A Two-Sample Distribution-Free
Test with Applications to

Correlated Genomic Data

Alison Jane Telford

Department of Statistics

University of Leeds

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

January 2019


mailto:atelford7@gmail.com
http://maths.leeds.ac.uk
http://www.leeds.ac.uk




The candidate confirms that the work submitted is his/her/their own
and that appropriate credit has been given where reference has been

made to the work of others.

This copy has been supplied on the understanding that it is copyright
material and that no quotation from the thesis may be published with-

out proper acknowledgement

(© 2019 The University of Leeds and Alison Telford






I would like to dedicate this thesis to my supervisors, for being incredi-
bly patient and helpful and for teaching me to never give up; no matter

how hard things get.



Acknowledgements

I’d firstly like to thank my family, without whom I’d have never em-
barked on this incredible journey. They gave me the push and the
confidence I needed to apply for a PhD and I've never looked back
since. I should also thank Joe for sticking by me when things got hard
and giving me the motivation to keep going. You always had faith in

me even when my own faith wavered.

I thank my supervisors Dr Arief Gusnanto, Professor Charles Taylor
and Dr Henry Wood for all the help they’ve given me throughout my
PhD, and giving me the gentle encouragements to help me gain success.
They have turned a masters graduate into a confident human being

with amazing career prospects. I seriously cannot thank them enough.

I’d also like to thank Professor John Kent for being my assessor for
the end of second and third year reviews. Whilst his comments were
critical and always brought me back to reality, I began to ask myself
WWIKS (what would John Kent say) when writing this thesis. By
thinking this way, I was able to produce a piece of work to be proud
of.

I want to add a special mention to Alastair Droop for spending hours
with me sorting out my R code into an R package, without your help

I would have gotten nowhere!



Abstract

This thesis focuses on the identification of genomic regions that exhibit
significant differences of Copy Number Alterations (CNA) between two
clinical groups. CNA are a structural variation in the human genome
where some regions have more or less copy number than the normal
two copies. CNA patterns in some genomic regions across patients have
been shown to be associated with disease phenotypes. Our interest is
in testing which genomic regions exhibit different distributions between
two clinical groups to aid classification of patients on their subtype of
cancer and discover new genomic markers for phenotypic identification.
To do this we apply a two-sample test on each genomic region to test

the null hypothesis that two distributions are equal.

Standard statistical tests are not adequate to deal with the character-
istics of the data where the differences between the two groups lie in
any one of the following aspects of the distribution: mean, variance,
skewness, and multi-modality. When the null hypothesis is that two
distributions are equal, the Anderson-Darling (AD) test is generally
employed. The AD test was developed from the Cramer-von Mises
(CvM) test statistic, which was originally proposed for a goodness-of-
fit test. In the case of multi-modality, we find that the AD test often
fails to identify true differences. We show, however, that the Cramer
test - another modification to the CvM test - does not fail in the case
of multi-modality. We have obtained the first four moments of the
Cramer test statistic, which are not available previously. We also pro-
pose a new method for obtaining a p-value without using resampling
techniques by approximating the distribution of the test statistic by
a Generalised Pareto Distribution (GPD). By approximating the null
distribution in this way, the calculation of the p-value is much faster
than current methods, especially for large n. A simulation study indi-
cates that the Cramer test is as powerful as other tests in simple cases

and more powerful in more complicated cases.



To test our method, we applied the Cramer test on each genomic region
to compare two groups of 76 lung cancer patients - 38 of which have
adenocarcinoma type lung cancer and the other 38 have squamous
carcinoma type lung cancer. Comparisons with the current method for
identifying genomic regions of interest, KC Smart, also indicate that

our method works well and is arguably preferable.

When the genome is split into separate regions, we show that adjacent
(in genomic location) regions can exhibit very high correlation of CNA.
High correlation between genomic locations suggests dependencies be-
tween the simultaneously performed tests. Because of these dependen-
cies, multiplicity correction techniques for independent tests cannot be
used alone as the number of independent tests performed is unknown.
Methods exist to estimate the effective number of independent tests,
however we find that these methods are slow and computationally ex-
pensive. Because of this, we extend work done on Fisher’s method to
combine dependent p-values. We compare this method to using a mul-
tivariate version of the Cramer test and show that the method produces

similar results when performed on the lung cancer data set.
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Chapter 1

Introduction

1.1 Motivation and Background

Cancer is a complex disease. Certain types of cancer, like lung cancer, have multi-
ple subtypes that require different treatments. Understanding why the subtypes of
cancer require different treatment is important when determining the best course of
treatment. Smith and Sheltzer (2018) identifies specific genetic alterations that are
more common for certain subtypes of cancer. These alterations are Copy Number
Alterations (CNA) or Copy Number Variations (CNV) which are the duplications
and deletions of chromosomes which occur along the genome, see Sections 1.3 and
1.4 for a more detailed explanation on CNA, it’s biological significance and how
its measured.

CNA are extremely common in cancer (Beroukhim et al., 2010) and are biolog-
ically significant when detecting tumour subtypes (Gusnanto et al., 2015). Many
studies, e.g. Loo et al. (2011), Choi et al. (2017) and Wang et al. (2016), have
been done to identify genomic markers which display a difference in CNA between
patients with different subtypes of cancer. Performing analysis on patients with
known subtype of cancer will therefore help identify the subtype of cancer for a
patient with unknown subtype. For example, if a genomic marker is identified and
the differences between CNA understood, then a new patients subtype of cancer
can be discovered by observing the behaviour of CNA at that genomic marker
and matching it to the behaviour we expect to see for a subtype of cancer. The
behaviour of CNA expected for each subtype of cancer at genomic markers are
also identified through analysis. We should therefore be able to use this analysis
for the purpose of classifying new patients on their subtype of cancer. The classi-

fication of patients is not discussed in detail in this thesis, however it is considered
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future work. In this thesis we instead focus on a different approach for identifying
genomic regions for which CNA differs significantly between subtypes of cancer.

Statistical learning and classification techniques for analysing these data are
currently a popular topic (Lin et al. (2018), Wang et al. (2017) and Lu et al.
(2018)). Usually, CNA data will have a large amount of correlated variables p
(>10,000) and only a small number of observations n (<100), therefore more care
is needed when performing statistical learning and classification.

In order to locate genomic regions of significance, two-sample testing can be
used on different genomic locations where each sample of CNA comes from a
different subtype of cancer, see Section 1.8 for a more detailed motivation on
identifying genomic regions of significance using two-sample testing. Choosing a
suitable two-sample test for this purpose however is not a straightforward task and
provides one of the main focuses for this thesis. For a chapter by chapter overview

of the research carried out in this thesis see Section 1.9.

1.2 Objectives

There are many problems arising from the identification of genomic regions of
interest using CNA to determine tumour subtypes. We will address two related

problems in this thesis.

1.2.1 Identify a Two-Sample Test for use on Complex Data

When comparing CNA data between two different subtypes of cancer, we find that
the data differs not only in the mean, but also in the variance, skewness and even
multi-modality. Because of this, we require a two-sample test which is able to not
only deal with this form of complex data but is also sensitive at identifying these
differences between the two groups of data. A two-sample test that can meet these
specifications has not yet been identified.

Further to this, the high-dimensional nature of the data will require the test to
be performed simultaneously on a large amount of variables (> 10,000). To enable
a fast, user-friendly computation, each test will need to be performed efficiently.
Thus, a method which does not require resampling to calculate the p-value of the

test is also needed.



1.3 What are Copy Number Alterations?

1.2.2 Inference in Highly-Correlated Data

There are three ways which we can incorporate correlation into our approach to
calculate the regions which have significantly different CNA between groups of

patients, namely

1. Incorporate the correlation into the approach before the hypothesis tests are

performed,

2. Incorporate the correlation into the approach after the hypothesis tests are

performed,
3. Consider a multivariate version of the test.

As producing a multivariate version of a test can prove challenging, we focus our
attention to a univariate version of the test. Now, correlation can be incorporated
into the model using hidden Markov model methods (Section 1.6.2) to segment
the data prior to analysis, however it is still likely that these methods cannot
completely correct for the correlation in the data. We therefore attempt to research
methods into incorporating correlation into our approach after the hypothesis tests
are performed.

Usually, after performing many simultaneous hypothesis tests multiplicity cor-
rections are applied. Whilst many multiplicity corrections exist when performing
simultaneous independent tests, further research is required when simultaneous
dependent tests are performed. For CNA data, the correlation between adjacent
genomic locations is very high (> 0.9). Because of this high correlation, we can-
not assume our tests are independent, therefore using multiplicity corrections for
independent tests alone will not be enough. Whilst various methods exist already
to correct for multiplicity in the case where the tests are dependent, further re-
search is needed to extend these methods when the distribution of test statistics

is unknown.

1.3 What are Copy Number Alterations?

Wu et al. (2014) describes copy number alterations as “gains and losses of large
segments of the genome - ranging in size from a few kilobases to whole chromo-
somes”, where a kilobase is the unit in which the length of DNA is measured. One
kilobase refers to a section of double stranded DNA that makes up one thousand

nucleotides.
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In general, each human cell has two copies of every chromosome apart from
chromosomes X and Y which vary between males and females. However certain
diseases, especially cancer, are caused by alterations to the number of copies along
the genome. For example some sections of the genome may have experienced
a loss in genetic code meaning there are less than two copies of a chromosome
in certain locations. Alternatively some sections of the genome may experience
duplications of genetic code, causing the number of copies of the chromosome at
certain locations to be larger than two.

CNA has been identified as causes for certain diseases and development ab-
normalities (Tang and Amon, 2013). For example, duplication of the gene SNCA
is associated with Parkinson’s disease (Singleton et al., 2003), and duplication of
the gene GSKb is associated with bipolar disorder (Lachman et al., 2007). Of
course, alterations in regions of the genome which are not gene specific can also be
associated with disease phenotypes and many studies have been outlined by Tang
and Amon (2013). Many cancers are also a consequence of CNA including breast
cancer (Pollack et al.; 2002) and prostate cancer (Wolf et al., 2004).

Whilst it is known that CNA play a role in the cause of disease phenotypes,
identifying the type and location of the alterations in the genome will help deter-
mine how and where in the genome to target treatment. Thereby using information

about a cause for a disease to help treat them.

1.4 Measuring CNA

Estimating the CNA at various locations along the genome has recently had many
advances. Different technologies are being created to do this more efficiently and
less costly. We discuss three main technologies used to measure CNA. We briefly
explain how each technology works and provide the advantages and disadvantages

for each.

1.4.1 Comparative Genomic Hybridization (CGH)

First developed by Kallioniemi et al. (1992) to detect copy number changes in
solid tumours, CGH hybridises differentially labelled test DNA and control DNA
to metaphase chromosomes (Theisen, 2008). The test or tumour DNA is labelled
using a green fluorochrome and the control is labelled using a red fluorochrome
(Weiss et al., 1999).

Hybridization, first introduced by Schildkraut et al. (1961), involves taking

DNA from two different sources and combining them to create a single hybrid
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DNA. The purpose of hybridization is to detect similarities and differences between
the two strands of DNA which will be found through the ratio of fluorescence
intensities. A higher intensity of red fluorescence will indicate a loss of DNA, a
higher intensity of green fluorescence will indicate a gain of DNA and an equal
intensity of green and red fluorescence will indicate no change between the two
DNA.

For CGH, the metaphase chromosomes created after hybridization are inves-
tigated by looking at the fluorescence intensities along the chromosome. Dupli-
cations and deletions occurring along chromosomes can be found by plotting the
ratio of fluorescence intensities across each chromosome (Kallioniemi et al., 1992).

CGH has an advantage in that it can quickly scan an entire genome for differ-
ences (Theisen, 2008). However a big disadvantage to the CGH method is that
genomic abnormalities can only be detected if the size of the region altered is
sufficiently large (10Mbp to 20Mbp) (Ostroverkhova et al., 2002). Also CGH re-
quires the use of fresh cells, so will not work on most samples stored in hospitals,

suggesting that this method is unsuitable for research purposes.

1.4.2 Array CGH (aCGH)

To overcome the disadvantages of the CGH method, Pinkel et al. (1998) combined
the method with the use of microarrays. Using a microarray, tens of thousands
of different DNA segments, called probes, are arranged in rows and columns on a
glass slide (Govindarajan et al., 2012). The location of the DNA segment on the
glass slide is known and can therefore be referred to.

For the method of aCGH, the test or tumour DNA is once again dyed with
green fluorescence and the control DNA dyed with red fluorescence (Theisen, 2008).
Segments of DNA from both the test and control DNA are mixed together and
placed on the microarray and then hybridized. The microarray containing all the
hybridized probes can then be analysed by looking at the fluorescence intensities
of each probe and thus duplications and deletions can be identified in the same
way as for CGH.

This method is preferable to using CGH as the segments of DNA making up
the probes are a lot smaller than the metaphase chromosomes (Theisen, 2008) and
thus the resolution is much higher than CGH.

1.4.3 Next Generation Sequencing Technologies

It has been quoted by Schuster (2007) that next-generation sequencing technology

is transforming biology. These sequencing technologies are increasing the speed of
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sequencing (Xie and Tammi, 2009). Xie and Tammi (2009) also goes on to explain
further advantages of sequencing over the aCGH method for detecting CNA.

Firstly test or tumour DNA and control DNA is split into smaller DNA se-
quences called “reads” (Muzzey et al., 2015). The reads are mapped to the hu-
man reference genome (Yoon et al., 2009) which is then split into equal sized
non-overlapping windows. The window size can be chosen according to the users
specifications. As discussed by Gusnanto et al. (2014), if the window size is too
small, there may be windows which have no reads and thus observing a pattern
is difficult. Alternatively if the window size is too wide, the genomic features will
be smoothed out. Gusnanto et al. (2014) provides a method for estimating the
optimal window size based on the read density per window using AIC and cross
validation techniques.

Once a window size is chosen, the number of reads are counted (determined
by its starting point) in each window and a ratio of read counts for the test or
tumour DNA over the control DNA can be calculated (Wood et al., 2010). Mathe-
matically speaking, let u;; be the observed number of reads from a tumour sample
in chromosome i, ¢ = 1,...,h where h is the total number of chromosomes in the
study, and window j, j = 1,...,w; where w; is the total number of windows in
chromosome 4. Also let v;; be the observed reads from a normal sample in chro-
mosome ¢ and window j. To estimate the copy number alteration in chromosome
1, window j, the ratio of the the number of reads in each window and chromosome
for the tumour sample is taken over the normal sample, i.e if 7;; represents the
estimated CNA in chromosome i, window j, then

Ujj
ry= 2 (1)
The ratio in Equation (1.1) can then be plotted against the windows j for each
chromosome 7 to identify regions of duplication or deletion.

Gusnanto et al. (2011) states that an advantage of using sequencing compared
to array technology is that the signal does not show saturation or background
noise which is typical of hybridization techniques. Hurd and Nelson (2009) dis-
cusses further advantages of the sequencing technique compared to the microarray
technology. Behjati and Tarpey (2013) states that a disadvantage of this technol-
ogy is cost. However, as the technology is improving, the cost of sequencing is

reducing.



1.5 Lung Cancer Data Set

1.5 Lung Cancer Data Set

To motivate and test our methods, we use a data set of 76 patients with two sub-
types of lung cancer (Belvedere et al., 2012). Belvedere et al. (2012) has already
identified genomic regions of significance between the two types of lung cancer. Be-
cause of this, any methods and conclusions we produce can therefore be compared
to the conclusions found by Belvedere et al. (2012).

In the dataset, half of the patients have adenocarcinoma type lung cancer and
the other half has squamous carcinoma type lung cancer. The data is collected
using next generation sequencing technology (Section 1.4.3) with a window size of
150kbp (kilobase pairs). The total number of windows along the genome is 20,652
windows. Due to the size of the chromosomes being different e.g. Chromosome
1 is of length 248,956,422 base pairs (bp) compared to chromosome 22 which
is of length 50,818,468bp (Genome Reference Consortium, 2017), the number of
windows in each chromosome varies. Table 1.1 displays the number of windows
in each chromosome for this data set. Note that the length of chromosomes are
not always a multiple of the window size. Because of this, the last window in a
chromosome is usually smaller than the window size. However, in practice the last
few windows are often removed from analysis because the ends of the chromosomes

are repetitive and thus too few reads are aligned.

1.5.1 Data Cleaning

As in Gusnanto et al. (2015), we remove the sex chromosomes, the mitochrondria
chromosome and the centromere regions as missing data can be problematic. The
regions of missing data have very repetitive genomic sequences, so DNA cannot
be reliably mapped. For better analysis and comparisons, we will remove any
windows from the analysis in which the CNA is not recorded for more than one
patient. In the windows where the CNA is not recorded for a single patient, we
will replace the missing value with the mean CNA across the other patients in
the same subtype of cancer for that window. Note that replacing single missing
values with the mean CNA across the other patients is not necessary to do if the
tests performed does not rely on the number of observations from each group to
be equivalent. However, for simplicity and to avoid removing observations given
the already small sample size in each group we decided to make the number of
observations in each group equal. Note however that this could lead to potential
biases and future recommendations if the sample sizes are large enough would be

to ignore this step and perform the tests on unequal group sizes. Within the data
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Chromosome | Number of Windows
1 1662
2 1622
3 1321
4 1275
5 1207
6 1141
7 1061
8 976
9 942
10 904
11 901
12 893
13 768
14 716
15 684
16 603
17 542
18 521
19 395
20 421
21 321
22 343
X 1036
Y 396
M 1

Table 1.1: The number of windows in each chromosome when the window size is

150kbp.

set there are 3,039 windows across both types of lung cancer in which the CNA
is not recorded for more than one patient. These windows are removed from the

analysis for both types of lung cancer. This leaves 17,613 windows for analysis.

1.5.2 Exploratory Data Analysis

Figure 1.1 shows the estimated CNA for each window along the genome for a
patient with adenocarcinoma type lung cancer and a patient with squamous carci-
noma type lung cancer. Recall that for next generation sequencing, the estimated
CNA is calculated by taking the ratio of the number of reads from a tumour cell
divided by the number of reads from a normal cell per window. This means that
an estimated CNA of 1 suggests that there are no duplications or deletions in that
region. Note that for the patient with adenocarcinoma type lung cancer (Figure

1.1 top) there doesn’t appear to be any duplications or deletions in many of the
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regions of the genome as the estimated CNA is centred on the y = 1 line. Now
compare this to the patient with squamous carcinoma type lung cancer (Figure 1.1
bottom) whose genome displays signs of many duplications and deletions. This
therefore suggests that squamous carcinoma type lung cancer is associated with
more sporadic CNA across the genome, whereas adenocarcinoma type lung cancer
is associated with CNA in specific regions of the genome. Of course these conclu-
sions are based on only two patients within the data set, and to get a clearer view
of what the associated patterns of CNA are for each subtype of cancer, all patients

need to be examined.
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Figure 1.1: The estimated CNA for each window along the genome for a patient
with adenocarcinoma type lung cancer (top) and squamous carcinoma type lung
cancer (bottom). The alternating colouring scheme indicates chromosomes 1-22.

A selection of three windows is chosen to display the shape of the distribu-

tions of estimated CNA within the same patient group in Figure 1.2. It can
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be seen from Figure 1.2 that multi-modality is a common feature of the dis-
tributions of estimated CNA within the same patient group. As the estimated
CNA r; € {0.5,1,1.5,2,...}, there will be peaks centred around these values
with very few values in between. There does however exist special cases where
ri; ¢ {0.5,1,1.5,2,...}, these come from errors in cell division which result in
regions of the genome being gained or lost, or they come from whole genome du-
plications, which increase the ratio across the entire sample. For certain regions,
many patients within the same group may have common CNA. In this case it is
expected that a larger peak is present centred around the “most common CNA”,
with smaller peaks centred around other CNAs. Because outside factors like age
or other biological influences could affect CNA it is possible that some patients
within the same group will have different CNA for certain regions, this also gives
rise to a potential multi-modal distribution with more than two modes - see for
example Figure 1.2 (bottom right) which displays three main peaks.

It can also be seen from Figure 1.2 that there is larger variability of estimated
CNA within patients with squamous carcinoma type lung cancer compared to the
patients with adenocarcinoma type lung cancer. Given that the estimated CNA
for the patient with squamous carcinoma from Figure 1.1 was very sporadic, the
higher variability within patients with this type of lung cancer would suggest that
the sporadic behaviour is consistent across all patients with squamous carcinoma
type lung cancer and no clear average pattern exists.

Table 1.2 shows the number of windows which 1) pass the Shapiro-Wilks nor-
mality test, 2) have evidence of skewness and 3) have evidence of multi-modality

for patients with adenocarcinoma and squamous carcinoma respectively.

\ Evidence of \ Adenocarcinoma \ Squamous Carcinoma \

Normality 11396 4139
Skewness 6059 13294
Multi-Modality 5517 12605

Table 1.2: The number of windows which 1) pass the Shapiro-Wilks normality test,
2) have evidence of skewness and 3) have evidence of multi-modality for patients
with adenocarcinoma and squamous carcinoma type lung cancer respectively.

Table 1.2 therefore shows that the majority of windows for patients with ade-
nocarcinoma type lung cancer could be considered normally distributed and just
under a third considered multi-modally distributed. The converse however is true
for patients with squamous carcinoma type lung cancer with well over a third of
windows considered multi-modally distributed. Out of the windows which had

evidence of multi-modality, Table 1.3 shows the quantity which have ¢ number of
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Figure 1.2: Histograms of the estimated CNA across patients with adenocarcinoma
type lung cancer (left) and squamous carcinoma type lung cancer (right). Each
window is located at a specific position in a specific chromosome: Window 448
(67.05 — 67.2 Mbp, chromosome 1), Window 2023 (53.85 — 54 Mbp, chromosome
2) and Window 9546 (38.1 — 38.25 Mbp, chromosome 8).
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peaks, i = 1,...,9 for patients with adenocarcinoma and squamous carcinoma
type lung cancer respectively. To obtain the estimated number of peaks, a clus-

tering algorithm was applied in R.

’ 7 \ Adenocarcinoma \ Squamous Carcinoma ‘

2 4927 11732

3 465 719

4 88 112

5 26 25

6 9 9

7 2 5

8 0 2

9 0 1

Table 1.3: The quantity of windows which have ¢ number of peaks, i = 1,...,9 for
patients with adenocarcinoma and squamous carcinoma type lung cancer respec-
tively after applying the clustering algorithm in R.

1.6 Analysing CNA

The process of analysing CNA data can be described by the flowchart in Figure
1.3. This process starts with the collection of CNA data using the techniques
described in Section 1.4. The next step is data pre-processing, we describe this
step in Section 1.6.1. After data pre-processing the analysis of CNA can generally
be classified into two main types of analysis: analysis per sequence, and analysis
across sequences. In the flow chart it can be seen that one has a choice of whether
to analyse the data per sequence and then perform analysis across sequences, or
skip the analysis per sequence and perform analysis across sequences. Analysis of
CNA per sequence aims to estimate the CNA level at each genomic location per
sequence and can further be classified into three groups of segmentation methods.
The first approach is HMM-based methods, the second is binary segmentation,
and the last is smooth segmentation based on a random effects model. We discuss
methods which fit into these three groups in Section 1.6.2. Alternatively, analysis
across sequences aims to identify differential pattern of CNA for a given genomic
location between two groups of sequences or patients, which is the main focus of
our study in this thesis. Currently, there exists one commonly used method for
the analysis across sequences, namely KC Smart, and we discuss this method in
detail in Section 1.7.

Note that, as shown in the flow chart, the analysis across sequences can either

be performed on the unsegmented CNA data or on the segmented data, i.e. after
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1.6 Analysing CNA

performing analysis per sequence. If the analysis across sequences is performed
on the unsegmented data, then this has the advantage of granularity. This means
results will be obtained for many small regions of the genome and any features
that only exist at a very granular level will be identified. If the analysis across
sequences is instead performed on the segmented data this has the advantage that

fewer - potentially correlated - simultaneous tests need to be performed.

Collect CNA Data

|

Data Pre-processing

— .

Analysis Per > Analysis Across
Sequence Sequences
Finish

Figure 1.3: The process of analysing CNA data. Each blue square represents a step
in the analysis process. An arrow indicates a potential next step in the process
once the previous step has been completed.

1.6.1 Data Pre-processing

Data pre-processing concerns the data quality and normalisation. Normalisation
is a crucial step in CNA analysis (Gusnanto et al., 2011) to correct for variations in
the data affected by factors other than the copy number. Many methodologies for
analysing CNA data also include a pre-processing normalisation step, for example
CNV-seq (Xie and Tammi, 2009), CNVnator (Abyzov et al., 2011), FREEC (Boeva
et al., 2010) and CNAnorm (Gusnanto et al., 2011). In the case of CNAnorm, the

13



1. Introduction

normalisation procedure is done to correct for various aspects which can affect
the accuracy of the CNA approximations. For example, correcting for GC-content
which affects staining intensity (Furey and Haussler, 2003), smoothing the data to
reduce noise, and correcting for tumour sample contamination. Tumour sample
contamination refers to the contamination of normal cells when the sample is taken
from the cancerous tumour.

The ploidy of a cell is the number of chromosome copies in that cell. As
humans generally have two copies of every chromosome, for a normal cell, the
ploidy is two. If there exists copy number alterations within a cell, the ploidy
of a genomic location can take any value from the set {0,1,2,3,...}. Hence we
would expect the ratio r;; (1.1) to take any value from the set {0,0.5,1,1.5,...}.
Thus for normal genomic regions in the tumour cell, r; ; = 1. When there exists
contamination of normal cells with the tumour cells, r; ; will be shrunk towards
ratio 1 (Gusnanto et al., 2011).

Another normalisation step which Gusnanto et al. (2011) considers is to align
the estimated CNA so the most common genomic regions are centred at ratio 1.
To illustrate the use of CNAnorm, Figure 1.4 gives the copy number alterations
across the genome of a single patient with colorectal cancer before and after the
normalisation step. The points represent the CNA measured for each window
or region and the lines represent the output of the circular binary segmentation
procedure DNAcopy (see Section 1.6.2).

The proportion of tumour content is estimated by CNAnorm to be 44.07%,
meaning that over half of the sample is contaminated by normal cells. This can
be seen in Figure 1.4 (top) as the ratios are all shrunk towards a ploidy of 2. In
Figure 1.4 (bottom) the ratios are centred so each segment has an integer ploidy.
Note that it can be seen that regions of chromosome 20 do not align to an integer
ploidy. This is because not every cell in a tumour contains every genomic change.
Changes acquired late in a tumour’s development may not be present in all cells,

and will therefore appear as non-integer using this method.

1.6.2 Analysis Per Sequence

As mentioned at the start of this section, analysis of CNA per sequence can be
classified into three groups of segmentation methods. Here we discuss some of the
methods which fall into the three segmentation groups.

Circular binary segmentation (CBS) is a method introduced by Olshen et al.
(2004) which attempts to segment the data using a modification of binary seg-

mentation. This method was originally created for the analysis of aCGH data
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Median = 0.99944

Estimated Ploidy

Genomic location

Data tumCont= 44.07
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Estimated ploidy

Ratio centered on most common

Genomic location

Figure 1.4: The copy number alterations across the genome for a single patient with
colorectal cancer before normalisation (top) and after normalisation (bottom). The
bottom graph is the output of CNAnorm, with tumCont referring to the percentage
of tumour content within the sampled cell. Red points refer to a chromosomal gain
and blue points refer to a chromosomal loss. Vertical lines are used to show the

separation of the chromosomes.
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1. Introduction

(Section 1.4.2) but can be easily adapted for use on next generation sequencing
data. Let Xy,..., X, represent the estimated CNA across all regions n and let
S;i = X1+ ...+ X;, 1 <i < n be the partial sums. The method, which has
been called DNAcopy, calculates a statistic based on the partial sums to deter-
mine the locations of breakpoints. A breakpoint is defined as a location v in which
Xi,..., X, have a common distribution Fy and X, q,... have a common distri-
bution F} where Fjy # Fj until the next breakpoint. This method is used in the
normalisation procedure CNAnorm described in Section 1.6.1 and the results of
performing such a segmentation are shown in Figure 1.4.

Lai et al. (2005) shows that under various conditions CBS outperforms many
other segmentation methods by comparing the Receiver Operating Characteristic
(ROC) curves which quantifies sensitivity and specificity. However, CBS does
not come without its limitations. CBS is not sensitive to short segments and
often fails to detect them (Ben-Yaacov and Eldar, 2008), this means that any
duplications or deletions which may span across only a small number of windows
may be overlooked. Another limitation of this method is the computational time
taken to segment high density arrays (Ben-Yaacov and Eldar, 2008).

Fridlyand et al. (2004) introduces the use of hidden Markov models to segment
the data. They use an unsupervised hidden Markov model (HMM) approach to
segment regions into sets with the same underlying copy number. They fit k-state
hidden Markov models for £ = 1,..., K, where K is the maximum number of
states in the model. In the case of QuantiSNP (Colella et al., 2007), PennCNV
(Wang et al., 2007) and GenoCN (Sun et al., 2009), K = 6 with Table 1.4 showing

the hidden states, associated copy numbers and biological interpretation.

Hidden State | Copy Number Description
1 0 Full Deletion
2 1 Single Copy Deletion
3 2 Normal (heterozygote)
4 2 Normal (homozygote)
) 3 Single Copy Duplication
6 4 Double Copy Duplication

Table 1.4: The hidden states for which QuantiSNP, PennCNV and GenoCN use
within their hidden Markov models.

All three methods identify copy number states based on the log R ratio (LRR)
and B allele frequencies (BAF). The log R ratio is defined as logs( Rumour / Rnormal)
where Riumouw and Rpormal are the copy numbers obtained from the tumour sample
and normal sample respectively. The B allele frequency measures the normalised

allelic contrast.
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1.6 Analysing CNA

Each method also has its own way of defining the transition probabilities be-
tween each state and emission probabilities for the LRR and BAF. In the case of
PennCNV, the method assumes that the mean and standard deviation of the LRR
and BAF are known. PennCNYV also incorporates the use of family information
in CNV calling and validation, an advantage over other methods. QuantiSNP
imposes some common priors for the LRR and BAF so that only a few hyper-
parameters need to be estimated. Finally, Sun et al. (2009) claims that GenoCN
can provide output on allele-specific information whereas PennCNV and Quan-
tiSNP cannot.

Further HMM methods for the analysis of CNA data per sequence include
hsegHMM (Choo-Wosoba et al., 2018), GPHMM (Li et al., 2009) and MixHMM
(Liu et al., 2010). Choo-Wosoba et al. (2018) states that PennCNV and Quan-
tiSNP are based on the assumption of 100% tumour purity whereas Van Loo et al.
(2010), Li et al. (2009) and Liu et al. (2010) account for both the tumour pu-
rity and ploidy. Choo-Wosoba et al. (2018) also states that all the afformentioned
methods use the BAF which is sensitive to mapping bias, therefore instead of using
BAF, hsegHMM uses the log Odds Ratio (LogOR).

HMM methods are powerful tools for analysing CNA data, and as many papers
in the literature focus on these methods, are a popular method of choice to perform
the analysis. However, these methods are not without limitations. Before analysis
can be performed using HMM methods, the states are required to be defined. The
methods have a very rigid structure for which the data can follow - a data point
must fit into one of the predefined states - and are therefore less flexible than other
methods.

Huang et al. (2007) also observes that binary segmentation techniques as well
as hidden Markov model methods are based on modelling data as a series of dis-
crete segments. It can be argued that in reality most segments are not discrete,
providing further limitations of the CBS and HMM methods approaches. Even
though the true underlying biological process is discrete, in reality many biolog-
ical and environmental factors cause the CNA signal to deviate from a stepwise
function (Engler et al., 2006), (Picard et al., 2005). Because of this, Huang et al.
(2007) introduces smoothseg, a method which uses a smooth segmentation algo-
rithm to analyse CNA per sequence. The statistical model used is based on a
correlated random effects model. The estimation of the random effects model is
carried out using the maximum likelihood method. Huang et al. (2007) also shows
that smoothseg performs better than CBS as well as methods which use wavelet
smoothing (Hsu et al., 2005).
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However, Hsu et al. (2005) argues that nonparametric regression techniques
(Jianging and Gijbels, 1996), (Percival and Walden, 2006) are suitable for data
denoising as they “do not impose any parametric model in finding structures in
the data sets”. Because sharp discontinuities of copy number changes can often
occur in the tumour DNA and the sizes of the aberrations can vary between being
very small (spanning a couple of windows) or very large (whole chromosome arms),
Hsu et al. (2005) suggests that applying wavelet analysis is a desirable choice.

The idea of wavelet analysis is to represent the data as a linear combination of
wavelets (Hsu et al., 2005). Consider n windows in a chromosome where for each
window the relative copy number is measured. Denote y(x;) as the observed copy

number alteration for the ith genomic location x;. Then y(x;) can be expressed as

y(wi) = fr5) + €

where f(x;) represents the “true” CNA signal and ¢; represents the errors and are
independently and identically distributed as N(0,02). Hsu et al. (2005) therefore
attempts to estimate the signal f by performing discrete wavelet transformations
on the data. In particular, they use the maximal overlap discrete wavelet trans-
formation (MODWT) together with the Haar wavelet family for their analysis.
They treat the data as being equally spaced and use the SURE (Donoho and
Johnstone, 1995) method for denoising the data. Wang and Wang (2007) later
shows that assuming the data is equally spaced leads to “suboptimal” results and
therefore considers a wavelet approach to analyse aCGH data which does not have
this assumption. Nguyen et al. (2007) also considers dual tree complex wavelet
transforms for analysing aCGH data.

As discussed, there exists many methods for the purpose of analysing CNA
data per sequence. However the analysis we wish to carry out within this thesis is

more concerned with the analysis across sequences, which we discuss further now.

1.6.3 Analysis Across Sequences

As mentioned previously, the purpose for analysing CNA per sequence is to identify
common or recurrent regions of CNA (Rueda and Diaz-Uriarte, 2010). A common
or recurrent region is defined by Rueda and Diaz-Uriarte (2010) as “a set of con-
tiguous regions which, as a group, shows a high enough probability (or evidence)
of being altered in at least some samples or arrays”. This means that methods
attempt to locate “segments” of chromosomes which are consistently duplicated

or deleted across patients within a single group.
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In the literature, there exists many methods which aims to locate recurrent re-
gions of duplication or deletion by analysing data across multiple sequences within
a single group of patients. For example CGHregions (Van De Wiel and Van Wierin-
gen, 2007) uses dimension reduction techniques, STAC (Diskin et al., 2006) which
calculates two statistics based on the frequency of occurrence of the regions and
the alignment of the regions, MSeq-CNV (Malekpour et al., 2018) which applies a
mixture density to model the distribution of read counts and estimates the model
parameters using the EM algorithm, and GISTIC (Beroukhim et al., 2007) which
calculates a statistic based on both the frequency of occurrence as well as the am-
plitude of aberration. As well as these methods, work has been done to extend the
use of HMMs to identify recurrent regions across multiple sequences. Some HMM
methods include H-HMM (Shah et al., 2007) and pREC-A and pREC-S Rueda
and Diaz-Uriarte (2009).

In this thesis, we are mainly concerned with the analysis across sequences which
aims to identify differential pattern of CNA for a given genomic location between
two groups of sequences or patients. There are very few methods in the literature
which firstly aims to identify differential pattern of CNA and secondly enables the
comparison of CNA between two groups of patients. More recently, a comparative
version of KC Smart has been published (de Ronde et al., 2010) and is currently
the method which is used in application due to its accessible nature. We provide
more details and disadvantages to this method in Section 1.7 as we will use this
method as a comparison to the methods we create.

It should be noted that other methods, for example as described in Diskin et al.
(2006) use two-way agglomerative hierarchical clustering to determine possible
subtypes and therefore classify patients into groups. As our analysis is done when
the groups of patients are already known, these methods are not comparable. A
further method to distinguish between groups of patients is to plot a heat map
of the correlations between patients. Usually, patients within the same clinical
group will have higher correlations between their CNAs and thus heat maps can
be plotted to visually distinguish between subgroups.

Few papers, such as Wilting et al. (2006), Van De Wiel and Van Wieringen
(2007), Huang et al. (2007) and Smeets et al. (2006) perform a hypothesis test on
each of their identified regions to compare the CNA from the two groups. Wilting
et al. (2006), Van De Wiel and Van Wieringen (2007) and Smeets et al. (2006)
apply the Wilcoxon test whereas Huang et al. (2007) use the t-test. In this case a
significant p-value will therefore correspond to a region which can be considered to
have significantly different CNA between groups of patients - the main aim of our

study. They then correct the p-values afterwards accounting for multiple testing.
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In the case of Huang et al. (2007), the t-test is performed on the unsegmented data
then the smoothseg algorithm is applied to the ¢ statistics to make comparisons to
calculating the t-statistics on the segmented data. It was found that segmenting
the ¢ statistics yield a smaller FDR than performing the segmentation on the data.
This suggests that performing the test on the unsegmented data is more preferable.

As there currently exists only one method for performing analysis across se-
quences to identify differential pattern of CNA for a given location between two
groups of patients, we aim to create an alternative approach following the hypothe-
sis testing approach done by Wilting et al. (2006), Van De Wiel and Van Wieringen
(2007), Huang et al. (2007) and Smeets et al. (2006). We will then compare the
method to the comparative KC Smart method - the only method available for this
type of analysis.

The next section reviews the comparative KC Smart method, we then motivate
the use of hypothesis testing to locate genomic regions which display a significant

difference of CNA between groups of patients.

1.7 Comparative KC Smart

At the time of the study, KC Smart was the only package which attempted to look
for differences between sequence groups. There are lots of packages which look
for things common to one disease (see Section 1.4), but to our knowledge only
KCsmart compares groups of patients and attempts to locate differences in the
patterns of CNA between sequence groups. The KC Smart Vignette De Ronde
and Klijn (2013) describes the implementation of this method on a sample data

set included within the R package.

1.7.1 Exploratory Data Analysis

The data is an artificial aCGH data set created by "permuting a BAC data set con-
sisting of 20 samples and introducing an artificial gain” in chromosome 4 (de Ronde
et al., 2019). The data set contains 3268 probe intensities for 20 sequences. Despite
the data being artificial, we include the use of it within this thesis and another
way of comparing this approach to our methods. Table 1.5 shows the number of
probes for each chromosome in this sample data set.

After the removal of chromosomes X and Y, there are 3096 probes for the
20 samples. In this sample data set no missing data is present thus no further
data cleaning is required. The data has been split into two separate groups with

10 samples in each group. In the first group of 10 samples there exists a large
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1.7 Comparative KC Smart

Chromosome | Number of Probes
1 210
2 256
3 250
4 208
5 188
6 168
7 190
8 156
9 152
10 146
11 169
12 165
13 99
14 109
15 96
16 104
17 122
18 88
19 75
20 65
21 28
22 52
X 143
Y 29

Table 1.5: The number of probes in each chromosome for the sample data set.

increase in copy number for chromosome 4. The difference of CNA in chromosome
4 between the two groups of samples exist purely to demonstrate the power of the
KC Smart method. Figure 1.5 shows the estimated CNA across all probes for a
sample from group 1 and group 2 of this sample data set. The increase in CNA in
chromosome 4 for a sample in group 1 can clearly be seen in Figure 1.5 (top).

A selection of three probes has is chosen to display the shape of the distri-
butions of estimated CNA within the same sample group in Figure 1.6. The
difference between estimated CNA between the two groups of samples in probe
800 is obvious from the histograms. Despite the data being artificial, the shape of
the distributions still display an evidence of multi-modality. As multi-modality is
a feature we expect to see for these kinds of data sets, it is good that this feature
is present in the artificial data set. However, the artificial nature of this data set
is made clear in Figure 1.6 (bottom left) as the distribution is similar to that of a
normal distribution. For this kind of data it is very rare to see data which can be

described as easily using a normal distribution.
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Figure 1.5: The estimated CNA for each probe along the genome for a sample from

group 1 (top) and group 2 (bottom). The alternating colouring scheme indicates
chromosomes 1-22.
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Figure 1.6: Histograms of the estimated CNA across samples from group 1 (left)
and group 2 (right) of the sample data set. Probe 1 is taken from chromosome 1,
probe 800 is taken from chromosome 4 and probe 3000 is taken from chromosome
22.
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Table 1.6 shows the number of windows which 1) pass the Shapiro-Wilks nor-
mality test, 2) have evidence of skewness and 3) have evidence of multi-modality

for samples in group 1 and group 2 of the artificial data set respectively.

’ Evidence of \ Group 1 \ Group 2 ‘

Normality 2694 2479
Skewness 584 729
Multi-Modality 2289 2413

Table 1.6: The number of windows which 1) pass the Shapiro-Wilks normality test,
2) have evidence of skewness and 3) have evidence of multi-modality for samples
in group 1 and group 2 of the artificial data set respectively.

