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Numerical modelling of landslide behaviour

by Caitlin Chalk

Landslides exhibit complicated and destructive behaviour with disastrous conse-
quences. A landslide event is preceded by slope failure, which is governed by laws
of soil mechanics. Once initiated, landslides often propagate downslope at rapid
rates, exhibiting fluid-like behaviour. Landslide propagation is therefore frequently
characterised by laws of fluid dynamics. Numerical models are vital for an improved
understanding of these catastrophic events. Existing models are incapable of ad-
equately simulating the dynamics of both initiation and propagation. Smoothed
Particle Hydrodynamics (SPH) is a meshless method that is able to capture large
displacements and rapid velocities, and it has been frequently applied to simulate
landslide propagation. However, SPH is susceptible to numerical instabilities, that
are particularly detrimental with regards to simulations of soil. These must be elim-
inated for SPH to be an ideal tool for general landslide modelling. The majority
of approaches at removing the numerical instabilities from SPH are not universal –
some are applicable for small displacements problems only, while others require the
tuning of artificial model parameters. In this research, a novel numerical model is
developed capable of accurately simulating landslide behaviour – including initiation
and propagation. The numerical model – Stress-Particle SPH – removes instabili-
ties in a way that does not require artificial parameter tuning. The method is an
extension of SPH, and involves calculating velocities and stresses on two separate
sets of particles – nodes and stress-points. Previous literature suggests that the ad-
dition of stress-points have the potential to effectively stabilise SPH. Despite this,
their implementation within SPH is relatively unexplored, and stress-points have
only been applied to a limited range of problems. In this research, Stress-Particle
SPH is extended for applicability to landslide behaviour, allowing the numerically
stable simulation of high displacement problems with Stress-Particle SPH for the
first time. The developments presented in this research offer the potential for SPH
to tackle a broad range of problems beyond its current capabilities.
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Chapter 1

Introduction

Landslides are a complex phenomena that are the source of immense destruction
around the globe. The term landslide is defined as the movement of a mass of rock,
debris or soil down a slope (Cruden and Varnes, 1996), and encompasses a vast
array of geophysical events, including rock falls, mud flows and debris flows. The
velocity of the displaced material can be of the order of millimetres per year, in the
case of creeping slopes (Mansour, Morgenstern, and Martin, 2011), to metres per
second for rapid debris flows (Costa, 1984). In extreme cases, the run-out distance
achieved by the propagating material can exceed 100 km (Plafker and Ericksen,
1978). Thus, landslides pose a serious threat to infrastructure, roads, water supplies
and human life (Schuster, 1996). Examples of highly destructive landslide events
are well-documented throughout history – in 1963 a rock fall occurred suddenly on
the slope of the Vajont dam, Italy, and propagated into the underlying reservoir.
The subsequent wave had disastrous effects: over 2000 people lost their lives and
approximately 200 million dollars of damage was caused (Barla and Paronuzzi, 2013).
The triggering mechanism is thought to be associated with weak bands of clay that
were present within the slope (Genevois and Ghirotti, 2005). Another example of
a catastrophic landslide is that of Aberfan, Wales. Triggered by intense rainfall,
a colliery spoil tip collapsed on a slope in 1966. The resulting landslide engulfed
numerous buildings, including a primary school, that were located near the bottom
of the slope. This resulted in the deaths of 166 people (Schuster and Fleming, 1986).
A particularly mobile landslide occurred in Oso, Washington in 2014, which travelled
the entire length of a one-half-mile wide valley. The aftermath of the landslide
included a buried river, blocked highway, the destruction of over 40 buildings and
43 casualties. The triggering mechanism remains unclear, although this event was
preceded by a period of heavy precipitation (Henn et al., 2015). These cases provide
only a few examples of the numerous catastrophic landslides that have occurred
throughout time. Worldwide, landslides are responsible for thousands of deaths each
year (Petley, 2012).

By nature, landslides are extremely unpredictable. This is partly due to the fact
that there are a number of different triggers that are responsible for the occurrence
of landslides (such as earthquakes, rainfall and human activity (Wieczorek, 1996)).
Moreover, it is difficult to predict exactly where an event will occur. There are many
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areas that have a high susceptibility to landslides, such as the mountainous regions of
Southern Italy (Carrara and Merenda, 1976; Cascini, 2004) and the islands of Hong
Kong (Dai et al., 2001; Chau and Chan, 2005). These areas can be monitored using
advanced techniques and instrumentation (Tarchi et al., 2003; Bitelli, Dubbini, and
Zanutta, 2004; Merritt et al., 2018) in order to assess the likelihood of a future event
occurring, and to inform the development of hazard maps. Hazard maps display
information regarding the probability of a landslide occurring in a given area, as
well as potential run-out paths (Hungr, 2018). This information is essential for the
implementation of slope stabilisation methods and protective measures (Holtz and
Schuster, 1996; Wyllie and Norrish, 1996). However, the post-failure behaviour of
a landslide is uncertain and run-out lengths typically vary greatly. Factors such as
the type of material, slope inclination and water content play a vital role in the
potential run-out lengths achieved by landslides (Legros, 2002). For the purpose
of hazard map development, predictions of landslide run-out may be determined in
an empirical manner: utilising information from past events to predict information
regarding potential future events (Fannin and Wise, 2001; Chung and Fabbri, 2008).
Alternatively, numerical models can be used to simulate landslide run-out behaviour,
with user-specified conditions. Numerical simulations are crucial for an improved
understanding of landslide behaviour, and extensive research has been devoted to the
development of a sophisticated landslide model (Savage and Hutter, 1989; Iverson,
1997; McDougall and Hungr, 2004; Pastor et al., 2008; Pastor, Blanc, and Pastor,
2009). Simulations of landslides can be performed for a variety of different conditions,
allowing a thorough investigation into the physical parameters of interest and how
they affect landslide run-out (and behaviour in general) (Pirulli and Sorbino, 2008;
Cascini et al., 2014).

While numerical models of landslides are invaluable tools, their development and
implementation is far from straightforward. Landslides are extremely complex from
initiation to deposition, and typically exhibit both solid and fluid behaviour (Cruden
and Varnes, 1996). Landslide initiation is associated with the failure of a slope, which
is governed by solid dynamics (Palmer and Rice, 1973; Martel, 2004). Conversely,
post-failure behaviour is often characterised by fluid-like features (Iverson, Reid,
and LaHusen, 1997; Crosta et al., 2005). Therefore, landslide motion is governed by
laws of both solid dynamics and fluid dynamics. The mathematical description of
landslide material is consequently a non-trivial matter, particularly when interested
in modelling both failure and post-failure behaviour. There is currently no mathe-
matical model in existence that can accurately describe all features of a landslide.
Nonetheless, significant progress has been achieved in this area, and current mathe-
matical approaches are capable of capturing complex features of landslide behaviour,
such as the transition from a solid to a fluid state (Bui et al., 2008; Pastor et al.,
2008; Pastor et al., 2015a), and the coupled feedback between a soil skeleton and
interstitial fluid (Pitman and Le, 2005; Pudasaini, 2012; Iverson and George, 2014).
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A pressing challenge regarding landslide simulation lies in the numerical imple-
mentation of the governing mathematical equations. A numerical model must also be
capable of capturing solid and fluid dynamics, for it to be applicable to general land-
slide behaviour. To numerically approximate a continuous mathematical system, it is
necessary to divide the governing equations into discrete sub-domains. This process
is referred to as numerical discretisation. In classic methods, the continuous system
is discretised via the use of a connected mesh, where material information is carried
on each node or element of the mesh. Mesh-based methods are well established in
the field of computational modelling, and have been applied to simulate problems
that are relevant to landslide behaviour (Chen and Mizuno, 1990; George and Iver-
son, 2014; Crosta, Imposimato, and Roddeman, 2015). However, the presence of a
mesh imposes restrictions that are related to the dynamics of the simulated material.
These restrictions pose severe limitations for problems involving large deformations,
and computationally expensive remedies are required (Li and Liu, 2002). As an
alternative to mesh-based methods, recent decades have seen a rise in the develop-
ment of numerical schemes that do not utilise a mesh (Idelsohn et al., 2003; Liu
and Liu, 2010; Li and Liu, 2002). Meshless methods are well-adapted for modelling
large deformation problems (such as landslides), mainly due to the fact that there
is less restriction on material deformation and displacement. Therefore, meshless
numerical models are frequently applied to the simulation of landslide behaviour
(McDougall and Hungr, 2004; Pastor et al., 2009a; Bandara and Soga, 2015; Calvo
et al., 2015; Soga et al., 2015; Nguyen et al., 2017). The original meshless method
– Smoothed Particle Hydrodynamics (SPH) (Gingold and Monaghan, 1977; Lucy,
1977) – arguably remains the most popular choice due to the relative simplicity of
its implementation (Liu and Liu, 2010).

SPH is a particle-based method, where the governing system of equations are dis-
cretised over a set of particles, as opposed to a mesh. Information such as stress and
velocity is calculated at each particle via a summation over the neighbouring parti-
cles, combined with a smoothing function. There is no restriction on the movement
of each particle. SPH has been employed to simulate a wide variety of problems re-
garding landslide initiation and propagation, producing promising results (Bui et al.,
2008; Pastor et al., 2009a; Haddad et al., 2010; Bui et al., 2011; Pirulli and Pastor,
2012; Dai et al., 2014). Unfortunately, despite the successful applications of SPH, it
suffers from serious numerical instabilities that are often detrimental to the model
performance. Namely, these are: the instability due to zero-energy modes, and the
tensile instability. Zero-energy modes were originally identified in mesh-based meth-
ods (Maenchen and Sack, 1963), and occur when a zero stress gradient is incorrectly
calculated at individual particles. Their presence is related to the fact that stress
and velocity are calculated at the same location (Swegle et al., 1994), and they result
in noisy stress and velocity profiles, with spurious values at individual particles. The
effects of zero-energy modes are typically most severe when considering solid prob-
lems (Swegle et al., 1994; Belytschko et al., 2000). The tensile instability is unique to
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meshless methods, and arises in materials with a cohesive strength when subjected
to a tensile state of stress. A consequence of the tensile instability is particle clump-
ing, which leads to the development of non-physical material fractures (Swegle et al.,
1994; Monaghan, 2000). Clearly, the effects of zero-energy modes and the tensile
instability pose a serious threat to problems regarding different stages of landslide
behaviour. Zero-energy modes have been documented in SPH simulations of material
failure (Vidal, Bonet, and Huerta, 2007; Blanc, 2011), while the tensile instability
has been shown to have detrimental effects in simulations involving cohesive soil (Bui
et al., 2008). To obtain a universal numerical model, that can be applied to all types
and stages of landslide behaviour, it is essential that the problems of zero-energy
modes and the tensile instability are eliminated from SPH.

There have been numerous attempts to eliminate the tensile instability within
SPH. The majority of the proposed solutions are complicated to implement, which
counteracts the favourable simplicity of the SPH method (Dilts, 1999; Monaghan,
2000). What’s more, some of these remedies place restrictions on the movement of
the SPH particles – thereby diverging from the true, meshless nature of SPH (Be-
lytschko et al., 2000). Arguably the most frequently applied remedy is the artificial
stress method (Monaghan, 2000), which applies a small repulsive force to particles
that are in close proximity to one another when under a state of tensile stress. Al-
though the results are effective, the method requires the tuning of artificial, numerical
parameters that do not have a physical interpretation. Conversely, the problem of
zero-energy modes is relatively unexplored within SPH, and little work has been de-
voted to a solution. Regarding mesh-based methods, the zero-energy mode problem
can be completely eliminated by utilising a staggered grid approach, where the stress
and velocity are calculated on two separate meshes (Patankar, 1980). Motivated by
this approach, Dyka, Randles, and Ingel, 1995 believed that the same concept could
be used to eliminate the tensile instability in SPH, and consequently introduced two
sets of particles to SPH, in one dimension. This method, known as Stress-Particle
SPH, was able to accurately predict the wave propagation in an elastic bar under a
state of tensile stress – a problem that standard SPH was unable to model due to
the tensile instability. The Stress-Particle SPH method was later extended to higher
dimensions (Randles and Libersky, 2000; Vignjevic, Campbell, and Libersky, 2000),
and used to simulate a number of benchmark problems related to solid dynamics. A
full stability analysis of Stress-Particle SPH was later performed by Belytschko et al.
(2000), where it was shown that the method is capable of completely eliminating
zero-energy modes in SPH, while also stabilising the scheme in tension.

Stress-Particle SPH is a stabilised version of SPH that is capable of eliminat-
ing both of the detrimental instabilities of the classic SPH method. What’s more,
Stress-Particle SPH removes the instabilities in a ‘natural’ way, and does not involve
any artificial tuning parameters. Therefore, the method has the potential to provide
a generalised numerical tool that is applicable for all stages of landslide behaviour.
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However, since its introduction, very little attention has been dedicated to this nu-
merical method, despite the initial promising results. The reason for this is partly
due to the fact that it is unclear how the particle positions should be updated. In
Stress-Particle SPH, one set of particles carry the material velocity, while the sec-
ond set of particles carry stress information. The particle positions within SPH are
updated according to their velocity. Therefore, updating the position of the second
set of particles (that do not carry velocity), is a non-trivial task. In all existing
applications of Stress-Particle SPH, the velocities from the first set of particles are
interpolated onto the second set in order to update their positions. This method is
expected to break down in the simulation of high displacement problems (Vignje-
vic, Campbell, and Libersky, 2000), and all applications of Stress-Particle SPH are
consequently confined to problems within solid dynamics that exhibit relatively low
displacements. The meshless nature of SPH is therefore not utilised, and the method
is unlikely to be applicable for simulating post-failure landslide behaviour.

The primary aim of the current research is to develop a numerical model that
is capable of simulating the range of behaviour exhibited by landslides regarding
both failure and post-failure. Due to the high velocities and large run-out distances
achieved by many landslides, the choice of framework for the model implementation
is SPH. To enable SPH to accurately predict different stages of landslides, the zero-
energy modes and tensile instability must be eliminated. Therefore, the Stress-
Particle SPH method, which can remove both of these instabilities, is revisited and
further developed. A mathematical description of soil is implemented into the Stress-
Particle SPH framework for the first time, and applied to low displacement problems
that are representative of landslide initiation procedures. For the Stress-Particle
method to be capable of simulating the post-failure behaviour of landslides, it must be
capable of handling large displacements and fluid-like behaviour. Therefore, to fulfil
the primary aim of this research, the Stress-Particle SPH technique is extended, so
that the particle positions can be updated in a way that allows the simulation of large
displacement problems. To validate the newly developed model, results are compared
with those presented in the literature. A secondary aim of this investigation is to
obtain a deeper insight into the internal mechanisms of a particularly destructive
type of landslide – a debris flow. Small scale flume experiments are performed
with a granular-water mixture, and the propagating flow is recorded with a high
speed camera. The results of the experiment are used to assess the extent of the
capabilities of the new SPH model, by employing Stress-Particle SPH to simulate
the experimental flow.

The remainder of this investigation is structured as follows. First, Chapter 2
provides relevant background information and a review of the current literature re-
garding landslide modelling techniques. This includes a description of the alterna-
tive mathematical and numerical approaches that are typically employed to simulate
landslide behaviour. Furthermore, a detailed review of SPH, and the current meth-
ods of stabilisation, is also provided. Secondly, a complete mathematical description
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of a single phase soil is given in Chapter 3, that is used to model landslide material in
the current work. Stress-Particle SPH is presented in full in Chapter 4, containing a
description of how the particle positions are updated (in both the classic and the new
methods). The governing mathematical equations of a single phase soil are discre-
tised within the framework of Stress-Particle SPH. In Chapter 5, the Stress-Particle
SPH model is applied to the simulation of a number of benchmark problems that are
relevant to soil failure, landslide initiation and landslide propagation. For this, the
standard interpolation method of updating the two sets of particles is employed, and
the extent of the method regarding the simulation of large displacement problems is
highlighted. Subsequently, in Chapter 6, the extended Stress-Particle SPH method –
with a novel technique of updating the particle positions – is applied to large displace-
ment problems that are relevant to landslide propagation. Following the development
and validation of Stress-Particle SPH, Chapter 7 presents the results of a small scale
experimental debris flow. The experimental flow exhibits rapid velocities, and the
internal dynamics are captured through the use of a high speed camera. To further
examine the capabilities of the novel Stress-Particle SPH method, in Chapter 8 it is
applied to simulate the results of the experimental debris flow. For this purpose, a
two-phase soil-water model is incorporated within SPH. Finally, Chapter 9 presents
the conclusions of the present investigation, and summarises how it contributes to
the current literature regarding landslide modelling.
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Chapter 2

Background and literature review

2.1 Introduction

The term landslide refers to the movement of material on a slope, and encompasses a
wide range of geophysical events (Varnes, 1958). An event can be categorised based
on the type of material involved and the type of movement. According to Cruden
and Varnes (1996), landslide material is grouped into one of two categories – soil and
rock. Furthermore, the type of movement is divided into three groups – falls, slides
and flows. Falls are identified by the rapid movement of soil or rock through the
air, with little interaction between the separate bodies. In slides, the material moves
along a defined, continuous surface as a result of shear failure, where the surface of
movement is often visible. Slides are subcategorised into two types – those where the
deformation of the moving material is relatively small, and those where the deforma-
tion is large. Flows can exhibit viscous fluid-like behaviour, and consist of multiple,
short-lived failure surfaces. The material in flows can be dry or wet, and they include
rock avalanches, mud flows and debris flows. Slides often develop into flows, and in
reality, a landslide event is likely to consist of multiple types of movements, as well
as material. Moreover, the triggering of landslides adds further complexity to the
event, as stationary mass becomes mobile. As a consequence, landslides exhibit a
wide variety of behaviour, and are governed by processes concerning solid mechanics,
soil mechanics and fluid dynamics. The current research aims to numerically model
aspects of both landslide initiation and propagation, composed of soil. Regarding
propagation, attention is focused on landslides that exhibit large deformations and
displacements. This encompasses both slides and flows.

There are a vast number of different approaches in which to approximate land-
slide behaviour with a mathematical model. Furthermore, there are also contrasting
approaches with regards to the numerical implementation of these models. This
chapter aims to provide an extensive summary of the different mathematical and
numerical models that have been used to simulate landslide initiation and propa-
gation within the literature. In the first section of this chapter, key characteristics
of soil behaviour are explained, with a description of landslide triggering mecha-
nisms and features of propagation. Secondly, alternative mathematical models for
soil are described, with their application to landslide behaviour. Following this, the
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different numerical methods that can be used to simulate landslide behaviour are
summarised. Emphasis is placed on Smoothed Particle Hydrodynamics (SPH) – a
numerical technique with a number of desirable features regarding the simulation
of landslides initiation and propagation. The current pitfalls of SPH are explored
in detail. Finally, the current state of field regarding the numerical modelling of
landslides is summarised. The areas that require further attention are highlighted,
with a description of how the current work aims to contribute to this large area of
research.

2.2 Soil behaviour: an application to landslides

The behaviour of landslides from initiation to deposition is strongly influenced by
soil behaviour. Soil refers to granular material that ranges in size from the order
of microns to millimetres, and includes clay, silt, gravel, sand and fragmented rock
(Powrie, 2004). A fundamental aspect regarding both initiation and propagation is
the strength of the slope material, and its susceptibility to failure. In soil mechanics,
the strength of a soil is defined by its ability to endure a shear stress. The total
amount of shear stress that can be withstood before failure occurs defines the shear
strength of a soil. The shear strength varies between different types of soil, depending
on their composition and initial state, and is mostly determined by the inter-particle
friction within the material.

A soil is constituted of a granular skeleton separated by voids, or pores. The soil
may be saturated (all voids are completely filled with water), dry, or partially satu-
rated (some of the voids are filled with water). The degree of saturation influences
the state of the soil significantly. Furthermore, unlike soil, water cannot withstand
any shear stress, so that for a saturated soil, all shear stresses are carried by the
soil skeleton. This leads to the decomposition of the total stress (for a saturated
soil) into a component carried by the skeleton, and a component carried by the pore
water:

σ = σ′ − Ipw, (2.1)

where σ is the stress taken by the soil-water mixture, σ′ is the stress taken by the
soil skeleton – the effective stress, and Ipw is the stress carried by the water phase. In
the latter term, pw is the pore water pressure, and the identity matrix I is included
as the pore water pressure is zero for the shearing (i.e. non-diagonal) components of
the stress tensor. Equation (2.1) was proposed by Terzaghi (1936), and is considered
the most fundamental law of soil mechanics. Note that in the current research, a
negative value of stress corresponds to compression.

Depending on the inter-particle friction, there is a maximum amount of shear
stress that can be carried by the soil skeleton. The maximum shear stress corresponds
to the shear strength of the soil. The inter-particle friction is defined via the angle of
friction φ, where a greater angle corresponds to a greater frictional resistance of the
skeleton. The total amount of shear stress that can be carried by the soil skeleton is
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then defined as
τ = σ′ tanφ, (2.2)

where τ is the shear stress and σ′ is the normal effective stress (i.e. the stress acting
normal to the soil skeleton). Equation (2.2) defines the maximum shear stress that
can be endured for a given angle of friction and normal effective stress. This rela-
tionship stems from the pioneering work of Coulomb (1773) regarding the stability
of piles and embankments, and the subsequent stress analysis of Mohr (1900). It is
therefore referred to as Coulomb’s criterion. Equation (2.2) is valid for a material
where the soil strength is determined solely by the inter-particle friction. Cohesive
forces may also contribute to the strength of the soil, which can be included in
Equation (2.2):

τ = σ′ tanφ+ coh, (2.3)

where coh is the soil cohesion. Equation (2.1) shows that for a given total stress,
an increase in pore water pressure leads to a reduction in the soil effective stress.
According to Equations (2.2) and (2.3), a lower effective normal stress results in less
resistance to shear and a lower shear strength. Therefore, pore water pressures play
a significant role in governing the strength of a soil.

The strength of a soil also depends on its ability to change volume when sheared.
When an initially compact soil sample is sheared, the individual grains rearrange such
that void ratio within the sample (and therefore the volume) increases. Subsequently,
the shearing of the loose sample results in the movement of grains into the void spaces,
and the sample volume is decreased. This change in volume is referred to as dilation,
and affects the soil peak strength (Rowe, 1962). Dilation is defined as an angle, and
can be included in Equation (2.3) by substituting the angle of friction φ with φ+ψ,
where ψ is the angle of dilation. The change in void ratio associated with soil dilation
also governs the movement of pore water.

When a soil is subjected to an external force, a change in the stress state is in-
duced, and the material deforms in response. These deformations are characterised
as strains – the relative displacement of a material. The stress-strain relationship
of a soil depends on its strength, which in turn depends on the material properties
and its history. For a soil subjected to an increasing load, an increase in strain
is accompanied by an increase in stress. Furthermore, if the load is removed (un-
loaded), the deformed soil can return to its original state. This type of behaviour
is called elastic, where a one-to-one relationship exists between stress and strain.
However, if the stress reaches the maximum value that can be endured, the soil is
weakened. Beyond this, it can no longer return to its initial state, and the material
deformations are irreversible. Such strains are referred to as being plastic. Once the
stress-strain behaviour within a soil transforms from elastic to partly plastic, it is
said to have yielded. The regions of plastic strain may spread and increase, which is
associated with soil failure. The precise definition of failure depends on the problem
under consideration, and is typically defined as when the regions of plastic strain
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Figure 2.1: The slip surface of a rotational slide, Columbia River
Valley (Varnes, 1978).

occupy a certain area. Note that after plastic strains have occurred, the stress-strain
relationship varies depending on the type of soil and its strength. The response of a
soil to an external load also depends on the rate at which the load is applied, and
whether the soil has previously been subjected to loads which may have changed the
soil state (Chen and Mizuno, 1990; Powrie, 2004).

2.2.1 Landslide initiation

At a fundamental level, landslide initiation is characterised by the transformation of
a stationary mass on a slope to a dynamic state. This transformation is associated
with the failure of the slope, and therefore the failure of the soil that comprises it.
One possible type of failure mechanism is localised failure. A section of the slope
undergoes plastic deformations, which localise and spread to form a well-defined
failure surface, called a slip surface. The material within the failure surface has
less strength than its surroundings, and defines the surface upon which the slide
moves. The formation of slip surfaces precedes landslides of the slide type. For the
assessment of slope stability, information regarding slip surface profiles is required
for limit equilibrium methods (LEMs), such as Bishop’s modified method (Bishop,
1955). LEMs consider the equilibrium of an idealised slope with a given slip surface,
that is assumed to obey Coulomb’s equation (Equation (2.3)), to determine the
factor of safety of the slope (Duncan, Wright, and Brandon, 2014). Slip surfaces can
be curved and concave, as shown in Figure 2.1, corresponding to rotational slides.
Alternatively, translational slides displace along a planar slip surface (Varnes, 1978).

An alternative method responsible for triggering landslide events is diffuse failure
(Laouafa and Darve, 2002). Diffuse failure occurs over a large area of the slope, and
describes the rapid reduction of effective stress over this area. The shear strength is
decreased significantly and liquefaction occurs – in which the soil exhibits liquid-like
behaviour. The sudden reduction of strength over a large area can be a result of an
earthquake or severe rain fall, and precedes landslides of the flow-type (Cascini et al.,
2009; Take et al., 2004). Loosely compacted soils (such as sand) on relatively shallow
slopes are more susceptible to this type of failure mechanism (Laouafa and Darve,
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2002; Fernández-Merodo et al., 2004). In reality, landslide triggering mechanisms
are complex and may in fact be a combination of both localised and diffuse failure
methods, in addition to alternative factors. All cases of slope failure are concerned
with a reduction of material strength, which can be caused by rainfall, earthquake
motion, volcanic eruption, water-level change and slope erosion (Wieczorek, 1996).

2.2.2 Landslide propagation

Once initiated, the nature of landslide propagation depends on the type of failed
material, the slope inclination and the surrounding topography. For a landslide of
the slide type, the mass propagates as a continuous block along the failure surface.
The movement is therefore generally controlled by the frictional resistance between
the dynamic material, and the failure surface. However, landslides of the flow-type
exhibit much more complex and diverse behaviour. Furthermore, slides may develop
into a flow, depending on the material content and mobility. A slide to flow situation
may arise due to the destruction of cohesive soil bonds, a change in slope inclination,
or an increase in water content (Cruden and Varnes, 1996). In the absence of water,
the motion of granular material is influenced by rapid granular collisions, as well as
enduring frictional contacts (Drake, 1990). When water is encountered, the material
water content is a major feature regarding flow mobility. High pore water pressures
lubricate the material and reduce the soil effective stress, leading to flows with greater
run-out distances (Costa, 1984). Moreover, high pressures can be sustained via a
coupling between the rearrangement of individual grains and the resultant motion of
the pore water (Iverson, 1997).

A particularly destructive type of flow is a debris flow, which is defined by Iver-
son (1997) as a landslide where both solid and fluid forces play a vital role in the
dynamics. Under this definition, the term debris flow encompasses a wide range of
events, including mud flows, earth flows and lahars. Debris flows typically contain
a varied mixture of granular material, with grain diameters that may range in size
from the order of microns to tens of metres (Iverson, 1997). As a result, grain size
segregation is frequently observed in field and experimental debris flows, where the
largest particles accumulate to the head of the flow (Johnson et al., 2012). Particle
segregation also occurs in the vertical direction. Fine particles drop to the base of
the flow, often producing a lubricating effect that can enhance flow run-out. Debris
flows are subjected to collisional forces due to large grain interactions at the head, in
addition to viscous effects created by the the presence of smaller particles and water
in the flow body. Certain types of flow, such as mud flows, exhibit a more uniform
grain size distribution (Johnson, 1970). Mud flows generally display the behaviour
of a highly viscous fluid with a yield strength (Coussot, 2017). The physics of debris
flows is complex, and their behaviour is controlled by a vast number of factors in
addition to those discussed here, such as dilation, granular temperature, erosion and
entrainment (Iverson, 1997). Although debris flows are diverse in nature, they all
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feature large deformations and long run-out lengths. It is therefore essential that a
numerical model for general landslide simulations can capture this type of behaviour.

2.2.3 Physical models

Data such as velocity, displacement and run-out length are essential for the validation
and verification of numerical models. Due to the unpredictable nature of landslides
and the environment in which they occur, it is often difficult to record measurements
in the field, particularly in the case of rapid flows. As a result, landslide events can
be recreated via controlled physical models, with specific instrumentation to record
data of interest. A notable series of debris flow experiments have been conducted at
a large scale with the U.S. Geological Survery (USGS) flume (Iverson et al., 2010;
Iverson et al., 2011). The experiments involved a non-uniform and unsteady flow of
unsorted water-saturated sediment consisting of sand, gravel and mud along a slope
of length 95 m, inclined at 31◦. The material was instantaneously released from be-
hind a lock gate, as a dam break. The large scale set-up allowed the investigation of
debris flows that are similar in size to those that occur in the field. The USGS exper-
iments provided evidence that transient pore water pressures occur in debris flows.
They also showed that flow run-out length is much greater when mud is present in
the mixture than when it is not, as it promotes the presence of pore fluid pressures.
Experiments on such a large scale are expensive and difficult to implement. There-
fore, small scale experiments are often favoured. Small scale landslide experiments
are relatively simple to perform, have a high repeatability and allow the implemen-
tation of a range of instrumentation (Kaitna, Rickenmann, and Schatzmann, 2007;
Sanvitale and Bowman, 2012; Turnbull, Bowman, and McElwaine, 2015). Small
scale experiments of debris flows are discussed in further detail in Chapter 7.

2.3 Mathematical modelling of soil: an application to
landslides

Mathematical descriptions of soil are based on continuum mechanics, where the
soil skeleton is assumed to consist of a continuous material. This considers the
behaviour of the bulk material, as opposed to that of the individual soil grains. The
fundamental governing equations of a continuum consist of the conservation of mass,
and the conservation of linear momentum, written respectively as

Dρ

Dt
= −1

ρ
∇ · u, (2.4)

Du

Dt
=

1

ρ
∇ · σ + b, (2.5)

where ρ is the material density, u is velocity, σ is the stress tensor and b is external
body forces. Equations (2.4) and (2.5) describe the motion of soil, water, and a soil-
water mixture as a whole. The behaviour of soil is governed by the description of the
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stress, specifically the relationship between the stress and strains. The mathematical
relationship between the stress and strain is termed the constitutive model.

Constitutive models for soil are typically derived under soil mechanics or fluid
dynamics. In soil mechanics models, a relationship is required to describe the evolu-
tion of the effective stress σ′. For a dry material, the total stress in Equation (2.5)
is equal to the effective stress. However, for a saturated material, σ = σ′ − pw,
and a description of the pore water pressure must also be included. For a full, two-
phase model, separate equations of motion are defined to describe the soil and the
water. Conversely, traditional models derived under fluid dynamics assume that the
soil-water mixture can be approximated as one single phase fluid. A constitutive
relationship is included to describe the evolution of the total stress of the mixture
σ. In reality, soils exhibit complex behaviour that cannot be captured with a single
constitutive approach. This section provides a summary of the different constitutive
models and mathematical approaches that are relevant for capturing the behaviour
observed in landslides.

2.3.1 Soil mechanics models

Soils exhibit both reversible (elastic) and irreversible (plastic) deformations, depend-
ing on the applied stress and the state of the material (Chen and Mizuno, 1990). The
notion of a material exhibiting both elastic and plastic strains is known as plasticity
(Ancey, 2007). The concept was initially introduced to model metal deformation
(Tresca, 1864), and constitutive models were developed to describe the transforma-
tion from elastic to plastic behaviour observed in metals. In the same way as for soil,
the deformation of metal depends on the rate at which an external load is applied.
Therefore constitutive models based upon plasticity are typically rate-dependent,
where a relationship is defined between stress and strain rates (Chen and Mizuno,
1990). The fundamental feature of plasticity models is the definition of the limiting
stress state, to distinguish between elastic and plastic deformations. The limiting
state of stress is defined by the yield function, which is a function of components of
the stress tensor. The yield function can be visualised as a three-dimensional sur-
face in the stress space, and is also referred to as a yield surface. The Tresca yield
surface was developed by Tresca (1864) for metals, and is depicted in Figure 2.2.
The surface is defined according to the principal stresses, which denote the stress
components of a body that is rotated such that the shear stresses are zero (Powrie,
2004) (see Chapter 3.1 for further details on the stress tensor). According to the
Tresca yield criterion, the material strain is elastic if the corresponding stress state
lies within the surface shown in Figure 2.2. The surface itself denotes the limit at
which plastic deformations occur.

Motivated by the theory of plasticity in metals, Drucker and Prager, 1952 devel-
oped the work for applicability to soil behaviour, in what is called classic plasticity.
The simple, one-dimensional, Mohr-Coulomb failure criterion defined in Equation
(2.2) was extended to a full, three-dimensional yield surface, which can be interpreted
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σ1
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Figure 2.2: A depiction of the Tresca yield surface in the principal
stress space. The axes σ1, σ2 and σ3 denote the principal stresses.

as a modified Tresca yield surface. However, as detailed by Shield (1955), the Mohr-
Coulomb failure surface is an irregular, hexagonal pyramid in the principal stress
space. The surface contains singularities, which pose problems regarding mathemat-
ical and numerical models. Drucker and Prager (1952) therefore approximated the
Mohr-Coulomb criterion with a smooth yield surface, known as the Drucker-Prager
yield criterion. The key model parameters in the Drucker-Prager yield criterion are
the soil cohesion and the angle of internal friction. Another yield surface that is ap-
plicable to soil behaviour is that of Von Mises (Von Mises, 1913), which was derived
as an alternative to the Tresca condition to describe the yield surface in metals. Fric-
tion is not included in the Von Mises criterion, and it is only applicable for the failure
of certain types of soils (such as clay, where cohesive forces dominate material be-
haviour (Chen and Mizuno, 1990)). In their extension of plasticity for soil, Drucker
and Prager, 1952 also introduced the concept of a flow rule, which describes how
plastic strains develop upon further loading via a plastic potential function. This
function can take the same form as the yield function, producing a flow rule of an
associated type. Otherwise, the flow rule is said to be non-associated. Constitutive
models that are based on classic plasticity, where a yield surface defines elastic and
plastic, are denoted elastoplastic (Chen and Mizuno, 1990).

Plastic deformations within soil are often confined to narrow regions, known
as shear bands (Bardet and Proubet, 1991). Elastoplastic models have frequently
been used to predict shear band formation in soils with a variety of different yield
surfaces, producing results that agree well with experiments and theory (Hutchinson
and Tvergaard, 1981; Chen and Mizuno, 1990; Bardet and Proubet, 1991; Anand,
Aslan, and Chester, 2012). As described in Section 2.2.1, landslide movement is often
preceded by the development of a slip surface (in localised failure). Slip surfaces
correspond to regions of localised shear, and have been successfully predicted with
elastoplastic models in the literature (see Figure 2.3) (Zheng, Liu, and Li, 2005;
Griffiths and Marquez, 2007; Bui et al., 2008; Bui et al., 2011; An et al., 2016).
Furthermore, the rapid collapse and propagation of a frictional soil has been described
with an elastoplastic model with a Drucker-Prager yield surface, representing an
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Figure 2.3: The slip surface simulated by Bui et al. (2011), with
an elastoplastic constitutive model implemented within SPH. The
profile coincides with that of the limit equilibrium method of Bishop

(1955).

idealised landslide propagation problem, (Bui et al., 2008; Nguyen et al., 2017).
An alternative constitutive model was proposed by Perzyna (1966), motivated

by the fact that many solid materials exhibit viscous effects. The Perzyna model
bears numerous similarities to the classic plasticity model, including the concept of
a yield surface. A key difference between the elastoplastic and Perzyna approach is
that in addition to the components mentioned above, the latter model includes extra
parameters that define the material ‘viscosity’. Also, the stress state in the Perzyna
model is allowed to exceed the yield surface, producing an effect called overstress.
Perzyna’s constitutive relationship has been implemented in numerical models to
simulate the formation of shear bands in soil (Sluys, 1992; Blanc and Pastor, 2012;
Blanc and Pastor, 2013; Mabssout and Herreros, 2013). Moreover, the Perzyna
model is able to describe the transformation of a material from an elastic solid to a
viscous-like fluid. It is therefore referred to as being elasto-viscoplastic (Troncone,
2005), or more often, viscoplastic (Sluys, 1992; Pastor et al., 2015a). Note that
the term viscoplastic is also used to refer to the constitutive behaviour of certain
fluids (Ancey, 2007), which is discussed in further detail in the following section.
While the Perzyna model can describe fluid behaviour, its underlying framework is
rooted within soil mechanics. The capabilities of the Perzyna model at capturing the
transition from solid to fluid behaviour is particularly relevant to landslides, where
material on a slope evolves from a stationary to a dynamic state, often exhibiting
fluid-like features (Iverson, Reid, and LaHusen, 1997). As a consequence, the Perzyna
model has been applied to the simulation of slip surfaces within a slope, that develop
into slow-moving landslides (of the slide type) (Conte, Donato, and Troncone, 2014;
Fernández-Merodo et al., 2014; Troncone, Conte, and Donato, 2014).

2.3.2 Fluid dynamics models

Constitutive models describe the relationship between stress and strain within a ma-
terial in general. Bingham (1922) introduced the term rheology to describe the stress-
strain relationship within fluids that exhibit both stationary (plug) and viscous-flow
regions, and proposed an empirical law to define this behaviour. This model – the
Bingham model – defines a simple one-dimensional relationship between the shear
stress and shear strain rate, and is characterised by a constant yield stress value.
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The one-dimensional Bingham model describes a fluid that is stationary when the
shear stress is less than the yield value, and flows with a constant viscosity otherwise.
The model was later generalised in the form of the Herschel-Bulkley model (Herschel
and Bulkley, 1926), where the viscosity can be defined to vary with the shear rate,
producing either shear-thinning or shear-thickening behaviour. Such models that
describe both plug and viscous flow are typically referred to as viscoplastic models
(Ancey, 2007). However, unlike the viscoplastic Perzyna and elastoplastic models,
they are derived under the laws of fluid dynamics, as opposed to solid and soil dy-
namics. To avoid confusion when referring to the two types of model, here the term
‘viscoplastic fluid’ is used in reference to the fluid-derived model, and ‘plasticity’ is
used to denote both the elastoplastic and Perzyna models. Despite their simplicity,
viscoplastic fluid models are able to capture the behaviour of a wide range of fluids,
including mud, industrial slurries, blood and certain food products (Bird, Dai, and
Yarusso, 1983). Furthermore, it has been observed that some landslides, for exam-
ple mud flows, behave as viscous fluids with plug regions (Johnson, 1970; Takahashi,
1981; Hunt, 1994; Iverson, 1997). As a result, Bingham and Herschel-Bulkley models
have been frequently used within the literature to model the run-out of such flows
(Laigle and Coussot, 1997; Fraccarollo and Papa, 2000; Haddad et al., 2010; Imran
et al., 2001; Calvo et al., 2015). In a similar way to the extension of the simple Mohr-
Coulomb equation to a three-dimensional surface, a complete tensorial formulation
of the one-dimensional Bingham law was proposed by Oldroyd (1947) and Prager
(2004). Little work has been undertaken since, and there is no representation of
the yield stress as a three-dimensional yield surface for viscoplastic fluids (unlike for
elastoplastic solids) (Ancey, 2007). However, it was shown by Pastor et al. (2015b)
that the viscoplastic Perzyna model can reduce to the Bingham model once plastic
flow has occurred, for a Von Mises yield criterion.

Viscoplastic fluid models approximate a soil-water mixture as one single viscous
material, and describe a relationship between strains and the total stress. This
assumption is only valid for certain types of soil where the overall composition is
homogeneous, such as mud and clay. For this reason, it has been argued within
the literature that viscoplastic fluid models are unsuitable for simulating landslide
behaviour (Iverson, 2003; Pudasaini, 2012). Although it may be appropriate to
approximate some types of landslide as a single phase fluid (such as mud flows),
viscoplastic fluid models do not provide a general description of landslide behaviour.

2.3.3 Depth-integrated models

Landslides of the flow-type, such as debris flows, may exhibit large run-out distances.
A complete mathematical description of this behaviour is computationally expensive
when incorporated into numerical simulations. The governing equations can be re-
duced via depth-integration, which was originally performed for granular materials
by Savage and Hutter (1989). Depth-integration consists of integrating the governing
equations between the upper and lower flow boundaries (e.g. the flow bed and the
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free surface). All flow variation in the normal direction to the bed is approximated
as a depth-averaged value, which reduces the numerical expense when solving the
equations. Depth-integration is considered a reasonable approximation for thin flows,
that have a significantly greater length than height (Savage and Hutter, 1989). This
is often the case for landslides of the flow-type, particularly debris flows. All cur-
rent mathematical models of rapid landslides and debris flows are depth-integrated
(Pitman and Le, 2005; Pastor, Blanc, and Pastor, 2009; Pudasaini, 2012; Iverson
and George, 2014; Pastor et al., 2015a). Note that depth-integrated models cannot
capture full three-dimensional flow behaviour, and are not appropriate for problems
with significant vertical variations.

Depth-integrated models do not require a full three-dimensional relationship for
the stress tensor, which allows the direct implementation of Coloumb’s equation
(Equation (2.2)) to relate the shear and normal stress components. The incorpo-
ration of Coulomb’s law into the depth-integrated equations of motion provides a
frictional model, where inter-particle friction is the main component governing ma-
terial behaviour. Depth-integrated frictional models have been applied to simulate
granular flows and landslide run-out (Savage and Hutter, 1989; Pastor et al., 2015a).
Voellmy (1964) introduced an additional term into the frictional model to account
for turbulence dissipation, which adds extra frictional resistance. The inclusion of
the Voellmy term enabled the correct simulation of the run-out lengths of snow
avalanches, which were overpredicted without it. Since its introduction, Voellmy’s
model has been used to simulate rapid landslides and debris flows, where it has
provided more accurate results (in terms of material run-out) than the standard fric-
tional model (Hungr, 2008; Pirulli and Pastor, 2012). The Voellmy term includes a
model parameter that requires calibration for model input.

2.3.4 Two-phase models

Extensive work has been dedicated to the development of a generalised mathemati-
cal and constitutive model with an application to debris flows, where both solid and
fluid phases control the flow dynamics. Such models are derived under a complete
two-phase framework, where separate equations are used to describe the motion of
the water and the soil skeleton. The two-phases are coupled via an interaction term
in the equation of momentum, in addition to the assumption of Terzaghi’s equation
to describe the total soil stress. Iverson (1997) developed a depth-integrated two-
phase debris flow model, where a frictional, Coulomb law was used to describe the
constitutive behaviour of the soil skeleton. The evolution of pore water pressures
was included in the model, although the vertical variation was lost due to depth-
integration. An advection-diffusion equation was introduced to predict the vertical
pressure distribution. The authors later extended the debris flow model to include
additional effects, such as evolving dilatancy, volume fraction and erosion (Iverson
and George, 2014; Iverson and Ouyang, 2015). Similar two-phase, depth-integrated
debris flow models have been developed by Pastor and co-workers (Pastor et al.,
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2009a; Pastor et al., 2014; Pastor et al., 2015a), Pitman and Le (2005) and Puda-
saini et al. (2005). In the majority of two-phase debris flow models, the relative
velocities between the soil and water phases are neglected. Recently, models have
been developed that explicitly account for the distinct soil and water velocities (Pu-
dasaini, 2012; Pastor et al., 2018). Two-phase models are described in further detail
in Chapter 8.

2.4 Numerical models for the simulation of soil behaviour
and landslides

The governing mathematical equations that determine landslide behaviour are com-
plex, and must be approximated as a discrete system to obtain a numerical solution.
The implementation of a numerical model consists of two components – a spatial
discretisation of the material of interest, and a temporal discretisation. The gradi-
ent terms within the equations of motion are approximated according to the spatial
discretisation scheme, while a time stepping scheme is applied to update the discrete
variables from one time to the next. Classic numerical methods include the Finite
Difference Method (FDM) and the Finite Element Method (FEM), which utilise a
fixed mesh to discretise a system. Variable information (such as velocity and stress)
is calculated at the nodes or elements of the mesh. Such methods employ an Eu-
lerian specification, where the grid points are stationary and the material motion
is described with respect to this fixed frame. Regarding landslide behaviour, the
numerical method must be capable of tracking the history of the material in order to
predict the formation of failure surfaces. Furthermore, it is required that the model
can capture large deformations and complex free surfaces, that are associated with
propagating landslides. Although Eulerian mesh-based methods have been used with
some success to simulate landslide failure and propagation (Chen and Mizuno, 1990;
George and Iverson, 2014; Crosta, Imposimato, and Roddeman, 2015), they require
additional complex processes in order to fulfil these requirements, such as re-meshing
and remapping of variables (Li and Liu, 2002).

As an alternative to mesh-based numerical methods, the past decades have seen
the development of techniques that do not require a mesh, which are referred to as
meshless. Meshless methods are Lagrangian in nature, where material information
is stored at positions that are updated according to the material velocity. This al-
lows the material history to be tracked in a natural way, and material failure can be
simulated with ease. Furthermore, meshless methods are well adapted for modelling
problems involving large deformations and free surfaces, and complex re-meshing
processes are avoided. The oldest modern meshless method is Smoothed Particle
Hydrodynamics (SPH), which was developed independently by Gingold and Mon-
aghan (1977) and Lucy (1977) to model astrophysical problems. The governing,
continuum equations of motion for a given problem are discretised over a set of par-
ticles, as opposed to a grid. The material of interest is therefore represented by the
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particles (or nodes), where each one carries information about the material, such as
the mass and density. Variables such as velocity and stress are approximated at each
particle according to the discretised governing equations. This involves performing
a summation over the surrounding particles within a specified domain of influence,
defined by a smoothing length. The summation is multiplied by a smoothing func-
tion, called a kernel. The SPH approximation of a function f(xi) is calculated at a
specific particle i as

f(xi) =
N∑
j=1

mj

ρj
f(xj)W (xi − xj , hs), (2.6)

where the subscript j denotes the particles (with position vector x) within the domain
of influence of particle i, N is the number of neighbouring particles, W denotes the
smoothing kernel and hs is the smoothing length. The simplest form of the SPH
approximation for the gradient of a function (∇f(x))i is

(∇f(x))i =
N∑
j=1

mj

ρj
f(xj)∇W (xi − xj , hs), (2.7)

where ∇W is the gradient of the smoothing kernel.
A depiction of the SPH approximation is provided in Figure 2.4. The kernel must

satisfy a number of requirements, and is weighted so that the closest neighbouring
particles to a given node have a higher influence than those further away. The po-
sitions of the SPH particles are updated according to the material velocity, and the
simulation of large, material deformations is straightforward. SPH has been applied
to model a vast range of problems including geophysical flows (Gutfraind and Sav-
age, 1997), free surface fluid flows (Crespo, Gómez-Gesteira, and Dalrymple, 2008),
solid-fluid interaction problems (Gómez-Gesteira and Dalrymple, 2004), astrophys-
ical flows (Schuessler and Schmitt, 1981) and multiphase problems (Monaghan and
Kocharyan, 1995).

The first application of SPH to model soil behaviour was undertaken by Maeda
and Sakai (2004), who attempted to simulate the seepage failure of a shallow slope.
However, the soil was modelled as a purely elastic material and plastic deformations
were not considered, which is a highly idealised assumption. Plastic deformation of
soil was subsequently implemented within SPH (in two dimensions) for the first time
by Bui et al. (2008), using an elastoplastic constitutive model with a Drucker-Prager
yield surface. The model was applied to simulate the localisation of plastic strain in a
cohesive soil, representing a simplified case of slope failure. Furthermore, the collapse
of a non-cohesive, purely frictional soil, was also simulated. This problem exhibited
large deformations and represented an idealised landslide of the flow-type. The model
was validated by simulating the dam break collapse of a small scale experiment
consisting of metal rods. The evolution of the material was accurately simulated
with the SPH model. Following this pioneering development in the application of
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κh
W (xi − xj , h)

i

j

Figure 2.4: A depiction of the SPH particle approximation within
the support domain of the smoothing kernel W , for a particle i. The
image is adapted from Wang et al. (2016a). The support domain of
W is defined by the smoothing length, multiplied by a constant κ.

(a) SPH simulation (b) FEM simulation

Figure 2.5: The results of a landslide simulation conducted by Bui
et al. (2011), comparing the SPH solution with that of FEM. Notice
that for FEM, the displaced material cannot detach from the failure

surface.

SPH to model soil behaviour, the authors applied the model to accurately predict
the formation of slope slip surfaces and the subsequent post-failure landslide (Bui
et al., 2011). The meshless nature of SPH allowed the separation of the propagating
landslide from the slope, as shown in Figure 2.5a. The results were compared with
those computed with an FEM method, which was unable to simulate the expected
separation of the propagating material along the slip surface as a result of the mesh
(see Figure 2.5b). These results highlight the potential of SPH at simulating both
the failure and post-failure stages of landslides. The SPH model was later extended
to simulate two-phase soil-water coupling, with an application to seepage flow (Bui
and Nguyen, 2017). Following the work of Bui et al. (2008), a three-dimensional
elastoplastic constitutive model was implemented within SPH by An et al. (2016), to
simulate slope failure in three dimensions. The results showed that three-dimensional
effects played a vital role in the simulations, and produced features which could not
be captured with a two-dimensional model.

Significant progress has been achieved in the field of modelling rapid landslides
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with an SPH model that was designed specifically for run-out analysis (Pastor et al.,
2009a). The model utilises a depth-integrated system of equations derived under the
two-phase theory of soil-water mixtures (the Biot-Zienkiewicz model). Using appro-
priate simplifications and assumptions, the governing equations describe a granular
material with a single velocity, where pore water pressure terms may be included
to approximate a soil-water mixture. Within the model it is possible to implement
a variety of different constitutive laws to describe a wide range of material. The
different constitutive models that have been applied to simulate landslide run-out
include Bingham (Haddad et al., 2010; Pastor et al., 2014; Žic et al., 2015; Calvo
et al., 2015), frictional (Pastor et al., 2015a; Pastor et al., 2014; Pastor, Blanc, and
Pastor, 2009; Pastor et al., 2009b), Voellmy (Pastor et al., 2014; Pirulli and Pastor,
2012) and Perzyna (Pastor et al., 2015a). As SPH is not restricted by a mesh, simu-
lations can be conducted over complex geometries. The depth-integrated SPH model
has been combined with digital terrain models, which provide a topographic mesh
of sites where landslides have previously occurred. These data allow the simulation
of past events, where the SPH nodes represent the failed material and the digital
terrain model defines the boundary conditions. Landslides that have been simulated
in this way include: a series of flow-type landslides that occurred in the Campania
region of Italy, 1998 (Pastor et al., 2009a); the 2001 lahar of Popocatèpetl, Mexcio
(Haddad et al., 2010); the 1903 Frank rock avalanche, Canada (Pastor et al., 2015a);
the 2000 Tsing Shan debris flow, Hong Kong (Pirulli and Pastor, 2012; Pastor et al.,
2015a) and the 1966 Aberfan flow-type landslide, Wales (Dutto et al., 2017). These
investigations aimed to recreate the run-out distances and velocities recorded at the
actual event via back-analyses, and provided a close match between the numerical
results and the available data. This was achieved by performing parametric studies
regarding the relevant rheological parameters, which provides insight on the actual
behaviour of the material within the landslide. The simulation of the Tsing Shan de-
bris flow with the depth-integrated SPH model, performed by Pastor et al. (2015a),
is shown in Figure 2.6. The material was described with a non-cohesive frictional
constitutive law, with an additional model to include erosive effects in the governing
equations. The qualitative behaviour of the debris flow was captured well with the
depth-integrated SPH model. The SPH model has recently been extended to explic-
itly account for distinct soil and water phases, with two sets of SPH nodes for the
two phases (Pastor et al., 2018). The two-phase model was applied to recreate the
run-out path of the 1999 Tseng San Tsuen debris flow, Hong Kong, and was able to
simulate the areas of debris deposition that occurred in the event.

