, improve the results.



Chapter 6

Discussion and Conclusion

§ 6.1 Conclusions

In the introduction, the four research aims of this thesis were set:

1 To derive an expression for the bistatic radar cross section of the ocean surface which

reduces to the monostatic expression of Barrick [5][7], when θ = 0.

2 To model bistatic radar data where the radar effects are included.

3 To infer values of ocean surface parameters - namely wind direction and directional wave

spectrum information - from bistatic radar data.

4 To see whether machine learning, in particular, artificial neural networks, can be used

to estimate ocean surface parameters from HF radar data.

Aim (1) was addressed in Chapter 2, where the bistatic radar cross section was derived, before

the numerical solution was presented in Chapter 3. A comparison of simulated bistatic Doppler

spectra with real measured bistatic Doppler spectra reinforced the differences highlighted by

Grosdidier et al. [29], for scenarios where the radar effects cannot be ignored. To counter this,

and to address Aim (2), a new simulation method was proposed to model bistatic HF radar

data including the radar effects, where the resulting simulated spectra were more similar to

the measured radar data.

To satisfy Aim (3), methods for inverting bistatic radar Doppler spectra were described in

Chapter 4. Existing inversion methods for obtaining currents, winds and waves were outlined

and a new method which uses a neural network to invert radar Doppler spectra for the

directional wave spectra was proposed. In Chapter 5, the maximum likelihood method of

130
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Wyatt et al. [108] was used to invert real bistatic data to obtain wind direction measurements,

which, when compared with ASCAT scatterometer data, gave encouraging results. This

experiment highlighted the difficulty of locating the first order peaks when there is significant

first order spreading due to a varying Bragg frequency in the measurement location and/or

sidelobes; a crude algorithm was implemented which examines each pair of peaks, separated

by a distance of 2ωB , and then picks the pair with the highest combined total amplitude.

The resulting wind directions were mostly consistent but there were a number of erroneous

directions chosen, which is likely to be due to the difficulty in identifying the appropriate

peaks. Furthermore, the larger the value of ωB , the larger the Bragg wave and this could be

a potential issue in complex ocean systems.

Aim (4) was covered in Chapter 5, when it was shown that a neural network can be used

to invert HF radar Doppler spectra to obtain the associated directional wave spectra. Four

neural networks were trained using HF radar simulated for: (1) a monostatic radar in a

single location, (2) a monostatic radar in multiple locations (3) a bistatic radar in a single

location and (4) a bistatic radar in a single location, where radar effects were included. Key

ocean statistics, namely mean and peak wave direction, energy period, peak wave period and

significant waveheight, were estimated by the neural network inversion and, in each case, were

then compared with the same parameters from a wave buoy.

The single-location neural network, or SLNN, inversion, showed good agreement with the wave

buoy, which shows the potential of machine learning algorithms in the field of remote sensing

using HF radar. The numerical comparison of the neural network and Seaview inversion

methods in table 5.8, shows that the results for the SLNN and Seaview methods are similar,

with the SLNN performing better on θm and θp , approximately equal on tp and worse on hs

and tE . At sea states above approximately 4.5 m, the neural network is underestimating hs

and the network seems to constantly overestimate the value of tE .

The multi-location neural network, or MLNN, inversion, although providing encouraging re-

sults, does not perform as well on the real data as the SLNN does. For the inversion results

on the subset of the data which are directly comparable with the Seaview inversion, only θp

is more accurately predicted. The average correlation coefficient is 0.75 compared with 0.83

for the SLNN and 0.79 for the Seaview inversion. The average root mean square error for

the MLNN is 1.6, compared with 0.81 for the SLNN and 0.71 for the Seaview inversion. The

results for the training/testing dataset inversions are worse than for the SLNN too. This could

be because only nine locations were trained in the neural network which were not far apart.

Perhaps training data simulated at locations further apart would help the neural network cre-

ate a better model of the relationship between the beam angles and the Doppler spectra. Or
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perhaps including more locations with fewer data at each would be beneficial. Fundamentally,

more work must be done to accurately invert data across a larger expanse of the ocean using

this neural network method.