Table 1.6 shows that even though the majority of samples are passing the
Shapiro-Wilks test, there are almost an equivalent amount which have evidence
of multi-modality. A possible cause for this is the small number of observations
in each sample; each sample has 10 observations. Note also however that in this
case there are about three quarters of samples in each group that have evidence
of multi-modality, which is not consistent with the lung cancer data set. This
therefore shows that many features of a “true” genomic data set are missing from
this artificial one. We will still continue to use this data set however to compare
methods. Out of the windows which had evidence of multi-modality, Table 1.7
shows the quantity which have ¢ number of peaks, ¢ = 1,...,9 for samples in
group 1 and group 2 of the artificial data set respectively. To obtain the estimated

number of peaks, a clustering algorithm was applied in R.

] i\ Group 1\ Group 2\
2 447 542
3 207 199
4 150 171
5 162 145
6 100 116
7 188 161
8 174 166
9 861 913

Table 1.7: The quantity of windows which have ¢ number of peaks, i = 1,...,9 for
samples in group 1 and group 2 of the artificial data set respectively after applying
the clustering algorithm in R.
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1.7.2 KC Smart Methodology

In the sample data set provided in the KC Smart vignette, the copy number
alterations are collected from a discrete number of probes along the genome. The
use of a discrete number of probes is a limitation of the data collection method
as CNA can be measured at continuous locations along the genome. Because of
this, KC Smart first aims to “smooth” the data using a kernel convolution-based
method (Parzen, 1962) to perform locally weighted regression (Atkeson et al.,
1997). Locally weighted regression is applied because of the unequal spacing of
the probes along the genome. The kernel smoothed estimate (KSE) or ‘KC score’
of the log2 ratios at an arbitrary position x along the genome is given by the

Nadaraya-Watson estimate

KSE(x) = —Z§ii;j;(f),

where a; is the negative or positive log2 values for probe i, g;(x) is the kernel
function and M, is the set of all probes contributing to the (KSE). The kernel
function chosen by KC Smart is the flattop Gaussian kernel function, defined by

—(z—pi1)? —(2—p49)*

g9i(w) = I{Iélm} "€ 2 + ]{ISMQ} e 2 + I{xe[u“,uig]}y

where the variables p;; and p;o represent the mapped genomic start and end points
of the probe i and o is the kernel width. The set M, contains the probes that lie
40 to the left and right of the sample point . Boundary problems are corrected
at the chromosome ends and the centromeres by mirroring the probes up to half
of the kernel width from the boundary of the chromosomes.

For each sample, the KC score is calculated for each genomic position or probe,
1, for positive and negative gains separately. The reason for this separation, as de-
scribed by Klijn et al. (2008) is “since gains and losses are fundamentally different
(only a few copies of a region can be lost, depending on the ploidy of the cell, but
many copies can be gained)”. This has been done for the data shown in Figure
1.5 (top), and the kernel smooth estimate is shown in Figure 1.7 for positive and
negative gains.

Then, for each genomic position j, the signal-to-noise ratio is calculated:

1 (s 2 (s
o txeld) = pe(d)
SNR(j) = Kcl,z - = ’
oxc(i) = f
where i (j) and p¥ko(j) represent the mean KC score across all samples in group
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Figure 1.7: For one mouse or sample, the log2 ratios of probe intensities plotted
against the genomic position of the probes for positive (top) and negative (bot-
tom) gains (grey). The black lines represent the KC score calculated for arbitrary
positions along the genome.
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1 and group 2 respectively for genomic position 7j; allgé(j) represents the pooled
variance of the KC scores across all samples for genomic position j and f represents
the regularization factor equal to the 95th percentile of the pooled class standard
deviation across all genomic positions. de Ronde et al. (2010) states that the
“regularization factor prevents small variances from dominating the SNR statistic.”

To identify statistically significant regions of the genome, a permutation based
method is adopted. Here, group labels are permuted and the signal-to-noise ratios
calculated for each genomic position j. Then a significance threshold can be found
depending on the users choice of false discovery rate. Any positions that are above

this threshold are then determined to be significant.

1.7.3 Critical Assessment of KC Smart

KC Smart is currently the only known computer package available to compare
groups of patients and locate genomic regions which differ significantly in CNA,
and because of this it therefore has the advantage of performing unique analysis.
However the method contains limitations for which we attempt to resolve.

Firstly, the use of a permutation based method for calculating the significance
threshold means that this method will be computationally slow as the sample size
and number of probes/windows increase - the method currently takes 3 seconds to
analyse 20 samples each with 3096 probes. Another limitation of the KC Smart
method is the use of the kernel smoother. Introducing a kernel smoother means
introducing a smoothing parameter which could greatly affect the outcome of any
analysis. For example for o = 105 KC Smart is applied to the sample data and
Figure 1.8 is produced. Note that the KC Smart package which produces Figure
1.8 does not allow the changing of the x and y axis labels. The y axis simply refers
to the signal to noise ratio calculated for each genomic position.

KC Smart produces the table shown in Table 1.8 and displays the locations of
significant regions. Here the chromosome is provided as well as the start and end

positions in base pairs.

Chromosome | Start Position | End Position
4 48850001 169900001
4 170850001 190500001
6 20400001 21200001
13 39000001 39900001

Table 1.8: A tabular output of KC Smart showing the locations of the significant
regions for a kernel width of o = 10°.
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Figure 1.8: The output of the KC Smart analysis with ¢ = 10° on the sample
data.

Now consider increasing the kernel width o to 107. For this kernel width, Figure
1.9 is produced. It is already clear from this graph that increasing the kernel width
produces a much smoother KC score. Table 1.9 displays the locations of significant

regions for this kernel width.
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Figure 1.9: The output of the KC Smart analysis with ¢ = 107 on the sample
data.

Chromosome | Start Position | End Position
4 33700001 190500001

Table 1.9: A tabular output of KC Smart showing the locations of the significant
regions for a kernel width of o = 10”.

28



1.8 Hypothesis Testing for Identifying Genomic Regions of Interest

Clearly when the kernel width is changed, KC Smart produces very different
outputs. So, which kernel width produces the correct significant regions? The
answer to this question is not straightforward, and thus provides a limitation of
this method.

We therefore attempt to create an alternative approach for identifying regions

which differ significantly in CNA between groups of patients.

1.8 Hypothesis Testing for Identifying Genomic

Regions of Interest

Recall that Van De Wiel and Van Wieringen (2007) and Rueda and Diaz-Uriarte
(2009) perform hypothesis testing as a way of detecting regions of the genome
which have significantly different CNA between groups of patients. In this section,
we motivate the reason for using hypothesis testing in this way.

Identifying genomic regions of interest is equivalent to locating which windows
have significantly different CNA between patients with one subtype of cancer com-
pared to the other. Clearly, Figure 1.1 from Section 1.5.2 shows some differences
and similarities between the estimated CNA in each window. Specifically there
exists a large difference in estimated CNA in chromosome 3 between the two types
of lung cancer. Many studies have been done on these subtypes of lung cancer and
have found that a section of chromosome 3 experiences significant gains in patients
with squamous carcinoma type lung cancer (Bjorkqvist et al., 1998), (Wang et al.,
2013) and (van Boerdonk et al., 2011). Because of this, we would indeed expect
to see a significant difference of CNA in chromosome 3 between each group of
patients. However, for our case it is impossible to tell simply by looking at two
patients whether the differences are global or whether they occur for these two
patients alone.

Instead consider Figure 1.10, the plots show the histograms of window 4170
with location at 132.75 Mbp in chromosome 3. Firstly note the negative CNA
in the histogram across patients with adenocarcinoma type lung cancer. These
negative values are a consequence of the normalisation process not performing
correctly. Whilst this means there is a chance that any results we provide may
be inaccurate, the methods we provide are unaffected by the inaccuracy of the
normalisation step.

If indeed chromosome 3 is a significant region, then we would expect the two
distributions in Figure 1.10 to be significantly different. Indeed, it can be seen

that this is the case. A simple two-sample t-test on these data produces a p-value
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of 1.42 x 1079, suggesting that mean of these two distributions are significantly
different. We could apply a two-sample ¢-test on each individual region across
the genome to determine the regions of the genome that differ in mean estimated
CNA between the two types of lung cancer. However, Figure 1.10 shows that the
distribution of CNA for patients with adenocarcinoma type lung cancer differs from
the distribution of CNA for patients with squamous carcinoma type lung cancer
in not only the mean, but also the variance, skewness and even multi-modality.
Thus, we require a two-sample test that is sensitive at identifying any differences,

including multi-modality, between the two samples.
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Figure 1.10: The estimated CNA in window 4170 across patients with adenocar-
cinoma type lung cancer (left) and squamous carcinoma type lung cancer (right).
Both histograms have been plotted on the same x-axis scale to enable easy com-
parison.

Note that Van De Wiel and Van Wieringen (2007) and Rueda and Diaz-Uriarte
(2009) use the Wilcoxon test and the absolute value of the difference in mean
probability as a test statistic to test the difference in CNA between the two groups
respectively. It is likely that these two tests are not sensitive enough to identify all
differences between the groups. We aim to rectify this by obtaining a more suitable
hypothesis test. For each region, we choose to test the null hypothesis that the
distributions of estimated CNA for each type of lung cancer has a common cumu-
lative distribution function. In a statistical sense, given Xy,..., X, and Y7,...,Y,,
identically distributed random variables with distribution functions F'(z) and G(y)

respectively, the null hypothesis
Hy: F(x) = G(y) (1.2)

is considered. By testing this null hypothesis, any difference in mean, variance,
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1.9 Thesis Overview

skewness or multi-modality should be identified. Establishing a suitable two-
sample statistic to test this null hypothesis is our first objective in this thesis.
One might question why hypothesis testing might be an approach worth re-
searching to locate genomic regions which have a significant difference in CNA
between two groups of patients. The advantage of such a method is that tests can
be performed on regions which are only a couple of kilo base pairs long. In the
studies done by Bjorkqvist et al. (1998), Wang et al. (2013) and van Boerdonk et al.
(2011), large regions of significance were identified. If tests are performed which
can only identify large regions, then perhaps smaller regions that have a signifi-
cant difference in CNA between the two groups are being missed. By producing a
method which uses hypothesis testing, we therefore hope to identify further smaller
regions within the genome that have a significant difference in CNA between the

groups.

1.9 Thesis Overview

Throughout this thesis we work towards creating an efficient and attractive method
for identifying regions of interest between subtypes of cancer for the purpose of
classifying patients on their subtype. We specifically work to identify regions
of interest between between patients with adenocarcinoma type lung cancer and
squamous carcinoma type lung cancer. We establish a suitable test statistic to
test the null hypothesis defined in Equation (1.2). We require the test statistic to
be sensitive at identifying differences in the mean, variance, skewness and multi-
modality between the two samples. We wish the application of the test on each
window of the genome to be efficient and accurate.

We begin in Chapter 2 by investigating and critiquing current test statistics to
be used to test the null hypothesis in Equation (1.2). We initially consider para-
metric tests before concluding that a non-parametric test may be more suitable.
We investigate current well-known non-parametric tests as well as other less known
tests. Out of the most popular non-parametric tests, we show that the Cramer
test (Baringhaus and Franz, 2004) is the most preferable.

Properties of the Cramer test statistic are explored in Chapter 3 and we provide
formulas for the exact calculation of the first four moments of the test statistic when
the distribution of the data is unknown. We also provide results for the expectation
and variance of the test statistic for various known common distributions of the
data.
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To ensure the test is efficient, in Chapter 4 we look into alternative methods
to estimate the p-value of the test. We discuss current resampling methods for
obtaining the p-value including the method described by Baringhaus and Franz
(2004). We then investigate empirical approximations of the null distribution us-
ing the method of moments by equating the parameters of the chosen approximate
distribution to the formulae for the first four moments from Chapter 3. We con-
sider two and three parameter approximations as well as transformations and the
extreme value theorem.

In Chapter 5, we consider the application our method for identifying regions of
interest. We firstly investigate the computational consideration of the method and
discuss how we ensured fast calculations. We compare our method to calculate
the p-value against other methods both in terms of speed and accuracy. We also
compare the choice of test statistic to other well-known powerful statistics. Here
we aim to show that the Cramer test was the most suitable choice of test statistic
for our purposes. We also compare our method as a whole to KC Smart - the
current method used by oncologists for identifying genomic regions of interest.
Finally, we provide the results of applying our method to all windows in the lung
cancer data set. We hope to prove that the results and conclusions using our
method are similar to the conclusions obtained by Belvedere et al. (2012).

For these type of data, there usually exists high correlation between windows,
especially windows which are adjacent or close to each other in the genome. To
understand more about the correlation structures and show that high correlation
exists in the lung cancer data set, Chapter 6 explores these correlation structures.
Modelling the correlation structures is also investigated in this chapter which can
be used for prediction purposes.

Given that we perform the Cramer test simultaneously on each of the corre-
lated windows, we have a multiplicity problem that cannot be solved using only
correction procedures like Bonferroni, which rely on the independence of all tests.
Chapter 7 investigates methods to correct for multiplicity when the tests are depen-
dent. We firstly implement an algorithm described by Dudbridge and Gusnanto
(2008) to estimate the effective number of independent tests, which can be used in
multiplicity correction procedures like Bonferroni. However, we find that methods
to calculate the effective number of independent tests are slow and computation-
ally expensive, thus we consider Fisher’s combined probability test for testing the
significance of a group of correlated p-values. For this, we extend the work done
by Brown (1975) and Kost and McDermott (2002) to allow the method to be used

when the distribution of the null distribution is unknown.
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1.9 Thesis Overview

To conclude, Chapter 8 summarises our research and contributions. We also

outline the potential for future work.
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Chapter 2

Identifying a Two-Sample Test to
Locate Genomic Regions of

Interest

2.1 Introduction

The main purpose of our study is to locate the regions of the genome that differ
significantly in CNA between groups or subtypes of cancer. We have seen in
Section 1.8 that one method in which to do this is to apply a hypothesis test
on each window or location of the genome independently. The more patients in
the study will ensure a more accurate test per window or genomic location. The
question however, is which hypothesis test is suitable for this task? Wilting et al.
(2006), Van De Wiel and Van Wieringen (2007) and Smeets et al. (2006) choose to
perform a hypothesis test using a rank based test, namely the Wilcoxon test, but
we find that these tests are not powerful enough to pick up certain differences in
the distribution. Therefore we aim to identify a hypothesis test which is sensitive
at identifying the differences in the mean, variance, skewness and multi-modality.
Such a test has not yet been identified and will ensure that any regions which
differ significantly between groups of patients are identified. Using tests which fail
to identify differences in certain aspects could potentially miss highly important
regions of the genome which could help classify future patients on their subtype
of cancer. Therefore it is vital that we choose a suitable hypothesis test.

In this chapter we perform a literature review on various choices for the hy-
pothesis test and provide disadvantages of using each, before finding a suitable
test which is sensitive at identifying all differences within the data. We provide

the relevant derivations of the test statistics for each hypothesis test considered so
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the comparisons between each one can be clearly seen. In some of the hypothesis
tests considered, the test statistics are very similar thus we believe it is important
to see how each one compares to the others.

Given X4,..., X, and Y7, ...,Y,, identically distributed random variables with
distribution functions F'(t) and G(t) respectively, recall that the null hypothesis
we wish to test is

Hy: F(t) = G(t), (2.1)

versus the alternative hypothesis

H, : F(t) # G(t). (2.2)

2.2 Parametric Tests

Parametric tests rely strongly on a distributional assumption of the data or the
central limit theorem (Heyde, 2014). For example, the ¢-test and F-test rely on the
assumption that the summary statistics are normally distributed. Recall Figure
1.2 from Section 1.5.2. These histograms not only show that the distributions
of CNA across patients per region for the lung cancer data set are not normally
distributed, but that there exists multi-modality within the data. Because of this,
it is reasonable to conclude that a parametric test would not be suitable in this
case, which includes the use of a t-test and F-test. Even if one was to consider
a transformation of the data, no transformations exist which would completely
remove the multi-modality within the data. As well as this if such a transformation
did exist, the important features of the data would be lost.

Balkin and Mallows (2001) considers an asymmetric, skew-adjusted two-sample
t test which is considered as a potential choice in Appendix A. We omit this work
from the main text as we have concluded that a parametric test would be unsuitable

for our purposes.

2.3 Two Sample Tests Based on Empirical Cu-

mulative Distribution Functions

The advantage of using a non-parametric test is that no distributional assumptions
are placed on the data. As is seen in Figure 1.2, the shape of the distributions
vary greatly between windows, with some distributions displaying a multimodal
quality. The ability to perform a hypothesis test on the data without needing to

place any distributional assumptions on the data will thus be ideal for our purposes.
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2.3 Two Sample Tests Based on Empirical Cumulative Distribution
Functions

Define F,(t) and G,,(t) to be the empirical cumulative distribution functions of

the samples respectively where
n n - x; <t
Gm(t) = ! Em 1
m m < y; <t-

2.3.1 Kolmogorov-Smirnov

Perhaps one of the most well known non-parametric tests is the Kolmogorov-
Smirnov two sample test (Kolmogorov, 1933), (Smirnov, 1939). The test statistic
is defined as

Dy = Slzp ’Fn(t) - Gm(t”

where “sup” is the supremum function. The test statistic calculates the maximum
vertical distance between the two empirical cumulative distribution curves and
the null hypothesis is rejected if the test statistic is larger than a critical value.
Massey Jr (1951) provides a table of critical values. As an illustration, consider
X ~ N(0,1) and Y ~ N(1,1) and sample n = m = 100 observations from each
distribution. The empirical cumulative distribution functions of the two samples

are shown in Figure 2.1.
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Figure 2.1: The empirical cumulative distribution functions of two samples drawn
from distributions X and Y such that X ~ N(0,1) and Y ~ N(1,1) and n = m =
100.

The maximum distance between the two ECDF curves shown in Figure 2.1 is

calculated to be 0.37 and after performing the Kolmogorov-Smirnov test on the
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two samples, Hy is rejected at 5% level with a p-value of 2.27 x 10~¢. Now consider
X ~ N(0,2) and Y ~ N(0,1) and sample n = m = 100 observations from each
distribution. The empirical cumulative distribution functions of the two samples

are shown in Figure 2.2.
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Figure 2.2: The empirical cumulative distribution functions of two samples drawn
from distributions X and Y such that X ~ N(0,2) and Y ~ N(0,1) and n =m =
100.

The maximum distance between the two ECDF curves shown in Figure 2.2 is
0.17 and, after performing the Kolmogorov-Smirnov test on the two samples, Hg is
not rejected at 5% level with a p-value of 0.11. Clearly, the Kolmogorov-Smirnov
is more sensitive at picking up differences when there exists a change in mean
compared to a change in variance. Not only this, but the Kolmogorov-Smirnov
test performs poorly when the sample size for n and m is small. Consider again
X ~ N(0,1) and Y ~ N(1,1) and sample n = m = 40 observations from each
distribution. The empirical cumulative distribution functions of the two samples
are shown in Figure 2.3.

The maximum distance between the two ECDF curves shown in Figure 2.3 is
0.33 and after performing the Kolmogorov-Smirnov test on the two samples, the
p-value is 0.029. Thus at 5% level H is rejected, but at 1% level Hy is not rejected.
Compare the p-value obtained here to the p-value obtained when n = m = 100,
clearly when n = m is larger the null hypothesis is rejected at a smaller significance
level.

It is important that the hypothesis test chosen for comparing the distribu-
tion of copy number alterations is sensitive enough to identify differences in the

mean, variance and skewness etc including when sample sizes are small. If the
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Figure 2.3: The empirical cumulative distribution functions of two samples drawn
from distributions X and Y such that X ~ N(0,1) and Y ~ N(1,1) and n =m =
40.

Kolmogorov-Smirnov test is unable to identify differences in the variance success-
fully, there may be some windows which are wrongly concluded to be insignificant.
Not only this, but for a sample size of 40, the Kolmogorov-Smirnov test has smaller
sensitivity when identifying a difference in the mean. In the lung cancer data set,
distributions of samples with only n = m = 38 observations will be compared,

thus clearly the Kolmogorov-Smirnov test is an unsuitable test for this data.

2.3.2 Cramer-von Mises and Anderson-Darling

The general Cramer-von Mises one-sample test statistic is defined by

W —n [ NF@ONE® - F)aF(), (2.3)
where M\(F(t)) is a chosen weight function. The fundamental ideas behind this
test were developed by Cramér (1928), Von Mises (1931) and Smirnov (1936). By
setting A(F'(t)) = 1, W2 becomes the one-sample Cramer-von Mises (CvM) test

statistic
o0

1ﬁ:n/ (Fu(t) — F(1)? dF (D), (2.4)

for which Csorgo and Faraway (1996) describe the exact and asymptotic properties.
One such property, which can be shown by results in Smirnov (1936) and Géotze
(1979), is that lim,,_,o F,,(t) = F(t). This property therefore claims that for large

n, the cumulative distribution function can be approximated by the empirical
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cumulative distribution function.

Using the fact that F},(¢) can be considered as a binomial random variable, An-
derson and Darling (1954) show that E[F,(t)] = F(t) and Var[F,(t)] = F(t)(1 —
F(t)). Because of this, Anderson and Darling (1954) propose to modify the statis-
tic w? by setting the weight A(F(t)) = (F(t)(1—F(t)))~!. In this formulation, they
want to “equalize the sampling error over the entire range of ¢ by weighting the
deviation by the reciprocal of the variance”. Anderson and Darling (1954) state
that another consequence of choosing A(F(t)) = (F(t)(1— F(t)))"" is that the
test statistic weights the tails of the distribution more than its centre. This can be
considered an advantage of this test because it is more sensitive at identifying dif-
ferences in the tails of the distributions where small but important deviations can
occur. By choosing this weight, Equation (2.3) becomes the one-sample Anderson-

Darling test statistic,

s [ (Falt) = F©))?
A2 = /_ S Fy T (2.5)

Anderson (1962) subsequently adapts the one-sample Cramer-von Mises test

[e9]

(2.4) into a two-sample version

o0

T AN Hapm D) (Fu(t) = G (£))*AH, 1 (1), (2.6)

n+m J_o

T —

where H, 1., (t) is the ECDF of the pooled data. For n,m < 7, Anderson (1962)
obtains the sample distribution of T. Following that, Burr (1964) obtains the
sample distribution for sample pairs such that n,m > 4 and n +m < 17. The
asymptotics of this statistic are also considered in Lehmann (1951), Rosenblatt
et al. (1952), Fisz (1960) and Darling (1957).

Pettitt (1976) also modifies (2.5) into a two sample version

[ (B = Gl
ondm Hner(t)(l_Han(t))

dH (1) (2.7)

For the Anderson-Darling (AD) test statistic (2.7), Pettitt (1976) calculates its
asymptotic distribution. However, Pettitt (1976) also indicates that finding mo-
ments higher than the mean explicitly is “impossible”, which is a disadvantage of
the Anderson-Darling test. Baumgartner et al. (1998) also considers a test statis-
tic similar to the Anderson-Darling test statistic and compares the power of the
test to the Kolmogorov-Smirnov test, the Cramer-von Mises test and the Wilcoxon
test.
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Whilst it can be shown that the Cramer-von Mises and Anderson-Darling tests
perform well at identifying differences between distributions which differ in mean,
variance and skewness etc. the two tests are less effective when dealing with multi-
modal data. Consider sampling n = m = 100 observations from X and Y such
that X ~ N(1,0.25) and Y which follows a mixture of normals distribution with
probability density function ZN(1,0.25) + £ N(3,0.25). The distribution of Y was
chosen to reflect the shape of the distribution of estimated CNA across groups of
patients per region of the genome. Here we have chosen the distribution to have a
larger peak centred at 1 with a smaller peak centred at 3. This is perhaps a more
extreme case of the data we expect to see, but as can be seen in Figure 1.2 from
Section 1.5.2 observing CNA of more than 2 away from the most common CNA is
possible. Therefore it is vital that any hypothesis test we choose can adequately
deal with data of this type.

Figure 2.4 shows the histograms of the two samples from X and Y. The number
of breaks was chosen to be about 10 and the two histograms are plotted on the
same scale for easy comparison. The empirical cumulative distribution functions

of the two samples are shown in Figure 2.5.
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Figure 2.4: The histograms of the samples X (left) and Y (right).

Performing the CvM test on the data gives a p-value of 0.502 and performing
the AD test gives a p-value of 0.231. Thus both tests conclude that the two
distributions of X and Y are equivalent despite the graphs in Figures 2.4 and 2.5
clearly showing large differences between the distributions. A lack of sensitivity
when dealing with multi-modal data is a major disadvantage of the CVM and AD

tests.
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Figure 2.5: The empirical cumulative distribution functions of two samples drawn
from distributions X and Y such that X ~ N(1,0.25) and Y which follows a
mixture of normals distribution with probability density function %N (1,0.25) +
+N(3,0.25). and n = m = 100.

2.3.3 Cramer Test

Baringhaus and Franz (2004) presents the following test in one dimension;

nm
Tn,m =
n+m J_

(Fo(t) — G(t))?dt, (2.8)

which can be considered a modification of the two sample Cramer-von Mises test
(2.6) and is thus named the Cramer test for this reason. Baringhaus and Franz

(2004) states that the limiting distribution of 7}, ,, as n,m — oo is

/ T B2H))dt. (2.9)
where B(u), 0 < u < 1 is the classical Brownian bridge. Note that the limiting
distribution depends on H(t), which consequently means the test is not completely
non-parametric. To calculate a p-value, Baringhaus and Franz (2004) suggests
using a traditional bootstrap or permutation estimate of the distribution of 7, ,,
or the limiting distribution defined in Equation (2.9). Note that using either a
bootstrap approach or the permutation method for calculating the p-value can be
slow for large n. In our application, this is a practical limitation and is considered
further in Chapter 4.

Recall that the two sample Cramer-von Mises test (2.6) uses a weight function
A(u) for 0 < u < 1. Consider instead a weight function A(t) for —oo <t < oo and
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let \(t) = ﬁ, where A(t) is the common probability density function. With this

modified weight function, the Cramer-von Mises test statistic (2.6) becomes

nm <1 )
nrm ) ) = Gm(0)” i (?). (2.10)
A dH (%)
g = M,

Equation (2.10) is equivalent to Equation (2.8). Recall that the weight function

for the Anderson-Darling test is of the form

1

Aw) = u(l —u)

for 0 < wu < 1. With this choice of weight function it is easy to see that A\(u) — oo
when u = 0 or uw = 1. Thus for u = H(t), more weight will be given when H (t) is

close to 0 or 1, which occurs at the tails of the pooled data.

1
0]

when h(t) ~ 0. In particular, h(t) ~ 0 will not only occur at the tails of the

Using the weight function A(t) = will put more weight on the test statistic
distribution but could also occur more often if the data is multi-modal. Thus
we can argue that the Cramer test statistic will be more sensitive at detecting
differences when the data is multi-modal.

To test this, consider once again X ~ N(1,0.25) and Y which follows a mixture
of normals distribution with probability density function %N (1,0.25) +%N (3,0.25).
Table 2.1 shows the results of a simulation designed to show the sensitivity of
the Cramer test against the Cramer-von Mises and Anderson-Darling tests when
dealing with multi-modal data with n = m = 100. The table shows the number
of times each test statistic rejects the null hypothesis that the distributions of X

and Y are equivalent at the 5% significance level out of 100 simulated datasets.

Test Number of rejected H
Cramer-von Mises Test 34
Anderson-Darling Test 52

Cramer Test 100

Table 2.1: Number of rejections of Hy out of 100 simulated datasets in which
the Cramer-von Mises test, the Anderson-Darling test and the Cramer test is
performed on 100 observations from X and Y such that X ~ N(1,0.25) and Y
which follows a mixture of normals distribution with probability density function
IN(1,0.25) + N (3,0.25).

Clearly, Table 2.1 shows that the Cramer-von Mises test fails to detect any
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significant differences between the distributions of X and Y about a third of the
time. The Anderson-Darling test performs better than the Cramer-von Mises
test, but still fails to detect any significant differences about a half of the time.
The Cramer test is able to identify significant differences 100% of the time. This
therefore shows that if the data exhibits multi-modality, like for the lung cancer
data set, the Cramer test is the most suitable.

The integration variable plays a major role in why the Cramer test is more
powerful in the case of multi-modal data. To see why, consider the following

function
_ (Fut) = Ga(1))?
1 = F 00— Hy (8))

which is the integrand of the Anderson-Darling test statistic. To show how the

integration variable affects the test statistics, Figure 2.6 displays two plots, namely
n(t) plotted against ¢ where t' is the linearly transformed version of ¢ so that

t" € [0, 1], and n(t) plotted against H, ., (t).
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Figure 2.6: The graphs of n(t) plotted against ¢ where ¢’ is the linearly transformed
version of ¢ so that ¢’ € [0,1] (left), and 7n(t) plotted against H,,,(t) (right).

The area under the curve in Figure 2.6 (right) is the test statistic for the
Anderson-Darling test. It is clear that the area under the curve in Figure 2.6 (left)
is larger than the area under the curve in the right graph. This shows that the
test statistic will be larger when integrating with respect to ¢t and thus suggests
that the Cramer test is more likely to detect significant differences between the
distributions of X and Y.

Note that the Anderson-Darling test statistic is divided by H,, 1, (¢)(1—H,y 10, (1))
and T, ,, is not. Whilst it may be preferable to divide the integrand of 7;, ,, by
Hyi(t)(1— Hpyn (1)), this sacrifices the ability to calculate exact formulas for the

moments of the test statistic.

44



2.4 Comparison to Current Literature

2.4 Comparison to Current Literature

As has already been mentioned Wilting et al. (2006), Van De Wiel and Van Wierin-
gen (2007) and Smeets et al. (2006) choose to perform a hypothesis test using a
rank based test, namely the Wilcoxon test Wilcoxon (1945). Like the t¢-test, the
Wilcoxon test is very powerful in locating differences in the mean but fails to iden-
tify differences when they occur in the variance or multi-modality. As before, due
to the complex nature of the data, we require a test which can locate differences
based on the mean, variance, skewness and multi-modality so whilst performing
the Wilcoxon test on two groups CNA data will identify some genomic regions
which have significantly different CNA between the groups many regions will be

overlooked. We therefore hope that the Cramer test will solve this problem.

2.5 Further Two Sample Tests

Ferndndez et al. (2008) describes a two-sample test based on the empirical char-

acteristic functions. The test statistic is defined as
1
Dy = / |Cy(t) — Cm(t)\ZdB(t) (2.11)
0

where C),(t) and C,,(t) are the empirical characteristic functions defined by

m

I ax, _ Iy
Colt) =~ ;e Ol =— ;e

In Equation (2.11), B(t) is a chosen distribution function on R¢. The distribution
function B(t) can be chosen to maximise the power of the test. To calculate the
p-value Fernandez et al. (2008) uses a bootstrap approximation to approximate
the null distribution. Fernandez et al. (2008) shows that the test is powerful when
observing a change in scale and location. Jiménez-Gamero et al. (2017) considers
the test statistic defined by Equation 2.11 and provides fast algorithms using a
weighted bootstrap approach to calculate a p-value in 0.01 seconds for dimension
d =1 and n = m = 20. A massive advantage of this test over the Cramer-von
Mises and Anderson-Darling is that it can be easily generalised to any dimension.
However, as the Cramer test can also be generalised to any dimension and avoids
exponentials, we find it more preferable.

Many other methods to solve the two-sample problem have been studied in the

literature. For example, Gretton et al. (2007) suggests using a kernel approach
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for the two-sample problem and Cao and Van Keilegom (2006) uses an empirical
likelihood ratio test using kernel density estimates. Aside from the Wilcoxon test
already mentioned, other rank based tests are also well studied in the literature,
e.g. Mann and Whitney (1947) suggests the Mann-Whitney test. Curry et al.
(2018) also introduce a new rank-based Cramer-von Mises type test in which the
power of their test is compared to the Wilcoxon test, the Cramer test (2.8) and
the test described in Fernandez et al. (2008) (2.11).

2.6 Discussion

This chapter investigates current parametric and non-parametric tests for the pur-
pose of locating genomic regions where the distribution of CNA is significantly
different between subtypes of cancer. After exploring the shape of the data it
was clear that parametric tests are unsuitable due to the incorrect normality as-
sumption. Balkin and Mallows (2001) try to address this issue by introducing an
asymmetric, skew-adjusted t-test. However, when taking the variance and skew-
ness of both distributions into account, we have found that when n = m, the test
is generalised to the standard Welch’s t-test. Aside from the incorrect normality
assumption, another disadvantage of most parametric tests is they are only sen-
sitive in identifying a single difference between the distributions, i.e. in the mean
or variance. Whilst the Cramer-von Mises test and the Anderson-Darling test
sufficiently deal with this issue, in the case of multi-modality the two tests are
less effective. As it has been identified that multi-modality is a common feature
of the lung cancer data set, having a test which can deal with this feature is of
importance. The Cramer test is shown to be more sensitive when the data is multi-
modal, the reason for this is the choice of weight function and thus the integration
variable. We conclude, therefore, that a suitable choice of hypothesis test is the
one-dimensional Cramer test. However, as we have identified, a limitation of this
test is the computational burden in calculating the p-value. We investigate this in

more detail in Chapter 4.
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Chapter 3

Properties of the Cramer Test

3.1 Introduction

In Chapter 2, we showed that multi-modality was a common feature of the lung
cancer data set. We also showed that when the data is multi-modal, the Cramer
test (Baringhaus and Franz, 2004) is more sensitive in identifying differences com-
pared the the Cramer-von Mises and Anderson-Darling tests.

In this chapter, we calculate and present formulas to calculate the moments
of the Cramer test statistic up to the fourth moment which has not been previ-
ously calculated. Additionally, we provide the first two moments for a selection
of distributions. We also consider properties of the Cramer test statistic when a

transformation of the data is performed.

3.2 Cramer Test Statistic

Consider two samples of data, zi1,...,x, and yi,...,y,,, where we can assume
without loss of generality that n > m, from distributions f and g respectively. If
we wish to test the null hypothesis Hy : F' = GG, we can use the Cramer test with
test statistic 7, ,,, defined by

Ty = (Fu(t) — Go())? dt. (3.1)

3.3 Moments

Exact formulas for the moments of the Cramer test statistic can be calculated.

Proofs are given either in the text or appendices D, E and F. In the following
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equations the cumulative distribution function H(t) is used to denote the distri-
bution when Hy is true. As in most cases H(t) is unknown, we will later use the
empirical cumulative distribution function H,,(t) to approximate H(t). Recall
a property of the Cramer-von Mises test statistic, w? (2.4), mentioned by Csorgo
and Faraway (1996), which states that, for large n, the cumulative distribution
function can be approximated by the empirical cumulative distribution function.

Thus for large n + m, H, ., provides an accurate approximation of H (t).

3.3.1 Expectation

The expectation of T, ,, under the null hypothesis is given by
ET, n|F =G| = / H(t)(1 — H(t))dt. (3.2)

Proof By substituting the empirical cumulative distribution functions F,,(¢) and

G (t) with the relevant summations, the Cramer test statistic becomes

2 n m
Tom =22 o Z Z Lzt Liay<ty — —— 3 Tmenliy,<n

i=1 j=1 i=1 j=1

1 m
+ m2 Z Z Ly, <ty Ly, <iydt.

i=1 j=1

Taking the expectation of T, ,, and using Fubini’s theorem (Fubini, 1907) which

gives the conditions under which integrals can be switched, gives

n n

nm > (1

i=1 j=1

n m

1 m m
- Z > E[Lmsnly,<n] T3 Z > E[Ly<nliy,<n] )dt
=1 :1

21]1

o0

1 1
=" <n b [l{wiét}] E [l{zjét}] + EE [l{xigt}]

n+mJ_o n

1
—2E [1(z,<n] B [Tgy<n] + TE [Ty,<iy] E [Ty, <n]

1
+ EE [ﬂ{yigt}} )dt.
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Under the null hypothesis E [1(,,<;] = E [1{y,<1] = H(t), thus

E[Ty.m] = / h (H(t) — H(t)?) dt, (3.3)

Note that

n-—+m

B l nm (Fu(t) — Gm@))Q] = H(t)(1 - H(t)),

is the divisor used in the Anderson-Darling test statistic, which confirms that the
expectation of the Anderson-Darling test statistic is one (Pettitt, 1976). It is also

of interest to note that the expectation does not depend on n and m.

3.3.2 Variance

The variance of T}, ,, under the null hypothesis for n > m is given by

Var[T, . |F = G] = / /° <L+ﬂV—2ﬂﬂ@—3H@
—2(2V —5)H(s)H(t) +2H(t)* +2(V - 3) H(s)H(t)2> dsdt (3.4)

nm(n+m)?
n34+m3

where V = . The proof of this is located in Appendix D. When n = m,

i.e. V = 2n, Equation (3.4) becomes

Var|T,, ,|F = G| = / / 1 +4(n—1)H(s) —3H(t)

— 9(4n — 5)H (s)H(t) + 2H(t)? zen—aﬂgﬂﬂoﬂdmw

As n =m — oo the variance can be approximated by

Var[T,, .|F = G] — 4/00 /t H(s)*(H(t) — 1)*dsdt. (3.5)
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3.3.3 Skewness

The third non-centralized moment of 7, ,,, for n > m is given by

E[T2,,|F =G] = 9/ // 1+2 (S(7(m?* +n*) — 10nm) — 8) H(t)
—|—2(9(5(m +n?) — 7nm)—6) H(s)+(9(m —|—n2—nm)—3) H(r)

+5 (§(2mn(m +n) — 19(m* + n®) 4+ 25mn) + 18) H(s)H(t)
+ (S(2mn(m + n) — 19(m”* + n?) + 25mn) + 18) H(s)?
= (§(m* +n* —nm) —2) H(r)*
+ 2 (§(mn(m + n) — 19(m* + n*) + 26mn) + 20) H(r)H(t)
+ (S(mn(m +n) — 27(m? + n?) + 37mn) + 30) H(r)H(s)
— 4 (S(3mn(m +n) — 26(m* + n*) + 34mn) +24) H(s)>H(t)
— 5 (§(5mn(m +n) — 45(m” + n®) 4+ 59mn) + 42) H(r)H(s)H(t)
—2(§(mn(m +n) — 12(m* + n®) + 16mn) + 12) H(r)*H(t)
— (S(5mn(m + n) — 45(m* + n*) + 59mn) + 42) H(r)H(s)*
— (S(mn(m +n) — 17(m* + n®) + 23mn) + 18) H(r)*H (s)
+9 (S(3mn(m + n) — 26(m” + n*) + 34mn) + 24) H H(t)
+5 (§(3mn(m +n) — 26(m* + n®) 4+ 34mn) + 24) H H(t)

+ (9(3mn(m +n) — 26(m? + n?) + 34mn) + 24) (7")2 (s)2

— 5 (§(3mn(m +n) — 26(m* + n®) + 34mn) + 24) H H(t))
dtdsdr (3.6)
where G = ”’Zé’j;”;)Q. The proof of this is located in Appendix E. The skewness,

~vr, can then be calculated as

E[T? |F = G] = 3E[T,m|F = G]Var [T}, | F = G] — E[T,, m|F = G]?
Vat[T, o|F = G| 3 .

Y =
(3.7)
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3.3 Moments

When n = m, Equation (3.6) simplifies to

E[T],.|F =G] = 5 / / / <1 +16(n — 1)H(t) + 12(n — 1)H(s)

+ (2n — 3)H(r) + 10(n — 1)(4n — 9)H(s)H (t) + 2(n — 1)(4n — 9)H(s)?
—2(n— 1)H(r)?> +8(n—1)(n — 5)H(r)H(t) + 2(n — 1)(2n — 15)H () H(s)
—48(n — 1)(n —2)H(s)?H(t) — 10(n — 1)(10n — 21)H (r)H(s) H (t)

-1
—8(n—1)(n—3)H(r)*H(t) — 2(n — 1)(10n — 21)H (r)H(s)?
—2(n—1)(2n — 9)H(r)>H(s) + 108(n — 1)(n — 2)H(r)H (s)*H(t)
+60(n —1)(n —2)H(r)*H(s)H(t) + 12(n — 1)(n — 2)H(r)*H (s)?