In addition to the depth-integrated model of Pastor et al. (2009a), there are
several other SPH models within the literature that have been utilised to simulate
propagating landslides of the flow-type. Huang et al. (2015) combined the Bingham
model with a Mohr-Coulomb definition of the yield stress to simulate the Bayi Gully
debris flow, triggered by the Wenchuan earthquake in China, 2008. The final free
surface of the SPH model compared well with the profile of the actual landslide, after
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(a) The aftermath of the debris flow (King, 2001) (b) The final material run-out simu-
lated with SPH, coloured by material

height (m)

(c) The temporal evolution of the debris flow, modelled
with SPH

Figure 2.6: Photographs of the aftermath of the Tsing Shan debris
flow, compared against the numerical SPH model results of Pastor

et al. (2015a).
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600 seconds of simulation. Similar studies have been conducted, where past landslide
events have been back-analysed using a Bingham rheological model (Dai et al., 2014;
Hu et al., 2015; Wang et al., 2016b; Dai et al., 2017). In these investigations, the final
flow paths have been predicted well with SPH, and good agreement with the field
data was provided. However, unlike the depth-integrated SPH model of Pastor et al.
(2009a), the aforementioned models are relevant to only a certain type of landslide,
where the approximation of a viscoplastic fluid is justified.

There are alternative particle-based methods besides SPH that are also suitable
for modelling large deformation problems which have been applied to landslide be-
haviour. The Material Point Method (MPM) is a Lagrangian numerical scheme that
approximates a continuum material over a discrete set of particles. Unlike SPH,
MPM utilises a background mesh to solve the governing equations of motion. At
each time step, the discrete particles are projected onto the nodes of the background
mesh, and the model equations are solved at the mesh nodes. The updated variables
(i.e. velocity and stress) are then projected from each mesh node back to the material
points, and the mesh is reinitialised. MPM has been applied to numerous problems
related to landslide behaviour, including slip surface development, progressive dam
failure and the large deformation of a soil-water mixture (Zabala and Alonso, 2011;
Abe, Soga, and Bandara, 2013; Bandara and Soga, 2015; Soga et al., 2015). How-
ever, as a result of the multiple steps involved, the computational cost of MPM is
particularly high. Furthermore, the method is not truly meshless due to the addi-
tion of the background grid. Although MPM is better suited to large deformation
problems than Eulerian mesh-based methods, the presence of the grid poses restric-
tions on material displacement that are not present within SPH. Further examples of
particle-based methods include the Particle-Finite Element Method (Moresi, Dufour,
and Mühlhaus, 2003) and the Element-Free Galerkin Method (Lu, Belytschko, and
Gu, 1994). There are drawbacks and benefits associated with every particle-based
scheme, which are described in detail in Li and Liu (2002) and Soga et al. (2015).
Nonetheless, SPH remains the single, completely meshless particle method, and is
favoured due to its simplicity with respect to alternative methods.

2.5 Shortcomings of SPH and available solutions

With the benefits that SPH brings to modelling large deformation problems come
several well documented shortcomings. Since its introduction, the method has been
developed significantly and there are a number of available solutions to the majority
of the identified problems. For example, compared to traditional mesh-based meth-
ods, SPH has a high computational expense that increases rapidly with increas-
ing particle resolution. Recent advances in high performance computing methods
have considerably improved the efficiency of SPH (Domínguez, Crespo, and Gómez-
Gesteira, 2011). Furthermore, the implementation of boundary conditions within
SPH is non-trivial, and the deficiency of particles in the boundary region can lead
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to inaccurate calculations in this area (Liu, Shao, and Chang, 2012). There are sev-
eral effective treatments for boundary conditions, including the addition of ‘dummy
nodes’ to represent different types of boundaries (Morris, Fox, and Zhu, 1997). More-
over, SPH can suffer from low computational accuracy, which is associated with the
consistency of the kernel function (Liu and Liu, 2006). The concept of consistency
originates from FEM and is defined such that an approximation has nth order con-
sistency if it can exactly reproduce a polynomial up to the order n. The standard
SPH kernel approximations cannot always satisfy the consistency conditions and the
method is therefore said to exhibit particle inconsistency (Liu, Liu, and Lam, 2003).
The inconsistency occurs due to the kernel truncation at the boundary, but can also
occur for interior particles that have an irregular distribution. Several methods have
been proposed to restore the particle consistency via a corrected kernel function (Liu,
Jun, and Zhang, 1995; Li and Liu, 1999; Chen, Beraun, and Carney, 1999; Liu, Liu,
and Lam, 2003).

A serious shortcoming of SPH is its susceptibility to numerical instabilities, which
can lead to the complete degradation of numerical simulations (Swegle et al., 1994;
Monaghan, 2000). Numerical instabilities pose problems in all numerical methods,
particularly regarding the simulation of shock waves – disturbances that propagate
at a higher velocity than the local speed of sound within a material. These pro-
duce sharp discontinuities in variables such as velocity, density and pressure, that
are difficult to resolve numerically (Anderson, 1982). Shock wave-induced instabili-
ties produce particularly severe effects in SPH due to the absence of a mesh. Shocks
within SPH induce irregular particle motions on the length scale of the initial particle
separation, which results in large fluctuations of pressure (Monaghan and Gingold,
1983). Von Neumann and Richtmyer (1950) introduced the concept of artificial
viscosity to calculate problems with shocks with classic mesh-based methods. The
Von Neumann-Richtmyer artificial viscosity is defined to act only when material is
under compression in order to smooth over (dampen) shocks, and solve the govern-
ing equations without the need for any complex shock boundary treatment. The
artificial viscosity was later adapted and developed for implementation within SPH
(Monaghan and Gingold, 1983; Monaghan, 1989; Monaghan, 1992). It is now viewed
as an essential component in the majority of SPH simulations (even those without
shocks), to dampen irregular particle motions (Liu and Liu, 2010). The inclusion of
artificial viscosity requires the appropriate values of two input parameters that are
not directly associated with any physical properties. Excessive viscosity may be pro-
duced for large parameter values, which can lead to unrealistic material behaviour
(Swegle et al., 1994). Alternative methods have recently been proposed to dampen
particle oscillations that involve physically relevant parameters (Bui and Fukagawa,
2013; Bui et al., 2014; Nguyen et al., 2017).
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2.5.1 Zero-energy modes

A comprehensive stability analysis of SPH was performed by Swegle et al. (1994),
where a problem was identified with the kernel smoothing function. The simulation
of two impacting, solid bodies was performed in one dimension, where each body
was represented by a horizontal line of 100 particles with an inter-particle spacing of
0.01 cm. The stress profile along the length of the two bodies after 1 microsecond of
impact is shown in Figure 2.7a. It can be seen that the profile exhibits large stress
fluctuations – referred to as noise, that are most severe at the interface between the
two bodies. The noise was not eliminated by increasing the magnitude of artificial
viscosity, nor by varying the time step and smoothing length. Furthermore, contrary
to the expected behaviour, the stress oscillations did not dampen with time. To
investigate the cause of the instability, Swegle et al. (1994) examined the discrete
values of stress around the impact interface. This is provided in Figure 2.7b, where
the particle stress values are depicted by the points. Also plotted is the SPH kernel
approximation of the discrete points (according to Equation (2.6)), which is depicted
by the continuous line. The figure shows that the kernel approximation (which is
simply a polynomial fit to the data) follows the oscillating pattern of stress. However,
the local minima and maxima of the kernel function naturally share the same location
as the discrete particles. As a result, the gradients of the kernel, and therefore the
gradients of stress, are zero at the discrete points. This is shown in Figure 2.7c,
where the stress gradients are plotted for the discrete particles in the region of the
impact. The continuous line represents the SPH kernel gradient approximation of
the stress field. While the continuous kernel gradient approximation is oscillatory,
the gradient values at the particles are approximately zero. Clearly, the stress field
over the two bodies is not constant and the resulting stress gradient should therefore
not be zero. Moreover, in the absence of external body forces, a zero stress gradient
results in zero acceleration (because the acceleration is directly proportional to the
stress gradients in the equation of momentum). Thus, the particles do not accelerate
in response to the stress field and the fluctuations are not reduced.

The zero stress gradients that are calculated at nodes within a non-constant
stress field are referred to as zero-energy modes (Belytschko et al., 2000). Their
occurrence is due to the anti-symmetric form of the gradient of the smoothing kernel.
To illustrate this, consider a simple one-dimensional problem of a row of equally
spaced particles subjected to an oscillatory stress field, as depicted in Figure 2.8.
The stresses are assumed to be of equal magnitude for each particle, and alternative
in sign between adjacent particles. According to Equation (2.7), the calculation of
the stress gradient at particle p2 is:

(
∂σ

∂x

)
p2

=
N∑
j=1

mj

ρj
σj
∂Wij

∂x
. (2.8)
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(a) Full stress profile

(b) Stress values around impact (c) Stress gradient values around impact

Figure 2.7: Values of stress and stress gradients with their corre-
sponding kernel approximations, for the one-dimensional simulation

of two impacting solid bodies (Swegle et al., 1994).
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Assuming that the particles are equal in mass and density, Equation (2.8) becomes(
∂σ

∂x

)
p2

=
m

ρ

(
σ1
∂W21

∂x
+ σ3

∂W23

∂x

)
. (2.9)

Due to the anti-symmetric form of the kernel gradient, ∂W21
∂x = −∂W23

∂x , and Equation
(2.9) reduces to (

∂σ

∂x

)
p2

=
m

ρ

∂W21

∂x
(σ1 − σ3) . (2.10)

For the assumed oscillatory stress field, the stresses at particles p1 and p3 are equal
and the stress gradient (and therefore the acceleration) at particle p2 is calculated as
zero. According to Equation (2.10), the stress gradient at particle p2 is equal to zero
regardless of the stress value at the particle itself. Therefore, the incorporation of the
particle itself in the gradient calculation would lead to a more realistic approximation
of the overall stress gradient field (Patankar, 1980; Dyka, Randles, and Ingel, 1997).
Note that the simple calculation described above is a simplified case used to illustrate
the occurrence of zero-energy modes. The same problem occurs for more complex
cases in higher dimensions. The calculation outlined in Equations (2.8) to (2.10)
is very similar to the equivalent computation with FDM, in which the problem of
zero-energy modes was originally identified (Maenchen and Sack, 1963). It has also
been shown that the problem still occurs when the finite difference nodes are not
equally spaced (Patankar, 1980). An effective solution to this problem was introduced
in FDM in the form of a staggered grid (Harlow and Welch, 1965; Patankar and
Spalding, 1983). In the staggered grid approach, a second set of nodes are introduced
that are positioned in a staggered arrangement to the first set. The velocities are
calculated on one set of nodes, and the remaining variables (including stress) are
calculated on the second set. Therefore the stress gradient calculation depends on
the difference between two adjacent nodes from the second set, rather than two
alternative nodes on the first set. It was acknowledged by Swegle et al. (1994) that
the problem of zero-energy modes in SPH was due to the fact that the velocity
and the stress are evaluated at the same location. Zero-energy modes have been
frequently documented within FEM, where they produce spurious velocity values at
the element nodes (Hughes, 2012; Belytschko et al., 2013). This may result in the
velocities at neighbouring nodes having an equal magnitude but opposite direction,
producing a deformed ‘hourglass’ mesh (Belytschko et al., 1984).

While extensive research has focused on eliminating the zero-energy modes in
FDM and FEM (e.g. Flanagan and Belytschko (1981), Belytschko et al. (1984),
Belytschko and Bachrach (1986)), little work has been undertaken in this area re-
garding SPH. In a review of the SPH method, Liu and Liu (2010) claimed that the
occurrence of zero-energy modes is not as serious within SPH as for FDM and FEM.
The reason provided was that the zero-energy modes are normally found in a regular
particle configuration, while SPH typically exhibits an irregular configuration due
to the movement of the particles. However, for the simulation of solid problems in
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Figure 2.8: A depiction of a row of SPH particles denoted p1, p2

and p3, with respective stresses σ1, σ2 and σ3.

the literature, a regular particle configuration is often favoured (Bui et al., 2008;
Blanc and Pastor, 2012; Bui and Fukagawa, 2013). Furthermore, Liu and Liu (2010)
reported that the conditions for triggering zero-energy modes are specific, and not
usually encountered. In fact, stress oscillations are a well-documented feature of SPH
within both solids (Blanc and Pastor, 2012; Nguyen et al., 2017; Bui and Fukagawa,
2013), and fluids (Xu and Yu, 2018; Monaghan, 2012), which are often a result of
short-length-scale noise. Therefore, such oscillations have the potential to trigger
zero-energy modes. Bui and Fukagawa (2013) reported the presence of zero-energy
modes in the application of a load to a soil sample, and used a viscous damping term
to reduce the resultant fluctuations. Moreover, Nguyen et al. (2017) documented
severe stress and strain oscillations in the collapse of a granular column. A regulari-
sation technique was performed every specified number of time steps to control the
noisy profiles, where the values of stress and strain were smoothed by interpolating
over neighbouring nodes with a Moving Least Squares method.

2.5.2 Tensile instability

In their investigation of SPH, Swegle et al. (1994) also discovered that certain prob-
lems exhibit artificial fractures when under a tensile state of stress. This was illus-
trated in the simulation of two rubber rings impacting one another at 50 m s−1.
It was observed that fractures developed within the material as the rings deformed
after impact, as shown in Figure 2.9. The fractures only occurred in regions under
tension, and they were not a physical feature of the problem (the material strength
was significantly higher than the stress state when fractures occurred). The forma-
tion of the fractures was triggered by unstable, non-uniform particle behaviour under
tension. Uneven particle movement caused certain particles to clump together, re-
sulting in a loss of communication between neighbours and subsequent fracturing.
This numerical instability is known as the tensile instability. To pinpoint the root
cause of the tensile instability, Swegle et al. (1994) performed a rigorous stability
analysis for SPH in one dimension, for an elastic solid material. For the discrete,
one-dimensional SPH equations, the governing equation of momentum reduced to a
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Figure 2.9: The collision of two rubber rings showing non-physical
fractures. The problem was originally simulated by Swegle et al.
(1994) and recreated by Monaghan (2000) (this image is taken from

the latter).

relationship between displacements and the product of the stress and the derivative
of the kernel. The resulting stress-strain relationship was examined for an elastic
material. Rather then exhibit the linear stress-strain profile governed by the consti-
tutive relationship for an elastic material, the strain displayed nonlinear behaviour
for a stress-kernel product that exceeded a certain threshold. This region of nonlinear
behaviour corresponded to the occurrence of the numerical instability. The results of
the stability analysis quantified the onset of the instability as a relationship between
the second derivative of the kernel function multiplied by the stress. A condition for
unstable behaviour was defined as

W ′′σ > 0, (2.11)

whereW ′′ is the second derivative of the kernel and σ is the stress (in one dimension).
Therefore, in a similar way to the zero-energy mode instability, the tensile instability
is due to the form of the kernel function. However, the occurrence of the tensile
instability depends on the sign of the product of the stress and the second derivative
of the kernel. The second derivative is positive for most particle-particle interactions,
and the tensile instability occurs in a tensile state. Note that instabilities could also
occur in a compressive state if W ′′ < 0, which occurs for particles that are located
close to one another (in one dimension,W ′′ < 0 for particles located within a distance
of 2/3 times the smoothing length). The effects of the instability have been only
observed within the literature for material under a tensile stress (Monaghan, 2000).

The tensile instability initiates in the form of variable oscillations at individual
particles, which can lead to particle clumping and material fractures. As a result, the
effects of the tensile instability are dependent on the growth rate of the instability,
and the amount of time the simulation remains in an unstable regime (Swegle et al.,
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(a) Cohesive soil collapse (Bui et al.,
2008)

(b) Viscoelastic droplet impact (Xu and
Yu, 2018)

Figure 2.10: The appearance of fractures as a result of the tensile
instability, from SPH simulation results provided in the literature.

1994). The instability has been observed in a range of applications (Schuessler and
Schmitt, 1981; Steinmetz and Mueller, 1993), although the severity of the effects
depends on the problem under consideration. For problems involving fluids and
brittle solids, the material usually breaks up before the effects of the instability
manifest (Monaghan, 2000). Simulations of material with a cohesive strength are
particularly susceptible to the effects of the instability (see Figure 2.9). Bui et al.
(2008) simulated the collapse of a cohesive soil, where severe fracturing occurred due
to the tensile instability, as shown in Figure 2.10a. Serious fractures have also been
exhibited in the simulations of viscous fluids (Fang et al., 2006; Xu and Yu, 2018),
which are displayed in Figure 2.10b. Unless a technique is employed to prevent the
manifestation of the tensile instability, the simulations of cohesive soils and viscous
fluids are inaccurate, non-physical and unstable. Thus, regarding simulations of
landslide behaviour with SPH, it is essential to include a remedy for the tensile
instability.

It was shown by Swegle et al. (1994) that an increase in artificial viscosity can
dampen the effects of the instability, but is not able to eliminate them. The instabil-
ity was also found to be independent of smoothing length, initial particle distribution
and the time stepping scheme. Therefore, a number of solutions have been proposed
within the literature to suppress the effects of the tensile instability. The most well
known remedy is the artificial repulsive force proposed by Monaghan (2000), and ex-
tended to elastic solids by Gray, Monaghan, and Swift (2001). This method involves
the application of a short range repulsive force between particles that are under a
tensile state of stress, to prevent them from clumping. The results are effective, and
it has been implemented in a number of applications (Gómez-Gesteira and Dalrym-
ple, 2004; Fang et al., 2006; Dolag and Stasyszyn, 2009), including the simulations
of cohesive soil by Bui et al. (2008). However, the method requires the tuning of
parameters that do not have a physical interpretation. Furthermore, recent analyses
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have indicated that the method is less accurate than alternative techniques (Mao
and Liu, 2018; Xu and Yu, 2018). A method based on particle shifting was proposed
by Xu, Stansby, and Laurence (2009) and Lind et al. (2012), and recently applied to
remove the effects of fractures in a viscoelastic fluid (Xu and Yu, 2018). In this tech-
nique, particles in areas of low concentration are shifted according to a diffusive flux
to prevent fractures from forming. The performance of the method was shown to be
more effective than the artificial repulsive force at removing fractures in a viscoelastic
drop (Xu and Yu, 2018). An alternative approach for the tensile instability is to im-
plement a different form of the kernel function. Dilts (1999) utilised a Moving Least
Squares (MLS) interpolation function within a particle-based method. The MLS
function has a higher degree of accuracy than the standard SPH kernel, which can
prevent the onset of the instability. However, these functions are significantly more
complex and time consuming to implement within SPH, counteracting the benefits
of SPH in terms of simplicity and efficiency. Moreover, it has been shown that cer-
tain types of kernel function are able to completely eliminate the onset of the tensile
instability (Belytschko et al., 2000). However, these types of kernel – a Lagrangian
kernel – are defined so that the SPH particles have the same neighbours through-
out the duration of the simulation. As a result, this method is not appropriate for
modelling problems that exhibit large deformations and displacements.

Following the investigation of Swegle et al. (1994), a unique approach in which
to alleviate the tensile instability within SPH was introduced by Dyka, Randles, and
Ingel (1995). It was shown by Swegle et al. (1994) that the occurrence of zero-energy
modes was directly related to the fact that the velocities and stresses are calculated
at the same location. Furthermore, in FDM this problem is eliminated by using a
staggered grid approach, where the velocity and stress are calculated on different
sets of nodes. In addition to eliminating the zero-energy modes, the staggered grid
approach essentially allows the stress information at a specific node to be included
in the calculation of the stress gradients at that node. This improves the accuracy
of the gradient calculation significantly (Patankar, 1980). Dyka, Randles, and Ingel
(1995) believed that such an increase in accuracy could prevent the occurrence of
the tensile instability in SPH, and therefore developed a one-dimensional ‘staggered
grid’ equivalent within SPH. The velocities are calculated on the SPH nodes, while a
separate set of nodes, denoted as stress-points, are used to calculate the stresses. The
nodes and stress-points are positioned in a staggered arrangement. The method was
applied to simulate a number of cases that suffer from both zero-energy modes and
the tensile instability, including an elastic bar under tension, and a bar subjected to
an alternating velocity field (Dyka, Randles, and Ingel, 1995; Dyka, Randles, and
Ingel, 1997). The problems were modelled with success, without the development
of numerical instabilities. This dual-particle method was later extended to higher
dimensions to simulate a variety of small deformation, solid problems (Randles and
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Libersky, 2000; Vignjevic, Campbell, and Libersky, 2000). Despite the method ex-
hibiting promising results in terms of stability and accuracy, it has not been devel-
oped within SPH beyond these initial investigations. The main reason for this is
that it is unclear how to update the positions of the stress-points, as velocity is not
calculated on these particles. As a meshless method, the most attractive feature
of SPH is that the positions of the particles are updated, allowing the simulation
of large deformation problems. In the dual-particle SPH methods presented in the
literature, the velocity was updated via an interpolation method from the nodes to
the stress-points. While it is applicable to problems that do not exhibit a large
particle displacement, the method is expected to break down for large deformation
simulations (Vignjevic, Campbell, and Libersky, 2000). Therefore in their current
form, dual-particle methods do not provide a universal remedy for the instabilities
encountered in SPH.

Blanc (2011) developed a stable numerical scheme for the simulation of landslide
behaviour that combined SPH with the high-accuracy Taylor-Galerkin Finite Ele-
ments method. The method uses SPH for the spatial discretisation of the governing
equations, with the Corrective Smoothed Particle Method (Chen and Beraun, 2000)
to improve the accuracy of the SPH kernel approximations. The time derivatives of
the unknown variables are solved according to a forward-time Taylor series expan-
sion, based on the two-step Taylor-Galerkin method. In the combined SPH-Taylor
method, the calculation is split up over two sets of SPH nodes, referred to as nodes
and elements. The method is therefore referred to in this research as the Node-
Element method. As the Taylor time discretisation involves two steps, the first step
is solved on the SPH elements, and the second step is solved on the SPH nodes. In a
similar way to the splitting of the velocity and stress in the staggered grid approach,
the Node-Element method allows information at a specific node to be included in
the gradient calculations at that node. Therefore, the method is capable of pro-
ducing stable and accurate results for various problems regarding soil dynamics and
landslide behaviour. The Node-Element SPH method (with a viscoplastic Perzyna
rheological model) has been applied to produce stable simulations of simple elastic
slopes, the propagation of shear bands, a bearing capacity problem and the large
deformation of a viscoplastic, cohesive slope (Blanc and Pastor, 2012; Blanc and
Pastor, 2013; Mabssout and Herreros, 2013). The Node-Element method requires
that an SPH element is positioned in the centre of every four neighbouring nodes at
each time step. As a result, the positions of the particles are somewhat restricted
and the method is not truly meshless. This is depicted in Figure 2.11a, where the
intersections of the grid depict the positions of the SPH nodes, and the crosses de-
pict the SPH elements. With this restriction, it is possible to simulate problems
of a relatively large deformation, such as the deformation of the viscoplastic slope
shown in Figure 2.11b. However, the method cannot be applied to problems with
high velocities and very large displacements, such as landslide propagation of the
flow-type.
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(a) A depiction of the position update of the nodes
and elements.

(b) The viscoplastic slope at t = 35 s. The
contours represent regions of irreversible, plastic

strain.

Figure 2.11: An illustration of the Node-Element method and its
application, taken from Blanc and Pastor, 2013.

2.6 Conclusion

The processes that occur in landslides within initiation and propagation are complex
and are governed by solid, fluid and soil mechanics. A numerical model for gen-
eral landslide behaviour should be capable of simulating the gradual development
of failure surfaces in landslide initiation, in addition to rapid, propagating flows.
SPH is a meshless method that is able to handle these features with ease, and has
been frequently applied to landslide behaviour (Bui et al., 2008; Bui et al., 2011;
Pastor et al., 2009a; Pastor et al., 2015a; Dai et al., 2017). However, numerical in-
stabilities seriously affect the performance of SPH, which is particularly detrimental
regarding the simulation of solids, soil and viscous fluids (see Figures 2.7, 2.9 and
2.10). Although there are a number of proposed remedies for the instabilities, they
are only suitable for specific types of problem (e.g. the Lagrangian kernel method
(Belytschko et al., 2000)), or require the tuning of artificial parameters (e.g. the ar-
tificial repulsive force (Monaghan, 2000)). The two most serious instabilities within
SPH (the zero-energy modes and the tensile instability) have been related to the
fact that all variable information is calculated at the SPH nodes (Swegle et al.,
1994; Dyka, Randles, and Ingel, 1997). Similar problems are found in mesh-based
methods, and a common stabilisation technique is to split up the stress and veloc-
ity calculations over two sets of grids (Harlow and Welch, 1965; Caretto, Curr, and
Spalding, 1972; Patankar, 1980; Patankar and Spalding, 1983). This technique has
also been implemented within SPH, and has provided promising results in terms of
numerical stability and model performance (Dyka, Randles, and Ingel, 1995; Dyka,
Randles, and Ingel, 1997; Randles and Libersky, 2000; Vignjevic, Campbell, and
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Libersky, 2000). However, very little attention has been devoted to this method
since its introduction. This is partly because its implementation within SPH – a
meshless method – is non-trivial. Furthermore, the existing set-up produces major
restrictions on particle movement within SPH, which counteract its applicability for
modelling problems with large displacements.

This research aims to revisit the method – the Stress-Particle SPH method – in
order to develop an improved SPH model for simulating landslide behaviour. This
involves implementing stress-points within SPH and applying the technique to prob-
lems regarding soil and landslides for the first time. What’s more, the method is
extended so that it is capable of capturing the large displacements that are rele-
vant to landslide propagation, for the first time. Note that although in FDM the
staggered grid approach can completely eliminate zero-energy modes, the SPH cal-
culations are more complex. When approximating the gradient of a variable with
FDM, only the information from two nodes is used. This is not the case for SPH in
general. Furthermore, the particle positions are updated at each time step and the
number of neighbours varies. Therefore, an initial ‘staggered grid’ arrangement of
SPH nodes and stress-points does not necessarily stabilise SPH, and a higher ratio
of stress-points to nodes may be required (Belytschko et al., 2000). This factor is
also investigated in the subsequent chapters.

Regarding the mathematical description of landslide behaviour, plasticity-based
models have been used with success to model slip surface formation, in addition to the
solid-fluid transition in landslides (Bui et al., 2008; Bui et al., 2011; Blanc and Pastor,
2012; Blanc and Pastor, 2013). As a result, both the elastoplastic and viscoplastic
Perzyna model are implemented within the Stress-Particle SPH model. To assess
the applicability of the new SPH model for landslide initiation and propagation,
simplified approximations of these two stages are considered. Regarding landslide
initiation, attention is focused on the model capabilities at capturing the development
of shear bands and slip surfaces. The capabilities of the model at simulating landslide
propagation are assessed by considering the rapid flow of soil, that exhibits large
displacements. In both cases, the model results are compared against results from
the literature. Moreover, the model is applied to simulate an experimental debris
flow, providing further validation and verification. In the following chapter, the
elastoplastic and viscoplastic Perzyna models are described in detail.
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Chapter 3

Mathematical description of soil

This chapter presents the governing equations of a soil continuum, that are imple-
mented in the SPH framework in the following chapter. The constitutive behaviour
of the soil is described using the theory of plasticity, with both elastoplastic and
viscoplastic Perzyna models. This chapter is structured as follows. First, a descrip-
tion of the stress tensor is provided, along with relevant invariants of the stress.
Second, the equations of motion for a single phase soil are presented. Then, the
general constitutive framework under the theory of plasticity is detailed, followed
by an explanation of the distinct elastoplastic and viscoplastic models. Due to the
Lagrangian nature of SPH the following mathematical equations are written in a
Lagrangian frame of reference.

3.1 The stress tensor

In three-dimensional space, the stress tensor σαβ is

σαβ =

σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 , (3.1)

where α and β represent the x, y and z components in Cartesian coordinates. The
stress tensor is symmetric, in that σαβ = σβα. Together, the components of the stress
tensor completely describe the stress state at a point within a continuum material.
This is visualised in Figure 3.1, which shows the stress components of an idealised,
cubical element. Each face contains two stress components that act parallel to the
face, at a right angle from one another – these are the shear stresses σxy, σxz, σyz.
The third stress component acts perpendicular to the face, and is known as the
normal stress (σxx, σyy, σzz). Recall that in the current work, a compressive stress
is defined to be negative. The corresponding three-dimensional strain tensor εαβ is

εαβ =

εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

 . (3.2)
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Figure 3.1: A depiction of the three-dimensional stress tensor in
the Cartesian plane.

The stress tensor can be decomposed into two components: a hydrostatic pressure
p and a deviatoric stress sαβ :

σαβ = −pδαβ + sαβ, (3.3)

where δαβ is the Kronecker delta (δαβ = 1 if α = β, δαβ = 0 if α 6= β). The
hydrostatic pressure of a soil is defined as the negative average of the normal stress
components, i.e.

p = −σγγ
3

= −1

3
(σxx + σyy + σzz) . (3.4)

Naturally, the deviatoric stress represents the deviation of the stress from the hydro-
static state

sαβ = σαβ + pδαβ. (3.5)

The hydrostatic pressure is the isotropic stress that is responsible for volumetric
changes of a material element. The deviatoric stress is responsible for shape defor-
mations of the element due to shear.

3.1.1 Invariants of the stress tensor

Invariants of the stress tensor are functions that are independent of the coordinate
system. These are useful in terms of defining a generalised failure criteria. The stress
invariants are obtained on rotation of the stress tensor into a frame of reference where
all shear stresses are zero. Consequently, the non-zero elements of the stress tensor
consist of the normal components only, which are known as the principal stresses –
denoted σ1, σ2 and σ3. This stress tensor transformation is defined according to:

(σαβ − σδαβ)nβ = 0, (3.6)



3.1. The stress tensor 37

where σ denotes the principal stress and nβ denotes the unit normal in the trans-
formed stress state (corresponding to zero shear stresses). The solution of the system
(3.6) leads to the following characteristic equation:

σ3 − I1σ
2 + I2σ − I3 = 0, (3.7)

where I1, I2 and I3 are the three invariants of the stress tensor:

I1 = σαα (3.8)

I2 =
1

2

(
I2

1 − σαβσβα
)
, (3.9)

I3 =
1

6

(
2σαβσβγσγα − 3I1σαβσβα + I3

1

)
. (3.10)

Here, α, β, γ are summation indices denoting the x, y and z components. The solu-
tions of (3.7) are the three principal stresses σ1, σ2, σ3.

Similarly, the procedure described above can be also applied to the deviatoric
stress tensor sαβ , resulting in a different characteristic equation:

s3 − J1s
2 − J2s− J3 = 0, (3.11)

where s denotes the principal stress for the transformed deviatoric stress tensor
(s1, s2, s3), and J1, J2 and J3 are the three invariants of the deviatoric stress tensor,
defined as

J1 = sαα = 0, (3.12)

J2 =
1

2
sαβsαβ, (3.13)

J3 =
1

3
sαβsβγsγα. (3.14)

3.1.2 Plane strain condition

In the current work, attention is restricted to two-dimensional problems in the x− y
plane, where x is the horizontal axis and y is the vertical axis. The three-dimensional
stress tensor can be approximated in two dimensions via the assumption of plane
stress or plane strain. A material is in plane stress if all stress components along the
normal axis (the z-axis) are zero. Zero normal stress means that there is no restriction
on the material deformation in the z direction, and deformations can occur in the
longitudinal (z) direction. Consequently, the εzz component of the strain tensor is
non-zero. Conversely, a material is in plane strain if longitudinal deformations are
prevented, and all deformations occur in the two-dimensional (x − y) cross section.
The normal component of the stress tensor in the longitudinal direction (σzz) is
therefore non-zero. For the application to geotechnical problems, the plane strain
condition is often a reasonable assumption and considerably simplifies the full three-
dimensional analysis (Powrie, 2004; Bui et al., 2008). Therefore the plane strain
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condition is assumed in the current work, where the stress and strain tensors reduce
to

σαβ =

σxx σxy 0

σxy σyy 0

0 0 σzz

 , εαβ =

εxx εxy 0

εxy εyy 0

0 0 0

 . (3.15)

3.2 Equations of motion

The equations of motion for a soil consist of the conservation of mass and momentum:

∂ρ

∂t
= −1

ρ

∂uα
∂xα

, (3.16)

∂uα
∂t

=
1

ρ

∂σαβ
∂xβ

+ bα, (3.17)

where ρ is the soil density, uα is velocity, σαβ is the total stress tensor and bα

denotes the external body forces. For the applications of relevance in this research,
the external body force consists of gravity only.

3.3 Constitutive model

A constitutive equation is required to relate the soil stresses to the strain rates. As
described in Chapter 2.2, the total stress in a soil is split up into an effective stress
carried by the soil skeleton and a pore water pressure term (Terzaghi, 1936). Here,
attention is restricted to a dry soil, and the total soil stress is therefore equal to the
effective stress.

The total strain rate is defined in terms of the velocity gradients via the kinematic
condition:

ε̇αβ =
1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

)
, (3.18)

where the dot notation represents the derivative with respect to time. Recall that
the total strain rate can be split up into an elastic ε̇eαβ and a plastic component ε̇pαβ :

ε̇αβ = ε̇eαβ + ε̇pαβ. (3.19)

Equation (3.19) describes the underlying assumption of plasticity-based models.
From here, descriptions are required for the behaviour of the elastic and plastic strain
rates, as well as a yield function to distinguish between the two types of behaviour.
In soil mechanics, the elastic strain rate is often related to the rate of stress via
the generalised Hooke’s law (Chen and Mizuno, 1990). For a full three-dimensional
problem this is written as:

σ̇αβ = De
αβmnε̇

e
mn, (3.20)
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where α, β,m, n = x, y, z, and De
αβ is a fourth-order tensor consisting of 81 material

constants. This tensor, the elastic constitutive tensor, is a function of Young’s mod-
ulus E – a measure of material stiffness, and Poisson’s ratio ν – the ratio of relative
contraction strain to axial strain in the direction of the applied load. Equation (3.20)
can be written in vector notation as

σ̇ = De : ε̇e, (3.21)

where the double dots denote a double tensorial contraction (Heeres, Suiker, and
Borst, 2002). Equation (3.20) is the simplest expression of the stress-strain rela-
tionship in an elastic material, and states that the stress rate increases linearly with
strain rate, as a function of the material properties (Chen and Mizuno, 1990). Equa-
tion (3.20) may also be rewritten for ε̇eαβ , which for an isotropic material is expressed
as:

ε̇eαβ =
ṡαβ
2G

+
1− 2v

3E
σ̇γγδαβ, (3.22)

where G = E
2(1+v) is the shear modulus – describing a material response to shear,

and σ̇γγ = σ̇xx + σ̇yy + σ̇zz.
In plasticity-based models, the plastic strain rate is defined via the plastic flow

rule:
ε̇pαβ = λ̇

∂g

∂σαβ
, (3.23)

where λ̇ is the so-called consistency parameter and g is the plastic potential function.
The consistency parameter defines the magnitude of plastic strain via the plastic
multiplier λ, while the plastic potential function describes the direction of plastic flow
as a function of the stress tensor. For a plastic potential function that is equal to the
yield function, the flow rule is said to be associated. Otherwise, it is non-associated.
Beyond this general framework, the elastoplastic and viscoplastic Perzyna models
are derived under different approaches.

3.3.1 Yield criteria

Elastic and plastic material behaviour are distinguished according to a specified yield
function f . Of relevance to the current work are the Von Mises and Drucker-Prager
yield criteria. The Von Mises yield criterion is a function of the second invariant of
the deviatoric tensor J2:

f =
√

3J2 − fc, (3.24)

where fc is a constant stress value. The criterion has the benefit of being simple, but
is only relevant when modelling soils of a clay-type. It does not take the hydrostatic
pressure of the material into account, which has been shown to play a role in the
strength of granular materials (Chen, 2013). The Drucker-Prager criterion does
include hydrostatic stress dependence, is an adapted version of the Mohr-Coulomb
criterion. The Drucker-Prager criterion is defined in terms of the second deviatoric
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(a) The Von Mises yield criterion
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(b) The Drucker-Prager yield criterion.

Figure 3.2: Yield criteria in the (−I1,
√
J2) plane

stress invariant and the first invariant of the stress tensor I1:

f =
√
J2 + αφI1 − kc = 0, (3.25)

where αφ and kc are the model parameters. These are functions of the Coulomb
material constants – the soil internal friction φ and cohesion coh:

αφ =
tanφ√

9 + 12 tan2 φ
and kc =

3coh√
9 + 12 tan2 φ

. (3.26)

The Von Mises and Drucker-Prager yield criteria are illustrated in two dimensions
in Figures 3.2a and 3.2b respectively. In each case, when the stress state does not
lie within the elastic region, the material exhibits plastic strains.

Strain hardening and softening

Once plastic strains have occurred, if the size of the yield surface does not change the
material is said to be perfectly plastic. Alternatively the size of the yield surface may
vary according to a suitable hardening or softening law. Soils often exhibit strain
softening behaviour, where the shear strength reduces with increasing plastic strain
(Sluys, 1992). Strain softening can be described according to the following equation:

∂Y0

∂t
= H

∂ε̄p

∂t
, (3.27)

where Y0 is the initial yield surface (Pa), H is a hardening modulus (Pa) and ε̄p is
the deviatoric plastic strain (dimensionless). The deviatoric plastic strain represents
the magnitude of plastic strain:

ε̄p =
1√
3

√
2 (εpxx + εpyy + εpzz) + εpxy. (3.28)
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The size of the yield surface can also be defined to simply decrease or increase linearly
with time, to approximate softening or hardening behaviour respectively.

3.3.2 Elastoplastic model

The elastoplastic constitutive model is derived under the theory of classic plastic-
ity. To obtain a relationship between stress and strain, the equations defining the
elastic and plastic strain rates (Equations (3.22) and (3.23)) are substituted into the
equation for the total strain rate (Equation (3.19)). Furthermore, the stress ten-
sor decomposition (3.3) is substituted into Equation (3.22) to rewrite the deviatoric
stress in terms of the total stress. After rearranging, the result is an equation relating
the stress rate to the strain rate:

∂σαβ
∂t

= 2Gėαβ +Kε̇γγδαβ − λ̇
((

K − 2G

3

)
∂g

∂σmn
δmnδαβ + 2G

∂g

∂σαβ

)
, (3.29)

where m and n are dummy indices, ėαβ = ε̇αβ −
1
3 ε̇
γγδαβ is the deviatoric strain

rate tensor and K = E
3(1−2v) is the elastic bulk modulus. The first two terms on the

right hand side of Equation (3.29) describe the elastic strain, while the latter term
describes the plastic deformations (which is non-zero when plastic flow occurs).

In the elastoplastic model, the plastic multiplier λ must satisfy the following
criteria:

λ =


0, if f < 0.

0, if f = 0 and df < 0

λ > 0, if f = 0 and df = 0,

(3.30)

where f is the yield function, and df is the increment of the yield function after
plastic loading or unloading. The stress state is not allowed to exceed the yield
surface, and the yield function increment cannot be greater than zero. With the
criteria defined by Equation (3.30), a zero plastic multiplier (and therefore a zero
plastic strain rate) corresponds to elastic behaviour or plastic unloading. Plastic
loading is characterised by a non-zero value of the plastic multiplier λ, which can be
obtained via the consistency condition:

df =
∂f

∂σαβ
dσαβ = 0. (3.31)

Equation (3.31) ensures that the stress state remains on the yield surface during
plastic loading, as

f(σαβ + dσαβ) = f(σαβ) + df = f(σαβ). (3.32)
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To obtain the value of the plastic multiplier, Equation (3.29) is substituted into the
consistency condition (3.31), and rearranged:

λ̇ =
2Gε̇αβ

∂f
∂σαβ

+
(
K − 2G

3

)
ε̇γγ

∂f
∂σαβ

δαβ

2G ∂f
∂σmn

∂g
∂σmn

+
(
K − 2G

3

) ∂f
∂σmn

δmn
∂g

∂σmn
δmn

. (3.33)

Equation (3.33) can be solved upon substitution of the yield function f and potential
function g, to close the model.

In the current work, the elastoplastic constitutive model is used in combination
with a Drucker-Prager yield criterion, with a non-associated flow rule. Following Bui
et al. (2008), the plastic potential function is defined as

g =
√
J2 + 3I1 sinψ, (3.34)

where ψ is the dilatancy angle, which is assumed to be zero in the current work (this
assumption was also adopted by Bui et al. (2008)). Upon substitution of Equation
(3.34) and the Drucker-Prager yield function (3.25) into Equations (3.29) and (3.33),
the elastoplastic constitutive equation is

∂σαβ
∂t

= 2Gėαβ +Kε̇γγδαβ − λ̇
(

9K sinψδαβ +
G√
J2sαβ

)
, (3.35)

where

λ̇ =
3αφε̇

γγ + (G/
√
J2)sαβ ε̇αβ

27αφK sinψ +G
. (3.36)

For further details on the derivation of Equations (3.35) and (3.36) the reader is
referred to Chen and Mizuno (1990) and Bui et al. (2008).

3.3.3 Perzyna model

In the derivation of the Perzyna model, the stress decomposition defined by Equation
(3.19) is rearranged in terms of the elastic strain:

ε̇eαβ = ε̇αβ − ε̇
p
αβ, (3.37)

and substituted into Equation (3.20):

∂σαβ
∂t

= De
αβmn (ε̇mn − ε̇pmn) . (3.38)

To determine the plastic strain rate, the consistency parameter λ̇ is defined as

λ̇ = γ〈φ(F )〉, (3.39)



3.3. Constitutive model 43

where γ is a fluidity parameter (acts as the reciprocal of viscosity) and φ(F ) is a
yield-type function. The 〈...〉 symbol represents the Macaulay brackets:

〈φ〉 =

φ, φ ≥ 0

0, φ < 0
.

The function φ(F ) is therefore defined as

φ(F ) =

(
F − F0

F0

)N
, (3.40)

where N is a model parameter, F is a function of the stress state (related to the yield
function), and F0 defines a critical stress value for plastic strains. Plastic strains are
non-zero when the function F exceeds the critical value F0, such that

〈φ(F )〉 =

0, if F ≤ F0

φ(F ) > 0, if F > F0.
(3.41)

Plastic behaviour is determined according to a yield function f , in the same way
as described in Section 3.3.2. However, for the viscoplastic Perzyna model, f is
reformulated so that it can be written in terms of F and F0, where F can be larger
than zero. This feature is the main difference between the Perzyna model and the
elastoplastic model – for the latter, the yield function is never greater than zero (see
Equation (3.30)) and the stress state cannot exceed the yield surface. Conversely,
the definition of φ(F ) in Equation (3.41) allows the stress state to exceed the yield
surface, producing an effect called ‘overstress’ (Heeres, Suiker, and Borst, 2002).
Note that the Perzyna model includes additional parameters, γ andN , that introduce
viscous effects to the constitutive equation. This is why the Perzyna model is referred
to as viscoplastic, and the plastic strains are also often referred to as viscoplastic.
In the current work, the term plastic is generally used to describe the inelastic,
irreversible strains in both the elastoplastic and Perzyna models. In summary, the
Perzyna constitutive model is defined as

∂σαβ
∂t

= De
αβmn

(
ε̇mn − γ

∂g

∂σmn

(
F − F0

F0

)N)
, (3.42)

which is closed upon substitution of F , F0 and g. For simplicity, Equation (3.42) is
typically written in vector form as

∂σ

∂t
= De :

(
ε̇− γ ∂g

∂σ

(
F − F0

F0

)N)
, (3.43)

Relevant to the current work is the implementation of the Von Mises yield crite-
rion (defined by Equation (3.24)), with an associated flow rule (f = g). In terms of
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F and F0, the Von Mises yield criterion is defined as

F =
√

3J2 and F0 = fc. (3.44)

Plastic flow therefore occurs when
√

3J2 > fc, where fc is a critical stress value that
may vary according to a hardening or softening law. Upon substitution of Equation
(3.44) and g =

√
3J2 − fc into Equation (3.42), the Perzyna constitutive model is

∂σ

∂t
= De :

(
ε̇− γ ∂

√
3J2

∂σ

(√
3J2 − fc
fc

)N)
. (3.45)

3.3.4 A generalised system of equations

The general elastoplastic and viscoplastic Perzyna constitutive equations are defined
respectively as:

∂σαβ
∂t

= 2Gėαβ +Kε̇γγδαβ − λ̇
((

K − 2G

3

)
∂g

∂σmn
δmnδαβ + 2G

∂g

∂σαβ

)
, (3.46)

∂σαβ
∂t

= De
αβmnε̇mn −De

αβmnγ
∂g

∂σmn

(
F − F0

F0

)N
, (3.47)

The first two terms on the right hand side of Equation (3.46) are equivalent to the
first term on the right hand side of Equation (3.47):

2Gėαβ +Kε̇γγδαβ = De
αβmnε̇mn. (3.48)

Furthermore, the final terms on the right hand side of Equations (3.46) and (3.47)
are both functions of the plastic strain rate ε̇pαβ . Therefore, Equations (3.46) and
(3.47) can be written in the following compact form:

∂σαβ
∂t

= De
αβmnε̇mn − gε

p

αβ, (3.49)

where gεpαβ is a function of the plastic strain. Depending on the choice of constitutive
model,

gε
p

αβ = λ̇

((
K − 2G

3

)
∂g

∂σmn
δmnδαβ + 2G

∂g

∂σαβ

)
or gε

p

αβ = De
αβmnγ

∂g

∂σmn

(
F − F0

F0

)N
.

(3.50)
For large deformation problems, the rate of stress must be adapted so that it is

invariant with respect to large body rotations. The standard stress rate is replaced
with the Jaumann stress rate ˙̃σαβ :

˙̃σαβ = σ̇αβ − σαγω̇βγ − σγβω̇αγ , (3.51)
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where ω̇ is the spin rate tensor:

ω̇αβ =
1

2

(
∂uα
∂xβ

−
∂uβ
∂xα

)
. (3.52)

With this adaptation, Equation (3.49) becomes

∂σαβ
∂t

= σαγω̇βγ − σγβω̇αγ +De
αβmnε̇mn − gε

p

αβ. (3.53)

The governing equations describing soil behaviour under the theory of plasticity can
therefore be summarised as

Conservation of mass :
∂ρ

∂t
= −1

ρ

∂uα
∂xα

, (3.54)

Conservation of momentum :
∂uα
∂t

=
1

ρ

∂σαβ
∂xβ

+ bα, (3.55)

Constitutive equation :
∂σαβ
∂t

= σαγω̇βγ − σγβω̇αγ +De
αβmnε̇mn − gε

p

αβ.

(3.56)

3.4 Summary of the governing equations

For the numerical discretisation of Equations (3.54) - (3.56) described in the following
chapter, it is convenient to write the governing system of equations in vector notation.
In the plane strain condition, the elastic constitutive tensor can be written as a 4×4

matrix, defined as:

De
pq =

E

(1 + v)(1− v)


1− v v 0 v

v 1− v 0 v

0 0 (1− 2v)/2 0

v v 0 1− v

 , (3.57)

where p, q = 1, 2, 3, 4 denote the rows and columns of the matrix respectively. Fur-
thermore, the stress and plastic strain rate tensors are reformulated as row vectors
σ and ε̇p, containing the non-zero elements of the full tensors:

σ =


σxx

σyy

σxy

σzz

 , ε̇p =


ε̇pxx

ε̇pyy

ε̇pxy

0

 . (3.58)



46 Chapter 3. Mathematical description of soil

Therefore, in two dimensions with the plane strain condition, the system is governed
by

Conservation of mass :
∂ρ

∂t
= −ρ∇ · u, (3.59)

Conservation of momentum :
∂u

∂t
=

1

ρ
∇ · fσ + b, (3.60)

Constitutive equation :
∂σ

∂t
= σ̃ +∇ · fu − gε

p
. (3.61)

In Equations (3.59) - (3.61), the tensors fu and fσ have been introduced:

fu =


De

11ux De
12uy

De
12ux De

22uy

De
33uy De

33ux

De
41ux De

42uy

 , fσ =

(
σxx σxy

σxy σyy

)
, (3.62)

which are functions of velocity and stress respectively. For completeness, the remain-
ing vectors are defined as

x =

(
x

y

)
, u =

(
ux

uy

)
, σ̃ =


2σxyωxy

2σxyωyx

σxxωyx + σyyωxy

0

 , gε
p

=


gε
p

xx(ε̇p)

gε
p

yy(ε̇
p)

gε
p

xy(ε̇
p)

gε
p

zz(ε̇
p)

 , b =

(
bx

by

)
.

(3.63)
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Chapter 4

Stress-Particle SPH

4.1 Introduction

For the current purpose of modelling the failure and the post-failure behaviour of soil
(with an application to landslides), the numerical method must be suitable for both
small and large deformation problems. As discussed in Chapter 2.4, the meshless
nature of SPH means that it can easily handle both large deformations and free
surface flows, and it has been used with success to model a wide range of problems
of this type (Shao and Lo, 2003; Fang et al., 2006; Bui et al., 2008; Peng et al.,
2015; Minatti and Paris, 2015). However, there exist numerical instabilities that
either arise due to the absence of a mesh, or are more complicated to eliminate
than in mesh-based methods. The most significant of these instabilities with regards
to predicting soil behaviour are: the problem of zero-energy modes, and the tensile
instability. A detailed explanation of these instabilities along with available remedies
to combat them within SPH was provided in Chapter 2.5. Of the available stabilising
techniques, the addition of stress-points within SPH has a large number of benefits.
First, the use of stress-points allows for the calculation and storage of stress and
velocity at separate locations (Dyka, Randles, and Ingel, 1995). This can prevent
the occurrence of the zero-energy modes, as their cause is directly linked to the fact
that in Standard SPH the stress and velocity are calculated at the same location
(Swegle et al., 1994). Furthermore, a stability analysis conducted by Belytschko et
al. (2000) has shown that the threshold at which the tensile instability occurs can be
significantly increased with the addition of stress-points. Moreover, the inclusion of
stress-points within SPH acts to stabilise the scheme in a ‘natural’ way, avoiding the
need for the tuning of non-physical parameters (Randles and Libersky, 2000). The
role of stress-points within SPH is currently relatively unexplored and only simple
configurations have been applied to a limited range of problems. Consequently, this
research aims to develop an SPH model with stress-points, named Stress-Particle
SPH, for application to the failure and post-failure behaviour of soil.

