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Abstract 

Frequency regulation is an important part of grid ancillary services in the UK power system to 

mitigate the impacts of variable energy resources and uncertainty of load on system frequency. 

The National Grid Electricity Transmission (NGET), the primary electricity transmission 

network operator in the UK, is introduced various frequency response services such as firm 

frequency response (FFR) and the new fast enhanced frequency response (EFR), which are 

designed to provide real-time response to deviations in the grid frequency. Flexible and fast 

response capabilities of battery energy storage systems (BESSs) make them an ideal choice to 

provide grid frequency regulation. This thesis presents control algorithms for a BESS to deliver 

a charge/discharge power output in response to deviations in the grid frequency with respect to 

the requisite service specifications, while managing the state-of-charge (SOC) of the BESS to 

optimize the availability of the system. Furthermore, this thesis investigates using the BESS in 

order to maximize triad avoidance benefit revenues while layering UK grid frequency response 

services. Using historical UK electricity prices, a balancing service scheduling approach is 

introduced to maximize energy arbitrage revenue by layering different types of grid balancing 

services, including EFR and FFR, throughout the day. Simulation results demonstrate that the 

proposed algorithm delivers both dynamic and non-dynamic FFR and also EFR to NGET 

required service specifications while generating arbitrage revenue as well as service availability 

payments in the balancing market. In this thesis, a new fast cycle counting method (CCM) 

considering the effect of current rate (C-rate), SOC and depth-of-discharge (DOD) on battery 

lifetime for grid-tied BESS is presented. The methodology provides an approximation for the 

number of battery charge-discharge cycles based on historical microcyling SOC data typical of 

BESS frequency regulation operation. The EFR and FFR algorithms are used for analysis. The 

obtained historical SOC data from the analysis are then considered as an input for evaluating 

the proposed CCM. Utilizing the Miner Rule’s degradation analysis method, lifetime analysis 

based on battery cycling is also provided for a lithium-titanate (LTO) and lithium-nickel-

manganese-cobalt-oxide (NMC) battery. The work in this thesis is supported by experimental 

results from the 2MW/1MWh Willenhall Energy Storage System (WESS) to validate the 

models and assess the accuracy of the simulation results. 
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Nomenclature 

𝑆𝑂𝐶𝑡 Present state-of-charge value % 

𝐴𝑃𝑅𝑑 Total daily arbitrage revenue £/MWh 

𝐴𝑃𝑅𝑦 Total yearly arbitrage revenue £/kWh.yr 

𝐴𝑡_𝑏𝑢𝑦 System electricity buy price £/MWh 

𝐴𝑡_𝑠𝑒𝑙𝑙 System electricity sell price £/MWh 

𝐶𝐶 Cost of BESS charging £/MWh 

𝐶𝐷𝐶 Cost of BESS discharging £/MWh 

𝐶𝑦𝑐𝑙𝑒𝑐ℎ𝑔 Number of charging cycles in cycle counting cycle 

𝐶𝑦𝑐𝑙𝑒𝑑𝑖𝑠𝑐ℎ𝑔 Number of discharging cycles in cycle counting cycle 

𝐶𝑦𝑐𝑙𝑒𝑡𝑜𝑡𝑎𝑙 Number of full charge-discharge cycles in cycle counting cycle 

𝐸t Energy stored in the BESS at hour t Wh 

𝑁𝑐𝑦𝑐 Number of cycles  number 

𝑁𝑚𝑎𝑥 Maximum number of cycles  number 

𝑃meas EFR measured power kW 

𝑃out EFR output power kW 

𝑃set EFR power set point  kW 

𝑃t Delivered bi-directional power  W 

𝑆𝑂𝐶0 Initial state-of-charge value % 
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𝑆𝑂𝐶𝑐ℎ𝑔 Sum of charging indexes in cycle counting % 

𝑆𝑂𝐶𝑑𝑖𝑠𝑐ℎ𝑔 Sum of discharging indexes in cycle counting % 

𝑆𝑂𝐶𝑚𝑎𝑥 Maximum state of charge % 

𝑆𝑂𝐶𝑚𝑖𝑛 Minimum state of charge % 

𝜂C Battery charging efficiency % 

𝜂D Battery discharging efficiency % 

𝜂dc BESS charge/discharge efficiency in Pre-EFR control % 

∆𝐸 Change of energy in battery Wh 

∆𝑆𝑂𝐶 Change in state of charge % 

C Battery charge power in Pre-EFR control  kW 

CPower DFFR power set-point  kW 

D Battery discharge power in Pre-EFR control  kW 

DB Dead-band frequency Hz 

DN Battery doing nothing in Pre-EFR control  - 

Down Discharging indexes in cycle counting % 

E Battery export power in Pre-EFR control  kW 

E/P Energy/Power ratio number 

f Grid frequency  Hz 

F Grid frequency in SFFR control Hz 

Fhigh High trigger frequency in SFFR control  Hz 
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Flow Low trigger frequency in SFFR control Hz 

I Battery import power in Pre-EFR control  kW 

Pbatt Instantaneous battery power  W 

Pc Calculated power dictated by Pre-EFR  kW 

Pout Output power in Pre-EFR control  kW 

PowerOut DFFR output power  kW 

Ps Set charge/discharge power in Pre-EFR control  kW 

Q Battery watt-hour capacity  Wh 

RampL Lower ramp rate limit set in EFR control MW/s 

RampU Upper ramp rate limit set in EFR control MW/s 

SOC Available state-of-charge % 
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SOCl Lower SOC band in Pre-EFR control  % 

SOClow DFFR low operational state-of-charge limit  % 

SOClow Lower SOC operational limit in Pre-EFR control   % 

SOClow Lower SOC operational limit in EFR control   % 

SOCu Higher SOC band in Pre-EFR control  % 

SOCup Upper SOC operational limit in Pre-EFR control   % 

SOCup Upper SOC operational limit in EFR control   % 

SPM Service performance measurement  % 
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SPower Maximum SFFR power response  kW 

Up Charging indexes in cycle counting % 

η Inverter efficiency  % 

𝐶 Total battery capacity Wh 

𝐾𝑝 Proportional controller gain  number 

𝑃𝐷 Amount of delivered power in arbitrage control kW 

𝑄 Size of battery Wh 

𝑆𝐷𝑇 Service delivery time hr 

𝑆𝑃 Service price £/hr 

𝑑𝑆𝑂𝐶/𝑑𝑡 Change in state-of-charge % 
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Abbreviation 

AC Alternative current 

ANN Artificial Neutral Network 

AR Arbitrage revenue 

B2G Building-to-Grid  

BES Battery energy storage 

BESS Battery energy storage system 

BM Balancing Mechanism 

BMS Battery management system 

CAES Compressed-air energy storage  

CAN Controller area network 

CCM Cycle counting method 

CCT Coulomb counting technique 

CE Continental Europe 

CES Cryogenics energy storage 

C-rate Current rate 

CSI Current Source Inverter 
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DC Direct current 
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DG Distributed generation 

DNO Distribution Network Operator 

DOD Depth-of-discharge 

DSM Demand side management 

DSO Distribution System Operator 

DSR Demand side response 

DUoS Distribution network use-of-service charges 

EAR Energy arbitrage revenue 
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EFR Enhanced frequency response 

EFR-A1 Enhanced frequency response control algorithm-1 

EFR-A2 Enhanced frequency response control algorithm-2 

EFR-A3 Enhanced frequency response control algorithm-3 
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FES Flywheel energy storage 

FFR Firm frequency response 

GHG Greenhouse gas 

HES Hydrogen energy storage 

HESS Hybrid energy storage system 

HFR High frequency response 

HHM Half-hourly metered  

LCO Lithium-cobalt-oxide battery 

LiFePO4/C Lithium iron phosphate battery (referred as LFP) 

Li-ion Lithium-ion battery 
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NGET National Grid Electricity Transmission System 

NiCd Nickel-cadmium battery 

NiMH Nickel metal hydride battery 
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NISM Insufficient system margin 

NMC Lithium-nickel-manganese-cobalt-oxide battery 

NPV Net present value 

OCV Open circuit voltage 
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PbA Lead-acid battery 

PCS Power conversion system 

PFR Primary frequency response 

PHS Pumped hydroelectric storage 

PI control Proportional-Integral control 
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RoCoF Rate of change of frequency 

SAP Service availability payment  

SC Supercapacitor energy storage 
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SFFR Static firm frequency response 

SFFRhigh Static firm frequency – high response 

SFFRlow Static firm frequency – low response 

SFR Secondary frequency response 

SMES Superconductive magnetic energy storage 

SOC State-of-charge 

SOH State-of-health 

SPM Service performance measurement 

SW Switch mode in triad avoidance control strategy 

TAB Triad avoidance benefit 

TES Thermal energy storage 

TNUoS Transmission Network Use of Service  

UK United Kingdom 
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WESS Willenhall energy storage system 

WPP Wind Power Plant 
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ZnBr Zinc bromide battery 

Δ/Δ Transformer delta-delta connection 
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1 General Introduction 

1.1 Thesis Organizations 

The work in this thesis began in Jan 2015 at a time when there was only a handful of small grid 

connected batteries and the commercial interest in grid storage was just starting to ramp up. 

Over the last four years battery systems have been commercialised and there are now a number 

of large (>20MW) BESS installed throughout the UK. The work in this thesis has been 

published in three journals and six conference proceedings and has been delivered through 

workshops to a number of industrial partners that have used this knowledge to aid their 

commercialisation. 

The works provided in this thesis are summarised below.  

• Development of a BESS model that has been experimentally verified using a 

2MW/1MWh system in which both static and dynamic firm frequency response control 

algorithms have been implemented with state-of-charge (SOC) management. Based on 

historical frequency data, results are presented showing the obtainable performance for 

a BESS delivering these services.  

• During the development of the UK enhanced frequency response (EFR) specification 

the maximum power allowed during dead band (DB) was undefined. A sensitivity 

analysis was carried out on both the SOC target range and maximum power in the DB 

for both the wide and narrow services. In the work the service performance 

measurement (SPM) is used as a metric to select the best combination for maximum 

delivery with minimal power. 

• For the final UK EFR specification with a defined DB, four control algorithms are 

presented and the SPM of each compared. The first algorithm implements the basic 

service specification, whilst the second includes an optional 30-min non-delivery 

window following a 15-min event that is shown to increase the availability of the BESS. 

The third algorithm utilises the 30-min non-delivery window to manage the SOC of the 

BESS and is demonstrated to both improve the SPM and ability to manage the SOC. 

The fourth algorithm implements a proportional controller for power selection based on 

the EFR envelope that is shown successfully to reduce peak powers of the battery. 
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• A method is introduced using SOC target management whilst delivering EFR to prepare 

the BESS, by maximising the stored energy, for Triad Avoidance and participate in 

generating Triad Avoidance Benefit (TAB). A sensitivity analysis is carried out on the 

effects of acting upon different early morning Triad warning times.  

• An approach for layering frequency response services and generating arbitrage 

revenues is presented that maximises system profitability. This method utilises SOC 

target management for both arbitrage and service preparation, and using historical 

frequency and electricity pricing data a scheduling method is demonstrated. A total of 

18 different scenarios are analysed across week/weekend and different seasons of the 

year.  

• A new fast cycle counting method (CCM) is introduced for counting battery cycles that 

is suited for frequency service applications where micro cycling is typical. The new 

method is further developed to group cycles by C-rate, SOC level, and depth of 

discharge (DOD). The metrics are considered to be the primary factors in grid level 

storage cycling aging and hence levels of degradation can be estimated. 

• The CCM is used to study the frequency response service control algorithms presented 

in the thesis to publish typical cycle information. It is demonstrated how the method 

can be used to extract the required information to estimate the degradation based on 

techniques in literature. However, the new way in which the cycles can be attributed to 

different metrics (C-rate, SOC, DOD) means that new techniques based on 

experimental data can be used for more accurate prediction. It is proposed in the work 

how this can be achieved using both c-rate and SOC. 

The main contribution of this thesis is to present a control algorithm that enables BESSs to 

provide a bi-directional power in response to changes in the grid frequency, whilst managing 

the SOC of the BESS to optimise availability of the system. Moreover, this thesis introduces a 

strategy to generate additional revenues from grid storage applications such as Triad Avoidance 

only available during the winter season. This thesis also considers layering different UK grid 

balancing services, EFR and FFR, for Energy Arbitrage to make extra money in order to 

maximise the system’s availability and profitability. Finally, a new fast cycle counting method 

(CCM) considering the effect of current rate (C-rate), SOC and depth-of-discharge (DOD) on 
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battery lifetime for grid-tied BESS is presented. The method helps to analyse the effect of 

delivering frequency response services on battery lifetime. 

This thesis is organised into several chapters, each contributing a part to the overall objective 

of the thesis. A list of publications corresponding to each chapter is made available in the 

beginning of thesis. A brief description of each chapter is provided below. 

Chapter 1 reviews the structure of the UK power system needs and the requirement for grid 

flexibility. Energy storage systems (ESS) are investigated in detail with the importance of ESS 

in the power system, types of ESS technologies, and ESS applications. One of the most 

important types of ESS, battery energy storage system (BESS), is reviewed in detail with the 

state-of-art of BESS, types of batteries, functions of grid scale BESS, existing BESS 

installations and grid-tied BESS configurations. Chapter 1 also investigates the future of UK 

power system needs and the National Grid (NG) balancing service product strategies. Finally, 

this chapter provides an overall literature review on power system analysis for grid scale ESSs, 

power and energy management strategies, battery management methods, and battery lifetime 

analysis. 

Chapter 2 (J1, J2, C4) presents the UK’s largest 2MW/1MWh Lithium-Titanate (LTO) based 

BESS, operated by the University of Sheffield (UoS), with its battery pack structure, power 

electronic design and BESS operation and control.  

Chapter 3 (J1, J2, J3, C1, C2, C4, C5, C6) presents a dynamic firm frequency response 

(DFFR) control algorithm that enables BESSs to deliver dynamic power in response to 

deviation the grid frequency with respect to the National Grid Electricity Transmission (NGET) 

DFFR specifications. A static firm frequency response high (SFFRhigh) and low (SFFRlow) 

frequency response control algorithm are also developed to deliver a non-dynamic power. 

NGET prepared a Pre Enhanced Frequency Response (Pre-EFR) specification to facilitate a 

tender competition between potential energy storage providers in late 2015. Using the pre-

published enhanced frequency response specification, a generalised UK frequency response 

control algorithm is developed to evaluate control strategies for delivering a real-time response 

to deviations in the grid frequency. At the time of this work BESS focused frequency response 

services were still being developed and therefore any anticipated service specific constraints 

around control in DB had been ignored. This allowed this study to explore forecasting of 
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battery SOC levels and to propose battery charge/discharge management methods in order to 

maximise BESS availability. 

Finally, this chapter introduces four EFR control algorithms that enables BESSs to provide a 

bi-directional power in response to changes in the grid frequency, whilst managing the SOC of 

the BESS to optimise availability of the system. The first EFR control algorithm, called EFR-

A1, introduces a standard control algorithm designed to meet the technical requirements of 

NGET specifications. The advanced EFR algorithm, called EFR-A2, addresses the EFR service 

design with an extended 15-minute frequency event control, in order to optimise the use of the 

available stored energy. The third algorithm, called EFR-A3, extends the EFR control 

algorithm to include a dynamic SOC target to maximise the energy stored. Finally, the last EFR 

algorithm, called EFR-A4, includes a SOC-based proportional controller in the standard EFR 

control algorithm (EFR-A1) to optimize the power delivery in order to reduce the battery 

degradation and hence extend the battery lifetime. The developed DFFR and EFR control 

algorithms have been experimentally validated with the WESS 2MW/1MWh battery. 

Chapter 4 (J1, J2, J3, C1, C5) begins by introducing a technique using SOC target 

management to combine EFR service with Triad Avoidance. A new effective Triad strategy 

layering grid frequency response service is developed to increase battery storage availability 

to maximize Triad avoidance benefit (TAB) revenues. The performance of the EFR service 

delivery through TAB is quantified. The Chapter 3 presented the EFR control methodologies 

with their simulation results; and this chapter extends to show how this can be used to maximise 

profits from other services such as Triad Avoidance. 

Chapter 4 also introduces a scheduling method for BESS participating in frequency response 

services and energy arbitrage.  The focus of this chapter is related to not only energy arbitrage, 

but also the scheduling of grid balancing services such as frequency response for additional 

benefit. In this chapter, by using the historical electricity price profiles, a grid balancing service 

scheduling method is developed to achieve maximum energy arbitrage revenues that can be 

generated from the grid balancing services by layering EFR, DFFR, SFFRhigh and SFFRlow 

throughout the day. The proposed approach is not only providing arbitrage revenue but also 

generating further income through balancing service availability payments; this maximizes the 

system’s profitability and availability. In this chapter, the UK daily electricity price pattern has 

been forecasted by observing the real electricity price of several week/weekend days across 

different seasons along with the grid frequency profiles of those days.  
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Chapter 5 (C3, M1) : This chapter introduces a new fast battery cycle counting method (CCM) 

for a grid-tied BESS, operation in grid frequency regulation and hence subjected to 

microcycling. In this chapter, all frequency response control algorithms developed in Chapter 

3 are simulated to produce battery SOC data for a given time period using historical frequency 

data, those are then used to demonstrate the battery cycle counting method. This chapter 

quantifies the microcycling in terms of full cycles to aid in the approximation of the degradation 

of a battery and the battery lifetime analyses using the Miner’s Rule life prediction method, 

whilst providing ancillary services such as frequency response. Secondly, the CCM algorithm 

is improved by considering C-rate and SOC effect on battery state-of-health (SOH). The 

proposed algorithm determines the number of full charge-discharge cycles experienced by the 

BESS operating in EFR service at different C-rate values grouped in steps of 0.2 C (C-rate) for 

each SOC range grouped by 10%. Thirdly, this chapter provides a new fast CCM considering 

the effect of DOD in partial charge and discharge cycling. The proposed method approximates 

the number of partial charge and discharge cycles a battery subjected under different DOD 

ranges. 

Finally, Chapter 6 draws a number of conclusions and summaries the contributions that this 

thesis work has made to the control of large scale grid-tied battery energy storage system. The 

scope for the future work which can expand on this thesis is set out. 

1.2 Introduction 

The greenhouse effect, worldwide population growth and sustainable policies demand an 

increasing use of renewable energy sources (RESs) around the world. The deployment of 

hydropower, solar and wind resources has been incredible and is still rising. This century is 

expected to see remarkable growth and challenges in power generation, delivery and usage. 

Environmentally friendly renewable power generation technologies will play a vital role in 

future power supply owing to increased global public awareness of the need for environmental 

protection and the need for less dependence on fossil fuels for energy generation. These 

technologies involve power generation from renewable energy (RE) resources, such as 

photovoltaic (PV), wind, geothermal, micro hydro (MH), biomass, ocean and wave tides 

[NEH11]. 
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The UK government has ambitious targets to deploy RESs and reduce greenhouse gas (GHG) 

emissions from the energy sector. According to the European Union (EU) 2020 target, the share 

of electrical energy produced from renewables needs to increase to around 30% [MEY15]; 

having 15% renewable energy on the grid by 2020 [PAT16]. Moreover, the UK is committed 

to reduce its GHG emissions by 80% by 2050. The current UK electricity generation mix is 

shown in Fig. 1.1 [ONL19f]. 

 

Fig. 1.1 UK electricity generation mix [ONL19f]. 

Distributed generation (DG) is going to play an important role in modernization of power 

system structure due to its promises to supply environmental friendly, reliable and cost-

effective electricity to the customer. DG is small scale, self-contained generating plants that 

can be tied directly with load centre or near to load in distribution network. DG includes 

renewable technologies (photovoltaic, wind and biomass power) and high efficiency non-

renewable power (gas turbine, fuel cell, internal combustion engine, micro turbine). Among 

various types of DG technologies, renewable DGs are becoming popular due to abundant 

availability of resources and almost zero emission in environment. Although the effects of 

renewable DGs are considered as completely favourable for distribution network, individual 

DG application may cause high distribution power losses and poor voltage stability of the 
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network. Therefore, type, optimal location and size selection of renewable DGs in the 

distribution network is a very important aspect of energy system planning [KAY14]. 

However, RESs have two significant drawbacks beside their invaluable benefits: RESs greatly 

depend on weather conditions, and they have unsynchronized generation peaks with the 

demand peaks [HUS13]. In the last 20 years wind and photovoltaic generation has been studied 

extensively and has led to large installations of both. Since the distributions of output power of 

these renewables it is difficult for them to be used locally. If they are linked to the main grid at 

scale, it may result in a large-scale surplus power flowing which may cause the power stability 

problems. Furthermore, integrating massive amount of intermittent RESs into power systems 

poses various technical and economic challenges. Variable RESs are difficult to predict and 

provide a highly fluctuating power output, hence adding variability and uncertainty to the 

planning and operation of power systems. Furthermore, the potential of RESs is generally 

spatially distributed and barely correlates in time with the load profiles. These characteristics 

of RESs challenge the adequacy of the power system (power and energy balance) and 

frequency and voltage regulation. Therefore, in order to successfully integrate a greater share 

of RESs, the planning and operation of power systems are required to become more flexible 

than they are today [HAA17], [COC14], [LAN11].  

 

Fig. 1.2 Need for flexible power systems and flexibility sources. 
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The needed flexibility can be provided through various approaches as shown in Fig. 1.2. These 

involve operational strategies (e.g energy curtailment [BOU08], power output controls 

[RAH16], more frequent dispatches [DEA14], and residential and industrial demand side 

management (DSM) [JON11]), new market structures, integration between various energy 

sectors such as the transport, power and heat sectors [POU06], [POU12], [PIE14]. Additionally, 

it is possible to modify the power system infrastructure by reinforcing transmission 

infrastructure, adding flexible generation devices such as gas turbines [MAT14], and the 

inclusion of energy storage systems (ESSs) [FAI12], [HAO15], [HAA17]. 

To overcome these issues, renewable DGs are generally backed up with energy storage (ES) to 

minimize fluctuations in their produced power and to synchronize the generation peaks with 

the demand peaks. However, ES devices are expensive [HUS13]. More details about ES will 

be given in the following section. 

1.3 Energy Storage Systems (ESSs) 

ES plays an essential role in power distribution systems. ES can store excess power in the 

valley load period and then releases the stored energy during the peak load period. Not only 

can it increase the efficiency of the utilization of the RES, but also can effectively lessen the 

load and the load pressure of the grid. Optimised usage of ES device promises the efficient 

utilization of RES [CHE15]. 

1.3.1 Importance of Energy Storage in Power Systems 

ES technologies can provide numerous benefits to the power system, listed as following: 

• ES technologies can decrease the use of fossil fuels, allowing a greener energy supply 

mix.  

• RESs cannot be the sole provider of energy without an ES facility due to the variable 

output. ES can allow the integration of more RESs, especially wind and solar PV, in 

the energy mix [WHI12]. 

• ES technologies could reduce the requirement to invest in new traditional generation 

capacity, leading to financial savings and reduced emissions particularly from 

electricity generation [BAR04]. 
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• ES could improve the energy security by optimising the demand and supply, thus 

reducing the requirement to import electricity via interconnectors [BAR04].  

• ES can provide system stability during electricity blackouts by providing energy at 

these times and decreasing the financial cost of power blackouts [BAR04].  

• Energy can be stored when electricity prices are low and used on site when the prices 

are high to save businesses and consumers money on their electricity bills. 

Alternatively, the stored energy can also be sold [FER13].  

• Large scale ES can substantially reduce energy losses on transmission and distribution. 

Electricity transmission losses usually run at below 10% of the total energy first 

generated in the UK [ONL18c].  

• ESS is an essential technology for the future electricity power network by maintaining 

storage and reserve facilities and will have an important impact on the market; for 

instance ESS will contribute to reduce the volatility of electricity market price, to 

increase market efficiency, to promote the qualification of grid ancillary services and 

to improve power system security [FER13]. 

1.3.2 Classification of Energy Storage Technologies 

There are different methods for classification of various ESS technologies, such as, in terms of 

their response time, functions and suitable storage durations [LUO15]. The most widely used 

methods is based on the form of energy stored in the system, as shown in Fig. 1.3.  
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Fig. 1.3 Classification of energy storage technologies by the form of stored energy. 

A. Pumped Hydroelectric Storage (PHS)  

Pumped hydroelectric storage (PHS) is an ES technology with a long history, large energy 

capacity and high technical maturity. With an installed capacity of 153 GW in 2018 [ONL18b], 

PHS represents 99% of worldwide bulk storage capacity and contributed to around 3% of 

global generation [LUO15]. A standard PHS plant includes two water reservoirs, separated 

vertically. At off-peak electricity demand hours, the water is pumped into the higher level 

reservoir at peak hours, the water can be send back into the lower level reservoir. In this process, 

the water powers turbine units that drive the electrical machines to produce electricity. Many 

PHS plants exist with power rating ranging between 1MW-3003MW, with ~70-85% cycle 

efficiency and around 40 years lifetime [CHE09], [LUO15]. PHS applications mainly involve 

frequency control, energy management in the fields of energy arbitrage, non-spinning reserve 

and supply reserve. However, with the restriction of area selection (mountainous areas 

preferred), PHS plants suffer high capital investment and long construction. Solar and wind 

power generation coupled with PHS has been developed. This helps the adoption of renewable 

energy in distributed or isolated networks. For instance, in Greece, the Ikaria Island power 

station was integrated with 3x900 kW wind farms and a PHS (2MW) facility [PAP10].  