~—  —

—60(n —1)(n — 2)H(7’)2H(3)2H(t)> dt dsdr.
As n =m — oo the third non-centralised moment can be approximated by

E[T},.|F =G] — 6/ / / (10H (t) +2H(s)* +2H(r)H(t)
+ H(r)H(s) — 12H(s)*H(t) — 25H (r)H (s)H(t) — 2H (r)*H (t)

— 30H (r)H(s)? —6H( )2 H( )+ 27TH (r)H(s)*H (t) + 15H (r)*H(s)H (t)

+3H(r)*H(s)* — 15H(T)2H(S)2H(t)> drdsdt

3.3.4 Kurtosis

The fourth non-centralized moment of 7, ,, along with the proof is given in Ap-

pendix F. When n = m, the fourth non-centralized moment is given by

BT |F =G = / / / / H(w) (14 64(n — DH() +48(n — 1) H(u)
+12(n 1)H( (2n — ) 4+ 10(n — 1)(40n — 81)H (u)H (v)
+2(n — 1)(40n — 81)H( ) + 2(n —1)(4n — 9)H (t)* — 2(n — 1)H(s)?
+24(n — 1)(7Tn — 15)H(t)H (v) + 32(n — 1)(n — 5)H (s) H (v)
(
(

+2(n—1)(62n — 135)H(t)H (u) + 24(n — 1)(n — 5)H(s)H (u)
+2(n—1)(2n — 15)H(s)H(t) + 192(n — 1)(n — 2)(n — 4)H (u)*H (v)
+80(n — 1)(n —2)(bn — 21)H (t)H (u)H (v)

(n —=1)( ( )H
+16(n — 1)(n — 2)(5n — 21)H (t)H (u)?
+16(n — 1)(n —2)(n — 9)H (t)*H (u) + 32(n — 1)(n — 2)(n — 6)H (t)*H (v)
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(8n? — 1100 + 189)H (s) H (u) H (v) — 32(n — 1)(n — 3)H(s)*H (v)
8n? — 110n + 189)H (s) H (u)* — 24(n — 1)(n — 3)H (s)*H (u)
10n — 21)H(s)H (t)* — 2(n — 1)(2n — 9)H(s)*H (t)

2n? — 55n + 105) H (s) H(
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3.4 Transformation of data

The kurtosis, x, can then be calculated by

1
Var[Tn7m|F _ G]z ( [ nm| G] [ | G] [ nm| G]

+ 6Var[T,, | F = GI’E[T,, m|F = G]* + 3E[T,, | F = G*). (3.9)

As n = m — oo the fourth non-centralized moment is given by

E[T! |F = G %24/ / / / (0) (24 (u)? H(v) + 50H (1) H (1) H (v)
+10H (t)H (u)?® + 2H (t)*H(u) + 4H (t)*H ( )+ 10H (s)H (u) H (v)
+2H (s)H (u)® +2H() () (v) + H(s)H(t)H (u)
— 108H (t)H (u)*H (v) — 60H (t)* H (u)H (v) — 12H (t)*H (u)*
— 10H (s)?H (u)H (v) — 2H (s)?H (u)? — 125H (s)H (t) H (u) H (v)
— 60H (s)H (u)*H (v) — 10H (s)H(t)*H (v) — 2H (s)*H(t)H (v)
— 25H (s)H (t)H (u)* — 5H(s)H (t)*H (u) — H(s)*H(t)H (u)
+90H (t)*H (u)*H (v) + 243H (s)H (t)*H (u) H (v) + 36 H (s)*H (u)*H (v)
+135H (s)H (t)*H (u)H (v) + T5H (s)*H (t)H (u) H (v) + 6 H(s)*H (t)*H (v)
+27TH (s)H (¢)*H (u)® + 15H (s)*H (t)H (v)* + 3H(s)*H (t)*H
— 195H (s)H(t)*H(u)*H (v) — 135H (s)*H (t) H (u)* H (v)
— 75H(s)*H(t)*H (u)H (v) — 15H (s)*H(t)*H (u)?
+ 105H(s)2H(t)2H(u)2H(v)> ds dt du dv.

—~

)
()

’H
’H

3.4 Transformation of data

A sense of the magnitude of the Cramer test statistic may be useful in day-to-day
practice. When the Cramer test statistic is calculated, we ought to be able to sense
whether the magnitude of the test statistic is meaningful or not from hypothesis
testing purposes. For this purpose, the pooled data needs to be standardised and
so we first need to consider the effect of standardisation of data on the Cramer
test statistic T, .

Consider applying a linear transformation of the pooled data Z, such that

7' =aZ + b, where a > 0 and b are known constants. Since

1 n
- z; Lty = Il
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3. Properties of the Cramer Test

then for the transformed data Z’, we can write

1 — 1 &
- Ly = - Laz,
nzzl {2, <t} nzzl {az;+b<t}
1 n
= — 1 _
w2 i)

- (%)

The test statistic for the transformed data is given by

00 _ _ 2
po__mm (Fn(t b)_Gm<t b)) "
’ n+mJ_. a a

Let s = =2 then a change of variables can be performed to give
a g P g

, anm [ 9
= F.(s) — G, d
= [ (Fs) = Gl s
=a-Tym. (3.10)

This result therefore implies that

E[T’r,z,m] = aE[T,] (3.11)
Var[T), ] = a*Var[T,,,). (3.12)

It can be easily shown that a change in location or scale will not affect the skewness
or kurtosis of the test statistic. Hence, a change in location of the data does not
affect the expectation, variance, skewness or kurtosis of the test statistic, but
scaling affects the expectation and variance.

Note that Equation 3.10 shows that a linear transformation of the data will
scale the test statistic by the same factor as the data. Then, if ¢,,, and t; ,,
represents the test statistics for Z and Z’ under Hy respectively and T, ,, and T}, ,,

are the observed test statistics for Z and Z’ respectively, then

Pr{t;hm > T/Lm} = Pr{at, ., > aT,m}
=Pr{tnm > Tom} .

Similarly, we can show that Pr{t,  <T! 1 = Pr{t,, <Thmn}. Thus we can
conclude that a linear transformation of the data will not affect the p-value of the

test.
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3.5 Expectation and Variance for Known Distribution

3.5 Expectation and Variance for Known Distri-

bution

Assume that the null hypothesis is true, i.e. F' = G = H where H represents the
true distribution of F' and G under the null hypothesis. Also assume for simplic-
ity that n = m. Consider we have data zi,..., 29, with cumulative distribution
function H, which is the pool of two samples x1,...,z, and y1,...,y,. As seen
in Section 3.4, scaling the pooled data Z affects the expectation and variance of
the test statistic. Thus, it is of interest to see how the expectation and variance
changes depending on the distribution of Z. For certain distributions of Z, we can

obtain exact results for the expectation and variance.

Proposition For a random variable Z following various underlying distributions
and n = m, the expectation and variance of the test statistic 1), , respectively

follow the format

E[T,. = a-sd(Z),
Var[T,,,| = <6+§).Var(2), (3.13)

where @, b, and ¢ are real numbers and n is half the number of observations sampled

from Z.

Proof Consider data sampled from a random variable Z with known cumulative
distribution H(t). The data can be standardised to form a new random variable

7' using the formula

sd(Z) 7’
which can be rearranged to give
Z=sd(Z)-Z"'+E|Z]. (3.14)

Note that Equation (3.14) is of the same format as the linear transformation
described in Section 3.4 with a = sd(Z) and b = E[Z].

Now, define the test statistic calculated from the standardised data, Z’, to be
T, , and the test statistic calculated from the original data, Z, to be T, ,. From
Equation (3.2), the expectation of T),,, is constant with respect to n. Equation

(3.4) has terms which are constant in n as well as terms in £. Thus the expectation
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and variance of T”

n,mn?

when calculated using H (t), will be of the form

E[Tr/L,n] = a,

Var[T) ] = (5+£),
’ n

where a, l~), and ¢ are constants which depend on H and n is half the number of

observations sampled from Z. We know from Section 3.4 that

E[T’r/b,n] = aE[T, ],

Var[T,'w] = a*Var[T,,,.],
and here a = sd(Z), thus

E[T,,] = a-sd(Z),
Var(T,,,| = <l~7+ g) - Var(Z).

Clearly, as n — oo the value of ¢ will be obsolete, as is evident from Equation

(3.5). 0

3.5.1 Example - Continuous Uniform Distribution

Suppose Z ~ Unif(0,1), then H(t) = ¢t and 0 < ¢ < 1. Thus, Equation (3.2)

/OH H(t)) dt
/Otl—t
g

As sd(Z) = ﬁg, this implies that a = \/ig

becomes
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3.5 Expectation and Variance for Known Distribution

Similarly, Equation (3.4) becomes
Var[T} / / (1 +d(n — V) H(s) — SH(E) — 2(4n — 5)H(s)H(?)
+2H (t)? 4 2(2n — 3)H(S)H(t)2) ds dt

1 1 t
:—/ /s<1—|—4(n—1)3—3t—2(4n—5)3t+2t2
nJo Jo

+2(2n — 3)3t2> dsdt

1 [H]s® 4n—1)s* 352t 204n—5)s*t o,
- — t
/0 [2 T3 2 3 M

t
9342
L2020 - 3)s' ] y
0

3
11
T 45 1200
This implies that b = - and é = — . O

3.5.2 Example - Standard Normal Distribution

Suppose Z ~ N(0,1), results for a non-standard normal distribution can be used
using Equations (3.11) and (3.12). Here, we will use the standard notation of ¢(t)
and ®(¢) to represent the density function and cumulative distribution function of

the random variable Z respectively. Thus Equation (3.2) becomes

1) = [ HO - HE)
- [ ewu-ewm)a

To calculate this integral we use Proposition 1 with 4 = 0 and ¢ = 1 in Appendix

C. Thus

B[T,,] = [t@(t) (1) — 1000 — 20(0)0(0) + =0 (V) r
1
L
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3. Properties of the Cramer Test

Thus a = \% O

For Var[T,,,], it was difficult to find a solution analytically due to requiring
the integration of ®(¢)3 and ®(¢)*, thus a numerical approach was applied. It is
known that Var[T},,] = b+ < and as n — oo, Var[T),,] = b. Thus Equation
(3.5) is calculated numerically to estimate b = 0.20. Now, using Proposition 2 in

Appendix C, Ty ; = % and

wmnﬂzmﬁJ—mﬂﬁ

2
—F (M) 1
2 T
1, , 1
= ZE[Xl] + E[Y] - 2E[X,|E[Y1] - =
11
2 7

—b. As numerically, b=0.2,

3 |=

Thuswhennzl,l;—{—é:%—%, henceézé_
this implies that ¢ = 0.3 — L.

3

3.5.3 Results for Other Unimodal Distributions 7

Table 3.1 provides the values of d,b and ¢ for a selection of distributions for Z.
From the results in Table 3.1, we can sense the magnitude of the test statistic by
standardising the data Z to have standard deviation one. Note that the Bernoulli
distribution is an outlier as a, b and ¢ all depend on the parameter p. If sd(Z) = 1,
then E[T,, ,] is no larger than 0.58 and Var|[T},,] is no larger than 0.5 as n — oo.
It was shown in Section 3.4 that scaling the data does not affect the p-value,
thus performing this standardisation will not affect the results of the test. If the
calculated test statistic (after standardisation of the data) is much larger than
0.58 4+ 1.961/0.5 = 1.97 then the null hypothesis can be immediately rejected. Tt is
suggested, however, that the reader should calculate the p-value to ensure accuracy
when the test statistic falls in the range of (1, 3) for standardised data. When
the test statistic is less than one or more than three, the reader can immediately
decide to not reject or to reject the null hypothesis at the 5% significance level,
respectively, without the need to calculate the p-value.

Note that in some cases in Table 3.1, the value of ¢ is negative and in some
cases positive. This means that for increasing n, for some underlying distributions,
Var|T,, ,,] will increase and for other underlying distributions, decrease. The cause
for this is unclear, as no pattern can be seen between the underlying distributions

with a negative ¢ and those with a positive c.
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Distribution of Z a b ¢
Uniform(a, b) \/ig = -
Exponential(\) : 3 L
Laplace(p, M) %5 = =
Bernoulli(p) p(1—p) | 2p(1 —p) —w
Poisson(\) 0.52 % 0.25 0.23 *
Normal(p,0) \/%7 020 % | 03—«

Table 3.1: The values of d, b, and ¢ in Eq. (3.13) for different underlying distri-
butions of Z, in the expectation and variance of the test statistic 7T}, ,,, under the
null hypothesis. The symbol * indicates the value is obtained numerically.

3.5.4 Results for Multi-Modal Distributions 7

Recall that multi-modality is a common feature of the lung cancer data set. Let X
and Y be distributed as mixture distributions which follow p; N(1,0.25) +pa N (1 +
d,0.25), thus the distribution of Z will also follow this setup. The values for a, b

and ¢ are calculated numerically and are shown in Table 3.2.

P1 | P2 d a b c

TTL721044%]018 %] 0.30 %
; % 2 10.54 % | 0.37 % | —0.62 %
£ 5141038019 x| —0.39 x
212 14]052%]043 % | —0.54 «

Table 3.2: The values of &, b, and ¢ in Eq. (3.13) for different multi-modal un-
derlying distributions of Z, in the expectation and variance of the test statistic
T, under the null hypothesis. The symbol * indicates the value is obtained
numerically.

3.6 Discussion

The first four moments of the Cramer test statistic have been obtained. We have
provided formulas to calculate the exact moments of the distribution when the
underlying distribution function H is known or unknown. When the distribution
function, H, is unknown the moments can be calculated using the empirical cu-
mulative distribution functions, thus ensuring the test remains distribution free.
Csorgo and Faraway (1996) states that we can use H,,n,(t) to approximate H(t)
for large n + m. The test is also invariant to a linear transformation, suggesting
that data can be standardised before performing the test without affecting the
p-value. This then provides a way of rejecting the null hypothesis without the

need for estimating a p-value.
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Chapter 4

A Faster Approach to Estimate
the p-value of the Cramer Test

4.1 Introduction

When performing a statistical significance test, once a test statistic is calculated the
next step is to obtain a p-value. In Chapter 3, we obtained formulas for calculating
the first four moments of the Cramer test (Baringhaus and Franz, 2004) when the
distribution of the data is unknown. These formulas can be used to fit known
distributions to a sample of test statistics by estimating the parameters through
method of moments. If a distribution can be found which suitably describes a
sample of test statistics, then the parameters can be estimated and thus a p-value
obtained.

In this chapter, we present current reliable resampling methods including the
method used by Baringhaus and Franz (2004) to estimate the null distribution -
that is the distribution of the test statistics under the null hypothesis - and thus
find a p-value. We then explore choices of distributions 7(8), where @ represents
the parameters of the distribution, to approximate the null distribution.

The purpose of this exploration is to find a method that will enable a faster
calculation of a p-value compared to the resampling approaches. Recall that we
wish to locate genomic regions for which the difference in CNA is significantly
different between subtypes of cancer. To do this, we will perform the two-sample
test on each genomic location. The number of genomic locations can be much
greater than 10,000, thus ensuring a fast calculation of each p-value will ensure
the overall analysis is not too slow. As well as this, in genomic studies, we require
a very small p-value for a genome wide significance (< 107¢). To obtain that level

of p-value, the number of resampling that needs to be done for a single window
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4. A Faster Approach to Estimate the p-value of the Cramer Test

is massive, thereby slowing down the calculation even further. For test statistics
t1,...,t,, we will define the density function of the null distribution to be v(t) and
the distribution function N(t).

4.2 Resampling Approaches

4.2.1 Permutation Test

A current and reliable method for estimating the p-value is the permutation test
(Fisher, 1935). In order to use this method, one must compare the test statistic
T,.m calculated from the dataset to a distribution of values ¢;, 7 =1, ..., d obtained
under Hy. To calculate ¢;, one must first permute the labels of the dataset and
then calculate the test statistic of the new dataset, the test statistic is then defined
as t; for the ith permutation. Usually, to get an accurate estimation of the p-value,
the value of d is chosen to be large.

This permutation test can be reasonably fast for small n, however an issue
arrises when n becomes large, namely the process to calculate a single p-value is
computationally costly as well as taking a large amount of time. Note that whilst
the lung cancer data set only has 38 observations in each sample, as technology
gets better the sample sizes will increase. Thus to ensure the test can be used on

larger datasets we aim to find a faster approach to calculate the p-value.

4.2.2 Bootstrapping the Limiting Distribution

Recall that Baringhaus and Franz (2004) states that the limiting distribution for

Thm as n,m — 00 is

| B

where B(u), 0 < u < 1 is the classical Brownian bridge. To calculate a p-value
Baringhaus and Franz (2004) suggests to bootstrap (Efron, 1992) the limiting
distribution, i.e. by estimating the test statistic by

T = / B2(H,,,(t))dt. (4.1)
If z1,. .., z,4m are the pooled ordered data of xy,...,xz, and yq, ..., y.,, Equation

(4.1) can be calculated using

mi_l(zi+1 _ ) lB (%)} B (4.2)

=1



4.3 Empirical Approximations

To bootstrap, samples are drawn from zi,..., 2,1, with replacement and Tnm
calculated using Equation (4.2). This is repeated a large number of times.
Whilst this method is faster than the permutation test, it can take a long
time when n and m get larger. Also, to obtain accurate estimates for the null
distribution, the number of times you resample needs to be large and will thus
slow down the calculation. Again, if the aim is to ensure a fast calculation of the

p-value for larger sample sizes, an alternative approach is required.

4.3 Empirical Approximations

If the null distribution can be approximated by a known distribution 7 (@) for some
parameters 6, which depend on H(t), then the calculations to obtain a p-value
will become less computationally costly. As formulas for the first four moments
are obtained, estimating the parameters 8 should be possible via the method of
moments.

The aim here is to find a two parameter distribution, 7(@), which can approx-
imate the null distribution. To estimate the null distribution, consider simulating
n observations from random variables X and Y with some distribution functions
F = (G and obtain a sampled test statistic ¢;. If this process is repeated k times we
will therefore have k test statistics, tq,...,t:, for which the empirical cumulative
distribution (ECD) function can be plotted. This ECD function - provided k is
large enough - will be a good estimate of the null distribution. We can thus use
the ECD function as a tool for finding a distribution which closely matches the

null distribution.

4.3.1 ECD Function of T, ,,, for Various Distributions of X
and Y

The shape of the null distribution is investigated for three distributional forms
for H(t). We choose three distributional forms which reflect the shape of the
lung cancer data set. We therefore choose a unimodal normal distribution, a
multi-modal distribution with two peaks and a multi-modal distribution with three
peaks.

For the unimodal normal distribution, consider X ~ N(0,1), Y ~ N(0,1),
n = m = 10000 and k£ = 10000. Figure 4.1 shows the histogram (left) and the
ECD function (right) of the 10000 test statistics.

Next, consider X and Y which both follow mixture distributions defined by
IN(1,0.25) + £N(3,0.25) for n = m = 10000 and k& = 10000. Also, for the
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Figure 4.1: The histogram (left) and the ECD function (right) of the 10000 test
statistics where X ~ N(0,1), Y ~ N(0,1), n = m = 10000 and k£ = 10000.

purpose of comparison, consider standardising X and Y. Figure 4.2 shows the
histogram (left) and the ECD function (right) of the 10000 test statistics.
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Figure 4.2: The histogram (left) and the ECD function (right) of the 10000 test
statistics where X and Y are both mixture distributions defined by gN (1,0.25) +
£N(3,0.25) for n = m = 10000 and & = 10000.

Finally, consider X and Y which both follow mixture distributions defined by
2N(1,0.25) + 3N (3,0.25) + 5N (5,0.25) for n = m = 10000 and k = 10000. Also,
for the purpose of comparison, consider standardising X and Y. Figure 4.3 shows
the histogram (left) and the ECD function (right) of the 10000 test statistics.

To compare the ECDF for each choice of distribution, Figure 4.4 shows all
three ECDF curves plotted on a single graph.

It is clear by comparing from Figure 4.4 that the shape of the null distribution
changes depending on the distributions of X and Y. Thus v(z) and N(z) will
depend on F' and G, or equivalently H under the null hypothesis. As H,.,, is
used to approximate H in application, this means that for each variable a different

null distribution will be used.
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Figure 4.3: The histogram (left) and the ECD function (right) of the 10000 test
statistics where X and Y are both mixture distributions defined by 2N(1,0.25) +
3N(3,0.25) + $N(5,0.25) for n = m = 10000 and k = 10000.
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Figure 4.4: The ECDF curves of test statistics when X and Y are sampled from
each distributional form.
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4. A Faster Approach to Estimate the p-value of the Cramer Test

Note also that when X ~ N(0,1) and Y ~ N(0,1) and n = m = 1, it can be
shown that 7T ; = @ has a scaled chi-distribution, because of this, the first
choice of 7(0) is the scaled chi-square distribution.

In the following sections, we now consider the non-standardised data as it is

more reflective of the lung cancer data set.

4.3.2 Generalised Pareto Distribution

In Section B.2, the Generalised Pareto distribution was used to estimate the null
distribution specifically in the right tail. The parameters ¢ and & were calculated
using the information provided by the data and the parameter p was chosen to
be the threshold A\. The main reason for not using this method was due to the
estimation of ¢y and sy, the mean and variance of the test statistics above the
threshold .

The probability density function of the generalised Pareto distribution is de-
fined in Equation (B.3) and the mean, variance and skewness of the distribution

can be calculated using the following three equations;

E[X] A <1
o? 1

Wl = e 7Y
2(1 +&)y/T—2¢ 1

Vx T §< 3

By calculating E[T}, ,,], Var[T},,,] and vz using the formulae in Section 3.3, we can
use method of moments to estimate the parameters p, o and £. By doing this,
we can fit a GPD to the entire null distribution, not just the right tail. Consider
the test statistics calculated when X ~ N(0,1), Y ~ N(0,1), the parameters are
estimated to be p = 0.121, ¢ = 0.473, and ¢ = —0.025. Figure 4.5 shows the
QQ-plot comparing the percentiles of the 10,000 test statistics and the percentiles
of the fitted GPD. Figure 4.5 shows that all points lie in a straight line with a
slight exception in the left tail. However as we are more interested in the fit in the
right tail, this is not cause for concern.

Next consider the test statistics when X and Y both follow mixture distribu-
tions defined by £N(1,0.25) + £N(3,0.25), the parameters are calculated to be
@ = 0.052, 0 = 0.260 and £ = 0.071. Figure 4.6 shows the QQ-plot comparing
the percentiles of the 10,000 test statistics and the percentiles of the fitted GPD.

Figure 4.6 shows that again, the fit in the right tail is reasonably accurate.
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Figure 4.5: The percentiles of the 10,000 sampled test statistics when X and Y
are distribution as N(0,1) plotted against the percentiles of the fitted GPD with
w=0.121, 0 = 0.473, and £ = —0.025.
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Figure 4.6: The percentiles of the 10,000 sampled test statistics when X and
Y both follow mixture distributions defined by IN(1,0.25) + N (3,0.25) plotted
against the percentiles of the GPD with p = 0.052, ¢ = 0.260 and £ = 0.071.
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4. A Faster Approach to Estimate the p-value of the Cramer Test

Finally consider the test statistics when X and Y both follow mixture distri-
butions defined by 2N(1,0.25) + 3N (3,0.25) + $N(5,0.25), the parameters are
calculated to be p = 0.083, 0 = 0.628 and ¢ = 0.083. Figure 4.7 shows the QQ-
plot comparing the percentiles of the 10,000 test statistics and the percentiles of
the fitted GPD. Figure 4.7 shows that the generalised Pareto distribution is an
accurate representation of the null distribution for data distributed as a Poisson

distribution.

Sampled Test Statistic Percentiles

I T T T T T T |
00 05 10 15 20 25 30 35

GPD Theoretical Percentiles

Figure 4.7: The percentiles of the 10,000 sampled test statistics plotted against
the percentiles of the fitted GPD with p = 0.083, 0 = 0.628 and ¢ = 0.083.

Other three-parameter distributions such as the three-parameter gamma and
the three-parameter log-normal distributions were also investigated but the ap-

proximation was less satisfactory compared to that of the GPD.

4.3.3 Measuring the Accuracy in the Right Tail

Recall that to measure the accuracy of the fit in the right tail of the distribution

we can calculate

RTace - /0 (p - Nk(N_1<p))2 dp

9
For the test statistics calculated when X ~ N(0,1), ¥ ~ N(0,1), Rl =
5.87 x 1078, for the test statistics calculated when X and Y both follow mixture
distributions defined by N (1,0.25) + £ N(3,0.25), RT,e. = 3.03x 10~" and for the
test statistics calculated when X and Y both follow mixture distributions defined
by 3N (1,0.25)+ 3N (3,0.25) + N (5,0.25), RT e = 2.15x 107", Clearly, the GPD
is a very good fit to the null distribution when the underlying distributions are

either normally distributed, or multi-modally distributed.
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4.3.4 Comparing Empirical and Theoretical Quantiles

Let X and Y be distributed as mixture distributions which follows p; N(1,0.25) +
palN (14 d,0.25) + p3sN(1 + 2d,0.25). To show that the GPD is satisfactory choice
of m(0) to estimate the null hypothesis, for different choices of p;, pe, p3 and d,
sampled with n = m = 100, of data, Table 4.1 shows

1. the 95th quantile of the empirical cumulative distribution function, denoted
H;1(0.95), for k = 10,000,

2. the 95th quantile of the cumulative adjusted GPD, denoted H~'(0.95), and

3. the probability of obtaining a value from the fitted adjusted GPD larger than
the 95th quantile of the empirical cumulative distribution function, denoted

i, for k= 10, 000.

P | po | ps | d | Higooo(0.95) | H71(0.95) | p*%
(empirical) (GPD)
1]0]0]0 1.432 1.450 | 0.052
Tlz]0]2 0.905 0.906 | 0.050
NERERE 1.788 1.760 | 0.048
c1s]0]4 1.686 1.681 [ 0.050
'IEIERE 2.171 2.166 | 0.050

Table 4.1: For X and Y distributed as mixture distributions which follow
1N (1,0.25)+pa N(1+d,0.25)+p3N(1+2d,0.25) with n = m = 100, the 95th per-
centile of the empirical cumulative distribution function for &£ = 10, 000, the 95th
percentile of the fitted GPD, and the probability px of obtaining a value from the
fitted GPD larger than the 95th quantile of the empirical cumulative distribution
function. ¢ denotes the normal probability density function.

For different distributions, sampled with n = m = 100, Table 4.2 shows

1. the 99.5th quantile of the empirical cumulative distribution function, denoted

H,1(0.995), for k = 10, 000,

2. the 99.5th quantile of the cumulative adjusted GPD, denoted H~'(0.995),

and

3. the probability of obtaining a value from the fitted adjusted GPD larger
than the 99.5th quantile of the empirical cumulative distribution function,
denoted py, for k& = 10, 000.
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p1 | p2 | ps | d| Higoo(0.95) | H1(0.95) | p*%
(empirical) (GPD)
1/0]0]0 2.635 2.636 0.0050
T1s]0]2 1.638 1.648 0.0052
5| 5]07]2 3.487 3.486 0.0050
cl5]0]4 3.412 3.398 0.0049
sl 252 4.198 4.195 0.0050

Table 4.2: For X and Y distributed as mixture distributions which follow
p1N(1,0.25) + po N(1 + d,0.25) + psN (1 + 2d,0.25) with n = m = 100, the 99.5th
percentile of the empirical cumulative distribution function for £ = 10,000, the
99.5th percentile of the fitted GPD, and the probability p, of obtaining a value
from the fitted GPD larger than the 99.5th quantile of the empirical cumulative
distribution function, for various distributions. ¢ denotes the normal probability
density function.

Table 4.1 and 4.2 shows that the null distribution of the proposed test statistic
T,,.m can be well approximated by the GPD for different distributions of data
at different significance levels for n = m = 100. For the lung cancer data set,
n = m = 38 hence it is worth showing that the null distribution of the proposed
test statistic T,, ,, can be well approximated by the GPD for a smaller sample size.
Thus Tables 4.1 and 4.2 are repeated for n = m = 30.

For different distributions, sampled with n = m = 30, Table 4.3 shows

1. the 95th quantile of the empirical cumulative distribution function, denoted
H;1(0.95), for k = 10,000,

2. the 95th quantile of the cumulative adjusted GPD, denoted H~1(0.95), and

3. the probability of obtaining a value from the fitted adjusted GPD larger than
the 95th quantile of the empirical cumulative distribution function, denoted
pr, for k=10, 000.

For different distributions, sampled with n = m = 30, Table 4.4 shows

1. the 99.5th quantile of the empirical cumulative distribution function, denoted
H;1(0.995), for k = 10, 000,

2. the 99.5th quantile of the cumulative adjusted GPD, denoted H~'(0.995),

and

3. the probability of obtaining a value from the fitted adjusted GPD larger
than the 99.5th quantile of the empirical cumulative distribution function,
denoted py., for k = 10, 000.
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pi| b2 | ps | d| Higooo(0.95) | H'(0.95) | p%
(empirical) (GPD)
1[0]o0]o0 1.460 1.443 | 0.048
T1s]0]2 0.886 0.882 | 0.049
HEIERE 1.728 1.691 | 0.047
c ] 5]0]4 1.654 1.639 | 0.049
B RE 2.089 2.077 | 0.049

Table 4.3: For X and Y distributed as mixture distributions which follow
p1N(1,0.25) + po N (1 + d,0.25) + p3sN (1 + 2d,0.25) with n = m = 30, the 95th
percentile of the empirical cumulative distribution function for & = 10,000, the
95th percentile of the fitted GPD, and the probability p, of obtaining a value from
the fitted GPD larger than the 95th quantile of the empirical cumulative distribu-
tion function, for various distributions. ¢ denotes the normal probability density
function.

pr| p2 | ps | d] Hig(0.95) | H1(0.95) | p™%
(empirical) (GPD)
1]o]o0]o0 2.617 2.603 | 0.0049
T1s]0]2 1.667 1.650 | 0.0048
5131012 3.318 3.315 | 0.0050
cl s[04 3.261 3.267 [ 0.0050
BERERE 3.983 3.922  [0.0047

Table 4.4: For X and Y distributed as mixture distributions which follow
1N (1,0.25) + poN(1 + d,0.25) + psN(1 + 2d,0.25) with n = m = 30, the 99.5th
percentile of the empirical cumulative distribution function for k£ = 10000, the
99.5th percentile of the fitted GPD, and the probability p; of obtaining a value
from the fitted GPD larger than the 99.5th quantile of the empirical cumulative
distribution function, for various distributions. ¢ denotes the normal probability
density function.

Tables 4.3 and 4.4 show that the null distribution of the proposed test statistic
T, m can be well approximated by the GPD for different distributions of data at

different significance levels for n = m = 30.

4.4 Alternative Approaches

In Appendix B we discuss a few other methods which were attempted in order to
obtain a suitable null distribution approximation. We firstly discuss matching a
two-parameter distribution but found none to be suitable enough for our purposes.
We also consider a transformation of variables as well as the extreme value theorem.
All methods either didn’t provide an accurate enough approximation or in the case

of the extreme value theorem was found to be difficult to implement in practice.
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It was mainly due to the extreme value theorem that the GPD was considered and
ultimately chosen.

In Bayesian statistics, one could estimate an unknown distribution using Markov
chain Monte Carlo (MCMC) or approximate Bayesian computation (ABC) algo-
rithms. In our case, we cannot assume that the distribution of the data X and Y
is constant across all regions of the genome and as was seen in Section 4.3.1 the
distribution of test statistics depends on the distributions for X and Y. Therefore
to implement these techniques they would need to be performed for every test
statistic calculated to obtain its null distribution. As we have already mentioned
we want the technique to be as fast as is reasonably possible, thus repeating this
step over all genomic regions may not be feasible. For argument purposes, let’s
say implementing the algorithm on every genomic region is feasible, for the case
of MCMC, the question of what proposal distribution we use however is an is-
sue as it is required to be proportional to the posterior distribution - for which
a reasonable choice is completely unknown. We therefore still face the issue of
finding which distribution closely fits the null distribution for any data X and Y.
Once this has been done of course MCMC and ABC could be used to estimate
the parameters of this distribution. However, estimating the parameters using the
method of moments seemed at the time the fastest approach. Note that other
Bayesian techniques exist to estimate unknown distributions and could therefore
be used to estimate the null distribution for each genomic region. However, it is
highly unlikely that a method exists which can estimate the distribution without
knowing its general form from a single value or test statistic without the need for
resampling. As we wish to avoid resampling techniques, we are content that our

method can be considered a suitable solution.

4.5 Discussion

The permutation test and the bootstrap method used by Baringhaus and Franz
(2004) is firstly described. It is noted that both these methods can be computa-
tionally expensive for large n and m. Also as the test is needed to be repeated for
each window of the genome (17,000 times for the lung cancer data set), ensuring
the test runs as quickly as possible is important. Thus methods for calculating the
p-value which does not involve resampling is considered.

Whilst a two-parameter distribution was found to be an unsuitable choice for

7(0), methods such as transforming the test statistic and applying the extreme
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value theorem were investigated. It was found that these methods were also found
to be unsuitable.

In our application using the extreme value theorem is unsuitable as the ex-
pectation and variance of the test statistic after a certain threshold A is required.
Whilst formulas for the expectation and variance of the test statistic has been
developed, obtaining the formulas given the data is greater than A\, proves to be
challenging.

Finally, three-parameter distributions were considered for m(6). The gener-
alised Pareto distribution was found to closely fit the null distribution when the
underlying distribution follows any form. The distribution can easily be estimated
by calculating the parameters of the distribution using the expectation, variance
and skewness formulas in Chapter 3, Section 3.3. Hence, once the distribution is
estimated, a p-value can be obtained.

One could also consider distributions which rely on more than three parameters.
As we have calculated the fourth moment of the test statistic, this could be a
reasonably exercise. However, we understand that by increasing the number of
parameters, the complexity of the distribution increases. Thus we preferred to
consider a distribution which sufficiently describes the null distribution without
being too complicated.

It should be noted that perhaps no 2 or 3 parameter distribution is a suitable
fit for the entire null distribution. We present in this chapter enough evidence
to assume that the generalised Pareto distribution accurately fits the right tail
of the null distribution. Of course in this case we do not claim that the GPD is
a suitable fit for the whole distribution. The simulations we have chosen in this
case are aimed to reflect the shape of the lung cancer data set as much as possible.
Therefore as we have shown that the GPD is a suitable fit in the chosen simulation
scenarios we can assume that the GPD will be a suitable fit for the lung cancer
data set.
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Chapter 5

Application of Two Sample Test

5.1 Introduction

We found, in Chapter 4, a method to calculate the p-value that does not involve
resampling and instead uses the method of moments to estimate parameters of a
fitted generalised Pareto distribution. The idea behind creating such a method was
due to the speed of the resampling approaches. Consider the lung cancer data set,
in this case over 17,000 simultaneous Cramer tests are required to be performed. If
for example, each test was to take a second to run and we assume that the user does
not have access to parallel processing, this means it will take just under 5 hours
to calculate over 17,000 simultaneous p-values, which is reasonable. However, as
next generation sequencing technologies are improving, it is becoming possible to
obtain more accurate read counts for smaller genomic regions, thereby causing the
total number of genomic regions or windows to increase. In particular, we could be
expected to locate genomic regions of interest by comparing over 200,000 genomic
regions. In this case, if each test was expected to take a second to run, then it will
take just under 2 and a half days to calculate 200,000 p-values.

In this chapter we focus on the application of the Cramer test and in particular
the use of our method to calculate the p-value. We begin by considering the com-
putational time to calculate the p-value and investigate and implement methods
for speeding up the computational calculation, thereby ensuring a fast user friendly
test when required to perform hundreds of thousands of simultaneous tests. To
this end, we create a new R package which implements these methods. We also
investigate the false positive rate when calculating the p-value using our approach
from Chapter 4. We do this to ensure a properly controlled false positive rate
which will provide the user with confidence that the correct level of false positives

are being identified. Finally, we apply the Cramer test on all genomic locations of
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the lung cancer data set to identify regions of significance. We will then compare
our results to other methods to see whether the results obtained from our method

are consistent with other results.

5.2 Computational Considerations

5.2.1 Test Statistic

In order to calculate the test statistic of the Cramer test a single integral needs to

be performed, namely

Ty = —0 (Fu(t) — G (1))2 dt.

’ n+m J_o

The computer programme R can easily compute this integral and on a standard
MacBook pro this takes approximately 0.017 seconds to run for n = m = 100.
However when applying this test to over 17,000 genomic regions simultaneously,
the time increases to approximately 5 hours. This in itself is manageable, however
only the test statistic has been obtained and the calculation of the p-value is yet
to be performed. Thus any time which can be saved at this stage will be vital to
ensure that the total computational time is minimal.

Consider sampling 7 < ... < z, and y; < ... < Y, n = m = 100, from a

standard normal distribution and let

be the integrand of the test statistic.

Proposition The integrand of the test statistic I(t) = 0 when ¢ < min(xy,y;)

or t > max(Zy, Ym)-

Proof For ¢t < xy, F,(t) = 0 and for t < y1, G,,(t) = 0, thus ¢t < min(xy,y;)

implies J(t) = 0. For t > wx,, F,(t) = 1 and for t > y,,, G, (t) = 1, thus

t > max(x,, yn,) implies J(t) = 0. O
Thus using the results of the proposition, we can instead calculate

max($n7y7n)

nm (FL(t) — Gon(1))2 dt.

Tnm:
’ n—+m

min(z1,y1)

This has already reduced the time required to compute the integral to 0.013 sec-

onds, however the calculation can be further reduced in time when considering the
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integral as a sum. Because F,(t) and G,,(t) are step functions, J(¢) will also be a
step function. Also, because J(t) > 0 V ¢, the integral can easily be reduced to a
summation. To see this, consider Figure 5.1 which shows the function J(¢) plotted

against ¢t € [—3, 3].

0.008
|

1(t)
0.004

0.000
|

Figure 5.1: The integrand of the test statistic J(¢) plotted against t € [—3, 3].

For the sampled data, min(zy,y,) = —2.79 and max(x,,y,) = 2.36. Figure
5.1 clearly shows that for any value of ¢ outside the range [-2.79, 2.36], I(¢) = 0 as
well as showing that J(¢) is indeed a step function.

Let 2y < ... < z,.m be the sorted pooled sample of the two groups of data.

Then the integral can be reduced to the following summation;

n+m—1
nm
Tn,m = ntm ; (Fn(zz) - Gm(zi))Z : (Zi—i-l - Zi)>

which can be easily coded into R. When we code the test statistic in this way, the

computational time reduces to less than 0.001 seconds.

5.2.2 Moments

To calculate the p-value, three further integrals need to be calculated, namely
the mean, variance and third moment of the test statistic (see Section 3.3). The
formula for the mean of the test statistic involves a single integral, the variance,
a double integral, and the third moment, a triple integral. Due to the nature of
the integrals, they will take much longer to calculate than the test statistic. We
can, however, use the same techniques to speed up these calculations as we did for

the test statistic whilst also using a trick which is adopted in the trapezoidal rule.
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Firstly let

ET, =

VT, =

GT, =

Hpim(Zise) (1 = Hngm(Zitc)) (5.1)
Hom(z542) (14 2(V = 2) Husm(2500) = 3Hpam(2142)

—2(2V = 5) Hyym(2j40) Hopm (2ine) + 2H"+m(zi+ﬁ)2

+2(V = 3) Hugm(2j1.0) Hnim(2142)° (5.2)

H(zro) (1 +2((7(m? +n?) — 10nm) — 8) H(zpsc)
+2 (G(5(m* +n*) — Tnm) — 6) H(zj4c)

+(S(m* +n® — nm) — 3) H(zi4c)
+5 (G(2mn(m + n) — 19(m® + n?) + 25mn) + 18) H(zj+c)H (24c)
+ (S(2mn(m +n) — 19(m* + n®) + 25mn) + 18) H(z1¢)*
—(§(m® +n* —nm) — 2) H(zic)?
+2 (§(mn(m + n) — 19(m* + n®) + 26mn) + 20) H(zi1.c)H (214c)
+ (§(mn(m + n) — 27(m* + n®) + 37Tmn) + 30) H(zi1.c)H (zj1c)
—4 (S(3mn(m + n) — 26(m” + n®) + 34mn) + 24) H(zj+c)*H (214c)
—5(5(5mn(m +n) — 45(m? + n*) + 59mn)

+42) H (20 ) H (2j40 ) H (214
—2(§(mn(m +n) — 12(m* + n*) + 16mn) + 12) H(zi1c)*H 251z )
— (S(5mn(m +n) — 45(m* + n?) + 59mn) + 42) H(zi40)H (2j+2)
— (S(mn(m+n) — 17(m* + n®) + 23mn) + 18) H (212 )*H(2j4c)
+9(S(3mn(m + n) — 26(m? + n®) + 34mn)

+24) H (2.0 ) H (2j4.0) H (2110
+5(5(3mn(m + n) — 26(m* + n®) + 34mn)

+24) H(2i4.0)* H (2j10 ) H (211.0)
+ (S(3mn(m + n) — 26(m* + n?) + 34mn) + 24) H(z0)* H(zj40)
—5(5(3mn(m +n) — 26(m* + n*) + 34mn)

F24) H (210} H (2510 H (12)) (5.3)
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nm(n+m)? _ nm(n+m)?
3 +m3 and § = 5 +mb

and third moments of the test statistic reduces to

where V = . Then the integrals for the mean, variance

n+m—1
ETy + ET,
=1
n+m—1 1<
VT + VT
varl,] = 3 S VIV -z 69)
=1 j=1

B[T,,.] = Z_ >N w (2 — 2) - (741 — %)

i=1  j=1 k=1

'(Zk+1 — Zk). (56)

Now, whilst R is very quick at calculating the sum in Equation (5.4), it is very slow
at dealing with Equations (5.5) and (5.6). The slowness comes from the double
and triple nested summations in Equations (5.5) and (5.6). Thus to ensure faster
calculations, all three equations have been coded in C++. Figure 5.2 shows the
speed in seconds for calculating the mean, variance and third moment of the test
statistic for n = m € [2,250] when the equations are coded in C+-+.

Figure 5.2 shows that after coding in C++, the calculation for the mean and
arguably the variance also, remains fast. However the third moment calculation is
very slow for larger samples. Currently the grid points chosen in the summation
to approximate the integral is the pooled data points, thus as n+m increases, the
calculations will get exponentially slower. However, the calculations can be make
quicker by choosing fewer equally spaced grid points along the range [21, 2p1m]. It
should be noted that whilst choosing fewer grid points will speed up the calculation,

accuracy is sacrificed.