Motivated by the results of the stability analysis performed by Swegle et al.
(1994) (described in Chapter 2.5.1), Dyka, Randles, and Ingel (1995) introduced
stress-points to SPH to eliminate the tensile instability observed in an elastic bar
subjected to tensile stress. In their one-dimensional set-up, two stress-points (x) were
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(a) One-dimensional set-up (b) Two-dimensional set-up

Figure 4.1: Stress-Particle SPH configurations in one and two di-
mensions.

positioned on either side of each node (o), as depicted in Figure 4.1a. The veloci-
ties were calculated at the SPH nodes, using the information from the surrounding
stress-points to calculate the stress gradients at the nodes. Similarly, the stresses
were calculated on the stress-points, utilising the nodes to calculate the velocity gra-
dients. In standard SPH, the gradient of the smoothing kernel is equal to zero at
the location of the node in question, and the stress at that node is not taken into
account in the gradient calculation. Within the Stress-Particle method, splitting the
stress and velocity over two sets of particles essentially includes the stress value of a
particle itself within the calculation. This improves the accuracy of the gradient ap-
proximation, which can eliminate or reduce the effects of both the tensile instability
and the zero-energy modes. Consequently, the application of Stress-Particle SPH in
one dimension enabled the accurate prediction of the shock wave in the bar. The
method was successfully applied to further problems in one dimension, including a
bar in an initial state of alternating velocities (Dyka, Randles, and Ingel, 1997). This
initial condition produces an alternating stress field within the bar, which was not
possible to predict with standard SPH due to the zero-energy mode problem (Swegle
et al., 1994). The Stress-Particle method was later extended to two dimensions by
Randles and Libersky (2000) and Vignjevic, Campbell, and Libersky (2000), for the
configuration shown in Figure 4.1b. It was applied to a number of benchmark cases
with a low particle resolution, including the Taylor impact test of a metal cylin-
der impacting a rigid boundary (Taylor, 1948), and the impact of two rubber rings
(Swegle et al., 1994).

With the aim of quantifying the instabilities observed in meshless particle meth-
ods, Belytschko et al. (2000) conducted a linear stability analysis and explored the
stabilising effects of stress-points. An isothermal, adiabatic material was considered
in one and two dimensions with a rate-independent constitutive law. The stresses
and strains were linearly related via the material tangent modulus – this defines the
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slope of the stress-strain curve and is equivalent to Young’s modulus for elastic flow.
A linear stability analysis was first conducted for the continuum equations, where
an unstable solution was identified when the value of the tangent modulus was less
than zero. The analysis was then performed for the discretised governing equations,
for both SPH and an Element Free Galerkin method (EFGM) (Belytschko, Lu, and
Gu, 1994), identifying the instabilities that are solely a result of the numerical dis-
cretisation. Numerical instabilities were found both in the absence of stress and
when the material was in tension, corresponding to the zero-energy modes and the
tensile instability respectively. These instabilities were explicitly related to the form
of the smoothing kernel. The stress-points were first included in the stability anal-
ysis of SPH in one dimension, where they were placed centrally between each node
as depicted in Figure 4.2a. With the inclusion of the stress-points the zero-energy
modes were eliminated completely, while the threshold at which the tensile insta-
bility occurred was increased. In two dimensions, multiple patterns were explored
where a number of stress-points were placed inside ‘virtual quadrilaterals’ or ‘virtual
triangles’ as shown in Figure 4.2b. The addition of these extra interpolation points
was shown to reduce the number of instabilities due to the zero-energy modes for
all configurations, and with the hexagonal set-up they were completely eliminated.
Belytschko et al. (2000) also investigated the effects of a Lagrangian kernel, and
found that the combination of the Lagrangian kernel with stress-points was able to
completely stabilise the linearised numerical system. The linear stability analysis
was repeated for a hyperelastic material by Xiao and Belytschko (2005), where the
role of stress-points and Lagrangian kernels were again evaluated. The conclusions
from this analysis were the same as for the material considered by Belytschko et
al. (2000): stress-points can eliminate the zero-energy modes and the combination
of a Lagrangian kernel with stress-points removes the instability under tension. It
is important to highlight that these stability analyses were performed for specific
materials, and different results may arise for other materials.

(a) One-dimensional set-up (b) Two-dimensional set-up

Figure 4.2: The node-stress-point arrangements considered in the
stability analysis performed by Belytschko et al. (2000).

Following the work of Belytschko et al. (2000), stress-points have been included
within meshless methods based on FEM (e.g. EFGM) to eliminate the zero-energy
modes in the simulation of solid materials. This has been applied to a range of
small deformation problems such as the shear band propagation in metals (Rabczuk,
Belytschko, and Xiao, 2004; Rabczuk, Areias, and Belytschko, 2007), crack forma-
tion in concrete (Rabczuk and Belytschko, 2004; Rabczuk and Belytschko, 2007)
and fluid-structure interaction (Rabczuk et al., 2010). Stress-points have also been
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utilised within a Moving Least Squares (MLS) particle method in three dimensions by
Sanchez and Randles (2012) and Sanchez and Randles (2013) to simulate quasi-static
solid problems. These consisted of the formation of fractures in concrete and the com-
pression of a hyperelastic cylinder. In all of the aforementioned studies, stress-points
were implemented in meshless methods that are more complex and computationally
expensive than SPH. In EFGM for example, a background grid is required for nodal
integration, and hence the method is not truly meshless. Although Belytschko et
al. (2000) examined various node-stress-point patterns in their stability analysis, all
applications involving stress-points in two dimensions have used only the simplest
configuration shown in Figure 4.2b. This arrangement, with one stress-point in the
centre of a virtual quadrilateral, was in fact found to be the least stabilising of the
different configurations investigated in the linear stability analysis. Similarly, the
three-dimensional models utilised one stress-point in the centre of every virtual cube
(although no investigations have been conducted on the stabilising role of stress-
points in three dimensions). The problems that have previously been modelled with
the aid of stress-points did not involve large deformations, which allowed the use of
Lagrangian kernels (in addition to stress-points) to completely eliminate the tensile
instability.

While it is acknowledged that stress-points may not be able to completely erad-
icate the effects of the tensile instability, it is widely believed that they bring sig-
nificant improvements to numerical models. The results of linear stability analyses
conducted by Belytschko et al. (2000) and Xiao and Belytschko (2005) provided
valuable insight on the stabilising properties of the stress-points and highlighted
that their quantity and arrangement is linked to the performance of particle meth-
ods with stress-points. However these analyses represent a highly idealised case for
specific materials, and do not reveal how the nonlinear discretised system of equa-
tions will evolve in a general physical problem. Although a handful of physical
problems have been numerically simulated using stress-points, there have been no
quantitative or qualitative investigations on how they affect the material behaviour
for these problems. There are no comparisons of the numerical solution with and
without the addition of stress-points. Furthermore, these simulations have been
confined to small deformation solid problems. This research therefore aims to ap-
ply Stress-Particle SPH to the failure and post-failure behaviour of soil for the first
time, which involves extending the method to be applicable for large deformations
and flow-type problems. Moreover, the role of stress-points are here quantified and
analysed in further detail than has been done before. Note that in the literature
the Lagrangian kernel has typically been employed alongside the stress-points to en-
sure the elimination of the tensile instability. The Lagrangian kernel is only suited
for small deformation problems and it is therefore not applicable to the current re-
search. However, the problems of interest relating to soil behaviour are expected to
be subjected to lower stress states than those considered in the literature, where the
stress-points were not able to completely remove the tensile instability (Rabczuk,
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Belytschko, and Xiao, 2004). Therefore it is expected that Stress-Particle SPH is
better suited for remedying the tensile instability in these problems. If effects of the
tensile instability are still found to be significant, alternative methods (Monaghan,
2000; Xu and Yu, 2018) will be considered in addition to the stress-points.

The remainder of this chapter is structured as follows: first, the conventional
SPH method is outlined and applied to discretise the mathematical model presented
in Chapter 3. A selection of relevant stabilising techniques, such as the artificial
stress and the particle shifting methods, are detailed. Then, the Stress-Particle
SPH method is introduced and described, followed by details on its incorporation
into a fourth order Runge-Kutta time discretisation scheme. A description of the
extension of Stress-Particle SPH for large displacement problems is included. Finally,
information is provided on the computational implementation of Stress-Particle and
Standard SPH within the current research.

4.2 Standard SPH

The formulation of the SPH method consists of two fundamental approximations
– the integral approximation and the particle approximation. The former involves
representing a function f(x) as an integral, which is motivated by the following
expression:

f(x) =

∫
Ω
f(x′)δ(x− x′)dx′, (4.1)

where Ω denotes the integral domain and δ(x−x′) is the Dirac delta function defined
as

δ(x− x′) =

1 x = x′,

0 x 6= x′.
(4.2)

For a function that is defined and continuous in Ω the integral representation given
by (4.1) is exact. In the derivation of SPH, the integral approximation is obtained
by replacing the Dirac delta in Equation (4.1) with a smoothing function W :

〈f(x)〉 =

∫
Ω
f(x′)W (x− x′, hs)dx′. (4.3)

Here, 〈f(x)〉 is the integral approximation of f(x) and hs is the smoothing length,
which defines the region of influence of W . The smoothing length is defined in terms
of the initial particle spacing, ∆x. The smoothing function, or kernel, must satisfy
three conditions. The first is the normalisation condition:∫

Ω
W (x− x′, hs)dx′ = 1. (4.4)

The second condition requires that the kernel has compact support:

W (x− x′, hs) = 0 when | x− x′ |> κhs, (4.5)
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where κ is a scale factor that multiplies the smoothing length. Lastly, the kernel
should satisfy the Dirac delta function condition when the smoothing length ap-
proaches zero:

lim
h→0

W (x− x′, hs) = δ(x− x′). (4.6)

With these conditions for the smoothing kernel, the integral approximation given by
Equation 4.3 is of second order accuracy, so that

f(x) =

∫
Ω
f(x′)W (x− x′, hs)dx′ +O(h2

s). (4.7)

In the second step of deriving the SPH equations, the particle approximation is
utilised to discretise the integral equation over a set of particles. This involves
writing the integral approximation in discrete form using a summation approach:

〈f(x)〉 ≈
N∑
j=1

f(xj)W (x− xj , hs)Vj , (4.8)

where Vj is the discrete volume at each point and N is the total number of particles
within the region defined by W and hs. Here, the function f(x) is approximated by
summing over all discrete particles j within the domain of influence at the position
x. Equation (4.8) can be expressed for a specific particle i as

f(xi) =
N∑
j=1

mj

ρj
f(xj)W (xi − xj , hs), (4.9)

where the mass m and density ρ are related to the volume at a point j as Vj =
mj
ρj

.
Equation (4.9) describes the SPH evaluation of a function or variable at a particle i.

It follows from (4.3) that the derivative of a function is approximated as〈
∂f(x)

∂x

〉
=

∫
Ω

∂f(x′)

∂x′
W (x− x′, hs)dx′. (4.10)

Upon integration by parts and the use of the divergence theorem, Equation (4.10)
becomes〈

∂f(x)

∂x

〉
≈
∫
S
f(x′)W (x− x′, hs) · ndS −

∫
Ω
f(x′)

∂W (x− x′, hs)

∂x′
· ndx′, (4.11)

where n is the unit normal vector to the surface S. As the smoothing kernel has
compact support, the first term on the right hand side of Equation (4.11) is equal to
zero. The summation approach can then be applied in the same way as for Equation
(4.8), to obtain the discrete derivative approximation:

〈
∂f(x)

∂x

〉
≈ −

N∑
j=1

f(xj)
∂W (x− xj , hs)

∂xj
Vj , (4.12)
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which for a single particle i is written as

∂f(xi)

∂x
= −

N∑
j=1

mj

ρj
f(xj)

∂W (xi − xj , hs)

∂xj
. (4.13)

The derivative of the kernel can instead be expressed in terms of xi, where it follows
from the chain rule that ∂W (xi−xj ,hs)

∂xi
= −∂W (xi−xj ,hs)

∂xj
. With this change, the SPH

approximation of a function and its derivative are written in compact form as

f(xi) =
N∑
j=1

mj

ρj
f(xj)Wij , (4.14)

∇f(xi) =
N∑
j=1

mj

ρj
f(xj)∇iWij . (4.15)

Here Wij = W (x− xj , hs) is the kernel, and ∇Wij is the derivative of the kernel:

∇Wij =
∂Wij

∂xi
=

(
xi − xj

r

)
∂Wij

∂r
, (4.16)

where r = |xi − xj | is the distance between two particles. Equation (4.14) approxi-
mates the value of a function at a particle i as the average of the function values at
all surrounding particles within the support domain, weighted by the kernel. Simi-
larly, the gradient approximation in Equation (4.15) is expressed as the average of
the surrounding function values weighted by the gradient of the kernel. Equation
(4.15) is the simplest form of the gradient approximation and has a relatively low
accuracy. In particular, it does not ensure that the gradient of a constant function
field is equal to zero. Higher accuracy expressions can be derived by considering the
difference in function values between the particle i and its neighbouring particles j.
This can be achieved by considering the gradient approximation of unity:

∇1 =

N∑
j=1

mj

ρj
∇Wij = 0. (4.17)

Multiplying Equation (4.17) by f(xi) and subtracting it from the right hand side of
Equation (4.15) gives

∇f(xi) =

N∑
j=1

mj

ρj
(f(xj)− f(xi))∇Wij , (4.18)

which ensures that the gradient of a constant field vanishes. Similar expressions can
be derived by applying the integral and particle approximations to vector identities
involving function gradients (Monaghan, 1992). From Equation (4.18), the particle
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Figure 4.3: The cubic smoothing kernel and its first derivative.

approximation of the divergence of a vector F(x) is approximated as

∇ · F(xi) =
N∑
j=1

mj

ρj
(F(xj)− F(xi)) · ∇Wij , (4.19)

In the SPH method, the particle approximations of functions and their derivatives
are substituted into the governing equations of a system and discretised in time. This
requires the definition of the kernel function, which directly impacts the integral ap-
proximation and the numerical simulation. A kernel with high accuracy is desirable,
and in general this correlates positively with the order of the kernel. However, the
computational time increases with the order of the kernel and therefore a compro-
mise is sought between accuracy and computational cost. For this reason, the choice
of kernel in this research is the cubic spline, defined in two dimensions as

Wij = W (r, hs) = αd


1
2q

3 − q2 + 2
3 0 ≤ q < 1

1
6(2− q)3 1 ≤ q < 2

0 q ≥ 2

(4.20)

where αd is the normalisation factor which in two dimensions is 15
7πh2

s
, and q = r/hs

is the normalised distance between two particles. The cubic kernel and its first
derivative are plotted together in Figure 4.3. The cubic spline is the most commonly
used kernel in SPH (Monaghan, 1988; Shao and Gotoh, 2005; Bui et al., 2008),
although higher order functions have also been implemented (Violeau and Issa, 2007;
Xu, Stansby, and Laurence, 2009). Alternative forms of the smoothing function
include Gaussian (Gingold and Monaghan, 1977), exponential (Monaghan, 1988)
and quadratic (Johnson and Beissel, 1996).
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Figure 4.4: An illustration of the initial particle and mass distri-
bution for SPH in two dimensions.

4.2.1 Particle and mass distribution

At the start of an SPH simulation, the particles are arranged in the initial shape
of the material for the problem of interest. The particles can be distributed in a
uniform arrangement, with the separation between adjacent nodes equal to ∆x. The
particles may also be distributed in a staggered arrangement.

The mass of each SPH particle is constant throughout the numerical simulation,
and the sum of the mass of the individual particles is equal to the total mass of the
system. The mass is calculated at each particle as

mi = V0iρ0i, (4.21)

where V0i and ρ0i are the initial volumes and densities at particle i. Each SPH
particle is assumed to occupy a finite section of the total volume of the material.
For a two-dimensional, uniform particle distribution, the interior particles have a
different initial volume to those that lie on the edges and the corners. The initial
volume at an interior node can be calculated as

V0i = ∆x2. (4.22)

For a rectangular arrangement, the particles that are located on the edges and corners
of the domain occupy one half and one quarter of the volume of an interior particle
respectively. This is illustrated in the simple node configuration shown in Figure 4.4.
The majority of problems considered at a later stage in this research have an initial
rectangular arrangement, and the method described above is used to define the mass
of the particles.
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4.3 Discrete mathematical model

Under the framework described above, the SPH method can be applied to the mathe-
matical model described in Chapter 3. Different discrete SPH equations arise depend-
ing on which operations are performed when applying the particle approximations
to the analytical equations. Here, some common treatments for the discretisation of
the equations of motion are discussed, and the discrete governing equations of soil
behaviour are presented. The analytical equations are repeated for convenience:

(Conservation of mass)
∂ρ

∂t
= −ρ∇ · u, (4.23)

(Conservation of momentum)
∂u

∂t
=

1

ρ
∇ · fσ + b, (4.24)

(Constitutive equation)
∂σ

∂t
= σ̃ +∇ · fu − gε

p
, (4.25)

where the tensors fσ and fu are defined according to Equation (3.62) (see Chapter
3.4), and gε

p is a function of plastic strain (see Chapter 3.3.4). First, applying the
conservation of mass at a particle gives

∂ρi
∂t

= −ρi (∇ · u)i , (4.26)

where the subscript i is written after the velocity divergence to denote that the
calculation is required at the particle i. Equation (4.26) is solved to approximate the
density, which is an important aspect of SPH as the density is a key component of the
particle approximation. Applying Equation (4.19) to obtain the discrete divergence
term results in

∂ρi
∂t

= −ρi
N∑
j=1

mj

ρj
(uj − ui) · ∇iWij . (4.27)

A slightly different formulation of Equation (4.27) is derived by writing the right
hand side term of Equation (4.23) as

− ρ∇ · u = − (∇ · (ρu)− u · ∇ρ) , (4.28)

and applying the SPH approximations described in the previous section to obtain

∂ρi
∂t

= −
N∑
j=1

mj (uj − ui) · ∇iWij . (4.29)

Equations (4.27) and (4.29) approximate the density according to the continuity
equation in what is called the continuity density approach. An alternative way
in which to calculate the density is to directly apply the SPH approximation of a
function (4.14):

ρi =

N∑
j=1

mjWij . (4.30)
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Equation (4.30) approximates the density as the weighted average of the densities
of the surrounding particles, in the so-called summation density approach. This ap-
proach is less accurate than the continuity approach (particularly at the boundaries
of the computational domain). However, the accuracy of the summation approach
can be improved via a normalisation method (Randles and Libersky, 1996; Chen,
Beraun, and Carney, 1999). Furthermore, unlike the continuity approach, the sum-
mation approach has the benefit of conserving mass exactly (Monaghan, 1992). Both
of the methods described above are frequently used in the literature to calculate the
density. It is important to note that in the simulation of fluids the density fluc-
tuations are often used to determine the fluid pressure via an equation of state
(Monaghan, 1994; Violeau and Issa, 2007; Gómez-Gesteira et al., 2010). As such, it
is not possible to have a constant density for all particles, or the pressure would be
calculated as zero. However, for problems in soil dynamics the pressure is calculated
directly from the constitutive model and does not depend on the density. Therefore,
it is not essential to update the density in incompressible soil dynamics problems
and its value can be kept constant throughout the SPH simulation (Bui et al., 2008).

The conservation of momentum equation is written in discrete form as

∂ui
∂t

=
1

ρi
(∇ · fσ)i + bi. (4.31)

Applying Equation (4.19) to approximate the divergence term in Equation (4.31)
gives

∂ui
∂t

=
1

ρi

N∑
j=1

mj

ρj

(
fσj − fσi

)
· ∇Wij + bi. (4.32)

While Equation (4.32) ensures that the stress gradients (defined by fσ) vanish in
a constant stress field, it does not conserve momentum exactly. In the absence of
external forces, two particles must have an equal and opposite force between them
for the conservation of momentum to hold. This condition is not always satisfied
when Equation (4.32) is used to determine the motion of SPH particles. Consider
two isolated particles p1 and p2, with b = 0. Applying Equation (4.32), the force
Fp1 at particle p1 is calculated using Newton’s second law as

Fp1 = mp1ap1 =
mp1mp2

ρp1ρp2
(fσp2 − fσp1) · ∇Wp1p2, (4.33)

where a is acceleration and the subscripts p1 and p2 denote the values at particles
p1 and p2 respectively. The force at particle p2 is

Fp2 = mp2ap2 =
mp1mp2

ρp1ρp2
(fσ,p1 − fσ,p2)·∇Wp2p1 = Fp1, since ∇Wp1p2 = −∇Wp2p1.

(4.34)
Therefore, Fp1 6= −Fp2 unless fσp1 = fσp2 and conservation of momentum is not
always satisfied. To ensure momentum conservation, a symmetric form of the stress
gradient can be employed (Monaghan, 1982; Monaghan, 1988; Monaghan, 1992).
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This expression is derived by utilising the following identity:

1

ρ
∇fσ = ∇

(
fσ

ρ

)
+

fσ

ρ2
∇ρ. (4.35)

The SPH gradient approximation is applied to Equation (4.35) to obtain

1

ρi
(∇fσ) i =

N∑
j=1

mj

(
fσi
ρ2
i

+
fσj
ρ2
j

)
∇Wij , (4.36)

which is inserted into the momentum equation as follows:

∂ui
∂t

=

N∑
j=1

mj

(
fσi
ρ2
i

+
fσj
ρ2
j

)
· ∇Wij + bi. (4.37)

Two particles governed by Equation (4.37) can be shown to exert equal and opposite
forces upon one another, and momentum is conserved exactly (Monaghan, 1982;
Swegle, 2000). However it should be noted that this only applies when the kernel
is the same at each particle. There are a number of kernel correction methods to
improve the accuracy of the SPH particle approximation that have been developed
in the literature (Chen, Beraun, and Carney, 1999; Li and Liu, 1999; Liu and Liu,
2006). A shortcoming of these methods is that the modification of the kernel can
result in it being different for two interacting particles, meaning that momentum is
not always conserved (Swegle, 2000).

The next governing equation to consider is the constitutive equation (4.25). Ap-
proximations of the velocity gradients are required to calculate this equation within
SPH – the gradient approximation defined by Equation (4.18) is a common choice
for this (Bui et al., 2008; Blanc and Pastor, 2012; Bui et al., 2014; Nguyen et al.,
2017). In discrete form, the constitutive equation is expressed as

∂σi
∂t

= σ̃i + (∇ · fu)i − gε
p

i . (4.38)

The first term on the right hand side of Equation (4.38) results from the replacement
of the standard stress rate with the Jaumann stress rate and is defined as

σ̃i =


2σxyωxy

2σxyωyx

σxxωyx + σyyωxy

0


i

=


2σxy,iωxy,i

2σxy,iωyx,i

σxx,iωyx,i + σyy,iωxy,i

0

 , (4.39)

with
ωxy,i =

1

2

(
∂ux,i
∂yi

− ∂uy,i
∂xi

)
, ωyx,i =

1

2

(
∂uy,i
∂xi

− ∂ux,i
∂yi

)
. (4.40)
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The partial derivatives in Equation (4.40) can be discretised using the SPH gradient
approximation (4.18) as

∂ux,i
∂yi

=

N∑
j=1

mj

ρj
(ux,j − ux,i)

∂Wij

∂yi
, (4.41)

∂uy,i
∂xi

=

N∑
j=1

mj

ρj
(uy,j − uy,i)

∂Wij

∂xi
, (4.42)

where
∂Wij

∂xi
=

(
xi − xj
r

)
∂Wij

∂r
,

∂Wij

∂yi
=

(
yi − yj
r

)
∂Wij

∂r
. (4.43)

Equations (4.41) and (4.42) are substituted into (4.39) to obtain the discrete term
σ̃i. The SPH approximation of the divergence (Equation (4.19)) is applied to the
second term on the right hand side of (4.38):

(∇ · fu)i =

N∑
j=1

mj

ρj

(
fuj − fui

)
· ∇Wij , (4.44)

where fu is a velocity-dependent tensor. The plastic term gε
p

i is a function of stress
and material parameters, and is calculated on each particle using the discrete stress
values that are already stored on those particles. In this research two definitions
of gεpi are considered, which are based upon the classic plasticity and the Perzyna
approaches. The two definitions of gεpi are defined in Chapter 3.3.4.

In addition to the governing equations described above, SPH requires the solution
of a displacement equation to update the particle positions. In discrete form, this
equation is

dxi
dt

= ui. (4.45)

An alternative way in which to update the particle positions is via the XSPH method
(Monaghan, 1989):

dxi
dt

= ui + εx

N∑
j=1

mj

ρj
(uj − ui)∇Wij , (4.46)

where εx is a tuning parameter (0 ≤ εx ≤ 1). Equation (4.46) updates the position
of a particle with a velocity that is representative of the average velocity in its neigh-
bourhood, rather than its individual velocity. This acts to smooth the velocity field
and ensure that particles do not become too close to one another, which is particu-
larly useful in simulations with high velocity gradients. Equation (4.46) is frequently
used in place of (4.45) to update the particle positions in SPH (Gómez-Gesteira
and Dalrymple, 2004; Dalrymple and Rogers, 2006; Crespo, Gómez-Gesteira, and
Dalrymple, 2008; Paiva et al., 2009).

To simplify the analysis of Standard and Stress-Particle SPH, a constant density
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is considered in the numerical examples presented in the following two chapters.
Therefore, the conservation of mass equation is neglected in the present SPH model
for a single phase soil. The considered governing SPH equations are summarised as

(Conservation of momentum)
∂ui
∂t

=
N∑
j=1

mj

(
fσi
ρ2
i

+
fσj
ρ2
j

)
· ∇Wij + bi, (4.47)

(Constitutive equation)
∂σi
∂t

= σ̃i +
N∑
j=1

mj

ρj

(
fuj − fui

)
· ∇Wij − gε

p

i , (4.48)

(Position update)
dxi

dt
= ui, (4.49)

or
dxi

dt
= ui + ε

N∑
j=1

mj

ρj
(uj − ui)∇Wij . (4.50)

A time discretisation scheme is applied to Equations (4.47) - (4.49) or (4.50) to evolve
the velocity, stress and particle positions in time.

4.3.1 Stress modification in computational plasticity

In this research two definitions of gε
p

i are considered, which are based upon the
elastoplastic and the Perzyna approaches. In both cases, gεpi is non-zero only when
the stress state reaches the yield surface. With regards to the elastoplastic frame-
work, the stress state is not allowed to exceed the yield surface. However, this is not
guaranteed in the numerical implementation unless a corrective treatment is applied.
The stress must be checked at every calculation step and adapted if it does not lie
within a valid range. This technique was developed by Chen and Mizuno (1990) for
the numerical modelling of soil in an FEM model, and was also used within SPH
by Bui et al. (2008) for the simulation of a soil with a Drucker-Prager yield surface.
First, the stress state must be adapted if it moves outside the apex of the yield sur-
face, which is known as tension cracking. This adaptation process is shown in Figure
4.5, in the movement of the stress state at point E to point F. Recall that the yield
surface for a perfectly plastic Drucker-Prager material is defined as

f =
√
J2 + αφI1 − kc = 0. (4.51)

Tension cracking occurs when

− αφI1 + kc < 0. (4.52)

In such circumstances, the hydrostatic stress I1 must be shifted back to the apex of
the yield surface by adapting the normal stress components (Bui et al., 2008):

σ̂xx = σxx −
1

3

(
I1 −

kc
αφ

)
, (4.53)
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Figure 4.5: An illustration of the stress states in tension cracking
(E ⇒ F) and imperfectly plastic behaviour (A ⇒ B), for a Drucker-
Prager yield surface. The image is taken from Bui et al. (2008).

σ̂yy = σyy −
1

3

(
I1 −

kc
αφ

)
. (4.54)

In Equations (4.53) and (4.54), σ̂ is the stress value after the correction procedure.
The second corrective stress treatment must be performed when the stress state

exceeds the yield surface during plastic loading, as shown by the path A to B in
Figure 4.5. For the Drucker-Prager yield criterion, this occurs when

− αφI1 + kc <
√
J2. (4.55)

If the stress state satisfies Equation (4.55), it must be scaled back appropriately. For
this, a scaling factor rσ is introduced:

rσ =
−αφI1 + kc√

J2
. (4.56)

The deviatoric shear stress sαβ is then reduced via this scaling factor for all compo-
nents of the stress tensor:

σ̂xx = rσsxx +
1

3
I1, (4.57)

σ̂yy = rσsyy +
1

3
I1, (4.58)

σ̂zz = rσszz +
1

3
I1, (4.59)

σ̂xy = rσsxy. (4.60)

The procedure of applying Equations (4.57) to (4.60) is referred to as the stress-
scaling back procedure (Bui et al., 2008), or stress modification. In the SPH imple-
mentation of the elastoplastic model, the two corrective treatments described above
are applied to the nodes that have a stress state outside of the valid range.
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4.4 Boundary treatment

It follows from the meshless nature of SPH that the treatment of boundary conditions
is non-trivial. For methods that involve a mesh, the boundary condition can simply
be applied to the relevant nodes. This can also be performed in SPH simulations
when the node positions are not updated, or if the particle displacement is small
(Blanc, 2011). However, in general, a different method of boundary treatment is
required. Furthermore, SPH suffers from a deficiency of particles in the regions near
the boundaries, which can affect the accuracy of the kernel approximation. Most
relevant to the problems of interest in the current research are no-slip wall bound-
aries. The treatment of solid boundaries in SPH usually involves the application of
virtual particles that are placed at the location of the boundary (Liu and Liu, 2010).
The interaction between the interior and the virtual particles is then defined so as
to ensure the interior particles do not penetrate the boundary, and that the correct
boundary condition is applied to the material. For this, a number of different meth-
ods have been proposed (Takeda, Miyama, and Sekiya, 1994; Morris, Fox, and Zhu,
1997; Willemsen, Hoefsloot, and Iedema, 2000; Wang, Ge, and Li, 2006; Crespo,
Gómez-Gesteira, and Dalrymple, 2007). In this research, the dummy node method
is implemented, which consists of using layers of SPH particles to represent a no-slip
wall. The method was introduced by Morris, Fox, and Zhu (1997) to model incom-
pressible flows, and adapted by Bui et al. (2008) to be suitable for soil dynamics
problems. Here, the adapted method is described.

The wall boundary is represented by three layers of dummy nodes, spaced apart
by the initial particle spacing ∆x, as shown in Figure 4.6. The first layer of dummy
nodes can either be positioned at the location of the wall itself, or just behind the
wall. Bui et al. (2008) placed the first layer at a distance of ∆x

2 behind the virtual
solid wall. For an interior particle A that contains a dummy node B within its domain
of influence, the normal distance dA of A to the wall is calculated. This distance
is used to define a tangent plane at the boundary, from which the distance of the
dummy node B is calculated (denoted as dB). Note that for a straight boundary this
tangent plane is the boundary plane itself. An artificial velocity uB is then assigned
to the dummy particle:

uB = −dB
dA

uA, (4.61)

where uA is the velocity of the interior node. With this definition, the dummy nodes
are assigned velocities that oppose the interior particle velocity, with the magnitude
of the dummy velocity increasing with the distance from the wall. If the dummy
particle is at an equal distance from the wall as the interior particle, its artificial
velocity will be the negative of the interior particle velocity. Furthermore, the zero
velocity condition is satisfied for particles that lie on the boundary. For moving
boundaries, the velocity uA should be replaced with the velocity of particle A relative
to the moving wall. Furthermore, to account for extremely large values of the dummy
node velocity when an interior particle approaches the boundary (and dA approaches
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(a) Bui et al. (2008) (b) Liu and Liu (2010)

Figure 4.6: A schematic depiction of the dummy nodes and their
interaction with the interior particles, taken from Bui et al. (2008)

and Liu and Liu (2010).

zero), a parameter β is introduced:

uB = (1− β)uA + βuwall, (4.62)

where uwall is the velocity of the wall. The parameter β is defined as

β = min
(
βmax, 1 +

dB
dA

)
, (4.63)

where optimum values of βmax have been found to be between 1.5 - 2 (Morris, Fox,
and Zhu, 1997; Bui et al., 2008). The velocities of the dummy nodes are then included
in the calculation of the velocity gradient at the interior particles to apply the no-slip
effect. In the governing SPH equations described in Section 4.3, the velocity gradient
is included in the constitutive law (through the fu term), defined by Equation (4.48).

With the application of SPH to a rate-dependent soil as defined by Equations
(4.47) and (4.48), it is also necessary to assign stress values to the dummy nodes. For
a pair of interacting interior and dummy nodes (denoted as A and B respectively),
Bui et al. (2008) defined the stress of the boundary particle to be equal to the stress
of the interior node:

σB = σA. (4.64)

This simple definition ensures that there is a uniform stress distribution for the nodes
that are near the wall boundaries, and it contributes to smooth stress distributions
in these areas. The boundary stress values defined by Equation (4.64) are included
in the stress gradient calculations (through the fσ term) on the interior nodes in
the equation of momentum (Equation (4.47)). This method is utilised in the current
research. An alternative technique for the interpolation of the stress from the interior
nodes to the dummy nodes was developed by Randles and Libersky (1996).

An alternative way in which to prevent the SPH particles from penetrating the
wall is to include a boundary repulsive force, which was first introduced into SPH by
Monaghan (1994). Liu and Liu (2010) suggested that dummy nodes alone may not al-
ways prevent the interior particles from penetrating the boundary, and consequently
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combined the repulsive force and the dummy node methods. In this approach a layer
of repulsive particles are positioned on the boundary itself, in addition to three layers
of dummy nodes behind the wall boundary (see Figure 4.6b). The particles on the
boundary are spaced apart by ∆x

2 , and are utilised to apply a repulsive force on the
interior particles when they approach the boundary. The particles that compose this
layer do not contribute to the gradient calculations on the interior nodes. However,
in the classic repulsive force method, the force is highly repulsive, which can cause
unrealistic disturbances in the flow. A ‘soft’ repulsive force was later introduced,
that prevents particle penetration without obviously disturbing the interior particles
(Liu, Shao, and Chang, 2012). The repulsive force F̂ij is applied to all nodes that in-
teract with the repulsive boundary particles, and is included in the SPH momentum
equation:

∂ui
∂t

=

N∑
j=1

mj

(
fσi
ρ2
i

+
fσj
ρ2
j

+ ΠijI

)
∇ ·Wij + F̂ij + bi, (4.65)

The force is defined by the following equations:

F̂ij =
∑
j=1

0.01c2χ · f̂(γ)
xij
r2
, (4.66)

χ =

1− r
1.5∆x , 0 ≤ r < 1.5∆x

0, r ≥ 1.5∆x,
(4.67)

γ =
r

0.75hij
, (4.68)

f̂(γ) =



2
3 , 0 < γ ≤ 2

3

(2γ − 1.5γ2), 2
3 < γ ≤ 1

0.5(2− γ)2, 1 < γ < 2

0, γ ≥ 2.

(4.69)

In Equation (4.66), c is the numerical speed of sound (see Section 4.5.1). The soft
repulsive force defined by Equations (4.66) to (4.69) was combined with dummy
nodes and applied to simulations of water flow (Liu, Shao, and Chang, 2012) and
the propagation of a Bingham material (Hu et al., 2015).

In the current research, the dummy node method described above is used to
approximate no-slip walls when relevant. The first layer of dummy nodes is positioned
at a distance of ∆x behind the outermost layer of the interior particles (in their
interior position). If dummy nodes alone are not able to prevent the penetration of
interior particles through the boundary, the soft repulsive force is also applied from
the top layer of particles on the neighbouring nodes. In this case, the top layer of
particles are spaced apart by ∆x

2 (as opposed to ∆x).
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4.4.1 Free surface detection

The absence of a mesh allows the simple detection of the free surface in SPH simu-
lations. The free surface detection method used in the current work was introduced
by Marrone et al. (2010), and extended by Blanc (2011). The method consists of
approximating the unit normal vector at each particle. A scan region is then defined
for each particle, and an algorithm is applied that detects whether there are other
particles located in the scan region. If there are no other particles within the scan
region, then the particle at which the scan region is defined is a free surface particle.
Otherwise, it does not lie on the free surface. A full description of the algorithm can
be found in Blanc (2011).

4.5 SPH improvement techniques

Within the literature there are a variety of techniques that are employed to improve
the SPH method. Many of these are included in order to combat the pitfalls of SPH
that were outlined in Chapter 2.5, and to improve the accuracy and stability of the
method. Here a selection of the relevant techniques are detailed.

4.5.1 Artificial viscosity

The concept of artificial viscosity was introduced by Von Neumann and Richtmyer
(1950) to calculate flows with shocks. The Von Neumann-Richtmyer artificial viscos-
ity was defined to act only when material is under compression in order to smooth
over shocks and solve the system of equations without the need for any complex
shock boundary treatment. Artificial viscosities based on this work were initially
implemented and established in FDM (Roache, 1972), before being applied to SPH.
The meshless nature of SPH means that the effects of shocks are more severe than for
mesh-based methods – they induce irregular particle motions on the length scale of
the initial particle separation, and result in large pressure fluctuations. An adapted
artificial viscosity was implemented within SPH to dampen the irregular particle
motion and pressure fluctuations, and to prevent the non-physical collisions of two
approaching particles (Monaghan, 1989). The artificial viscosity term Πij is included
in the SPH momentum equation as:

∂ui
∂t

=

N∑
j=1

mj

(
fσi
ρ2
i

+
fσj
ρ2
j

+ ΠijI

)
∇ ·Wij + bi, (4.70)

where I is the identity matrix. The most widely used form of artificial viscosity is

Πij =


−αΠcijφij+βΠφ

2
ij

ρij
, uij · xij < 0

0, uij · xij ≥ 0
(4.71)
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φij =
hsijuij · xij

|xij
2|+ 0.01h2

ij

, cij =
ci + cj

2
, ρij =

ρi + ρj
2

, (4.72)

hsij =
hsi + hsj

2
, xij = xi − xj , uij = ui − uj . (4.73)

where αΠ and βΠ are problem dependent tuning parameters and c is the speed of
the sound (Monaghan and Gingold, 1983; Monaghan, 1989; Monaghan, 1992). The
parameter αΠ is associated with the speed of sound, while βΠ is associated with
the square of the velocity and has little effect in problems where the flow velocity is
not comparable to the speed of sound. The speed of sound is dependent upon the
material under consideration, which for a soil lies between 450−600 m s−1 (Flammer
et al., 2001; Adamo et al., 2004). The term 0.01h2

sij is included to prevent numerical
divergence when two particles approach one another. Note that the pressure fluctu-
ations discussed above should be distinguished from the instabilities associated with
the zero-energy modes and tensile instability. While the artificial viscosity is also
able to reduce the effects of these instabilities, it is unable to eliminate them fully.
Furthermore, a high value of artificial viscosity can produce excessive material shear
strength and non-physical stiffness (Swegle et al., 1994). However, artificial viscosity
may still be essential to remove irregular particle motions and pressure oscillations,
even if the zero-energy modes and tensile instability are eliminated via alternative
methods.

Alternative damping terms

A disadvantage of using the artificial viscosity is that parameter tuning may be
required to obtain the optimal values of αΠ and βΠ, which are not directly associated
with any physical properties. Alternative damping terms can be used instead of the
artificial viscosity that have more physical relevance to the problem, or require less
calibration. The following velocity-dependent damping term can be included as a
body force in the equation of the momentum:

− µdu, (4.74)

where µd is the damping factor. This term has been utilised in the application of
SPH to problems within soil mechanics. It was included in the Node-Element SPH
method by Blanc (2011) and Blanc and Pastor (2013), where parameter tuning was
performed to define the value of µd. Similar damping terms have also been included
within standard SPH methods, where the damping factor has been defined according
to relevant numerical parameters (such as the Young’s modulus) (Bui and Fukagawa,
2013; Nguyen et al., 2017).

4.5.2 Corrective Smoothed Particle Method

To improve the accuracy of the smoothing kernel (and consequently the SPH approx-
imation), it can be multiplied by a corrective term (Liu, Jun, and Zhang, 1995; Li
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and Liu, 1999). The Corrective Smoothed Particle Method (CSPM) (Chen, Beraun,
and Carney, 1999) increases the accuracy of the kernel via a normalisation procedure,
which is based on a Taylor series expansion of the SPH equations. In one dimension,
the Taylor series expansion of a function f(x) around a discrete point xi is

f(x) = fi + (x− xi)
∂fi
∂x

+
(x− xi)2

2!

∂2fi
∂x2

+ . . . , (4.75)

where fi = f(xi). To derive the corrective term for CSPM, Equation (4.75) is
multiplied by the SPH kernel and integrated over the whole domain:∫

f(x)Wi(x)dx = fi

∫
Wi(x)dx+

∂fi
∂x

∫
(x−xi)Wi(x)dx+

1

2

∂2fi
∂x2

∫
(x−xi)2Wi(x)dx+. . . .

(4.76)
The differential terms are then neglected, and Equation (4.76) is rearranged to obtain
the CSPM integral approximation for fi:

fi =

∫
f(x)Wi(x)dx∫
Wi(x)dx

. (4.77)

This corrected integral approximation has a higher accuracy than the classic SPH
approximation in the regions of the boundary. It is also more accurate for interior
particles that are uniformly distributed (if the particle distribution is non-uniform,
Equation (4.77) has the same accuracy as standard SPH (Liu and Liu, 2010)). In
two dimensions, the particle approximation of a function according to the CSPM is

fi =

∑N
j=1

mj
ρj
f(xj)Wij∑N

j=1
mj
ρj
Wij

. (4.78)

The CSPM form of the derivative of a function is obtained by replacing the kernel
by the kernel derivative in Equation (4.76), and neglecting the derivatives that are
of second order and higher. The resulting equation is then rearranged in terms of
the gradient of f . In two dimensions, the derivation of the corresponding particle
approximation requires the inversion of a 2× 2 matrix. The final result is

(
∂f

∂x

)
i

= A−1
11,i

N∑
j=1

mj

ρj
(f(xj)− f(xi))

∂Wij

∂x
+A−1

12,i

N∑
j=1

mj

ρj
(f(xj)− f(xi))

∂Wij

∂y
,

(4.79)(
∂f

∂y

)
i

= A−1
21,i

N∑
j=1

mj

ρj
(f(xj)− f(xi))

∂Wij

∂x
+A−1

22,i

N∑
j=1

mj

ρj
(f(xj)− f(xi))

∂Wij

∂y
,

(4.80)
where

Ai =

(∑N
j=1

mj
ρj

(xj − xi))∂Wij

∂x

∑N
j=1

mj
ρj

(xj − xi))∂Wij

∂y∑N
j=1

mj
ρj

(yj − yi)) ∂Wij

∂x

∑N
j=1

mj
ρj

(yj − yi))∂Wij

∂y .

)
(4.81)



68 Chapter 4. Stress-Particle SPH

In small deformation problems, the appropriate boundary conditions can be applied
directly onto the SPH nodes and the CSPM can be included to improve the accu-
racy of the calculation in this area. This method of treating the boundaries was
used in the Node-Element method to simulate a range of soil behaviour (with small
deformations) (Blanc, 2011; Blanc and Pastor, 2012; Blanc and Pastor, 2013).

4.5.3 Artificial stress

The concept of an artificial force within SPH was first introduced by Monaghan
(2000) to combat the tensile instability problem, and later extended to elastic ma-
terials by Gray, Monaghan, and Swift (2001). The artificial force was defined to
introduce a short-range repulsive force between two particles, that increases as the
distance between them decreases. This process has the purpose of preventing two par-
ticles from clumping together, and was shown to introduce minimal long-wavelength
errors. The development of the method was motivated by the idea that SPH particles
behave as atoms, with the artificial force acting as an atomic force. In the extension
to elastic materials, an artificial stress is activated in the regions that are subject to
a tensile stress. In the same way as for the artificial force, the artificial stress acts
to prevent particles from becoming too close to one another. The artificial stress is
included in the SPH momentum equation:

∂ui
∂t

=
N∑
j=1

mj

(
fσi
ρ2
i

+
fσj
ρ2
j

+ ΠijI + fnij(Ri + Rj)

)
∇ ·Wij + bi, (4.82)

where fij is the repulsive term, defined as

fij =
Wij

W (∆x, hs)
. (4.83)

Equation (4.83) was defined to ensure that the artificial stress decreases as the par-
ticle separation increases, where W (∆x, hs) is constant for a constant smoothing
length. The exponent n in Equation (4.82) is a model parameter. Bui et al. (2008)
used a value of n = 2.5 in the application of the artificial stress method to an elasto-
plastic soil. The term R in Equation (4.82) is the artificial stress tensor, which is
defined as follows:

Rxx = R′xx cos2 θ +R′yy sin2 θ (4.84)

Ryy = R′xx sin2 θ +R′xx cos2 θ (4.85)

Rxy =
(
R′xx −R′yy

)
sin θ cos θ, (4.86)

where θ is defined as
tan 2θ =

2σxy
σxx − σyy

. (4.87)

In Equations (4.84) - (4.86), R′αβ is the artificial stress tensor in the principle coordi-
nate system (x′, y′) (corresponding to zero shear stress components). The principle
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artificial stress term is defined according to the components of the principle stress:

R′xx =

−ε
σ′
xx
ρ2 if σ′xx > 0

0 if σ′xx ≤ 0,
(4.88)

where 0 < ε < 1 is a constant parameter defining the magnitude of the repulsive
force acting on the particles. Gray, Monaghan, and Swift (2001) found ε = 0.3 to
provide optimum results in the simulations of elastic solids, while Bui et al. (2008)
found that a value of ε = 0.5 was essential to remove the instabilities in a cohesive
elastoplastic soil. The terms R′yy and R′xy are defined by replacing the subscript xx
with yy or xy in Equation (4.88). The principle stress σ′ is related to the reference
stress σ as

σ′xx = cos2 θσxx + 2 cos θ sin θσxy + sin2 θσyy (4.89)

σ′yy = sin2 θσxx − 2 cos θ sin θσxy + cos2 θσyy. (4.90)

The artificial stress term defined by Equations (4.83) - (4.90) is implemented within
Standard SPH in the current research and applied to certain problems. When in-
cluded, the parameter n is defined to be 2.5, to coincide with Bui et al. (2008). The
tuning parameter ε is investigated and defined when relevant. The artificial stress is
included within Standard SPH to provide a point of comparison for the performance
of the Stress-Particle SPH model.

4.5.4 Particle shifting method

An alternative method to remove the effects of the tensile instability within SPH
is the particle shifting method. This was first developed for SPH by Xu, Stansby,
and Laurence (2009), and extended to free surface flows by Lind et al. (2012). An
improvement of the technique was recently proposed by Xu and Yu (2018), and
applied to the simulations of viscoelastic fluids. The method acts to remove voids in
a simulated material (such as those resulting from the tensile instability) by shifting
the SPH particles from regions of high concentration to low concentration. The
particles are assigned a shifting vector, which is governed by Fick’s law of diffusion
(Lind et al., 2012). The shifting vector r is defined at each particle as

ri ∝ D∇Ci∆t, (4.91)

where D is a diffusion coefficient and ∇Ci is the particle concentration gradient.
Lind et al. (2012) determined the diffusion coefficient by a linear stability analysis
of the advection-diffusion equation, The resultant term was a function of the global
time step, and required the definition of an upper shifting limit. Xu and Yu (2018)
modified this definition of D by considering the Courant-Friedrichs-Lewy (CFL)
condition of stability for the local time step ∆t, and defined the particle shifting
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vector as
ri = −5hs|ui|∇Ci∆t, (4.92)

where |ui| is the velocity magnitude. The upper shifting limit is not required when
Equation (4.92) is used to define the shifting vector. The particle concentration Ci
and its gradient are defined as

Ci =
N∑
j=1

mj

ρj
Wij , ∇Ci =

N∑
j=1

mj

ρj
∇Wij . (4.93)

Special treatment is needed for the shifting of particles at the free surface, due
to the large concentration gradients there. This involves the detection of free surface
particles, the calculation of their normal vectors and the subsequent reduction of
diffusion in the normal direction. Particles that are detected as being on the free
surface are assigned the following shifting vector

ri = −5hs|ui|(I− ni ⊗ ni)∇Ci∆t. (4.94)

Xu and Yu (2018) calculated the normal vector as

ni =
Mi · ∇Ci
|Mi · ∇Ci|

, (4.95)

where M is a corrective matrix that improves the accuracy of the kernel approxima-
tion:

Mi =

N∑
j=1

mj

ρj
∇Wij ⊗ (xj − xi). (4.96)

The free surface treatment is also applied to the particles that are within the domain
of influence as those directly on the free surface. After the particles have been shifted
according to Equation (4.92) or (4.94), the variables are corrected according to the
Taylor series:

φi′ = φi + rii′ · (∇φ)i +O(r2
ii′). (4.97)

In Equation (4.97), φ is a general variable, the subscripts i and i′ denote the old
(before shifting) and new (after shifting) particles respectively, and rii′ is the position
vector between the old and the updated particle positions.

The particle shifting method described above was applied to remove the effects of
the tensile instability in the SPH simulation of a viscoelastic drop impacting a rigid
wall (Xu and Yu, 2018). Without the particle shifting technique, the drop exhibited
severe non-physical fractures due to the tensile instability. When the particle shifting
was included within SPH, the fractures were removed completely. The artificial
stress method was also utilised, which was not able to fully eliminate the fractures.
The particle shifting method has been implemented within the current Standard
SPH model, in addition to the artificial stress method, to provide another point of
comparison for the results of the Stress-Particle method.
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4.6 Time discretisation

A fourth order Runge-Kutta (RK4) scheme is implemented to increment Equations
(4.47) and (4.48) in time. The RK4 scheme has been chosen due to its fourth
order accuracy and relatively simple implementation. Consider a general ordinary
differential equation for a variable φ with an initial condition φ0 at an initial time
t0:

φ̇ = f(t, φ), φ(t0) = φ0,

where f is a function of φ and time t. The RK4 method is employed to increment φ
by a time step ∆t to obtain the solution at time t = t+ ∆t:

φt+∆t = φt +
∆t

6
(k1 + 2k2 + 2k3 + k4). (4.98)

k1 = f(φ1), k2 = f(φ2), k3 = f(φ3), k4 = f(φ4), (4.99)

φ1 = φt, φ2 = φt +
∆t

2
k1, φ3 = φt +

∆t

2
k2, φ4 = φt + ∆tk3. (4.100)

Here, the RK4 scheme is applied to Equations (4.47) and (4.48), which are repeated
here as

∂ui
∂t

=

N∑
j=1

mj

(
fσi
ρ2
i

+
fσj
ρ2
j

)
· ∇Wij + bi, (4.101)

∂σi
∂t

= σ̃i +
N∑
j=1

mj

ρj

(
fuj − fui

)
· ∇Wij − gε

p

i , (4.102)

where the tensors fσ = fσ(σ) and fu = fu(u) are functions of stress and velocity
respectively (defined by Equation (3.62) in Chapter 3). It is convenient to write
Equations (4.101) and (4.102) as

∂ui
∂t

= F1(σ), (4.103)

∂σi
∂t

= F2(u,σ), (4.104)

where

F1(σ) =

N∑
j=1

mj

(
fσi
ρ2
i

+
fσj
ρ2
j

)
· ∇Wij ,+bi (4.105)

F2(u,σ) = σ̃i +
N∑
j=1

mj

ρj

(
fuj − fui

)
· ∇Wij − gε

p

i . (4.106)



72 Chapter 4. Stress-Particle SPH

Note that F2 is a function of both stress and velocity. This is because as well as fui ,
Equation (4.102) involves the term σ̃i (arising from the Jaumann stress transforma-
tion) and the plastic term gε

p

i (which is a function of the stress state). Using the
RK4 method, Equations (4.103) and (4.104) are incremented in time at each SPH
node as

ui
t+∆t = ui

t +
∆t

6
(F1(σ1) + 2F1(σ2) + 2F1(σ3) + F1(σ4)) , (4.107)

σi
t+∆t = σti +

∆t

6
(F2(u1,σ1) + 2F2(u2,σ2) + 2F2(u3,σ3) + F2(u4,σ4)) , (4.108)

where

u1 = ut σ1 = σt (4.109)

u2 = ut +
∆t

2
(F1(σ1)) σ2 = σt +

∆t

2
(F2(u1,σ1)) (4.110)

u3 = ut +
∆t

2
(F1(σ2)) σ3 = σt +

∆t

2
(F2(u2,σ2)) (4.111)

u4 = ut + ∆t(F1(σ3)) σ4 = σt + ∆t(F2(u3,σ3)). (4.112)

In Standard SPH, Equations (4.109) - (4.112) are spatially resolved at each calcu-
lation step by applying Equations (4.105) and (4.106) at each node. This involves
summing over the surrounding SPH nodes to obtain the terms involving the velocity
and stress gradients.

