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Abstract

Whilst the �eld of choice modelling has been dominated by approaches based
on random utility maximisation (RUM), there has recently been a consider-
able rise in work considering alternative model structures that attempt to
incorporate behavioural insights from psychology, behavioural science and
other disciplines. Thus far, most alternative models have only involved small
steps from the �rm foundations of RUM models. However, a key issue with
models not based on RUM is the loss of its micro-economic foundations and
hence the ability to conduct welfare analysis. This thesis puts forward the
key argument that if we are to lose this bene�t, a newly proposed model
needs to allow for rich account of behaviour and steps should be taken to
move further from the tried and tested. Given that choice models developed
within mathematical psychology have been speci�cally designed to explain
contextual e�ects where alternatives impact each other, it is surprising that
there has not yet been more of a bridge between the disciplines. This is hence
the key aim of this thesis: to build bridges between the disciplines by bring-
ing ideas and models from mathematical psychology into choice modelling in
the context of travel behaviour research. We provide a large number of un-
derlying methodological improvements and adaptations for two accumulator
models, decision �eld theory (DFT) and the multi-attribute linear ballistic
accumulator (MLBA). The work in this thesis provides thorough and detailed
applications of both models to a wide range of travel behaviour choice con-
texts, such that the precise nature of the models can be established and the
models can be contrasted to standard choice modelling methods. Further-
more, we establish best practices for the implementations of both models.
Crucially, tests across a wide variety of choice scenarios demonstrate that
these models regularly outperform standard choice models in terms of model
�t, as well as providing useful behavioural insights. We also develop new
frameworks for choice models implementing quantum logic, which has made
a successful transition into cognitive psychology but has not yet been dis-
cussed in depth in the context of travel behaviour research. Results from
applications of quantum models suggest that they provide an accurate ac-
count of changes in choice context. Of course, adding yet more possible
models to the mix creates further issues for analysts in deciding which struc-
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Abstract

ture to adopt. With this in mind, we discuss in depth the concept of model
averaging, demonstrating its potential within the context of travel behaviour
research and showing how it can be applied across a wide variety of models
to generate interesting insights by combining evidence across models. Over-
all, we demonstrate that if we are to step away from the �rm foundations of
RUM, the move towards models developed in mathematical psychology will
provide considerable bene�ts for those who make the leap.
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Chapter 1

Introduction

1 Background

Given that a fundamental component of human nature is the ability to delib-
erate on our decisions and make choices, it is unsurprising that researchers
from psychology, philosophy, econometrics, behavioural science and neuro-
science, to name a few, are all interested in the study of choice behaviour.
Given the wide variety and nature of these di�erent disciplines, it is under-
standable that the methods and types of applications used to study choice
behaviour are hugely varied. In particular, the prediction or statistical anal-
ysis of choices has also been studied from very di�erent viewpoints which is
indicative of the abstract nature of attempting to put numbers on choices.
As a result, the mathematical methods used by psychologists are often struc-
turally completely di�erent to traditonal choice modelling methods. What is
more surprising is the lack of a bridge between these two di�erent schools of
thought given that they often attempt to model choices that are made under
similar conditions.

In econometrics, the dominant theory for over forty years has been random
utility maximisation (RUM), which started with the derivation of the logit
formula (Luce, 1960) and work by Marschak (1960), before the well-known
contribution of McFadden (1974). A key feature of this family of models is the
notion of trade-o�s, where good performance on one attribute can compensate
for poor performance on another attribute. The utility or attractiveness of
alternative is a function of the attributes of that alternative alone and is
obtained through a single calculation involving all relevant attributes.

As a contrast, typical approaches in mathematical psychology have fo-
cussed on what are known as `sequential sampling models' or `accumula-
tor models' (Busemeyer and Townsend, 1992; Ratcli�, 1978; Usher and Mc-
Clelland, 2001), where the preference (their equivalent of a utility) for the
di�erent alternatives updates over time within a single choice context. A
decision-maker samples the world, deliberates on the relative merits of the
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di�erent alternatives before choosing one. Consequently these models have
also been called `process models' as they attempt to mathematically repre-
sent the decision-making process as well as attempting to capture the choice
outcomes. The result of this approach has lead to the development of mod-
els that can predict response times as well as choice behaviour (Brown and
Heathcote, 2008). As such, one possible conclusion would be that, relative
to econometricians, mathematical psychologists are focussed on choice pro-

cesses, as whilst they may often study the results of responses to similar
multi-alternative, multi-attribute choice tasks, it is rarely the preferences of
an individual or their precise response to particular attributes of alternatives
that psychologists are interested in. Instead, they focus more on how and
why we make choices rather than what the choices actually are. Consequently
the explanation of various contextual e�ects is often of key importance.

This crucial di�erence in e�ect is the result of a very di�erent response
to the �ndings from behavioural economics, with mathematical psychologists
often focussing on ensuring that their models can account for and predict
such behaviour. As a contrast, whilst mainstream choice modellers have at-
tempted to add behavioural elements to their models, the computational ease
of calculating and measuring trade-o�s remains of key importance, meaning
that there has been a reluctance to step away from traditional model struc-
tures. There has, however, been some attempts to incorporate new ideas. For
example, the incorporation of regret has seen a recent rise of models based
on a random regret minimisation (RRM) framework (Chorus, 2010; Chorus
et al., 2008). However, a key theme of this thesis is the argument that if
we are to incorporate new behavioural theories into our models at the cost
of the loss of the ability to perform welfare analysis, then the model needs
to be more fundamentally di�erent and provide a more detailed account of
behaviour. Indeed, RRM for example is still a logit model, albeit a non-
RUM consistent one, and shares the fact that the regret of an alternative
is calculated in a single process, rather than through some accumulation of
evidence.

Models developed in mathematical psychology thus provide a key avenue
for exploration, given the wide range of behaviours they have been used to
explain. Additionally, as they have originated from a very di�erent school
of thought, they have very di�erent underlying structures meaning they are
considerably larger departures from the tried and tested. However, thus
far, models from mathematical psychology have not made the transition into
mainstream choice modelling. A key reason for this due to the fact that these
models make very di�erent assumptions about the e�ects that the di�erent
alternatives have on each other. Whereas the utilities of alternatives under
random utility maximisation are speci�cally not impacted by the attributes
of other alternatives, the precise converse is typically true in models devel-
oped in mathematical psychology, which is a naturally unappealing property
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if one is to measure trade-o�s. However, if we accept the loss of this fea-
ture, as we also do in RRM, allowing alternatives to have an impact on each
other allows for a great deal of �exibility leading to a rich account of contex-
tual behavioural e�ects. For example, similarity, compromise and attraction
e�ects can be explained by decision �eld theory (Berkowitsch et al., 2014;
Hotaling et al., 2010; Roe et al., 2001), the multi-attribute linear ballistic
accumulator (MLBA) model (Trueblood et al., 2014) and other such mod-
els. These two particular models are perhaps more tractable than some of
their counterparts from mathematical psychology, such as the leaky com-
peting accumulator (Usher and McClelland, 2001), which relies entirely on
simulation to calculate the probabilities for choosing alternatives. A large
part of this thesis thus considers the operationalisation of these two models
into mainstream choice modelling.

Decision �eld theory (DFT), �rst developed by Busemeyer and Townsend
(1992), is a stochastic dynamic model of preference accumulation, making
it very di�erent from the standard random utility maximisation model. It
assumes that a decision-maker randomly attends to a speci�c attribute at
each moment and updates the preference values accordingly by comparing
the alternatives across this attribute. The decision-maker then considers the
di�erent attributes for some number of preference updating steps until the
preference value for an alternative (or preference di�erence between alterna-
tives) either reaches some internal threshold, or the decision-maker reaches
some external threshold (such as running out of time in which to further de-
liberate on the alternatives). MLBA is also very di�erent (to both RUM and
DFT), as it is not stochastic but is similarly dynamic. Under MLBA, each
alternative has some random initial preference before drifting linearly (based
on some evaluation of a `drift rate' for the alternative) towards an internal
threshold. The �rst alternative to reach this threshold is then chosen. Cru-
cially, many di�erent forms of both DFT and MLBA are possible, resulting
in the fact that best practices for the implementation of such models are not
known.

A further key bene�t in the potential move to accumulator models is
that they provide a more natural and intuitive framework in the context
of dynamic choice settings, where the attributes of the alternatives change
over time. Whilst dynamic discrete choice models (see e.g Cirillo and Xu
2011) have made a signi�cant impact in the study of such behaviour, they
evaluate the underlying process by considering some number of discrete in-
tervals and estimate the utilities of alternatives at each interval, relying on
of state dependence or lagged variables to create links between the moments.
As a contrast, an accumulator model can estimate probabilities at di�erent
moments with a single continuous process that does not require individual
moments to be `stitched together'. Computational di�culties have thus far
limited the application of accumulation models in the context of changing
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attributes. One notable exception is Holmes et al. (2016)'s application of the
linear ballistic accumulator (the model that preceded MLBA, which simply
estimates a constant for the drift rate for each alternative) in the context of
dot motion perception tasks where the direction of the dots changed whilst
the decision-maker was deliberating on the task. They demonstrated that
the model could be adapted into a `piecewise' accumulator such that chang-
ing information could be taken into account. However, the type of dynamic
behaviour that is typically examined in the travel behaviour community is
far more complex, with for example, the decision as to when to merge lanes
whilst driving subject to a large number of factors (Choudhury et al., 2009;
Kondyli and Elefteriadou, 2012).

Another avenue for exploration of bridging the gap between mathematical
psychology and mainstream choice modelling lies in the recent rise of models
based on quantum logic in cognitive psychology. Quantum mechanics, �rst
developed for use in experimental physics, may sound like a rather exotic
concept to consider for travel behaviour analysis but no more so than gravity
models. The key di�erence between classical and quantum probability is that
the distributivity law of probability (A(B + C) = AB + AC) fails to hold
in quantum theory. This allows for a �exible approach in the explanation
of ordering e�ects (Trueblood and Busemeyer, 2010; Wang et al., 2014) and
interference e�ects (Aerts, 2012). Ordering e�ects, to which choice modellers
are no strangers, can typically be controlled for through careful experimen-
tal design, but the impacts of these e�ects remains a key interest to choice
modellers (Bateman et al., 2008; Carlsson et al., 2012; Nguyen et al., 2015).
It is therefore unsurprising that models based on quantum logic have begun
to appear, with the �rst papers on quantum models appearing in the Journal
of Choice Modelling (Lipovetsky, 2018) and Transportation Research Part
B (Yu and Jayakrishnan, 2018). It however remains to be seen whether the
full applicability of such approaches means that they will rival traditional
methods.

Whilst there has been some comparisons of models developed in mathe-
matical psychology with traditional methods such as the work of Berkowitsch
et al. (2014), rigorous tests of the models in the context of travel behaviour
modelling have not yet been conducted. Furthermore, a through understand-
ing of the the precise nature of the models developed in mathematical psy-
chology will help improve the transferability of these models into the sort of
choice modelling applications that econometricians typically perform. This
thus is the key aim of this thesis: to build bridges between mathematical psy-
chology and choice modelling through the careful examination and adaptation
of models developed in mathematical psychology for use in travel behaviour
choice contexts.
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2 Research Gaps

As discussed in the previous section, whilst there has been a vast amount
of work in parallel streams of choice behaviour research, a crucial key theme
in the literature is in the lack of e�ort to bridge the gap between main-
stream choice modelling and mathematical psychology. The work in this
thesis attempts to bridge this divide by considering a number of steps for
bringing models and ideas from mathematical psychology into mainstream
choice modelling applications. We attempt this by considering the following
series of key research gaps.

Gap 1: Tractable methods for the applications of accu-
mulator models.

The �rst key gap is that there is a lack of clear, tractable methods for the
application of accumulator models in mainstream choice modelling scenarios.
Whilst random utility models can be applied to datasets with thousands of
alternatives, the computational complexity of accumulator models has thus
far prohibited their use (Otter et al., 2008; Trueblood et al., 2014; Tsetsos
et al., 2010). A key issue lies in the estimation of a likelihood function, with
many models developed in mathematical psychology relying on simulation to
calculate probabilities even in basic choice scenarios (Krajbich et al., 2012;
Usher and McClelland, 2001). A further issue is that models for which a
likelihood function does exist, such as DFT and MLBA, tend to have a num-
ber of distinct `process' parameters, for which the impacts in the context of
basic choice data are unclear. Furthermore, for most models in mathematical
psychology, a number of di�erent versions of the models exist, with it often
not being clear what the `standard' approach should be. This complicates
the development and expansion of such models, as there is often not a clear
basis from which to start.

Gap 2: Rigorous comparisons of alternative approaches

The second gap that we consider is the lack of rigorous comparisons of models
developed in mathematical psychology compared to standard choice models.
A notable exception here is provided by (Berkowitsch et al., 2014), who tested
DFT against logit and probit models. However, this application considered
only basic implementations of all models, not testing for heterogeneity across
decision-makers nor the relative abilities of the models to capture core con-
cepts such as underlying preferences towards an alternative. Additionally,
models from mathematical psychology have rarely been applied in the con-
text of travel behaviour research, or tested on revealed preference datasets.
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Gap 3: Developing a choice modelling framework based
on quantum logic

The third gap considered is the lack of a clear framework for the adoption
of quantum logic into choice models. This is mainly a result of the fact that
quantum models within cognitive psychology are simply used to examine sin-
gle or pairs of decisions made by participants under experimental conditions.
Whilst Lipovetsky (2018) develops quantum models for marketing choices,
it remains unclear how to apply quantum models to multi-attribute, multi-
alternative choice, with Yu and Jayakrishnan (2018) emphasising that there
could be numerous approaches for this issue. Additionally, it is unclear as to
what context such approaches would be most suitable.

Gap 4: Identi�cation of contexts for which accumulator
and quantum models are suitable

Whilst the adoption of the various models discussed above may lead to richer
behavioural insights, there is still the key drawback that these models will lose
the ability to perform welfare analysis, which may prohibit use of these models
even if the gains in model �t are more substantial than previous departures
from traditional methods. Thus a key research gap for the development of
such approaches is to understand the contexts in which these models will
be most suitable. For example, Chorus (2015) notes that there has of yet
been little discussion on the appropriateness of di�erent models in moral
choice contexts. With quantum models performing well in such scenarios
in cognitive psychology, further research could test whether models with a
quantum framework are also particularly suitable for moral contexts in larger
scale choice modelling applications. Furthermore, accumulation models, as
discussed in Section 1, have almost exclusively been tested in static choice
scenarios only. Given that they provide a natural framework for the inclusion
of changing attribute values, this may be where choice modellers stand to gain
most from the adoption of these models, i.e. when the focus is also more on
prediction than valuation.

Gap 5: Testing model averaging and combining approaches
from di�erent disciplines

As well as a lack of work contrasting and comparing accumulator models
with standard choice models, there has thus far been very little work con-
sidering the bene�ts of approaches utilising both frameworks simultaneously.
For example, the increasing interest in the travel behaviour community for
the adoption and consideration of di�erent decision rules has led to the imple-
mentation of latent class models with di�ering decision rules in the di�erent
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classes (Hess et al., 2012). The scope for increasing the variation in the
decision rules improves considerably with the adoption of models with very
di�erent underlying structures such as accumulator or quantum choice mod-
els. The simultaneous estimation of such models however creates extensive
computational burden and risks mis-identi�cation of behavioural processes.
In this context, the notion of model averaging, popular in some �elds but not
yet in choice modelling, presents an important avenue for improved predic-
tions and balancing of insights across a set of candidate models.

3 Objectives

This thesis has a number of distinct objectives based on the identi�ed re-
search gaps above. These objectives aim to ful�l these gaps and can, broadly
speaking, be classi�ed in terms of choice modelling methodology or innova-
tive applications. The speci�c aims of the work are categorised into one of
these themes and are described below.

Methodological

M1: The operationalisation of decision �eld theory (DFT) for choice

modelling applications. Our �rst objective is to operationalise DFT.
Whilst Berkowitsch et al. (2014) developed an approach for calculat-
ing the probabilities of choosing alternatives that avoided the use of
computationally-intensive simulation, their sacri�ce of setting the num-
ber of preference updating steps to in�nity appears not to maximise the
potential of DFT as Hotaling et al. (2010) argues that DFT performs
better if decision response times are short. DFT was built as a dynamic
model, and we thus aim to apply it as such. We also aim to identify
best practices for the implementation of DFT as well as developing it so
that it can incorporate traditional extensions included in mainstream
choice models, such as inter and intra-respondent heterogeneity, alter-
native speci�c coe�cients and attributes and sociodemographics such
as income e�ects. Another key task is to �nd a method such that a
priori information about the directionality of attributes is not required.

M2: The operationalisation of the multi-attribute linear ballistic

accumulator (MLBA) model. Applications of MLBA have thus
far not made it beyond cognitive psychology. As a result, it has not
yet been applied to large-scale choice modelling applications. Conse-
quently, features such as alternative speci�c coe�cients and attributes
have not been implemented into a MLBA model. Like DFT, there have
been numerous di�erent versions of the model in that the underlying
structure is often adapted for speci�c choice contexts (see for example
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Cohen et al. 2017), resulting in best practices for the implementation
of the model being unknown. Additionally, given that it has a num-
ber of underlying process parameters, for which the precise nature of
the mathematical impacts are unknown, we aim to standardise MLBA
models such that they are simpler and easier for analysts to apply in
the future.

M3: The development and operationalisation of choice models

based on quantum logic. Given that there has been considerable
success in the transition of a quantum logic framework into cognitive
psychology, this thesis aims to test whether this framework can take a
further step into travel behaviour research. This thesis aims to consider
di�erent possible structures for the operationlisation of quantum logic
into a discrete choice model, as well as exploring the bene�ts of such an
approach. A key step here will be �nding appropriate functions for the
translation of attribute values into subjective values to be used within
the quantum framework. Furthermore, we aim to test whether models
with a quantum framework can provide accurate transitions between
di�erent choice contexts.

Applied

A1: To rigorously test models from mathematical psychology against

mainstream choice models. The development and improvement of
the models detailed above is not worth further examination if they do
not yield good performances in typical choice data. We thus aim to rig-
orously test all the models re�ned in this paper against standard choice
modelling techniques. This involves some of the �rst applications for
all of these models in travel behaviour choice contexts.

A2: To test models accumulator and quantum models in the con-

text of real world choices. Given that models in mathematical
psychology have rarely been tested outside of laboratory conditions (as
discussed above), we aim to develop and test these models on real data.
As well as testing these models on a variety of stated preference choice
datasets, we aim to test them on revealed preference data for the �rst
time.

A3: To explore the insights generated by applications combining

these models. Given the above discussion on latent class modelling
and model averaging, we aim to establish the bene�ts of model aver-
aging approaches in a travel behaviour context as well as testing the
relative bene�ts of applying very di�erent models within the di�erent
classes of a latent class model.
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4 Thesis outline and contributions

This section outlines the contents of each chapter by presenting the key ideas,
developments and applications that are detailed in each paper, as well as
outlining how the paper addresses the research gaps identi�ed in Section 2
and attempts to ful�l the objective(s) detailed in Section 3.

Chapter 2 presents a paper entitled `Decision �eld theory: improve-
ments to current methodology and comparisons with standard choice mod-
elling techniques'. The focus of this paper is to take an in-depth look at
the underlying mechanisms of multi-attribute decision �eld theory (DFT).
We detail arguments in favour of using approaches such as DFT as well as
discussing the previous successes and shortcomings of the model. From a
methodological perspective, the paper focusses on methodological improve-
ments which allow for a more �exible model whilst simultaneously improving
the ease of estimation of the model. Additionally, the paper considers a num-
ber of important steps for increasing the behavioural �exibility of DFT, such
that it can include typical features incorporated by standard choice mod-
els. For example, we detail methods for including the in�uence of underlying
preferences towards alternatives and look at a number of methods including
mixed parameters for the incorporation of both intra and inter-respondent
heterogeneity. We rigorously test the increased �exibility of the model by
applying it to a number of simulated datasets as well as two stated pref-
erence route choice datasets (thus providing the �rst application of DFT to
such data). The results from the simulated datasets highlight the importance
of carefully specifying a DFT model but demonstrate the improved �exibil-
ity of our new approach. The empirical results from the stated preference
datasets demonstrate that DFT achieves better model �t for both estimation
and forecasting than multinomial logit and random regret minimisation. We
additionally discuss in detail the di�erences in outputs of DFT in comparison
to alternative approaches.

Chapter 3 presents a paper entitled `A careful respondent or an uncer-
tain response: Disentangling confounding sources of increased deliberation
time using decision �eld theory'. The aim of this paper is to provide a de-
tailed investigation into the precise nature of the impact of the number of
preference updating steps within a DFT model. A key issue with previous
applications of DFT is that it has rarely been used dynamically, as simpli-
�cations have typically been made to either �x the number of preference
updating steps to a large number or to estimate model outputs with simu-
lation. However, given the computational developments detailed in Chapter
2, the probability of alternatives under DFT can now be easily analytically
calculated at any time point. Whilst this was simply an estimated parameter
in Chapter 2, the work in this paper focusses on uncovering the `true' nature
of DFT by considering applications on datasets with recorded choice response

9



Chapter 1. Introduction

times. We create links between response time and DFT's parameter for the
number of preference updating steps, demonstrating across accommodation,
route and conservation choice datasets that model �t can be improved by
varying the number of DFT preference updating steps as a function of re-
sponse time. Additionally, we provide some of the �rst comparisons of two
di�erent stuctural forms of DFT: one of which assumes that decision-makers
reach an external threshold, the other for which the di�erence in preference
between alternatives reaches some threshold. This paper also considers the
confounding nature of response time, as as a longer decision time could mean
that the decision-maker has considered their choice more carefully, or it could
mean that they are less certain. We demonstrate how DFT can be used to
disentangle these confounding sources, �nding that without any measure for
choice certainty, the choice response time cannot be directly proportional to
the number of deliberation timesteps as faster responses can result in choices
that are both more and less deterministic. Furthermore, we demonstrate that
results from multinomial logit (MNL) and latent class models suggest that
DFT's timestep parameter is in fact very similar to a MNL's scale parameter,
suggesting that the timestep parameter simply captures how deterministic a
decision-maker is from the perspective of the analyst.

Chapter 4 presents a paper entitled `An accumulation of preference: con-
trasts between Decision Field Theory and the Multi-attribute Linear Ballistic
Accumulator and adaptations for travel behaviour modelling'. In this pa-
per, we provide a rigorous comparison of decision �eld theory (DFT) against
both the multi-attribute linear ballistic accumulator model (MLBA) and tra-
ditional choice models. With MLBA having never been used before in the
context of travel behaviour modelling, we comprehensively explore the un-
derlying structure of it as well as comparing it to DFT. Crucially, with both
models having never been tested in the context of route choice data (with
the exception of the DFT applications in Chapter 2) we provide a detailed
exploration of the impacts of normalisations for the models, given that they
both have parameters that can become confounded in the context of choice
only data. This paper thus serves as a guide for the considerations required
when applying these models in practice. We �nd that both MLBA and DFT
perform at least as well as multinomial logit and random regret minimisa-
tion. Results from a series of simulated datasets also support the use of both
DFT and MLBA, as they demonstrate that both models can be su�ciently
adapted such that parameters used in typical random utility models such as
alternative speci�c coe�cients and constants can be added e�ectively to DFT
and MLBA. Furthermore, we develop a scale-invariant version of DFT (which
was highlighted as a key future requirement in Chapter 2), meaning that a
priori knowledge of the directionality of attributes is no longer required. We
additionally test both DFT and MLBA on a revealed preference dataset for
the �rst time, for which both models have better model �t than standard

10



4. Thesis outline and contributions

choice models in both estimation and out-of-sample validation.
Chapter 5 presents a paper entitled `Quantum probability models: a new

framework for modelling choices'. Whilst many modellers have attempted
to add behavioural realism to their choice models, e�orts have focussed on
models that are often too similar to random utility models. This paper thus
further builds on the theme that if we are to consider alternatives to RUM,
we should look further a�eld. This paper provides the �rst application of
models based on a quantum framework to multi-attribute, multi-alternative
travel behaviour choices. Quantum probability, �rst developed for use in
physics, has recently made a successful transition into cognitive psychology,
where it has been used e�ectively to explain ordering and contextual e�ects
that had previously been hard to account for with traditional cognitive ac-
counts of behaviour. In this paper, we test whether quantum probability
can take a further step into choice modelling. As well as giving a detailed
explanation of how quantum probabilities can be used in choice contexts, we
develop two new alternative models based on a quantum probability frame-
work. We rigorously test both models on three route choice datasets, �nding
that they consistently provide better model �t than traditional choice mod-
els. Additionally, we demonstrate that models with a quantum framework
can incorporate e�cient transformations for adjustments in the choice con-
text. This results in e�ective models for capturing the di�erent sensitivities
to attributes in best compared to worst choice, as well as capturing order-
ing e�ects of attributes and alternatives in a typical route choice dataset.
Furthermore, we test whether quantum models can also be used to capture
`changing states' or equivalently `changing perspectives' in moral contexts,
�nding that quantum models provide a good account of behaviour and again
outperform alternative standard choice modelling approaches, with `quantum
rotations' providing e�ective mappings between di�erent choice contexts.

Chapter 6 presents a paper entitled `New models for dynamic choice
contexts: further steps towards bridging choice modelling with mathematical
psychology'. In this paper, we build upon work in the previous chapters by
moving accumulator models beyond the comfort of analysing experimental
or stated preference choices by considering truly dynamic choice contexts in
which the attributes of alternatives rapidly change over time. Thus far, dy-
namic discrete choice models have typically been used for scenarios such as
driving behaviour. This is despite the fact that accumulation models such
as DFT have a natural method for the incorporation of updating attributes,
given that they already attempt to explain the underlying process of making
a decision. This paper provides a detailed discussion of the relative merits
of moving towards accumulation models for such contexts as well as pro-
viding important �rst steps towards the operationalisation of decision �eld
theory in the context of changing attribute values. We then test our newly
developed DFT model on a driving behaviour dataset where vehicles merge

11
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from a on-ramp onto a motorway. We discuss in detail how DFT models
can be adjusted to account for such behaviour as well as applying a num-
ber of variations of the model to the data. We additionally discuss and test
the di�erence between analytical and simulated versions of DFT, as well as
comparing them to more traditional models such as logit and probit. Results
indicate that our DFT models perform comparably to alternative structures
for dynamic data, with the increased �exibility which comes with a simulated
DFT model demonstrating signi�cant scope for future development. This pa-
per also provides a �rst example of applying quantum models to real world
data, by expanding on work in Chapter 5 to extend quantum rotation mod-
els to dynamically changing choice contexts. Our results in this Chapter also
suggest that quantum models have signi�cant scope for future development
in the context of dynamic choice contexts.

Chapter 7 presents a paper entitled `Improving forecasts and behavioural
insights by applying model averaging across multiple choice models'. In this
paper, we discuss and test the application of model averaging, where a single
model is built by averaging across a number of candidate models. Whilst this
approach is popular in, for example, weather forecasting, it has yet to become
popular in mainstream travel behaviour analysis. In particular, we identify
several key reasons for the application of model averaging. The �rst scenario
is when a modeller cannot easily choose between a number of advanced mod-
els, all with some desirable properties. The second is the situation where
typical advanced models cannot be used due to the size of the data and/or
choice sets but where all simple models are `unsatisfactory'. Thirdly, we
demonstrate how model averaging can be used to investigate sources of het-
erogeneity. Through a number of empirical applications, we �nd that for the
�rst two of the scenarios described above, model averaging results in a con-
sistent improvement in model �t for both estimation and in forecasting with
subsets of validation samples. Furthermore, we show that model averaging
can be used to obtain elasticities and welfare measures by averaging across
outputs obtained from the set of candidate models. For the third scenario,
we consider two key applications comparing the results of latent class models
and model averaging. The �rst of these looks at models where di�erences
in attribute attendance are captured through latent class structures and the
second application is in the context of decision rule heterogeneity. With this
paper providing the �rst applications of latent class models with combina-
tions of traditional models and both DFT and quantum models, we improve
the scope for �nding decision rule heterogeniety through the implementation
of classes with vastly di�erent underlying structures. Both applications dis-
cuss the contrasting results of model averaging and fully �exible latent class
models, with results suggesting that latent class models may predominantly
capture taste heterogeneity for individual attributes, even if the analyst seeks
to uncover heterogeneity in the overall structure.
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current methodology and comparisons

with standard choice modelling

techniques
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Abstract

There is a growing interest in the travel behaviour modelling community in

using alternative methods to capture the behavioural mechanisms that drive

our transport choices. The traditional method has been random utility max-

imisation (RUM) and recent interest has focussed on random regret minimi-

sation (RRM), but there are many other possibilities. Decision �eld theory

(DFT), a dynamic model popular in mathematical psychology, has recently

been put forward as a rival to RUM but has not yet been investigated in de-

tail or compared against other competing models like RRM. This paper con-

siders arguments in favour of using DFT, reviews how it has been used in

transport literature so far and provides methodological improvements to fur-

ther the mechanisms behind DFT to better represent general decision mak-

ing. In particular, we demonstrate how the probability of alternatives can

be calculated after any number of timesteps in a DFT model. We then look

at how to best operationalise DFT using simulated datasets, �nding that it

can cope with underlying preferences towards alternatives, can include socio-

demographic variables and that it performs best when standard score normali-

sation is applied to the alternative attribute levels. We also present a detailed

comparison of DFT and multinomial logit (MNL) models using stated pref-

erence route choice datasets and �nd that DFT achieves signi�cantly better

1Choice Modelling Centre and Institute for Transport Studies, University of Leeds (UK)
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1. An introduction to decision �eld theory

�t in estimation as well as forecasting. We also �nd that our methodological

improvement provides DFT with much greater �exibility and that there are

numerous approaches that can be adopted to incorporate heterogeneity within

a DFT model. In particular, random parameters vastly improve the model

�t.

1 An introduction to decision �eld theory

Random Utility Maximisation (RUM) models have dominated the �eld of
choice modelling for over 40 years (McFadden, 2000), particularly in travel
behaviour research (Ben-Akiva and Bierlaire, 1999). Recently, however, there
has been increasing interest in using alternative methods to make the models
�exible to accommodate departures from behaviours assumed under RUM.
A key example in transport research has been random regret minimisation
(Chorus, 2010; Chorus et al., 2008), which assumes that decision-makers seek
to minimise the negatives rather than maximising positives. Another exam-
ple comes in the form of bayesian belief networks (Parvaneh et al., 2012),
which take a more heuristic approach, looking at an individual's past expe-
riences and expectations about the di�erent alternatives available. Whilst
these new methods both make more of an e�ort to consider the underlying
cognitive processes in decision making, another model, decision �eld theory
(Busemeyer and Townsend, 1992, 1993), was designed purely as a cognitive
model to capture the deliberation process in decision making. Decision �eld
theory (DFT) is a stochastic-dynamic model of decision-making behaviour,
which was expanded to include multi-attribute (Diederich, 1997) and then
multi-alternative decision-making (Roe et al., 2001), where it was renamed
multi-alternative decision �eld theory (MDFT)2. Due to the psychological
roots of DFT (Busemeyer and Diederich, 2002), it has predominantly been
used to explain behaviour not typically studied using `traditional' choice mod-
els. DFT can theoretically explain similarity, attraction and compromise ef-
fects (Roe et al., 2001) and this has largely been the focus of DFT research
with many papers looking into how well it can explain these context e�ects
compared to other models (Noguchi and Stewart, 2014; Trueblood et al.,
2013; Tsetsos et al., 2010). It is of course true that RUM models can also be
used to test such e�ects, with notably nested logit being used to study the
similarity e�ect (Guevara and Fukushi, 2016) or preference reversals (Batley
and Hess, 2016). However, decision �eld theory further di�erentiates from
these models by being a dynamic model. This means that it can successfully
be used to study risky choices or the e�ect of time pressure (Busemeyer and

2Note that this version assumes that a decision-maker stops deliberating on their alter-
natives upon reaching some `external' threshold after some number of preference updating
steps. More generally, the model should be referred to as `DFT'
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Townsend, 1993; Diederich, 1997; Dror et al., 1999). Despite the success of
DFT in explaining time and context e�ects, it has not often been used to
explain riskless choices or decision making in general. Whilst the number of
comparisons of DFT against mainstream choice models are limited, Berkow-
itsch et al. (2014) demonstrate that DFT performs favourably in comparison
to logit and probit for consumer choice. Consequently, it is possible that DFT
may be able to make the transition into mainstream choice modelling. We
address this research gap in this paper by providing methodological improve-
ments to further the mechanisms behind DFT to better represent general de-
cision making, incorporating potential e�ects of socio-demographic variables
and accommodating for heterogeneity. The models are rigorously compared
against RUM and RRM, both for estimation and prediction, using simulated
and real datasets. The remainder of this paper is organised as follows. The
following section provides a comprehensive review of the multi-alternative
version of decision �eld theory (MDFT): how it works, comparisons with
other models and arguments in favour of using MDFT. Section 3 gives our
methodological improvements for MDFT. Section 4 presents the data and
looks at our results from using MDFT and Section 5 presents some conclu-
sions.

2 Overview of decision �eld theory

Thus far, Berkowitsch et al. (2014) have provided the only comparison of
MDFT against mainstream choice models. As far as we are aware, MDFT
has never been compared to RRM or other alternative models from choice
modelling, nor have the predictive capabilities of MDFT been tested. We do
not yet know if speci�c types of choices will be better explained by MDFT or
if certain decision-makers may be better represented by a MDFT model. In
the following subsection, a summary is provided for the basic mechanisms of
MDFT. We then consider arguments in support of MDFT and look further
into how it has been used so far in transport research. We conclude by looking
at how MDFT has been compared to RUM thus far.

2.1 Mechanisms of decision �eld theory

2.1.1 Basic mechanism

The main idea behind multi-alternative decision �eld theory is that each
available alternative has a `preference value', which updates over time3 during
a decision-maker's deliberation process for a single choice. It is assumed that

3Note that these preference values are equivalent to utilities in that they are unitless
and it is the relative di�erences that are important.
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the decision-maker continues deliberating on the alternatives available until
they reach some threshold. At each step, the current values are multiplied
by a `feedback matrix' before then adding on a valence vector (which can be
considered as a utility at a speci�c moment) at that time. In its most basic
form, we have:

Pt = S · Pt−1 + Vt, (2.1)

where Pt is a column matrix containing the current preference values for
each alternative at preference updating step t, and S is a feedback matrix
which contains three parameters (see section 2.1.3). Pt−1 is the previous
preference vector and P0 is the initial preference vector. This is often assumed
to be [0, .., 0]′ (Busemeyer and Diederich, 2002). Finally, Vt is the random
valence vector at time t, given by:

Vt = C ·M ·Wt + εt, (2.2)

where C is a contrast matrix, used to compare alternatives against each
other, with ci,i = 1 and ci,j 6=i = −1/(n − 1), where n is the number of al-
ternatives, and M is the attribute matrix containing the full set of attribute
values for each alternative (which is assumed to be fully available to the
decision-maker over the course of the choice process). DFT is scale-variant
(Busemeyer and Diederich, 2002) and we explore the implications of failing
to ensure that the attribute matrix has been appropriately scaled in section
4.3.3. At each time, t, one attribute is attended to, such that Wt = [0..1..0]′

with entry j = 1 if and only if attribute j is the attribute currently being
attended to4. The probability of attending to attribute j is wj . Since these
weights must sum to one, a standard uniform distribution X ∼ U(0, 1) can be
used to select which attribute a decision-maker attends to at each timestep. It
is assumed that there is no relationship between the timesteps, which means
an attribute could be considered for several consecutive timesteps before the
decision-maker considers a di�erent attribute. There is also a random error
vector, εt = [ε1..εn]′, with εi ∼ N(0, s), identically and independently dis-
tributed across alternatives, time and individuals. This error is added on to
allow for �exibility in the variation of probability values that MDFT predicts.
The variance for the error, s, is often �xed to 1 (Trueblood et al., 2014) but
can also be an estimated parameter.

4Note that this results in all but a single column of attribute matrix M (a single attribute
across all alternatives) from being set to zero.

19



Chapter 2. Decision �eld theory: improvements to current methodology and
comparisons with standard choice modelling techniques

2.1.2 Calculating expected values

Expanding equation 2.1 results in:

P1 = S · P0 + V1 (2.3a)

P2 = S · (S · P0 + V1) + V2 = S2 · P0 + S · V1 + V2 (2.3b)

... (2.3c)

Pt =

t−1∑
k=0

Sk · Vt−k + St · P0 (2.4)

The weight vectors wj are stationary as the relative importance of the
di�erent attributes is assumed to stay constant over the course of the delib-
eration process. Consequently, Wt can be considered a stationary stochastic
process. This means that Vt is also a stationary stochastic process with mean
E[Vt] and a covariance matrix given by Cov[Vt]. Given X, a random vector,
and A, a matrix of constants, we have:

var(A ·X) = A · var(X) ·A′ (2.5)

We can now use this to calculate the expected valence. We have E[Vt] =

µ = C · M · wm, where wm = [w1, w2, ..., wa]′, there are a attributes and
Cov[Vt] = Φ = C ·M ·Ψ ·M ′ ·C ′+s, with Ψ = Cov[Wt] and s = Cov[εt]. We
can then calculate the expected value and covariance of Pt. With S being a
constant, E[Pt] reduces to:

E[Pt] = ξt =
t−1∑
k=0

Sk · µ+ St · P0 (2.6a)

= (I − S)−1(I − St) · µ+ St · P0 (2.6b)

Roe et al. (2001) demonstrate that equation 2.5 also means that we now
have:

Cov[Pt] = Ωt = Cov

[
t−1∑
k=0

Sk · Vt−k + St · P0

]
(2.7a)

=

t−1∑
k=0

[
Sk · Φ · Sk

′
]

(2.7b)
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2.1.3 The feedback matrix

The feedback matrix allows MDFT to explain contextual e�ects and is de�ned
as:

S = I − φ2 × exp(−φ1 ×D2) (2.8)

Where I is an identity matrix, φ1 and φ2 are sensitivity and memory
parameters respectively, and D is some measure of distance between the at-
tributes across alternatives. The sensitivity parameter, φ1, a�ects how much
alternatives compete with each other. This allows for the similarity e�ect to
occur (Roe et al., 2001). The memory parameter, φ2, a�ects the diagonal
entries of the feedback matrix S. The importance of having this parameter is
demonstrated by the fact that details of chosen and unchosen alternatives are
often forgotten (Mather et al., 2000). A value of si,i < 1 indicates that pref-
erences decays, whereas si,i > 1 indicates that preferences grows. Individuals
have di�erent working memory capacities (Daneman and Carpenter, 1980)
and memories can grow as well as fade (Mather, 2006), an idea that appears
in studies on the validity of eyewitness testimony (Christianson, 1992; Flin
et al., 1992; Zaragoza and Lane, 1994). A number of di�erent methods have
been used for de�ning the distance, D, between alternatives in applications of
DFT. Roe et al. (2001) have suggested that `psychological' distances should
be used but in application chose distances that took into account the relative
position of the alternatives in the multi-attribute evaluation space. The Eu-
clidean distance (the straight-line distance in the multi-attribute evaluation
space) has also been used (Qin et al., 2013). Psychological distances can be
used by including a new third parameter within the feedback matrix, w, so
that distances between less competitive alternatives increase more slowly, as
the Euclidean distance fails to account for the fact that some alternative at-
tributes are more important than others (Hotaling et al., 2010). Berkowitsch
et al. (2015) build on this work by creating a generalised distance function
for three or more attributes.

2.1.4 Calculating probabilities

Roe et al. (2001) demonstrate that once we have results for the expected value
and the covariance of preference values at time t (ξt and Ωt), we can calculate
the probability of choosing alternatives. They show that on the basis of the
multivariate central limit theorem, Pt converges to the multivariate normal
distribution. Under decision �eld theory, A is chosen from a set {A,B,C} if
it has a higher preference value at time t than B and C. It can therefore be
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calculated5 as

Pr [Pt [A]− Pt [B] > 0 ∩ Pt [A]− Pt [C] > 0] = (2.9a)∫
X>0

exp
[
−(X − Γ)′Λ−1(X − Γ)/2

]
/(2π|Λ|0.5)dX (2.9b)

with X = [Pt [A]− Pt [B] , Pt [A]− Pt [C]]
′, Γ = Lξt, Λ = LΩtL

′ and

L =

[
1 −1 0

1 0 −1

]
(2.10)

L is a matrix comprised of a column vector of 1s and a negative identity
matrix of size n− 1 where n is the number of attributes. The column vector
of 1s is placed in the ith column where i is the chosen alternative. We can
then use (for example) the pmnorm package in R (Genz, 1992) to calculate
the probability of each alternative being chosen.

2.1.5 Simplifying the deliberation stopping process

The `computationally dissatisfying' process of summing over powers of S
(equation 2.7) can be avoided by assuming that t → ∞ (Berkowitsch et al.,
2014). Therefore, as long as the eigenvalues of S are less than one, St →∞.
This reduces equation 2.6 to:

ξ∞ = (I − S)−1 · µ (2.11)

More importantly, however, is the simpli�ed form of Ωt. From Appendix
B of Berkowitsch et al. (2014), we have:

Ω∞ = (I − Z)−1 · Φ (2.12)

Where Φ indicates that Φ has been transformed to a 1×n2 column vector
and Z is a n2 × n2 matrix based on S. This means that the laborious time-
consuming summation in equation 2.7 can be avoided, but at the cost of
assuming that all decision-makers `take in�nite' response time to make their
choices.

5Note that the normal error terms within DFT, εt, result in the probability calculations
looking similar to that of probit. However, there is additional variance generated by the
random attribute attendance over multiple preference updating steps, which is captured
by Ωt.
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2.2 Arguments in favour of decision �eld theory

There are numerous arguments in favour of using DFT. One of the main
strength of DFT is that it is a dynamic model, where each alternative has a
`preference value', which �uctuates stochastically over time, as a consequence
of both the random attribute attendance over the deliberation process and
the random errors, εt. This means that DFT can explain phenomena such as
preference reversal (Diederich, 1997), something that static models, such as
most RUM models, cannot do. DFT is a �exible model, with two methods
for a decision-maker to come to a conclusion. The decision-makers can stop
deliberating either when the preference value for one alternative reaches some
internal threshold value or when decision-maker reach some external factor,
such as a response time limit. This is a parallel to `satis�cing' behaviour
(Simon, 1957) versus maximising behaviour, a concept that was explored by
Schwartz et al. (2002). Some individuals show satis�cing behaviour, meaning
they choose the �rst alternative that is deemed good enough (DFT's inter-
nal threshold), whereas others use the full time available to them to try and
choose the best alternative, making a decision only when they have to (DFT's
external threshold)6. Krosnick et al. (1996) demonstrated that satis�cing be-
haviour can often occur when participants complete surveys and Wierzbicki
(1982) provides one of the �rst models incorporating satis�cing behaviour.
It has also been demonstrated that context e�ects, which DFT predicts ef-
�ciently, may be fundamental to decision making (Trueblood et al., 2013),
with similarity, attraction and compromise e�ects all appearing in a percep-
tual decision task. Whilst there has not yet been a large impact from neu-
roscience on economics (Krajbich and Dean, 2015), Busemeyer et al. (2006)
suggest that the accumulation of preference, as modelled by the behaviourally
derived di�usion models in DFT, closely mimics neural activations in non-
human primates during perceptual decision-making tasks. For example, Gold
and Shadlen (2000) found evidence of an accumulating balance of sensory in-
formation favouring one interpretation over another in the neural circuits
that generate and inform a monkey's choice. Ratcli� et al. (2003) similarly
found that di�usion models as opposed to Poisson models better matched
the evidence accumulation process seen in neural recordings. Schall (2003)
adds that it appears that there are separate neurons initiating responses-
a parallel to the threshold value within DFT. DFT is also less of a `black-
box' process than typical RUM models. From a cognitive perspective, basic
building blocks of cognition might be shared across a wide range of species
and this bottom-top perspective is more in line with both neuroscience and
evolutionary biology than the widely used top-down approach (De Waal and

6It should be noted that these are mathematically di�erent models. Whilst the focus
in this chapter is on MDFT (with external thresholds), Chapter 3 compares DFT models
with internal and external thresholds.
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Ferrari, 2010). DFT has a bottom-top perspective, an approach that some
researchers believe to be fundamental to understanding individual's choices
if we are to truly understand the underlying cognitive processes in decision
making (Otter et al., 2008). To add empirical con�rmation, eye-tracking
data is most consistent with attribute-and-alternative-wise comparison mod-
els (Noguchi and Stewart, 2014), where comparisons are made between pairs
of alternatives on single dimensions. This would suggest that DFT is an ap-
propriate model when there are two alternatives available, although empirical
con�rmations for multinomial alternatives are yet to be explored.

2.3 Transport applications of decision �eld theory

The number of applications of DFT in transport thus far are limited and
mainly theoretical. DFT has been suggested as an appropriate mechanism
to explain the dynamics and high variability of choice decisions in congestion
situations (Stern, 1999), due to its emphasis on an information-processing
approach. Additionally, with some expansion, DFT should also be able to
deal with a variety of travel situation e�ects including situational dynam-
ics, type of travel, cultural habits and societal norms (Stern and Richardson,
2005). The route choice process of a daily commuter according to DFT has
been conceptualised (Stern and Portugali, 1999) and DFT has also been com-
bined with the Queuing Network-Model Human Processor to model a driver's
speed control (Zhao et al., 2011). In an example of actually applying DFT
in transport, it was found that given the duration to make a decision, DFT
accurately predicted the percentage of participants who chose park and ride,
car or bus and subway (Qin et al., 2013). While these examples demonstrate
the potential of DFT in numerous important and relevant applications within
transport, they all work with small scale and overly simpli�ed hypothetical
studies with limited choice scenarios. Computational limitations of DFT
(Otter et al., 2008) have also limited the impact of DFT in the transport lit-
erature and there is a distinct research gap in terms of operationalising DFT
for full integration in mainstream transport models. For instance, the DFT
models tested so far do not account for di�erences in socio-demographics of
the decision-makers, which have been found to have signi�cant e�ects within
RUM and RRM frameworks.

2.4 Decision �eld theory vs traditional choice models

In the only full comparison of MDFT with RUM thus far, MDFT performed
as well as MNL and Probit at predicting consumer product choices made by
participants (Berkowitsch et al., 2014). Additionally, when eliciting context
e�ects, an occurrence of multiple context e�ects within single participants
was found and MDFT then performed better than both MNL and Probit, in
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part due to it being built to cope with such e�ects. As far as the authors are
aware, MDFT has never been empirically tested against RRM. A simpli�ed
description of how a MDFT model works would be to compare it directly
against a MNL or RRM model. Attributes of alternatives, M , are multiplied
by W , the relative importance of the di�erent attributes, which are equiva-
lent to the β coe�cients of MNL and RRM. We then get V , a valence vector,
which can be considered as `utility at a speci�c moment' and P , the total
preference of alternatives vector, which is equivalent to the utility of alterna-
tives in MNL and total regret in RRM. Whilst MDFT models do not produce
utilities, we can instead use the total preference of alternatives to calculate
the likelihood of alternatives (see equation 2.4 and section 2.1.4). Addition-
ally, φ1, the sensitivity parameter, allows for the similarity e�ect to happen
under a MDFT model. This means that more similar alternatives compete
more with each other, a parallel to the e�ect the nesting parameter, which
captures the correlation across alternatives, has in a nested logit model (Daly
and Zachary, 1978; McFadden, 1978; Williams, 1977)7. Figure 2.1 shows a
connectionist interpretation of DFT (Roe et al., 2001). This demonstrates
graphically how the total preference of alternatives is calculated (see equa-
tions 2.1 and 2.2 for mathematical details).

Fig. 2.1: A connectionist interpretation of DFT, adapted from Roe et al. (2001)

2.5 Summary of key DFT applications thus far

Thus far, there have not been many studies that have actually applied deci-
sion �eld theory (particularly within transport). Table 2.1 provides a sum-
mary of some key DFT applications, and highlights the major di�erences.
Only one major application has been published in a transportation journal
until now, with most in psychological journals such as Psychological Review.
Whereas some applications only use DFT to calculate the probability of a
few example alternatives, there are others that �t choice data to calculate

7Note that this is not an equivalent e�ect in that the similarity e�ect only impacts
alternatives with similar attribute values in MDFT
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the likelihood of multiple choices, as typically done in a choice modelling
study. Very few applications estimate all parameters, with some often held
constant. Decision �eld theory has been applied across a variety of types
of choices, most often consumer choice, but also decision making in basket-
ball. Most applications �x the number of timesteps, as prior to this paper,
there was no closed form expression for calculating the probabilities of more
than three alternatives at any timestep (see section 3.1). When only two
alternatives are considered, the number of preference updating steps does
not need to be estimated as Busemeyer et al. (2006) demonstrates that the
probability of alternatives can be calculated by instead estimating an internal
threshold (i.e. not using MDFT). While comparisons with RUM are limited,
DFT has been compared against a number of di�erent models including the
proportional di�erence model (�rst introduced by Gonzalez-Vallejo (2002)
and compared against DFT by Scheibehenne et al. 2009), the multiple linear
ballistic accumulator (Trueblood et al., 2014) and traditional choice models
such as logit and probit (Berkowitsch et al., 2014).

3 Improvements to decision �eld theory

The following section provides a method for avoiding the sacri�ce by Berkow-
itsch et al. (2014) whilst simultaneously avoiding computationally intensive
simulations. We then present methods for incorporating heterogeneity across
and within decision-makers into decision �eld theory.

3.1 Avoiding the sacri�ce of response time being set to
in�nity

It has been argued that the lack of analytical solutions for DFT means that
it has to use computationally intensive simulations (Otter et al., 2008) and
should be used with an externally controlled stopping procedure with a large
value for response time (Noguchi and Stewart, 2014; Trueblood et al., 2014).
However, Hotaling et al. (2010) argued that the undesirably long �xed stop-
ping times used by Tsetsos et al. (2010) was in part why their DFT model
performed worse than their own rival preference accumulation model, the
leaky competing accumulator (a model designed to address challenges to
previous di�usion, random walk and accumulator models), suggesting that
large values for the number of preference updating steps should be avoided
if possible. Berkowitsch et al. (2014) avoided arbitrarily setting the number
of timesteps by �xing it to in�nity, as shown in the previous section. We
will now, however, show that as well as being an undesirable sacri�ce, this
is an unnecessary one. Firstly, we show that the following matrix can be
rearranged to a more usable format as follows:
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SΦS′ = ZΦ (2.13)

where S is the feedback matrix and Φ is the covariance of Vt as before.
Again, X indicates that matrix X of size n × n has been reshaped into a
column matrix of size 1 × n2. Now if we start with any 3 matrices of size
n× n,

A=



a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


B=



b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bn1 bn2 . . . bnn


C=



c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn


(2.14)

we have that for multiplying matrix A by B, the entry [AB]ij =
∑n
k=1 aikbkj .

Therefore if we set ABC = D, we have entries [D]ij =
∑n
k=1

∑n
l=1 [ailblkckj ].

Now if we reshape D into a column matrix as before, we have D with entries:

[
D
]
(j−1)n+i =

n∑
k=1

n∑
l=1

[ailblkckj ] (2.15)

Next, we wish to create a new matrix Z of size n2 × n2 and to reshape B
into a column matrix:

Z =


z11 z12 . . . z1n2

z21 z22 . . . z2n2

...
...

. . .
...

zn21 zn22 . . . zn2n2

B =



b11
b21
...
bn1
b12
...
bnn


(2.16)

Multiplying these together gives ZB with entries[
ZB
]
i

=
∑n
k=1

∑n
l=1

[
zi,(k−1)n+lblk

]
. This gives us

[
ZB
]
(j−1)n+i =

n∑
k=1

n∑
l=1

[
z(j−1)n+i,(k−1)n+lblk

]
(2.17)

Thus for ZB = D, we need only set z(j−1)n+i,(k−1)n+l = ail ckj . Hence
we can rearrange equation (2.13) to this more useful format by setting A =

S,B = Φ and C = S′ and following the above steps to �nd the new matrix
Z. We now wish to show that

SnΦSn′ = ZnΦ (2.18)
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To do this, We employ a proof by induction. We have that equation (2.18)
holds when n = 1 as we know that equation (2.13) is true. This means that
if we can show that equation (2.19) holds, then we will have proved that
equation (2.18) holds when n = [2, 3, 4, ...].

Sn+1ΦSn+1′ = Zn+1Φ (2.19)

Firstly, we set the matrices An = X, Cn = Y and Zn = W . Then the
elements of the left side matrix of equation (2.19) are:

[
An+1BCn+1

]
ij

= [AXBCY ]ij =

n∑
k=1

n∑
l=1

n∑
r=1

n∑
s=1

[air xrl blk yks csj ] (2.20)

⇒ [AXBCY ](j−1)n+i =

n∑
k=1

n∑
l=1

n∑
r=1

n∑
s=1

[air xrl blk yks csj ] (2.21)

Now for the right hand side matrix, from the previous result for equation
(2.13) we can set

z(j−1)n+i,(k−1)n+l = ail ckj (2.22a)

w(j−1)n+i,(k−1)n+l = xil ykj (2.22b)

and when multiplying these matrices together, we get

[ZW ]uv =

n∑
r=1

n∑
s=1

[
zu,(s−1)n+r w(s−1)n+r,v

]
(2.23)

From before we had

[
ZB
]
i

=

n∑
k=1

n∑
l=1

[
zi,(k−1)n+lblk

]
(2.24)

so for ZW this becomes

[
ZWB

]
i

=

n∑
k=1

n∑
l=1

[
[ZW ]i,(k−1)n+l blk

]
(2.25)

Substituting back in equation (2.23) and we get

[
ZWB

]
i

=

n∑
k=1

n∑
l=1

[
n∑
r=1

n∑
s=1

[
zi,(s−1)n+r w(s−1)n+r,(k−1)n+l

]
blk

]
(2.26)
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Finally using equations (2.22) and rearranging, the right hand side of
equation (2.19) becomes

[
ZWB

]
(j−1)n+i =

n∑
k=1

n∑
l=1

n∑
r=1

n∑
s=1

[
z(j−1)n+i,(s−1)n+r w(s−1)n+r,(k−1)n+l blk

]
(2.27a)

=

n∑
k=1

n∑
l=1

n∑
r=1

n∑
s=1

[air csj xrl yks blk] (2.27b)

= [AXBCY ](j−1)n+i (2.27c)

Hence, we have that Zn+1B = An+1 B Cn+1 and the induction is com-
plete. Finally, using this result, we can return to equation (2.7), which now
simpli�es to become

Cov[Pt] = Ωt =

t−1∑
k=0

[
Sk · Φ · Sk

′
]

(2.28a)

=

t−1∑
k=0

[
Zk · Φ

]
(2.28b)

= (I − Z)−1 (I − Zt) Φ (2.28c)

with Z being created from elements of the feedback matrix S by setting
z(j−1)n+i,(k−1)n+l = sil sjk for i, j, k, l ∈ [1 : n]. This means that the time
consuming sum calculation has been removed and we can therefore return
to having a �nite value for t. We thus restore the original core psycholog-
ical foundations of MDFT whilst simultaneously avoiding intensive calcula-
tions8. In section 4.2 we compare the results of di�erent versions of MDFT,
looking at the implications of making this simpli�cation. We compare our
version of MDFT (MDFT-2017), where we estimate the number of timesteps
a decision-maker takes to reach a conclusion, against the previous version
of MDFT (MDFT-2014), where decision-makers preferences are assumed to
have stabilised over an in�nite time. MDFT-2014 can be incorporated within
MDFT-2017, simply by setting the number of timesteps to a high value.