The two neural networks trained to invert bistatic HF radar data, both with and without radar

effects, gave excellent results on the training and test data. This showed that a neural network

can successfully invert bistatic data, both when the bistatic radar cross section does or does

not hold. When the algorithms were tested on measured bistatic HF radar data, together

with simulated monostatic data, both neural networks derived the values of hs , tp and tE

adequately. The neural network trained without the radar effects, struggled to measure the

directions of the wave spectra, however, improvement was seen when the radar effects were

included in the training process. The wave buoy used to validate the estimates was, however,

in a different location and therefore, these results must be treated with caution.

§ 6.2 Future Work and Limitations

6.2.1 Neural Network Inversion Method

A limitation of the existing inversion methods is also apparent in the neural network inversion

method. The perturbation theory of Rice [78], used in Chapter 2 to derive the radar cross

section, assumes small slopes compared to radar wavelength. Therefore, for high seas with

large significant waveheight, the theory breaks down and the simulations that the neural

network is trained on do not represent the real data well. This is apparent in the results of

the neural network inversion, for the higher values of hs . A modification to the simulation,

similar to that used by Wyatt et al. [106], could be made for significant waveheights over a

given threshold; this is a possibilty for the future.

More work must also be done on successfully including the radar beam angle in the neural

network algorithms. The main advantage of HF radar is its ability to provide measurements

across a larger expanse of the ocean, as opposed to the single point measurement of a wave

buoy, say. As the neural network inversion works well in a single location, there is no reason

why it should not also be able to learn the relationship between ϕ1 and ϕ2 , and the Doppler

spectra, to the same level of accuracy. This is seemingly a case of getting the correct neural

network architecture and having a big enough dataset for the training process.

There are a number of variables not yet varied in the training phase which may impact the

accuracy of the neural network. For instance, the points of the Doppler spectrum 0.6 either

side of each Bragg peak were used as the input of the neural network and the effect of varying
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this range has not yet been tested. Valuable information may be missed in the training phase

or useless information may be being passed in and wasting resources. A convolutional neural

network may be more suitable for tackling this issue, and is something to try in the future.

Other machine learning methods may also be successful in inverting Doppler spectra, and a

comparison of different methods would be interesting.

The high cost of training the neural network, in both time and computing resources, is another

limitation. Other methods, such as the Seaview inversion method, require no prior knowledge

of the radar data/setup; one just has to set the variables, such as radar frequency and location

and then the algorithm is ready to be implemented. As the neural network procedure is

dependent on factors such as the noise floor and locations of the radars, simulations and the

training process must be carried out for each new radar site. If a radar were to be moved,

the whole process must be carried out again meaning a few days of operational downtime

would occur. To train a neural network to recognise all different radar frequencies and angles

would be theoretically possible, although one would need a large amount of computing power

to train a much larger neural network with a vast, varied dataset. On the other hand, once

trained, the neural network inversion method is cheap to run, and would provide fast results

operationally.

6.2.2 Simulating and Inverting Bistatic Data

The speed of computing a bistatic Doppler spectrum, using the derived bistatic radar cross

section, is between 0.2 and 2 seconds, with sufficient resolution. The new proposed method, to

simulate Doppler spectra including the radar effects, where over 1000 spectra are simulated,

therefore takes around 5 minutes, even when computed in parallel. Considering the large

number of Doppler spectra that must be computed for each simulation, this slowness is not

surprising, yet there are ways of speeding it up. The individual Doppler spectra would benefit

from being simulated in a lower level language such as C, where the readability of the code

is sacrificed for speed. This would make it more feasible to simulate an extensive training

set for the neural network inversion process, which thus far has only been trained on a few

thousand spectra, at most.

Along with the need for more data, more realistic directional spectra should be used in simu-

lating the training set, too. The WW3 data used in both bistatic neural network experiments

contained only single ocean parameters and these were used as input to a Pierson Moskowitz

model, which is not likely to be appropriate for all times, given the limited fetch in the area,

for some directions and the possible presence of swell. Furthermore, it is not realistic to have

such ‘perfect’ ocean spectra; if the neural network was tested on a Doppler spectrum gener-



134

ated using multi-modal - less perfect and hence more realistic - data, it would likely predict

inaccurate results.