5.2.3 Reducing Number of Grid Points

Consider the equally spaced grid points in the range [z, Z,1m] to be (i, ..., (y,-
In Equations (5.1) to (5.6), we replace the zi,..., 24m With (i,...,(y, and sum
from i = 1 to ¢ = Ny. The question which remains is what value of N, will ensure
the calculations are fast whilst still maintaining accuracy. To investigate the ac-
curacy, we calculate the moments E[T}, ,]., Var[T,, ). and E[T}}, ]. using the data
points as the grid points, we also calculate the moments E[T}, ,|n,, Var[T,, m|n,
and E[T}? |y, using N, equally spaced grid points. The ratios of the moments
calculated using N, equally spaced grid points over the moments calculated using
the data points as the grid points are then calculated. By calculating these ratios

for N, € [2,250], a suitable value of N, can be found which not only ensures a fast
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Figure 5.2: The time in seconds for calculating the mean (top left), variance (top
right) and third moment (bottom) of the test statistic when n = m € [2,250] using
R and C++.
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calculation but also an accurate estimate. The plots in Figure 5.3 show the ratios
E[Tn,m]Ng Var[Tn,m}Ng

: E[T?L,m}Ng 3
NSl (top left), Vol - (top right) and BT (bottom) plotted against
N, € [2,250].
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Figure 5.3: The ratios 7= (top left), VT - (top right) and I

(bottom) plotted against N, € [2,250].

Figure 5.3 shows that for N, > 20, all three moments can be accurately esti-
mated and Figure 5.2 shows that for NV, = 20 the calculation speed is close to 0.
Thus we can conclude that N, = 20 is a reasonable recommendation for the num-
ber of equally spaced grid points. Note however that N, = 20 is only a suggestion

and the ultimate decision of the number of grid points remains with the user.

5.3 Atest - an R Package

For the purpose of calculating the p-value for the Cramer test using our approach,

namely fitting a GPD using the method of moments, we created an R package
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called Atest. The main function in the package, A.test will perform the one-
dimensional two-sample Cramer test on two given samples of data and calculate

the p-value using the GPD method.

5.3.1 The Functions

All the functions included in the package are listed below. For each function, its

purpose, the arguments and the output are described.

A.test(Datal, Data2, P.Value = T, GridPoints=50) Thisis the main func-
tion in the package. It takes as input two samples, namely Datal and Data2,
each of length n and m and will produce the one-dimensional two-sample Cramer
test statistic (Statistic) and the p-value using the GPD method (P.Value). If
P.Value = F the p-value will not be calculated thus ensuring a faster calculation
of the test statistic alone. The argument GridPoints controls the number of grid
points used in the calculation of the moments. A smaller number of grid points will
mean a faster calculation but with less accuracy. Alternatively, a larger number of
grid points will mean a slower calculation with more accuracy. The recommended

number of grid points is shown to be 20.

TestStatExpectation(sample, Regions) This function calculates the expec-
tation of the test statistic using Equation 5.1. It is used in A.test to calculate
the p-value and is coded using C++ to enable a faster calculation. The argument
sample is Datal and Data2 pooled and Regions is the grid points. The grid points
are obtained by taking a sequence of length GridPoints between the minimum
value of sample and the maximum value of sample. Note that the lengths of
Datal and Data2 are not provided here as the expectation of the test statistic

does not depend on n and m.

TestStatVariance(nl, n2, sample, Regions) This function calculates the vari-
ance of the test statistic using Equation 5.2. It is used in A.test to calculate
the p-value and is coded using C++ to enable a faster calculation. The argument
sample is Datal and Data2 pooled and Regions is the grid points. The grid points
are obtained by taking a sequence of length GridPoints between the minimum
value of sample and the maximum value of sample. Here, n1 and n2 represents

the length of Datal and Data2 respectively.
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TestStatMoment3(nl, n2, sample, Regions) This function calculates the third
moment of the test statistic using Equation 5.3. It is used in A.test to calculate
the p-value and is coded using C++ to enable a faster calculation. The argument
sample is Datal and Data?2 pooled and Regions is the grid points. The grid points
are obtained by taking a sequence of length GridPoints between the minimum
value of sample and the maximum value of sample. Here, n1 and n2 represents

the length of Datal and Data2 respectively.

Calc.Xi(xi, skewness) This function is optimised in A.test for the purpose of
estimating the generalised Pareto distribution parameter £. It’s arguments are &,
which is to be optimised, and skewness which is the skewness of the test statistic

calculated using TestStatMoment3.

Calc.Sigma(sigma, xi, variance) This function is optimised in A.test for
the purpose of estimating the generalised Pareto distribution parameter o. It’s
arguments are o, which is to be optimised, &, which is obtained from optimising
Calc.Xi and variance which is the variance of the test statistic calculated using

TestStatVariance.

Calc.Mu(mu, xi, sigma, mean) This function is optimised in A.test for the
purpose of estimating the generalised Pareto distribution parameter p. It’s ar-
guments are p, which is to be optimised, o, which is obtained from optimising
Calc.Sigma, &, which is obtained from optimising Calc.Xi and mean which is the

expectation of the test statistic calculated using TestStatExpectation.

5.3.2 An Example

Consider sampling n = m = 100 values from X ~ N(0,1) and Y ~ N(5,10). We
can calculate the Cramer test statistic and the p-value by inputting the following
code into R;

samplel = rnorm(100,0,1)
sample2 = rnorm(100,5,10)
A.test(samplel, sample2, P.Value = T, GridPoints = 50)

which gives the following output;
$Statistic
[1] 141.9328

$P.Value
[1] 2.87028e-10

In this case, the Cramer test concludes that the samples from distributions X and

Y are not equivalent, which was to be expected.
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5.4 Comparing GPD Method to Bootstrap and

Permutation Approach

One of the main reasons for investigating other methods of obtaining a p-value
was to ensure a faster calculation which doesn’t involve resampling. As we have
found in Section 4.3.2, the GPD can accurately estimate the null distribution and
parameters can be obtained using the formulas for the moments (Section 3.3).
Now computational considered has been taken into account it is then natural to
compare the results obtained through the GPD method, the bootstrap approach
to approximate the limiting distribution which is considered in Baringhaus and
Franz (2004) and the permutation method. We compare the speed of all three

methods as well as the accuracy against the permutation approach.

5.4.1 Speed

Consider sampling X and Y from a mixture of normals distribution with prob-
ability density function 2N(0,0.5) + 1N(2,0.5). For each simulation setting we
take a value of n = m € [2,200] and calculate a p-value using all three methods
and record the time taken to calculate each p-value. We repeat this 5 times for
each value of n = m and take the average time over the 5 replications. For the
permutation and bootstrap approach, the number of replications is 1,000 and for
the GPD method, Ny, = 50. In Figure 5.4 we record the amount of time required
if 200,000 simultaneous hypothesis tests are performed.

e Permutation Method
e Bootstrap Method
* GPD Method

150000

Time (Sec)

0 50000

Figure 5.4: The average speed over 5 replications if 200,000 simultaneous hypoth-
esis tests are performed using the permutation method, the bootstrap approach
and the GPD method with N, = 50 to calculate the p-value. In this scenario two
samples are drawn from a mixture of normals distribution with probability density
function 2N(0,0.5) + 1N(2,0.5) and n =m € [2,200].
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Clearly, for n = m > 40 the GPD method is faster than both the bootstrap
and permutation approach. Also for n = m = 200, the GPD method still takes
approximately 0.1 seconds to compute a single p-value, which corresponds to a total
time of just under 6 hours to calculate 200,000. If we were to calculate 200,000
p-values using the bootstrap approach it would take approximately 33 hours and
approximately 57 hours for the permutation approach. Thus clearly there exists a
large difference in time between the GPD method and the resampling approaches
when the number of simultaneous hypothesis tests required is large. Therefore, it
can be argued that to ensure a more user friendly test - especially if the user does

not have access to parallel processing - the GPD method is the most preferable.

5.4.2 Accuracy

It is one thing to have a faster method for calculating the p-value, but to ensure
that the GPD method is just as accurate as the other two methods is impor-
tant. Therefore, to test the accuracy of all three methods, sample X and Y 100
times from a mixture of normals distribution with probability density function
3N (0,0.5)+ 3N (2,0.5) and n = m = 50. For each simulation, the p-value for each
method is obtained and recorded. We are only concerned with the accuracy of the
p-values when they are less than 0.10, as it is more imperative that the p-values
are accurate in the right tail. Thus when we calculate the p-values we only store
p-values which are less than 0.10 for all methods.

Here, the number of replications for the permutation and bootstrap approach
is 10,000 and again N, = 50 for the GPD method. We increase the number of
replications for the permutation and bootstrap approach to ensure a more accurate
p-value. Figure 5.5 (top left) shows the ratio of the p-values which are less than 0.10
calculated using the GPD method over the permutation approach, Figure 5.5 (top
right) shows the ratio of the p-values which are less than 0.10 calculated using the
GPD method over the bootstrap approach and finally Figure 5.5 (bottom) shows
the ratio of the p-values which are less than 0.10 calculated using the bootstrap
approach over the permutation approach.

As the points are randomly scattered around the line y = 1 in Figure 5.5 (top
left), it can be concluded that the p-values calculated using the GPD method
are just as accurate as the p-values calculated using the permutation approach.
Similar conclusions can be made from Figure 5.5 (top right) and (bottom). The
mean ratios across the 100 simulations are calculated to be 1.005, 0.999 and 1.008
respectively. Note also that if the p-values were corrected using multiple testing
then the ratios between the p-values calculated using different methods would not

be affected. Thus the graphs is Figure 5.5 provide a good representation of the
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GPD/Permutation

Figure 5.5: Top Left: The ratio of the p-values which are less than 0.10 calculated
using the GPD method over the permutation approach. Top Right: The ratio of
the p-values which are less than 0.10 calculated using the GPD method over the
bootstrap approach. Bottom: The ratio of the p-values which are less than 0.10
calculated using the bootstrap approach over the permutation approach. Here,
the sample size is n = m = 50, the number of replicates for the permutation and
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bootstrap approach is 10,000 and for the GPD method N, = 50.
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accuracy of the p-values regardless of their magnitude.

5.5 Simulation Study

5.5.1 Type-I error control

To show that the Cramer test has a proper false positive rate (FPR) control using
our method to calculate the p-value, four simulations have been done under the null
hypothesis. In each simulation, two samples of 100 observations are drawn from a
skewed normal distribution SN (u, o, «), where u, o and « represent the location,
scale and shape parameters respectively. A skewed normal distribution was chosen
here as we could control not only the mean and variance of the distribution but
also the skewness, which was important because it better reflected the shape of the
estimated CNA in each window and subtype of cancer. In each simulated dataset,
we perform the Cramer test and calculate the corresponding p-value with N, = 50
by estimating the null distribution using the GPD. We repeat this 100,000 times
and calculate the proportion of p-values which are less than 0.05.

Each simulation considers the false positive rate of the Cramer test when some
parameters vary while the other parameters are fixed. The first simulation con-
siders the FPR when p varies in the range [0,1] with ¢ = 1 and a = 0, the second
one when o varies in the range [0.1,1] with 4 = 0 and o = 0, the third one when
« varies in the range [0,1] with x = 0 and o = 1, and the final one when both o
and « vary in the range [0.1,1] with 0 = « and p = 0.

For the purpose of comparison, we also calculate the FPR for other tests:
(two-sample) t-test, Cramer-von Mises test, Anderson-Darling test, F-test, and
Kolmogorov-Smirnov test. The FPR figures for those tests in each simulation are
presented in Figure 5.6.

Figure 5.6 indicates that the different tests in the simulation manage to control
FPR properly, except for the Kolmogorov-Smirnov test which exhibits lower FPR
than the other tests. It can be shown that, when the sample size increases to
be much larger than n = m = 100, the false positive rate for the Kolmogorov-
Smirnov test converges to 0.05. This therefore implies that, for a small sample
size, the Kolmogorov-Smirnov test is more likely to fail to reject windows which
are significant.

Consider now sampling X and Y from a multi-modal mixture distribution
which follows py N(1,1) + poN(1 4+ d,1). We now perform simulations to ensure
that the FPR is properly controlled when the data is multi-modal. As multi-
modality is a common feature of the lung cancer data set, it is vital that the FPR

is properly controlled in this case. The first simulation samples 100 observations
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Figure 5.6: False positive rates for the Cramer test, (two-sample) t-test, Cramer-
von Mises test, Anderson Darling test, F-test, and Kolmogorov-Smirnov test at
different simulation settings: varying p (top left panel), o (top right panel), «
(bottom left panel), and both o and o with o = o (bottom right panel), from skew-
normal distribution (see Section A.0.1) SN(u,0,«). In the bottom row figures,
the values of o are within the interval [0, 1] (bottom horizontal axis), which have
been accompanied by the corresponding values of skewness « (top horizontal axis).
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from X and Y where p; = %, Py = % and d varies in the range [1,11]. The second
simulation samples 100 observations from X and Y where p; = 1 — py py varies
in the range [0.01,0.5], and d = 2. In each simulated dataset, we perform the
Cramer test and calculate the corresponding p-value with N, = 50 by estimating
the null distribution using the GPD. We repeat this 1,000 times and calculate the
proportion of p-values which are less than 0.05.

For the purpose of comparison, we also calculate the FPR for other tests:
(two-sample) t-test, Cramer-von Mises test, Anderson-Darling test, F-test, and
Kolmogorov-Smirnov test. The FPR figures for those tests in each simulation are

presented in Figure 5.7.
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Figure 5.7: False positive rates for the Cramer test, (two-sample) ¢-test, Cramer-
von Mises test, Anderson Darling test, F-test, and Kolmogorov-Smirnov test at
different simulation settings: varying d (left panel) and p; (right panel) from a
multi-modal mixture distribution which follows p; N(1,1) + poN(1 +d, 1).

Figure 5.7 shows that the false positive rate is still controlled even when the
distributions for X and Y are still multi-modal. This means that we can be
confident that there aren’t too many or indeed too few significant results being
obtained using the GPD to calculate the p-value. One interesting feature of the
graphs in Figure 5.7 is that the F-test does not properly control the false positive
rate when the data is multi-modal. This suggests that if the F-test were to be
performed on the lung cancer data set, there may be too many regions being

incorrectly identified as significant.

5.5.2 Sensitivity

To investigate the power of the Cramer test using our method for calculating the
p-value, four simulations have been performed under the alternative hypothesis.

Specifically, in each simulated dataset, a sample of 100 observations are drawn
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from a skewed normal distribution SN (u, o, @), and in the second sample, another
100 observations are drawn from a SN(0,1,0) distribution. In each simulated
dataset, we perform the Cramer test and calculate the corresponding p-value with
N, = 50. We repeat this 100,000 times and calculate the proportion of p-values
which are less than 0.05.

The first simulation considers the power when p varies in the range [0,1] with
o =1 and a = 0, the second one when o varies in the range [0.1,1] with 1 = 0 and
a = 0, the third one when « varies in the range [0,1] with y = 0 and o = 1, and the
final one when both o and « vary in the range [0.1,1] with 0 = @ and p = 0. The
choice of these settings were to investigate the power in situations in which (1) only
the mean differs, (2) only the variance differs, (3) only the skewness differs and (4)
only the variance and skewness differs between the two distributions. Particularly
in the setting of (1) and (2), the Cramer test will be compared to the t-test and
F-test, which are the “gold standard” tests for these scenarios.

As in the previous simulation, we also calculate the sensitivity for other tests
for comparison to the Cramer test and these are presented in Figure 5.8. It can
be seen that the Cramer test has a good sensitivity to detect differences in mean,
variance, skewness, and joint skewness and variance between two samples. As
expected, (two sample) t-test is powerful to detect differences in mean, but not
the other parameters. Similarly, the F-test is powerful to detect differences in the
variance (right column of Figure 5.8), but not the mean nor skewness. The Cramer
test has the same sensitivity with either the Anderson-Darling test or Cramer-von
Mises test. As expected, the Cramer test, AD test and CvM test is less powerful
than the F-test when only the variance differs. There are some other situations in
which the Cramer test is superior to the Anderson-Darling and Cramer-von Mises
tests, and more superior than the F-test. We consider two additional simulations
to highlight this.

Firstly, consider now a simulation in which 100 observations have been drawn
from a N(1,1) distribution in the first sample, and 100 observations from a multi-
modal mixture distribution which follows (1 — p;)N(1,1) + ptN(1 + d,1). The
sensitivity of the different tests are then calculated from 1,000 simulated datasets
in two cases: (1) d varies in the range [0,9] and p; is fixed at 3, and (2) p; varies in
the range [0.01,0.5], d is fixed at 2. Figure 5.9 shows the results of the simulation.

Figure 5.9 shows that the Cramer test has better sensitivity than both the
Anderson-Darling test and the Cramer-Von Mises test. It is clear however that
the F-test performs better and the t-test perform just as well as the Cramer test
in the simulation. This is because the simulation setting in both cases inevitably
give a difference in mean and variance between the two samples.

Secondly, consider now a simulation in which 100 observations are drawn from
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Figure 5.8: Sensitivity for the Cramer test, (two-sample) ¢-test, Cramer-von Mises
test, Anderson Darling test, F-test, and Kolmogorov-Smirnov test at different
simulation settings: varying p (top left panel), o (top right panel), a (bottom
left panel), and both « and ¢ with a = o (bottom right panel), from skew-normal
distribution SN (u, 0, @) in the first sample. In the second sample, the observations
are drawn from SN(0,1,0). In the bottom row figures, the values of a are within
the interval [0, 1] (bottom horizontal axis), which have been accompanied by the
corresponding values of skewness 7 (top horizontal axis).
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Figure 5.9: Sensitivity for the Cramer test, (two-sample) t-test, Cramer-von Mises
test, Anderson Darling test, F-test, and Kolmogorov-Smirnov test, where 100
observations are drawn from N (1, 1) in the first sample, and 100 observations from
a multi-modal mixture distribution which follows (1 — p;)N(1,1) + p1N(1 +d, 1)
in the second sample. The left panel is the setting where d varies in the range [0,9]
and p; is fixed at %. The right panel is the setting where p; varies in the range
[0.01,0.5], d is fixed at 2.

a N(0,10) distribution in the first sample, and 100 observations are drawn from
a N(=d,o)™ - N(d,o)'"™ distribution where = ~ Bernoulli(3), d € [7,10) and
o = /100 — @2 in the second sample. We now have the situation where the mean
and variance between the two samples do not differ. Figure 5.10 shows the results
of this simulation.

Figure 5.10 indicates that the Cramer test has a good sensitivity across different
values of d, along with the Anderson-Darling test, Cramer-von Mises test, and the
Kolmogorov-Smirnov test. In this setting, the t-test and F-test cannot recover
sensitivity because the simulation setting implies that there is no mean nor variance
difference between the two samples.

Clearly, the Cramer test is highly competitive against other similar two-sample
parametric and non-parametric tests when the p-value is calculated with Ny = 50.
We now compare our two-sample method for locating genomic regions of interest
to KC Smart.

5.6 Genomic Results

We now apply the Cramer test to each and every genomic region in the lung cancer
data to test the null hypothesis that the distribution of CNA are equal in both
pathological subtypes. As a comparison, we also consider the (two-sample) t-test,

F-test, Kolmogorov-Smirnov test, Anderson-Darling test, and Cramer-von Mises
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Figure 5.10: Sensitivity for the Cramer test, (two-sample) ¢-test, Cramer-von Mises
test, Anderson Darling test, F-test, and Kolmogorov-Smirnov test, where 100
observations are drawn from N(0, 10) in the first sample, and 100 observations
from N(—d, o)™ - N(d, o)™ distribution where 7 ~ Bernoulli(1), d ~ [7,10) and
o = /100 — d?, in the second sample. The sensitivity figures are plotted as a
function of d.

test with their respective null hypotheses. The number of genomic regions which
have p-value less than 5% are presented in Table 5.1 for each test. The table
indicates that the Cramer test is able to detect more significant regions than each
of KS, AD, and CvM tests. Note that there are approximately 92.6% (KS), 94.5%
(AD), and 93.4% (CvM) of the regions which are in common with the Cramer test.
This indicates that the Cramer test is able to capture almost all significant regions
identified by those tests, and some more. Given that the false positive rates were
shown to be controlled for the Cramer test in scenarios where X and Y are multi-
modal, we can be confident that the extra regions being identified as significant by
the Cramer test are not simply false positives and are instead significant regions
which are being missed by the other tests. The [F-test is clearly able to identify
more significant regions than any other test, however only has 69.7% of the regions
which are in common with the Cramer test. It could be argued that the F-test
is identifying too many regions to be significant. We have shown in Figure 5.7
that when the data is multi-modal the F-test does not properly control the false

positive rate.

5.6.1 Results of Cramer Test

Recall that previous studies (Bjorkqvist et al. (1998), Wang et al. (2013) and van
Boerdonk et al. (2011)) already identified a large gain in chromosome 3 for patients
with squamous carcinoma type lung cancer. Therefore we can use this knowledge

to test the accuracy of our test. If indeed a region of chromosome 3 is found to
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Cramer test t-test F-test KS test AD test CvM test

Cramer test 7,981 6,464 5,567 6,298 7,435 7,061
t-test 6,923 4,793 5,116 6,119 5,777
F-test 10,909 4,474 5,285 4,937
KS test 6,800 6,480 6,481
AD test 7,868 7,342
CvM test 7,558

Table 5.1: The number of genomic regions out of 17,613 with (unadjusted) p-values
less than 0.05 under the Cramer test, the t-test, the F-test, the KS test, the AD
test and the CvM test in our lung cancer dataset. The (7, j)th entry indicates the
number of significant windows in both the ¢th and jth test.

have a significant difference in CNA between the two groups of patients then this
is evidence that our method is correctly identifying regions which differ in CNA.

Figure 5.11 presents the p-values of individual genomic regions across the
genome. Some of the p-values exceed the Bonferroni corrected significance thresh-
old, and the corresponding genomic regions are considered significant. In our lung
cancer data set, we have a total of 669 significant regions. The large significant
region spans windows 4045-4603 within chromosome 3 in the genome. This there-
fore confirms that the Cramer test is correctly identifying regions which differ in
CNA.
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Figure 5.11: The p-values of individual genomic regions across the genome using
the Cramer test. The scale of the vertical axis is —log;,(p-value). The horizontal
grey line represents the Bonferroni corrected significance threshold for which 669
regions pass this threshold. The alternating colouring scheme indicates chromo-
somes 1-22 from the left. Sex chromosomes are excluded from the analysis.

Now, as can be also seen from Figure 5.11 there exists regions in other chromo-
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somes which were also identified as significant by the Cramer test. Many of these
regions have not been previously identified which could be an indication that the
Cramer test is much more sensitive at identifying differences in smaller regions of
the genome - a massive advantage of our method. Because we have confirmed in
Section 5.5.1 that the false positive rate is being properly controlled we can as-
sume that these extra regions being identified as significant are not primarily false
positives and therefore conclude that these regions are in fact regions which differ
in CNA between the two groups. Perhaps this new insight into the data could be
the key to better classification of future patients, or indeed better treatments for
those patients.

We have, of course, only applied our method to the lung cancer data set for
which many studies have been done. As our method proves to be highly apt in
locating regions of the genome - no matter how big or small - which displays a
significant difference in CNA between groups of patients, it could also be applied
to compare clinical groups of patients with different cancers for which no previous

studies have been done and in the future we hope to do just that.

5.6.2 Results of KC Smart

We now apply KC Smart to the lung cancer data set to compare the results to
applying the Cramer test to each region. We hope that KC Smart identifies similar
regions of interest to confirm that the Cramer test is performing correctly. Note
that we have already identified advantages of our method over KC Smart, so even
if it appears that both tests are equally as capable we can still argue that our
method is preferable. Figure 5.12 presents the results after applying KC Smart to
the lung cancer data.

By comparing the output of the KC Smart analysis in Figure 5.12 to the
output of the Cramer test in Figure 5.11 it is clear that both methods are able to
identify similar significant regions. For example, both methods identify regions of
significance in chromosome 3, 6, 12, 14, 20 and 22. This provides further evidence
that the Cramer test is once again identifying significant regions correctly. Table
5.2 shows the number of genomic windows which are identified as significant and
not significant for both the Cramer test and KC Smart. For the Cramer test,
windows are identified as significant if they are larger than the Bonferroni corrected
significance threshold.

Table 5.2 shows that KC Smart is able to identify further significant regions
compared to the Cramer test. It is unclear whether the extra significant regions
identified by KC Smart are in fact false positives or whether these regions should

be correctly identified and are being missed by the Cramer test. To see whether
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Figure 5.12: The output after applying KC Smart to the lung cancer data set.
The same mirror locations were used as the artificial data set from the KC Smart
vignette.

Cramer Test
Significant Not Significant
Significant 645 2981
Not Significant 24 13963

KC Smart

Table 5.2: The number of significant genomic regions after Bonferroni correction
out of 17,613 when using the Cramer test and KC Smart.
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KC Smart consistently identifies further regions which differ significantly between
two groups of patients compared to the Cramer test, we apply both methods to
the artificial data from the KC Smart vignette.

5.7 Application to KC Smart Data

Recall Figures 1.8 and 1.9 which display the output of applying KC Smart to the
artificial data in the KC Smart vignette. Both Figures clearly identified a section
of chromosome 4 as significant. We now apply the Cramer test to each region
of this data and make comparisons between the results. Figure 5.13 presents the

p-values of individual regions across the genome for this artificial data set.
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Figure 5.13: The p-values across regions in the genome using the Cramer test. The
scale of the vertical axis is —log;,(p-value). The horizontal grey line represents
the Bonferroni corrected significance threshold. The alternating colouring scheme
indicates chromosomes 1-22. Sex chromosomes are excluded from the analysis.

Clearly, Figure 5.13 shows that no regions are significant as no points lie above
the Bonferroni corrected significance threshold. This could be providing further
evidence which suggests that KC Smart is overestimating the significance of some
regions and in fact the significance of chromosome 4 is a false positive. Further
work is needed here to investigate the false positive rate of KC Smart.

Let’s now assume that the results of KC Smart is correct meaning that the
Cramer test could be missing vital significant regions. One possible explanation
of this is due to the multiplicity correction we perform on the results. As we are
performing 17,613 simultaneous results, a multiplicity correction is required. Here
we choose to perform the Bonferroni correction. Most multiplicity corrections

assume that all tests performed are independent and the Bonferroni correction
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divides the significance threshold of a single test by the number of simultaneous
independent tests performed. If indeed our tests are not independent then it could
be that the Bonferroni significance threshold is too high and many regions are
therefore being considered insignificant. We investigate this further by taking any

potential correlation into account prior to performing our test.

5.7.1 Segmenting the Data

If two probes are highly correlated, then only a single test could be required to
determine the significance of both probes. If “segments” of correlated probes
are identified across the genome and only a single test performed on each then
not only will noise be removed from the data, but the number of “independent”
tests performed will be lower. If the number of “independent” tests performed is
lower, the significance threshold will also be lower; therefore, more regions could
be considered significant. To investigate whether correlation has an effect on the
outcome of the Cramer test, consider segmenting the artificial data using circular
binary segmentation (CBS) (Olshen et al., 2004) (Section 1.6.2). CBS has been
performed on the artificial data set in the KC Smart vignette. Figure 5.14 shows

the results of segmenting the first sample.
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Figure 5.14: The first sequence in the artificial KC Smart data. The black line
represents the segment means. The alternating colouring scheme indicates chro-
mosomes 1-22, X, Y.

Each sample, 7, has been split into different segments with genomic location
start points S%, .. .,S}'Vi € 8;, and end points Ei, ... ,E}'Vi € &; with N; varying
across samples. To be able to apply the Cramer test, all samples need to be

segmented in the same way. To do this, two new sets 8,; and &), has been created
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such that 8y =81 U--- U8y and €y = E;U---UE9y. The number M will be the
total number of unique genomic location start points and end points across the
samples. Now, let S; € 8, be such that S; ¢ 8, and E; € £, be such that E; ¢ &,.
Thus, there must exist an S* € §; and a E* € &; such that S* < E; < §; < E*.
Hence ,to add S; and E; to the sets §; and &;, we would split the segment with
start and end point S* and E* respectively and create two new segments with the
same segment mean. The first segment will have start point S* and end point
E;, the second segment will have start point S; and end point E*. Elements from
Sy and &7 will be added to the §; and &, for all ¢ until all sets have the same

segments.

Once all sets have the same segments, the Cramer test can be applied to com-
pare the segment means between the two groups for each segment. Figure 5.15

shows the results after applying the Cramer test to each segment.
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Figure 5.15: The p-values of each segment using the Cramer test. The scale of the
vertical axis is —log;,(p-value). The horizontal grey line represents the Bonfer-
roni corrected significance threshold. The alternating colouring scheme indicates
chromosomes 1-22, X, Y.

Figure 5.15 shows that after segmenting the data and applying the Cramer
test, chromosome 4 is now considered to be significant. This is because less tests
have been performed so the significance threshold is lower. Also, the significance
of the segments in chromosome 4 is higher because noise has been removed from
the data. We can therefore conclude that the correlation between probes play an

important part in the significance of genomic regions.
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5.8 Discussion

In order to maintain a fast and accurate calculation for the test statistic and
p-value, computational time and accuracy was considered. By changing the inte-
gration into summations, coding in C++ and reducing the number of grid points,
the calculation remained fast without sacrificing too much accuracy. In order to
perform analysis using our method, we have created an R packages called At-
est, which is available from http://wwwl.maths.leeds.ac.uk/~arief/R/Atest. The
package performs the Cramer test on two samples of data and calculates the p-
value using our method of fitting a generalised Pareto distribution to estimate the
null distribution.

The simulation study showed that the false positive rate for the Cramer test
is properly controlled as well as identifying scenarios in which the Cramer test
is preferable to other parametric and non-parametric tests. By comparing the
Cramer test to the Cramer-von Mises and Anderson-Darling tests, further justifi-
cations to prefer the Cramer test in application were made.

After performing the Cramer test on the lung cancer data, chromosome 3 was
identified as a significant genomic region. Prior to our study, it was known that
chromosome 3 is a significant region for this data set, showing that our method
can correctly identify significant regions. The results of our method was also
compared to performing KC Smart on the data and showed that all significant
regions identified by the Cramer test were also identified by KC Smart. However,
KC Smart was also able to identify further regions of interest that requires further
research to determine whether KC Smart is identifying non significant regions as
significant.

The Cramer test was also compared to KC Smart. After applying both KC
Smart and the Cramer test to the artificial data supplied in the KC Smart vignette,
it showed that KC Smart identified chromosome 4 as a significant region whereas
the Cramer test did not. We show, through use of the circular binary segmenta-
tion (CBS) technique, that a possible cause for the potential mis-identification of
chromosome 4 is because of the high correlation between probes.

Because we have discovered that there could be some significant regions of
the genome being missed by the Cramer test due to the correlation within the
data. It is important to understand firstly whether high correlation exists within
the lung cancer data set and secondly whether methods exist to account for such

correlation. This is the main focus of our research in Chapters 6 and 7.
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Chapter 6

Examination of Correlation

Structure in the Data

6.1 Introduction

In large data sets such as the lung cancer data set, there exists many different
types of correlation. For example, correlation could occur between variables or
windows as well as between observations or patients. It is important to under-
stand the correlation structures when performing any kind of analysis. In previous
chapters, we have applied the Cramer test independently on each window, thereby
assuming complete independence between windows. This assumption may not be
true; therefore, this chapter explores the correlation structures which can exist
within data sets and specifically the lung cancer data set. We start by discussing
ways in which the correlation structures could be modelled and then investigate
and provide examples of the different kinds of correlation structures which exist

within the lung cancer data set.

6.1.1 Notation

In the sections which follow we use the following notation to represent the corre-

lation within the data.

e The notation pP* and pP® represents the correlation in CNA between patients
with adenocarcinoma type lung cancer only and squamous carcinoma type

lung cancer only, respectively.

e The notation pP represents the correlation between patients with any type

of lung cancer.
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“e and p"® represents the correlation in CNA between the

e The notation p
windows of the genome only for data from patients with adenocarcinoma

type lung cancer and squamous carcinoma type lung cancer respectively.

e The notation p* represents the correlation in CNA between the windows of

the genome when data from both groups of patients are considered.

e The notation pP** represents the correlation in p-values between the windows

of the genome.

6.2 Modelling the Correlation Structure Between

Variables

When performing a hypothesis test on p variables simultaneously, understanding
the correlation structure of the variables is important. It would therefore be advan-
tageous if we could model the correlation structure of the variables. The models
can be used for predicting correlation between variables, simulating a correlation
structure similar to that of the lung cancer data set as well as giving us insight into
the structure itself. Note that hidden Markov models which were mentioned in
Section 1.6.2 could be used to model the correlation structure within the data - this
is done in Rabiner (1989). We choose however to focus on simpler non-bayesian
models as modelling the correlation structure is not one of the main focuses in this
thesis. Indeed, further work could be done in this area to identify the best method

for modelling such correlation structures.

6.2.1 Autocorrelation

In time series analysis, autocorrelation is the Pearson correlation coefficient calcu-
lated between two times (Box et al., 2015). Let X; be a realisation of a random
process X evaluated at times t € N with mean p and variance o2 independent of

time ¢. The autocorrelation function with lag 7 is then

E[(X; — pu)(Xiyr — M)]

R(r) =

We can calculate the autocorrelation at lag 7 for the lung cancer data set by con-
sidering t to be windows of the genome thereby calculating spatial autocorrelation
instead of time autocorrelation. For a single patient with adenocarcinoma type
lung cancer (top) and squamous carcinoma type lung cancer (bottom), Figure

6.1 shows the autocorrelation function evaluated at 7 € [1,100]. Note that a lag
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of 7 = 1 may not correspond to adjacent windows due to some windows being

removed because of lack of data.
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Figure 6.1: The autocorrelation function evaluated at 7 € [1,100] for a single
patient with adenocarcinoma type lung cancer (top) and squamous carcinoma
type lung cancer (bottom).

Figure 6.1 shows that high correlation persists until about lag 20 for the pa-
tients with either adenocarcinoma or squamous carcinoma type lung cancer. Note
however that the autocorrelation decay for patients with squamous carcinoma type
lung cancer is much slower. This strong persistence in correlation suggests that
the number of effective independent windows in the data set is much less than the
total number of windows (17,613). This will therefore affect the location of the

significance threshold when determining the significant regions.

6.2.2 Autoregressive Models

Looking at the autocorrelation functions of two patients with each type of lung
cancer, it could be plausible to model the data as an autoregressive model of order

q (AR(q)). Consider again X; to be a realisation of a process X at time t. The
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definition of an AR(q) process is
q
X = Z @ Xi—i + €,
i=1

where « is the parameter of the model and ¢; is white noise. The autocorrelation
function of an AR(1) process with n = 17,613 (the total number of windows in
the genome), E[X;] = 0 and a = 0.99 is plotted in Figure 6.2.
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Figure 6.2: The autocorrelation function of an AR(1) process with n = 17,613,
E[X;] = 0 and o = 0.99.

The level of decay in the autocorrelation function in Figure 6.2 is similar to
that of the patient with squamous carcinoma type lung cancer. However the shape
of the decay appears more linear in Figure 6.2 compared to the autocorrelation
functions in Figure 6.1. This suggests that whilst an AR process may be suitable,
the order ¢ may be larger than 1. To see whether this is the case, for the two
patients whose autocorrelation functions are plotted in Figure 6.1, AR(¢) models
are fitted. To fit the models and obtain a suitable order ¢, the computer package
R was used. The AR models fitted to each patient with adenocarcinoma and
squamous carcinoma type lung cancer were an AR(22) model and a AR(23) model
respectively. Realisations of the autocorrelation functions for the fitted models
with n = 17,613 are shown in Figure 6.3.

By comparing the autocorrelation functions of the AR(22) and AR(23) models
in Figure 6.3 to the observed autocorrelation functions in Figure 6.1, it is unclear
whether the fitted models are an accurate representation of the data. Up to lag 20
both models appear to describe the correlation structure well, however after lag
20 it becomes less accurate.

Whilst AR(q) processes could be a good way of accurately describing the cor-

relation structure for small lag, the more parameters the model has, the more

104



6.2 Modelling the Correlation Structure Between Variables

T T
20 4

é: . HHHI"“‘”‘H“J“JHJ“J“UHUHJJllJlUJ1uu“uuum,m“m

T
20

| mmmmmmHUHHWWH\[\OHWHHHHH\SIOHHHMM@O

Figure 6.3: Realisation of an AR(22) (top) and AR(23) (bottom) model with pa-
rameters fitted using the CNA of two patients with adenocarcinoma and squamous
carcinoma type lung cancer respectively.
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complicated it becomes. Thus performing analyses with these models could be-
come too complicated to deal with. Therefore, we instead consider a more simpler

model for describing the correlation structures.

6.2.3 Multivariate Normal Distribution

Consider instead an AR(1) process with o« = r. This model is equivalent to a
multivariate normal distribution with the following setup: Let X ~ MV N(ii, X,)

with the mean vector and covariance matrix defined as

0
p=1:1,
0
1 T r? rP
r
Y, = | r?
rp -1 -2 ...

As correlation is not affected by the mean, we can therefore consider the mean
to be zero across all windows. We acknowledge that the mean will not be zero in
application, but for modelling the correlation structure the choice of mean is not
important. Note that the process is stationary as the correlation |r| < 1.
Consider taking a sample of 10 consecutive windows from the genome. We
can calculate the correlation matrix for these 10 windows for patients with ade-
nocarcinoma and squamous carcinoma type lung cancer and define the matrices
to be S* and S® respectively. Let Si; be the (4,7)th element of the matrix S,
then % Z?:l S{iy1 1s the mean correlation between the adjacent windows. We will
therefore choose r to be equal to the mean sample correlation between adjacent
windows and construct the matrix >, with p = 10. We can similarly construct the
matrix > by choosing r = %Z?:l +i+1, the mean correlation between adjacent
windows for patients with squamous carcinoma type lung cancer. Then calculate

the following matrices;

Ma - Sa—za—l-flo
Ms = SS_25+[IO>

where Iy is the identity matrix with dimension 10. To test whether the matrix S

is similar to ¥, and equivalently whether S* is similar to ¥,, we can use a method
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described by Steiger (1980) to statistically test the null hypothesis that M, and

M, are equal to the identity matrix.

The first set of 10 consecutive windows after removing some windows in the
lung cancer data set is windows 9 to 18 in chromosome 1, which corresponds to
location 1350-2700 kbp. For these windows, the test is performed on M, and M,
and p-values are calculated to be equal to 1 for each test. Therefore, the null
hypothesis is not rejected and it is concluded that each of the two matrices are
similar to the identity matrix. Thus for a small portion of the genome using a
multivariate normal construction seems plausible. Testing this construction on
the entire genome is currently unachievable due to the computational strain of

calculating the correlation matrix for 17,613 windows.

In the next few sections, we now explore the different kinds of correlation which
exists within the lung cancer data set and provide examples for each. We no longer

assume that the data is stationary.

6.3 Correlation between Patients, p", p* and p”

Recall that observing correlation between patients may be an indication of poten-
tial clinical groupings among patients. Heat maps can be used to identify potential
groupings by observing which patients have the strongest correlations. Here we
consider correlations between patients in the lung cancer data set. We would ex-
pect to observe the correlation of patients within the same clinical groups - which
in this case are patients with adenocarcinoma and patients with squamous car-
cinoma - to be high. We firstly consider the correlation between patients within
the same group before considering the correlation between patients across both
groups.

For the random variables X;; and Y;;, i =1,...,n, 7 =1,...,p, the correlation
between patients in the same group across all windows can either correspond to
the correlation between Xj. and X (correlation between patients k and [ with
adenocarcinoma type lung cancer across all windows) or the correlation between
Yy and Y. (correlation between patients k and [ with squamous carcinoma type
lung cancer across all windows). Thus the covariance between patients with ade-
nocarcinoma type lung cancer is

1 p

COV(Xk., Xl) = pTl Z(J}k] - jk)(xlj — j}l).

j=1
Similarly for patients with squamous carcinoma type lung cancer. The correlation
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can be calculated by
a COV(Xk.,Xl.>

M sd (X )sd (X))

and the correlation between patients with squamous carcinoma type lung cancer

" b Cov(Y, Vi)
Pl = Sd(Y;, )sd(V7)”
The correlation between patients in different groups across all windows corresponds
to the correlation between Xj. and Y. (correlation between patient k with ade-
nocarcinoma type lung cancer and patient [ with squamous carcinoma type lung
cancer). Thus the covariance between patients with different types of lung cancer
is o
Cov(Xp, V1.) = ——= > (wxj — Z) (Y15 — 1),

p—li

and the correlation can be calculated by

po_ COV(X]C.7Y}.)
P = Sd(Xp)sd (V)

6.3.1 Lung Cancer Data Set Application

Figure 6.4 shows the estimated CNA across windows for two patients with adeno-
carcinoma type lung cancer (left) and two patients with squamous carcinoma type

lung cancer (right).

pP2=0.582 pP* =0.206

2.0 3.0

1.0

0.0
|

Second Patient with Adenocarcinoma
2
|

Second Patient Squamous Carcinoma

00 05 10 15 20 25 30

First Patient with Adenocarcinoma First Patient with Squamous Carcinoma

Figure 6.4: Estimated CNA across windows for two patients with adenocarcinoma

type lung cancer (left) and two patients with squamous carcinoma type lung cancer
(right).