3.2 Alternative speci�c constant (asc) parameters

One of the strengths of RUM models is their ability to measure baseline pref-
erences of some alternatives through the use of alternative speci�c constants.

8Note that equation 2.28c becomes equation 2.12 for t → ∞ if the eigenvalues of the
feedback matrix are less than one (or equivalently φ2 < 1), in which case St → 0 (Roe
et al., 2001) and hence Zt → 0.
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MDFT can partly accommodate this through P0, the initial preference vec-
tor. Crucially, this leads to just an initial preference for this alternative,
meaning that the preference disappears as the decision time increases and
the number of timesteps becomes high. As MDFT-2014 has an in�nite num-
ber of timesteps, this means that it has no method for accommodating initial
preferences. However, Roe et al. (2001) used an additional weight assigned
to a zero column matrix, as a way of re�ecting that the decision-maker was
attending to `other irrelevant' attributes (which may actually be relevant).
We can expand on this idea by having an additional attribute `looking at
other factors favouring alternative x.' This would have attribute levels of y
for alternative x, and 0 for all other alternatives. We can either �x y to being
a speci�c value, or allow it to �uctuate by adding it in as another parameter
in the same way that alternative speci�c constants are. Depending on the
number of alternatives, more of these additional attributes can be added as
required. This gives us two methods for MDFT-2017 and one method for
MDFT-2014 to deal with preferences towards alternatives, all of which are
explored in section 4.3.2.

3.3 Adding heterogeneity

Decision �eld theory has almost always been implemented as a `one size �ts
all' model, with an exception being Raab and Johnson (2004), who looked at
individual di�erences in action taking within sport (although this looked at
just a single DFT choice scenario, as the attributes were not clearly de�ned).
Scheibehenne et al. (2009) and Hey et al. (2010) also considered individ-
ual di�erences by computing separate DFT models for each decision maker,
but as far as we are aware, no studies have thus far �tted a DFT model
to multiple decision makers across multiple decisions whilst simultaneously
incorporating individual di�erences. This is surprising given that DFT has
psychological origins, where individual di�erences tend to be better appre-
ciated. Johnson (2006) highlighted the need for DFT to be able to explain
individual di�erences and Liew et al. (2016) found that, as a contradiction
to the �ndings of Berkowitsch et al. (2014), participants rarely showed all
three context e�ects, highlighting the dangers of averaging indiscriminately
and not having a method for dealing with individual di�erences. We believe
that there is no reason that DFT cannot be expanded in exactly the same
way that Multinomial Logit (MNL) has been within RUM. A `Mixed DFT'
could incorporate some of the ideas of Mixed Logit (McFadden and Train,
2000): some parameters could be changed from having a point estimate to
having a distribution instead. Whilst some caution on ranges of the distri-
butions would be required (e.g. positive only weight parameters), there is
nothing to suggest that there could not be individual variation in any one
the parameters within DFT. In section 4.5.3 we explore the results of using
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random parameters in a MDFT model as well as the e�ects of using di�er-
ent distributions for these parameters. Furthermore, we can also consider,
for example, how the income of an individual could impact the weight for
attending to the costs of alternatives.

4 Empirical application

4.1 Datasets

In this section we summarise the datasets that we have used to test the
explanatory and predictive power of decision �eld theory against other models
as well as �nding the best methods to maximise the performance of a MDFT
model.

4.1.1 Simulated dataset A (SD-A)

The �rst simulated dataset contains 1,000 choice situations, each with two
attributes `A' and `B', and two alternatives `1' and `2'. The attribute values
were drawn from a uniform distribution from 1 to 10 (with values redrawn
to ensure there are no dominated alternatives). After a random number, 0 <

r1 < 1, was created for each decision, the probability of choosing alternative
1 was de�ned as 0.05WA(A1−A2) + 0.05WB(B1−B2) + 0.5 > r, where WA

and WB where the weights of the attributes, both set to 0.5 by default. We
use this basic dataset with simple choices to test the ability of a MDFT model
to capture the e�ect of underlying preferences for an alternative in section
4.3. A preference for (arbitrarily) alternative 1 is added in by de�ning that
for any choice task with a second random number 0 < r2 < 1 of less than a
certain value, the decision-maker would always pick alternative 1.

4.1.2 Simulated dataset B (SD-B)

The second dataset contains 8,000 choice situations, each with six attributes
`A' through to `F' and two alternatives `1' and `2'. Each attribute value was
either true or false. An MNL model was used to simulate the choices (with
coe�cients βA = −0.6, βB = −0.5, βC = −0.4, βD = −0.3, βE = −0.2 and
βF = −0.1). The aim of testing this dataset is to see how well MDFT copes
with binary attributes and to compare it against MNL as detailed in section
4.4.1.

4.1.3 Simulated dataset C (SD-C)

The third dataset also contains 8,000 choice situations, this time with four
attributes- cost (TC), travel time (TT), number of changes (CH) and avail-
ability of seating (AS). An MNL model was again used to calculate the
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probabilities of each alternative being picked (with coe�cients βTC = −0.5,
βTT = −0.05, βCH = −0.5 and βAS = −0.5). This time a group di�erence
was added in, such that group `2' attached 3 times more value to βAS (for
instance, in real life, the decision of some travellers may be strongly a�ected
by the availability of seating). This dataset could then be used to test the
ability of MDFT to cope with socio-demographic di�erences as detailed in
section 4.5.1.

4.1.4 Swiss stated preference dataset (SP-1)

Our �rst stated preference dataset comes from the Swiss value of time study
(Axhausen et al., 2008), and speci�cally a route choice example for rail users,
where 389 participants each completed 9 binary choice tasks described by 4
variables: travel time (TT), travel cost (TC), headway (HW) and the number
of changes (CH).

4.1.5 UK stated preference dataset (SP-2)

The second stated preference dataset uses 10 choice tasks from each of 368
participants, all of whom are public transport commuters in the UK. Each
task involves an invariant reference trip and two hypothetical alternatives.
Each alternative is described by travel time, cost, rate of crowded trips,
rate of delays (both out of 10 trips), the average length of delays (across
delayed trips) and cost of a provision of a delay information service (Hess
and Stathopoulos, 2013).

4.2 Di�erences between di�erent MDFT models

In this section we compare MDFT-2014 (MDFT without a time parameter)
against MDFT-2017 (MDFT with a time parameter). The MDFT model
with a time parameter uses the method described in section 3.1 whilst the one
without follows the method of Berkowitsch et al. (2014), where response time
is set to in�nity. We also compare these models against simple multinomial
logit models and also two versions of random regret minimisation models
(the �rst following the speci�cation of Chorus 2010) and the second following
(van Cranenburgh et al., 2015), incorporating µ, a parameter to estimate a
profundity of regret). For SP-1, our MNL and RRM models contain �ve
parameters, four for the attributes and one alternative speci�c constant. SP-
2 has an additional attribute and an additional alternative, resulting in seven
parameters. The µ-RRM models have six and eight parameters respectively
with the addition of the µ parameter. The MDFT models have three and four
parameters respectively for attributes in SP-1 and SP-2. All MDFT models
additionally have sensitivity, memory and error parameters (φ1,φ2 and ε) and
MDFT-2017 models also have a parameter for the number of timesteps.
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Dataset Swiss (SP-1) UK (SP-2)

LL
free

BIC
timestep

LL
free

BIC
timestep

par. estimate par. estimate

MNL -1,667.97 5 3,377 -3,721.67 7 7,501
RRM -1,667.97 5 3,377 -3,699.49 7 7,456
µ-RRM -1,667.97 6 3,405 -3,698.89 8 7,463

MDFT-2014 -1,608.65 6 3,266 ∞ -3,676.34 7 7,410 ∞
MDFT-2017 -1,597.30 7 3,252 10.05 -3,598.87 8 7,263 3.78

Table 2.2: Results from removing the sacri�ce of setting response time to in�nity

From Table 2.2 we observe that for SP-1 and SP-2 adding a time pa-
rameter results in a signi�cant improvement in model �t (with MDFT-2017
also outperforming MDFT-2014 in out-of-sample validation, see Section 4.6).
As SP-1 only has two alternatives, RRM achieves the same result as MNL.
For SP-2, RRM and µ-RRM provide signi�cantly better �t than MNL but
signi�cantly worse �t than MDFT, especially compared to MDFT-2017 (see
appendix A for full MDFT model estimates). Whilst the weight estimates
are similar (Table A.2), the psychological parameters also have somewhat dif-
ferent estimates, likely due to the fact that they have more time to have an
impact with an in�nite number of preference updating steps. However, these
parameters have little impact on the preference values (see appendix A). For
SP-1, MDFT has two more parameters than MNL, and it could be argued
that BIC values do not penalise this di�erence enough. However, we �nd
that the best �tting MNL model with an additional two parameters (square
root terms for cost and time) has a log-likelihood of −1, 615.79, which is still
signi�cantly worse in model �t than MDFT.

4.3 Implementation and application of decision �eld the-
ory

In this section we look at how to best implement and apply a decision �eld
theory model. We consider the implications of the weight parameters having
to be greater than zero, look at methods for MDFT to incorporate underly-
ing preferences for an alternative and look at the e�ect of di�erent scaling
methods being used on the attribute levels9.

4.3.1 Implications of decision �eld theory weight parameters hav-

ing to be greater than zero

Using the Swiss stated preference dataset (SP-1), it is quickly possible to
see the e�ect of having undesirable attributes in MDFT. If a value for an
undesirable attribute is positive and high (for example, a large cost), then an

9From here, MDFT-2017 is always used unless otherwise speci�ed
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appropriate MDFT model would factor this in by adding a negative valence
to the preference value of an alternative when this attribute is considered.
However, the weight parameters in a MDFT model cannot be negative, as
wi represents the proportion of time that a decision-maker looks at attribute
i. This causes issues when we have `positive', desirable attributes (such as
quality), and `negative', undesirable attributes (such as travel cost). If the
attributes were to be left as they were, then due to MDFT being an accumu-
lative model and weights being positive, there would be no way for MDFT
to re�ect that an alternative is more likely to be picked if an attribute level
is lower. This means that MDFT will have its greatest predictive accuracy
when negative attributes are ignored, and their weights are set to zero. Table
2.3 shows the log-likelihood values of SP-1 under MDFT models where some
attributes are desirable/undesirable. As all four attributes are undesirable,
`negative' here means that the higher values are less desirable, whereas posi-
tive means that they have been reset such that higher, more positive values
are more desirable. The table also shows the parameter estimates for the
MDFT models. As MDFT has no clear starting points for estimation, we
have to run a number of trials to �nd a suitable starting point. We set the
weight attributes to be equal and use random numbers to set φ1 between 0

and 10, φ2 between 0 and 1, ε between 0 and 1, 000 and t between 0 and 100.
We ran 100 trials of this nature and then used the best as the starting point
in the R package maxLik (Henningsen and Toomet, 2011). We found that
the inclusion of the third feedback parameter, w, made an insigni�cant dif-
ference to the results of MDFT, therefore omitted it in these trials and used
Euclidean distances in the feedback matrix. We used standard score normal-
isation to scale the attributes in this section, but explore scaling methods
further in section 4.3.3.

Model 1 2 3 4
MDFT LL -2,000.61 -1,952.68 -1,724.55 -1,597.30
MNL LL -2,039.46 -1,976.24 -1,722.97 -1,667.97

TT Negative Positive Positive Positive
TC Negative Negative Negative Positive
HW Negative Negative Positive Positive
CH Positive Positive Positive Positive

est t-ratio est t-ratio est t-ratio est t-ratio
wTT 0.0000 0.00 0.4528 5.26 0.3214 5.86 0.3480 45.99
wTC 0.3973 2.49 0.0000 0.00 0.0005 0.07 0.4691 43.20
wHW 0.0001 0.00 0.0054 0.11 0.2838 15.18 0.0739 13.03

φ1 0.1806 3.20 0.1206 3.08 0.5959 4.59 -0.01 -0.02
φ2 0.6645 3.52 0.6748 4.83 0.6012 8.47 0.00 0.01
ε 11.1728 6.79 9.9875 8.28 1.4430 5.39 0.00 0.00
t 10.0038 4.00 9.0836 8.42 12.3834 5.72 10.05 12.14

Table 2.3: Parameter estimates and log-likelihoods for MDFT models for positive and
negative attributes (using SP-1)

We can see from Table 2.3 that if the travel costs alone are negative
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(Model 3), the parameter for travel cost, wTC , quickly drops towards zero,
re�ecting that the MDFT model has not used the information as to do so
would worsen model �t. An equivalent hindrance on a MNL model, where
the beta coe�cient for travel cost is �xed to zero, su�ers a similar loss in
log-likelihood. When headway is also negative (model 2), wHW also drops
to zero. The value for the error term, ε, has increased signi�cantly. Hotaling
et al. (2010) argue that the error term (also known as the noise variance Roe
et al. 2001) should be higher for more complex tasks, meaning that higher
values for ε would be found for less predictable decisions, as demonstrated
here. Model 1, where travel time is made negative, obtains further losses in
model �t. Perhaps surprisingly, the coe�cient for travel cost weight increases
away from zero. However, this is due to alternatives with low travel time and
high cost being generally preferred to alternatives with high travel time and
low cost. This is also re�ected in an MNL model with just beta coe�cients for
travel cost and the number of changes, in which a positive value (βTT = 0.015,
t-ratio= 2.34) for travel cost is found. The memory parameter, φ2, is higher
for models with negative attributes, suggesting that MDFT predicts that
the participant `forgets' the information10 they are looking at and that the
choice is more down to chance instead, as can be seen by the higher values
for ε. This makes sense given that when MDFT has negative attributes,
preference values increase as the alternative becomes less likely to be picked,
meaning that the less the attribute values are used to make the predictions,
the better. If all attributes are positive, MDFT starts to outperform MNL
more signi�cantly. The memory parameter drops to zero as the accumulated
preference values are now re�ected in the likelihood of an alternative being
chosen. In conclusion, this shows that we need to invert all negative attributes
such that the higher an attribute value, the more desirable an alternative is.
This will improve the performance of a MDFT model, but poses problems
when we do not know if an attribute is desirable or not. If this is the case,
we can simply include the attribute twice, once with the original values and
once with the inverted values. The weight for one will quickly drop to zero
indicating whether the attribute is positive or negative.

4.3.2 Dealing with underlying preferences

Random utility models with a multinomial logit framework deal with un-
derlying preferences through alternative speci�c constants (McFadden and
Train, 2000). These values directly capture market shares. MDFT has two
methods for capturing shares and dealing with preferences towards an alter-
native. One is through the initial preference matrix P0 and the other is by
creating a new attribute favouring one of the alternatives. Here we simply

10Note that mathematically, preferences being `forgotten' cannot be disentangled from
a slower rate of preference accumulation.
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add in a dummy variable for the alternatives with some �xed higher value
for one of the alternatives. Table 2.4 displays the results of adding in ad-
ditional MDFT parameters to deal with preferences in simulated dataset A.
A parameter pr1 indicates an initial preference for alternative 1 in P0 and
parameters w1, w2 indicate weights for new attributes favouring alternative
1 and 2 respectively.

Proportion MDFT additional additional additional MNL
always 2017 w1 w1, w2 pr1
choosing
alternative

1 LL estimate

parameters 5 6 7 6 3

0.1 -678.80 −667.18∗ -665.94 -667.26 5.69 -667.20
0.2 -686.14 -647.36 -646.13 -647.99 13.71 -647.85
0.3 -687.73 -620.14 -620.14 -621.36 18.88 -621.12
0.4 -691.64 -578.24 -577.85 -578.25 30.70 -578.14

LL of null model = -693.15
Pars = 3 (MNL), 5 (MDFT-2017)

Table 2.4: The e�ect of underlying alternative preferences on MDFT models (using SD-A)

For the models in Table 2.4, we set the attribute value di�erence for
the new parameter w1 to 5 arbitrarily in every case. A value of −666.37 was
achieved in case * when a value of 1 is used instead, suggesting that the value
that is used here does not signi�cantly impact model results. This value could
be set as another parameter, but as the value has not changed signi�cantly
we have not explored this further. Whereas adding in parameter w1 for a
preference of alternative 1 makes a di�erence, additionally adding a weight
for alternative 2 does not signi�cantly improve model �t. This means that
we can treat these parameters equivalently to alternative speci�c constants
in random utility models in this scenario, where similarly only one parameter
would be needed to capture the di�erence in underlying preferences between
two alternatives. We can also see from Table 2.4 that adding in w1 results
in MDFT achieving similar log-likelihoods to MNL. Similar values are again
achieved by adding in the parameter pr1. As the percentage of choices where
decision-makers always choose alternative 1 increases, the parameter estimate
for pr1 rises.

Using MDFT-2014, where the number of timesteps is set to in�nity, re-
sults in not being able to capture biases through initial preferences. However,
for case *, where 10% always choose the �rst alternative, MDFT-2014 ob-
tains a log-likelihood of −667.10, indicating that biases can be captured by
attention weights for speci�c alternatives. Without additional weights, the
log-likelihood for MDFT-2014 is −679.09, in line with the MDFT-2017 result
with no means to capture the bias.
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4.3.3 Scaling of attributes

The most common method for scaling attributes that has been used in pre-
vious applications of DFT has been to rescale values (unity-based normali-
sation) to be between two values (Berkowitsch et al., 2014; Johnson, 2006).
We now consider di�erent methods for scaling the attribute values in dataset
SP-1 and the e�ects this has on the parameter estimates for MDFT. The
�rst method we use is unity-based normalisation, where we have a minimum
value of 0 and maximum value of 1. We set ai = 1− ai−min(a)

max(a)−min(a) for each of
the attributes, ensuring that we set the most desirable attribute level (lower
costs and travel times) to be close to 1 and less desirable attribute levels
to be close to 0. For the second method, we do not scale the attributes at
all, simply setting ai = −ai. For the third method, we use standard score
normalisation and set ai = −ai−mean(a)sd(a) . The fourth method employs the
same values as the third, with the exception that the travel time values are
additionally all multiplied by 10. This allows us to test whether the relative
attribute importance weights can readjust appropriately. Table 2.5 shows
the weight estimates for each attribute in the di�erent MDFT models as well
as the MNL beta coe�cient values for travel time (TT), travel cost (TC),
headway (HW) and the number of changes made when travelling by train
(CH). As with other departures from RUM, value of time and similar mea-
sures cannot be directly calculated under a MDFT model. We instead de�ne
`relative importance (RI) of time,' as wTT /STT

wTC/STC
× 60, where Si is the scale

factor used for scaling attribute i, and use the value of time for the relative
importance of time under MNL.

We can see from Table 2.5 that MDFT produces a higher log-likelihood
value than MNL does for SP-1. This di�erence gradually increases as we
change from scaling method 1 through to 3. It appears that because of the
large range of attribute values, some of the information is lost in method 1.
The high weight value for the number of changes in scale 2, 0.7757, shows that
due to the lack of scaling, the decision-maker has to attend to the number of
changes more often for the importance of this attribute to be re�ected. The
best log-likelihood value under MDFT is achieved in scale 3, suggesting that it
is important to include information on means and standard deviations when
scaling the attribute values before running a MDFT model. The relative
importance of travel time and the relative importance of changes estimates
vary depending on which type of scaling is used. In general, it appears
that as the model's log-likelihood value improves, both relative importance
values decrease. Table 2.5 also shows the impact of multiplying the travel
times in SP-1 by 10 in MDFT scale 4. The only di�erence this makes for a
RUM Multinomial Logit is that the travel time coe�cient becomes exactly
10 times lower. As a contrast, MDFT does not equivalently have a simple
change of coe�cients. Instead, we see that wTT has decreased from 0.3480
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Model LL value TT TC HW CH RI of
travel
time
CHF/
hour

RI of
changes
CHF/
change

MDFT scale
1

-1,640.34 0.3462 0.5887 0.0261 0.0390 24.43 8.88

(32.53) (45.23) (12.34)

MDFT scale
2

-1,622.83 0.0565 0.1390 0.0288 0.7757 24.38 5.58

(17.18) (12.95) (17.83)

MDFT scale
3

-1,597.30 0.3480 0.4691 0.0739 0.1090 21.35 6.48

(45.99) (43.20) (13.03)

MDFT scale
4

-1,638.43 0.0615 0.6202 0.1330 0.1853 28.54 8.33

(24.10) (29.02) (13.76)

MNL -1,667.97 -0.0598 -0.1318 -0.0375 -1.1528 27.21 8.74
(-14.04) (-9.76) (-20.34) (-26.56)

Table 2.5: Parameter estimates (t-ratios in brackets) for MDFT models under di�erent
types of scaling for SP-1

to 0.0615. This re�ects the fact that to capture the relative importance of
time, it has to be attended to less often relative to the other attributes for
it to be appropriately incorporated into the model. We see a lower value of
log-likelihood, with the increase in relative importance values likely being the
cause. Additionally, we also calculate elasticities for a 10% increase in travel
time or travel cost for the chosen alternatives, with results given in Table 2.6.

Table 2.6: Elasticities for di�erent models for the Swiss dataset

Time Cost

MDFT Scale 1 -0.903 -0.827
MDFT Scale 2 -0.931 -0.881
MDFT Scale 3 -1.123 -1.127
MDFT Scale 4 -0.800 -0.659

MNL -0.759 -0.631

The results here appear to be in line with the relative importance of travel
time. MDFT scale 4 is most similar to MNL and scale 3 is the most di�erent.
Crucially, these results demonstrate that using di�erent scaling methods will
impact model performance and model outputs, thus careful consideration is
required before a speci�cation is chosen11.

11This additionally highlights the importance of using the new scale-invariant version of
MDFT developed in Chapter 4.
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4.4 Di�erences in results between decision �eld theory
and other models

4.4.1 Exploring the di�erences between RUM multinomial logit

and decision �eld theory probabilities

The di�erent scaling methods for the attribute values for a MDFT model has
a big impact on the di�erences between MDFT and MNL model probability
of alternatives for SP-1. Figure 2.2 demonstrates that scales 1 and 3 in
particular �nd that when the number of changes and headway is the same
for both alternatives, MDFT makes a more extreme prediction than MNL,
indicated by the grey points on the �gure. This does not happen under scale
2, where MDFT makes more conservative predictions.

Fig. 2.2: Di�erence between MNL and MDFT probabilities of chosen alternatives for
SP-1

Linear regression results on the absolute di�erence between MNL proba-
bilities and MDFT scale 3 probabilities show that this di�erence is greatest
when di�erences between alternatives are small, but that it decreases as the
di�erence between the number of changes, travel time and headway between
the alternatives increases. This is also the case in simulated dataset A, where
similarly, linear regression shows that the absolute di�erence between MNL
and MDFT probabilities decreases as the di�erences between the alternatives
increase. Simulated dataset B �nds an extremely small average di�erence be-
tween MNL and MDFT of 9.51e − 05, with standard deviation 0.0041 and
a largest di�erence of 0.008. This suggests that if alternatives only have
true/false attributes, MDFT will produce very similar results to MNL. We
also have from �gure 2.3 that the relative importance of travel time has a
signi�cant impact on the di�erence between MNL and MDFT. The relative
importance of travel time of an alternative is de�ned here as being positive if
the more expensive, faster alternative is chosen and negative if the cheaper,
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slower alternative is chosen. For example, a value of 50 indicates that the
decision-maker is spending 50 CHF per hour saved.

Fig. 2.3: Impact of the relative importance of time on the di�erence between MNL and
MDFT probabilities of chosen alternatives for SP-1

From Table 2.5 we can see that MDFT (scale 3) predicts a relative im-
portance of travel time of 21.4 whereas MNL predicts a relative importance
of travel time of 27.2. This di�erence is re�ected in �gure 2.3 by the fact that
the lower the relative importance of travel time is, the larger the di�erence
between MDFT and MNL becomes in favour of MDFT. We also see for de-
cisions that are purely a trade-o� between time and cost (grey points), the
impact of the value of the relative importance of time is larger for MDFT.
For SP-2, it appears that MDFT gives more importance to the cost of the
alternatives than MNL (see �gure 2.4). Whilst both models tend to predict
chosen alternatives with a probability of closer to 1 for cheaper alternatives,
linear regression con�rms that the cheaper the chosen alternative is relative
to the unchosen alternatives, the better the �t of MDFT in comparison to
MNL. Results from linear regression also imply that the reverse is true for
other attributes: they have more of an impact on an MNL model. Ulti-
mately, it appears that di�erences in performance between MDFT and MNL
are driven by the ranges of di�erences for the di�erent attributes, with in-
creased availability of information leading to larger di�erences between the
models.

We next consider the di�erences between MNL and MDFT from the per-
spective of individuals (see �gure 2.5). Whilst individuals seem to be fairly
evenly distributed for both datasets, linear regression �nds that for both,
MDFT tends to do better for more predictable individuals who contribute
high log-likelihood values, whereas MNL provides a better �t for less pre-
dictable individuals.
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Fig. 2.4: Di�erence between MNL and MDFT probabilities of chosen alternatives for
SP-2

4.4.2 Runtime of decision �eld theory

Decision �eld theory is a relatively slow model to run. Table 2.7 shows the
runtimes for datasets SP-1 and SP-2. The runtimes are normalised relative
to the runtime for MNL for SP-1 and SP-2.

Model SP-1 Run-

times

SP-2 Run-

times

(normalised) (normalised)

MNL 1.00 1.00

RRM - 1.58

µ-RRM - 2.11

MDFT-2017 200.08 174.78

MDFT-2014 318.85 138.34

Table 2.7: Relative runtimes of models for SP-1 and SP-2

Whilst MDFT-2017 takes longer to run than typical choice models, it
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Fig. 2.5: Di�erence between MNL and MDFT log-likelihoods for individuals

is quicker than mixed RRM (see appendix A). Using MDFT-2014, with the
number of timesteps set to in�nity, reduces the runtime for SP-2 but increases
it for SP-1. Runtimes for mixed decision �eld theory models (see 4.5.3),
which are estimated by R package RSGHB (Dumont et al., 2014), vary vastly
depending on the number of iterations set by the coder. A low number of
iterations can be used initially to get an approximation of how well a model
will work before running a more time-consuming model with more iterations.

4.5 Incorporating Heterogeneity

4.5.1 Using socio-demographic variables in decision �eld theory

One strength of RUM models is that they are good at using the input of
socio-demographic variables to improve model accuracy. As far as we are
aware, these factors have never been incorporated into MDFT. This idea is
explored in this section. Firstly, we explore the impact of income on the
weight parameter for travel cost, wTC for SP-1. Whilst attribute parameters
for MNL are independent of each other, this is not the case for MDFT weight
parameters, as together they sum to 1. We hence de�ne wTC = wTC+x, with
the other parameters adjusted to wi = wi − x × wi

1−wTC , where x is de�ned
as x = pHI ×HI, HI is the household income and pHI is a new parameter
de�ning the strength of the impact of income12. For our MNL model, income
is included in the utility functions by using pHI × HI × tc, where tc is the
travel cost of the alternative. Table 2.8 shows the results of including the
income parameter on each of the standard models.

12Note that during estimation, if parameter estimates lead to weights outside the range
0 ≥ wi ≥ 1, the probability of the choices are set to extremely small values.
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SP-1 Basic model With income parameter

MNL -1,667.97 -1,653.61
MDFT -1,597.30 -1,592.35

SD-C Basic model With group parameter

MNL -4,633.90 -4,509.65
MDFT -4,633.63 -4,527.56

Table 2.8: Log-likelihood values for models with and without income/group di�erence
parameter (using SP-1 and SD-C)

Whilst the improvement in model �t suggests that MDFT can capture in-
come e�ects in SP-1, it is not as large as the improvement in the MNL model.
This however does not appear to have a signi�cant impact on the di�erences
between MNL and MDFT probabilities of chosen alternatives (see �gure A.1
in appendix A). We also explore the impact in a deliberately manipulated
simulated dataset. Using simulated dataset C, we look at the improvements
under MNL and under MDFT by including a parameter to control which
group the decision belongs to. As before for MDFT, we add a factor x to the
weight for seating/standing, subtracting this amount proportionally from the
other weights. We set x = pG for group 1, and x = 0 for group 2. For MNL,
we add pG × S onto the utility for both alternatives for group 1, where S
is equal to 1 or 0 depending on whether seating is available. Table 2.8 also
shows the results of including a parameter for this group di�erence on each
of the standard models. Once again, it appears that whilst MDFT improves
with the inclusion of this socio-demographic variable, MNL improves more
signi�cantly.

4.5.2 Adjusting psychological parameters in decision �eld theory

We can additionally make small changes to the psychological parameters, φ1
and φ2, the sensitivity and memory measures, to attempt an improvement
in �t in a MDFT model. For example, we can adjust the memory parameter
depending on how many choice tasks the decision-maker has already com-
pleted. We add a new variable, φ3, such that our memory parameter is now
φ2 + φ3 × n, where n is the task number. Alternatively, the sensitivity pa-
rameter can be similarly adjusted to be φ1 + φ3 × n. Results from both of
these adjustments are in Table 2.9.

Whilst the adjustments make very little di�erence for SP-1, there is a sig-
ni�cant e�ect for SP-2, as only one parameter has been added. This suggests
that there is some scope for improving the �exibility of MDFT through more
complex feedback matrix structures.

44



4. Empirical application

Model Swiss (SP-1) UK (SP-2)

MDFT -1,597.30 -3,598.87
φ1 adjusted -1,597.04 -3,592.15
φ2 adjusted -1,597.01 -3,594.78

Table 2.9: Log-likelihood values for models with and without adjustments to the memory
and sensitivity parameters

4.5.3 Adding heterogeneity: Mixed MDFT

Our �nal e�ort to add heterogeneity to a MDFT model is to use random
parameters. For both MDFT with and without a parameter for the number
of timesteps, a signi�cant improvement in �t is found (Table 2.10). For
weight parameters, which cannot be less than zero, we use truncated normal
distributions. We trial both normal and truncated normal distributions for
the remaining parameters. These are then compared against MDFT models
with �xed parameters as well as against a MDFT model without a time
parameter with truncated normal distributions for all parameters. All mixed
models are estimated using Dumont et al. (2014)'s R package `RSGHB'.

Data Model Time weights other pars parameters LL BIC

Swiss 1 yes �xed �xed 7 -1595.85 3248.826

Swiss 2 no �xed �xed 6 -1595.88 3240.725

Swiss 3 yes truncated normal normal 14 -1450.39 3015.031

Swiss 4 yes truncated normal truncated normal 14 -1438.39 2991.031

Swiss 5 no truncated normal truncated normal 12 -1430.41 2958.75

UK 1 yes �xed �xed 8 -3598.87 7263.425

UK 2 no �xed �xed 7 -3676.34 7410.155

UK 3 yes truncated normal normal 16 -3156.27 6443.911

UK 4 yes truncated normal truncated normal 16 -3140.09 6411.551

UK 5 no truncated normal truncated normal 14 -3190.23 6495.409

Table 2.10: Log-likelihoods of mixed decision �eld theory Models

For both datasets, vast gains are made by using random parameters. A
better �t is found if truncated normal distributions are used for all param-
eters rather than just the weight parameters. Using random parameters in
Berkowitsch et al. (2014)'s version of MDFT results in a lower BIC value for
the SP-1 but a much higher one for SP-2. Whilst we do not run mixed multi-
nomial logit or mixed random regret models, Hess et al. (2016) do run these
models on the same UK dataset (see appendix A for a table of results). They
�nd that their best �tting model is a mixed µ-RRM model, which achieves
a log-likelihood of −3, 174.96 with a BIC of 6, 456.66. Whilst Mixed MDFT
has a better �t here, more rigorous trials and replications would be required
to test the models against each other fairly.
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4.6 Predictive capabilities of decision �eld theory

As discussed in section 1, previous researchers have only compared the goodness-
of-�t of MDFT, and its performance in the context of forecasting has not been
tested before. We have looked at the predictive capabilities of MDFT (both
versions) on both of our route choice stated preference datasets, SP-1 and
SP-2. We adopt the method used by Frejinger and Bierlaire (2007), using
80% subsets of the data for estimation and the remaining 20% for validation.
We split individuals into �ve equally sized subsets, which are used in turn
as validation subsets. We �t a model to each estimation subset and then
calculate log-likelihoods for the remaining 20% of the data using the param-
eter estimates obtained for the �rst 80%. The results for SP-1 and SP-2 are
displayed in Tables 2.11 and 2.12, respectively.

For both datasets, MDFT-2017 tends to outperform MDFT-2014 in es-
timation. For the validation subsets, the models perform similarly for the
Swiss dataset, but MDFT-2017 outperforms MDFT-2014 for the UK dataset.
MDFT-2017 additionally outperforms MNL in all models across both datasets
with the exception of the �nal validation subset for the Swiss dataset. It has
better model �t than µ-RRM in all but one UK validation subset.
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5 Conclusions

This paper provides methodological improvements to further the mechanisms
behind MDFT to better represent general decision making, as well as rigor-
ously comparing MDFT against traditional choice models. We also con-
sider multiple mechanisms for incorporating heterogeneity within and across
decision-makers within a MDFT model. Prior to our work, there was one
comparison between MDFT and mainstream choice models (Berkowitsch
et al., 2014). In this paper, we provide further evidence that MDFT can
be a competitive rival to traditional choice models. Perhaps most signi�-
cantly, MDFT achieves a better model �t than an MNL model in both of
our stated preference datasets. MDFT also outperforms RRM in SP-2. We
demonstrate, for the �rst time, that MDFT can step away from being a
`one-size-�ts-all' model and incorporate heterogeneity in a number of di�er-
ent approaches. Whilst only small gains are made with the incorporation of
socio-demographic variables into the weight parameters, a vastly signi�cant
gain is found with `Mixed MDFT', where the parameters are random with
either normal or truncated normal distributions. Large gains are also made
with the inclusion of additional weights or parameters to deal with underlying
preferences towards alternatives. Whilst we have made a brief start on the
inclusion of socio-demographic variables, future work could explore this much
further. For example, it could be possible that income e�ects are in part cap-
tured by the deliberation process in a MDFT model and tests could be done
to see if there is a relationship between income and any of the psychological
parameters in MDFT13. Additionally, the importance of the psychological
parameters needs to be tested. It remains to be seen whether the sensitiv-
ity parameter is as e�cient at capturing correlation across alternatives as
the structural parameter in a nested logit model. It could also be that the
psychological parameters are more important in risky choice, but the weight
parameters are more important in riskless choice. As we have only tested risk-
less choice datasets here it could be that socio-demographic e�ects are easier
to �nd in risky choice. Age, gender and personality have all been found to
have an impact on risk-taking behaviour (Harris et al., 2006; Lauriola and
Levin, 2001; Mata et al., 2011) and therefore it could be possible that some
of these e�ects are captured in MDFT's psychological parameters. Section
4.4.1 suggests that the di�erences between using MNL and MDFT to explain
an individual's decisions are not vast. However, it would appear that MDFT
provides slightly more extreme predictions, with more predictable individuals
being better explained by MDFT in comparison to MNL, and the converse
being true for more random individuals. This is perhaps surprising given
MDFT was originally used mostly for risky choices. Future work could look

13We thank an anonymous reviewer for this suggestion.
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at whether MDFT di�erentiates more or less than traditional choice models
on di�erent kinds of datasets. MDFT could also easily be incorporated into
one or more of the classes in a latent class structure and thus we could see if
individual decision makers are better explained by MDFT or another model
directly. This paper provides a method for calculating the probability of al-
ternatives under a decision �eld theory model whilst simultaneously avoiding
computationally intensive simulation and not setting the decision time for
decision-makers to in�nity. Using this method provides a number of bene-
�ts compared to using Berkowitsch et al. (2014)'s method. Our new method
provides a better �t for the two stated preference datasets we apply it on
and it provides a vastly greater amount of �exibility. Firstly, the response
time to make a decision can now be simply incorporated into the model:
the number of timesteps could vary proportionally to the time taken by the
decision-maker14. Secondly, the memory parameter can now be negative, re-
�ecting that preferences can in�ate as well as deteriorate over time (Mather
et al., 2000). Finally, and perhaps most crucially, initial preferences can play
an important role in our version of MDFT. This means that, for example,
MDFT should easily be able to explain a status quo bias. In conclusion, it ap-
pears that the restoration of a time parameter in MDFT results in a far more
realistic psychological model for understanding choice behaviour. The imple-
mentation of decision �eld theory does not come easily. A standard MDFT
model takes up to 200 times longer to run than a Multinomial Logit model.
Future e�orts should look at reducing this runtime as well as removing the
scale-variant nature of MDFT, as currently we need to know if an attribute
is desirable or not before we can incorporate the importance of the attribute
into a MDFT model. We have shown that a MDFT model can be speci�ed to
include underlying preferences through the initial preference matrices, while
additional weight parameters can be included to capture socio-demographic
e�ects, for example. The outputs from the model provide rich insights into
behaviour, but it is clear that traditional measures such as the value of time
cannot be obtained from a MDFT model. This, however, is typical for de-
partures from RUM, with Dekker (2014) highlighting the di�culties of using
value of time measures obtained from random regret minimisation. As is the
case with any other departures from RUM, a user thus needs to carefully
make a decision of whether the increased behavioural richness of the model
and the improvement in �t (both in estimation and in forecasting) is more
important than an ability to produce measures for welfare analysis. In addi-
tion, the underlying psychological foundations of MDFT may be more suited
than a purely microeconomic model at incorporating the increasing number
of behavioural and processing indicators that are becoming available. For

14See also Chapter 3 for examples of how response time can be incorporated into a
MDFT model.
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example, electroencephalogram (EEG) recordings and eye-tracking have al-
ready been used to understand and predict choices (Khushaba et al., 2013;
Telpaz et al., 2015; Uggeldahl et al., 2016). Given that we have relaxed the
assumption on the number of timesteps for a MDFT model, we could now
test MDFT on a dynamic revealed preference dataset where the attribute
levels of an alternative change over time. Response times, EEG, delibera-
tion times or eye-tracking information could be incorporated into a MDFT
model, to lessen the requirement of estimation for the number of deliberation
timesteps at each point as the choice set changes. Testing MDFT on such a
dataset would enable us to look at the validity of underlying behavioural as-
sumptions of a MDFT model. Additional information could also potentially
be used to determine whether a decision-maker has come to an internal or ex-
ternal threshold under a MDFT model when making a decision. This would
allow for a MDFT model to predict a decision-maker's level of con�dence or
uncertainty in their choice. For example, eye-tracking information showing
which attributes are considered last could inform how likely a decision-maker
is to come to a conclusion through satis�cing, when an alternative reaches
a certain preference value. Overall, this means that there is much need for
further research into MDFT, which with its good results for both estimation
and forecasting, appears to otherwise be a promising future model for the
choice modelling community.
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Chapter 3

A careful respondent or an uncertain

response: Disentangling confounding

sources of increased deliberation time

using decision �eld theory

Thomas Hancock1, Stephane Hess1, & Charisma Choudhury1

Abstract

Decision �eld theory (DFT), although popular in mathematical psychology,

has only recently been used in choice modelling for consumer and travel

choices. A key di�erence that DFT has from standard choice models is that it

has preference values for each alternative that update over time. This results

in a di�erent probability of picking each alternative depending on how long

a decision-maker considers their alternatives. However, the computational

complexities of DFT have resulted in failures to utilise its dynamic nature.

Recent advances in the underlying computational methods for DFT have al-

lowed for the analytical calculation of the probability of alternatives at any

time point. Consequently, the number of preference accumulation steps can

be estimated as a function of choice response time. We demonstrate that

the model �t for DFT models can be improved by considering response times

across route, accommodation and conservation programme choice contexts.

We also explore the confounding nature of choice response time, with a key

assumption within DFT and other accumulation models being that preference

grows over time, contradicting a well-known result that a longer response

time often indicates a less certain and hence less deterministic choice from

a decision-maker. In line with DFT and preference accumulation, we �nd

1Choice Modelling Centre and Institute for Transport Studies, University of Leeds (UK)
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that across all three datasets, a longer mean response time indicates that a

decision-maker is more deterministic. However, within a decision-maker, our

models suggest that fast decisions are typically more deterministic, demon-

strating that a longer response time indicates a less certain decision. Fur-

thermore, results from multinomial logit (MNL) models suggest that DFT's

time parameters performs similarly to a MNL's scale parameter. This sug-

gests that without further consideration of measures such as choice certainty,

DFT may struggle to truly capture the process of preference updating, as the

time parameters are not necessarily correlated with response time and instead

simply capture how deterministic a choice is.

1 Introduction

Decision �eld theory (DFT), �rst developed in the 1990s (Busemeyer and
Townsend, 1992, 1993) is a dynamic, stochastic choice model in which the
preference for each alternative updates over time, changing the probabil-
ity with which each alternative is chosen. These preference values update
at each accumulation step as the decision-maker considers the di�erent at-
tributes of the alternatives. The decision-maker then comes to a conclusion
either when the preference value for an alternative reaches some satisfactory
internal threshold value (equivalent to satis�cing (Kaufman, 1990; Schwartz
et al., 2002), where a participant chooses one of the alternatives if it is `good
enough') or when the decision-maker reaches some external threshold (such
as running out of time). For example, a voter may not have a �rm preference
for a candidate but be forced to make a decision on election day. At this
point the alternative with the highest preference value is chosen.

An analyst needs to decide whether to use DFT with internal or external
thresholds. DFT was initially used as a model for understanding risky choice
decisions, with internal thresholds used if the decision-maker chose when to
stop deliberating, and external thresholds used if a time restriction was im-
posed. Both versions were developed for two alternatives with two attributes
but DFT with an external threshold has since been expanded to allow for
multiple attributes and multiple alternatives, and renamed multialternative
decision �eld theory (MDFT, Roe et al. 2001). Decision �eld theory in various
forms has been used widely across the mathematical psychology literature,
having been used to model a variety of choices including monetary gambles
(Schall, 2003), decision-making in sport (Raab and Johnson, 2004), likely
crime suspects (Trueblood et al., 2014) and consumer decisions (Noguchi
and Stewart, 2014). However, it has only recently been compared to models
developed in econometric choice modelling (Berkowitsch et al., 2014). This is
in part due to the complexity of calculating the probability of alternatives be-
ing chosen under a DFT model. In particular, for a DFT model with internal
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thresholds, simulation is often required as there is no closed-form solution for
the probability for which each alternative is chosen if there are more than two
alternatives. Simulation can also be used for MDFT models with an external
threshold (Turner et al., 2018). Many applications thus far have chosen to
avoid this computationally-intensive procedure by using MDFT and �xing
the number of preference accumulation steps to a high value (Berkowitsch
et al., 2014; Cohen et al., 2017; Trueblood et al., 2014; Tsetsos et al., 2010).
Alternatively, �xing the number of preference accumulation steps to in�n-
ity results in a simpler closed-form analytical solution for the probability of
alternatives (Berkowitsch et al., 2014). However, crucially, both these ap-
proaches lose MDFT's dynamic nature. Thus, there has been a requirement
to improve the computational methods behind MDFT such that the number
of preference accumulation steps has a better behavioural underpinning and
does not need to be set to an arbitrary value. In Chapter 2, we propose
computational developments meaning that the probability with which each
alternative is chosen can in fact be calculated simply after any number of
preference accumulation steps in a MDFT model. The important question
that remains is what these preference accumulation steps actually represent
mathematically in a choice process. The work in this chapter considers how
this feature is linked to choice response time.

There have been a number of studies considering choice response time
in choice modelling, often with di�erent foci and aims. For example, con-
sistent di�erences in response times are found depending on the size of the
di�erence between travel times and costs in a choice task compared to those
from a reference trip (Börjesson and Fosgerau, 2015), with increased response
times for larger travel time di�erences and decreased response times for larger
di�erences in costs. There have also been suggestions that choice response
times re�ect how much cognitive e�ort a participant uses (Rose and Black,
2006), in which case longer response times would suggest more deterministic
behaviour. Whilst Qin et al. (2013) demonstrated that the probability of
each alternative at each timepoint under a MDFT model could be matched
with the proportion with which each alternative was chosen under di�erent
time restrictions, this current paper demonstrates for the �rst time how the
decision-maker's response time can be naturally incorporated into a DFT
model such that the probability of alternatives being chosen across multiple
choices is impacted. A key issue with such an approach is in accounting
for the di�erent reasons a choice might take more time. Whilst a complete
model would control for such features, factors such as measurement errors
(i.e. whether a recorded response time accurately re�ects when the decision-
maker came to a conclusion), levels of concentration of the decision-maker
and choice certainty are all di�cult to account for. Whilst the work in this
paper does not control for such considerations, we demonstrate how an ana-
lyst might begin to restore the dynamic nature of DFT, through the inclusion
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of response time.
Thus far, it has been typical for analysts to use decision �eld theory with

an internal threshold if the decision-maker is free to choose when to conclude
deliberating on their choice and decision �eld theory with an external thresh-
old if a time limit is imposed. However, we argue that the choice of which
version to use is not so simple, with complications for both versions often not
accounted for. For example, a strict external threshold does not account for
the di�erent speeds at which the di�erent decision-makers may accumulate
evidence, nor any di�erences in method. A certain number of iterations may
result in weak evidence in favour of an alternative for some individuals, but
far greater evidence for that same alternative for others. Additionally, inter-
nal thresholds cannot be precisely measured and are likely to vary vastly both
across and within decision-makers. Furthermore, a decision-maker may not
choose an alternative because it satis�ces, but because they do not wish to
deliberate on a choice any longer. This could either be viewed (analytically)
as a decision-maker reaching a self-imposed time threshold, or an alternative
reaching a lowered preference evidence threshold.

However, regardless of whether the decision-maker stopped due to an in-
ternal or external threshold, we know that under DFT model assumptions,
the alternative chosen has the highest preference value at the moment when
the decision-maker concludes the deliberation process. Whilst we cannot
know how many iterations of preference value updating have occurred, it is
possible to estimate the number of iterations as a function of the choice re-
sponse time, which can be recorded. As both versions of DFT have a param-
eter related to the number of iterations of preference updating, we can thus
restore DFT to being a properly dynamic model in which the time taken
to make a decision impacts the probability of each alternative being cho-
sen. This paper considers state-of-the-art implementations of both versions
of DFT in detail. We demonstrate a number of methods for incorporating the
response time in the models, thus beginning the process of restoring DFT to
being a properly dynamic model in which the amount of time taken to make
a choice in�uences the probability with which each alternative is chosen. We
then provide a number of empirical applications, demonstrating the increased
�exibility of having free rather than �xed time parameters, as well as detail-
ing the results of the di�erent methods for including response times in the
DFT models. These di�erent models as well as comparisons with multino-
mial logit models allow us to investigate the nature and precise function of
the time parameters in DFT models.

The remainder of this paper is organised as follows. First, we present the
methodology behind decision �eld theory with internal and external thresh-
olds, demonstrating how the probability with which each alternative is chosen
can be calculated. Next, we demonstrate how response time can be incor-
porated into the DFT models. We then give an outline of the latent class
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and multinomial logit models that are used in this paper. We next detail our
empirical applications, where we test the impact of including response time
for models on three very di�erent stated choice datasets. Finally, we �nish
with some conclusions and present directions for future research.

2 Methodology

In this section we �rst describe how the probability with which each al-
ternative is chosen can be calculated in decision �eld theory models, both
with external (time) thresholds and internal (evidence) thresholds. We then
demonstrate how reparameterising the time parameter results in a natural
method for choice response times to be incorporated into the model. Finally,
we brie�y introduce the latent class and multinomial logit models that are
used in the empirical applications of this paper.

2.1 Decision �eld theory with an external threshold (MDFT)

For a full description of the theory and estimation of MDFT models, readers
should refer to Section 2 and 3 of Chapter 2.

2.2 Decision �eld theory with an internal threshold

2.2.1 Basic theory

For our decision �eld theory models using an internal threshold (which we
henceforth call DFT-I), we consider the original speci�cation of DFT by Buse-
meyer and Townsend (1992, 1993), which considers two alternatives, AR and
AL. This di�ers from MDFT in a few small but distinct ways. Similarly to
MDFT, the new preference values are a function of previous values and a
number of other parameters. As DFT-I is only analytically solvable for two
alternatives, we here only consider binary choice scenarios2. This means that
we can consider just a single value, Pτ = Prefτ (AR)−Prefτ (AL). Alterna-
tive AR is chosen when Pτ reaches some internal threshold θ, whereas AL is
chosen if Pτ reaches −θ. The underlying key assumptions are still the same
in that at each step, a single attribute k is attended to with probability wk.
This means that there is still a mean valence input, denoted δ, dependent on
the valences vR and vL, which are weighted sums of the respective attributes
for AR and AL (hence relative importance weights, wk are still required for

2For the full equations for DFT using an internal threshold for more than two alterna-
tives, readers should refer to the Appendix of Busemeyer and Townsend (1993). Further
work should also consider searching for analytical solutions for more than two alternatives,
as this is currently a major limitation for implementations of DFT-I.
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each attribute). The preference di�erence between the two alternatives then
updates according to:

Pt = [1− (s+ c) · h] · P (t− h) + [δ · h+ ε(t)], (3.1)

where s is a growth-decay parameter, which, similarly to φ2 for MDFT, e�ects
whether recently considered attributes or initially considered attributes have
more impact. The parameter c is a goal-gradient parameter, which is used to
explain the e�ect that `avoidance-avoidance' decisions (choosing between two
negatives) take longer than `approach-approach' decisions (choosing between
two positives) and is speci�ed precisely in Equation 3.5. δ is the mean valence
input, h is a time unit and ε(t) is the error input, equivalently drawn from
a normal distribution with mean zero, and variance h · σ2. Crucially, as a
contrast to MDFT, the error variance is not assumed to be uncorrelated with
the mean valence input. Instead, the variance of the error is de�ned directly
as the input variance (Busemeyer and Townsend, 1993):

σ2 = V ar[VR − VL] = σ2
R + σ2

L − 2 · σRL, (3.2)

with σ2
R the variance of the valence for choice alternative AR, σ2

L the variance
of the valence for choice alternative AL, and σRL the covariance between the
two.

We next detail the precise speci�cation for the various parameters dis-
cussed above. First, to control for underlying biases towards an alternative,
the initial value, P0 is set to some value z, which is typically set as an in-
creasing function of the mean valence input δ and the internal threshold θ.
We follow Busemeyer and Townsend (1993)'s de�nition3:

z = tanh(z∗ · δ) · θ, (3.3)

where z∗ is a parameter to be estimated. Next, the internal threshold, θ,
is de�ned to control speed-accuracy trade-o�s (Busemeyer and Townsend,
1993). The threshold is therefore assumed to increase over time, and thus is
set as an increasing function of some time parameter, τDFTI :

θ = f(τDFTI) · σ, (3.4)

where σ is the standard deviation of the error, as de�ned in Equation 3.2.
The goal gradient parameter, c is then de�ned based on an approach gradient,
a, and an avoidance gradient, b:

c = b · (vR− + vL−) + a · (vR+ + vL+), (3.5)

3Note that in general a di�erent function may be used, but we follow Busemeyer and
Townsend (1993) in using the hyperbolic tangent function as it works well for predictions
in Table 8 of their paper.
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where the mean valence inputs vR and vL are split into a weighted sum of
`positive' attributes that are desirable, vR+ and vL+ (i.e. the average gain
for alternative AR and AL respectively) and the weighted sum of `negative'
attributes that are undesirable, vR− and vL− (i.e. the average losses). Finally,
the mean input valence is de�ned based on the approach gradient, avoidance
gradient, internal threshold and expected gains and losses for each alternative:

δ = (vR+ + vL+)(1− a · θ) + (vR− + vL−)(1− b · θ), (3.6)

2.2.2 Estimation of the probability of alternatives in DFT with

an internal threshold

Whilst the probabilities with which each alternative is chosen under a DFT-
I model can be calculated using Markov chain methods (Busemeyer and
Diederich, 2002), we instead choose to solve the original integral given by
Busemeyer and Townsend (1993), as this is simple to use for the choice sce-
narios described in this paper4. Busemeyer and Townsend (1993) demon-
strate that by assuming a continuous time process (h → 0), the probability
of choosing alternative AR over AL is:

Pr(AR, AL) =
S(z)

S(θ)
, (3.7)

where the function S(x) is the integral:

S(x) =

∫ x

−θ
exp

[
(c+ s) · y2 − 2 · δ · y

σ2

]
dy, (3.8)

with the initial preference value, P0 = z, θ the internal threshold, c the goal-
gradient parameter, s the growth-decay parameter, δ the mean input valence
and σ2, the variance of this input, all as de�ned and speci�ed in Section 2.2.1.
To solve this integral, we use the substitution:

u =
(c+ s) · y − δ
σ ·
√

(c+ s)
. (3.9)

In order to simplify the integral, we square both sides of Equation 3.9 and
rearrange to get:

(c+ s) · y2 − 2 · δ · y
σ2

= u2 − δ2

(c+ s) · σ2
. (3.10)

This, together with the derivative:

4Note that Markov chain methods are more practical to use for more complex scenarios
(Bhattacharya and Waymire, 1990; Busemeyer and Townsend, 1993).
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du

dy
=

√
c+ s

σ
, (3.11)

can be used to rearrange the integral in Equation 3.8 in terms of u and du:

S(x) =

∫ ul

ll

exp

[
u2 − δ2

(c+ s) · σ2

]
· σ√

c+ s
du (3.12a)

= exp

[
− δ2

(c+ s) · σ2

]
· σ√

c+ s
·
∫ ul

ll

exp[u2] du, (3.12b)

where the limits of integration are ll = −θ·(c+s)−δ
σ·
√

(c+s)
and ul = x·(c+s)−δ

σ·
√

(c+s)
. Finally,

we note that we require the imaginary error function (erfi(x), Abramowitz
and Stegun 1965), which is de�ned:

erfi(x) =
2√
π
·
∫ x

0

exp[u2] du. (3.13)

Following some rearrangement, this results in a solution to Equation 3.7:

Pr(AR, AL) =
S(z)

S(θ)
(3.14a)

=

erfi

(
z·(c+s)−δ
σ·
√

(c+s)

)
− erfi

(
−θ·(c+s)−δ
σ·
√

(c+s)

)
erfi

(
θ·(c+s)−δ
σ·
√

(c+s)

)
− erfi

(
−θ·(c+s)−δ
σ·
√

(c+s)

) . (3.14b)

2.3 The impact of time in DFT

Under a decision �eld theory model, the preferences of alternatives change as
the decision-maker deliberates on the attributes of the alternatives. Conse-
quently, the probability of each alternative being chosen changes depending
on how long the decision-maker takes to make their choice. Under MDFT, the
probabilities of each alternative being chosen are impacted by the number of
preference accumulation steps, τ , (which we henceforth refer to as τMDFT ),
whilst under DFT with an evidence threshold, the probabilities depend on
the threshold, θ, which in turn depends on the time parameter, τDFTI . For a
typical simple setting in transport choice modelling, a decision-maker might
need to complete choice tasks where there are two route alternatives, one
which is cheaper and slower and another which is more expensive and faster.
Figure 3.1 demonstrates how the probabilities that each alternative is cho-
sen in such a choice (where the second alternative is 1 minute faster but 1
Swedish Krona more expensive) might change with an increase in decision
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time. Behaviourally, the assumption here is that a longer response time re-
sults in more comparisons of the alternatives, which results in more time for
the preferred attributes to have an impact on the preferences.