Although the bistatic neural network was tested on real HF radar data and validated with a

directional wave buoy dataset, the dataset was particularly small (only 4 days) and unvaried.

Additionally, a monostatic data set was simulated using the wave buoy data which is not

authentic and furthermore, as the SNR was too low in the location of the wave buoy, the

location of the test was moved to a location 10 km away so the results may be inaccurate. An

ideal future experiment would have a multistatic radar setup, with a directional wave buoy

in the coverage area to validate the results (in an area with a sufficient SNR), and directional

ocean spectra WW3 model data to simulate the Doppler spectra for the training dataset.

6.2.3 Wind Inversion

The same SNR issue as in the bistatic wave inversion experiment applied in the wind direction

inversion experiment in section 5.1, except then, there was ASCAT data available to validate

the results. The varying value of ϕbi did seem to affect the inversion of the wind directions,

though. Care must be taken in interpreting the wind directions as one will measure Bragg

waves of different lengths over an area with substantially varying bistatic angles. This may also

raise an issue when inverting wind directions from multistatic radar. If the Bragg frequencies

in a location are significantly different for the monostatic and bistatic radars, then different

Bragg waves will be measured and the dataset used in the maximum likelihood method will

not be consistent. More work must be done - specifically using a multistatic radar - to see how

much this will affect the inversion. However, in similar situations for monostatic radar setups,

where two radars operate on two different frequencies, good results were obtained [102]. On

the other hand, there is a possibility that the radar data inversion picked up different features

of the wind system, than the ASCAT data showed. This is only speculation though and is

not possible to prove at this time, so further studies must be undertaken.

In general, in areas where the bistatic angle is large (when ϕbi → 90°), the measured Doppler

spectra may have to be discarded. Troubled by low SNR and Bragg peak broadening, it has

not been possible to invert these data in this work. Other datasets must be analysed to see

whether or not this will be possible.
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Appendix A

The Surface Roughness Spectrum;

Ss(p, q, wl)

By the Wiener-Khinchin theorem, the Fourier transform of the autocovariance of the surface

height function, f , gives the power spectrum of the surface, Ss(kx, ky, ω). The autocovariance

of the surface, f(x, y, t) (given in equation 2.1) is

Rx1,x2 = 〈f(x1, y1, t1)f∗(x2, y2, t2)〉

=

〈∑
m,n,l

P (m,n, l)eia(mx1+ny1)−iwlt1
∑

m′,n′,l′

P ∗(m′, n′, l′)e−ia(m′x2+n′y2)+iwl′t2

〉

and, from equation 2.70, R is nonzero only when m′ = m , n′ = n and l′ = l . Therefore,

Rx1,x2 =
∑
m,n,l

〈P (m,n, l)P ∗(m,n, l)〉 e−ia(m(x2−x1)+n(y2−y1))−iwl(t1−t2)

and setting x = x2 − x1 , y = y2 − y1 and τ = t2 − t1 gives

Rx,y,τ =
∑
m,n,l

〈P (m,n, l)P ∗(m,n, l)〉 e−ia(mx+ny)+iwlτ . (A.1)

Taking the Fourier transform of equation A.1, i.e.

1

(2π)3

∞y

−∞
Rx,y,τeia(m0x+n0y)−iwl0τ dx dy dτ,
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then gives the power spectrum of the surface as

Ss(m0, n0, l0) =
∑
m,n,l

〈P (m,n, l)P ∗(m,n, l)〉

1

(2π)3

∞y

−∞
e−ia((m−m0)x+(n−n0)y)−iw(l0−l)τ dx dy dτ.

(A.2)

The Dirac delta function,

δ(p) =
1

2π

∫ ∞
−∞

eipx dx,

is used to simplify equation A.2 to give

Ss(m0, n0, l0) =
∑
m,n,l

〈P (m,n, l)P ∗(m,n, l)〉

δ(am0 − am)δ(an0 − an)δ(wl − wl0).