Figure 6.4 (right) shows that the correlation between two patients with squa-
mous carcinoma type lung cancer is quite low, whilst the correlation between two

patients with adenocarcinoma type lung cancer is reasonably high.
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The estimated CNA across windows between patient 1 with adenocarcinoma
type lung cancer and patient 1 with squamous carcinoma type lung cancer is
plotted in Figure 6.5. Note that the correlation between these two patients is

small.

pP=0.255

First Patient with Squamous Carcinoma

First Patient with Adenocarcinoma

Figure 6.5: Estimated CNA across windows for patient 1 with adenocarcinoma
type lung cancer and patient 1 with squamous carcinoma type lung cancer.

Here we have considered the correlation between two patients with either the
same type of lung cancer or differing types. To get a clearer view of the correlation
structure between patients, the correlation between all patients — with either the

same type of cancer or different — is now explored.

6.3.2 Correlation Across all Patients

Between each patient either with adenocarcinoma or squamous carcinoma type
lung cancer, the correlations pP* pP* and pP are calculated. Figure 6.6 shows a

heat map of the correlations pP?®, pP* and pP across all patients.

In Figure 6.6, it can be seen that between patients with the same type of lung
cancer there exists a strong positive correlation, whilst the correlation between
patients with different types of lung cancers is low. By producing a heat map, the
separation of patients with adenocarcinoma type lung cancer and patients with
squamous carcinoma type lung cancer can be clearly seen and shows just how
well plotting the heat maps of correlation can distinguish between clinical groups.
There is a potential for further analysis to be done here on the correlations between

patients to identify further clinical groups.
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Feifl i=l W[ 55
o
ar
e

Figure 6.6: Heat map showing the value of pP*, pP* and p? calculated for each pair
of patients with either adenocarcinoma or squamous carcinoma type lung cancer.
The letters on the diagonal represent the subtype of cancer, i.e. “a” represents a
patient with adenocarcinoma type lung cancer and “s” represents a patient with

squamous carcinoma type lung cancer.
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6.4 Correlation between Windows, p and
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We have already explored the correlation between the samples or patients of our
data set but probably the most important type of correlation within the data set
is the correlation between variables or windows. As the regions of the genome
are continuous, by taking measurements at discrete points, the correlation of the
CNA between two spatially adjacent measurements will be high. In this section,
we explore the correlation in the CNA between the windows of the genome and

show how strong the correlation is.

For random variables X;; and Yj;, ¢ = 1,...,n, j = 1,...,p, the correlation

ijs
between windows for patients in the same group can either correspond to the cor-
relation between X, and X (correlation between windows k and [ for patients
with adenocarcinoma type lung cancer) or the correlation between Y and Y, (cor-
relation between windows k& and [ for patients with squamous carcinoma type lung
cancer). Thus for patients with adenocarcinoma type lung cancer, the covariance

between windows is

n

1
COV(X.k, Xl) = m Z(l’zk — .Tk)(.ﬂjll — fl).
=1

Similarly for patients with squamous carcinoma type lung cancer. The correlation
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can be calculated by
wa COV(X.k,X.l)

PRl = SA(X )sd(X,)

and the correlation between windows for patients with squamous carcinoma type

lung cancer is

ws __ COV(Yk,Yl>
PRl = Sa(Y)sd(Ya)

6.4.1 Lung Cancer Data Set Application

For patients with adenocarcinoma type lung cancer, Figure 6.7 shows four plots
investigating the correlation between windows. To see how strong the correlation
between two adjacent windows is, Figure 6.7 top left shows the estimated CNA
for window 6 (chromosome 1, 750kbp to 900kbp) against window 7 (chromosome
1, 901kbp, 1050kbp). Whilst it is expected that two adjacent windows in the
same chromosome is highly correlated, it might not be the case for two windows
in different chromosomes, thus Figure 6.7 top right shows the estimated CNA for
window 1662 (chromosome 1, 249.15Mbp to 249.3Mbp) plotted against window
1663 (chromsome 2, 0 to 150kbp). Next, the estimated CNA for window 6 (chro-
mosome 1, 750kbp to 900kbp) is plotted against window 1662 (chromosome 1,
249.3Mbp to 249.45Mbp) in Figure 6.7 bottom left to investigate the strength of
the correlation between the start and end of a chromosome. Finally, given that the
centromere occurs at location 123.4 Mbp in chromosome 1, the estimated CNA for
window 810 (chromosome 1, 121.5Mbp to 121.65Mbp) is plotted against window
951 (chromosome 1, 142.50Mbp to 142.65Mbp) in Figure 6.7 bottom right to see
the strength of the correlation just before and after the centromere.

Figure 6.7 shows that two adjacent windows in the same chromosome are very
highly correlated, whilst two windows in different chromosomes are not. Also it
seems that the further away the two windows are from each other the smaller the
correlation, which was to be expected. Finally, the centromere doesn’t effect the
correlation between windows as the correlation is very high for two windows either
side of the centromere. This is not surprising as the genomic distance between the
two windows is small, therefore we would expect to see a higher correlation.

To see whether the same conclusions can be drawn from patients with squa-
mous carcinoma type lung cancer, Figure 6.8 shows four plots investigating the
correlation between the same pairs of windows.

Indeed, we can draw the same conclusions regarding the strength of correla-
tions between certain pairs of windows from Figure 6.8 as we did from Figure 6.7.
Whilst we have explored the correlation between specific windows, the correla-

tion structure between two chromosomes will become clearer if we consider the
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Figure 6.7: Estimated CNA plotted for patients with adenocarcinoma type lung
cancer for window 6 against window 7 (top left), window 1662 against window
1663 (top right), window 6 against window 1663 (bottom left) and window 810

against window 951 (bottom right).
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Figure 6.8: Estimated CNA for patients with squamous carcinoma type lung cancer
plotted for window 6 against window 7 (top left), window 1662 against window
1663 (top right), window 6 against window 1663 (bottom left) and window 810
against window 951 (bottom right).
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correlation between all the windows in two chromosomes.

6.4.2 Correlation Between all Windows in Two Chromo-

somes

As chromosomes 21 and 22 have fewer windows compared to other chromosomes,
the computational time of calculating the correlation for each pair of windows is
smaller than for any other pair of chromosomes. Because of this, we will use these
chromosomes to display the correlation structure within chromosomes. Between
each pair of windows in chromosomes 21 and 22, p*® and p"* has been calculated.
Figure 6.9 shows a heat map of p“* across the two chromosomes and Figure 6.10
shows the heat map of p*? across the two chromosomes. Note that adjacent pixels
may not always represent adjacent windows in the genome due to the removal of

some windows.

.
v

Figure 6.9: Heat map showing the value of p** calculated for each pair of windows
in Chromosome 21 and 22.

Each heat map in Figure 6.9 and Figure 6.10 is split into four quadrants which
shows the separation between chromosome 21 and 22. Strong positive correlation
can also be seen around the diagonal line which is expected as the closer two
windows are to each other in the genome the more highly correlated they will
be. In Figure 6.10 strong positive correlation seems to remain persistent as the
windows get further apart within each chromosome, whereas this feature only
occurs in chromosome 21 in Figure 6.9. This suggests that high correlation persists
until a larger distance between two windows for patients with squamous carcinoma

compared to patients with adenocarcinoma. This is consistent with the conclusions
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Figure 6.10: Heat map showing the value of p"* calculated for each pair of windows
in Chromosome 21 and 22.

drawn from the autocorrelation function from Section 6.2.1.
As we have shown, high correlation exists between windows. Because of this,
it is likely that after performing the Cramer test on each window, the p-values will

also be correlated. We now explore the correlation between the p-values.

6.5 Correlation between p-values, p®

Consider a set of p random variables P, P, ..., P,, where P, represents all possible
p-values after applying the Cramer test on variable or window i. For each P;
consider sampling n p-values, p;1,...,pin. The covariance between P, and P is
then

n

1
Cov(Py, P) = —— (Prj — i) (P1j — Du)-

n—14%
7j=1
Correlations pP® can then be obtained. It is natural to assume that a larger
correlation between the data will cause a larger correlation between the p-values.
However, the relationship between p“?, p%s and pP*® is complicated, for which we

will now show.

6.5.1 Finding a Relationship between p“?, p** and pP*“

It is impossible in our application to calculate pP*® directly. This is because for
each variable only a single p-value will be obtained, and thus a sample correlation

cannot be obtained. However, the sample correlations p“*, p*® can be calculated
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from the data. Thus in order to be able to estimate these correlations, the rela-
tionship between p“?, p** and pPU@ is explored. Consider X ~ MV N(ji,¥,) and
Y ~ MVN(ii,5,) where fi = (O A pwa> and 3, = ( L pr> and
0 v 1 pvs 1
n = 500. We can consider the variables of the multivariate normal distributions
to be the windows of the genome. The Cramer test can be applied to X.; and Y,
to produce p;; and can be applied to X.» and Y, to produce p;,. This can be
repeated 50,000 times to obtain py 1,p21, ..., Ds0000,1 and pi12, P22, ..., Psoooo2 for
which the correlation between the two sets of p-values, pP*, can be calculated.
This can then be done for each p** € [—1,1] and p** € [—1, 1]. Table 6.1, 6.2 and
6.3 displays some of the results of this simulation as a look-up table to obtain pP*%
given p*® and p"*. Tables 6.1 and 6.2 display almost identical results suggesting
that the correlation between p-values is not affected by the sign of p*® and p“* as

long as both are the same sign.

pua P -11-096 | -0.92 | -0.88 | -0.84 | -0.80 | -0.76 | -0.72
-1 1 10.898 | 0.821 | 0.758 | 0.704 | 0.654 | 0.610 | 0.571
-0.96 0.812 | 0.743 | 0.686 | 0.636 | 0.591 | 0.551 | 0.515
-0.92 0.682 | 0 .631 | 0.583 | 0.543 | 0.506 | 0.469
-0.88 0.583 | 0.537 | 0.499 | 0.464 | 0.431
-0.84 0.497 | 0.461 | 0.428 | 0.399
-0.80 0.426 | 0.399 | 0.369
-0.76 0.369 | 0.338
-0.72 0.317

Table 6.1: The value of pP*® for each p»® € [—1,—0.7] and p** € [—1,—0.7] when
X and Y are simulated from a multivariate normal distribution.

pua P 0.72 | 0.76 | 0.80 | 0.84 | 0.88 | 0.92 | 0.96 1
0.72 0.318 | 0.343 | 0.369 | 0.398 | 0.432 | 0.472 | 0.515 | 0.570
0.76 0.368 | 0.396 | 0.430 | 0.465 | 0.504 | 0.552 | 0.612
0.80 0.426 | 0.463 | 0.500 | 0.543 | 0.591 | 0.653
0.84 0.496 | 0.540 | 0.582 | 0.637 | 0.703
0.88 0.581 | 0.630 | 0.686 | 0.759
0.92 0.683 | 0.744 | 0.823
0.96 0.812 | 0.898

1 1

Table 6.2: The value of pPU for each p®® € [0.7,1] and p** € [0.7,1] when X and
Y are simulated from a multivariate normal distribution.
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wa P -1 -0.96 | -0.92 | -0.88 | -0.84 | -0.80 | -0.76 | -0.72

0.72 0.108 | 0.082 | 0.064 | 0.054 | 0.045 | 0.039 | 0.031 | 0.028
0.76 0.108 | 0.089 | 0.072 | 0.059 | 0.053 | 0.040 | 0.039 | 0.032
0.80 0.113 | 0.091 | 0.075 | 0.063 | 0.055 | 0.048 | 0.046 | 0.040
0.84 0.122 | 0.098 | 0.082 | 0.071 | 0.061 | 0.055 | 0.049 | 0.047
0.88 0.126 | 0.102 | 0.090 | 0.076 | 0.071 | 0.064 | 0.058 | 0.055
0.92 0.137 | 0.119 | 0.099 | 0.088 | 0.082 | 0.073 | 0.068 | 0.066
0.96 0.155 | 0.131 | 0.119 | 0.103 | 0.097 | 0.089 | 0.087 | 0.080

1 0.181 | 0.155 | 0.139 | 0.129 | 0.121 | 0.113 | 0.110 | 0.104

Table 6.3: The value of pP*® for each p*® € [0.7,1] and p** € [0.7,1] when X and
Y are simulated from a multivariate normal distribution.

It is clear from all tables that the relationship between p“?, p** and pP*® is
not straightforward. Regression techniques, including fitting generalised linear
models and adding higher polynomial terms in the linear model, were used to find
a formula for the relationship which can be used for predictions, however finding
a satisfactory formula proved unsuccessful. The look-up tables we have created
however provide a quick way of estimating the correlation between p-values given
the correlations between data for each subtype.

We will now repeat these simulations to ensure robustness of the results. We
will now attempt to simulate correlated random variables X and Y where X and
Y follow the multi-modal mixture distribution N (1,1) + §N(3,1). We choose
this multi-modal distribution as it is representative of the windows in the lung
cancer data set which are multi-modal. We simulate this data using the following

algorithm;

1. Simulate n = 500 observations from a multivariate normal distribution with

mean vector p an covariance matrix > as before.

2. Apply the univariate normal cumulative distribution function to derive prob-

abilities for each variable.

3. Apply the inverse cumulative distribution function for the mixture distribu-

tion of X and Y to simulate draws from the distribution.

We therefore repeat the previous set up to obtain the correlation between the two
sets of p-values and obtain pPU@ for different values of p*® and p®$. Tables 6.4, 6.5
and 6.6 shows the results of this simulation.

As you can see from Tables 6.4, 6.5 and 6.6, the results obtained are not too
dissimilar from that of Tables 6.1, 6.2 and 6.3 suggesting that the results are
fairly robust. The mean difference between Tables 6.4 and 6.1 is 0.0025, the mean
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pud P -1 -0.96 | -0.92 | -0.88 | -0.84 | -0.80 | -0.76 | -0.72
-1 0.987 | 0.890 | 0.818 | 0.758 | 0.703 | 0.660 | 0.616 | 0.575
-0.96 0.810 | 0.743 | 0.687 | 0.640 | 0.599 | 0.558 | 0.511
-0.92 0.683 | 0.634 | 0.586 | 0.544 | 0.515 | 0.471
-0.88 0.584 | 0.544 | 0.510 | 0.473 | 0.438
-0.84 0.498 | 0.461 | 0.428 | 0.405
-0.80 0.431 | 0.400 | 0.368
-0.76 0.373 | 0.347
-0.72 0.322

Table 6.4: The value of pP*® for each p*® € [—1,—0.7] and p** € [—1,—0.7] when
X and Y are simulated from correlated mixture distributions.

pua P 0.72 | 076 | 0.80 | 0.84 | 0.88 | 0.92 | 0.96 1
0.72 0.322 | 0.350 | 0.376 | 0.409 | 0.440 | 0.480 | 0.525 | 0.575
0.76 0.374 | 0.406 | 0.435 | 0.472 | 0.507 | 0.555 | 0.614
0.80 0.437 | 0.471 | 0.511 | 0.555 | 0.597 | 0.657
0.84 0.503 | 0.547 | 0.592 | 0.645 | 0.707
0.88 0.585 | 0.639 | 0.687 | 0.745
0.92 0.693 | 0.750 | 0.829
0.96 0.815 | 0.903

1 1

Table 6.5: The value of pP*% for each p»® € [0.7,1] and p** € [0.7,1] when X and
Y are simulated from correlated mixture distributions.

P -1 -0.96 | -0.92 | -0.88 | -0.84 | -0.80 | -0.76 | -0.72

0.72 0.106 | 0.084 | 0.073 | 0.060 | 0.047 | 0.042 | 0.036 | 0.032
0.76 0.113 | 0.084 | 0.066 | 0.060 | 0.058 | 0.045 | 0.039 | 0.034
0.80 0.112 | 0.101 | 0.083 | 0.060 | 0.054 | 0.051 | 0.049 | 0.036
0.84 0.120 | 0.094 | 0.075 | 0.069 | 0.059 | 0.056 | 0.055 | 0.043
0.88 0.140 | 0.111 | 0.095 | 0.070 | 0.068 | 0.068 | 0.060 | 0.053
0.92 0.141 | 0.123 | 0.100 | 0.099 | 0.085 | 0.076 | 0.073 | 0.063
0.96 0.161 | 0.130 | 0.117 | 0.103 | 0.100 | 0.093 | 0.082 | 0.079

1 0.184 | 0.165 | 0.146 | 0.139 | 0.128 | 0.118 | 0.114 | 0.112

Table 6.6: The value of pPU for each p®® € [0.7,1] and p** € [0.7,1] when X and
Y are simulated from correlated mixture distributions.

difference between 6.5 and 6.2 is 0.0059 and the mean difference between 6.6 and
6.3 is 0.0102. Thus, there does exist a small increase in the correlation between p-
values when the distributions of X and Y are now multi-modal. However, because

this difference is very small, it will not make much difference in further calculations
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performed later in Chapter 7.

6.6 Discussion

In this chapter, we explored the various correlation structures within the lung can-
cer data set. The main observation was that there exists high positive correlation
between adjacent windows in the same chromosome, and this high correlation per-
sists up to at least lag 20 for patients with either type of lung cancer. Positive
correlation also exists between patients with the same lung cancer type.

When modelling the correlation structure, it was found that a suitable model
was a multivariate normal distribution with a 0 mean vector and a covariance
matrix with element (i, ) equal to 71"=9l. This model was then used to help find
the relationship between the correlation between windows for each subtype, p"®
and p™*, and pP*™, the correlation between the p-values. To this end, we were able

to create a look-up table to determine pP*@ for given p*® and p*s.
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Chapter 7

Multiple Testing for Dependent

p-values

The multiple testing problem occurs when one considers performing a hypothesis
test on m independent variables simultaneously (Miller Jr, 1981). Each of the
m tests are performed with a significance level . This means that if m tests
are performed when the null hypothesis is true, « - m tests will be considered
significant. In other words, there will be o - m Type I errors. Now, the Family
Wise Error Rate (FWER) is defined as the probability of making at least one Type
I error in the family of simultaneous hypothesis tests. If each test is performed
at the 5% significance level, the FWER is (1 — a)™ > «a. To control the FWER,
procedures like the Bonferroni procedure (Benjamini and Hochberg, 1995) and
Sidak correction (Sidék, 1967) are used.

In our application, we apply the Cramer test to 17,613 windows of the genome
simultaneously, thereby causing a multiple testing problem. The difference in our
case however, is that the tests we perform are not independent (as seen in Chapter
6), thus the true number of independent tests performed, m, is unknown. As the
FWER corrections rely on knowing m, the number of independent tests, we cannot
apply the usual FWER corrections. An issue we face when assuming that all tests
are independent is that the Bonferroni corrected significance threshold, or indeed
any corrected significance threshold, may be much higher than it should be. We
suspect that for the lung cancer data set, the total number of tests p > m, the

effective number of independent tests performed.

In this chapter, we outline some methods to deal with multiple testing for de-
pendent p-values. We begin by discussing a method known for approximating the
multiplicity burden of the data, which will therefore help calculate the effective
number of independent p-values. We apply this method to the lung cancer and

artificial data set in the KC Smart vignette in order to adjust the results obtained
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in Chapter 5 and test its effectiveness. Finally, we discuss Fisher’s combined
probability test for dependent p-values. We initially describe the methodology of
Brown (1975) but extend it for when the test statistics have an unknown distri-
bution. This method will allow us to “group” together the p-values obtained from
performing the Cramer test on the lung cancer data set to perform a test which

incorporates the correlations between the p-values.

7.1 Multiplicity Burden

Multiplicity is a common problem in almost all genomic testing (Manly et al.,
2004) and our case is no different. Consider performing two hypothesis tests on
two highly correlated variables to obtain p-values, p; and p,. The total number of
tests performed here is p = 2. However if p; is significant then most likely so will
P2, thus to determine the significance of both tests, only a single test is required.
Or in other words, the number of effective independent tests is approximately
m = 1. Once the number of effective independent tests are identified, correction
procedures like the Bonferroni correction can be applied. The issue is how to

approximate m.

7.1.1 Estimating m

Dudbridge and Gusnanto (2008) discusses methods for obtaining an estimate for
the effective number of significant tests m. They compare a method proposed
by Patterson et al. (2006) to standard permutation methods, and found that the
permutation methods provided a more accurate estimate for m. Not only this
but permutation methods preserve the correlation structure within the sample
(Dudbridge and Gusnanto, 2008). The permutation method to find m for the lung
cancer data set is implemented as follows. Randomly assign half the samples as
adenocarcinoma type lung cancer and the other half as squamous carcinoma type
lung cancer. The Cramer test is applied to all windows and p-values obtained.
The smallest p-value is recorded and the procedure is repeated 10,000 times to
obtain 10,000 minimum p-values.

The Sidak correction, by Siddk (1967), calculates the multiplicity corrected

significance level a; by solving
a=1—(1—-ay)™ (7.1)

for ;. Here ag represents the significance level for one test, o represents the

significance threshold for all tests and m is the number of independent tests. The «
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is calculated by considering the probability that at least one of the m independent
tests are significant, which is equivalent to 1 minus the probability that none
of the m independent tests are significant. The probability that none of the m

independent tests are significant is
Pr{min(p-value) > oy} = (1 — ay)™,
thus Equation (7.1) can be rewritten as
Pr{min(p-value) < oy} =1— (1 — ay)™. (7.2)

Now, Equation (7.2) is equivalent to the cumulative distribution function for a Beta
distribution with parameters 1 and m. Hence, in order to estimate m, one can fit a
Beta(1,m) distribution to the minimum p-values obtained after each permutation
replicate. To estimate m, the formula

 — 1 —po

Po

is used where pg represents the mean of the simulated minimum p-values.

7.1.2 Example

Consider simulating two samples of length n = 100 from a multivariate normal

distribution with p = 50 variables. The mean vectors for each sample are equal to

0 0.6
= : pp=1| 1, (7.3)
0 0.6

respectively and let the elements S(; ;) of the covariance matrix be defined as

1 i=j
Sij) =9099 i>j, j—i>7 modb5—6 (7.4)
0 i>j,j—i<j mod5—6

where S(jﬂ') = S(i’j).

For simplicity, a two-sample t-test can be performed on each variable and the
p-values obtained. As 50 hypothesis tests are being carried out simultaneously, a
5% Bonferroni corrected significance threshold is calculated as % = 0.01. Figure
7.1 shows a plot of the p-values along with the 5% Bonferroni corrected significance
threshold with m = 50.
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Figure 7.1: The p-values for each variable p when comparing two samples from a
multivariate normal distribution with mean vectors defined in Equation (7.3) and
covariance matrix defined by Equation (7.4). The horizontal grey line represents
the 5% Bonferroni corrected significance threshold with m = 50.

Note that only 39 out of the 50 p-values are considered significant when com-
paring them to the 5% Bonferroni corrected significance threshold with m = 50.
It can be seen from Figure 7.1 that the p-values are grouped together in blocks
of five, this is due to the simulated correlation structure of the data. As the data
are blocked in this way, instead of calculating fifty simultaneous hypothesis tests,
only ten are needed; one for each block of five. This is because, if a p-value is
significant, then other p-values in the same highly correlated block will also most
likely be significant. Note however that this is not the case for the seventh block
from the left as a single p-value in the block is not significant whereas the rest are.

We use the method described by Dudbridge and Gusnanto (2008) to estimate
the number of effective independent tests. We permute the group labels 10,000
times, perform hypothesis tests on each variable and calculate the smallest p-value
for each permutation. Figure 7.2 shows the histogram of smallest p-values along
with the fitted Beta(1,m) distribution.

Here m = 10.68, which is very close to the true number of independent tests,
10. When we recalculate the 5% Bonferroni corrected significance threshold with
m = 10, the threshold is now % = 0.005. Figure 7.3 shows the plot of the p-values
along with the 5% Bonferroni corrected significance threshold with m = 10.

Now Figure 7.3 shows that 50 out of the 50 hypothesis tests are significant at
the 5% level. These results are what we would expect to see given the nature of the
simulated data. This shows that by estimating the number of effective independent
tests, we could indeed correct for the correlation within the data. We therefore
attempt to apply this method to the lung cancer data set to investigate whether

further regions are identified as significant.
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Figure 7.2: The histogram of the minimum p-values calculated for each 10,000 per-
mutations. The dashed black line represents the fitted Beta(1,10.68) distribution.
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Figure 7.3: The p-values for each variable p when comparing two samples from a
multivariate normal distribution with mean vectors defined in Equation (7.3) and
covariance matrix defined by Equation (7.4). The horizontal grey line represents
the 5% Bonferroni corrected significance threshold with m = 10.
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7. Multiple Testing for Dependent p-values

7.1.3 Lung Cancer Data Set

Because each chromosome is biologically independent to all others, the effective
number of independent tests can be calculated for each chromosome of the lung
cancer data set. For each chromosome, the method proposed by Dudbridge and
Gusnanto (2008) is used and a Beta(1,m) distribution is fitted to the 10,000 min-
imum p-values. Figure 7.4 shows the histogram of the 10,000 minimum p-values
when the method is performed on chromosome 1 and the ECDF plotted with the

fitted Beta(1,m) cumulative distribution curve.
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Figure 7.4: The histogram (left) and the ECDF (right) of the 10,000 minimum
p-values when the method proposed by Dudbridge and Gusnanto (2008) is used on
chromosome 1. The dashed grey line represents the fitted Beta(1,m) distribution.

Table 7.1 displays the percentage of effective number of independent tests when
Dudbridge and Gusnanto (2008)’s method is performed on each chromosome. We
can perform the method on the data as a whole, but it is more informative to
estimate m for each chromosome as we already know of their independence.

Table 7.1 shows that the percentage of effective number of independent tests
is very small and in most cases is less than 4% for each chromosome. This would
suggest a massive difference in the location of the Bonferroni corrected signifi-
cance thresholds for each chromosome. The threshold for each chromosome is
calculated as follows; let m;, i = 1,...,22, be the effective number of indepen-
dent windows within each chromosome obtained from Table 7.1, thus m; will be
the effective number of independent windows in chromosome 1 etc. Then the

significance threshold for chromosome i is calculated as

0.05

m;

A modified plot with a lower significance threshold for each chromosome is shown

in Figure 7.5. Figure 7.5 shows that with a lower significance threshold per chro-
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Chromosome | m; | Percentage of Effective Number of Independent Tests
1 37 2.5%
2 27 1.7%
3 34 2.6%
4 31 2.5%
5 28 2.4%
6 27 2.4%
7 19 1.9%
8 18 1.9%
9 19 2.6%
10 20 2.3%
11 24 2.8%
12 23 2.6%
13 17 2.7%
14 18 3.1%
15 19 3.7%
16 21 4.1%
17 19 3.7%
18 16 3.3%
19 17 4.5%
20 12 3.1%
21 14 5.7%
22 11 4.8%

Table 7.1: The number of effective independent tests m, and the percentage of
effective number of independent tests when Dudbridge and Gusnanto (2008)’s
method is performed on each chromosome.

mosome, more windows are now considered to be significant. In fact, there are now
3,165 significant windows compared to only 669 when m = 17,613 was used in the
Bonferroni correction. Recall that KC Smart identified 3,626 regions that display a
significant difference of CNA between the groups of patients. After modifying the
multiplicity correction to account for the correlation within the data, the Cramer
test now identifies a similar amount, but KC Smart still identifies a further 500
significant regions. Again, as previously mentioned in Section 5.7 this could be
due to KC Smart overestimating the significance in some regions and further work

is required to understand whether this is indeed the case.

7.1.4 KC Smart Data Set

The effective number of independent tests can be calculated for the artificial data
set in the KC Smart vignette. The method proposed by Dudbridge and Gusnanto
(2008) is used and a Beta(1,m) distribution is fitted to the 10,000 minimum p-
values. Figure 7.6 shows the histogram of the 10,000 minimum p-values and the

127



7. Multiple Testing for Dependent p-values

© -
o -
:\Qo;
S Y
o
I
~ -
O —
T T T T
0 5000 10000 15000
Window

Figure 7.5: The p-values of individual genomic regions across the genome using the
Cramer test. The scale of the vertical axis is —log;,(p-value). The horizontal grey
lines represent the Bonferroni corrected significance threshold for each chromosome
taking into account the percentage of effective independent tests from Table 7.1.
The alternating colouring scheme indicates different chromosomes, starting with
chromosome 1,2,...,22 from the left. Sex chromosomes are excluded from the
analysis.

ECDF plotted with the fitted Beta(1,m) cumulative distribution curve.

Here, m = 551, meaning that out of 3,268 regions only 551 are effectively inde-
pendent. Note however that the fitted Beta(1,m) distribution is not an accurate fit
to the empirical distribution function of the minimum p-values suggesting that an
effective number of independent tests might not exist (Dudbridge and Koeleman,
2004). This could be due to the artificial nature of the data and the simulated
correlation structure may not be representative of real data. If we however assume
that the effective number of independent tests is m = 551, then the significance
threshold will be much lower than the threshold used in Figure 5.13. A modified

plot with a lower significance threshold is shown in Figure 7.7.

Figure 7.7 now suggests that some probes in chromosome 4 are significant,
however there are still many probes in chromosome 4 which are not identified as
significant. This could suggest - assuming that the results from the KC Smart
analysis are correct - that an effective number of independent tests does not suf-
ficiently describe the correlation structure (Dudbridge and Koeleman, 2004), i.e.
the correlation structure is not sufficiently captured through the permutation of
the group labels. Alternatively, this could again be further evidence supporting

the fact that KC Smart is over estimating the significance of chromosome 4.
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Figure 7.6: The histogram (left) and the ECDF (right) of the 10,000 minimum
p-values. The dashed grey line represents the fitted Beta(1,m) distribution.

~log10(p;)

0 500 1000 1500 2000 2500 3000

Genomic Position (mb)

Figure 7.7: The p-values of individual genomic regions across the genome using
the Cramer test. The scale of the vertical axis is —log;,(p-value). The horizontal
grey line represents the Bonferroni corrected significance threshold with m = 551
effective independent tests. The alternating colouring scheme indicates different
chromosomes.

129



7. Multiple Testing for Dependent p-values

7.1.5 Estimating Multiplicity Burden

In application, in order to estimate the multiplicity burden one could use the
method described by Dudbridge and Gusnanto (2008). However, as the method
involves arduous permutation this means that obtaining a suitable significance
threshold is computationally slow. One could however, estimate the multiplicity
burden if the mean correlation between adjacent windows is known. A simulation
has been performed to estimate the multiplicity burden for two samples of data

simulated from a multivariate normal distribution with mean vector and covariance

matrix,
0
i=:|.
0
1 7 r? r?
T 1
¥i=|r? i=1,2
R

Here, r; will equal the mean of p* across all pairs of variables for the first sample
and 75 is equal to the mean of p*® across all pairs of variables for the second sample.
For high correlation to exist in the data and affect the multiplicity burden, it is
expected that the correlation between adjacent variables will be higher than 0.7.
Thus for n = 100, p = 1000, r € [0.7,1] and 7, € [0.7,1], two samples have
been simulated from the multivariate normal distribution and the minimum p-
value across all variables obtained. This was repeated 1000 times to obtain 1000
minimum p-values for each r; € [0.7,1] and ro € [0.7,1]. Table 7.2 shows the
estimated multiplicity burden for each r; € [0.7,1] and r, € [0.7,1].

- 207 | 075 0.8 0.85 0.9 0.95 1
0.7 481.2 | 450.5 | 447.7 | 425.0 | 424.0 | 361.0 | 89.1
0.75 451.5 | 425.6 | 407.7 | 389.7 | 347.9 | 94.7
0.8 404.1 | 386.3 | 356.5 | 318.5 | 88.0
0.85 359.3 | 342.0 | 295.2 | 86.0
0.9 293.0 | 255.8 | 69.1
0.95 203.3 | 44.8

1 1.1

Table 7.2: The estimated multiplicity burden for each r; € [0.7,1] and o € [0.7, 1]
for p = 1000 variables and n = 100 observations.
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7.2 Fisher’s Combined Probability Test for Dependent p-values

If 1 and ry are known, the multiplicity burden can be estimated from the
table without the need for any arduous calculations. However, not all datasets
will have p = 1000 variables, so separate tables would need to be created for all
p. This, therefore, is an unrealistic method for estimating the multiplicity burden.
We therefore explore another approach to multiple testing for dependent p-values,

namely Fisher’s combined probability test for dependent p-values.

7.2 Fisher’s Combined Probability Test for De-

pendent p-values

Fisher et al. (1925) introduced a method to combine the p-values calculated from
independent hypothesis tests which are tested under the same null hypothesis.
Fisher et al. (1925) states that although individually some tests are identified as
not significant, when tested in a group with other tests, it could then be identified
as significant. Therefore, Fisher et al. (1925) proposes a single test to perform on
groups of p-values to determine the significance of the group. This method has

been called Fisher’s combined probability test.

7.2.1 Fisher’s Combined Probability Test for Independent

p-values

Consider a set of p independent hypotheses tested to give p-values py,...,p,. Now
consider taking a subset of length k of the p-values to obtain a smaller set pj, .. ., p;.

To test whether the subset of tests is significant as a group, firstly calculate

k
7 = -2 log(n}).
1=1

Now, as each p; follows a uniform distribution in [0,1], each — log(p}) will follow
an exponential distribution with parameter 1. Thus, —2log(p}) will be distributed
as a x? distribution with 2 degrees of freedom. Then taking the sum of & x?
distributions yield another x? distribution with 2k degrees of freedom, thus

Z% ~ X§k~

Assume as an example that m independent tests have been performed and
the p-values for all the tests are equal to 0.04. Performing Fisher’s combined
probability test will yield a test statistic of 6.44 - m which for any m will have a
combined p-value of = 0.04. Thus as expected, Fisher’s combined probability test
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7. Multiple Testing for Dependent p-values

will conclude that all tests are significant. However, for a = 0.05, the Bonferroni

f 0%. Thus for m > 1, all tests are

correction yields a significance threshold o
deemed insignificant. This shows that Fisher’s combined probability test and the
Bonferroni correction will provide opposite results for this example. However, it
cannot be stated that one method is “wrong” as each method has its justifications.
We will therefore compare the results after applying the Bonferroni correction using
the effective number of independent tests to applying Fisher’s combined probability
test on dependent p-values. However, we first need to develop the theory behind

the use of Fisher’s combined probability test on dependent p-values.

7.2.2 Adapting Fisher’s Method for Dependent p-values

When the test statistics can be modelled using a multivariate normal distribution
with known covariance matrix X, Brown (1975) suggests an adaptation to Fisher’s
combined probability test. Kost and McDermott (2002) extends this adaptation
for when the covariance matrix ¥ is known up to a scalar quantity. It was found,
using the Cramer test, that the null distribution was not a normal distribution,
thus we adapt the method for the case where the distribution of the test statistics
is unknown.

The adaptation used by both Brown (1975) and Kost and McDermott (2002)
states that when all & null hypotheses are true, Z2? has a scaled x? distribution,
ie.

7%~ cxfc.

To estimate the values of ¢ and f the method of moments can be used by equating

;= 2E[Z?]
~ Var[Z?]
. Var[Z?]
- 2E[Z7]
Again as each p-value, pf, is distributed uniformly in the region [0,1], —log(p)

will be exponentially distributed with 1 degree of freedom. Thus E[—log(p;)] = 1
and Var|[—log(p})] = 1. Hence,

E[Z?] :E[ QZlong]
k

=23 B[ log(p})]

i=1

— 2k,
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and

Var[Z?] = Var

k
—2) "log(p})
=1

=4 Var[-log(p;)] +2> Y Cov(—2log(p}), —2log(p}))

i=1 i<j

=4k +2 Z Z Cov(—2log(p;), —21og(pj)). (7.5)

1<j

Thus in order to estimate the variance of Z2, the covariance between two p-values

is required. To calculate the covariance, we obtain

Cov(—2log(p;), —2log(p;))

E[41log(p;) log(p;)] — E[—2log(p;)]E[—2log(p;)]
E[4log(p;) log(p})] — 4E[log(p;)|Ellog(p})]
4(E[log(p;) log(p})] — 1)

and e
Eflog(p;) log(p})] = / / log p; log p; frs e+ (1}, ;) dpj dpj. (7.6)
0 0

Hence, the joint expectation of log(p;) and log(p;) and thus the covariance between
p-values can be estimated by calculating the integral in Equation (7.6).

To estimate the joint expectation and therefore the covariance, Brown (1975)
lets W; = —2log(p}) = —2log ®(Z;), where ® represents the cumulative distribu-
tion function of the standard normal distribution and Z; = ®~!(p}). Therefore
Brown (1975) obtains the joint density of W; and W, using transformation of vari-
ables. Similarly, Kost and McDermott (2002) assumes that the W; = —2log(p}) =
—2log T(T;) where T represents the cumulative distribution function of the t dis-
tribution with v degrees of freedom. Brown (1975) then evaluates the joint expec-
tation using Gaussian quadrature (Krylov, 1962) and Kost and McDermott (2002)
uses numerical integration techniques. When the distribution of the test statis-
tics is unknown, it is impossible to determine the joint distribution by replacing
the p-values by a function of their corresponding test statistics. Thus instead we

evaluate the joint expectation by considering the joint distribution of p; and pj.

7.2.3 Calculating the Joint Expectation

When all null hypotheses are true, the p;, ¢ = 1,... k, are uniformly distributed.
Thus fpr Pr (p},p;) is a joint distribution such that the marginal distributions are
correlated uniform distributions. Ferguson (1995) describes a method for defining

a joint distribution with correlated uniform distributed marginals, and is imple-
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mented by Demirtas (2014). For the purpose of simplicity we define such a joint
distribution to be a bivariate uniform distribution, but note that the definition is
defined here loosely and simply refers to any joint distribution which has uniformly

distributed marginal distributions which are correlated.

Definition Suppose that G is absolutely continuous with density g(u) for 0 <
u < 1. Then

Fr () = 3lolle ) + 91— |1 = 2 = ), &

is the probability density function of a bivariate uniform distribution where marginally
X and Y follow a uniform distribution, 0 <z <1,0<y < 1. O
Recall that pP¥ defines the correlation between p-values, which in our case will
also be the correlation between the bivariate uniform random variables. Ferguson
(1995) proved that
PP’ =1—6E[U?] + 4E[U?]

and by choosing U ~ Beta(a,1) (Demirtas, 2014), i.e. g(u) = aul®™V, it can be
shown that
(1—-a)(6+a)

= e aBTa) (78)

Rearranging Equation (7.8) gives

5 1 [prv 449
-4 /== 7.9
a 5 + 2\ vt (7.9)

Figure 7.8 shows a one to one relationship between p’ and a for pP’ € [—1,1].
Thus one can define a bivariate uniform distribution with any correlation, pP?,
between -1 and 1 by using Equation (7.9) to determine a suitable choice of a. The
correlation pP” can be estimated by calculating p* and p"* for the data and using
Tables 6.1, 6.2 and 6.3.

The definition for the bivariate uniform distribution defined in Equation (7.7)
along with the choice of g(u) = au'®" can be substituted into Equation (7.6) to

give

1 pl
>k * a * * >k >k a— * >k a— * >k
Ellog(p;) log(p})] = 5/ / log p; log pj[(|p; —p; )V +(1—[1—pi—p;)“ V] dp; dp;.
0o Jo
(7.10)
To calculate the integral in Equation (7.10) the range of integration is split into

four areas:

1. The case: p; < pj and p; +p; <1
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Figure 7.8: The relationship between pP” and a for p? € [—1,1].