Fig. 3.1: The probability of choosing the two di�erent alternatives as the amount of time
taken considering the choices increases.

Graph A shows a choice under MDFT and how the probability of choos-
ing each alternative changes as the number of preference accumulation steps
comparing the alternatives increases. Graph B shows the equivalent choice
scenario under a DFT-I model, with the probability of alternatives changing
with the time parameter (which impacts the value of the internal thresh-
old depending on Equation 3.4). Graph C shows a MDFT model with an
evidence threshold. This is created by using an MDFT model as described
by Equations 2.1 - 2.8, but rather than calculating expected values and co-
variances, we run 10,000 simulations of the preferences evolving over time,
concluding the choice when the di�erence in the preference values reaches
some `internal threshold', where the threshold is set as an increasing func-
tion of response time (as done for DFT-I). Under each version of DFT, the
probability of choosing alternative 1 increases as the number of iterations of
preference updating increase.

For MDFT, this �gure clearly demonstrates that the higher the number
of preference accumulation steps, the more deterministic the decision is5.

5Whilst this may not be the case under certain parameter values of MDFT and very
speci�c attribute values, we choose typical attribute values and parameter estimates under
MDFT in this scenario.
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Given additional comparisons, the fact that the decision-maker is more likely
to consider the cost (which has a weight of 0.6 compared to that of travel
time, which is 0.4), increases the probability of choosing alternative 1, which
is cheaper. Additionally, DFT-I also becomes more deterministic, unsurpris-
ingly, given that `choice probability becomes more extreme as the threshold
criterion increases' (Busemeyer and Townsend, 1993). Consequently, increas-
ing the time parameter also increases the probability of alternative 1.

There are visible di�erences in the models with DFT-I producing S-shaped
curves and MDFT producing a more logarithmic-shaped curve. However, re-
sults from simulations of MDFT with an internal threshold produces proba-
bilities more similar to DFT-I, suggesting that the di�erence between MDFT
and DFT-I is more likely due to the di�erence in when the choice is made
(time or evidence threshold) rather than the di�erence in model structure (in
terms of the di�erent parameters the models have). Crucially, independently
of the variation of DFT model used, an increased response time results in
more time for evidence to accumulate, and consequently a more determin-
istic choice. Initially, the impact of the attribute weights is minimal, such
that the chosen alternative depends on the initial preference matrix (which
in Figure 3.1 is in favour of alternative 2) and which attribute is considered
�rst6. As the number of preference accumulation steps increase, the higher
weight for cost begins to have an impact, with the cheaper alternative gradu-
ally becoming more likely to be chosen. For MDFT, we set φ2 = 0.2 (for the
purpose of this illustration), resulting in the preference values stabilising for
a large number of preference accumulation steps (Berkowitsch et al., 2014),
and hence the probabilities with which each alternative is chosen stabilise
also.

We now look into incorporating choice response time into the models. In
general, the functional form for the number of preference accumulation steps,
τMDFTnp , for individual n in a particular choice task p in a MDFT model
could include multiple parameters:

τMDFTnp = f(Rnp) + g(zn) + εnp (3.15)

where f is a function of the choice response time, Rnp, in a particular choice
task, g(zn) is a function of the characteristics of an individual, n, and εnp
is an error term, to be estimated7. For example, g(zn) could capture the
fact that some individuals may not process information as quickly as others,

6Note that for the applications in this paper, decision-makers are presented with new
alternatives in each trial, therefore there is little argument for the existence of initial
preferences.

7In all of the datasets used in this paper, a single choice response time is observed
for each choice task. Thus the deliberation and action components in making the choice
cannot be disentangled. Thus this error term will incorporate `reaction times' for the
decision-makers to physically select their chosen alternative.
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hence they may require a larger number of comparisons before coming to
the same conclusions. Whilst previous applications of decision �eld theory
have simply estimated or �xed the number of preference accumulation steps,
this paper considers choice tasks where choice response time is recorded.
We subsequently consider three distinct methods for incorporating response
time into the parameter for the number of preference accumulation steps for
MDFT and the time parameter of DFT-I.

For our �rst set of models (T1), we wish to ensure that the number of
preference accumulation steps is positive and that there is at least one step.
Thus we de�ne the number of preference accumulation steps as:

τMDFTnp = 1 + e(t0+t1∗Rnp) (3.16)

where Rnp is the choice response time in a particular choice task as before, t0
is an error term and t1 is a parameter to be estimated. A positive value for t1
thus indicates that the number of preference deliberation steps increases with
increased response time whereas a negative estimate indicates a decrease in
the number of steps for an increased response time8.

Our second set of models (T2) additionally attempt to utilise di�erences
in response times both across and within individuals. We do this by addition-
ally considering a term t2 for capturing the impact of a participant's mean
response time. T2 therefore has the speci�cation:

τMDFTnp = 1 + e(t0+t1∗RSDnp+t2∗log(RMn)) (3.17)

where RMn is the mean response time for individual n and RSDnp is the
number of standard deviations the response time for task p is away from
RMn. Again, we use exponentials and add one to ensure that there is at
least one step.

Finally, we also try running individual-speci�c models9. Here, for each
choice task, we set the number of preference accumulation steps as:

τMDFTnp = 1 + e(t0+t1∗RSDnp) (3.18)

where RSDnp is the number of standard deviations away the response time
is from the individual's mean response time.

For DFT-I10, we set the time parameter using the same functions as above
but without adding 1 (thus 1 + τMDFTnp = τMDFTnp), as there is no limit

8Note that in estimation, the number of preference accumulation steps does not have
to be a discrete value, as reducing Equation 2.28 allows continuous values to be used for
the number of preference updating steps.

9Whilst many datasets in large-scale choice modelling applications only have a few
observations per individual, one of our datasets has enough such that all observations
included in a model can be from just one individual.

10Note that we do not run individual models using DFT-I, as the only dataset with
enough observations per individual also has three alternatives, and we do not consider
simulation of DFT probabilities in the empirical applications of this paper.
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on how low the threshold can be (as long as it is positive for one alternative,
and negative for the other).

2.4 Latent class models

As it is possible that there exist large di�erences between individuals, we
also use latent class models (Kamakura and Russell, 1989) in this paper (as
only one of our three datasets contains enough observations per individual
to run individual models). These models allow for di�erences in sensitivities
to be captured, with each di�erent class capturing a di�erent set of taste
coe�cients, with possibly even di�erent models being used in the di�erent
classes (Hess et al., 2012). More often, the same model is used in the di�erent
classes, with S di�erent copies of the model (where S is the number of classes)
with a di�erent set of parameter estimates βS estimated for each class. Either
way, we can then denote Pni∗t(βs) as the probability of the chosen alternative,
i∗, by individual n in choice task t under class s, where βs is the set of
parameters for class s. Allowing for S di�erent classes results in the likelihood
of the observed set of choices for individual n is:

Ln(β, π) =

S∑
s=1

πns

(
Tn∏
t=1

Pni∗t(βS)

)
(3.19)

where πns is the estimated share given to model s for participant n (summing
to 1 for each n), and Tn is the set of choice tasks faced by the individual.

2.5 Multinomial Logit models

In the empirical applications of this paper, we also wish to compare DFT
to static choice models (models in which preferences for alternatives do not
change over time for a single set of alternative attributes), for which we use
the multinomial logit (MNL) model (McFadden, 1974). This allows us to
test the bene�ts generated by using a model that additionally attempts to
capture the choice deliberation process.

Despite the fact that MNL models are static, there are various methods
in which response time could be incorporated. Under the assumption of
a decision-maker accumulating evidence in favour of alternative, a longer
response time would result in a more deterministic choice. As the scale
parameter within MNL (which is often normalised to 1) directly controls
how deterministic a choice is, a scale parameter set as a function of response
time would allow for the possibility of longer response times resulting in more
deterministic choices. To illustrate how this would work, we �rst de�ne our
multinomial logit models. If we assume that an individual, n, has a utility,
U∗, for alternative j, then:

U∗nj = (β∗)′xnj + ε∗nj (3.20)

68



2. Methodology

where (β∗)′ is a set of parameters, xnj is vector of observed variables relating
to alternative j and ε∗nj is the unobserved portion of utility. By assuming
a type I extreme value distribution with variance σ2 × (π2/6), (McFadden,
1974) demonstrates that we can calculate the probability of alternative i being
chosen as:

Pni =
e(β
∗/σ)′xni∑

j e
(β∗/σ)′xnj

, (3.21)

with σ the scale parameter. Whilst this scale parameter cannot be identi�ed
alone from choice data, we can incorporate choice response time into our MNL
models using the scale parameter, setting it as we did for the parameter for the
number of preference accumulation steps in MDFT and the time parameter
in DFT-I. Whilst the scale parameter does not need to be greater than one,
it does need to be positive. Additionally we want the impact of t1 and t2 to
have the same e�ect on MNL compared to DFT (higher estimates resulting
in a more deterministic choice), so we set:

σnp =
1

e(t0+t1∗RSDnp+t2∗log(RMn))
, (3.22)

with RSDnp and RMn de�ned as before.
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3 Empirical applications

We will now demonstrate how the response time taken for choosing an al-
ternative can be used in models applied to three very di�erent datasets. All
three datasets come from stated choice surveys, where participants consider
several sets of alternatives amongst which they have to state their preference.
Each choice task comprises of a set of hypothetical alternatives with di�ering
attribute levels. All three questionnaires were completed on a computer, thus
response times were recorded automatically when the participant selected an
alternative.

3.1 Datasets

3.1.1 Route choice

The route choice dataset tested in this paper comes from a study on choice
response time patterns in an online stated choice experiment (Börjesson and
Fosgerau, 2015). In each choice task, respondents have two alternative car
routes described by travel time and travel cost (in Swedish Krona). We
discard choices with a recorded response time of 0 seconds and those with a
response time of more than 60 seconds, as we assume that the respondent was
either not attempting to respond to the choice seriously or was interrupted.
Additionally, we omit choices made by respondents who have less than six
(out of eight) choice tasks remaining after the above censor. This leaves us
with 15,546 choice tasks completed by 2,358 respondents.

3.1.2 Conservation choice

The conservation dataset tested in this paper comes from a study exploring
tree planting preferences in a stated choice survey (Mahieu et al., 2016). 146
participants completed 16 stated choice tasks where they were asked which
of two conservation programmes they preferred. Each of the programmes are
described by four attributes: country (Senegal or Peru), provision of online
information (Yes/No), type of programme (restorative or preservative) and
cost (2,5,10,15 EUR). Country and type of programme are both found to have
an insigni�cant impact on the choice and are therefore omitted in this study.
In all tasks, the participant also have a third `status quo' alternative where
they could choose not to invest in either of the presented programmes. We
again exclude choices with a recorded response time of less than one second
or choices with a time of more than a minute. This leaves us with 2,334 (out
of 2,336) choice tasks.
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3.1.3 Accommodation choice

Our accommodation choice dataset has a total of 32 participants each com-
pleting 45 choice tasks. It comes from Cohen et al. (2017)'s paper in which
a version of MDFT is �tted with a �xed number of preference accumulation
steps, τMDFT = 500. In each choice task, decision-makers had three accom-
modation alternatives described by ease of transportation, size, condition and
kitchen facilities (each on a scale of 1-5). Figure 3.2 gives an illustration of
an example choice scenario. Trials were omitted if the decision-maker did
not consider more than two out of twelve of the information panels as Cohen
et al. (2017) deemed these to not be meaningful decisions11. Consequently,
this leaves a total of 1,430 decisions.

Fig. 3.2: An example choice scenario from Cohen et al. (2017)

3.2 Basic models

We initially do not consider choice response time, simply using basic MDFT
and DFT-I models to test the importance of the parameter for the number of
preference accumulation steps and time parameter respectively. Given that
the parameter for the number of preference accumulation steps is often �xed
to a high value, these models e�ectively test how much �exibility is gained
by freeing this parameter. We run �ve versions of MDFT on each dataset
and �ve versions of DFT-I on just the route choice dataset, as this is the only
dataset with only two alternatives.

In the �rst four versions, we �x the number of preference accumulation
steps to 1, 10, 100 and 1,000, respectively for MDFT. For DFT-I, we �x
the time parameter to 1, 2, 3, and 4. These values have no link with 'real
time' in that the response time for each choice is not included, thus the
di�erent values simply test the parameter impact on the model. In the �nal

11Note that this was possible as the original experiment used eye-tracking equipment.
See Cohen et al. (2017) for details.
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version of each model for each dataset, we simply estimate the number of
steps/time parameter to be some constant, τMDFT = τDFTI = t0 (we are
not yet including choice response time).

To estimate the probability of alternatives under a decision �eld theory
model with a time threshold, we require estimates for n − 1 weight param-
eters (where n is the number of attributes) and estimates for four process
parameters (φ1 and φ2, the sensitivity and memory parameters respectively,
the constant for the number of preference accumulation steps, t0, and the
standard deviation of the error term, σε).

We additionally consider new MDFT parameters equivalent to alternative
speci�c constants in MNL (see Table 2.4 in Chapter 2). These parameters are
used to capture underlying preferences for alternatives and are particularly
useful if there is a status-quo bias or an unfavourable alternative (such as not
picking either conservation programme in our conservation choice dataset).
For the work in this paper, we use additional attribute weights for time
spent considering a speci�c alternative, j. For example, dummy attributes
of (0, 0, 1) could be used to represent `additional time spent considering al-
ternative 3 not captured by the attribute values'. These additional dummy
attributes are omitted for the housing dataset, for which they are not found
to be signi�cant. We choose to use additional attribute weights rather than
parameters in the initial preference matrix as we wish to test the importance
and relative impact of the number of preference accumulation steps, which
would be a�ected by an initial preference matrix.

For DFT-I, which is tested only on the route choice dataset, we also
estimate two attribute weight parameters, with a third dummy attribute
of (0,−1) used to represent additional time spent considering the negatives
of alternative 2. This is equivalent to (1, 0) but we use a negative as this
results in all three attributes being negative, meaning that we do not need
to estimate an approach gradient, a, and thus only need to estimate b, the
avoidance gradient. However, we set b = 0 and the growth-decay rate s = 0

as this does not signi�cantly impact model �t. Additionally, we set the bias
term z = 0 as, similarly to MDFT, we wish to avoid impacting the time
parameter. This results in only two free parameters (the attribute weights)
for DFT-I models with a �xed time parameter.

For all models, the free parameters are estimated by maximisation of the
likelihood function of the observed choices. We use the R packages maxLik
(Henningsen and Toomet, 2011) and cmcRcode (CMC, 2017) for estimation
of the likelihood function. We use an RCPP package together with the Ar-
madillo C++ linear algebra library for calculation of the matrices required
for �nding the probability of alternatives in the MDFT models (Eddelbuettel
et al., 2011; Sanderson and Curtin, 2016). Finally, we use a initial parameter
search algorithm based on Bierlaire et al. (2010)'s heuristic for non-linear
global optimisation to try minimise the risk of our model �nding poor local
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optima. The results of the basic DFT models are shown in Table 3.1.

Table 3.1: The number of free parameters (f.p), log-likelihoods (LL) and estimate/�xed
value for the time parameter (τDFTI) or number of preference accumulation steps
(τMDFT ) for the basic DFT models

DFT Evidence Threshold DFT Time Threshold

Route Route
f.p. LL τDFTI f.p. LL τMDFT

restricted 2 -7,256.77 1 5 -7,441.19 1

restricted 2 -6,932.33 2 5 -6,904.70 10

restricted 2 -7,203.34 3 5 -6,915.92 100

restricted 2 -7,827.38 4 5 -6,915.92 1,000

τ free 3 -6,930.75 1.92 6 -6,883.18 5.83

DFT Time Threshold DFT Time Threshold

Accommodation Conservation
f.p. LL τMDFT f.p LL τMDFT

restricted 6 -1,429.20 1 6 -2,097.82 1

restricted 6 -1,329.75 10 6 -1,959.26 10

restricted 6 -1,320.69 100 6 -1,961.03 100

restricted 6 -1,330.40 1,000 6 -1,961.03 1,000

τ free 7 -1,320.59 290.54 7 -1,959.17 8.96

For all three datasets, DFT achieves a better model �t if the parameter
for the number of preference accumulation steps/time parameter is free. It is
notable that MDFT models for both route and accommodation choice with
a free parameter for the number of preference accumulation steps have vastly
better �t than models with the number of steps �xed to 1,000, as often pre-
viously con�gured. Additionally, the estimate for the number of preference
accumulation steps varies considerably across the datasets, further demon-
strating the value of having a freely estimated parameter for the number
of preference accumulation steps. DFT-I similarly produces results that are
vastly worse if the time parameter is inappropriately �xed.

3.3 Models with choice response time

We next set the number of preference accumulation steps, τMDFT and the
time paramater, τDFTI as functions of choice response time, using Equations
3.16 and 3.17 for models T1 and T2, respectively. For all three datasets,
there is a statistically signi�cant improvement in model �t by incorporating
choice response time (see Table 3.2).

Whilst incorporating response time alone has little impact except in our
conservation dataset (cf. models T1), where in general a faster decision is
less deterministic, the real gain of using response time in our MDFT models
is seen in models T2. This results in a slower mean response time indicating
a more deterministic response (t2 > 0, see Table 3.2), a �nding that is consis-
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Table 3.2: Results from including choice response time in DFT, with log-likelihoods and
estimates and robust t-ratios for our time parameters.

Dataset/Model T0 T1 T2

Route (Evidence Threshold)

Log-likelihood -6,930.75 -6,927.20 -6,924.73

t0
estimate 0.65 0.60 0.27

rob. t-ratio 24.81 18.71 1.56

t1
estimate - 3.4E-03 0.02

rob. t-ratio - 2.82 1.99

t2
estimate - - 0.15

rob. t-ratio - - 2.31

Route (Time Threshold)

Log-likelihood -6,883.18 -6,882.37 -6,874.37

t0
estimate 1.58 1.50 0.16

rob. t-ratio 12.04 9.85 0.36

t1
estimate - 0.01 -0.02

rob. t-ratio - 1.35 -0.58

t2
estimate - - 0.54

rob. t-ratio - - 3.22

Accommodation (Time Threshold)

Log-likelihood -1,320.59 -1,320.38 -1,307.36

t0
estimate 5.67 6.25 4.40

rob. t-ratio 2.55 4.40 4.85

t1
estimate - -0.01 -0.44

rob. t-ratio - -0.45 -2.75

t2
estimate - - 0.72

rob. t-ratio - - 3.53

Conservation (Time Threshold)

Log-likelihood -1,959.20 -1,919.20 -1,917.96

t0
estimate 2.07 -4.73 -11.18

rob. t-ratio 6.53 -1.50 -1.82

t1
estimate - 2.08 1.05

rob. t-ratio - 2.42 1.62

t2
estimate - - 8.51

rob. t-ratio - - 1.98

tent across all three datasets (for both MDFT and DFT-I). Additionally, an
individual making a decision faster than their average response time is more
deterministic (t1 < 0) for that choice in some cases and less deterministic
(t1 > 0) in others. Consequently, by including both the decision maker's
response time in comparison to others and to themselves, MDFT model �t is
consistently improved across all three datasets. However, DFT-I has positive
signi�cant estimates for both t1 and t2, suggesting that a longer response
time relative to either an individual's mean response time (cf. t1) or a longer
mean response time (cf. t2) result in more deterministic choices.

These results are visualised through Figure 3.3, which shows the estimates
for the number of preference accumulation steps and the time parameter for
each choice, depending on the decision-maker and their response times for
each individual choice.
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Fig. 3.3: The estimates for the number of preference accumulation steps or the time
parameter depending on the response times

Whilst the estimated number of preference accumulation steps is ex-
tremely high (and implausible from a psychological perspective) for the con-
servation dataset, it is worth noting that the estimate for the memory pa-
rameter is φ2 = 0.043, meaning that the probabilities with which each alter-
native is chosen converges after a large number of preference accumulation
steps. Consequently, if all decisions where τMDFT > 1000 instead have 1000
steps, there is no change in model �t. This does however suggest that there
is a large di�erence in how deterministic the di�erent decision-makers are, as
small changes for very fast responses have a signi�cant impact.

3.4 Individual response time models

As we have up to 45 choice tasks per individual in our accommodation choice
dataset, we can also run a MDFT model for each individual. This allows
us to directly explore whether including response time aids model �t for
explaining the choices made by each individual decision-maker. The results
of these models are displayed in Figure 3.4. In line with the overall model
(T2 in Table 3.2), we see that most estimates for t1 are negative, resulting
in decision-makers typically being more deterministic if they make a faster
response. Whilst in many cases the estimate for t1 is insigni�cant, in 10 out
of 32 cases the log-likelihood for the model �t improves by more than 5%
(with 8 of these 10 having a negative estimate for t1 and the other 2 having
a positive estimate). In 4 cases (all of which have negative estimates for t1)
the improvement is between 10 and 15%.
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Fig. 3.4: The log-likelihoods for individual MDFT models compared to the improvement
in �t by including response times

3.5 Latent class models

Given that some individuals might be more deterministic for faster responses
and some might be more deterministic for slower responses, we also try latent
class models to test whether separating the participants into two classes helps
improve our models. Whilst we could use a function of parameters such that
the class allocation is dependent on characteristics of an individual, in this
case we are interested in whether there are di�erent types of respondents
based on their response time. Thus, in our �rst set of latent class models,
we do not use response time and simply test the impact of an MDFT model
with two di�erent values for the number of preference accumulation steps
and a DFT model with two di�erent values for the time parameter (denoted
τ1 and τ2 in Table 3.3 below). This means that the models only have two
additional parameters, one for a second estimate for the number of preference
accumulation steps, and one for the class share. The rest of the parameter
estimates, including the attribute weights, are held constant across the two
classes. The results are shown in Table 3.3.

Table 3.3: Results for basic latent class DFT models for the three datasets

classes f.p. LL BIC τ1 class 1 share τ2

DFT-I

Route

1 3 -6930.75 13,890.45 1.92 100%

2 5 -6745.06 13,538.37 6.37E-04 9% 2.23

MDFT

1 6 -6,883.18 13,824.27 5.83 100%

2 8 -6,742.23 13,561.67 1.00 20% 10.63

Accommodation
1 7 -1,320.59 2,692.03 290.54 100%

2 9 -1,310.15 2,685.68 789.00 35% 4,704.68

Conservation
1 7 -1,959.20 3,972.68 8.96 100%

2 9 -1,830.76 3,731.31 1.00 31% 19.28
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Notably, the use of latent classes results in better �t for all three datasets,
with a lower Bayesian Information Criteria (BIC) value for all datasets. For
the route and conservation datasets, it appears that a subset of the decision-
makers (9% for DFT-I or 20% for MDFT and 31% for MDFT, respectively
for route and conservation) are much more random in their choices, with an
estimate for the number of preference accumulation steps of 1 and a time
parameter of 0 being found. This vastly improves model �t for both these
datasets. This suggests that these individuals have very di�erent sensitivities
to the attributes in comparison to the majority of individuals, as the estimates
suggest that random choices (where there is little/no time for evidence to
accumulate) better represent their choices12.

Given these results, it appears that our latent class models should also
incorporate a separate set of attribute weights for each class (version 2 in
Table 3.4). We can additionally also look at the impact of having two di�erent
classes for the DFT models whilst also including the response times taken
by the decision-makers to make their choices. For these models (version 3 in
Table 3.4), we use Equation 3.17 to set the number of preference accumulation
steps/the time parameter, with di�erent values for t0, t1 and t2 in the two
di�erent classes. The results of latent class models 2 and 3 are given in Table
3.4.

Crucially, there is a vast improvement for all models in comparison to the
�rst set of latent class models, demonstrating that there is a large amount
of taste heterogeneity across all three datasets going beyond just the τ1/τ2
split. For the route choice dataset, it appears that some individuals are
more sensitive to time (wt1), whilst others are more sensitive to cost (wt2).
The key di�erences are the cost for the accommodation (wt2) and the bias
against picking neither alternative (wt4) for conservation datasets respec-
tively. Whilst the log-likelihoods for latent class models with response time
are similar to those of latent class models without response time, there is still
a signi�cant improvement for models across all three datasets (though not in
terms of BIC for route and conservation). The parameter estimates for the
response time coe�cients in both classes are shown in Table 3.4 also, with
many positive and negative coe�cients. Figure 3.5 shows this e�ect clearly,
with, for example, the time parameter increasing with response time for class
1 for DFT-I, but the time parameter decreasing with response time for class
2. For the conservation dataset it appears that there is one group (class 2)
where response time does not in�uence randomness, with the other (class
1) producing less deterministic choices with increasing response time. Both
classes produce less deterministic choices with increasing response time for
the accommodation dataset.

12Note that the wide range in the number of preference accumulation steps for the model
incorporating response time for the conservation dataset also implies this.
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3. Empirical applications

Fig. 3.5: The estimates for the number of preference accumulation steps and the time
parameter depending on the response times for the latent class models.

3.6 Reappraisal of results using multinomial logit mod-
els

As our results demonstrate that DFT time parameters can be successfully
parameterised as a function of response time, this leads us to consider whether
alternative models can similarly include response time information. The most
obvious example of a model to test is the multinomial logit (MNL) model
(McFadden, 1974). Whilst this is a static model, the response time can be
incorporated easily through the use of Equation 3.22.

We now test �ve di�erent MNL models for each dataset, with each one
being equivalent to a DFT models tested already in this paper.

1. A basic MNL model without response time (σ = 1 in Equation 3.22).

2. A MNL model with response time captured as de�ned in Equation 3.22.

3. A MNL model with 2 latent classes, with only the scale parameter
di�erent and without response time
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4. A MNL model with 2 latent classes, with di�erent scale and weight
parameters, but without response time

5. A MNL model with 2 latent classes, each with a complete set of separate
parameters, including separate response time parameters t1 and t2.

The results from our MNL models are shown in Table 3.5.
Whilst MNL has vastly worse �t for the route choice dataset, the MNL

models have very similar log-likelihoods to their corresponding DFT models13

for the conservation and accommodation choice datasets. In particular, the
impact of including response time is similar for MNL compared to DFT.

Consequently, it appears that adjustments in the speci�cation for the scale
parameter in MNL have very similar impacts to the equivalent adjustments
for the time parameters in DFT. Additionally, the time parameter estimates
for the single class version of MNL and MDFT for all three choice sets appear
to be similar in that they always have the same sign (see Table 3.6). The
t1 and t2 estimates for MNL are approximately half that of those for the
corresponding MDFT models. The impacts of this are particularly clear when
considering Figure 3.6, in which the distributions for the scale parameter
estimates for the route and accommodation datasets very closely resemble
that of the estimated number of preference accumulation steps for MDFT in
Figure 3.3.

Fig. 3.6: The scale parameter estimates in the MNL models depending on the response
times.

This implies that the parameter for the number of preference accumu-
lation steps in a MDFT model can perform the same function as the scale

13Note that DFT-v2 is the same model as DFT-T2 in Table 3.2.
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parameter in a MNL model. The consequences of this are that if we only
have the choices and response times of a decision-maker, then MDFT may
not make any further gain than a far simpler MNL model (with the exception
being the single class version for the conservation dataset, although this gain
is lost once two classes are considered). This suggests that attempting to
capture the deliberation process, in this case, does not add anything to the
performance of the model.

Whilst the same cannot be said of MNL and DFT-I, which have somewhat
di�erent estimates (see Table 3.6), the results for DFT-I suggest that response
time cannot be directly linked the time parameter. This is because the latent
class DFT-I model has a signi�cant negative estimate for t2 for one of the
classes, suggesting that individuals in this class are more deterministic if they
have a faster mean response time.

4 Conclusions

The work in this paper was motivated by the recent improvements (in Chap-
ter 2) in the computational mechanisms underlying decision �eld theory mod-
els with an external threshold (MDFT). With it now being easily possible to
incorporate decision response time into a MDFT model, this paper consid-
ers the impact of this on three datasets, as well as testing the inclusion of
response time in models based on the original speci�cation of DFT (labelled
DFT-I in this paper) by Busemeyer and Townsend (1993), in which individ-
uals conclude a decision when they reach an internal (evidence) threshold.

In favour of the notion of preference accumulation, we �nd that MDFT
models estimate a larger number of preference accumulation steps for decision-
makers who have a longer mean response time relative to other decision-
makers. However, contradicting the notion of evidence accumulation, we �nd
some negative estimates for the impact of increased response time meaning
that more deterministic decisions are made in choices where a decision-maker
responds more quickly than their mean response time across all of their choice
tasks. Additionally, the impact of the average response time for an individual
diminishes with latent class MDFT models, with two separate estimates for
the number of preference accumulation steps controlling for the e�ect of a
longer mean response time. With MDFT parameters for the number of pref-
erence accumulation steps behaving very similarly to MNL scale parameters,
it appears that the step parameter cannot be directly linked to response time.
This means that a MDFT model with response time may not in fact capture
a choice deliberation process. This is perhaps unsurprising given that MDFT
models could be considered inappropriate for the choice tasks in this paper,
for which no time limit is imposed (contrary to the key assumption of MDFT,
that a decision is made upon reaching a speci�c time limit). However, we do
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not computationally impose a strict time limit on our MDFT models (with
the number of preference accumulation steps being adjusted according to the
response times) and results from our DFT models with internal thresholds
are also unfavourable for the notion of preference accumulation. Our latent
class DFT-I model results in both positive and negative estimates for the
e�ect of a participant's mean response time on how deterministic the choice
is. This implies that the core assumption of DFT, that choice probabilities
become more extreme with a higher threshold (evidence or time), cannot be
predicted when considering response times. However, the impact of response
time on the parameter for the number of preference accumulation steps and
the time parameter might look very di�erent if a DFT model could control
for choice certainty in a more direct way. Thus, further work could consider
additionally linking choice certainty as well as response times to the time
parameters.

Whilst our results suggest that the deliberation process may not be truly
captured by an DFT model, this work does provide evidence that incorporat-
ing response times into choice models can improve model �t. The fact that
response time can be directly included in calculating the probability of alter-
natives may have some impact in stated preference studies but is far more
likely to have an impact in work involving revealed preference data, where
decisions such as what to order in a restaurant, who to vote for and which
route to choose at a roadway junction are more likely to be impacted by
time pressure due to the nature of the choices. Additionally, previous work
has demonstrated that the linear ballistic accumulator model (Brown and
Heathcote, 2008), can be adjusted such that changing information can be in-
corporated into the model (Holmes et al., 2016). Similarly, it is possible that
as well as incorporating response time, a decision �eld theory model could
incorporate changing attributes, such as in a dynamic price setting (e.g. auc-
tions, �ight booking websites) or travel times for di�erent routes. This could
also prove useful for studying how commuters change their route choice when
forced to do so due to a change to their original schedule, such as a delayed
train. In particular, dynamic models such as DFT may prove useful for econo-
metric forecasting, particularly if we do not have much information on the
decision-maker but there is some indication on how long they might take to
make the decision. However, DFT and other accumulation models may only
have advantages over basic models such as multinomial logit by considering
such data complexities, without which, results from this paper suggest that
MNL can perform just as well for multi-alternative, multi-attribute choice.
Thus, a DFT model for dynamic data may also require information such as
choice certainty if it is to capture the deliberation process accurately.

Further work could also consider latent constructs, where latent variables
are used to predict both response times and the number of preference ac-
cumulation steps. Certain individuals may process information at di�erent
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rates, meaning that there is likely to be variation in the estimated number of
iterations of preference updating per second across individuals. It may not
be that individuals who spend longer considering a decision are necessarily
considering the alternative in more detail, as implied by the structure we im-
pose on the models in this application. Using random parameters to capture
this di�erence across individuals therefore may have much more explanatory
power than when point estimates for parameters are used.

Whilst these results give various implications and provide many direc-
tions for future work, it is clear that, where possible, analysts should record
response times in choice decisions, as it is likely that both dynamic models
such as DFT and simpler models such as multinomial logit are able to use
this information to better predict the choices made. This may lead to more
accurate estimations and forecasts in many situations.
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Chapter 4

An accumulation of preference:

contrasts between Decision Field Theory

and the Multi-attribute Linear Ballistic

Accumulator and adaptations for travel

behaviour modelling

Thomas Hancock1, Stephane Hess1, & Charisma Choudhury1

Abstract

Interest in behavioural realism has gradually led to the introduction of alter-

natives to random utility maximisation (RUM) as a paradigm for discrete

choice models, with notable interest for example in random regret minimisa-

tion (RRM). These models have however continued to rely on a framework

where a single value function of some form is calculated once for each alter-

native in each choice setting, and the choice probabilities are calculated by

comparing these value functions across alternatives. In contrast, research in

mathematical psychology has used a more dynamic approach, where the pref-

erence value of each alternative updates over time within a single choice pro-

cess while the decision maker is deliberating about the choice to make. These

accumulator models are well suited to accommodating a variety of context

e�ects, and have been shown to give good performance for data collected in

laboratory-based settings. The present paper considers two such accumulator

models, namely decision �eld theory (DFT) and the multi-attribute linear bal-

listic accumulator (MLBA), and makes a number of methodological improve-

ments to address limitations that have thus far prevented their use in travel

behaviour research. This includes the ability to capture the in�uence of socio-

1Choice Modelling Centre and Institute for Transport Studies, University of Leeds (UK)
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demographics, the presence of underlying preferences for speci�c alternatives,

or dealing with attributes that have opposite e�ects on choice probabilities.

We o�er what we believe to be the �rst in-depth simultaneous comparison

of DFT and MLBA with typical discrete choice models, and also for the �rst

time test both DFT and MLBA on a revealed preference dataset. We �nd that

both models outperform typical RUM and RRM implementations for both esti-

mation and out-of-sample prediction across our datasets, including in a large

scale simulation experiment.

1 Introduction

Whilst mainstream choice modelling has been grounded in �rm economic
foundations (McFadden, 1974), attempts to understand decision-making be-
haviour in other �elds has been implemented with very di�erent aims and
objectives. Since work in the 1970s (Tversky, 1972, 1977; Tversky and Kah-
neman, 1973), the �eld of behavioural economics has considered choice from
an economic viewpoint whilst simultaneously demonstrating that decision-
makers are subject to biases, heuristics and context e�ects that result in
choices being made that are not the most likely under traditional choice mod-
els. Choice modellers have long had an interest in increasing the behavioural
realism of their models, with recent methodological advances aimed at incor-
porating alternative behavioural ideas such as random regret minimisation
(RRM) (Chorus, 2010; Chorus et al., 2008), the incorporation of heuristics
(Swait, 2001) and satis�cing (González-Valdés and Ortúzar, 2017).

Moving away from the traditional random utility maximisation (RUM)
framework however entails a number of disadvantages, notably an inability to
perform welfare analysis. This means that careful consideration is required
before we move to alternative models. In this context, the question then
arises whether, if we are willing to move away from RUM, we should move
to models that are substantially di�erent from it, rather than still staying
within a logit framework as is the case for random regret minimisation (Hess
et al., 2018). This observation leads us to look further a�eld, and in particular
at the work in mathematical psychology, where researchers have tended to
try and build models to mathematically represent context e�ects such as the
attraction, compromise and similarity e�ects (Noguchi and Stewart, 2014;
Roe et al., 2001; Trueblood et al., 2013b) as well as decision-making under
time pressure (Busemeyer and Townsend, 1993).

It is notable that very few papers as of yet have tested whether models
developed in mathematical psychology can be used for predicting choices in
general (i.e. outside laboratory settings). Some notable exceptions include
Hawkins et al. (2014) who applied the linear ballistic accumulator (LBA,
Brown and Heathcote 2008) to consumer attitudes and patient preferences
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and Berkowitsch et al. (2014), who applied decision �eld theory (DFT) to
consumer choices for products such as computers, cameras and racing bicy-
cles. In key comparisons against traditional choice models, DFT in particular
has been found to outperform random utility and random regret based mod-
els (e.g. Berkowitsch et al. (2014) and work in Chapter 2). Other models
from mathematical psychology are yet to be put to the test in such a rigorous
manner.

DFT and the similarly popular (in mathematical psychology) multi-attribute
linear ballistic accumulator (MLBA) (Trueblood et al., 2013a, 2014) di�er
from more traditional discrete choice models in one speci�c dimension. RUM
and RRM models are characterised by their utility and regret functions re-
spectively, which are used to calculate a single value function for each alterna-
tive, where comparison of this across alternatives then leads to probabilities
of a given alternative being chosen. This value function is calculated once
per choice situation. On the other hand, DFT and MLBA are members of
a broad family of accumulator models, where the preference values for an
alternative in a single choice context are not static but are updated over
time. It is important to note that this is di�erent from work looking at
preferences evolving over a sequence of choices, such as models incorporating
value learning (McNair et al., 2012), state dependence (Bruno et al., 2015) or
dynamic discrete choice models (Liu and Cirillo, 2018). Accumulator models
are structures for internal preference accumulation at the level of every single
choice, not models that accumulates evidence over a sequence of choices. The
accumulation models thus capture the mental deliberation from the time a
particular choice is faced (or stated choice scenario presented) to the point
where the choice is made. The preferences are reset after that, so the accumu-
lation e�ect is not carried over to the next choice task, i.e. the accumulation
made for choice t does not a�ect choice t + 1 although such extensions are
possible too.

Under DFT, the decision maker updates his/her preference for given alter-
natives by repeated comparisons between them where the attribute values of
the alternatives in that situation remain constant across these comparisons.
Under MLBA, a `drift rate' is generated for each alternative allowing the pref-
erence values to update within a single choice context. Thus far, there has,
to the best of our knowledge, not been any application of MLBA to trans-
port data and only a few, mainly theoretical, applications of DFT. The way in
which preferences evolve over time and their inherent ability to accommodate
a range of what economists might call behavioural anomalies however make
these models at �rst hand very appealing for studying travel behaviour. For
example, DFT conceptually should be an appropriate model for dealing with
a variety of travel situation e�ects including situational dynamics, types of
travel, cultural habits and societal norms (Stern and Richardson, 2005). Ad-
ditionally, DFT has been combined with the Queuing Network-Model Human
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Processor to model a driver's speed control (Zhao et al., 2011). It has also
been demonstrated that DFT accurately predicts the share of participants
who choose park and ride, car, bus or subway (Qin et al., 2013), although
this study only considered a single choice set.

The large and rich datasets typically found in transport have meant that
computational limitations have until now limited the use of DFT in transport
applications (Otter et al., 2008). Our previous work on DFT has focused
on methodological improvements that have made it possible to rigorously
test DFT against typical choice models(in Chapter 2). This motivates us to
investigate the suitability of MLBA in modelling travel behaviour as well, as it
has been found to outperform DFT in mainstream mathematical psychology
literature (Cohen et al., 2017; Trueblood et al., 2014; Turner et al., 2017)2.

Beyond simply comparing the two structures, we make a number of method-
ological improvements to both DFT and MLBA to facilitate their use on rich
multi-alternative multi-attribute datasets. The key contribution relates to al-
low analysts to use DFT with attributes that have opposite e�ects on choice
probabilities, and where this directionality is not known a priori. Previously,
DFT models included `attention weights' which could be used to capture the
relative importance of attributes. As these weights must be positive (and
sum to one), a priori knowledge is required as to whether an attribute has
a positive (e.g. comfort of journey) or negative (e.g. cost) impact on the
likelihood of an alternative being chosen. This is particularly an issue for
consumer attributes which some decision-makers may like and others dislike,
such as the size of a car. We propose the use of attribute-speci�c scaling
coe�cients, meaning that such a priori knowledge is no longer required. We
show that these coe�cients can also be added to MLBA to capture the rel-
ative importance of di�erent attributes, a feature not typically accounted
for in standard MLBA implementations. Further improvements include the
ability to capture the in�uence of socio-demographics and the presence of
underlying preferences for speci�c alternatives, in a manner equivalent to al-
ternative speci�c constants in typical discrete choice models. We also look
in detail at identi�cation issues for both models, with a number of empirical
tests to help inform future applications.

In our empirical work, we o�er what we believe to be the �rst in-depth si-
multaneous comparison of DFT and MLBA with typical discrete choice mod-
els, and also for the �rst time test both DFT and MLBA on a revealed prefer-
ence dataset. We �nd that both models outperform typical RUM and RRM
implementations for both estimation and out-of-sample prediction across our

2Furthermore, there has been increasing attention in transport on best-worst datasets
(Giergiczny et al., 2013; Rose, 2014) and research in mathematical psychology has shown
that the linear ballistic accumulator (a simpler form of the model, where each alternative
has a mean drift rate simply equal to an alternative-speci�c constant), performs well for
these datasets (Hawkins et al., 2014).
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datasets, including in a large scale simulation experiment.
The remainder of this paper is organised as follows. In the next section,

we �rst provide an overview of the two models in their current form before
presenting our various methodological improvements. This is followed by our
empirical work on stated choice and revealed preference data, before some
further tests on simulated data. The �nal section summarises the �ndings
and presents some directions for future research.

2 Methodology: contrasting and improving mod-

els from mathematical psychology

In this section, we �rst provide an introduction to accumulator models and
the state-of-the-art implementations of DFT and MLBA3. This is followed
by our various methodological improvements.

2.1 Introduction to accumulator models

Since the introduction of the drift di�usion model (Ratcli�, 1978), many
di�erent variations of sequential sampling models (or accumulation mod-
els) have been developed by mathematical psychologists (Busemeyer and
Townsend, 1992; Krajbich et al., 2012; Usher and McClelland, 2001). The
idea of a sequential sampling model is that preferences for alternatives update
over time depending on what information is being considered. An individ-
ual may consider, for example, cost, before then considering travel time.
They might make comparisons across alternatives sequentially or randomly.
By contrast, mainstream choice models such as random utility or random
regret models estimate just a single preference or utility value for each al-
ternative given a set of attribute values and then use that value to calculate
choice probabilities. Critically, accumulation models instead assume that
these preferences change over the course of the deliberation process whilst
the decision-maker is choosing an alternative (even if the attributes of the
alternatives stay the same). As already highlighted in the introduction, this
preference accumulation is internal and happens at the level of every single
choice, i.e. it is not an accumulation over a sequence of choices. This thus
allows us to contrast the models to typical discrete choice structures.

These models aim to `understand the motivational and cognitive mecha-
nisms that guide the deliberation process involved in decisions' (Busemeyer
and Townsend, 1993). Accumulator models have subsequently been shown
to resemble neural activity. For example, Gold and Shadlen (2000) found
that during a motion perception task, there was an accumulation of sensory

3For further details and a more comprehensive description of decision �eld theory, please
refer to Section 2 in Chapter 2.
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evidence in the neural circuits of a monkey's brain, creating a behavioural
response when the appropriate amount of information had been received.
Furthermore, accumulator models have been demonstrated to predict con-
textual e�ects (Hotaling et al., 2010; Trueblood et al., 2014), capture risky
choice behaviour (Busemeyer and Townsend, 1993; Stewart and Simpson,
2008) and can predict preference reversals (Diederich, 2003). Additionally,
dynamic models provide a naturalistic method for the modelling of decision
making in dynamic choice settings (Holmes et al., 2016).

One popular model from mathematical psychology that can easily be com-
pared to traditional choice models is decision �eld theory (DFT), �rst intro-
duced by Busemeyer and Townsend (1992, 1993) and �rst operationalised
in the context of travel behaviour in Chapter 2 of this thesis. In a DFT
model, preference values for the alternatives update stochastically over time.
At each moment, an attribute is compared across alternatives and a valence
(momentary preference) is added to the preference value for each alterna-
tive. At some point, the decision-maker comes to a conclusion, either as one
of the alternatives reaches some threshold (similar to satis�cing (González-
Valdés and Ortúzar, 2017; Kaufman, 1990; Schwartz et al., 2002)) or as an
external cue forces the decision-maker to make a choice, in which case the
decision-maker chooses the alternative with the highest preference value at
that moment. As an example, the left panel in Figure 4.1 demonstrates that
di�erent alternatives may be chosen depending on which threshold is used.
The �rst alternative to reach the internal threshold value is outperformed
by another alternative if the decision is not made until the time threshold
applies. Here, it should be noted that the value that evolves over comparison
is a preference value, rather than a probability, where the latter is calcu-
lated from the expectation of the former. The horizontal axis is measured in
timesteps, which relate to the number of comparisons between alternatives,
each time using one attribute.

Fig. 4.1: An example decision process under both accumulation models

The linear ballistic accumulator model (Brown and Heathcote, 2008) and
its multi-attribute version MLBA (Trueblood et al., 2013a, 2014) have a sim-
ilar accumulation process for the preference of alternatives, but, in contrast
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with DFT, the updating is not stochastic. Instead, decision-makers start
with some random amount of initial `evidence' for each alternative, that then
`drifts' until one of the alternatives reaches a threshold. These preference
values grow linearly at some drift rate dependent on the attributes of the al-
ternative. Depending on the level of the threshold, di�erent alternatives may
be chosen. This is demonstrated in the right panel of Figure 4.1, in which
the alternatives start with some random initial value, which we show as an
interval a, and di�erent alternatives are chosen if the threshold value is b1 or
b2. The linear drift rates imply that, once the alternative with the largest
drift rate value `gains the lead', unlike in DFT, there is no way for another
alternative to recover and be chosen. Whilst this would not be the case with
a non-linear speci�cation, the current model is speci�cally linear to allow for
simple calculation of the probabilities of alternatives. Of course, di�erent al-
ternatives can be chosen depending on the length of the deliberation process.
As with DFT, the value that evolves over time is a preference value, while
the horizontal axis in Figure 4.1 now relates to actual time, given that no
additional comparisons are made.

The mathematics underlying MLBA and DFT is vastly di�erent. LBA
was speci�cally designed such that it is `simple' (Brown and Heathcote, 2008)
and mathematically tractable, with MLBA subsequently developed such that
it can also accurately capture and predict context e�ects. The simpler math-
ematical nature means that the probabilities of alternatives can easily be
calculated from a combination of normal and uniform cumulative density
functions (see Section 2.2.2 for a full description of MLBA).

It may be noted that there are numerous other accumulation models from
mathematical psychology that are able to explain choice processes and pre-
dict choices. However, not all are currently suitable for transitioning into
applied choice modelling. Given the complex nature of revealed preference
datasets with many alternatives, even implementations without random coef-
�cients will impose large computational costs. This is then further increased
if analysts wish to add random heterogeneity in preferences, and models from
mathematical psychology thus need to be e�cient to run at a basic level if
they are to compete. This means that models that do not have analytical
solutions for calculating the probability of alternatives will likely not be suit-
able options. For example, the leaky competing accumulator model (LCA,
Usher and McClelland 2001), would require two levels of simulation if we
wished to calculate the likelihood for an LCA model with random parameters.
Additionally, di�culties in parameter recovery for the LCA model (Mileti¢
et al., 2017) make it unlikely for this model to provide a viable alternative
to typical choice models. Requirements of computer intensive simulation are
also issues for the associative accumulation model (Bhatia, 2013), the atten-
tional drift di�usion model (Krajbich et al., 2012) and also a version of DFT
where the consideration process stops upon one of the alternatives reaching
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a `preference' threshold. We avoid this situation by instead using `external'
thresholds, for which the probability with which each alternative is chosen
can be analytically calculated.

2.2 State-of-the-art implementations of decision �eld the-
ory (DFT) and the multi-attribute linear ballistic
accumulator model (MLBA)

2.2.1 Decision �eld theory

For a full description of the theory and estimation of DFT models, readers
should refer to Section 2 and 3 of Chapter 2.

2.2.2 Multi-attribute linear ballistic accumulator

Theory

Under MLBA, each alternative has a value that linearly grows towards
a threshold (see right panel in Figure 4.1). The chosen alternative in an
MLBA model is the �rst alternative to pass a threshold value, χ. There are
two components in this process; the start points and the drift rates.

Start points for each of the alternatives are drawn separately from a uni-
form distribution U [0, A] where A is estimated. For example, Figure 4.1
demonstrates what a decision might look like if the start points are drawn
from a distribution U [0, 2]. A di�erent value Aj could be estimated for each
alternative j, although it is common practice (Trueblood et al., 2014) to as-
sume that all alternatives have starting values that are drawn using the same
estimate A.

Trueblood et al. (2013a, 2014) demonstrate that there are di�erent meth-
ods for specifying drift rates for an MLBA model such that they explain
context e�ects. In this application, however, we choose to �t versions similar
to the mainstream version of MLBA (Trueblood et al., 2014) as this outper-
forms the �rst version (described by Trueblood et al. (2013a)) for our two
basic route choice datasets (see Appendix B). Under MLBA, we de�ne the
drift rates for the di�erent alternatives as independent draws from normal
distributions (truncated above zero), where, for alternative j, we have the
drift rate Dj given as:

Dj ∼ TN (dj , sj) (4.1)

with mean drift rate dj and standard deviation sj . Typically, the standard
deviation is set to be the same value for all alternatives, i.e. sj = s, ∀j,
but a di�erent value could be estimated for each drift rate (Trueblood et al.,
2013b).
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In the current version of MLBA, mean drift rates follow the speci�cation
used by Trueblood et al. (2014):

dj = vj + I0 (4.2)

where I0 is a positive constant (which can be speci�ed such that all drift
rates have a positive mean) and vj is a value function, similar to random
regret minimisation in that it compares an alternative j against all other
alternatives i across each attribute x. Speci�cally, with K attributes, we
have that:

vj =
∑
j 6=i

K∑
k=1

(wxk,i,j · (xk,j − xk,i)). (4.3)

In this notation, xk,i is the value for the kth attribute for alternative i, and
wxk,i,j is a weight for attribute xk and alternative pairing i and j, which
relates to the similarity between them4. In particular, it is de�ned such that
it is an exponential decaying function of distance, with:

wxk,i,j = exp(−λ · |xk,i − xk,j |) (4.4)

Two di�erent values of λ are used depending on whether the di�erence be-
tween xk,i and xk,j is positive or negative:

λ =

{
λ1, if xk,j ≥ xk,i.
λ2, if xk,j < xk,i.

(4.5)

This feature can capture di�erences between the subjective similarity between
A and B and the subjective similarity between B and A, which may not be
equal (Tversky, 1977), with gains and losses regularly having been shown to
be treated di�erently in a transport context (Hess et al., 2008; Masiero and
Hensher, 2010; Stathopoulos and Hess, 2012).

It is worth noting that MLBA (Trueblood et al., 2014) was adapted from
the original version (Trueblood et al., 2013a) to additionally translate at-
tribute values into `subjective values'. In their example, they had two similar
attributes: testimony strength of eyewitness P and testimony strength of
eyewitness Q. A parameter was then introduced such that an `indi�erence
curve' could be calculated to avoid issues of extremeness aversion (Chernev,
2004), where, for example, values of 50-50 might be preferred to 70-30. Given
that indi�erence curves cannot be so simply constructed in typical transport
choice tasks, we do not detail the additional parameters used to translate the
attribute values into subjective values here, noting that we instead require
some measure to translate the di�erent attributes appropriately such that
the relative importance of the attributes is accounted for. We discuss this
further in Section 2.3.3.

4Note that Equation 4.3 is equivalent to Equation 3 in Trueblood et al. (2014), but for
multiple alternatives and multiple attributes.
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Estimation of MLBA

If we have values (either estimated or �xed) for the drift rates of the al-
ternatives and for the start and end points (A and χ respectively), we can
calculate the probability of each alternative's accumulator being the �rst to
�nish, i.e. for its value function to exceed the threshold χ before any others
do (Brown and Heathcote, 2008).

The amount of evidence that needs to be accumulated for an alternative
to reach the threshold is U[χ-A,χ] (assuming χ > A). Given an alternative's
drift rate distribution, Dj , the cumulative distribution function for the time
taken for the accumulator associated with alternative j is given by:

Fj(t) = Prob

(
U [χ−A,χ]

Dj
< t

)
(4.6)

Brown and Heathcote (2008) demonstrate that for a mean drift rate following
a normal distribution5, this reduces to:

Fj(t) = 1 +
χ−A− t ·Dj

A
· Φ
(
χ−A− t ·Dj

t · s

)
− χ− t ·Dj

A
· Φ
(
χ− t ·Dj

t · s

)
+
t · s
A
· φ
(
χ−A− t ·Dj

t · s

)
− t · s

A
· φ
(
χ− t ·Dj

t · s

)
(4.7)

where φ and Φ are the standardised normal distribution's density and cu-
mulative density functions, respectively. The associated probability density
function is then:

fj(t) =
1

A

[
−Dj · Φ

(
χ−A− t ·Dj

t · s

)
+Dj · Φ

(
χ− t ·Dj

t · s

)
+ s · φ

(
χ−A− t ·Dj

t · s

)
− s · φ

(
χ− t ·Dj

t · s

)] (4.8)

To then calculate the probability of a given alternative j being chosen6, we
need to calculate the probability density function of alternative j reaching
the threshold χ before all other alternatives i 6= j:

PDFj(t) = fj(t)
∏
i 6=j

(1− Fi(t)) (4.9)

Thus we have:

Prob(j) =

∫ ∞
0

PDFj(t)dt. (4.10)

5We follow the �rst adjustment made by Heathcote and Love (2012) to translate this
for truncated normals.

6For full derivations of equations 4.7, 4.8 and 4.9, refer to appendix A of Brown and
Heathcote (2008).

98



2. Methodology: contrasting and improving models from mathematical
psychology

2.3 Methodological developments

In this section we detail a number of methodological improvements to both
MLBA and DFT to make both models more applicable to non-laboratory
based choice contexts. Our key aim here is to make both models suitable
for capturing the in�uence of socio-demographics, the presence of underly-
ing preferences for alternatives and to capture the relative importance of
attributes, without having to know the directionality of the e�ect of the
attribute on the choice probability of the alternative. We additionally de-
tail considerations required for optimising the estimation of both DFT and
MLBA.