In addition to the velocity and stress, the position vectors of each node xi are
updated at the end of each time step as

xt+∆t
i = xti + ∆tu

t+ ∆t
2

i , (4.113)

where ut+
∆t
2

i is the average of the velocity at the current time and the previous time:

u
t+ ∆t

2
i =

1

2

(
ut+∆t
i + uti

)
. (4.114)

Alternatively, the discretised XSPH equation is

xt+∆t
i = xti + ∆t

ut+∆t
i + εx

N∑
j=1

mj

ρj
(uj − ui)∇Wij

 . (4.115)

The accuracy of the numerical solution is dependent upon the size of the time
step ∆t, which must be small enough to resolve the problem dynamics and provide
numerical stability. The time step can be determined according to the Courant
number Co:

Co =
û∆t

∆x
, (4.116)

where û represents a characteristic velocity and ∆x is the spatial resolution (Courant,
Friedrichs, and Lewy, 1967). For explicit time integration schemes, the Courant
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number should be less than 1 for numerical stability. Although the RK4 method
described above is implicit, the Courant number guideline is applied in this investi-
gation nonetheless. In SPH, the Courant number can instead be written in terms of
the material speed of sound c and the smoothing length hs as

Co =
c∆t

hs
. (4.117)

Equation (4.117) defines the CFL condition for SPH. Following Bui et al. (2008),
in this research the time step is chosen to satisfy Equation (4.117) with a Courant
number of Co = 0.2, unless stated otherwise.

4.7 Nearest neighbouring particle searching

Each SPH particle requires a list of neighbouring particles in order to extract the
information required for the numerical calculations. The neighbours may vary as
the particle positions are updated, and therefore the list of neighbours must be
updated. In this research, a linked-list method is utilised to search for the neighbours
of each particle. The linked-list algorithm was first introduced by Hockney, Goel,
and Eastwood, 1973, and is a popular choice of method for updating neighbouring
particle lists in SPH (Liu and Liu, 2010). In the linked-list technique, a temporary
mesh is utilised to find the nearest neighbours. The mesh has the same resolution
as that of the compact support of the kernel function (κh). For a particle i, the
nearest neighbours can only be found within the same cell of the mesh that it lies in.
For n particles with a constant smoothing length, this technique has a computational
complexity of O(n). For comparison, searching through every particle in the domain,
for each particle, requires n2 calculations. A description of the linked-list method
can be found in further detail in Simpson (1995).

4.8 Stress-Particle SPH

In the Stress-Particle SPH method there are two sets of particles – nodes and stress-
points. The velocity is calculated on the SPH nodes and the stress is updated on
the stress-points. As discussed in Section 4.1 (and Chapter 2.5), there are a number
of benefits associated with splitting up the velocity and stress. In this section the
Stress-Particle SPH method is described in detail, with respect to the equations
governing soil behaviour. The discretised SPH equations describing a soil are here
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repeated:

(Conservation of momentum)
∂ui
∂t

=
N∑
j=1

mj

(
fσi
ρ2
i

+
fσj
ρ2
j

)
· ∇Wij + bi, (4.118)

(Constitutive equation)
∂σi
∂t

= σ̃i +

N∑
j=1

mj

ρj

(
fuj − fui

)
· ∇Wij − gε

p

i .

(4.119)

In the Standard SPH method the velocity and stress are solved at each node, utilising
the information from the neighbouring nodes. In Equations (4.118) and (4.119) the
subscript i denotes the node where the variables are calculated, and j denotes the
neighbours of that node.

In Stress-Particle SPH, Equations (4.118) and (4.119) are instead written as

(Calculated on node i)
∂ui
∂t

=
N∑
j=1

mj

(
fσi
ρ2
i

+
fσj
ρ2
j

)
· ∇Wij + bi, (4.120)

(Calculated on stress-point j)
∂σj
∂t

= σ̃j +

N∑
i=1

mi

ρi

(
fui − fuj

)
· ∇Wji − gε

p

j ,

(4.121)

where now the subscript i denotes the SPH nodes, and the subscript j represents
the SPH stress-points. Equation (4.120) is solved at each node i, using the stress
values (in the form of fσ) from the neighbouring stress-points j. Similarly, Equation
(4.121) is solved at each stress-point j, utilising the velocity information (in the form
of fu) from the neighbouring nodes i.

The discrete variable gradient terms on the right hand side of Equations (4.120)
and (4.121) involve the value of that variable at the particle itself. For example, the
divergence of fσ at node i in Equation (4.120) is approximated as:

(∇ · fσ)i =
N∑
j=1

mj

(
fσi
ρ2
i

+
fσj
ρ2
j

)
· ∇Wij , (4.122)

which requires the value of fσ at node i (in addition to the values of fσ at the
surrounding stress-points j). The tensor fσ is a function of stress, which is stored on
the stress-points. Therefore, in order to calculate fσ at the nodes, the stress must
be transferred from the surrounding stress-points. Similarly, values of fu (which is a
function of velocity) are required at the stress-points to approximate the divergence
of fu in Equation (4.121). Thus, the velocity must be transferred from the nodes to
the stress-points. The method in which the stress and velocity are interpolated onto
the nodes and stress-points is a key aspect of Stress-Particle SPH.

In the one-dimensional Stress-Particle set-up introduced by Dyka, Randles, and
Ingel (1995) (depicted in Figure 4.1a), the stress at each node is approximated as
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being the average of the two stress-points on either side. Meanwhile, the velocity
of each pair of stress-points is defined to be equal to that of their intermediate
node. In two dimensions, the transfer of the stress to the nodes and the velocity
to the stress-points is more complex. In all previous particle-based methods with
the implementation of stress-points, the variable interpolation was performed via an
MLS approximation (Belytschko et al., 2000; Randles and Libersky, 2000; Vignjevic,
Campbell, and Libersky, 2000; Rabczuk and Belytschko, 2004; Rabczuk, Areias,
and Belytschko, 2007). MLS approximations are shape functions, that attempt to
minimise the sum of the squared deviations of a function from existing data points.
It is linearly consistent, but considerably more complex to construct than the SPH
smoothing kernel.

In this section, three different options are described for the interpolation of the
stress and the velocity onto the nodes and the stress-points within the Stress-Particle
SPH method. The three interpolation methods are denoted as the ‘Average’, ‘SPH-
CSPM’ and ‘MLS’ methods. The SPH-CSPM method is used to interpolate the
variables in the majority of Stress-Particle SPH applications in this research. This is
because of the compromise between the accuracy and simplicity of the method. The
alternative techniques are also explored, which will be stated when relevant.

4.8.1 Average method

The simplest way to update the velocity on the stress-points and the stress on the
nodes is to average over the surrounding values within the domain of influence defined
by the kernel:

uj ≈
1

Ni

Ni∑
i=1

ui, (4.123)

σi ≈
1

Nj

Nj∑
j=1

σαβj , (4.124)

where Ni is the number of nodes within the domain of influence of a stress-point
j, and Nj is the number of stress-points within the domain of influence of a node
i. This method does not including any distance-dependent weighting effect, and is
therefore the least accurate of the possible techniques.

4.8.2 SPH-CSPM method

A straightforward way in which to interpolate the stress and velocity is to utilise the
SPH function approximation. To reduce the interpolation errors near the material
boundaries, as well as to eliminate the dependency of the interpolation procedure
on the particle mass, the SPH approximation should also be normalised using the
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CSPM. The SPH interpolation method, with CSPM, is defined as

uj ≈
∑Ni

i=1
mi
ρi
uiWij∑Ni

i=1
mi
ρi
Wij

, (4.125)

σi ≈
∑Nj

j=1
mj
ρj
σjWij∑Nj

j=1
mj
ρj
Wij

. (4.126)

Of the different available interpolation techniques, the SPH-CSPM method is prefer-
able for implementation in the current research. As opposed to the averaging method,
the SPH approximation places a higher influence on particles that are closer to the
node or stress-point in question. Furthermore, the technique is relatively simple. The
simplicity of Standard SPH is one of its major benefits. While there are interpola-
tion procedures that have a higher degree of accuracy than the SPH approximation
(dependent on the choice of kernel function), they are associated with an increase in
complexity and computational time.

4.8.3 MLS method

The MLS approximation involves more computation steps than the SPH approxima-
tion. The velocity at a stress-point j is approximated via the linear MLS method
as

uj = a + b · xij , (4.127)

where a is a constant vector, b is a constant second order tensor and xij is the
relative distance between the stress-point and surrounding nodes:

xij = xi − xj . (4.128)

The MLS method is based upon the minimisation of the weighted residual function.
For velocity, the residual function is

R(uj) =
1

2

Ni∑
i=1

(uj − ui) · (uj − ui)wij . (4.129)

where, as in the SPH kernel approximation, wij is the weight function. In this
research, the MLS weight function is defined to be the same as the SPH kernel
function. Equation (4.129) is minimised by solving the following equations:

∂R(uj)

∂a
= 0,

∂R(uj)

∂b
= 0. (4.130)
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Equations (4.127), (4.129) and (4.130) are combined to obtain the solutions for a

and b, which are substituted back into Equation (4.127) to obtain the velocity ap-
proximation:

uj =

(
Ni∑
i=1

wij

)−1(( Ni∑
i=1

wij

)
− S(u,x) · Sj(x,x)−1 ·

(
Ni∑
i=1

wijxijwij

))
, (4.131)

Sj(x,x) =

(
Ni∑
i=1

(xij : xij)wij

(
Ni∑
i=1

wij

)
−

(
Ni∑
i=1

xijwij

)
:

(
Ni∑
i=1

xijwij

))
,

(4.132)

S(u,x) =

(
Ni∑
i=1

(uij : xij)wij

(
Ni∑
i=1

wij

)
−

(
Ni∑
i=1

uijwij

)
:

(
Ni∑
i=1

xijwij

))
.

(4.133)
With regards to the stress approximation on the nodes, this is assumed to be of the
form

σi = a + b · xij , (4.134)

where a is a constant second order tensor and b is a constant third order tensor.
The weighted residual function for the stress is minimised, and the final form of the
stress approximation is

σi =

 Nj∑
j=1

wij

−1 Nj∑
j=1

wij

− S(σ,x) · Si(x,x)−1 ·

 Nj∑
j=1

wijxijwij

 ,

(4.135)

Si(x,x) =

 Nj∑
j=1

(xij : xij)wij

 Nj∑
j=1

wij

−
 Nj∑
j=1

xijwij

 :

 Nj∑
i=1

xijwij

 ,

(4.136)

S(σ,x) =

 Nj∑
j=1

(σij : xij)wij

 Nj∑
j=1

wij

−
 Nj∑
j=1

σijwij

 :

 Nj∑
j=1

xijwij

 .

(4.137)
The derivation of Equations (4.131) and (4.135) is provided in further detail by
Sanchez and Randles (2012). The tensors Sj(x,x) and Si(x,x) defined by Equations
(4.132) and (4.136) are functions of the local geometry at a particle, and are sensitive
to the surrounding particle distribution. In areas where the particle neighbourhood
is truncated, i.e. at the material boundaries, the terms can become singular (Sanchez
and Randles, 2012). To avoid this, the tensors are adapted at boundary particles
to include reflections of the internal particles. This process is quite elaborate, and
differs for the particles located at the edges and at the corners of the material. A
full description of how the reflective tensors are incorporated can be found in the
literature (Sanchez and Randles, 2012).
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(a) SP1 (b) SP2 (c) SP3

Figure 4.7: Examples of different node-stress-point arrangements,
with one, two and three stress-points inside each virtual quadrilateral.

4.8.4 Node-stress-point arrangement

The benefits that stress-points bring to SPH in terms of stability are dependent on the
initial node-stress-point arrangement (Belytschko et al., 2000). Despite this, all pre-
vious applications with stress-points have been restricted to having one stress-point
in the centre of every virtual quadrilateral, as depicted in Figure 4.1b. Belytschko
et al. (2000) considered alternative arrangements (shown in Figure 4.2) in a linear
stability analysis. However, no numerical simulations were conducted with these
arrangements. In the current research, multiple node-stress-points configurations
are considered. First, these configurations consist of a specified number of stress-
points placed inside virtual quadrilaterals. This method of arranging the nodes and
stress-points is denoted the inside approach, and example arrangements are shown
in Figure 4.7. The different configurations depicted in Figure 4.7 consist of one, two
and three stress-points placed inside every virtual quadrilateral, denoted SP1, SP2
and SP3 respectively. To describe in further detail the locations of the stress-points,
the four nodes are labelled 1,2,3 and 4 – starting from the bottom left node and
moving clockwise to the bottom right node. The stress-point in configuration SP1 is
simply placed in the centre of nodes 1,2,3 and 4. The SP2 configuration includes two
stress-points, with each one placed in the centre of the two ‘virtual triangles’ that
are created by connecting the nodes 2 and 4. The SP3 configuration includes three
stress-points that are positioned as follows. One is placed in the centre of the virtual
triangle made by connecting nodes 1,2 and 4. The second stress-point is placed in
the centre of the virtual triangle made by connecting nodes 1, 3 and 4. Finally, the
third stress-point is positioned in the centre of the triangle created by connecting
nodes 2 and 3 with the centre of the quadrilateral. The majority of SPH simulations
conducted with the inside approach will compare the results from SP1, SP2 and SP3,
although other configurations are also considered.

An alternative approach in which to arrange the nodes and stress-points is to
assign a specified number of stress-points to each SPH node. Examples of such
configurations are provided in Figure 4.8, for one, two, three and four stress-points
per node. With this method, each individual SPH node is associated with one or
more stress-points, in what is denoted as the outside approach. The stress-points are
each positioned a horizontal distance rx and a vertical distance ry away from the
node, as shown in Figure 4.8a. For simplicity, unless stated otherwise, the distances
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(a) IA (b) IB (c) IIA (d) IIB

(e) IIC (f) IID (g) IIIA (h) IVA

Figure 4.8: A depiction of the Stress-Particle outside approach.

rx and ry are defined to be equal and are labelled as r. For all of the configurations
displayed in Figure 4.8a, the stress-points are placed from their corresponding node
at a horizontal and vertical distance of r, in either the positive or negative direction.
The distance r is a function of the initial particle spacing, such that

r = l∆x, 0 < l ≤ 1

2
. (4.138)

For the majority of applications in this research, r is defined to be equal to ∆x/3.
For this definition of r, the initial, interior node-stress-point arrangement for con-
figuration IIB (shown in Figure 4.8d) is equal to the inside approach configuration
SP2 (shown in Figure 4.7b). There are a number of benefits to having stress-points
associated with individual nodes – namely, the stress-points can be manipulated for
specific nodes if required. The results from simulations conducted with the outside
approach are presented in Chapter 6.

Mass distribution

As the calculations on the SPH nodes utilise information from the stress-points only
(as opposed to both nodes and stress-points), the total mass of the stress-points must
equal the total mass of the nodes:

Total Mass =
∑

mNodes =
∑

mStress-Points. (4.139)

For the Stress-Particle inside approach, the stress-points are initially assigned the
same mass as the interior SPH nodes. This is then divided by the respective number
of stress-points per virtual quadrilateral. Recall that the mass of the boundary nodes
is different to the mass of the interior nodes. Therefore in the inside approach, the
total mass of the stress-points is not exactly equal to the total mass of the nodes. In
the outside approach, the stress-points are assigned the same mass as their associated
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node, divided by the number of stress-points per node. Thus, in the outside approach
the total mass of the stress-points is exactly equal to the total mass of the nodes.

4.8.5 Stress-point position update procedure

To ensure that the calculations within the Stress-Particle method are accurate and
stable, a sufficient number of stress-points is required in the neighbourhood of the
nodes. Therefore the positions of the stress-points must be updated along with the
nodes. This is not straightforward, because the material velocity is not calculated on
the stress-points. However, the stress-points do have a velocity that is interpolated
from the surrounding nodes, as required for the calculation of the velocity gradient
on the stress-points. Hence, one way in which to update the stress-point positions
is according to this interpolated velocity. Equation (4.49) or (4.50) can be applied
to move the stress-points in the same way as for the nodes. This method has been
used to update the stress-point positions in all existing stress-point schemes in the
literature. As all applications of the Stress-Particle method have been confined
to small displacement problems, this position update method has been sufficient.
However, updating the stress-point positions according to an interpolated velocity is
likely to be unsuitable for problems involving rapid velocities and large displacements
(Vignjevic, Campbell, and Libersky, 2000).

An advantage of having stress-points associated with individual nodes in the
outside approach is that the positions of the stress-points can be determined by their
corresponding node. The stress-points can be assigned to follow their associated
nodes for the duration of the numerical simulation, as depicted in Figure 4.9 for
configuration IIB. In this way it is ensured that every node always has at least one
(in the case of one stress-point following each node) stress-point in its neighbourhood.

The stability analysis performed by Belytschko et al. (2000) highlighted the im-
portance of the node-stress-point arrangement on the performance of Stress-Particle
methods. The analysis was performed for stationary particles, and the behaviour of
the Stress-Particle method for transient problems is unexplored. Furthermore, the
particle configuration changes as the node and particle positions are updated. One of
the aims of the current research is to investigate the capabilities of the Stress-Particle
method when applied to problems with large deformations and displacements.

4.8.6 Boundary treatment

The boundaries of the material domain can be composed of either nodes or stress-
points. In the existing literature, both of these options have been employed (Randles
and Libersky, 2000; Vignjevic, Campbell, and Libersky, 2000). In the first exten-
sion of the Stress-Particle method to two dimensions, Randles and Libersky (2000)
used stress-points to define the boundaries of the material in order to simplify the
explicit application of a stress-free boundary condition. In later work, the material
boundaries were composed of SPH nodes (Sanchez and Randles, 2012; Sanchez and
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t

t+ ∆t

Figure 4.9: A sketch depicting the stress-points following their as-
sociated node in the Stress-Particle outside approach.

Randles, 2013). Vignjevic, Campbell, and Libersky (2000) also used SPH nodes as
boundary particles, and updated the positions of the boundary nodes in a way that
reduced the stress of its neighbouring stress-points, thereby implicitly applying a
stress-free condition at the free surface.

Here, simulations conducted with the Stress Particle inside approach are ini-
tialised so that the boundaries of the material domain are composed of SPH nodes.
All stress-points lie within the boundaries. Conversely, in the outside approach, some
stress-points will lie outside of the material domain. However, it is possible to re-
move these stress-points from the simulation if necessary. The problems considered
in the following chapters consist of both small and large displacements, and two dif-
ferent methods of treating the boundaries are required for this. First, for the small
displacement problems, the boundary conditions are explicitly applied to the nodes
that compose the domain boundaries. The CSPM method described in Section 4.5.2
is included in the SPH gradient approximations to reduce the error associated with
the kernel truncation at the boundaries.

For the problems involving large displacements, dummy nodes are implemented
to simulate a no-slip wall as outlined in Section 4.4. The implementation is slightly
different when applied to the Stress-Particle method, than for Standard SPH. In
Standard SPH, the velocity of the dummy nodes is included in the gradient calcu-
lation on the interior SPH nodes, which implicitly enforces a no-slip condition on
the interior nodes. In the Stress-Particle method, the velocity gradient is calculated
on the stress-points and the no-slip effect is therefore applied to the stress-points,
and not the nodes. The no-slip condition will influence the nodes nonetheless, as the
nodes utilise the stress information from the surrounding stress-points. However, the
application of the no-slip condition is less direct than for Standard SPH, and it may
not be sufficient to ensure that nodes do not penetrate the boundary. This could be
particularly problematic when the nodes are located closer to the wall boundaries
than the stress-points. Therefore, the soft repulsive force defined by Equations (4.66)
- (4.69) is also applied to the SPH nodes when necessary.

A further benefit of the outside approach set-up is that it is straightforward to
adapt the stress-points in the regions next to the boundary, as shown in Figure
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(a) Before stress-point adaptation at
the boundaries

(b) After stress-point adaptation at
the boundaries

Figure 4.10: A depiction of the nodes and stress-points in the out-
side approach, in the proximity of the wall boundary.

4.10. This process – denoted as stress-point adaptation – could be beneficial if the
presence of stress-points interferes with the intended purpose of the dummy nodes.
The technique is explored in Chapter 6.

4.9 A summary of Stress-Particle SPH

The RK4 method outlined in Section 4.6 is implemented to solve the governing
equations of motion for Stress-Particle SPH. This consists of four steps to tempo-
rally integrate the equations from time t to time t+∆t – the process is the exact same
for Stress-Particle SPH as for Standard SPH, and is detailed by Equations (4.101)
- (4.149). However for Stress-Particle SPH, the spatial derivatives within each inte-
gration step are calculated with the Stress-Particle method. For completeness, the
RK4 scheme is rewritten here, in the framework of Stress-Particle SPH.

The equation of momentum and constitutive equation are written compactly as

∂ui
∂t

= F1(σ), (4.140)

∂σj
∂t

= F2(u,σ), (4.141)

where the velocity is updated on the nodes, denoted by i, and the stress is updated
on the stress-points, denoted by j. The right hand side terms F1 and F2 are functions
of stress and velocity:

F1(σ) =

N∑
j=1

mj

(
fσi
ρ2
i

+
fσj
ρ2
j

)
· ∇Wij + bi, (4.142)

F2(u,σ) = σ̃j +

N∑
i=1

mi

ρi

(
fui − fuj

)
· ∇Wji − gε

p

j , (4.143)



4.9. A summary of Stress-Particle SPH 83

where F1 and F2 are calculated on the nodes and stress-points respectively. With
the RK4 scheme, Equation (4.140) is incremented in time at each SPH node as

ui
t+∆t = ui

t +
∆t

6
(F1(σ1) + 2F1(σ2) + 2F1(σ3) + F1(σ4)) . (4.144)

Additionally, Equation (4.141) is incremented in time at each SPH stress-point:

σj
t+∆t = σtj +

∆t

6
(F2(u1,σ1) + 2F2(u2,σ2) + 2F2(u3,σ3) + F2(u4,σ4)) . (4.145)

The variables u and σ are updated at each integration step:

u1 = ut σ1 = σt (4.146)

u2 = ut +
∆t

2
(F1(σ1)) σ2 = σt +

∆t

2
(F2(u1,σ1)) (4.147)

u3 = ut +
∆t

2
(F1(σ2)) σ3 = σt +

∆t

2
(F2(u2,σ2)) (4.148)

u4 = ut + ∆t(F1(σ3)) σ4 = σt + ∆t(F2(u3,σ3)). (4.149)

Within each integration step, the Stress-Particle method is applied to obtain the
spatial derivatives required for F1 and F2, and to update the stress and the velocity.
To demonstrate this, the first step of the RK4 integration process for Stress-Particle
SPH is summarised in the following points. At the start of the first step, the values
of u1 and σ1 are defined as ut and σt respectively.

1. Interpolate the stress and the velocity

The stress σ1 is interpolated from the stress-points onto the nodes, and the
velocity u1 is interpolated from the nodes onto the stress-points. For the SPH-
CSPM interpolation method, this is defined as

u1j ≈
∑Ni

i=1
mi
ρi
u1iWij∑Ni

i=1
mi
ρi
Wij

, (4.150)

σ1i ≈
∑Nj

j=1
mj
ρj
σ1jWij∑Nj

j=1
mj
ρj
Wij

. (4.151)

The terms fσ and fu (which are functions of stress and velocity respectively)
are then defined at the nodes and stress-points.

2. Update boundary conditions/Adapt the stress

If the boundary conditions are applied directly to the SPH boundary nodes,
then the relevant components of the stress and velocity are updated.

If the material is described with an elastoplastic rheological model, the stress
state is adapted to ensure that it lies on the yield surface (see Section 4.3.1).

3. Calculate the gradient terms
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The SPH gradient approximation term is applied to calculate the gradients of
the stress and velocity (and hence fσ and fu) on the nodes and stress-points
respectively:

(∇ · fσ)i =
N∑
j=1

mj

(
fσi
ρ2
i

+
fσj
ρ2
j

)
· ∇Wij , (4.152)

(∇ · fu)j =
N∑
i=1

mi

ρi

(
fui − fuj

)
· ∇Wji. (4.153)

If the CSPM normalisation is included, the gradient terms are normalised as
described in Section 4.5.2. If dummy nodes are used, then they are included
in the gradient calculations.

4. Calculate the additional terms for the momentum equation

The body force b is updated on the nodes. In this research, gravity is the only
physical body force that is considered. If included, the artificial viscosity is
also calculated on the nodes, using information from the neighbouring nodes.

5. Calculate the additional terms for the constitutive equation

The plastic strain function gε
p is calculated on the stress-points. At each

particle, the stress state is checked to see if the yield criterion has been met.
If the stress state lies within the elastic range, then gε

p
= 0. Otherwise, the

plastic term is calculated and gε
p is non-zero. The plastic term is a function

of stress and velocity gradients, which are known at the stress-points.

For large deformation problems, the Jaumann stress rate σ̃ is also updated
on the stress-points, according to Equations (4.39) and (4.40). This involves
gradients of the velocity, which are already stored on the stress-points.

6. Compute F1 and F2

F1(σ) = (∇ · fσ)i + bi on nodes, (4.154)

F2(u,σ) = σ̃j + (∇ · fu)j − gε
p

j on stress-points. (4.155)

7. Calculate u2 and σ2

u2 = ut +
∆t

2
(F1(σ1)) σ2 = σt +

∆t

2
(F2(u1,σ1)) (4.156)

8. Update boundary conditions/Adapt the stress

If necessary, the boundary conditions and stress state are again updated.
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The same process described by Steps 1 - 8 is followed to obtain u3,u4,σ3 and
σ4. Then, Equations (4.144) and (4.145) are applied to update the velocity and
the stress at the subsequent time step. Once the variables have been updated, the
positions of the nodes are updated according to Equation (4.113) or (4.115). The
stress-point positions are also advanced – either according to Equation (4.113) or
(4.115), or by following their associated node as described in Section 4.8.5.

4.10 Computational implementation

The Stress-Particle SPH method has been written in Fortran 90, and implemented
by the author of this research. Additionally, a Standard SPH technique has also
been developed by the author, for comparison with the Stress-Particle method. Se-
lect routines have been recycled from the numerical code that was written in the
development of the Node-Element method. This code was kindly provided to the
author by Professor Manuel Pastor, of the Technical University of Madrid. The
Node-Element SPH code was written by Thomas Blanc and Manuel Pastor as part
of the PhD thesis of Thomas Blanc (Blanc, 2011), supervised by Professor Pastor. A
description of the specific routines that have been recycled from the Node-Element
method, and those that have been written by the author, is here provided.

To obtain the neighbours within the domain of influence of each particle, the same
linked-list algorithm has been used that was implemented by Blanc (2011) (described
in Section 4.7). The numerical algorithm produces a list of all neighbouring particles,
in the form of a linked list. Each member of the list contains information regarding
an interacting pair of particles, with a pointer to the next pair of interacting particles
in the list. The relevant pair information is the type of particle (i.e. node or element,
identified by an index), and the values of the kernel and the kernel gradient. This
algorithm has been utilised by the current author to find the neighbouring particles,
and to determine the type of particle-particle interaction. In the current research the
possible particle interactions are node-node, stress-point-stress-point, node-stress-
point, node-dummy node and stress-point-dummy node. In addition to the linked
list algorithm, the Stress-Particle method uses the same kernel calculation routine as
for the Node-Element method (the cubic spline), and the same free surface detection
algorithm (see Section 4.4.1). Furthermore, the Node-Element method includes an
implementation of the CSPM (see Section 4.5.2), which has been used for certain
problems in this research.

The Node-Element method utilises a viscoplastic Perzyna model to describe a soil,
with a Von Mises yield surface. This description has also been included in the Stress-
Particle SPH method. In addition to this, an elastoplastic Drucker-Prager model has
been implemented by the author, so that the soil can be modelled with either the
Perzyna or the elastoplastic model. This also required the implementation of the
stress modification procedure, described in Section 4.3.1. There are some aspects of
the Node-Element code that were edited and adapted by the author of this research
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Table 4.1: A summary of the various numerical routines and fea-
tures (written in Fortran 90) of Stress-Particle SPH and Standard

SPH. The column headers detail the authors of the routines.

Routines written and im-
plemented by the current
author (in full)

Routines recycled from
the Node-Element method
(written by Thomas Blanc
and Prof Pastor)

Routines adapted from
the Node-Element method
by the current author

Addition of stress-points Linked-list RK4 scheme
Node-stress-point interac-
tions

Cubic spline kernel GiD output

Node-stress-point configu-
ration

Free surface detection

Stress-point position up-
date

Perzyna model

Elastoplastic model CSPM
Dummy nodes
Repulsive boundary nodes
Artificial viscosity
Stress modification
XSPH position update
ParaView output
Artificial stress
Particle shifting

for use in the Stress-Particle method. In the Node-Element method, the governing
equations of motion are split into two, consisting of an advective equation and an
ordinary differential equation (ODE). The ODE is solved using an RK4 integration
scheme, which has been adapted for the current research to solve the full system
of equations. Moreover, the Node-Element method contains a routine that outputs
data in a format that can be inserted into the post-processing software GiD. This
was adapted by the current author to allow the Stress-Particle SPH results to be
visualised in GiD. Additionally, a routine was developed for the Stress-Particle SPH
code to enable to post-processing of results in ParaView.

The computational implementation of the Stress-Particle SPH method required
the development of numerous new Fortran routines to describe the stress-point be-
haviour, including their quantity and arrangement, the gradient calculations between
the nodes and stress-points, the transfer of information between the nodes and stress-
points, and the position update of the stress-points. Furthermore, additional routines
were implemented within the Standard SPH code, such as the artificial stress and
particle shifting methods. A summary of the relevant routines that were implemented
in both Stress-Particle SPH and Standard SPH is provided in Table 4.1, where it is
highlighted which ones were originally developed by the authors of the Node-Element
method.
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4.11 Conclusion

In the following chapters, Stress-Particle SPH is applied to a number of problems
regarding soil behaviour, using both a viscoplastic Perzyna model and an elasto-
plastic constitutive model. The majority of the problems are also simulated in the
literature. First, the Stress-Particle inside approach is applied to a range of prob-
lems that are relevant to soil failure (and therefore landslide initiation), that exhibit
instabilities. The effect of the stress-point quantity and position are analysed with
regards to the performance and stabilising qualities of the numerical method, and
the results are compared with those from the literature. The inside approach is
also applied to a problem involving the post-failure behaviour of soil, which exhibits
large displacements. The method is not expected to be able to handle this type of
problem, due to the way in which the stress-point positions are updated. Following
the assessment of the inside approach, the novel outside approach is also applied
to a range of problems. It is expected that the outside approach is better suited
for large displacement problems. The performance of both approaches are assessed
in terms of the ability to eliminate the effects of zero-energy modes and the tensile
instability. Furthermore, it is observed how the presence of stress-points affect the
overall dynamics of the problem (if at all). The Standard SPH model is also used to
compare against the Stress-Particle SPH results.
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Chapter 5

Stress-Particle inside approach
results

5.1 Introduction

In this chapter the results of the Stress-Particle SPH method with the inside ap-
proach are presented. First, the method is applied to simulate the propagation
of a shock wave in a one-dimensional bar. This problem was simulated by Dyka,
Randles, and Ingel (1995) and Dyka, Randles, and Ingel (1997) to validate the
original Stress-Particle method. For this problem, the current Stress-Particle SPH
method is identical to the one-dimensional method introduced by Dyka, Randles,
and Ingel (1995). The simulations are conducted to ensure that the basic structure
of the Stress-Particle approach is implemented correctly. Following this, the two-
dimensional Stress-Particle SPH method is applied to problems regarding soil failure
– that are relevant to landslide initiation – with the purpose of validating the model
and assessing its capabilities in this area. These problems consist of the strain local-
isation in a two-dimensional soil sample (Mabssout and Herreros, 2013), an elastic
and viscoplastic vertical slope (Blanc, 2011; Blanc and Pastor, 2013), and the col-
lapse of a cohesive soil (Bui et al., 2008). The effect of the quantity and arrangement
of the stress-points is analysed in the simulation of these problems. Furthermore,
the inside approach is employed to simulate the collapse of a non-cohesive soil (Bui
et al., 2008). The non-cohesive soil exhibits large displacements and is representa-
tive of landslide propagation (of the flow-type). The purpose of this simulation is to
determine the capabilities of the inside approach, with regards to large displacement
problems. The following results of the Stress-Particle SPH method are compared
with the selected solutions from the literature, in addition to those computed with
Standard SPH (that has been developed for this purpose). The reader is referred to
Sections 4.9 and 4.10 of Chapter 4 for details on the numerical implementation of
the Stress-Particle SPH and Standard SPH methods.
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5.2 Shock wave in a one-dimensional bar

Dyka, Randles, and Ingel (1995) developed the one-dimensional Stress-Particle method
to model the stress and velocity evolution in a solid elastic bar that is subjected to
an initial tensile stress. The results of velocity, stress and displacement at a specified
point in the bar over time were presented. The authors also simulated the same
problem with a comparable Finite Element model (ABAQUS (Cook et al., 2001)) in
order to validate the results of Stress-Particle SPH in one dimension. The profiles
of velocity, stress and displacement obtained with the two different techniques were
in close agreement with one another, with minimal differences. As a result, “An ap-
proach for tension instability in smoothed particle hydrodynamics (SPH)” concluded
that the Stress-Particle approach provided a promising solution to the problem of
the tensile instability within SPH. The problem has been recreated here with the
purpose of validating the current Stress-Particle SPH model. The results are also
compared with those obtained using the Standard SPH method. The problem is
comprised of a solid bar of length 0.1333 m, of which one quarter is subjected to an
initial velocity of -5 m/s, thereby creating a state of tensile stress. The constitutive
behaviour of the material is assumed to be purely elastic, with a Young’s modulus
of E = 200× 109 Pa and density of ρ = 7833 kg m−3. Previous authors have stated
that it is not possible to model this problem with Standard SPH, due to the problem
of the tensile instability (Dyka, Randles, and Ingel, 1995; Dyka, Randles, and Ingel,
1997; Blanc and Pastor, 2013).

The one-dimensional elastic bar was described with 41 SPH nodes and 82 stress-
points, with an inter-particle spacing of ∆x = 0.0033325 m. A time step of ∆t =

4 × 10−7 s was defined, with a smoothing length equal to the node spacing. No
artificial viscosity was included. All model parameters were chosen to agree with
those used in the literature. For this low displacement problem, the positions of the
nodes and stress-points were not updated. The evolution of the velocity at the first
node in the bar is shown in Figure 5.1, for the results presented by Dyka, Randles,
and Ingel (1995) and the current Stress-Particle and Standard SPH models. The
results of the current Stress-Particle SPH model closely coincide with the results of
the original Stress-Particle method. The shock wave is shown to be travelling back
and forth through the bar. The Standard SPH model is incapable of capturing the
propagation of the shock wave for the duration of the simulation.

Dyka, Randles, and Ingel (1997) analysed the one-dimensional bar problem fur-
ther, using 81 SPH nodes with a particle spacing of ∆x = 0.00166625 m and a time
step of ∆t = 2.5×10−7 s. Artificial viscosity was this time included, with parameters
αΠ = 0.5, βΠ = 1 and a speed of sound of cs = 5053.02 m s−1. This simulation has
also been recreated in the current work. The time evolution of the stress (σxx) at
x = 0.035 m (node 21) is shown in Figure 5.2, comparing the results of Stress-Particle
SPH and Standard SPH with the results from the literature. The results show that
both Stress-Particle SPH and Standard SPH are capable of simulating the shock
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Figure 5.1: The velocity ux evolution at x = 0 m in a one-
dimensional bar subjected to a tensile stress. The Standard SPH
and Stress-Particle SPH results are compared with those of Dyka,

Randles, and Ingel (1995).
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Figure 5.2: The stress σxx evolution at x = 0.035 m in a one-
dimensional bar subjected to a tensile stress. The Standard SPH
and Stress-Particle SPH results are compared with those of Dyka,

Randles, and Ingel (1997).

wave when artificial viscosity is included. This contrasts with the claim of Dyka,
Randles, and Ingel (1997) – that the addition of artificial viscosity would not enable
Standard SPH to model the problem of the elastic bar under tension. In fact, for this
particularly problem, artificial viscosity is sufficient to stabilise the model. However,
the artificial viscosity is also responsible for the non-physical stress damping that
can be seen in Figure 5.2. The results of the one-dimensional bar confirm that the
Stress-Particle SPH method has been implemented correctly in one dimension.

5.3 Vertical slope

The vertical slope problem consists of an initial soil square with sides of 10 m that
is allowed to deform due to the effects of gravity. This problem was simulated by
Blanc (2011) and Blanc and Pastor (2013) with the Node-Element SPH method,
441 SPH nodes spaced apart by ∆x = 0.5 m, and a time step of ∆t = 0.001 s.
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Figure 5.3: A schematic diagram of the vertical slope.

Table 5.1: Perzyna model parameters for the elastic and viscoplas-
tic vertical slope problems.

E (Pa) ν ρ (kg m−3) Y0 (Pa) γ (s −1) N

Elastic 8× 107 0.3 2000 n/a n/a n/a
Viscoplastic 8× 107 0.3 2000 2 ×105 2 1

Blanc (2011) described the material with both an elastic and a viscoplastic Perzyna
model, with a Von Mises yield criterion for the latter. A damping coefficient of
µd = 50 was applied to the gravity force, in order to completely eliminate stress and
velocity oscillations. Due to the relatively low displacement observed in the problem,
Blanc (2011) did not update the positions of the nodes and the boundary conditions
were explicitly enforced on the boundary nodes. The top and right boundaries were
assigned to be stress-free and the bottom boundary had zero velocity. The horizontal
velocity and shear stress were enforced to be zero on the nodes on the left boundary,
to simulate a free-slip condition. A schematic diagram of the model is provided in
Figure 5.3. The Stress-Particle SPH and Standard SPH methods have been used to
model both the elastic and viscoplastic problems, in an attempt to recreate the results
from the literature. To coincide with the literature, the positions of the nodes and
stress-points were not updated and the boundary conditions were explicitly enforced
on the boundary particles. The same number of SPH nodes were employed, with
the same time step value. Normalisation via the CSPM was included in the stress
and velocity gradient approximations, to eliminate the kernel truncation error near
material boundaries. A damping factor of 50 was included in the momentum equation
and artificial viscosity was not used. The material parameters for both the elastic
and viscoplastic case are provided in Table 5.1.
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5.3.1 Elastic slope

In addition to the damping force, Blanc (2011) progressively applied the gravity force
to the elastic slope over 1 second to avoid instabilities. This progressive application
has also been included in the current Stress-Particle SPH and Standard SPH sim-
ulations. The smoothing length is defined as hs = 0.8∆x. Contours of stress and
displacement after 2 seconds of simulation are provided in Figure 5.4, comparing
the results from the literature with Standard SPH and the Stress-Particle inside ap-
proach. The simulations were performed with the SP1, SP2 and SP3 configurations,
with the SPH-CSPM interpolation method to transfer the required information be-
tween the nodes and stress-points. The vertical stress profile provided by Blanc
(2011) exhibits the expected behaviour of an increase in compressive stress with
sample depth. The profile is disturbed in the region close to the right boundary due
to the interaction between the stress-free nodes and the no-slip bottom layer. The
horizontal stresses are negative in the bottom left corner and increase towards a pos-
itive value at the top of the sample, due to the gradual horizontal movement under
the effects of gravity. The total displacement is largest at the top of the sample, and
smoothly decreases to a value of zero at the bottom, where the SPH nodes have an
imposed zero velocity. This general behaviour is captured with both Stress-Particle
SPH and Standard SPH. With regards to the Stress-Particle method, the SP2 and
SP3 results show some differences to the literature in the areas close to the bound-
aries. Namely, there is a small discontinuity at the left boundary in the stress profiles,
which is not present in the SP1 or the literature results. Furthermore, the SP3 results
show extra discontinuities in the vertical stress profile at the bottom boundary. As
the stress-points lie closer to the boundaries in the SP2 and SP3 set-ups than in SP1,
it is suggested that the close proximity of stress-points to the boundaries contributes
to these discrepancies. The Standard SPH results suffer from severe singularities in
stress and displacement which has caused noisy variable profiles with reduced accu-
racy. These singularities are typical manifestations of the zero-energy modes, and
have been completely eliminated with the Stress-Particle method with the SP2 and
SP3 configurations. While the singularities are not observed in the stress profiles of
the SP1 method, the contours of displacement show some small oscillations. This
indicates that the zero-energy modes were not completely eliminated with the SP1
set-up. The simulation was repeated for Standard SPH with the inclusion of artifi-
cial viscosity, with parameters αΠ = 1, βΠ = 0. As can be observed in Figure 5.5,
the addition of artificial viscosity is not able to eliminate the instability causing the
noisy stress and displacement profiles.

Figure 5.6 shows the vertical stress profiles computed with SP3 with the SPH-
CSPM interpolation method, compared against the SPH-Average and SPH-MLS
methods. As evident from Figure 5.6, the choice of the interpolation technique has
little effect on the elastic slope problem results.
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Blanc (2011)
Standard

SPH SP1 SP2 SP3

(a) Vertical stress σyy (Pa)

(b) Horizontal stress σxx (Pa)

(c) Total displacement |s| =
√
s2
x + s2

y (m)

Figure 5.4: Contours of stress and velocity in the elastic slope at
t = 2 s, comparing the Standard SPH and Stress-Particle SPH results

with those of Blanc (2011).
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No artificial viscosity αΠ = 1, βΠ = 0

(a) Vertical stress σyy (Pa)

(b) Horizontal stress σxx (Pa)

(c) Total displacement |s| =
√
s2
x + s2

y

Figure 5.5: A comparison of the stress and displacement profiles
at t = 2 s for the elastic slope problem for Standard SPH, with and

without artificial viscosity.

SPH-CSPM SPH-Average SPH-MLS

Figure 5.6: Profiles of vertical stress σyy (Pa) for the elastic slope
problem at t = 2 s for Stress-Particle SP3, comparing the results

from different node-stress-point interpolation methods.
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5.3.2 Viscoplastic slope

The vertical slope is more representative of actual slope failure mechanisms when
the material is modelled as viscoplastic, which undergoes irreversible deformations
in the form of plastic strains. Blanc (2011) and Blanc and Pastor (2013) modelled
the behaviour of the viscoplastic slope with a Von Mises yield surface, and reduced
the shear strength of the material with time. All other material properties were the
same as for the elastic slope. The size of the yield surface Y was defined to decrease
as

Y = (1− 0.1t)Y0. (5.1)

With this enforced yield strength reduction, it is possible to calculate the factor of
stability (FoS) of the slope, which for a Von Mises material is defined as

FoS =
Yfailure√

3ρgH
, (5.2)

where Yfailure is the value of the yield function at failure and H is the height of the
slope (Chen, 2013). Viscoplastic (or plastic) strains first originated in the bottom
right corner of the slope due to the interaction between the lower and stress-free side
boundary, which localised in the form of a shear band. Material failure was assumed
to have occurred when the viscoplastic strains reached the top left of the sample (at
x = (1, 10)). Blanc (2011) calculated the FoS as 0.26, which is close to the analytical
solution of 0.25 provided by Taylor (1937). As opposed to the problem of the elastic
slope, the gravity force was applied in full at the beginning of the simulation.

The problem has been simulated with Standard SPH, SP1, SP2 and SP3. Results
of deviatoric plastic strain and total displacement are plotted against time in Figure
5.7, for the nodes positioned at x = (1, 10) and x = (9.5, 9.5) respectively. As
the choice of interpolation method did not significantly affect the stress results for
the elastic slope, only the SPH-CSPM technique has been used for the viscoplastic
problem. The results are plotted alongside those provided by Blanc (2011) and Blanc
and Pastor (2013). In each case, two different smoothing lengths of hs = 0.8∆x

and hs = ∆x were used and a time step of ∆t = 0.0001 s was required for model
stability. The results were found to be suitably independent of this time step when it
was decreased. For all configurations of Stress-Particle SPH, the plastic strains reach
the top left node at approximately the same time as for the Node-Element model,
resulting in a similar factor of safety to that calculated by Blanc (2011). However the
behaviour of the viscoplastic strain evolution after failure is strongly dependent on
the smoothing length. When calculated with SP1, the magnitude of the plastic strain
increases at a much lower rate than for the Node-Element method (Figure 5.7b).
With regards to SP2 and SP3, the growth rate of the irreversible strain is comparable
to that of the Node-Element model with a smoothing length of hs = ∆x. When a
smoothing length of hs = 0.8∆x is used, the solution becomes rapidly unstable once
failure has occurred for SP2, but results in the smallest growth rate of plastic strain
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for SP3. Both the magnitude and behaviour of the displacement calculated with
SP1 and SP3 are similar to the Node-Element results. The displacement calculated
with SP2 exhibits a higher rate than the literature results. The Standard SPH
model results differ from the others in that the viscoplastic strains reach the node at
x = (1, 10) at an earlier time, producing a FoS value that is different to that obtained
by Blanc and Pastor (2013). Additionally the rate of increase of this quantity varies
sporadically, due to the instabilities caused by the zero-energy modes.

The same problem was repeated with the SP1 method, with the addition of extra
stress-points on the material boundaries, as depicted in Figure 5.8a. With these ex-
tra stress-points, the SP1 method was able to closely recreate the Blanc and Pastor
(2013) results with a smoothing length of hs = 0.8∆x. The evolution of the viscoplas-
tic strain and displacement at x = (1, 10) and x = (9.5, 9.5) are shown in Figure
5.8b. This highlights that accurate results are dependent on there being a sufficient
number of stress-points in the neighbourhood of each SPH node. This is particularly
relevant for nodes at the boundaries, which have a reduced neighbourhood than for
interior nodes.

5.4 Strain localisation in a soil sample with strain soft-
ening

The Stress-Particle SPH inside approach has been applied to model the strain local-
isation in a two-dimensional soil sample with the viscoplastic Perzyna model. The
material was described with a Von Mises yield criterion that varied according to
the softening law defined by Equation (3.27) (see Section 3.3.1), for the material
parameters provided in Table 5.2. Half of a square sample with a 1 m side was con-
sidered, where a symmetry condition was assigned to the left boundary as shown in
Figure 5.9. A tensile force was applied by imposing a vertical velocity on the upper
boundary. This created a shock wave that travelled through the sample and pro-
duced irreversible deformations, which localised as a shear band. The same problem
was also considered by Mabssout and Herreros (2013) with the Node-Element SPH
method, although in a plane stress condition. The shear band evolution presented
by Mabssout and Herreros (2013) is shown in Figure 5.10, which propagated at an
inclination angle of 35◦. This agrees with the theoretical solution for the inclination
angle in a material with a Von Mises yield function in plane stress conditions (Sluys,
1992). In the current application a plane strain condition is considered, for which
the theoretical angle is calculated to be 45◦.

The soil sample is instantly subjected to a tensile state of stress, which makes the
SPH model highly susceptible to the tensile instability. Within the Node-Element
SPH model, Mabssout and Herreros (2013) employed a Lagrangian kernel to ensure
that the tensile instability was eliminated. Here the Stress-Particle SPH method
has been applied to solve the problem and reduce any numerical instabilities. The
boundary conditions shown in Figure 5.9 were applied directly to the SPH nodes that
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(d) SP3

Figure 5.7: A comparison of the evolution of deviatoric plastic
strain ε̄p (dimensionless) and total displacement |s| (m) between the
current Stress-Particle SPH model, a Standard SPH model, and the
results presented by Blanc and Pastor (2013), for the viscoplastic

vertical slope failure
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(a) A depiction of
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(b) Deviatoric viscoplastic strain and displacement against time

Figure 5.8: The deviatoric plastic strain ε̄p (dimensionless) and
total displacement |s| (m) evolution in the viscoplastic slope, calcu-
lated with SP1 with and without extra boundary stress-points (as
highlighted in the figure legend), compared against the results of

Blanc and Pastor (2013).
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Figure 5.9: A schematic diagram of the strain localisation problem.
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t = 0.005 s t = 0.007 s t = 0.009 s

Figure 5.10: The strain localisation in the soil sample presented by
Mabssout and Herreros (2013).

Table 5.2: Perzyna model parameters for the strain localisation
problem.

E (Pa) ρ (kg m−3) Y0 (Pa) H (Pa) γ (s −1) N

8 ×107 2000 5 ×105 -8 ×106 50 1

lay on the boundaries, and the CSPM was employed to reduce the error in this area.
The chosen time step was ∆t = 1× 10−5 s, with 3321 particles spaced ∆x = 0.0125

m apart. No artificial viscosity was included in the literature or in the Stress-Particle
SPH model implemented here. The results are also compared with those obtained
with the Standard SPH model, both with and without artificial viscosity.

The first appearance of localised viscoplastic strains in the soil sample and the
subsequent evolution as a shear band is provided in Figure 5.11 for Stress-Particle
SPH and Standard SPH. The SPH-CSPM method was used to interpolate the vari-
ables onto the nodes and stress-points. To align with the method outlined in the
literature the positions of the nodes and stress-points have initially not been updated.
The smoothing length was chosen to be equal to the particle spacing. Viscoplastic
strains first occurred in the bottom right corner as the shock wave created by the
imposed velocity reached the lower boundary, and spread according to the material
softening law. The shear band propagation has been captured in all cases, although
there is extra diffusion exhibited by both the Stress-Particle and Standard SPH
results than with those presented by Mabssout and Herreros (2013). Contours of
localised deviatoric plastic strain, stress and vertical velocity are provided in Figure
5.12 after 0.02 seconds of simulation time. As seen in the results of the vertical slope
problem analysed in Section 5.3, the stress and velocity of Standard SPH show sin-
gularities that have contributed to noisy profiles of stress, velocity and plastic strain.
This is particularly evident at the right boundary of the soil sample where the Stan-
dard SPH results show excessive plastic strain, in an area where there should not be
any. The noisy stress profiles have been smoothed considerably with all configura-
tions of the Stress-Particle method, and the shear band at t = 0.02 s is well-defined.
Although the singularities in the velocity profiles have not been completely elimi-
nated, they have been significantly reduced, with the SP3 profile showing the most



5.4. Strain localisation in a soil sample with strain softening 101

t = 0.006 s t = 0.007 s t = 0.009 s

(a) Standard SPH (b) SP1

(c) SP2 (d) SP3

Figure 5.11: The evolution of deviatoric plastic strain ε̄p (dimen-
sionless) in the soil sample, computed with the Stress-Particle SPH

inside approach and Standard SPH.

reduction. While the overall profile of deviatoric plastic strain is smooth for the SP2
results, there is a discontinuity in the lower half of the sample where the shear band
divides into two.