(A.3)

If the sum in equation A.3 is approximated as an integral over m , n and l then

Ss(m0, n0, l0) =

∞y

−∞
〈P (m,n, l)P ∗(m,n, l)〉

δ(am0 − am)δ(an0 − an)δ(wl − wl0) dmdndl

(A.4)

and substituting am = p , an = q and wl = ω in to equation A.4 gives

Ss(p0, q0, wl0) =
L2T

(2π)3

∞y

−∞
〈P (m,n, l)P ∗(m,n, l)〉

δ(p0 − p)δ(q0 − q)δ(ω − ω0) dp dq dω,

(A.5)

where a = 2π/L and w = 2π/T have been used. Now, by the sifting property of the delta

function, equation A.5 becomes

Ss(p0, q0, wl0) =
L2T

(2π)3
〈P (m0, n0, l0)P ∗(m0, n0, l0)〉

for any value of p0 , q0 and wl0 . This expression can be averaged to give a general expression

for p , q and wl , such that

Ss(p, q, wl) =
L2T

(2π)3
〈P (m,n, l)P ∗(m,n, l)〉 ,
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which can be rearranged to give the result

〈P (m,n, l)P ∗(m,n, l)〉 =
(2π)3

L2T
Ss(p, q, wl). (A.6)



Appendix B

Walkthrough of the First Order

Radar Cross Section

Each term in equation 2.80 is derived in the same way. A walkthrough of one of the terms -

namely Φ
(1)
Bx1C′∗y′1

- is here given as an example. Beginning with the expressions for B , C ,

x1 and y1 from equations 2.53, 2.54, 2.56 and 2.57 respectively;

B(t1)x1C
′∗(t2)y′1 =

∑
mnl

cosϕ(k0 + b(m,n) cos θ) sinc(XR) sinc(Y R)

(am− k0)P (m− ν, n, l)e−i(ωl+ω0)t1∑
m′n′l′

sinϕ(k0 + b∗(m′, n′) cos θ) sinc(XR′) sinc(Y R′)

an′P ′∗(m′ − ν, n′, l′)ei(ωl′+ω0)t2

and from equation 2.75, m = m′ , n = n′ and l = l′ for a non-zero value of 〈PP ∗〉 and so

〈B(t1)x1C
′∗(t2)y′1〉 =

∑
mnl

cosϕ sinϕ(k0 + b(m,n) cos θ)(k0 + b∗(m,n) cos θ)

sinc2(XR) sinc2(Y R)an(am− k0)e−i(ωl+ω0)(t1−t2)

(2π)3

L2T
Ss(am− aν, an, ωl),

(B.1)

where 〈P (m,n, l)P ′∗(m,n, l)〉 =
(2π)3Ss(am, an,wl)

L2T
has been used. Now, from Thomas [89]

lim
L→∞

L

(
sin(XL/2)

XL/2

)2

= 2πδ(X),
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and so

lim
L→∞

L (sinc(XR))2 = 2πδ(k0 sin θ cosϕ− p) (B.2)

and

lim
L→∞

L (sinc(Y R))2 = 2πδ(k0 sin θ sinϕ− q). (B.3)

Furthermore

y (2π)3

L2T
Ss(am− aν, an,wl) dmdndl =

y
Ss(p− k0α, q,Ω) dp dq dΩ, (B.4)

by a = 2π/L and w = 2π/T . Therefore, by equations B.2, B.3 and B.4, the limit of

equation B.1 is found to be

lim
L→∞

L2〈B(t1)x1C
′∗(t2)y′1〉 =4π2

∞y

−∞
cosϕ sinϕ(k0 + b(p, q) cos θ)(k0 + b∗(p, q) cos θ)

q(p− k0)δ(k0 sin θ cosϕ− p)δ(k0 sin θ sinϕ− q)

ei(Ω+ω0)τSs(p− k0, q,Ω) dp dq dΩ,

(B.5)

where

τ = t2 − t1 Ω = lim
T→∞

wl.

Integrating equation B.5 analytically over p and q using the delta functions gives

lim
L→∞

L2〈B(t1)x1C
′∗(t2)y′1〉 =4π2 cosϕ sinϕk4

0(1 + cos2 θ)2(sin θ sinϕ(sin θ cosϕ− 1))∫ ∞
−∞

Ss(k0 sin θ cosϕ− k0, k0 sin θ sinϕ,Ω)ei(Ω+ω0)τ dΩ
(B.6)

and taking the Fourier transform, as defined in equation 2.66, gives

ΦBx1C′∗y′1
= 4π2 cosϕ sinϕk4

0(1 + cos2 θ)2(sin θ sinϕ(sin θ cosϕ− 1))

1

2π

∞x

−∞
Ss(k0 sin θ cosϕ− k0, k0 sin θ sinϕ,Ω)ei(Ω+ω0−ω)τ dτ dΩ.