2.3.1 Scaling of DFT

In a typical linear additive RUM or RRMmodel, changing the units of a single
attribute only a�ects the parameter for that attribute. For example, changing
the unit of travel time from minutes to hours results in the corresponding
marginal utility component being multiplied by 60, with no impact on other
parameters.

DFT on the other hand is scale-variant (Busemeyer and Diederich, 2002;
Trueblood et al., 2013a), which means that a change in the scale for one
attribute will have an impact on the relative importance weights for all at-
tributes rather than just its own relative importance weight. Indeed, the
attention weight parameters for the di�erent attributes are linked and ad-
justing one will also shift the weights for the other attributes, given the
requirements of summation to one (

∑
k wk = 1). An illustration of this is

given in Table 4.1. If we originally have weights of 0.6 and 0.4 for cost and
time respectively, then the new importance for time with be multiplied by
a value of 60 if we change from minutes to hours. These then need to be
rescaled to ensure that summation to 1, leading to new weights of 0.024 for
cost and 0.976 for time. Whilst this adjustment can be easily made for only
two attributes, estimation is simpler if this can be avoided.

Table 4.1: Impact of changing the unit of time on attribute importance estimates

Cost Time

DFT coe�cients

original weight 0.600 0.400
new importance 0.600 24.000
new weight 0.024 0.976

We therefore de�ne a new scaling method which attempts to translate
attribute values into subjective values. This is achieved by multiplying the

99



Chapter 4. An accumulation of preference: contrasts between Decision Field
Theory and the Multi-attribute Linear Ballistic Accumulator and adaptations for

travel behaviour modelling

values by a set of attribute-speci�c scaling coe�cients7, βDFT . As the es-
timation of these parameters would be confounded with estimates for the
attention weights (for choice-only datasets where no additional information
about the choice process is known), we instead set the weights equal to 1/K

where K is the number of attributes. This results in a di�erent function for
the random valence vector at time t, Vt, which can now be calculated as:

Vt = C ·M∗ ·Wt + εt (4.11)

where M∗ is the original attribute matrix M but with each attribute multi-
plied by its corresponding element from the vector βDFT , which has di�erent
(estimated) scaling values for each attribute x. With this speci�cation, a
decision-maker still attends to a given attribute at random in a given evalu-
ation - we simply no longer estimate separate weights wj , as they are all set
to be equal. In Wt, as before, one element is equal to 1 with all others 0, but
the probabilities of this are now constant across attributes.

This change to DFT results in a number of important bene�ts. Firstly,
the revised version of DFT is no longer scale-variant. Changing the unit of
travel time from minutes to hours will now impact the estimate for the travel
time scaling coe�cient only. This means that for each marginal utility coef-
�cient in a RUM model (or a marginal regret coe�cient in a RRM model),
there is a corresponding attribute scaling coe�cient in the DFT model. This
allows us to make comparisons across the di�erent models in terms of relative
importance of di�erent attributes. Additionally, the attributes are now ad-
justed accordingly for their relative importance before they enter the feedback
matrix, meaning that we can now calculate an appropriate psychological dis-
tance by simply taking Euclidean distances in the calculation of the feedback
matrix. Consequently, we do not need a separate parameter w, as de�ned
by Berkowitsch et al. (2015) to take the relative importance of the attributes
into account.

An even more important bene�t of the proposed scaling approach relates
to the possibility of attributes having opposite impacts on probabilities, i.e.
some attributes being desirable and others being undesirable. In the tra-
ditional DFT model, an analyst needs to make a priori assumptions about
this directionality, and failing to correct for the sign of attributes can have
undesired consequences, as illustrated in Table 3 of Chapter 2. With our
new approach, we no longer require a priori knowledge or assumptions on
whether an attribute has a positive or negative impact on the likelihood of
an alternative being chosen, as the attribute scaling parameters can be es-
timated to be either positive or negative. This not only results in it being
possible to take all attributes into account without any initial adjustments,

7We use the term βDFT here as these values correspond to the marginal utility com-
ponents, β, of RUM, but they cannot be used equivalently in, for example, value of travel
time calculations.
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but would also, in a random coe�cients DFT model, allow for the possibility
of di�erent signs for a given parameter across di�erent individuals.

Finally, this new scaling method allows for the impact of attributes to
be adjusted by incorporating socio-demographic interactions such as income
e�ects parameter or alternative speci�c coe�cients for given attributes (as
demonstrated in our empirical applications section).

It is worth noting here that the new scaling method results in an additional
parameter, which means that there is an overspeci�cation until at least one
parameter is �xed, a point we return to in Section 2.3.4.

2.3.2 Incorporating baseline preferences in MLBA

A key feature of discrete choice models belonging to the RUM family is the
concept of alternative speci�c constants that capture baseline preferences for
speci�c alternatives. Chapter 2 discusses in detail how this can be imple-
mented in a DFT model. Here, we extend this to a MLBA model too.

In particular, we rewrite Equation 4.2 as

dj = δj + vj + I0, (4.12)

where δj is an additional alternative-speci�c estimated constant capturing a
baseline preference for alternative j. Unlike in RUM models, where the same
di�erences between constants δj results in the same probabilities, each mean
drift rate can have a separately identi�ed constant, as the greater the rates,
the less deterministic the choice is. However, if we additionally estimate I0,
then one of the constants dj must be �xed to ensure identi�cation.

2.3.3 Incorporating attribute speci�c weights in MLBA

An additional limitation of the current implementation of MLBA is in the
treatment of the di�erent attributes. Firstly, this applies in terms of direc-
tionality, noting that λ1 is used for a positive di�erence between xk,i and
xk,j independently of whether attribute xk is a desirable attribute or not.
This limitation is analogous to the issue with using weight parameters in
DFT and would require an analyst to a priori change the sign on undesirable
attributes. Secondly, the actual impact of di�erences between alternatives
in a given attribute xk is constant across attributes. Whilst one possibility
is to use di�erent valuation and weighting functions (Cohen et al., 2017),
Trueblood et al. (2014) suggest that attribute biases can be dealt with by in-
cluding attribute-speci�c `bias parameters', βk (an approach analogous to the
attribute-speci�c scaling coe�cients that we de�ned for DFT) in Equation
4.4, which becomes:

wxk,i,j = exp(−λ · βk · |xk,i − xk,j |) (4.13)
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However, we can relax the limitations of attribute bias and directionality
simultaneously by also making an adjustment to the value function (Equation
4.3), which now takes the same form as that of the original speci�cation with
the exception that we add in attribute-speci�c scaling coe�cients, βk. This
results in the value function from Equation 4.3 being rede�ned as:

vj =
∑
j 6=i

K∑
k=1

(wxk,i,j · βk · (xk,j − xk,i)). (4.14)

As with the scaling applied to DFT, this change allows us to also make
inferences about the relative importance of di�erent attributes in MLBA,
as well as incorporate interactions with socio-demographics at the level of
individual attributes.

2.3.4 Improving the estimation of DFT and MLBA

Under a DFT model, at the conclusion of the deliberation process, the alter-
native that is chosen is the one with the greatest preference value, regardless
of whether the individual stopped deliberating due to a time threshold or
due to the preference value for one of the alternatives reaching a preference
threshold. Given that most choices do not have a strict time threshold, some
applications of DFT calculate the probability for each alternative's preference
value reaching a particular threshold �rst (see examples in Hotaling et al.
(2010) and Turner et al. 2017). However, as this probability has no closed-
form solution for more than two alternatives, we rely on Roe et al. (2001)'s
method to calculate the probability for each alternative after a particular
number of deliberation timesteps. Whilst the choices that we investigate
also do not have a strictly imposed time threshold, the number of delibera-
tion timesteps is an estimated parameter, meaning that we do not impose a
strict time threshold. From the previous sections, we can see that in order
to estimate the probability of alternatives under a DFT model, we require
estimates for K attribute scaling parameters (where K is the number of at-
tributes) and estimates for four `process parameters'8, which are exclusive
to DFT and inform the process by which alternatives accumulate preference
(φ1 and φ2, the sensitivity and memory parameters respectively, the number
of timesteps, t, and the variance of the error term, σ2

ε ). Correspondingly,
for the probability of alternatives in a MLBA model, we require estimates
for n scaling parameters and estimates for six process parameters (A and
χ, the start and threshold parameters respectively, a drift rate constant, I0,
a parameter for the standard deviation of the drift rates, s and similarity
parameters λ1 and λ2).

8Henceforth, if we refer to `process parameters' of either DFT or MLBA, we mean
parameters which have no equivalent measure in a traditional model such as a RUM or
RRM model.
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The process parameters in DFT and MLBA have important behavioural
roles. However, both models are routinely estimated on data where the only
observed outcome is the choice itself, with little information about the process
by which that choice was reached. If such process information was available,
analysts could use it as additional indicators (i.e. additional dependent vari-
ables) in a joint estimation of process and outcome, and this would help
inform the values of these parameters. In the absence of such data however,
some of the parameters may become partially confounded. This results in
restrictions that need to be considered to improve the stability of DFT and
MLBA.

The various restrictions are detailed in Table 4.2, and are also used in
all of our empirical applications. For DFT, the noise that is added on at
each timestep to the valence (see Equation 2.2) is drawn from a normal
distribution with mean 0 and variance σ2

ε . Consequently, as σ2
ε ≥ 0, we

instead estimate the standard deviation, σε. Additionally, the number of
timesteps must exceed a value of one. Furthermore, the sensitivity parameter
should be positive, as this ensures that alternatives that are more similar to
each other compete more than alternatives that are less similar. Finally,
the use of the new scaling method (detailed in Section 2.3.1) results in an
overspeci�cation. This is a result of the same probabilities being generated
if all attribute scaling factors and the standard deviation of the error are
multiplied by some factor f and the sensitivity parameter, φ1 is divided by
f2. Consequently, we always �x one of the attribute scaling coe�cients in
our empirical applications.

For MLBA, the similarity parameters are also positive so as to ensure that
similarity is a function of distance with more similar alternatives competing
more, relative to less similar alternatives. It is these features which allow for
these two models to predict the similarity e�ect. The drift rate constant in
MLBA must also be positive, as should the start parameter A, from which
the initial preference for each alternative is determined (from a uniform dis-
tribution U[0,A]). Additionally, for choice-only data (i.e. where no additional
process information is available), the start and threshold parameters A and
χ are perfectly confounded. Indeed, multiplying A and χ by some factor f
results in no change in the probabilities with which each alternative is chosen,
but it simply changes the time that alternative j �nishes in from tj to f · tj .
As all alternatives are impacted in the same way, we consequently do not need
to estimate both A and χ. The threshold χ also must be speci�ed such that
it is at least the same value as the start parameter (to avoid the possibility
that more than one alternative reaches the threshold before any deliberation
has taken place). We therefore �x A and estimate χ = (1 + exp(χ∗) · A).
Furthermore, we �x the variance of the drift rate, s, to avoid the possibility
that the probabilities with which the alternatives are chosen remain exactly
the same if all mean drift rates dj and the standard deviation s are dou-
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bled9. Finally, an MLBA model which does not �nd a similarity e�ect will
result in λ parameters approaching zero. In this case, these parameters are
�xed to zero to avoid overspeci�cation, as small changes in these parameters
when they are arbitrarily small will result in no change in the probabilities of
each alternative being chosen. This issue resulted in previous applications of
MLBA resorting to di�erent valuation and weighting functions (Cohen et al.,
2017).

Some of the above constraints are necessary to avoid identi�cation issues,
while others simply avoid sign issues. For the latter, free estimation may in
theory be possible, but we have found the constraints to be helpful in our
work.

The estimation of DFT and MLBA remains a non-trivial computational
task even with the above constraints, and e�cient implementation as well
as good starting values are essential. In our work, we use the R packages
maxLik (Henningsen and Toomet, 2011) and Apollo (Hess and Palma, 2019)
for estimation of the likelihood function and the RCPP package together
with the Armadillo C++ linear algebra library for fast calculation of the
matrices required for �nding the probability under which each alternative is
chosen under a DFT model (Eddelbuettel et al., 2011; Sanderson and Curtin,
2016). Additionally, we use an initial parameter search algorithm based on
the heuristic for non-linear global optimisation developed by Bierlaire et al.
(2010) in an attempt to reduce the risk of convergence to poor local optima
as well as an excessively long estimation process.

3 Empirical applications on revealed and stated

choice data

In this section, we present empirical results using DFT and MLBA on three
di�erent datasets, two from stated choice (SC) surveys and one from a re-
vealed preference (RP) survey, where the latter is the �rst DFT/MLBA ap-
plication to RP data. We provide a detailed investigation as to empirical
identi�cation of DFT and MLBA. This is crucial, as in the context of choice-
only data, some of these parameters will be confounded, and it has not yet
been established what normalisation should be applied. We also compare
the estimation results to typical MNL and RRM models. We �nally present
an empirical comparison between the di�erent existing speci�cations of DFT
and our proposed new scaling approach.

9This is possible, for example, if the value for each βx is doubled, the positive constant
I0 is doubled, and the value of each similarity parameter λ1 and λ2 is halved.
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3.1 First stated choice survey

Our �rst dataset is a subset from the Danish value of time dataset (Fosgerau,
2006). This dataset comes from a typical stated choice survey, where 545
participants faced a total of 4,214 choices between them. The choices were for
car drivers and speci�cally the choice between two di�erent routes, described
only by travel cost and travel time, where one route would be cheaper, but
the other would be faster. The aim of such a setup is to understand trade-
o�s between time and money, leading to estimates of the value of travel
time (VTT). While very simplistic in nature, this type of datasets is a useful
�rst step in moving from the abstract settings in mathematical psychology
towards more complex choices in a transport setting. In all models, we only
focussed on the time and cost attributes after earlier results con�rmed there
was no left-right bias that would require the inclusion of alternative speci�c
constants.

Table 4.3 shows the results for the �rst SC dataset. Where appropriate,
we used the constraints from Table 4.2 but then report the actual transformed
estimates in Table 4.3, along with the transformed standard errors, obtained
using the Delta method (cf. Daly et al., 2012).

We �rst have two MNL models, one using a purely linear speci�cation
while the second additionally estimates parameters for the logarithm of time
and cost. This latter model o�ers a signi�cant improvement in �t over the
�rst model, and all four coe�cients remain negative, where the signi�cant
estimates for the log-time (βLTT ) and log-fare (βLF ) parameters indicate
non-linear sensitivities.

Whilst a number of di�erent parameters within DFT could be �xed to
solve the overspeci�cation issue identi�ed in Section 2.3.4, we choose to �x
the �rst attribute scaling coe�cient, thus focussing on relative sensitivities,
where we use the value from the MNL model to aid comparison. We then
trial two di�erent DFT models to test the impact of removing the e�ect of
the feedback matrix (model 2 compared to model 1).

As there are only two alternatives in the Danish dataset, φ1 is of little
meaning, given that it is a parameter for the level of competition between
alternatives dependent on the distance between the alternatives, and its esti-
mate tends to zero in DFT model 1. Additionally, φ2, the memory parameter,
has little meaning when the sequence of attribute attendance is not known.
It however also contributes to the level of competition between alternatives
as a value of φ2 = 0 results in the value of φ1 having no impact (see Equation
2.8). As φ2 = 0 in model 1, we can thus also remove φ1 also. For this Danish
dataset, we can thus use an identity matrix for the feedback matrix, leading
to no loss in �t for model 2 compared to model 1, showing that with binary
data, the estimation of the feedback matrix does not seem to apply.

Similar to decision �eld theory, the multi-attribute linear ballistic accumu-
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Table 4.3: Estimation results and identi�cations tests on the �rst SC dataset

Model MNL DFT MLBA

Version 1 2 1 2 1 2 3

Free Pars. 2 4 5 3 6 5 5

Log-likelihood -2,301.53 -2,212.10 -2,018.73 -2,018.73 -2,007.88 -2,037.24 -2,008.55

BIC 4,619.75 4,457.58 4,079.19 4,062.50 4,065.83 4,116.21 4,058.83

βTT
est. -0.1939 -0.1590 -0.1939 -0.1939 -2.8676 -3.0671 -3.2293

r. t-rat. -13.54 -8.86 �xed �xed -63.67 -10.77 -7.34

βF
est. -2.4087 -1.7643 -3.0988 -3.0987 -45.3590 -45.6207 -50.9441

r. t-rat. -13.52 -9.21 -23.36 -23.35 -34.66 -9.91 -6.34

βLTT
est. -1.0355

r. t-rat. -2.71

βLF
est. -1.9005

r. t-rat. -5.38

φ1
est. 0.0688 0.0000

r. t-rat. 0.00 �xed

φ2
est. 0.0000 0.0000

r. t-rat. 0.00 �xed

σε
est. 0.1587 0.1587

r. t-rat. 0.88 0.88

t
est. 6.6097 6.6097

r. t-rat. (vs 1) 12.12 12.11

χ
est. 1.1938 2.0000 1.1634

r. t-rat. (vs 1) 55.87 �xed 6.43

I0
est. 2.1548 39.6940 1.8380

r. t-rat. 104.17 30.96 2.66

λ1
est. 0.0008 0.0025 0.0000

r. t-rat. 12.90 10.36 �xed

λ2
est. 0.2068 0.0369 0.1962

r. t-rat. 16.47 11.88 6.54

lator has many parameters that have little interpretable output if an analyst
only has access to the choice data and no additional psychometric or process
data. For example, a decision-maker could make a choice quickly because
there is a small di�erence between the start and threshold parameters or be-
cause they have a higher deviation in the drift rates. Consequently, if we only
have choice data and no information about the process in which the choice
was made, then some of the MLBA parameters may become confounded. As
with DFT, we initially test MLBA using a full speci�cation, which implies
only �xing the start parameter A and the drift rate standard deviation s to
values of 1.

In model 2, we set �x the threshold parameter χ, which is a common ap-
proach in mathematical psychology (Cataldo and Cohen, 2018; Cohen et al.,
2017; Trueblood et al., 2014) (�xing it to a value of 2 as done in the original
MLBA paper Trueblood et al. 2014), but �nd that this is not appropriate in
this case, leading to a substantial loss of �t. On the other hand, our initial
estimate for λ1 is so close to zero that a constraint does not lead to any signif-
icant loss of �t. This is however an empirical issue rather than a theoretical
identi�cation requirement. A value of λ1 = 0 results in weights, wxk,i,j = 1,
thus resulting in a simpli�ed calculation of the mean drift rates with linear
contributions from positive di�erences of attributes xk,j − xk,i.

In terms of model performance, we see that DFT and MLBA both out-
perform MNL. The di�erence in �t between DFT and MLBA is much smaller
than between these two models and MNL, with a slight advantage for MLBA.
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3.2 Second stated choice survey

The second stated choice dataset we consider has a total of 368 participants,
each completing 10 choice tasks resulting in 3,680 choices. The participants
are all public transport commuters living in the UK. Each task involves the
choice between an invariant reference trip and two hypothetical alternatives,
where each of the three alternatives is described by travel time, cost, rate
of crowded trips, rate of delays (both out of 10 trips), the average length of
delays (entered into models both as the average extent of delays, RA, and
as the expected delay, RB, by multiplying the length of delays by the rate
of delays) and the provision of a delay information service (none used as the
base, with parameters for a charged, ICH, and free, IFR, service). Following
earlier results by Hess and Stathopoulos (2013), we applied a log-transform
to the fare attribute (described as LF).

Table 4.4 shows the results for the second SC dataset. In the presence
of three alternatives, we can now include a RRM model alongside MNL,
where we see fairly similar performance for these two models, with a slight
advantage for MNL. All parameters have the expected sign in these models,
and we are also able to include two alternative speci�c constants (ASCs)10.

For DFT, we follow the same speci�cation tests as on our �rst SC dataset.
However, this time we are now able to estimate a signi�cant memory param-
eter φ2, suggesting that initial comparisons matter more than current or
more recent ones. The estimate for the o�-diagonal term φ1, which is more
meaningful in data with three alternatives, remains only weakly signi�cant.
However, constraining the feedback matrix to be an identity matrix (as in
model 2) now clearly leads to a signi�cant drop in model �t.

For MLBA, we again show that constraining χ = 2 is not appropriate,
leading to a loss of �t for model 2. We are however able to constrain it to
χ = 1 and in addition can constrain I0 = 0 (model 3) without any loss of
�t, where this is potentially due to the fact that we are now able to estimate
signi�cant ASCs. Higher values are observed for λ2 compared to λ1, meaning
that a greater importance weight is given to positive attribute di�erences
xk,j ≥ xk,i compared to negative ones xk,j < xk,i in the estimation of the
mean drift rates.

In terms of model performance, we see that DFT and MLBA again both
outperform MNL (and also RRM), where, with the present data, DFT o�ers
better performance than MLBA, potentially as it is better able to deal with
the di�erential competition between the three alternatives than MLBA (in
contrast to the earlier binary dataset).

10Which results in improvements in log-likelihood of 46 and 26 units respectively for
DFT and MLBA
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Table 4.4: Estimation results and identi�cations tests on the second SC dataset

Model MNL RRM DFT MLBA

Version 1 1 1 2 1 2 3
Free Pars. 10 10 13 11 14 13 12

Log-likelihood -3,360.43 -3,363.91 -3,299.82 -3,327.28 -3,321.75 -3,333.66 -3,322.36
BIC 6,802.97 6,809.92 6,706.41 6,744.88 6,758.45 6,774.06 6,743.26

βTT
est. -0.0471 -0.0320 -0.0471 -0.0471 -0.0586 -0.0230 -0.0592

r. t-rat. -9.50 -9.58 �xed �xed -1.53 -5.71 -5.07

βLF
est. -5.9990 -4.1090 -6.5220 -6.2709 -11.0745 -4.8500 -11.3073

r. t-rat. -18.87 -17.66 -9.67 -9.52 -1.56 -8.55 -3.38

βCR
est. -0.2230 -0.1212 -0.2137 -0.2360 -0.2842 -0.1174 -0.2902

r. t-rat. -8.58 -5.82 -7.10 -6.95 -1.02 -5.69 -4.09

βRA
est. -0.1870 -0.0441 -0.1523 -0.1957 -0.1499 -0.0687 -0.1519

r. t-rat. -5.96 -2.71 -4.54 -3.62 -0.71 -1.90 -2.88

βRE
est. -0.0619 -0.1457 -0.0912 -0.0624 -0.1341 -0.0412 -0.1349

r. t-rat. -2.64 -8.59 -2.58 -1.16 -0.69 -1.43 -5.37

βRB
est. -0.0293 -0.0186 -0.0138 -0.0244 -0.0205 -0.0100 -0.0219

r. t-rat. -3.25 -3.06 -1.85 -1.86 -0.17 -3.84 -1.31

βICH
est. -0.0910 -0.0510 -0.0013 -0.0651 -0.0424 -0.0194 -0.0464

r. t-rat. -1.13 -0.95 -0.03 -1.00 -0.20 -1.28 -0.47

βIFR
est. 0.3305 0.2179 0.2270 0.2772 0.3224 0.1413 0.3220

r. t-rat. 4.95 4.85 4.28 4.33 0.35 7.52 3.99

asc1
est. 0.3902 -0.2730 0.2841 0.7258 1.0941 0.4588 1.1213

r. t-rat. 5.85 -4.17 4.30 6.20 0.40 7.81 3.72

asc2
est. 0.1633 -0.1656 0.1354 0.2178 0.3356 0.1714 0.3560

r. t-rat. 3.30 -3.38 3.24 2.83 0.20 6.09 2.45

φ1
est. 0.0205 0.0000

r. t-rat. 1.17 �xed

φ2
est. -0.5586 0.0000

r. t-rat. -4.90 �xed

σε
est. 0.1276 0.3566

r. t-rat. 3.46 5.20

t
est. 5.2245 7.5332

r. t-rat. (vs 1) 8.34 6.37

χ
est. 1.0004 2.0000 1.0000

r. t-rat. (vs 1) 1.83 �xed �xed

I0
est. 0.0167 1.6128 0.0000

r. t-rat. 0.39 7.53 �xed

λ1
est. 0.1188 0.3490 0.1191

r. t-rat. 0.33 7.12 2.03

λ2
est. 1.0805 2.0307 1.0556

r. t-rat. 0.39 16.42 4.33
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3.3 RP data

Whilst both DFT and MLBA have been used extensively on experimental
data and have been demonstrated to accurately explain choices in stated
preference surveys, as far as we are aware, neither model has been �tted to
revealed preference (RP) data. In this section, we �rst �t MNL, RRM, DFT
and MLBA models to our full RP dataset. We then provide elasticities as
well as additionally testing out-of-sample prediction for all four models.

Our RP data comes from the national UK value of travel time study
(Arup, ITS Leeds and Accent, 2015). Questionnaires were completed by 2,646
individuals travelling by train from Birmingham, Stoke or Peterborough to
London. After extensive data cleaning (see page 164 of Arup, ITS Leeds and
Accent 2015), 725 observations were left, with either one or two observations
for each of the 578 individuals11. For every decision recorded, the available
alternatives are one or two of Chiltern railways, Northern rail and Midlands
railways as well as one of Virgin Trains and East Coast. Travel time, travel
cost and headway were used to describe the alternatives.

We run a basic MNL model with a speci�cation based on the model
used by Arup, ITS Leeds and Accent (2015), with four di�erent travel time
coe�cients for di�erent groups. Individuals are �rst segmented by travel pur-
pose (employees' business, commute (TTC in Table 4.5) or `other non-work'
(TTO)). Individuals on employees' business where further segmented into
those who were very sure (TTEB1) and those who were quite sure (TTEB2)
about the attributes of the unchosen alternatives. Two further attribute pa-
rameters are estimated (travel cost, TC, and headway, HW ). For all three
attributes, log values are used (Arup, ITS Leeds and Accent, 2015). Addi-
tionally, Arup, ITS Leeds and Accent (2015) use three alternative speci�c
constants for train services run by Chiltern railways (ASCC), Midlands rail-
ways (ASCM ) and Northern rail (ASCN ). Finally, two parameters are in-
corporated to capture income e�ects. Value of travel time coe�cients (βTTn)
are calculated for each individual n:

βTTn = βTTi,n ·
(
RIn

λinc · (1− zmiss,n) + λmiss · zmiss,n
)

(4.15)

where βTTi,n is a travel time coe�cient depending on the individual's trip
purpose, RIn is the relative income of the individual, λinc is an income elas-
ticity on the time sensitivity and λmiss is a multiplier on the time sensitivity
used only if the individual did not provide their income in the questionnaire
(in which case the dummy variable zmiss,n = 1). Table 4.5 provides model
estimates for these parameters under MNL, RRM, DFT and MLBA.

11Note that this means we have data that is panel data for some individuals, but not
others. This does not impact the results of the models as the only impact this has is in
the calculation of standard errors.
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Table 4.5: Results, estimates and robust t-ratios from MNL, RRM, DFT and MLBA
models on the RP dataset

Model MNL RRM DFT MLBA

Version 1 1 1 2 1 2 3
Free Pars. 11 11 14 12 15 14 12

Log-likelihood -370.05 -373.31 -362.53 -363.31 -351.97 -351.97 -352.07
BIC 812.54 819.07 -817.26 805.66 802.73 796.14 783.17

TTC
est. -4.4541 -1.1490 -6.2586 -6.2414 -25.1388 -25.1615 -25.6064

rob. t-rat. -3.88 -3.70 -2.35 -3.03 -2.24 -2.20 -2.24

TTO
est. -2.0021 -0.5272 -2.7685 -2.8922 -4.0627 -4.0592 -4.0716

rob. t-rat. -2.46 -2.47 -2.42 -3.36 -2.76 -2.73 -2.87

TTEB1
est. -3.7769 -0.9341 -4.2679 -4.4185 -7.4737 -7.4681 -7.4193

rob. t-rat. -4.63 -4.66 -3.40 -5.03 -4.67 -4.69 -5.01

TTEB2
est. -5.7016 -1.4342 -7.2535 -7.3995 -10.7129 -10.7074 -10.7462

rob. t-rat. -7.10 -6.85 -3.74 -6.09 -6.92 -6.74 -7.01

TC
est. -2.2127 -0.6152 -2.2127 -2.2127 -4.2257 -4.2246 -4.3372

rob. t-rat. -8.52 -9.27 �xed �xed -48.19 -5.35 -4.73

HW
est. -0.1267 -0.0532 -0.1255 -0.1240 -0.1189 -0.1191 -0.1301

rob. t-rat. -0.64 -0.75 -0.75 -0.73 -0.62 -0.62 -0.40

ASCC
est. 0.7549 0.6813 2.9787 3.9385 1.5041 1.5036 1.5100

rob. t-rat. 2.75 2.52 1.85 2.49 4.36 4.28 4.30

ASCM
est. -0.4882 -0.5251 -0.6376 -0.5124 -0.4468 -0.4472 -0.4929

rob. t-rat. -1.86 -1.96 -0.41 -0.39 -1.75 -1.53 -1.64

ASCN
est. -0.4879 -0.5164 -0.4111 -0.4429 -0.4304 -0.4308 -0.4606

rob. t-rat. -1.65 -1.68 -0.28 -0.30 -1.30 -1.31 -1.29

λinc
est. 0.4563 0.4690 0.5596 0.5411 0.5857 0.5857 0.5953

rob. t-rat. 4.43 4.46 4.48 4.48 4.63 4.80 6.76

λmiss
est. 0.4844 0.4939 0.8020 0.7951 0.5813 0.5798 0.5685

rob. t-rat. 1.13 1.18 1.04 1.09 0.70 0.71 0.78

φ1
est. 1.1530 0.0000

rob. t-rat. 0.64 �xed

φ2
est. -0.0865 0.0000

rob. t-rat. -1.71 �xed

σε
est. 1.1588 1.1959

rob. t-rat. 2.53 2.99

t
est. 8.2073 8.1599

rob. t-rat. (vs 1) 2.54 3.03

χ
est. 2.3344 2.3319 2.0000

rob. t-rat. (vs 1) 11.88 1.36 �xed

I0
est. 0.0000 0.0009 0.0000

rob. t-rat. 0.84 1.26 �xed

λ1
est. 0.1107 0.1107 0.1073

rob. t-rat. 11.20 7.96 12.12

λ2
est. 4018.6448 Inf Inf

rob. t-rat. 0.76 �xed �xed
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For DFT, we again use the MNL value for the cost coe�cient (model
1). With 118 out of 725 observations having three alternatives available and
the rest having only two alternatives available, it is unsurprising that, in line
with the results from the 1st SC dataset, the e�ect of the feedback parameters
being removed (DFT model 2 relative to DFT model 1) has little impact on
the log-likelihood.

For MLBA, we see that �xing λ2 to in�nity (which results in the corre-
sponding weight, wxk,i,j = 0, when xk,j < xk,i) has no impact on model �t
(model 2 compared to model 1). Additionally �xing both I0 and χ results
in an insigni�cant impact on model �t with a lower BIC value obtained for
model 3 compared to model 2.

With this data, we again see that MLBA obtains a lower BIC value
than DFT, with both DFT and MLBA outperforming MNL and RRM, thus
demonstrating that they work well for RP data as well as SC data.

With a view to not just focussing on model �t, Table 4.6 contrasts the
cost and time elasticities on the RP data for the four models. We see that
the elasticities for MNL and RRM are quite similar to each other. DFT
obtains visibly higher time and cost elasticities than MNL and RRM. For
MLBA, the cost elasticity is in between MNL/RRM and DFT, while the
time elasticity is the lowest across all models. These results again show that
DFT and MLBA o�er more signi�cant departures from standard models than
for example RRM.

Table 4.6: Cost and time elasticities on RP data

elasticities
cost time

MNL -0.537 -0.933
RRM -0.530 -0.901
DFT -0.604 -1.017
MLBA -0.584 -0.881

We �nally test all four models for their ability to make out-of-sample
predictions. For each of the �ve data subsets, we take choices corresponding
to a random 80% of the individuals in the data to be used for estimation, with
the remaining 20% used for validation. We �t each model to each estimation
subset and then calculate log-likelihoods for the remaining 20% of the data
using the parameter estimates obtained for the �rst 80%. Table 4.7 gives
the log-likelihoods of the estimation and validation subsets of the data under
each model. Additionally, Figure 4.2 gives the average probability that the
models assign to the chosen alternatives in the out-of-sample observations.

We see that DFT and MLBA outperform MNL and RRM across all �ve
subsamples in both estimation and performance on the holdout sample except
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Table 4.7: Out-of-sample estimation and holdout log-likelihoods for the RP data

MNL (11 pars) RRM (11 pars)
estimated holdout sum estimated holdout sum

Full Data -370.05 -373.31
Dataset 1 -302.88 -68.92 -371.81 -306.05 -69.27 -375.31
Dataset 2 -298.59 -72.76 -371.35 -301.04 -73.59 -374.62
Dataset 3 -296.70 -75.08 -371.78 -299.31 -75.76 -375.07
Dataset 4 -302.29 -68.18 -370.47 -304.81 -68.84 -373.65
Dataset 5 -296.64 -75.74 -372.39 -299.41 -76.28 -375.69

DFT (12 pars) MLBA (12 pars)
estimated holdout sum estimated holdout sum

Full Data -363.31 -352.07
Dataset 1 -296.90 -67.80 -364.70 -286.58 -67.26 -353.84
Dataset 2 -293.80 -70.64 -364.43 -283.05 -70.33 -353.38
Dataset 3 -293.12 -71.75 -364.87 -282.30 -71.35 -353.65
Dataset 4 -295.41 -68.29 -363.70 -285.90 -65.73 -351.63
Dataset 5 -293.23 -72.90 -366.12 -282.78 -71.67 -354.45

for DFT in holdout sample 4. MNL outperforms RRM in estimation and
holdout across all samples, while MLBA always outperforms DFT. Overall,
these �ndings con�rm the results on the full sample.

3.4 Comparison of results

To summarise the results, Table 4.8 shows the BIC for the �nal recommended
speci�cation for each model type on each dataset. We see that DFT and
MLBA consistently o�er better performance than MNL and RRM. While
MLBA marginally outperforms DFT on the Danish SC data, the di�erences
are more substantial on the remaining two datasets, with DFT performing
best on the UK SC data and MLBA best on the RP data.

Table 4.8: Model �t (BIC) comparison across models and datasets

MNL RRM DFT MLBA

Danish SC 4,457.58 - 4,062.50 4,058.83
UK SC 6,802.97 6,809.92 6,706.41 6,743.26
RP 812.54 819.07 805.66 783.17

An additional bene�t of the new scaling method we use for DFT is that
it allows us to more directly compare parameter estimates across di�erent
models, notwithstanding the di�erent meaning of the parameters. This is
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Fig. 4.2: Average probabilities of the chosen alternatives for each holdout subset of the
RP data.

possible as a result of the new speci�cations of both MLBA and DFT having
attribute-speci�c scaling coe�cients, which have a role analogous to marginal
utility coe�cients in RUM models. Although these scaling coe�cients cannot
be directly translated into measures such as the value of travel time, we can
calculate `relative importance of travel time with respect to travel cost'. In
Table 4.9, we set the calculated MNL values to a base rate of 1 (with the
rates being based on the MNL value for commuters in the RP dataset).
Consequently we can compare whether DFT and MLBA assign more or less
importance to travel time with respect to travel cost.

Across the SP datasets, it appears that MNL tends to assign higher impor-
tance to travel time with respect to travel cost relative to DFT and MLBA.
The opposite is the case for the RP datasets. RRM always estimates lower
ratios than MNL, while DFT has fairly similar values to MLBA, with an
exception being the UK data and commuters in the RP data, for which DFT
is more similar to MNL.
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Table 4.9: The relative importance of travel time compared to cost across di�erent models
in comparison to MNL

MNL RRM DFT MLBA

SP
Danish 1.000 1.000 0.777 0.785
UK 1.000 0.992 0.920 0.667

RP

Commuters 1.000 0.928 1.401 2.931
Other Non-Work 0.449 0.426 0.649 0.466

Employees' Business 1 0.848 0.754 0.992 0.849
Employees' Business 2 1.280 1.158 1.661 1.230

3.5 Scaling of attributes

In this section, we compare our new method (see Section 2.3.1) to scaling
methods that have been used in previous DFT applications. The di�erent
scaling methods are:

1. Unity-based normalisation, as used by Berkowitsch et al. (2014), where
we rescale the attributes values to a range between 0 and 1.

2. No scaling method other than taking the negative value for all `negative'
attributes (as DFT can only capture `positive' e�ects of attributes as
the relative importance weights must be positive12 - see Section 4.3.1
of Chapter 2 for an illustration of the results of failing to do this for
DFT models)

3. Standard score normalisation, as previously found to be e�ective for
DFT (see results in Chapter 2).

4. Minimum rescaling (dividing each attribute by the smallest value for
that attribute across the choice set), as previously shown to be e�ective
for a previous version of MLBA (Trueblood et al., 2013a)

5. Maximum rescaling (dividing each attribute by the largest value for that
attribute across the choice set), as previously shown to be e�ective for
a previous version of MLBA (Trueblood et al., 2013a)

6. Our new method detailed in Section 2.3.1, which removes the scale-
variant nature of DFT.

For both datasets, it appears that scale 6 has the best model �t. This is
regardless of whether we include DFT's feedback matrix. Crucially, scale 6

12Note that here we adjust the attributes accordingly so that our new scaling method
does not have an unfair advantage for attributes which have a positive sign.
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appears to better capture the impact of the feedback matrix for the UK data,
resulting in an improvement by more than 40 log-likelihood units, where this
improvement is much smaller with the other scalings. On the other hand, with
the Danish data, the feedback matrix is needed for some of the other scalings
to obtain model �ts more in line with the new scaling. Additionally, the
results here demonstrate that scales 4 and 5 o�er relatively poor performance
for DFT, which could in part explain why these scaling methods resulted in
MLBA outperforming DFT previously (Trueblood et al., 2013a).

4 Simulated data experiments

The work in Section 3 has provided initial insights about the potential bene�ts
of DFT and MLBA compared to more traditional structures. Of course,
these results are dataset speci�c and the advantages might be a result of the
true (and unobserved) data generation process. In this section, we provide
some further evidence based on simulated data, where we have a number of
aims. In particular, we test the impacts of considering choices generated by
di�erent models, compare the ability of the di�erent accumulator models at
capturing various complexities in the data, and �nally consider parameter
recoverability.

4.1 Generation of simulated data

We use an e�cient design to generate 5, 000 mode choice observations where
each choice task has four alternatives (car, air, rail and high-speed rail),
each described by travel cost (TC) and travel time (TT). Additionally, all
alternatives other than car have an access time (AT) attribute.

We then generate choices four times using a MNL model, a RRM model,
a DFT model and an MLBA model. The aim of this exercise is to see how
robust each of the models is to the case where the data stems from a di�erent
model.

For our MNL model, we de�ne the utility a respondent n obtains from
alternative j in choice task t as:

Ujnt = ASCj+ASCFj ·zF,n+βTT ·αTTj ·TTjnt+βTC ·TCjnt·αIE,n+βAT ·ATjnt+εjnt
(4.16)

where ASCj and ASCFj are alternative speci�c constants, with the latter
capturing the di�erence between male and female participants through the
use of an appropriate dummy term which takes a value of 1 if individual n
is female. TTjnt is the travel time, TCjnt is the travel cost and ATjnt is
the access time, all for alternative j in choice situation t for respondent n.
There are coe�cients for travel cost, access time and mode-speci�c coe�cients
for travel time, which are de�ned as βTT · αTTj . A general value βTT is
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estimated, with appropriate adjustments applied by multiplying by αTTj for
mode j (for identi�cation purposes we �x this coe�cient for cars, αTTcar = 1).
We additionally have an income e�ect, αIE,n, which is de�ned as αIE,n =

( incomen2500 )
αI , where incomen is the income for individual n and αI is an

estimated income elasticity.
These additional coe�cients are simple to add in for psychological choice

models too following our modi�cations. For the DFT simulated dataset, we
incorporate underlying preferences by setting P0jnt = ASCj +ASCFj · zF,n,
with this having been e�ective previously (see results in Chapter 2). The
alternative speci�c travel time coe�cients can be included in DFT and MLBA
by multiplication of the attribute values, as we use our new scaling method
(see Section 2.3.1) which means that these coe�cients will have an equivalent
impact on the attributes in DFT and MLBA as they would in a RUM model.
Finally, in the MLBA models, we incorporate alternative speci�c constants
(δj) by adding them to the mean drift rates as in Equation 4.12. All of the
values used for the parameters to generate probabilities for each alternative
are given in Table 4.12.

4.2 Results for simulated data

We next test the performance of the di�erent models across the four datasets,
i.e. seeing also how well each model performs on data generated with a
di�erent model, thus giving an indication of robustness to the underlying data
generation process. We conduct these tests for three di�erent speci�cations
of each model, namely:

1. A basic model with three alternative speci�c constants and three pa-
rameters for the importance of the attributes: βAT , βTC and a single
coe�cient for travel times across all alternatives, βTT . Additionally we
have a parameter for income e�ects, αI .

2. The basic model with three additional mode-speci�c travel time coe�-
cient multipliers, αTTj .

3. The second model with three additional alternative speci�c constants,
segmenting these by gender.

This gradual build up of model complexity mirrors a process that would
happen in an actual speci�cation search, allowing us to test the behaviour
of DFT and MLBA in what is a common process when using more typical
discrete choice models. The log-likelihood and BIC values obtained from
these models are displayed in Table 4.11, with a plot of these values given in
Figure 4.3. For all of the MLBA models in this section, we �nd that �xing χ
has no signi�cant impact on model �t.
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For the dataset with choices generated by MNL, the best log-likelihood is
found by a full speci�cation of MLBA, although MNL also performs well and
has the lowest BIC value (highlighted in Table 4.11). RRM unsurprisingly has
the best model �t for the dataset generated by RRM, although both DFT
and in particular MLBA provide markedly better �t for this dataset than
MNL13. It also appears that, as expected, MLBA �ts the MLBA generated
choices with a higher log-likelihood and DFT �ts the DFT generated choices
best. MLBA provides signi�cantly better �t than MNL and RRM for both
the DFT and MLBA datasets, with the gap remaining fairly constant as the
models become more complex (see Figure 4.3). The main di�erence between
the RRM and MNL datasets compared to the MLBA and DFT datasets is
that there are parameters for competition between psychologically similar
alternatives in the MLBA and DFT models. It appears that MNL and RRM
cannot capture this e�ect and thus have worse model �ts for these datasets,
but have far more similar model �ts for the MNL generated datasets14. RRM
appears to be the most inconsistent model, with the best �t for the RRM
dataset but the worst for the DFT and MLBA datasets.

Fig. 4.3: BIC values of the models for the simulated data

13It is also worth noting that this is the only dataset in the paper in which RRM
signi�cantly outperforms other models. It achieves worse �t than both DFT and MLBA
on all SP and RP datasets.

14Note that this is also suggested by the fact that the removal of DFT's feedback matrix
results in a loss of 10.28 log-likelihood units for the DFT dataset, but only 0.56 units for
the MNL dataset.
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4. Simulated data experiments

We �nally contrast the �t of the full speci�cation for each of the four
models with that of the model type used for data generation. These results
are shown in Figure 4.4 and show that DFT and MLBA show much smaller
di�erences in �t compared to the model consistent with the data generat-
ing process (DGP). This suggests that they are more robust to potential
misspeci�cation.

Fig. 4.4: Log-likelihood of estimated models compared to model consistent with data
generating process (DGP)

4.3 Recovery of parameters from simulated datasets

We next consider how well the di�erent models recover the parameter values
that were used to generate the simulated datasets for the same model. Table
4.12 gives the parameters used in simulating the data (labelled as `setup') as
well as the parameters produced in estimation, and the di�erence between
those two. As each model is tested against a dataset generated by the same
model, we can test the stability of the parameters. Using our new scaling
method allows us to use similar parameter setup values across models, with
the exception that parameters are adjusted such that the data generation
process has similar amounts of noise across all datasets no matter which
model is used to generate the choices.

All four models appear to accurately recover the three β-coe�cients asso-
ciated with the explanatory variables. These appear to be more recoverable
than the alternative speci�c constants. All four models, however, addition-
ally perform well at recovering the attribute-speci�c travel time coe�cients.
Most crucially for DFT and MLBA, the process parameters are fairly stable.
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5. Conclusions

5 Conclusions

In this paper, we consider two alternate accumulator choice models, devel-
oped in mathematical psychology, and compare them against models typically
used in choice modelling. The models in questoin are decision �eld theory
(DFT), a model where preferences for alternatives stochastically update over
time, and the multi-attribute linear ballistic accumulator (MLBA), where the
preferences for alternatives race towards a threshold.

We �rst make a number of methodological developments to improve the
suitability of the models for studying travel behaviour and other non-laboratory
based choices. For DFT, we implement a new scaling method on the at-
tributes, which results in a number of bene�ts such as the modeller not hav-
ing to know the sign of the attributes before running the model. This has an
immediate bene�t for the UK dataset, for which one attribute (whether the
delay information service is free) is a positive attribute. A comparison with
other available scaling approaches in Section 3.5 also highlights the bene�ts
of this approach.

We also consider the impacts of including parameters to capture under-
lying preferences in MLBA and DFT. Results from our UK dataset suggest
that MLBA and DFT make substantial gains when these parameters are in-
cluded and can consequently capture status quo biases. We have, however,
only considered one method for incorporating preferences in these models.
Whilst we add parameters to the drift rate in MLBA, alternative speci�ca-
tions would allow for an adjustment of the starting point A or the threshold
χ, such that alternatives had di�erent values for these parameters. It is eas-
ily possible that some alternatives may not require as much evidence to be
chosen (for example, a commuter's usual route to work), meaning that an
MLBA model including alternative speci�c thresholds may work well. This
could be investigated in future research. The operationalisation of these two
models in this paper provides promising results, and paves the way for the
incorporation of data on the processes of decision-making in these models,
such as eye-tracking information, response times and EEG data.

We also consider in detail the relative importance of di�erent parame-
ters of our models. Whereas additionally �xing the threshold parameter for
MLBA does not have a signi�cant impact for our simulated datasets, it does
have an impact for our SP data. The opposite is true for the drift rate
constant, I0, which is important for our simulated datasets but is less impor-
tant for our SP data. It is possible that the importance of these parameters
varies according to how deterministic the data is and further work could test
datasets with speci�ed variations in the level of noise. This could help an
analyst determine which parameters are important for MLBA for complex
choice data. For DFT, it appears that our new method for the scaling of
attributes signi�cantly improves the impact of the feedback matrix param-
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eters. It appears that the feedback matrix is not relevant for choices where
there are only two alternatives. However, regardless of whether the feedback
matrix has an impact or not, DFT outperforms MNL and RRM for our SP
and RP datasets.

We test the models extensively using simulated data, where the �ndings
suggest that DFT and MLBA may be less sensitive to model misspecifcation
(i.e. if the estimated model di�ers substantially from that used for data
generation) than the corresponding RUM and RRM models. Crucially, both
DFT and MLBA outperform MNL and RRM across the two SP datasets and
the RP dataset, including in out of sample validation for the latter, which is
to the best of our knowledge the �rst use of both DFT and MLBA on RP
data. The good model �ts for both DFT and MLBA for our second stated
survey dataset suggest that if there is competition between psychologically
similar alternatives (when there are two alternatives that have attributes that
are more similar than those of a third alternative), a move towards a choice
model with psychological foundations becomes more appealing.

Moving away from RUM has obvious pitfalls, especially in terms of the
use of models for welfare analysis (see e.g. Hess et al., 2018). The evidence in
this paper suggests that if an analyst is willing to accept these pitfalls, then
moving further away from RUM than for example with a RRM model, may
be bene�cial, and models from mathematical psychology provide an inter-
esting avenue for such work. Of course, more research is needed in terms of
additional comparisons, including on larger datasets with more alternatives
and attributes. Also, whilst we have considered DFT and MLBA, future
research should also consider models from mathematical psychology that do
not have likelihood functions. A large number of models from mathemat-
ical psychology such as the drift di�usion model (Wiecki et al., 2013), the
leaky competing accumulator (Usher and McClelland, 2001) and the feed-
forward inhibition model (Turner et al., 2016) can be estimated using hierar-
chical Bayesian estimation combined with probability density approximation
(Turner and Sederberg, 2014). This means that there is large scope for fur-
ther comparisons between psychological and mainstream choice models using
hierarchical Bayesian estimation, a method already popular in traditional
choice modelling for mixed logit models (Burda et al., 2008; Dumont et al.,
2015; Train, 2001).

Additionally, the linear ballistic accumulator (Brown and Heathcote, 2008),
a simpli�ed version of MLBA for alternatives without multiple attributes,
has been demonstrated to work well with dynamic datasets where the drift
rates change over time (Holmes et al., 2016). A similar concept could be ap-
plied to both DFT and MLBA, for which changing attributes could easily be
incorporated. Thus DFT and MLBA may work well with dynamic revealed
preference datasets such as the lane merging decisions made by drivers, where
typical choice models may not do so well due to their static nature. Complex
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datasets such as these, as well as datasets with additional process or psy-
chometric measures, would also be useful for further testing the functionality
and usefulness of the process parameters within both DFT and MLBA. Ad-
ditionally, given that in Chapter 2 we demonstrate that DFT can e�ciently
incorporate random parameters, it is possible that similar adjustments could
also be made for MLBA. All of these potential extensions of DFT and MLBA,
combined with the results in this paper, demonstrate that accumulator mod-
els such as DFT and MLBA are attractive alternative approaches to random
utility models, particularly when it comes to forecasting. It therefore ap-
pears that these models, as well as others, may hold signi�cant promise in
improving the behavioural realism in choice models, in both transport and
beyond.
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Chapter 5

Quantum probability models: a new

framework for modelling choices

Thomas Hancock1, Stephane Hess1, & Charisma Choudhury1

Abstract

There has been an increasing e�ort to increase the behavioural realism of the

mathematical models of choice, resulting in e�orts to move away from ran-

dom utility maximisation (RUM) models. Some new insights have been gen-

erated with, for example, models based random regret minimisation (RRM).

However, many of the alternatives to RUM tested on real-world data, have

looked at only modest departures from RUM, and di�erences in results have

consequently been small. In this chapter, we address this research gap by in-

vestigating the applicability of models based on quantum theory - which are

substantially di�erent from the state-of-the-art choice modelling techniques.

These models emphasise the importance of contextual e�ects, state depen-

dence and the impact of choice or question order. We consider how to best

operationalise quantum probability into a choice model. Two of our speci�-

cations �nd good model �t across three route choice datasets. Additionally,

we test the quantum model frameworks on a best/worst route choice dataset

and demonstrate that they �nd useful transformations to capture di�erences

between the attributes important in a favourite alternative compared to that

of the least favourite alternative. We additionally �nd that these `quantum

rotations' can be used to e�ciently capture contextual e�ects where the order

of the attributes and alternatives are manipulated, moral choice behaviour in

the context of the addition of a taboo trade-o� and can explain the di�erence

in making trade-o�s a�ecting just the decision-maker compared to trade-o�s

involving both the decision-maker and their partner. Overall, it appears that

1Choice Modelling Centre and Institute for Transport Studies, University of Leeds (UK)
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models incorporating quantum concepts hold signi�cant promise in improving

the state-of-the-art travel choice modelling paradigm through their adaptabil-

ity and e�cient modelling of contextual changes.

1 Introduction

Random utility maximisation (RUM) framework has dominated the travel
choice modelling �eld for many decades. More recently, RUM has been crit-
icised as being inadequate in explaining the full range of behavioural com-
plexity (Chorus et al., 2008; Guevara and Fukushi, 2016). This has resulted
in many attempts to better incorporate behavioural concepts into travel be-
haviour models, including regret (Chorus, 2010; Chorus et al., 2008), con-
textual relative advantages (Leong and Hensher, 2014) and prospect theory
(Avineri and Bovy, 2008). However, none of these developments have yet ri-
valled RUM as the preferred model in real-world applications. This is due to
di�culties that quickly arise once a modeller departs from the �rm economic
foundations of RUM (Hess et al., 2018). Consequently, caution is required if
we are to step away from random utility models. Departures to models with
similar underlying structure, such as random regret minimisation (Chorus,
2010; Chorus et al., 2008), which have the same error structure, result in only
small di�erences whilst facing the same key fault of all departures from RUM,
the loss of the ability to calculate welfare measures. Departures to more di�er-
ent models, such as decision �eld theory (Busemeyer and Townsend, 1992),
whilst sometimes �nding improvements in model �t, additionally result in
models that may become computationally infeasible for large-scale datasets
(see Table 2.7 in Chapter 2). Thus, if we are to move away from RUM, we
need to investigate alternative approaches that are computationally simpler
- yet, better re�ect behavioural realism. This leads us to explore ideas from
other disciplines which are further away from the tried and tested. Given
the success of using ideas from quantum physics in cognitive psychology, one
possible alternative is to see if quantum physics can make a similar step into
travel behaviour modelling.

Quantum physics, �rst considered in the early 20th century, was origi-
nally created to explain phenomena and results that could not be explained
by classical theories of probability and physics. In particular, physicists no-
ticed that the measurement of one variable could impact the measurement of
another. The most famous example of this relates to measuring the position
and momentum (mass multiplied by velocity) of a particle. Physicists found
that they could not measure both accurately at the same time. This led to
`Heisenberg's uncertainty principle' (Heisenberg, 1927). Formally, this could
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be written (Kennard, 1927) as:

σx · σρ ≥
~
2
, (5.1)

where σx and σρ are the standard deviations of position and momentum
respectively, which multiplied together give the uncertainty, and ~ is the re-
duced Planck constant, h

2π (with h the Planck constant, a physical constant
�rst used by Planck (1901) that relates the energy carried by a photon to its
frequency). To illustrate how this led to the breakdown of classical probabil-
ity, we �rst imagine that we have three possible propositional variables:

A : `the particle has momentum in the interval [ρ1,ρ2]'

B : `the particle is in the interval [x1,x2]'

C : `the particle is in the interval [x2,x3].'

If we have a system where ~ = 1, the minimum allowed uncertainty by
Heisenberg's uncertainty principle (Equation 5.1) is 1

2 . Under this system,
we might observe a particle such that the propositional variables (A) and (B
or C) are true (where total uncertainty is greater than 1

2 ). Simultaneously, it
is possible that both (A and B) and (A and C) each have total uncertainties
of less than 1

2 and are thus false. Consequently, the distributivity law of
classical probability (A(B + C) = AB +AC) fails to hold.

This resulted in the creation of a new theory of probability, known as
quantum logic (Birkho� and Von Neumann, 1936). Under quantum logic
(which is also known as quantum probability), a new set of probability rules
were de�ned, which crucially did not include the axiom of distributivity. This
new theory of probability has subsequently made the transition into cognitive
psychology (Bruza et al., 2015) and has also been introduced into transport
behaviour modelling. For example, Vitetta (2016) introduced a quantum
model based on random utility models with the addition of an interference
term for route choice problems. Additionally, Yu and Jayakrishnan (2018)
demonstrated that quantum cognition models can e�ciently be used to cap-
ture the di�erence in state of mind between choices made under stated prefer-
ence and revealed preference settings. However, thus far, as far as the authors
are aware, there has not been a choice model developed with quantum con-
cepts that incorporates attribute values for individual alternatives and can
work for general choices as well as `changes in perspective'. Thus the focus
of this chapter is to explore ways to develop a choice modelling framework
based on quantum logic that can be used for choices in general, as well as
e�ciently capturing e�ects caused by ordering, some form of interference or
some change in `state of mind'.