B. Battery Energy Storage (BES) 

Rechargeable battery is one of the most broadly used ES technologies in daily and industry life. 

Fig. 1.4 illustrates the simplified operational principle of a standard battery energy storage 

system (BESS). A BESS consists of some electrochemical cells connected in series or parallel, 

which generates electricity with a desired voltage from an electrochemical reaction. Each 

battery cell has two electrodes (one anode and one cathode) with an electrolyte that can be at 

liquid, solid or ropy states [LOU15]. A battery cell can bi-directionally convert energy between 

chemical and electrical energy. When discharging, the electrochemical reactions happen at the 

anodes and the cathodes simultaneously; to the external circuit, electrons are supplied from the 

anodes and are collected at the cathodes. When charging, the reverse reactions occur and the 

battery is recharged by applying an external voltage to the two electrodes (Fig. 1.4). The 

location for BESS installation is quite flexible, either close to the facilities where required, or 

housed inside a building. Currently, relatively short life times has been considered as the major 

barriers to implementing large scale facilities. The issues are high capex costs which are not 
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supported by long term contracts and potentially short lifetimes. The recycling or disposal of 

dumped batteries must be considered if toxic chemical materials are used [9]. Moreover, 

various types of battery cannot be fully discharged owing to their lifetime depending on depth 

of discharge [LUO15]. 

 

Fig. 1.4 Schematic diagram of a battery energy storage system operation [LUO15]. 

C. Compressed Air Energy Storage (CAES) 

In a compressed-air energy storage system (CAES), electrical compressors are used to 

compress air and store it in either an above-ground system of consisting of a vessel or pipes, 

or underground structure (abandon mines, salt cavern, rock structures). When required, the 

compressed air is released and mixed with natural gas, burned and expanded in a modified gas 

turbine. Current studies on the CAES are focused on the enhancement of systems with 

fabricated storage tanks that will remove the geological dependency and also the storage of 

compressed air at a higher pressure. There are currently only two CAES units in operation, they 

are placed in Macintosh in Alabama, USA and Huntorf, Germany. CAES has a high power (5-

300 MW) and energy capacity rating; this makes the CAES another alternative for wind farms 

for energy management purposes. The storage period can be over a year because of very small 

self-discharge losses. However, the installation of a CAES is currently limited by topographical 

conditions [ZHA15]. 
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D. Flywheel Energy Storage (FES) 

In a flywheel energy storage system (FESS), the rotational energy is stored in an accelerated 

rotor, a large rotating cylinder. The system components are a rotating cylinder (consists of a 

rim attached to a shaft) in a compartment, a shaft and bearings. The whole structure is located 

in a vacuum enclosure to decrease windage losses. On charging, the rotor is accelerated to a 

very high speed which can typically reach anyway from 5,000 to 80,000 rpm depending on 

size. The energy is stored in the flywheel by maintaining the rotating body at a constant speed. 

On discharging, the flywheel uses its energy and drives the machine as a generator [ZHA15]. 

The main benefits of flywheels are its great cycling capability, a long life of supplying full 

charge-discharge cycles, high efficiency, high power density and low maintenance cost. The 

FESS is mostly applied as a power quality device to suppress fast wind power changes. The 

major disadvantages are the high self-discharge losses and short operation duration due to 

comparably low energy densities [ZHA15]. 

E. Supercapacitor Energy Storage (SCs) 

Supercapacitor energy storage system (SCs) also known as ultra-capacitors, electrochemical 

capacitors or electric double layer capacitors were drawing less attention until very recently 

when faster ESSs were required in a number of applications to replace Li-ion batteries which 

suffer from comparably slow charge/discharge and suffer from limited lifetime. This renewed 

interest has led to significant progress in its development and use in ES technologies. SCs store 

energy in two series capacitors of the electric double layer that is formed between each of the 

electrodes and the electrolyte ions. They are capable of storing massive power density and can 

respond to any change in power demand in tens to hundreds of milliseconds. The number of 

charge and discharge cycles of SCs is potentially unlimited, however the energy throughput in 

fast cyclic operation is limited. They have an efficiency of 95% and 5% per day self-discharge; 

this means that the stored energy must be used quickly [PAT10], [ANE16]. 

F. Cryogenic Energy Storage (CES) 

Cryogenics energy storage systems (CES) are a more recently developed low-temperature 

thermo-electric ES approach that enables grid operators to charge excess electricity to 

liquefaction of a gas that is subsequently stored in a thermally insulated storage tank at a 

cryogenic temperature (below -190°C), at near-ambient pressure. At the discharge process, the 

liquid gas (cryogen) is pressurised, evaporated and superheated. Cryogen is a new term 
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introducing a gas in a liquid state that has a boiling temperature below -150°C at a pressure of 

1 bar; examples include liquid hydrogen, liquid air, liquid nitrogen etc. The high pressure gas 

is then expanded to produce electricity in a gas turbine system. CES is a promising technology 

due to the high potential for bulk energy storage with a substantially larger volumetric energy 

density compared to CAES and PHS. CES is highly competitive compared to other grid scale 

ES technologies due to the following: (a) There are no geological constraints; (b) the theoretical 

number of charge and discharge cycles is infinite; (c) CESS is cost competitive with other low-

carbon technologies; (d) the periods of storage are relatively long. With a discharge duration 

of several hours and a power rating above 100MW, CES is applicable to energy management 

[HAM17]. However, the CES unit has a very low round trip efficiency of 46.7% and the overall 

plant efficiency is only 24.4% [CET19]. Allowing synergies with other processes such as 

cooling or recovering waste cold/heat enables system efficiency to be increased. 

G. Hydrogen Energy Storage (HES) 

Electricity can be converted to hydrogen by electrolysis, the hydrogen can be stored and 

ultimately re-electrified. Today, the round trip efficiency is quite low (~30% to 40%), but could 

increase up to 50% if more efficient technologies are designed. Despite its low efficiency, the 

interest in HES is growing owing to the much higher storage capacity compared to PHS, BES 

(small scale) and CAES (large scale) [ONL19j]. Hydrogen can be re-electrified in fuel cells 

with efficiencies up to 50%, or as an alternative, burned in combined cycle gas power plants 

with efficiency ~60% [ONL19j].  

H. Summary of ES Technologies 

The above ES technologies are, owing to, their different characteristics, suitable for different 

applications. Generally, electrochemical storage systems (batteries, flow batteries, fuel cells) 

respond on very short timescales and hence are suitable for ancillary services (e.g grid 

frequency regulation). Flow batteries are emerging, however only few MW systems have been 

installed so far. Only batteries and PHS can be regarded as mature storage technologies with 

many commercial installations worldwide. CAES and PHS are slower, but have relatively low 

costs of the storage capacity, and hence more suitable for storing large amount of energy to be 

delivered over a longer duration. CAES systems have been worked for many years, however 

only two CAES systems have been installed and in both the power generation is dominated by 

combustion of natural gas. Both CAES and large scale reversible fuel cell technology still 
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require important research and development before they can be fully commercialized [EKM10]. 

Fig. 1.5 illustrates a comparison of power ratings and rated energy capacities of ES 

technologies. The nominal discharge time duration at the rated power is also illustrated within 

the range from seconds to months. From Fig. 1.5, ES technologies can be classified by the 

nominal discharge time at rated power; (1) discharge time less than 1 hour: flywheel, SMES, 

supercapacitor; (2) discharge time up to 10 hours; over ground small-scale CAES, PbA, Li-ion, 

ZnBr, NiCd and PSB; (3) discharge time longer than 10 hour: underground large-scale CAES, 

PHS, liquid air energy storage, solar fuel, VRB, fuel cell and TES [LUO15]. 

 

Fig. 1.5 Comparison of ES technologies’ power rating and rated energy capacity with 

discharge time duration at power rating [LUO15]. 

1.3.3 ESS Applications used for Supporting Power System 

Energy storage systems (ESSs) are continuously gaining importance owing to integration of 

RESSs into the distribution network. In addition to provide of bulky stored electricity, ESSs 

are suitable choices for various power system applications. Major types of ESS and their 

applications, priorities and challenges are given in Table 1.1. These involve increasing 

penetration of intermittent sources, improving power quality by mitigating voltage oscillations 

and improving network reliability by increasing transmission line capacities. ESSs are a cost 

effective candidate as compared to conventional fuel based system restorers such as diesel 

generators. ESSs do not have rotating parts, hence their operational and maintenance costs are 

lower and easier to troubleshoot within a short time [JAM15]. There are two major areas for 
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power system applications, including power quality and energy management. Power quality 

applications involve voltage support, frequency regulation, flicker compensation, spinning 

reserve, and low voltage ride through. Energy management applications can be composed of 

time shifting, energy arbitrage, load levelling, peak shaving and capacity firming [BHU12].   

A. Renewable Intermittency Mitigation 

DG is considered as new concept of electricity delivery in future grids primarily contributed 

by RESs. ESS can also be integrated into grids to provide electricity and cover a certain fraction 

of demand [JAM15]. 

B. Load levelling 

When an ESS is located on a load bus of a power system, the change of load can be levelled 

by storing energy at peak periods and releasing the energy at off-peak times. Load levelling 

approach is based on charging at off-peak times and discharging at peak times, in order to 

secure a uniform load for generation, transmission and distribution system, thus maximizing 

the power system’s efficiency [FER13]. 

C. Peak shaving/valley filling 

Although the principle is the same for these two approaches, the purpose is slightly different. 

Peak shaving concerns the minimisation of peak power, and hence the use of more costly power 

plants, whilst valley filling focuses on improving the plants efficiency by increasing the load 

at those moments [FER13]. 

D. Unbalance load compensation 

An unbalanced load can be compensated using a three-phase converter system along with ES. 

The control of the ES is configured in such a way so that absorbing and injecting energy can 

be managed on independent phases [BHU12]. 

E. Energy arbitrage 

ESSs can be used to purchase energy from the power grid when the time-of-use pricing is lower, 

and later sell back the energy to the grid when the time-of-use price is higher. Revenue can be 

achieved using the energy arbitrage. If energy storage is located in a feeder which supplies to 

a local load, then grid flow can be regulated based on load changes [BHU12]. Energy arbitrage 
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function is traditionally implemented by PHS, CAES and BESSs. Energy arbitrage study is 

similar to peak shaving functions; which covers the optimum ESS scheduling for maximizing 

the profits, ESS sizing, implementation of distributed ESSs and economic assessment [CHA17]. 

F. Frequency and voltage regulation 

ESSs can absorb active power when the grid frequency increases from a predefined upper 

frequency threshold, whereas it can release power when the frequency drops below the 

predefined lower frequency threshold. Hence, ESSs can contribute to stabilize the grid 

frequency. BESSs, FESs and Supercapacitors are generally adopted for grid frequency and 

voltage regulation due to their fast response [CHA17], [CHO17]. 

G. Voltage support 

Providing required reactive power to a load can maintain system voltage at its nominal value. 

Generators are responsible to supply both real and reactive power. If there is a high demand 

for both real and reactive power, an ESS can share the real power with the generators, hence, 

the generators can deliver required reactive power for the load. Therefore, ESS can support a 

power system to prevent from voltage sag [BHU12]. 

H. Spinning reserve 

Spinning reserve can be described as the amount of generation capacity that can be used to 

generate active power over a given period of time and which has not yet been committed to the 

generation of energy during this period. Spinning reserve indicates standby unused generation. 

ESSs are fast and hence can be used as a spinning reserve [BHU12].  

I. Black start 

If a power system is down due to a fault, the process of restoring the system is called black 

start. Typically, diesel generator systems are used for starting the power stations. However, an 

ESS along with a converter is capable to supply power to the grid, consequently, recover the 

power stations by energizing the field-coils of the synchronous generators [BHU12]. An 

example is the Huntorf CAES that supplies black-start power to nuclear units placed near to 

the North Sea [LUO15].  
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Table 1.1 Specifications of ESS technologies [DEH19], [ONL18f]  

Technology Primary Application Priorities Challenges 

Flywheel energy 

storage (FESS) 

• Frequency regulation 

• Peak shaving 

• Load levelling 

• Transient stability 

• Rapid response 

• Modular technology 

• Suitable for utility scale 

• High peak power without 

overheating concerns 

• Long cycle life 

• High round trip energy 

efficiency 

• Rotor tensile strength 

limitations 

• Limited energy storage 

time because of high 

frictional losses 

Pumped hydro 

energy storage 

(PHS) 

• Backup and reserve 

• Energy management 

• Regulation service 

through variable speed 

pumps 

• Mature and developed 

technology 

• Cost effective 

• Very high ramp-rate 

• Geographically limited 

• Environmentally impacts 

• Plants site 

• High overall project cost 

Compressed air 

energy storage 

(CAES) 

• Backup and reserve 

• Energy management 

• Renewable integration 

• Established technology in 

operation since 1970 

• Better ramp-rates than gas 

turbine plants 

• Geographically limited 

• Slower response than 

batteries or flywheels 

• Lower efficiency owing 

to round trip conversion 

• Environmental impact 

Superconductive 

magnetic energy 

storage (SMES) 

• Frequency regulation 

• Power quality 

• Highest round trip 

efficiency from discharge 

• Material and 

manufacturing cost 

prohibitive 

• Low energy density 

Capacitors 
• Frequency regulation 

• Power quality 

• Highly reversible and fast 

discharge 

• Very long life 

• Currently cost prohibitive 

Thermochemical 

energy storage 

(TES) 

• Grid stabilization 

• Load levelling and 

regulation 

• Extremely high energy 

densities 
• Currently cost prohibitive 

Hydrogen 

Energy Storage 

(HES) 

• Load levelling 

 

• Distributed storage 

• Other uses for produced 

hydrogen 

• Minor environmental issues 

• Low efficiency 

• High investment costs 

• Raw material’s limits 

• Environmental impacts 

Battery Energy 

Storage System 

(BESS) 

• Frequency regulation 

• Peak shaving 

• Power quality 

 

• Distributed storage 

• Good configurability 

• Fast response time 

• High energy efficiency and 

density 

• High investment costs 

• Short life span 
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Table 1.2 Technical characteristics of the ESSs [WON19], [KYR16] 

Type of ES Storage Duration Efficiency  

(%) 

Lifetime 

 (years) 

Power Rating 

(MW) 

SMES Minutes-hours 95-98 20+ 0.1-10 

FES Seconds-minutes 85-95 15 0-0.25 

SC Seconds-hours 84-97 10-30 0-0.3 

         BES 

PbA Minutes-days 63-90 5-15 0-20 

NaS Seconds-hours 75-90 10-15 0.05-8 

Li-ion Minutes-days 75-97 5-15 0-0.1 

ZnBr Hours-months 65-85 5-10 0.05-2 

CAES Hours-months 50-89 20-60 5-300 

HES Hours-months 20-66 5-15 0-50 

PHS Hours-months 65-87 40-60 100-5000 

This thesis focuses on the control of battery storage; therefore more detail about BESSs will be 

given in the following section. 

1.4 Battery Energy Storage Systems (BESSs) 

There are various types of existing ESSs, as discussed in Section 1.3.2. In comparison to such 

ESSs, BESSs have numerous advantages including faster response time compared to 

conventional energy generation sources, energy efficiency, storage size, low self-discharge rate, 

high charging/discharging rate capability, and low maintenance requirements [SAW16], 

[FEE16]. BESS has a significant disadvantage such as low cycle life. The cost of batteries has 

been decreasing in recent years and therefore there is now a potential for profitable large-scale 

grid application. BESSs mostly participate in balancing demand and supply through frequency 

response services, voltage support and peak power lopping [CHE16], [XU16]. BESSs using 

various battery chemistries are installed around the world for grid support [GUN17a]. A BESS 

is becoming superior for the purpose of grid support owing to its benefits such as its fast 

response time, flexibility in locations, construction time, and low operation costs. There are 

numerous works dealing with different aspects of grid scale BESS on energy management 

[TAN15], control strategies [ZAL13], battery management [LAW14] and life cycle cost 

analysis [ZAK15].  
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1.4.1 Battery Terminologies 

In literature, various terminologies are used to define different characteristics of BESSs. Those 

terms [ZHA17], [NEJ16] relevant to this chapter are provided in the following parts, which 

will later help on developing the BESS control algorithms, evaluating the cycle counting 

algorithms and battery lifetime analysis. 

A. Battery Cell, Module, Pack 

The term battery is associated with one or more cell(s) connected in a series and/or parallel 

configuration in order to provide the desired voltage and ampere-hour rating. A ‘string’ of cells 

often consists of a number of series or parallel connected cells. A string (or strings) of cells 

connected physically and electrically together is called a ‘module’, whereas a number of 

modules connected electrically and operated as single unit, is called a ‘battery pack’. 

B. Capacity 

Battery capacity can be defined using two terms. Ampere-hour (Ah) capacity is the total 

amount of releasable charge stored in a battery under some predefined conditions. It is usual to 

use Watt-hour (Wh) instead of Ah to define a battery’s capacity. The rated Wh capacity is 

mathematically defined as in (1.1). 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑊ℎ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑅𝑎𝑡𝑒𝑑 𝐴ℎ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑥 𝑅𝑎𝑡𝑒𝑑 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (1.1) 

C. Current-Rate (C-rate) 

C-rate is an arbitrary metric used to define the current rate, at which the battery will take one 

hour to fully discharge under standard conditions. For example, a rated 3.3 Ah cell will take a 

current of 3.3 A to fully discharge in one hour. 

D. Specific Energy and Power 

Specific energy is used to quantify the amount of energy a battery can store per unit mass. It is 

expressed in Wh/kg as given in (1.2). Similarly, specific power represents the battery’s peak 

power per unit mass, expressed in W/kg as in (1.3). 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑅𝑎𝑡𝑒𝑑 𝑊ℎ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑀𝑎𝑠𝑠⁄  (1.2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑃𝑜𝑤𝑒𝑟 = 𝑅𝑎𝑡𝑒𝑑 𝑃𝑒𝑎𝑘 𝑃𝑜𝑤𝑒𝑟 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑀𝑎𝑠𝑠⁄  (1.3) 

E. Energy and Power Density 

Energy density is the nominal battery energy stored in a given space per unit volume. This is 

expressed in Wh/l as in (1.4). 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑅𝑎𝑡𝑒𝑑 𝑊ℎ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑉𝑜𝑙𝑢𝑚𝑒⁄  (1.4) 

Specific power is the term referring to the peak-power per unit volume of a battery, expressed 

in W/l as in (1.5). 

𝑃𝑜𝑤𝑒𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑅𝑎𝑡𝑒𝑑 𝑃𝑒𝑎𝑘 𝑃𝑜𝑤𝑒𝑟 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑉𝑜𝑙𝑢𝑚𝑒⁄  (1.5) 

F. State of Charge (SOC) 

SOC is defined as the remaining amount of releasable charge in a battery with respect to the 

maximum available capacity.  

G. Depth of Discharge (DOD) 

DOD is an indicator of the battery discharge since the last change at the 𝑛𝑡ℎ global dispatch 

interval as in (1.6) For instance, when the battery is charged from 30% to 50% of the SOC, the 

DOD is 0% and ∆𝑆𝑂𝐶 is 20%. When the battery is then discharged from 50% to 40% of the 

SOC, the DOD is 10% and ∆𝑆𝑂𝐶 is -10%. If the battery is discharged from 40% to 20% of the 

SOC straight of the first charge, the DOD will be updated to 30% [ZHA17]. 

𝐷𝑂𝐷𝑛+1 = { 
𝐷𝑂𝐷𝑛 − ∆𝑆𝑂𝐶𝑛           , 𝑖𝑓 ∆𝑆𝑂𝐶𝑛 ≤ 0
 0                                      , 𝑖𝑓 ∆𝑆𝑂𝐶𝑛 > 0

 (1.6) 

H. State-of-Health (SOH) 

SOH is a measurement that shows the general condition of a battery and its ability to deliver 

the specified performance compared with a new battery. The designer of a BMS may use any 

of the following parameters (or in combination) to determine the SOH: - number of charge-
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discharge cycles, -internal resistance, - capacity, - voltage, 5) self-discharge, 6) ability to accept 

a charge. 

I. End-of-Life (EOL) Condition 

Conventionally, battery reaches its end of life when its available capacity decreases to 80% of 

the maximum capacity or the capacity fade increases to 20% of the maximum capacity.  

J. Calendar Life and Cycle Life 

The calendar lifetime is the elapsed time for an inactive battery before the battery reaches the 

EOL condition, 80% of it's original capacity. The cycle life is the number of complete 

charge/discharge cycles that the battery is able to support before its capacity decreases to under 

the EOL.  

K. Life Dependence on the Average SOC and Temperature 

Generally, the lithium battery life will also depend on the average SOC and temperature. 

1.4.2 Types of Batteries 

Various types of batteries are used for large scale ES. The characteristics of different types of 

batteries used for large scale battery energy storage such as lithium-ion (Li-ion), lead-acid 

(PbA), sodium-sulphur (NaS), nickel metal hydride (NiMH) and flow batteries etc., as well as 

their applications, are discussed in this section. Major types of BESS and their applications, 

priorities and challenges are shown in Table 1.3. 

A. Lead-acid (PbA) 

PbA battery, invented in 1859, is the oldest type of rechargeable battery, and it uses a liquid 

electrolyte. Deep-cycle lead acid batteries are suitable for small-cycle RES integration 

applications. PbA batteries can be discharged repeatedly by as much as 80% of their capacity; 

and hence they are ideal for grid scale applications. With low investment costs, lowest self-

discharge and relatively ease of maintenance, they offer a proven and cost-competitive solution 

to a range of storage requirements [POU13]. Drawbacks of this technology cover limited cycle 

life, failure due to deep and continuous cycling, poor performance at low and high ambient 

temperatures, and environmentally unfriendly lead content and acid electrolyte [NIR10]. 
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C. Nickel-cadmium (NiCd) 

NiCd battery consists of a positive electrode with nickel oxyhydroxide as the active material 

and a negative electrode consisted of metallic cadmium. Owing to its higher energy density 

and longer cycle life than those of PbA, relatively lower cost than other batteries and tolerance 

for deep discharge, the NiCd battery is mostly preferred for medium-term energy management. 

NiCd also provides various benefits in PV applications and factors; including its cycling ability, 

durability, and reliability make it suitable for operating under adverse conditions. NiCd 

batteries are a competitive replacement for PbA batteries owing to their ability to provide 

continuous power for long periods, and also their use in applications that need instantaneous 

power [NIR10]. Its main drawbacks are that cadmium is toxic, and the battery exhibits negative 

temperature coefficient that causes charging problems at higher temperatures [BHU12]. 

D. Nickel metal hydride (NiMH) 

NiMH battery is a feasible option to NiCd battery due to its performance and environmental 

benefit. In comparison to PbA and NiCd batteries, NiMH is environmentally friendly owing to 

the lack of toxic substances such as lead, cadmium or mercury. Energy density of NiMh cell is 

25-30% higher than high performance NiCd cell. NiMh batteries suffer from severe self-

discharge; making them inefficient for long-term energy management [NIR10].  

B. Sodium-sulphur (NaS) 

NaS battery is a rechargeable high temperature battery technology that uses metallic sodium 

and provide attractive solutions for various large scale utility ES applications; including power 

quality, load levelling and peak shaving, as well as renewable energy management and 

integration. This battery has a high charge/discharge efficiency (75-86%), high energy density, 

and is produced from inexpensive materials [POU13]. 

D. Lithium-ion (Li-ion) 

In Li-ion batteries, the lithium ions move between the anode and cathode to generate a current 

flow. Main applications include portable equipment (e.g mobile phone, laptop). Due to its high 

energy density, Li-ion has become the most promising battery technology for grid scale, EV 

and plug-in-hybrid EV applications. Historically the price of Li-ion batteries has been high but 

due to the increase production for the EV market, prices have significantly reduced over the 
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past 10 years. There are many types of battery technologies, however the most used in power 

applications today are Li-ion batteries. The advancement of Li-ion technology in increasing the 

levels of ES capacity is owing to the characteristics of high efficiency (>90%), response time 

(in milliseconds), high energy density, self-discharge rate (5% per month) and relatively long 

cycle life [FAI18]. Li-ion batteries are manufactured in various types of technologies and 

named in accordance with the materials used in their electrodes; e.g Lithium-cobalt-oxide 

(LCO), Lithium-manganese-oxide (LMO), Lithium-nickel-manganese-cobalt-oxide (NMC), 

Lithium-nickel-cobalt-aluminium (NCA) and Lithium-titanate-oxide (LTO). Emerging Li-ion 

battery technologies provide potentially improved cost, cycle life, performance and safety. To 

determine which battery technologies are more suitable for BESS applications, it is required to 

test them and evaluate their performance and cycle life time under typical BESS operation 

[VAL18]. Among those different types of Li-ion batteries, this thesis focuses on LTO battery 

due to its superior performance. LTO can provide relatively long life cycles, rapid charging, 

large available capacity, wide effective SOC range, excellent low-temperature operation and 

high input/output power performance, all while maintaining a high level of safety [ONL18a]. 

D. Flow battery 

Flow batteries are a promising technology that decouples the stored energy from the rated 

power. The total stored capacity depends on the auxiliary tank volume, whilst the rated power 

depends on the reactor size. These characteristics make the flow battery suitable for supplying 

large amounts of power and energy needed by electrical grids. The main benefits of this battery 

technology include the following: 1) fast recharge by replacing exhaust electrolyte, 2) high 

configurable power and energy capacity, 3) long life enabled by easy electrolyte replacement, 

4) use of nontoxic materials, 5) full discharge capability and 6) low-temperature operation. The 

main drawbacks of the system is the requirement for moving mechanical parts such as pumping 

systems that make system miniaturization difficult. As a result, the commercial uptake to date 

has still been limited [CHA14], [VAZ10]. 