Here, the bivariate uniform distribution defined in Equation (7.7) with g(u) =

au® Y is equal to

a

510 - P + (p; 4+ p3) Y]

fPi*,P; (p7 p;“) =

and the integral in Equation (7.6) becomes

1 1
a * * * *\(a— * *\(a— * *
2 / / log p; log pj[(p; — )™ + (v} +p)“ Vldpi dpj.  (7.11)
0 0

Now let s = pj — pj and ¢ = pj + pj. Given the range restrictions for p; and
p;, this implies that 0 < ¢ < 1 and —¢ < s < 0. Thus after performing a

change of variables, (7.11) becomes

1 0 1 1
a / / log (s + ) log ~(t — 8)[(=)@ D + @D\ dsdt.  (7.12)
1), )., %3 2

. The case: p;{ > pj and p{ +p; <1
Here, the bivariate uniform distribution defined in Equation (7.7) with g(u) =

au® Y is equal to

a

5[0} = P+ (pf +p)) )]

fPZ.*,P; (pi,pj) =
and the integral in Equation (7.6) becomes
a 1 X 1
5/ / log p} log p[(p} — p))“™ + (0 +p))“ ") dp; dpj. (7.13)
o Jo

Now let s = p; — p; and t = p; + pj. Given the range restrictions for pj
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and pj, this implies that 0 < ¢ <1 and 0 < s < t. Thus after performing a

change of variables, Equation (7.13) becomes

1 —t 1 1
a4 / / log = (s +t)log =(t — 8)[s* ™V + t@=D)) ds dt. (7.14)
1), )y 2 2

3. The case: p; < pj and p; + pj > 1
Here, the bivariate uniform distribution defined in Equation (7.7) with g(u) =
au'*Y is equal to

a

* *\ (a—1 * *) (a—1
S5 =P+ (2= pf =)

fPZ.ﬁP; (p;‘ka p;k) =

and the integral in Equation (7.6) becomes

a ! ! * * * *\ (a— * *\(a— * *
5/ / log p; log p[(p; —p) "V +(2—p] - pj)(a V)] dp; dpj.  (7.15)
0 0

Now let s = p; — pj and ¢ = p; + pj. Given the range restrictions for p; and
pj, this implies that 1 <¢ <2 and ¢ —2 < s < 0. Thus after performing a

change of variables, Equation (7.15) becomes
a (2. 1 1
a / / log (s + ) log ~(t — 5)[(—8)@D + (2 — )@=D)| dsdt.  (7.16)
401 Jia T2 2

4. The case: p{ > p; and p; + p; > 1
Here, the bivariate uniform distribution defined in Equation (7.7) with g(u) =

au'®Y is equal to

a

* *\ (a—1 * *\(a—1
2[(2%_27]')( )+(2_pi_pj)( ))]

fP;,P; (p:,p;) =
and the integral in Equation (7.6) becomes
a [t [t
5/ / log p} log pi[(p; — p)' ™V + (2 — pf — p)* N dp; dp;.  (7.17)
0o Jo
Now let s = p; — p} and ¢ = p; + pj. Given the range restrictions for p; and

p’]'f, this implies that 1 <t <2 and 0 < s < 2 —t. Thus after performing a

change of variables, Equation (7.17) becomes
a 2 2—t 1 1
: / / log (s + 1) log o (¢ — 5)[s~ + (2 — )« )] dsdt. (7.18)
1 Jo

Due to symmetry Equations (7.11) and (7.13) are equivalent and so are Equations
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(7.15) and (7.17). Equations (7.11), (7.13), (7.15) and (7.17) can be combined to
obtain the joint expectation E[log(p;)log(p;)]. Thus Equation (7.6) is equal to

Ellog(p!) log(;)] = a [ | tor 55+ 108 50 = 9)l(=s)e Y+ e jasa

2 [0
1 1
+ / / log = (s +t)log =(t — s)[(—=s) @V + (2 =)@ V)] ds dt |,
1 Jia 2 2
and so the joint expectation can be substituted into

Cov(—2log(p;), —21log(p;)) = 4(E[log(p;) log(p;)] — 1)

*

to obtain the covariance between —2 log(p;

) and —2log(p;), thus enabling an es-
timate to be obtained for the variance of Z2.

Now that an estimate for both the mean and variance can be found, the method
of moments can be used to find estimates for the parameters ¢ and f of the scaled

x? distribution and hence a p-value can be obtained.

7.2.4 Using Fisher’s Combined Probability Test on Depen-

dent p-values

Consider a set of p p-values py, ..., p,, and let the correlation between two p-values
p; and p; be high when |i — j| = 1 and decay when |i — j| increases. Estimate the
value of k = |i — j| in which the correlation between p-values is no longer large.
There now exists two ways of proceeding, the choice of which is down to the user
and each comes with advantages and disadvantages.

The first method is to consider a sliding block B;, i = 1,...,p—k+1 of k consec-
utive p-values. Apply Fisher’s combined probability test to each block of p-values
where B; = {pi,...,pk+i—1}. This method has advantages in that every possible
block of consecutive k p-values are tested using Fisher’s combined probability test.
However a big disadvantage is that subsequent adjacent p-values obtained after
applying Fisher’s combined probability test will remain highly correlated.

An alternative approach is to consider non-overlapping blocks B;, i = 1,...,%
of k consecutive p-values. An obvious disadvantage to this method is the require-
ment of £ € N. Apply Fisher’s combined probability test to each block of p-values
where B; = {pryi_1,---,Pir}. The advantages of this method is that the correla-
tion between Fisher’s combined probability test p-values should no longer be high,
however many sets of k£ consecutive p-values are not tested, and thus important

information may be lost.
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7.2.5 Example

Consider the same two samples from a multivariate normal distribution with mean
vectors defined in Equation (7.3) and covariance matrix defined in Equation (7.4)
from Section 7.1.2. The value of |i — j| in which p; and p; are no longer highly
correlated is 5, thus we will consider blocks of size 5.

Firstly consider a sliding block of 5 p-values. We can perform Fisher’s com-
bined probability test on each block B;, i =1,...,46. As 46 simultaneous Fisher’s
combined probability tests are being performed, the 5% Bonferroni corrected sig-
nificance threshold is calculated for m = 46. Note that as all blocks remain highly
correlated, the number of effective independent tests will be smaller than 46. Fig-
ure 7.9 shows the p-values obtained after performing Fisher’s combined probability
test on each block B;, i =1,...,46.
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Figure 7.9: Using a sliding block of 5 p-values, the Fisher’s combined probability
test p-values are plotted when the test is performed on each block B;, ¢ = 1,. .., 46,
of highly correlated p-values. The horizontal grey dashed line represents the 5%
Bonferroni corrected significance threshold.

Figure 7.9 shows that only blocks B, and By are considered as not significant,
however as all the p-values in By and By appear in other significant blocks, we
could conclude that all p-values are significant. This conclusion is consistent with
the results from Section 7.1.2. We could alternatively conclude that all p-values in
blocks B; and Bg are not significant, however as there still exists high correlation
between the modified Fisher’s method p-values, the number of effective indepen-
dent tests is still about 10, and thus the Bonferroni corrected significance threshold
is too high. When the Bonferroni corrected significance threshold is calculated for
m = 10 all blocks are significant. In application however, it is impossible to know
the number of effective independent tests without using estimation procedures like

from Section 7.1.1. Therefore this method should be used with caution.

138



7.2 Fisher’s Combined Probability Test for Dependent p-values

Next consider non-overlapping blocks of 5 p-values. We can perform Fisher’s
combined probability test on each block B;, i« = 1,...,10, of highly correlated
p-values. As ten simultaneous Fisher’s combined probability tests are being per-
formed, the 5% Bonferroni corrected significance threshold is calculated for m =
10. Figure 7.10 shows the p-values obtained after performing Fisher’s combined

probability test on each block B;, i =1, ..., 10, of highly correlated p-values.

0.004 0.006
|

0.002
l

Modified Fisher's p-value

0.000
|
.
.
)
.
.

Figure 7.10: Using non-overlapping blocks of 5 p-values, the Fisher’s combined
probability test p-values are plotted using when the test is performed on each
block B;, 1 = 1,...,10, of highly correlated p-values. The horizontal grey dashed
line represents the 5% Bonferroni corrected significance threshold.

Here, Figure 7.10 shows that all blocks are significant. We therefore conclude
that all p-values are identified as significant. Using non-overlapping blocks of 5
p-values works well here, however in application the data might not be corre-
lated in perfect blocks, thus using a sliding block might be more suitable as all
groups of adjacent p-values are considered. Note that the conclusions drawn after
applying Fisher’s combined probability test using a sliding block system and non-
overlapping block system are the same. As well as this, both methods manage to
identify that, for each variable, the distributions of each sample are not the same.
We have therefore shown that Fisher’s combined probability test may be a suitable
post-hoc test to perform to identify further significant regions by accounting for

correlation within the data.

7.2.6 Lung Cancer Data Set

We found in Section 6.2.1 that high correlation is present until at least lag 20
for patients with each subtype of lung cancer. Because of this, we consider a
sliding block of 20 p-values within each chromosome and perform Fisher’s combined

probability test on each block. By using a sliding window on each chromosome,
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7. Multiple Testing for Dependent p-values

we ensure that a block of p-values will not overlap more than one chromosome.
Figure 7.11 shows the —log;,(p;) plotted against the block of 20 p-values, where
p; represents the p-values obtained after performing Fisher’s combined probability

test on each block.
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Figure 7.11: The p-values of each sliding block of 20 Cramer test p-values using the
adjusted Fisher’s method. The scale of the vertical axis is —log;,(p-value). The
horizontal grey line represents the Bonferroni corrected significance threshold with
m = 17173. The alternating colouring scheme indicates different chromosomes.

After performing Fisher’s combined probability test on sliding blocks of 20
p-values for each chromosome, the number of significant blocks is 1,725. This
corresponds to a total of 2,580 significant windows when we count the number
of unique significant windows across all the blocks. Table 7.3 shows the num-
ber of windows which were identified as significant by (1) both Fisher’s combined
probability test and using the Bonferroni correction (with the estimated number
of effective independent tests), (2) Fisher’s combined probability test only, (3)
using the Bonferroni correction (with the estimated number of effective indepen-
dent tests) only and (4) neither Fisher’s combined probability test or using the
Bonferroni correction (with the estimated number of effective independent tests).

Fisher’s Combined Probability Test
Significant Not Significant
. . Significant 2,236 929
Bonferront Correction  \o4'ionificant | 344 15,377

Table 7.3: The number of significant windows (after Bonferroni correction for
Fisher’s combined probability test) when using Fisher’s combined probability test
and using the Bonferroni correction (with the estimated number of effective inde-
pendent tests).

140



7.2 Fisher’s Combined Probability Test for Dependent p-values

Table 7.3 shows that both methods were able to identify a further 2,236 signifi-
cant windows more than when no adjustment for correlation is taken into account.
However, there were just over 900 windows identified as significant using the Bon-
ferroni correction (with the estimated number of effective independent tests) for
which Fisher’s combined probability test identified as insignificant. One potential
cause is that high correlation still exists between the Fisher’s combined probability
tests, thus the significance threshold may be too high. One solution to this would
be to perform Fisher’s combined probability test and then calculate the effective
number of independent tests to adjust the Bonferroni correction. This would how-
ever have the disadvantage we tried to avoid which is that of being computationally
slow.

To show which windows are identified as significant by each method, Figure
7.12 shows a plot of the p-values using the univariate Cramer test and the GPD
to calculate the p-value for each window of the genome. The p-values which are
identified as significant by each method are plotted on the graph using a different
symbol. It can be seen from Figure 7.12 that if the significance level was cor-
rected for the estimated number of effective independent tests, Fisher’s combined
probability test may identify more windows in common with just using the Bon-
ferroni correction (with the estimated number of effective independent tests) on

the Cramer test p-values.

7.2.7 KC Smart Data Set

For the artificial KC Smart data set we will perform Fishers combined probability
test on each chromosome to test the significance of each one. Given that the
data was created so there exists a difference in CNA between the two groups in
chromosome 4, we would expect to see this and only this chromosome as significant.
For this example, we use non-overlapping blocks B;, ¢ = 1,...,22. Each block B;
will contain the p-values of each region in chromosome i. Table 7.4 shows the
Fishers combined probability test p-values after performing the test on each block
B;.

Figure 7.13 shows a plot of the Fishers probability test p-values for each chro-
mosome. The horizontal grey line represents the Bonferroni corrected significance
threshold. In this case, any p-values below the threshold is considered significant.

It can be seen from Figure 7.13 that the only chromosome which is significant
is chromosome 4. This is consistent with the results obtained after applying KC
Smart and therefore suggests that chromosome 4 is indeed significant after taking
the correlations into account.

After calculating the effective number of independent tests for this dataset
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Figure 7.12: The p-values using the univariate Cramer test and the GPD to cal-
culate the p-value for each window of the genome. The scale of the vertical axis
is —log,,(p-value). Larger circles are plotted at windows which are identified as
significant by both Fisher’s combined probability test and using the Bonferroni
correction (with the estimated number of effective independent tests), triangles
are plotted at windows which are identified as significant by using the Bonferroni
correction (with the estimated number of effective independent tests) only and plus
signs are plotted at windows which are identified as significant by Fisher’s com-
bined probability test only. The alternating colouring scheme indicates different
chromosomes.
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Figure 7.13: The p-values of applying Fishers combined probability test to each
block B; of p-values for each chromosome.
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7.2 Fisher’s Combined Probability Test for Dependent p-values

Chromosome | p-value

1 0.148
0.101

3 0.234
4 0
5) 0.220
6 0.096
7 0.090
8 0.060
9 0.077
10 0.217
11 0.097
12 0.192
13 0.254
14 0.043
15 0.164
16 0.150
17 0.166
18 0.388
19 0.088
20 0.336
21 0.072
22 0.182

Table 7.4: The Fishers combined probability test p-values when applied to blocks
of p-values B; from each chromosome i.
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7. Multiple Testing for Dependent p-values

in Section 7.1.4 and correcting the significance threshold using the Bonferroni
correction, the probes 717-924 were not considered significant. This therefore
provides an example for which Fisher’s combined probability test is able to identify

regions of significance which other methods do not.

7.2.8 Using the Multivariate Version of the Cramer Test

Baringhaus and Franz (2004) not only introduces the univariate Cramer test but

also extends it to a multivariate case. The multivariate test statistic is defined by
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where
VA =T (1)
Vd = ,
2T (5)
p is the uniform distribution on S ! = {x € R? : ||z|| = 1}, the surface of the

unit sphere in R? and d is the dimension of the data.

This version of the test is therefore comparable with using the univariate version
of the test followed by Fisher’s combined probability test. In the multivariate
Cramer test, p-values are calculated by bootstrapping the limiting distribution.
Thus to directly compare the two methods, a sliding block of 20 windows is tested
using the multivariate Cramer test. Figure 7.14 shows the —logy,(p;) plotted
against the block of 20 windows, where p; represents the p-values obtained after

performing the multivariate Cramer test.
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Figure 7.14: The p-values of each sliding block of 20 windows using the multivariate
Cramer test. The scale of the vertical axis is —log,,(p-value). The alternating
colouring scheme indicates different chromosomes.
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7.3 Segmentation Methods

The Bonferroni significance threshold with m = 17,173 is —log, (122 ) = 5.55,
thus it can be seen from Figure 7.14 that only blocks of 20 windows with a p-value
of 0, where —log;,(0) = oo, will be larger than this threshold. The number of
blocks of windows with a p-value of 0 is 2,297. This corresponds to a total of 4,714
significant windows when we consider each window separately. Table 7.5 shows
the number of separate windows which were identified as significant by (1) both
Fisher’s combined probability test and the multivariate Cramer test, (2) Fisher’s
combined probability test only, (3) the multivariate Cramer test only and (4)

neither Fisher’s combined probability test or the multivariate Cramer test.

Fisher’s Combined Probability Test
Significant Not Significant
Significant 2,312 2,402
MV Cramer Test o cionificant | 268 15,301

Table 7.5: The number of significant windows (after Bonferroni correction for
Fisher’s combined probability test) when using Fisher’s combined probability test
and the multivariate version of the Cramer test.

Table 7.5 shows that the multivariate version of the Cramer test identified
2,402 significant windows for which Fisher’s combined probability test identified
as insignificant. Again this shows that Fisher’s combined probability test may
be misidentifying significant windows because of a misplaced significance thresh-
old. Therefore we again suggest to correct the Bonferroni corrected significance
threshold by estimating the effective number of independent Fisher’s combined
probability tests.

Figure 7.15 shows a plot of the p-values using the univariate Cramer test and
the GPD to calculate the p-value for each window of the genome. The p-values
which are identified as significant by each method are plotted on the graph using
a different symbol. Note that some of the windows for which only the multivariate
Cramer test identified as significant has a very small —log,,(p-value) in Figure
7.15. It is unclear whether these windows are being correctly identified as signif-
icant. Therefore further research is needed to discover whether the results from
the multivariate Cramer test is “correct”. For example, the false positive rate can
be examined for the multivariate Cramer test to ensure it is properly controlled.

We leave this as future work.

7.3 Segmentation Methods

Recall the segmentation techniques used to analyse CNA data per sequence in Sec-

tion 1.6.2. Typically these techniques are performed prior to any further analysis
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Figure 7.15: The p-values using the univariate Cramer test and the GPD to cal-
culate the p-value for each window of the genome. The scale of the vertical axis
is —log,,(p-value). Larger circles are plotted at windows which are identified as
significant by both the multivariate Cramer test and Fisher’s combined proba-
bility test, triangles are plotted at windows which are identified as significant by
the multivariate Cramer test only and plus signs are plotted at windows which are
identified as significant by Fisher’s combined probability test only. The alternating
colouring scheme indicates different chromosomes.

being carried out and the lung cancer data set is not different. For our analysis we
perform the Cramer test on the segmented CNA data and obtain correlated test
statistics and p-values for each genomic window. In this chapter, we investigated
various techniques which aims to solve the multiple testing problem for depen-
dent p-values. However, an alternative approach would be to use the segmentation
techniques described in Section 1.6.2 to segment the p-values or equivalently the

test statistics.

As many segmentation techniques consider the correlation in the data, this
seems like a suitable approach. There is however still a problem of choosing a
suitable significance threshold. If, for example, the CBS technique was used to
segment the test statistics or p-values, a suitable significance threshold correction
could be to divide the chosen significance level by the total number of segments -
similar to the Bonferroni correction. Figure 7.16 shows the results after applying
the CBS segmentation technique to the p-values of the Cramer test applied to each
window of the lung cancer data set. The total number of segments obtained after
applying CBS to the p-values is 2389. The total number of significant regions
is 113 which equates to a total number of 901 significant windows. This once
again provides an alternative number of significant windows compared to other

techniques described in this chapter and further analysis is needed to determine
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which method provides the best results.
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Figure 7.16: The results after applying the CBS segmentation technique to the
p-values of the Cramer test applied to each window of the lung cancer data set.
The scale of the vertical axis is —log;y(p-value). The black lines represent the
segments obtained after applying CBS. The horizontal grey line represents the
significance threshold after dividing 0.05 by 2389 - the total number of segments.
The alternating colouring scheme indicates different chromosomes.

Recall in Section 1.6.2 the use of hidden Markov models as a method for
analysing CNA data per sequence by segmenting the data into various states.
These methods could also be used as a way of dealing with dependent p-values.
By considering only two states, namely significant or not significant, a hidden
Markov model could be fitted to the p-values obtained from the test. It is there-
fore an alternative approach at identifying which genomic regions are significant by
using the results from applying the Cramer test whilst also considering the corre-
lation within the data. However, the challenge would be to identify the transition
probabilities and emission probabilities as the transition probabilities would rely
on the correlation between adjacent p-values and the emission probabilities would
rely on the desired false discovery rate. This method would provide an alternative
approach at dealing with multiple testing for dependent p-values and we consider

this to be future work.

7.4 Discussion

In this chapter, we explore two main methods for dealing with dependent p-values
in the multiple testing problem. The first method is described by Dudbridge and

Gusnanto (2008) which enables the user to estimate m - the number of effective
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7. Multiple Testing for Dependent p-values

independent tests. This method was shown to work well on a toy data set and was
also applied to both the lung cancer data set for each chromosome and the artificial
data set from the KC Smart vignette. The major disadvantage of this method is
the speed of computation. Another disadvantage is that if the correlation structure
cannot be described by a number of effective independent tests, this method may
not work sufficiently.

We then looked to adapt Fisher’s combined probability test for dependent p-
values when the distribution of the test statistics is unknown. To do this, we
considered the joint distribution of the p-values instead of the joint distribution of
the test statistics in the calculation of Var[Z?]. The method was applied to a toy
data set to show how it works in the case of a sliding block of k£ p-values and non-
overlapping blocks of k£ p-values. We also applied the method to the lung cancer
data set and the artificial data set from the KC Smart vignette. After applying
Fisher’s combined probability test to the lung cancer data set, a further 2,580 win-
dows were found to be significant. The Bonferroni correction (with the estimated
effective number of independent Cramer tests) identified 929 significant windows
that Fisher’s combined probability test did not. We suggest that the cause for this
is due to the correlation between the Fisher’s combined probability tests which
are performed simultaneously. We therefore suggest that the effective number of
independent Fisher’s combined probability tests are calculated to adjust the sig-
nificance threshold accordingly. This however, will make the computation much
slower. When Fisher’s combined probability test was performed on chromosome
4 in the artificial dataset in the KC Smart vignette, the probes were identified as
significant, which is consistent with the results obtained after applying KC Smart.

We also compared Fisher’s combined probability test to the multivariate version
of the Cramer test and again found that the multivariate Cramer test identified
more significant windows. We suggest however that further research is required
to understand whether the windows which are identified as significant by the mul-
tivariate Cramer test is “correct”. This will therefore enable a fairer comparison
between the methods.

It should be noted that other methods for combining p-values exist which are
similar to Fisher’s combined probability test. Namely Tippett et al. (1931) sug-
gests using Z2 = min(p;) and Liptak (1958) considers Z2 = Y25 ®~'(1 — p?) for
which Hartung (1999) develops a dependent p-value version with the assumption
that the test statistics are normally distributed. It would be of interest to com-
pare the results from applying these methods to the results from applying Fisher’s
combined probability test and observe whether similar regions are being identified
as significant. We consider this as future work.

The fact that applying Fisher’s combined probability test to the p-values iden-
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tifies further genomic regions which display a significant difference of CNA between
groups of patients suggests that correlation plays an important role in identifying
such genomic regions. It is therefore of interest to perform further research into
other techniques which can correct for the correlation in the data. As mentioned
in Section 1.2.2 there are multiple ways for which correlation can be incorporated
into the test. Further research could be done in all three areas and the methods
compared to fully understand which approach is the best based on accuracy of

results as well as speed.
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Chapter 8

Discussion

In this thesis, we developed an alternative approach for identifying genomic regions
of interest using Copy Number Alterations (CNA) to determine tumour subtypes.
We developed our method by comparing the CNA between patients with two
subtypes of lung cancer, namely adenocarcinoma and squamous carcinoma type
lung cancer. Firstly, we implement and perform the Cramer test on each window
and obtain the p-values by fitting a Generalised Pareto Distribution (GPD) to
the null distribution. As the p-values are not all independent, we then suggest to
perform Fisher’s combined probability test on blocks of p-values to obtain larger

regions of significance when the correlation between p-values is considered.

To find a suitable two-sample test to compare the distribution of estimated
copy number alterations between two subtypes of cancer, Chapter 2 investigated
well-known parametric and non-parametric tests. We show that our data displays
evidence of multi-modality as well as skewness. Thus we required a test statistic
which can not only deal with this type of data, but also be sensitive at identifying
differences in not only the mean and variance, but also the skewness and multi-
modality. Because of this, we immediately determined that the two-sample t-
test and F-test would be unsuitable. We discuss the skew-adjusted t-test, which
adjusts for skewness, as a potential choice but show that under certain conditions
it is equivalent to Welch’s t-test. As the test statistic needs to be more flexible, we
focus on non-parametric tests. For testing our null hypothesis, Hy : F(z) = G(y),
a Cramer-von Mises type test can be implemented. We show by simulation that
the Cramer test, which is a modification of the Cramer-von Mises test, is more
sensitive at identifying differences between multi-modal data than the Cramer-von
Mises test and Anderson-Darling test. Whilst other tests could be considered, we

choose to adopt the Cramer test to identify genomic regions of significance.

We obtain the first four moments of the Cramer test statistic in Chapter 3

when the distribution function H(t) is unknown. For this purpose, we can use the
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empirical cumulative distribution function H,,,(t) to approximate H (t), thereby
ensuring the test remains distribution free. For various known forms of H(t), we
also provide the expectation and variance of the test statistic. We show that the
Cramer test is invariant to a linear transformation and thus prove that data can
be standardised without affecting the p-value. Because the data can be standard-
ised without affecting the p-value, this provides a method of rejecting the null
hypothesis without the need for calculating a p-value.

Chapter 4 explores methods for calculating the p-value without the need for
resampling. We first discuss resampling techniques, i.e. the permutation approach
and the bootstrap approach for which Baringhaus and Franz (2004) adopts. We
show that these methods are too slow and computationally expensive when we
require the test to be repeated on tens of thousands of variables. We therefore
investigate an empirical approach for estimating the p-value. By finding a suitable
empirical approximation to the null distribution, the parameters can be obtained
by using the method of moments. We show that two-parameter approximations,
transformations of the test statistic and the extreme value theorem are all viable
methods but do not provide a good approximation to the p-value in this case.
Instead we show that the three-parameter Generalised Pareto Distribution (GPD)
is a suitable empirical approximation. We compare our method to calculate the
p-value to the resampling techniques in Chapter 5.

We started Chapter 5 by considering the computational burden of the test. We
successfully modified the computational calculation to provide fast and accurate
results. We did this by firstly considering the trapezium rule as an approximation
for the integrals as well as using C++ for the calculations. We compared the speed
and accuracy of our method for calculating the p-value to the permutation test
and the bootstrap approach for which Baringhaus and Franz (2004) adopts. The
results of this comparison showed that our method was much faster and just as
accurate for p-values less than 0.10 as the two other methods. To locate genomic
regions of interest, the test is required to be performed on over 10,000 variables
simultaneously. Hence, using the GPD to estimate the null distribution and obtain
a p-value seems the most appropriate method in this case.

We prove, through a simulation study in Chapter 5, that the Cramer test was a
good choice of two-sample test to locate genomic regions of interest. We show that
it is able to correctly control the false positive rate under different conditions whilst
also being more sensitive than the Cramer-von Mises and Anderson-Darling test
at identifying differences between two samples of multi-modal data. In situations
where there is only a difference of mean, the Cramer test was just as sensitive as
other tests including the t-test. For a difference in the variances, the F-test was

still superior, but the Cramer test was no less sensitive than the Cramer-von Mises
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and Anderson-Darling tests.

When comparing our two-sample test approach for identifying genomic regions
of interest to KC Smart in Chapter 5, we note that KC Smart is able to identify the
same significant regions as our method and more. We cannot be certain however
that the regions which KC Smart identifies as significant are correctly identified.
To examine this, we would need to determine whether the false positive rate is
properly controlled. We leave this as future work. After segmenting the data
and performing the Cramer test on each segment, we were able to identify similar
significant regions as KC Smart. This indicated that the correlation between tests
or p-values was affecting the number of variables which were significant. We look
into this further in Chapters 6 and 7.

We end Chapter 5 by applying our method to the lung cancer dataset. We find
that a large region in chromosome 3 was identified as significant. As Belvedere
et al. (2012) states that chromosome 3 is a significant region to determine the
subtype of lung cancer, we are confident that the Cramer test is correctly identi-
fying significant regions. We also find the Cramer test identifies further significant
regions which have not been previously identified. This information could be of
interest to Oncologists to further help classify patients on their subtype of lung
cancer.

In Chapter 6 we explore the correlation structures of the lung cancer data
set. We were able to model the correlation structure adequately and find that
a multivariate normal distribution is the most suitable model without being too
complicated. We show that very high correlation exists between adjacent windows
and the correlation remains high up until at least lag 20 for each type of lung
cancer. We investigate the correlation between p-values and produce a look-up
table which will give the value of this correlation when the correlation between
variables is known. This table was used later on in Chapter 7.

As our method performs the Cramer test on all windows simultaneously, we
end up with a multiplicity problem. Not only this, but as high correlation ex-
ists between windows, correcting for multiplicity becomes harder as the number
of independent tests is unknown. In Chapter 7 we discuss multiplicity correction
techniques when the p-values are not independent. We firstly discuss a method
used by Dudbridge and Gusnanto (2008) which estimates the number of inde-
pendent tests using permutation to fit a Beta(1,m) distribution to the “minimum
p-values”. Once m has been estimated, the Bonferroni correction using m can be
done in the usual way on the significance threshold. We applied this method to
the lung cancer dataset and found that m < p, the total number of simultaneous
tests performed, for each chromosome. Because of this, many more windows were
identified as significant. We find however, that whilst this method is effective, it
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is computationally slow.

We then consider Fisher’s combined probability test for dependent p-values
that tests the overall significance on groups of p-values. We extend work done by
Brown (1975) and Kost and McDermott (2002) so Fisher’s combined probability
test can be used when the distribution of test statistics is unknown. We demon-
strate this method by applying it to some toy datasets. Then we apply Fisher’s
combined probability test to the lung cancer data set and identify further signif-
icant regions. We compare the results of applying Fisher’s combined probability
test to using the Bonferroni correction (with the effective number of independent
Cramer tests) and the multivariate Cramer test. We conclude that Fisher’s com-
bined probability test may be misidentifying some regions of significance due to
the correlation between the tests and therefore an incorrectly placed significance
threshold. Despite this however, Fisher’s combined probability test identified over
2,000 further significant windows in common with using the Bonferroni correc-
tion (with the effective number of independent Cramer tests) and the multivariate
Cramer test. Further research is also needed to determine whether the significant

windows identified by the multivariate Cramer test is “correct”.

We present in this thesis the results of applying a new method to identify
genomic regions of interest between subtypes of lung cancer. Not many methods
currently exist for the purpose of comparing multiple groups of patients. There are
many examples in the literature where statistical testing was performed of regions
of the genome (Wilting et al. (2006), Van De Wiel and Van Wieringen (2007)
and Smeets et al. (2006)). We believe that the method we have created not only
applies a suitable choice of test which is sensitive at identifying any differences
within the data, but also accounts for the correlation within the data. Whilst
it seems that KC Smart is also a capable method, it still has its disadvantages.
The method relies heavily on a choice of smoothing parameter which could greatly
affect the number of significant regions, something which our method avoids. We
also discover in Chapters 5 and 7 that KC Smart could be overestimating the
significance of some of the regions therefore leading to more significant regions
being identified by this method. As we have already mentioned, further work is
required to investigate the false positive rate of this method. If it is indeed the
case that KC Smart is overestimating the significance and identifying too many
false positives, this could also be a major disadvantage of this method. Because
of all this, we believe that the method we have created provides many advantages
over existing tools.

We believe that further work is required to give a more concrete justification in
the use of Fisher’s combined probability test. For example, to determine whether

the false positive rate is properly controlled for Fisher’s combined probability test
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and the multivariate Cramer test to ensure that the windows which were identified
by each test as significant were correctly identified. If the false positive rate is
incorrectly controlled by Fisher’s combined probability test, then the cause for
this needs to be identified and corrected. If the false positive rate is incorrectly
controlled for the multivariate version of the Cramer test, then depending on the
cause, this could provide a justification for the use of Fisher’s combined probability
test.

Currently our methods only work when comparing two clinical groups of pa-
tients. We believe that further work is required in order to facilitate the comparison
between more than two clinical groups. One-way ANOVA type methods currently
exist which extend the Kolmogorov-Smirnov test to compare multiple groups, eg.
the Kruskal-Wallis test (Kruskal and Wallis, 1952). First steps would involve re-
search into whether this type of extension can be done for the Cramer test. To our
knowledge, no literature exists which looks into comparing two or more clinical
groups of patients, thus these types of methods would be a welcome addition to
the literature.

A major extension to this work is the use of our research to classify new patients
on their subtype of cancer. Using the methods described in this thesis, genomic
markers are identified which display a significant difference in the estimated CNA
between subtypes of cancer. This information could be used to formulate classifi-
cation trees, however incorporating a large amount of information into the classi-
fication trees would involve extensive research to ensure the classification process
is accurate as well as fast. To test accuracy, the classification techniques will be

used on data sets in which the patients subtypes are known.
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Appendix A

Alternative Choices of Hypothesis
Tests

This appendix contains research performed which provided the stepping stones

needed to reach the ultimate goal but does not contribute to the thesis overall.

A.0.1 Skew-Normal Distribution

It could be argued that the data shown in Figure 1.2 follows more closely to a
skew-normal distribution (Azzalini, 1985) rather than a normal distribution. Let
X ~ SN(u, o, @), then the probability density function of X is defined as

= o ()0 (+(57)

where ¢(-) and ®(-) represents the density and distribution function of the stan-

dard normal distribution respectively. The mean, variance and skewness of the

distribution respectively are given by

B[X] = 4 + 05\/§,

Var[X] = o <1 — 2—52)

™

_4-m (6y/2/n)

> (1—20%/m)3

where
o

VIta?

Using the method of moments, a skew-normal distribution can be fitted to each

5:

data set in Figure 1.2. Figure A.1 shows the histograms of the data for windows
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A. Alternative Choices of Hypothesis Tests

448, 2023, and 9546 separated for patients with adenocarcinoma type lung cancer
and patients with squamous carcinoma type lung cancer. The histograms are
plotted with a solid black line representing the probability density function of
the fitted skew-normal distribution. For each histogram, the number of bins was
chosen to be around 10 and for comparison purposes, the histograms for each
type of lung cancer is plotted on the same scale. Figure A.1 shows that a skew-

normal distribution is a better representation of the data compared to a normal

distribution.
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Figure A.1: Density scaled histograms of the estimated CNA in various windows
across patients with adenocarcinoma type lung cancer (left) and squamous carci-
noma type lung cancer (right). Each window is located at a specific position in
a specific chromosome: Window 448 (67.05 — 67.2 Mbp, chromosome 1), Window
2023 (53.85 — 54 Mbp, chromosome 2) and Window 9546 (38.1 — 38.25 Mbp, chro-
mosome 8). The solid black line represents the probability density function of the
fitted skew-normal distribution.
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A.1 Skew-Adjusted t test

A.1 Skew-Adjusted t test

As a skewed distribution is a closer fit to the data compared to a normal distribu-

tion, a test statistic which is adjusted for skewness is considered.

A.1.1 Asymmetric, Skew-Adjusted t-test

The test statistic of a two sample t-test is

_T-y

t= Al
= (A1)

2 2
For 52 = 2X 4+ X ¢ is considered to be Welch’s t-test where s% and s} are
the sample variances for random variables X; and Y}, ¢ =1,...,n, j =1,...,m

respectively. Note that the two-sample t-test is commonly used to test the null
hypothesis Hj : px = py and whilst a rejection of this null hypothesis also implies
a rejection of the null hypothesis in Equation (2.1) it is not always the case that

if Hj is true, Hy is also true.

Balkin and Mallows (2001) considers an asymmetric, skew-adjusted two-sample
t test which slackens the assumption of normality whilst also assuming that the
variance of Yj is larger than the variance of X;. For the second assumption, they
instead use S? = s% (£ + L) and adjust Equation (A.1) for the skewness of X;
with this choice of S. The asymmetric skew-adjusted two sample t-test proposed
by Balkin and Mallows (2001) uses the adjustment

g n+2m 2 m—n )
ta ;= tas mmetric + =T tas mmetric + )
dj ymmet 6 /nm(n + m) ( ymmet m+ 2n

where tsymmetric 1S the t-test statistic defined in (A.1) with S = s% (% + #) and g

is the estimate for the third standardized moment, vx;

=1
and
vy = B[(Xi — px)’]
* Var[X, 22

Note that this asymmetric version of the two sample t-test only considers the
skewness of X; and not Y;. If both random variables are highly skewed then only

considering the skewness of X; can be considered a disadvantage of this method.
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A. Alternative Choices of Hypothesis Tests

A.1.2 Using Welch’s t-test

Note that the adjusted t-test described in Section A.1.1 considers the variance and
skewness of only one of the random variables - in this case X;. This means that
information regarding the other random variable is not being considered, this is
a disadvantage of Balkin and Mallows (2001) test. We have, however, obtained
a skew-adjusted Welch’s t-test, i.e. using S? = % + %, by following the steps
used by Balkin and Mallows (2001). We modify Welch’s ¢-test using the Cornish-
Fisher expansion (Cornish and Fisher, 1938); given some X;, the Cornish-Fisher

expansion of X; is

3
X, =CFx,(2) = 74—t
X,(Z)=p+o tos T

where 1, 0 and pg are the mean, variance and centralised third moment of X;

respectively.

Proposition The Cornish-Fisher expansion of X — Y under the null hypothesis
Hy: F(z) = G(y) is

Proof Under the null hypothesis, we know that puy = px, oy = ox and 7y = 7x.

Now the mean and variance of X — Y is

p=EX-Y]=px—px=0,

and L
0 = Var[X — Y] = Var[X] + Var[Y] = 0% (_ + _) ’

n m

respectively. The centralised third moment of X — Y is

pz = E[(X = Y)’]
= E[X?] — 3E[X?|E[Y] + 3E[X]E[Y?] — E[Y?].
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A.1 Skew-Adjusted t test

Now,

n n n

EX’| =E % DYDY XXX

i=1 j=1 k=1

= . (nE[X?) + 3n(n — DE[XZELX;] + n(n — 1)(n - 2ELXJE[X,JELX,))

n3
1 3(n—1 n—1)(n-—2
= L+ 2o+ D02 (A2)
n n n
The skewness of X; can be expressed as
_ E[(Xi — E[Xi])"]
Tx = 3 )
Ox

and by expanding brackets and using the linearity property of expectations,

E[(X; — E[Xi])’] = B[X]] = 3E[X]]ux + 3E[Xi]u% — p°
= B[X]] = 3ux (0% + px) + 210°.
Thus we have
E[X?] = vxo% + 3ux (0% + %) — 21,

and substituting this into Equation (A.2) gives

> 1 ux 2 3(n—1)
B[X?] = ﬁWXU,?;( + F(Ui + ) — ﬁ/& + Tux(o§< + 1%)

+(n—1)(n—2) 3

n? X
1 3hx (n—3)
= EVXUE)’( + T(Ui + %) + - 58
Similarly,
v 1 3px (m —3)
E[Y?] = W’Yxag} + 7(&( + %) + - 1
It can also be shown that
21T [T Ox 2
EIXEY] = e (5 +0%)
o o
E[XIE[Y?] = ux (EX 1)
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Then

CFy yv(Z)~0o —-I—lZ 7Xg)c(#_#)(ZQ—l)
o TVt 6k (3 )
1 1 1
T Tz 2 (L Dy
n o m 6 n m
1 1 1 1
—ox |y~ 4+ —Z+ X (---) (22—1)]
n o m 6 \n m
O
Proposition The Cornish-Fisher expansion of S§? = % + % under the null
hypothesis is approximated by
n3 +m?3

1 1

nm(n + m)

where
4

X
— 0
Vi =B
9x

Proof The mean of S? is



A.1 Skew-Adjusted t test

as 0% = o% under the null hypothesis. The variance of s% is proved by Cho and
Cho (2009) and is

Var[s3] =

(13 —o%)+0(n™?)

S|I— 3

where pf is the fourth centralised moment. Thus,

2 2
Var[S?] = Var {S—X + S—Y}
nom

1 1
= ﬁVar[sg(] + WVar[s%]

1 1
= E(Mf —o%) + @(Mf —oy)

1 1
= (uy —oy) ($+$),

as uy = p) under the null hypothesis. Hence, the Cornish-Fisher expansion of 52

is approximated by

11 34 m?
CFs(W) ~ 02 (—+—> [1+ n—mZ\/%W]

nom nm(n +m)
O
Now, assume that the skew-adjusted t-test is of the form
tagj =t + A+ vt2 (A.3)

By noting that we can write ¢ as the ratio of C'F'y_y and C'Fs2, substituting the
Cornish-Fisher expansions into the adjusted t-test statistic in Equation (A.3), we

get

Yy m-—n 5 m3 4 n3
I+ —-——mZ" 1) | x| 1+ | —————— VW
6 \/nm(n+ m)( >] ( nim(n +m)? ” )

SIS

tag; =

FA+v |22 <1+ —
nm(n +m

m3+”3>2\/@w> ]+O(n%). (A.4)
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Using the Taylor series expansion, Equation (A.4) becomes

adj Z+Z? 7X m—-"n +u X m-n +)\
6 /mn(n+m) 6 \/mn(n+m)
1 m3 4 n?
— WZ.
2 nm(n—l—m)Qm

Now, it can be shown that

— — /JJX
Cov(X —Y,s%) = &2
n
— — MY
Cov(X —Y,s}) = —EE’.
Thus
T T AN
COV X—Y,—+— —2——2
n m n m

11
_ X
— <ﬁ_ﬁ)

as 5 = p3 under the null hypothesis. Then using the Cornish-Fisher expansions,

ugf( ) Cov(ax\/TZa —+ mw)

V(n+m)(n? +m?)
(nm)?

COV(Z, W) = \/%(m — n) m

Now, let W = \V/—%(m —n)y/ n@f%Z + Z* where Z and Z* are both independent

normally distributed random variables. Then we have

V72Cov(Z, W).

3
X

Thus

Z+Z2 rYX m-—-n
Ladj | T Y
! 6\/mnn—|—m 2 /mn(n+m) 6 \/mn(n+m)
1 m3 + n?
A= o |z

2\ nm(n+m)

Now we solve for A and v so as to remove the constant term and the term in Z?2
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respectively. Thus

Tx m—-n
6 /mn(n+m)

Tx m-—-n
v = —

3 /mn(n+m)
Hence, the skew-adjusted t-test statistic is

m—n
fagj = £+ 5

; mn(n—i—m)(zt +1).

Note that when the sample size is the same, i.e. n = m the adjusted t-test
will be equal to Welch’s t-test. Thus this adjustment is only applicable when the
sample sizes are unequal. For the lung cancer data set, n = m = 36, thus applying
the skew-adjusted t-test will be equivalent to applying Welch’s ¢-test which, as we

have already stated, is not an optimal choice of test for our data.
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Appendix B

Alternative Methods to Obtain a
Suitable Null Distribution

In this appendix, we discuss other methods which were considered when finding a

suitable null distribution.