The rest of this chapter is organised as follows. First, we introduce quan-
tum logic and discuss the relative bene�ts of using such a system. We then
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mathematically describe quantum logic, giving detailed graphical examples.
Next, we discuss how it can be incorporated into a choice model, detailing
two di�erent formulations for new models. We then test the performance
of our proposed models against typical choice models such as multinomial
logit and also random regret minimisation in the context of travel decisions.
Finally, we test the models on best-worst and contextual choice data, before
drawing some conclusions.

2 Quantum logic

In this section, we �rst give a general overview of quantum logic as well
as detailing why and how it has been used in the past. We then give the
mathematical de�nitions for how quantum logic works for basic choices. We
conclude by describing how it works for a series of related choices. It is in the
transformation from one choice task to another that a modelling framework
based on quantum logic looks very di�erent to traditional choice models.

2.1 Overview of quantum logic

A simple example of how quantum logic works is given in Figure 5.1. Initially,
a decision-maker might be making a single choice between two alternatives,
travelling by car or by train. Each of these alternatives are represented by
vectors, |T 〉 and |C〉 respectively (the axes in the Figure 5.1). Under quan-
tum logic, the decision-maker has some initial state, denoted |z〉, regarding
whether they will choose car or train.

The action of making a choice (or equivalently making a judgement or
coming to some result) results in a `change of state'. This can be represented
graphically by moving from the initial state vector and `projecting' onto
the vector corresponding to the chosen alternative. In this example, ρT ,
represents the scalar projection of |z〉 onto a straight line parallel to |T 〉.
The length of this projection is then denoted |ρT |. In Figure 5.1, these
projections are directly over the corresponding vectors. The arrows from the
initial state to these vectors are not the projections themselves, but help to
determine the length of the projections, which are the distances from the
origin to the points where the arrows meet the vector. When the state vector
is at 45 degrees, the projections are of equal length and the probabilities
are thus 50% each. In the example in Figure 5.1, the car alternative has
a higher probability. The full mathematical description for this is given in
the following section on a basic choice under quantum logic, which also gives
a 3-dimensional example. The longer the projection onto the vector for an
alternative, the more likely that alternative is chosen. The crucial di�erence
in using such a system is how an additional question or nudge can then
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Fig. 5.1: A single question under quantum probability

impact the decision-maker's choice for the �rst question (car or train). If, for
example, the decision-maker was asked `are you environmentally friendly?'
before they had made up their mind between the choice of car or train, they
would then be initially answering a di�erent question and making a di�erent
choice (see Figure 5.2).

As a result of the decision-maker deciding `I am environmentally friendly',
the decision-maker's state moves from the initial starting state and is pro-
jected onto the vector representing `environmentally friendly' and vice versa
if they decide `I am not environmentally friendly' (see Figure 5.2). This
results in making the choice between car and train from a di�erent state.
Consequently the length of the projections (|ρC| and |ρT |) onto the vectors
for car and train have changed. This is graphically represented in Figure 5.2,
with the projection length for |ρT | longer if the initial state is �rst projected
onto the environmentally friendly vector before being projected onto the train
vector, relative to the projection length if train is chosen directly from the
initial state. Consequently, the probabilities for choosing car and train are
altered.

2.2 Key reasons for using quantum logic

Cognitive psychologists have many key reasons for using quantum logic (Buse-
meyer et al., 2011) that are also relevant for transport behaviour modelling.
Firstly, a behavioural state is initially `inde�nite' and is often created rather
than just recorded by an attempt to measure it. For example, a decision-
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Fig. 5.2: Making two choices under quantum logic

maker might only start considering how environmentally friendly they are
after they have been asked (or reminded) about how environmentally friendly
they are. For this reason, it is essential that surveys including both choice
tasks and attitudinal questions require the respondent to complete the choice
tasks �rst, if the researcher wishes to avoid bias in the choice task (Ben-Akiva
et al., 2019). However, conversely, a decision-maker may try to `justify' their
choices with their responses to the attitudinal questions (Cunha-e Sá et al.,
2012). Consequently, it is often di�cult to measure a decision-maker's true
attitudes, opinions and preference without some form of bias. It is easy to
see how this relates to issues for choice modellers with, for example, ana-
lysts often having concerns about the biases or truthfulness within stated
preference data (Mahieu et al., 2016). Secondly, psychologists have put for-
ward the argument that cognition behaves like a wave rather than a particle
(Trueblood and Busemeyer, 2012). A decision-maker might consider the ad-
vantages of getting the train but then also consider the advantages of driving.
Indeed, many models developed in mathematical psychology assume prefer-
ences for alternatives that update stochastically (Busemeyer and Townsend,
1993; Krajbich et al., 2012). Under quantum logic, their preference over time
`behaves like a wave' and consequently �uctuates over time. It is only when
a decision-maker makes up their mind that their preference exists as some
measurable de�nite state. Before an action or choice is made, an observer
does not know what the decision-maker will do. There are many preference
states within travel behaviour that could similarly be described as `wave-like',
such as anticipating merging onto a new lane when driving, changing travel
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mode when weather worsens, or choosing which route to take depending on
tra�c conditions. One of the most crucial quantum concepts, however, is
the idea of interferences or nudges (such as the previous example of being
asked about the environment whilst in the process of making a mode choice).
After the development of quantum physics to explain ordering e�ects of ob-
served variables (Birkho� and Von Neumann, 1936), a wide range of quantum
models, often based on the idea of quantum interference, have been put for-
ward in cognitive psychology (Bruza et al., 2015). These include a quantum
model to explain ordering e�ects (Trueblood and Busemeyer, 2011), a quan-
tum similarity model (Pothos and Busemeyer, 2013), a quantum judgement
model (Busemeyer et al., 2011) and the use of quantum models to explain
violations of the `sure thing principle' (Pothos and Busemeyer, 2009)2.

These models perform a similar function to choice models that include
state dependence, where a number of di�erent models (Seetharaman, 2003)
have been applied to capture the temporal correlation of choices over time.
However, most crucially, the adoption of quantum logic allows for an ele-
gant and convenient framework for understanding these `paradoxical' �ndings
which become `intuitive' (Wang et al., 2013).

Given the success of quantum models at explaining ordering e�ects within
cognitive psychology, there is ample scope for quantum logic and quantum
ideas within travel behaviour modelling and choice modelling in general. In
particular, it may also be of key interest to choice modellers studying moral
choice behaviour as the adoption of such methods `allows for a re-examination
of the challenge of formalising psychological concepts of con�ict, ambiguity,
and uncertainty' (Wang et al., 2013).

Moral choice situations can be summarised as those where a decision
maker feels that the choice alternatives can to some extent be categorised as
`right' or `wrong'. As a result, the associated choices can be perhaps more
complex as they do not involve straightforward trade-o�s between attributes
of alternatives. For example, a decision-maker may not choose what they
want to choose as they believe it to be an immoral option. While moral
choice behaviour has received much attention in economics and psychology,
it is rarely considered in the choice modelling literature (Chorus, 2015). This
is despite the fact that many typical experiments conducted for understanding
moral preferences use paradigms such as variations of the infamous trolley
problem (where a `runaway trolley' has two possible paths, both of which will
result in the death of some individual(s), and the decision-maker must choose

2A classic example of a probability judgement error is given by Tversky and Kahneman
(1983), who found that participants, after reading `Linda was a philosophy major. She
is bright and concerned with issues of discrimination and social justice', were more likely
to agree with the statement `Linda is a feminist bank teller' than the statement `Linda
is a bank teller'. The `sure thing principle' states than an individual who would take the
same action if some event happens or not should also take that action without knowing
the outcome of the event (Savage, 1954).
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who to save), for which a precise understanding of the trade-o�s that are being
made could be obtained using choice models. This is perhaps due to the fact
that moral preferences are di�cult to investigate outside of the laboratory,
with typical experimental methods for examining moral choice scenarios often
su�ering from low external validity (Bauman et al., 2014). However, more
recently, moral choice behaviour has become more prominent to the travel
behaviour modelling community through, for example, the reinvention of the
trolley problem as a self-driving car problem (Awad et al., 2018). Thus far,
there has not been much consideration given to the types of choice models
used for the modelling of such scenarios, despite the wide range of theoretical
explanations for moral behaviour that have been proposed (Chorus, 2015).
Whilst some steps towards the development of choice models speci�cally for
moral choice contexts have been made (Chorus et al., 2018), an additional
aim of this chapter is thus to test whether quantum logic can also be used to
accurately capture changes in choice context within moral choice scenarios.

2.3 A basic choice under quantum logic

Under quantum logic, a measurement (or choice scenario), X, can be repre-
sented geometrically as a subspace Lx in a multidimensional Hilbert space
(Trueblood et al., 2014b). For each measurement, a number of discrete
`events' are possible. These events, if mutually exclusive, are represented
by orthonormal vectors, which are denoted |x1〉, |x2〉, ... |xJ〉 (with J the
number of alternatives). For these vectors, we use bra-ket notation in keep-
ing with the standard notation used in quantum mechanics and quantum
cognition (c.f. Trueblood and Busemeyer 2011). Under bra-ket notation, a
column vector in a Hilbert space is represented by a `ket' vector, |·〉, with
the corresponding row vector (with each element being complex conjugated)
a `bra' vector, 〈·| (Yu and Jayakrishnan, 2018). These orthonormal vec-
tors then form a basis for the subspace Lx. Consequently, the Hilbert space
for a choice task with J alternatives can be represented by a J-dimensional
space. This means that for a choice set where there are three alternatives,
the Hilbert space is a 3-dimensional space and can be represented as shown
in Figure 5.3.

Under quantum logic, a decision-maker has some opinion, initial state or
`inde�nite state', denoted |z〉, which can be represented by a vector of unit
length (see Figure 5.3). When a decision-maker makes a choice, their state
goes from `inde�nite' to `de�nite', by projecting onto the vector representing
the chosen alternative. This means that for each event alternative Lxi , there
is a corresponding projection operator ρxi that projects |z〉 onto the vector
|xi〉.

As the inde�nite state vector is of unit length and the subspace is repre-
sented by a set of orthonormal vectors, the sum of the squared length of the
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Fig. 5.3: A basic example of 3-dimensional Hilbert probability space

projections must sum to 1:

J∑
i=1

|ρxi |2 = 1. (5.2)

A visual proof of this fact is given in Figure 5.3. The lengths of the three
projections can be visualised as the three sides of the cuboid in 3-dimensional
space. By Pythagoras' theorem, the fact that the vector of unit length cuts
diagonally from one corner to the opposite corner of the cuboid means that
the squared lengths of the projections must sum to one.

2.4 A sequence of choices

If a decision-maker makes a second choice across a di�erent set of alterna-
tives, this choice may be in�uenced by the �rst. Quantum logic captures this
by representing the two events by two separate subspaces within the Hilbert
space, Lx and Ly. Each subspace is separately de�ned by the set of orthonor-
mal vectors representing the alternatives for each event. This means that Lx
is spanned by |x1〉, |x2〉, ... |xJ〉 and Ly is spanned by |y1〉, |y2〉, ... |yK〉,
where there are J alternatives for choice scenario X and K alternatives for
scenario Y.

Revisiting the example presented in Figure 5.2, a decision-maker might
be initially making a choice, X, between commuting by car or train. Un-
der quantum logic, the decision-maker has some initial state (which could
be based on past experiences) regarding whether they will choose car or
train. All possible states are spanned by the basis vectors |xcar〉, |xtrain〉.
The closer the vector representing the decision-maker's state is to the vector
representing an alternative, the more likely that alternative will be chosen.
However, the decision-maker could �rst be asked some a di�erent question
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(Y) about whether they consider themselves to be environmentally friendly
or not. Under quantum logic, the `inde�nite state' does not change. This
means that if the probabilities for alternatives being chosen in question Y are
to be di�erent from the probabilities for alternatives being chosen in question
X, we need choice Y to be represented3 by a di�erent set of basis vectors,
|yenv−friendly〉, |yenv−unfriendly〉. Consequently, if the decision-maker makes
the choice `I am environmentally friendly', they move through the Hilbert
space and their state is projected onto the environmentally friendly vector,
|yenv−friendly〉 (see Figure 5.2). This means that their new state is the vec-
tor |yenv−friendly〉 itself. By making choice (Y) �rst, the original choice X
between car and train is made from a di�erent state (or perspective).

Crucially, by moving state (and making what we de�ne a `quantum rota-
tion'), the squared lengths of the projections onto the vectors for train and
for car have changed4. As a result, in this example, the decision-maker is
more likely to choose to commute by train if they �rst decide that they are
environmentally friendly. This is graphically represented in Figure 5.2, where
the length of the projection onto the vector representing train being chosen
has increased (which results in the probability of choosing train increasing
relative to the probability of choosing car).

3 Building a choice model from quantum logic

Whilst Lipovetsky (2018) has applied quantum models to consumer recall
tasks with multi-alternative, multi-attribute alternatives, quantum proba-
bility has not ever been applied to multi-alternative, multi-attribute choice
scenarios (as far as the authors are aware). In this section, we look at how we
can use ideas from quantum probability within a choice model. We do this
by �rst considering what the requirements are for a quantum choice model.
We then explore the use of sine and cosine functions, a method which was
previously found to be e�ective for multialternative scenarios (Lipovetsky,
2018). Next, we consider ideas from two di�erent existing choice models to
use within a quantum model framework: regret functions from random regret
minimisation (Chorus, 2010) and drift rate functions from the multi-attribute
linear ballistic accumulator model (Trueblood et al., 2014a). Finally, we con-

3It is important here to not visualise the state as a point (a, b). It is a vector,

∣∣∣∣[ab
]〉

,

meaning that the projection lengths from this state to the set of basis vectors will change
if we use a di�erent set of basis vectors.

4Two choices that require a di�erent set of basis vectors are known as `incompatible'. If
the choices are in fact compatible and can be represented by the same set of basis vectors,
then the order in which the choices are made has no impact on the probabilities of each
alternative being chosen. Consequently, quantum probability collapses back into classical
probability (Hughes, 1992).
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sider how similar or related choices could be mathematically explained by a
`quantum rotation'.

3.1 Requirements

For our choice model to use quantum logic, we need to de�ne a method for
calculating an inde�nite state vector. If this state vector is of unit length and
we take projections from it to a set of orthonormal basis vectors (with one
vector for each discrete alternative), then the sum of the squared length of
these projections will equal one. Consequently, for each alternative, we need
to �nd the length of the projection, as the square of this length equals the
probability with which the alternative is chosen (see Figure 5.3). This means
that if we are to use quantum logic to understand multi-attribute, multi-
alternative choices, we must �rst consider how best to represent the state
vector, |z〉. If, for example, we imagine that we are making a route choice
between a cheap and slow alternative and a fast and expensive alternative,
the development of a state could be represented by Figure 5.4.

Fig. 5.4: The development of a `state'

When the decision-maker considers travel time, the second option is bet-
ter, and consequently the state vector extends in the direction of the vector
representing option 2 (and hence increasing the length of the projection onto
option 2 whilst not increasing the length of the projection onto option 1).
If the decision-maker considers cost, the state vector instead extends in the
direction of the vector for alternative 1. At some point the decision-maker
makes the choice when they reach some state. To generate this state, we need
to know the relative importance of the attributes. This means that one option
is to calculate `utilities' or `preference values' for each alternative. However,
if we used a utility speci�cation from multinomial logit, Uj = β′xj , where
β is a vector of coe�cients and xj is a vector of observed variables relating
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to alternative j, then some alternatives could have positive utilities and oth-
ers might have negative utilities. As the probability of an alternative is the
squared length of the projection from the state vector onto the vector for the
alternative, positive and negative values would lead to the same result. This
means that we require a method for comparing attributes across alternatives
that always results in positive (or always negative) values. Additionally, a
quantum choice model could have parameters equivalent to alternative spe-
ci�c constants, which would estimate the starting point for the state (which
may not necessarily be zero). This in e�ect acts as an initial preference state
in the multidimensional space. Finally, some alternatives may be compared
more than others, so weights could be de�ned for each pair of alternatives
(with one �xed for normalisation purposes).

3.2 Cosine and sine functions

It is easy to see from Figure 5.5 that cosine and sine functions provide one pos-
sibility for quantum models. As sin2(θ) + cos2(θ) = 1, one possible method

Fig. 5.5: Using geometry within a quantum model

for de�ning quantum probabilities is to �nd the angle θ between the state
vector |z〉 and the projection onto the chosen alternative, ρxj . For a choice
scenario with two alternatives as de�ned in Figure 5.5, cos(θ) = |ρx1

| and
sin(θ) = |ρx2

|. Consequently, �nding the angle θ will give us the probabilities
of both alternatives. We thus need to de�ne the angle θ as a weighted sum
of the di�erences between the attributes of the alternatives. This angles can
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then be used to calculate projections (ρ):

θ = δ +

K∑
k=1

βk(xk1 − xk2),

|ρ(Alt1)| = sin(θ),

|ρ(Alt2)| = cos(θ),

→ ρ(Alt1)
2

+ ρ(Alt2)
2

= 1,

(5.3)

where delta is a constant, k = 1, ...K is an index across the attributes, βk is
a coe�cient for attribute k and xki is the value of attribute k for alternative
i. This approach is used by Lipovetsky (2018) to predict which pizza brands
participants remember. He demonstrates that for more than two alternatives,
we simply need to �nd additional angles:

[sin
2
(θA)] + [cos

2
(θA)] = 1

→ sin
2
(θA) + cos

2
(θA)(sin

2
(θB) + cos

2
(θB)) = 1

→ [sin
2
(θA)] + [cos

2
(θA) · sin2

(θB)] + [cos
2
(θA) · cos2(θB)] = 1

→ [sin
2
(θA)] + [cos

2
(θA) · sin2

(θB)]+

[cos
2
(θA) · cos2(θB) · sin2

(θC)] + [cos
2
(θA) · cos2(θB) · cos2(θC)] = 1.

(5.4)

However, when there are more than two choice alternatives, complications
arise. Firstly, it is not clear which di�erences between alternatives should
be used, as we only require J − 1 di�erences where J is the number of al-
ternatives. Crucially, under this system, a small increase in the attribute
of one alternative may not have the equivalent impact as a small increase
in the attribute of a di�erent alternative. An example of this is given in
Table 5.1. In this set of examples, we have three alternatives {A,B,C} and

Table 5.1: Examples of probabilities under various coe�cients for sine and cosine models

Parameter/Attribute Ex. 1 coefs. Ex. 2 coefs. Ex. 3 coe�s.

Constant A: x 0.615 0.615 0.615
Constant B: y 0.785 0.785 0.785

Attribute for Alt A: ZA 3 3.1 3
Attribute for Alt B: ZB 3 3 3.1
Attribute for Alt C: ZC 3 3 3

Alternative Projection length Ex. 1 prob. Ex. 2 prob. Ex. 3 prob.

A sin(θA) 0.333 0.430 0.243
B cos(θA) · sin(θB) 0.333 0.285 0.454
C cos(θA) · cos(θB) 0.333 0.285 0.304

just a single attribute, Z. We set the relative importance weights βk = 1,
θA = x + ZA − ZB and θB = y + ZB − ZC . For the �rst example, we
demonstrate that precise constants of x = 0.615 and y = 0.785 are required
to allow for the probability of the three alternatives to be identical if the
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alternatives have matching value of 3 for attribute Z. If, in example 2, we
imagine that the value for attribute ZA increases to 3.1, then the probabili-
ties adjust appropriately (the probability of alternative B remains the same
as the probability of alternative C). This is not the case in example 3, where
an equivalent increase in attribute ZB does not result in alternatives A and
C having the same probability. Consequently, we must look for alternative
model frameworks for multi-alternative settings.

3.3 Quantum pairwise comparison framework A (QPCA)

We will now show that an alternative possibility for a quantum model frame-
work is to use regret functions from random regret minimisation (RRM) as
the key component for the de�nition of projection lengths for each alternative.
The deterministic regret (Chorus, 2010) for respondent n, for alternative i,
in choice task t, is given by:

Rint =

K∑
k=1

∑
j 6=i

ln(1 + eβk(xjntk−xintk)) (5.5)

with k = 1, ...,K an index across attributes and βk a coe�cient for the relative
importance of attribute k. This has the potential to work for a quantum
model as the logarithm guarantees that only positive values are generated
from the pairwise comparisons between the alternatives. We can therefore
make the following de�nition for `quantum pairwise comparison version A
(QPCA)' to calculate the length of projection for alternative i (with n the
respondent and t the choice task):

|ρint| = δQPCA,i + I0 +

K∑
k=1

∑
j 6=i

wtij · ln(1 + eβk(xintk−xjntk)), (5.6)

where δQPCA,i are alternative-speci�c constants and I0 is a constant that has
the same value across all alternatives5. Together, these are used to de�ne the
starting point for the state vector in the Hilbert space. wtij is a weight
for the relative importance of the comparison between alternatives i and j,
meaning that it is constant across attributes as it is at the alternative level.
Once these projection lengths have been calculated, the probability for each
alternative can be de�ned simply as:

PQPCA,jnt =
|ρjnt|2∑J
i=1(|ρint|2)

, (5.7)

5Note that xjntk and xintk in Equation 5.6 compared to Equation 5.5 are reversed, as
using negative regret as in RRM models will be ine�ective given the projection lengths are
later squared.
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where i = 1, ...J is an index across the possible alternatives. This means
that to estimate this model, we require K attribute coe�cients, (J)(J−1)

2 − 1

weights, wt, for the relative importance of comparisons between the di�er-
ent alternatives (where the use of logistic transformations ensures that these
weights will sum to one) and J constants to estimate the initial starting
state. Whereas adding a constant to the utility of every alternative does not
have an impact in random utility models, it is multiplying all of the length
of projections by a constant that does not impact the choice probabilities of
alternatives under a quantum system (see Equation 5.2). Consequently, we
can have J parameters for J alternatives to de�ne the starting state (either
by normalising one attribute speci�c constant or by not using I0, the con-
stant that is added to all alternatives). The greater the magnitude of these
constants, the less deterministic the choices become.

3.4 Quantum pairwise comparison framework B (QPCB)

The �nal possibility we consider for a quantum model framework in this
chapter is the use of drift rate functions from the multi-attribute linear bal-
listic accumulator model (Trueblood et al., 2014a). The linear ballistic ac-
cumulator (LBA), was originally designed within mathematical psychology,
and is a model designed to capture both choices and response times (Brown
and Heathcote, 2008). Under LBA, a decision-maker starts with a random
amount of evidence for each alternative. The evidence for each alternative
then grows linearly according to a set of drift rates (with one rate for each
alternative). The �rst to reach some threshold is then the chosen alterna-
tive. This model was then adjusted for alternatives with multiple attributes
(MLBA) and has been used successfully to explain choices between ratings
for eyewitness testimony (Trueblood et al., 2014a), consumer and perceptual
choices (Turner et al., 2018) and gambling and accommodation choices (Co-
hen et al., 2017). Under MLBA, the drift rates are generated from a normal
distribution where the mean drift rates are a function of the attributes of
the alternatives. Crucially, the mean drift rates are often de�ned such that
they are guaranteed to be positive, meaning that they could be used within
a quantum probability framework. The mean drift rate for respondent n, for
alternative i, in choice task t, is de�ned as:

dint = I0 +

K∑
k=1

∑
j 6=i

(
wxk,i,j · βk · (xintk − xjntk)

)
, (5.8)

where I0 is a constant, which can be de�ned such that dj ≥ 0 for all j. Then
additionally K is the number of attributes, wxijntk is a similarity weighting,
βk is an attribute-speci�c scaling coe�cient for attribute k and xintk and
xjntk are the values for alternatives i and j for attribute k. Whilst similar in
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appearance to regret functions, rather than using a logarithm, we instead use
similarity weightings, which are de�ned such that they are an exponentially
decaying function of distance:

wxijntk = exp
(
−(λ1 · [xintk ≥ xjntk] + λ2 [xintk < xjntk])·βk ·|xintk−xjntk|

)
.

(5.9)
Under MLBA, two di�erent values, λ1 and λ2, are used to capture Tver-
sky (1977)'s �ndings that the subjective similarity between A and B and
the subjective similarity between B and A may not be equal. Given that
di�erences between losses and gains have regularly been shown to be impor-
tant in a transport context (Hess et al., 2008; Masiero and Hensher, 2010;
Stathopoulos and Hess, 2012), this is a useful feature for this quantum model
as well. Both λ values should be greater than zero to ensure that attributes
that are more similar have a higher similarity value wxijntk . This results in
weights that are between 0 and 1. Finally, we adjust the drift rate speci�ca-
tion as before to include weights for the relative importance of comparisons
between pairs of alternatives, and to include constants to adjust the initial
state vector. Consequently, the length of the projection for an alternative
j for decision-maker n in choice task t in our quantum pairwise comparison
version B (QPCB) model is:

|ρint| = δQPCB,i + I0 +

K∑
k=1

∑
j 6=i

wti,j ·
(
wxijntk · βk · (xintk − xjntk)

)
, (5.10)

where again δQPCB,i is used to de�ne the starting point for the state vector
and wtij is a weight for the relative importance of the comparison between
alternatives i and j. Once these projection lengths have been calculated, we
can use Equation 5.7 again to calculate the probability of alternatives under
this model.

3.5 Quantum rotation

We also look at how quantum models can explain a pair of related choices
through a `quantum rotation'. Under quantum logic, a separate set of basis
vectors is required for a di�erent choice. For example, if a decision-maker
is selecting their favourite of three alternatives, then the set of basis vectors
could be |Alt1best〉, |Alt2best〉 and |Alt3best〉 (see Figure 5.6 Graph A).

The decision-maker could choose any of the three alternatives and there-
fore there are three possible projections from the state vector |z〉 onto the
three alternatives (with the corresponding projection lengths labelled |ρ1|best,
|ρ2|best and |ρ3|best in Figure 5.6 Graph A). Now suppose the decision-maker
chooses alternative 2. Under quantum logic, the state changes from |z〉 to
|Alt2best〉. However, if the decision-maker was then asked to make a 2nd
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choice to pick their least favourite, then the projection lengths from |Alt2best〉
to |Alt1best〉 or |Alt3best〉 are both zero, as these are orthogonal vectors.
Consequently, to calculate probabilities for the 2nd choice, we must instead
assume that the the initial state can still accurately capture the di�erence
between the 2nd and 3rd favoured alternatives. This means the probabilities
for the 2nd choice can be found by reducing the dimensionality (moving from
the initial state to the new state, |z2〉, in Figure 5.6 Graph B).

Under a typical MNL, the utility (or equivalently regret in RRM) of pick-
ing alternative i can easily be adapted to a corresponding utility for not
picking alternative i:

U(alti−worst) = −U(alti−best). (5.11)

For quantum models, however, this translation is not as simple. This is
a consequence of using the squared length of the projections to calculate
the probability of alternatives (see Equation 5.7), as using 'negative lengths'
for each projection will result in the same probabilities for each alternative.
However, when there are only three alternatives (a regular setting for many
surveys), there exists a simple transformation. Given that there are two
alternatives left, the probability of picking one option as the second best
(or second most preferred) equals the probability of picking the other as the
worst. Consequently given alternatives i and j, we can de�ne the length of
the projection for alternative i being the worst as:

|ρiworst | = |ρjbest |. (5.12)

This can be represented graphically by moving from Figure 5.6 Graph B to
Graph C. A di�erent translation would be required if there were more than
two alternatives left. For example, one could simply use di�erences in favour
of the alternative rather than against the alternative in the de�nitions of
the projection length for each alternative. For example, Equation 5.6 would
become:

|ρint| = δQPCA,i +

K∑
k=1

∑
j 6=i

wtij · ln(1 + eβk(xjntk−xintk)). (5.13)

Equivalently, using xk,j − xk,i instead of xk,i − xk,j in Equation 5.10 would
result in an appropriate translation for QPCB:

|ρint| = δQPCB,i + I0 +
∑
j 6=i

K∑
k=1

wti,j ·
(
wxk,i,j · βk · (xk,j − xk,i)

)
, (5.14)

However, Equations 5.11-5.14 only work under the assumption that `worst'
is considered directly opposite to `best' and the sensitivities to attributes is
identical when picking favoured and least favoured alternatives.
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It is possible that the attributes which are important for a best choice are
not necessarily the attributes which are important for a worst choice (Gier-
giczny et al., 2017). The simplest way for taking this into account would be to
estimate a completely separate set of parameters for worst choices compared
to best choices. A di�erent possibility under quantum logic is to instead have
a new set of basis vectors, |Alt1worst〉, |Alt2worst〉 and |Alt3worst〉 represent-
ing the choice of the worst alternative. This means that if a decision-maker
chose alternative 2 as the best alternative, then the probability for choos-
ing, for example, alternative 3 as the worst, is now the squared length of
the projection from |z2〉 onto |Alt3worst〉 (rather than |Alt1best〉, as would
be the case under Equation 5.12). This means that the length of the pro-
jection has changed (see Figure 5.6 Graph D). To calculate the new length
of the projection, we would need to know how to make the change of basis
from the Hilbert space represented by |Alt1best〉, |Alt2best〉 and |Alt3best〉
to the space represented by |Alt1worst〉, |Alt2worst〉 and |Alt3worst〉. Thus
we must estimate a change of basis matrix, M∗ that appropriately adjusts
the lengths of the projections (with the matrix being of size n, which is the
number of alternatives in the initial choice scenario). For all models, this ma-
trix maps original utilities/lengths, p, to new ones, q, simply through matrix
multiplication:

qj =

n∑
i=1

M∗j,i · pi (5.15)

Mathematically, this is e�ectively simultaneously a change in both underlying
preferences towards alternatives and a change in scale. In our empirical
application, we test this idea of a `quantum rotation' for MNL, RRM, QPCA
and QPCB to see whether the rotation can capture as much of a di�erence
in the di�erent sensitivities as a di�erent set of parameters would.

4 Empirical application

In this section, we test our di�erent speci�cations of quantum models on
a number of route choice datasets. First, we describe the seven di�erent
datasets that we use. Three of these are basic route choice datasets, with
the other four providing examples under which we can test `quantum rota-
tions'. We apply the models to the three basic datasets �rst, whilst also
considering parameter estimates and out-of-sample validation for the most
complex of these datasets. Next, we consider a best-worst dataset where
we test the ability of our quantum models to capture both best and worst
choices. We then also test quantum rotation on a dataset where the order of
the alternatives and the attributes is manipulated, thus testing whether this
rotation can capture ordering e�ects. We additionally consider out of sample
validation for these datasets. Finally, we test di�erent variations of quantum
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models on our two `moral choice' datasets. For all models, we use R packages
maxLik (Henningsen and Toomet, 2011) and apollo (Hess and Palma, 2019)
for estimation of the log-likelihood functions.

4.1 Datasets

4.1.1 Danish dataset

The �rst dataset we use comes from the Danish value of travel time study
(Fosgerau, 2006). 545 participants completed a total of 4,214 choice tasks.
Each task involved a simple choice between two routes, where each task has
a cheap but slow alternative and a fast but expensive alternative.

4.1.2 Swiss dataset

The second dataset we use comes from the Swiss value of time study (Ax-
hausen et al., 2008). 389 participants each make 9 binary route choice tasks.
The two alternatives are described by travel cost, travel time, headway and
the number of interchanges required to complete the trip.

4.1.3 UK dataset 1

The third dataset that we use is a survey asking public transport commuters
living in the UK to make a set of ten choices between three route alternatives
in a stated preference survey. A total of 368 participants completed the survey
resulting in 3,680 choices. Each choice task involves an invariant reference
trip and two hypothetical alternatives. Each alternative is described by seven
attributes: travel time (in minutes), fare (£), rate of crowded trips, rate of
delays (both out of 10 trips), the average length of delays (across delayed
trips) and the availability and cost of a provision of an information service
(£). Full details of the dataset are given by Hess and Stathopoulos (2013).

4.1.4 Best-worst dataset

The best-worst dataset we use is similar to our UK dataset involving public
transport commuters. A total of 391 participants complete 10 choice tasks
described by three alternatives with the same set of attributes as before in the
previous UK dataset. As participants choose a best and a worst alternative
in each choice task, we have a total of 7,820 choices. For full details of the
dataset, readers should refer to Stathopoulos and Hess (2012).

4.1.5 UK dataset 2

The second UK dataset that we use in this chapter comes from the most recent
value of travel time study conducted in the UK (Batley et al., 2017). This
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dataset comprises of 15,045 choices between two alternatives, one of which is
cheaper and the other faster (SP1 in Batley et al. 2017). The advantage of
this dataset is that the cheaper alternative is sometimes �rst and sometimes
second, and additionally the order in which the attributes are displayed is
also manipulated across respondents. These ordering e�ects have previously
been found to be signi�cant (Hess et al., 2017), making this an appropriate
dataset to test quantum rotations on.

4.1.6 First moral choice dataset

The �rst `moral choice' dataset we use involves `taboo trade-o�s' (Chorus
et al., 2018). Decision-makers choose between the introduction of a new
transport policy or keeping the status quo. To simplify the choice scenarios,
each new policy o�ered simply an increase or decrease for four attributes: 300
EUR vehicle ownership tax, 20 minutes travel time for each car commuter per
day, 100 serious injuries in tra�c accidents and 5 deaths in tra�c accidents.
This results in a total of 16 possible new policies, which are o�ered in turn to
each of 99 decision-makers, resulting in a dataset with a total of 1,584 choices.
Chorus et al. (2018) then de�ne a choice as involving a `taboo trade-o�' if
a decision-maker could choose a policy that involves decreasing tax or travel
time (a secular attribute) at the cost of increasing the number of injuries or
deaths (a sacred attribute).

4.1.7 Second moral choice dataset

The �nal dataset we test involves decision-makers completing two sets of
choice tasks based on an individual's willingness to accept longer commutes
for better salaries (Beck and Hess, 2016). The �rst set involved trade-o�s
between the individual's current travel time and salary or an increased salary
(of 500 or 1000 SEK in net wage per month) at a cost of an increase in one-
way travel time (of either 10 or 25 minutes). The second set additionally
included attributes for increased travel time and salaries for the partner of the
decision-maker, meaning that the decision-maker has to make choices about
who to prioritise. While the �rst may involve typical time-cost trade-o�s
that can potentially be captured well with RUM models, the latter involves a
more complex decision context without any `crisp' trade-o� element in that
there may not be a clear ethical protocol for how to make the decision. All
choice tasks included a status quo alternative, a new alternative and a `I am
indi�erent' option. A sample of of 1,179 households (with both partners in
each household, resulting in 2,358 individuals) completed 4 tasks for the �rst
set involving only attributes a�ecting themselves, and 4 or 5 tasks for the
second set with attributes impacting both members of the household. This
resulted in a total of 20,041 choice observations.
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4.2 Basic models

For basic tests of our quantum models, we use the Danish, Swiss and �rst
UK datasets. We test the models on all three datasets before testing out-of-
sample performance of the models on the UK dataset.

4.2.1 Estimation results

For all datasets, we compare the quantum models against multinomial logit
(MNL). We additionally test the models against random regret minimisation
(RRM) for our dataset with more than two alternatives. For all of our models
we use an initial parameter search algorithm, based on Bierlaire et al. (2010)'s
heuristic for non-linear global optimisation. This reduces the risk of models
converging to poor local optima. We test all three quantum speci�cations.
Results for these models are given in Table 5.2.

For the quantum pairwise comparison version A (QPCA) model, we �nd
that for the Danish dataset, there is no signi�cant di�erence in model �t by
including a number of di�erent starting state vector parameters correspond-
ing to the number of alternatives. Consequently, I0 and δ1 are �xed to zero.
Additionally, �xing one of the attribute scaling coe�cients, β1, has no im-
pact on model �t either. This is also the case for the Swiss dataset, but not
for the UK dataset, which requires a full set of attribute scaling coe�cients.
Whilst the Swiss model improves with a full sets of constants, there is no
signi�cant impact on model �t for the UK dataset when all constants are
removed, as the alternative comparison weights, wt, more e�ectively capture
the underlying baseline preferences towards the di�erent alternatives (with
worse model �t obtained if alternatives speci�c weights are used instead of
alternative comparison weights).

We observe similar results for quantum pairwise comparison version B
(QPCB), which also only requires one parameter to calculate the initial start-
ing state (δ1 for the Danish and Swiss datasets, I0 for the UK dataset). For
identi�cation purposes, we �x one λ parameter to a value of 1, as dividing λ
by some value x and multiplying the β parameters by x results in projection
lengths that are also multiplied by x (hence not changing the probability
with which each alternative is chosen, see Equation 5.10). For the Danish
dataset, the second λ coe�cient can also be �xed to zero without impacting
model �t.

Finally, we also test our trigonometric quantum model (TQ) based on the
use of sines and cosines. As discussed previously, the TQ model would not
work well for more than two alternatives, therefore we only test it on the
Danish and Swiss datasets.

Most signi�cantly, the QPCA and QPCB models have better model �t
than both MNL and RRM across all three datasets, with a large improvement
in particular for the Danish and Swiss datasets. The trigonometric quantum
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Table 5.2: Results from applying quantum models to the three initial stated preference
datasets

Danish

Model pars LL AIC BIC

MNL 3 -2,301.25 4,608.50 4,627.54

QPCA 2 -2,012.25 4,028.50 4,041.19

QPCB 3 -2,010.85 4,027.70 4,046.74

TQ 3 -2,490.46 4,986.92 5,005.96

Swiss

Model pars LL AIC BIC

MNL 5 -1,667.97 3,345.94 3,376.74

QPCA 5 -1,587.67 3,185.33 3,216.13

QPCB 6 -1,569.46 3,150.92 3,187.88

TQ 5 -1,699.16 3,408.33 3,439.13

UK

Model pars LL AIC BIC

MNL 10 -3,360.43 6,740.86 6,802.97

RRM 10 -3,363.91 6,747.82 6,809.93

QPCA 10 -3,339.00 6,698.00 6,760.11

QPCB 12 -3,327.63 6,679.25 6,753.78

model does not perform as well, having worse �t than MNL for both the
Danish and Swiss datasets. This is perhaps unsurprising given that sine and
cosine function oscillate. Consequently, there is a restricted range of values
that the estimated parameters can take such that the largest di�erence in
attribute value still results in the largest value after a sine or cosine function
is applied.

In Table 5.3, we also give some parameter estimates for models run on the
UK data. Whilst the outputs from a quantum model cannot be translated
into measures such as the value of travel time, we can get an indication of the
relative importance of the attributes by dividing the parameter estimates by
the sum of the absolute value of all eight attribute coe�cients6. We �nd that
MNL and RRM have near identical relative importances, again suggesting
that they are very similar models. QPCA �nds relative importances which
are largely similar to their respective values under RRM, with the exception
of the values for average delay and rate of delays, both of which are more
important under QPCA. Under QPCB, rather di�erent values are found. In
particular, the relative importance of the fare is higher under QPCB. It is

6Note that we use a logarithmic transformation of fare as we �nd non-linear sensitivities
in this data. In line with Hess et al. (2012), a term for reliability is also added by calculating
the expected length of delay (rate of delays multiplied by average delay time).
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notable that under both quantum models, the comparison of alternatives 1
and 2 is most important, followed by the comparison between 1 and 3. As
alternative 1 is the reference alternative, this suggests that decision-makers
give more importance to their current alternative. This implies that if they
are to choose a new alternative (2 or 3) then it is more important that
this alternative is better than the reference alternative than the other new
alternative.

4.2.2 Validation results

We also try forecasting for the quantum models to test whether they perform
well in out-of-sample validation. In this case, we split the UK dataset into
�ve subsamples. For each subsample, we �rst estimate the parameters for
the MNL, RRM, QPCA and QPCB models on the �rst 80% of the data
before �nding the log-likelihood of the remaining 20% validation set under
the estimated parameters found for the initial set. For four and three out of
�ve subsets respectively we observe that QPCA and QPCB have better out-
of-sample log-likelihoods than MNL or RRM (see Table 5.4) assuring that
the improved goodness-of-�t observed in the estimation results are not due
to over�tting the data.

4.3 Models with quantum rotation

Given that quantum logic can explain ordering e�ects, it is also important
that any quantum choice model retains this property. We therefore also look
at the ability of our models to incorporate `quantum rotations', as de�ned in
Section 3.5.

4.3.1 Best-worst data �ndings

For our best-worst data, we try �ve di�erent variations of each model, in-
cluding three di�erent versions of `quantum rotations':

1. A basic structure for each model where a `single' set of parameters
are estimated for predicting both best and worst choices, where we
simply take negative values (as described in Section 3.5) to translate
from describing a best alternative to describing a worst alternative for
MNL and RRM. For the quantum models, we try two adjustments for
picking the worst alternative as oppose to the best alternative. The
�rst method follows the rotation de�ned by Equation 5.12, such that
the probability of choosing an alternative as second best is simply the
probability that the other unchosen alternative is chosen as the worst.
The second method we test is to use di�erent projection lengths as
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Table 5.3: Parameter estimates for the models ran on the UK data

UK dataset MNL RRM QPCA QPCB

Log-likelihood -3,360.43 -3,363.91 -3,339.03 -3,327.63
AIC 6,740.86 6,747.82 6,698.05 6,679.25
BIC 6,802.97 6,809.93 6,760.16 6,753.78

βTT

estimate -0.05 -0.03 -0.39 -0.03
robust t-ratio -9.50 -9.58 -5.58 -2.64
rel. importance 0.72% 0.63% 0.68% 0.48%

βLFare

estimate -6.00 -4.11 -50.29 -6.54
robust t-ratio -18.87 -17.66 -7.27 -2.59
rel. importance 86.08% 86.71% 87.17% 92.70%

βCrowd

estimate -0.22 -0.15 -1.32 -0.18
robust t-ratio -8.58 -8.59 -4.36 -2.60
rel. importance 3.16% 3.16% 2.29% 2.60%

βDelay

estimate -0.03 -0.02 -0.82 -0.08
robust t-ratio -3.25 -3.06 -2.92 -2.25
rel. importance 0.43% 0.42% 1.42% 1.12%

βRate

estimate -0.19 -0.12 -2.08 -0.07
robust t-ratio -5.96 -5.82 -5.38 -1.97
rel. importance 2.73% 2.53% 3.60% 0.97%

βRel

estimate -0.06 -0.04 -0.22 -0.01
robust t-ratio -2.64 -2.71 -2.81 -1.82
rel. importance 0.86% 0.84% 0.38% 0.18%

βInf

estimate -0.09 -0.05 -0.36 -0.01
robust t-ratio -1.13 -0.95 -0.59 -0.32
rel. importance 1.29% 1.05% 0.62% 0.13%

βInfF

estimate 0.33 0.22 2.22 0.13
robust t-ratio 4.95 4.85 4.57 2.67
rel. importance 4.73% 4.64% 3.84% 1.81%

ascalt1
estimate 0.39 0.27 0.00 0.00

robust t-ratio 5.85 4.17 �xed �xed

ascalt2
estimate 0.16 0.17 0.00 0.00

robust t-ratio 3.3 3.38 �xed �xed

wtPC12

estimate 40.58% 43.66%
robust t-ratio 28.90 14.14

wtPC13

estimate 36.59% 36.09%
robust t-ratio 25.29 13.31

I0
estimate 0.00 0.24

robust t-ratio �xed 3.01

λ2

estimate 16.17
robust t-ratio 2.09
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Table 5.4: Results from holdout samples for the di�erent models for the UK dataset

UK dataset MNL RRM QPCA QPCB

Full Dataset Estimate -3,360 -3,364 -3,339 -3,328

Subset 1
Estimate -2,651 -2,653 -2,633 -2,627
Forecast -713 -714 -709 -706

Subset 2
Estimate -2,721 -2,725 -2,701 -2,688
Forecast -642 -641 -639 -642

Subset 3
Estimate -2,694 -2,697 -2,670 -2,658
Forecast -667 -668 -670 -671

Subset 4
Estimate -2,682 -2,685 -2,672 -2,663
Forecast -681 -682 -670 -668

Subset 5
Estimate -2,684 -2,685 -2,672 -2,662
Forecast -679 -680 -670 -668

de�ned by Equations 5.13 and 5.14, which uses di�erences in attributes
in favour of the alternative in question (rather than di�erences against).

2. Allowing for a completely `separate' set of parameters for the best
choices compared to the worst. This is equivalent to running two sep-
arate models where the dataset is split into two subsets: one with the
only the best alternative choice tasks and one with only the worst al-
ternative choice tasks.

3. A quantum rotation model with a diagonal rotation matrix M∗1 (with
zeros o� the diagonal). This results in 3 additional parameters for MNL
and RRM, and 2 for the quantum models (as one needs to be �xed
for identi�cation purposes, as Equation 5.7 means that changing all
projection lengths by the same constant results in the same probability
with which each alternative is chosen).

4. A quantum rotation model with a symmetric rotation matrixM∗2 . This
results in 5 additional parameters for all models, as one must now also
be �xed for identi�cation purposes for MNL and RRM (increasing all
entries of a column ofM∗ has no impact on the probabilities of choosing
an alternative).

5. A quantum rotation model with a fully �exible rotation matrix M∗3 .
This results in 6 extra parameters for MNL and RRM and 8 extra
parameters for the quantum models.

The results of these models are given in Table 5.5. For each model,
the equation that is used to adjust utilities/lengths for best alternatives to
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4. Empirical application

utilities/lengths for worst alternatives is given by the best-worst adjustment
equations7 at the top of Table 5.5.

Unsurprisingly, every model �nds a signi�cant improvement in model �t
by having a separate set of parameters for the best alternatives compared
to the worst alternatives (in line with the results of Giergiczny et al. 2017).
This suggests that the relative sensitivities to the di�erent attributes for a
best alternative are not necessarily the same as the relative sensitivities to
the di�erent attributes for a worst alternative. Additionally, we also observe
that the quantum models that use Equations 5.13 and 5.14 for best-worst
rotations result in better model �t than models that use Equation 5.12. This
is convenient in that rotations based on Equation 5.12 are in�exible and
cannot be simply expanded for best-worst choice scenarios involving more
than three alternatives.

Table 5.5 also gives log-likelihood gains (LL Gains) for the models using
a quantum rotation as a percentage of the improvement gained by using a
`separate' set of parameters compared to a `single' set. Crucially, we �nd
that both quantum models (and RRM) make vast improvements by incorpo-
rating a quantum rotation, compared to models with a single set of parame-
ters. Additionally, models with symmetric or fully �exible rotation matrices
(Quantum rotation 2 and 3 in Table 5.5) provide better model �t for the
second version of each quantum model than their respective `separate' coun-
terparts. Notably, even simple rotations work well for these models, with only
two additional parameters required for QPCA and QPCB (2nd versions) to
achieve 99% and 95% log-likelihood gains with respect to the improvement
of using separate sets of parameters compared to a single set. This suggests
that the concept of a `quantum rotation' is particularly valid for a quantum
model. It also demonstrates that the projection onto a basis vector for a best
alternative is not equivalent to the projection onto a basis vector for a worst
alternative. Consequently, we �nd that best-worst choices in this dataset are
incompatible: a quantum rotation is required to move from a set of basis
vectors for best choices to a di�erent set of basis vectors for worst choices.

The impact of the `quantum rotation' is that the probabilities of each
alternative being chosen is altered. For the QPCA and QPCB (2nd version)
quantum rotation models, the corresponding (fully �exible matrix) rotation
matrices that are estimated are:

MQPCA =

 1.000 −0.018 −0.004

−0.117 2.058 0.132

−0.159 0.166 1.826

 ,MQPCB =

 1.000 0.270 0.192

−0.009 2.270 0.484

−0.396 0.416 2.393

 .
(5.16)

7Note that these adjustments are not applied to the `separate' models, for which a
completely separate set of parameters is estimated for the best choice compared to the
worst choice.
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4. Empirical application

The impact of these matrices on the probability with which each alternative
is chosen is demonstrated in Table 5.6. We start with a base scenario of two
alternatives having a length of projection of 3 and one alternative having a
length of 5, and consider how the probability of each alternative changes after
a quantum rotation. For both models, a key change is that the probability of

Table 5.6: The impact on the probability of alternatives being chosen after quantum
rotations

Scenario 1 Scenario 2 Scenario 3

Length of projection

Alternative 1 5 3 3
Alternative 2 3 5 3
Alternative 3 3 3 5

Initial Probability

Alternative 1 58.1% 20.9% 20.9%
Alternative 2 20.9% 58.1% 20.9%
Alternative 3 20.9% 20.9% 58.1%

New probability under QPCA

Alternative 1 28.0% 5.6% 6.4%
Alternative 2 41.2% 71.6% 31.3%
Alternative 3 30.9% 22.8% 62.3%

New probability under QPCB

Alternative 1 27.2% 9.6% 9.0%
Alternative 2 45.1% 64.6% 33.6%
Alternative 3 27.7% 25.8% 57.4%

choosing alternative 1 decreases. As alternative 1 is the status quo alternative
in this dataset, this suggests that an individual is more likely to choose the
status quo as a best choice than a worst choice. Additionally, alternative
2 is more likely to be chosen than alternative 3 (as the worst). The higher
values for elementsM2,3 andM3,2 forMQPCB compared toMQPCA results in
scenarios 2 and 3 being less deterministic after a rotation for QPCB compared
to QPCA.

4.3.2 Contextual and ordering e�ects

Our next test of quantum rotation is to investigate its ability to capture
contextual e�ects. For example, our second UK dataset has some choice sets
with the cheaper alternative shown �rst, and some with the faster alternative
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Chapter 5. Quantum probability: a new method for modelling travel choices

shown �rst. Additionally, cost is sometimes on the left and sometimes on the
right. Whilst we could again use a full set of di�erent parameters for the
four di�erent scenarios, quantum rotations could also be used. Two di�erent
quantum rotations are required, one for the order of the alternatives and the
other for the order of the attributes. If a quantum rotation improves the
model, it implies that the choice scenarios cannot be treated as equivalent if
the context in which the choice is presented changes. We again test single
and separate sets of parameters as well as a two versions of quantum rota-
tions. The basic MNL and RRM models use parameters for cost and time
as well as having one alternative speci�c constant8. QPCA and QPCB addi-
tionally have a second alternative speci�c constant9 and QPCB additionally
has two sensitivity parameters. The separate parameter models simply have
four times as many parameters (a set of parameters for each combination of
attribute and alternative order). The �rst set of rotations use diagonal ma-
trices, resulting in one extra parameter per rotation for the quantum models
and two extra per rotation for MNL and RRM. The second set uses matrix
rotations with full sets of free parameters. The results of these models are
given in Table 5.7.

Table 5.7: Results from applying quantum rotations to models for UK dataset 2

models MNL RRM QPCA QPCB

Single

parameters 3 4 5
Log-likelihood -9,603.17 -9,369.61 -9,210.60

BIC 19,235 18,778 18,469

Separate

parameters 12 16 20
Log-likelihood -9,584.18 -9,353.15 -9,189.43

BIC 19,284 18,860 18,571

Quantum Rotation 1

parameters 7 7 6 7
Log-likelihood -9,593.83 -9,591.44 -9,359.81 -9,201.74

BIC 19,255 19,250 18,777 18,471
LL Gain 49.2% 61.8% 59.6% 41.9%

Quantum Rotation 2

parameters 11 11 10 11
Log-likelihood -9,592.17 -9,588.88 -9,355.14 -9,198.82

BIC 19,290 19,284 18,806 18,503
LL Gain 57.9% 75.3% 87.9% 55.7%

For all models, it appears that using separate sets of parameters results
in an improvement in model �t. Whilst the quantum rotation models are not
as successful as capturing the di�erence between the contextual situations,

8Note that whilst these models perform identically when there are only two alternatives,
this is not the case when a quantum rotation is applied. This is a result of di�ering levels
of impact on the di�erence in utility of the two alternatives.

9This does not cause identi�cation issues as increasing both values here simply results
in a less deterministic choice. As a contrast to the previous models in this chapter, the 2nd
alternative speci�c constant results in a signi�cant improvement for both quantum models
for this dataset.
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4. Empirical application

full matrix rotations for QPCA result in a model that is only 2 log-likelihood
units worse than a model with a full set of separate parameters, which has 6
additional parameters. Consequently, the quantum rotation models achieve
the best BIC values. Notably, both quantum models signi�cantly outperform
the MNL and RRM models. The parameter estimates for the quantum ro-
tation matrices for changing from having the cheaper alternative on the left
(�rst) to on the right (second) are:

MQPCA =

[
1.000 0.029

−0.014 1.130

]
, MQPCB =

[
1.000 −0.053

0.102 1.225

]
. (5.17)

The estimates for the quantum rotation matrices for changing from having
the travel time �rst to having the travel cost �rst are:

MQPCA =

[
1.000 0.101

−0.001 1.097

]
, MQPCB =

[
1.000 0.043

−0.008 0.898

]
. (5.18)

We use similar scenarios before to test the impact of these rotations on the
probabilities of picking the �rst or second alternatives. Using lengths of 3
and 5 for the base case (with the cheaper alternative �rst and the travel time
�rst), the respective probabilities for choosing the alternatives are 27% for
the alternative with length 3 and 73% for the alternative with length 5 (See
Table 5.8). For all scenarios and all models, alternative 2 is always more likely
to be chosen if it is the cheaper alternative, demonstrating that there is a
bias towards picking the cheaper alternative. Whilst there is little change in
the probabilities under QPCA for having the travel cost or travel time �rst,
QPCB rotation parmeters results in alternative 1 being picked more often if
travel cost is listed �rst. This is a result of having a value lower than 1 in
matrix element MQPCB2,2

.

4.3.3 Validation results for quantum rotations

We now again test for over�tting, this time for models for which full quantum
rotations have been applied. We test both the quantum rotations from best
to worst choice for our best-worst dataset and both rotations for the 2nd UK
dataset. In all cases, the �rst 80% of the dataset is used for model estimation,
with the remaining 20% used for validation. The results of these models
are given in Table 5.9. Crucially, it appears that for both datasets, neither
QPCA or QPCB over�ts the data. It is in these models that we see more
of a di�erence between the two quantum models, with QPCB outperforming
QPCA in 7 out of 10 validation subsets.