(B.7)

Using

δ(p) =
1

2π

∫ ∞
−∞

eipx dx, (B.8)
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equation B.7 becomes

ΦBx1C′∗y′1
= 4π2 cosϕ sinϕk4

0(1 + cos2 θ)2(sin θ sinϕ(sin θ cosϕ− 1))∫ ∞
−∞

Ss(k0 sin θ cosϕ− k0, k0 sin θ sinϕ,Ω)δ(Ω + ω0 − ω) dΩ

= 4π2 cosϕ sinϕk4
0(1 + cos2 θ)2(sin θ sinϕ(sin θ cosϕ− 1))

Ss(k0 sin θ cosϕ− k0, k0 sin θ sinϕ, ω − ω0).

(B.9)

By the same method, the other terms are found to be

ΦCy1B′∗x′1
= ΦBx1C′∗y′1

(B.10)

ΦBx1B′∗x′1
= 4π2k4

0 cos2 ϕ(1 + cos2 θ)2(sin θ cosϕ− 1)2

Ss(k0 sin θ cosϕ− k0, k0 sin θ sinϕ, ω − ω0)
(B.11)

ΦCy1C′∗y′1
= 4π2k4

0 sin2 ϕ(1 + cos2 θ)2(sin θ sinϕ)2

Ss(k0 sin θ cosϕ− k0, k0 sin θ sinϕ, ω − ω0)
(B.12)

ΦDz1D′∗z′1
= 4π2k4

0 sin2 θ(sin θ cosϕ− sin2 θ)2

Ss(k0 sin θ cosϕ− k0, k0 sin θ sinϕ, ω − ω0)
(B.13)

ΦBx1D′∗z′1
= −4π2k4

0 cosϕ sin θ(1 + cos2 θ)2(sin θ cosϕ− sin2 θ)(sin θ cosϕ− 1)

Ss(k0 sin θ cosϕ− k0, k0 sin θ sinϕ, ω − ω0)
(B.14)

ΦDz1B′∗x′1
= ΦBx1D′∗z′1

(B.15)

ΦCy1D′∗z′1
= −4π2k4

0 sinϕ sin θ(1 + cos2 θ)(sin θ sinϕ)(sin θ cosϕ− sin2 θ)

Ss(k0 sin θ cosϕ− k0, k0 sin θ sinϕ, ω − ω0)
(B.16)

ΦDz1C′∗y′1
= ΦCy1D′∗z′1

. (B.17)

Finally, σ(1)(ω) is calculated using equation 2.80. As all of the first order contributions include

4π2k4
0Ss(k0 sin θ cosϕ − k0, k0 sin θ sinϕ, ω − ω0), this will implied throughout the following

calculation. Summing equations B.9 through to B.17 gives

∑
=
(
cosϕ(1 + cos2 θ)(sin θ cosϕ− 1) + sinϕ(1 + cos2 θ)(sin θ sinϕ)

− sin θ(cosϕ sin θ − sin2 θ)
)2
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=
(
cos2 θ(sin θ − cosϕ)− cosϕ+ sin θ + sin2 θ(sin θ − cosϕ)

)2
= 22 (sin θ − cosϕ)2 .