1.4.3 Functions of Grid Scale BESS for Grid Support 

In recent years the capital cost of battery storage technologies has significantly reduced. BESS 

can cover a wide range of applications from short term power quality support to long term 

energy management.  
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Table 1.3 Specifications of BESS technologies [ANE16], [ONL18f], [KIM17]  

Technology Primary Application Priorities Challenges 

Lead-acid 

(PbA) 

• Grid stabilization 

• Load levelling and 

regulation 

• Mature battery technology 

• Good battery life 

• Low cost 

• High recycled content 

• Large footprint 

• Electrode corrosion limits 

life 

• Low energy density 

• Limited depth-of-discharge 

Lithium-ion 

(Li-ion) 

• Frequency regulation 

• Power quality 

• Relatively good cycle life 

• High energy densities 

• High charge/discharge 

efficiency 

• Fast response 

• Extremely sensitive to 

overcharge and over 

temperature 

• High production cost 

• Intolerance to deep 

discharges 

Sodium-

sulphur (NaS) 

• Congestion relief 

• Power quality 

• Renewable source 

integration 

• Fast response 

• Relatively long life 

• High energy density 

• Long discharge cycles 

• Operating temperature need 

between 250°-300°C 

• Liquid containment issues 

Flow batteries 

• Peak shaving 

• Time shifting 

• Frequency regulation 

• Power quality 

• Ability to provide high 

number of discharge cycles 

• Relatively long life 

 

• Complicated design 

• Lower energy density 

• Lower charge/discharge 

efficiencies 

• Not suitable for commercial 

scale 

This is an important benefit of BESS technologies since it allows various applications to be 

running on the same device [OUD06], [SUL76] with fast response; including integration 

renewable smoothing intermittent, peak shaving, load levelling, spinning reserve, flicker 

compensation, black-start capability, voltage sag correction, transmission upgrade deferral, 

standing reserve and uninterruptable power supply (UPS) etc. Therefore, the BESS improves 

the power system stability and security that helps the integration of distributed renewable 

energies [MER09], [CHO17]. 

1.4.4 Some Examples of Installed Battery Energy Storage Systems in Power System 

This section introduces the BESS installations throughout the world, especially UK-based 

battery storage systems. Globally there are many BESSs in commercial operation, with most 

of them used to mitigate renewable power generation. BESS technology is mostly used in the 

USA and Japan [ROB11]. The existing commercial installations show a positive perspective 

on the economic viability of BESSs [FEE16]. Battery technologies used in power network 

applications with their application area are given in Table 1.3. In the UK, there are limited 

numbers of installed BESS facilities which are suitable for providing grid support. The 

6MW/10MWh Leighton Buzzard BESS, once Europe’s largest grid-tied battery storage, was 

installed in Bedfordshire with 10MWh ES capability in order to protect the UK’s power 
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network from fluctuations in supply of renewable energy. Comprising 3000 lithium-ion battery 

cells it has been connected to the electricity distribution network in Leighton Buzzard. The 

purpose of the project is to balance overall supply and demand, analyse the battery support on 

the local distribution network by reducing peak demand and stabilizing voltage and evaluating 

the benefit for the wholesale market [ONL18e]. In 2013, the UK’s first grid-tie LTO based 

BESS, the Willenhall Energy Storage System (WESS), was installed by the University of 

Sheffield (UoS) to enable research on large scale batteries and to create a platform for research 

into grid ancillary services [GUN17a], [FEE16]. A detailed explanation about the WESS is 

provided in Chapter 2. 

Table 1.4 Some examples of installed BESS facilities with their grid support applications  

Types of BESS Installation Size Facility Size Range 
Potential/Actual 

Applications 

Lithium-Titanate (LTO) 

The University of 

Sheffield, (WESS), UK 

[FEE16] 

2 MW, 1 MWh 

• Frequency regulation 

• Peak shaving 

• Arbitrage 

Lithium Iron Phosphate 
Darlington, UK 

[ONL18d] 
2.5 MW, 5 MWh 

• Load shifting 

• Commercial ancillary 

services 

Lithium-Nickel (NMC) 
Leighton Buzzard, UK 

[FEE16], [ONL18d] 
6 MW, 10 MWh 

• Frequency support 

• Load shifting 

• Peak shaving 

Valve-Regulated 

Lead acid 

Lerwick Power Station, 

Shetland Island, UK 

[GAL17] 

1 MW, 3 MWh • Peak shaving 

Lithium-ion (Li-ion) 
Broxburn Energy 

Storage, UK [ONL19e] 
20 MW 

• Grid support 

• Enhanced frequency 

response service 

Flooded 

Lead acid 

Bewag, Germany 

[SPI91] 
17 MW, 14 MWh 

• Frequency regulation 

• Spinning reserve 

Nickel Cadmium (NiCd) 
Golden Valley, Alaska 

[SWI10] 
40 MW, 4.7 MWh 

• Electric supply reserve 

• Spinning reserve 

Sodium-Sulphur (NaS) 
Rokkasho, Japan 

[SWI10] 
34 MW, 220 MWh 

• Renewables energy 

time-shift 

• Renewables capacity 

firming 

Sodium Nickel Chloride 

(ZEBRA battery) 

ZEBRA battery plant, 

Stabio, Switzerland 

[SWI10] 

40 MWh 
• Mainly used in 

EV/HEVs 

Vanadium- Redox Flow 

Batteries 

GuoDian LongYuan 

Wind Power Co. China 

[LI16] 

5 MW, 10 MWh 
• Smoothing of wind 

power 

 



47 

 

1.4.5 Grid-Tied Battery Energy Storage System Configuration 

Fig. 1.6 shows a simplified diagram of the Li-ion BESS showing the li-ion battery pack and 

associated battery management system (BMS), a bi-directional ac-dc converter, and the control 

unit which controls the operation mode and grid interface of the ESS. The BMS controller 

determines the SOC and SOH of each battery cell and employs active charge equalization to 

balance the charge of all the battery cells in the pack. The ac-dc converter is the interface 

between the battery pack and the ac power grid, that needs to meet the requirements of bi-

directional power flow capability and to ensure high power factor and low harmonic distortion 

[QIA10]. Principle diagram of the BESS can also be seen in Fig. 1.7. 

 

Fig. 1.6 Simplified diagram of a grid-tied BESS [WU19]. 

 

Fig. 1.7 Principle diagram of the BESS in [OUD07a]. 

1.4.6 Battery Management System (BMS) 

In a grid-tied BESS, BMS is the essential component to ensure all battery cell voltages being 

maintained in boundaries for safety operation and battery cycle life. The BMS controller 
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monitors each battery cell parameters, including cell voltage, charge and discharge current, 

temperature, and estimates the SOC and SOH of each cell in the pack. Then, the SOC 

information is used to control the charge equalization circuits to reduce the imbalance between 

the series-connected battery cells.  

A. BMS Configuration 

A typical BMS configuration shown in Fig. 1.8 [QIA11] comprises of module controllers that 

manage the series-connected battery cells, and a central controller that manages the series-

connected battery modules, reports battery cell status, and control the contactors to protect the 

battery pack from undercharging and overcharging conditions. High voltage isolated controller 

area network (CAN) bus is used to communicate between the battery module controllers and 

central controller.  

 

Fig. 1.8 A battery management system configuration [QIA11]. 

There are two important functions in the BMS given in Fig. 1.8. Firstly, the BMS monitors the 

condition of all the series-connected Li-ion battery cells in the system. The parameters being 

monitored include cell charging and discharging current, cell voltage and cell temperature. 
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These are processed by the BMS controller to estimate the SOC and SOH of the battery cell. 

Second, the BMS applies active balancing to equalize the battery cells in the pack. In a Li-ion 

battery system, all cell voltages need to be maintained to within manufacturer set limits to 

ensure safety operation. However, owing to production deviations, temperature difference 

within the battery pack and inhomogeneous aging, there will be SOC or capacity imbalance 

between cells. Minimising these imbalances is essential to guarantee the energy and power 

performance of the pack as they are limited by the first battery cell that goes beyond the voltage 

limits. An inductive-based active cell balancing method can be used to regulate the amount of 

charge in and out of each individual battery cell to balance the mismatches across the battery 

cell to keep the homogeneous status across the battery pack [QIA10].   

B. SOC Estimation 

SOC is a measure of the electrochemical energy volume left in a cell or battery. It can be 

expressed as a proportion of the battery capacity and shows how much energy is stored in an 

energy storage device. For the battery industry, it is challenging to precisely estimate the SOC 

of Li-ion batteries as the electrochemical reaction inside a cell is complicated and difficult to 

model electrically in an accurate way. Table 1.5 compares various SOC estimation methods 

found in literature. Among all the techniques, the Coulomb counting technique (CCT) plus 

accurate open circuit voltage (OCV) approach is used in the BMS given in Fig. 1.8 to estimate 

the SOC. CCT aims to count how many Coulombs of charge are being pumped in or out of the 

battery cell. The Coulomb counter includes an accurate battery current sense analog front end 

and a digital signal processing unit to achieve the offset calibration and charge integration. 

CCT provides higher accuracy than most other SOC measurements, because it measures the 

charge flow in and out of battery cell directly. However, it depends on the current measurement 

accuracy and does not consider Coulomb efficiency of the battery cell. Due to polarization of 

the battery, power losses obviously occur during the charging and discharging process 

[CHA13], [QIA11]. In CCT, SOC is calculated by the equation (1.7) [CHA13]. 

SOCt = SOC0 −
1

𝐶
∫ 𝑖𝑑𝑡

𝑡

0

 (1.7) 

where 𝑆𝑂𝐶0  is the initial SOC value, and 𝑆𝑂𝐶𝑡  is the present value of SOC. 𝐶  is the total 

capacity of the battery. ∫ 𝑖𝑑𝑡
𝑡

0
 is the integral of discharge current during the discharging process. 

Several factors may affect the accuracy of CCT including battery history, temperature, discharge 
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current and cycle life [CHA13].  It should be noted that the Coulomb counting SOC estimation 

method is used to estimate the SOC of the 2MW/1MWh BESS used and presented in this thesis. 

Table 1.5 Comparison of different SOC estimation methods [MEN17], [CHA13], [QIA11] 

Method Features Advantages Disadvantages 

Discharge Discharge and 

measure time to 

threshold 

• Most accurate 

• Easy 

• Independent of SOH 

• Offline & time consuming 

• Modifies battery state 

Open circuit 

voltage (OCV)  

VOC-SOC look-up 

table 

• Accurate 

• One to one relationship 

between OCV and SOC; 

• Small amount of 

computation; 

• Long relaxation time for 

OCV measurement; 

• Battery types, temperature 

and age affect the 

measurement of OCV. 

Coulomb 

counting (CCT) 

Counting charges 

been 

injected/pumped 

• Easy to understand 

• Computational 

effectively 

• Direct SOC calculation 

 

• Loss model & need 

accuracy 

• Accurate initial SOC is 

needed; 

• Current sensor error 

accumulated during the 

process; 

Artificial network 

(ANN based 

method) 

Adaptive artificial 

neutral network 

system 

• Online 

• Do not need previous 

knowledge about battery; 

• Easy transplant to 

hardware after offline 

training 

• Large amount of training 

samples is needed; 

• Hard to generalize to 

different driving cycles. 

DC resistance Rdc • Easy • Only for low SOC 

Impedance 

Spectroscopy 

based Method 

Impedance of the 

battery (RC 

combination) 

• SOC and SOH 

• Sensitive to SOC 

variation; 

• Diverse parameters 

indicate SOC 

• Cost & temp-sensitive 

• Hard for online 

measurement; 

• Different with battery 

type, experimental 

condition etc. 

Kalman filter Get accurate 

information out of 

data using filter 

• Dynamic • Large computing 

Fuzzy Logic  • Online • Complex and expensive to 

implement 

 

C. Charge Equalization 

Owing to inevitable differences in chemical and electrical characteristics from manufacturing, 

ambient temperatures and aging, there are SOC and capacity imbalances between cells. When 
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these unbalanced batteries are kept in use without any control (e.g cell equalization), the 

capacity of the ES decreases severely. Therefore, charge equalization for a series-connected 

battery string is required to minimize the imbalances between all the cells and prolong the 

battery life cycle. Charge balancing approaches are described in [QIA11]. 

1.5 Future of UK Power System and National Grid Product Strategies 

This section introduces the future UK power system needs over the next five years, and how 

these system needs are evolving. Fig. 1.9 shows future of UK electricity function [ONL19f]. 

This section also describes the improvements required to balancing services to meet these needs. 

On Product Strategy provided by NG [ONL19g], NG is asking for providers’ engagement and 

ideas to simplify and develop balancing services and the products that NG can use to handle 

these system needs. The System Needs and Product Strategy provided by NG is divided into 

two distinct parts, the UK power system needs and the product strategy consultation.  

 

Fig. 1.9 Future of UK electricity function [ONL19f]. 

1.5.1 Comparison of Traditional and Future UK Power System 

The UK electricity system is becoming increasingly decentralised, with more complex designs 

of power generation, transportation and consumption. New flexibility methods are being 
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developed to manage these changes. This section reviews approaches of developing flexibility, 

as well as economic and technical barriers to doing so. Fig. 1.10 shows traditional UK power 

system function [ONL19i]. The UK electricity system has historically developed over a 

‘centralised’ system, where a few number of large power stations deliver the majority of 

electricity generation. Centralised power has been transported in one direction from generators 

to consumers via the transmission and distribution networks. The definition of generator, 

transmission and distribution networks are given in Appendix A.1. Distributed electricity 

generation is the opposite of centralised electricity generation, the mode which has dominated 

modern commercial electrical supplies for more than a century. Rather than depending on large 

central stations (fossil fuelled, hydro or nuclear) and high voltage transmission lines, 

distributed electricity generation relies on small-scale, local, on-site generation, preferably by 

tapping RESs. This arrangement avoids long-distance transmission losses, and, once organised 

in a web of smart micro grids, its design improves grid stability and reliability and offers more 

granular control. Since the cost of new renewable energy conversion continues to decrease, this 

form of electricity supply is expected to claim an increasing share of overall generation 

[SMI19]. 

 

Fig. 1.10 Traditional UK power system [ONL19i]. 
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Fig. 1.11 Future of UK power system [ONL19i]. 

Fig. 1.11 shows the future of the UK power system. Three processes are providing new long-

term changes in the UK power system [ONL19a]: 

Decentralisation: Small power generation (e.g solar panels) situated close to consumers, are 

providing an increasing part of UK power supply. 

Decarbonisation: In order to fulfil long-term GHG emissions reduction targets in the power 

sector, conventional fossil fuel use, especially coal, is lessening. This is in part being replaced 

by renewable energy generation which is decentralised. 

Digitisation: Aging electricity networks and information and communication (ICT) 

infrastructure are being improved, significantly using data and automated processes to make 

the system operation more efficient. This covers the rollout of ‘smart’ electricity meters. 

A substantial part of the new generation capacity is weather-dependent, meaning generation 

may not balance with demand. Decentralised power can flow in multiple directions over the 

power network between dispersed generators and consumers. These are causing challenges for 
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balancing demand and supply. Moreover, the use of electricity to provide heating and for 

transport is expected to increase. Therefore, parts of the network may need to be strengthened 

by increasing their capacity, or decreasing peak power flows. More details about the future of 

UK power system needs and the National Grid (NG) balancing service product strategies will 

be detailed in Section 1.5. 

1.5.2 UK Grid Flexibility 

A more flexible power system is being developed to deal with these challenges. Grid flexibility 

is the ability to fast adjust generation or demand in response to a signal (e.g changing prices) 

to aid in managing the electricity system. Established and new technologies are increasingly 

providing grid flexibility, and the roles of power network operators are changing [ONL19a]. 

This section investigates these flexibility sources, changes to the power networks and potential 

associated policy challenges. 

A. Grid Balancing and Flexibility 

UK electricity demand broadly follows a daily pattern, with peaks in early evening and lows 

in early morning. Electricity demand and supply are matched on a second by second basis. NG, 

the primarily electricity transmission network operator in the UK, is responsible for grid 

balancing. Improving system flexibility will allow NG to balance at shorter timescales and will 

aid DNOs to manage their local networks more actively. There has been several UK projects 

which aim to develop more electricity flexibility [ONL19a]. 

B. Supply Side Sources of Flexibility 

New sources of grid flexibility can act either by varying the electricity supply to the system or 

the amount of demand on the system. Supply side sources of flexibility adjust the electricity 

volume delivered to the system to match demand. This can be provided by flexible generators, 

interconnection to overseas networks or ES [ONL19a].  

C. Demand Side Sources of Flexibility 

Demand side flexibility provides financial and other incentives to consumers to adjust their 

demand, allowing it to coincide with times of high availability of renewables or low prices. 

Demand side flexibility sources cover demand side response (DSR) [ONL19b] and demand 

side management (DSM) [WAR14]. DSR and DSM are defined in Appendix A.2. They can be 
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obtained from energy-intensive commercial, or industrial consumers, or from more distributed 

sources such as electric vehicles (EVs) and residential consumers. NG aims to obtain 30-50% 

of grid balancing services from demand side sources by 2020, and it is expected that 

Distribution Network Operators (DNOs) will increasingly procure them in future. DSR in the 

UK is mostly operated by aggregator companies, defined in Appendix A.3. Aggregators adjust 

the demand of their customers to provide pooled flexibility in response to signals from system 

operators [ONL19a]. 

D. Using Flexibility within Network 

Improvements in the electricity system will need changes to transmission and distribution 

network infrastructure. The increasing requirement for flexibility at the distribution level, and 

future electricity use for transport and heat, mean that the role of a DNO changes. They become 

more active distribution system operators (DSOs), whose role is similar to that of NG at the 

transmission level. Some network infrastructure may require network strengthening to contain 

changes in power flowing over them, and visibility is being increasing over the distribution 

network to track these power flows easily [ONL19a]. 

E. Policy Challenges on Grid Flexibility 

Developing a more flexible electricity system improves the security of electricity supply whilst 

reducing carbon emissions and providing important savings for consumers. However, possible 

policy challenges of increasing flexibility cover the distribution benefits and costs, and 

concerns on cyber security and privacy [ONL19a].  

1.5.3 Future UK Power System Needs  

The future of UK power system needs are described with five key future system needs; 

including inertia and rate of change of frequency (RoCoF), frequency response, reserve, 

reactive power/voltage support and black start. However, this section mostly focuses on 

frequency response. Table 1.6 presents a summary of how these needs are currently met and 

any potential improvements that could be made.  
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A. System inertia and Rate of Change of Frequency 

System inertia arise from the rotational energy stored in synchronous machines such as nuclear, 

gas, coal or hydro power plants. Inertia determines how quickly grid frequency will change 

when there is an imbalance between demand and supply; the higher the inertia, the slower the 

change in frequency. As levels of solar, wind and interconnection continue to grow, system 

inertia is expected to drop. Inertia stabilises grid frequency and decreases the RoCoF. Although 

faster acting frequency response helps to manage a greater RoCoF, some inertia is still needed 

to maintain frequency for long enough to allow even the fastest grid frequency response to be 

triggered.  

B. Frequency Response 

Grid frequency response is an automatic change in demand or generation to respond to changes 

in system frequency. The amount of response required is directly influenced by system inertia, 

the largest generation size or demand loss. Frequency response can be summarized as following: 

• Frequency response is needed to balance system frequency in real time. 

• Response capacity is increasing and the requirement is greatest when the inertia is low. 

• NG purchases a firm (stable) volume of response through Firm Frequency Response 

(FFR) ahead of time. 

• The remaining, increasing or variable volume of response is accessed through 

Mandatory Frequency Response (MFR) in the BM closer to real time. Currently, this is 

economic and offers flexibility. 

• Faster-acting response can decrease the overall volume of response required. 

• The flexibility offered by MFR is needed for the volatility of the need, but the number 

of providers are reducing. 

• Changes to respond products are needed that provide a route to market for fast-acting 

response and the flexibility which NG need closer to real time. 

• This will be created using industry consultation and started by March 2018. 

How do NG manage frequency response today? NG needs response which acts faster than 

the products which we use today and NG need flexibility closer to real time. 
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• The need is greatest when inertia is low. With lower system inertia, the frequency 

moves faster. This shows NG requires faster-acting response.  

• ‘Dynamic’ response is used to continuously follow and control small deviations in 

frequency owing to small imbalances in demand and generation. 

• ‘Static’ response initiates when a fixed frequency limit is breached. It is used along with 

dynamic response, to include a large frequency event such as generator or demand trips. 

• The need certainty is less due to several factors such as transmission demands and 

output from solar and wind. This shows NG requires a market structure that enables 

procurement and access to flexibility closer to real time as requires become more 

certain. 

C. Reserve 

Reserve is required to ensure imbalances which occur from forecasting errors or unexpected 

losses on the system can be managed. Reserve is instructed manually after automatic frequency 

response service have provided. Reserve can be either downward (a decrease in generation/ 

increase in demand) or upward (an increase in generation/decrease in demand). Reserve is also 

used to describe the actions which NG take to ensure that sufficient downward and upward 

flexibility is available. NG uses a mix of balancing services products, the BM and trading to 

ensure that NG have access to reserve in the needed timescales.  

D. Reactive Power 

Reactive power (in Mvar) is used to control voltage. Demand, generation and network 

equipment (e.g transformers, overhead lines and cables) can either absorb or generate reactive 

power. These contributions need to be maintained in balance to maintain the voltage at the right 

level. Voltage is a local property of the system hence needs vary from one region to another.  

  E. Black Start 

Black start is needed to allow electricity network restoration if the transmission system or a 

large part of the system shuts down. In this unlikely event, it is a requirement that NG is able 

to restore power in a timely manner.  
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Table 1.6 UK power system needs and future National Grid plans [ONL19h] 

System Inertia 

and RoCoF 

• No standalone system inertia product is planned to be maintained. 

• Complete the plan to desensitize RoCoF. 

• Continue collaborating in Project Phoenix, which will design, 

deploy and show the advantages of a new hybrid synchronous 

compensator to improve grid stability. 

Frequency 

Response 

• Procure the design and implementation of an improved grid 

frequency response product, combining FFR and EFR service, by 

March 2018. 

• Until such launch, continue to contract for firm needs ahead of 

time in tendered markets and access close to real time flexibility 

through mandatory services. 

Reserve • Standardize present reserve products to increase transparency of 

their value. 

• Design and implement a new reserve product in 2018/2019. 

• Consider new European improvements that may affect the 

development of reserve products to ensure compatibility with 

pan-European reserve services. 

Reactive Power • Develop a new reactive market which values the reactive power 

support needed and provides location signals by the end of 2019. 

• Investigate how to lessen the number of technical barriers to 

distributed energy assets requiring to provide reactive power to 

the transmission system. 

Black Start • Consider alternative ways for system restoration in the event of a 

partial or total shut down. 

• Develop a more transparent way for black start procurement 

which allows greater competition. 

1.5.4 Future of National Grid Balancing Services Product Strategy Consultation – 

Implications for Energy Storage 

In order to handle the limitations with the existing grid balancing services and better fulfil the 

challenges of the changing technology mix, NG will simplify the existing product range 

[ONL19g]. Therefore, NG has launched a consultation on the future of UK grid balancing 
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services markets. There is an importance on increasing the role of flexible balancing service 

providers to respond to the needs of the UK power system. This should offer opportunities for 

BESS providers.  

Owing to the changing energy mix on the grid, especially the increasing amount of renewable 

and decentralized generation on the distribution network, there is more requirement to be able 

to respond intelligently and flexibly to the system demands. Motivating and making it easier 

for flexible service providers, such as operators of battery energy storage or demand side 

services, to participate in the grid balancing services markets can help to achieve this. The 

Consultations proposals aim to: 

• Rationalize the existing proceeding of grid balancing services products by removing 

any obsolete products. 

• Simplifying the remaining service products by standardising contract terms, the 

procurement process and technical needs. 

• Improve the service products based on feedback received from industry. 

• Improve the information that NG provided, to make it easier for participants to access 

grid balancing servicing products.  

A. Existing National Grid Balancing Services Markets 

The existing NG balancing services products have been build up over many years as NG needs 

have gradually shifted. There are currently more than 20 different balancing service products 

that providers can select from, each with different technical requirements and routes to market; 

more detail about each balancing service can be found in [ONL19g]. 

How NG purchases each product is different, however the purchase of each one is to ensure 

that NG has tools available to maintain the quality and security of the electricity generation at 

the lowest cost to consumers. This complexity produces a barrier to entry. This affects existing 

and new balancing service providers, new technologies and business models which may not fit 

into present product structures. 

B. Simplifying the Existing Balancing Services Products 

NG will address the issues described above through a three-stage programme of rationalisation, 

standardisation and improvement with important engagement with providers. 
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Stage 1 – Rationalisation: Some products are no longer needed in their present form or have 

been superseded by later products. Therefore, NG is proposing a review to decrease the suite 

of products that NG procure. Existing contracts for these products will still be respected, 

however the potential to move to market-based choices will be offered where possible. This 

does not mean that the requirement behind the product has lessened, just that there is or will be 

other possible route to market for those providing the product. 

Stage 2 – Standardisation: Existing NG balancing services markets (e.g Fast Reserve, FFR 

and STOR) include some parameters which parties can change when submitting tenders. 