4.4 Models for moral choice data

In our �nal results section, we apply variations of quantum models with and
without quantum rotations to both moral choice datasets, demonstrating how
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Table 5.8: Probabilities of picking alternatives after quantum rotations under both QPCA
and QPCB

QPCA QPCB
Scenario 1 Scenario 2 Scenario 1 Scenario 2

Length of projection

Slow & cheap 3 5 3 5
Fast & expensive 5 3 5 3

Cheaper alternative �rst, travel time �rst

Slow & cheap 26.5% 73.5% 26.5% 73.5%
Fast & expensive 73.5% 26.5% 73.5% 26.5%

Cheaper alternative second, travel time �rst

Slow & cheap 23.9% 70.1% 15.3% 57.2%
Fast & expensive 76.1% 29.9% 84.7% 42.8%

Cheaper alternative �rst, travel cost �rst

Slow & cheap 29.0% 72.3% 34.1% 78.9%
Fast & expensive 71.0% 27.7% 65.9% 21.1%

Cheaper alternative second, travel cost �rst

Slow & cheap 26.7% 69.0% 21.5% 64.6%
Fast & expensive 73.3% 31.0% 78.5% 35.4%
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Table 5.9: Results from holdout samples for the di�erent models under a full quantum
rotation for the best-worst and 2nd UK datasets

Best-worst dataset

Model MNL RRM QPCA QPCB

Full Dataset Estimate -5,730 -5,671 -5,611 -5,591

Subset 1
Estimate -4,563 -4,515 -4,457 -4,439

Forecast -1,172 -1,157 -1,157 -1,156

Subset 2
Estimate -4,606 -4,573 -4,520 -4,505

Forecast -1,129 -1,103 -1,096 -1,091

Subset 3
Estimate -4,534 -4,480 -4,430 -4,431

Forecast -1,203 -1,198 -1,186 -1,188

Subset 4
Estimate -4,628 -4,578 -4,536 -4,519

Forecast -1,105 -1,095 -1,078 -1,074

Subset 5
Estimate -4,570 -4,522 -4,485 -4,473

Forecast -1,165 -1,154 -1,131 -1,122

UK dataset 2

Model MNL RRM QPCA QPCB

Full Dataset Estimate -9,592 -9,589 -9,355 -9,199

Subset 1
Estimate -7,722 -7,721 -7,491 -7,386

Forecast -1,873 -1,871 -1,866 -1,816

Subset 2
Estimate -7,667 -7,665 -7,475 -7,337

Forecast -1,928 -1,927 -1,882 -1,864

Subset 3
Estimate -7,546 -7,544 -7,445 -7,374

Forecast -2,079 -2,077 -1,914 -1,827

Subset 4
Estimate -7,671 -7,668 -7,484 -7,397

Forecast -1,924 -1,924 -1,873 -1,903

Subset 5
Estimate -7,728 -7,724 -7,516 -7,451

Forecast -1,869 -1,870 -1,841 -1,845
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they can capture changes in perspective in moral contexts.

4.4.1 A quantum rotation for taboo trade-o�s

For the �rst set of models tested for the taboo trade-o� dataset, we do not
include any parameters to control for the presence of a taboo trade-o�. We
test a logit model as a comparison against two quantum models speci�ed by
Equations 5.10 and 5.3 respectively. Whilst models based on sine and cosine
functions will likely not work for three or more alternatives (see Table 5.1
for an explanation of this), we only have two attribute levels in this dataset
(which additionally makes the use of QPCB less desirable). The results of
these models are given by Table 5.10. For both the quantum pairwise com-
parison model (QPCA) and the trigonometric quantum model (TQ), we �nd
that the impact of the additional alternative speci�c constant is insigni�cant,
thus we have 5 parameters for each of the models. In this case, neither basic
quantum model performs as well as the basic logit model. Whilst QPCA ap-
pears to �nd nearly identical ratios for the estimates for the di�erent attribute
coe�cients, the trigonometric quantum model assigns a higher importance
to travel time.

Table 5.10: Results of basic models applied to the taboo trade-o� dataset

Model Pars. LL BIC
Ratios

Tax/Time Injuries/Time Deaths/Time

Logit 5 -721.23 1,479.30 1.88 2.14 1.52
QPCA 5 -725.40 1,487.64 1.90 2.13 1.49
TQ 5 -722.94 1,482.72 1.68 1.85 1.32

Next, we apply quantum rotations. In this case, a quantum rotation is
used to capture the shift in perception of the alternatives in the presence of a
taboo trade-o�. Thus, if the decision-maker can decrease travel time or tax at
the cost of increasing the number of fatalities or serious injuries, a quantum
rotation is applied to the estimated projection lengths. As multiplying each
projection by the same factor will result in no change in the probabilities with
which the alternatives are chosen, the �rst element of the rotation matrix
must be �xed to one. We then test three di�erent rotations with varying
amounts of �exibility: a diagonal matrix (QR1), a symmetrical matrix (QR2)
and a fully �exible matrix (QR3). The results of these models are given in
Table 5.11, with the rotation matrix elements that are estimated given in
bold.

For both types of quantum models, we see a signi�cant improvement in
log-likelihood from the addition of 1 rotation parameter. However, whilst
the addition of further parameters continues to improves log-likelihood, this
results in a worse BIC. Crucially, Chorus et al. (2018)'s `Generic Taboo Trade-
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4. Empirical application

Table 5.11: Results of the quantum rotation models applied to the taboo trade-o� dataset

Quantum Pairwise Comparison A Quantum rotation matrix

Version Parameters Log-likelihood BIC M[1,1] M[1,2] M[2,1] M[2,2]

Basic 5 -725.40 1,487.64 1.00 0.00 0.00 1.00
QR1 6 -718.78 1,481.77 1.00 0.00 0.00 1.40
QR2 7 -716.90 1,485.37 1.00 0.18 0.18 1.18
QR3 8 -716.49 1,491.92 1.00 0.32 -0.06 1.55

Trigonometric Quantum Quantum rotation matrix

Version Parameters Log-likelihood BIC M[1,1] M[1,2] M[2,1] M[2,2]

Basic 5 -722.94 1,482.72 1.00 0.00 0.00 1.00
QR1 6 -717.33 1,478.86 1.00 0.00 0.00 1.29
QR2 7 -714.21 1,479.99 1.00 0.12 0.12 1.32
QR3 8 -713.63 1,486.20 1.00 0.30 -0.17 1.84

O� Aversion' (TTOA) model (which is a logit model with an additional pa-
rameter that adds a penalty for the presence of a taboo trade-o�) achieves
a log-likelihood of −719.47 and a BIC of 1,483.15, values which are both
worse than the QR1 models tested here. As a contrast to the earlier results
in this chapter, the trigonometric quantum model outperforms the quantum
pairwise comparison model. This is in part possibly due to the fact that
there is less variation in the attribute levels in the choice tasks. Notably, all
rotation models have a value greater than 1 for element M2,2, which, all else
being equal, would mean that the decision-maker is more likely to choose
the 2nd alternative (which is the status quo alternative) in the presence of a
taboo trade-o� (in line with the results of Chorus et al. 2018). However, the
di�erent estimates for M1,2 and M2,1 mean that the overall impact is more
complex for QR2 and QR3. Table 5.12 gives the probability of supporting
the new policy before the quantum rotation and after it for both QR3 mod-
els. Crucially, in both models, the predicted shares of supporting a policy
are closer on average to the observed shares than in the TTOA model.

For QPCA, the probabilities tend to become less extreme, whereas they
often become more extreme under the TQ model. Crucially, however for both
models, if the lengths are similar, then the probability for the status quo
increaseses in the presence of a taboo trade-o�. Additionally, both models
have smaller mean absolute deviations from the true share of support than
the TTOA model.

4.4.2 A quantum rotation when you consider your partner

For the datasets on willingness to accept longer commutes for better salaries,
there are two distinct choice sets: the �rst only includes factors impacting the
decision-maker, the second includes impacts on the partner. Consequently,
we �rst test the di�erence between models that treat the two sets as the same
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4. Empirical application

(and thus have the same parameter estimates for the alternative speci�c
constants and utility coe�cients for the impact of changes in salary and
travel time for the decision-maker, across both choice sets). The second
set of models is essentially made up of two separate components, as it has
entirely di�erent sets of parameters for the di�erent choice sets. We test both
random regret minimisation models (which were previously demonstrated
(Hess et al., 2014) to be e�ective for this dataset due to the presence of
an indi�erent option) as well as the quantum pairwise comparison model
based on Equation 5.10. All models simply estimate a constant for the regret
(for RRM) or projection length (for the quantum model) for the indi�erent
alternative. The results of these models are given in Table 5.13.

Table 5.13: Models with and without separate sets of parameters for the two di�erent
choice sets

Model Separate Pars. Free Parameters Log-likelihood BIC

RRM No 6 -12,784.21 25,628
RRM Yes 10 -12,426.71 24,952
QPCA No 7 -12,624.13 25,318
QPCA Yes 12 -12,289.38 24,698

Regardless of whether RRM and QPCA are compared with or without
separate parameters, the results indicate that the quantum models provide a
large gain in model �t as well as substantially lower BIC values. Additionally,
both QPCA and RRM �nd clear evidence that separate sets of parameters
can be used to improve model �t, demonstrating that there is an inconsistency
in how a decision-maker considers factors impacting themselves compared to
when there are also factors impacting their partner.

Crucially, however, this inconsistency or `change of mindset' incurred
through changing from thinking about just yourself compared to yourself
and your partner could be captured by a quantum rotation. Thus, for our
quantum rotation models, we estimate a single set of coe�cients that apply
to choices made in both choice sets, and instead include a quantum rotation
matrix for adjusting the projection lengths appropriately when additionally
considering travel time and salary changes for the partner. We again test
diagonal, symmetric and fully �exible matrices. The results of these models
are given in Table 5.14.

Whilst additional �exibility for the quantum rotation matrices did not
signi�cantly improve model �t for the taboo trade-o� dataset, we see a con-
sistent improvement both in log-likelihood and BIC for the quantum rotation
models here. Additionally, in line with previous results in this chapter, quan-
tum rotation models can again provide better model �t than a model that
allows for a separate set of parameter values (although in this case the BIC
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5. Conclusions

is slightly better for a model with separate parameters). This suggests that
these models provide a suitable framework for capturing changes in choice
context.

For the most complex of these models, the rotation matrix estimated is:

M =

 1.000 −0.464 4.834

−0.046 0.116 2.631

0.151 −0.068 −0.651

 , (5.19)

where the �rst alternative is to stay with the status quo, the second is to
increase travel times and salaries and the third is the indi�erent option. The
high values for M1,3 and M2,3 indicate that if an individual is indi�erent for
a choice scenario involving just changes for themself, then they will likely not
still be indi�erent if there are additionally changes for their partner.

5 Conclusions

In this chapter, we move away from the tried and tested alternatives to ran-
dom utility maximisation by considering ideas �rst developed in quantum
physics. With the probability framework developed in quantum physics hav-
ing made a successful transition to cognitive psychology, we look at whether it
can be operationalised into a choice model framework. Under quantum logic,
a decision-maker has some `inde�nite state' regarding their preferences over
alternatives, from which the probabilities of each alternative can be inferred.
Thus a key component of this chapter is the development of speci�cations for
the inde�nite state.

We �nd two new possible suitable speci�cations for the `inde�nite state'
which allow us to incorporate quantum logic within a choice model. The �rst
uses an adapted speci�cation based on random regret minimisation. The
second uses a variation of the speci�cation of the mean drift rates within a
multi-attribute linear ballistic accumulator model. We �nd that our quan-
tum pairwise comparison version A (QPCA) model provides good model �t
and outperforms multinomial logit (MNL) and random regret minimisation
(RRM) across three simple route choice datasets as well as providing good
out-of-sample �t for the most complex of these datasets. Additionally, the
quantum pairwise comparison version B (QPCB) model also provides good
�t for all three datasets. Whilst QPCB has better model �t, QPCA provides
more robust parameter estimates. The third quantum framework based on
sines and cosines, appears unsuitable, as there are basic probability issues for
three or more alternatives. Nevertheless, the positive results from our initial
tests on the QPCA and QPCB models suggest that there is ample scope
for models with a quantum framework to be used within travel behaviour
modelling. They are simple to run and estimate, meaning that they could
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Chapter 5. Quantum probability: a new method for modelling travel choices

be applied to a wide range of choice scenarios. However, for these models
to make a transition into large-scale modelling, an alternative speci�cation
would need to be de�ned to avoid the same pitfall of random regret minimi-
sation for large numbers of alternatives: a comparison between every pair of
alternatives quickly becomes computationally infeasible.

Another issue with the current speci�cations of the models is that it could
be argued that there is no real `quantum insight' in the model structure.
QPCA is in essence a random regret minimisation model with a di�erent error
structure. However, results from our quantum rotation models suggest that
there are many bene�ts of bringing quantum logic into choice models. Most
crucially, it appears that they can accurately capture a change in decision
context, both within traditional route choice datasets and also when a moral
element enters the dimension of choice.

Crucially, our best performing models for the best-worst dataset and the
contextual choice dataset, after allowing for model complexity to be taken
into account, are the rotated QPCA and rotated QPCB models. This sug-
gests that there is some merit in the concept of quantum rotation, which
suggests a di�erent set of basis vectors are required for di�erent choice sit-
uations. For example, the rotation works well for capturing the di�erence
between best and worst choice. Despite the fact that the best-worst choices
are related, quantum rotation suggests that these choices are in fact incom-
patible: the choices cannot be made at the same time and consequently they
may not follow the classical probability law of distributivity. This means that
di�erent choices may be observed depending on whether the decision-maker
chooses the best or worst alternative �rst. Similar results are also obtained
for the moral choice datasets. Whilst these results are positive, it is not clear
that they are distinctly better than those of the route choice datasets. This
implies that we cannot necessarily attribute the success of the quantum mod-
els for the moral data to the fact that there are moral components. This is
particularly clear from the result that our quantum model already has better
model �t than the random regret model for the 2nd moral choice dataset
tested in this chapter before the moral component was captured through a
quantum rotation. Further tests of quantum logic based models could fur-
ther enlighten whether they are models that are particularly suited to moral
decision-making, or whether they are suitable for decision-making in general.

Additionally, as moral decision making is becoming an interesting area
of application for choice modelling, there is a need for the development of
appropriate model speci�cations. Further models could consider di�erent
sorts of moral choice data. For example, quantum models may be well suited
for modelling choices made in `moral machine' choice tasks. Results may
also di�er signi�cantly for revealed preference datasets, with the concern of
external validity of stated moral choices (Bauman et al., 2014) still an issue
that has yet to have been addressed.
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Overall, the results in this chapter demonstrate that there is a large
amount of scope for future work within choice modelling. For example,
large-scale models frequently aim to understand a series of related, sequen-
tial choices. Given the ability of quantum rotation to capture the translation
between best and worst choices, it theoretically should also work for a larger
sequence of related choices where continuously adding on separate sets of
parameters may not be possible. Thus ordering e�ects and state dependence
may be well captured by models within a quantum framework. Further-
more, it may be possible to mitigate the impacts of contextual e�ects by
applying the appropriate quantum rotation from other models that account
for the same e�ect. Future e�orts could also compare quantum frameworks
against other models that are speci�cally designed to deal with contextual
e�ects, such as prospect theory. These future possibilities combined with the
positive results across both route and moral choice datasets mean that this
chapter serves as a proof-of-concept that choice models with a quantum logic
framework have vast potential, both within route and moral choice scenarios
and more generally.
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Abstract

Modelling decisions in dynamic choice contexts, where the decision maker has

to make a single or a series of choices in a changing scenario (e.g. driving

manoeuvres, route choice, investment decisions, etc.) is much more chal-

lenging than in static scenarios. These decisions have typically been based on

models that split time into discrete intervals, estimate utilities for each time

point, then use lagged variables to account for the dynamic nature of the sce-

nario. This is despite the simultaneous development of `sequential sampling'

(accumulator) models, that attempt to capture the accumulation of prefer-

ence over time. The application of such models have however been limited

to scenarios with static attributes. Decision �eld theory (DFT), one such

model which assumes that the preferences for di�erent alternatives update

stochastically over time, has recently made the transition into mainstream

choice modelling. Whilst this model has been e�ective at modelling, for ex-

ample, route choice, it has not yet been tested on choice scenarios where the

attributes of alternatives update over time. In this paper, we discuss the rel-

ative bene�ts of using an accumulator model for dynamic choice contexts, as

well as developing and operationalising both DFT and models based on quan-

tum probability frameworks for dynamically changing attributes in the context

of driving behaviour problems. We demonstrate that analytical and simulated

1Choice Modelling Centre and Institute for Transport Studies, University of Leeds (UK)
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1. Introduction

versions of DFT as well as quantum models provide a better account of be-

haviour than models based on more traditional methods. Whilst the models

developed in this paper are preliminary in nature, we demonstrate that there

is immense potential in the development of such models for dynamic choice

scenarios.

1 Introduction

The vast majority of applications in choice modelling look at individual
choices in isolation, where a decision maker chooses amongst a �nite set
of alternatives from a static choice set, i.e. one where the alternatives and
their attributes do not change over time. A relatively small departure from
that context comes in work looking at the relationship between individual
choices over time, largely modelled through state dependence (Bjørner and
Leth-Petersen, 2005; Kitamura and Bunch, 1990).

A rather di�erent set of circumstances applies in the context where a
choice is made in a scenario where the composition of the choice set and/or the
attributes describing the alternatives changes during the time interval when
the choice takes place. Work with dynamic discrete choice models (DDCM)
looks at situations where the set of alternatives or their attribute levels can
change (Cirillo and Xu, 2011). Dynamic problems are often formulated as
Markov decision processes (Rust, 1994) under which the next system state
is dependent on a Markov transition probability. This has typically been
applied to consumer problems such as the purchase of digital camcorders
(Rysman et al., 2009) or the purchase of new automobiles (Schiraldi, 2011).
To a large extent, much of this work is based on the idea of splitting the
choice process into a number of sequential choices. This is however quite
di�erent from the situation where only a single choice is made, but where
the characteristics of the choice set evolve during the process of the decision
maker making that choice. In addition, choice contexts in some cases can
change much more rapidly than for the longer term scenarios discussed above.
This is especially the case in transport. In particular, the decision to merge
into a di�erent lane is dependent on the size of the gap in the target lane,
which changes rapidly as the vehicles in front and behind change speed.
Previous e�orts at modelling merging decisions and gap acceptance problems
have also included logit models (Marczak et al., 2013; Polus et al., 2005;
Rossi et al., 2013), but are largely static in nature. A di�erent application
of dynamic models comes in route choice modelling, with Fosgerau et al.
(2013) demonstrating that a dynamic model for sequential link choices can
be used e�ectively to capture route choice in a network and Mai et al. (2015)
further demonstrating that correlation across error terms can be included for
such problems. This work however also just replaces a single choice of an
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overall route by a recursive set of individual decisions, where in addition, the
attributes of the network are stable over time.

In DDCMs, the continuous time horizon is typically split into separate in-
dividual choice situations, where the decision to take a given action (possibly
out of a set of actions) or not, is modelled at each point in time (Aguirre-
gabiria and Mira, 2010). In contrast to these `static' models, many `dynamic'
choice models have been developed in mathematical psychology, where the
preference of an alternative updates over time as the decision-maker delib-
erates on the set of alternatives (Bhatia, 2013; Busemeyer and Townsend,
1992; Ratcli� and Rouder, 2000; Usher and McClelland, 2001). In these `ac-
cumulator' models, however, the dynamic process can thus be estimated as a
single continuous process, where the preferences change over time and where
an action is taken when a certain preference threshold is reached.

These `process' or `sequential sampling' models aim to better understand
the choice by attempting to additionally consider the decision-maker's de-
liberation process that occurs whilst they consider their alternatives. This
results in models that can accurately predict response times (Brown and
Heathcote, 2008; Diederich and Busemeyer, 2003) as well as choice outcomes.
Typically, a key focus of accumulator models has been on how well they pre-
dict various contextual e�ects (Noguchi and Stewart, 2018; Trueblood et al.,
2014; Tsetsos et al., 2010), with the transition of such models into `main-
stream' choice modelling limited due to computational complexities of such
models (Otter et al., 2008). However, recent work has demonstrated that
decision �eld theory (DFT), a stochastic, dynamic model for understanding
choices, and the multiattribute linear ballistic accumulator model (MLBA),
a model where the preference for an alternative `drifts' linearly, can both be
used e�ectively to model travel and consumer choice problems (see Chapter
4).

The focus in the application of these models has however been on the dy-
namic updating of preferences (i.e. internal accumulation of evidence) rather
than looking at dynamically changing attributes of the alternatives/choice
sets. Whilst these models should theoretically be able to easily incorporate
updating of attributes, applications thus far have been limited to basic sce-
narios such as changes in dot direction in a dot perception task (Holmes et al.,
2016). While the use of DDCMs may be appropriate for longer term choices,
where a decision maker over time returns to a speci�c choice context and
thinks about it again, it seems in our view a less natural solution for situa-
tions where a decision maker focusses on a speci�c choice for a relatively short
period of time but where the attributes of that choice are not static. Numer-
ous examples exist. A driver aiming to merge onto a motorway may have
to assess a number of gaps, where the attributes of the gap (e.g. gap-size)
are changing over time, before �nding a suitable gap to merge into. Alter-
natively, a traveller may be tracking hotel prices over multiple days, where
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the prices are changing dynamically, before making a booking. Outside of
transport, stock market investment decisions are evaluated over time, while
share prices change continuously. This paper aims to bring together dynamic
datasets and dynamic models, testing whether models and ideas developed
in mathematical psychology can be used to better model decision probabil-
ities in dynamic environments, where we particularly focus on decision �eld
theory (DFT).

Under DFT, a decision-maker is assumed to consider di�erent attributes
for the di�erent alternatives over the course of the deliberation process. In
the standard implementation of DFT, this sampling takes information from
a static set, i.e. the values for the di�erent attributes and alternatives are
kept constant during the deliberation. This is appropriate for example in the
context where a decision maker looks at a shelf of products in a supermarket
and keeps alternating between price and some quality attribute for compar-
ing the alternatives, where these attributes remain static. It is however less
appropriate for truly dynamic setting as it in essence assumes that a deci-
sion maker takes a snapshot of the information describing the alternatives
at the outset, and then keeps comparing the alternatives internally using
that information. It seems much more likely that there is in addition some
external updating of the information, notwithstanding the possibility that
the internal deliberation may operate at a higher frequency (i.e. thinking
repeatedly about a speci�c gap size and speed di�erential before updating
the information on this after it changes).

A simple example where a decision-maker considers the choice between
two alternative routes helps illustrate the concept. The �rst alternative has a
cost of ¿5 and travel time of 30 minutes and the second costs ¿10 and takes
20 minutes. This might result in the preferences for alternatives updating
over time in line with the values given in Figure 6.1. In each timestep, one
attribute is considered, and the alternative which performs better for that
attribute gains in preference value. For example, in the 1st, 3rd and 4th
deliberation (preference updating) timesteps, the decision-maker considers
cost, and consequently the cheaper alternative quickly becomes favourable,
even though the faster alternative was originally preferred. If the �rst alter-
native to reach a preference value of 5 is chosen, the decision-maker would
then choose the cheaper alternative. If, however, the decision-maker did not
come to a conclusion, they might reach a point where the attributes change.
The example in Figure 6.1 demonstrates what might happen if tickets were
reduced in price for the faster alternative (after 5 deliberation timesteps).
This results in the faster alternative quickly becoming the preferred option.

Thus far, the only previous attempt to �t such a model to dynamic data
(as far as the authors are aware) was made by Holmes et al. (2016). They
used an adapted version of the linear ballistic accumulator model (where the
preferences for alternatives grows linearly until the preference for one alter-
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Fig. 6.1: An example deliberation process when attribute values change, under a DFT
model

native reaches a threshold) to model decisions about moving dot perception
tasks. However, many real-world dynamic choices are more complex, thus
ready-made accumulator models with analytical solutions for calculating the
probability of alternatives being chosen may not be possible. The aim of this
paper is to introduce an e�ective dynamic choice model to predict choices
under dynamic environments. We consider the use of decision �eld theory
for understanding a driver's decision as to whether or not to merge onto a
motorway. As well as testing a version with attributes staying constant for a
set number of deliberation timesteps before updating (as depicted in Figure
6.1 and in line with the earlier point about internal deliberation operating
at a higher frequency than external updating), we also compare a simulated
approach where the attributes change with every deliberation timestep. We
also compare these to more traditional `static' models that use exponential
and hyperbolic discounting functions to account for `remembered' preferences
evaluated at previous attribute values.

An alternative approach is to add a dynamic element to quantum proba-
bility models. These models are based on the operationalisation of quantum
logic to create a di�erent probability system to generate the probabilities
with which choices (or actions) are made. Models with such a structure have
recently made a signi�cant impact in cognitive psychology (c.f. Busemeyer
and Bruza 2012 for a review) and consequently have been demonstrated to
show signi�cant promise in choice modelling (in Chapter 5). The key assump-
tion under quantum logic is that some pairs of decisions are `incompatible',
meaning that the probabilities of choosing di�erent alternatives or actions in
one decision are impacted by the choice made in the other. This results in the
adoption of quantum logic allowing for convenient and elegant solutions to,
for example, ordering e�ects (Trueblood and Busemeyer, 2011; Wang et al.,
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2014). In this chapter, we consider a model based on Lipovetsky (2018)'s
quantum choice model. In Chapter 5, we demonstrate that quantum rota-
tions can be used to capture changes in choice contexts. In this chapter, we
explore whether these rotations can also be used to capture changing choice
contexts. Thus a natural extension is to test whether these models can also
capture dynamically changing choice contexts.

The remainder of this paper is organised as follows. First, we give an
outline of what a dynamic accumulator model for dynamic choice contexts
could theoretically include. Next, we detail mathematically how DFT and
quantum models could account for changing choice contexts. We then de-
scribe the US101 merging dataset and detail how our models are adapted for
modelling the choice to merge into a new lane or not. We then report the
results of applying di�erent variations of the models to the data. We �nish
by giving some conclusions as well as detailing future steps for improving
dynamic models.

2 Dynamic models: theory and elements to in-

clude

In this section, we �rst consider a theoretical example of preferences for alter-
natives changing over time whilst attributes of the alternatives also change.
We then detail a number of features that a dynamic model could consider,
before detailing how some of these can be implemented under a decision
�eld theory model. Finally, we demonstrate how a model based on quantum
probability can capture dynamic elements through quantum rotations.

2.1 A theoretical example

Whilst one method for visualising the preference for alternatives changing
over time is demonstrated by Figure 6.1, another possibility is to consider
di�erences between preferences, with many models already framing alterna-
tives in this way (Busemeyer and Townsend, 1992; Krajbich et al., 2012;
Noguchi and Stewart, 2018) such that thresholds are based on relative dif-
ferences between the preferences for alternatives. For example, it is simple
to reformulate our original example in terms of di�erences between the pref-
erences, where this is shown in Figure 6.2, using the di�erence between the
preferences for alternative 2 and alternative 1.

This example additionally considers the possibility of updating threshold
values and the impact of dampening e�ects when attributes change. These
are just two of a number of factors that a dynamic model could theoretically
take into account, and we now look at these in turn:
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Fig. 6.2: DFT example with di�erence in preference values in a dynamic setting

Impact of deliberation time: For the model to be dynamic, it needs to
have some element that can be related to real decision time. If it
includes some number of `preference updating steps' (as depicted in
Figure 6.2) then the decision-maker's response time taken to make a
choice can be incorporated by setting the number of deliberation steps
as some function of this time. This has been considered for decision
�eld theory for static attributes in Chapter 3.

Di�erent rates for attribute updates compared to preference updates

In the above example, there are 5 deliberation steps for each of the two
di�erent sets of attribute values. There could clearly be a large num-
ber of deliberation steps for a slowly changing scenario such as the one
above, and this is particularly the case when the acquisition of new in-
formation requires some action or comes at some cost, with many mod-
els already incorporating information search costs (Drugowitsch et al.,
2012; González-Valdés and de Dios Ortúzar, 2018; Kim et al., 2016).
The number of deliberation steps used for each new set of attribute
values may be much lower in a continuously changing scenario, and the
internal processing speed may in some cases go as low as the exter-
nal updating. The rate at which an individual samples the real world
information may also change over time, with for example more rapid
updating the closer the person comes to making a decision. Finally
attributes may not be updated from visual stimuli with every prefer-
ence updating step but could be interpolated towards an individual's
expectation of how the attribute will change.

Processing speeds: In a rapidly changing context, the processing of at-
tribute changes will also be a function of how quickly an individual can
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process new information. For example, if there is suddenly a change in
price for an ebay item very close to the ending time of the auction, a
consumer may not react in time to increase their bid. For this reason,
choices made over a short timeframe (such as driving decisions, for ex-
ample) may be subject to both mental processing speeds and physical
reaction times, with Holmes et al. (2016) �nding a strong delay e�ect
before a decision-maker integrated new information in a moving dot
perception task.

Signi�cant threshold changes: In Figure 6.2, the upper boundary repre-
sents the threshold for alternative 2 being chosen and the lower bound-
ary represents the threshold for alternative 1 being chosen. Theoreti-
cally, when the attributes change, the thresholds may also change. Drift
di�usion models have often considered threshold changes or `collapsing
boundaries' (Zhang et al., 2014), although recent evidence suggests that
these models do not have an empirical advantage over models with a
�xed threshold (Hawkins et al., 2015; Voskuilen et al., 2016).

Gradual threshold changes: Thresholds may also change more gradually
than depicted in Figure 6.2. For example, a careful driver's preference
may initially need to reach a high threshold for merging lanes if they
only consider merging when the gap is particularly large. However,
as the driver approaches the end of the slip road, their threshold may
gradually decrease if they otherwise risk not merging into the correct
lane, with drivers more likely to accept a gap if they are under stress
(Paschalidis et al., 2018).

Dampening e�ects: If attributes change gradually, the impact of damp-
ening may be small. However, a more signi�cant change in attribute
values such as shown in the example in Figure 6.2 may result in pref-
erence values resetting to zero or to their initial starting values. For
example, an individual considering purchasing an item on ebay may re-
consider an alternative that they had previously ruled out if the price is
signi�cantly reduced. Many process models already include `decay' pa-
rameters (Roe et al., 2001; Usher and McClelland, 2001), but separate
parameters may be required for gradual changes compared to sudden
changes.

Changes in the set of available alternatives: While we have focussed
on changes in attribute values, it is also possible that whilst the decision-
maker is deliberating, one of the alternatives becomes unavailable. This
may result in preferences resetting, or a large shift towards the most
similar alternative. A typical transport example could be a cancelled
train service.
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Initial preferences towards alternatives: It is easily possible that there
may be initial biases or preferences towards an alternative. For ex-
ample, commuters will likely choose the same route to work that they
chose the day before. With random utility models adept at capturing
such e�ects and decision �eld theory also able to account for initial pref-
erences (see Chapter 2), a dynamic model that accounts for changing
attributes should also be able to account for initial preferences. This is
particularly important given that more complex choice scenarios result
in more frequent choice of the status quo (Boxall et al., 2009).

In the following section, we look at a steps towards including some of
these factors in models based on decision �eld theory.

2.2 Decision �eld theory

One model that can already account for several of the above factors is decision
�eld theory (DFT), which was �rst developed by Busemeyer and Townsend
(1992, 1993). It is a stochastic, dynamic model for understanding choices be-
tween multiple alternatives. Under DFT, each alternative has a `preference
value' that stochastically updates over time as the decision-maker considers
the di�erent attributes for the alternatives. The decision-maker considers
their alternatives for some number of deliberation timesteps until one of the
alternatives reaches some internal threshold value or until the decision-maker
runs out of time upon reaching some external threshold. These thresholds
are represented graphically in Figure 6.1 by the horizontal dashed line (pref-
erence value = 5) and the vertical dashed line (deliberation timesteps = 10)
respectively.

Many variations of DFT exist, with structures for models with internal
thresholds (Busemeyer and Townsend, 1993) rather di�erent to versions for
multiple alternatives and multiple attributes, which have external thresholds
(Berkowitsch et al., 2014; Roe et al., 2001). For the work in this paper,
we consider models based on DFT models with external thresholds as this
version o�ers a clearer method for the implementation of updating attribute
values. Although analytical solutions for internal DFT are available (albeit
only for choice scenarios with two alternatives, see Busemeyer and Townsend
1993), similar extensions for changing attribute values do not result in clear
methods for calculating the probabilities with which the di�erent alternatives
are chosen. This is a result of the fact that there is no equivalent component to
the number of preference updating steps in the calculation for the probability
of alternatives under internal DFT (see Equation 3.14). Instead, simulated
approaches have to be considered for models utilising an internal threshold.
Whilst an advantage of simulated approaches is that additional features as
described in Section 2.1 can easily be added, the main advantage of external
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DFT is that we can analytically calculate the expected preference values after
any number of deliberation timesteps. These calculated values can then be
used as the starting values for the next DFT calculation at the point where
the attribute values change.

Under DFT with external thresholds, the preference values update as
follows (Roe et al., 2001):

Pt = S · Pt−1 + Vt, (6.1)

where Pt−1 and Pt are column vectors representing the previous and updated
preference values, Vt represents a `valence' vector (in e�ect, the utility gained
during one deliberation step) and S is a feedback matrix. The feedback
matrix is typically speci�ed to include decay and sensitivity parameters that
allow for the impact of contextual e�ects such as attraction, compromise and
similarity e�ects (Berkowitsch et al., 2014). However, for simpler cases where
there are only two alternatives, we do not need to control for these e�ects
as previous applications of DFT have found that the sensitivity parameter
can becomes meaningless for choice scenarios with only two alternatives (see
Chapter 4). For such cases the feedback matrix can simply act as a decay
parameter:

S = φ2, (6.2)

with 0 ≤ φ2 ≤ 1. This additionally allows for a simpler calculation for the
probabilities with which the alternatives are chosen (as de�ned by Equations
6.4-6.10).

Finally, the valence vector, Vt, is determined based on the attribute at-
tended to by the decision-maker at deliberation timestep t. It is de�ned:

Vt = C ·M ·Wt + εt, (6.3)

where C is a contrast matrix used to rescale the attribute values M around
0. It is de�ned to have diagonal elements of 1 and o�-diagonal elements of
−1/(x − 1), where x is the number of attributes. Wt is a column matrix of
zeros with a single 1 in the row representing the attribute that is attended
to at time t. A DFT model will hence estimate a set of weights, wa, wb,..,
wk, with wk giving the probability that attribute k is attended to in a given
preference updating step. To allow for adjustments to the attributes M , as
well as avoiding the requirement of a priori knowledge of the attributes (see
Chapter 4 for details of this), we �x each of these weights to 1/x, and estimate
scaling parameters for the attributes. This allows for the application of, for
example, income e�ects to the attributes for DFT in the same way that these
e�ects are added to typical random utility models. Additionally, there is a
noise parameter εt, which adds normally distributed values to the valence
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for each alternative (with a mean of zero, independent draws and a standard
deviation that is estimated).

To calculate the probabilities for the di�erent alternatives, a DFT model
simply requires the expected value of the preference vector after some number
of deliberation timesteps, Φt, and the covariance of the preference vector Ωt
(Roe et al., 2001). With the feedback parameter S now simply represented
by a constant, φ2, the expectation of the preference vector after t preference
updating steps becomes:

E[Pt] = ξt =
1− φt2
1− φ2

· µ+ φt2 · P0, (6.4)

where P0 is the initial preference matrix, which can be used to calculate
underlying baseline preferences towards an alternative (see Chapter 4) and µ
is the expectation of the valence vector, Vt.

The covariance matrix for a single set of attributes, M , also simpli�es to
become:

Cov[Pt] = Ωt =
1− φ(2·t)2

1− φ22
· Φ, (6.5)

where Φ is the covariance matrix for Vt (Roe et al., 2001).
However, it is worth noting that if P0 = 0, t and φ2 cannot be separately

identi�ed as the full set of probabilities generated by all possible combinations
of t and φ2 can be generated by t alone with φ2 = 0.

First, note that when φ2 = 0, the calculated values for the expectation
and covariance are ξt = t · µ and Ωt = t · Φ. Then as Pt converges to a mul-
tivariate normal distribution (Roe et al., 2001), the same set of probabilities
are generated with µ and Φ or x · µ and x2 · Φ, where x is some constant.
Consequently, the set of probabilities that are calculated with ξt and Ωt are
also generated by Φ and:

1− φt2
1− φ2

· µ ·

√√√√( 1− φ22
1− φ(2·t)2

)
, (6.6)

which can be rearranged to:√(
(1 + φ2) · (1− φt2)

(1 + φt2) · (1− φ2)

)
· µ. (6.7)

Then, as t > 1 and 0 < φ2 ≤ 1, this is equivalent to y · µ, where y ≥ 1.
Consequently, we only need to estimate one parameter, y, which is equivalent
to estimating

√
(t) when φ2 = 0. Note that if P0 6= 0, then the value of φ2

will have an impact. It is however simpler to estimate y as before, as well
as some new factor, αd, which is the factor which previous preference values
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are multiplied by. Consequently, if the attribute values change (for example
fromM1 toM2) then we can de�ne the expected preference values at the end
of the deliberation process to be:

ξ2t = t · µ2 + αd · t · µ1 + α2
d · P0, (6.8)

where µ1 and µ2 are the expectations of the valence vectors for the di�erent
attribute matrices M1 and M2, and the number of preference updating steps
for M1 and M2 are assumed to be equal.

To generalise this for R di�erent sets of attribute matrices M1, M2,...,
Mr, the total expected value can be calculated recursively. This results in a
total expectation of:

ξrt = t ·
R∑
i=1

(
µi · αR−id

)
+ αrd · P0 (6.9)

To allow for an appropriate amount of decay for the covariance matrix
relative to the expected preference, we instead multiply the covariance by α2

d.
We can then calculate the covariance matrix after R di�erent sets of attribute
matrices, for which Equation 6.5 can be expanded to:

Ωrt = t ·
R∑
i=1

(
Φi · αR−id

)
(6.10)

Once the expectation and covariance matrices are calculated for the pref-
erence vector, the probability with which the di�erent alternatives are chosen
can be calculated using multivariate normal distributions (Roe et al., 2001).

2.3 Quantum rotation models

Another alternative structure for a dynamic choice model is to use quantum
rotation models. Under these models, each alternative is represented by a
vector in some multidimensional Hilbert space. A `state' vector is then used
to de�ne the probabilities of the decision-maker choosing each of the alterna-
tives. In Chapter 5, we demonstrate that for each alternative, a `projection
length' must be estimated to generate this state vector. These projection
lengths can then be used to estimate the probability with which the alter-
native is chosen, given that the sum of squared projection lengths must sum
to one (see Section 3.1 of Chapter 5). For a binary scenario, one possibility
is to consider quantum projection lengths based on trigonometric functions
(Lipovetsky, 2018), where we de�ne the probability of the �rst choice as:

Prob(Alt1) = cos2
(
min

(π
2
,max (0, z)

))
, (6.11)
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where z corresponds to an aggregate of predictors2. The probability of the
second alternative is simply calculated with a sine rather than cosine function.
The functional form of z can then be based on any relevant attributes of the
alternatives to generate appropriate probabilities for each alternative being
chosen. To add a dynamic element to the model, we then require the use
of a quantum rotation. A general notation for a quantum rotation is given
by Equation 5.15 for changes in choice context. The extension to dynamic
changes in choice context can be made by specifying functional forms for
elements of the rotation matrix, M∗, based on dynamic components:

M∗ =

[
1 df ∗ r1,2

df ∗ r2,1 1 + df

]
, (6.12)

where r1,2 and r2,1 are estimated rotation parameters and df is based on
some dynamic function of contextual e�ects. Figure 6.3 gives an illustration
of how the state vector may change under dynamic choice settings. Initially,
it is of unit length. Attributes of the alternative impact the angle of the state
vector with the vectors for each of the alternatives (represented by the axes
in the �gure).

Fig. 6.3: An illustration of how the probabilities of alternatives may change under dy-
namic settings in quantum choice models.

The quantum rotation is then denoted by the pink arrow, which demon-
strates how the choice context may impact the state vector. Crucially, as sine

2Note that the use of minimum and maximum functions here restricts cos2(x) into
being a strictly monotonic function.
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and cosines can be used to calculate the probability of alternatives based on
the angle between the state vector and the vectors for the alternatives, the
state vector does not have to remain of unit length to generate probabilities.
Thus, in a dynamic choice scenario, changes in the attributes of alternatives
are represented by the black arrows on the arc corresponding to circle of ra-
dius one and changes in the choice context are represented by the pink arrows
which move away from this arc.

3 Empirical framework

In this section, we detail the driving dataset that is used in the empirical
applications in this paper. We discuss how it is implemented for our logit,
probit, quantum and DFT models, as well as describing how we add a dy-
namic element to logit, probit and quantum such that a fair comparison can
be made with DFT (which is dynamic by nature).

3.1 Data for case study

For testing our dynamic models, we use a dataset collected on site on the
southbound section of the 101 Highway in Los Angeles in June 2005 (Cam-
bridge Systematics Inc., 2005b). It comprises of a 45 minute video recording
of vehicles travelling across a 640 metre cross-section of the road, which has
5 lanes as well as an auxiliary lane which connects an on-ramp and o�-ramp
(see Figure 6.4).

Fig. 6.4: The US-101 data collection site (Reprinted from Choudhury 2007).

This provides ideal dynamic scenarios for which naturally dynamic models
such as decision �eld theory can be applied to. For testing the models, we
look at the lane merging behaviour by the drivers who join the US-101 from
the Ventura on-ramp. These drivers can join lane 5 immediately at the end
of the on-ramp, or wait to merge at some point as they travel down the
auxiliary lane (lane 6 in Figure 6.4). The factors impacting this decision
(such as the size of the gaps on lane 5, speed and acceleration of the vehicles
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involved, etc.) are constantly changing, as a result of both the vehicles trying
to join lane 5 and those already on it changing speed. Over the course of
the 45-minute video, 399 vehicles start on the on-ramp and merge onto lane
5. We use trajectory data which details the exact location and speeds of all
the vehicles that feature in the video (Cambridge Systematics Inc., 2005a)
at intervals of 0.1 seconds, as well as giving information on the length, width
and type of vehicle. This results in hundreds of observations for each vehicle,
with an average time of 8.73 seconds taken by a vehicle to join the US-101
from the Ventura on-ramp from the �rst point at which they could make the
merge.

Some of the vehicles merge immediately from the on-ramp to lane 5, whilst
others do not merge until they reach the Lankershim o�-ramp. Whilst there
is likely to be signi�cant variation in driver perception-reaction times (Fu
et al., 2016; Paschalidis et al., 2019; Wood and Zhang, 2017), we simplify
our models by assuming that drivers take a second to react to visual stimuli.
Thus, we de�ne that the driver chooses to merge lane due to visual stimuli
at a point a second before their vehicle physically changes lane. The drivers
also have the external constraint that they must merge by at a certain point
which acts as an external threshold in the formulation. In order to estimate
the model to predict the probability that a driver will choose to merge at
a certain time step, we also require observations in which they choose not
to merge lanes. For the majority of the applications in this paper (with the
exception of results in Section 4.5), we use observations at 1 second intervals
before the moment where the driver chooses to merge (but do not consider
any moments after the driver has made the decision to merge lanes). This
results in a total of 3,293 observations across 395 vehicles.

3.2 Explanatory variables

For all the variations of models that we use, we de�ne two utilities/preference
values, one for merging and one for staying in the current lane. Then, for
each observation in the dataset, we use four key attributes to de�ne these
utilities/preference values:

1. Time headway in the target lane in front of the merging vehicle (in
seconds).

2. Time headway in the target lane behind the merging vehicle (in sec-
onds).

3. The velocity of the merging vehicle (feet per second).

4. Distance (in feet) to the point at which merging lane is no longer pos-
sible (in this case, shortly after the driver reaches the Lankershim o�
ramp).
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3.3 `Static' models

3.3.1 Logit models

In our logit models, the utility for a driver n choosing to merge at some time
point t is assumed to be a function of the time headways and velocity of the
merging vehicle:

VMERGEnt = UGFnt + UGBnt + UV ELnt + εnt, (6.13)

where UGFnt is the utility gained from the gap in front, UGBnt is the utility
gained from the gap behind, UV ELnt is a utility that is dependent on the
velocity of the merging vehicle and εnt is a random error term. Again, other
speci�cations would be possible, such as interacting the gaps with the velocity,
but this is an exploratory �rst step.

To calculate this utility, we then need to de�ne speci�cations for the
three deterministic utility components. Firstly, given that the impact of
time headway is very non-linear (with increases in headway being much more
important at small base values), we use a logistic transform to convert the
time headway to a subjective utility3 for the gap in front (UGFnt):

UGFnt = βGF ∗
(

2 ∗ exp(αGF ∗ THFnt)

1 + exp(αGF ∗ THFnt)
− 1

)
, (6.14)

where βGF is an estimated weight for the relative importance of the gap in
front, αGF is an estimated scaling parameter and THFnt is the time headway
in front of the merging vehicle. We multiply this logistic transformation by
2 and take away 1 such that this utility can be both positive and negative.
Note that some observed time headways are negative, which means that the
vehicle in front in the target lane is partially adjacent to the merging vehicle
(see an example of this in Figure 6.5).

As the time headways only account for the distance between the cars in
one-dimension, along the length of the direction of travel (for example, in
Figure 6.5, the orange arrow represents the (negative) gap between the back
of the car in front, and the front of the merging car. This gap does not
account for distances between the vehicles perpendicular to the direction of
travel (the dashed line in Figure 6.5), thus we do not automatically translate
negative time headways to extremely negative subjective values, as a vehicle
may begin to merge whilst being adjacent to the vehicle in front if the relative
speeds of the vehicles are very di�erent.

The time headway in front (THFnt) of the vehicle is de�ned as the gap
size between the front of the merging vehicle and the back of the vehicle in

3Note that di�erent linear and non-linear functional forms for mapping the four at-
tributes to utilities were tested based on literature and the �nal functional form has been
selected based on empirical testing.
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Fig. 6.5: A merging car adjacent to the vehicle in front on the target lane.

front in the target lane, with respect to the speed of the vehicle in front.
Thus for decision-maker n at time point t, we have:

THFnt =
xV Fnt − xMV 1nt

max(1, velV Fnt)
, (6.15)

where xV Fnt is the location of the back of the vehicle in front, xMV 1nt is the
location of the front of the merging vehicle and velV Fnt is the velocity of the
vehicle in front. The gap size is divided by a minimum value of 1 such that
the gap is not transformed to a large value should the vehicle in front be
stationary or moving extremely slowly (with a velocity of less than 1 foot per
second).

We then estimate parameters βGB and αGB for an equivalent adjustment
for the gap behind to that of the adjustment for the gap in front as de�ned
by Equation 6.14, to get a utility UGB for the gap behind. For this, the time
headway behind (THB) the vehicle is de�ned as the gap size between the
back of the merging vehicle and the front of the vehicle behind in the target
lane, with respect to the speed of the vehicle behind:

THBnt =
xMV 2nt − xV Bnt
max(1, velV Bnt)

, (6.16)

where xV Bnt is the location of the front of the vehicle behind, xMV 2nt is the
location of the back of the merging vehicle and velV Bnt is the velocity of the
vehicle behind.

Finally, the utility for choosing to merge also accounts for the speed of
the merging vehicle:

UV ELnt = βV EL ∗ velMVnt , (6.17)

with βV EL an estimated parameter and velMVnt the velocity of the merging
vehicle.
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The driver may alternatively decide to stay in the same lane. We de�ne
the utility of staying in the same lane as a function of the distance traversed
thus far:

USTAY nt = αSTAY + βdist ∗MV DEnt + αAL ∗MV ALnt + αOR ∗MV ORnt ,

(6.18)
where MV DEnt is the distance between the merging vehicle and the last
possible point at which they can merge onto the US101 and βdist an estimated
parameter for the relative impact of this distance. We then additionally
estimate a constant αSTAY for choosing not to merge lanes and two further
parameters αAL and αOR, which control for the impact of the driver being in
the auxiliary lane (for whichMV ALnt = 1) or on the o� ramp (MV ORnt = 1).

The �nal speci�cation for our logit model uses 9 estimated parameters.
An assumption of type I extreme value distributions for εnt results in typical
MNL choice probabilities.

3.3.2 Probit models

A �rst alternative model considered is a restricted form of probit model. With
the assumption of no correlation between the error terms, a probit model also
resembles a restricted form of decision �eld theory. A DFT model comprises
of two key sources of error: the variation generated by which attribute the
decision-maker attends to at each preference updating step, as well as the
normally distributed error terms added to the valence vectors (see Equation
6.3). The �rst of these, however, becomes insigni�cant if the estimate for
the number of deliberation timesteps is very high (which results in attribute
attendance variation being averaged out). This leaves the source of error in
the model coming solely from the normal error terms, the sum of which is
also a normal (and hence the model becoming a restricted probit).

3.4 Dynamic speci�cation of `static' models

In this section we consider features for going beyond the basic models de�ned
in the previous section. Whilst models that attempt to capture the accumula-
tion of preference over time may provide a more `natural' account of dynamic
choice contexts, models for which the preference (or more typically, utility)
for an alternative is calculated for an instantaneous moment can incorporate
previous preferences through lagged variables. For example, attributes of pre-
viously chosen alternatives can be entered as a function of how similar they
are to the alternatives for the current choice (Erdem, 1996), though special
care is of course needed in relation to endogeneity risks. Lagged variables
have also been used in the context of consumer preferences (Seetharaman,
2004) and environmental economics (Swait et al., 2004). More speci�cally,
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the latter of these examples de�nes `meta-utilities' for an alternative as a
function of the product of utilities in current and previous periods. Thus
dynamic discrete choice models can include parameter(s) similar to the de-
cay parameter used in DFT, which can be adopted into our logit, probit
and quantum models. The most basic approach for the incorporation of a
decay parameter is to set the total utility/preference (Qt) at a time point t
as the sum of the utility/preference at time t, (Pt), combined with the util-
ity/preference at previous time points which are subject to a decay parameter
0 ≤ αd ≤ 1:

Qt =

t−1∑
r=0

(
αrdP(t−r)

)
, (6.19)

where the instantaneous-only model is obtained with αd = 0.
Another alternative is to use hyperbolic discounting functions (Mazur,

1987). Here we consider the generalised hyperbolic discounting function
(Green et al., 1994), which results in the total utility at time t being de-
�ned:

Qt =

t−1∑
r=0

(
P(t−r)

(1 + αd · r)s

)
, (6.20)

where s is some estimated factor for the discount rate. Examples of these
discounting curves are given in Figure 6.6, with αd = 0.5 and s = 1 for
the hyperbolic discounting function and s = 2 for the generalised hyperbolic
discounting function.

Fig. 6.6: An example of each of the discount curves tested in this paper.

Both discounting functions have been tested in dynamic choice models
previously, with an exponential discounting factor used by Swait et al. (2004)
and Aguirregabiria and Mira (2010) and a hyperbolic discounting function
used by Fang and Wang (2015). Whilst hyperbolic functions have empirical
support in a number of di�erent �elds (Green and Myerson, 1996; Kirby
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and Marakovi¢, 1995; Madden et al., 1999), examples from intertemporal
choice illustrate that they do not always outperform exponential discounting
functions (Read, 2001; Rubinstein, 2003).

The inclusion of these dynamic elements in the otherwise static models
bridge the gap with truly dynamic models, yet do not move us away from the
fact that these approaches still rely upon the stitching together of individual
choices.

3.5 DFT speci�cation

As far as the authors are aware, decision �eld theory in its current form
has never been applied to driving behaviour, although Zhao et al. (2011)
used a version `rule-based decision �eld theory' in their model considering
driver speed control. Whilst the choice to merge lanes is determined by
the driver (and thus is more akin to a decision-maker reaching an internal
threshold), there is also an external threshold in that the driver will pass a
point after which merging lanes is no longer possible. Additionally, as we
have trajectory data for intervals of the same length, a DFT approach as
described by Equations 6.1-6.10 �ts well.

A key distinction arises between DFT in estimation and in application. In
application, with a given set of parameters, we can simulate the accumulation
of preference until a threshold is exceeded and a decision is made, or until
the decision maker runs out of deliberation time. In estimation however,
we are concerned with �nding values for the model parameters that explain
the behaviour observed in the data. Just as with `standard' models, this
requires the maximisation of an objective function such as log-likelihood,
and we need to contrast observed events with estimated probabilities. We
thus need to not only estimate the probability of merging at the point where
a decision is made, but similarly the probability of not merging at the time
points before this event. Under DFT with an external threshold, the chosen
alternative is the one with the higher preference value at some time point t.
Thus, a threshold for choosing to merge can be equated to the point at which
the preference for merging overtakes the preference for staying in the same
lane. Hence, to make a fair comparison of DFT with alternative models, we
estimate the probability that the preference value for merging is higher than
the preference value for staying in the same lane after each 1 second interval.
The resulting required transition from a logit to a DFT is then relatively
simple.

We use attribute scaling parameters rather than attribute weights, which
means that time headway in front of the vehicle, time headway behind the
vehicle, the velocity of the merging vehicle and the distance (Equations 6.15 -
6.18) can be entered as four di�erent attributes that update over time. Thus,
the attribute matrix, M to be used in the DFT model can be based on the
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utility functions de�ned previously:

M =

[
UGF UGB UV EL 0

0 0 0 USTAY

]
. (6.21)

A dynamic version of DFT with updating attribute values can then be
estimated using Equations 6.1 - 6.10. As well as the same nine attribute pa-
rameters used for MNL, this model then requires three process parameters.
These are the standard deviation of the valence error, the number of deliber-
ation timesteps and a decay parameter αd to account for the dampening of
preferences when attributes update (see Equations 6.7-6.10). This allows for
the current attributes for the choice as to whether to merge or not to have
more impact than previous attributes, with the preferences from old time
points decaying systematically over time. Note that the decay parameter φ2
cannot be separately identi�ed for our DFT model (see Section 2.2). Addi-
tionally, as we use scaling parameters, there is an overspeci�cation due to
having an additional parameter (see Section 2.3 of Chapter 4). In this case,
we choose to �x the standard deviation of the error to avoid confounding.
This leaves just two additional parameters.

The above use of DFT relies on the closed form calculation of probabil-
ities, which is computationally desirable, but where the use of expectations
limits the additional dynamic complexities that can be introduced. We can
alternatively adopt a simulated approach, for which only Equations 6.1-6.3
apply. We have two updating preference values, one for the preference to
merge, and one for the preference to stay in the same lane. The decision-
maker repeatedly evaluates the attributes which results in the preference
values updating over time. For some preference updating steps, the decision-
maker `samples the world' and thus the attribute matrix M in Equation 6.1
is updated. At other preference updating steps, the decision-maker does not
updateM , thus instead e�ectively `internally resamples' the information that
they already have. In this case, in the line with the other models tested, we
allow updates for M to happen once per second (though of course insights
from cognitive psychology could be used to inform and test di�erent rates in
future applications). We then trial di�erent numbers of internal preference
updating steps. At each preference updating step, one of the four attributes
is selected randomly (with equal probability), with the preference values for
merging and staying in the same lane updated in line with Equations 6.1 -
6.3. After some set number of preference updating steps, the probability of
merging at each second interval can be estimated based on the mean and
standard deviations for the di�erence between the preference values (which
will also converge due to the central limit theorem), meaning that the proba-
bilities can be calculated directly. For example, 200 simulations will give 200
estimates for the preference di�erence at each second interval. These values
can then be used to generate a distribution which can in turn be used to
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calculate the probability of choosing to merge.