The results in Figure 5.12 show a second, upper shear band that formed due
to the interaction of the velocity wave with the upper boundary. The theoretical
solution predicts the two shear bands to meet exactly half way along the left bound-
ary as this coincides with an inclination angle of 45◦ (Sluys, 1992). The SP1 and
Standard SPH profiles show shear band inclinations of approximately 45◦, while the
shear bands calculated with SP2 and SP3 exhibit inclination angles that are visibly
different to this. A similar sensitivity to the numerical discretisation configuration is
found in FEM simulations of shear band formation in softening soils. Sluys (1992)
showed that it was essential to align the diagonals of the triangular elements in FEM
to the theoretical shear band inclination angle, in order to predict it. To explore
this further, additional node-stress-point geometries have been considered. The SP2
configuration can be visualised in Figure 5.13a, where the nodes and stress-points
form a pattern that contains lines aligned in different directions at different angles.
When the stress-point positions are horizontally reflected, so are the lines created
by the node-stress-point geometry. Combining the two configurations so that there
are 4 stress-points positioned in between every 4 connected nodes (denoted as SP4),
forms a pattern where the lines are horizontally symmetric. These geometric con-
figurations are displayed in Figure 5.13a, with the respective shear band profiles at
t = 0.02 s presented in Figure 5.13b. For the reflected SP2 configuration, the discon-
tinuity in the lower shear band is reduced and the inclination angles of the upper and
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Standard SPH SP1 SP2 SP3

(a) Deviatoric plastic strain ε̄p (dimensionless)

(b) Shear stress σxy (Pa)

(c) Vertical velocity uy (Pa)

Figure 5.12: A comparison of deviatoric plastic strain, stress and
velocity profiles for the strain localisation problem at t = 0.02 s,
for Standard SPH, SP1, SP2 and SP3. The node and stress-point

positions were not updated.
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(a) Alternative node-stress-point configurations (SP2, a horizontal reflection of SP2, SP4)

(b) Localised deviatoric plastic strain ε̄p (dimensionless), for alternative configurations of
the inside approach

Figure 5.13: The dependency of the shear band profile on the node-
stress-point configuration, in the strain localisation problem.

lower shear bands are different to the shear band predicted with SP2. The results
computed with 4 stress-points inside every 4 nodes exhibit smooth lower and upper
shear bands that meet half way along the sample. Note that the SP4 configuration
contains lines that are aligned with both the lower and upper shear bands. These
results highlight that the mesh sensitivity found in FEM shear band predictions is
also relevant in Stress-Particle SPH.

Next, the positions of the nodes and stress-points were updated according to
Equation (4.113) (see Section 4.6). These results are provided in Figure 5.14 for
Standard SPH, SP1, SP2 and SP3. In this case the smoothing length was defined
as hs = 1.2∆x, while the other conditions were the same as described above. With
the position update, all three configurations of the Stress-Particle inside approach
display smooth stress profiles and well-defined shear bands at t = 0.02 s. Particularly,
the discontinuities observed in the SP2 results when the particle positions were not
updated are no longer present. This suggests that the particle position update adds
stability to Stress-Particle SPH. A possible explanation for this is related to the
result dependency on the alignment of the nodes and stress-points discussed above.
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Standard SPH SP1 SP2 SP3

(a) Deviatoric plastic strain ε̄p (dimensionless)

(b) Shear stress σxy (Pa)

(c) Vertical velocity uy (Pa)

Figure 5.14: A comparison of deviatoric plastic strain, stress and
velocity profiles for the strain localisation problem at t = 0.02 s, for
Standard SPH (with artificial viscosity), SP1, SP2 and SP3 (with
no artificial viscosity). The node and stress-point positions were up-

dated.

As the shear band represents the area where most deformation has occurred, the
particle displacement is highest in this area. When the nodes and stress-points are
allowed to move, they naturally align themselves in the direction of the propagating
region of localised strain.

While the particle position update improved the Stress-Particle SPH results,
the opposite effect was observed for the Standard SPH method. For this case the
simulation became rapidly unstable, even with a decrease in time step. In order
to obtain a solution, it was necessary to include artificial viscosity with parameters
αΠ = βΠ = 1 (with a speed of sound of cs =

√
E/ρ = 200 m s−1). These results are

shown in Figure 5.14, where the stress and velocity oscillations have been reduced
and the lower half of the shear band propagation has been captured. However, the
profiles exhibit signs of excessive, artificial shear strength, which is indicated by
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the horizontal stripes in the contour plots. It was first identified by Swegle et al.
(1994) in the simulation of two impacting metal plates that the artificial viscosity
can produce effects of artificial shear strength. The artificial viscosity acts to ensure
particles do not fluctuate relative to one another. Swegle et al. (1994) discovered that
this inhibition of relative particle motion caused the SPH particles to form ordered
chains, which provided the metal plates with extra, unrealistic strength. In addition
to the visible chain structures in the Standard SPH profiles in Figure 5.14, the fact
that the viscoplastic strains have not formed a defined shear band throughout the
top of the sample also indicates that the artificial viscosity has given the material an
excessive, non-physical strength.

The strain localisation problem was also simulated with the SPH-Average and
the SPH-MLS interpolation methods, for the SP1 configuration. These results are
shown in Figure 5.15. It can be seen that there is little difference between the
three interpolation techniques. The SPH-CSPM method is employed to transfer
information between the nodes and stress-points in all subsequent simulations in the
remainder of this research.

The strain localisation problem was repeated with the same geometry as depicted
in Figure 5.9. Instead of a symmetry condition, the left boundary was assigned to be
a free surface in the same way as for the right boundary. Additionally, the vertical
velocity on the upper boundary was decreased to zero after t = 0.02 s. The positions
of the nodes and stress-points were updated. Shear band profiles at t = 0.035 s
are shown in Figure 5.16 for Stress-Particle SPH with the SPH-CSPM interpolation
method. The SP1, SP2 and SP3 results are provided in Figures 5.16a, 5.16b and
5.16c respectively, where two shear bands have originated from the bottom corners
and spread diagonally across the sample. An inclination angle of 45◦ is shown via
the dashed line, where only the SP1 results have produced shear bands with this
angle. Those calculated with SP3 have a lower inclination angle, while the two
shear bands in the SP2 results have inclined at different angles to one another. This
unexpected anti-symmetry can be attributed to the node-stress-point configuration
in the SP2 method. Figure 5.16d shows the solution when the stress-points were
reflected horizontally, where the inclination angles of the two lower shear bands are
opposite to those calculated with SP2. The shear band profile obtained with the SP4
configuration is provided in Figure 5.16e. With the SP4 set up, the lower shear bands
have propagated at the same angle, which is lower than the theoretical solution of
45◦. Additionally, the bands are thicker than those computed with the SP1 set-up.
These results support the findings that the shear band evolution is dependent upon
the stress-point arrangement, and show that a symmetry amongst the stress-points is
desirable. They also suggest that while more stress-points equates to higher stability,
this may reduce solution accuracy. This idea is investigated with further examples
in the following sections.



106 Chapter 5. Stress-Particle inside approach results

SPH-CSPM SPH-Average SPH-MLS

(a) Deviatoric plastic strain ε̄p (dimensionless)

(b) Shear stress σxy (Pa)

(c) Vertical velocity uy (Pa)

Figure 5.15: Deviatoric plastic strain, stress and velocity profiles
at t = 0.02 s in the strain localisation problem. Results were cal-
culated with Stress-Particle SPH with configuration SP1, comparing
three different node-stress-point interpolation methods. The node

and stress-point positions were updated.
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(a) SP1 (b) SP2 (c) SP3

(d) SP2 reflected (e) SP4

Figure 5.16: Profiles of deviatoric plastic strain ε̄p (dimensionless)
at t = 0.035 s in the triaxial test simulation, comparing the results
from different node-stress-point configurations. The imposed dashed

line represents an inclination angle of 45◦.



108 Chapter 5. Stress-Particle inside approach results

Table 5.3: Drucker-Prager material parameters for the cohesive and
non-cohesive soil failure.

E (Pa) ρ (kg m−3) coh (Pa) φ (◦)
Cohesive soil 1.8 ×106 1850 5000 25

Non-cohesive soil 1.8 ×106 1850 0 25

5.5 Soil failure

In this section the soil failure problem introduced by Bui et al. (2008) is recreated.
The problem consists of a perfectly plastic Drucker-Prager material that is allowed
to collapse and deform under the effects of gravity. The material has an initial
rectangular area of 4 m in length and 2 m in height and is constrained by no-slip walls
behind the left and bottom boundaries, which were created using dummy nodes. The
problem was described with a non-associated flow rule and both a cohesive and a non-
cohesive soil were considered, which were modelled by Bui et al. (2008) using SPH.
The material parameters for both cases are provided in Table 5.3. When cohesion
was included the material exhibited severe non-physical fractures due to the tensile
instability unless a stabilisation technique was employed. To improve the simulation,
the artificial repulsive force proposed by Monaghan (2000) was included (described
in Section 4.5.3), with a tuning parameter of ε = 0.5, The results of the cohesive soil
failure provided by Bui et al. (2008) are shown in Figure 5.17a. With regards to the
non-cohesive soil, no effects of the tensile instability were observed and no artificial
repulsive force was included in the SPH model. The non-cohesive material behaviour
was purely frictional and it propagated further than when cohesive strength was
added, exhibiting fluid-like behaviour. The results of the non-cohesive soil simulation
are shown in Figure 5.17b. In both the cohesive and non-cohesive cases, the material
was described using 5000 SPH nodes, with an initial spacing of ∆x = 0.04 m and a
smoothing length of hs = 1.2∆x. The time step was defined as ∆t = 1.5× 10−5 s to
satisfy the CFL condition with a Courant number of 0.2. Bui et al. (2008) included
artificial viscosity with parameters αΠ = βΠ = 0.1 and a sound speed of c = 600 m
s−1 (which is the maximum sound speed in soil).

The Stress-Particle method has been applied to model the soil failure problem
to assess its capabilities at remedying the severe effects of the tensile instability in
the case of the cohesive material. Furthermore the simulation of the non-cohesive
material provides a test of how Stress-Particle SPH can simulate flow-type problems
involving rapid propagation and large displacements, for which the method has not
previously been applied to. The same problems have also been modelled using Stan-
dard SPH to compare against the Stress-Particle method. Both the artificial stress
(Monaghan, 2000) and particle shifting methods (Xu and Yu, 2018) are implemented
within Standard SPH to eliminate the tensile instability in the cohesive soil. The
majority of the input parameters used by Bui et al. (2008) were employed in the
current application, in order to attempt to recreate the literature results as closely
as possible. The exceptions are as follows. Bui et al. (2008) used a second order
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(a) Cohesive soil (b) Non-cohesive soil

Figure 5.17: The evolution of the cohesive and the non-cohesive soil
failure, provided by Bui et al. (2008). The contours show deviatoric

plastic strain (no scale is provided in the literature).

leapfrog time integration scheme, while the current SPH model utilises a fourth or-
der Runge-Kutta scheme. Furthermore, Bui et al. (2008) updated the soil density
according to the continuity equation, whereas here a constant density has been em-
ployed. However, it is shown in the next section that having a constant density has
little effect on the SPH results. Lastly, for the inside approach simulations, it was
essential to include repulsive particles along the wall boundary (spaced apart by a
distance of ∆x/2). This is to prevent the penetration of the interior nodes through
the wall, as discussed in Section 4.8.6.

5.5.1 Cohesive soil

The cohesive soil failure problem has first been recreated with the Standard SPH
model, along with the inclusion of the artificial stress (Monaghan, 2000) and the
particle shifting method (Xu and Yu, 2018). The results are provided in Figure
5.18. To recreate the literature results, the tuning parameter in the artificial stress
was chosen to be ε = 0.5. Plastic strains first appear in the bottom right corner
of the material due to the interaction between the moving nodes and the no-slip
boundary. The slope progressively fails as the region of irreversible deformation
localises as a shear band and propagates through the sample, forming the failure
surface. Without any treatment for the tensile instability, Figure 5.18a shows that
fractures are apparent in the soil at t = 0.6 s, which spread throughout the material
with time. As also shown by Bui et al. (2008), the use of the artificial repulsive force
suppresses the effects of the tensile instability, and the results provided in Figure
5.18b do not exhibit any non-physical fractures. The particle shifting method was
shown by Xu and Yu (2018) to perform better than the artificial force method at
removing the tensile instability in the simulation of a viscoelastic droplet impacting a



110 Chapter 5. Stress-Particle inside approach results

t = 2 s

t = 1.28 s

t = 0.88 s

t = 0.6 s

(a) Standard SPH (b) Standard SPH
with artificial repulsive

force

(c) Standard SPH
with particle shifting

Figure 5.18: Snapshots of the progressive failure of the cohesive
soil, for Standard SPH with no treatment for the tensile instability,
Standard SPH with the artificial stress (Monaghan, 2000), and Stan-
dard SPH with the particle shifting method (Xu and Yu, 2018). The
material is coloured by values of deviatoric plastic strain ε̄p (dimen-

sionless).

solid boundary. For the cohesive soil failure problem, the shifting method was able to
eliminate the effects of the instability at interior particles, but it did not completely
remove the non-physical fracturing at the free surface (see Figure 5.18c). The nodes
that are in the vicinity of the free surface are shifted in a different way to the interior
particles due to the large concentration gradients in that area (see Section 4.5.4). As
a result, the free surface nodes that exhibit clumping and subsequent separation due
to the tensile instability may not be assigned a sufficient shifting vector to prevent
the clumping. However, it is evident that the results obtained with particle shifting
(Figure 5.18c) exhibit smoother contours of deviatoric plastic strain than for the
artificial force results (Figure 5.18b).

The free surface profiles of the cohesive soil failure obtained using Standard SPH
with the artificial stress are compared against the results from the literature in Figure
5.19. Also shown are the results calculated with the artificial stress method, with
the employment of the continuity equation to update the soil density. For Standard
SPH with the artificial stress, the final height of the front of the material once it
has stopped moving is approximately 1.321 m. This is slightly higher than the
results from the literature, as shown in Figure 5.19d, which exhibit a final front
height of 1.299 m. The final horizontal position of the front of the material in the
literature is approximately 0.068 m greater than for the current Standard SPH results
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Figure 5.19: Free surface profiles for the cohesive soil problem. The
markers denote the results from the current Standard SPH model,
while the dashed line represents the results provided by Bui et al.

(2008).

with the artificial repulsive force. Also, with the latter model the material deforms
and propagates more rapidly than in the literature, which is evident in Figures
5.19a - 5.19c. In the current model, the material stopped moving at approximately
t = 1.4 s, whereas in the literature this occurred at t = 2 s. It can be seen that
updating the density has little effect on the material behaviour and it is therefore
not responsible for the differences between the models. A possible reason for the
discrepancies between the rate of the material movement is the difference in the
numerical implementation of the governing equations – in the current application
a fourth order accurate RK4 scheme is employed, while Bui et al. (2008) utilised
a second order Leap From method. Alternatively, the literature results behave as
if more numerical damping has been included than in the current model, such as
the progressive application of the gravity term. However, what is most significant is
that the current Standard SPH model is able to eliminate the non-physical fractures
with the artificial repulsive force, and that the material profile generally aligns with
the literature once it has stopped deforming. Therefore, the current Standard SPH
model with the artificial stress method is used to compare the Stress-Particle SPH
results against for the cohesive soil failure problem.

Snapshots of the node positions in the cohesive soil failure problem, computed
with the SP2 configuration of Stress-Particle SPH, are shown in Figure 5.20a. In the
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t = 0.66 s

t = 1 s

t = 1.5 s

(a) Without any treatment of isolated
nodes

(b) Assign the velocity of isolated nodes
to be zero

Figure 5.20: Particle positions at different times for the cohesive
soil failure, calculated with SP2. The results compare the node be-
haviour with and without the treatment of isolated SPH nodes – note
the behaviour of the isolated nodes when no treatment is included.

same way as for Standard SPH, the material in the Stress-Particle method stopped
moving at approximately t = 1.4 s. There are no fractures in the material due to the
tensile instability. However, the nodes exhibit peculiar behaviour at the very front of
the deforming soil, in the region next to the wall boundary. At t = 0.66 s, the nodes
in this area have detached from the rest of the material. This is possibly an effect
of the boundary repulsive force, which is required in the inside approach to prevent
the penetration of SPH nodes through the boundary. Furthermore, there are fewer
stress-points at the material boundaries, which results in less accurate calculations.
At later times, the isolated nodes continue to travel separately from the main bulk
of material, which can be seen at times t = 1 s and t = 1.5 s in Figure 5.20a.
Therefore as a remedy for this unrealistic behaviour, the inside approach method is
adapted so that the isolated nodes (those that do not interact with any stress-points)
are assigned a zero velocity. The results of the Stress-Particle SP2 method with this
treatment of the isolated nodes are provided in Figure 5.20b, where it can be observed
that the treatment prevents the isolated nodes from separating completely from the
bulk of the material. This method of tending to isolated nodes is included in the
remainder of the inside approach simulations.

The material evolution coloured by contours of deviatoric plastic strain is pro-
vided in Figure 5.21 for SP1, SP2 and SP3. The unrealistic particle clumping and
subsequent material fracture is not evident in the results for any of the node-stress-
point configurations. In the plastic strain profiles provided by Bui et al. (2008)
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Figure 5.21: Snapshots of the progressive failure of the cohesive
slope, for SP1, SP2 and SP3. The material is coloured by values of

deviatoric plastic strain ε̄p (dimensionless).

displayed in Figure 5.17, the shear band is composed of two thinner bands that both
originate from the bottom right corner. These two separate bands are not as dis-
tinguished in the Stress-Particle results, indicating that the method has smoothed
over this detail. The SP1 results show some additional regions of localised plastic
strain close to the intersection between the two walls, suggesting that the material
has slipped along the wall. An explanation for this is that there are not enough
stress-points to interact with the dummy nodes behind the boundaries, to simulate
the no-slip effect. The node positions are shown in closer detail in Figure 5.22 after
2.5 seconds of simulation. Here it can be seen that there are in fact very small frac-
tures at the material free surface in the SP1 results (see Figure 5.22a), which are not
present for the SP2 or SP3 methods (shown in Figures 5.22b and 5.22c respectively).

The material free surface obtained with Stress-Particle SPH is compared with the
results of Standard SPH with the artificial stress and the particle shifting methods
in Figure 5.23. The results of SP1, SP2 and SP3 differ slightly from one another.
In the non-deformed region of the material (adjacent to the left wall), the height of
the material in the SP1 model is lower than for the other models, indicating that
it has compressed in this region. This can be seen at all times shown in Figures
5.23a - 5.23d, where the red, filled diamond pointers represent the SP1 results. In
the deformed region of the material, the SP1 and SP2 profiles align closely. The SP3
results exhibit some extra stiffness than for SP1 and SP2, and the free surface profile
(represented by the blue diamond pointers) is slightly higher than for SP1 and SP2
in Figures 5.23b – 5.23d. The final height of the material front modelled with the
SP3 configuration is approximately 1.395 m, whereas for SP1 and SP2 it is 1.366
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(a) SP1 (b) SP2 (c) SP3

Figure 5.22: The node positions at the front of the material at
t = 2.5 s for the cohesive soil problem, calculated with configurations
SP1, SP2 and SP3 of the inside approach. Note the small fractures
that are present at the free surface for the SP1 configuration, which

are not present in the SP2 and SP3 configurations.

m. For Standard SPH with the artificial stress this value is approximately 1.319 m,
which is around 0.076 m less than for the SP3 results. With regards to Standard
SPH with the particle shifting method, the results are in close agreement with those
of the artificial stress method. The overall material behaviour is qualitatively similar
for all of the SPH models used to produce the results in Figure 5.23. In the region of
the material where plastic strains have occurred, the Standard SPH results exhibit
an uneven free surface, whereas for the Stress-Particle method the free surface is
smooth.

The free surface profiles presented in Figure 5.23 show that there are slight differ-
ences in the behaviour of the cohesive material when modelled with the five different
SPH methods. Particularly, the final height of the front of the material differs be-
tween the models, with the results from SPH with artificial stress exhibiting the
lowest height. Although it is plausible to dismiss these differences as being insignif-
icant, it is useful to analyse why the results do not completely coincide with one
another. A possible explanation for the Stress-Particle SPH results exhibiting extra
stiffness than for Standard SPH in Figure 5.23 is that the tensile instabilities were
not completely eliminated in the Stress-Particle method. If the particle clumping
has not been fully removed then this could prevent the nodes from ‘spreading out’
as much as they would in the absence of the particle clumping. However, the results
provided in Figure 5.18c show that the particle shifting method is not able to com-
pletely eliminate the effects of the tensile instability in the cohesive soil problem,
yet the free surface profiles align overall between the particle shifting and artificial
stress methods. Furthermore, the results of the Stress-Particle SP2 and SP3 methods
presented in Figure 5.22 do not exhibit any obvious effects of the instability. The
disparities in the free surface profiles could also simply be a result of the different
processes that are performed to calculate the variables and variable gradients in the
Standard SPH and Stress-Particle methods. It is important to highlight that the
behaviour of the material modelled with SPH with the artificial stress method is
dependent on the value of the tuning parameter ε, which defines the magnitude of
the inter-particle repulsive force. Figure 5.24 shows the free surface profiles of the
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Figure 5.23: Free surface profiles for the cohesive soil failure prob-
lem. The different markers correspond to the results calculated with
Standard SPH with the artificial stress, Standard SPH with particle

shifting, SP1, SP2 and SP3.
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Figure 5.24: Free surface profiles of the cohesive soil at t = 1.28 s,
calculated with Standard SPH with the artificial stress. The different
markers correspond to different values of the tuning parameter ε.

cohesive soil for Standard SPH with different values of ε. It can be seen that as ε is
increased, the SPH nodes spread further apart and contribute to a change in mate-
rial behaviour. This demonstrates that the artificial stress method can produce an
excessive repulsive force between particles, causing the SPH nodes to spread apart
in an unrealistic manner.

To gain further understanding of the alternative SPH stabilisation techniques,
the final node positions are compared in Figure 5.25 for Standard SPH with the
artificial repulsive force, Standard SPH with the particle shifting method and the
Stress-Particle SP3 method. The material is coloured by values of vertical stress,
and the nodes in the region where the tensile instability occurs are shown in detail.
The results of the artificial stress method shown in Figure 5.25a exhibit a noisy stress
profile, particularly along the region of the shear band. The stress profile obtained
with the particle shifting method is smoother (Figure 5.25b), due to the variable
update of the stress that is performed when the particles have been shifted (see
Section 4.5.4). Notably, the Stress-Particle SP3 method has produced the smoothest
stress profiles with no obvious fluctuations. Concerning the structure of the particles,
the nodes from the artificial force and the particle shifting methods have an isotropic
configuration. The isotropy of the particles is an inherent feature of both the artificial
stress force and particle shifting methods, which act to avoid voids in the material. It
is this elimination of material voids that prevents the effects of the tensile instability
from occurring. On the contrary, the particle positions in the SP3 method have
formed structures that align with the trajectories of the soil movement. The presence
of such structures is an indication of the accuracy of the scheme – the more accurate
a meshless method is, the more likely that the particles will accurately follow the
flow trajectories (Oger et al., 2016). These results highlight that, unlike with the
artificial repulsive force and particle shifting methods, the Stress-Particle method
reduces the errors associated with the tensile instability in a more natural way than
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(a) Standard SPH with
artificial stress

(b) Standard SPH with
particle shifting

(c) SP3

Figure 5.25: Node positions at the end of the cohesive soil failure
problem, for Standard SPH with the artificial stress, Standard SPH
with particle shifting and Stress-Particle SPH with the SP3 configu-
ration. The nodes are coloured by values of vertical stress σyy (Pa).

for alternative methods.
In Standard SPH, the presence of anisotropic structures (such as those observed

in Figure 5.25c) has been linked to a decrease in accuracy and stability of the nu-
merical method. The accuracy of the SPH kernel approximation strongly depends
on the distribution of the particles, and can significantly decline in areas where there
is high particle disorder (Quinlan, Basa, and Lastiwka, 2006; Antuono et al., 2014).
Oger et al. (2016) showed for a range of fluid flow problems that the presence of
anisotropic structures can lead to strong particle disordering, which was detrimental
to the performance of SPH. In the considered examples, the deterioration of the SPH
simulation was mainly associated with noisy pressure fields. However, the Stress-
Particle SPH method naturally smooths the pressure (or stress), thereby potentially
counteracting the problems that anisotropic particle structures can bring. Further-
more, it is expected that the structures will be less problematic for the Stress-Particle
method than for Standard SPH, as the gradient calculations are split up over the
nodes and the stress-points. It is clear from the results shown in Figure 5.25 that the
presence of the anisotropic structures have not reduced the quality of the cohesive
soil simulation. Nonetheless, the presence of particle structures should be analysed in
subsequent simulations to ensure that they have not affected the simulation quality.

Particle position update

The SPH nodes in the Stress-Particle method have been shown to form coherent
structures that follow the material trajectories (see Figure 5.25c). As discussed
above, this is an indication of the accuracy of the method, but it also has the poten-
tial to eventually reduce the quality of the simulations (Oger et al., 2016). Although
a significant reduction in quality has not been obvious in the Stress-Particle method
thus far, it is beneficial nonetheless to include a technique that can prevent the dete-
rioration of the Stress-Particle method in the presence of anisotropic structures. The
XSPH method (Monaghan, 1992) is employed to update the particle positions in a
way that smooths the velocity field and ensures that the particles do not become too



118 Chapter 5. Stress-Particle inside approach results

(a) SP1 – without XSPH (b) SP1 – with XSPH

(c) SP2 – without XSPH (d) SP2 – with XSPH

(e) SP3 – without XSPH (f) SP3 – with XSPH

Figure 5.26: The node positions at the front of the material at
t = 2.5 s, for the cohesive soil failure problem. The results show the
effect of updating the node and stress-point positions via the XSPH

method, for SP1, SP2 and SP3.

close to one another (see Section 4.3). This assists in avoiding the strong disordering
of particles which is often associated with anisotropic particle structures. The cohe-
sive soil problem was therefore modelled with Stress-Particle SPH with the XSPH
position update, with a tuning parameter of εx = 0.5. Figure 5.26 shows the particle
positions at t = 2.5 s for SP1, SP2 and SP3, updated with and without the XSPH
method. When the particle positions were updated without XSPH, some particle
disordering is present in the SP1 configuration in the upper half of the shear band
(see Figure 5.26a). This region is also where the small fractures occur in the SP1
method, suggesting that the values of stress and velocity in this area are not accurate.
When the XSPH method was used to update the SP1 node positions, Figure 5.26b
shows that the particles form smooth trajectories throughout the material. Similar
results are also obtained for the SP2 and SP3 configurations in Figures 5.26c - 5.26f
(although the particle disordering without the XSPH method is not as obvious for
the SP2 and SP3 configurations than for SP1).

The XSPH technique has also been used to update the node positions in both the
Standard SPH method and SPH with the artificial stress. A comparison of the node
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(a) Standard SPH without XSPH (b) Standard SPH with XSPH

(c) Standard SPH with the artificial
repulsive force, without XSPH

(d) Standard SPH with the artificial
repulsive force, with XSPH

Figure 5.27: Profiles of the cohesive soil when the material had
stopped deforming. Compared are the results of Standard SPH with

and without the XSPH particle update method.

positions with and without XSPH is provided in Figure 5.27. Although the inclusion
of the XSPH method is not sufficient to remove the effects of the tensile instability,
it appears to somewhat reduce the non-physical material fractures. For Standard
SPH, the particles updated with the XSPH method, shown in Figure 5.27b, exhibit
less disordering than when XSPH was not used. Conversely, the performance of the
artificial stress method is impaired when the XSPH technique is included. With the
combination of the artificial stress and the XSPH method, non-physical fractures are
observed near the material free surface in Figure 5.27d. The artificial stress term is
included in the momentum equation to repel particles when they clump together in
a state of tensile stress. The XSPH method updates the node positions according
to an averaged velocity, as opposed to their discrete velocities. The results shown
in Figures 5.27c and 5.27d suggest that this counteracts the ability of the artificial
stress method to eliminate the tensile instability effects.

5.5.2 Non-cohesive soil

The non-cohesive material collapsed and propagated downstream at a rapid rate,
exhibiting flow-type behaviour. The implementation of stress-points within SPH has
not been applied to this type of problem before, and extending the Stress-Particle
method to model such problems is one of the key challenges of the current research.
Although no tensile instability was observed by Bui et al. (2008) in the collapse of
the non-cohesive soil, recreating the results has the purpose of assessing how the
Stress-Particle method can deal with high displacement problems that are relevant
to the post-failure behaviour of landslides. First, the problem has been modelled
with Standard SPH to determine how closely the current model can recreate the
results of Bui et al. (2008). Snapshots of the material free surface are provided in
Figure 5.28, for the current Standard SPH model and the results from the literature.
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Figure 5.28: Free surface profiles for the non-cohesive soil problem.
The markers denote the results of the current Standard SPH model,
while the dashed line represents the results provided by Bui et al.

(2008).

The overall behaviour of the Standard SPH results coincides well with those from
the literature, and the free surface profiles align within a reasonable degree at all
times. The small differences in the profiles are attributed to the differences in the
numerical implementation between the current model and the literature model.

The Stress-Particle method, with its current set-up, is unable to capture the
dynamics of the non-cohesive soil problem. This is evident in the results provided
in Figure 5.29a, which show the node (depicted by the black dots) and stress-point
(depicted by the red dots) positions at t = 2.5 s for SP1, SP2 and SP3. The nodes
and stress-points exhibit highly unstable behaviour at the front of the material. It
can be seen that the stress-points are relatively sparse in this area for all node-stress-
point configurations, which contributes to the deterioration of the simulation. The
lack of stress-points at the material front is due to the fact that in high velocity
problems, updating the position of the stress-points with an interpolated velocity
does not ensure that there will always be a sufficient number of them in the support
domain of an SPH node. Additionally, with the Stress-Particle inside approach it
is essential to include a repulsive boundary force that acts on the SPH nodes to
prevent them from penetrating the boundary. This is also likely to interfere with the
material behaviour, particularly when the material layer above the boundary is thin.
The simulations were not improved when the nodes and stress-points were updated
according to the XSPH method, shown in Figure 5.29b.
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Figure 5.29: Particle positions at t = 2.5 s for the non-cohesive
soil failure problem, calculated with the SP1, SP2 and SP3 config-
urations. The nodes are represented by the black points, while the

stress-points are denoted by the smaller, red points.

5.6 Conclusion

This chapter has been dedicated to the application of Stress-Particle SPH (developed
and implemented by the author) to problems involving the behaviour of soil, that
are relevant to landslide initiation and propagation mechanisms. Furthermore, the
role of the stress-points has been analysed and assessed in more detail than has
been done before. This analysis has not only been focussed on how the stress-points
combat the instabilities that are prevalent in SPH (the zero-energy modes and the
tensile instability), but also to how they affect the numerical solution in general.
The underlying procedure was first validated in one dimension by recreating the
results of a shock wave in a bar, introduced by Dyka, Randles, and Ingel (1995).
The Stress-Particle method was then considered in two dimensions, with the ‘inside
approach’ arrangement of the nodes and stress-points. The inside approach has been
applied to a range of problems involving soil dynamics from the literature, with the
implementation of both a viscoplastic Perzyna and an elastoplastic mathematical
model. These problems consist of: the vertical slope, strain localisation in a soil
sample and the failure of cohesive and non-cohesive soil. From the results presented
in this chapter, a number of conclusions can be made regarding the role of stress-
points within SPH.

To compare with the Stress-Particle SPH model, Standard SPH was also em-
ployed to obtain a solution of the considered problems. In all cases, the Standard
SPH results exhibited noisy stress profiles with singularities as a result of the zero-
energy modes. The Stress-Particle method was able to drastically reduce the effects
of the zero-energy modes for all configurations, and produce smooth stress profiles. In
general, the Stress-Particle results support the conclusion that the higher the node-
stress-point ratio, the higher the quality of the SPH simulation. This was observed
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in all of the problems, where smoother stress profiles were produced when more
stress-points were included. This conclusion was also supported with regards to the
tensile instability – small non-physical fractures were present in the SP1 results for
the cohesive soil failure problem, which appeared to be completely eliminated with
the SP2 and SP3 configurations. However, the performance of the Stress-Particle
method is not completely determined by the stress-point quantity. The arrangement
of the stress-points was also shown to affect the quality of the SPH simulation. This
was particularly evident in the results of the strain localisation in the soil sample,
presented in Section 5.4. It was observed that the inclination of the shear band
was affected by the stress-point composition, and the results were favourable when
the configuration was symmetric about the vertical axis. Moreover, a higher node-
stress-point ratio produced a thicker, less defined shear band. Therefore, the SP1
configuration produced the most satisfactory results for this problem.

The stress-points have been shown to pose problems in the boundary regions.
This is unsurprising, as it is well known that the Standard SPH method suffers
from accuracy-related issues at the boundaries. However with regards to Stress-
Particle SPH, it is difficult to pinpoint the stress-point related boundary issues. In
the elastic vertical slope problem (Section 5.3.1), having more stress-points near the
boundaries contributed to discontinuities in the stress profiles in this region. For the
SP1 configuration, with less stress-points near the boundaries, the discontinuities
were not present. However, for the viscoplastic case (Section 5.3.2) it was essential
to include extra boundary stress-points to accurately predict the evolution of plastic
strain in the boundary region. Furthermore, when dummy nodes were employed for
the simulations of the cohesive and non-cohesive soil failure in Section 5.5, a sufficient
number of stress-points was required to accurately simulate the no-slip condition at
the wall boundaries. It is suggested that future work involves developing a more
sophisticated treatment of boundary conditions within Stress-Particle SPH.

A notable result in this chapter is the ability of the Stress-Particle method to
eliminate the severe effects of the tensile instability in the problem of the cohesive
soil failure. Although stress-points were originally introduced within SPH by Dyka,
Randles, and Ingel (1995) to combat the tensile instability, the results of a linear
stability analysis performed by Belytschko et al. (2000) suggested that they can
only increase the stress threshold at which they occur. Following this publication,
stress-points were not utilised in the literature with the purpose of alleviating the
tensile instability. In Section 5.5, the non-physical fracturing in the cohesive soil was
completely eliminated with a sufficient node-stress-point ratio. Additionally, further
insight was provided on the mechanism of how the stress-points act to improve
SPH. In the Stress-Particle SPH results, the SPH nodes closely followed the flow
trajectories, indicating the accuracy of the scheme. It is this increase in accuracy,
combined with the stability associated with splitting the numerical integration over
two sets of particles, that prevents the onset of the tensile instability. What’s more,
unlike the artificial stress method that is commonly used to remove the effects of the
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Table 5.4: The computational time taken (hours, to one decimal
place) to simulate 2.5 seconds of the cohesive soil problem, comparing

Standard SPH, SP1, SP2 and SP3

Standard SPH SP1 SP2 SP3
Without XSPH 5.3 10.6 18.3 28.5
With XSPH 7.8 15.9 23.9 33.5

tensile instability, no parameter tuning is required for Stress-Particle SPH.
A drawback of using the Stress-Particle SPH method over Standard SPH is the

increase in computational expense. Table 5.4 shows the time taken in hours to sim-
ulate 2.5 seconds of cohesive soil failure, for Standard SPH and Stress-Particle SPH
(with and without the XSPH method). For the SP1 configuration, the computa-
tional time is approximately double that of Standard SPH, regardless of whether or
not XSPH is included. With an increase in the node-stress-point ratio from config-
uration SP1 to SP2, the computational time increases by a factor of approximately
1.7 when XSPH is not included, and 1.6 when XSPH is included. From SP2 to SP3,
the increase in computational time is approximately 1.5 and 1.4, with and without
XSPH respectively. Therefore, simulations performed with Stress-Particle SPH pro-
vide a compromise between accuracy and stability, and computational time. With
added model complexity, such as the extension from two to three dimensions, the
computational expense will increase further and the use of Stress-Particle SPH may
not be viable in terms of computational efficiency. However, methods such as paral-
lel computing and the implementation of graphics processing units could be utilised
to increase the efficiency of Stress-Particle SPH significantly. Such improvements
in computational efficiency are beyond the scope of the current investigation. The
two-dimensional problems of interest in the current work are simulated within a
reasonable time frame.

Despite there being certain features of the Stress-Particle method that require
further attention, the method has been shown to bring significant benefits to the
majority of the problems presented in this chapter. These problems are relevant
to the behaviour of soil upon failure (and therefore landslide initiation), and are
limited to those that do not undergo rapid velocities and large displacements. In
Section 5.5.2, the Stress-Particle method was applied to model the failure of a non-
cohesive soil, which exhibited flow-type behaviour. The method broke down for this
problem, and the technique of updating the stress-point position was not sufficient
to ensure that there were enough stress-points in the vicinity of each node. At the
front of the propagating material, where velocities were highest, the node-stress-
point distribution became highly irregular and resulted in the deterioration of the
numerical simulation. For application to the post-failure behaviour of landslides,
Stress-Particle SPH must be extended to be able to capture the dynamics of flow-type
problems. Consequently, the next chapter of this research is devoted to improving
the Stress-Particle method for application to the post-failure stage of landslides.
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Chapter 6

Stress-Particle SPH for large
displacement problems

6.1 Introduction

In the previous chapter, the role of stress-points in SPH was explored with regards
to problems involving soil behaviour. For this, different numbers and patterns of
stress-points were examined, where they were initially arranged inside every ‘virtual
quadrilateral’ of nodes. In the current research, this method of arranging the stress-
points has been denoted the ‘inside approach’. While Stress-Particle SPH with the
inside approach was able to eliminate the effects of the zero-energy modes and the
tensile instability in most of the problems considered, it could not accurately predict
the rapid collapse of a non-cohesive soil. This shortcoming was attributed to the
method by which the stress-point positions were updated. As the velocity is not
stored on the stress-points, the velocity used to update the stress-point positions was
interpolated from surrounding nodes. This method becomes inaccurate for problems
involving large displacements and high velocities, as it does not ensure that there is a
sufficient number of stress-points in the vicinity of each node. Therefore this chapter
focusses on extending the capabilities of Stress-Particle SPH to model problems with
large displacements, which stress-points have not been applied to before. To fulfil
the primary aim of the current research – the development of a stable numerical
tool that is applicable for general landslide behaviour – Stress-Particle SPH must be
capable of capturing large displacements that are relevant to landslide propagation.
All previous applications of stress-points have been confined to problems exhibiting
relatively low displacements (Randles and Libersky, 2000; Rabczuk and Belytschko,
2004; Sanchez and Randles, 2012).

Rather than having the stress-points initially placed inside virtual quadrilater-
als, for the application to large displacements they are arranged with respect to
each node, where a predefined number of stress-points are assigned to every node.
This method of arranging the nodes and stress-points is referred to as the ‘outside
approach’ and examples of different configurations are provided in Figure 6.1. Ar-
ranging the stress-points in this way offers a number of potential benefits for large
displacement problems: as each node is associated with one or more stress-points,
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(a) IA (b) IB (c) IIA (d) IIB

(e) IIC (f) IID (g) IIIA (h) IVA

Figure 6.1: A depiction of the Stress-Particle outside approach.

t

t+ ∆t

Figure 6.2: A sketch depicting the stress-points positions following
their associated node in the Stress-Particle outside approach.

the stress-point positions can be updated according to the position of the node. The
stress-points can therefore follow the node for the duration of the simulation as shown
in Figure 6.2, which ensures that there are always enough stress-points in the domain
of influence of each node. With this method of updating the stress-point positions,
it is no longer necessary to apply the boundary repulsive force that prevents the
penetration of nodes through the boundaries. Furthermore, in the outside approach
it is possible to remove the influence of the stress-points in areas where they may
pose problems for the numerical calculations. This is achieved by assigning the posi-
tions of the problematic stress-points to be equal to the position of their associated
node. In the outside approach this technique of reassigning the stress-point position
is applied in two cases. First, the stress-points that are associated with nodes mov-
ing along the wall boundary are reassigned, as depicted in Figure 6.3. Moving the
positions of these stress-points to align with their corresponding node is useful, as
the addition of stress-points complicates the interaction between the interior SPH
particles and the dummy nodes. Secondly, the stress-points that are connected to
nodes with a low number of neighbours are also shifted, to ensure the momentum
conservation of the system. Further details on the stress-point reassignment method
are provided later in this chapter.

In this chapter, Stress-Particle SPH with the outside approach is utilised to model
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(a) Before stress-point adaptation at
the boundaries

(b) After stress-point adaptation at
the boundaries

Figure 6.3: A depiction of the nodes and stress-points in the outside
approach, in the proximity of the wall boundary.

three problems regarding soil behaviour. First, it is applied to the same problem of
the non-cohesive soil failure described in Section 5.5, which involves large displace-
ments that could not be accurately modelled with the inside approach. The second
problem considered is the failure of the cohesive soil, also introduced in Section 5.5,
which exhibits effects of the tensile instability. This problem is simulated to verify
whether the outside approach is as efficient as the inside approach at combating the
tensile instability. The third problem is the collapse and propagation of a Von Mises
material, with a Perzyna rheological model. This problem exhibits both the tensile
instability and large displacements, thus it serves as a good test of the capabilities
of the outside approach in terms of removing the instability and capturing the large
displacements. The effects of the node-stress-point arrangement and the procedure
in which the stress-point positions are updated are analysed in all three problems.
The different arrangements will be referred to via the labels given in Figure 6.1.
Due to the benefits outlined in the previous chapter, the SPH particle positions have
been updated with the XSPH method (Monaghan, 1989) (with εx = 0.5) in all of
the following examples.

6.2 Non-cohesive soil failure

The Stress-Particle SPH method with the outside approach has been first employed
to predict the failure of the non-cohesive soil, originally modelled with Standard
SPH by Bui et al., 2008. A full problem description is provided in Section 5.5.
No tensile instability was observed in this problem and therefore no technique is
required for its removal. However, the simulation provides an indication of the
accuracy of the Stress-Particle method in the absence of the instability, and its
ability at capturing large displacements. For comparison, also presented are the
results computed with Standard SPH. Unless stated otherwise, the positions of the
stress-points were updated by ensuring that they followed their associated node for
the duration of the simulation. Dummy nodes were used to simulate the no-slip
walls and no boundary repulsive force was included. In the outside approach, the
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positions of certain stress-points are reassigned to coincide with the positions of their
associated nodes, as discussed above. The effect of this adaptation of the stress-points
is detailed in Section 6.2.1, for the non-cohesive soil failure problem.

Figure 6.4 displays the particle positions at t = 2.5, for the node-stress-point
configurations given in Figure 6.1. Figures 6.4b and 6.4c show the results for config-
urations IA and IB respectively, where one stress-point is attached to each node. In
these cases, the final node positions are extremely different both from those of Stan-
dard SPH and from one another. For configuration IA the nodes have not reached
the end of the run-out surface, while the nodes have exceeded this length for con-
figuration IB. Depending on which side of the node the stress-point is positioned,
both the value and the sign of the gradient of the smoothing kernel are different.
With only one stress-point, the influence of the kernel is weighted towards one side,
explaining the difference between Figures 6.4b and 6.4c. When more stress-points
are attached to each node, as for Figures 6.4d - 6.4h, the results exhibit the same
behaviour as for Standard SPH. Having more stress-points per node provides a wider
range of interpolation points and a more accurate representation of the average flow
field.

It is important to note that for this particular example, the influence of the
stress-point is strongly dependent on whether it is placed on the left or the right
hand side of the node, and not on its vertical position. This is because in this case
the horizontal velocity gradient is stronger than the vertical, as the material rapidly
flows downstream. In problems where the vertical velocity gradient is comparable
to, or greater than, the horizontal, it is expected that the vertical position of the
stress-point would have a larger influence on the material behaviour. The free surface
profiles calculated with two stress-points per node and three stress-points per node
are compared directly with the results of Bui et al., 2008 in Figure 6.5. The profiles
agree for all three node-stress-point configurations, showing that the Stress-Particle
SPH method is capable of capturing the large displacements in soil flow problems,
provided an appropriate node-stress-point arrangement.

Contour plots of vertical stress at t = 2.5 s are provided in Figure 6.6, for con-
figurations IIA, IIB, IIC, IID and IIIA. The stress profile for Standard SPH exhibits
noisy areas due to stress fluctuations resulting from the zero-energy modes. Noisy
stress profiles were also observed by Nguyen et al., 2017 when simulating the collapse
of a non-cohesive soil. There the stress profiles were smoothed via an MLS interpola-
tion every specified number of time steps. Here, the Stress-Particle SPH method has
also succeeded in smoothing the stress profiles for the configurations shown. How-
ever, the results produced with configuration IIC (with two stress-points above each
node on either side) differ significantly from the stress profiles for the other configu-
rations. In the former case, the stress magnitude is lower in the bottom left region
of the material than for the other results. With regards to the other configurations,
the contour plots computed with the outside approach are considerably smoother
than those of Standard SPH. This is because the stress on the nodes is calculated



6.2. Non-cohesive soil failure 129

(a) Standard SPH (b) IA

(c) IB (d) IIA

(e) IIB (f) IIC

(g) IID (h) IIIA

Figure 6.4: Node positions at t = 2.5 s for the non-cohesive soil
failure problem. The different outside approach configurations are

shown in Figure 6.1.

by smoothing over the stress values of the surrounding stress-points within each
time step, and the Stress-Particle method therefore has the inherent advantage of
producing smooth stress profiles. It was shown in the previous chapter that a high
number of stress-points resulted in smoother stress profiles (albeit at the expense of
an increase in computational time). In Figure 6.6 the stress profiles calculated with
configuration IIIA are not evidently smoother than for the configurations with two
stress-points per node.

6.2.1 Adaptation at the boundaries

The results provided in Section 6.2 were calculated with the outside approach with
the adaptation of the stress-points near the wall boundary – for moving nodes that
interacted with the dummy nodes defining the boundary, their associated stress-
points were reassigned to have the same position as the node itself, as depicted
in Figure 6.3. The reasoning behind the adaptation of stress-points at the wall
boundaries is as follows. The stress-points use information from the dummy nodes
in the calculation of the velocity gradient in order to prevent the particles from
penetrating the boundary. Therefore, the no-slip effect results from the interactions
between the stress-points and dummy nodes, as opposed to the node-dummy node
interaction. In consequence, the number of stress-points and their position with
respect to the nodes affects the interaction between the material and the boundary.
It is not essential to implement the adaptation of the stress-points in the proximity of
the wall. However, the interaction between the wall and the interior particles can vary
depending on the node-stress-point configuration, as discussed above. Furthermore,
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Figure 6.5: Free surface profiles for the non-cohesive soil problem.
The black circle markers denote the results from the current Stan-
dard SPH model with the artificial stress, while the other markers

represent the outside approach results.

(a) Standard SPH (b) IIA

(c) IIB (d) IIC

(e) IID (f) IIIA

Figure 6.6: Node positions at t = 2.5 seconds for the non-cohesive
soil failure problem, coloured by vertical stress σyy (Pa). Note the

noisy areas of the stress profile for the Standard SPH results.
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when two stress-points are placed above each node in configuration IIC, there are not
a sufficient number of stress-points near the boundary to ensure that the nodes don’t
penetrate the wall. Thus the inclusion of the stress-point treatment at the boundaries
is preferable, to reduce the inconsistencies between the performance of the different
configurations and to eliminate the need for any repulsive force to prevent particle
penetration into the boundary. Also, the adaptation technique has been found to
improve the model performance only in areas where the material is propagating
along the boundary. In areas where the overall material behaviour is stationary,
adapting the stress-points can actually interfere with the development of a smooth
stress profile. Therefore the stress-points are adapted for nodes in the proximity of
the boundary that have an absolute velocity that is greater than a threshold value
utol. In this research, the technique of adapting the stress-point position near the
walls has been included in all simulations with the outside approach, with utol = 0.4

m s−1.

6.2.2 Adaptation at isolated nodes

The method of shifting the stress-points to coincide with the positions of their asso-
ciated nodes is also performed for isolated nodes. Consider an isolated particle i with
two stress-points attached at the same distance from it. Note that here the term
isolated refers to the interaction between nodes, and not nodes and stress-points.
The velocities on the stress-points are identical because they are calculated by inter-
polating over the single node (since the kernel function is symmetric with respect to
absolute distance). Therefore, in the absence of any external force, the stresses of the
stress-points are zero since they depend on the node-stress-point velocity difference.
Consequently, the stress gradient at the node is zero, and it travels with a constant
velocity. However, if one of the stress-points is subjected to an external force, such
as an interaction with a dummy node, then the stresses at the two nodes will be dif-
ferent which will cause a non-zero stress-gradient at the node. As a result, the node
will accelerate in a non-physical manner and the conservation of momentum will not
hold. As a result, in the outside approach the stress-points that are associated with
isolated nodes are shifted so that they have the same position as the node. This
ensures a zero stress gradient at the isolated node, since the value of the kernel gra-
dient is zero at the position of the node itself. To employ the stress-point adaptation
for isolated nodes, the number of node-node interactions, nint, is recorded at each
calculation step, and the shifting method is performed if nint ≤ 2. This threshold
for nint is chosen because these particles are more likely to become isolated than
those with a higher number of neighbours. Furthermore, the Stress-Particle method
is most effective when there are a sufficient amount of stress-points for the nodes to
interact with.

The procedure of reassigning the position of certain stress-points is not possible
to include in the inside approach as the stress-points are not connected to individual
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nodes. In the remainder of this research, the procedure is employed within the
outside approach for all simulations.

6.2.3 Updating the stress-point positions

In the Stress-Particle inside approach, the positions of the stress-points are updated
according to their interpolated velocity. As discussed in Section 5.5.2, this method of
updating the stress-points is unsuitable for problems with large displacements. De-
spite this, it has here been applied within the outside approach and used to simulate
the non-cohesive soil problem. However, unlike in the inside approach, certain stress-
points have been shifted according to the conditions described above in Sections 6.2.1
and 6.2.2. That is, the stress-points associated with nodes at the boundaries (for
|u| > 0.4), as well as those associated with isolated nodes (nint < 2), are reassigned
to have the same position as their corresponding node. The purpose of updating the
stress-points in this way is to check if it is sufficient to move them according to their
interpolated velocities if the stress-point shifting is also performed, or if it is essential
that all stress-points follow their associated nodes.

Snapshots of the nodes are shown in Figure 6.7 for the IIB node-stress-point
configuration, where the stress-point positions were updated as described above.
Compared are the results with and without the reassignment of specific stress-points.
Figure 6.7a shows the results obtained when all of the stress-points were updated
according to their interpolated velocities. At t = 1.1 s, some nodes at the front
have started to propagate away from the rest of the material, and at t = 1.4 s the
behaviour is visibly unstable in this region. When the specified stress-points were
adapted (see Figure 6.7b), the node behaviour is considerably more stable up until
t = 1.4 s. However, their are discontinuities in the node profile and at t = 2.5 s
the nodes at the material front exhibit unrealistic behaviour. Therefore, even with
the mechanism of adapting certain stress-points, it is not appropriate to update the
majority of the stress-points with their interpolated velocities for large displacement
flows.