B.0.1 The (Scaled) Chi-Square Distribution

Recall that T, ,, is distributed as a scaled Chi-Square distribution if T, ,, ~ cx?v.
To estimate the parameters of the scaled Chi-Square distribution, we use method
of moments as we can easily estimate E[T},,,] and Var[T,,,,| from the sampled
test statistics and in an application setting we can use the formulas obtained in
Chapter 3, Section 3.3 using H,,.,, in place of H. The formulas to calculate the

parameters of the scaled Chi-Square distribution are

_ QE[TH,W]Q o Var [Tn,m]

L=V, 7 WT.]

When X and Y both follow a N(0,1) distribution, the estimates for ¢ and f are
c=0.174 and f = 3.353. Figure B.1 shows the QQ-plot comparing the percentiles
of the 10000 test statistics and the percentiles of the fitted scaled Chi-Square
distribution. As the points in the QQ-plot do not lie on a straight line, it is clear
that the scaled Chi-Square distribution is not a suitable fit to the null distribution.
We therefore do not test to see whether the Chi-Square distribution will work when
X and Y follow a multi-modal distribution with 2 or 3 peaks and try a different

choice of distribution for v(z).
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2.0

15

1.0

Sampled Test Statistic Percentiles

0.0

|
0.0 0.5 1.0 15 2.0

Scaled Chi-Square Theoretical Percentiles

Figure B.1: The percentiles of the 10000 sampled test statistics plotted against
the percentiles of the fitted scaled Chi-Square distribution with ¢ = 0.174 and
f =3.353.

B.0.2 The Gamma Distribution

Figure 4.1 suggests that a Gamma distribution could be suitable. Thus we shall
next consider the Gamma distribution as an estimate of the null distribution.
Again, method of moments can be used to estimate the parameters o and 3. The

formulas to calculate the parameters of the Gamma distribution are

E[T,.m)?

" E[T;,.]
~ Var[T,,.]’

? = VarlLm]

When X and Y both follow a N(0,1) distribution, the estimates for o and 3 are
a = 1.68 and # = 2.88. Figure B.2 shows the QQ-plot comparing the percentiles of
the 10000 test statistics and the percentiles of the fitted Gamma distribution. As
the points in the QQ-plot do not lie on a straight line, it is clear that the Gamma
distribution is not a suitable fit to the null distribution. We therefore do not test
to see whether the Gamma distribution will work when X and Y follow a multi-

modal distribution with 2 or 3 peaks and try a different choice of distribution for

v(z).

B.0.3 The Log-Normal Distribution

Next, we consider a log-normal distribution as an estimate to the null distribution.

Again, method of moments can be used to estimate the parameters u and . The
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Figure B.2: The percentiles of the 10000 sampled test statistics plotted against
the percentiles of the fitted Gamma distribution with o = 1.63 and g = 2.93.

formulas to calculate the parameters of the log-normal distribution are

PR (I R )
L+ e Bl

When X and Y both follow a N(0, 1) distribution, the estimates for p and o are
1= —0.82 and o = 0.69. Figure B.3 shows the QQ-plot comparing the percentiles
of the 10000 test statistics and the percentiles of the fitted log-normal distribution.
As the points in the QQ-plot lie close to a straight line, this indicates that the

log-normal distribution could be a reasonable fit for the null distribution.
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Figure B.3: The percentiles of the 10000 sampled test statistics plotted against
the percentiles of the fitted log-normal distribution with 4 = —0.82 and ¢ = 0.69.

When X and Y both follow a ZN(1,0.25) + £N(3,0.25) mixture distribution,
the estimates for p and o are y = —1.47 and ¢ = 0.78. Figure B.4 shows the

169



B. Alternative Methods to Obtain a Suitable Null Distribution

QQ-plot comparing the percentiles of the 10000 test statistics and the percentiles
of the fitted log-normal distribution. It is now clear that when X and Y are
multi-modal, the log-normal distribution is not an accurate enough fit for the null
distribution. As multi-modality is a common feature in the lung cancer dataset,
it is important that the estimate of the null distribution is accurate enough when
X and Y is multi-modal.
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Figure B.4: The percentiles of the 10000 sampled test statistics plotted against
the percentiles of the fitted log-normal distribution with 4 = —1.47 and ¢ = 0.78.

B.0.4 Other Two-Parameter Distributions

Whilst the Chi-Square, Gamma and log-normal distributions are the only dis-
tributions presented in this chapter, other two-parameter distributions were also
considered as a choice for the null distribution. Many suitable two-parameter dis-
tributions such as the two-parameter Pareto, Beta-Prime, F, and Weibull distribu-
tions were considered. The parameters were estimated using method of moments
and the fitted cumulative distribution curves were compared to the empirical cu-
mulative distribution curve when the underlying distributions were normally and
multi-modally distributed. In almost all cases, the fitted CDFs were not a close
match to the ECDF when the underlying distributions were normally distributed.
In the case of the Beta-Prime distribution, the fitted CDF was a close match for
the ECDF when the underlying distributions were normally distributed. However,
in all cases, the fitted CDFs were not a close match to the ECDF when the under-
lying distributions were multi-modally distributed. Thus it became clear that a

two-parameter distribution would not be a suitable choice for the null distribution.
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B.1 Transformation of 7, ,,

As no two-parameter distributions were found to be suitable for estimating the
null distribution, it may be the case that after transforming the data, a two pa-
rameter distribution will be a reasonable fit for the transformed data. We consider
a transformation of the form T;fjm, ¥ € R. It is important however, that the
parameters of the null distribution for the transformed test statistic can still be
calculated given only the mean and variance of the untransformed test statistic.

Because of this, the choice of two parameter distributions for the null distribution

of the transformed test statistics is limited. Consider U = T ;fm where t1,...,t,
and uq,...,u, are sampled data from random variables 7T}, ,,, and U respectively.

B.1.1 Finding the Optimal .

If U follows a two parameter distribution, there must exist a 1 such that 7,7,
also follows the distribution. When performing a hypothesis test, the significance
level of the test is usually less than 10%. Thus, it is more important for the null
distribution approximation to be accurate in the right tail as opposed to the left
tail. When finding an optimal ¢ only the fit in the right tail will be optimised for
¥ > 0 and the fit in the left tail will be optimised for ¢» < 0. More specifically,
we will consider optimising the fit of the distribution between the 90th and 100th
percentiles when ¥ > 0 and between the Oth and 10th percentiles when ¢ < 0.
If U = TY,, and the distribution of U is known, then

RT,. = /0?<p - Nk(N_l(p))2 dp

will give a measure for how suitable U is for the right tail of the null distribution

and o1
LTacc = / (p - Nk(N_l(p))2 dp
0

will give a measure for how suitable U is for the left tail of the null distribution.
To find the value of 9 for which T;fjm follows the same distribution as U, RT,..
and LT,.. are minimised over ¢ € (0, 1] and ¢ € [—1,0) respectively.

B.1.2 Transforming 7),,, to a Log-Normal Distribution
Suppose U ~ LN(u,0), then

1 _ (logu—mp)?
2

uo\ 2m
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The probability density function of 7}, ,, can be calculated using

v(t) = i;‘ V().

As
—| = v
= [t

the probability density function for T, ,, is thus

1 (log t¥ —1)?
-1 iy

(t) = [l e
1 _ (ogt—(u/|$])?

e 200/[v)?

 Ho/|¢)V2r

Thus if U ~ LN(p,0), then T,,,, ~ LN({7: 157)-  As seen in Section 4.3, the

null distribution of the untransformed test statistics did not follow a Log-Normal
distribution, thus it can be concluded that the transformed test statistics will also

not follow a Log-Normal distribution.

B.1.3 Transforming 7,,,, to a Gamma Distribution

Suppose U ~ Gamma(c, (3), then

a,,a—1,—uf
viu) = %T;

The probability density function of 7, ,, can therefore be calculated using

du
(1) = | 5| vw).
As
du ‘wtw 1|
=|¢It1"‘1,
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the probability density function for 7, ,, becomes

1ﬁo¢ua—le—uﬂ
I(a)

_ rw\tw_lﬁatw-”e—m
I(a)
 Jy|getveiets
- Tl

(1) = e~

The moments of this distribution can be calculated by

00 atwafl —t¥B
E[T¢,] :/ a1 < at
0

()
0o apd+ipa—1 —t¥B
[l
0 I'(a)
()"
a oo —| &
_ [vl8 / ghtva=te ) qr, (B.1)
I'(a) Jo
Consider now the generalised inverse gamma distribution, with probability density
function 5
NG
f(z;8,6,¢) = —ﬁzé)x—“—le(z) .

Note that the integrand in equation (B.1) is proportional to the probability density

function for the generalised inverse gamma distribution with parameters

Thus

1N\ —¥
By | VBT ) /00_ vae e, ()
’ VBTr(a) o
18T (e + 4)
YT ()
|87 T(a + 4)
 YI(a)

(B.2)

We can therefore solve a system of two equations when d = 1 and d = 2 to calculate

the parameters of a and 8 using the formulas for E[T;, ,,,] and Var[T}, ,,].

If U is assumed to follow a Gamma distribution with parameters o and 3, then

the value of ¢ can be found such that T¥, also follows the Gamma distribution
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with parameters o and 8. Consider the test statistics when X and Y followed
a N(0,1) distribution. For ¢ € (0, 1], RT,.. has been calculated and the results
plotted in Figure B.5. The plot shows that for ¢» = 0.81, Tffjm is equal to the
distribution of U.

4e-06  6e-06

RTacc

2e-06

Figure B.5: The values of RT,.. plotted against 1) € (0, 1].

For ¢ € [-1,0), LT, has been calculated and the results plotted in Figure
B.6. The plot shows that for ¢y = —0.4, T;f’m is equal to the distribution of U.

LTacc
4e-05

0e+00
|

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

Figure B.6: The values of LT,.. plotted against ¢ € [—1,0).

Now that the values of i for which T#jm is equal to the distribution of U has
been found, it should be tested to see if transformations of the form U; = T3]
and U = T, * indeed follow a Gamma distribution. Thus Figure B.7 shows the
QQ-plots comparing the percentiles of the fitted Gamma distributions against Uy
(left) and U (right).

Clearly, Figure B.7 shows that the value of ¢y = —0.4 provides a much closer
fit to a Gamma distribution in the left tail than the value of ¢ = 0.81 in the right

174



B.2 Extreme Value Theorem
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Figure B.7: The QQ-plots comparing the percentiles of the fitted Gamma distri-
butions against Uy (left) and U, (right).

tail. To test the fit in the left tail for v» = —0.4, a Kolmogorov-Smirnov goodness
of fit test can be performed. The KS test is useful here simply to determine
how well a Gamma distribution fits to the random variable U. Here we have
sampled test statistics ti,...,t10000 Where X ~ N(0,1), Y ~ N(0,1), n = m =
10000 and k£ = 10000 and after transforming we have uq,...,u19000. Consider
taking the 1000 smallest values from the sample uq, ..., w0000, t0 give a smaller
sample uj, ..., ufy0. Now sample 10000 values from V ~ Gamma(a, ) where «
and [ are estimated from the data wuq,...,u10000. Again, take the 1000 smallest
values from the sample to obtain v7,...,v{y5. The Kolmogorov-Smirnov test on
the two samples u* and v* is performed and a p-value calculated. When this
process is repeated 1000 times, 676 of those times gave a p-value less than 0.05,
suggesting that U might not closely fit a Gamma distribution. If this is the case,

then obtaining an accurate p-value using this method is unlikely.

B.2 Extreme Value Theorem

Given that so far an attempt to fit a two-parameter distribution to the null dis-
tribution has been unsuccessful, it may be worth fitting a distribution to only the
tail of the null distribution. Recall that it is more important to have an accurate
fit between the 90th and 100th percentiles for calculating a p-value. Considering
this, it was natural to consider the extreme value theorem and in particular the
Pickands-Balkema-de Haan Theorem (Balkema and De Haan, 1974), (Pickands III,
1975). The theorem states that under certain maximum domain of attraction con-
ditions, the limiting distribution of the excesses above a certain threshold A is a

three-parameter Generalised Pareto Distribution (GPD) with parameters p, o and
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€. The density function of the Generalised Pareto distribution is

NE
moe) =1 (14 ) (B.3)

o

fort > ppwhen £ >0, and p <t < p— % when ¢ < 0. The parameters p, o and &

can be estimated using the following formulas;

o= A
o = %(t}—A)(%Jﬂ)
e

where ty and sy represent the mean and standard deviation of the excesses above
the threshold .

The cumulative distribution function of the excesses above the threshold A is
defined to be
Nu(t) = Pr{Tm — A < HTpm > A}

Now, the cumulative distribution function for 7}, ,,, can be rewritten as

N(t) =Pr{T,, <t} =Pr{T,, <A} +Pr{A<T,,, <t}
= Pr{Tpm < A} +Pr{T,., <tNT,., > A}
=Pr{Tm <A} +Pr{T < Ty > A} Pr{T0. > A}

=Pr{Thm <A} +Pr{T, <t|Thm > A} (1 — Pr{T,., < A}).
and for t > A,

N(t) = Pr{Tpm < A} + No(t — \)(1 = Pr{Thm < A})
= N(A) + Nt — \)(1 = N(N)).

It is seen in Proposition 3 in Appendix C that N(¢) also follows a Generalised

Pareto distribution with parameters

£ = ¢
& = o(l—NN))E
A= A—Z<(1—N(A))—5—1).

§

Thus, once a threshold ) is chosen, and ¢y and s, is known, the fitted Generalised
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Pareto distribution for the tail can be estimated. As has been mentioned previ-
ously, for p-value estimation, a suitable choice of A is the 90th percentile of the
test statistics. In our application it is very easy to calculate the expectation and
variance of 7T}, ,,,, however obtaining estimates for the mean and variance of the test
statistic for T,,,, > A is difficult. Calculating the moments for 7}, ,,, > X directly
proved to be impossible and no strong relationship between E[T}, ,,], Var[T,, ] and
E[T,m > A], Var[T,, ., > A] was found. Thus using the Pickands-Balkema-de Haan

Theorem to estimate the p-value was not successful.
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Appendix C

Miscellaneous Propositions

This appendix contains various propositions not included in the main text.

Proposition 1 Let ¢(x) and ®(x) be the density function and distribution func-
tion of a random variable X where X ~ N(u, o). Then the following statements

are true;

/@(m) dr = (v — p)®(z) + o?¢(x) + C (C.1)

/(I)(as)z dz = (z — ) ®(2)? + 2020 (2) () — %@ (ﬁx Y (1 - \/5)) VC
(C.2)

Proof First we prove (C.1). Using integration by parts we can show that

/ O(z)dz = 2®(x) — / 2p(z)dz + C.

o
=[x exp{ —— ¢ dx exp{ —— ¢ dx
o\ 2T P 202 a o\ 2T P 202
2
x




C. Miscellaneous Propositions

Thus

Next we prove (C.2). Using integration by parts we can show that

/cb(a;)? dr = 2®(x)? — /zxqs(x)cb(a:) dz +C

— 20(2)? + 20%6(2)B(z) — 2ud(z)? + / _202(z)?

+ 2up(z)®(z) dz + C.

Now,

/¢(a:)2dx - / 27302exp{—(x ;2’“‘)2} da

! / ! e { (z = )" } dx
= Xp < — )
oV 2T oV 2 P o?

Lety:ﬁx+u(1—\/§),then

Jotarar- o [ e { -Vt g,

= 201\/7?<I> (\/§x~|—u<1—\/§>>.

Also, using integration by parts,

[owe dr= o - [owew i+ c

which implies that
1
/gb(:c)fb(x) dr = () + C.
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Thus

/@@fm:n@@f+2ﬁm@¢@y—m¢uf—il@@@x_u@_wﬁw

N3
+ p®(2)* + C
= (2 — p)®(z)? + 202 (2)P(1) — %CD (\/51; — 1 <1 - \/5)) +C.
m
Proposition 2 Consider two samples of data zq,...,x, and y,..., ¥y, and let

F,(t) and G,,(t) represent the empirical cumulative distribution functions for the

two samples respectively. Let

nm °
T = F.(t) — Gn(t)?dt
S0 = )
Then forn =m =1,
T = = — yll-

Proof If n =m =1, then we have a single observation in each sample, namely

21 and y,. Firstly consider z; < y;. Then

thl/ﬂﬂ@—aﬁwm

2J
— % (/Z(Fl(t) —Gi(t)*dt + /:1(Fl(t) — Gi(t)*dt + /:(Fl(t) — Gl(t))2dt)
:%(()Jr/;ldwr())
_ Yy — 1
T

Now let x1 > 1, then

Yh:%[3E®—GﬁW&
= % (/Z(Fl(t) — G1(t))*dt + /yjl(Fl(t) — Gy(t))*dt + /:O(Fl(t) - Gl(t))th)
:%<O—l—/:11dt+0)
_ i
==
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C. Miscellaneous Propositions

Hence, for n = m =1,

Proposition 3 Let N, (¢ — \) be the cumulative distribution function of a two-
parameter Generalised Pareto distribution with parameters ¢ and £&. Then for
t >N N({E) =NA)+NA(t=A) (1 =N(N)), is a three-parameter Generalised Pareto

distribution with parameters

£ = ¢
& = o(l—NW\))E
A= A—%((l—N(A))—é—Q

Proof It is known that

Thus for t > A,
N(t) = N(A) +Na(t = A) (1 =N()
:NMwwl—NMD[L—O+§@_AO_1

f(t—A))é

g

:1—(1—N(A))(1+

P

i =N\
- ((1 “NODE all - ;NW)

E(t—\) — o ((1 - N~ 1))‘
o(1—N(\))E

o=

=1-(1+

s

E(t—(A+2((1=NMW)-1)
AR )



where

Qr v,

s
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Appendix D

Variance of T}, ,, Proof

In this appendix we provide the proof for calculating the variance of the test
statistic, Var[T,, m].

The variance of the test statistic T),,, where n > m follows the following

formula;
Var[T, ., |F = G] = %/OO /t H(s) <1+2(\7— 2)H(s) —3H(t)
—2(2V —5)H(s)H(t) +2H(t)* +2(V - 3) H(S)H(t)2> dsdt

nm(n+m)?

where V = = 3

Proof Consider the test statistic

nm

T, = F(t) — G(b))2dt D.1
el BLGIORIED) (D.1)
where
. 1 <&
F(t)ZEzﬂ{zigt}
=1
and

. 1 &
Gt) = — > <y
=1

are the empirical cumulative distribution functions for the distributions f and g,

respectively. From the standard theory,
Var(T,, ) = B[T2,.] — {E[T,m]}>. (D.2)
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D. Variance of T,, ,, Proof

We have already identified that

E[Ty.m] = / h (H(t) — H(t)*) dt,

—00

thus we require the expression for E[Tim}. Now by squaring the test statistic and

using Fubini’s theorem (Fubini, 1907), we get

- E { / T T B = G E(s) — C(s)ds dt}

—00 —0o0

_ i/w /oo E[(F() ~ G0 (F(s) - ()] dsdt (D3)

(n+m)? J o Jooo

Substituting the expressions for F(t) and G(t) into equation (D.3) and expanding

gives
o0 o0 1 n n n n
E[T7,] = / / E [ﬁ Las<y Lay<y Uap<s) Tai<s)
oo YT i=1 j=1 k=1 I=1
2 n n n m
T am > > Lo lis<nLnes Lnss)

* L Z Z Z Z ﬂ{yiﬁt}ﬂ{yjﬁt}ﬂ{ykgs}ﬂ{ylgs} dsdt. (D.4)

The expectation of each summation in equation (D.4) can be calculated sep-
arately by firstly considering all the cases for i, j,k,l. For example, Table D.1

displays the different cases for i, j, k,l and the number of times each case occurs
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for the first summation in equation (D.4). Each summation can then be split

into each case for 7, 7, k, [ and using the properties that under the null hypothesis
F=G=H

E[1s<4] = Pr{Z < A} = H(A) (D.5)

where Z = {X1,... X,,,Y1,..., Y}, each expectation can be calculated.

Case Number of Occurrences
i=j=k= n
i=j7=ki#l 2n(n — 1)
i=k=11%#] on(n —1)
i=75,k=11i1#k n(n —1)
i=k j=11i%] 2n(n — 1)
i=g,1#k#I n(n—1)(n —2)
k=1L1#j5#k n(n —1)(n — 2)
i=ki#j#I1 dn(n —1)(n —2)

i £ Fk# n(n —1)(n —2)(n — 3)

Table D.1: The number of occurrences for each case of 4, j, k, [ for the first sum-

mation in equation (D.4). Here i and j are interchangeable, similarly, k and [ are
interchangeable.

Using Table D.1, the first summation in equation (D.4) can be expanded;

/ / nt Z Z Z ZE i<y lia, <t}]1{:vk<s}]l{zl<g}:| dsdt =

i=1 j=1 k=1 [=1

nt / / {"E Vs aisa] 2000 = DE [T, <3V zicy Uz <o)
+2n(n = DE [Lizicy Loy <y Uiz ] +0(n — 1E [ﬂ{w <t}1{x]§s}}
VE [1iwi<ty Lws<st Liwy <ty Lmi<s}

+ n(n —1)(n— ) [ {$1<t}ﬂ-{zj<s}1]-{xk<s}}

+2n(n—1
)
+n(n—1)
1

(
(n = 2)E LjaanLia; < 150, <o)
+dn(n = 1)(n = 2)E [Lgicn Tisi<) Loy<op Lmesn)]

+ n(n - 1)(n - 2)(n - 3)E [ﬂ{xigt}ﬂ{xjgt}ﬂ{xkgs}ﬂ{xlgs}] } dsdt. (D6)

By using the property in equation (D.5), under the null hypothesis, equation (D.6)
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D. Variance of T,, ,, Proof

is equivalent to

—00 —0o0

% h { /t {nH(s) 4+ dn(n — 1)H(s)? + 3n(n — 1)H(s)H(t)
+5n(n —1)(n —2)H(s)*H(t) + n(n — 1)(n — 2)H(s)H (t)?
+Mn—UmeXn—$H@fH@V}®
+1m{nH@+4Mn—UH@V+3Mn—DH@ﬂﬂﬂ
+n(n—1)(n—2)H(s)*H(t) + 5n(n — 1)(n — 2)H(s)H(t)*

+n(n—1)(n—2)(n— 3)H(3)2H(z€)2} ds} dt.

Note that care needs to be taken for other summations where data X and Y
are involved. In the case of the second summation in equation (D.4), Table D.2

displays the different cases for i, j, k, [ and the number of times each case occurs.
Recall that n > m.

Case Number of Occurrences
Fpp— m
i=7=ki#l m(n —1)
i=7=1l1i#k m(n — 1)
i=k=1i#] 2m(n — 1)
i=g,k=1011i#k m(n —1)
i=k j=11i#j 2m(n —1)
i=7,1Fk#I m(n —1)(n — 2)
i=k,i#j#I 2m(n —1)(n — 2)
i=lLi#j#k 3m(n —1)(n —2)

i £ ]#k# m(n —1)(n —2)(n —3)

Table D.2: The number of occurrences for each case of i, j, k,[ for the second
summation in equation (D.4). Here only ¢ and j are interchangeable.
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Using Table D.2, the second summation in equation (D.4) can be expanded;

/OO/ ZZZZE o<ty Ly <ty Loy Liy<sy | dsdt =

zljlklll

ngm/ / {mE jﬂ‘{x <t}:ﬂ‘{rz<s}1{yz<s}i|

+m(n = DE [17;, <y Lr<a Ly <a)]
+m(n = DE 15, <y Lyso Lay <ot
+2m(n = DE [Tg<nLai<o) Lyi<a) Lay<t]
+m(n = DE [1, <) Lo Ly <]
+2m(n — DE [T Lpi<o Loy <ty Ly <o)
+m(n—1)(n = 2)F [1%, <y 1< Loy
+2m(n —1)(n — 2)E [T <nLni<s) Loy < Lye<sy)
)(n —2

+3m(n—1 VE [Liz,<ty Liyi<o) Loy<ty Loy <sy]

+m(n—1)(n = 2)(n = 3)E [z <y La,<n Lipe<s) Ln<s)] } dsdt. (D.7)

By using the property in equation (D.5), under the null hypothesis, equation (D.7)
is equivalent to

—% h { / {mnH(s)2 +6m(n —1)H(s)*H(t)
+3m(n —1)(n — 2)H(s)*H(t) + 3m(n — 1)(n — 2)H(s)*H (t)?

+m(n—1)(n—2)(n — 3)H(s)2H(t)2} ds

+/t {an(t)H(s) +2m(n — 1)H(s) H(t)

+m(n—1)(n —2)H(s)2H(t) + 4m(n — 1) H(s)H (t)?
+2m(n —1)(n — 2)H(t)*H(s) + 3m(n — 1)(n — 2)H(s)*H(t)*

+m(n—1)(n—2)(n — 3)H(8)2H(t)2} ds ¢ dt.

Once we repeat this process for each summation in equation (D.4) and collect

189



D. Variance of T,, ,, Proof

together all the terms, we get

-5 (1 - %) H(s)H(t)* — (1 - %) H(s)*H(t)
+3 (1 — %) H(s)2H(t)2} d } dt (D.9)

Note that for if the order of integration is swapped and the variables s and ¢
permuted in the second integral of equation (D.9), it becomes equivalent to the
first integral. Thus

E[T2,] = /_ Z { /_ ; {%H(s) +4 (1 - %) H(s) 42 (1 - %) H(s)H (1)

- 10 (1 - %) H(s)*H(t) — 2 (1 — %) H(s)H(t)?

+6 (1 - %) H(S)QH(t)Q} ds} dt (D.10)

Now, as

B[T.] = /_ T (H@) - H?) dt,

}//HlH $)(1— H(s)) ds dt
_2/ / H(s H (1)) ds dt
//

H(s)*H

we find that

—9 — H(s)H(t)

()?) ds dt. (D.11)
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Finally, using equation (D.2) we obtain

Var([T,, .|F = G] = /Z /; %H(s) +4 (1 — %) H(s)* — %H(S)H(t)
4 (2 _ %) H(s)2H(t) + %H(s)H(t)Q 14 (1 - %) H(s)2H(t)2 ds dt,

which can be factorised to give
Var[T, ., |F = G] = %/00 /t H(s) <1+2(\7— 2)H(s) —3H(t)
—2(2V —5)H(s)H(t) +2H(t)* +2(V - 3) H(S)H(t)2> dsdt

nm(n+m)?
n3+m3 -

where V =

191






Appendix E

Third Moment of 7T), ,, Proof

In this appendix we provide the proof for calculating the third moment of the test
statistic, E[T}?,,]. Note that this proof is very similar to the proof for Var[T}, ] in
Appendix D and we will refer to it throughout.

The third non-centralised moment of 7,, ,,, for n > m is given by

3
BTnmlF = G] = 9nm (n+m) / / /

+2(§(7(m* +n®) — 10nm) — 8) H(t) + 2 (9(5(m +n*) — Tnm) — 6) H(s)
+ (S(m* +n® —nm) — 3) H(r)

+5 (§(2mn(m + n) — 19(m* + n®) + 25mn) + 18) H(s)H(t)

+ (S(2mn(m + n) — 19(m* + n*) + 25mn) + 18) H(s)?

— (§(m*+n* —nm) — 2) H(r)’

+ 2 (§(mn(m + n) — 19(m* + n®) + 26mn) + 20) H(r)H(t)

+ (G(mn(m +n) — 27(m* + n®) + 37mn) + 30) H(r)H(s)

— 4 (S(3mn(m +n) — 26(m”> + n®) 4+ 34mn) + 24) H(s)*H(t)

— 5 (§(5mn(m + n) — 45(m” + n®) 4+ 59mn) + 42) H(r)H (s)H(t)
—2(§(mn(m +n) — 12(m* + n®) + 16mn) + 12) H(r)*H(t

— (§(5mn(m + n) — 45(m> +n*) + 59mn) + 42) H(r)H(s)?

(
— (§(mn(m +n) — 17(m* + n®) + 23mn) + 18) H(r)*H (s)
(

+ 9 (S(3mn(m +n) — 26(m* + n®) + 34mn) + 24) H(r)H (s)*H(t)
+5 (§(3mn(m +n) — 26(m* + n®) 4+ 34mn) + 24) H(r)*H(s)H(t)
+ (S(3mn(m + n) — 26(m* + n*) + 34mn) + 24) H(r)*H(s)’

— 5 (S(3mn(m + n) — 26(m? + n2) + 34mn) + 24) H(T)ZH(S)zH(t))
dtdsdr (E.1)
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E. Third Moment of 7}, ,, Proof

nm(n+m)?

where § = — e

Proof Consider the test statistic

oo

(E(t) — G(t))* dt.

nm

Tn,m:
n+mJ_o

Now by cubing the test statistic and using Fubini’s theorem (Fubini, 1907), we

obtain

BITZ,) = B [n+m JJ 0= - éopasa

~

CEESE ///R [(P4)~ G2 (EGs) - G)P] dsar (B2)

Substituting the expressions for F'(t) and G(t) into equation (E.2) and expanding

gives

E[TS (n+m)? ///Rs

- (F<u> - é<u>)2

1
(n+m)3 /// [n6 Z ]1{$1>7'}]1{$J>7'}]1{xk>s}
=1 1

i= 1 k=1 o=1 p=

~Gs) (P - )

dtdsdr

j=
' ]1{“3125} ]l{wozt} ﬂ{xpzt})

n m

2 n n n n
==2.2.2.2.2. 2 (MaonTpen L,

1=1 j=1 k=1 I=1 o=1 p=1
Lz Loz L)
1 n n n n m m
oz 220 2.0 0 (Teenleenlees
1=1 j=1 k=1 I=1 o=1 p=1

a2y Loty Ly, )

n n

2 n n n m
=—2.2.2.2.2. 2 (Muonlpen Ly

=1 j=1 k=1 I=1 o=1 p=1

Lyzs Laozty Lo, 1))

n m

4 n n n n
A2 222220 (Teenluznlumssy

i=1 j=1 k=1 [=1 o=1 p=1

Lz Lozt Liy,20)
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2 m m m
n3m3 Z Z Z Z Z Z (ﬂ{xizr}l{ijT}]l{xkzs}

: ﬂ{yz>s}ﬂ{y iy gy, >1)

n n m m

n4m2 202220 (leenlienlyse

i=1 j=1 k=1 l=1 o=1 p=1

Ly Lzozny Lizp>n)

n n m m

S I

i=1 j=1 k=1 [=1 o=1p

Ms

(Vaizry Ly Lig>s)
1

ﬂ{yz>s}ﬂ{x >t} Ly, >t}

n m m

D DR B RN

i=1 j=1 k=1 I=1 o=1

ﬂ{ﬂﬁiZT} 1{$j >r} IL{ykZS}

1:

' ﬂ{yl>s}ﬂ{y >t}1{yp>t})

n m n n n

T D 9D B9 3) B) ) Y (A S THEns T
1

zljlklllo—

1 p=
]]-{xl>s}1]-{z >t}1]-{xp>t})

n m n n

n4m2 200, (Loizr Ly, 2y Laizs)

i=1 j=1 k=1 I=1 o=1 p=1

' 1{x1>s}1{x >y Ly, >11)

n m n n m m

n3m3 Z Z Z Z Z Z ﬂ{xizr}ﬂ{yjzr}]l{a;kzs}

i=1 j=1 k=1 l=1 o=1 p=1

: I]-{xl>s} Liy,>0 :H-{yp>t}>

n m n m n

n4m2 Z Z Z Z Z Z (ﬂ{xizr}ﬂ{ijT}l{kaS}

i=1 j=1 k=1 I=1 o=1 p=1

3

Ayt Lgg>iy Liz,>

n m n m

)
)3 I I PP

i=1 j=1 k=1 l=1 o=1 p

Ms

(Lgziory Ly, ory Loy s}

I
—

Ly Lizo>n Ly, >0

n m n m

T I

=1 j=1 k=1 I=1 o=1

(Lgzr>ry iy, >ry Loy 2o}

1:

: ﬂ{yz>s}1{y 1y Ly, >0)

n m m m n n

n3m3 20202 2 (Mpenlyznlyes

i=1 j=1 k=1 l=1 o=1 p=1

’ l{yzZS} ﬂ{zozt} :[I‘{-'L'pzt})
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n m n m

4 m
+ W Z Z Z Z (ﬂ{wiZT}ﬂ{ijr}]l{ykzs}

m
i=1 j=1 k=1 I=1 o=1 p=1

' ﬂ{yz>s}1{z iy Ly, >1)

n m m m m m

nm5 Z Z Z Z Z Z g > Ly ory Ly >s)

i=1 j=1 k=1 I=1 o=1 p=1

: ﬂ{yl>s}1{y >1y Ly, >1)

m m n n n

n4m2 222220 (penlyzn Ly

i=1 j=1 k=1 [=1 o=1 p=1

:H-{acl>s}ﬂ{a: >t}:n-{mp>t})

m m n n

n3m3 Z Z Z Z Z Z Lyizry Ly Tay2s)

i=1 j=1 k=1 I=1 o=1 p=1

' ﬂ{xz>s}ﬂ{x 1y Ly, >1)

m m n n m m

n2m4 Z Z Z Z Z Z Liy,>ri Ly >r Lay>s)

i=1 j=1 k=1 l=1 o=1 p=1

: ﬂ{xl>s}ﬂ{y >ty Ly, >1)

m m n m n

n3m3 Z Z Z Z Z Z (l{inT}ﬂ{ijr}]l{kaS}

i=1 j=1 k=1 I=1 o=1 p=1

3

~—

. :H-{yl>s}]]-{a: >t} Lz, >}

m m n m

LY

i=1 j=1 k=1 [=1 o

M:
Ms

(Lyior Ly Liayzs)
1

1p

. ﬂ{yl>s}ﬂ{x >t}1{yp>t}

m m n m m m

nm5 Z Z Z Z Z Z (l{yizr}ﬂ{ijT}l{xkzs}

i=1 j=1 k=1 I=1 o=1 p=1

: ﬂ{yl>8}]l{y >0 1y,>1)

m m m m n n

n2m4 2022200 (Lyenlysnlyes

i=1 j=1 k=1 =1 o=1 p=1

: ﬂ{yz>8}]1{ff >0 L ey >03)

m m m m n m

nm5 Z Z Z Z Z Z (Lgyemry Ly > Liyess}

i=1 j=1 k=1 I=1 o=1 p=1

Ay Lwoz Liy,>0))
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m

1 m m m m m
T 222220 (Muenlyenlyes

i=1 j=1 k=1 I=1 o=1 p=1

Ay Ly L) |- (E.3)

It is important to note that we can split the triple integral into the sum of six

triple integrals for the following six cases;

1. s>t >u,

2. s

Y

u

v

t,

w
~
v
VA
v
S

e~
-
Vv
I
Vv
w

5.

IS
Vv

Va)
vV

~

6. u

v
v

t>s.

We also know that due to symmetry, all six triple integrals will be equal. Thus we
will only consider the first case and multiply the result by six.

The expectation of each summation in equation (E.3) can be calculated sepa-
rately by firstly considering all the cases for i, j, k, [, 0, p (see for example Table D.1
and Table D.2). Each summation can then be split into each case for i, 7, k, [, 0,p

and using the properties that under the null hypothesis F =G = H

where Z = {X1,...X,,,Y1,...,Y,,}, each expectation can be calculated.

For example, the first summation in equation (E.3) can be expanded;

1 n n n n n n
5 YYD E Lo leen Lo Lass Leosg L]

i=1 j=1 k=1 =1 o=1 p=1

1 ) ) )
- E{TLE [1{%2?“} ﬂ{xizs} ﬂ{xizt} }

JE [
+2n(n — DE [1{z,5) Liziso} Lz >s) Lmsty ]
)E Lz e,z Liwzs) Lazn ]
Voo Laimsy La, >t ]
Lioiory Loy o) Lmnty”]

_|_
Ai/—\
:
\_/5\_/
CCENC

Loyor Lioiss) Lasty”]
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+4n(n — 1)E [1{z0 Lass) L, >s) Lzt Lyt

+4n(n — DE [1pom Ly ory Loy Lo Lia, >0

+ 4n(n — DE [1(z,51 Lia;>r} Loz} Loy os) Lasty ]

+4n(n — 1)E [Tizom Le, o oot Loysst Laist Loy >0
+2n(n — DE [1{z,5 Liziso} Lz, >s) La, 5037

+2n(n — DE [L{z,50) Loy o} Lz} Ly 507

+2n(n — DE [Tz2n T2 Tazg La,2n]

+n(n—1)(n = 2)E [0 Laos L2 Lnen)
+n(n—1)(n = 2)B [T 2n L 20 Lz Ly )

+n(n = 1)(n = 2)E [Lgzn Laen Lz Lz ]

+4n(n —1)(n = 2)E [Ls5ry Laiss) Ly >} Lwisty Loty
+4n(n —1)(n = 2)E [Lig>ry Lioyom Liwss) Lisist Lzt
+dn(n = 1)(n = 2)E [Ligion T 2n Leoa Lmes L]
+2n(n = 1)(n = 2)E [Lgor Laza Ley 2o Lmezn ]

+4n(n —1)(n = 2)E [Lp>r Laiss) Ly >t Lo, >0 Liaest}
+2n(n —1)(n = 2)E [Lmon Liaess) st Ly >

+4n(n = 1)(n = 2)E [Ligi2ny* Lo, 20 Loz Lo e, 20
+2n(n —1)(n = 2)E [Lip>r Lis,or Lass) Lisp>t) )

+4n(n — 1)(n — 2)E [Tz Lia, > Lzt Ly >0 Lzt ]
+2n(n = 1)(n = 2)E [Laon* Lazs Lazn L, 20]

+dn(n = 1)(n = 2)E [Lz2n Lo Lazs) Lz L 20]
+2n(n — 1)(n = 2)E [La>n Lia, >0 Lazs) Loz ]

+an(n —1)(n = 2)E [Lzon Layon Laza Lagzs Laen ]
+2n(n —1)(n = 2)E [Ls, 5} Larss) Liay >} Lizisty )

+4n(n — 1)(n — 2)E [Liz; 5y Lgesr Lzt Lis,os Lzt
+8n(n = 1)(n = 2)E [Lai>n Lw; 2y Loz Loy 2oy Lz Loz
+8n(n —1)(n = 2)E [Lzon Ligon Lz Lea Lao Lz, >0]
+8n(n —1)(n — 2)E [Lip>r Loy or} Loz} Loyos) Lasty Lo, 1)
+n(n—1)(n—2)E [Ln5r La,os) st ]

+2n(n —1)(n = 2)E [Liz,5r La; >0} Liap st Loy 6 Laest}
+2n(n —1)(n — 2)E [Li, 50 Lo Laiss) Lie, >t Lzt
+2n(n —1)(n = 2)B [Tge,or Laezry g2 Loz a2 ]
+8n(n = 1)(n = 2)F [Ligizn Loy 2n Lezo) Lz Lay2o Lisen]

198



Voo Laimsy Lay o) Loty Liwsty ]
Ligiory Lawss) Lims) Loty L, >0y
Liory Loy Lwss) Liopsty Loty

E|

E|

E|

E [1zom Lasry Lass) Lot Lie, >0

E [Liz>r Loy ory Lop s} Lioss Lizity

E [Laon Lz Lazs Lz Lasn ]

E [Leion Lie,on Lizzsy oo Laco Lo
= 3)E [Liizn "L, 26) Lz Liszo)]

n = 3)E [Lzi>n Lo} Lwzot Lgson ]
= 3)E [Lpeon Lwen Lz L, 20 )

L T T S N N N N o e e N N N e N N
~~

o T T T s s T T T T s N N N
~—~

= 3)E [Lig,>n Lo, 20 Loz Loy 20 Liwz ]

+4n(n —1)(n — 2)(n = 3)E [L{z;5r} Loy >r} Lz} Ly >0y Lo >0y
+4n(n —1)(n = 2)(n = 3E [L,on Yoz Lz Loz L ]
+2n(n —1)(n —2)(n = 3)E [Liz>r) Lia;>r) Liaiss) Lz, >s) Loty Lia>ey)
+2n(n —1)(n — 2)(n = 3)E [L{z,>r) Lia;>r} Loy >} Lios Laisty Lo, 01
+2n(n — 1)(n — 2)(n — 3)E [z Lwzr) Lwzs) Lo,y > Laisty Lo, 0]
+8n(n —1)(n —2)(n — 3)E [Lz5r) Liay>r) Laiss) Liwes Loyt Lasey)
+8n(n —1)(n — 2)(n = 3)E [Liz,>r) Lweor) Lwiss) Lay =} Lot Liwst} ]
+8n(n—1)(n —2)(n = 3)B [Lig, > Lapzry Lo, 2s) Last Lozt La, >0
+n(n—1)(n—2)(n=3)(n = DE [Lp>n " Lo,z Lipezs Lozt Laozn]
+n(n—1)(n—2)(n = 3)(n — 4E [Lipon Lipen Lz Lz Loz
+n(n—1)(n—2)(n—3)(n— 4E [Liz, > Lze>rt Lizzs} Lizoss} Lzt ]
+dn(n —1)(n = 2)(n = 3)(n = DE[Lzi>n L, 20 Lwis)

Lazsp Lzt Lawozo]
+4n(n —1)(n —2)(n — 3)(n — 4)E[]l{xin}IL{ijT}IL{xZZS}

Laezs) Lzt Loty
+4n(n —1)(n —2)(n = 3)(n — )E[Liz;>m Lip,>r Lizi>s)

Loz Loz Lo
+n(n—1)(n = 2)(n = 3)(n = 4)(n = 5)E[Li,>n ayzn L)

“azsy Lao>iy L, >t}]} (E.5)

By using the property in equation (E.4) and simplifying, under the null hypothesis,
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E. Third Moment of 7}, ,, Proof

the first summation in equation (E.3) is equivalent to

/ / / nH(u) + 16n(n — 1)H(u)* + 12n(n — 1)H () H (u)
+3n(n — 1)H(s)H (u) + 45n(n — 1)(n — 2)H (t) H (u)?