3.6 Quantum model speci�cations

For our quantum model speci�cations, we do not consider the two speci�-
cations we have previously developed in Chapter 5, as these both rely on
the comparison of attributes across alternatives. Given that the decision to
merge or not is a binary choice, we instead use Equation 6.11. We can then
de�ne two di�erent quantum models.

The �rst is `static'. For this quantum model (QM), we set z = π
4 +

USTAY nt − UMERGEnt , such that Equations 6.13 and 6.18 can be imple-
mented into the quantum model (where the addition of π

4 results in base
probabilities of 0.5). Adjustments to USTAY nt and UMERGEnt through the
use of discounting curves can then add dynamic elements, exactly as imple-
mented for the logit and probit models.

The second variation is based on the quantum rotation model (QRM)
framework described in Section 2.3. In this case, z is adjusted to z = π

4 −
UMERGEnt . The factors that enter UMERGEnt , which are all based on how
far the decision-maker is from the end of the slip road, are instead used to
represent the dynamic `changing choice context.' Thus a rotation matrix as
de�ned by Equation 6.12 is used, where df = UMERGEnt .

4 Results

In this section, we apply decision �eld theory models accounting for chang-
ing attribute values to the US-101 dataset, as well as providing comparisons
based on logit, probit, quantum and quantum rotation models. We start
by considering models that do not account for the dynamic nature of the
dataset, which treat each choice at one second intervals as completely inde-
pendent of the choices made by the same driver at later time points. We
then apply both analytical and simulated versions of DFT models, compar-
ing their performance as well as testing the impact of changing the number
of attribute updates per second. Next, we apply alternative model structures
based on `static' models with variables that account for `remembered' utilities
(see Section 3.4), which adds a dynamic component to these models. Finally,
we look at the inclusion of initial starting preferences, testing whether these
additional parameters impact all models or just DFT models.

4.1 Basic static models

For our �rst set of models, we analyse the choices independently, without
including any memory parameters (as detailed in Section 3.4) in any of the
models. We thus test a basic version of MNL as described by Equations 6.13
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and 6.18 as well as probit and quantum models, as described in Section 3.3.2
and Section 3.6. We can also test a `static' DFT, for which the parameter αd
is �xed to a value of 0, meaning that the choices at di�erent timepoints are not
linked. For all models, we use R packages maxLik (Henningsen and Toomet,
2011) and apollo (Hess and Palma, 2019) for estimation of the log-likelihood
functions.

Table 6.1: Basic static model results

Model variation Free Parameters Log-likelihood BIC

Logit 9 -862.59 1798

Probit 9 -858.59 1790

Quantum 9 -856.21 1785

DFT-1 10 -858.61 1798

DFT-2 9 -858.81 1791

The performance is relatively similar across models, where the best per-
forming model at this point is the quantum model. The estimate for the
number of preference updating steps for the �rst DFT model (DFT-1 in Ta-
ble 6.1) is very high and consequently there is no signi�cant di�erence for a
DFT model (DFT-2) for which the number of steps is �xed to 1000. As it
has a �t that is equivalent to the probit model, it appears that there is no
gain that can be attributed to stochastic variability that is generated through
attention to di�erent attributes.

For all models, we see that the size of the gap behind tends to be more
important than the gap in front, with Figure 6.7 giving the contribution of
UGF and UGB as a function of the time headways in front and behind the
merging vehicle. Whilst all models appear to show very similar results, the
damping in the quantum model is less extreme, with some di�erences between
1 and 2 seconds. This is likely a key reason for the better �t for this model.

4.2 Comparison of simulated and analytical DFT mod-
els

For our �rst comparison of simulated and analytical DFT models, we test the
impact of �xing the number of preference updating steps. For all of the sim-
ulated models, we run 200 simulations with the use of the R package RCPP
(Eddelbuettel et al., 2011). For each model, we assume that the decision-
maker samples the world at one second intervals (thus attribute matrix M is
updated once per second) and test rates of 1, 5, 10, 20, 50 and 100 (internal)
preference updating steps per second (where for analytical DFT, this rate
determines the value of t in Equations 6.9 and 6.10, and for simulated DFT,
there are simply t iterative updates of Equation 6.1 per second), obtaining
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Fig. 6.7: The conversion of time headway into preferences/utilities

the results given in Table 6.2.

Table 6.2: A comparison of log-likelihoods from analytical and simulated DFT models
with di�erent numbers of preference updating steps

Preference updates per second Sim DFT Analytical DFT Di�erence

1 -1,038.51 -1,122.82 -84.30
5 -931.00 -934.99 -3.99
10 -877.33 -883.55 -6.22
20 -860.50 -856.08 4.42
50 -851.56 -843.75 7.81
100 -843.83 -840.40 3.43

The results demonstrate that analytical DFT has a worse performance
for a low number of timesteps but does better when the number of steps
is high. Notably, analytical DFT is reliant on the central limit theorem
(for the preference values to converge to a multivariate normal distribution)
and it appears that this becomes a poor approximation when the number of
steps is low. Whilst the best performance in this case is for an analytical
model, these results imply that models for which the estimated number of
preference updating steps is low (which was not the case for DFT-1 in Table
6.1) may perform better with a simulated version of DFT. For example, if
we instead assumed that individuals sampled the world at more frequent
intervals than once per second (and thus there were more frequent updates
for attribute matrixM and consequently a smaller number of steps t for each
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set of attribute matrices if the total number of preference updating steps per
second is to remain the same) then simulated models may be preferable. The
simulated approach also of course makes it easier to incorporate additional
dynamic elements, as discussed earlier in the paper.

An illustration of some of these models is given in Figure 6.8, which shows
200 sets of simulated preference values for one of the drivers under a simulated
DFT model (with t = 100).

Fig. 6.8: Evolution of preference values under DFT models

The �gure also shows the expected preference values for two versions
of analytical DFT, a model with a memory parameter (Analytical 1) and
one without (Analytical 2). For all models, preference di�erences above the
threshold of zero (which is indicated by the red horizontal line) imply that
the driver will choose to merge. The green lines give the average and ex-
pected preference values for the simulated and analytical versions of DFT
respectively. Finally, the blue lines give the standard deviations of these val-
ues (which are calculated directly for simulated DFT, and estimated based
on the covariance of the preference values for analytical DFT). For the sim-
ulated model, all 200 simulations are given. For example, we can see that
after 4 seconds not a single simulation �nds a positive di�erence (which cor-
responds to choosing to merge). This additionally illustrates why we do not
simply evaluate the probabilities of merging through summing the number of
simulations for which the di�erence is positive, as this would result in zero
probabilities. Note that these probabilities are not cumulative, but are the
probability of a driver merging at that moment. Notably, the key di�erence
between models without a memory parameter (Analytical 2) and the other
models is that the probability of choosing to merge at the �nal time point
(at which point the driver chooses to merge) is lower. This is also demon-
strated in Table 6.3, which gives the average probability of observing the
chosen alternatives under three di�erent DFT models (corresponding to the
three models in Figure 6.8), as well as the full set of probabilities for the
same driver. As a contrast, all models perform similarly for the timepoints
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where the driver does not merge.

Table 6.3: Probabilities for 14 `choices' by one driver under four di�erent DFT models

Model Simulated Analytical 1 Analytical 2

deliberations per second 100 100 1000

αd 0.35 0.25 0.00

Log-likelihood -843.83 -840.40 -858.81

Average stay probability 0.9075 0.9077 0.9061

Average merge probability 0.3245 0.3230 0.3057

Seconds

1 0.9693 0.9627 0.9890

2 0.9886 0.9887 0.9920

3 0.9997 0.9996 0.9998

4 0.9996 0.9997 0.9995

5 0.9997 0.9999 0.9997

6 0.9921 0.9877 0.9741

7 0.9892 0.9961 0.9978

8 0.9995 0.9999 0.9998

9 0.9979 0.9951 0.9827

10 0.9323 0.9323 0.9173

11 0.9140 0.8672 0.8974

12 0.8310 0.7747 0.8312

13 0.7847 0.7449 0.8279

14 0.2611 0.3107 0.2272

4.3 Models accounting for decay parameters

Whilst DFT provides a natural method for the evolution of preferences over
time, models that calculate probabilities based on a single utility calculation
can also capture the impact of previous preferences through decay parameters
(see Equations 6.19 and 6.20). This results in a signi�cant improvement in
model �t for all of the models, with the log-likelihoods of models implement-
ing an exponential discounting function given in Table 6.4, and analytical
DFT models (with free timestep parameters) also displayed for comparison.
We simplify all models by assuming that the unobserved errors are indepen-
dent over time.

For the models with and without a decay parameter, there is very lit-
tle di�erence between the di�erent types of models, although the quantum
model is no longer the best performing model when a decay is included.
Additionally, there is now also a small di�erence between DFT and probit,
although this di�erence is not signi�cant. The estimate for the decay param-
eter is slightly higher for DFT than the other models. Table 6.4 also gives
the ratio βGF /βGB , which gives the estimated relative importance of the gap
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Table 6.4: Performance and model outputs for models with basic decay parameters

Without memory With memory

Log-likelihood Log-likelihood αd estimate βGF /βGB

Logit -862.59 -840.36 0.227 0.732

Probit -858.59 -838.29 0.237 0.755

Quantum -856.21 -837.67 0.235 0.775

DFT -858.81 -837.48 0.250 0.759

in front of the vehicle compared to the gap behind the vehicle. The results
here demonstrate that all models �nd that the gap behind is more important,
with the quantum model assigning the highest importance to the gap in front
relative to the other models.

Next, we consider improving the models by increasing the �exibility of
the decay parameters. For all models, we consider hyperbolic discounting
functions as well as utilising di�erent discounting parameters for the utility
to stay and the utility to merge. The results of these models are given in
Table 6.5. For the hyperbolic functions, we consider two variations. The �rst
of these is based on the original hyperbolic discounting function (for which s
is �xed to 1 in Equation 6.20). The second uses both hyperbolic discounting
parameters.

Three clear patterns emerge from these models. Firstly, quantum models
perform slightly but not signi�cantly better than probit models, but signi�-
cantly better than logit models. Secondly, additional parameters allowing for
di�erent decay rates for the utility for merging compared to the utility for
staying in the same lane signi�cantly improve model �t. Finally, exponential
decay models perform better than hyperbolic decay models, but worse than
generalised hyperbolic decay models (for which s in Equation 6.20 is a free
parameter). The shape of the discount curves estimated are given for the
best exponential and best hyperbolic versions of each model in Figure 6.9.

Notably, the same patterns emerge for all of the di�erent models. There
is no di�erence in the decay for the utility to merge, regardless of whether
hyperbolic or exponential discounting decays are used, but there is a sub-
stantial di�erence for the decay for the utility to stay. This implies that the
gain in model �t found by the hyperbolic decay models is possibly due to
the increased �exibility that allows for an initially sharp decay before a more
gradual decrease after 1 second (the purple lines in Figure 6.9. Furthermore,
Figure ??, which gives the evolution of utilities under logit, probit and quan-
tum models (for the same driver whose preferences are illustrated in Figure
6.8), suggests that the addition of decay parameters appears to decrease the
probability of choosing to merge. As before with DFT, the models predict a
greater probability of choosing to merge at the point where the driver does
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Fig. 6.9: The discount curves estimated by the di�erent models

actually choose to merge.

Fig. 6.10: Evolution of utilities under logit, probit and quantum models

4.4 Inclusion of initial preferences

Thus far, the alternative speci�c constant that we have utilised in our models
has been applied for every new set of attribute values. Whilst this parameter
helps capture the baseline preferences for alternatives (note that the drivers
choose to merge at only 12% of the timepoints), it does not capture a baseline
preference at the start of the decision process. For example, a driver may
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initially be keen to merge lanes, but then quickly realise that it is not possible
upon approaching the motorway. For DFT models, this initial preference
can easily be captured by estimating P0 in Equation 6.1. For the other
models, this initial preference can be captured through the addition of a
constant in one of the utilities/projection lengths (that is applied at the �rst
time point only). The results of adding this parameter are given in Table
6.6. The logit, probit and quantum models without the initial preference
parameters are based on the best �tting models displayed in Table 6.5. We
also give the results for quantum rotation models, where there are no memory
parameters, but dynamic e�ects are captured through the incorporation of
quantum rotation matrices. Finally, for analytical DFT, the model without
an initial preference parameter has the number of deliberation timesteps �xed
to 1000.

Table 6.6: The impact of adding an initial preference parameter on the log-likelihood for
the di�erent models

Model Decay Type without + P0 Di�erence

Simulated DFT DFT -840.76 -824.57 16.19
Analytical DFT DFT -837.48 -831.44 6.04

Probit Exp -831.97 -831.39 0.58
Probit Hyp -827.78 -827.31 0.47
Logit Exp -834.91 -834.34 0.57
Logit Hyp -830.45 -830.42 0.03

Quantum Exp -830.53 -829.59 0.94
Quantum Hyp -828.73 -828.67 0.06

Quantum Rotation Rotation -836.53 -835.46 1.07

Crucially, DFT is the only model that bene�ts from the addition of an
initial preference parameter. It is also worth noting that a simulated version
of DFT improves signi�cantly more than an analytical version of DFT. This
implies that some of the bene�t of an initial parameter is averaged out by an
analytical DFT model.

4.5 Impact of information update rate

Whilst all of the results thus far have only used observations at 1 second
intervals before the moment where the driver chooses to merge, we also con-
sider models applied to the data where more observations are included. This
results in di�erent frequencies of `visual information updating speeds' for the
decision-makers (i.e. di�erent rates for how often the attributes of alterna-
tives are updated). The key bene�t of testing across di�erent rates is that
it allows us to test how the estimate for the number of preference updating
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steps in a DFT model is impacted by the information updating rate. This
is a result of the fact that under our implementation, it is assumed that an
individual considers each set of attribute values for the same number of pref-
erence updating steps. We estimate full (analytical) DFT models on datasets
that include 1, 2, 5 and 10 data updates per second. The results of these
models are given in Table 6.7.

Table 6.7: Results from DFT models applied with di�erent visual update rates

Data Updates per second 1 2 5 10

Observations 3,293 6,391 15,718 31,245
Log-likelihood -831.75 -1,110.15 -1,473.87 -1,751.41
t estimate: 347 202 114 43

Crucially, the estimate for the number of preference updating steps per
visual update decreases as the of data updating steps increases, resulting in
approximately the same total of preference updating steps per second. A
visual representation of this result is given in Figure 6.11.

Fig. 6.11: Relationship between the frequency of visual (fv) and mental updating steps
(T)

Additionally, we also compare the results of our �nal models across the
dataset with two di�erent assumptions for the visual update rate. Table 6.8
gives the log-likelihood of models where 0.1 and 1 second intervals are used
for data update rates (with exponential discount rates used for the `static'
models).

The relative performance of the models changes depending on which up-
date rate is used. Whilst the quantum rotation model has the worse �t than
the quantum model for a 1 second interval data, it has better �t for 0.1 sec-
ond interval data. Similarly, probit performs relatively better for 0.1 second
data, obtaining the second best model �t. Across both datasets, however,
DFT is the best performing model.
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Table 6.8: Performance of the di�erent models for di�erent data update frequencies

0.1s interval 1s interval

pars LL BIC LL BIC
Logit 12 -1,768.58 3,661.36 -830.42 1,785.04
Probit 12 -1,753.21 3,630.61 -831.39 1,786.98
DFT 12 -1,750.80 3,625.79 -824.57 1,773.34

Quantum 12 -1,759.13 3,642.46 -829.59 1,783.38
Quantum Rotation 14 -1,756.04 3,656.98 -835.46 1,815.81

5 Conclusions and future steps

This work provides a �rst step towards bridging the gap between mathe-
matical psychology and choice modelling for dynamic data, for which the
attributes for alternatives change over time. In particular, we focus on the
implementation of a dynamic decision �eld theory model for such data. As
DFT models already attempt to capture the deliberation process, the inclu-
sion of attribute changes whilst the decision-maker deliberates on their alter-
natives does not imply fundamental changes to the mathematical structure
of the model, but has never before been implemented, as far as the authors
are aware. In the context of driving decisions, we �nd that a dynamic DFT
model can capture the choice of whether to merge lanes or not. In addition,
a simulated DFT model can account for initial preferences, which do not
appear to be picked up by alternative model structures.

The work conducted in this paper, however, is just a �rst step, as there are
many more features that a model for dynamic data could include. Given that
the data tested here is based on video recorded data, we have not included
any sociodemographics or individual-speci�c attributes. It is easily possible,
for example, that a driver's reaction times and risk propensity could have a
signi�cant impact on the choice of whether to accept a gap or not. Addition-
ally, an individual's speed at which they process new information will likely
impact how they perceive the new information, with previous results sug-
gesting that there is a strong delay e�ect on the processing of changing infor-
mation (Holmes et al., 2016). Furthermore, the separation of processing and
action times will likely impact models. There is however, a clear additional
advantage of a simulated DFT model, in that the addition of such features
to control for heterogeneous driving behaviour can easily be accommodated,
as adding distributions for new parameters will not result in longer model
runtimes. These further steps would help create a truly dynamic model, as
at present DFT operates similarly to the `static' models in that it is reliant
on the decay parameter αd.

Additionally, a decision �eld theory model for changing attributes could
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also be compared to alternative model structures based on alternative accu-
mulator models. For example, the linear ballistic accumulator model could
easily be adapted to include drift rates that are applied for some amount of
time before they are updated when the attributes change.

Furthermore, whilst the emphasis of this paper is not on the driving be-
haviour itself, future work could compare the models developed in this paper
with models traditionally used for gap acceptance and lane merging tasks,
for which a large array of models have previously been speci�cally developed
(Brilon et al., 1999). Additionally, further tests of the models developed in
this paper should consider transferability to other driving behaviour datasets,
for which logit models already perform well (Rossi et al., 2013). A number
of other factors that in�uence merging behaviour could also be added, with,
for example, neither vehicle accelerations nor tra�c conditions taken into
account in the models speci�ed in this paper. The work in this paper also
assumes that the choice to merge or not is a binary decision. An alterna-
tive approach would be to attempt to capture the distance travelled in the
direction of the target lane at each time interval, as the action of merging
can take a few seconds and a driver may start merging before changing their
mind. Accumulator models accounting for changing attributes may also look
very di�erent for di�ering choice contexts. In the dataset in this paper, the
pattern of choices is always the same (the driver `chooses' not to merge for
some number of time intervals before `choosing' to merge in the �nal time
interval). Thus the key impact of the decay parameters in these models may
simply be accounting for this fact. More interesting behavioural insights may
be generated by a more `random' pattern of choices, for which the impact
of decay parameters may be very di�erent. The dynamic logit, probit and
quantum models in this paper also rely on the assumption that there is no
correlation in the unobserved factors over time. Whilst this is an approach
that has previously been applied to a probit model with lagged variables
(Papatla and Krishnamurthi, 1992), and this approach may be suitable for
larger time intervals, it becomes less likely that this assumption is necessar-
ily realistic nor valid for shorter time intervals of, for example, 0.1 seconds.
Further work should consider methods for treating possible correlations of
unobserved factors over time.

Overall, the work in this paper suggests that accumulator models that
account for changing attributes could provide a useful tool for the study of
rapidly changing choice contexts, demonstrating that there is clearly exten-
sive scope for future developments of such models.
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Chapter 7

Improving forecasts and behavioural

insights by applying model averaging

across multiple choice models

Thomas Hancock1, Stephane Hess1, Andrew Daly1 & James Fox2

Abstract

Despite the frequent use of model averaging in many disciplines from weather

forecasting to health outcomes, it is not yet an idea often considered in travel

behaviour or choice modelling. The idea behind model averaging is that a

single model can be created by calculating contribution weights for a set of

candidate models, depending on their relative performance, thus creating an

`average'. In this paper, we demonstrate that this idea can be used e�ectively

for two key alternative purposes within travel behaviour modelling. The �rst

is to apply model averaging across a number of models with the aim of im-

proving model �ts. We demonstrate that model averaging can be e�ective in

applications across multiple complex models as well as across simpler models

for large-scale choice datasets, both in estimation and in forecasting with sub-

sets of validation samples. The second key area of application is to contrast

model averaging with latent class models (LCMs). LCMs have tradition-

ally been used for taste heterogeneity, but are increasingly used as a tool for

capturing heterogeneity in other components, such as information/attribute

processing and decision rules. This often leads to substantial improvement

in model �t and the apparent �nding of large clusters of individuals making

choices in ways that are substantially di�erent from those used by others.

Our results however demonstrate that model averaging leads to signi�cant re-

ductions in the amount of heterogeneity of the type analysts have sought to

1Choice Modelling Centre and Institute for Transport Studies, University of Leeds (UK)
2RAND Europe
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uncover with latent class structures of late.

1 Introduction

Whilst there have thus far been very limited applications in choice mod-
elling using model averaging, it is a popular method elsewhere with Bayesian
model averaging being used regularly in medical statistics (Hoeting et al.,
1999), ecology (Wintle et al., 2003) and biology (Posada and Buckley, 2004).
Additionally, ensembles are often used to combine neural networks (Gazder
and Ratrout, 2015; Moretti et al., 2015). Typically, model averaging or en-
semble methods can be used to allow a modeller to establish a single model
by calculating relative contribution weights for a set of candidate models.
Within health, Bayesian model averaging has been successfully used to im-
prove the prediction of who is at risk of a stroke (Volinsky et al., 1997), at
risk of a coronary event (Wang et al., 2004) and to understand the relation
between arsenic levels and cancer rates (Morales et al., 2006). Additionally,
model averaging is often used for pooling forecasts from di�erent models.
This is particularly common for meteorological forecasting, with model av-
eraging having been used to predict the surface temperature of the ocean
(Raftery et al., 2005) and also wind speeds (Sloughter et al., 2010). It is also
used in other �elds for tasks such as predicting levels of economic in�ation
(Wright, 2009).

Choice modellers, by contrast, may often consider a set of candidate mod-
els, detail the advantages and disadvantages of each, but then subjectively
choose only one model to use in the main application or reporting of key
results. Consequently, it seems surprising that model averaging has not yet
made the transition into mainstream choice modelling given that it can cap-
ture the bene�ts from a number of models and combine them into one model.
This is the �rst key application of model averaging that we test in this paper:
averaging across a large number of candidate models as well as looking at the
impacts on important model outputs such as cost and time elasticities. This
is one reason for applying model averaging in such a way, i.e. the case where
multiple candidate models all have advantages and disadvantages and there is
no clear cut case for choosing which is best. Another rather di�erent context
arises in the case of very large-scale applications, either with large datasets
or large choice sets, where we may not always be able to use as complex a
model as we might otherwise choose to use due to the computational running
time of complex models. This reason for model averaging will become even
more timely in the context of increasing reliance on big data.

The second key application of model averaging is to consider insights gen-
erated through the comparison of latent class models and model averaging.
Latent class structures have long been used as a tool for introducing het-
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erogeneity across individual decision makers in choice models (Greene and
Hensher, 2003; Hess, 2014). Over the last decade, there has also been in-
creasing interest in using the models to allow for heterogeneity in the actual
underlying model structure across individuals, with two key applications, in
decision rule heterogeneity and in information processing work. While the
former has received more attention, the latter work actually takes historical
precedence.

A key interest in the �eld of information processing strategies (IPS) or
attribute processing strategies (APS) has been the notion that some deci-
sion makers may actually make their choices based on only a subset of the
attributes that describe the alternatives at hand. This phenomenon is typ-
ically referred to as attribute non-attendance (ANA) or attribute ignoring,
and an in-depth review of work in this area is given in Hensher (2010). The
interest in this topic in the present discussions comes in the context of ways to
accommodate ANA in models. A key role in this area was played by the early
discussions in Hess and Rose (2007), who proposed the use of a latent class
approach to accommodate ANA, a method since adopted by numerous other
studies (e.g. Campbell et al., 2010; Hensher and Greene, 2010; Hensher et al.,
2012; Hole, 2011; Scarpa et al., 2009). With this approach, di�erent latent
classes relate to di�erent combinations of attendance and non-attendance
across attributes. For each attribute treated in this manner, there exists a
non-zero coe�cient (to be estimated), which is used in the attendance classes,
while the attribute is not employed in the non-attendance classes, i.e. the
coe�cient is set to zero. In a complete speci�cation, covering all possible
combinations, this would thus lead to 2K classes, with K being the number
of attributes, where a given coe�cient will take the same value in all classes
where that attribute is included.

In addition to the vector β, we now have a SxK matrix Λ, in which each
row contains a di�erent combination of 0 and 1 elements, where S = 2K .
Next, let A◦B be the element-by-element product of two equally sized vectors
A and B, yielding a vector C of the same size, where the kth element of C
is obtained by multiplying the kth element of A with the kth element of B.
Using this notation, the speci�c values used for the taste coe�cients in class
s are then given by the vector βs = β ◦Λs. The likelihood for decision maker
n is then given by:

Ln (β, π) =

S∑
s=1

πs

T∏
t=1

Pni∗t (βs = β ◦ Λs) . (7.1)

A di�erent application of such heterogeneous structures in di�erent classes
has arisen in the context of decision rule heterogeneity. There has long been
interest in the notion that di�erent individuals make their decisions in dif-
ferent ways, going back to work in psychology in the 1970s (Montgomery
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and Svenson, 1976). Although structures belonging to the family of random
utility models have come to dominate, it is important to recognise that alter-
native paradigms for decision making have been proposed, for example the
elimination by aspects model of Tversky (1972), but also more recent work
based on the concepts of happiness (Abou-Zeid and Ben-Akiva, 2010) and
regret (Chorus, 2010; Chorus et al., 2008). The evidence in the literature is
that which paradigm works best is very much dataset speci�c. Hess et al.
(2012) put forward the hypothesis that variations in decision rules may be
across decision makers with a single dataset, not just across datasets, and
propose the use of a con�rmatory latent class approach in this context.

Speci�cally, let Ln (βm,m) give the probability of the observed sequence of
choices for decision maker n, conditional on using a choice model identi�ed
as m, where this uses a vector of parameters βm. The Hess et al. (2012)
framework is based on the idea that M di�erent behavioural processes are
used in the data. The probability for the sequence of choices observed for
decision maker n is now given by:

Ln (β, π) =

M∑
m=1

πn,mLn (βm,m) , (7.2)

where we use di�erent behavioural processes in di�erent classes, with the
probability of decision rule class m for decision maker n given by πn,m. Hess
et al. (2012) additionally allow for random heterogeneity in parameters within
individual decision rule classes, such that:

Ln (Ω, π) =

M∑
m=1

πn,m

∫
βm

Ln (βm,m) f (βm,Ωm) dβm, (7.3)

where βm ∼ f (βm,Ωm) and Ωm = 〈Ω1, . . . ,ΩM 〉.
Hess et al. (2012) use the model to allow for mixtures between random

utility maximisation, random regret minimisation and elimination by aspects.
In later work, Hess and Stathopoulos (2012) use an approach as in Walker
and Ben-Akiva (2002) and Hess et al. (2013a), making the class allocation a
function of a latent factor, which in this case also explains decision makers'
real world choices.

At this stage, it should be noted that a latent class model mixing various
decision rules is just one example of a wider set of structures that combine
di�erent models. A further possibility for example would be a model using
di�erent GEV nesting structures in di�erent latent classes, somewhat similar
in aims to the work of Ishaq et al. (2013). Finally, a separate body of work
looks at using di�erent choice sets in di�erent classes, in the context of choice
set generation work (see e.g. Ben-Akiva and Boccara 1995; Swait and Ben-
Akiva 1985 and Gopinath 1995, section 2.7).
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While the work using latent class structures for heterogeneity in either
decision rules or information processing strategies has been shown to lead to
substantial improvement in �t and apparent meaningful insights (see refer-
ences above), it has also not been without criticism. In particular, concerns
have been raised about extensive risk of confounding between taste hetero-
geneity and heterogeneity in the process or model structure. In a traditional
latent class model, the di�erent β parameters in di�erent classes are used
solely to uncover taste heterogeneity. In a latent class model that combines
di�erent structures in di�erent classes, these individual models will them-
selves be making use of di�erent β parameters, while in the case of ANA,
they will use di�erent combinations of the β parameters. There is then the
real possibility that evidence of a substantial class allocation probability for
di�erent classes will be driven by heterogeneity in sensitivities rather than
actual process. These concerns have found empirical support in the work of
Hess et al. (2013b) who show that the share for non-attendance classes re-
duces substantially when allowing for additional random heterogeneity, while
the work of Hess et al. (2016) shows that allowing for random heterogeneity
in the parameters of RUM and RRM models within a RUM-RRM mixture
model substantially reduces the extent of decision rule heterogeneity.

The use in practice of such latent class models allowing for di�erent struc-
tures in di�erent classes continues to be very popular (Boeri and Longo, 2017;
Dey et al., 2018) despite these concerns. A key reason is likely that the in-
clusion of additional taste heterogeneity, as in the work of Hess et al. (2013b)
and Hess et al. (2016) is computationally very di�cult. In the present pa-
per, we thus use a di�erent approach by highlighting how model averaging
can be used as a diagnostic tool for the potential confounding between taste
heterogeneity and other heterogeneity.

Model averaging, in this context, can be implemented as a sequential la-
tent class model. Whereas a fully �exible model simultaneously estimates
the parameters of the class component models as well as the class shares, a
model averaging approach estimates the separate classes as individual models
�rst, before estimating the class shares separately with the individual model
parameters �xed. Thus the second key aim of using model averaging in this
paper is to investigate potential cases of confounding in models using simulta-
neous estimation of di�erent model structures. Of course, a caveat applies in
that it is also possible that the presence of decision rule heterogeneity and/or
heterogeneity in processing strategies can only be uncovered when estimat-
ing models in which the parameter estimates for the di�erent subclasses are
informed more by some individuals in the data than by others, as would be
the case in simultaneous estimation.

The remainder of this paper is organised as follows. First, we present a
methodology section demonstrating how we apply model averaging and how
to get outputs such as elasticities from model averaging. Next, we present our
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empirical applications, where we use model averaging to improve model �t
in both estimation and forecasting and to obtain welfare measures averaged
across a set of candidate models. This is followed by our work on attribute
non-attendance and decision rule heterogeneity. The �nal section summarises
our �ndings and presents directions for future research.

2 Methodology

2.1 Model averaging in estimation

To apply model averaging, we �rst estimate a number of di�erent individual
models, where say L (Cn | m,Ωm) gives the likelihood of the sequence of
choices Cn observed for person n, conditional on using model m, where this
model uses a vector of parameters Ωm. We have that:

L (Cn | m,Ωm) =

∫
βm

Tn∏
t=1

Pm
(
j∗n,t | βm

)
fm (βm | Ωm) dβm. (7.4)

In this general notation, we have that Pm
(
j∗n,t | βm

)
gives the probability

of the observed choice j∗n,t for decision maker n in choice situation t, con-
ditional on using model m, where we allow for a general notation such that
the parameters βm are distributed according to fm (βm | Ωm). Of course, it
is possible that no random heterogeneity is used in which case the integral
drops out, or that a latent class structure is used, replacing the integral with
a weighted summation.

An analyst will estimate M di�erent such individual models, of di�ering
form, each yielding a set of parameters and a likelihood at the individual
level L (Cn | m,Ωm). The set of M models could combine models using
di�erent distributions for random parameters, models with di�erent socio-
demographic speci�cations, models of di�erent types, di�erent speci�cations
for IPS or di�erent speci�cations in terms of underlying decision rule. The
model averaging process then computes the overall likelihood for person n as
the weighted average across M models, with:

Ln (πn,Ω) =
M∑
m=1

πm,nL (Cn | m,Ωm) , (7.5)

where
∑M
m=1 πm,n = 1 and 0 ≤ πm,n ≤ = 1. This overall likelihood is

conditional on the vector of weights πn = 〈π1,n, . . . , πM,n〉 and the combined
parameter estimates from the di�erent models Ω = 〈Ω1, . . . ,ΩM 〉.

Of course, this structure takes the form of a latent class model, but two core
di�erences apply.
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Firstly, in a latent class model, an analyst simultaneously estimates the
class allocation probabilities and the within class probabilities. In model
averaging, individual models are estimated for the entire sample, and then
the weights for these models are estimated, conditional on the parameters
obtained during the individual model estimations. Model averaging is thus a
sequential rather than simultaneous process. This is clearly computationally
much easier, but also in fact allows a situation where the individual models
come from di�erent teams of analysts. In fact, the estimation of the weights in
Equation 7.5 does not require the parameters of the individual models, or even
the mathematical formulation of the probabilities for individual models, but
simply relies on the person-speci�c likelihoods obtained with the individual
models. Model averaging will almost inevitably lead to a lower model �t than
the estimation of a simultaneous structure, but of course the general situation
is one where this simultaneous structure is not feasible to be estimated.

Secondly, in a latent class model, it is generally the case that the same
overall model structure is used in di�erent classes, though this is by no means
necessary (cf. Hess et al., 2012). In model averaging, a di�erent model
speci�cation, in terms of model structure and/or e.g. utility speci�cation,
is required for the di�erent models as the separate estimation of the same
structure for di�erent m would of course yield the same �t and parameter
estimates.

Just as in standard latent class approaches, it is entirely possible to specify
a class allocation model for the model weights, i.e. making πn a function of
characteristics of the individual n.

2.2 Model averaging in application

The use of model averaging produces a new likelihood at the person level,
Ln (πn,Ω), where the overall model averaging log-likelihood (acrossN people)
is given by:

LL (Ω, π) =

N∑
n=1

log (Ln (πn,Ω)) . (7.6)

This overall log-likelihood will be at least as good as the log-likelihood for
the best model out of the set of M di�erent models. However, model �t
alone is not the key reason for model averaging3. The output from the model
averaging estimation process is a vector of weights for di�erent models, where
these are potentially individual speci�c, i.e. πm,n for person n and model m.
These weights can then be used in model application, with two key uses.

Firstly, let Pn (j | S,m,Ωm) give the probability of individual n choosing
a speci�c alternative j out of a choice set S, conditional on model m, where

3For a full discussion of di�erent model averaging methodologies and bene�ts, readers
should refer to Claeskens (2008).
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this probability may again require integration. We can then compute the
probability of this alternative j under model averaging as:

Pn (j | S, πn,Ω) =

M∑
m=1

πm,nPn (j | S,m,Ωm) , (7.7)

and an analyst can then for example use these weighted predictions in sample
enumeration or other forecasting.

Secondly, let Wn (j | S,m,Ωm) be some model output for individual n
and choice set S, conditional on model m. This could for example be a
willingness-to-pay (WTP) measure from model m or an elasticity measure.
It is then similarly possible to compute a model average version of this output,
using:

Wn (j | S, πn,Ω) =

M∑
m=1

πm,nWn (j | S,m,Ωm) , (7.8)

Any measures such as WTP or elasticities thus need to �rst be calculated for
the individual models before being averaged across models. The calculation
will likely di�er across models and may involve simulation for some of the
models if they incorporate random heterogeneity. If this is the case, it is
advisable to use the entire distributions in model averaging rather than just
relying on the moments from individual models if some non-normal distribu-
tions are included.

The key advantage of this process is that the calculation of these predic-
tions or derived measures is informed by the results of a number of di�erent
models, and is thus potentially more robust to mis-speci�cation of the indi-
vidual models. It is similarly possible to compute variances for the outputs of
Equation 7.6 and 7.8, though we rely just on the mean outputs in the present
paper.

3 Empirical application

In this section, we �rst give details on the di�erent datasets used in this
paper. We then test the two key applications of model averaging. First,
for each dataset, we demonstrate how model averaging can improve model
�t, as well as considering elasticities and willingness-to-pay outputs from
model averaging. Second, we contrast model averaging to latent class models
to generate insights for information processing work and also decision rule
heterogeneity work.

3.1 Data

We use three di�erent datasets for trialling model averaging. The �rst is a
typical SP dataset with the latter two more complex RP datasets. We detail
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these �rst before applying model averaging across di�erent models used on
each dataset.

3.1.1 UK data

The �rst dataset we use relies on a SC dataset where public transport com-
muters living in the UK each make ten choices between three routes. A total
of 368 participants completed the survey resulting in 3,680 choices. Each
choice task involves an invariant reference trip and two hypothetical alterna-
tives. Each alternative is described by travel time (in minutes), fare (in £),
rate of crowded trips, rate of delays (both out of 10 trips), the average length
of delays (across delayed trips) and the cost and availability of a delay infor-
mation service (in £). This dataset has previously been used for decision rule
heterogeneity (Hess and Stathopoulos, 2013) as well as for ANA work (Hess
et al., 2013b), making it an ideal case study for contrasting model averaging
against latent class models.

3.1.2 Sydney dataset

The second dataset that we use for model averaging comes from a Household
Travel Survey (HTS-06) that was carried out in Sydney between 2004 and
2006 (Bureau of Transport Statistics, 2012). For this dataset, seven possible
modes are established (car driver, car passenger, taxi, walk, bicycle, bus or
train) and a large number of destination zones are de�ned (2,277 travel zones).
For the purposes of this paper we consider only 5,173 home-work tours. Level
of service and attraction measures were assembled such that attributes could
be derived for travel times, costs, waiting times and distances. For a full
description of the data and its components, readers should refer to Fox (2015).

3.1.3 California dataset

The �nal dataset comes from the 2012 California Household Travel Survey
(California Department of Transportation, 2013). For this dataset, there are
6,718 choices, with car, bus, rail and air as mode alternatives and 58 desti-
nation zones (the di�erent counties in California). Again, we have attraction
attributes for the di�erent destinations and times, costs, and distances asso-
ciated with the di�erent travel modes.

3.2 Model averaging in estimation

Our �rst aim is to use model averaging to improve model �t. We can also test
whether these models are over�tting through the use of validation subsets.
Whilst there are many examples of possible uses of model averaging for travel
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behaviour modelling, we consider three di�erent datasets to cover three com-
mon issues: the speci�cation of heterogeneity, the de�nition of non-linearity,
and the nesting structure in models for large-scale datasets.

3.2.1 Model averaging for speci�cation of heterogeneity

A good �rst example of when model averaging might be useful is in the
consideration of distributions for parameters within a mixed logit (MMNL)
model. There is extensive literature on the choice of distributions and it is
often clear that di�erent speci�cations yield relatively similar �t but often
substantially di�erent model outputs, making the choice of a �nal distribution
di�cult for analysts (Börjesson et al., 2012; Hess et al., 2017), while the use
of non-parametric distributions is still beyond the reach of most modellers
despite recent innovations on this approach (Fosgerau and Mabit, 2013).

For the UK dataset, we �rst test the use of continuous distributions. For
fare, time, crowding and rate of delays, we use either negative log-normal or
negative log-uniform distributions depending on the model (see Table 7.1).
We use negative log-normal distributions for the remaining four attributes.
This results in 16 di�erent MMNL models, for which the model �ts are given
in Table 7.1, where we also show the percentage of individuals whose choices
are best described by each model (labelled as `best �t' in Table 7.1).

The best �tting model here is version 15, which has negative log-uniform
distributions for fare, time and crowding. A model with negative log-normal
distributions for all parameters actually has better �t for more individual
participants (13.59% compared to 7.07%) and consequently this model must
have a larger range of �ts for the individuals to have worse overall �t, which
could be a result of long tails (Hess et al., 2017). However, more crucially,
there is not much di�erence between the model �ts and this means that there
is scope for model averaging.

We apply model averaging across the 16 mixed logit models, i.e. estimat-
ing the 16 model speci�c weights4, where we do not make these individual
speci�c in our application. This results in a log-likelihood of -2,945, which as
expected is better than that of any of the individual models. No formal sta-
tistical test is used here as it is not a process of simultaneously estimating all
the parameters for all the models on a single dataset. The estimated weights
are given in the 'MA share' column in Table 7.1. We see that the model with
the best individual log-likeliood obtains the largest share but in addition see
non-trivial shares for a substantial subset of other models. Crucially, this in-
cludes model 1, which had the worst individual �t, but also the largest share
of respondents where this model produced the best �t out of all 16 models.
This con�rms that model averaging can be a successful approach for incor-
porating results from models that work well for only a subset of individuals.

4We use a logit model for class allocation, with 15 constants estimated.
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We also test to see whether the results from model averaging are over�tting
by using out-of-sample validation. In this case, we split the dataset into �ve
sections. For each section, we �rst estimate the parameters for all 16 mixed
logit models individually on the �rst 80% of the data before calculating the
log-likelihood of the remaining 20% validation set with the estimated param-
eters found for the initial set. We then apply model averaging across the 16
MMNLs for each of the �ve estimation subsets, before applying the resulting
model averaging structure in each set to the appropriate holdout sample. The
results of this are also shown in Table 7.2, where, for space reasons, we only
ever show the �ts for the �ve most contributing MMNLs in model averaging.

Across both the estimated and forecasted subsets, we consistently see
that the model averaging approach has better �t than that of the best �tting
MMNL model for each estimation subset. Note that across the �ve di�erent
subsets, four di�erent combinations of distributions result in the best model
�t (Models 14, 12, 15, 9 and 15 respectively across the di�erent subsets). This
highlights the di�cult task of choosing distributions and further reinforces
the potential bene�ts of model averaging. In addition, the MMNL model
that o�ers the best performance in estimation is not the one with the best
performance in the holdout sample in three out of �ve cases, while model
averaging always produces a log-likelihood on the holdout that is at least as
good as the best MMNL �t. As in the full sample, we again see that models
that do not �t well across the subset can still contribute to the model average,
with the best �tting model only twice receiving the largest share across the
�ve subsets, and 13 out of the 16 models are at least once one of the top
�ve contributors to the model average. Additionally, no single model is the
largest contributor to more than one holdout subset.

3.2.2 Model averaging for linearity assumptions

We next test model averaging on revealed preference (RP) datasets, which
can be more complex. As choices in RP data often include both mode and
destination choice, the models that can be applied often have to be simpler
due to both the vast size of some RP datasets and also due to the large
number of alternatives generated if a modeller is trying to predict the precise
zone or area an individual has chosen to travel to, together with the mode.
Consequently large-scale models are often simple in structure as our usual
more complex models such as mixed logit quickly become computationally
infeasible. Model averaging avoids computational problems by creating a
more complex model from averaging across a number of simpler models.

A key interest in large scale modelling is the speci�cation of the utility
function notably in terms of linearity assumptions (Daly, 2010; Stathopoulos
and Hess, 2012). We therefore trial combinations of parameters for models
on our Sydney HTS-06 data. In these models we use just the mode choice,

226



3. Empirical application

T
a
b
le

7
.2
:
E
st
im
a
ti
o
n
a
n
d
h
o
ld
o
u
t
sa
m
p
le
re
su
lt
s
fo
r
m
o
d
el
av
er
a
g
in
g
fo
r
th
e
U
K
d
a
ta
se
t

E
s
t
im

a
t
io
n

H
o
ld
o
u
t
S
a
m
p
le

B
e
s
t
in
d
iv
id
u
a
l
M
M
N
L

M
o
d
e
l
a
v
e
r
a
g
in
g

M
o
s
t
c
o
n
t
r
ib
u
t
in
g
M
M
N
L
s

M
A
L
L

M
o
d
e
l
a
v
e
r
a
g
in
g

I
n
d
iv
id
u
a
l
M
M
N
L
s

M
A
L
L

v
e
r
s
io
n

L
L

L
L

V
e
r
s
io
n

L
L

S
h
a
r
e

I
m
p
r
o
v
e
m
e
n
t

L
L

V
e
r
s
io
n

L
L

I
m
p
r
o
v
e
m
e
n
t

F
u
ll

1
5

-2
,9
6
3

-2
,9
4
5

1
5

-2
,9
6
3

3
4
.7
%

1
8

n
/
a

1
0

-2
,9
8
4

1
5
.2
%

3
9

1
1

-2
,9
8
0

1
4
.7
%

3
5

1
4

-2
,9
6
3

9
.7
%

1
8

6
-3
,0
1
5

7
.8
%

7
0

H
o
ld
o
u
t
1

1
4

-2
,3
4
7

-2
,3
2
7

1
1

-2
,3
5
5

2
0
.7
%

2
8

-6
2
5

1
1

-6
3
2

7

1
0

-2
,3
5
0

1
8
.6
%

2
3

1
0

-6
3
7

1
2

1
3

-2
,3
5
4

1
4
.5
%

2
7

1
3

-6
2
9

4

2
-2
,3
9
0

1
0
.7
%

6
3

2
-6
5
3

2
8

1
4

-2
,3
4
7

9
.8
%

2
0

1
4

-6
2
9

4

H
o
ld
o
u
t
2

1
2

-2
,4
0
5

-2
,3
8
3

1
2

-2
,4
0
5

2
4
.7
%

2
2

-5
5
8

1
2

-5
6
2

4

9
-2
,4
2
2

1
9
.2
%

3
9

9
-5
6
5

7

1
6

-2
,4
0
8

1
8
.5
%

2
5

1
6

-5
6
4

6

6
-2
,4
2
4

1
4
.4
%

4
1

6
-5
7
3

1
5

3
-2
,4
3
8

1
1
.1
%

5
5

3
-5
7
2

1
4

H
o
ld
o
u
t
3

1
5

-2
,3
5
4

-2
,3
2
6

1
6

-2
,3
5
6

1
7
.6
%

3
0

-6
2
2

1
6

-6
2
6

4

8
-2
,3
5
6

1
5
.0
%

3
0

8
-6
3
1

9

1
5

-2
,3
5
4

1
3
.9
%

2
8

1
5

-6
2
9

7

1
3

-2
,3
6
9

1
2
.5
%

4
3

1
3

-6
2
7

5

1
-2
,4
1
3

1
2
.1
%

8
7

1
-6
3
3

1
1

H
o
ld
o
u
t
4

9
-2
,3
6
2

-2
,3
3
3

8
-2
,3
6
2

2
4
.1
%

2
9

-6
1
5

8
-6
2
2

7

9
-2
,3
6
2

2
0
.4
%

2
9

9
-6
3
5

2
0

3
-2
,3
7
7

1
8
.9
%

4
4

3
-6
2
8

1
3

1
5

-2
,3
7
1

1
0
.3
%

3
8

1
5

-6
1
5

0

1
2

-2
,3
7
0

8
.5
%

3
7

1
2

-6
2
9

1
4

H
o
ld
o
u
t
5

1
5

-2
,3
7
8

-2
,3
4
7

1
5

-2
,3
7
8

2
2
.7
%

3
1

-5
8
7

1
5

-5
9
5

8

6
-2
,3
8
8

2
2
.5
%

4
1

6
-5
9
7

1
0

1
2

-2
,3
9
6

1
0
.8
%

4
9

1
2

-6
0
1

1
4

9
-2
,3
9
2

8
.7
%

4
5

9
-5
9
3

6

1
1

-2
,3
8
1

7
.3
%

3
4

1
1

-5
9
7

1
0

227



Chapter 7. Improving forecasts and behavioural insights by applying model
averaging across multiple choice models

for which there are a total of 5,173 choices, each with 7 alternatives. As
there are a number of level of service attributes across the alternatives, we
use four main attribute types and trial each with or without a logarithmic
transformation applied to the set of attributes. The four parameter types
that we consider are costs sensitivities (three di�erent income groups), in-
vehicle travel time sensitivities (bus, car, train, bus connection for train),
other times sensitivities (access time, time until next service, time until sub-
sequent service) and distance sensitivities (car, walking and bus distances).
We additionally have a number of socio-demographic measures included in
the speci�cation of the models, which are based on a model for both mode
and destination (detailed in Table 4.11 of Fox 2015). As we do not consider
destination choice here, we do not use attraction variables. We trial all 16 dif-
ferent combinations of linear and logarithmic transformations of attributes.
This gives us the model results displayed in Table 7.3.

Table 7.3: Results from combinations of linear and logarithmic transformations of at-
tributes on the Sydney HTS-06 mode choice data

Model Cost IVT OT Distance Best �t MA16 Share Log-likelihood

1 linear linear linear linear 5.2% 0.0% -2,784.74
2 linear linear linear log 5.5% 0.0% -2,803.43
3 linear linear log linear 6.5% 66.4% -2,771.52
4 linear linear log log 10.0% 0.0% -2,792.17
5 linear log linear linear 4.3% 0.0% -2,806.83
6 linear log linear log 4.7% 6.6% -2,814.47
7 linear log log linear 3.3% 0.0% -2,800.51
8 linear log log log 8.4% 0.0% -2,804.25
9 log linear linear linear 4.1% 0.0% -2,801.99
10 log linear linear log 1.6% 0.0% -2,799.90
11 log linear log linear 5.5% 0.0% -2,791.18
12 log linear log log 2.9% 7.7% -2,792.10
13 log log linear linear 6.1% 0.0% -2,839.87
14 log log linear log 6.4% 19.4% -2,823.12
15 log log log linear 5.6% 0.0% -2,838.38
16 log log log log 8.6% 0.0% -2,818.69

Model averaging across 16 models -2,750.49

The best performing individual model (model 3) comprises of linear costs,
in-vehicle travel times and distances but a logarithmic transformation for
other travel times. When applying model averaging across the 16 simpler
models, this model obtains 66% of the allocation. Crucially, the improvement
from model averaging across the simpler models is 21 log-likelihood units.
Notably, the second largest share goes to model 14, which is an opposite to
model 3, in that it has a logarithmic transformation for cost, in-vehicle travel
times and distances but not for other travel times. The results suggest that
model 3 provides the best �t due to it providing a steady performance for
each observation. Model 4, as a contrast, is the 2nd best �tting model for
the largest number of choices, but overall performs worse than model 3 by 20
units, demonstrating that it predicts some choices very well and others very
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badly. Consequently, the joint model established from model averaging is far
less sensitive to outliers, which only have a strong impact if they are not well
described by any of the contributing models.

Again, we trial model averaging across models run on the full dataset as
well as models run on 80% estimation subsets and 20% validation subsets
(See Table 7.4). Across all �ve holdout samples, model 3 again performs best

Table 7.4: Model averaging log-likelihoods across the attribute treatment combinations
for estimation and holdout samples for the Sydney HTS-06 mode choice data

Full Subset 1 Subset 2 Subset 3 Subset 4 Subset 5

Best individual -2,771.52 -2,230.51 -2,162.17 -2,215.39 -2,229.62 -2,230.61

Model averaging -2,750.49 -2,216.40 -2,145.19 -2,198.72 -2,212.30 -2,208.86

Best individual (from est.) n/a -544.80 -614.94 -561.49 -548.73 -553.30

Model averaging n/a -538.86 -610.92 -556.53 -546.15 -549.31

in estimation. This is very di�erent from the case of the mixed logit examples
discussed earlier. However, in line with previous results, we again �nd that
estimation and holdout model �ts are consistently improved by averaging
across all 16 models.

3.2.3 Model averaging for nesting structure

We use our California dataset to test model averaging across models esti-
mating both mode and destination choice. We start by using a multinomial
logit model (MNL), two nested logit models (mode over destination, NL
(M>D), and destination over mode, NL (D>M)) and a cross nested logit
model (CNL). A full description of these models is given by Outwater et al.
(2015). We then apply model averaging over these four models. Moving to
increasingly complex models results in improvements in model �t and this
pattern continues as we move to a model averaging approach (MA), which
results in a substantial improvement in model �t over the cross nested logit
model (see Table 7.5).

Table 7.5: The results from model averaging (MA) across four basic models applied to
the California dataset

Model MNL NL (D>M) NL (M>D) CNL MA

Log-likelihood -19,276 -19,271 -19,220 -19,152 -19,099

Improvement over MNL 5 56 124 177

Improvement over NL(D>M) 51 119 172

Improvement over NL(M>D) 68 121

Improvement over CNL 53

Model averaging share 0.01% 0.02% 35.57% 64.40%

Proportion of best �ts for individuals 5.59% 19.70% 20.66% 54.05%

Whilst the majority of the model averaging share is given to cross nested
logit, model averaging improves model �t by a further 53 log-likelihood units
by also giving a substantial share to the nested logit model with mode over
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destination. The implications of using a combined model with CNL and this
nested logit model are further investigated through consideration of averaging
across the model outputs in terms of the di�erences in elasticities (see Section
3.3.2) and estimates for the value of travel time (see Section 3.4.3).

3.3 Elasticities from model averaging

Elasticities are a key output from choice models estimated on RP data. We
now look at the implications of model averaging in this context. Given that
elasticities from di�erent models can be very contrasting, a further use of
model averaging is that it can be used to derive an `average' single elasticity.
A number of elasticities from di�erent models can be used, with an appro-
priate weight for the relative importance/performance of the model included.
We test this using our two revealed preference datasets.

3.3.1 Sydney elasticities

Our �rst test of elasticities from model averaging uses the Sydney mode
only choice data. This is a particularly relevant example, as elasticities from
models with a logarithmic transform for cost are often too low, whilst linear
cost models are often too high (Fox et al., 2009). The elasticities for a 10%
increase in car costs are shown for the 17 di�erent models tested in Table
7.6. It is noticeable that, whilst many of the elasticities across the di�erent
models are similar, the values estimated for train, bus and walking vary more
substantially. Unsurprisingly, models with a logarithmic transformation of
costs (models 9-16) tend to estimate lower values for alternatives that cost
money and higher values for alternatives that do not have an associated cost.
This is particularly the case for train and bus, for which elasticity values
estimated by models 9-16 are up to half those of values estimated by models
1-8. It is worth noting that as only mode choice is estimated here, the car
elasticities observed are lower than those typically observed (see Fox (2015)
for elasticities from models predicting mode and destination choice for this
data). Whilst model averaging gives a larger share to linear cost models,
lower elasticities for train and bus (relative to model 3, which is likely to
have been used if outputs from a single model were to be chosen) are found
for the model average. As a result, it appears that model averaging may be
able to avoid the issues of �nding elasticities that are either too high or too
low.

3.3.2 California elasticities

We also test di�erent elasticities for the California dataset, where we estimate
car cost and time elasticities for trips, trip length and distance. For number
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of tours, average tour length and total distance respectively, we de�ne:

TourElasticity = log(
ForecastedTours

BaseTours
)/log(1.1), (7.9)

TourLengthElasticity = log(
ForecastedTourLength

BaseTourLength
)/log(1.1), (7.10)

DistanceElasticity = log(
ForecastedTotalDistance

BaseTotalDistance
)/log(1.1). (7.11)

Elasticities from the two best �tting candidate models (CNL and NL mode
over destination, see Section 3.2.3) produce some very di�erent5 values (see
the purple and green bars respectively in Figure 3). Consequently, if a single
output for each elasticity is required, model averaging provides suitable values
which take into account the relative performance of the di�erent models.