6.3 Cohesive soil failure

In addition to being able to model flow-type problems, the Stress-Particle outside
approach must retain the stabilising effects of the inside approach in order to fulfil
the original purpose of including stress-points within SPH. That is, to remedy the
effects of the tensile instability and the zero-energy modes. The smooth stress profiles
presented in Figure 6.6 show that the outside approach is capable of reducing stress
fluctuations associated with zero-energy modes. To determine the abilities of the
method at eliminating the effects of the tensile instability, it has been applied to the
problem of the cohesive soil failure introduced by Bui et al., 2008. It was shown
in Section 5.5 that this problem suffers from severe tensile instabilities unless a
stabilisation technique is employed. A selection of the configurations shown in Figure
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t = 0.8 s

t = 1.1 s

t = 1.4 s

t = 2.5 s

(a) No stress-point adaptation
(b) Stress-points adapted at specific

nodes

Figure 6.7: The node evolution for the non-cohesive soil failure with
configuration IIB. Compared are the results where all of the stress-
points were moved via their interpolated velocities, against when cer-
tain stress-points were adapted as described in Sections 6.2.1 and

6.2.2.
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6.1 have been used to model the problem, and the results are compared with those
of Standard SPH with the inclusion of the artificial stress. Following the results
presented in Section 6.2, the considered configurations consist of two and three stress-
points per node. Unless stated otherwise, the stress-point positions are updated by
ensuring that they follow their associated nodes throughout the simulation.

The deformed material at the end of the simulation is shown in Figure 6.8,
coloured by values of deviatoric plastic strain. The contour plots calculated with
the Stress-Particle method are significantly smoother than the Standard SPH re-
sults, both with and without the inclusion of the artificial stress. The effects of
the tensile instability have been considerably reduced with the outside approach in
comparison to the Standard SPH results with no artificial stress (see Figure 6.8a).
However, the Stress-Particle method with the outside approach has not completely
removed the effects of the instability for all of the implemented node-stress-point
configurations. Small fractures are present in the region of the soil under tension
for both the IIB and IIIA configurations. The latter configuration consists of three
stress-points per node, which shows that the performance of the outside approach is
not solely dependent on the quantity of the stress-points. Furthermore, the shape of
the deformed material differs considerably between the different configurations. Dif-
ferences of this magnitude were not observed in the results of the inside approach,
where the stress-points were updated according to their interpolated velocity (see
Section 5.5.1). The differences between the results are a consequence of ensuring
that the stress-points follow their associated nodes. The relative position of the
stress-points with respect to their corresponding nodes is constant throughout the
numerical simulation. These stress-points influence the kernel approximation at the
node, which will be different depending on the location of the stress-points. It is
important to highlight that of the results displayed in Figure 6.8, those produced
with configuration IID bear the closest resemblance with the Standard SPH profile
(with the artificial stress). Configuration IID consists of two stress-points positioned
diagonally around each node, as depicted in Figure 6.1. This configuration aligns
most closely with the direction of the flow in the cohesive soil failure.

The inability of the Stress-Particle outside approach to completely remove the
tensile instability in the cohesive soil is related to the method by which the stress-
point positions are updated. The results displayed in Figure 6.8 were computed with
the stress-points defined to follow their associated node, as shown in Figure 6.2.
This means that the stress-point positions were updated with the same velocity as
their corresponding node, and not with their actual, interpolated velocity. Figure
6.9 shows the positions of the nodes and the stress-points at t = 2.5 s of the cohesive
soil failure simulation, for configuration IIB. Compared are the particle positions
when the stress-points followed their assigned node, against when the stress-point
positions were updated via their interpolated velocity. It can be seen that the latter
method of updating the stress-point positions produces more accurate results than
the former, and there is no effect of the instability. For this method, the stress-point
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(a) Standard SPH

(b) Standard SPH with artificial stress (c) IIA

(d) IIB (e) IIC

(f) IID (g) IIIA

Figure 6.8: The deformed material at t = 2.5 s in the cohesive
soil failure problem, coloured by values of deviatoric plastic strain ε̄p
(dimensionless). Displayed are the results computed with Standard

SPH and different configurations of the outside approach.
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(a) Results where the stress-points were as-
signed to follow their associated node

(b) Results where the stress-point positions
were updated according to their interpolated ve-

locities

Figure 6.9: Node (blue) and stress-point (red) positions at t = 2.5
s for the cohesive soil problem with the Stress-Particle outside ap-
proach, configuration IIB. Compared are the results where the posi-
tions of the stress-points were updated according to their interpolated
velocity, against those where the stress-points were assigned to follow

their associated node.

velocity profile is smooth as it is calculated by interpolating over the velocities of the
surrounding nodes. This is reflected in the stress-point positions displayed in Figure
6.9b, which are aligned with the streamlines of the soil movement. In contrast, there
are discontinuities in the stress-point positions shown in Figure 6.9a, which were
updated with a velocity that was not smoothed.

The difference in the results provided in Figure 6.9 shows that there are benefits
to moving the stress-points according to a smoothed velocity, as opposed to a velocity
that has not been smoothed. When the velocity profile of the stress-points is smooth,
the stress calculations on the stress-points are likely to be more stable. In turn, this
reduces the risk of stress fluctuations and discontinuities across the nodes and they
are less susceptible to the tensile instability. Furthermore, when the stress-points are
updated according to their interpolated velocity they naturally become aligned with
the flow field. When the stress-points are defined to follow their associated nodes
throughout the entire simulation, they are always aligned according to their initial
placement (with respect to the nodes). It is possible to initially align the stress-
points in the predicted general direction of the flow, such as for configuration IID
in the cohesive soil problem. However, this approach would require some trial and
error, not to mention that the flow field is not constant throughout most simulations.

6.4 The outside approach: improvements

The results presented in Sections 6.2 and 6.3 show that the current outside approach
set-up is not as effective as the inside approach at removing the tensile instability in
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the cohesive soil problem. However, the inside approach is not suitable for problems
involving large displacements, such as the non-cohesive soil failure. Consequently,
the outside approach is here extended to be better suited for both problems involving
the tensile instability and large displacement problems. Two different techniques to
improve the outside approach are here presented. Both techniques have been written
in Fortran 90 and computationally implemented by the author of this investigation.

6.4.1 Concentration criteria approach

The results of the cohesive and non-cohesive soil failure problems suggest that the way
in which the stress-points should be updated is different depending on the problem
under consideration. For problems involving large displacements, such as the non-
cohesive soil failure, it is essential that the stress-points are defined to follow their
associated nodes to ensure that there are enough stress-points within the region of
each node. However, for problems that exhibit the tensile instability (such as the
cohesive soil failure), the stress-points were found to be most effective when they were
moved according to a smoothed velocity, that was interpolated from the surrounding
nodes. Therefore, the outside approach is here adapted so that the stress-point
positions are updated according to their interpolated velocity, and shifted back to
their original position (with respect to their associated node) when required.

This approach of updating the stress-point positions requires a criterion to de-
termine when the stress-point positions are adapted. An appropriate criterion to
consider is the stress-point concentration at each node. Particle concentration, Ci,
is defined as (Xu and Yu, 2018)

Ci =
N∑
j=1

mj

ρj
Wij . (6.1)

In the Stress-Particle method, the stress-point concentration is determined by ap-
plying Equation (6.1) to each node and summing over the surrounding stress-points.
A contour plot of the initial stress-point concentration is provided in Figure 6.10 for
configuration IIB of the outside approach. The concentration at the interior nodes
is approximately equal to 1. The nodes at, and in close proximity to, the material
boundaries have a lower concentration than this due to the truncation error associ-
ated with the kernel approximation. The stress-point concentration at the material
edges is approximately 0.5, and the lowest concentration values at the corners of the
material are approximately 0.25. The method of adapting the stress-points according
the node-stress-point concentration is as follows. The stress-points are initially posi-
tioned with respect to each node in the usual way for the outside approach. At each
time step the node and stress-point positions are both updated according to their
velocities, which for the stress-points is an interpolated velocity. The concentration
defined by Equation (6.1) is then calculated on the nodes after the position update,
to obtain the stress-point concentration at every node. For the nodes that have



138 Chapter 6. Stress-Particle SPH for large displacement problems

Figure 6.10: A contour plot of initial stress-point concentration
(dimensionless), for the cohesive soil problem with configuration IIB

of the outside approach.

a stress-point concentration lower than a threshold value Ctol, their corresponding
stress-points are moved to their original position with respect to the node. For the
remaining nodes, the position of their associated stress-points is left unchanged.

The node positions at t = 2.5 s for the cohesive and non-cohesive soil failure
problems are provided in Figure 6.11, for configuration IIB of the outside approach.
The stress-point positions were adapted according to the stress-point concentration
at the nodes, as described above. The concentration threshold was defined as a
percentage of the initial concentration C0. Figures 6.11a and 6.11b show the node
positions when the concentration threshold Ctol was defined as 0.9C0 and 0.8C0

respectively. For both of these threshold values, the behaviour of the non-cohesive
material is well captured. Shifting the stress-points according to these criteria was
sufficient to ensure that there were enough stress-points in the vicinity of each node.
For the cohesive soil problem, a small fracture is present at the free surface when
a concentration threshold of Ctol = 0.9C0 was used (see Figure 6.11a). This was
eliminated when the threshold for adapting the stress-points was decreased to Ctol =

0.8C0, as shown in Figure 6.11b. This suggests that the stress-point concentration
at each node never exceeds 80 percent of its initial value in the cohesive soil problem.

6.4.2 Velocity vector approach

The stress-point concentration criterion described above provides a useful way in
which to adapt the stress-point positions according to a relevant numerical param-
eter. However, it is unlikely to be applicable for all problems – such as those that
exhibit severe effects of the tensile instability as well as large deformations. An alter-
native way in which to extend the method of updating the stress-point positions is by
considering the velocity vector at each node. In this method, the stress-points follow
their associated node throughout the simulation, yet their orientation is adapted to
align with the velocity vector of that node. This is motivated by the results acquired
when all stress-points were assigned to follow their associated nodes, presented in
Section 6.3. The most realistic results were obtained when the stress-points were
roughly aligned with the direction of the flow (for configuration IID).
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Cohesive soil

Non-cohesive soil

(a) Ctol = 0.9C0 (b) Ctol = 0.8C0

Figure 6.11: Node positions at t = 2.5 s for the cohesive and non-
cohesive soil failure problems, calculated with configuration IIB of
the outside approach. The material is coloured by values of vertical
stress σyy (Pa). The interior stress-points were adapted for the nodes

that had a the stress-point concentration less than Ctol.

A description of the method is given as follows. The stress-points are initially
positioned with respect to each node in the usual way for the outside approach. At
each time step, the components of the velocity are utilised to calculate the angle of
direction of the velocity vector θu:

cos θu = ux/|u|, sin θu = uy/|u|. (6.2)

The stress-points are then positioned to align with that vector at a specified distance
r from the node. The horizontal and vertical components of the position vector of
each stress-point, denoted by rx and ry respectively, are calculated as

rx = r cos θu, ry = r sin θu. (6.3)

At each node with position vector (xi, yi), two stress-points are placed with the
position vectors (xi + rx, yi + ry) and (xi − rx, yi − ry), as depicted in Figure 6.12.
This ensures that each node is associated with two stress-points that are both aligned
with the velocity vector of that node. Additionally, the stress-point distribution at
each node is symmetric with respect to the normal velocity, and the influence of the
stress-point is not weighted towards one side. It was shown in Section 6.2 that the
outside approach does not perform well with only one stress-point attached to each
node.

An area where the method described above may be ineffective is when the ve-
locity is dominant in either the vertical or horizontal direction. For example, if the
horizontal velocity is negligible, the angle θu is approximately zero and the stress-
points will be aligned with the nodes in vertical structures. In general, a staggered
node-stress-point arrangement is preferable (Belytschko et al., 2000). Therefore, the
method is adapted so that the horizontal and vertical distances are increased if they
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(a) The velocity vector at
a node

(b) The corresponding stress-point
placement

Figure 6.12: A depiction of updating the stress-point positions
according to the velocity vector at each node.

are below a threshold value. In this work a sufficient threshold is assumed to be ∆x
5 ,

and is implemented as follows.

if |rx| <
∆x

5
, |rx| = |rx|+

∆x

3
, (6.4)

if |ry| <
∆x

5
, |ry| = |ry|+

∆x

3
. (6.5)

Applying Equations (6.4) and (6.5) still ensures that the stress-points are orien-
tated in the direction of the node velocities – they are simply shifted horizontally or
vertically to also allow a staggered node-stress-point arrangement.

The results of the cohesive and non-cohesive problems when the stress-point
positions were updated to align with the velocity vectors are provided in Figure
6.13. In both cases, the expected material behaviour has been predicted well, and
there are no signs of the tensile instability in the cohesive soil. The nodes are coloured
by values of vertical stress, where it can be seen that the profile is not completely
smooth throughout the material. The stress profile is noisy in certain areas of the
material, particularly in the regions where the overall displacement is minimal. This
is attributed to small scale fluctuations of the nodes in this area, which can cause the
stress-point orientation to change rapidly. Small node oscillations are often inevitable
in meshless methods, even with the implementation of stabilising techniques. Here,
they are only significant in areas where the overall material behaviour is almost
stationary, yet they have a significant impact on the stress-point positions. The
method described above is independent of the velocity magnitude at each node – the
stress-point placement is identical for two nodes travelling in the same direction at
different speeds.

To remove the problems associated with the node oscillations, the method is
only applied to the nodes that are in motion. This requires the calculation of the
relative displacement srel at a specified number of time steps nt, for each node. If
the value of srel at a node is greater than a threshold value stol then the stress-points
associated with that node are positioned according to its velocity vector, as described
above. Otherwise, the stress-point positions are not adapted and they are updated
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Cohesive material

Non-cohesive material

Figure 6.13: Node positions at t = 2.5 s with contour plots of
vertical stress σyy (Pa), where all stress-point positions were updated

to align with the velocity vector at each node.

according to their interpolated velocity. Alternatively, if srel < stol the distances rx
and ry can simply not be updated, rather than updating the stress-point according
to the interpolated velocity. In this research, the differences between the two latter
method was found to be insignificant if a sufficiently small value of nt was chosen.
Note that the values of stol and nt must be large enough to remove the effects of
the velocity fluctuations, but still ensure that the stress-point positions are updated
for mobile nodes. For the cohesive and non-cohesive soil problems, suitable values
of the two parameters were found to be stol = 0.125∆x (= 0.005 m) and nt = 1000

(= 0.015 s). Contour plots of stress are provided in Figure 6.14 for the cohesive
and non-cohesive soil problems, where the stress-points were defined to align with
the node velocity vectors for nodes with a displacement greater than stol every nt
time steps. With this adaptation, the velocity profiles are smooth throughout the
material for both problems.

6.5 Collapse of a Von Mises material

Here the collapse of a viscoplastic Von Mises material is investigated. The material
is initially positioned in a rectangular shape with a width of 4 m and a height of 2 m,
as shown in Figure 6.15. It is horizontally unconstrained to allow the propagation
in both the positive and negative x directions. The material is described with a
viscoplastic Perzyna rheology, with a Von Mises yield function. The model param-
eters are provided in Table 6.1. A total of 3321 SPH nodes initially spaced apart
by a distance of ∆x = 0.05 m were used to model the material, with a smoothing
length of hs = 1.2∆x and a time step of ∆t = 5 × 10−5 s. Dummy nodes were
employed to model the no-slip wall beneath the material, and artificial viscosity was
included with parameters αΠ = βΠ = 0.1. First, the results of a Standard SPH
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Cohesive material

Non-cohesive material

Figure 6.14: Node positions at t = 2.5 s with contour plots of
vertical stress σyy (Pa), where the stress-point positions were updated
to align with the velocity vector at each node. The method was only
applied to the nodes that had displaced more than stol = 0.125∆x

every nt = 1000 time steps.

Figure 6.15: A schematic diagram of the Von Mises material col-
lapse problem.

simulation are presented to show that the problem exhibits typical effects of the ten-
sile instability. The Stress-Particle outside approach is then applied to this problem
in order to examine further its capabilities of resolving the numerical instabilities.
The effects of the stress-point arrangement and stress-point position update are also
investigated. The artificial stress (Monaghan, 2000) and particle shifting (Xu and
Yu, 2018) methods are also applied to the problem, for comparison with the outside
approach results.

The evolution of the Von Mises material is shown in Figure 6.16a for Standard
SPH. The material deformation is symmetric about the vertical axis. At t = 0.8 s,
it can be seen that particles have started to clump together along the free surface.

Table 6.1: Perzyna model parameters for the Von Mises material
collapse.

E (Pa) ν ρ (kg m−3) F0 (Pa) γ (s −1) N

1.5× 106 0.3 1850 2 ×104 5 1
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t = 0.4 s

t = 0.8 s

t = 1.2 s

t = 2.5 s

(a) Standard SPH (b) Standard SPH with artifi-
cial repulsive force

(c) Standard SPH with parti-
cle shifting

Figure 6.16: Snapshots of node positions for the collapse of the Von
Mises material: displayed are the results calculated with Standard
SPH, along with the inclusion of the artificial stress and the particle

shifting technique.

This results in the formation of fractures throughout the material, which become
more severe as the material spreads and deforms. These features occur in the region
where the material is under tensile stress, and are typical manifestations of the tensile
instability (Swegle et al., 1994; Monaghan, 2000; Xu and Yu, 2018). The simulation
was also performed with the inclusion of two remedies from the literature for the
tensile instability – the artificial stress (Monaghan, 2000) and the particle shifting
technique (Xu and Yu, 2018). These results are shown in Figures 6.16b and 6.16c
respectively. With the artificial stress (with a tuning parameter of ε = 0.7), the
fractures have been eliminated. However, the nodes on the free surface at t = 2.5 s
exhibit a bumpy profile. As was the case for the cohesive soil problem, the particle
shifting method has failed to eliminate the material fractures at the free surface,
which can be observed from time t = 0.8 s onwards in Figure 6.16c.

Snapshots of the propagation of the Von Mises material simulated with the out-
side approach are provided in Figure 6.17a, for configuration IIA. The material is
coloured by values of vertical stress. The stress-points were assigned to follow their
associated nodes throughout the simulation. The non-physical fractures that are ev-
ident in the Standard SPH results (see Figure 6.16a) appear to have been eliminated
completely. The results of Standard SPH with the artificial repulsive force are pro-
vided for comparison in Figure 6.17b. The stress-profiles for the outside approach
results are significantly smoother than for Standard SPH, which exhibit an excessive
amount of noise.

To investigate further the effect that the stress-point placement has on the simu-
lation results, different configurations of the outside approach were utilised to model
the collapse of the Von Mises material. The results are displayed in Figure 6.18
at t = 1.2 s and t = 2.5 s. The stress-points were assigned to follow their corre-
sponding nodes. At t = 1.2 s, the flow streamlines are orientated slightly in the
positive x−direction for configuration IIB, which results in a discontinuity to the
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t = 0.4 s

t = 0.8 s

t = 1.2 s

t = 2.5 s

(a) Stress-Particle outside approach,
configuration IIA

(b) Standard SPH with the artificial
stress

Figure 6.17: Snapshots of the material evolution for the Von Mises
material collapse, comparing the Stress-Particle SPH and Standard
SPH results. The nodes are coloured by contours of vertical stress

σyy (Pa).

right of the material centre at t = 2.5 s (see Figure 6.18b). Similarly, for configu-
ration IID, the streamlines are aligned towards the negative x−direction at t = 1.2

s, and a discontinuity to the left of the material centre is exhibited at t = 2.5 s
(see Figure 6.18d). This observed behaviour corresponds to the stress-point orien-
tation for configurations IIB and IID: IIB consists of two stress-points positioned
diagonally on either side of each node, where the upper stress-point is to the right
of the node and the lower is to the left. Configuration IID is the opposite of this –
the upper stress-point is to the left of the node and the lower is to the right. For
configuration IIA, with two stress-points placed below each node on either side, the
material deformation is symmetric about the y-axis, as expected for this problem
(Figures 6.17 and 6.18a). This corresponds to the fact that the stress-point positions
in IIA are symmetric about the y−axis, unlike in configurations IIB and IID. These
results provide another example of how the material behaviour is sensitive to the
stress-point arrangement, and suggest that for a symmetric flow, the stress-point
orientation should also be symmetric about the line of symmetry. Moreover, these
results support the proposition that the stress-point arrangement should be aligned
with the general direction of the flow. The most stable results were obtained using
configuration IIA, which bears the closest resemblance to the general flow field.

Figure 6.18c shows the Von Mises material collapse at t = 1.2 s and t = 2.5 s for
configuration IIC. As for IIA, configuration IIC is symmetric about the y−axis, where
two stress-points are positioned above each node at either side. For this configuration
the numerical simulation becomes unstable and by t = 2.5 s the material behaviour
is extremely non-physical. There is a dramatic difference between these results, and
those computed with configuration IIA (Figures 6.17a and 6.18a). The only difference
between the numerical models is that in configuration IIC the stress-points are placed
above each node, as opposed to below each node in IIA. However, the local node-
stress-points arrangement in configuration IIC is such that both of the stress-points
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t = 1.2 s t = 2.5 s

(a) IIA

(b) IIB

(c) IIC

(d) IID

Figure 6.18: Node positions at t = 1.2 s and t = 2.5 s of the Von
Mises material collapse, for the different node-stress-point configura-

tions shown in Figure 6.1.

oppose the direction of the flow motion. Furthermore, it is of potential significance
that for configuration IIC the free surface is always composed of stress-points, and
not nodes. The calculations on the free surface stress-points are less accurate than for
interior stress-points, as there are fewer surrounding nodes for the SPH calculations.
Hence, it is likely that the abundance of free surface stress-points in configuration IIC
contributes to the unstable behaviour shown in Figure 6.18c. Problems associated
with free surface stress-points could also be partly responsible for the instabilities
observed in Figures 6.18b and 6.18d. The location of the instabilities for these results
coincides with the location of free surface stress-points in both cases (which is on
opposite sides of the y−axis for the two configurations).

In Section 6.3 it was shown that with regards to removing the effects of the
tensile instability, the outside approach performed well when the stress-point posi-
tions were updated according to their interpolated velocity. However this method
of updating the stress-points was not sufficient when applied to the non-cohesive
soil failure, which exhibited large displacements. Consequently, in Section 6.4 the
outside approach was extended so that the stress-point shifting could be determined
by the stress-point concentration at each node. The stress-points associated with
nodes with a stress-point concentration lower than a threshold value were shifted
back to their original position (with respect to the nodes), and all other stress-points
were updated according to their interpolated velocity. An appropriate threshold
value was found to be 80 percent of the initial stress-point concentration. The Von
Mises problem was modelled with this method of updating the stress-point positions,
for configuration IIA of the outside approach. The material at t = 2.5 s is shown
in Figure 6.19b, compared against the results where all stress-points were assigned
to follow their associated nodes (Figure 6.19a). With the concentration threshold
method the material deformation is not symmetric about the vertical axis, and dis-
plays additional stiffness around the centre. This section is shown in closer detail,
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(a) All stress-points follow node (b) Stress-points follow node if
C < 0.8C0

Figure 6.19: Node positions at t = 2.5 s for the Von Mises material
collapse, with configuration IIA of the outside approach. The nodes

are coloured by values of vertical stress σyy (Pa).

where it can be seen that the nodes have formed anisotropic structures that follow
the flow trajectories. Such structures were observed in the results of the cohesive
soil failure in Sections 5.5.1 and 6.3, where it was suggested that they were an in-
dication of the accuracy of the Stress-Particle method. However for the Von Mises
problem, as a consequence of these structures the nodes in the centre of the material
are unable to compress beyond a certain amount (or the SPH nodes would overlap).
Therefore the trajectories have instead shifted towards one side. Errors associated
with the formation of anisotropic structures have been documented previously in the
SPH literature (Oger et al., 2016).

Another extension of the outside approach was developed earlier in this chapter,
which involved assigning the stress-point positions to align with the velocity vectors
at each node. This method is described in Section 6.4.2, and it was shown to be
capable of removing the tensile instability in the cohesive soil and predicting the
large displacements in the non-cohesive soil. This method has here been applied to
the Von Mises material collapse (with the parameter r = ∆x

2 ). Due to the rapid
propagation of the material, the displacement threshold stol was defined to be equal
to 0.025∆x, and the relative displacement srel was calculated every nt = 500 time
steps. As described in Section 6.4.2, the stress-points were assigned to align with the
velocity vectors for the nodes with srel > stol. The material propagation is shown in
Figure 6.20 along with the Standard SPH results (with the artificial stress), where
the nodes are coloured by values of vertical stress. There are no obvious effects of
the tensile instability with the Stress-Particle method, nor any other instabilities
that were observed for other stress-point configurations (see Figure 6.18). The free
surface profiles obtained with this extension of the outside approach are compared
directly with those of Standard SPH in Figure 6.21. The shape of the material as it
deforms aligns closely between the two models at t = 0.4 s and t = 0.8 s. At later
times, the profiles differ somewhat from one another, particularly in the centre of
the material. The final run-out distances coincide – the material reaches a distance
of approximately 6.727 m in both the positive and negative horizontal direction.
Recall that for the cohesive soil problem, the free surface profile varied according to
the tuning parameter ε in the artificial stress method (see Section 5.5.1). The effect
of this parameter is not investigated here, but is likely to affect the Standard SPH



6.6. Conclusion 147

t = 0.4 s

t = 0.8 s

t = 1.2 s

t = 2.5 s

(a) Stress-Particle outside approach,
with the stress-points aligned with

the velocity vectors

(b) Standard SPH with the artificial
repulsive force

Figure 6.20: Snapshots of the material evolution for the Von Mises
material collapse, comparing Stress-Particle SPH and Standard SPH.

The nodes are coloured by contours of vertical stress σyy (Pa).

results.

6.6 Conclusion

Following the promising results of Stress-Particle SPH when applied to soil fail-
ure mechanisms (see Chapter 5), this chapter has been devoted to the extension
of the method (using the outside approach) for problems involving the post-failure
behaviour of soil. These type of problems represent landslide propagation of the
flow-type, and feature large displacements. While the inside approach is capable of
eliminating the tensile instability and zero-energy modes, it is unable to model flow-
type problems due to the way in which the stress-point positions are updated (see
Section 5.5.2). Here, the outside approach was first applied to model the failure and
propagation of a non-cohesive soil, that displayed flow-type behaviour. The stress-
points were initially defined to follow their assigned nodes throughout the duration
of the simulation, which eliminates the problems encountered in the inside approach.
With more than one stress-point per node, the method was able to capture the large
displacements of the non-cohesive soil, and the free surface profiles compared well
between the outside approach and Standard SPH (see Figure 6.5). Furthermore, in
the previous chapter the inside approach was shown to encounter problems in the
boundary regions, and a boundary repulsive force was required to prevent the nodes
from penetrating walls. By having stress-points associated with individual nodes in
the outside approach, it is possible to ‘turn off’ the stress-points for the nodes at the
boundary to reduce the complications in this region. With this, no repulsive force
is required at the boundary, eliminating a second problem encountered in the inside
approach.

In addition to capturing large displacements, Stress-Particle SPH with the out-
side approach must be capable of eliminating the effects of the tensile instability. To
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Figure 6.21: Free surface profiles for the Von Mises material col-
lapse. The black markers represent the results from Standard SPH
with the artificial stress, while the red markers represent the results
from the outside approach, where the stress-points were defined to

align with the node velocity field

check this, the outside approach was next applied to simulate the problem of the cohe-
sive soil failure (which exhibits severe fractures due to the tensile instability). When
the stress-points were assigned to follow their associated nodes, the performance
of the outside approach was dependent on the node-stress-point arrangement. For
certain configurations, the effects of the tensile instability were not completely elim-
inated (despite having two or three stress-points per node). Moreover, the general
soil behaviour was affected by the stress-point arrangement, and different material
profiles were obtained for the different configurations (see Figure 6.8). The most
accurate results were achieved when the stress-points were approximately aligned
with the general flow direction. An explanation for these observations is given as fol-
lows. When the stress-points follow their assigned nodes, the stress-point locations
relative to the node are constant throughout the entire simulation. Although the
stress-points are generally thought of as interpolation points (as opposed to being
a part of the material), the stress calculation on the node is strongly dependent on
the stress-point. Namely, the calculation is dependent on the value of the smoothing
kernel, which is constant between the node and its associated stress-point for the
duration of the calculation. Thus, the stress-point placement clearly influences the
flow. It is unnatural to have stress-points positioned in areas where there would not
usually be a material point to influence the stress calculations on a node. There-
fore, it can be concluded that the stress-points should be aligned with the material
motion. This conclusion was verified in the application of the outside approach to
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the final problem considered in this chapter – the propagation of a viscoplastic Von
Mises material. When two stress-points were positioned above each node on either
side (in the opposite direction of the general material propagation), the flow calcula-
tion became unstable which lead to the complete degradation of the simulation (see
Figure 6.18c). When the stress-points approximately aligned with the flow motion
(for configuration IIA), the simulation results were stable and exhibited the expected
material behaviour (see Figure 6.17).

Motivated by the conclusion that the Stress-Particle method is most effective
when the stress-points align with the direction of motion, two techniques to improve
the outside approach were explored in this chapter. This first was to specify a
stress-point concentration threshold at each node which defined how the stress-point
positions were updated. Those associated with nodes with a concentration lower
than the threshold value were assigned to follow that node. Otherwise, the stress-
points were moved according to their interpolated velocity. This method worked well
for the cohesive and non-cohesive soil problems, but it is not a universal solution.
A more universal technique to improve the outside approach consisted of aligning
two stress-points with the velocity vector at each node, and assigning them to follow
the node. The stress-point orientation therefore evolved with the flow. This method
provided a way in which to capture the dynamics of large deformations, while not
affecting the material propagation in an unrealistic way. With this technique the
outside approach was able to eliminate the fractures in the cohesive soil problem, and
accurately capture the large displacements in the non-cohesive soil (see Figure 6.14).
The method also performed well for the Von Mises problem, where the final material
run-out distance was the same as the results from Standard SPH (see Figure 6.21).
These results confirm that the stress-points should be orientated in the direction of
the flow field, for the optimum performance of Stress-Particle SPH.

The results presented in this chapter show that the Stress-Particle SPH model
is capable of bridging the gap between the numerical modelling of the failure and
post-failure behaviour of soil. The model is applicable to landslide triggering mech-
anisms (i.e. the formation of slip surfaces in the cohesive soil), in addition to rapid
propagation of the flow-type (such as the behaviour exhibited by the non-cohesive
soil and Von Mises material). Therefore, the Stress-Particle SPH model is able to
simulate the broad range of behaviour exhibited by landslides with accuracy and
stability – fulfilling the primary aim of this research. Moreover, the developments
to the Stress-Particle method offer the potential for SPH to tackle a much broader
range of problems than it is currently capable of – until now, SPH was not able to
adequately eliminate all numerical instabilities in a way that still allows the simula-
tion of large displacements. From here, the Stress-Particle SPH method is applied
to another problem involving landslide behaviour. In the following chapter, a small
scale experiment of a debris flow is presented. The Stress-Particle method is then
utilised to model these results, which exhibit complex two-phase behaviour and high
velocities. This provides a new type of problem in which to assess the performance
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of Stress-Particle SPH.
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Chapter 7

Spatial and temporal evolution of
an experimental debris flow,
exhibiting coupled fluid and
particulate phases

7.1 Introduction

Following material failure, granular matter can propagate at rapid rates, exhibiting
fluid-like behaviour. Examples of this were presented in the previous chapter, where
SPH was used to model the post-failure behaviour of a non-cohesive soil, and a vis-
coplastic Perzyna material. These problems consisted of a single granular phase. In
reality, granular material often becomes mixed with water post-failure, and develops
into a debris flow – a gravity-driven flow where the interaction of both solid and
fluid phases govern the dynamics (Iverson, 1997). Debris flows exhibit extremely
complex and destructive behaviour, and significant research has been dedicated to
the development of mathematical and numerical models to predict their dynamics
(Pitman and Le, 2005; Pudasaini, 2012; Iverson and George, 2014; Pastor et al.,
2015b). However, by nature, the occurrence of debris flows is unpredictable and
their behaviour is dependent on a number of physical conditions, such as terrain
and material composition (Iverson, 1997). Therefore, repeatable, physical models of
debris flows are invaluable for the validation and development of mathematical and
numerical models. In this chapter the results of a small scale experimental debris
flow are presented. The Stress-Particle SPH method is then applied to model the
experiment in Chapter 8, to provide further validation of the novel, numerical tech-
nique. The experimental debris flow reaches high velocities, which allows further
testing of the capabilities of Stress-Particle SPH at capturing high displacements
(see Chapter 6). Furthermore, simulating the experiment allows the analysis of the
capabilities of SPH at modelling granular flows at a small scale.

There are various experimental methodologies that are dedicated to the investi-
gation of one or more aspects of debris flow behaviour, under controlled conditions.
Experiments have been performed within a wide range of physical scales, from those
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exhibiting coupled fluid and particulate phases

with lengths of the order of 100 metres (Iverson et al., 2010; Johnson et al., 2012)
to small scale laboratory flumes (Sanchez and Randles, 2012; Paleo Cageao, 2014;
Turnbull, Bowman, and McElwaine, 2015). Large scale experiments have the benefit
of being comparable to realistic debris flows. Dimensionless scaling analyses have
shown that the stresses in debris flows cannot be accurately reproduced in standard
small scale experiments – they exhibit disproportionately large effects of viscosity
and yield strength, while the effects of pore water pressure are disproportionately
small (Iverson, 2015). This is determined by considering the dimensionless param-
eters that characterise the force balances in debris flows (see Iverson (1997) for a
detailed description of the dimensionless parameters). However, small scale experi-
ments have the advantage of being simple and repeatable, allowing the investigation
of multiple parameters. Moreover, they have been shown to be capable of reproduc-
ing key debris flow features, such as the formation of a distinct granular ‘head’ and
fluid-like ‘body’ (Paleo Cageao, 2014; Turnbull, Bowman, and McElwaine, 2015),
which are commonly observed in the field (Iverson, 1997). Additionally, small scale
flume experiments allow the accessible observation of the internal dynamics of the
flow (Sanvitale and Bowman, 2012).

An insight into the internal dynamics of debris flows is vital for understanding the
mechanisms that are responsible for their motion. Qualitatively, observing the inter-
nal behaviour of individual grains provides an indication of the forces that dominate
in different areas within the flow (Sanvitale and Bowman, 2012). Furthermore, infor-
mation on internal flow dynamics is crucial for the development of debris flow models.
The structure of the internal velocity and shear rate provides an indication of the
rheological behaviour of the mixture, which is required for the governing equations
of motion in mathematical and numerical models. Of the typical rheological models,
there are distinct, corresponding velocity profiles that are derived when considering
a simplified landslide model (see the caption of Figure 7.1 for further details). In
simple analyses, the local flow shear rate is approximated as being equal to the ratio
of the mean velocity to flow height (Savage and Hutter, 1989; Iverson, 1997). This
corresponds to a velocity profile that is assumed to increase linearly from the flow
bed. Measurements of vertical velocity profiles in steady granular flows have shown
that this assumption is unrealistic (Kaitna, Dietrich, and Hsu, 2014; Paleo Cageao,
2014; Sanvitale and Bowman, 2017). Typical debris flow models often assume a
viscoplastic rheology, where a yield stress is introduced to distinguish between plug
regions and viscous fluid behaviour. Examples of this include the Bingham, Herschel-
Bulkley and Perzyna models. In the simplified landslide assumption, the expected
velocity profile for viscous-type fluid takes the shape of a half-parabola, governed by
the following equation:

u(y) ∝ H2 − (H − y)2, (7.1)

where H is the height of the flow. This profile is shown in Figure 7.1, where it is
depicted by the dashed-dotted line. For viscoplastic plug-type flows such as those
described by the Herschel-Bulkley and Perzyna models, the profile is represented by
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Figure 7.1: The different velocity profile shapes expected in an ide-
alised water-granular free surface steady flow, from Kaitna, Dietrich,
and Hsu (2014). The horizontal axis is horizontal velocity and the
vertical is flow height. The profiles were derived under the assump-
tion of a wide flow with uniform cross-stream conditions, constant
flow height and a non-erodible bed. The types of profile are lin-
ear (dashed line), granular-type (dashed-dotted line), half-parabolic
viscous-type (solid line) and a viscoplastic plug-type (dotted line).

Equation (7.1) in the sheared region, with a constant value in the plug region. This
expected shape is given by the dotted line in Figure 7.1. Viscous and viscoplastic
profiles have been observed in the steady, body region of experimental debris flow
models (Kaitna, Dietrich, and Hsu, 2014; Kaitna et al., 2016; Sanvitale and Bowman,
2017). Alternatively, for flows where granular collisions dominate over viscous forces,
the expected velocity profile derived in the infinite landslide assumption is

u(y) ∝ H
3
2 − (H − y)

3
2 . (7.2)

The derivation of Equation 7.2 is based upon the findings of Bagnold (1954), who de-
termined two regimes in a suspension of non-cohesive grains – viscous and collisional.
Internal velocity profiles of steady, experimental debris flows have also been found to
exhibit a granular-type profile (Kaitna, Dietrich, and Hsu, 2014; Kaitna et al., 2016;
Sanvitale and Bowman, 2017). Although Equations (7.1) and (7.2) are derived from
idealised conditions, they give an indication of the dominant behaviour in granular
flows and provide some basis for assumptions regarding rheological models.

In the present research, experiments were performed in a small scale Perspex
flume, allowing the observation of the internal dynamics through the side wall of
the flume. A mixture of realistic, granular material was released from behind a
lock gate in a dam break scenario. This method of flow initiation provides excellent
comparative for the numerical implementation with SPH. The mixture consisted of a
high water to solid ratio (with a solid volume fraction of φs = 0.44), to achieve a rapid
granular flow that travelled along the entire length of the flume before depositing
on a flat run-out area. This value of the solid volume fraction was determined
by performing numerous tests with different solid-water ratios, and observing the
flow behaviour. As mentioned previously, one of the aims of the current research
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is to assess the roles of Standard SPH and Stress-Particle SPH with regards to the
behaviour of granular material. The experimental debris flow represents an extreme
case of post-failure behaviour in terms of material velocity, for the simulation with
both Standard and Stress-Particle SPH. The experimental flow was recorded with
a high speed camera, from which material velocities and shear rates were obtained
using a Particle Image Velocimetry (PIV) technique. From this, conclusions can
be drawn regarding the rheological behaviour of the flow, and the appropriate way
in which to implement the problem numerically. The experimental methodology is
explained in further detail in Section 7.2, including a description of the PIV method.
The results are then presented in Section 7.3, before a discussion on the observed
behaviour of the water-granular mixture. Finally, a conclusion is made regarding the
appropriate steps for modelling the experiment with SPH.

7.2 Experimental methodology

A mixture of water and sediment was manually released from behind a lock gate
in a rectangular flume of dimension 1.9 × 0.2 × 0.1 m, at an inclination of 31◦

(see Figure 7.2). This angle of inclination corresponds to that of large scale flume
experiments at the United States Geological Survey debris flow flume (Iverson et al.,
2010). The mixture consisted of 2.177 kg of sediment and 1.5 l of water, resulting in
a total volume of 0.0026775 m3. The sediment phase was composed of multicoloured,
crushed glass grit with an angular shape, to represent natural granular material. The
particle size distribution is shown in Figure 7.3. The mean particle size is d50 = 0.917

mm, where dx denotes the percentage passing by area. The coefficient of uniformity
CU = d60

d10
represents the particle size variety, where d60 = 1 mm, d10 = 0.1928 mm

and CU = 5 (to the nearest integer). The finer particles are expected to contribute
to the viscous effects that are frequently observed in granular flows (Iverson, 1997).
Sediment of the same grade was permanently fixed onto the flume bed to generate
roughness which would produce a no-slip flow. It was found that due to the friction
created by the bed roughness, mixtures with a volume fraction less than φs = 0.44

did not propagate along the length of the flume.
A shear box test was conducted to determine the mechanical properties of the

granular material. In this test, a sample of the material is placed inside a brass box
that is split into two halves. A constant vertical stress is applied to the top of the
sample, and the two halves of the box are sheared relative to one another. The shear
load acting on the sample is recorded, along with the displacement of the material
inside the box. From this, the evolution of the shear stress against strain can be
obtained, and the peak value of shear stress corresponds to the shear strength of the
material. The tests are repeated at different vertical loads, to obtain the relationship
between the normal stress and the peak shear stress values. The data obtained for
the saturated glass grit are provided in Figure 7.4, for normal stress values of 30 kPa,
60 kPa, 100 kPa and 130 kPa. A linear fit is applied to the relationship between the
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Figure 7.2: A schematic depiction of the experimental flume.
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Figure 7.3: Particle size distribution for the glass grit.
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Figure 7.4: Shear box test data.

normal stress and the peak shear stress, as shown in Figure 7.4b. The gradient and
the y−intercept of this fit correspond to the internal friction angle φ and the cohesion
coh of the material respectively. The glass grit was found to be non-cohesive, with
an internal friction angle of φ = 39◦. The shear modulus K of the material can be
approximated as the gradient of the strain-stress curve before the peak values. From
this the elastic modulus E can be calculated (which is required for model input),
which was approximated to be 6.916× 105 Pa. See Powrie (2004) for further details
on shear box tests.

At the beginning of each experimental run, 2.177 kg of glass grit was placed
behind a lock gate with a cross-sectional area in the shape of a trapezoid, occupying
a volume of 0.0017255 m3. Subsequently, 1.5 l of water was added slowly to minimise
the disturbance to the top of the sediment. The porosity of the sediment was large
enough to ensure that it was fully saturated with water. The initial placement of the
sediment and water is depicted in Figure 7.5, where the bottom layer consists of a
mixture of water and glass grit, while the top layer is composed of water only. The
total volume fraction of the water φw over both layers is calculated as the ratio of
the total volume of water Vw and the total volume occupied by the water-granular
mixture Vm:

φw =
Vw
Vm

=
0.0015

0.0026775
= 0.56 (to 2 decimal places).

The volume fraction of the sediment φs in the total mixture is then determined
according to the following relation:

φf + φs = 1⇒ φs = 1− φf = 0.44.

The density of the sediment phase can be approximated by considering the material
in the bottom layer. The total volume of water in the bottom layer is 0.000548

m3 (which is the difference between the total volume of water and the volume of the
upper layer). The void ratio of water in the bottom layer only is therefore 0.000548

0.0017255 =

0.32 (to 2 decimal places), and the void ratio of the sediment is consequently 0.68

in this layer. Furthermore, the density of the mixture ρm in the bottom layer is the
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Figure 7.5: The initial placement of the water-granular mixture
behind the lock gate.

Table 7.1: Properties of the material used in the debris flow exper-
iments.

E (Pa) φ (◦) coh (Pa) ρw (kg m−3) ρs (kg m−3) φs
6.916 ×105 39 0 997 1851 0.44

total mass of the mixture contained in the layer, divided by the total volume:

ρm =
2.1777 + 0.548

0.0017255
= 1580 kg m−3 (to the nearest integer).

The sediment phase can then be approximated by assuming that the density of the
mixture in the bottom layer is the sum of the densities of the two phases multiplied
by their respective volume fractions:

ρm = φsρs + φfρf ,

where the subscripts m, s and f denote the mixture, sediment and fluid respectively.
To the nearest integer, the sediment density is calculated to be 1851 kg m−3 (where
the density of water is 997 kg m−3). A summary of the relevant material parameters
is provided in Table 7.1.

To check for repeatability the debris flow experiments were performed three times.
The surface of the sediment phase was marked onto the flume, to ensure that it was
placed in the same initial position for each experimental run. Upon release of the
lock gate, and coeval triggering of the high speed camera, the mixture propagated
downstream along the length of the flume and onto the run-out area. To observe
the propagation of the flow, a high speed camera was positioned with its centre
1.102 m downstream from the lock gate, with the front of the lens 0.19 m from the
flume. The respective make and model of the camera are Vision Research, Miro
M120 Colour. The lens is a Zeiss, 50 mm F1.4 ZF2 Planar. In order to capture
the rapid flow dynamics, the images were taken at a rate of 1200 frames per second,
with an exposure time of 200 µs and a resolution of 1280 × 800 pixels. This short
exposure time required the addition of extra lighting to obtain a suitable image
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Figure 7.6: A photograph of the experimental set-up just prior
to flow initiation. The set-up consists of a perspex channel with a
roughened bed, that runs out onto a broader surface (at the bottom
of the picture). A high speed camera and multiple LED lamps are

used to visualise the flow.

quality. For this, two Nila LED lights (model Zaila) were placed on either side of
the camera, and one NanGuang LED light (model CN-60F) was positioned above it.
The three lights were directed to optimise the light conditions in front of the camera.
A photograph of the experimental set-up is shown in Figure 7.6. Water was poured
along the flume bed before and after each experimental run to ensure the removal
of any loose sediment that had stuck to the bed. Furthermore, a wet bed typically
provides more realistic conditions than a completely dry bed.

7.2.1 Particle Image Velocimetry (PIV)

A Particle Image Velocimetry (PIV) processing method was applied to the images
obtained with the high speed camera. This is an experimental technique used within
fluid dynamics, where instantaneous velocity fields are determined by tracking the
displacements of individual particles, or groups of particles, within a flow (Adrian and
Westerweel, 2011). The method (in two dimensions) involves splitting each image
frame into a number of interrogation areas, within which the movement of particles
is tracked between subsequent frames. The displacement is obtained by estimating
the cross-correlation between the particle positions within each interrogation area,
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where the true displacement of each particle group must be separated from the
noise created by particles overlapping between frames. This is achieved by applying
statistical correlation methods to the data, to determine the most likely ‘true’ particle
displacement. An algorithm is then applied to obtain an estimate of the velocity
vector field from the displacement values, where certain features of the camera used
to obtain the images are taken into consideration. An extensive description of the
PIV method can be found in Adrian and Westerweel (2011).

The size of each interrogation area should be optimised so that it is large enough
to contain a sufficient number of particles to track the flow movement, yet not so
large that there is an excessive amount of spatial averaging. Typically, the size of the
area is chosen to be 32× 32 or 64× 64 pixels. In this research, the frames from the
camera were processed with the DynamicStudio image processing software to obtain
the velocity vectors. The ‘Adaptive PIV’ option was utilised within DynamicStudio,
which automatically adjusts the interrogation area at each frame according to the
local particle densities and velocity gradients. This requires the definition of the
minimum and maximum values of interrogation areas, which were defined as 32× 32

and 64 × 64 pixels respectively. The reader is referred to the DynamicStudio user
manual for further details on the adaptive PIV method (Dynamics, 2018). The PIV
method often requires the addition of seeding particles to track the fluid movement
within each interrogation area of the flow images. This is not necessary in the
current application as the granular mixture under consideration is multicoloured, and
individual grains are easily distinguished. Note that the method relies on particle
detection, and therefore won’t produce accurate results in regions where particles
are lacking.

The PIV analysis was applied to the images of the flow along the side wall, under
the assumption of a two-dimensional flow. This is subject to error as the propagating
material is not completely uniform across the width of the channel. Furthermore, the
flow dynamics are likely to differ somewhat at the flow margin than in the centre,
due to the influence of the wall. An alternative option is to use a laser sheet to
illuminate a plane in the flow centre, and capture the images in this region for the
PIV analysis. This method requires the combination of clear particles and a fluid
that is refractive index matched, and has been applied recently by Sanvitale and
Bowman (2017) to capture the internal dynamics of a granular-fluid mixture in an
inclined flume. While the flow dynamics along the flume centre are less influenced
by wall effects, the technique did not allow the tracking of the flow head, or the top
2 - 4 mm of the flow.

The rate at which the flow images are captured for analysis with the PIV method
must be high enough to capture the local movement of particles. For accurate velocity
measurements, the particle displacement between two consecutive frames should not
be larger than one quarter of the interrogation area (Adrian and Westerweel, 2011).
For this reason, a frame rate of 1200 frames per second was chosen. Time averaged
velocity profiles were obtained by averaging the velocity vectors over 30 successive
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frames, corresponding to a time interval of 0.025 s. This time internal was chosen
following similar investigations in the literature, where averages were taken over time
intervals of 0.02 s (Paleo Cageao, 2014), and 0.027 s (Sanvitale and Bowman, 2017).
The initial flow time (t = 0) was defined to be when the front of the flow first reached
the field of view of the camera, and the frames were cropped so that the first frame
corresponded to t = 0. For each considered flow time, the velocities were averaged
over the 30 surrounding frames. For example, the velocities at the sixtieth frame
(t = 0.05 s) were time averaged by averaging over frames 45 to 75.

The velocity data obtained with DynamicStudio are provided in matrix form,
where horizontal and vertical velocity components are output in separate matrices
at each time frame. The location of the velocity values in each grid correspond to
that of the spatial grid, which contains the x and y data. Before data post-processing,
the matrix dimensions are constant at each frame as the spatial grid does not vary
throughout the PIV analysis. For the experimental debris flow, the number of rows
of each matrix must be cropped at each frame, to align with the free surface of the
flow. This was conducted manually by inspecting the free surface position at each
snapshot from the high speed camera. The flow free surface is therefore approximated
as a horizontal line. In the current work, the post-processing of the PIV data was
performed in Matlab.

7.3 Results

Once released from the lock gate, the soil-water mixture rapidly propagated down-
stream onto a horizontal run-out area, reaching front velocities in the range of 1−1.2

m s−1. The main bulk of the flow deposited onto the run-out area, although a thin
layer of the granular material was deposited along the bed of the flume. The granular
material was fully saturated throughout the flow. In the following results, the time
t = 0 corresponds to when the front of the material first reached the field of view
of the camera – the centre of which is located 1.102 m downstream from the lock
gate. For the three experimental runs (Run 1, Run 2 and Run 3), the front of the
flow reached this position at approximate times of 0.43 s, 0.79 s and 1.275 s, plus or
minus any small scale variations due to the synchronisation of the lock gate release
and the triggering of the high speed camera. The flow evolution relative to the time
at which the flow reached the camera field of view is more relevant and comparable
between runs. A snapshot from the high speed camera at 0.035 s after the material
reached the field of view is shown in Figure 7.7, showing the area that was recorded
throughout the flow (0.05 × 0.03 m2).

Snapshots of the propagating mixture captured with the high speed camera are
provided in Figure 7.8, for one of the experimental runs. The front part of the flow
consists of a dilute and turbulent mixture, with a large void ratio. This region is
shown at times t = 0.035 s and t = 0.07 s in Figure 7.8. Following this, the height
of the flow increases and consists of two visible layers of material, which can be seen
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Figure 7.7: An snapshot of the water-granular mixture for Run 1,
at t = 0.035 s after reaching the field of view of the camera.

clearly at t = 0.3 s. The bottom layer is composed of what appears to be a uniform
water-granular mixture, while the main constituent of the upper layer is water, along
with entrained grains with a large void ratio. The presence of the two layers persists
for a short while, although the upper layer becomes less dilute with time as the
large void ratios allow the rapid dissipation of the water. The distinction of the
two separate layers diminishes as the flow progresses, and the material continues
to propagate as a uniform mixture with a constant height. After approximately 1.4
seconds, the flow gradually decreases in height as the material velocity decreases. The
mixture comes to a complete rest after 3 seconds, leaving a deposit approximately
0.5 mm in height along the flume.