Besides the information on interactions and requirements detailed in [ONL19g], NG will also 

be looking to give more definition around these tendered parameters through standardising the 

products within each balancing service market. Approaches include:   

• Daily availability windows, e.g 24-hour, 24-hour triad avoidance, evening peak, 

overnight. 

• Contract periods, e.g 1 month, 6 months, 1 year, 2 years. 

• Frequency response droop curve, e.g minimum MW power delivery at 0.2Hz, 0.5Hz 

and 0.5Hz deviations. 

• Speed of reserve energy delivery, e.g 2 minutes, 5 minutes, 10 minutes, 20 minutes. 

NG will also be reviewing NG contract periods to ensure that they are suitable for all 

technology types that could deliver the service. NG will keep working with industry to achieve 

the optimum way to standardise the existing balancing markets through the change proposal 

governance process. 

Stage 3 – Improvement: NG wants to ensure that the products that NG purchases are fit for 

purpose today and in the future. Therefore, NG will work with the industry to improve the NG 

product suite beyond just standardising the existing balancing market products. NG will 

improve the product it purchases to better meet both changes in the technical abilities of the 

assets providing the balancing services, and changes in the commercial arrangements aiding 

the investment and operation of those assets.  
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1.6 Grid Storage Services and Applications 

This section covers some important grid frequency response services and grid storage 

applications which are used in this thesis. 

1.6.1 Frequency Response Services 

In power distribution networks, the frequency changes continuously because of the imbalance 

between total generation and demand; if demand surpasses generation, a decrease in the 

frequency will occur and vice versa [ONL18g], [GUN18b]. Maintaining the grid at a nominal 

frequency (i.e. 50 Hz for the UK) requires the management of many disparate generation 

sources against varying loads. This is becoming ever more challenging because of the increased 

penetration of RESs and subsequent inertial level reduction [GUN17a]. To overcome this issue, 

the NGET has introduced various frequency response services, including FFR and EFR service, 

to assist with maintaining the grid frequency closer to 50 Hz under normal operation [ONL18g]. 

There are three response durations for FFR, including primary frequency response (PFR), 

secondary frequency response (SFR), and high frequency response (HFR). PFR requires a rapid 

generator response (see Fig 1.12).. The generator must be capable of increasing its power 

output within 10 second of predefined grid frequency excursions, and be capable of keeping 

this response for a further 20 seconds. Generators that deliver SFR services must be capable of 

increasing their power output within 30 seconds of predefined grid frequency excursions, and 

be able to keep this response for a further 30 minutes [ONL18h], [BAC07]. HFR must be 

provided within 10 seconds of a frequency event, which can be sustained indefinitely 

[ONL18h]. EFR is introduced as a new fast response service for grid balancing service that can 

provide 100% active power within 1 second of registering a frequency deviation, as shown in 

Fig 1.12. NG prepared an EFR specification to facilitate a tender competition between potential 

energy storage providers in 2016 [ONL16a]. 
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Fig. 1.12 Frequency response services used to limit grid frequency drops in the UK power 

system. 

A BESS is an ideal choice for delivering such service to the power system due to its capability 

for a faster response time compared to conventional energy generation sources, high energy 

efficiency, flexible storage size and low maintenance requirements [FEE16], [SAW16]. BESS 

can reduce power demand variation by smoothing off-peak hours (charge) and shaving on-peak 

hours (discharge). Several benefits could be obtained from reducing demand variations, such 

as more reliable energy thanks to more ancillary services, congestion relief in main 

transmission network and more controllability in the case of unexpected disturbances [ANV17]. 

DFFR: Dynamic frequency response is continuously delivered and is used to manage second 

by second grid frequency variations. Dynamic response is automatically provided for all 

frequency changes outside of the DB (50Hz ±0.015Hz) [ONL18n]. 

SFFR: Static frequency response is triggered at a defined frequency deviation that is specified 

in the providers Framework Agreement, which must be in qualified before tendering. There is 

no requirement to respond within the operating range [ONL18n].  

EFR: EFR is introduced as a new fast frequency response service for grid balancing that can 

deliver full-scale active power within one second of registering a grid frequency deviation. 

NGET prepared final EFR specification to facilitate a tender competition for 200 MW of 

support provision to be distributed amongst potential energy storage providers in 2016 

[ONL16a]. 
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The amount of response provided by a provider is monitored from time to time during any 

sampled period. If the energy storage unit is deemed to be underperforming, this causes a 

reduction in all nomination and availability fees. The formula for calculating the Service 

Performance Measurement (SPM) is shown in (1.8) [ONL18o]. Availability rate based on SPM 

can be extracted using Table 1.7. 

𝑆𝑃𝑀 = 𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ⁄ 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (1.8) 

Availability Fee (£/hr): This is the main fee that all energy storage providers will tender in. It 

is the number of hours availability from a storage provider for making the service available to 

the NG. 

Nomination Fee (£/hr): Upon a tender being accepted, the NG can select to nominate all or 

part of the hours tendered in. This payment is generated by each hour nominated. This is a fee 

for being called upon to deliver the service. 

Table 1.7 Availability rate based on SPM obtained from NGET frequency response service 

specification [ONL18o] 

SPM (%) Availability Rate (%) 

<10 0 

>10 & <60 50 

>60 & <95 75 

>95 100 

The NG are continually reviewing the FFR service and hence all aspects are subject to change 

in the future. Existing provider arrangements will be maintained as they are, all new 

arrangements will be in line with updated current standard contract terms and framework 

arrangements [ONL18o]. 

1.6.2 Triad Avoidance 

Triad refers to the three half-hours settlement periods with the highest system demand between 

the months of November and February, separated by at least ten clear days. The timing of these 

peaks is typically between 16:00 to 18:00. These three periods are not known in advance and 

therefore are determined from the measured data analysed in March of every year. Half hourly 
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metered (HHM) electricity customers in the UK pay charges proportional to their consumption 

during the Triad; this is called the Transmission Network Use of Service (TNUoS). The HHM 

customers can minimise their TNUoS charges by reducing their demand during Triad periods. 

Many commercial customers have an ES device or back-up generators to ensure the 

maintenance of critical supplies in case of a failure that can also be engaged to decrease Triad 

demand; this is known as ‘Triad avoidance’ [ONL18l], [MUL14], [GOU17]. It is also possible 

for generating assets such as BESSs to export power to the grid during the Triad, this results in 

a payment from the electricity supplier known as the TAB. It is a complex task to predict the 

Triad periods in advance, however, many electricity suppliers offer Triad prediction services 

based on insufficient system margin (NISM) provided by NG and other factors such as the 

weather forecast. The NG does not predict the Triads and they are not known in advance. 

Therefore, in order to avoid charges, HHM customers should avoid all potential peaks; this 

smooths the demand across the winter [ONL18u]. 

Triad is not a commercial service, however it does represent a benefit for substantial revenues 

from ESS. The mean energy demand within the three half-hours provide an important 

proportion of the annual network use charges imposed by the NG. By delivering energy during 

the Triad periods, ESS can make revenue by either absorbing the inverse of the charge directly 

or, if metered by an energy supply company, by decreasing the cost to the energy supply 

company and gaining an agreed proportion of the saving [GRE15]. 

1.6.3 Energy Arbitrage 

The electricity price tends to follow a daily pattern of a low price during off-peak night time 

hours and a high price during on-peak day-time hours. If the BESS stores energy at off-peak 

times with the lower price and then resells at on-peak times at a higher price, it can make profit 

from the price difference, this is referred to as arbitrage [GUN17]. The emergence of wholesale 

electricity markets in the UK, together with significant increases in prices, and price volatility 

of electricity have raised the interest in potential economic opportunities for electrical energy 

storage [SIO09]. One of the main profit streams for ES is temporal arbitrage opportunity 

obtained by price volatility in the wholesale market. Energy arbitrage refers to the participation 

of ES in the day-ahead energy market; and it involves utilizing ES to benefit from electricity 

price fluctuations by charging during low-price periods, discharging during high-price periods, 
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and profiting from the price differential [TEN17], [DUR14]. ES can also generate revenue 

through the delivery of ancillary services such as grid frequency regulation [XIN17].  

1.7 Literature Review 

This section provides a general literature review on grid storage services and applications, 

power system analysis, ESSs and BESSs. Note that each chapter in this thesis includes its own 

related literature review. 

1.7.1 Frequency Regulation 

Since the EFR is introduced as a new UK grid balancing service published in the late of 2016, 

in literature there are only a few papers about EFR service delivery for grid support. In 

[GRE17], a new EFR control algorithm implemented in the DC/AC converter of a BESS was 

developed to fulfil the NGET EFR service requirements, however in this thesis EFR control is 

achieved with battery energy management system rather than controlling the energy storage 

converter. The study [GRE17] compares the performance of the EFR Sevice-1 (wide dead-

band) and Service-2 (narrow dead-band), and it was stated that the narrow service is technically 

more challenging, likely requiring four time the storage capacity of the wide service. That 

control algorithm does not cover the 15-mins frequency event control to be able to increase the 

availability of the BESS, especially with the narrow dead-band. However, this thesis extends 

the basic EFR control algorithm with the two different extended 15-mins frequency event 

controls to achieve a maximum BESS availability for delivering EFR service. In addition, in 

[GRE17], the algorithm manages the SOC of the BESS, maintaining at 49-51%. But, the SOC 

band should not be kept at less than 5% SOC band in order to reduce battery degradation and 

hence prolong its lifetime.  

In [COO17], Cooke et al.  present a method of providing the new EFR service to avoid the 

necessity of holding more FFR in reserve when system inertia falls. That study also introduced 

several alternative response curves which indicate that if arresting the fall in grid frequency in 

the event of a drop in generation is an important aspect of the control design, then a stepped 

response may provide a better service. An energy storage strategy based on PI control can help 

with restoration and damping of frequency. However, that response time will be slower than a 

stepped response so that stability can be ensured.  
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In [CAN17], the authors investigate the possible performance of a BESS in EFR provision, by 

simulating its response to grid frequency according to the EFR service requirements, and this 

evaluating its ability to exchange energy for the service, a service performance indicator, and 

the possible aging related to battery cycling. Different EFR power versus frequency 

characteristics, BESS technologies and BESS energy capacities are considered in [CAN17]. It 

was also assumed that the BESS are connected to the UK or to the Continental Europe (CE) 

synchronous area; therefore, for the CE system those requirements are adjusted according to 

the CE frequency behaviour. However, a major specification of the EFR service is to consider 

ramp-rate limits in the UK requirements, it was not considered in [CAN17] for simplicity; 

power exchange rate limits internal to the batteries was also neglected. In addition, that study 

did not cover an extended 15-min frequency event control in order to increase the batteries 

availability. In contrast to the above studies in the field; the main contribution of this thesis is 

to present a control algorithm that enables BESSs to provide a bi-directional power in response 

to changes in the grid frequency, whilst managing the SOC of the BESS to optimise availability 

of the system. This thesis also introduces a strategy to generate additional revenues from 

ancillary services such as Triad Avoidance only available during the winter season. Moreover, 

this thesis considers layering the new UK grid frequency balancing service, EFR, with Triad 

Avoidance or Energy Arbitrage in order to maximise the system’s availability and profitability. 

This thesis also includes experimental validation with a 2MW/1MWh lithium-titanate BESS, 

called Willenhall Energy Storage System (WESS), commissioned and operated by the 

University of Sheffield, which is the largest research only platform for grid-tie energy storage 

applications. 

1.7.2 Grid Storage Applications  

The emergence of wholesale electricity markets in the UK, together with significant increases 

in prices, and price volatility of electricity have raised the interest in potential economic 

opportunities for electrical energy storage [SIO09]. One of the main profit streams for energy 

storage (ES) is temporal arbitrage opportunity obtained by price volatility in the wholesale 

market. Energy arbitrage refers to the participation of ES in the day-ahead energy market; and 

it involves utilizing ES to benefit from electricity price fluctuations by charging during low-

price periods, discharging during high-price periods, and profiting from the price differential 

[TEN17], [DUR14]. ES can also generate revenue through the delivery of ancillary services 

such as grid frequency regulation [XIN17]. Comparing those papers, this thesis investigates 
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two applications for BESS, grid frequency regulation and energy arbitrage in day-ahead spot 

markets, and how they be scheduled in a complimentary way such that revenues are maximised 

whilst meeting service compliance.  

Numerous research studies around the world have been carried out to investigate the 

participation of large scale ESS in power grid and frequency regulation services. [BEV10] 

presents the concerns of the integration of new renewable power generation in power systems 

with a grid frequency regulation perspective. The study also covers a comprehensive overview 

on recent developments in the area of grid frequency regulation. ‘Energy management’ is a 

term that has several meanings, in this thesis we focus on an optimized utilization of the 

available stored energy in a grid-tied BESS operating in grid frequency regulation services. In 

literature, there are various research works that have dealt with the energy management issue 

in grid scale energy storage systems and also control strategies for grid-tied BESS operating in 

frequency regulation with regard to different points of functionality and objectives [ANV17]. 

Several methods in the smart grid environment have been developed to optimally manage the 

energy flowing on the smart system. [MBU17] presented a novel optimisation method of 

energy cost reduction in smart grid applications to include real-time electricity pricing and 

energy management. Basaran et al. [BAS17] introduced a novel power management strategy 

by designing a wind-PV hybrid system to operate both as a grid-tied system and an autonomous 

system. The proposed management unit implements measurements from various points in the 

system; providing an effective energy transfer to batteries, loads and grid. Considering the cost 

of batteries, adopting an effective charge/discharge management strategy for the efficient use 

of the battery in order to achieve high state-of-charge (SOC) and prolong battery lifetime is 

essential [EGH14]. Gundogdu et al. [GUN18b] presented a novel energy management strategy 

that enables grid-tied BESS to provide bi-directional power in response to changes in the grid 

frequency, whilst managing the SOC of the BESS to optimise utilisation of available energy 

and the availability of the system. The study also presented a strategy to generate additional 

revenues from ancillary services such as triad avoidance. 

In literature, there are also many papers relating to the energy arbitrage application [26-31]. 

Sioshansi et al. [SIO09] presented one of the leading studies on energy arbitrage that analyses 

four key aspects of the economic value of electricity storage in the Pennsylvania-New Jersey-

Maryland (PJM) markets: -The basic relationship among storage energy capacity, storage 

efficiency and the arbitrage value of energy storage; -The accuracy of theoretical ES dispatch 
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and the value of arbitrage using perfect foresight of future electricity prices; -The temporal and 

regional variation in the value of energy arbitrage, investigating natural gas price variations, 

transmission constraints and fuel mixes on energy storage economics. The impact of larger 

storage devices, investigating how the use of ES can decrease on-peak hourly prices and 

increase off-peak hourly prices diminishing the value of arbitrage, while producing welfare 

effects for generators and consumers. In comparison with this study [SIO09], the focus of this 

thesis is related to not only energy arbitrage, but also the scheduling of grid balancing services 

such as frequency response for additional benefit.  

1.7.3 Distributed Generation (DG) System 

In the past, distribution systems were distinguished by the uni-directional power flow from 

centralized power generation stations to transmission and distribution networks. In recent years 

with the power system restructuring process, centralized energy sources are being replaced 

with decentralised ones. This has led to a new concept in electric power systems, especially in 

DG. Utilizing DG is essential for secure power generation and reducing power losses, however, 

the use of such technologies introduces challenges to power systems such as their optimal 

location, voltage regulation and power quality issues. Another important point which needs to 

be considered relates to specific DG technologies based on RESs, such as solar and wind, due 

to their uncertain power generation [ISM19]. Several types of renewable and non-renewable 

DG are available, including hydro power, wind turbines, PV, thermal solar, diesel generators, 

geothermal, fuel cells and microturbines [ROY15]. Recently, many DGs such as wind power 

generation have been installed into power systems. However, the fluctuations of these 

generator outputs affects the power system frequency. Therefore, in [ARI06], introduction of 

BESS to the power system was considered in order to suppress the fluctuation of the total power 

output of the DG. 

Razavi et al. [RAZ19] provides a comprehensive review of various types of DG and 

investigates the new challenges arising in the presence of DG in electrical grids. In [YUK07], 

a method was developed to improve the power quality of a DG power system. The method uses 

an ESS with DG using RESs such as PV generation, wind power generation and FC. The paper 

demonstrated that the electric power quality is improved when the battery storage is introduced. 

Obaid et al. [OBA15] investigated the UK power system with FES and BESS alongside EVs 

for primary frequency control. The paper also presented an analysis of the simplified model of 
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the UK power system for 2030 projections. Muttaqi et al. [MUT19] provided a review of the 

state of art of future power grids, where new technologies will be integrated into the power 

distribution grid. Mehigan et al. [MEH18] also provide some predictions on what level of DG 

is expected, appropriate or optimal in future power systems. The paper investigated the factors 

that influence the role of DG in future electricity systems. 

1.7.4 Energy Storage Systems (ESSs) 

Owing to the great potential and the multiple functions of ESS, in literature there are many 

studies on ESS research, its developments, demonstrations and industrial applications. Ibrahim 

et al. [IBR08] investigated the need to store energy for improving power networks and 

maintaining load. A group of characteristics of various ESS technology is provided, which can 

help to improve performance and cost estimates for ESSs. The study provided a well-organized 

and comprehensive review on progress in ESSs, which included many types of ESS 

technologies and their applications and deployment status [CHE09].  

In literature, there are a number of review articles focusing on several ESS technologies; 

including BESS [ZHA18], flywheels [MOU17], supercapacitors [BOY00], SMES [ALI10], 

TES [ALV18], CAES [BUD16] and PHS [REH15]. Battery, ultra-capacitor and fuel cell 

storage technologies were discussed and compared in [KHA10]. History, evaluation and future 

status of different ESS technologies were provided in [WHI12], [MAS10]; and a 

comprehensive review on ESS technologies, their roles, and impacts on future power system 

is given in [NAD19]. New technology and possible advances in energy storage technologies is 

evaluated in [BAK08]. According to Baker et al. [BAK08] the greatest potential for 

technological improvements probably lies in the incremental development of existing ES 

technologies facilitated by advances in engineering, material science, processing and 

fabrication. These factors are applicable to both thermal and electrical storage. Future ES 

technologies may be expected to offer increased power and energy densities, although, in 

practice, longevity, in reliability, cycle life expectancy and cost may be more important than 

increases in power/energy density. Soloveichik et all. [SOL14] provided a detailed review on 

the development of regenerative fuel cells (RFCs) and the current status of hydrogen-based 

RFCs for ES applications. RFCs are capable of both power generation and, in a reverse mode, 

a fuel production. The review study [SHA18] also provided an overview of different ES 

approaches and focused on hydrogen-based ES methods. The study presented the state-of-art 
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HES methods and addressed the technical challenges in this field. The various applications of 

hydrogen in load levelling and transportation are also presented in [ROH16]. 

Greenwood et al. [GRE17] published a leading study that provided new methods to analyse 

and assessing the performance of ESSs within existing service frameworks, using real-time 

network simulation and power hardware in the loop. New statistical approaches were devised 

to quantify the design and operational needs of ESS delivering EFR service. Patsios et al. 

[PAT17] introduced a case study, a 50 MW wind farm with hybrid ESS consist of NaS and 

SCs, and presented on Newcastle University research on hybrid ESSs; including hybrid 

systems sizing and technology selection, complementing renewables, industrial applications 

etc. The useful study also presented on ESSs technology selection and sizing and laboratory 

facilities dedicated to hybrid ESS integration.  

Jenkins et al. [JEN17] provided a control methodology for the grid to consider a number of 

EVs in a similar way to more established ESS allowing existing ESS control algorithms to be 

utilised. The study [VAC16] built on established methods for sizing ES to complement wind 

generators on delivering grid frequency support and introduces considerations for hybrid ESS 

consists of more than one ES technology. The methodology was applied for a 60MW wind 

farm complemented by Vanadium Redox flow battery and supercapacitors for the provision of 

UK primary, secondary and high frequency response.  

1.7.5 Battery Energy Storage Systems (BESSs) 

In the UK, a limited number of grid-tied BESS have been installed for delivering grid scale 

applications. A 2.5 MW/5MWh lithium iron phosphate ESS based in Darlington provides 

commercial ancillary services and load shifting to the power grid. A 6MW/10MWh lithium-

nickel ESS based in Leighton Buzzard provides frequency support, load shifting, peak shaving 

and arbitrage applications to the grid. In 2013, the UK’s first grid-tied lithium-titanate BESS; 

the Willenhall Energy Storage System (WESS), was installed by the University of Sheffield to 

enable research on large scale batteries and to create a platform for research into grid ancillary 

services such as fast frequency response [GUN17a], [GUN17b]. 

The study [OUD06] investigated the important potential of BESS for grid frequency regulation. 

Their value analyses is obtained by comparing frequency control reserve prices on the grid 

ancillary services market with standard BESS installation and maintenance costs. The BESS 
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can meet the technical requirements for primary frequency regulation by injecting power to the 

grid on low frequency excursions, below a nominal value, and absorbing power from the grid 

for high frequency periods, above a nominal set point. Moreover, since the BESS is composed 

only of static elements, it has a faster dynamic response compared to conventional generators 

or other storage devices. 

In recent years, many BESSs have predominantly been installed worldwide for peak shaving 

and load levelling. Most early projects intended for grid frequency control were actual 

demonstrations for the feasibility of the technology and the economic feature was often left 

aside. For this reason, preceding BESS devices were usually over-dimensioned, thus 

eliminating any chances of high economic profitability [MER09]. A previous study [OUD07a] 

presented on optimisation strategy for the dimensioning of a BESS for primary frequency 

response using a control algorithm based on fixed state of charge limitations. The strategy 

developed enables sizing of the main parameters of a BESS; including battery capacity, 

minimum and maximum SOC, along with recharge and discharge powers, for primary 

frequency response control applied to a large interconnected power system. The study [LU95] 

derived a BESS dynamic model applied to power system stability; [KOT93] evaluated the 

effect of a 30MW battery device for grid frequency regulation in the Israeli isolated power 

system; [OUD06] performed a value analyses of various BESS applications; [OUD07b] 

examined the dimensioning and optimisation of the BESS applied to primary frequency control 

in interconnected networks; [ADI99] merged an incremental model of the BESS into the load 

frequency control of an isolated power system and evaluated the system performance 

improvement. 

Mercier et al. [MER09] presented a method for optimal sizing and operation of a BESS used 

for spinning reserve in a small isolated power system. A new control algorithm using adjustable 

SOC limits is applied and tested on a BESS dynamic model. An optimal sizing method of the 

BESS is developed for an isolated power system in order to obtain highest profitability of the 

device. It was demonstrated that the BESS can significantly improve the power system stability, 

grid security and the flexibility for a small isolated power system with low grid inertia. It also 

meets the frequency control requirements with a high economic profitability. 

BESSs inherently have a great flexibility for charging and discharging processes. Flexibility is 

likely to become an essential resource in the future power grid [BRA13]. Numerous studies 

investigated multi-purpose usage of BESS in the electric power system; most of them focusing 
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on the provision of local distribution grid services [BRA14], [OUD07b], [WEI14]. The use of 

battery unused capacity, in terms of power and energy, to provide primary control reserve (PCR) 

was investigated in [HOL16]. Cost-effectiveness in different regions [MIR15] such as 

Germany [HOL15], and the technical feasibility for this concept was presented in [THO13], 

[BOR13], [MEG13].  

Zhu et al. [ZHU19] provided an optimal coordinated control of multiple BESS for primary 

regulation (PFR) service. The study proposed a profit-maximizing BESS coordination control 

strategy that is concerned with two operational phases, namely frequency regulation and SOC 

recovery. Regarding the frequency regulation phase, the study minimized the regulation failure 

penalty by optimally coordinating the operation of multiple BESSs in response to frequency 

deviations. For the SOC recovery phase, the study proposed to derive the optimal SOC target 

for the BESS. By adjusting the SOCs to the target during the SOC recovery phase, the expected 

regulation failure penalty is minimized for the upcoming grid frequency failure events. 

Comparing the single-BESS scenario, the major difficulty of multi-BESS control is the optimal 

coordination of BESSs at the frequency regulation. If not properly coordinated, some BESSs 

may exhaust their energy capacity before the others, which decreases the total power capacity 

available and may cause unwanted regulation failures [ZHU19]. 

Patsios et al. [PAT16] provided an important and leading study on control of grid-tied BESSs. 

The study also investigated the effect of SOC management on battery degradation and overall 

system efficiency. It was demonstrated in the study that on managing battery SOC, higher SOC 

bands increase the rate of battery degradation, whilst lower SOC bands decrease system 

efficiency owing to higher losses in the battery.  

The well-known reference study [DIV09] investigated the current status of BES technology 

and methods of assessing their economic viability and impact on power system operation. A 

comprehensive discussion on the role of BESSs of electric hybrid vehicles in power system 

storage technologies was also provided.  

Application and modelling of BESS in power systems was evaluated in [XU16]. The important 

study provided a useful guidelines in the use of new models to represent a BESS for power 

system analysis. 
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1.7.6 Power Management & Energy Management System (EMS) 

Energy management is a term that has several meanings, in this paper we focus on an optimized 

utilization of the available stored energy in a grid-tied BESS operating in grid frequency 

regulation services. In literature, there are various research works that have dealt with the 

energy management issue in grid scale energy storage systems and also control strategies for 

grid-tied BESS operating in frequency regulation with regard to different points of 

functionality and objectives [MOG17]. Several methods in the smart grid environment have 

been developed to optimally manage the energy flowing on the smart system. [MBU16], 

[MBU17] presented a novel optimisation method of energy cost reduction in smart grid 

applications to include real-time electricity pricing and energy management. Basaran et al. 