So therefore, on division by π and letting θ = 90° , the first order radar cross section is

σ(1)(ω) = 24πk4
0 (1− cosϕ)2 Ss(k0 cosϕ− k0, k0 sinϕ, ω − ω0). (B.18)



Appendix C

Walkthrough of the Second Order

Radar Cross Section

By equation 2.99, the second order radar cross section term is found by calculating

σ(2)(ω) = σ(2)(ω)1 + σ(2)(ω)2 + σ(2)(ω)3 + σ(2)(ω)4, (C.1)

for σ(2)(ω)i in equations 2.95-2.98. To show how to compute each term in equation C.1, the

derivation of σ(2)(ω)3 is given; the derivations of the other three terms are analogous. From

equation 2.97,

σ(2)(ω)3 =
1

π
Φ

(2)
−iζb(q,r)ξ′∗ΓH

, (C.2)

where ζ(t) = [B(t)x1 +C(t)y1 +D(t)z1] and ξ(t) = [B(t)x2 +C(t)y2 +D(t)z2] , for B , C and

D given in equations 2.53-2.55 and xi , yi and zi given in equations 2.56-2.58. Therefore, the

calculation of equation C.2 can be split into

σ(2)(ω)3 =
1

π

(
Φ

(2)
−ib(q,r)ΓHBx1B′∗x

′
2

+ Φ
(2)
−ib(q,r)ΓHCy1C′∗y

′
2

+ Φ
(2)
−ib(q,r)ΓHBx1C′∗y

′
2

+ · · ·
)
, (C.3)

where L2 and 〈QQ′∗〉 are implied in each of the nine terms, where 〈QQ′∗〉 is the average of

four independent random variables, namely

〈QQ′∗〉 =
〈P (q − ν, r, s)P (m− q, n− r, l − s)

b(q, r)

P (ν − q′,−r′,−s′)P (q′ −m′, r′ − n′, s′ − l′)〉
b∗(q′, r′)

.

(C.4)
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From equation 2.74,

〈P1P2P3P4〉 = 〈P1P2〉〈P3P4〉︸ ︷︷ ︸
T1

+ 〈P1P3〉〈P2P4〉︸ ︷︷ ︸
T2

+ 〈P1P4〉〈P2P3〉︸ ︷︷ ︸
T3

, (C.5)

and, as stated in section 2.4.3, the average, T1 , contributes to specular scatter at zero Doppler

and is hence ignored. The second set of conditions, for a non zero average T2 , are

m = m′

n = n′

l = l′

q = q′

r = r′

s = s′

(C.6)

and the third set, for a non zero average T3 , are

m = m′

n = n′

l = l′

q′ = m− q + ν

r′ = n− r

s′ = l − s.

(C.7)

So for each of the nine terms in equation C.3, these two sets of conditions mean that there

are 18 terms to calculate to find σ(2)(ω)3 . Repeating the process for each of the four terms

in equation C.1, means that there are 72 calculations in total. To speed up the process, we

can exploit the fact that each term consists of the same fundamental terms.

The structure, say χ , of each term is

χ = L2
∑
mnl

f1(m,n) sinc(XR) sinc(Y R)e−i(ωl+ω0)t1
∑
qrs

g1(m,n, q, r)

∑
m′n′l′

f2(m′, n′) sinc(XR′) sinc(Y R′)ei(ωl
′+ω0)t2

∑
q′r′s′

g2(m′, n′, q′, r′)

Q(m,n, l, q, r, s)Q′∗(m′, n′, l′, q′, r′, s′)

b(q, r)b∗(q′, r′)
,

(C.8)

where f1 and f2 both represent one of B , C and D , excluding the sinc and e−i(wl+ω0)t

terms which have been included separately, and g1 and g2 both represent one of xi , yi and
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zi . Under the second set of conditions, given in equation C.6, the average of equation C.8 is

〈χ〉2 = L2
∑
mnl

f1(m,n)f2(m,n) sinc2(XR) sinc2(Y R)

∑
qrs

g1(m,n, q, r)g2(m,n, q, r)ei(ωl+ω0)τ

(
(2π)3

L2T

)2
Ss(aq − aν, ar, ws)Ss(am− aq, an− ar, wl − ws)

b(q, r)b∗(q, r)
,

(C.9)

where τ = t2 − t1 . Taking the limit of equation C.9 as L→∞ , using the relations

aq → p

ar → q

ws→ Ω

aν → k0

L sinc2(xL/2)→ 2πδ(x)

am→ p′

an→ q′

wl→ Ω′

b(m,n)→ k0γ,

(C.10)

gives

lim
L→∞

〈χ〉2 = 22π2

∫
· · ·
∫ ∞
−∞

F1(p′, q′)F2(p′, q′)δ(k0 sin θ cosϕ− p′)δ(k0 sin θ sinϕ− q′)