As described in Section 7.2, average velocity profiles were obtained from the PIV
data by calculating the mean velocity over 30 successive frames. The flow behaviour
can thus be characterised by considering the standard deviation ē of the velocity
from the local average, within that interval:

ē =

√∑N
i=1(u′x − ūx)2

N − 1
, (7.3)

where ūx is the average velocity over N frames, and u′x is the instantaneous velocity.
Low values of standard deviation equate to small variations in instantaneous velocity
from the local mean, indicating that the flow has not changed significantly over the
time interval. This type of behaviour is referred to as ‘non-fluctuating’. Conversely,
a high standard deviation demonstrates that the averaged velocity profile is not
representative of the overall behaviour within the interval, as the flow is rapidly
changing. With regards to granular flows, high standard deviations of velocity from
the local average correspond to ‘collisional’ behaviour, which is dominated by fluid
turbulence and particle collisions (Bagnold, 1954; Johnson and Jackson, 1987). A
series of small scale debris flow experiments were performed by Paleo Cageao (2014),
where sufficiently low deviation from the average was defined as being less than 0.15
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Figure 7.8: Snapshots of the propagating soil-water mixture for the
experimental flow, Run 1. The area of the camera field of view is 0.05

× 0.03 m2.
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m s−1. Non-fluctuating behaviour was characterised by a standard deviation less
than this value, while above this value, the behaviour was collisional. This threshold
value was chosen because it clearly distinguished the flow into two distinct regions,
which displayed differences in behaviour.

Rather than choose a constant threshold value to distinguish between non-fluctuating
and collisional behaviour, the deviations of velocity herein are instead considered as
a percentage of the local average velocity at each time frame. Contour plots of the
standard deviation as a percentage are provided in Figure 7.9 for Run 1, which is
calculated as 100× ē

ūx
. The upper limit of the contour scale is defined as 20%, which

has been chosen as the cut-off value to differentiate between the two types of be-
haviour. The yellow regions in Figure 7.9 correspond to areas of the flow that have a
standard deviation that is greater than 20% of the local time-averaged velocity, and
are assumed to be collisional. The blue areas in Figure 7.9 represent a flow with a
velocity deviation that is less than 20% of the average velocity, and can be assumed
to be non-fluctuating. A threshold percentage of 20% was chosen because it clearly
separates the flow into the two regions that are evident in the flow snapshots shown
in Figure 7.8. The results in Figure 7.9 show that collisional behaviour is exhibited
throughout the depth of the flow at t = 0.035 s, t = 0.07 s and t = 0.3 s. At t = 0.6

s, a non-fluctuating layer with a thickness of approximately 6 mm has developed
at the flume bed. The height of this layer increases with time, and by t = 1.2 s
the majority of the flow is non-fluctuating. However, the results in Figure 7.9 show
that the experimental flow exhibits high deviations with respect to the local aver-
age velocity at the free surface and along the left horizontal boundary, for all times
presented. The velocity values at the horizontal boundaries are subject to error due
to the truncation of the PIV interrogation area. Regarding the flow free surface, a
thin, watery layer is present at all times (see Figure 7.8). The PIV method relies on
particle detection over subsequent frames, and therefore produces unreliable results
in regions lacking particles. Consequently, the velocity values at the flow free surface
are also subject to error.

To compare with the method of Paleo Cageao (2014), a constant value of ē = 0.15

m s−1 is also used to distinguish between non-fluctuating and collisional behaviour.
Contour plots of the velocity standard deviation for Run 1 of the experimental flow
are provided in Figure 7.10. The plots in Figure 7.10 are scaled so that the lower
limit is equal to ē = 0.15 m s−1. Accordingly, the dark blue areas in Figure 7.10
are assumed to correspond to non-fluctuating regions of the flow, while the lighter
colours are assumed to represent the collisional regions. As also shown in Figure 7.9,
the flow transforms from being purely collisional to non-fluctuating, with a layered
transition at t = 0.6 s and t = 0.8 s. However, with a constant threshold value of
ē = 0.15 m s−1, the results in Figure 7.10 fail to highlight the high velocity deviations
from the local average from t = 0.3 s onwards.

The averaged velocity vectors obtained from the PIV analysis are superimposed
onto the flow snapshots in 7.11 (the vectors are represented by red arrows). The
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Figure 7.9: Contour plots of standard deviation as a percentage of
the average velocity 100× ē

ūx
at different times of flow for Run 1 of

the experiment. The upper limit on the scale bar is defined as 20%
of the velocity average.
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Figure 7.10: Contour plots of standard deviation ē at different
times of flow for the experimental water-granular mixture, Run 1.
The lower limit on the scale bar is defined as ē = 0.15 m s−1, which
is the suggested cut-off between fluctuating and non-fluctuating be-

haviour used in the experiments of Paleo Cageao (2014).
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velocity profiles align with the qualitative behaviour of the water-granular mixture
described above. At times of t = 0.035 s and t = 0.07 s, the entire mixture is
collisional and the PIV velocity vectors exhibit random and fluctuating behaviour
throughout the majority of the flow depth. Most of the vectors are orientated in the
negative direction which does not represent the physical behaviour of the flow. The
spurious vectors show that there is not a sufficient correlation between particles in
successive frames for the PIV method to produce robust velocity vectors. Although
these vectors do not represent the true velocity, they indicate the high turbulence
of the flow. At t = 0.3 s, while the majority of the velocity vectors exhibit similar
turbulent behaviour to the earlier flow times, the vectors near the base of the flow
are uniformly aligned in the downstream direction. The highest velocities are located
in this lower, non-fluctuating region. Subsequently, the height of the non-fluctuating
region increases from t = 0.3 s to t = 0.6 s, and the velocity vectors correspond to
the presence of the two distinct layers discussed above (see Figures 7.9 and 7.10).
The velocity magnitude increases with distance from the bed, and the maximum
is located at the top of the non-fluctuating layer. The intensity of the turbulent
vector distribution observed between t = 0.035 s and t = 0.6 s decreases with time.
There are a number of negatively orientated vectors in the region between the non-
fluctuating and collisional layers at t = 0.6 s, indicating the shearing that occurs in
this area. At all subsequent times shown, the velocity vectors display linear behaviour
throughout the flow depth. Moreover, at t = 0.8 s, the two material layers are no
longer distinguished, and the height of the velocity maximum is located closer to
the free surface. Above the height of the maximum, the velocity decreases towards
the flow surface. At t = 1.2 s the height of the maximum velocity has increased
further, and the same profile is also observed at t = 1.6, with a lower overall velocity
magnitude. By t = 2.8 s the velocity has decreased significantly, and the mixture is
almost stationary.

The corresponding contour plots for the PIV velocity data are shown in Figure
7.12. After the initial, fully collisional region of the flow, there is a concentrated
area of high velocity at the base at t = 0.3 s. Above this, the upper, collisional layer
exhibits some negative velocities. As discussed above, these negative velocities are
not physical, but are useful in highlighting turbulent and rapidly varying flow regions.
Similar behaviour is observed at t = 0.6 s, where the height of the concentrated,
high velocity region has increased. Between times of t = 0.8 s and t = 1.6 s, the
velocity contours are positive everywhere, and show an increase with height from
the flume bed up to a maximum region. Above this region the profiles decrease to
approximately zero at the flow free surface, due to the lack of particles detected
with the PIV method. In reality, the velocity at the top of the flow is likely to be
approximately equal to the velocities in the layer directly beneath it.

Profiles of horizontal velocity ux against height h are provided in Figure 7.13 for
twelve times ranging between t = 0.035 s and t = 2.8 s, comparing the results from
the three different experimental runs. To analyse the error of the time-averaging
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Figure 7.11: Snapshots of the propagating soil-water mixture for
Run 1 of the experimental flow, with the overlaid time-averaged PIV
velocity vectors. The area of the camera field of view is 0.05 × 0.03

m2.
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Figure 7.12: Contour plots of horizontal velocity ux at different
times for Run 1 of the experimental flow. Note the difference in scale

for each image.
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process, an autoregressive (AR) model was fit to the instantaneous data over the 30
frames that were averaged. AR models are used to represent a value in a time series
as a weighted sum of previous values in the series, and can be used for forecasting
purposes (Brockwell, Davis, and Calder, 2002; Box et al., 2015). A time series Xn

is defined as a linear combination of past observations Xn−1 and white noise error
terms εn:

Xn =

p∑
i=1

αiXn−1 + εn, (7.4)

where αi are the model parameters, and p is the number of past observations that
used in the expression of Xn. An AR model is applicable only for a stationary
time series – that has a time-independent mean and variance. The error terms
are assumed to follow a normal distribution with a zero mean. For the current
purpose, the parameter p was assumed to be one, so that each term in the AR model
is based on the previous term, and the white noise. The optimum values for the
coefficients αi should minimise the error term. These were determined using the
Matlab ARIMA (autoregressive-integrated-moving-average) function, which uses a
maximum likelihood method to estimate the model parameters. The error in the
experiment can be assessed by considering the residuals between the data and the
AR model fit, which are plotted as error bars in Figure 7.13. Up to t = 0.3 s, the error
bars are relatively large, indicating that the data cannot be satisfactorily modelled
as a first order AR model. The data are unlikely to be stationary in this area, due
to the rapidly varying velocities. The error bars are also large in the upper region of
the flow at t = 0.6 s, where the behaviour is turbulent and collisional. Despite this,
the collisional behaviour is consistent between the three different runs, even in the
regions that exhibit non-physical negative velocities (between t = 0.035 s to t = 0.6

s). From t = 0.8 s onwards, the residual errors are insignificant. The overall flow
behaviour for the three different runs is in good agreement, at each time shown in
Figure 7.13 . There are some small differences in the height and velocity at certain
times, namely at t = 1.2 s, and from t = 1.6 s to t = 2.8 s. A number of factors
could contribute to such differences, such as the wetness of the bed, a delay in the
lock gate release or variable composition between the granular material. Nonetheless,
the shape of the velocity profiles align well at all times presented, showing that the
experiments are repeatable in terms of the overall flow behaviour. For each run,
it can be observed that the height of the velocity maximum steadily increases with
time up to t = 1 s. From t = 1.2 s onwards, the location of the velocity maximum
decreases with height. Considering the large errors and high quantity of negative
velocities observed from t = 0.035 s to t = 0.3 s, attention is subsequently focused
on the flow behaviour from t = 0.6 s onwards.

The velocity profiles at different times from t = 0.6 s to t = 2.8 s are plotted
together in Figure 7.14a, for each experimental run. It can be seen for each run that
the velocities are highest at t = 0.6 s, where the maximum value is approximately
ux = 1.2 m s−1. The maximum velocities, as well as the velocities below the height
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of the maximum, decrease with time. The height of the velocity maximum increases
from t = 0.6 s to t = 1.2 s, where it then decreases until t = 2.8 s. The velocity
profiles were normalised by dividing the velocity and the height by the maximum
velocity umax and the flow depth H respectively. Profiles of normalised velocity are
plotted against normalised height in Figure 7.14b. For all runs, the majority of the
normalised profiles approximately collapse onto one curve. A common exception is
the profile at t = 0.6 s, which has a normalised height of the velocity maximum
that is significantly lower than for the later times. Furthermore, there is some vari-
ation between the profiles at t = 0.8 s, t = 1 s and t = 2.8 s, although the overall
shape corresponds the curve where the majority of the profiles lie. The three runs
are consistent in that the velocity profiles between t = 1.2 and t = 2.4 are almost
indistinguishable from one another. These profiles exhibit a velocity that is approx-
imately zero at the flume bed, that steadily increases in the region close to the bed.
The velocity gradient increases as the height approaches that of the velocity maxi-
mum, which has a non-dimensional height of approximately 0.8. Above this height,
the velocity decreases towards the surface, although the velocity data in this area
is subject to error, as discussed above. The collapse of the velocity profiles onto a
single curve has been observed in previous experimental investigations of debris flows
(Kaitna, Dietrich, and Hsu, 2014; Sanvitale and Bowman, 2017), and indicates the
uniform behaviour within this region of the flow.

The PIV data can be utilised to obtain profiles of the internal shear stress rate.
Neglecting the horizontal gradients of the vertical velocity uy, the local shear rate γ̇
is defined as

γ̇ =
∂ux
∂y

. (7.5)

The shear rate is approximated at each vertical height hi:

γ̇i ≈
ux,i+1 − ux,i

∆h
, (7.6)

where ux,i is the velocity at the current vertical position hi, and ux,i+1 is the velocity
at the subsequent vertical location hi+1. The vertical sampling points are separated
by the distance ∆h. The profiles of local shear rate plotted against height are shown
in Figure 7.15a for one of the experimental runs. In order to visualise the results
more clearly, the profiles from t = 0.6 s to t = 1.2 s are plotted separately from the
results between t = 1.4 s and t = 2.8 s. From t = 0.6 to t = 1 s, the shear is highest
at the bed and sharply decreases in the region just above the bed. Above this, the
overall shear decreases as the height increases, although the values fluctuate locally.
At the boundary between the non-fluctuating and collisional regions of the flow at
t = 0.6 s and t = 0.8 s (see Figures 7.9 and 7.10), the shear rate decreases to a large
negative value. This is followed by an increase in shear above the interface between
the two regions, highlighting the presence of a shearing layer in this region. The
shear rate profiles at t = 1 s and t = 1.2 s display similar behaviour in that there is
a steep increase in the region directly above the bed, followed by a uniform decrease
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Figure 7.14: Plots of horizontal velocity against height at x = 1.102
m downstream from the lock gate. On each graph the plotted profiles
are from eight different flow times, ranging between t = 0.6 s and

t = 2.8 s, for the three different experimental runs.
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until just below the free surface. At the free surface, there is a sudden decrease
to a negative shear value. The profiles of internal shear rate between t = 1.4 s
and 2.4 s exhibit a linear decrease with height from the flume bed, until the free
surface. Again, in this region the shear profile sharply decreases to a large negative
value. The spurious negative shear values at the free surface reflect the relatively
large deviations from the velocity average in the area (see Figure 7.9). At the final
considered time of t = 2.8 s, the shear rate profile decreases linearly until just below
the free surface, before increasing towards the surface.

Following Sanvitale and Bowman (2017), the normalised shear rate ˆ̇γ is obtained
by dividing by the depth-averaged shear rate ¯̇γ:

ˆ̇γ =
γ̇
¯̇γ

=
∂ux
∂y

H

(uH − uslip)
, (7.7)

where uH and uslip are the values of horizontal velocity at the free surface and the bed
respectively. Note that if both uH and uslip are zero, Equation (7.7) is inapplicable.
In the current results, uH and uslip are small in comparison to the internal velocities,
yet have non-zero values. Profiles of normalised local shear ˆ̇γ are provided in Figure
7.15b. Bar a difference near the flume bed, the shear rate profiles from t = 1.4 s to
t = 2.4 s almost collapse onto the same profile.
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7.4 Discussion

The experimental debris flow described in the previous section exhibits complex
behaviour throughout its evolution. This is immediately evident from the snapshots
of the flow obtained with the high speed camera, shown in Figure 7.8. The front of
the flow is dilute and turbulent, which develops into what appears to be a steady,
water-granular mixture. In the transition between these two types of behaviour, the
flow is composed of two distinct layers. The data obtained from the PIV analysis
of the flow has allowed further insight into the mechanisms that are responsible for
the observed experimental behaviour. By defining a threshold value of deviation
from the locally averaged velocity, it is possible to distinguish two types of flow
behaviour – non-fluctuating and collisional (Paleo Cageao, 2014). In the current
analysis, the threshold between the two types of flow has been defined as a standard
deviation that is 20% of the local average velocity. Furthermore, a constant threshold
of ē = 0.15 m s−1 has also been implemented, following Paleo Cageao (2014). In
both cases, contour plots of the velocity deviation (see Figures 7.9 and 7.10) have
shown that the dilute front of the flow is dominated by collisional and turbulent
behaviour. Behind the front, the flow transitions from collisional to non-fluctuating,
and consists of both types of behaviour in between. Throughout the transition, the
collisional region (with a high standard deviation) narrows in depth, decreases in
magnitude and shifts towards the flow free surface. Simultaneously, the height of
the non-fluctuating region increases with distance from the bed, until the flow is
dominated by this type of behaviour. The non-fluctuating region corresponds to a
shearing layer, where the mixture shears along the bed. This can be deduced from the
velocity contours and vertical profiles (see Figures 7.11 and 7.12), where the initial
presence of the non-fluctuating region coincides with the initiation of a layer of shear
between the mixture and the bed. The height of the shearing layer increases due to
the accumulation of granular material that is opposed by the frictional resistance of
the bed, until the entire flow consists of a steady shear flow.

In the field, debris flows are typically composed of a dry head containing large
particles, where the dynamics are dominated by granular collisions and exhibit fric-
tional behaviour. Behind the head, the flow body contains smaller particles and
interstitial fluid, exhibiting fluid-like behaviour (Iverson, 1997; McArdell, Bartelt,
and Kowalski, 2007). The head-body architecture is attributed to complex couplings
related to the grain size distribution, material fines content and pore water pres-
sures (Iverson et al., 2010; Johnson et al., 2012). It has also been observed in small
scale experiments (Kaitna, Dietrich, and Hsu, 2014; Sanvitale and Bowman, 2017;
Parsons, Whipple, and Simoni, 2001), including those with monodispersed spherical
mixtures (Paleo Cageao, 2014). In the current work, the high water content of the
experimental mixture does not allow the formation of a dry, granular head, yet the
front of the flow is also dominated by granular collisions, along with turbulent fluid
behaviour. Furthermore, the experiment also exhibits a transition to a distinct flow
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body, characterised by non-fluctuating behaviour (see Figures 7.9 and 7.10). The
experimental flow therefore displays a unique head-body architecture, that has not
been documented previously. Despite this, the head to body transition bears simi-
larities to classic debris flows. Regarding small scale debris flow experiments within
the literature, internal flow observations have contributed to a better understanding
of the dynamics responsible for debris flow architecture (Kaitna et al., 2016). The
majority of attention has previously been focused on the internal dynamics of steady
granular flows, in order to approximate the rheology of granular material (Armanini
et al., 2005; Kaitna, Rickenmann, and Schatzmann, 2007; Kaitna, Dietrich, and Hsu,
2014). Furthermore, in experiments of unsteady debris flows, the internal behaviour
of the collisional flow head has not been taken into consideration. This has been a
result of restrictions in software (Sanvitale and Bowman, 2017), or because the high
velocity fluctuations in this region are the source of unreliable data (Paleo Cageao,
2014). In the experiments of Sanvitale and Bowman (2017), the flow head was dry
– the laser-based PIV technique can only detect saturated particles. In the present
analysis, the internal velocity profile has been examined within both the front of
the flow and the body, which has highlighted how the flow progressively transitions
between the collisional and non-fluctuating regimes. One of the most striking fea-
tures of this transition is the presence of two distinct shearing layers, which can be
seen at t = 0.6 s and t = 0.8 s (see Figures 7.9, 7.11 and 7.12). It should also be
highlighted that previous investigations of internal granular flow dynamics have pre-
sented profiles of velocity, and the temporal evolution of the depth-averaged velocity
(Armanini et al., 2005; Kaitna, Dietrich, and Hsu, 2014; Paleo Cageao, 2014; Sanvi-
tale and Bowman, 2017). In addition to velocity profiles (Figure 7.13), the current
work has produced velocity flow fields in an experimental debris flow for the first
time (see Figure 7.12).

Considering the behaviour within the body of the experiment, the internal struc-
ture can be compared against that of existing experimental debris flows. The relevant
details of a selection of experiments presented in the literature are provided in Table
7.2, along with the parameters in the current debris flow experiments. Armanini et
al. (2005) observed the steady flow of a mixture of polyvinyl chloride (PVC) pellets
in a recirculating flume, with a continuous influx of water. The inclination angle was
varied and four different flow regimes were accordingly defined – immature, mature,
plug and solid bed flow. A Voronoi imaging technique was used to obtain internal
velocity and shear rate profiles for each regime. Disregarding the spurious values at
the free surface, the profiles in the present investigation are similar to those of the
solid bed flow, from t = 1 s onwards. Solid bed flows occurred for the highest bed
inclinations and were characterised by the shearing flow of the granular phase over a
fixed bed (as opposed to over a loose bed of deposited material for lower inclination
angles). Profiles of horizontal velocity exhibited a convex shape, that increased with
distance from the bed. The corresponding shear rate profiles decreased with distance
from the bed, to a near zero value. The solid bed velocity profiles of Armanini et al.
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(a) Results of Armanini et al. (2005)
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Figure 7.16: A comparison of the internal velocity profiles in the
steady, solid bed flow experiments of Armanini et al. (2005), and
those in the body of the current experiment. For the former, plotted
on the x-axis is horizontal velocity ū normalised by the mean veloc-
ity U . The y-axis shows (yw − y)/H, where yw is the saturation line
(obtained by visual inspection), and H is the flow free surface. The
points correspond to the experimental velocity values, where the dif-
ferent symbols refer to results from different runs with the bed slope

varying from 19◦ − 23◦. The solid line is the line of best fit.

(2005) are compared against those of the current work in Figure 7.16, where it is
clear that the profiles exhibit the same behaviour. For the current results, the upper
four data points (corresponding to 1.6 mm)have been omitted. Similar convex veloc-
ity profiles have also been recorded in the body of a steady debris flow consisting of
gravel and water, in a rotating drum (Kaitna, Dietrich, and Hsu, 2014). The exper-
iments were conducted for four different mixtures of gravel, mud and water, and it
was found that each mixture exhibited a distinct, dimensionless velocity profile, for
a number of different drum rotation velocities. Furthermore, solid bed profiles have
been observed in the body of an unsteady, experimental debris flow, that was similar
in set-up to that of the current work (Sanvitale and Bowman, 2017). The normalised
velocity profiles at different flow times approximately collapsed onto a single curve.
Similar to the findings of the Kaitna, Dietrich, and Hsu (2014), a distinct profile
was exhibited for three different grain size distributions, mixed with water. In the
current work, the normalised velocity profiles in the flow body also collapse onto a
single curve for each experimental run, from t = 1 s onwards (see Figure 7.16b),
showing the uniformity of the flow in this region.
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The rheological behaviour in the experimental flow body can be assessed by ap-
proximating the dimensionless velocity profile with a granular and viscous scaling.
Figure 7.17 shows the normalised velocity profiles for Run 1 of the experiments be-
tween times of t = 1 s to t = 2.4 s, where the upper 1.6 mm of flow has been omitted.
The profile of best fit has been included, assuming both a viscous and granular scaling
according to Equations (7.1) and (7.2). The closest fit to the experimental results is
found with the viscous scaling, which captures the overall velocity shape throughout
the shear layer. In the experiments of Sanvitale and Bowman (2017), mixtures with
a wide grain size distribution (with a coefficient of uniformity of CU = 20) exhibited
a viscous-type velocity profile. Conversely, for CU = 3 a granular profile provided
the best fit to the experimental data. A wider grain size distribution promotes par-
ticle segregation, which can lead to the finer particles being trapped within the solid
matrix. The presence of these fine grains enhances the viscosity of the interstitial
fluid, and viscous forces influence flow behaviour (Iverson, 1997). For a more uniform
particle distribution, the dominating forces are generally inter-particle granular col-
lisions. In the current experiments, the viscous profile provides the closest fit to the
experimental results, despite a relatively small coefficient of uniformity of CU = 5.
This is possibly due to the proportion of very small particles with diameters less than
0.5 mm that are present within the mixture (see Figure 7.3), which add to the fluid
viscosity. The results also suggest that the cut-off between granular and viscous-type
flow may lie between CU = 3 and CU = 5.

The current experiments were performed with a significantly higher concentration
of fluid than for the majority of similar, debris flow experiments (see Table 7.2).
Despite this, the behaviour observed within the flow body is comparable to results
presented in the literature, as discussed above. In terms of volume fraction, one set of
a series of flume experiments performed by Paleo Cageao (2014) used a value of φs =

0.4 (which is close to φs = 0.44 in the current work). The mixture in Paleo Cageao
(2014) consisted of water and monosized glass spheres with a diameter of 2 mm. The
height evolution of the two phases was recorded at a distance 0.232 m downstream
from the lock gate. Upon arrival at this location, the flow exhibited a dry, granular
front. The height of the water phase increased with time, until the flow body was
composed of a water-granular mixture, with an upper layer of water. The entire
solid phase had propagated beyond the location of measurement by approximately
1.2 seconds, and the tail of the mixture consisted of water only. Conversely, for a
higher solid volume fraction of φs = 0.6, the tail of the flow contained a mixture of
both spheres and water of approximately the same height (although a larger section
of the flow front was dry) (Paleo Cageao, 2014). This behaviour suggests that for
the higher water content (φs = 0.4), the coupling between the two phases was less
significant than in the current work. The current experimental flow did not exhibit
any regions of dry granular material and had a tail composed of both water and
granular material. The strong difference in behaviour of the current experiment
and that of Paleo Cageao (2014) is attributed to the composition of the granular
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Figure 7.17: Normalised velocity profiles in the sheared region for
Run 1 of the experimental debris flow, with a best fit granular and

viscous scaling.

phase. As opposed to monosized spheres, the current experiment consists of crushed
glass of varying diameter. The angular shape allows the interlocking of grains and
adds extra frictional resistance that is not present for spherical grains. For angular,
crushed material, inter-particle shearing is significant, in addition to the shearing
between the material and the bed. Therefore a flow of angular granular material
exhibits lower velocities than that of glass spheres. Furthermore, the dilation and
contraction of the crushed glass particles regulates the motion of the water, enhancing
the coupling between the two phases. Experiments involving spherical particles are
beneficial in terms of simplicity, and allow the investigation of a wide range of factors
affecting flow behaviour. However, the flow dynamics can be significantly different
from that of a realistic granular material, as shown by the difference between the
current experimental results and those of Paleo Cageao (2014).

In the transitional region between the head and body of the experimental debris
flow, it is comprised of a concentrated lower layer and a more dilute upper layer (see
t = 0.3 s and t = 0.6 s in Figure 7.8). The corresponding velocity profiles show that
in the lower layer, the velocity increases with distance from the bed to a velocity
maximum towards the top of the layer. Above the maximum, the velocity decreases
rapidly and exhibits negative values due to shearing between the layers, and the
inability of the PIV software to produce accurate velocity values. These profiles
share similarities with those observed in the steady state profiles of some submarine
gravity currents, where differences in density drive a dense fluid through a less dense,
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ambient fluid (Simpson and Britter, 1979; Kneller, Bennett, and McCaffrey, 1999;
Lowe, Linden, and Rottman, 2002). For some sediment-laden flows, notably high
concentration turbidity currents, the settling of sediment can result in a layer of
high concentration at the bed, while the upward mixing of turbulence produces a
dilute upper layer that entrains sediment (Postma, Nemec, and Kleinspehn, 1988;
Stevenson et al., 2018). In the internal profiles of these flows, the velocity maximum
is located at the top of the lower layer due to the balance of the shear at the bed
and at the interface between the dense fluid and the ambient fluid (Kneller, Bennett,
and McCaffrey, 1999). These profiles are observed in steady state flows, and above
the interface between the two layers of material the velocity steadily approaches
a zero value. This overall shape is similar to the internal velocity profiles in the
current experimental flow at t = 0.3 s and t = 0.6 s (see Figure 7.13). Although the
flow is transient at these times, and shows large fluctuations in the upper layer, the
analogy to high concentration turbidity currents provides a deeper understanding
of the mechanism responsible for the observed velocity profiles. Furthermore, it
has been postulated that the transport of sediment in high concentration turbidity
currents is a result of the interaction between a high concentration lower layer, and
a turbulent upper layer (Postma, Nemec, and Kleinspehn, 1988). This has potential
relevance to the formation of the observed architecture in the current flow. However,
it should be noted that two-layer turbidity currents have exclusively been observed
in the laboratory, and in natural systems, many flows are likely to exhibit a more
gradual stratification (Peakall and Sumner, 2015).

As discussed in Section 7.2.1, the PIV method requires the detection of individual
particles over multiple frames in order to produce accurate velocity vectors. This
wasn’t possible at the head of the flow due to the low particle concentration and
their turbulent behaviour. The velocity values recorded at the flow free surface were
also subject to error, due to an overlying layer of water where particles were not
present. The fact that particle tracking was not accurate at the front of the flow
suggests that some particles were transported away from the flume walls in the cross
stream direction, as a result of the high fluid turbulence. This implies that the two-
dimensional flow approximation is subject to error, particularly at the front of the
flow. Furthermore, the presence of the side wall may influence the flow dynamics.
Despite these limitations, the experiments showed a high degree of repeatability, as
shown in Figure 7.13. The small differences between the different runs at certain
times may be a result of a delay in the opening of the lock gate, or variability in
material composition.

7.5 Conclusion

The internal observations of the experimental debris flow presented in this chapter
have provided insight into the complex interaction between propagating particulate
and water phases. The experiments consisted of a relatively dilute water-granular
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exhibiting coupled fluid and particulate phases

mixture (φs = 0.44), which exhibited a spatial and temporal evolution from a tran-
sient, collisional, turbulent flow to a steady, non-fluctuating flow. A viscous-type
profile is able to capture the velocity in the non-fluctuating region throughout the
majority of its depth. The granular material in these experiments has a coefficient
of uniformity CU of 5. Integration with the work of Sanvitale and Bowman (2017)
suggests that the transition from a granular profile to a viscous flow profile takes
place between a coefficient of uniformity of 3 and 5. A suggested area for future
work is to perform further experiments with different values of CU , to test this
hypothesis. Furthermore, the transition from the collisional flow front to the non-
fluctuating body has been quantified in a small scale unsteady debris flow for the
first time. A unique head-body architecture was observed during the flow evolution,
where the initially turbulent head evolved into a uniform flow as a layer of shearing
granular material increased in height. Unlike similar experiments with monosized
spheres (Paleo Cageao, 2014), the body of the current flow exhibited a thin layer of
water overlying the viscous mixture for the entirety of the flow duration. This indi-
cates that the behaviour of the flow was influenced strongly by the coupling of the
granular and liquid constituents. In order to model this experiment with SPH, the
results suggest that the assumption of a single phase material is invalid. Therefore,
in the subsequent chapter, water is introduced to Standard and Stress-Particle SPH
in an attempt to capture the overall dynamics of the experimental debris flow, with
a two-phase model.
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Chapter 8

Two-phase Stress-Particle SPH

8.1 Introduction

In this chapter, the results of the experimental debris flow presented in Chapter 7
are modelled with SPH. The SPH model developed within the current research has
so far been restricted to the analysis of a single phase material, with the implemen-
tation of both an elastoplastic and viscoplastic rheological model to describe soil
behaviour. This has been successfully applied to model behaviour relevant to both
landslide initiation and propagation (see Chapters 5 and 6). The experimental de-
bris flow exhibited complex features, with a spatial and transient evolution between
collisional and non-fluctuating behaviour. Furthermore, the flow consisted of distinct
granular and water layers throughout its development. Consequently, it cannot be
approximated as a single phase material. Moreover, in reality, problems involving soil
typically consist of both a soil and a water phase. In order to provide a more accurate
description of the experimental flow, as well as a more realistic model of granular
material, the SPH model is here extended to include a water phase in addition to the
soil. This extended model is denoted as two-phase SPH, and is implemented within
both Standard and Stress-Particle SPH.

The interaction between both solid and fluid forces is considered to be the main
feature that distinguishes debris flows from other natural events such as avalanches
and turbidity currents (Iverson, 1997). In attempts to model the solid and fluid
propagation in debris flows, extensive work has been devoted to the development
of two-phase mathematical models (Iverson, 1997; Pitman and Le, 2005; Pudasaini,
2012; Pastor et al., 2015b). Within the literature, there are a number of alterna-
tive approaches in which two-phase debris flow models are derived. This includes
the pioneering work of Iverson and co-workers (Iverson, 1997; Iverson and Denlinger,
2001; Iverson and George, 2014), who developed a two-phase solid-water model based
upon the framework of mixture theory (Bedford and Drumheller, 1983). In this ap-
proach, the key factors that influence debris flow motion include pore water pressures
and an evolving granular dilatancy. Alternative debris flow models have been de-
rived from the so-called phase averaged ‘two-fluid’ theory (Anderson and Jackson,
1967), and include those of Pitman and Le (2005) and Pudasaini (2012). In these
models, a liquid and a granular phase are treated as distinct fluids, with a term
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describing their interaction. The same two-fluid debris flow equations were also de-
rived independently from the multiphase mixture theory of linear elastic materials
developed by Biot (1941). This theory was extended to account for large deforma-
tions by Zienkiewicz, Chang, and Bettess (1980) and Zienkiewicz and Shiomi (1984).
The different two-phase mathematical models derived under the three alternative
approaches mentioned above bear many similarities to one another. In the current
research, the mathematical model used to describe the motion of the experimental
debris flow is based upon the framework of the Zienkiewicz and Shiomi (1984) and
Pitman and Le (2005).

In all existing numerical investigations of two-phase debris flow behaviour, the
governing equations of motion are depth-integrated in order to reduce computational
expense (Pitman and Le, 2005; Pastor, Blanc, and Pastor, 2009; Iverson and George,
2016). The equations are integrated between the upper and lower flow domains (the
bed and the free surface), so that all flow variation in the direction normal to the bed
is approximated with a single, averaged value. Depth-integration is appropriate for
‘shallow flows’, where the typical flow length is much larger than the height (Savage
and Hutter, 1989). In such cases the normal flow variations are assumed to be negligi-
ble in comparison to the stream-wise and cross-stream variations. For the numerical
solutions of these types of flow, meshless methods such as SPH are a valuable tool
due to the large run-out lengths and displacements expected in depth-integrated de-
bris flow models. Significant developments in this area have been achieved by Pastor
and co-workers (Pastor et al., 2008; Pastor, Blanc, and Pastor, 2009; Pastor et al.,
2014; Pastor et al., 2015b), where the governing equations of Zienkiewicz and Shiomi
(1984) are depth-integrated and implemented within SPH. Various model assump-
tions are made, such as the assumption that the velocity differences between the two
phases are negligible in comparison to the velocity of the solid skeleton. The two-
phase mixture is consequently described with a single velocity vector, and a single
set of nodes is used to describe the soil-water mixture in the depth-integrated SPH
model. The coupling between the two phases is incorporated via an evolving pore
water pressure and a phase interaction force. The model of Pastor and co-workers
has been applied to a vast range of problems regarding landslides and debris flows
(Cascini et al., 2009; Haddad et al., 2010; Calvo et al., 2015). In recent work, the
depth-integrated SPH model was extended to explicitly account for two distinct soil
and water phases with different velocities (Pastor et al., 2018). Two sets of SPH
nodes were employed – one set to represent the soil, and the other to represent the
water phase.

While depth-integration reduces computational expense, it results in the loss of
essential flow features, such as the vertical pore water pressure and stress profiles.
These features must be reintroduced via assumed relationships between the full ver-
tical profile and the depth-averaged values (Iverson, 1997; Pastor et al., 2015b). Al-
though all current SPH models of debris flows are depth-integrated, there are other
SPH models of soil-water mixtures that are not depth-integrated. Most of these SPH



8.2. Mathematical framework 185

models are applied to small deformation problems (such as the strain localisation in a
saturated soil), that exhibit low relative velocities between the soil and water phases
(Bui, Sako, and Fukagawa, 2007; Blanc and Pastor, 2012; Bui and Fukagawa, 2013).
A single set of SPH nodes are therefore employed to approximate the two-phase
mixture, as described above. However, Bui and Nguyen (2017) recently incorporated
the full two-phase model of Zienkiewicz and Shiomi (1984) into SPH, without any
depth-integration. Two sets of SPH nodes were used to describe the soil and water
phases, and applied to a range of problems including the development of stress in
a submerged soil, and the flow of water through a soil embankment. The results
compared well with both theoretical and experimental data.

In the current work, depth-integration cannot be justified. The internal velocity
and stress profiles of the experimental debris flow vary with height in a complex
manner which cannot be approximated with an averaged value. Furthermore, with
regards to general landslide behaviour, depth-integration is only relevant when mod-
elling landslides of the flow-type, where the run-out length is often large in com-
parison to the flow height. Concerning models of landslide initiation mechanisms,
features such as the evolution of slip surfaces cannot be captured with a depth-
integrated model. As the aim of the current research is to develop a numerical tool
that is applicable to both landslide initiation and propagation, the two-phase SPH
model presented in this chapter is not depth-integrated. One of the most interesting
features of the experimental debris flow is the evolution of the two distinct layers
– one consisting of a homogeneous water-granular mixture, and another consisting
mainly of water, with turbulent features. For this reason, the granular material and
the water are modelled as two distinct phases with different velocities, which is also
more representative of reality (as opposed to a single set of SPH nodes for both
phases). This involves the implementation of two sets of SPH nodes – one set for
the granular material, and one set for the water. The general SPH implementation
is therefore based upon that of Bui and Nguyen (2017), and is applied to an exper-
imental debris flow for the first time. The two-phase model is incorporated within
both Standard SPH and Stress-Particle SPH.

8.2 Mathematical framework

In the context of granular flows, Biot (1956) introduced a two-phase theory to
model the propagation of elastic waves in a saturated, elastic solid. This theory
was extended by Zienkiewicz, Chang, and Bettess (1980) to account for the large
deformation of nonlinear materials. The subsequent model, often termed the Biot-
Zienkiewicz model, has been frequently implemented in numerical models to simu-
lated saturated granular materials (Li, Zienkiewicz, and Xie, 1990; Pastor, Li, and
Fernández-Merodo, 1997; Pastor et al., 2009a; Bui and Nguyen, 2017; Pastor et al.,
2018). The fundamental framework of the coupled solid-fluid model assumes that
the mixture consists of a soil skeleton with fluid filling the pores. In the present
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application the two phases are considered to be soil and water. The volume fraction
of the soil is denoted by φs, and the volume fraction of the water phase (the porosity)
is defined as φw = 1−φs, such that the sum of the volume fractions of the two phases
is equal to 1. The partial densities of soil and water in the mixture, ρ(s) and ρ(w),
are defined as

ρ(s) = φsρs, ρ(w) = φwρw, (8.1)

where the subscripts s and w refer to the soil and water phases respectively. The
total mixture density is

ρ = ρ(s) + ρ(w) = φsρs + φwρw. (8.2)

Similarly, the partial stresses of the two phases are

σ(s) = φsσs, σ(w) = φwσw, (8.3)

where σs and σw are the intrinsic stresses of soil and water. The total stress of the
mixture is

σ = σ(s) + σ(w). (8.4)

Equations (8.1) to (8.4) comprise the underlying framework of a two-phase mixture.
Under this general framework, the governing equations of motion of the soil-water
mixture can be defined.

8.3 Equations of motion

The equations describing the conservation of mass (in a Lagrangian framework) for
soil and water are

∂ρ(s)

∂t
+∇ ·

(
ρ(s)us

)
= 0, (8.5)

∂ρ(w)

∂t
+∇ ·

(
ρ(w)uw

)
= 0. (8.6)

Following Bui and Nguyen (2017), it is assumed that the spatial gradients of the void
fractions are negligible. With this assumption, and the substitution of the partial
densities (Equation (8.1)), the mass conservation equations are

∂ (φsρs)

∂t
+ φsρs∇ · us = 0, (8.7)

∂ (φwρw)

∂t
+ φwρw∇ · uw = 0. (8.8)

The first term of Equation (8.7) is expanded, and the density gradient is neglected as
the deformation of the intrinsic solid phase is small in comparison to the deformation
of the soil skeleton as a whole (Bui and Nguyen, 2017). This results in an equation
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governing the evolution of the solid volume fraction:

∂φs
∂t

= −φs∇ · us. (8.9)

Equation (8.8) is also expanded:

φw
∂ρw
∂t

+ ρw
∂φw
∂t

= −φwρw∇ · uw, (8.10)

where the second term on the left hand side can be rearranged in terms of the solid
volume fraction:

φw
∂ρw
∂t
− ρw

∂φs
∂t

= −φwρw∇ · uw. (8.11)

Utilising Equation (8.9), the fluid continuity equation can be written as

φw
∂ρw
∂t

= −φwρw∇ · uw − ρw
1− φw
φw

∇ · us. (8.12)

If the final term is neglected, Equation (8.12) reduces to the usual mass conservation
equation of a fluid. In the current work, it is assumed that local density variations are
independent of the soil matrix deformations, and the final term of Equation (8.12)
is ignored:

φw
∂ρw
∂t

= −φwρw∇ · uw. (8.13)

The equations governing the conservation of momentum of soil and water are

ρ(s)∂us
∂t

= ∇ · σ(s) + ρ(s)g + R (8.14)

ρ(w)∂uw
∂t

= ∇ · σ(w) + ρ(w)g −R, (8.15)

where R is the interaction force between the solid and fluid phase, defining the
momentum exchange between them. In Equations (8.14) and (8.15), the body force
b is assumed to consist of gravity g only. Upon substitution of the partial densities,
the momentum equations are written as

φsρs
∂us
∂t

= ∇ · σ(s) + φsρsg + R, (8.16)

φwρw
∂uw
∂t

= ∇ · σ(w) + φwρwg −R. (8.17)

Note that Equation (8.16) reduces to the momentum conservation equation for a
single phase soil, when φs = 1 and R = 0. The completion of the two-phase soil-
water mixture equations requires the definition of the partial stresses σ(s), σ(w) and
the interaction force R. With regards to the soil phase, the concept of Terzaghi’s
effective stress is assumed, and the soil partial stress is written as:

σ(s) = σ′ − φspwI, (8.18)
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where σ′ is the effective stress tensor of the soil skeleton and pw is the pore water
pressure (note that the viscosity of water has been neglected). The rheological be-
haviour of the soil skeleton is determined by the evolution of σ′, which is defined in
the same way as for a single phase material. Here, the soil is described with a rate
dependent elastoplastic law is, as described in Chapter 3. Recall that for a single
phase material, the stress tensor σ is written as a vector for convenience (as opposed
to a tensor). This convention is also applied in the present two-phase analysis, so
that upon substitution of the partial stress, the equation of momentum for the soil
phase in two dimensions is

φsρs
∂us
∂t

= ∇ · fσ ′ − φs∇pw + φsρsg −R, (8.19)

where in the plane strain condition

σ′ =


σ′xx

σ′yy

σ′xy

σ′zz

 , fσ ′ =

(
σ′xx σ′xy

σ′xy σ′yy

)
. (8.20)

The spatial gradients of the solid volume fraction have been ignored in the derivation
of Equation (8.19). The intrinsic stress of water consists of a deviatoric viscous term
τ , and a volumetric pressure term pwI:

σw = τ − pwI. (8.21)

The effects of viscosity are often neglected in soil dynamics and debris flow models
as they are assumed to be significantly less influential than the role of pore water
pressures (Pitman and Le, 2005; Pelanti, Bouchut, and Mangeney, 2008; Pastor
et al., 2015b; Bui and Nguyen, 2017). Although viscous stresses are an important
aspect of debris flow dynamics (Iverson and George, 2014; Pudasaini, 2012), the
viscosity is neglected in the current work, and pore water pressure is considered to
be the only contribution to the fluid stress. Upon substitution of the fluid stress, the
momentum equation for the water phase is

φwρw
∂uw
∂t

= −φw∇pw − φwρwg −R, (8.22)

where spatial gradients of the fluid volume fraction have been neglected.
Finally, a definition is required for the interaction force R. This includes a

description of the drag between the water and the soil, which is a function of the
velocity differences between the two phases. In the simplest approach, the drag is
assumed to be linearly proportional to the velocity differences (Pitman and Le, 2005;
Pastor et al., 2018). However, a quadratic drag dependence is better suited for high
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velocity flows (Pudasaini, 2012; Bui and Nguyen, 2017), where

RD = CD(uw − us)|uw − us|. (8.23)

The drag coefficient CD is problem dependent. For the relatively slow seepage of
water through a low permeability material a Darcy drag coefficient is appropriate,
whereas for the rapid flow of water through a high permeability material, an Ander-
son or Darcy-Forcheimer law is better suited (Bui and Nguyen, 2017; Pastor et al.,
2018). Pudasaini (2012) combined two types of drag via a parameter to switch from
one to the other:

CD =
φsφw(ρs − ρf )g

(Ut(PF (Rep) + (1− P )φM−2
w ))l

, (8.24)

where g is the magnitude of gravity (9.8), Ut is the terminal velocity of a single
particle falling through a fluid, P ∈ (0, 1), l and M are model parameters and F is

a particle Reynolds number (Rep) dependent parameter: F =
ρf
ρs

(
φw
φs

)3 Rep
180 . The

parameter P can be adjusted according to the problem for model calibration. At
the limiting cases, P = 0 corresponds to the movement of solid particles through a
fluid, while P = 1 corresponds to fluid flow through densely packed grains (Puda-
saini, 2012). The experimental flow exhibits a complex combination of this type of
behaviour. The parameter l in Equation (8.24) was introduced by Pudasaini (2012),
where l = 1 corresponds to laminar drag at low velocities and l = 2 represents tur-
bulent drag, at high velocities. In the current work, values of P = 1 and j = 1 are
implemented, for which Equation (8.24) reduces to

CD =
φsφw(ρs − ρf )g

UtF (Rep)
. (8.25)

Equation (8.25) is the same expression for drag as that employed by Pailha and
Pouliquen (2009), in the investigation of underwater granular avalanches.

In summary, the governing two-phase equations of a soil-water mixture are:

(Evolution of solid volume fraction)
∂φs
∂t

= −φs∇ · us, (8.26)

(Conservation of mass for water phase)
∂ρw
∂t

= −ρw∇ · uw, (8.27)

(Conservation of momentum for soil phase)
∂us
∂t

=
1

ρ(s)

(
∇ · fσ ′ − φs∇pw

)
+ g +

1

ρ(s)
R,

(8.28)

(Conservation of momentum for water phase)
∂uw
∂t

= − 1

ρw
∇pw + g − 1

ρ(w)
R, (8.29)

(Interaction force) R = CD(uw − us)|uw − us|, (8.30)

(Constitutive equation for soil phase)
∂σ′

∂t
= σ̃′ +∇ · fu − gε

p
. (8.31)

Note that the constitutive equation (Equation (8.31)) is the same as for a single
phase material. It describes the constitutive behaviour of the soil phase only, and
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Stress-point

Soil node Water node

Figure 8.1: A depiction of the two-phase Stress-Particle SPH
method.

not the total mixture. In addition to the system defined by Equations (8.26) - (8.31),
a description of the pore water pressure evolution is required. This can be related
to the density via an equation of state (Batchelor and Batchelor, 1967), which is
defined in Section 8.4.6.

8.4 Two-phase Stress-Particle SPH

In this section the two-phase model described by Equations (8.26) - (8.31) is defined
within the SPH framework. The two distinct phases – soil and water – are described
by two different sets of nodes in SPH. One set of nodes represents the water and the
governing equations of motion for the water are solved on these nodes. The other set
of nodes describe the soil skeleton, and carry information about the soil. In Stress-
Particle SPH, stress-points are attached to the soil nodes, and function in the same
way as detailed in Chapter 4. A depiction of the two-phase model in Stress-Particle
SPH is provided in Figure 8.1. Recall that in the Stress-Particle SPH methodology,
the subscripts i and j denote the nodes and stress-points respectively. Here, the
water nodes must also be distinguished from the soil nodes and stress-points. In
the following definitions, the water nodes are referred to by the subscripts α and
β (two subscripts are required to distinguish water nodes from other water nodes).
Furthermore, there are some calculations that involve node-node interactions – for
this purpose, SPH nodes are denoted by the subscripts i and k. In the remainder
of this section, SPH approximations are directly applied to the governing equations.
For further details on the derivation of the SPH approximations see Chapter 4.
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8.4.1 SPH approximation of the volume fraction

The evolution of the solid volume fraction is described by the following equation:

∂φs
∂t

= −φs∇ · us, (8.32)

which is solved on the SPH soil nodes, using information from the neighbouring soil
nodes. The SPH divergence approximation (Equation (4.19) ) is applied to the right
hand side term of Equation (8.32):

− (φs∇ · us)i = −φs,i
Nk∑
k=1

mk

ρ
(s)
k

(us,i − us,k) · ∇Wik, (8.33)

where the density of the soil skeleton ρ(s) is used within the SPH summation, as
opposed to the intrinsic soil density ρs. The SPH approximation of the rate of
change of solid volume fraction is therefore

∂φs,i
∂t

= −φs,i
Nk∑
k=1

mk

ρ
(s)
k

(us,i − us,k) · ∇Wik. (8.34)

The calculation of the fluid volume fraction first requires the approximation of the
solid volume fraction at each water node, which is interpolated from the surrounding
soil nodes via the SPH-CSPM method:

φs,α =

∑Ni
i=1

mi

ρ
(s)
i

φs,iWiα∑Ni
i=1

mi

ρ
(s)
i

Wiα

. (8.35)

The fluid volume fraction is then obtained at each water node:

φw,α = 1− φs,α. (8.36)

In this way, a fluid volume fraction of φw = 1 is calculated at the water nodes that
do not contain any soil nodes in their neighbourhood.

8.4.2 SPH approximation of mass conservation for water

The equation describing the conservation of mass for the water phase is

∂ρw
∂t

= −ρw∇ · uw. (8.37)

As described in Section 4.3, there are a number of different ways in which to approx-
imate the density in SPH. Here, the SPH continuity density approach (Equation
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(4.27)) is employed to discretise Equation (8.37):

∂ρw,α
∂t

= −ρw,α
Nβ∑
β=1

mβ

ρ
(w)
β

(uw,α − uw,β) · ∇Wαβ. (8.38)

Note that the density of the water phase ρ(w) is used within the summation in
Equation (8.38), rather than the intrinsic water density ρw. Equation (8.38) is solved
on each water node α, using information from the surrounding water nodes β.

8.4.3 SPH approximation of momentum conservation for soil

The equation describing the conservation of momentum of soil in a two-phase soil-
water mixture is:

∂us
∂t

=
1

ρ(s)

(
∇ · fσ ′ − φs∇pw

)
+ g +

1

ρ(s)
R. (8.39)

The soil stress term on the right hand side of Equation (8.39) is discretised in the
same way as for a single phase soil, except that the single phase soil density ρs is
replaced by the soil phase density in a two-phase mixture ρ(s) = φsρs:

1

ρ
(s)
i

(
∇ · fσ ′

)
i =

Nj∑
j=1

mj

(
fσi
′

ρ
(s)2
i

+
fσj
′

ρ
(s)2
j

)
· ∇Wij . (8.40)

The second term on the right hand side of Equation (8.39) is the gradient of the
pore water pressure within the soil. As the pore water pressure is a variable of the
water phase, it is calculated and stored on the water nodes. Therefore the pore
water pressure must first be approximated on each soil particle, via an SPH-CSPM
interpolation over the surrounding water nodes:

pw,i =

∑Nα
α=1

mα

ρ
(w)
α

pw,αWiα∑Nα
α=1

mα

ρ
(w)
α

Wiα

. (8.41)

The pore water pressure gradient can then be approximated on the soil phase by
applying the SPH gradient approximation, in the same way as for the stress terms in
Equation (8.40). However it was shown by Bui and Fukagawa (2013) that numerical
instabilities can arise at the soil-water interface when the pore water pressure gradient
is approximated in this way, unless a dynamic boundary condition is applied at the
interface. To avoid the additional computational cost that this brings, they proposed
an alternative gradient approximation for the pore water pressure:

(
1

ρ(s)
φs∇pw

)
i

= φs

Nk∑
k=1

mk

(
pw,i − pw,k
ρ

(s)
i ρ

(s)
k

)
∇Wik. (8.42)
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Equation (8.42) automatically accounts for the dynamic boundary condition at the
soil-water interface, and is solved at every soil node i by summing over the neigh-
bouring soil nodes k.