[BAS17] introduced a novel power management strategy by designing a wind-PV hybrid 

system to operate both as a grid-tied system and an autonomous system. The proposed 

management unit implements measurements from various points in the system; providing an 

effective energy transfer to batteries, loads and grid. Considering the cost of batteries, adopting 

an effective charge/discharge management strategy for the efficient use of the battery in order 

to achieve high SOC and prolong battery lifetime is essential [EGH14]. Bahloul et al. [BAH18a] 

presented a hybrid power management method and investigated its impact on battery life 

extension on operating grid frequency regulation [BAH18a]. Bahloul et al. [BAH18b] also 

published another important study on a power management system for controlling a hybrid-

supercapacitor hybrid ESS (HESS) on operating EFR service. 

According to Byrne et al. [BYR18], EMSs and optimization methods are needed to safely and 

effectively utilize ES as a flexible grid asset that can deliver multiple grid services. The study 

provided a review of grid-scale ESS and overview of EMS architectures, and a summary of the 

existing leading applications for storage. The study also provided a comprehensive discussion 

of EMS optimization methods and design. 

Shen et al. [SHE15] provided a supervisory EMS for real time implementation for a 

battery/ultracapacitor HESS. Furthermore, a rule-based EMS was also implemented in the 

work for comparison with the proposed EMS strategy. Ke et al. [KE15] presented an EMS 

control methods and sizing strategies for using ES to manage energy imbalance for variable 

generation resources.  



74 

 

The study [KHA17] presented a technical and economic model for the optimal sizing of a grid-

tied photovoltaic-battery energy systems (PV-BES) for different battery technologies. An 

iterative analytical technique is used to determine the battery capacity, generate multiple 

combinations of PV-BES over a defined range of PV rated power, and apply a proper EMS. 

1.7.7 Battery Management System (BMS) and State-of-Charge (SOC) Estimation 

An effective BMS using the Li-ion battery is essential so that battery can operate safely and 

reliably and to provide the full available power and energy capacity. Moreover, a BMS is 

important for collecting and processing data, detecting faults, equalizing battery voltage that 

are the significant factors for obtaining a good accuracy of SOC and SOH [HAN17].  SOC in 

BMS system is considered as one of the important and critical factors that has been researched 

in recent decades. The studies [HAN17], [HE12] discuss the Li-ion battery SOC estimation 

and management system in EV applications.  

Various SOC estimation methods was proposed in literature [HUE98], [PIL01], [PEI06]. 

Among these, the internal resistance and the terminal voltage of a battery are two parameters 

than can be easily attained and hence are convenient for SOC estimation. However, these 

parameters not only change irregularly with the DOD, the ambient temperature and the 

charging/discharging rate, but also depend highly on SOH of the batteries which will decrease 

with time. The complex interrelationship of these factors brings into the difficulties in the 

research of an accurate SOC estimation method. [SOO09] proposes a SOC estimation method 

for Li-ion batteries on the basis of coulomb counting. The CCT calculates the remaining 

capacity simply by accumulating the charge transferred in or out of the battery. The recent 

applications of battery power in many portable devices and EVs [AFF05], [ROT05], are 

facilitating the realisation the application of CCT. The accuracy of this method reports mainly 

to an accurate measurement of the battery current and precise estimation of the initial SOC. 

With a pre-known capacity, which might be stored in the memory or initially estimated by the 

working conditions, the battery SOC can be calculated by integrating the charging and 

discharging currents over the working periods. However, the releasable charge is generally less 

than the stored charge in a charging and discharging cycle. This means, there are losses at 

charging and discharging process [COL07]. For more accurate SOC estimation, these factors 

has been taken into account in the CCT based SOC estimation method used in this thesis. There 

are various factors that affect the accuracy of Coulomb counting technique, including battery 

history, temperature, current measurement, and cycle life [SOO09]. 
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1.7.8 Battery Lifetime Analyses 

A key factor in BESS operational planning is the lifetime of battery. Therefore, a model which 

formulates the degradation mechanism as a function of battery operations is essential to account 

for the battery operating cost. Battery degradation models can be categorised as theoretical 

models and empirical models. Theoretical degradation researches [VET05], [NIN04], [NIN06], 

[SPO03], [ZHA08] have mostly investigated the loss of lithium ions and other active materials. 

These models provide comprehensive explanation of the different degradation mechanisms and 

how they are affected by the condition and use of the battery. At the planning stage one can 

only predict the BESS operating pattern, and no information is available on the cell conditions. 

Theoretical works linking operational-level observations to the molecular-level degradation 

processes are currently insufficient [SMI13], [LAR15]. Therefore, it is difficult to directly 

correlate the charging and discharging processes with the molecular-level processes occurring 

inside the cells.  

Empirical models are more convenient to incorporate with storage planning and operations 

works [KOL13], [PET10], [ORT14]. Each of these empirical degradation models are 

developed for a particular BESS application, where the BESS operating region is narrow and 

model based degradation experiments can achieve an accuracy that is satisfactory. Empirical 

battery degradation models are limited by underlying experimental data. Therefore, a model 

designed for a specific application scenario may not be applicable to another. For instance, 

empirical models for EVs generally assume a regular daily charging scheme. Such a model is 

unlikely to be applicable to predict the performance of a battery used for grid frequency 

regulation, where the BESS follows a stochastic charging and discharging signal. Therefore, 

attaining an accurate empirical model of battery degradation needs that operation-specific 

battery aging experiments be performed for each new application. Such tests take a lot of time 

and would have to be performed in advance using costly test facilities. To overcome these 

difficulties, the study [XU18] proposes a semi-empirical battery degradation model intended 

for off-line battery life estimations. The model combines theoretical analyses with 

experimental observations, and gives a model that is accurate not only within the operating 

region covered by the experimental data, but is also suitable to other operating conditions. 

Capacity fading in battery cells owing to charging and discharging is similar to the fatigue 

analyses of materials subjected to cyclic loading [VET05], [LAR15], [WAN11]. Each cycle 

generates an independent stress, and the loss of battery life is the result of the accumulation of 
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all cycles. Milner [MIL10] created an analytical cycle-based model based on Zhurkov’s crack 

propagation theory [ZHU65] and the Arrhenius relationship [12]. [BEL16], [KAR13] 

implement the Rainflow cycle counting algorithm [MAT68], [DOW82] to count cycles in the 

battery’s SOC profile. The Rainflow algorithm is broadly used for fatigue analyses and has 

been applied to battery cycle analysis in [DUF08], [MIS02], [CHA10].  
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2 Control of Grid Tied Battery Energy Storage System for Frequency 

Response Services 

Balancing the grid at 50 Hz requires managing many distributed generation sources against 

a varying load, which is becoming an increasingly challenging task due to the increased 

penetration of RESs such as wind and solar and loss of traditional generation which provide 

inertia to the system. In the UK, various frequency support services are available, which are 

developed to provide a real-time response to changes in the grid frequency. The NGET, the 

primary electricity transmission network operator in the UK, has introduced the FFR service 

which requires a response time of 2-30 seconds, depending on FFR service type; and the new 

fastest EFR service, which requires a response time of under one second. A BESS is a suitable 

candidate for delivering such service. Therefore, in this chapter a new DFFR control algorithm 

is presented which generates a charge/discharge power output with respect to deviations in the 

grid frequency and the NGET required DFFR specification. SFFR high and low frequency 

response control algorithms are also developed to deliver a non-dynamic service where an 

agreed amount of power is absorbed/generated if the grid frequency reaches a certain trigger 

point. Four EFR control algorithms are finally developed to provide a charge/discharge power 

output with respect to deviations in the grid frequency and the ramp-rate limits imposed by the 

NGET, whilst managing the SOC of the BESS for an optimised utilisation of the available 

stored energy. The simulation results of the FFR and EFR control algorithms developed in 

MATLAB/Simulink are experimentally validated by a 1MWh LTO battery based WESS, 

operated by the UoS. 

2.1 Introduction 

In power distribution networks, the frequency changes continuously because of the imbalance 

between total generation and demand; if demand surpasses generation, a decrease in the 

frequency will occur and vice versa [ONL18g], [GUN18b]. Maintaining the grid at a nominal 

frequency (i.e. 50 Hz for the UK) requires the management of many disparate generation 

sources against varying loads. This is becoming ever more challenging because of the increased 

penetration of RESs and subsequent inertial level reduction [GUN17a]. To overcome this issue, 

the NGET has introduced various frequency response services, including FFR and EFR service, 

to assist with maintaining the grid frequency closer to 50 Hz under normal operation [ONL18g].  
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Various research studies around the world have been performed to investigate the participation 

of large scale BESS in power grid and FFR services [STR16] [STR17] [KNA16]. In [LIA17], 

a methodology for optimising BESS with respect to the control parameters for delivering FFR 

service and the size of the BESS is proposed under UK regulatory framework using historical 

grid frequency data. An economic analysis is also performed based on the estimated battery 

lifetime and the UK grid frequency regulation market. [BEV10] presents the concerns of the 

integration of new renewable power generation in power systems with the grid frequency 

regulation perspective. The study also covers a comprehensive overview on recent 

developments in grid frequency regulation area. 

Since the EFR is introduced as a new UK grid balancing service published in 2016, in literature 

there are limited number of papers about EFR service delivery for grid support. Greenwood et 

al. [GRE17] published a leading study that provided novel methods to analyse and assessing 

the performance of ESSs within existing service frameworks, using real-time network 

simulation and power hardware in the loop. The study [GRE17] also compares the performance 

of the EFR Service-1 (wide DB) and Service-2 (narrow DB), and it was stated that the narrow 

service is technically more challenging, likely requiring four times the storage capacity of the 

wide service.  

In [COO17], Cooke et al. considers different ES strategies for assisting with frequency 

response and compares these to the EFR and the more traditional FFR service. The study 

presents a method of providing the new EFR service to avoid the necessity of holding more 

FFR in reserve when system inertia falls.  

In [CAN17], the authors investigate the possible performance of a BESS in EFR provision, by 

simulating its response to grid frequency according to the EFR service requirements, and 

evaluates its ability to exchange energy for the service, a service performance indicator, and 

the possible aging related to battery cycling. Different EFR power versus frequency 

characteristics, BESS technologies and BESS energy capacities are considered in [CAN17]. It 

was also assumed that the BESS are connected to the UK or to the Continental Europe (CE) 

synchronous area; therefore, for the CE system those requirements are adjusted according to 

the CE frequency behaviour. However, a major specification of the EFR service is to consider 

ramp-rate limits in the UK requirements, it was not considered in [CAN17] for simplicity; 

power exchange rate limits internal to the batteries was also neglected. In addition, the study 

did not cover an extended 15-min frequency event control in order to increase the BESS 
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availability. In [BAH18], a design framework for a power management system is presented to 

respond to the EFR service requirements with two storage system topologies; battery and 

hybrid ESS.  

In contrast to other recent works in the field, the main contribution of this chapter presents a 

DFFR control algorithm that enables BESSs to deliver dynamic power in response to deviation 

the grid frequency with respect to the NGET DFFR specifications. SFFRhigh and SFFRlow 

control algorithm are also developed to deliver a non-dynamic power if the grid frequency 

reaches a certain high and low grid frequency. This chapter also introduces four EFR control 

algorithms that enables BESSs to provide a bi-directional power in response to changes in the 

grid frequency, whilst managing the SOC of the BESS to optimise availability of the system. 

The first model introduces a standard control algorithm designed to meet the technical 

requirements of the NGET specifications. The advanced EFR algorithm addresses the EFR 

service design with an extended 15-minute frequency event control, in order to optimise the 

use of the available stored energy. The other advanced algorithm extends the EFR control 

algorithm to include a dynamic SOC target to maximise the energy stored. Finally, the last 

algorithm includes an SOC-based proportional controller to optimize the power delivery in 

order to reduce the battery degradation and hence extend the battery lifetime. The developed 

DFFR and EFR control algorithms have been experimentally validated with the WESS. 

2.2 BESS Control for Firm Frequency Response (FFR) Service 

The NG has a statutory obligation to keep the frequency of the NGET within ±1% of 50Hz 

(49.5Hz to 50.5Hz). The control room typically controls grid frequency within a tighter 

operational limit of 49.8Hz to 50.2Hz. Grid frequency is changing continuously, and it is 

determined and controlled by the balance between generation and demand. If generation is 

greater than demand, grid frequency increases; or if demand is greater than generation, 

frequency decreases. Therefore, the NG must ensure that sufficient demand and/or generation 

is held in readiness to respond to grid frequency deviations. Response represents the ability to 

adjust demand or generation to compensate for deviations in grid frequency within 2-30 

seconds, depending on the type of FFR service [ONL18n].  

In order to manage the grid system frequency NG relies on balancing service providers to adjust 

their active power output or consumption in order to minimise the imbalance between demand 
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and generation on the system. The extent of the required adjustment is determined by the 

system frequency deviation from 50Hz [ONL18h]. Therefore, NG purchases balancing 

services to manage the grid frequency; FFR is a frequency response service for grid balancing 

service that can supply a minimum of 1MW active power within a frequency deviation. FFR 

is open to all parties that can prequalify against the service requirements. Providers can provide 

other grid balancing services when they are not delivering FFR. Agreed loads, when summated, 

must be equal to or higher than 1MW. There must be a single point of dispatch or an approach 

in which the total output of the combined loads can be monitored to show to the NG that the 

service is available. FFR service is a proportional or continuous modulation of demand and 

generation; so FFR service can be either dynamic or static. There are three main dynamic 

service types, including primary (full output within 10 seconds sustained for further 20 

seconds), secondary (full output within 30 seconds sustained for further 30 minutes) and high 

(requires to be achieved within 10 seconds and sustained indefinitely), as shown in Fig 1.12. 

In DFFR, power changes proportional to system frequency and in SFFR, a set power level is 

delivered at a defined frequency and remains at the set level for an agreed period [ONL18h], 

[ONL18i], [ONL18j]. 

A BESS model is developed in MATLAB/Simulink and verified against experimental 

operation of the WESS. Using the NGET required FFR service specifications, three FFR 

control algorithms, including DFFR, SFFRhigh and SFFRlow are then implemented in the BESS 

model independently to deliver a grid frequency response service to their NGET service 

specifications [ONL18h]. The NGET required FFR service specifications and the proposed 

FFR control algorithms are detailed in the following sections. 

2.2.1 BESS Control for Dynamic FFR Service with No Battery SOC Management  

In this section, a control algorithm is developed to meet the NGET required DFFR service 

specifications, as shown in Fig. 2.1 and Table 2.1. 
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Fig. 2.1 NGET required DFFR power vs frequency envelope for a 1MW system [ONL18h]. 

Fig. 2.2 shows the proposed DFFR control scheme implemented in the BESS model, where the 

inputs are real-time grid frequency (f) and battery SOC, with the output being the requested 

import/export power to deliver a frequency response according to the service specification. The 

algorithm starts by detecting the position of the measured frequency with respect to the zones 

bounded by frequency values ‘A’ to ‘R’ in Table 2.1 (left column). This is achieved by the 

‘FFR Power Calculation’ (Block 1), where the required DFFR response envelope is calculated 

as a function of the limits given with their Table 2.1 (left and middle column). The calculation 

method of the proposed DFFR power envelope is described in the final column of the table. 

The required DFFR power is zero within the DB. 

In this work, battery SOC is calculated using (2.1) where SOCinit, Q and Pbatt represent initial 

SOC, Watt-hour capacity and instantaneous battery power, respectively. Stored energy in the 

BESS is expressed in (2.2) and (2.3), where 𝜂𝐷 ,𝜂𝐷𝐶 , 𝐸𝑡  are battery discharging efficiency, 

battery charging efficiency, and energy stored in the BESS at hour t, respectively. Note that, if 

𝑃𝑡>0 the BESS exports power at hour t and if 𝑃𝑡<0 the BESS imports power at hour t. 
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𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒/𝐸𝑥𝑝𝑜𝑟𝑡:   𝑃𝑡 > 0     𝐸𝑡 = ∫
𝑃𝑡

𝜂𝐷
. 𝑑𝑡

𝑡

0

    (2.2) 

𝐶ℎ𝑎𝑟𝑔𝑒/𝐼𝑚𝑝𝑜𝑟𝑡:   𝑃𝑡 < 0      𝐸𝑡 = ∫ 𝑃𝑡. 𝜂𝐶 . 𝑑𝑡
𝑡

0

   (2.3) 

Table 2.1 DFFR power vs frequency envelope limits [ONL18h] and the calculation of power 

set-points (CPower) in algorithm 

Freq. (Hz) 
Contracted Power 

(kW) 

CPower 

(kW) 

𝐴 = 49.5 𝑎 = 1025  𝑎 

𝐵 = 49.6 𝑏 = 820 [(
𝐵 − 𝑓

𝐵 − 𝐴
) ∙ (𝑎 − 𝑏)] + 𝑏 

𝐶 = 49.7 𝑐 = 615 [(
𝐶 − 𝑓

𝐶 − 𝐵
) ∙ (𝑏 − 𝑐)] + 𝑐 

𝐷 = 49.8 𝑑 = 410 [(
𝐷 − 𝑓

𝐷 − 𝐶
) ∙ (𝑐 − 𝑑)] + 𝑑 

𝐸 = 49.9 𝑒 = 205 [(
𝐸 − 𝑓

𝐸 − 𝐷
) ∙ (𝑑 − 𝑒)] + 𝑒 

𝐹 = 49.984 𝑓 = 33 [(
𝐹 − 𝑓

𝐹 − 𝐸
) ∙ (𝑒 − 𝑓)] + 𝑓 

𝐺 = 49.985 𝑔 = 0 𝑔 = 0 

𝐻 = 50 ℎ = 0 ℎ = 0 

𝐽 = 50.015 𝑗 = 0 𝑗 = 0 

𝐾 = 50.016 𝑘 = −33 [(
𝐾 − 𝑓

𝐾 − 𝐽
) ∙ (𝑗 − 𝑘)] + 𝑘 

𝐿 = 50.1 𝑙 = −205 [(
𝐿 − 𝑓

𝐿 − 𝐾
) ∙ (𝑘 − 𝑙)] + 𝑙 

𝑀 = 50.2 𝑚 = −410 [(
𝑀 − 𝑓

𝑀 − 𝐿
) ∙ (𝑙 − 𝑚)] + 𝑚 

𝑁 = 50.3 𝑛 = −615 [(
𝑁 − 𝑓

𝑁 − 𝑀
) ∙ (𝑚 − 𝑛)] + 𝑛 

𝑃 = 50.4 𝑝 = −820 [(
𝑃 − 𝑓

𝑃 − 𝑁
) ∙ (𝑛 − 𝑝)] + 𝑝 

𝑅 = 50.5 𝑟 = −1025 r 
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Fig. 2.2 Blog diagram of the BESS control for DFFR service  

 

Fig. 2.3 Flow chart of the BESS charge/discharge management for DFFR (Fig. 2.2, Block 2). 

DFFR is a continuously delivered service, a DB is defined where there is no requirement to 

import/export power to the grid but there is also no opportunity to charge/discharge the battery 
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to manage its SOC. Providers must deliver continuous import/export power as detailed in the 

DFFR service envelope in Table 2.1. The power level must remain at this required envelope at 

all times; power provided outside the envelope will decrease the SPM and hence the income 

revenue [ONL18i]. Operation principle of the proposed BESS charge/discharge management 

for delivering DFFR service (Fig. 2.2, Block 2) is described in Fig. 2.3. According to the logic 

of the DFFR charge/discharge management, BESS can only import/export power with respect 

to the required DFFR power envelope described in Table 2.1 to respond to grid frequency 

changes outside of DB (±0.015Hz). According to the NGET FFR requirements which were 

valid until 23th April 2018, [ONL18h], [ONL18i], [ONL18j], [ONL18o], the energy storage 

providers are not allowed to manage their SOC within DB. Therefore, in this section, the 

proposed DFFR control designed does not include a BESS SOC management strategy with 

respect to the recent NGET FFR specifications [ONL18h], [ONL18i], [ONL18j]. 

2.2.2 Simulation Results of the BESS Control for DFFR Service 

BESS control for DFFR and SFFR services presented in 2.2.1 and 2.2.3 are simulated in 

MATLAB/Simulink using real frequency data set obtained from the NG. The simulation results 

presented in this section are all based on a 1MW/1MWh BESS model, which has been 

experimentally validated on the WESS. The parameters used in the BESS model with FFR 

control algorithms are shown in Table 2.2. 

Table 2.2 Parameters used in the FFR control algorithms implemented in BESS model 

Parameter Value 

Nominal grid frequency  

Low/high DB 

High/low trigger frequency 

Max/min FFR power limit 

Battery power/capacity for FFR 

Battery initial SOC (SOCinit) 

50 Hz 

±0.015 Hz (for DFFR) 

±0.3 Hz (for SFFR) 

±1 MW 

1 MW/1 MWh 

20% 
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Fig. 2.4 Simulation results of the DFFR control algorithm for 11th Nov 2015 (first 3 hours). 

In order to show the performance of the reported FFR control algorithms in Section 2.2.1 and 

Section 2.2.3, the real frequency data for the 11th November 2015 (first 3 hours data) is used 

herein, as this particular day is known to have both a low and high frequency event. Fig. 2.4 

shows the simulation results of the DFFR control algorithm. On the frequency plot, the DB 

(±0.015Hz) is shown by the green lines. It is clear from the Fig. 2.4, the BESS continuously 

imports/exports power within the specified power envelope described in Fig. 2.1 and Table 2.1. 

It is clear from Fig. 2.5, the DFFR power (blue circles) does remain within the required 

envelope, meaning that the BESS achieved 100% availability and met the service requirements. 
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Fig. 2.5 DFFR power versus frequency response plot for 11th Nov 2015 (first 3 hours). 

2.2.3 BESS Control for Static FFR Service 

SFFR delivers a non-dynamic service where an agreed amount of power is delivered if the grid 

frequency reaches a certain trigger point (e.g 49.7Hz or 50.3Hz). The service providers monitor 

the grid frequency and adjust their generation or consumption power when the frequency goes 

below the specified frequency trigger. There are two modes of SFFR response, including high 

frequency response (SFFRhigh) and low frequency response (SFFRlow). Fig. 2.6.a and Fig. 

2.6.b show the logic of the low and high SFFR services respectively, which have to maintain 

their power output for 30 mins. NG specify a high reset frequency (50.3 Hz) and low reset 

frequency (49.7Hz) [ONL18h], [ONL18i]. The aim of the resets is to discontinue the frequency 

response if the grid frequency changes sharply for the period of the service.  

According to the proposed BESS management for SFFRlow shown in Fig. 2.6.a, when the grid 

frequency drops below the low trigger frequency (Flow), the BESS starts to deliver a maximum 

power response (SPower>0) until the grid frequency goes back above the specified high trigger 

frequency (Fhigh); the response continuation must not be interrupted until it reaches the trigger 

reset or 30 mins. The logic is reversed for SFFRhigh control algorithm shown in Fig. 2.6.b. 
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According to the proposed BESS management for SFFRhigh, when the frequency goes above 

the high trigger frequency (Fhigh), the BESS starts to import a maximum power response 

(SPower<0) until the grid frequency goes back below the specified low trigger frequency (Flow); 

the response continuation must not be interrupted until it reaches the trigger reset or 30 mins. 

Currently, the NG does not have a value for static high service. Overnight, the High 

requirement is small and the minimum dynamic need is equal to this so this shows that static 

high will already be fulfilled by the dynamic FFR service. There may be periods where a greater 

need is determined however this occurs relatively infrequently. It can be said that DFFR service 

is currently more valuable during the daytime because this service offsets margin costs which 

are not frequently incurred overnight [ONL18o]. 

 

Fig. 2.6 Flow chart of the BESS charge/discharge management for static a) Low (SFFRlow) 

and b) High (SFFRhigh) firm frequency response service. 
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2.2.4 Simulation Results of the BESS Control for SFFR Service 

Fig. 2.7 and Fig. 2.8 show the simulation results for 11th Nov 2015 of the SFFR high and low 

frequency response control algorithms, respectively. On the frequency plot, the high and low 

trigger reset frequency set points are shown by the dotted green lines. Over the 3-hour profile 

the algorithms deliver to the SFFRlow and SFFRhigh specification with no power being 

delivered until a frequency event occurs at 49.7Hz and 50.3Hz, respectively. As seen from the 

simulation results of the SFFRlow control algorithm (Fig. 2.8), the grid frequency drops below 

49.7Hz, BESS starts to export 1 MW power response until the frequency goes back above 

50.3Hz (trigger reset). 

 

Fig. 2.7 Simulation results of the SFFRhigh control for 11th Nov. 2015 (first 3 hours). 
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Fig. 2.8 Simulation results of the SFFRlow control for 11th Nov 2015 (first 3 hours). 

As seen from the results of SFFRhigh algorithm in Fig. 2.7, the grid frequency goes above 

50.3Hz, BESS starts to import 1MW power response until 30 mins. The aim of the resets in the 

SFFR control algorithms is to discontinue the frequency response if the grid frequency changes 

sharply for the period of the service. Since there is no trigger reset here (Fig. 2.7), the power 

response must continue until 30 mins. 