+9n(n —1)(n —2)H({t)*H(u) + n(n — 1)(n — 2)H(s)*H (u)
)
)

+20n(n — 1)(n — 2)H(s)H (u)* + 15n(n — 1)(n — 2)H(s)H (t)H (u)
+16n(n —1)(n — 2)(n — 3)H(t)*H (u)*

+35n(n — 1)(n — 2)(n — 3)H(s)H(t)H (u)?

+4n(n —1)(n —2)(n — 3)H(s)*H (u)?

+Tn(n —1)(n —2)(n — 3)H(s)H(t)*H (u)

+3n(n—1)(n—2)(n — 3)H(s)*H (t)H (u)

+9n(n —1)(n—2)(n —3)(n —4)H(s)H(t)*H (u)*
+5n(n—1)(n—2)(n—3)(n —4)H(s)*H(t)H (u)?
+n(n—1)(n—2)(n—3)(n —4)H(s)*H(t)*H(u)
+n(n—1)(n—2)(n—3)(n—4)(n—5)H(s)*H(t)*H(u)*dt dsdr

As for the proof of Var[T}, ,,], this process can be repeated for each summation
in equation (E.3) with care being taken where both data X and Y are involved.
Once we repeat this process for each summation in equation (E.3), multiply by 6

and collect together all the terms, we get

3
BTnmlF = G] = Snm (n+m) / / /

+2(S(7(m* +n®) — 10nm) — 8) H(t) + 2 (9(5(m +n®) — Tnm) — 6) H(s)
+ (§(m* +n® —nm) — 3) H(r)

+5 (§(2mn(m + n) — 19(m* + n®) + 25mn) + 18) H(s)H(t)

+ (S(2mn(m + n) — 19(m”> + n®) + 25mn) + 18) H(s)?

— (§(m* +n* —nm) — 2) H(r)?

+ 2 (§(mn(m + n) — 19(m* + n®) + 26mn) + 20) H(r)H (1)

+ (§(mn(m +n) — 27(m* + n®) 4+ 37mn) + 30) H(r)H(s)

— 4 (S(3mn(m +n) — 26(m” + n®) + 34mn) + 24) H(s)*H(t)

— 5 (§(5mn(m +n) — 45(m* + n®) 4+ 59mn) + 42) H(r)H (s)H (t)
—2(§(mn(m +n) — 12(m* + n®) + 16mn) + 12) H(r)*H(t

— (§(5mn(m + n) — 45(m> +n*) + 59mn) + 42) H(r)H(s)?
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— (S(mn(m +n) — 17(m* + n®) + 23mn) + 18) H(r)*H (s)

+ 9 (§(3mn(m + n) — 26(m”> + n®) + 34mn) + 24) H(r)H(s)*H(t)
+5 (§(3mn(m + n) — 26(m”> + n?) + 34mn) + 24) H(r)*H(s)H(t)
+ (§(3mn(m + n) — 26(m* + n*) + 34mn) + 24) H(r)*H(s)’

— 5 (S(3mn(m + n) — 26(m? + n2) + 34mn) + 24) H(r)2H(s)2H(t)>
dtdsdr

nm(n+m)?

where § = o e
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Appendix F

Fourth Moment of 7}, ,, Proof

In this appendix we provide the proof for calculating the fourth moment of the test
statistic, E[T},,,]. Note that this proof is very similar to the proof for Var[T}, ] in
Appendix D and will refer to it throughout.

The fourth non-centralised moment of 7, ,,, for n > m is given by

24 [ee) s t u
4 _
el St ) el Lo

+ 2 (K(31(m* —I—n)—56mn(m2—|—n)+66mn —32) H(v)
+ 2 (K(23(m* + n*) — 4lmn(m® + n*) + 48m°n*) — 24) H(u)
+ (X(10(m" +n*) — 15mn(m? + n®) + 16m*n ) —12) H(t)
+ (K((m* + n*) — mn(m? + n*) + m*n®) — 3) H(s)
+ 5(K(50mn(m® + n*) — 30m*n*(m + n) — 211(m* + n*)
+ 341mn(m® + n®) — 381m°n®) + 162) H (u)H (v)
+ (K (50mn(m® + n®) — 30m®n®*(m + n) — 211(m* + n*)
+ 341mn(m® + n®) — 381m°n*) + 162) H (u)*
+ (K (2mn(m® + n®) — 19(m* 4+ n*)
+ 29mn(m® + n®) — 33m*n®) + 18) H(t)*
— (K ((m* + n*) — mn(m® + n®) + m’n®) — 2)H(s)?
+ 2(XK(48mn(m® 4+ n®) — 27Tm*n*(m + n) — 226(m" + n")
+ 366mn(m” + n®) — 412m°n®) + 180) H(t)H (v)
+ 2(K(7mn(m?® + n®) — 3m*n*(m + n) — 85(m* + n*)
+ 146mn(m® + n®) — 170m*n*) + 80) H(s)H (v)
+ (K(67mn(m® + n®) — 36m*n*(m + n) — 333(m* + n*)
+ 538mn(m” + n*) — 607m*n®) + 270) H (t)H (u)
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+ 2(K(5mn(m?® + n®) — 2m®n®*(m + n) — 63(m* + n*)
+ 107mn(m® + n®) — 124m°n®) + 60) H(s) H (u)

+ (K(mn(m® + n’) — 27(m* + n*)
+ 40mn(m® 4+ n®) — 43m*n®) + 30) H (s)H (t)

+ 4(K(6m’n® — 844mn)(m* + n®) — 165mn(m® + n®) + 81m*n*(m + n)
+542(m* + n*) + 12m°n® 4+ 940m°n®) — 384) H (u)*H (v)

+ 10(X(5m*n® — 736mn)(m” + n*) — 142mn(m?® + n*) + 70m*n*(m + n)
+472(m* + n') + 10m*n® + 820m>n®) — 336) H (t) H (u) H (v)

+2(K(2m’n® — 412mn)(m® + n®) — T3mn(m® + n®) + 37m*n*(m + n)
+262(m* + n') + 4m*n® + 460m°n*) — 192) H(t)*H (v)

+ 2(K(5m’n® — 736mn)(m* + n®) — 142mn(m® + n®) + 70m*n*(m + n)
+472(m* + n*) + 10m°n® + 820m°n®) — 336) H (t)H (u)*

+ 2(K(m*n* — 304mn)(m* + n®) — 50mn(m® 4+ n®) + 26m*n’(m + n)
+192(m* + n*) + 2m*n® + 340m*n*) — 336) H(t)*H (u)

+5(K(2m’n® — 805mn)(m* + n®) — 131mn(m® + n®) + 72m*n*(m + n)
+505(m* + n') + 4m*n® + 899m°n*) — 378) H (s)H (v)H (v)

— 2(K(Tmn(m® +n®) — 3m*n*(m +n) — 54(m* + n*)
+ 90mn(m® 4+ n*) — 104m*n*) — 48) H(s)*H (v)

+ (K (2m*n* — 805mn)(m* 4+ n*) — 131mn(m® + n®) + 72m*n*(m + n)
+505(m* + n*) + 4m*n® + 899m*>n*) — 378) H(s)H (u)*

— 2(K(B5mn(m® +n®) — 2m*n*(m +n) — 40(m* + n*)
+ 66mn(m* 4+ n®) — 76m*n”) 4 36) H(s)* H (u)

— (K(5Bmn(m® + n®) — 45(m* + n*)
+ 69mn(m* + n®) — 79m*n”) + 42) H(s)H (t)*

— (K(mn(m® 4+ n’) = 17(m* + n*)
+ 25mn(m® 4+ n®) — 27m*n?) + 18) H(s)* H(t)

+ 2(K(m*n* — 866mn)(m* 4+ n*) — 125mn(m® + n®) + 68m*n*(m + n)
+540(m* + n*) + 2m*n® + 972m*n*) — 420) H(s)H (t)H (v)

+ (K(m*n® — 1274mn)(m* + n*) — 174mn(m® 4+ n®) + 92m*n*(m + n)
+795(m* + n') + 2m*n® + 1433m°n®) — 630) H (s)H (t)H (u)

— 9(K(12m*n® — 1336mn)(m* + n*) — 279mn(m® + n®) + 132m*n*(m + n)
+866(m* +n') + 24m*n® + 1486m>n”) — 600) H (t)H (u)*H (v)
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— 5(K(12m*n® — 1336mn)(m* + n*) — 279mn(m® + n®) + 132m*n*(m + n)
+866(m* + n*) + 24m’n® 4 1486m*n”) — 600) H (t)*H (u)H (v)

— (K(12m*n® — 1336mn)(m” + n®) — 279mn(m?® + n®) + 132m*n’*(m + n)
+866(m* + n') + 24m*n® + 1486m*n?) — 600) H (t)*H (u)?

— 5(K(2m°n® — 464mn)(m* + n*) — 8lmn(m® + n®) + 42m*n”*(m + n)
+294(m* + n*) + 4m’n® + 518m*n*) — 216) H(s)*H (u)H (v)

— (K (2m*n? — 464mn)(m* 4+ n*) — 8lmn(m® + n®) + 42m>n*(m + n)
+294(m* + n*) + 4m*n® + 518m*n*) — 216) H(s)*H (u)?

+ (K(Bmn(m® + n®) — 26(m* + n*)
+ 40mn(m® + n®) — 46m°n®) + 24) H(s)*H(t)

— 5(K(25m*n® — 3328mn)(m* + n*) — 659mn(m® + n®) + 320m*n*(m + n)
+ 2142(m* 4+ n*) + 50m®n® + 3706m*>n*) — 1512) H(s)H (t)H (u)H (v)

— 4(K(15m*n® — 1908mn)(m* + n*) — 383mn(m* + n’) + 185m*n*(m + n)
+2130(m* + n*) + 30m®n® + 2124m>n?) — 864) H (s)H (u)*H (v)

— 2(K(5m’n® — 932mn)(m* + n®) — 169mn(m® + n®) + 85m*n*(m + n)
+594(m* + n') + 10m*n® 4 1040m*n?) — 432) H (s)H (t)*H (v)

— 2(K(m*n* — 500mn)(m* 4+ n*) — 7Tmn(m® + n®) + 41m*n*(m + n)
+ 314(m* + n*) + 2m*n® + 560m>n*) — 240) H(s)*H (t)H (v)

— (K(25m°n® — 3328mn)(m” + n®) — 659mn(m?® + n®) + 320m*n’*(m + n)
+ 2142(m* 4+ n') + 50m®n® + 3706m*n*) — 1512) H(s)H (t)H (u)

— (K (5m*n* — 1376mn)(m* + n*) — 231mn(m® + n®) 4+ 120m°n*(m + n)
+870(m* + n*) + 10m°n® + 1538m*n”) — 648) H (s)H (t)* H (u)

— (K (m*n® — 736mn)(m? + n?) — 107mn(m® 4+ n®) + 56m*n’(m + n)
+462(m* + n*) + 2m*n® + 826m>n*) — 360) H(s)*H (t)H (u)

+ 6(K(15m*n® — 1608mn)(m* + n*) — 340mn(m* + n’) + 160m*>n*(m + n)
+1044(m* + n*) + 30m®n® + 1788m*n*) — 720) H (t)*H (u)*H (v)

+ 9(K(27Tm*n® — 2499mn)(m* + n*) — 619mn(m® + n®) + 292m>n*(m + n)
+1910(m* 4+ n*) + 54m?®n® + 3274m*n*) — 1320) H(s)H (t)H (u)*H (v)

+ 4(K(9Im*n® — 1064mn)(m* + n*) — 218mn(m* 4+ n*) + 104m*n*(m + n)
+ 688(m* + n*) + 18m*n® 4 1184m*n”) — 480) H (s)*H (u)*H (v)

+5(K(27m*n® — 2499mn)(m* + n*) — 619mn(m® + n®) + 292m*n*(m + n)
+1910(m* + n*) + 54m®n® + 3274m*n*) — 1320) H (s)H (t)*H (u) H (v)
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+5(K(15m°n® — 1856mn)(m” + n*) — 375mn(m?® 4+ n’) + 180m*n*(m + n)
+ 1198(m* 4+ n*) + 30m®n® + 2066m*>n*) — 840) H(s)*H (t)H (u)H (v)

+2(K(3m*n* — 520mn)(m* + n*) — 96mn(m* + n’) + 48m*n’*(m + n)
+332(m* 4+ n*) + 6m®n® + 580m>n*) — 240) H (s)*H (t)*H (v)

+ (K(27m*n® — 2499mn)(m® + n®) — 619mn(m?® + n*) + 292m*n’*(m + n)
+1910(m* 4+ n*) + 54m®n® + 3274m*n*) — 1320) H (s)H (t)*H (u)*

+ (K (15m*n® — 1856mn)(m” + n*) — 375mn(m?* + n*) + 180m*n*(m + n)
+ 1198(m* + n') + 30m®n® + 2066m>n*) — 840) H(s)*H (t)H (u)

+ (K (3m*n* — 768mn)(m* + n*) — 131mn(m® + n’) + 68m*n*(m + n)
+486(m* 4+ n') + 6m®n® + 858m>n*) — 360) H (s)*H (t)*H (u)

— 13(K(15m*n* — 1608mn)(m? + n?) — 340mn(m® + n®) + 160m>n*(m + n)
+ 1044(m* 4+ n*) + 30m®n® + 1788m*n*) — 720) H(s)H (t)*H (u)*H (v)

— 9(K(15m*n* — 1608mn)(m* + n*) — 340mn(m® + n®) + 160m>n*(m + n)
+ 1044(m* 4+ n*) + 30m®n® + 1788m*n*) — 720) H(s)*H (t)H (u)*H (v)

— 5(K(15m*n® — 1608mn)(m* + n*) — 340mn(m® 4+ n®) + 160m*n*(m + n)
+1044(m* + n*) + 30m®n® 4+ 1788m*n*) — 720) H (s)*H (t)*H (v)H (v)

— (K(15m*n® — 1608mn)(m?* + n*) — 340mn(m® + n®) + 160m>n*(m + n)
+1044(m* 4+ n*) + 30m®n® + 1788m*n*) — 720) H(s)*H (t)*H (u)

+ 7(K(15m*n® — 1608mn)(m* + n*) — 340mn(m® + n’) + 160m*n*(m + n)

H(u)*H (v) )

2

+1044(m* 4+ n*) + 30m®n® + 1788m*n*) — 720) H(s)*H
dvdudtds

nm(n+m)?
where K = — gy ol
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Proof Consider the test statistic

Ty = —1 Oo(ﬁ@)—é(t))?ds

n+mJ_o

Now by taking the fourth power of the test statistic and using Fubini’s theorem
(Fubini, 1907), we obtain

A 2

F(s)~€()) () - &)

£)

+| 3
IR
=
T

- (F(u) ~6w) (F@) ~GW) dvdudtds

e I

(P - é(u>)2 (F) - G’(v))2] dv dudt ds (F.2)

(s é(s))2 (F(t) - é(t>)2

Substituting the expressions for F(t) and G(t) into equation (F.2) and expanding

gives

1 n n n n n n n n
e /[ IE2909)5) 333 Sl T
i=1 j=1 k=1 I=1 o= = =

o=1 p=1 ¢g=1 r=1
ezt ez Heozuy Lap >y Heg >0} La, >0
2 n n n n n n n m
peD DD.DD D) D) D) D DY DY ¢ IH TS e
i=1 j=1 k=1 I=1 o=1 p=1 ¢=1 r=1
' ﬂ{xzzt}ﬂ{xozu}ﬂ{xpzu}ﬂ{x@v}ﬂ{y@v})

1 n n n n n n m m
T 62 22220200 (ﬂ{mizs}ﬂ{ms}ﬂ{xkzt}

i=1 j=1 k=1 I=1 o=1 p=1 g=1 r=1

' ﬂ{mlzt}ﬂ{xozu}ﬂ{xpzu}ﬂ{yqzv}ﬂ{yev})
2 n n n n n m n n
pD 3P DD D) D) ) D) D) Y (HERs THENE rs
i=1 j=1 k=1 l=1 o=1 p=1 ¢=1 r=1
' ﬂ{xzzt}ﬂ{xozu}ﬂ{ypzu}ﬂ{xqzv}ﬂ{acev}>

4 n n n n n m n m
toeme 220022200 (ﬂ{mizs}ﬂ{ms}ﬂ{zkzt}

i=1 j=1 k=1 I=1 o=1 p=1 g=1 r=1

' ﬂ{mlzt}ﬂ{mozu}ﬂ{yPZu}ﬂ{xm}ﬂ{yev})
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n

2 n n n n m m m
T A me 22202220 (ﬂ{xizs}ﬂ{zjzs}ﬂ{wkzt}

i=1 j=1 k=1 I=1 o=1 p=1 ¢=1 r=1

H{Iz>t}]1{w >u Ly, 2 Ly, 20p Ly, >v}>

n n m m n n

n6m2 Z Z 222> > (ﬂ{x 25} e, 25} Laizt)

i=1 j=1 k=1 I=1 o=1 p=1 g=1 r=1

ﬂ{xl>t}1{y >u} Ly, >0} Lag 20} e, >v}>

n n m m n m

- YYYYYYYY (Lol za g

i=1 j=1 k=1 I=1 o=1 p=1 ¢g=1 r=1

Loz Lyo>u Ly >uy Lo} Ly, >0}

)
TR BB BRI

i=1 j=1 k=1 I=1 o=1 p=1 g=1 r=1

Loy Uaj2sp Lay>t)

' ﬂ{xl>t}1{y >up Ly, > Lyo >0y Ly, >v}>

n n m n n

30 3) 3 3D 3) 3 B) B (INEETRE T

i=1 j=1 k=1 I=1 o=1 p=1 g=1 r=1

ﬂ{yz>t}1{$ >u} Ly >u) Lag >0y La, >v})

n n m n n

D330 3) 3) 3D 3) B B (IRHBETI

i=1 j=1 k=1 l=1 o=1 p=1 gq=1 r=1

. :H-{yl>t}:n-{:c >uy Ly >u) Lzg>o) Ly, >v}>

n n m n n m m
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n n m n m n n
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It is important to note that we can split the quadruple integral into the sum

of 24 quadruple integrals for the following twenty four cases;
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12. t<v<u<t,
13. u<s<t<uw,
4. u<s<wv<H,
15, u <t <s<w,
16 u<t<ov<s,
17 v <v < s <,
18 u<v <t <s,
19. v <s <t <u,
20 v<s<u<t,
21. v<t<s<u,
22. v<t<u<s,
23. v<u<s<Ht,
24, v<u<t<s.

We also know that due to symmetry, all twenty four quadruple integrals will be
equal. Thus we will only consider the first case and multiply the result by twenty
four.

The expectation of each summation in equation (F.3) can be calculated sep-
arately by firstly considering all the cases for 4,7, k,l,0,p,q,7 (see for example
Table D.1 and Table D.2). Each summation can then be split into each case for
1,7, k,1,0,p,q,r and using the properties that under the null hypothesis F' = G =
H

E[lz<4] =Pr{Z, <A} = H(A) (F.4)

where Z = {X1,... X,,, Y1,..., Y}, each expectation can be calculated.
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Lz Lzizo Loz

+n(n—1)(n—2)(n—3)(n—4)(n —5)E [l Lie, 20" Leouy Lz L0

Lap20}]

+n(n—1)(n—2)(n=3)(n—4)(n = 5)E[1 220 1z, 20 Lzt Lz, 20y Loz}
Lo, 20]

+n(n—1)(n—-2)(n—3)(n—4)(n = 5E[1>sLiaot Last Lzosu Lo, >u)
Layz0)’]

+n(n—1)(n—2)(n—=3)(n—4)(n = 5E[Ls0 Lz Lwen L >n Lo
La,203)

+n(n—1)(n—2)(n—3)(n—4)(n — 5)E 1> Lmss) Lzt Leosu) Lz, >u)
) 1{%2”}2}

+n(n—1)(n—2)(n—3)(n—4)(n = 5E L, >0 Liss) Lzost) Lzt Lizsu)”
;20

+4n(n —1)(n —2)(n — 3)(n — 4)(n — 5)E 155} 1wy >0 Lizeot) Lz >0} Lizsu)
Lwo0y Loy}

+an(n —1)(n —2)(n = 3)(n = 4)(n = 5)E[1(z20 ;20 Lmeon Vaozuy Lmp>u)
Lz Lo

+4n(n —1)(n —2)(n = 3)(n — 4)(n — 5)E[L{4,56 Lizo>t) Lizy>6) La; 0} Lizg>u)
Lz Loy
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+dn(n —1)(n = 2)(n = 3)(n — 4)(n = 5)E[1n20 1 mze Laion Lzyzuy Lazu)
Lz Lay>0]

+4n(n —1)(n—2)(n—3)(n — 4)(n = 5) B[ Lz, > Lz, > Loy Loyzuy Liay>u}
Loy z0y Loy

+4n(n —1)(n — 2)(n = 3)(n — 4)(n — 5)E Lz, 55 Liz,>s) Lzzt) Liysu) Lizy>u)
Loy >0y Lo

+dn(n —1)(n = 2)(n = 3)(n — 4)(n = 5)E[L>0 Lm0 Lz Lnza Lzsw
Loy L0y

+4n(n —1)(n —2)(n = 3)(n —4)(n = 5) B[l >0 {28} Lz Lyt Lau)
Loy z0y Loy

+4n(n —1)(n — 2)(n = 3)(n — 4)(n — 5)E Lz, 55 1{z,>s} Lz, >3 Lz oty Lwisuy
Lz Linzo)]

+dn(n —1)(n = 2)(n = 3)(n —4)(n = 5)E[1 201 mes L 2o Lasn Lz
Loy Ligiz)’]

+4n(n —1)(n —2)(n = 3)(n = 4)(n = 5)B[Lia;>5) Liwy>s) Lwo>ty Lay>y L, >0y
Doz Loz

+4n(n —1)(n —2)(n —3)(n — 4)(n = 5)E[Liz,>s) Lz, >s) Liw; >0 Lz >ty Lay >u}
Loz Laizoy’]

+2n(n —1)(n —2)(n — 3)(n — 4)(n — 5)E[ 1y Lz, >s) Lwoty Ly >0 Laesu)
Lo Loy Ly 20

+2n(n —1)(n —2)(n = 3)(n — 4)(n — 5)E[Liz,55 Lz, 551 Laestt Loty Lz}
a2y Lo o) Ly >0 ]

+2n(n —1)(n —2)(n —3)(n — 4)(n = 5)E [ Lz, Lz, >s) ooty Lzt Lzosu)
Loy Liaizop Layzo)]

+2n(n —1)(n = 2)(n = 3)(n —4)(n = 5)E [0 Loz Lmn Lz Lz
o0y Lzoey Lizpey ]

+2n(n —1)(n = 2)(n = 3)(n — 4)(n = HE Lm0 L za Leon L2 L
Loy zup Lwizo L2y

+2n(n —1)(n = 2)(n = 3)(n = 4)(n = 5)E[ V>0 w20 Lw.2n g2 Lwzw
Loz Lz Ley 20

+8n(n —1)(n —2)(n —3)(n — 4)(n — 5)E Lz, 56 Lz, 55 Lasty Lwesty Lo, >u)
Lz Loy Ly 201
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+8n(n —1)(n —2)(n —3)(n —4)(n = 5)E 1z, Le;25) Lwion Lz Tou)
L0y Ly >0 Loy

+ 8n(n — 1)(n - 2)(71 — 3)(n — 4)(n - 5)E[ﬂ{mgs}]l{a:jZS}]l{xozt}l{xPZt}ﬂ{xiZu}
Ty Lz Lz

+ 8n(n — 1)(n — 2)(TL — 3)(n — 4)(71 — 5)E [ﬂ{xizs}ﬂ{xkzs}l{xizt}ﬂ{zjzt}ﬂ{szu}
Ly Lwo>o) Lz, 20)]

+8n(n —1)(n —2)(n = 3)(n —4)(n = 5) B[z Lm0 Vaizny Lias 20 T ou)
Ly Lay>oy Loy

+ 8n(n — 1)(n - 2)(71 - 3)(n — 4)(n - 5>E[:H-{IOZS}]]-{xPZS}]]-{ziZt}]-{ijt}IJ—{:C,-ZU}
T iazuy Loy Laso]

+ 8n(n — 1)(71 — 2)(TL — 3) (n — 4) (n — 5)E [ﬂ{xizs}ﬂ{zkzs}ﬂ{szt}]l{mlzt}ﬂ{xizu}
L2 Laozop Loy 20

+8n(n —1)(n —2)(n—3)(n — 4)(n = 5)B[1iz,>0 L {z,>s) aozty Loy} Lai>u)
Ly Loy >y Loy

+ 8n(n — 1)(n - 2)(71 — 3)(71 — 4)(n - 5)E [:H-{IOZS}]]-{Z‘pzs}]]-{xizt}l]-{xkzt}:H-{ZCZ'ZU}
Loy za Yoz Loz

+8n(n—1)(n—2)(n—3)(n —4)(n = 5)E [l >0 {20 Lz 20 Lz Lizozu
Loy zup Laizoy Layzo)]

+ 8n(n — 1)(n — 2)(77, — 3)(n — 4)(72, — 5)E [ﬂ{miZS}ﬂ{kaS}]l{:vozt}]l{xPZt}ﬂ{szu}
Lz oy Layoo)]

+ STL(TL — 1)(n — 2)(71 — 3) (n — 4) (TL - 5)E [1{1023}1{%25}l{xizt}l{kat}ﬂ{iju}
Lz Loz Lagzo}]

+16n(n — 1)(n = 2)(n = 3)(n = 4)(n = 5E L0 Lna Lzon Lasn L
Lezuy Ly >0 Ly o)

+ 16n(n — 1)(n - 2)(n - 3) (n — 4)(n - 5)E[ﬂ{xiZS}]l{szS}ﬂ{acjzt}l{xOZt}l{xiZu}
T asu Loz Loy o))

+ 16n(n — 1)(n — 2)(n — 3) (n — 4)(TL — 5)E[l{xizs}l{xkzs}ﬂ{szt}]l{xozt}l{szu}
Loz Loz Lz}

+n(n—1)(n—=2)(n—3)(n—4)(n = 5)(n = 6OE[1>0" 12,20 1z 20 Lz
Lz Lz Lzg>0 ]

+n(n—1)(n—2)(n—3)(n—4)(n —5)(n — 6)E[1iz;>0 Lizzs) Lzt Lz
Lzozu Ly Lzg0) ]
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+n(n—1)(n—2)(n—3)(n—4)(n —5)(n— 6)E[1z;>0 1 z,>5) Lazty L0
w2 Liz,>o)

+n(n—1)(n—2)(n—3)(n—4)(n —5)(n — 6)E[1iz;>0 Lizzs) Lz Liz2n
Ty Lz Laizoy ]

+4n(n —1)(n —2)(n —3)(n —4)(n —5)(n — 6)E [Liz,>s) Lz, >5) Lazty Loy >}
Lz Lzoz Lzpo) Lwg>0) ]

+20(n — 1)(n — 2)(n — 3)(n — (1 — 5)(n — OB[L sz L2912t Loz
Loizay Loezuy Loy 2oy Lz 20}

+ 2n(n - 1)(n — 2)(71 - 3)(n - 4)(n — 5)(n - 6)E[]—{xizs}l{l’jzs}:H-{$12t}1{1’02t}
vy Hazuy Lap o) g0y

+4n(n —1)(n —2)(n — 3)(n — 4)(n = 5)(n — 6)E Lz, > Lz, > Lay >ty Lzo>1)
L0y Lz 2uy Loy Loy

+dn(n —1)(n = 2)(n = 3)(n —4)(n = 5)(n — 6)E[Lin>0 Lwosy Lzt L, >0
Dzu Lmzn La2o L,

+dn(n —1)(n = 2)(n = 3)(n —4)(n = 5)(n — 6)E[ 1> Lzy>s) Lim>n Lizy >0
Loy Lagzay Laizoy Logzo}]

+4n(n —1)(n = 2)(n—3)(n —4)(n —5)(n = 6)E 1> L o,>5) Loy >0 Ly}
Leu Lgzu Loy Liog>o))

+n(n—1)(n—2)(n—3)(n—4)(n—5)(n—6)(n — T)E [Tz, 11,55} Liar>t)

Le> Lizo>u Loy >up Loy Lz, 201 }

By using the property in equation (F.4) and simplifying, under the null hy-

pothesis, the first summation in equation (F.3) is equivalent to

/ / / / nH )+ 64n(n — 1)H(v)? + 48n(n — 1) H (u)H (v)

+12n(n — 1)H(t)H (v) + 405n(n — 1)(n — 2)H (u) H (v)?

+8ln(n — 1)(n 2)H (u)*H (v) +n(n —1)(n — 2)H(s)*H (v)

+180n(n — 1)(n — 2)H (t)H (v)* 4+ 80n(n — 1)(n — 2)H(s) H (v)*

+135n(n — 1)(n — 2)H (t)H (u)H (v) + 60n(n — 1)(n — 2)H (s)H (u)H (v)
+15n(n — 1)(n — 2)H(s)H (t)H(v) + 256n(n — 1)(n — 2)(n — 3)H (u)*H (v)*
+ 560n(n — 1)(n — 2)(n — 3)H (t)H (u)H (v)*

+64n(n — 1)(n — 2)(n — 3)H(t)*H (v)?
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+9n(n —
+ 5n(n —

(n—2

1)(n -
+n(n—1)(n—2)
+n(n—1)(n—2)

dvdudtds.

As for the proof of Var[T}, ,,], this process can be repeated for each summation
in equation (F.3) with care being taken where both data X and Y are involved.
Once we repeat this process for each summation in equation (F.3), multiply by 24

and collect together all the terms, we get

" s T R

+2 (K (31(m* +n*) — 56mn(m2+n)+66mn —32) H(v)
+ 2 (K(23(m* + n*) — 41mn(m® + n*) + 48m°n*) — 24) H (u)
+ (K(10(m* + n') — 15mn(m® + n®) + 16m*>n*) — 12) H(t)
+ (K((m* +n*) — mn(m? +n*) + m*n®) — 3) H(s)
+ 5(K(50mn(m® 4+ n*) — 30m*n*(m + n) — 211(m* + n*)
+ 341mn(m® + n®) — 381m°n®) + 162) H (u) H (v)
+ (K (50mn(m® +n*) — 30m®n*(m + n) — 211(m* + n*)
+ 341mn(m® + n®) — 381m°n?) + 162) H (u)?
+ (K(2mn(m® + n®) — 19(m* + n*)
+ 29mn(m?* + n®) — 33m°n®) + 18) H(t)*
— (K((m* + n*) — mn(m® +n?) + m*n®) — 2)H(s)?
+ 2(K(48mn(m® 4+ n*) — 27Tm*n*(m + n) — 226(m™* + n*)
+ 366mn(m® + n®) — 412m>n*) + 180) H (t)H (v)
+ 2(K(7mn(m® + n®) — 3m*n*(m + n) — 85(m* + n*)
+ 146mn(m” + n®) — 170m°n®) + 80) H(s)H (v)
+ (K(67mn(m® + n®) — 36m°n*(m + n) — 333(m* +n")
+ 538mn(m’ + n®) — 607m*n?) + 270) H (t) H (u)
+ 2(K(5mn(m® + n®) — 2m*n*(m + n) — 63(m* + n*)
+ 107mn(m® + n*) — 124m°n®) + 60) H (s) H (u)
+ (K(mn(m® + n®) — 27(m* + n*)
+ 40mn(m® + n*) — 43m*n®) 4+ 30) H(s)H (t)
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+ 4(K(6m’n® — 844mn)(m® + n®) — 165mn(m’ + n*) + 81m*n*(m + n)
+542(m* + n*) + 12m°n® 4+ 940m°n®) — 384) H (u)*H (v)

+ 10(X(5m*n® — 736mn)(m” + n*) — 142mn(m?® + n®) + 70m*n*(m + n)
+472(m* + n') + 10m*n® 4 820m°n®) — 336) H (t)H (u) H (v)

+2(K(2m’n® — 412mn)(m* + n®) — T3mn(m® + n®) + 37m*n*(m + n)
+262(m* + n*) + 4m*n® + 460m>n*) — 192) H(t)*H (v)

+ 2(K(5m*n® — 736mn)(m* + n®) — 142mn(m® + n®) + 70m*n*(m + n)
+472(m* + n*) + 10m®n® + 820m°n®) — 336) H () H (u)*

+ 2(K(m*n* — 304mn)(m* 4+ n*) — 50mn(m?® 4+ n®) + 26m*n’(m + n)
+192(m* 4+ n*) + 2m®n® + 340m°n*) — 336) H (t)* H (u)

+5(K(2m°n* — 805mn)(m* + n®) — 131mn(m® + n®) + 72m*n*(m + n)
+505(m* + n*) + 4m*n® + 899m*n?) — 378) H(s)H (u)H (v)

— 2(K(7Tmn(m?® + n®) — 3m®n*(m +n) — 54(m* +n*)
+ 90mn(m® 4+ n*) — 104m*n*) — 48) H(s)*H (v)

+ (K(2m*n* — 805mn)(m* + n*) — 131mn(m® + n®) + 72m*n*(m + n)
+505(m* + n') + 4m*n® + 899m°n*) — 378) H(s)H (u)*

— 2(K(B5mn(m® +n®) — 2m*n*(m +n) — 40(m* + n*)
+ 66mn(m* 4+ n®) — 76m*n”) + 36) H(s)*H (u)

— (X(5mn(m® + n®) — 45(m* + n*)
+ 69mn(m® + n*) — 79m°n®) + 42) H(s)H (t)*

— (K(mn(m® 4+ n®) — 17(m* + n*)
+ 25mn(m* 4+ n®) — 27m*n®) + 18) H(s)*H (t)

+ 2(K(m*n* — 866mn)(m* + n*) — 125mn(m® + n’) + 68m*n”(m + n)
+540(m* + n*) + 2m*n® + 972m*n?) — 420) H(s)H (t)H (v)

+ (K(m*n® — 1274mn)(m? + n*) — 174mn(m® + n’) + 92m*n’*(m + n)
+ 795(m* +n*) + 2m*n® + 1433m°n*) — 630) H (s) H (t)H (u)

— 9(K(12m*n® — 1336mn)(m* + n*) — 279mn(m® + n®) + 132m*n*(m + n)
+866(m* + n*) + 24m’n® 4 1486m*n”) — 600) H (t)H (u)*H (v)

— 5(K(12m*n® — 1336mn)(m* + n*) — 279mn(m® + n®) + 132m*n*(m + n)
+866(m* + n*) + 24m®n® 4 1486m*n”) — 600) H (t)*H (u)H (v)

— (K(12m°n® — 1336mn)(m” + n®) — 279mn(m?® + n®) + 132m*n”*(m + n)
+866(m* + n') + 24m*n® + 1486m*n?) — 600) H (t)*H (u)?
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—5(X(2m*n* — 464mn)(m* + n*) — 81lmn(m® + n*) + 42m*n*(m + n)
+294(m* + n*) + 4m*n® + 518m*n*) — 216) H(s)*H (u)H (v)

— (K (2m*n* — 464mn)(m* 4+ n®) — 8lmn(m® 4+ n®) + 42m*n’*(m + n)
+294(m* + n') + 4m*n® + 518m°n*) — 216) H(s)* H (u)?

+ (K(Bmn(m® + n®) — 26(m* + n*)
+ 40mn(m* 4+ n®) — 46m*n®) + 24) H(s)*H (t)?

— 5(K(256m*n® — 3328mn)(m* + n*) — 659mn(m® + n’) + 320m*n*(m + n)
+ 2142(m* 4+ n*) + 50m®n® + 3706m*>n*) — 1512) H(s)H (t)H (u)H (v)

— 4(K(15m*n® — 1908mn)(m* + n*) — 383mn(m* + n’) + 185m*n*(m + n)
+2130(m* + n*) + 30m’n® + 2124m*n’) — 864) H (s)H (u)*H (v)

— 2(K(5m’n® — 932mn)(m* + n®) — 169mn(m® + n*) + 85m*n*(m + n)
+594(m* + n*) + 10m°n® + 1040m*n”) — 432) H(s)H (t)*H (v)

— 2(K(m*n* — 500mn)(m* 4+ n*) — 7Tmn(m® 4+ n®) + 41m*n*(m + n)
+ 314(m* + n*) + 2m*n® + 560m>n*) — 240) H(s)*H (t)H (v)

— (K(25m°n® — 3328mn)(m” + n®) — 659mn(m?® + n*) + 320m*n*(m + n)
+ 2142(m* 4+ n*) + 50m*n® + 3706m*n*) — 1512) H (s)H (t)H (u)?

— (K (5m*n* — 1376mn)(m* + n®) — 231mn(m® + n®) + 120m°n*(m + n)
+870(m* + n') + 10m*n® + 1538m*n?) — 648) H(s)H (t)*H (u)

— (K (m*n® — 736mn)(m® + n*) — 107mn(m® 4+ n®) + 56m*n’(m + n)
+462(m* + n*) + 2m*n® + 826m*n*) — 360) H(s)*H (t)H (u)

+ 6(K(15m*n® — 1608mn)(m* + n*) — 340mn(m® + n’) + 160m*>n*(m + n)
+ 1044(m* 4+ n*) + 30m®n® + 1788m*n*) — 720) H (¢)*H (u)*H (v)

+ 9(K(27m*n* — 2499mn)(m* + n*) — 619mn(m® + n®) + 292m>n*(m + n)
+1910(m* 4+ n*) + 54m®n® + 3274m*n*) — 1320) H (s)H (t)H (u)*H (v)

+ 4(K(9m’n® — 1064mn)(m” + n*) — 218mn(m?® + n®) + 104m*n*(m + n)
+688(m* +n') + 18m*n® + 1184m>n?) — 480) H (s)*H (u)*H (v)

+5(K(27m*n® — 2499mn)(m* + n*) — 619mn(m® + n®) + 292m*>n*(m + n)
+1910(m* 4+ n*) + 54m®n® + 3274m*n*) — 1320) H (s)H (t)*H (u) H (v)

+ 5(K(15m*n® — 1856mn)(m* + n*) — 375mn(m® + n’) + 180m*n*(m + n)
+ 1198(m* 4+ n*) + 30m®n® + 2066m°n*) — 840) H(s)*H (t)H (u)H (v)

+ 2(K(3m’n® — 520mn)(m* + n®) — 96mn(m® + n’) + 48m*n*(m + n)
+332(m* + n') + 6m®n® + 580m>n*) — 240) H (s)*H (t)*H (v
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+ (K(27m*n® — 2499mn)(m* 4+ n*) — 619mn(m® + n*) + 292m*n*(m + n)
+1910(m* 4+ n*) + 54m®n® + 3274m*n®) — 1320) H(s)H (t)*H (u)”

+ (K (15m’n® — 1856mn)(m” + n?) — 375mn(m?® + n*) + 180m*n”*(m + n)
+1198(m* + n*) + 30m®n® + 2066m>n*) — 840) H(s)*H (t) H (u)?

+ (K(3m*n* — 768mn)(m* + n*) — 131mn(m® + n®) + 68m>n*(m + n)
+486(m* + n*) + 6m’n® + 858m*n*) — 360) H(s)*H (t)*H (u)

— 13(K(15m*n* — 1608mn)(m* + n*) — 340mn(m® + n®) + 160m>n*(m + n)
+1044(m* + n*) + 30m®n® + 1788m>n*) — 720) H (s)H (t)*H (u)*H (v)

— 9(K(15m*n”® — 1608mn)(m* + n*) — 340mn(m® 4+ n®) + 160m*n*(m + n)
+1044(m* + n*) + 30m®n® + 1788m*n*) — 720) H (s)*H (t)H (u)*H (v)

— 5(XK(15m*n® — 1608mn)(m* 4+ n?) — 340mn(m® + n®) + 160m>n*(m + n)
+ 1044(m* 4+ n*) + 30m®n® + 1788m*n*) — 720) H(s)*H (t)*H (u) H (v)

— (K(15m*n® — 1608mn)(m* + n*) — 340mn(m* + n*) + 160m*n*(m + n)
+1044(m* 4+ n*) + 30m®n® + 1788m*n*) — 720) H(s)*H (t)*H (u)*

+ 7(K(15m*n® — 1608mn)(m* 4+ n*) — 340mn(m® + n®) + 160m>n*(m + n)
+1044(m* + n*) + 30m*n® + 1788m>n2) — 720) H(s)* H (£ H(u)* H (v )

dvdudtds

where K = nmntm)®

n7+m7
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