Fig. 7.1: Elasticities from the four di�erent candidate models and model averaging for
the California dataset

5For a full review of the elasticities from these four candidate models, readers should
refer to Outwater et al. (2015).
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3. Empirical application

3.4 Willingness-to-pay outputs from model averaging

In this section, we explore welfare outputs from model averaging across the
di�erent models for the di�erent datasets. We demonstrate how this can be
done for both SP and RP datasets. For our SP dataset, we look at value
of travel time as well as values for decreasing both the amount of crowding
and the rate of delays. For our RP data, we take a more detailed look at the
di�erent estimates for the value of travel time.

3.4.1 Outputs from UK models

For the UK models, we �rst use the estimates from each of the 16 mixed logit
models to obtain values6 for the value of travel time (VTT, £/hour), value of
crowding (VCR, amount paid in £ for 1/10 less crowded trips) and value of
the rate of delays (VDE, amount paid in £ for 1/10 less delayed trips). We
use the full distributions from the individual models in model averaging - the
resulting means and standard deviations of these measures for each model
and the model average is given in Table 7.7.

In comparison to the estimates obtained if we had simply used the best
�tting mixed logit model (MMNL-15), results from model averaging suggest
that the willingness to pay for changes in travel time and the rate of delays
are not as high. The opposite is true for changes in the number of crowded
trips, for which model averaging produces a higher estimate than MMNL-15.
Notably, model averaging predicts a much wider standard deviation for the
value of crowding.

3.4.2 Sydney VTT

Given that we use several di�erent mode-speci�c travel time coe�cients and
three di�erent income groups for our Sydney models, we can study a number
of di�erent travel time outputs from model averaging. We can compare the
values for di�erent groups of individuals as we have three cost coe�cients
in each model for three di�erent income categories (1st: < $26k AUD, 2nd:
$26-36.4k AUD, 3rd: > $36.4k AUD). We �rst obtain the value of travel
time from all of the candidate models. As some of the models use logarith-
mic transformations for costs and times, we multiply these measures by a
representative cost ($5.48) and divide by a representative time (49 minutes),
as required. These outputs are detailed in Table 7.8.

It appears that, whilst the di�erent models have fairly similar model �t,
the value of travel times vary signi�cantly, both across models and modes.
The e�ect of income, however, is fairly consistent, with individuals of a higher
income prepared to pay more to reduce time spent travelling. The di�erence

6Note that as we use a logarithmic transformation for the cost attribute, we multiply
values by 3, as this is the average cost of chosen alternatives (to the nearest pound).
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between models is very signi�cant, with the results from some models sug-
gesting that individuals are willing to spend up to 10 times more than other
models suggest. This means that if we were to pick a single model to use the
outputs from, very di�erent interpretations of the value of travel time could
be made depending on which model is chosen. Without model averaging, it
may be hard to know which models to rely more heavily on. The results from
model averaging, however, appear reasonable.

3.4.3 California VTT

For our California data, we can calculate four mode-speci�c values of travel
time from each of the di�erent models. The results of these models are given
in Table 7.9. In this case, as there are only two models that contribute to

Table 7.9: Value of travel time estimates by mode across the di�erent models for the
California data

MNL NL (D>M) NL (M>D) CNL MA

Log-likelihood -19,276 -19,271 -19,220 -19,152 -19,099

VTT

car 73.10 71.70 135.94 88.09 105.11

bus 78.75 77.66 141.72 98.33 113.76

rail 72.15 73.15 67.41 77.68 74.03

air 24.01 25.85 3.84 42.40 28.68

Model share 0.01% 0.02% 35.57% 64.40%

the model average, model averaging provides a value that is close to halfway
between the estimates for the value of travel time from the CNL model and
the nested logit model with mode over destination. For air, this results in an
estimate that is actually closer to the non-contributing MNL value.

3.5 Information processing work

We �rst look at the case of ANA, where we adopt a speci�cation in line with
Hess et al. (2013b).

We �rst estimate a simple MNL model, where we use a logarithmic trans-
form on the fare attribute given earlier evidence of strong non-linearity. This
model uses �ve marginal utility parameters for the continuous attributes, two
parameters for the dummy coded delay information system, and two alterna-
tive speci�c constants (ASC). The results for this model are shown in Table
7.10 where all estimates are of the correct sign.

We next move to the latent class model for attribute non-attendance. We
use a model with 2K classes, with all combinations of attendance and non-
attendance for the K parameters. The probability for class s is given by
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3. Empirical application

Table 7.10: MNL results for public transport route choice

LL(�nal) -3,366.95
ρ2 0.1672

adj. ρ2 0.165

Estimate Rob.t.ratio(0)
ASC1 0.3841 5.76
ASC2 0.1608 3.26

βtt -0.0467 -9.47
βlog-fare -5.9726 -18.89
βcrowding -0.2198 -8.51

βrate of delays -0.2411 -9.82
βaverage delay -0.0421 -5.35

βinfo system charged -0.0833 -1.04
βinfo system free 0.3370 5.06

πs, with 0 ≤ πs ≤ 1 and
∑S
s=1 πs = 1. Rather than imposing constraints

in estimation, an easier approach is to use πs = eδs∑S
m=1 e

δm
, with one δm,

i.e. the parameter used in the class allocation probabilities, being �xed to
zero. Nevertheless, this speci�cation still involves estimating 2K −1 separate
δ terms, of which many will be very negative, equating to very small class
probabilities. In the context of the applications presented in this paper, we
make use of a simpli�ed approach, by instead setting

πs =

K∏
k=1

(Λs,k (1− PN-A,k) + (1− Λs,k)PN-A,k) , (7.12)

where Λs,k gives the entry in Λ relating to attribute k in class s, where this is
1 only if attribute k is attended to in class s. With this speci�cation, we only
need to estimated K separate δ elements (with PN-A,k = eδk

eδk+1
), as opposed

to 2K − 1, leading to signi�cant reductions in the number of parameters.
The results for this model are shown in Table 7.11. We see an improve-

ment in log-likelihood by 308.16 units for 7 additional parameters. This is
highly signi�cant and in line with previous �ndings when using such a con�r-
matory latent class model for ANA. We also see that the parameters in the
attendance classes have increased substantially, where this is in line with the
notion that the MNL model would �nd an intermediary value between 0 for
the non-attenders and a positive value for those attending to the attribute.
However, the implied rates of non-attendance are unrealistically high, ex-
ceeding 50% for all attributes except fare.

We �nally look at the estimation of our model averaging structure. For
this, we �rst estimate 128 individual models, corresponding to all possible
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Table 7.11: Con�rmatory latent class model for attribute non-attendance

LL(�nal) -3,058.79
ρ2 0.2434

adj. ρ2 0.2395

Estimate Rob.t.ratio(0)
ASC1 0.8416 10.32
ASC2 0.329 4.23

βtt -0.1841 -5.64
βlog-fare -14.6889 -14.37
βcrowding -1.1524 -7.16

βrate of delays -1.1307 -5.62
βaverage delay -0.3966 -4.85

βinfo system charged 2.3264 3.37
βinfo system free 2.0433 7.23

δNA,tt 0.3232 1.11
δNA,log-fare -0.5142 -3.43
δNA,crowding 0.7767 3.3

δNA,rate of delays 0.7363 2.43
δNA,average delay 1.1917 4.02

δNA,info system charged 3.1776 3.82
δNA,info system free 0.9874 3.61

Implied rate of NA
Estimate Rob.t.ratio(0)

travel time 0.5801 8.18
fare 0.3742 10.65

crowding 0.685 13.49
rate of delays 0.6762 10.21
average delay 0.767 14.48

info system charged 0.96 30.05
info system free 0.7286 13.47

combinations of attribute attendance and non-attendance, i.e. going from a
model with all 9 model parameters to one with the two ASCs only. We then
estimate the model averaging structure, where we again use multiplicative
class allocation probabilities, as in the LC model. We initially estimate seven
class allocation weights as in the LC model but �nd that four the �rst four
attributes, the constants go towards −∞, suggesting a zero probability of
ANA.

The results of the model averaging work are shown in Table 7.12. We
see that this model now only o�ers a marginally better log-likelihood than
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the MNL model in Table 7.10, much in contrast with the LC model in Table
7.11. In addition to the earlier �nding of zero weight for any classes that
imply non-attendance of either time, fare, crowding or the rate of delays, we
see low rates for average delay and the free information system, with a higher
rate for the charged system. We further see that the 8 models that obtain
the best individual log-likelihoods are also the only 8 models that contribute
to the model average. However, the best ranking model individually is not
necessarily the one contributing the most to the model average. Finally,
out of the 368 individuals in the data, only 95 have their choices explained
the best way by one of these 8 models, where a remarkable 104 out of the
128 models have at least one individual where they are the best performing
model.

Overall, the �ndings from this analysis are much in contrast with those
from the con�rmatory latent class model in that very little evidence of ANA is
found. In addition, there is very little variation in the remaining parameters
across classes. Of course, the counter-argument could be that the model
averaging approach cannot retrieve ANA as it is based on individual models
that each apply a homogenous approach to all individuals. However, some
reassurance can be obtained from the fact that the model averaging results
are in line with the �ndings by Hess et al. (2013b) which �nd evidence of ANA
only for the average delay attribute and for the delay information attribute
after allowing for random heterogeneity in their models. It is thus doubtful
whether additional insights would be obtained with more �exibility for the
individual models, such as by including random heterogeneity.

3.6 Decision rule heterogeneity work

We next turn to decision rule heterogeneity. To maximise the possibility
of �nding such heterogeneity, we consider �ve very di�erent decision rules,
namely:

Multinomial logit (MNL): We assume that the utility a respondent n
obtains from alternative i (out of J alternatives) in choice task t is:

Vint = Uint + εint, (7.13)

where Vint and εint are the deterministic and random components of
utility respectively. The assumption of a type I extreme value distri-
bution for εint then gives us the usual MNL choice probabilities:

PMNL,int =
eVint∑J
j=1 e

Vjnt
. (7.14)

Random regret minimisation (RRM): We base our random regret min-
imisation (RRM) model on the updated speci�cation of Chorus (2010).

240



3. Empirical application

Thus, the deterministic regret for respondent n for alternative i in
choice task t is given by:

Rint = δRRM,i +

K∑
k=1

∑
j 6=i

ln(1 + eβk(xjntk−xintk)) (7.15)

with k = 1, ...,K is an index across attributes, βk is a attribute-speci�c
coe�cient for attribute k and δRRM,i is an alternative speci�c constant.
With the error component of regret also being given by a type I ex-
treme value distribution, the corresponding RRM probabilities for a
respondent n choosing alternative i in choice task t is given by:

PRRM,int =
e−Rint∑J
j=1 e

−Rjnt
(7.16)

Decision �eld theory (DFT): DFT is a dynamic, stochastic model where
the preferences for alternatives update over the course of the decision-
making process (Busemeyer and Townsend, 1992). Under decision �eld
theory (DFT), a decision-maker stochastically considers the di�erent
attributes of the alternatives over the course of a decision-making pro-
cess. The DFT model utilised in the empirical tests in this paper is
based on the version in Chapter 4, which incorporates attribute-speci�c
scaling factors. For a full description of decision �eld theory, how it can
be applied and how the di�erent parameters in the model work, readers
should consult Chapters 2 & 4.

Quantum pairwise comparison (QPCA) Our quantum model is based
on the �rst model (quantum pairwise comparison framework A) de�ned
in Chapter 5. Under a quantum model, the possible choice alternatives
can be represented by a set of orthogonal vectors which make up the ba-
sis for a multidimensional Hilbert space (Bruza et al., 2015). A decision-
maker's opinion or `state' can then be represented by another vector
within this space. The action of making a choice is then represented
by a projection from this state vector onto the vector representing the
chosen alternative (see Figure 5.2). Allowing the state vector to be of
unit length results in the set of squared projection lengths onto each of
the possible alternatives summing to one. Under QPCA, the length of
projection for alternative i (for respondent n in choice task t) is:

|ρint| = δQPCA,i + I0 +

K∑
k=1

∑
j 6=i

wtij · ln(1 + eβk(xintk−xjntk)), (7.17)

where δQPCA,i are alternative-speci�c constants, I0 is a constant that
has the same value across all alternatives, wtij is a weight for the rela-
tive importance of the comparison between alternatives i and j and βk
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is a coe�cient for attribute k as before for RRM. Once these projection
lengths have been calculated, the probability for each alternative can
be de�ned simply as:

PQPCA,jnt =
|ρjnt|2∑J
i=1(|ρint|2)

, (7.18)

where i = 1, ...J is an index across the possible alternatives.

Relative advantage maximisation (RAM) In RAM (Leong and Hen-
sher, 2014), the utility for respondent n in choice task t is:

Uint = δRAM,i +

K∑
k=1

βk · xintk +
∑
j 6=i

RA(i, j), (7.19)

which is equivalent to a multinomial logit model with the addition of
the comparison of relative advantages RA(i, j) of alternative i in com-
parison to each of the other alternatives. This relative advantage is
then de�ned:

RA(i, j) =
A(i, j)

A(i, j) +D(i, j)
, (7.20)

where the advantages are calculated A(i, j) = ln(1 + eβk(xintk−xjntk))

and the disadvantages D(i, j) = ln(1 + eβk(xjntk−xintk)).

For our SP dataset, we �rst apply the �ve di�erent models individually,
obtaining the results given in Table 7.13. We see that DFT obtains the
best log-likelihood ahead of QPCA, with the performance of the three logit-
style models is poorer and comparatively more similar. As a �rst step, we
look at model averaging across all �ve models applied to this dataset, where
the resulting shares and �t are shown in Table 7.13. We see that the model
average leads to a further small improvement in model �t over the best �tting
individual model, i.e. DFT, where this model also obtains by far the largest
share in the model average. As with earlier examples, the shares are not
necessarily proportional to the model �t of the individual model, and we see
that RRM obtains a substantially larger share than QPCA, despite having
poorer overall individual log-likelihood. This again shows that some models
can work well for some people even if they obtain a lower overall �t to the
sample.

In practice, the estimation of a latent class model with �ve separate classes
all using individual decision rules is computationally challenging and most
applications rely on just combining a couple of di�erent rules. We therefore
look at the estimation of 15 di�erent latent class structures with two classes
per model, thus also allowing for �ve models where the two classes are of
the same type, i.e. looking for taste heterogeneity alone. Table 7.14 gives
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Table 7.13: Results from di�erent individual models applied to the SP dataset

Model Type Log-likelihood BIC MA Share
1 MNL -3,360.43 6,803 0.00%
2 RRM -3,363.91 6,810 17.67%
3 DFT -3,317.18 6,749 76.54%
4 QPCA -3,336.44 6,771 5.70%
5 RAM -3,354.55 6,791 0.08%

Model averaging -3,312.40

the log-likelihoods of these models. For all 15 models, a likelihood ratio test
against the corresponding model (in the case of single decision rule) or two
corresponding models (in the case of two decision rules) clearly rejects the
base model. This would provide evidence of taste heterogeneity (in the case
of single structure models) and would typically be seen as evidence of decision
rule heterogeneity in the case of the models with two di�erent structures in
the two classes.

Most existing applications compare a model combining multiple di�erent
decision rules to a set of single class models using the individual rules. This
comparison is of course likely to be biased in the presence of taste hetero-
geneity. Crucially, the improvements to be made from combining di�erent
structures depend on their individual performance. For example, we see
that, for DFT, which is the best performing individual model in Table 7.13,
combining the model with a di�erent structure does not reach as high a log-
likelihood as a structure with two separate DFT classes, although a better
BIC may be obtained. On the other hand, for those models that perform
less well individually, combining them with a di�erent structure gives a bet-
ter log-likelihood than a model with two classes using the same structure.
This already suggests that the results from the latent class structure point
more towards taste heterogeneity than decision rule heterogeneity. Further
insights are detailed in Table 7.15, which for each pair of di�erent decision
rules (x, y), gives the di�erence in model �t between this model and the better
�tting model from the latent class models with x in both classes or y in both
classes7. We see only two cases in favour of decision-rule heterogeneity. The
MNL-RRM model outperforms RRM-RRM by 3.67 log-likelihood units (as
well as the MNL-MNL model by 10.47 units). Additionally, QPC-RAM has
a better log-likelihood than either QPC-QPC or RAM-RAM. However, all
other di�erences are negative, indicating that models with the same decision
rule in the 2 di�erent classes frequently perform just as well or better than
models with di�ering decision rules.

7Note that no formal �t comparisons are made here.
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Table 7.14: Results from latent class models applied to SP dataset

Model Class 1 Class 2 Log-likelihood BIC MA Share

1 MNL MNL -3,113.13 6,399 0.0%
2 MNL RRM -3,102.66 6,378 0.0%
3 MNL DFT -3,099.84 6,380 6.7%
4 MNL QPC -3,106.76 6,394 0.0%
5 MNL RAM -3,100.79 6,374 0.0%
6 RRM RRM -3,106.33 6,385 16.0%
7 RRM DFT -3,086.79 6,354 11.7%
8 RRM QPC -3,096.35 6,373 0.0%
9 RRM RAM -3,104.22 6,381 0.0%
10 DFT DFT -3,077.79 6,361 52.8%
11 DFT QPC -3,085.28 6,376 0.0%
12 DFT RAM -3,085.38 6,351 0.0%
13 QPC QPC -3,095.71 6,380 12.8%
14 QPC RAM -3,094.59 6,370 0.0%
15 RAM RAM -3,100.27 6,373 0.0%

Model Averaging -3,071.46

Further evidence is given in the model averaging results in Table 7.14.
We see that model averaging obtains a better log-likelihood than any of
the individual LC models, in line with the previous results in this paper.
Crucially, however, 81.6% of the share is given to models that each time use
just a single decision rule, again highlighting the importance of within-model
taste heterogeneity, at least for this data.

Table 7.15: Di�erences in log-likelihood between combinations of rules and best �tting
model using same rule in both classes

MNL 3.67 -22.05 -11.06 -0.52
RRM -9.00 -0.64 -3.95

DFT -7.49 -7.59
QPC 1.12

RAM

We explore the best example for decision-rule heterogeneity (MNL-RRM)
in more detail by also considering the outputs for the parameter estimates,
in comparison to a model average performed on MNL and RRM. The results
for this are shown in Table 7.16. For each model we have coe�cients for
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travel time (TT), log of the fare (LFare8), rate of crowding (Crowd), length
of delays (Delay), rate of delays (Rate), a reliability level (Rel, created by
calculating the expected length of delays), and the provision of a charged
delay information service (Inf) or a free service (InfF). Finally, we include
two alternative speci�c constants for the �rst two alternatives. Table 7.16
gives model �t as well as estimates for the above parameters for both a
latent class model and a model averaging approach. The model averaging
approach separately runs MNL and RRM models before then estimating
a class allocation parameter individually. Crucially, the model averaging
approach does not result in a signi�cant improvement over a MNL model on
its own, with an improvement of just 0.07 log-likelihood units. As a contrast,
the latent class approach results in a vast improvement in model �t (258
units). At face value, this would again suggest decision rule heterogeneity,
although the �t is not much better than for the MNL-MNL or RRM-RRM
models. Most signi�cantly, it appears that the fare parameter estimates
(highlighted in red) are very di�erent between the two classes. In contrast
with the model averaging results, and given the poor class speci�c model
�t for the RRM class (compared to the RRM-RRM model), we believe that
this �nding shows that a substantial share of the improvements obtained
by this model are due to heterogeneity in the cost sensitivity rather than
heterogeneity in the decision rules. This means that the classes individually
have very poor �t (as they cannot explain all individuals) but when combined
into a latent class approach, the result is a model with far superior model
�t. Together with the poor improvement from model averaging, these results
suggest that most of the model improvement is due to taste rather than
decision rule heterogeneity.

4 Conclusions

Despite successful results in a number of �elds including health, ecology and
economics, model averaging has yet to make a transition into mainstream
choice modelling. In this paper, we demonstrate that it is very simple to run
and that it consistently improves model �t in both estimation and forecasting.
Whilst we apply model averaging through the use of sequential latent class
models, other methods are possible, with Bayesian methods used for model
averaging typical in other disciplines (Raftery et al., 2005; Wang et al., 2004;
Wintle et al., 2003). Consequently, future work could compare di�erent model
averaging methods. However, we �nd that model averaging using a simple
sequential latent class structure provides many bene�ts.

We demonstrate that model averaging can be applied across a large num-

8Note that we use a log transform of the fare rather than the fare itself as a cost damping
a�ect is observed.
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Table 7.16: A detailed example of model averaging compared to a simultaneous latent
class approach using MNL and RRM

Latent Class - 1 model Model averaging - 3 models
21 pars, estimated simultaneously 2*10 pars, then 1 for MA
Class 1:MNL Class 2:RRM Class 1: MNL Class 2: RRM

Class LL: -3,645.30 -4,431.55 -3,360.43 -3,363.91
Log-likelihood -3,102.66 -3,360.36

Class LL: -3,645.30 -4,431.55 -3,360.43 -3,363.91
Log-likelihood -3,102.66 -3,360.36

ascalt1 0.64 (6.42) 0.04 (0.27) 0.39 (5.85) 0.27 (4.17)
ascalt2 0.25 (2.81) 0.20 (1.13) 0.16 (3.3) 0.17 (3.38)
βTT -0.05 (-6.74) -0.05 (-6.79) -0.05 (-9.5) -0.03 (-9.58)
βLfare -3.21 (-6.1) -11.32 (-7.58) -6.00 (-18.87) -4.11 (-17.66)
βCrowd -0.31 (-7.41) -0.15 (-2.89) -0.22 (-8.58) -0.15 (-8.59)
βDelay -0.06 (-1.27) -0.05 (-1.29) -0.03 (-3.24) -0.02 (-3.06)
βRate -0.34 (-4.82) -0.09 (-1.76) -0.19 (-5.96) -0.12 (-5.82)
βRel -0.05 (-3.22) 0.00 (0.06) -0.06 (-2.64) -0.04 (-2.71)
βInf -0.10 (-0.82) -0.16 (-1.09) -0.09 (-1.13) -0.05 (-0.95)
βInfF 0.54 (5.84) 0.05 (0.47) 0.33 (4.95) 0.22 (4.85)
πm 59.30% (10.89) 40.70% 87.70% (2.7) 12.30%

ber of candidate models. These models can be very similar, with model
averaging proving e�ective when used across multiple mixed logit models
with various di�erent combinations of distributions for the parameters. The
models can also be more di�erent, such as in our nesting structures for large
scale modelling. With complex models often infeasible to run when there
are hundreds or even thousands of alternatives, model averaging provides a
simple and e�cient method for improving models, with consistent improve-
ments in model �t found when applying it over a number of simple models.
Additionally, model averaging is less sensitive to outliers, as unlikely choices
only have an impact on the model �t if they are outliers across all models
contributing to the model average. This also means that model averaging is
very good at making the most of models which are very accurate at describ-
ing some choices but less accurate for others. Consequently, the best �tting
model may not contribute to a model average.

We show that model averaging always provides model �t at least as good
as the best �tting candidate model. We have purposefully not conducted sta-
tistical tests for these improvements in �t. Indeed, model averaging should
not be seen as a di�erent model which can be compared to individual struc-
tures, such as a simultaneous latent class model with di�erent models in each
class. Indeed, for model averaging, the process only involves calculating a
weighted average of the outputs from individual models and does not involve
the reestimation of the parameters from the individual models, where these
always come from individual models estimated on the full sample.

Whilst we only ever consider the use of constants for class allocation,
more complex structures could easily be adopted. For example, the param-
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eterisation of class allocation within model averaging could be performed
very simply by using socio-economic attributes. A �nal key advantage of
model averaging is that it is very easy to apply. A modeller does not even
require knowledge of the individual models within the classes to apply model
averaging. This means that, for example, practitioners could ask multiple
researchers to apply models to the same dataset and then average across the
models, for which they would only need the underlying log-likelihood contri-
bution for each individual or observation in the dataset. This may go some
way to mitigating risk, as well as having a chance of improving the model.
Consequently, there are many advantages to be gained by applying model
averaging for both applied and theoretical transport behaviour modellers.

This paper also revisits the use of latent class models to capture di�er-
ent behavioural processes such as attribute non-attendance and decision rule
heterogeneity. These approaches have been very popular in recent years and
have often been shown to produce signi�cant gains in �t over simpler models.
We �rst argue that many such �ndings may be due to an unfair comparison
with models not allowing for any heterogeneity and that the �ndings may in
fact be driven by taste heterogeneity at the level of a �xed model speci�cation
rather than the presence of other phenomena.

We contrast the �ndings obtained from such latent class models with
those obtained using model averaging which combines the evidence from a
number of separately estimated models. This latter approach of course leads
to inferior model �t compared to a simultaneous latent class model but our
�ndings provide some evidence that suggests that these bigger improvements
may indeed be in part due to e�ects other than those that analysts seek to
uncover.

In practice, an analyst should of course attempt to simultaneously allow
for all di�erent types of heterogeneity whilst remaining aware of potential
confounding. This would however require the use of latent class structures
with many di�erent classes and quickly become computationally and empiri-
cally infeasible. While we do not suggest that researchers abandon the use of
latent class structures for purposes other than taste heterogeneity, we urge for
some caution in interpretation and suggest that model averaging can provide
a useful tool for checking the likely validity of their insights.

As a closing comment, the �ndings in the application looking at decision
rule heterogeneity are particularly insightful. They suggest that there is
more scope for heterogeneity in parameters across individuals conditional
on a speci�c model structure rather than heterogeneity across individuals in
the model structure itself. In many ways this is not surprising given that
datasets, especially from stated choice survey, are relatively homogeneous in
the structure of the choice sets and explanatory variables. The models that
work best are more likely to be dataset speci�c rather than person speci�c.
More work is of course required, including testing using simulated datasets.
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This is especially important with a view to looking into the ability of model
averaging to uncover heterogeneity of the type analysts increasingly attempt
to uncover with latent class structures.
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Chapter 8

Discussion and conclusions

1 Summary

This thesis has made a number of theoretical contributions as well as provid-
ing a number of detailed empirical applications in the context of the interface
between mathematical psychology and mainstream choice modelling. In the
introduction, a number of research gaps were identi�ed to bridge the gap
between these disciplines. This chapter starts by mapping the relevant con-
tributions of each chapter with the research gaps detailing the advances that
have been made. It then reviews the conclusions that can be drawn by con-
sidering the chapters together.

Gap 1: Tractable methods for the applications of accumulator

models.

The travel behaviour community has seen a considerable rise in the adop-
tion of models incorporating further behavioural insights. However, most
e�orts thus far (such as random regret minimisation, Chorus 2010) are math-
ematically not very di�erent in terms of their underlying structure compared
to traditional random utility maximisation models. This thesis considers the
argument that if we are to truly incorporate behavioural insights, then we
should move further a�eld. In particular, `accumulator' or `process' models
developed within mathematical psychology are often also designed to explain
and predict multi-attribute, multialternative choices (Roe et al., 2001; True-
blood et al., 2014) making them strong candidates for the transition into
mainstream choice modelling. In the introduction, we identi�ed a number of
key issues that have thus far limited the application of these models, the most
severe of which being the computational complexities of the models (Otter
et al., 2008) as well as the lack of a clear basis for best practices with which
to implement them.
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In Chapter 2, we address a key methodological issue for decision �eld the-
ory (DFT). Previous applications of DFT have either been largely theoretical
or have made limiting assumptions, such as setting the number of preference
updating steps within the model to a very large number (Berkowitsch et al.,
2014; Trueblood et al., 2014). We however demonstrate that the probability
with which alternatives are chosen can be simply calculated for any number
of preference updating steps. As well as leading to greater model �exibility,
this allows for many crucial additions in the context of travel behaviour re-
search, such as the incorporation of initial preferences or underlying biases.
Furthermore, Chapter 2 illustrates a number of possible scaling methods to
deal with DFT's scale invariant nature, although it is in Chapter 4 that we
�nd the best solution for this through the adoption of scaling parameters
whilst �xing the attention weight parameters. The main bene�t of this is
that a priori knowledge for the directionality of the di�erent attributes is
no longer required. Additionally, we explore the nature and impact of the
di�erent `process' parameters in DFT, testing possible normalisations that
can be performed to improve the robustness of DFT. Chapter 3 in particular
takes an in-depth look at the precise nature of the parameter for the num-
ber of preference updating steps. We demonstrate that it performs a role
similar to a scale parameter within a random utility model. An additional
key bene�t of the work that has been conducted on DFT in this thesis is
that it has led to the development of free to use, easily adaptable code for
modelling choices under a DFT model, which has been implemented as part
of the Apollo choice modelling package (Hess and Palma, 2019).

We also provide a detailed operationalisation of the multi-attribute linear
ballistic accumulator (MLBA) model (Trueblood et al., 2014) in Chapter 4, a
model that has never been tested in the context of travel behaviour analysis.
Together with DFT, we demonstrate that both models can incorporate al-
ternative and attribute speci�c coe�cients, income e�ects and socioeconomic
di�erences. As with DFT, we provide a detailed discussion on the di�erent
process parameters within MLBA. Whereas previous applications of MLBA
have often just �xed parameters arbitrarily, we provide mathematical insights
for normalisation as well as thorough empirical tests for the identi�cation of
parameters. For both DFT and MLBA, we �nd that in addition to theo-
retical identi�cation, the empirical identi�cation of the process parameters is
dataset speci�c, with additional normalisations required for simpler datasets.

Finally, we also provide �rst steps towards introducing decision �eld the-
ory to dynamic data settings in Chapter 6. Given that accumulator models
are dynamic in nature, it is somewhat surprising that this idea has been rarely
investigated before, but we demonstrate a number of important �rst steps for
the application of dynamic models in general in dynamic settings. As well as
further operationalising DFT such that it can incorporate changing attribute
values, we also show how to adapt DFT in the context of driver behaviour
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modelling.

Gap 2: Rigorous comparisons of alternative approaches

Whilst (Berkowitsch et al., 2014) provides a thorough comparison of (a
restricted version of) DFT against multinomial logit and probit in the con-
text of consumer choices, DFT as well as MLBA have rarely been tested or
at all on stated preference or revealed preference studies within travel be-
haviour modelling. In Chapter 2, we demonstrate that DFT performs well in
the context of route choice, can incorporate underlying preferences towards
alternatives, and can provide `relative importance of attributes' measures.
Whilst these are not equivalent to standard econometric welfare measures,
we demonstrate that the outputs from DFT in line with those of traditional
models and give an insight into preferences. Crucially, in applications in both
Chapter 2 and Chapter 4, we �nd that DFT outperforms traditional models
in terms of model �t. There is little di�erence in the performance between
DFT and MLBA, although our further extensions to DFT in Chapters 3 and
6 suggest that it may have more scope for further operationalisation within
travel behaviour modelling. Chapter 4 additionally applies both models to
rigorous tests in simulated settings. We �nd that both models provide sta-
ble parameter recovery as well as providing enough �exibility to additionally
perform well for datasets where the choices were generated by either a stan-
dard multinomial logit model or a random regret minimisation model. These
tests also allowed for detailed explorations into the impacts of �xing process
parameters within DFT and MLBA, with it being clear that DFT's feedback
parameters do not always have an impact and can often be �xed without
impacting model performance.

Further key empirical applications in this thesis have looked at bringing
both DFT and MLBA outside of experimental conditions. With both models
typically utilised on laboratory based choices, the lessons learnt from the ap-
plications of DFT and MLBA for stated preference data and simulated data
in this thesis allowed us to apply them both to a revealed preference dataset
for (as far as we are aware) the �rst time. Our application demonstrated that
both DFT and MLBA provided good performance in both estimation and in
forecasting with subsets of validation samples. Furthermore, in Chapter 6 we
demonstrated that DFT could be further adapted in the context of dynamic
driving behaviour. Whilst this work is preliminary in nature, it demonstrated
that DFT is by no means only for experimental data, with future applications
of it likely to have a large impact if further developments are explored. Over
the course of the thesis we test DFT across route, accommodation, conserva-
tion, simulated, RP and dynamic choice contexts, demonstrating that good
performance is not speci�c to a particular choice scenario.
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Gap 3: Developing a choice modelling framework based on quan-

tum logic

Another gap identi�ed for further exploration is to test whether models
with a quantum framework can make a successful transition into mainstream
choice modelling as they have done in cognitive psychology. As a key theme
of work in quantum cognition has been based on the explanation of ordering
and interference e�ects, both of which are regularly observed and consid-
ered within choice modelling contexts, it is unsurprising that �rst steps have
been made through Lipovetsky (2018)'s quantum work considering consumer
choices and Yu and Jayakrishnan (2018)'s work demonstrating that quantum
logic can provide a useful transition from preferences under stated prefer-
ence settings to preferences under revealed preference settings. In Chapter
5, we discuss in detail how quantum logic works as well as providing demon-
strations of how it can be applied in a choice modelling context. We also
discuss a number of important requirements for a quantum model framework
before introducing two possible approaches. The �rst of these incorporates
regret-like functions whilst the second utilises concepts from MLBA models.
Chapter 5 then empirically test both versions as well as a quantum model
based on trigonometric functions as speci�ed by Lipovetsky (2018). We �nd
that quantum models provide good model �t both in estimation and in fore-
casting with subsets of validation samples.

Furthermore, work in Chapter 5 also explores the concept of `quantum
rotations', a simple mathematical construct that allows for a `change in per-
spective' through an adjustment of the projection lengths which de�ne the
probabilities with which alternatives are chosen. We �nd that these rotations
greatly improve the �exibility of quantum models and seem to provide a good
account of behaviour. Additionally, Chapter 6 also explores an application
of quantum models in the context of driving behaviour, demonstrating how
the model can be adjusted appropriately for such behaviour. As with DFT,
the thesis as a whole illustrates that quantum models can be applied across
multiple scenarios with varying characteristics.

Gap 4: Identi�cation of contexts for which accumulator and

quantum models are suitable

Crucially, given that neither decision �eld theory or the multi-attribute
linear ballistic accumulator model can provide welfare measures, their ap-
plication in mainstream choice modelling approaches is limited to contexts
in which these measures are not required. This is of course the same for
other non-RUM models but have not stopped their use for other purposes.
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In the context of predicting behaviour, we show numerous examples of both
models outperforming typical choice models in both Chapters 2 and 4 in
terms of model �t. Whilst further extensions for incorporating heterogene-
ity are clearly required, Chapter 2 importantly demonstrates that DFT can
incorporate random parameters.

In Chapter 6, we also identify dynamic choice settings as a crucial fur-
ther setting for testing accumulator models such as DFT. Given that these
models are already designed to capture the process of decision-making, they
intuitively should provide a natural framework in the context of dynamic
data. Initial applications of DFT in the context of driving behaviour illus-
trate that there is a lot of scope for further developments in this regard, with
our DFT model giving similar outputs to traditional models in, for example,
how drivers treat time headways and with DFT performing comparably in
terms of model �t.

In Chapter 5 we also test the quantum models that we developed across a
number of choice contexts, including testing quantum models in the context
of moral decision-making. However, it is not clear that their performance
here is particularly di�erent to their performance in our route choice applica-
tions. It thus remains to be seen where these models are likely to have their
greatest impact.

Gap 5: Testing model averaging and combining approaches from

di�erent disciplines

As well as contrasting and comparing models developed in mathemati-
cal psychology in comparison to standard choice models, the introduction
of this thesis also identi�es a gap in terms of testing the merit of the use
of model averaging within choice modelling as well as a lack of applications
using approaches from di�erent disciplines together. In Chapter 7, we demon-
strate across a number of contexts the potential bene�ts of model averaging
approaches. Firstly, we illustrate that model averaging can be implemented
e�ectively for contexts where the choice of a �nal model is di�cult. Secondly,
it also performs well in the context of large-scale datasets for which there is
too much computational burden for state-of-the-art choice models, but sim-
pler models are unsatisfactory. Consequently, with our results demonstrating
the e�ectiveness of model averaging across a large set of candidate models,
it is clear that we can also average across accumulator and quantum models
as well as traditional models, with further work in Chapter 7 �nding an im-
proved model �t found by averaging across latent class models with di�erent
decision rules. Additionally, the use of both types of models together can
help inform analysts what the key sources of heterogeneity in their dataset
may be.
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2 Objectives and contributions

In the introduction of this thesis, we identi�ed six distinct objectives for
bridging the gap between mathematical psychology and econometrics. The
following section summarises how the work in this thesis has approached and
addressed these methodological (M1-M3) and applied (A1-A3) objectives.

M1: The operationalisation of decision �eld theory (DFT) for choice

modelling applications: This objective was met by developments
made in Chapter 2, where we improved the underlying mathematics
allowing for an easier calculation of the likelihood function for DFT.
Additionally, this chapter as well as Chapter 4 provided further steps
towards improving the �exibility of DFT, through an improved method
for scaling attributes and illustrations of how DFT can incorporate a
number of typical factors considered in standard choice modelling, such
as the incorporation of mixed parameters, alternative speci�c param-
eters, attribute speci�c parameters, income and sociodemographic ef-
fects. Chapter 3 additionally developed methods for the incorporation
of the e�ects of choice task response time within DFT and Chapter 6
further extended DFT for application in driving behaviour analysis.

M2: The operationalisation of the multi-attribute linear ballistic

accumulator (MLBA) model: This objective was met through de-
velopments made in Chapter 4. As with DFT, we demonstrate that
MLBA can be adjusted to include attribute and alternative speci�c
constants as well as sociodemographic e�ects. This chapter also pro-
vides a number of steps considering the normalisation of process param-
eters within MLBA such that standard practices for the application of
MLBA can be established.

M3: The development and operationalisation of choice models based

on quantum logic: This objective was met through work conducted
in Chapter 5, in which we develop two distinct new frameworks for the
incorporation of quantum logic. The �rst is based on ideas from ran-
dom regret minimisation and the second based on ideas from the multi-
attribute linear ballistic accumulator. We additionally develop the con-
cept of quantum rotations for capturing changes in choice context and
test this approach across a number of choice contexts in Chapter 5.
We demonstrate the e�ectiveness of quantum rotations applications at
capturing simple contextual changes such as the e�ect of the order of
attributes and alternatives, as well as potentially more complex changes
in perspective in the moral context of taboo trade-o�s and choices that
impact yourself and your partner.
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A1: To rigorously test models from mathematical psychology against

mainstream choice models: This objective was met through appli-
cations across a number of chapters within this thesis. Firstly, DFT
was rigorously compared to both multinomial logit and random regret
minimisation models in Chapter 2, before DFT as well as MLBA were
compared against these models in Chapter 4. These models were tested
on a large variety of datasets, including stated preference, revealed pref-
erence and simulated datasets. Whilst the performance of the models
is dataset-speci�c, we �nd that in general these models perform com-
parably to standard choice models. Furthermore, DFT was tested on
housing, accommodation and route choice in Chapter 3 and on driving
behaviour in Chapter 6.

A2: To test accumulator and quantum models in the context of real

world choices: This objective was met through the work conducted
in Chapter 4 as well as the work in Chapter 6. In Chapter 4, we
test DFT and MLBA in the context of consumer preferences regarding
di�erent providers for train journeys to London. Both DFT and MLBA
performed well in terms of model �t, as well as providing interesting
insights in terms of the relative importance of di�erent attributes. In
Chapter 6, we provide (as far as we aware) the �rst test of both DFT
and quantum models in the context of lane merging choices.

A3: To explore the insights generated by applications combining

these models: This objective was met through the work conducted
in Chapter 7, which �rst establishes the bene�ts of applying model
averaging across a large number of choice models. We then demonstrate
the use of applying latent class models with a wide range of pairs of
models in the di�erent classes, showing how model averaging can be
used to highlight possible confounding sources of heterogeneity.

3 Outlook

This thesis has discussed a number of important methodological develop-
ments for the use of accumulator and quantum choice models in the context
of travel behaviour research, but we have also highlighted a number of steps
for future research at the end of each chapter. In this section, we summarise
these steps with respect to the research gaps that were discussed in the pre-
vious sections.

Firstly, whilst the work in this thesis provides a number of theoretical
developments and o�er some proof-of-concepts, there is much work left still
to do if accumulator or quantum models are to be fully established in main-
stream choice modelling. Whilst we demonstrate that random parameters

259



Chapter 8. Discussion and conclusions

can be incorporated for DFT, further tests could implement random param-
eters for MLBA and quantum. Additionally, Terry et al. (2015) demonstrate
that di�erent assumptions about the types of distributions used within the
context of the linear ballistic accumulator model can be made, meaning that
the introduction of this increased �exibility is likely also possible at the multi-
attribute level. More crucially, given that these models do not provide welfare
measures and have been predominantly tested in terms of model �t in this
thesis, one could argue that we should instead be adopting machine learn-
ing approaches rather than adding further theories and complexities to our
models. An initial challenge that could be addressed in this regard is the
comparison of results from machine learning against model averaging across
a wide range of candidate models including models developed and re�ned in
this paper. Furthermore, additional testing of model outputs is required in
terms of understanding, for example, whether elasticities and forecasts that
are generated by accumulator models make sense. Alternatively, interesting
future steps could consider more speci�c tests regarding the prediction of
future behaviour or backcasting to test the reliability of the transferability of
accumulator models in comparison to traditional choice models and machine
learning. The behavioural foundations of the models from mathematical psy-
chology should provide clear bene�ts here.

Secondly, given that accumulator models are designed to capture the un-
derlying choice process as well as predicting the choice outcomes, they should
be tested as process models by moving beyond the context of choice only
datasets. This could provide a more detailed examination of the process pa-
rameters within both DFT and MLBA. Whilst the work in Chapters 3 and
6 makes a start on this topic, further insights could be generated through
testing whether DFT and MLBA can predict response times as well as choice
outcomes in the context of travel behaviour, as often done within mathe-
matical psychology applications. Furthermore, they should additionally be
tested with, for example, eye-tracking or neuroimaging data, which may help
utilise the full �exibility of the models (rather than simply �xing various pa-
rameters). Such tests, as well as applications of the models in the presence
of contextual e�ects (which may have di�erent results with the re�nements
made in this thesis) will help establish the precise mathematical impacts of
these parameters and may possibly di�erentiate DFT and MLBA, with our
applications in Chapter 4 showing little di�erence in model performance. Fu-
ture applications of quantum models could also consider more detailed data
in the context of, for example, moral machine type dilemmas, which could
help generate further insights and allow us to draw more de�nite conclu-
sions with regards to the type of context quantum models are most suited
to. Additionally, whilst we brie�y consider large-scale datasets in the con-
text of model averaging across basic models, none of the models developed
and re�ned in this thesis are tested under such scenarios, although future
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work would also need to reduce the computational burden of these models to
achieve this step.

Another step that is required is to make more progress in ensuring these
models are more applicable and hence further establishing standard practices
for the implementations of these models. Whilst we provide a number of
important steps in this regard in Chapter 4, the best normalisations of DFT,
MLBA and quantum models are dataset speci�c, and thus it takes more work
to establish the best version of the model than it does for standard choice
models. Adjustment of the precise structures of these models may make them
more approachable if, for example, it was possible to run a generic version of
the model without risk of confounding parameters or overspeci�cation.

Finally, there is a vast amount of scope for further developments for ac-
cumulator models in dynamic choice settings. With a number of possibilities
for the increased �exibility of dynamic models in dynamic settings discussed
in Chapter 6, it is clear that the empirical application is this chapter is just a
�rst step. Di�erent settings may reveal very di�erent results, with there not
being much di�erentiation between alternative models in the context of lane
merging choices, likely as a result of little variation in behaviour observed.
Work is also needed on exploring appropriate approaches for determining how
often updated external information is internalised by a decision maker.

Overall, the work from this thesis illustrates that models and ideas from
mathematical psychology applied in the context of mainstream choice mod-
elling are �exible, adaptable and provide an interesting alternative to stan-
dard choice models. It is with a signi�cant level of con�dence that I conclude
that further attempts to bridge the gap will undoubtedly bring a richer under-
standing of choice behaviour, for mathematical psychologists and mainstream
choice modellers alike.
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Appendix A

Appendix to Chapter 2

1 The impact on including socio-economic fac-

tors on the di�erences between DFT andMNL

Figure A.1 shows the impact of including socio-economic factors (income
e�ects) on the di�erence between MNL and DFT predicted probabilities of
the chosen alternatives for SP-1. Grey points indicate decisions made by
individuals who earn less than 80,000 Swiss Francs, whereas black points
indicate decisions made by individuals who earn more. It appears that there
are no signi�cant di�erences between the models by including these income
e�ects, despite the fact that the MNL model improved in model �t more
signi�cantly.

Fig. A.1: Impact of including income on MNL and DFT models on dataset SP-1

2 DFT model estimates

The weights used for SP-2 are travel time (TT), cost (TC), rate of crowded
trips (CT), rate of delays (RD) and the average length of delays, where this
�nal weight is �xed such that the weights together sum to one. The cost of
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2. DFT model estimates

U
K
(S
P
-2
)

M
o
d
el

1
2

3
4

5

ti
m
e
p
a
r.

y
es

n
o

y
es

y
es

n
o

w
ei
g
h
ts

�
x
ed

�
x
ed

tr
u
n
ca
te
d

tr
u
n
ca
te
d

tr
u
n
ca
te
d

o
th
er

p
a
rs
.

�
x
ed

�
x
ed

n
o
rm

a
l

tr
u
n
ca
te
d

tr
u
n
ca
te
d

p
a
rs
.

8
7

1
6

1
6

1
4

L
L

-3
,5
9
8
.8
7

-3
,6
7
6
.3
4

-3
,1
5
6
.2
7

-3
,1
4
0
.0
9

-3
,1
9
0
.2
3

B
IC

7
,2
6
3

7
,4
1
0

6
,4
4
4

6
,4
1
2

6
,4
9
5

es
t

t-
ra
ti
o

es
t

t-
ra
ti
o

es
t

t-
ra
ti
o

es
t

t-
ra
ti
o

es
t

t-
ra
ti
o

µ
w
t T
T

0
.1
1
3
2

5
.3
3

0
.1
3
5
0

1
1
.6
3

0
.1
0
0
1

7
.2
9

0
.1
0
8
2

7
.4
6

0
.0
8
5
4

1
0
.2
9

µ
w
t T
C

0
.6
7
8
6

1
2
.7
2

0
.6
6
4
2

4
1
.9
8

0
.7
8
8
9

9
.5
3

0
.7
8
0
2

9
.4
1

0
.8
2
0
5

8
.8
5

µ
w
t C
T

0
.0
6
9
1

3
.3
0

0
.0
8
1
6

1
0
.7
2

0
.0
3
3
9

4
.0
9

0
.0
3
2
0

2
.7
8

0
.3
3
6
1

6
.3
8

µ
w
t R
D

0
.0
2
7
1

3
.9
7

0
.0
3
0
8

3
.3
9

0
.0
1
4
2

2
.8
8

0
.0
1
9
1

5
.2
7

0
.0
1
2
2

2
.0
9

µ
φ
1

0
.1
0
0
0

1
3
.6
8

1
5
2
.5
1
6
5

1
0
2
.8
0

0
.0
8
4
0

3
.5
6

0
.0
7
4
2

5
.1
9

0
.1
8
5
4

3
.8
6

µ
φ
2

1
.9
3
8
1

1
8
0
.0
9

0
.4
2
8
3

9
.9
9

0
.7
9
0
0

1
2
.0
9

0
.8
0
9
1

7
.4
0

0
.6
4
1
8

4
.6
1

µ
ε

0
.0
3
9
3

8
.4
8

0
.1
5
4
3

5
.3
1

0
.0
3
0
0

1
0
.6
3

0
.0
4
4
8

5
.0
6

0
.0
8
7
2

3
.3
4

µ
t

3
.7
7
9
2

2
4
2
.1
4

-
1
0
.7
9
8
7

1
4
.4
1

1
0
.1
6
8
7

9
.2
5

-

σ
w
t T
T

-
-

0
.0
6
2
3

4
.2
1

0
.0
7
4
6

5
.3
5

0
.0
5
7
5

5
.8
1

σ
w
t T
C

-
-

0
.8
8
2
1

9
.6
3

0
.7
8
1
6

8
.6
3

0
.8
9
8
8

6
.5
0

σ
w
t C
T

-
-

0
.0
6
1
6

3
.1
2

0
.0
7
3
8

5
.5
0

0
.0
3
1
1

6
.5
4

σ
w
t R
D

-
-

0
.2
4
8
6

4
.3
5

0
.0
2
9
8

4
.3
3

0
.0
1
7
9

5
.3
1

σ
φ
1

-
-

0
.0
7
1
7

5
.0
9

0
.0
2
7
3

4
.8
0

0
.0
9
0
7

3
.8
1

σ
φ
2

-
-

0
.4
1
9
6

1
0
.2
6

0
.3
3
4
2

7
.9
8

0
.4
6
8
3

4
.9
1

σ
ε

-
-

0
.0
1
3
1

9
.0
9

0
.0
5
2
7

4
.1
2

0
.0
8
2
2

2
.7
5

σ
t

-
-

3
.7
3
0
1

7
.1
6

3
.2
7
1
5

5
.8
5

-

T
a
b
le

A
.2
:
R
es
u
lt
s
fo
r
S
P
-2

265



Appendix A. Appendix to Chapter 2

a provision of a delay information service was found to be insigni�cant and
therefore omitted.

3 Notes on DFT parameters

It should be noted that large di�erences in φ1 may not have much impact on
a decision. For example, suppose we have the following choice task:

Attribute 1 Attribute 2 Attribute 3
Alternative A 3 4 5
Alternative B 2 4 6
Alternative C 3 7 1

Table A.3: An example choice task

If at some time point we had a preference vector of Pt = [10, 9, 8]′ and a
value of 0.05 for φ2, then the following results would be obtained for S × Pt
for the given values of φ1:

φ1 Pt[1] Pt[2] Pt[3]

0.1 9.11 7.99 7.09
0.5 9.48 8.45 7.50
1 9.50 8.53 7.58
10 9.50 8.55 7.60

Table A.4: Impact of feedback parameters on probabilities

This means that the di�erence in preference between alternatives is not
much impacted by φ1. This could particularly be the case for choice scenarios
involving only two alternatives, as shown by the minimal impact adjustments
on φ1 and also φ2 had on SP-1 (see Table 2.9). Future work on DFT could
look at the impact of removing these parameters altogether.

Additionally, we can also use this choice task to demonstrate how the
timestep and error parameters, t and ε capture distinctly di�erent features
of the data. The table below gives the probability of choosing the three
alternatives when wt1 = 0.3, wt2 = 0.3, wt3 = 0.4, φ1 = 0.1 and φ2 = 0.05:

Under these conditions, the expected valence, µ = [0.3, 0.45,−0.75]′. This
means that with more timesteps, we would expect stronger preferences to-
wards alternatives A and B. Higher values for the number of timesteps indi-
cates that the decision-maker is more likely to consider all of the attributes.
This results in the variance of the attribute weights having less impact.
Higher values for the error variance ε result in the relative di�erences between
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Probability of choosing alternatives

t 10 20 10 20
ε 1 1 5 5

Alternative A 0.2807 0.2933 0.3449 0.3628
Alternative B 0.5265 0.5811 0.4721 0.5158
Alternative C 0.1928 0.1255 0.1830 0.1214

Table A.5: Impact of process parameters on probabilities

attributes being less signi�cant. (For example, ε = ∞ results in all alterna-
tives being chosen with equal probability). Another way of considering these
two parameters psychologically is that they are 'quality' and 'quantity' of
information processed. The number of timesteps tells you how much of the
information is considered (hence lower values imply less predictable choices)
and the error variance tells you how 'distinct' the decision-maker interprets
the alternatives (with high values meaning that the decision-maker interprets
there being little di�erence between the alternatives).

Finally, this example can also be used to demonstrate that the scale-
variant nature of DFT arises from the variance of the weights. If, for ex-
ample, attribute 3 values were doubled, then to obtain an equivalent ex-
pected valence of µ = [0.3, 0.45,−0.75]′, the weight for attribute 3 would
need to be decreased relative to the weights for attributes 1 and 2. Weights
of wt1 = 0.375, wt2 = 0.375 and wt3 = 0.25 achieve an expected valence
of µ = [0.375, 0.5625,−0.9375]′, exactly 1.25 times the previous µ. How-
ever, this would result in a very di�erent value for Ψ, as the variance of the
weights has changed. Consequently the probabilities of alternatives would
change, despite the relative expected valences remaining the same.

4 Models results from Hess et al. (2016)

UK data: MNL RRM mu-RRM
mixed mixed mixed

MNL RRM mu-RRM

LL -3,721.67 -3,699.49 -3,698.89 -3,184.89 -3,205.27 -3,174.96

parameters 7 7 8 12 12 13

BIC 7,500.81 7,456.46 7,463.47 6,468.30 6,509.08 6,456.66

Runtime (normalised) 1.00 1.58 2.11 50.75 316.98 335.69

Table A.6: Mixed model results for SP-2 from Hess et al. (2016)
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Appendix B

Appendix to Chapter 4

1 MLBA0

Whilst we use the mainstream version of MLBA (Trueblood et al., 2014)
in this paper, it should be noted that the original version of MLBA (True-
blood et al., 2013) has also not been tested on large-scale consumer choice
data. Whilst this version of MLBA, here denoted `MLBA0' uses the same
start, threshold and standard deviation for its drift rates, it di�ers in the
speci�cation for the value of the mean drift rate:

dj =
10

1 + exp(−γ · vj)
(B.1)

where vj is a valence function and γ is a logistic parameter. Small values
of the logistic parameter γ would result in exp(−γ · vj) → 1, meaning that
the valences, vj , are less in�uential and the probabilities of the alternatives
become more similar, resulting in a less deterministic choice. The valences
are similar to a decision �eld theory model's valences with the exception
that they attempt to additionally capture the comparison process achieved
by DFT's feedback matrix. Thus we have

V = C ·M ·W (B.2)

where W is a vector comprising of a set of attribute importance weights that
sum to 1, M is the attribute matrix and C is a n× n comparison matrix (n
being the number of alternatives) with diagonal entries of 1 and o�-diagonal
elements:

Ci,j 6=i =
exp(−φ ·Disti,j)− 1

n− 1
· (B.3)

Finally, φ is a sensitivity parameter such that high values result in the dis-
tance between the attributes of the alternatives becoming insigni�cant. Low
values allow for more similar alternatives to compete more with each other
relative to less similar alternatives.
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1. MLBA0

Results from applying the previous version of MLBA to both of the SP
datasets and the RP dataset are given in Table B.1 below.

Table B.1: Comparison of di�erent versions of MLBA

Dataset MLBA0 MLBA Di�erence

Danish -2,189.78 -2,010.46 -179.32
UK -3,394.36 -3,322.36 -72.00
RP -375.24 -352.07 -23.17

From these results, it appears that the old version of MLBA has far infe-
rior �ts compared to that of the mainstream MLBA. Consequently, it would
appear that modellers should focus on the mainstream version of MLBA.
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