Table 2.3 presents the energy findings of the all FFR control algorithms for the 11 November 

2015 (first 3 hours) frequency data. It can be seen that the DFFR control algorithm can 

continuously import and export power to the grid with 83.83kWh and 236.8 kWh energy 

output, respectively. However, when the grid frequency drops below the defined trigger 

frequency of 49.7Hz, the SFFRlow algorithm can only import power until the high trigger reset, 

absorbing 65.56 kWh energy from the grid; and when the frequency sharply increase to the 

high frequency of 50.3Hz, the SFFRhigh algorithm can only export power until 30 minutes, 

delivering 500.6 kWh energy to the grid in order to balance the grid frequency. 
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Table 2.3 Energy output findings of the FFR algorithms for 11 Nov 2015 (first 3 hours data) 

 
Actual Imp. 

(kWh) 

Actual Exp. 

(kWh) 

Potential 

Imp. (kWh) 

Potential 

Exp. (kWh) 

DFFR 83.83 236.8 83.83 236.8 

SFFRhigh 500.6 - 500.6 - 

SFFRlow - 65.56 - 65.56 

2.2.5 BESS Control for DFFR Service with Battery SOC Management 

The NGET required DFFR service specifications [ONL18h], [ONL18i], [ONL18j], [ONL18o] 

was updated in 23th April 2018 and hence according to the current DFFR service requirements 

[ONL18p], the NGET demands from the energy storage providers to manage their SOC in the 

DB window; however the DFFR service control having SOC management must not negatively 

impact the power network in terms of losses, outages, frequency deviations or congestion 

problems; and hence requires an effective SOC management. 

According to the updated DFFR specifications, the SOC modelling with modified DFFR 

envelopes to permit SOC management either by charging in the frequency DB or by over-

delivery of response. The results of this analysis demonstrated that introducing these 

approaches could: 

1) Reduce the maximum amount of response available in the event of a fault on the system. 

2) Result in frequency disturbances following an event. 

3) Cause an overall increase in frequency response requirements. 

Therefore, the NG concluded that energy storage providers must continue to adhere to the 

DFFR envelope as given in their contracts, and should either [ONL18p]: 

1)  Withhold a fraction of the battery’s total capacity from being contracted to use for 

battery SOC management; this capacity can then be used to charge or discharge the 

battery depending on its SOC. 
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2) The battery asset can be removed from delivering response entirely and use other assets 

(either another battery or alternative technology to provide response in its place while 

the battery SOC is restored to its optimum level). 

The NG notes that the SOC management will continue to be investigated in the new service 

design process that is currently under development as part of the future of grid balancing 

services [ONL18p]. 

 

Fig. 2.9 Recent NGET required DFFR power vs frequency envelope, considering battery 

SOC management in DB of ±0.015Hz for a 1MW system [ONL18h]. 
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(c) 

Fig. 2.10 BESS Control scheme for DFFR service with battery SOC management. 

In this section, a control algorithm is developed to meet the NGET required DFFR service 

specifications, as shown in Fig. 2.9. Fig. 2.10 shows the proposed DFFR control scheme 

implemented in the BESS model, where the inputs are real-time grid frequency (f) and battery 

SOC, with the output being the requested import/export power to deliver a frequency response 
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zones bounded by frequency values ‘A’ to ‘R’ in Table 2.1 (left column). This is achieved by 

the ‘FFR Power Calculation’ (Block 1), where the required DFFR response envelope is 

calculated as a function of the limits given with their Table 2.1 (left and middle column). The 

calculation method of the proposed DFFR power envelope is described in the final column of 

the table. According to the recently updated DFFR specifications [ONL18p], the providers 

require to manage their SOC in the DB window, as shaded yellow in Fig. 2.9. Therefore, a 

proper SOC management control is implemented in the DFFR control design (Block 3) in 

MATLAB/Simulink (Fig. 2.10). In Fig. 2.10, the proposed DFFR algorithm withholds a 

fraction (1/4) of the battery’s total capacity (1000 kWh) from being contracted to use for the 

battery SOC management; hence this capacity (max 250 kWh) can be used to charge/discharge 

the battery depending on its SOC (Block 4 & Block 5). According to the proposed control 

algorithm, a proportional controller is implemented in the previously designed DFFR control 

algorithm, described in Section 2.2.1, to charge/discharge battery in order to manage the 

battery’s SOC (Block 4); hence this management will enable the providers reduce the 

likelihood of unavailability of the BESS on delivering the dynamic response service. As a result 

of this, the BESS will not only import/export power to the grid as in the previously designed 

DFFR control algorithm (Fig. 2.2 and Fig. 2.3); but also will do charging or discharging for 

managing the SOC of the battery, as seen in Fig. 2.10. 

Proportional control is a type of linear feedback control system where a correction is applied 

to the controlled variable which is proportional to the difference between the desired value and 

the measured value [AST10]. In this section, a SOC-based proportional controller is applied to 

the standard DFFR control algorithm (Section 2.2.1) in order to control the output dynamic 

power as a proportional of battery SOC error in order to charge or discharge battery operating 

in dynamic frequency response service (Block 3). In the proposed proportional controller, the 

controller output is proportional to the error signal (SOC error), as shown in Block 4 Fig. 2.10. 

This means that the output of the proportional controller is the multiplication product of the 

SOC error and the proportional gain (Kp). The aim of the proposed control algorithm is to share 

the battery’s capacity for charging/discharging and import/export, independently (Block 5). 

The aim of the use of the proportional controller in the DFFR control scheme is to utilize the 

partial capacity of the battery for charging and discharging to manage the battery’s SOC in 

order to avoid BESS unavailability, and prolong the battery lifetime. Simulation results of the 

DFFR control algorithm including SOC management will be presented in the next section. 
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2.2.6 Simulation Results of the BESS Control for DFFR with SOC Management 

The simulation results of the DFFR control algorithm having the SOC management described 

in Section 2.2.5 is presented in this section. The results in this section are all based on a 

1MW/1MWh BESS model, by sharing maximum 250 kWh battery capacity for 

charging/discharging; or the rest power for importing/exporting. The additional parameters 

used in the proposed model are shown in Table 2.4. 

Table 2.4 Additional parameters used in the design of the SOC management in DFFR algorithm  

Parameter Value 

Max capacity for charge/discharge 

SOC band set in model 

250 kWh 

45-55% 

Fig. 2.11 and Fig. 2.13 show the simulation results of the DFFR control algorithm having SOC 

management with setting the proportional gain  𝐾𝑝 = 10 and 𝐾𝑝 = 2, respectively. As seen 

from Fig. 2.11 and Fig. 2.13, increasing the proportional gain Kp set in the controller, the BESS 

charging/discharging power dependently increases based on the battery SOC error. Comparing 

the battery SOC plot in Fig. 2.11 and Fig. 2.13 , setting increased Kp value, the SOC of the 

battery reaches to the desired SOC band of 45-55% faster with increasing amount of 

charge/discharge power. The energy output findings of the DFFR control algorithms (see Table 

2.5) show that due to the sharing of battery capacity for importing/exporting or 

charging/discharging, while increasing charging/discharging energy for faster SOC 

management; this leads to a faster SOC management in the algorithm.  
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Fig. 2.11 Simulation results of DFFR algorithm with (Kp=10) and without SOC management 

for 11 Nov 2015 (first 3 hours) frequency data. 

 

Fig. 2.12 Power versus frequency plot of measured DFFR algorithm with SOC management 

(Kp=10) for 11 Nov 2015 (first 3 hours) frequency data. 
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Fig. 2.13 Simulation results of DFFR algorithm with (Kp=2) and without SOC management 

for 11 Nov 2015 (first 3 hours) frequency data. 

 
Fig. 2.14 Power versus frequency plot of measured DFFR algorithm with SOC management 

(Kp=2) for 11 Nov 2015 (first 3 hours) frequency data. 
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Fig. 2.12 and Fig. 2.14 illustrate the power response versus grid frequency plot of DFFR control 

algorithm having SOC management by setting 𝐾𝑝 = 10 and 𝐾𝑝 = 2, respectively for 11th 

Nov 2015 (first 3 hours). The red line represents the current NGET required DFFR power line 

described in Fig. 2.9. It is clear that the DFFR power (blue circles) does remain within the 

required envelope, meaning that the BESS achieved 100% availability and met the service 

requirements. Comparing the simulation findings in Fig. 2.12 and Fig. 2.14, increasing the Kp 

set in the proportional controller in model, the BESS charges/discharges itself with relatively 

increasing amount of power; this leads to a faster SOC management to stay the battery SOC in 

the desired SOC band. 

Table 2.5 Energy output findings of DFFR Algorithm for 11 Nov 2015 (first 3 hours) 

 

DFFR with 

NO 

management 

DFFR with 

SOC 

management 

(𝑲𝒑 = 𝟏𝟎) 

DFFR with 

SOC 

management 

(𝑲𝒑 = 𝟓) 

DFFR with 

SOC 

management 

(𝑲𝒑 = 𝟐) 

DFFR with 

SOC 

management 

(𝑲𝒑 = 𝟏) 

Charging 

Energy (kW) 
- 61.76 35.09 15.18 7.796 

Discharging 

Energy (kW) 
- 0 0 0 0 

Import 

Energy (kW) 
83.83 22.07 48.74 68.65 76.04 

Export 

Energy (kW) 
236.8 236.7 236.7 236.7 236.7 

Potential 

Import (kW) 
83.83 83.83 83.83 83.83 83.83 

Potential 

Export (kW) 
236.8 236.7 236.7 236.7 236.7 

 

Fig. 2.15 compares the simulation results of the DFFR algorithm with no SOC management 

and that with the proposed SOC management for whole October 2015 which is the worst month 

in 2015. As seen from the figure, applying the proposed SOC control into the basic DFFR 

algorithm, the battery’s SOC can be successfully managed in the desired SOC band of 45-55%; 

therefore managing the battery SOC, the BESS availability increases significantly as observed 

from the comparison of the power versus frequency plots in Fig. 2.16 and Fig. 2.17. 
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The energy output findings of the DFFR control algorithms for the whole of October 2015 are 

shown in Table 2.6. It can also be seen that setting increased Kp in the proportional controller, 

the amount of charge/discharge power is increased on managing battery SOC while reducing 

the amount of power on importing or exporting. This leads to a faster SOC recovery, however, 

to reduce selling/buying power from/to grid. It can be seen from Fig. 2.15, applying the 

proposed SOC management into the DFFR algorithm, the battery’s SOC can be successfully 

maintained in the desired SOC band of 45-55%; this results in an enhancement in the battery 

availability, as seen from the results. 

 

Fig. 2.15 Simulation results of DFFR algorithm with (𝐾𝑝 = 10) and without SOC 

management for the whole October 2015 frequency data. 
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Fig. 2.16 Power versus frequency plot of DFFR algorithm with No SOC management for 

whole October 2015 frequency data. 

 

Fig. 2.17 Power versus frequency plot of DFFR algorithm with SOC management (𝐾𝑝 = 10) 

for whole October 2015 frequency data. 
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Table 2.6 Energy output findings of DFFR Algorithm for whole October 2015 frequency data 

 

Charging 

Energy 

(kW) 

Discharging 

Energy 

(kW) 

Import 

Energy 

(kW) 

Export 

Energy 

(kW) 

Potential 

Import 

(kW) 

Potential 

Export 

(kW) 

DFFR with 

NO 

management 

0 0 32520 32590 33490 33110 

DFFR with 

SOC 

management 

(𝑲𝒑 = 𝟓𝟎) 

7627 6901 25740 26120 33490 33110 

DFFR with 

SOC 

management 

(𝑲𝒑 = 𝟏𝟎) 

5137 4526 28260 28580 33490 33110 

DFFR with 

SOC 

management 

(𝑲𝒑 = 𝟓) 

3587 3133 29710 29980 33490 33110 

DFFR with 

SOC 

management 

(𝑲𝒑 = 𝟐) 

1794 1690 31150 31340 33490 33110 

DFFR with 

SOC 

management 

(𝑲𝒑 = 𝟏) 

976.6 993.5 31790 31930 33490 33110 

2.3 BESS Control for Pre-Enhanced Frequency Response (Pre-EFR) Service 

The NGET prepared a pre EFR specification to facilitate a tender competition between 

potential energy storage providers in late 2015 [ONL15a]. Using the pre-published EFR 

specification, a generalised UK frequency response algorithm is developed to evaluate control 

strategies for delivering a real-time response to deviations in the grid frequency. At the time of 

this work BESS focused frequency response services were still being developed and therefore 

any anticipated service specific constraints around control in DB had been ignored. This 

allowed this study to explore forecasting of battery SOC levels and to propose battery 

charge/discharge management methods in order to maximise BESS availability. 
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2.3.1 Pre-EFR Service Specifications 

According to NGET requirement of UK frequency response [ONL15a], energy storage 

providers must respond to deviations in nominal grid frequency of 50Hz by decreasing or 

increasing their power output. Devices specifically must supply power to the grid to respond 

to deviations in frequency outside the DB. 

 

Fig. 2.18 Maximum allowable UK Pre-EFR frequency response envelope [ONL15a]. 

The maximum DB allowable is ±0.1Hz and it has been specified wide to enable flexibility, but 

it is allowed to be tighter. Within DB, there is no requirement to deliver power to the grid, 

however there is an opportunity to charge/discharge the battery with respect to the specified 

maximum power limit to achieve a target SOC range [ONL15a], [ONL15b]. For storage assets, 

devices should be capable of managing their SOC within an envelope, therefore minimising 

saturation and depletion. The storage providers must deliver continuous power at all times as 

shown in the required envelope in Fig. 2.18. Power delivered outside the specified envelope 

will reduce the SPM and hence availability payment [ONL15a], [ONL15b]. 

In this section, the SPM is calculated per settlement period as the sum of the second by second 

proportion of normalized response against the allowable envelope (Fig. 2.18) at a given 

frequency value. Normalized response is the ratio of actual response provided in that second 

against the operational capacity or tendered capacity in MW as shown in (2.4). If the 

normalized response is within the allowable envelope, the SPM is set at 100%. The calculation 

of the availability rate is described in Table 1.7, where the SPM rate of less than 95% will cause 

a penalty in the availability payment to the energy storage providers [ONL15a].  
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𝑆𝑃𝑀 = (𝐴𝑐𝑡𝑢𝑎𝑙 𝐵𝐸𝑆𝑆 𝑃𝑜𝑤𝑒𝑟 ⁄ 𝐵𝐸𝑆𝑆 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦)/(𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑃𝑜𝑤𝑒𝑟) (2.4) 

2.3.2 Pre-EFR Control Algorithm Design 

A BESS model is developed in MATLAB/Simulink and verified against experimental 

operation of the WESS. A Pre-EFR frequency response control algorithm is then implemented 

in the model to deliver a grid frequency response service to the NGET specification. Fig. 2.19 

shows the battery charge/discharge management for Pre-EFR service implemented in the BESS 

model, where the inputs are real grid frequency (f) and battery SOC, and the output is the 

required power. The control algorithm starts by detecting the position of the measured 

frequency with respect to the zones bounded by vertical lines in Fig. 2.18, and then the NGET 

required frequency response power [ONL15a], [ONL15b] is calculated.  

The logic of the proposed charge/discharge management is described in Fig. 2.19.a, where if 

frequency is outside the DB, the battery imports and exports power to the grid with respect to 

the set battery upper and lower operational limit [ONL15a], [ONL15b]. Within DB, the battery 

has an opportunity to charge/discharge in order to manage battery SOC. In this section, it is 

proposed that a desired SOC range is set in the control algorithm to maintain the battery SOC 

at a level to be able to achieve maximum battery availability and also prolong the battery 

lifetime. Operation principle of the proposed battery charge/discharge management in Fig. 2.19 

(a) is demonstrated on the 2-hour profile of the real frequency of 19 Feb 2014 in Fig. 2.19 (b). 

As seen from the profile Fig. 2.19 (b), if the grid frequency is greater than the DB, the battery 

imports power from the grid to maintain; when frequency returns to the DB, if the available 

battery SOC is greater than the set higher SOC band (55%), the battery discharges until the 

SOC is within the desired range (45-55%). If frequency is lower than the DB, the battery 

exports power to the grid; when frequency returns to the DB, if the SOC is lower than the set 

lower SOC band (45%), the battery charges to maintain the SOC within the desired range of 

45-55%.  
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(a) 

 

(b) 

Fig. 2.19 Flow chart of the BESS charge/discharge management for Pre-EFR service (a), 

Demonstration of the management on the 2-hour profile of 3rd Feb 2014 (Battery import (I), 

export (E), charge (C), discharge (D), battery do nothing (DN) (b). 
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2.3.3 Simulation Results of Pre-EFR Control Algorithm 

The proposed Pre-EFR control algorithm is simulated in MATLAB/Simulink using the real 

grid frequency data obtained from the NGET [ONL15a] using the validated WESS model. The 

parameters used in the frequency response algorithm are given in Table 2.7. 

Table 2.7 Parameters used in the Pre-EFR control algorithm implemented in the BESS. 

Parameter                 Value 

Allowable High/Low DB 

Min/max EFR power limit 

Battery rated power/capacity 

Initial SOC (SOCinit) 

Operational SOC limit (SOClow/𝑆𝑂𝐶𝑢𝑝) 

Inverter efficiency (η) 

Battery charge/discharge efficiency (𝜂dc) 

±0.1 Hz  

±2 MW 

2 MW/1 MWh 

40% 

20% / 90% 

97% 

95% 

A) BESS with No Additional Charging 

In this section, the proposed Pre-EFR control algorithm implemented in the BESS model has 

been analysed with a 0.05 DB having no battery charge/discharge management as well as no 

battery SOC management in order to observe the BESS import/export SPM rates of each day 

of February (see Fig. 2.20), which is the most critical month in 2014. Analysing the proposed 

frequency response algorithm, the obtained simulation results of the BESS output power and 

SOC for 14th Feb and 19th Feb 2014, which are the worst and best day in Feb 2014, 

respectively in terms of under/lower frequency events, are shown in Fig. 2.21. It is clear from 

Fig. 2.20, having no control strategy in the algorithm, the BESS is able to deliver a continuous 

power to the grid, but provides quite low import/export SPM rates, causing a high amount of 

penalty to the availability payment. Table 2.8 shows that, despite the 100% import/export SPM 

rates of the best day (19th Feb 2014), in the worst day (14th Feb 2014), the battery is only 48% 

available for delivering frequency response to the grid, where the output battery SOC stays at  

the lowest operational limit of 20% at around 3am to 5am with no battery availability in 14th 

Feb (see Fig. 2.21 (e)); however the battery SOC stays at the lowest limit (20%) at only around 

30 mins in the best day (see Fig. 2.21 (f)). The aim of this analysis is to observe the battery 

availability rates extracted from the Pre-EFR algorithm without having any control strategies; 
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and as a result of this develop suitable control strategies to be able to meet the NGET required 

battery import/export SPM of greater than 95%, providing 100% availability rate. 

Table 2.8 Battery import/export SPM (%) of the worst (14th Feb) and best day (19th Feb) in 

2014 for 0.05DB (no control strategy used) 

Days Import (%) Export (%) 

14th Feb. 100 48 

19th Feb. 100 100 

 

 

Fig. 2.20 Battery import/export SPM rate of each days of Feb 2014 for 0.05DB with no 

battery management. 
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(c) Battery power of 14th Feb 2014 (d) Battery power of 19th Feb 2014 

 

(e) Battery SOC of 14th Feb 2014 (f) Battery SOC of 19th Feb 2014 

Fig. 2.21 Simulation results of the Pre-EFR algorithm with no battery management strategy for 

0.05DB for 14th and 19th February 2014 frequency data. 

B) A Sensitivity analysis of Battery SOC Management and Battery Charge/Discharge 

Management 

After evaluating the SPM findings extracted in Part A, in order to increase the BESS 

availability, a sensitivity analysis of battery SOC management strategy (see Table 2.10) and a 

battery charge/discharge management method (see Table 2.9) based on SPM have been 

developed to implement in the proposed Pre-EFR algorithm for the NGET allowable DB ranges 

of 0.05Hz and 0.1Hz. The aim of the battery charge/discharge management is to achieve the 

battery optimum charge/discharge power amount for each considered DB in order to meet the 

NGET SPM requirement of higher than 95% (see Table 2.9). 
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Table 2.9 Battery import/export (I/E) SPM (%) of each month in 2014 for different DB ranges 

at their ideal battery charge/discharge power under 50-60% SOC band 

2014 

0.1 DB 0.05 DB 

35kW 50kW 60kW 200kW 350kW 500kW 

I E I E I E I E I E I E 

Jan 99 100 100 100 100 100 98 94 99 96 99 97 

Feb 92 100 96 100 97 100 93 94 96 97 97 98 

Mar 97 100 98 100 99 100 95 97 97 99 98 100 

Apr 94 100 94 100 96 100 93 96 96 98 97 99 

May 100 100 100 100 100 100 100 98 100 99 100 99 

Jun 100 100 100 100 100 100 99 100 99 100 100 100 

Jul 100 100 100 100 100 100 100 99 100 100 100 100 

Aug 100 100 100 100 100 100 99 99 100 99 100 100 

Sep 100 100 100 100 100 100 99 100 100 100 100 100 

Oct 100 100 100 100 100 100 98 98 99 100 99 100 

Nov 100 100 100 100 100 100 98 93 99 96 100 98 

Dec 100 100 100 100 100 100 98 94 99 96 99 97 

In the proposed sensitivity analysis of battery charge/discharge management strategy, for 

0.1DB and 0.05DB, the battery charge/discharge power amount selected is 35kW, 50kW, 

60kW and 200kW, 350kW, 500kW, respectively. From the analysis results in Table 2.9, the 

NGET required battery import/export SPM ranges (>95%) have been achieved at 60kW and 

350kW charge/discharge power for 0.1DB and 0.05DB, respectively, setting the battery SOC 

band to 50-60%. Comparing the obtained SPM rates of each month of 2014 in Table 2.9, the 

optimal charge/discharge power amount forecasted is 60kW (orange-shaded box) for 0.1 DB 

and 350kW (yellow-shaded box) for 0.05 DB under the SOC band limit of 50-60%. It is 

observed that, the use of a tighter DB in the frequency response algorithm requires increased 

amount of battery charge/discharge power to be able to reach the expected battery SPM ranges. 

It is revealed that the higher the amount of battery charge/discharge power, the higher the BESS 

availability; however it should be noted that the primary aim of the local control strategy is to 

minimise the battery charge/discharge power to maximize the battery life time. Furthermore, it 

is understandable from an electricity grid balancing strategy that BESSs should be restricted in 
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power once they return to DB to maintain recovered stability. The proposed sensitivity analysis 

of battery SOC management strategy based on SPM is presented in Table 2.10, where the 

frequency response model is analysed for 0.05DB at its forecasted ideal battery 

charge/discharge power amount of 350kW (yellow box in Table 2.9), by varying the battery 

SOC target range as shown in Table 2.10. According to the SOC strategy, the battery 

import/export SPM findings of each month of 2014 are evaluated, revealing that SOC ranges 

of 55-65%, 60-70% and 65-75% are inferior due to their insufficient (<95%) battery 

import/export SPM ranges that are attained in April 2014. In addition to this, because of the 

inadequate SPM range obtained from the critical winter months of November, December and 

February in 2014, the SOC range of 40-50% and 45-55% are also undesirable. 

Table 2.10 Battery import/export (I/E) SPM (%) of each month in 2014 for different SOC band 

for 0.05DB at its ideal power of 350kW 

Selected SOC Band (%) in the sensitivity analysis of SOC 

management strategy 

2014 

40% - 

50% 

45% - 

55% 

50% - 

60% 

55%-

65% 

60% -

70% 

65%-

75% 

I E I E I E I E I E I E 

Jan 100 93 99 95 99 96 98 97 97 98 95 98 

Feb 97 94 97 96 96 97 95 98 94 98 92 99 

Mar 99 97 98 98 97 99 97 99 96 100 93 100 

Apr 97 96 96 97 95 98 94 99 93 99 92 99 

May 100 97 100 98 100 99 100 99 99 99 98 100 

Jun 100 99 100 100 99 100 99 100 98 100 97 100 

Jul 100 98 100 99 100 100 100 100 99 100 98 100 

Aug 100 98 100 99 100 99 99 100 98 100 97 100 

Sep 100 99 100 100 100 100 99 100 99 100 98 100 

Oct 99 98 99 99 99 100 99 100 98 100 96 100 

Nov 100 93 100 94 99 96 99 97 98 98 96 99 

Dec 100 93 99 95 99 96 98 97 98 98 96 98 

Finally, the best SOC band limit forecasted is 50-60% as shown in the blue-shaded box in Table 

2.10, which meets the NGET SPM requirement of greater than 95%, causing no availability 
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penalty to the BESS provider. It is also revealed that the initial battery SOC rate and the DB 

range set in the algorithm do not affect the forecasted SOC band limit.  

Comparing a study in literature, Lian et al. [LIA17] investigated the potential use of LiFePO4 

based BESSs to participate in the frequency response market of the UK NG. In the paper it was 

demonstrated that the optimal BESS SOC band is chosen as 50-60% for providing grid 

frequency response. Comparing that study, in this paper, by implementing the proposed 

sensitivity analysis of SOC management strategy in the BESS, the best SOC band is also 

chosen as 50-60% based on BESS availability on delivering grid frequency response service 

of Pre-EFR (see Table 2.10). 

C) BESS with Additional Charging and SOC band limit for 0.1DB and 0.05DB 

This section evaluates the performance of the developed battery charge/discharge management 

and the sensitivity analysis of SOC management strategy (Part B) implemented in the proposed 

frequency response algorithm for each considered NGET allowable DB of 0.1Hz and 0.05Hz. 