With Equations (8.40) and (8.42), the discrete momentum equation for the soil
phase is

∂us,i
∂t

=

Nj∑
j=1

mj

(
fσi
′

ρ
(s)2
i

+
fσj
′

ρ
(s)2
j

)
∇Wij−φs

Nk∑
k=1

mk

(
pw,i − pw,k
ρ

(s)
i ρ

(s)
k

)
∇Wik+gi+

1

ρ
(s)
i

Ri.

(8.43)
Equation (8.43) is written in the Stress-Particle SPH framework. Note that in the
outside approach, the volume fraction of each stress-point (required for the calcula-
tion of ρ(s)) is assumed to be equal to the volume fraction of its corresponding node.
For the Standard SPH method, the subscript j is replaced with the subscript k in
the first term on the right hand side of Equation (8.43). Artificial viscosity may also
be included on the right hand side of Equation (8.43), in the same way as outlined
in Section 4.5.1.

8.4.4 SPH approximation of the soil constitutive equation

The constitutive equation of the soil phase (Equation (8.31)) is solved in the same
way as described in Chapter 4, except the soil phase density φsρs is included in the
SPH summation approximation (rather than the intrinsic soil density ρs). In discrete
form, the soil constitutive equation is

∂σj
∂t

= σ̃j +
N∑
i=1

mi

ρ
(s)
i

(
fui − fuj

)
· ∇Wji − gε

p

j , (8.44)

where fu is a function of velocity and gε
p is a function of the plastic strain.

8.4.5 SPH approximation of momentum conservation for water

The momentum conservation equation for the water phase is:

∂uw
∂t

= − 1

ρw
∇pw + g − 1

ρ(w)
R. (8.45)

In the same way as for the stress terms in the single phase soil model, the first term
on the right hand side of Equation (8.45) can be written as

1

ρw
∇pw = ∇

(
pw
ρw

)
+
pw
ρ2
w

∇ρw. (8.46)

The SPH gradient approximation (Equation (4.18)) is then applied to Equation
(8.46):

1
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(∇pw)α =

Nβ∑
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∇Wαβ. (8.47)
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The discrete equation of the conservation of momentum for water is therefore written
as

∂uw,α
∂t

= −
Nβ∑
β=1

mα

ρ
(w)
α

(
pw,α
ρw,α

+
pw,β
ρw,β

)
∇Wαβ + gα −

1

ρ
(w)
α

Rα. (8.48)

In addition to the interaction force, Equation (8.48) requires a definition of the pore
water pressure evolution. Furthermore, an artificial viscosity term may be included
on the right hand side of Equation (8.48). This is calculated in the same way as for
a soil (see Section 4.5.1), replacing the soil node interactions with the water node.
Moreover, the numerical speed of sound for water is included, as opposed to the
speed of sound for soil. Equation (8.48) is solved on each water node by summing
over the surrounding water nodes.

8.4.6 Pore water pressure

Within the vast application of SPH to fluids, there are two existing techniques in
which to calculate the pressure – according to an equation of state (Monaghan, 1994;
Violeau and Issa, 2007; Gómez-Gesteira et al., 2010), or by solving an additional
partial differential equation (the Poisson equation) (Shao and Lo, 2003; Lee et al.,
2008; Bui and Nguyen, 2017). In the latter method, the pressure is evolved as a
function of velocity according to the Poisson equation, which is derived under the
condition of incompressibility. This method is utilised within the so-called truly
incompressible SPH, as the density can be kept constant at each particle (Lee et al.,
2008). Solving the Poisson equation involves the solution of a Laplacian equation,
as well as the enforcement of a zero pressure condition on the free surface nodes.

Conversely, the pressure can be related to the density according to an equation
of state:

pw = B

((
ρw
ρw0

)γ
− 1

)
, (8.49)

where B is a constant determined by the numerical speed of sound, γ = 7 is a model
constant and ρw0 is a reference density – usually taken to be the density of water.
Equation (8.49) requires local density variations to calculate a non-zero pressure,
so that the model cannot be truly incompressible. However the speed of sound c̃

can be chosen to be sufficiently large to reduce the density fluctuations to less than
1%. This method is referred to as weakly compressible SPH, and c̃ is typically taken
to be 10 times the value of the predicted velocity maximum (Monaghan and Kos,
1999; Lee et al., 2008). Solving Equation (8.49) in weakly compressible SPH is more
straightforward and less computationally expensive than obtaining the solution to the
Poisson equation in truly incompressible SPH. Therefore, in the current application
Equation (8.49) is used to obtain the pore water pressure.
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Speed of sound

The speed of sound for the fluid c̃ is a function of the derivative of the pressure with
respective to the density (Batchelor and Batchelor, 1967):

c̃2 =
∂pw
∂ρw

=
Bγ

ρ0

(
ρw
ρw0

)γ−1

. (8.50)

The constant B =
c20ρw0

γ , where c̃0 is the speed of sound at the reference density.
It is not possible to use a realistic value of c̃0 in the computation of fluids, as the
time step imposed by the CFL condition would be excessively small. It has been
shown that a reference speed of sound that is approximately ten times the maximum
velocity is usually sufficient for reasonable pressure calculations (Monaghan and Kos,
1999; Gómez-Gesteira et al., 2010). With the specification of the reference density,
the pore water pressure is defined according to Equation (8.49).

8.4.7 SPH approximation of the interaction force

The interaction force that is implemented in the current two-phase SPH model is
defined as

R = CD(uw − us)|uw − us|, (8.51)

CD =
φsφw(ρs − ρf )g

UtF (Rep)
. (8.52)

The discrete forms of Equation (8.51) for the water and soil phases respectively are:

Rα = CD,α(uw,α − us,α)|uw,α − us,α|, (8.53)

Ri = CD,i(uw,i − us,i)|uw,i − us,i|. (8.54)

The evaluation of Equation (8.53) on the water phase requires the approximation
of the soil phase velocity at each water particle. Similarly, to solve Equation (8.54)
on the soil phase, the water velocity is required at each soil particle. The soil and
water velocities are approximated on the water and soil phases respectively via an
SPH-CSPM interpolation:
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i
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i
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ρ
(w)
α
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mα

ρ
(w)
α

Wiα

. (8.55)

Furthermore, the solid volume fraction is interpolated on the water nodes in the same
way, while the fluid volume fraction is obtained on the soil nodes as φw = 1 − φs.
The remaining terms in the interaction force are model constants.
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Interior soil node Interior water node

Dummy node

∆x
∆x
2

Figure 8.2: A depiction of the boundary treatment in the two-phase
Stress-Particle SPH method.

8.4.8 Boundary treatment

The boundaries of interest in the current applications are wall boundaries. Recall
that for a single phase soil, dummy nodes are employed to simulate a wall. Dummy
nodes can also be utilised to prevent the water nodes from penetrating the boundaries
and to improve the kernel approximation in the boundary region. The simplest
method is to calculate and evolve the fluid density and pressure on the dummy
nodes, while keeping their positions unchanged. The dummy node variables are
included in the calculation of the density of the water nodes, to implicitly account
for the presence of wall boundaries. This method was introduced by Dalrymple
and Knio (2001) in the application of SPH to water waves. In the present two-phase
SPH model, dummy nodes are employed to simulate the no-slip condition for the soil
phase, in the same way as detailed in Section 4.4. In addition, the fluid continuity and
pressure equations are solved on the dummy nodes. The only difference regarding
the dummy node implementation in the single phase and two-phase SPH models is
the arrangement of the dummy nodes. For the single phase model, the dummy nodes
are positioned in a regular arrangement to simulate the wall boundaries, with the
rows spaced apart by the initial particle spacing ∆x (see Figure 4.6 in Chapter 4).
To ensure that the water particles do not penetrate the boundary, it is recommended
to place the dummy nodes in a staggered arrangement, with the row spacing equal
to ∆x

2 (Crespo, Gómez-Gesteira, and Dalrymple, 2007). A depiction of the dummy
node placement in two-phase Stress-Particle SPH is provided in Figure 8.2.

8.4.9 Computational implementation

In the same way as for the single phase Stress-Particle SPH method, the RK4 scheme
is used to update each variable in time, which is described in detail in Chapter 4. The
additional routines required for the implementation of the two-phase SPH method
were written in Fortran 90 by the author of the current research. The extra routines
consist of: the initialisation of the separate soil and water nodes, the soil-water
node interaction, the drag force calculations, the solid volume fraction evaluation,
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the solution of the water momentum equation, the water density update and the
calculation of the pore water pressures. A summary of the computational procedure
that is performed at each time step for two-phase Stress-Particle SPH is provided in
Figure 8.3. The two-phase SPH model has also been implemented within a Standard
SPH framework. For Standard SPH, the stress-points are disabled for the soil phase
and node-stress-point interactions are redefined as node-node interactions.

In the remainder of this chapter, the results of the two-phase Stress-Particle and
Standard SPH methods are presented and assessed. First, the two-phase model is
validated with the simulation of two benchmark problems from the literature. Next,
the model is applied to the experimental flow, described in Chapter 7. Note that
in all subsequent results, the XSPH method was not used to update the particle
positions. The positions of both the soil and water nodes are updated according to

dxi
dt

= us,i,
dxα
dt

= uw,α, (8.56)

which is solved as described in Section 4.6.

8.4.10 Model validation

Collapse of a water column

To ensure that the water phase has been correctly implemented within the current
SPH model, the benchmark problem of a two-dimensional water column collapse
has been simulated. The two-phase SPH model has been reduced to a single phase
water model to simulate this problem – the soil nodes are not included and the fluid
volume fraction is defined as one. The problem is based on experiments performed
by Koshizuka and Oka (1996), and has been frequently used to validate SPH models
in the literature (Violeau and Issa, 2007; Crespo, Gómez-Gesteira, and Dalrymple,
2007; Gómez-Gesteira et al., 2010). A volume of water with an initial height of 2 m
and a length of 1 m is allowed to collapse in a tank that is 2 m in height and 4 m in
length. Here, the current SPH model is validated by comparing with the numerical
results of Crespo, Gómez-Gesteira, and Dalrymple (2007), who employed 40000 nodes
to describe the water column. Crespo, Gómez-Gesteira, and Dalrymple (2007) did
not include the effects of turbulence or viscous stresses, yet included artificial viscosity
with the parameter αΠ = 0.5. Here, a total of 20302 SPH nodes have been used,
with a time step of ∆t = 2× 10−5 s. Artificial viscosity has also been included with
αΠ = 0.5, βΠ = 0, and the reference speed of sound was defined as c̃0 = 60 m s−1.
The results of the column collapse simulated with the current SPH model are shown
in Figure 8.4, along with the results of Crespo, Gómez-Gesteira, and Dalrymple
(2007). It is evident that the water displays the same behaviour, confirming that the
water phase has been implemented correctly in the current research.
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Start of RK4 integration

Update the problem vari-
ables us,uw, φs,σ′, ρf

Search for soil-water node interactions

Interpolate φs onto the water nodes, and cal-
culate the fluid volume fraction: φw = 1− φs

Interpolate the phase velocities us
and uw onto the water and soil nodes

Calculate the drag interaction accord-
ing to Equations (8.53) and (8.54)

Calculate the pore water pres-
sure using Equation (8.49)

Interpolate stress and velocity
onto the nodes and stress-points

Calculate the right hand side of the
water continuity equation (8.38)

Calculate the right hand side of the
water momentum equation (8.48)

Modify the soil stress as
described in Section 4.3.1

Calculate the right hand side of the
soil volume fraction equation (8.34)

Calculate the right hand side of
the soil momentum equation (8.43)

Calculate the right hand side of
the soil constitutive equation (8.44)

End of RK4 integration?

Interpolate stress and velocity
onto the nodes and stress-points

Adapt the soil stress as de-
scribed in Section 4.3.1

Final update of the problem
variables us,uw, φs,σ′, ρf

Update the positions of the soil
nodes, stress-points and water nodes

no

yes

Figure 8.3: A flow chart depicting the calculation steps of two-
phase Stress-Particle SPH. The blue and orange entries represent the
water and soil phase calculations respectively, while the green entries
correspond to actions that are relevant to both the water and soil

phase.
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(a) Current SPH model
(b) Crespo, Gómez-Gesteira, and Dalrymple

(2007)

Figure 8.4: The collapse of a water column, comparing the results
of the current SPH model with those of Crespo, Gómez-Gesteira, and
Dalrymple (2007) at t = 0.4 s, t = 0.8 s, t = 1.1 s and t = 1.8 s. The

nodes are coloured by contours of horizontal velocity.
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Table 8.1: Material parameters for the submerged, elastic soil.

E (Pa) ν ρs (kg m−3) ρw (kg m−3) γsat (kN m−3) γw (kN m−3) φs
1 ×108 0.3 2600 1000 20.797 9.81 0.7

Submerged soil sample

To verify that the soil and water mixture model has been implemented correctly, both
the Standard SPH and Stress-Particle SPH models have been applied to simulate
the in-situ stresses in a saturated, elastic soil. This problem has been considered
by previous authors for two-phase model validation (Bui and Fukagawa, 2013; Bui
and Nguyen, 2017). The problem consists of a 10 m × 10 m elastic soil sample that
is fully submerged in water of 12 m in height. The purpose is to examine the soil
stress profiles in an approximately stationary water sample. The vertical distribution
of stress and pore water pressure within the soil can be compared to an analytical
solution. The vertical effective stress profile is expected to vary with height as:

σ′yy(y) = (γsat − γw)(Hs − y), (8.57)

where γsat is the unit weight of the saturated soil (kN m−3), γw is the unit weight of
water and Hs is the total height of the soil (m). The pore water pressure is expected
to have a hydrostatic profile:

pw(y) = gρw(Hw − y), (8.58)

where Hw is the total height of the water.
A total of 5500 nodes were used to model the submerged soil (ns = 2500 soil nodes

and nw = 3000 water nodes), with an initial spacing of ∆x = 0.2 m. Following
Bui et al., 2008, the soil volume fraction was defined as φs = 0.7, and was not
updated throughout the simulation. The material parameters are provided in Table
8.1. Gravity was applied progressively over one second, and artificial viscosity was
included with αΠ = 0.5, βΠ = 0. The simulation was ran for a total of 3 seconds,
with a time step of ∆t = 1×10−5 s and a smoothing length of 1.2∆x. Dummy nodes
were employed at the lower, left and right boundaries. The problem was simulated
with Standard SPH, in addition to SP1, SP2 and SP3. The inside Stress-Particle
approach was used because the material displacements are small.

Contours of effective vertical stress are shown in Figure 8.5, for Stress-Particle
SPH with configuration SP3. As expected, the effective stress is zero at the soil
surface, and increases in magnitude towards the base of the sample. Plots of vertical
stress and pore pressure are provided in Figure 8.6 for Standard SPH, SP1, SP2 and
SP3, compared against the analytical solution. In all cases, the expected pore water
pressure profile is predicted well throughout the majority of the sample height. Re-
garding the vertical effective stress, the results of Standard SPH match the overall
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Water nodes

10 m
12 m

10 m

Figure 8.5: Contours of vertical effective stress σ′yy (Pa) in a sub-
merged elastic soil sample, calculated with Stress-Particle SPH (for

the SP3 configuration).

profile. The individual SPH particles show signs of an unstable, non-smooth con-
figuration, and the results diverge from the analytical profile around the centre of
the sample. Conversely, the Stress-Particle SPH particles show a smooth and sta-
ble profile throughout depth. The results in Figure 8.6 confirm that the soil-water
mixture model has been correctly applied, and also highlight the benefits of using
stress-points within two-phase soil-water problems.

8.5 Experimental debris flow

The experimental set-up has been implemented within the two-dimensional SPH
model, where two layers of granular material and water are released from behind a
lock gate in a dam break scenario. The granular material used in the experiment has
been approximated as a purely frictional, elastoplastic soil with a Drucker-Prager
yield criterion. The model parameters for the soil in the numerical model are the
same as those determined for the experimental material, provided in Section 7.2.
Furthermore, the Poisson ratio is assumed to be ν = 0.3. The experimental flow
exhibited regions of viscous behaviour (see Section 7.4), which suggests that the soil
could also be approximated with a viscoplastic Perzyna model. However this model
requires the tuning of additional parameters, which are not possible to measure.
Furthermore, the viscous behaviour is representative of the soil-water mixture as a
single phase. In the current application, the two distinct phases are considered and
a frictional Drucker-Prager model is a more physical representation of the granular
phase. The relevant material parameters are provided in Table 8.2.
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Figure 8.6: Plots of vertical effective stress σ′yy (Pa) and pore wa-
ter pressure pw (Pa) against soil elevation (m), for Standard SPH,
SP1, SP2 and SP3. The data correspond to a horizontal location of
x = 5 m. The SPH solution is depicted by the markers, while the
continuous line represents the analytical solution. Note the change
in sign convention for the stress – the compressive stress is positive,

for plotting purposes only.

Table 8.2: Elastoplastic material parameters for the soil and water
phases in the experimental debris flow.

E (Pa) ν φ (◦) coh (Pa) ρw (kg m−3) ρs (kg m−3) φs
6.916 ×105 0.3 39 0 997 1851 0.44
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(a) The implementation of the experimental set-up in SPH. The orange layer
depicts the soil nodes while the upper blue layer represents the water nodes.

(b) The initial soil-water placement in
the experiments

(c) The initial node placement in SPH

Figure 8.7: The initial material placement in the simulation of the
experimental debris flow.

Two layers of soil and water nodes are positioned behind the lock gate, in the
same configuration as for the experiment (see Figure 8.7). The soil and water nodes
are initially placed in a staggered arrangement, as shown in Figure 8.7c. Three layers
of dummy nodes (also staggered) are used to represent the flume bed, the left vertical
wall and the lock gate. The release of the material from the lock gate is simulated by
disabling the relevant dummy nodes. The length of the flume in the numerical simu-
lation is 0.25 m longer than the experimental flume, to ensure that the material that
exceeds the extent of the horizontal boundary does not influence the succeeding flow.
The slope of the experimental flume (31◦) is incorporated by adapting the gravity
terms in the body force component of the soil and water momentum equations. To
allow the full development of the pore water pressure and soil stress profiles, the lock
gate dummy nodes are kept in place for 2 seconds. Furthermore, the gravity force is
applied progressively over 1 second to prevent the occurrence of numerical instabili-
ties. The interaction force is not included during this time as the material movement
is minimal and the interaction can be considered to be negligible. After the material
initialisation, the lock gate dummy nodes are disabled. Note that this initialisation
process only needs to be performed once, and simulations can be restarted from the
initialised state.

A total of ns = 9949 soil nodes and nw = 15344 water nodes were employed
to simulate the experimental debris flow, with an initial particle spacing of ∆x =

0.00125 m. The smoothing length was chosen to be hs = 1.2∆x. The speed of sound
for the soil phase was defined as c = 100 m s−1, and the reference sound speed for
the water phase was defined as c̃0 = 70 m s−1. A time step of ∆t = 5× 10−6 s was
employed, providing an acceptable Courant number of Co = 0.3̇. Artificial viscosity
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was included in all simulations with model parameters απ = βπ = 0.1.
A particle resolution test was performed with Standard SPH to assess the influ-

ence of the number of particles on the results. Figure 8.8 shows the positions of the
soil and water phases after 0.5 and 0.75 seconds of flow, for three different particle
resolutions. The tests were performed with 6873, 9949 and 15555 soil nodes, and
10402, 15344 and 23843 water nodes respectively. For these simulations, the solid
and fluid volume fractions were not updated, and no interaction force was included.
The overall profiles align closely for the three resolutions, although the front position
of the material increases slightly with an increase in the number of particles. The
evolution of the soil and water particles are shown in close detail in Figure 8.9. The
vertical boundaries signify the field of view of the camera in the experiments, which is
the area of interest in the current work. The red horizontal line depicts the height of
the experimental flow at each time. The time labels correspond to the time since the
material entered the camera field of view (coinciding with the experimental results).
Comparing the results in Figures 8.9a to 8.9e, it can be seen that the simulation
with ns = 9949 replicates the features from the simulation with the highest particle
resolution (ns = 15555) to a reasonable extent. This is in terms of the height of the
material, and the respective behaviour of the soil and water phases. Meanwhile, the
results for the coarsest particle resolution overpredict the material height quite sig-
nificantly, and do not show sufficient detail. Note that as the SPH model is currently
only implemented as a serial process, the simulation with the highest particle num-
ber takes an excessive amount of time to run, which increases with the addition of
stress-points. Furthermore, the overall qualitative soil-water behaviour is the factor
that is of interest in the current work, rather than the precise detail. Therefore, a
particle resolution of ns = 9949 and nw = 15344 is assumed to provide a suitable
compromise between accuracy and computational time, and has been employed to
obtain all subsequent results.

Both Standard SPH and Stress-Particle SPH were used to simulate the experi-
mental debris flow. In Chapter 6, it was shown that the Stress-Particle SPH method
has an optimal performance when the stress-points are aligned with the direction of
the flow. In the simulations of the experimental debris flow, the overall flow direc-
tion is approximately parallel to the bed due to the high slope inclination. This can
be seen in the velocity vectors calculated with Standard SPH shown in Figure 8.10.
Note that in this case, the time corresponds to the time since the flow initiation (as
opposed to the arrival of the front at the camera field of view). Therefore, for the
simulation of the experimental flow with Stress-Particle SPH, each stress-point has
been positioned at a horizontal distance of ∆x

3 on either side of each node, as shown
in Figure 8.10b.

Figure 8.11 shows the evolution of the soil and water nodes for both Standard
SPH and Stress-Particle SPH. As a first approximation, the volume fractions were
not updated and no interaction force was included. This does not represent the
behaviour of the experimental debris flow, but it provides an initial simplified case
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Soil phase

Water phase

Figure 8.8: A comparison of the soil and water phases for the Stan-
dard SPH simulation of the experimental debris flow, for three dif-
ferent particle resolutions. The labels ‘Fine’, ’ Medium’ and ’Coarse’
correspond to 15555, 9949 and 6873 soil particles respectively, with
23843, 15344 and 10402 water particles. The fine, medium and coarse
results are represented by the blue, red and green vectors respectively.
The volume fraction was not updated, and no interaction force was

included.
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(a) t = 0.3 s

(b) t = 0.6 s

(c) t = 0.8 s

(d) t = 1.2 s

(e) t = 1.6 s

Figure 8.9: Soil (orange) and water (blue) node evolution for three
different particle resolutions, within the area corresponding to the
camera field of view in the experiments (0.05 × 0.03 m2). In each
subfigure, the particle resolution increases from left to right, where
ns = 6873, 9949, 15555 and nw = 10402, 15344, 23843. For visuali-
sation purposes, the water nodes are approximately 1.2 times larger

than the soil nodes.
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(a) Velocity vectors computed with Standard SPH (with no interaction force)

(b) A depiction of the node-stress-point configuration

Figure 8.10: SPH velocity vectors for the simulation of the exper-
imental debris flow, with the chosen node-stress-point configuration

for the Stress-Particle method.

for the comparison of the Stress-Particle method with Standard SPH. In Figure 8.11,
the red, horizontal lines provide a point of reference for the height of the material free
surface, and correspond to the height of the experimental flow. It can be seen that
for both Standard SPH and Stress-Particle SPH, the water separates from the soil
phase completely, due to there being no interaction force between the two phases.
By t = 0.8 s the material consists of soil nodes only. Overall, the height of the
experimental flow is reasonably predicted up to t = 0.8 s. The soil nodes from the
Stress-Particle method show an uneven distribution at t = 0.6 s, with a bumpy free
surface profile. In contrast, the corresponding free surface profile of Standard SPH
is approximately straight along the extent of the displayed section. At t = 1.2 s, the
Standard SPH results show a thinner flow than that of the experiment. Meanwhile,
the Stress-Particle SPH results display the same, uneven, distribution as for t = 0.6

s, resulting in a slightly thicker flow than for the Standard SPH. The difference in
behaviour between the Standard SPH and Stress-Particle SPH results potentially
highlights a shortcoming of the latter approach. However, it should also be noted
that the differences described above are relatively minimal – aside from the thicker
flow in certain areas, the Standard SPH and Stress-Particle SPH results display the
same overall behaviour. Moreover, there is no analytical solution to this problem
and the ‘correct’ behaviour is not intuitive.

To provide a more realistic representation of the experimental debris flow, the
volume fraction evolution and drag interaction have been included within the SPH
models, as described in Sections 8.4.1 and 8.4.7 respectively. In the experimental
mixture, the initial bulk value of the solid volume fraction is φs = 0.44 (which
was used to produce the results in Figure 8.11). When solving the volume fraction
evolution equation, an initial value of φs is required. It is more realistic to provide
an initial value that is representative of the volume fraction in the two distinct layers
(see Figure 8.7), as opposed to a bulk value. The upper layer initially consists of
water only and the solid volume fraction is therefore equal to zero. The initial volume
fraction of water in the lower layer is φw == 0.32, with a solid volume fraction of
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Standard SPH

t = 0.3 s

t = 0.6 s

t = 0.8 s

t = 1.2 s

Stress-Particle SPH

Figure 8.11: The evolution of the soil and water phases in the
numerical simulation of the experimental debris flow, with no inter-
action force. The soil and water phases are represented by the orange
and blue nodes respectively. The red, horizontal line represents the

height of the experimental flow at the corresponding times.

φs = 1 − φw = 0.68 (see Section 7.2). When evolving the solid volume fraction
(according to Equation (8.35)), an initial value of φs = 0.68 is defined, and the fluid
volume fraction is calculated as φw = 1− φs.

Recall that the definition of the drag in the current work is

CD =
φsφw(ρs − ρf )g

UtF (Rep)
, (8.59)

where Ut is the terminal velocity of a representative particle falling in a fluid, and
F is a particle Reynolds number dependent parameter. The terminal velocity is
approximated according to an empirical relationship with the representative particle
diameter dp:

Ut =

√
(ρs − ρf )gdp

ρf0.91
. (8.60)

Equation (8.60) was determined according to 115 different measurements of the set-
tling velocity of sand grains with a range of diameters (Hallermeier, 1981). For
the representative particle diameter of d50 = 0.917 mm in the experiments, Equation
(8.60) gives a terminal velocity of Ut = 0.091 m s−1. Regarding the particle Reynolds

number dependent parameter: F (Rep) =
ρf
ρs

(
φw
φs

)3 Rep
180 . The dimensionless particle

Reynolds number characterises the flow of a particle as it falls through a fluid (Lloyd,
2003). Considering the fluid to be water, Rep is defined as Rep =

dpUtρf
µ , where µ

is the dynamic viscosity of water (kg m−1s−1). For values of d50 = 0.917 mm,
Ut = 0.091 m s−1, and µ = 0.001 kg m−1s−1, the particle Reynolds number for the
experimental flow is approximated as Rep = 83.2 (to one decimal place). The terms
Ut, Rep and ρs are constants in Equation (8.59). The remaining terms are problem
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t = 0.3 s

t = 0.6 s

t = 0.8 s

t = 1.2 s

Figure 8.12: The evolution of the soil and water phases in the
numerical simulation of the experimental debris flow, with the volume
fraction update. The soil and water phases are represented by the
orange and blue nodes respectively. The vertical lines encompass the

area captured by the camera field of view.

variables, which are used to update the drag coefficient at each calculation step.
The development of the soil and water nodes with the evolving volume fraction

and drag interaction is provided in Figure 8.12, for Standard SPH and Stress-Particle
SPH. At t = 0.3 s, the results of both SPH models show two distinct layers of soil
and water, which develop into an approximately uniform soil-water mixture. This
behaviour is qualitatively similar to what was observed in the experiments. However,
unlike the experiments, the majority of the material has propagated beyond the
extent of the flume by t = 1.2 s. Overall, the results of Stress-Particle SPH are
qualitatively similar to the Standard SPH results. The soil nodes in the Stress-
Particle SPH results exhibit a slightly bumpy free surface profile at t = 0.6 s. As a
result, the height of the soil phase is greater than that of the water phase in certain
areas (e.g. at the far right of Figure 8.12 at t = 0.6 s).

The soil and water nodes within the region of the camera field of view are com-
pared against the experimental snapshots in Figure 8.12. At t = 0.3 s, the experimen-
tal flow exhibits turbulent, collisional behaviour throughout its depth (see Section
7.3). The effects of turbulence have not been included in the current two-phase SPH
model, and as such turbulent behaviour cannot be captured. However, the snapshots
of the experimental flow show that there are two distinct layers visible at t = 0.3

s – a lower, high concentration layer and an upper, dilute layer. These layers are
distinguished by the dashed line on the snapshots in Figure 8.12. The SPH results
also exhibit the ‘two layer’ feature of the experiment, although the height of the
free surface has been underestimated slightly. At t = 0.6 s, the experiment shows a
thin, watery layer at the flow free surface. This feature is also present in the SPH
results (for Standard and Stress-Particle SPH), and the height of the free surface
approximately coincides with that of the experiment. The experimental flow has
transitioned into a single layer at t = 0.8 s, consisting of a granular-water mixture.
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Standard SPH Stress-Particle SPH

Figure 8.13: Snapshots of the experimental debris flow, with the
SPH results. The orange nodes depict the soil phase while the blue
nodes depict the water. The solid red line corresponds to the free
surface of the experiment. The area of the camera field of view is
0.05 × 0.03 m2. From top to bottom, the results are shown at t = 0.3
s, t = 0.6 s, t = 0.8 s and t = 1.2 s. For visualisation purposes, the
water nodes are approximately 1.2 times larger than the soil nodes.

This behaviour is represented in the SPH model, where the soil and water nodes have
approximately the same thickness, and the height of the experimental free surface is
only slightly underpredicted. By t = 1.2 s, only a single layer of nodes is present in
the SPH results, which does not coincide with the experimental behaviour. Figure
8.14 shows the SPH soil nodes along the length of the lower boundary, coloured by
contours of horizontal velocity. The Standard SPH and Stress-Particle SPH results
both exhibit horizontal velocities up to 3 m s−1. This is significantly higher than the
maximum observed velocity in the experiment (≈ 1.2 m s−1). While the qualitative
behaviour of the experimental flow has been captured with SPH, the velocities in the
simulation are much higher than the experiment, and the simulated flow consequently
evolves over a shorter time frame.
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(a) Standard SPH

(b) Stress-Particle SPH

Figure 8.14: The positions of the soil nodes at the point of the
material reaching the end of the flume (t = 0.35 s). The nodes are

coloured by horizontal velocity ux (m s−1).

8.6 Conclusion

The purpose of implementing a two-phase soil-water model within SPH was to sim-
ulate the experimental debris flow described in the previous chapter. The behaviour
of the flow up to t = 0.8 s has been qualitatively captured with the two-phase SPH
model, for both Standard SPH and Stress-Particle SPH. The experimental flow ini-
tially exhibits two distinct layers consisting of a lower, soil-water mixture and an
upper dilute layer (discussed in detail in Chapter 7). This progressively develops
into a single layer consisting of a soil-water mixture. The qualitative transition has
been simulated with the two-phase SPH model, as shown in Figure 8.13. These
results were obtained when a drag interaction law was included in the model, and
the solid volume fraction was updated according to Equation (8.34). The relative
behaviour of the two phases, as well as the height of the free surface, compares well
to the experimental results up to t = 0.8 s. However, the material velocity is signifi-
cantly higher in the numerical results than in the experimental flow, and by t = 1.2

s the majority of the simulated material has propagated beyond the camera field of
view. This is at a contrast with the experimental results, where the material is still
in motion at t = 1.2 s (and closely resembles the flow at t = 0.8 s). The experimental
flow does not stop moving until an approximate time of t = 2.6 s.

The inability of the SPH model to represent the full experimental flow, and the
over-estimation of the flow velocities, could be attributed to a number of possible
factors. The two-phase model lacks many physical features that are likely to affect
the debris flow motion. For example, the SPH model does not include the effects of
turbulence, which was exhibited in the initial stages of the debris flow (see Chapter
7). It is plausible that in the experiments, the turbulent energy resulted in a de-
crease of kinetic energy and a subsequent reduction of flow velocity. An additional
constitutive term accounting for extra frictional resistance, such as that of Voellmy
(1964), may improve the results of SPH. In fact, a constitutive model with a higher
complexity than the elastoplastic Drucker-Prager model may be more appropriate
for the description of the material in the experimental flow. Another feature that has
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been neglected from the two-phase SPH model is the effect of viscosity. Viscosity
is often neglected in debris flow models (Pitman and Le, 2005; Pelanti, Bouchut,
and Mangeney, 2008; Pastor et al., 2015b; Bui and Nguyen, 2017), yet it was shown
by Pudasaini (2012) that viscous forces can significantly impact model results. The
experimental flow has a high content of fine particles that may contribute to the
viscosity of the interstitial fluid, and the velocity profiles in the flow body are of a
viscous-type (see Figure 7.17 in Chapter 7). Therefore, the neglect of viscous effects
in the SPH model could be partly responsible for the excessive simulated veloci-
ties. Furthermore, pore water pressures are considered to be one of the key factors
governing debris flow behaviour (Iverson, Reid, and LaHusen, 1997; Pastor et al.,
2015b). Often, there is a feedback mechanism between excess pore water pressures,
soil dilation and grain size segregation (Johnson et al., 2012; Kaitna, Dietrich, and
Hsu, 2014). Such effects have been neglected in the current two-phase SPH model,
and the pore water pressure is governed by an equation of state. However, the short
duration of the experimental flow and the high material permeability indicates that
excess pore water pressures do not have a significant effect on the flow behaviour.
It is highly likely that the flow was influenced by three-dimensional effects. The
two-dimensional approximation is a significant simplification, that neglects chan-
nel effects and all cross-stream flow mechanisms. All of the aforementioned factors
highlight areas that require further attention in the current two-phase SPH model.

It is relevant to highlight that when no drag interaction force is included in the
model (and the volume fractions are not updated), the Standard SPH results provide
a reasonable approximation of the experimental flow in terms of the height of the
free surface (see Figure 8.11). However, with no interaction force the water phase
separates completely from the soil, and by t = 0.8 s, the SPH results consist of the
soil phase only. The phase separation does not resemble the experimental behaviour.
Nonetheless, these results show that while the presence of the interaction force is
essential for the coupled behaviour of the soil and water phases, the tail of the
experimental flow is better predicted as a dry, granular flow. The drag interaction
force is included in the equation of momentum of both phases, where it is added
to the right hand side of the soil momentum equation (see Equation (8.14)), and
subtracted from the right hand side of the water momentum equation (see Equation
(8.15)). The term therefore acts to increase the velocity of the soil, while decreasing
the velocity of the water. In the application to the experimental debris flow, the
soil velocity increase is much larger than expected. Recall that in the application to
the experimental debris flow, assumptions were made regarding certain parameters
in the full drag description of Pudasaini (2012), defined by Equation (8.24). Recall
that the full drag definition:

CD =
φsφw(ρs − ρf )g

(Ut(PF (Rep) + (1− P )φM−2
w ))l

. (8.61)
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For simplicity, in the current work, the parameter P was defined to be 1, correspond-
ing to the flow of fluid through a dense grain packing (Pudasaini, 2012). For P 6= 1,
calibration is also required for the parameter M in Equation (8.61), which can vary
from 2.4−4.65 (Pitman and Le, 2005). Furthermore, the parameter l can be defined
as 1 or 2, corresponding to laminar and quadratic drag coefficients respectively. The
value l = 1 was chosen in the present investigation. A thorough investigation of
these parameters is required to assess the implication of these values. It is possible
that an alternative, more sophisticated drag interaction law is required to describe
the different stages of the experimental flow.

There is no evidence of numerical instability in the simulation of the experimen-
tal debris flow, suggesting that the Standard SPH method is a suitable model. The
results of Standard SPH provide a point of comparison to the assess of the perfor-
mance of the Stress-Particle SPH method. Overall, the results of Standard SPH and
Stress-Particle SPH display the same behaviour. This shows that the Stress-Particle
method (with the outside approach) is capable of modelling small-scale, rapid flows,
to a certain extent. However, the results of Stress-Particle SPH display some areas
where the soil nodes appear to have a slightly uneven distribution. This creates a
bumpy free surface profile, which is evident at t = 0.6 s in Figures 8.11 and 8.12.
Further investigation is required to assess this apparent instability in the Stress-
Particle method. It is possible that the method is unsuitable for flows that exceed
a certain velocity. For such problems, it may be inappropriate to use an interpo-
lation technique to obtain the stress and velocity on the nodes and stress-points
respectively. This could be tested by performing alternative methods to transfer the
information between the nodes and stress-points. For example, assigning the velocity
of the stress-points to be equal to that of their associated node, and the stress of the
node to be the average of the corresponding stress-points. Moreover, an alternative
possibility is that the Stress-Particle method is unsuitable for thin flows, where the
surrounding neighbourhood of particles is relatively sparse. However, the expected
behaviour of the soil phase in the experimental flow simulation is not intuitive. There
is no analytical solution to compare the results to. Therefore, it is unclear at this
stage whether or not the Stress-Particle SPH results are in fact incorrect, and to
what degree.

It was shown in Chapter 6 that the performance of Stress-Particle SPH is op-
timum when the stress-point positions are assigned to align with the direction of
the flow. In extreme cases, the simulations exhibited severe instabilities when the
stress-points did not align with the flow direction (see Section 6.5). The experimen-
tal debris flow rapidly propagates downstream and the velocity vectors within the
flow body are mostly parallel to the lower boundary in the SPH simulation (see Fig-
ure 8.10a). Therefore, to simplify the implementation of the Stress-Particle method,
two stress-points were positioned horizontally on either side of each node, as shown
in Figure 8.10b. To test this assumption, the simulation of the experimental flow
(with no interaction force or volume fraction evolution) was conducted with the
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t = 0.3

t = 0.6

t = 0.8

t = 1.2

Figure 8.15: The effect of stress-point placement on the Stress-
Particle SPH simulation of the two-phase experimental debris flow.
The results on the left correspond to the horizontal stress-point place-
ment as shown, where r = ∆x

3 . The results on the right were simu-
lated with a diagonal stress-point placement, also for r = ∆x

3 .

stress-point positions not aligned with the flow direction. The results are shown in
Figure 8.15, where they are compared with the results obtained with the horizontal
node-stress-point arrangement. The corresponding node-stress-point configurations
are depicted. It can be seen that the soil node behaviour is significantly less stable
for the simulation with the stress-points unaligned with the flow direction. This pro-
vides further verification that the stress-point positions are an important factor, and
that the best results are obtained when they align with the flow. For the application
to the experimental flow, the results of Stress-Particle SPH may be improved if the
stress-point orientation is updated according to the velocity vector at each node, as
described in Section 6.4.2.
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Chapter 9

Conclusions

The primary aim of this research was to develop a numerical model that can sim-
ulate landslide behaviour with accuracy – including both initiation (failure), and
propagation (post-failure). In fulfilment of the aim of this research, a novel numeri-
cal model has been developed within the framework of SPH. The numerical model –
Stress-Particle SPH – is capable of simulating the failure and post-failure of soil while
eliminating numerical instabilities that are often detrimental to the performance of
SPH. What’s more, this model removes instabilities in a way that does not require
artificial parameter tuning.

Two variations of Stress-Particle SPH have been developed and implemented in
this research – the inside approach and the outside approach. The former variation
consists of a specified number of stress-points positioned inside virtual quadrilaterals,
which are formed by four neighbouring nodes. In this approach, the positions of the
stress-points are updated according to an interpolated velocity, which is transferred
from the neighbouring nodes via the SPH approximation. In Chapter 5, the inside
approach was applied to a range of soil dynamics problems that are relevant to the
formation of slope failure surfaces. These problems consisted of a simplified elastic
and viscoplastic slope, strain localisation in a soil sample, and the formation of a
slip surface in a cohesive soil. In all cases, the Stress-Particle SPH method provided
smooth profiles of stress, and generally produced more accurate results than for
Standard SPH. In the case of the strain localisation problem, well-defined shear bands
were simulated with Stress-Particle SPH, while Standard SPH was unable to simulate
the problem on account of numerical instabilities (see Section 5.4). Different node-
stress-point configurations were explored and applied to all problems in Chapter 5.
This is the first time that stress-point quantity and arrangement has been examined
in the numerical simulation of a nonlinear system. It was shown that, in general,
there is a correlation between stress-point quantity and result accuracy. It was also
deduced that the simulation results are dependent on the stress-point orientation.
This was particularly evident in the strain localisation problem, where the shear band
inclination approximately aligned with the orientation of the stress-points. In the
simulation of the cohesive soil, Stress-Particle SPH was able to completely eliminate
the non-physical fracturing that occurred for Standard SPH (as a result of the tensile
instability), for a sufficient quantity of stress-points (see Section 5.5.1). In Chapter
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5, the inside approach was also applied to model the collapse of a purely frictional,
non-cohesive soil. This problem exhibited high displacements and rapid velocities
– representative of the post-failure behaviour of landslides. The inside approach
was unable to capture the dynamics of this problem, due to the way in which the
stress-point positions were updated (see Section 5.5.2).

As opposed to arranging the nodes and stress-points within virtual quadrilaterals,
the outside approach consists of a specified number of stress-points positioned around
individual nodes. Therefore, every node is associated with one or more stress-point,
and every stress-point is associated with a single node. By arranging the nodes and
stress-points in this way, the stress-points can be assigned to follow their associated
node for the duration of the simulation, thereby solving the problems regarding the
stress-point position update. In Chapter 6, the outside approach was applied to
problems involving the post-failure behaviour of soil, including the collapse of the
non-cohesive soil. Unlike the inside approach, the new method was able to model
the large material displacements well, with two or more stress-points per node (see
Section 6.2). The outside approach was also used to simulate the cohesive soil, to
ensure that the new approach was still able to prevent the formation of non-physical
fractures (see Section 6.3). Here, it was found that the performance of the outside
approach is strongly dependent of the positions of the stress-points with respect to
their associated node. For certain node-stress-point configurations, the method was
not capable of completely eliminating the non-physical fractures. What’s more, the
overall material behaviour and deformation was also affected by the node-stress-point
configuration. It was deduced that although stress-points are interpolation points
(as opposed to material points), they should not be positioned in areas where there
would not usually be a material point to influence the nodes. A new technique
was developed to account for this feature: the stress-points are assigned to follow
each node (allowing the simulation of large displacements), yet their orientations are
regularly adapted so that they align with the general flow field (to ensure accurate
numerical calculations). With this updated technique, the fractures in the cohesive
soil problem were completely eliminated, and the large displacements of the non-
cohesive soil were also captured. The technique was also applied to the collapse of
a viscoplastic material, that exhibited both large displacements and severe effects of
the tensile instability for Standard SPH. The outside approach was able to eliminate
the instabilities and capture the rapid flow dynamics.

Following the development and validation of Stress-Particle SPH, in Chapter
7 the results of a small scale debris flow were presented. One of the reasons for
conducting these experiments was to provide a physical problem for further validation
of the Stress-Particle SPH method. However, the experiments also provided insight
into the internal dynamics of a small scale debris flow – a particularly destructive
type of landslide (Iverson, Reid, and LaHusen, 1997). The experiment consisted of
the sudden release of a granular-water mixture along an inclined flume. The flow
dynamics were captured with a high speed camera, and a PIV technique was used to
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obtain internal profiles of velocity and shear stress. The head-body architecture of
the flow was examined and quantified in more detail than in previous investigations.
Velocity flow fields were produced for the first time, for both the head and the body.
The internal observations showed a spatial and temporal evolution from a transient,
collisional, turbulent flow (at the head) to a steady, non-fluctuating flow (in the
body). In the transition between these two flow regimes, the experiment consisted of
a two layer region – a lower non-fluctuating layer and an upper turbulent layer (see
Section 7.3). Furthermore, the velocity profiles in the steady flow body exhibited
a viscous-type profile (see Section 7.4). Similar experiments were presented in the
literature, for different values of the material coefficient of uniformity CU (Sanvitale
and Bowman, 2017). There, viscous-type profiles were obtained for a wide grain
size distribution (CU = 20), and granular-type profiles were obtained for a narrow
distribution (CU = 3). In the current work, CU = 5. Therefore, comparing the
experimental results of Chapter 7 with those from the literature, it is suggested that
granular and viscous-type flow is distinguished by a limiting value of CU , between 3
and 5.

In an attempt to simulate the results of the experimental debris flow, a two-
phase soil-water model, derived under the framework of Biot (1956) and Zienkiewicz,
Chang, and Bettess (1980), was implemented within Standard SPH and Stress-
Particle SPH in Chapter 8. This is the first time that a two-phase, non-depth-
integrated SPH model has been applied to a debris flow problem. Due to its com-
plexity, the comparison of the experiment with the SPH model was restricted to the
first 1.2 seconds of flow, and the relative positions of the soil and water phases in
the camera field of view were compared with snapshots from the experiment. The
SPH models were able to capture the qualitative features of the experimental flow
up to t = 0.8 s, in terms of the relative soil and water behaviour (see Section 8.5).
However, the velocities were significantly overpredicted with the SPH model, and
further work is required to develop the two-phase model and investigate its capabili-
ties. No numerical instabilities were observed in the SPH simulations, and Standard
SPH provided a suitable point of comparison for the Stress-Particle SPH method.
There was a large degree of similarity between the results of the two SPH models.
Overall, the behaviour of the soil and water phases coincided for the two methods.
However, the Stress-Particle SPH results exhibited some areas with an apparent un-
even soil node distribution. It is not clear at this stage whether or not these features
are unrealistic.

In summary, the most significant findings of this investigation are:

• Stress-Particle SPH is capable of eliminating or significantly reducing the effects
of the two most serious instabilities in SPH – zero energy modes and the tensile
instability – in problems regarding the failure and post-failure behaviour of soil.

• Stress-Particle SPH can also be applied to problems with high velocities and
large displacements when the stress-points are defined to follow specified nodes,
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where optimum results are obtained when the stress-point positions are aligned
in the direction of the material velocity.

• A dilute two-phase experimental debris flow exhibits a spatial and temporal
evolution from collisional to non-fluctuating behaviour, with a two-layer tran-
sition between the two regimes.

9.0.1 Suggestions for future work

The results presented in this investigation have shown that the Stress-Particle SPH
method has stabilising effects, which are vital for the accurate simulation of problems
related to landslide behaviour. It would be beneficial to quantify the stabilising
effects through a linear stability analysis of the system. Although such analyses have
been conducted previously for SPH with stress-points (Belytschko et al., 2000; Xiao
and Belytschko, 2005), they were restricted to rate-independent, elastic materials,
with simple node-stress-point configurations. The results of these analyses suggested
that stress-points within SPH were capable of increasing the threshold at which the
tensile instability occurred, but not eliminating it completely. In the current research,
the Stress-Particle SPH method was able to completely eliminate the effects of the
tensile instability in a cohesive soil (see Chapters 5.5.1 and 6.4.2) and a viscoplastic
material (see Chapter 6.5). Therefore, future work may involve conducting a stability
analysis of Stress-Particle SPH when applied to soil, with the configurations that were
considered in this research. This would provide further insight into the underlying
stabilising mechanism of the method.

Regarding the current application of interest, Stress-Particle SPH is capable of
simulating problems that are representative of both landslide initiation and propaga-
tion. These stages have been considered separately for the purpose of implementing
and validating the Stress-Particle method. A natural extension of this work is to
combine both initiation and propagation as a single problem, and model a landslide
event as a continuous process with Stress-Particle SPH. This task is a major chal-
lenge, which would also require the implementation of a rheological model that is
more advanced than what is currently available. Furthermore, it was shown by An
et al. (2016) that three-dimensional effects play a vital role in landslide simulations,
exhibiting features that cannot be captured with a two-dimensional model. For ap-
plicability to real events, the Stress-Particle method should be extended to three
dimensions.

With regards to the numerical method, there are several areas that could be de-
veloped and improved in future work. Potentially the most significant drawback of
the Stress-Particle method is the associated computational expense. As discussed
in Chapter 5.6, simulations with the inside approach – with one stress-point per
virtual quadrilateral – take approximately twice as long as for Standard SPH with
the artificial stress method. The computational expense increases with a higher
node-stress-point ratio. Improvements to the efficiency of Stress-Particle SPH may
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include implementing the method in parallel computing, or utilising graphics process-
ing units. Furthermore, an issue that was encountered in many problems within the
current research was the implementation of the boundary conditions within Stress-
Particle SPH (see Chapters 5 and 6). This has been a long-standing issue in conven-
tional SPH, and the subject of numerous investigations within the literature (Takeda,
Miyama, and Sekiya, 1994; Morris, Fox, and Zhu, 1997; Wang, Ge, and Li, 2006;
Crespo, Gómez-Gesteira, and Dalrymple, 2007). Further attention is required re-
garding the adaptation of existing boundary techniques for use in the Stress-Particle
method. It is likely that the approach undertaken in this research – using dummy
nodes to simulate wall boundaries – would be better suited for the Stress-Particle
method if dummy stress-points were also considered.

Regarding the experimental debris flow, there are numerous factors that are of
interest for future investigations. Factors such as grain size distribution, solid volume
fraction, bed roughness and particle fine content are known to have a high influence
on debris flow dynamics (Iverson, Reid, and LaHusen, 1997). There are limited
studies in the literature that investigate these features, with regards to the internal
dynamics of small scale flows. Several of these variables have been explored in detail
in the work of Paleo Cageao (2014), yet for idealised spherical particles. There is a
significant difference in the dynamics of granular flows of idealised spheres, against
flows of realistic, angular particles. The experimental results in Chapter 7 suggest
the existence of a cut-off between viscous and granular-type flow, defined in terms of
the coefficient of uniformity CU . This hypothesis could be tested in future work, by
repeating the experiments detailed in Chapter 7 for granular material with different
values of CU . Furthermore, the internal observations of the experimental flow in
the current work were recorded through the clear, perspex wall. It is likely that the
flow is affected by the presence of the wall, and more accurate observations would
be obtained in the flow centreline. This could be achieved with an advanced planar
laser-induced fluorescence technique, which was used in the experiments of Sanvitale
and Bowman (2017).

The inability of two-phase SPH to recreate the experimental flow for its entire
duration highlights the need for the future development of the two-phase model.
Several assumptions were made regarding the derivation of the two-phase system.
Of these assumptions, those that are of most significance include the role of viscous
effects, the phase interaction force and the assumption of a two-dimensional flow. It is
suggested that future work includes viscous forces in the two-phase SPH model, and
investigates alternative descriptions of the soil-water interaction force. Furthermore,
three-dimensional effects are likely to be significant. The latter factor could also
be investigated experimentally, by recording the velocities of the flow surface from
above. In the experimental simulations, some differences were observed in the results
of Standard SPH and Stress-Particle SPH. As the expected behaviour of the SPH soil
nodes is not exactly clear for this problem (i.e. there is no known solution), further
simulations of two-phase, high velocity problems should be performed to fully assess
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the capabilities of Stress-Particle SPH with the outside approach.

9.1 Concluding remarks

This research has been devoted to the development and implementation of a numer-
ical model that is capable of simulating landslide behaviour at both initiation and
propagation. This has been achieved, in the form of Stress-Particle SPH. The model
has been validated with numerous problems relating to the failure and post-failure
stages of landslides, and consistently performed better than Standard SPH in terms
of accuracy and stability. Not only is the model applicable for general landslide
behaviour, it also offers the possibilities of simulating a broader range of problems
with SPH than is currently possible.
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