G1(p′, q′, p, q)G2(p′, q′, p, q)ei(Ω
′+ω0)τ

Ss(p− k0, q,Ω)Ss(p
′ − p, q′ − q,Ω′ − Ω)

b(p, q)b∗(p, q)
dp dq dΩ dp′ dq′ dΩ′,

(C.11)

where F1 , F2 , G1 and G2 are the functions f1 , f2 , g1 and g2 with the limit taken. The

delta functions in equation C.11 can then be used to evaluate the integrals over p′ and q′ . So

letting p′ = k0 sin θ cosϕ and q′ = k0 sin θ sinϕ gives

lim
L→∞

〈χ〉2 = 22π2

∫∫∫∫ ∞
−∞

F1(θ, ϕ)F2(θ, ϕ)G1(k0 sin θ cosϕ, k0 sin θ sinϕ, p, q)

Ss(p− k0, q,Ω)Ss(k0 sin θ cosϕ− p, k0 sin θ sinϕ− q,Ω′ − Ω)

b(p, q)b∗(p, q)

G2(k0 sin θ cosϕ, k0 sin θ sinϕ, p, q)ei(Ω
′+ω0)τ dp dq dΩ dΩ′.

(C.12)

Taking the Fourier transform of equation C.12, using the definition of the delta function

(defined in equation B.8) to integrate the result over Ω′ and then dividing the result by π
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gives

Φχ,2 = 22π
y

F1(θ, ϕ)F2(θ, ϕ)G1(k0 sin θ cosϕ, k0 sin θ sinϕ, p, q)

Ss(p− k0, q,Ω)Ss(k0 sin θ cosϕ− p, k0 sin θ sinϕ− q,−ω0 + ω − Ω)

b(p, q)b∗(p, q)

G2(k0 sin θ cosϕ, k0 sin θ sinϕ, p, q) dp dq dΩ.

(C.13)

For each f and g term that the radar cross section is calculated for, the respective F and G

terms are

x1 = x′1 → k0(sin θ cosϕ− 1)

y1 = y′1 → k0 sin θ sinϕ

z1 = z′1 → k2
0(sin θ cosϕ− sin2 θ)

x2 = x′2 → k0

(
(k0 sin θ cosϕ− p)(k0 − p) + (1− sin θ cosϕ)b2(p, q)

)
y2 = y′2 → k0

(
(k0 sin θ sinϕ− q)(k0 − p)− sin θ sinϕ)b2(p, q)

)
z2 = z′2 → k2

0((p− k0)(k0 sin2 θ − p sin θ cosϕ− q sin θ sinϕ)

+ (sin2 θ − sin θ cosϕ)b2(p, q))

B = B′ → k0 cosϕ(1 + cos2 θ)

C = C ′ → k0 sinϕ(1 + cos2 θ)

D = D′ → − sin θ.

(C.14)

A similar process, using the third set of conditions from equation C.7, shows that

Φχ,3 = 22π

∞y

−∞
F1(θ, ϕ)F2(θ, ϕ)G1(k0 sin θ cosϕ, k0 sin θ sinϕ, p, q)

Ss(p− k0, q,Ω)Ss(k0 sin θ cosϕ− p, k0 sin θ sinϕ− q,−ω0 + ω − Ω)

b(p, q)b∗(k0 sin θ cosϕ− p+ k0, k0 sin θ sinϕ− q)

G2(k0 sin θ cosϕ, k0 sin θ sinϕ, p, q) dp dq dΩ,

(C.15)

where G1 and G2 denote the relevant expressions for the transformed g1 and g2 functions

using the third set of conditions. The values for F1 and F2 remain the same. In fact, only

the transformed values of x′2 , y′2 or z′2 are different under the third set of conditions. They
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are

x′2 → k0

(
(k0 sin θ cosϕ− p)(k0 − p) + (1− sin θ cosϕ)b2(η, ψ)

)
y′2 → k0

(
q(p− k0 sin θ cosϕ)− sin θ sinϕ)b2(η, ψ)

)
z′2 → k2

0((k0 sin θ cosϕ− p)(sin θ cosϕ(p− k0) + q sin θ sinϕ)