Table 2.11 Battery import/export SPM (%) of the worst (14th Feb) and best day (19th Feb) in 

2014 for 0.1DB (control strategy used) 

Days Import (%) Export (%) 

14th Feb. 100 92 

19th Feb. 100 100 

Analysing the simulation results, Fig. 2.22 and Fig. 2.24 show the battery availability ranges 

of each day of February 2014 for 0.1DB and 0.05DB obtained from the Pre-EFR algorithm 

limited to the previously selected charge and discharge powers of 60kW and 350kW, 

respectively, managing and setting the SOC band as 50-60%. It is clear that, despite analysing 

the critical winter month (February), the obtained battery SPM rates of each day of February 

2014 are quite high due to the control strategy used in the algorithm. As seen from the 

simulation results of the BESS output power and SOC in Fig. 2.23 and Fig. 2.25, having the 

SOC control approach, the battery SOC is mostly maintained in the desired SOC band of 50-

60% on the 14th and 19th February 2014, where the battery is not able to delivery power to the 

grid for only around one hour period in the worst day of 14th February as battery SOC remains 

at 0% at that time (Fig. 2.23 (c) and Fig. 2.25 (c)). 
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Fig. 2.22 Battery import/export SPM (%) of each days of Feb 2014 having the proposed 

control strategies in the frequency response algorithm for 0.1 DB. 

 

(a) Battery power of 14th Feb 2014 (b) Battery power of 19th Feb 2014 

 

(c) Battery SOC of 14th Feb 2014 (d) Battery SOC of 19th Feb 2014 

Fig. 2.23 Simulation results of the frequency response algorithm with the proposed control 

strategies for 0.1DB for 14th Feb (worst day) and 19th Feb (best day) in 2014. 
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Table 2.12 Battery import/export SPM (%) of the worst (14th Feb) and best day (19th Feb) in 

2014 for 0.05DB (control strategy used) 

Days Import (%) Export (%) 

14rd Feb. 100 80 

19th Feb. 100 100 

 

Fig. 2.24 Battery import/export SPM (%) of each days of Feb 2014 having the proposed control 

strategies in the frequency response algorithm for 0.05 DB. 

Comparing the simulation findings obtained from the Pre-EFR algorithm with no control 

strategy in Part A, the battery import/export SPM rates of each day of February 2014 have been 

increased significantly in this part by implementing the ideal battery charge/discharge 

management method and the battery SOC management strategy into the developed frequency 

response algorithm. 

 

(a) Battery power of 14th Feb 2014 (b) Battery power of 19th Feb 2014 

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27

S
P

M
 (

%
)

Days

Import Export

-3

-2

-1

0

1

2

3

0 4 8 12 16 20 24

O
u
tp

u
t 

P
o

w
er

 (
M

W
)

Time (Hour)

-3

-2

-1

0

1

2

3

0 4 8 12 16 20 24

O
u
tp

u
t 

P
o

w
er

 (
M

W
)

Time (Hour)

19th Feb.14th Feb.Charging

Discharging

Charging

Discharging



113 

 

 

(c) Battery SOC of 14th Feb 2014 (d) Battery SOC of 19th Feb 2014 

Fig. 2.25 Simulation results of the frequency response algorithm with the proposed control 

strategies for 0.05 DB for 14th Feb (worst day) and 19th Feb (best day) in 2014. 

D) Analyses of the Simulation Results 

In the proposed Pre-EFR algorithm it is possible to define two aims for power flow in and out 

of the battery; the first is defined as that of ideal charging/discharging battery i.e battery power 

is requested in either direction for the sole purpose of managing the battery SOC and not for 

the grid frequency response service; the second is import/export which represents when the 

BESS is performing a required response to a frequency event. Comparing the obtained battery 

SPM findings in Part A and Part C, it is revealed that by implementing the proposed battery 

SOC management approach and the battery charge/discharge management method into the 

frequency response algorithm, the battery SPM rates have been increased substantially day by 

day, particularly in the worst day (14th Feb), from 48% (Table 2.8) to 92% (Table 2.11) for 

0.1DB, and also increased to 80% ( 

Table 2.12) for 0.05DB; causing a significant reduction in SPM penalty; and hence this results 

in a significant economic benefits to the energy storage providers. 

2.4 BESS Control for Enhanced Frequency Response (EFR) Service 

EFR is introduced as a new fast frequency response service for grid balancing that can deliver 

full-scale active power within one second of registering a grid frequency deviation. NGET 

prepared final EFR specification to facilitate a tender competition for 200 MW of support 

provision to be distributed amongst potential energy storage providers in 2016 [ONL16a]. 
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2.4.1 NGET required EFR Service Specifications 

The NGET required EFR service specifications used in the proposed EFR control algorithms 

are described in the following parts. 

A) Technical Requirements 

Energy storage providers must respond to deviations in nominal frequency (50 Hz) by 

decreasing or increasing their power output. Specifically, energy storage devices must provide 

power to the grid to respond to deviations in frequency outside of a DB. Within the DB, there 

is not a requirement to deliver power to the grid [ONL16a] but there is opportunity within 

power limits to charge/discharge the battery to achieve a desired SOC. 

B) Delivery Envelopes 

Providers must deliver continuous power to the grid as described in one of the two EFR service 

envelopes (Service-1, Service-2) in Fig. 2.26 and Table 2.13 [ONL16a]. As seen in Fig. 2.26, 

the power level must remain within the upper and lower envelopes at all times; power provided 

outside the envelope will decrease the SPM, and thus reduce the income revenue [ONL16a]. 

In DB, the reference power profile is at zero MW output and hence providers do not have to 

respond to changes in the grid frequency. The BESS can be freely operated to charge/discharge 

in DB, however, the maximum export/import power must not exceed 9% of the BESS’s full-

scale range [ONL16a]. 

C) Ramp Rates 

Providers may operate anywhere within the upper and lower envelopes to deliver a continuous 

service to the power system, with respect to the specified limitations on ramp rates as given in 

Fig. 2.27, Table 2.14 and Table 2.15 [ONL16a]. For a BESS, this effectively provides some 

control over the SOC of the battery. For the zones A, C, D in Fig. 2.27, the ramp rate must 

obey the specified values in Table 2.14. Operation in zones C and D will result in payments at 

a lower SPM. Hence, in such cases, EFR power output has to return to the specified envelope 

with respect to the ramp-rate limits given in Table 2.14 [ONL16a]. 

Ramp-rate zone B is described as being the area between the upper and lower envelopes, 

excluding the DB, and extends to achieve the full power capability at ±0.5 Hz [ONL16a]. The 

allowable ramp rates within zone B depend on the rate of change of frequency. For EFR 

Service-1 and Service-2, the ramp rate limitations for all frequencies in zone B are shown in 
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Table 2.15. With these ramp limits, output power changes proportionally to changes in grid 

frequency, whilst allowing the energy storage providers some flexibility [ONL16a] to manage 

the battery SOC. 

 

Fig. 2.26 NGET required EFR power versus frequency envelope [ONL16a]. 

Table 2.13 EFR envelope frequency and power boundaries [ONL16a]. 

 Frequency (Hz)  Power (%) 

Ref. Point Service-1 Service-2 Ref. Point Service-1 Service-2 
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Fig. 2.27 NGET required EFR power zones [ONL16a]. 

Table 2.14 Ramp rate as a percentage of operational capacity for power zones A, C and D 

[ONL16a]. 

Area Max Ramp Rate (%) Min Ramp Rate (%) 

A 1 0 

C 200 0 

D 10 0 

 

Table 2.15 Ramp rate for zone B as a percentage of maximum power [ONL16a] 

EFR Service Max Ramp Rate (MW/s) Min Ramp Rate (MW/s) 

1  (wide) (−
1

0.45

𝑑𝑓

𝑑𝑡
+ 0.01) × 100 (−

1

0.45

𝑑𝑓

𝑑𝑡
− 0.01) × 100 

2 (narrow) (−
1

0.485

𝑑𝑓

𝑑𝑡
+ 0.01) × 100 (−

1

0.485

𝑑𝑓

𝑑𝑡
− 0.01) × 100 

2.4.2 Standard EFR Control Algorithm (EFR-A1) Design 

An EFR control algorithm with a 2MW/1MWh BESS, named EFR-A1, is developed in 

MATLAB/Simulink to deliver a grid frequency response service to the NGET specification. 
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The BESS model used is verified against experimental operation of the real WESS described 

in Chapter 2. Fig. 2.28 presents the EFR control scheme implemented in EFR-A1, where the 

inputs are real-time grid frequency (f) and battery SOC, and the output is the required EFR 

power. 

 

Fig. 2.28 EFR control scheme implemented in BESS model. 

Table 2.16 State selection based on input frequency (Fig. 2.28, Block 1) 

Condition State 

if (f ≤ A) 0 

if (A < f ≤ B) 1 

if (B < f ≤ C) 2 

if (C < f ≤ D) 3 

if (D < f ≤ E) 4 

if (E < f ≤ F) 5 

if (f > F) 6 

The algorithm operates sequentially, where at each step time, a set of power decisions are taken. 

The algorithm starts by detecting the position of the measured grid frequency with respect to 

the zones bounded by vertical lines ‘A’ to ‘F’ in Fig. 2.26. This is achieved by the ‘State 

Assignment’ block (labelled ‘1’) in Fig. 2.28, where the state is re-configured according to the 

conditions set in Table 2.16. The next block in the sequence calculates the required EFR power 

(in terms of percentage capacity) as a function of available SOC and modifies the state of the 

machine. The power equations with their triggering conditions are presented in Table 2.17. 

Note that there are three sets of power equations for when the states equal ‘2’, ‘3’ and ‘4’. 

These equations refer to the upper, lower and central EFR reference lines, as seen Fig. 2.26, 
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and their selection is based on the available SOC at a given time. In the 2 MW BESS model, 

the frequency and power bounds are calculated as a function of the limits denoted in Fig. 2.26, 

with their values declared in Table 2.13. The power output is restricted to ±180 kW (i.e. 9% of 

2 MW) within the DB and both services include an upper, base and lower power line denoted 

U, Z and L, respectively. Block 2 in Fig. 2.28 selects the required power line with the decision 

being based on the measured SOC. For example, if the current SOC is below the desired SOC 

range, the demanded power is calculated using the equations derived for the upper line (U). 

This has the effect of either importing energy to charge the battery or minimising the exported 

energy to maintain a desired SOC range. In Block 2 in Fig. 2.28, an hysteresis SOC control is 

also implemented (Table 2.18) when the states equal ‘7’, ‘9’, ‘11’ for the control of SOC lower 

limit (SOClow) and ‘8’, ‘10’, ‘12’ for SOC upper limit control (SOCup). 

Table 2.17 EFR power calculation with battery SOC management (Fig. 2.28, Block 2) 

Condition EFR Power Setpoint 𝑷𝒔𝒆𝒕 (% Capacity) 

if (State == 0) 𝑡 

if (State == 1) [(
𝐵 − 𝑓

𝐵 − 𝐴
) 𝑥(𝑡 − 𝑢)] + 𝑢 

if (State == 2) && (SOC > SOCup) 

then: State = 7 
[(

𝐶 − 𝑓

𝐶 − 𝐵
) 𝑥(𝑢 − 𝑣)] + 𝑣 

if (State == 2) && (SOC < SOClow) 

then: State = 8 
[(

𝐶 − 𝑓

𝐶 − 𝐵
) 𝑥(𝑢 − 𝑥)] + 𝑥 

if (State == 2) && (SOClow ≤ SOC ≤ SOCup) 

then: State = 13 
[(

𝐶 − 𝑓

𝐶 − 𝐵
) 𝑥(𝑢 − 𝑤)] + 𝑤 

if (State == 3) && (SOC > SOClow) 

then: State=11 
𝑣 

if (State == 3) && (SOC < SOCup) 

then: State=12 
𝑥 

if (State == 3) && (SOClow ≤ SOC ≤ SOCup) 

then: State=15 
𝑤 

if (State == 4) && (SOC > SOCup) 

then: State = 9 
[(

𝑓 − 𝐷

𝐸 − 𝐷
) 𝑥(𝑦 − 𝑣)] + 𝑣 

if (State == 4) && (SOC <  SOClow) 

then: State = 10 
[(

𝑓 − 𝐷

𝐸 − 𝐷
) 𝑥(𝑦 − 𝑥)] + 𝑥 

if (State == 4) && (SOClow ≤ SOC≤  SOCup) 

then: State = 14 
[(

𝑓 − 𝐷

𝐸 − 𝐷
) 𝑥(𝑦 − 𝑤)] + 𝑤 

if (State == 5) [(
𝑓 − 𝐸

𝐹 − 𝐸
) 𝑥(𝑧 − 𝑦)] + 𝑦 

if (State == 6) 𝑧 
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Table 2.18 Hysteresis control of battery SOC upper and lower limit (Fig. 2.28, Block 2) 

Condition Hysteresis for SOC 

if (State == 7) OR (State == 9) OR (State ==11) SOCup = SOCup - 2 

if (State == 8) OR (State == 10) OR (State ==12) SOClow = SOClow + 2 

Table 2.19 EFR power zone selection (Fig. 2.28, Block 3) 

Condition Zone 

if (State == 15) OR 

((State == 11) AND (error ≤ 0)) OR 

((State == 12) AND (error ≥ 0)) 

A 

if ((State == 7) AND (error ≤ 0)) OR 

((State == 8) AND (error ≥ 0)) OR 

((State == 9) AND (error ≤ 0)) OR 

((State == 10) AND (error ≥ 0)) OR 

(State == 13) OR 

(State == 14) OR 

B 

if ((State == 0) AND (error ≤ 0)) OR 

((State == 1) AND (error ≥ 0)) OR 

((State == 5) AND (error ≥ 0)) OR 

((State == 6) AND (error ≤ 0)) OR 

((State == 8) AND (error < 0)) OR 

((State == 9) AND (error > 0)) OR 

((State == 11) AND (error > 0)) AND (f ≥ 50 Hz) OR 

((State == 12) AND (error < 0)) AND (f ≤ 50 Hz) 

C 

if ((State == 0) AND (error > 0)) OR 

((State == 1) AND (error > 0)) OR 

((State == 5) AND (error < 0)) OR 

((State == 6) AND (error < 0)) OR 

((State == 7) AND (error > 0)) OR 

((State == 10) AND (error < 0)) OR 

((State == 11) AND (error > 0)) AND (f < 50 Hz) OR 

((State == 12) AND (error < 0)) AND (f > 50 Hz) 

D 
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Table 2.20 Output power estimation with ramp rate up and low limiter (Fig. 2.28, Block 4) 

Condition (Ramp Limiter) Power Out (Pout) (kW) Zone 

If (Zone == A) AND (-error > 20) AND 

(Pset > 0) 
Pout = Pmeas + 20 

A 
If (Zone == A) AND (-error < -20) AND (Pset 

< 0) 
Pout = Pmeas - 20 

If (Zone == A) AND (-error <= 20) AND (-

error >= -20) 
Pout = Pset 

If (Zone == 2) AND 

(-error > RampU) AND (Pset >= 0) 
Pout = Pmeas + RampU 

B 

If (Zone == 2) AND 

(-error > RampU) AND (Pset <= 0) 
Pout = Pmeas + RampU 

If (Zone == 2) AND 

(-error < RampL) AND (Pset >= 0) 
Pout = Pmeas + RampL 

If (Zone == 2) AND 

(-error < RampL) AND (Pset <= 0) 
Pout = Pmeas + RampL 

If (Zone == 2) AND 

(-error <= RampU) AND 

(-error >= RampL) 

Pout = Pset 

If (Zone == 3) Pout = Pset C 

If (Zone == 4) AND (-error > 200) AND 

(Pset >= 0) 
Pout = Pmeas + 200 

D 
If (Zone == 4) AND (-error < -200) AND 

(Pset <= 0) 
Pout = Pmeas - 200 

If (Zone == 4) AND (-error <= 200) AND (-

error >= -200) 
Pout = Pset 

If (SOC >= 100 AND Pout < 0) OR 

(SOC <= 0 AND Pout > 0) 
Pout = 0  

‘Zone Assignment’ (Block 3) in Fig. 2.28 is responsible for identifying the current operating 

zone (refer to Fig. 2.27) for the calculation of the power-output levels. The identified zones 

with their corresponding conditions are outlined in Table 2.19. Finally, in ‘Ramp-rate Limiter’ 

(Block 4) using the given ramp-rate limits in Table 2.14 and Table 2.15, the change in power 

output per time step (1 second) for each zone is determined  as described in Table 2.20, where 

P is power setpoint, Pmeas is the process variable (called measured power here) and Pout is 

output power. 
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2.4.3 Advanced EFR Control Algorithms (EFR-A2 and EFR-A3) Design 

The EFR specification defines frequency outside DB for longer than 15 minutes as an extended 

event, whereby after the 15 minutes, it is optional to deliver power for up to 30 minutes post 

the grid frequency returning to DB. In order to increase the availability of the BESS with EFR-

A1, by avoiding SOC limits, an extended 15-minute frequency event control algorithm is 

implemented in the advanced EFR control algorithms, called EFR-A2 and EFR-A3, as given 

in Fig. 2.29. EFR-A2 introduces a timed control block, which measures the length of time that 

the grid frequency is continuously outside of the DB.  
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Fig. 2.29 Flow diagram of the advanced EFR control algorithm EFR-A2 and EFR-A3. 

If this block measures a value higher than 15 minutes, then the BESS’s output power is set to 

zero. The BESS remains in this state until the system frequency returns within DB, at which 

point a second timer starts timing for 30 minutes and the output power stays at zero until the 

timer expires, at which point, the EFR control is reset back to operating as EFR-A1. EFR-A3 

allows the BESS to manage its SOC between its upper (SOCup) and lower limits (SOClow) 

during the 30-minute rest period by charging and discharging the battery within the ±9% power 

limits. 

2.4.4 Standard EFR Algorithm with SOC-based Proportional Control (EFR-A4) 

An EFR control algorithm having proportional control with a 2MW/1MWh BESS, named 

EFR-A4, is developed in MATLAB/Simulink to deliver a grid frequency response service to 

the NGET specification. 
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  (a) 

 

(b) 

Fig. 2.30 Standard EFR control scheme with SOC-based proportional control (EFR-A4) 
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Fig. 2.30 presents the EFR control scheme implemented in EFR-A4, where the inputs are real-

time grid frequency (f) and battery SOC, and the output is the required EFR power. 

The algorithm operates sequentially, where at each step time, a set of power decisions are taken. 

The algorithm starts by detecting the position of the measured grid frequency with respect to 

the zones bounded by vertical lines ‘A’ to ‘F’ in Fig. 2.26. This is achieved by the ‘State 

Assignment’ block (labelled ‘1’) in Fig. 2.30, where the state is re-configured according to the 

conditions set in Table 2.16. The next block in the sequence calculates the required EFR power 

(in terms of percentage capacity) as a function of available SOC and modifies the state of the 

machine. The power equations with their triggering conditions are presented in Table 2.17.  

Note that when the states equal ‘2’, ‘3’ and ‘4’, the power output equals to SOC error (SOCerr), 

and its calculation is shown in Fig. 2.30. In the 2 MW BESS model, the frequency and power 

bounds are calculated as a function of the limits denoted in Fig. 2.26, with their values declared 

in Table 2.13. The power output is restricted to ±180 kW (i.e. 9% of 2 MW) within the DB and 

both services include an upper, base and lower power line denoted U, Z and L, respectively. 

Block 2 in Fig. 2.30(a) calculates the SOC error with the decision being based on the SOC 

management shown in the given flow diagram in Fig. 2.30(b). For example, if the current SOC 

is below the desired SOC range, the SOC error is calculated extracting the lower SOC target 

band from the available SOC. This has the effect of either importing energy to charge the 

battery or minimising the exported energy to maintain a desired SOC range. In Block 2 in Fig. 

2.30(a), an hysteresis SOC control is also implemented (Table 2.18) when the states equal ‘7’, 

‘9’, ‘11’ for the control of SOC lower limit (SOClow) and ‘8’, ‘10’, ‘12’ for SOC upper limit 

control (SOCup). 

Proportional control (Block 3 in Fig. 2.30(a)) is a type of linear feedback control system where 

a correction is applied to the controlled variable which is proportional to the difference between 

the desired value and the measured value [AST10]. In this section, a SOC-based proportional 

controller is applied to the Standard EFR control algorithm (EFR-A1) described in Section 

2.4.2 in order to control the output EFR power as a proportional of battery SOC error in order 

to minimise the EFR power delivery without incurring a service penalty. In the proposed 

proportional control, the controller output is proportional to the error signal (SOC error), which 

is the difference between the desired value (available SOC) and the process variable (target 

SOC), as shown in Block 2 in Fig. 2.30(a). This means that the output of the proportional 

control is the multiplication product of the SOC error and the proportional gain (Kp). The 
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algorithm then calculates the NGET required EFR response envelope in the Power Block, and 

sequentially the Saturation Dynamic Block limits the input signal to dynamic upper and lower 

saturation values, producing a power output signal that is the value of the input signal bounded 

to the saturation values from the input ports up (EFR power line U) and low (EFR power line 

L), as presented in Fig. 2.30. The aim of the use of the proportional controller in the basic EFR 

control scheme is to partially reduce the EFR power delivery and therefore battery C-rate 

without hitting a reduction in SPM in order to reduce the battery degradation rate; this will also 

help to prolong battery lifetime. The proportional control can also be implemented in the 

Advanced EFR control algorithms (EFR-A2 and EFR-A3). Simulation results of the EFR-A4 

will be presented in Section 2.4.8 in detail. 

‘Zone Assignment’ (Block 4) in Fig. 2.30(a) is responsible for identifying the current operating 

zone (refer to Fig. 2.27) for the calculation of the power-output levels. The identified zones 

with their corresponding conditions are outlined in Table 2.19. Finally, in ‘Ramp-rate Limiter’ 

(Block 5) using the given ramp-rate limits in Table 2.14 and Table 2.15, the change in power 

output per time step (1 second) for each zone is determined  as described in Table 2.20, where 

P is power setpoint, Pmeas is the process variable (called measured power here) and Pout is 

output power. 

 

2.4.5 Simulation Results of the Standard EFR Control Algorithm (EFR-A1) 

Using a real-time frequency data set obtained from NGET [ONL18k], the developed four EFR 

control algorithms are simulated in MATLAB/Simulink. The simulation results presented in 

this section are all based on the WESS model with Table 2.21 showing the parameters used. In 

order to show the performance of the reported EFR algorithm in Section 2.4.2, the real grid 

frequency data for the 21st of October of 2015 is employed herein, as this particular day is 

known to have a large period of under frequency. Fig. 2.31 and Fig. 2.33 show the simulation 

results of EFR-A1 for a ‘Service-1’ and ‘Service-2’ EFR with a target SOC band of 45-55%, 

respectively. On the frequency plot, the DB for Service-1 (±0.05) and Service-2 (±0.015 Hz) 

is shown by the green lines. 

As seen from Fig. 2.31, however the standard EFR-A1 is simulated for an under frequency day 

(21st October 2015), the minimum battery SOC reaches to 33.08% (Fig. 2.31) comparing to 0% 

(Fig. 2.33) with EFR Service-2 due to the wide DB of ±0.05Hz used in Service-1 and the EFR 
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power stays within the NGET required EFR zones of ‘A’ and ‘B’ in Fig. 2.27. As shown in 

Fig. 2.31 and Fig. 2.32, since the SOC does not reach to 0% at any time in 21st Oct 2015, BESS 

is always available for delivering EFR power to the grid; hence this causes no penalty in the 

SPM in the EFR Service.  

Table 2.21 System parameters used in EFR control algorithms [ONL16a] 

Parameter Value 

Nominal frequency  

Low/high DB 

Max/min EFR power limit 

Battery rated power/capacity 

Battery initial SOC (SOCinit) 

SOC band (SOClow- SOCup) 

Inverter efficiency (𝜂inv) 

Battery charge/discharge eff (𝜂C/𝜂D) 

50 Hz 

±0.015 Hz (Service-2) 

±2 MW 

2 MW/1 MWh 

50% 

45-55% 

97% 

94% 

Analysing the simulation results of the EFR-A1 with Service-2 (Fig. 2.33), it is clear that the 

SOC sharply drops, reaching 0% at 11:00, and stays there for ~30mins due to the grid frequency 

demands at that time. As the frequency stabilises, the EFR algorithm charges the battery when 

it is allowed and returns the SOC to within the specified band of 45-55%. The power response 

versus frequency plot of EFR-A1 with Service-2 for 21st October 2015 is shown in Fig. 2.34. 

The red lines represent the upper, reference and lower EFR power lines. It can be seen that the 

EFR power (blue circles) does not remain within the required zones of ‘A’ and ‘B’ (Fig. 2.34). 

As outlined in Fig. 2.33 and Fig. 2.34, this is because of the SOC reaching 0% and therefore 

there is no power available for delivery to the grid. This non-conformance would cause a 

penalty in the SPM and hence it is necessary to improve the EFR control algorithm to minimise 

such occurrences. 
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Fig. 2.31 Simulation results of EFR-A1 with Service-1 for 21st Oct 2015 frequency. 

 

Fig. 2.32 EFR power vs frequency response of EFR-A1 (Service-1) for 21st Oct 2015. 
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Fig. 2.33 Simulation results of EFR-A1 with Service-2 for 21st Oct 2015 frequency. 