+ (sin2 θ − sin θ cosϕ)b2(η, ψ)),

(C.16)

where, for convenience,

η = k0 sin θ cosϕ− p+ k0 ψ = k0 sin θ sinϕ− q. (C.17)

To find the value of σ(2)(ω)3 , each combination of the terms alluded to in equation C.3 is

substituted into equations C.13 and C.15 and then the results summed. Note that each term

contributing to σ(2)(ω)3 includes a factor of b(q, r), which transforms to b(p, q). Therefore,

the factor of b(p, q) in the denominator of equation C.8 cancels and hence there are no b(p, q)

terms in the denominators of the resulting forms of Φχ,2 and Φχ,3 . Furthermore, each term

is multiplied by −iΓH . In the case of Φ
(2)
−ib(p,q)ΓHBx1C∗y

′
2
, substituting the values for B , C ,

x1 and y′2 from equation C.14 into equation C.13 gives the contribution from the second set

of conditions as

Φ
(2)
[−ib(q,r)ΓHBx1C′∗y

′
2],2

= −22πi

∞y

−∞
ΓHk

4
0 cosϕ sinϕ(1 + cos2 θ)2(sin θ cosϕ− 1)

Ss(p− k0, q,Ω)Ss(k0 sin θ cosϕ− p, k0 sin θ sinϕ− q,−ω0 + ω − Ω)

b∗(p, q)(
(k0 sin θ sinϕ− q)(k0 − p)− sin θ sinϕ)b2(p, q)

)
dp dq dΩ.

Substituting the same values for B , C and x1 into equation C.15, along with the value for

y′2 from equation C.16, gives

Φ
(2)
[−ib(q,r)ΓHBx1C′∗y

′
2],3

= −22πi

∞y

−∞
ΓHk

4
0 cosϕ sinϕ(1 + cos2 θ)2(sin θ cosϕ− 1)

Ss(p− k0, q,Ω)Ss(k0 sin θ cosϕ− p, k0 sin θ sinϕ− q,−ω0 + ω − Ω)

b∗(k0 sin θ cosϕ− p+ k0, k0 sin θ sinϕ− q)(
q(p− k0 sin θ cosϕ)− sin θ sinϕ)b2(η, ψ)

)
dp dq dΩ,

Upon calculating the other combinations of terms, in much the same way, and letting θ = 90°

for grazing incidence, the results are summed to give the contribution from the second set of
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conditions as

Φ
(2)
3,2 = −24k4

0πi(1− cosϕ)

∞y

−∞
ΓH

(
(k0 − p)(k0 − p cosϕ− q sinϕ)− (1− cosϕ)b2(p, q)

)
b∗(p, q)

Ss(p− k0, q,Ω)Ss(k0 cosϕ− p, k0 sinϕ− q,−ω0 + ω − Ω) dp dq dΩ,

and, from the third set, as

Φ
(2)
3,3 = −24k4

0πi(1− cosϕ)

∞y

−∞
ΓH

(
(k0 cosϕ− p)(cosϕ(k0 − p)− q sinϕ)− (1− cosϕ)b2(η, ψ)

)
b∗(k0 cosϕ− p+ k0, k0 sinϕ− q)

Ss(p− k0, q,Ω)Ss(k0 cosϕ− p, k0 sinϕ− q,−ω0 + ω − Ω) dp dq dΩ.

Letting

a1 = (k0 − p)(k0 − p cosϕ− q sinϕ)− (1− cosϕ)b2(p, q),

a2 = (k0 cosϕ− p)(cosϕ(k0 − p)− q sinϕ)− (1− cosϕ)b2(η, ψ),

b1 = b(p, q)

and

b2 = b(k0 cosϕ− p+ k0, k0 sinϕ− q),

the sum of Φ
(2)
3,2 and Φ

(2)
3,3 is

Φ
(2)
3 (ω) = −24k4

0πi(1− cosϕ)

∞y

−∞
ΓH

(
a1

b∗1
+
a2

b∗2

)
Ss(p− k0, q,Ω)

Ss(k0 cosϕ− p, k0 sinϕ− q,−ω0 + ω − Ω) dp dq dΩ.

(C.18)
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