 

Fig. 2.34 EFR power vs frequency response of EFR-A1 (Service-2) for 21st Oct 2015. 
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2.4.6 Simulation Results of the Advanced EFR Control Algorithm (EFR-A2) 

The advanced EFR control algorithm (EFR-A2) described in Section 2.4.3 introduces the 

extended grid frequency event timer and cuts the EFR power output after 15 minutes (Fig. 

2.29). Fig. 2.35 shows the simulation results of EFR-A2 for EFR Service-2 and the same 

frequency data (21st October 2015) is injected into the algorithm capturing 13 15-minute 

extended frequency events as given in the last plot of Fig. 2.35. The simulation results (Fig. 

2.35) demonstrate that the minimum battery SOC reaches 30.7% compared to 0% (Fig. 2.33) 

in EFR-A1. Therefore, the BESS is 100% available for providing power according to the EFR 

specification as seen in Fig. 2.36. 

 

Fig. 2.35 Simulation results of EFR-A2 with Service-2 for 21st Oct 2015 frequency. 
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Fig. 2.36 EFR power vs frequency response of EFR-A2 (Service-2) for 21st Oct 2015. 

2.4.7 Simulation Results of the Advanced EFR Control Algorithm (EFR-A3) 

The advanced EFR control algorithm (EFR-A3) described in Section 2.4.3 allows for the 

charge/discharge of the battery during the 30-minute rest period as seen in Fig. 2.29. The 

algorithm is simulated with the 21st October 2015 grid frequency data as shown in Fig. 2.37. 

The simulation results demonstrate that again, the BESS provides 100% availability as similar 

with EFR-A2 (see Fig. 2.36), however, the lowest SOC achieved with EFR-A3 is now 32.3% 

(see Fig. 2.37 and Fig. 2.38), compared to 30.7% (see Fig. 2.35 and Fig. 2.36) of EFR-A2. This 

is a substantial achievement in terms of maximising the utilisation of the BESS stored energy. 
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Fig. 2.37 Simulation results of EFR-A3 with Service-2 for 21st Oct 2015 frequency. 

 

Fig. 2.38 EFR power vs frequency response of EFR-A3 (Service-2) for 21st Oct 2015. 
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2.4.8 Simulation Results of the Standard EFR Control Algorithm with Proportional 

Control (EFR-A4) 

The algorithm EFR-A4 includes a SOC based proportional control implemented in the standard 

EFR-A1 to reduce the amount of EFR power delivered to the grid without hitting a reduction 

in the SPM.  

In order to compare the performance of the reported EFR-A1 described in Section 2.4.2 and 

the EFR-A4 described in Section 2.4.4, the real frequency data for the 1st January 2018 is used 

herein.  Fig. 2.39 and Fig. 2.42 show the simulations results of the EFR-A1 and EFR-A4 for a 

‘Service-2’ EFR with the Kp values of 𝐾𝑝 = 1000000  and 𝐾𝑝 = 10000  set in the 

proportional controller in EFR-A4, respectively. It is clear from the simulation results (Fig. 

2.39 and Fig. 2.42), implementing proportional controller in the EFR-A4 the rate of EFR power 

delivery is relatively reduced based on the SOC error, without causing a BESS availability 

penalty in EFR service operation (Fig. 2.41 and Fig. 2.43), as similar in EFR-A1 (Fig. 2.40). 

The higher Kp value set in EFR-A4, the high EFR power delivery, as seen from the simulation 

results (Fig. 2.39 and Fig. 2.42). This is an effective way of reducing the peak C-rates because 

there is no requirement to have full power changes as seen in EFR-A1 (Fig. 2.39); additionally, 

a high speed of change to return to the SOC band (45-55%) is also not essential. Operating the 

BESS over long periods of time with lower C-rates will increase the life-time of the system 

and as shown, with no performance penalty on EFR service operation (Fig. 2.41 and Fig. 2.43). 

This will be discussed further in Chapter 5. As seen from Table 2.23 and Table 2.24 comparing 

the output energy findings of the EFR-A1 and EFR-A4 with setting the required Kp gain values, 

it can be seen that the amount of charge/discharge energy or import/export energy output can 

be reduced by implementing the proportional controller into the standard EFR-A1; however 

this may cause additional efficiency losses on the BESS system (Table 2.23 and Table 2.24). 

Fig. 2.44, Fig. 2.46 and Fig. 2.48 show the simulation results of the EFR-A1 and EFR-A4 with 

the proportional gain set value of 𝐾𝑝 = 10000 and 𝐾𝑝 = 1000000 for the whole day of 1st 

January 2018, respectively. It is clear that the EFR-A4 having different proportional gain values 

set in the proportional controller does not cause a reduction in the BESS availability (Fig. 2.47 

and Fig. 2.49) as similar as in EFR-A1 (Fig. 2.45); however it may cause energy losses on the 

system as shown in Table 2.24. It is observed that the lower Kp set in the proportional controller, 

the lower EFR output power (see Table 2.24). 
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Fig. 2.39 Comparison of simulation results of EFR-A1 and EFR-A4 with 𝐾𝑝 =  1000000 for 

1st January 2018 (first 3 hours) frequency data. 

 

Fig. 2.40 EFR power versus frequency response of EFR-A1 for 1st January 2018 (first 3 

hours) frequency data. 



134 

 

 

Fig. 2.41 EFR power versus frequency response of EFR-A4 with 𝐾𝑝 =  1000000 for 1st 

January 2018 (first 3 hours) frequency data. 

 

Fig. 2.42 Comparison of simulation results of EFR-A1 and EFR-A4 with 𝐾𝑝 =  10000 for 

1st January 2018 (first 3 hours) frequency data. 
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Fig. 2.43 EFR power versus frequency response of EFR-A4 with 𝐾𝑝 =  10000 for 1st 

January 2018 (first 3 hours) frequency data. 

 

Fig. 2.44 Simulation results of EFR-A1 for 1st January 2018 frequency data. 
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Fig. 2.45 EFR power versus frequency response of EFR-A1 for 1st January 2018. 

 

Fig. 2.46 Simulation results of EFR-A4 with 𝐾𝑝 =  10000 for 1st January 2018. 
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Fig. 2.47 EFR power versus frequency response of EFR-A4 with 𝐾𝑝 =  10000 for 1st 

January 2018 frequency data. 

 

Fig. 2.48 Simulation results of EFR-A4 with 𝐾𝑝 =  1000000 for 1st January 2018. 
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Fig. 2.49 EFR power versus frequency response of EFR-A4 with 𝐾𝑝 =  1000000 for 1st 

January 2018 frequency data. 

2.4.9 Analyses of Simulation Results of the all EFR Control Algorithms 

In all EFR control algorithms (EFR-A1, EFR-A2, EFR-A3, EFR-A4) presented in this thesis, 

it is possible to define two aims for power flow in/out of the battery; the first is defined as 

charging and discharging the battery i.e. power is requested in either direction for the sole 

purpose of battery SOC management; the second is import and export which defines when the 

BESS is performing a mandatory response to a grid frequency event. The energy calculation 

of the BESS is given in (2.5) and (2.6) [CHO17]. 

Discharge/Export:    𝑃 > 0 →
𝑑𝐸

𝑑𝑡
= −

𝑃

𝜂𝐷
 (2.5) 

Charge/Import:    𝑃 < 0 →
𝑑𝐸

𝑑𝑡
= −𝑃 ∙ 𝜂𝐶 (2.6) 

where P, E, 𝜂𝐷 and 𝜂𝐶  represent the power exchanges by the BESS, present stored energy, and 

battery discharging and charging efficiencies, respectively. 
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The energy management findings of the standard (EFR-A1) and advanced control (EFR-A2 

and EFR-A3) are summarised in Table 2.22. It is clear that, by implementing the extended 15-

minute grid frequency event control in EFR-A2 and EFR-A3, the availability of the battery is 

increased from 98% to 100% (SPM). As desired, the battery’s SOC has been shown in the 

simulation results to converge on the selected band of 45-55% in all of the EFR algorithms. 

Table 2.22 Energy output findings of the three EFR control algorithms for 21st October 2015. 

Initial SOC=50% 

Algorithm Min 

SOC 

(%) 

Max 

SOC 

(%) 

SPM Battery 

Charging 

Energy 

(kWh) 

Battery 

Discharging 

Energy 

(kWh) 

Battery 

Import 

Energy 

(kWh) 

Battery 

Export 

Energy 

(kWh) 

Total 

Energy 

(kWh) 

EFR-A1 0 57.96 0.98 160.6 83.33 1744 1470 3458 

EFR-A2 30.67 57.8 1 63.48 71.2 1225 950.5 2310 

EFR-A3 32.3 57.93 1 136.2 102 1185 957 2381 

 

Table 2.23 Energy output findings of EFR control algorithms for 1st January 2018 (first 3 hours) 

frequency data. Initial SOC=20% 

Control 

Algorithm 
Kp 

Charging 

(kWh) 

Discharging 

(kWh) 

Import 

(kWh) 

Export 

(kWh) 

Total Energy 

(kWh) 

EFR-A1 - 164.2 0 209.4 72.44 446.04 

EFR-A2 - 144.9 0 191.9 35.8 372.6 

EFR-A3 - 167.1 0 179.2 40.78 387.08 

   EFR-A4 

2000 42.8 0 70.33 40.95 154.08 

5000 84.77 0 113.1 57.09 254.96 

10000 119.9 0 142.7 40.73 303.33 

50000 135.6 0 180.3 40.73 356.63 

100000 138.3 0 181.4 40.73 360.43 

1000000 139.7 0 183.2 40.73 363.63 
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In EFR-A3, the SOC converges faster towards the desired band and it is predicted that this will 

minimise SOC excursions towards the limits. However, compared to EFR-A2, this is at the 

expense of using more energy, solely for SOC management (charge/discharge) within the DB. 

This is important as energy used outside of the DB (import/export) can be classified as 

Applicable Balancing Services Volume (ABSVD) and it is possible for this to be excluded by 

the energy storage provider i.e. zero cost. It should be noted that the difference in import/export 

energy observed between EFR-A2 and EFR-A3 is because of the variation in SOC and so the 

BESS will not follow the same selection of EFR envelopes. 

Table 2.24 Energy output findings of EFR-A1 and EFR-A4 for whole 1st January 2018 

frequency data. Initial SOC=20% 

Control 

Algorithm 
Kp 

Charging 

(kWh) 

Discharging 

(kWh) 

Import 

(kWh) 

Export 

(kWh) 

Total Energy 

(kWh) 

EFR-A1 - 354.7 147.3 1902 1423 3827 

EFR-A2 - 249.4 106.7 1373 944.7 2673.8 

EFR-A3 - 387.1 128.3 1316 979.5 2810.9 

EFR-A4 

2000 166.4 11.19 1225 705.8 2108.39 

5000 229.9 54.82 1310 779.6 2374.32 

10000 268 96.45 1338 850 2552.45 

50000 300.8 139.9 1376 936.4 2753.1 

100000 297.6 133.4 1388 953 2772 

1000000 271 125.1 1417 964.1 2777.2 

2.5 Conclusion 

In this chapter, firstly, a dynamic (DFFR) and a static high (SFFRhigh) and low (SFFRlow) firm 

frequency response control algorithm based on a model of a 1MW/1MWh BESS has been 

developed to meet the NGET published service requirements. When there is a grid frequency 

deviation, the BESS supplies a dynamic power according to a specified DFFR envelope. SFFR 

delivers a non-dynamic service where an agreed amount of power is delivered if the grid frequency 

reaches a certain trigger point of 49.7Hz (SFFRlow) or 50.3Hz (SFFRhigh). Simulation results of 

the proposed FFR algorithms were carried out using NGET frequency data for 11 November 2015 
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(3-hour period), which contains both lower and under frequency events. The results based on 

an experimentally validated model by the WESS demonstrated that the proposed DFFR control 

algorithm provides 0.5% and 3% of MAPE SOC and power error for 12 Oct 2016, respectively.  

Secondly, the NGET published a Pre-EFR specification in 2015 before finalising the EFR 

service requirements. Therefore, using the pre-published EFR specifications, a Pre-EFR 

frequency response control algorithm based on a model of a 2MW/1MWh BESS has been 

developed. When there is a frequency change on the power grid, the BESS provides a power 

response according to the specified Pre-EFR frequency response envelope. Simulations of the 

control algorithms were carried out using NGET real frequency data for February 2014, which 

is a critical winter month in terms of under/lower frequency events. It was shown that, the 

proposed model without any control strategy cannot meet the NGET required battery 

import/export SPM rate of greater than 95% for each allowable DB. In order to increase battery 

SPM, hence availability, a new battery SOC management strategy and a battery 

charge/discharge management method has been implemented in the developed frequency 

response control algorithm. According to the proposed strategies, the best SOC band target is 

50-60% with 60kW and 350kW battery charge/discharge powers for a DB range of 0.1Hz and 

0.05Hz, respectively. The simulation findings demonstrate that the proposed control algorithms 

implemented in the BESS model meet the UK’s NGET frequency response specification and 

successfully manage the SOC by converging towards a defined target range of 50-60% and 

also achieve battery SPM requirement (>95), causing no penalties for the battery provider. 

After the Pre-EFR specifications published in 2015, the NGET prepared a final EFR 

specification to facilitate a tender competition between potential energy storage providers in 

late 2016. Using the final NGET required EFR specifications, four EFR control algorithms, 

based on the model of a 2 MW/ 1 MWh BESS, have been developed to respond to changes in 

the grid’s frequency with a proportionate active power output. Simulation results demonstrated 

that all four algorithms met the UK’s NGET EFR requirements, whilst managing the battery’s 

SOC by converging towards a desired band of 45-55%. It was shown that, for the historical 

dataset considered, the standard EFR algorithm, EFR-A1, would not be able to manage the 

extended 15-minute grid frequency events, thus, causing the battery’s SOC to drop to 0%, which 

would incur a service performance penalty charge. The advanced control algorithm, EFR-A2, 

has demonstrated that in order to increase the availability of the BESS, it is necessary to stop 

any EFR activity after an extended 15-minute frequency event, as allowed by the EFR 
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specifications. The third control algorithm, EFR-A3, was shown to have a better performance 

in terms of SOC management by using the 30-minute rest periods in between frequency events 

as a window of opportunity to manage the SOC towards the desired band of 45-55%. However, 

there was a small increase in the net energy consumed. The results were validated 

experimentally on a 2MW / 1MWh BESS with some small variances accounted for. The last 

control algorithm, EFR-A4, extended by implementing a proportional controller into the standard 

EFR control design in order to reduce the output power delivery based on the proportion to the 

difference in battery SOC (SOC error) without hitting a reduction in BESS availability; this 

helps to reduce battery degradation rate through lower peak C-rates and hence extend its 

lifetime. The comparison of experimental and model findings indicates that the proposed EFR 

control algorithm (EFR-A1) provides <4.5% and ~0.3% of MAPE power and battery SOC for 

the 12-hour period in 21st Oct 2015. 
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3 BESS Control for Grid Scale Energy Storage Applications through 

Frequency Response Services 

This chapter investigates taking advantage of a combination of UK grid frequency response 

services, described in Chapter 3 of this thesis, with triad avoidance and energy arbitrage 

applications. This chapter first examines using the BESS in order to maximize triad avoidance 

benefit revenues by layering UK grid frequency response services. This chapter demonstrates 

that triad avoidance is always profitable at certain times of triad days during winter season. In 

the second section of this chapter, using historical UK electricity prices, a new balancing 

service scheduling approach has also been developed to maximize energy arbitrage revenue 

(AR) by layering different types of grid balancing services throughout the day. Simulation 

results show that the proposed algorithm delivers both dynamic and non-dynamic FFR services 

and also EFR service to NGET specifications whilst generating AR as well as service 

availability payments in the balancing market. A comparative study is also presented to 

compare the yearly AR obtained from the work presented in this chapter and a previous 

reference study.  

3.1 Introduction 

Global electricity demand is forecasted to increase by 3.1% annually from 2010 to 2050 

[GUN17], [WAN16]. The UK electricity consumption in 2015 was 303 TWh [ONL18a]. 

BESSs can provide a wide spectrum of applications ranging from short term power quality 

support (e.g. frequency regulation, voltage support) to long term energy management (e.g. 

energy arbitrage, peak shaving, Triad Avoidance). The capital cost of battery storage 

technologies is continuing to fall, thus prompting a new study of its applications and economic 

benefits [MER09]. This chapter investigates a grid-tied BESS for grid scale applications; 

including Triad Avoidance (Section 3.2) and energy arbitrage (Section 3.3).  

The Triad charging system is an effective way that large industrial electricity users can reduce 

their energy charges by reducing electricity consumption over peak periods. It also provides an 

environmentally-friendly solution for fulfilling peak power demands. Meeting peak demands, 

especially during the winter months, is one of the major challenges facing the NG as system 

operator [ONL18u]. A key method of managing power demand is the use of the Triad charging 
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system, a tool that has been used since the early 1990s and which is aimed especially at large 

industrial and commercial electricity users such as railways and steelworks. More detail about 

Triad Avoidance is given in the Section 3.2 of this chapter. 

This thesis does not cover a Triad prediction method, but according to Cesena et al. [CES15], 

Triads can be predicted and these predictions, known as ‘Triad warnings’, are either provided 

on a commercial basis by specialists or made in-house by electricity retailers. The reference 

study [CES15] developed an algorithm to predict Triad days. In literature, there are some more 

studies on Triad Avoidance [MUL14], [KEL10], [DIX04], [TUR03], [DIX99], [MUL16], 

[CES15], [GRE16]. Marmaras et al. [MAR17] presented a predictive model which aims to 

assist the manager of a commercial building to reduce electricity bills by forecasting the Triad 

peak dates and the energy demand of the building on those dates. In the model, a stochastic 

model was developed to forecast the triad days and hours for the following year. A sensitivity 

analysis was also performed to estimate the weather impact on the electricity demand of a 

building. A predicting model was finally performed using Artificial Neutral Networks (ANN) 

to predict the energy demand of the building at the most probable triad day and half-hour. The 

model was evaluated using real building energy consumption and weather data from 

commercial buildings at a science park. It was demonstrated that the developed model 

successfully forecasted the dates of the two out of three Triad peaks of 2014-2015. The times 

of all three Triad peak were also forecasted successfully. It was shown that the triad peaks tend 

to occur between 16:30 and 18:30. The building managers can use this predicted information 

and adjust their energy demand profiles to reduce their cost with the power demand of the 

building during a real Triad peak being forecasted with 97.6% accuracy. It was demonstrated 

that the weather information plays an essential role in the accuracy of the building demand 

forecast [MAR17]. 

Mullen et al. [MUL14] developed a model of the cost of distribution network use-of-service 

charges (DUoS), transmission charges (Triad) and energy charges for half-hourly metered 

(HHM) customers. The model is applied to a case study of a building at Newcastle University 

in which the use of standby generation for Triad avoidance is compared against the existing 

costs. Considering its diesel fuel consumption cost, the net profit of using standby generation 

for triad avoidance was also presented in the study.  

The potential for electric vehicles (EVs) to generate income from energy provided to a 

commercial building together with revenue generated from additional ancillary services in the 
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UK such as triad avoidance was presented in [GOU17]. The paper evaluates the economic 

viability of electric vehicles used for vehicle-to-grid (V2G) service for triad demand reduction. 

Three V2G scenarios are evaluated using half-hourly electricity demand for a commercial 

building. The results demonstrated that great amount of income can be generated from triad 

avoidance; and the analysis demonstrates that net income generation is strongly dependent to 

battery degradation costs associated with V2G cycling [GOU17].  

[PIM17] deals with the potential of ES to reduce the electricity bills of large enterprises, 

focusing on the University of Lancaster (UoL) as a case study. Through the analysis of the UoL 

recent generation and demand data (2013-14 and 2015-16), and present and future charges, it 

was demonstrated that in 2015 the UoL expected energy storage to provide annual savings of 

£27 per kWh of storage capacity by reducing network charges. 

First part of this chapter (section 4.2) deals with take advantage of a combination of EFR and 

FFR service with triad avoidance. Therefore, a new effective triad strategy layering grid 

frequency response service is developed to increase battery storage availability in order to 

maximize triad revenues. In this chapter, a Triad Avoidance approach through EFR service is 

developed using the advanced EFR control algorithms, EFR-A2 and EFR-A3, described in 

Chapter 3.  It was clearly explained in Chapter 3 that, the EFR-A2 addresses the EFR service 

design with an extended 15-minute frequency event control, in order to optimise the use of the 

available stored energy; and the EFR-A3 also extends the EFR control algorithm to include a 

dynamic SOC target to maximise the energy stored on real/predicted triad days. This chapter 

introduces a strategy to generate additional revenues from ancillary services such as triad 

avoidance only available during the winter season. The performance of the EFR service 

delivery through Triad Avoidance Benefit (TAB) is quantified. All in all, this chapter considers 

layering the new advanced UK grid frequency balancing service, EFR, with triad avoidance in 

order to maximise the system’s availability and profitability. The chapter 3 presented the EFR 

control methodologies with their simulation results; and this chapter extends to show how this 

can be used to maximise profits from other services such as triad avoidance. 

The other part of this chapter (Section 3.3) investigates a grid-tied BESS operating in energy 

arbitrage application through the grid frequency response services. The electricity price tends 

to follow a daily pattern of a low price during off-peak night time hours and a high price during 

on-peak day-time hours. If the BESS stores energy at off-peak times with the lower price and 

then resells at on-peak times at a higher price, it can make profit from the price difference, this 
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is referred to as arbitrage [GUN17]. The emergence of wholesale electricity markets in the UK, 

together with significant increases in prices, and price volatility of electricity have raised the 

interest in potential economic opportunities for electrical energy storage [SIO09]. One of the 

main profit streams for ES is temporal arbitrage opportunity obtained by price volatility in the 

wholesale market. Energy arbitrage refers to the participation of ES in the day-ahead energy 

market; and it involves utilizing ES to benefit from electricity price fluctuations by charging 

during low-price periods, discharging during high-price periods, and profiting from the price 

differential [TEN17], [DUR14]. ES can also generate revenue through the delivery of ancillary 

services such as grid frequency regulation [XIN17].  

In literature, there are many papers relating to the energy arbitrage application [AMP17], 

[BAR12], [GIL13], [KHA15], [DUN16a], [DUN16b]. Sioshansi et al. [SIO09] presented one 

of the leading studies on energy arbitrage that analyses four key aspects of the economic value 

of electricity storage in the Pennsylvania-New Jersey-Maryland (PJM) markets: -The basic 

relationship among storage energy capacity, storage efficiency and the arbitrage value of ES; -

The accuracy of theoretical ES dispatch and the value of arbitrage using perfect foresight of 

future electricity prices; -The temporal and regional variation in the value of energy arbitrage, 

investigating natural gas price variations, transmission constraints and fuel mixes on energy 

storage economics. The impact of larger storage devices, investigating how the use of ES can 

decrease on-peak hourly prices and increase off-peak hourly prices diminishing the value of 

arbitrage, while producing welfare effects for generators and consumers.  

In [ANW16], a Building-to-Grid (B2G) model was developed to evaluate energy arbitrage 

value of smart thermal ESS devices in residential buildings across Ireland. The paper [ORT14] 

presents an energy arbitrage scheduling algorithm for EVs under a real time pricing scheme 

with uncertainty and evaluates also the battery degradation. The authors in [ADE16] investigate 

arbitrage operation of an ES facility in Alberta electricity market. 

The reference study [WAN17] deals with the optimal scheduling of ES in a distribution 

network with a substantial PV penetration. The method used considers simultaneously the 

provision of regulation service, energy arbitrage, peak shaving and the minimisation of 

deviations from the forecast. Because part of the ES capacity is allocated for grid regulation 

services on the day ahead, only the remaining capacity can be used for peak shaving and other 

uses. 
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Ampatzis et al. [AMP17] investigate the application of robust optimisation for two functions 

of ES devices, including energy arbitrage and provision of flexibility. Both functions are 

examined against future income streams for batteries with their implementation being essential 

to their integration in the smart grid. The authors also explore the effectiveness of the robust 

optimisation model in summer and winter seasons, corresponding to different dynamic 

electricity retail price characteristics. In [BAR12], a generic heuristic optimisation of ESS was 

developed for provision of energy arbitrage on a spot market, this took the form of an ESS 

schedule based on a price signal and the characteristics of the ESS device. [GIL13] examines 

the optimal use of an ESS tied to wind farms in a curtailment scheme. The ESS is able to access 

two revenue streams, including reduction of generation curtailment and arbitrage on a spot 

market. The study extends the method developed in [BAR12] in order to achieve the optimal 

combination of these two modes and hence maximise the revenue to an ESS unit. The authors 

in [LUN09], [KHA15] provided different optimisation methods and the importance of 

electricity price forecast accuracy, however similarly, were based on historic market prices. 

[DUN16a] stated that more acute and more frequent price differentials would generate 

additional opportunities for arbitrage that could become a more profitable revenue stream in 

the future. Grunewald et al. [GRU11] presented an important analysis of this phenomenon for 

future UK systems, providing that 32 GW of wind capacity would enable the gross value of 

storage to include its capital costs and investment could be commercially viable through price 

arbitrage alone. [DUN16b] investigates the sensitivity of arbitrage revenue to changes in 

carbon price, gas price, capacity margin and wind power capacity in the UK market and the 

impact of these variables on the preferred ES device characteristics. [DEN09] presents a basic 

financial performance metric for the energy arbitrage-only scenario; however it does not cover 

the determination of the optimal storage value that would require co-optimization with grid 

ancillary services and other potential values. [ORT14] presents a scheduling algorithm for EVs 

under a real time electricity pricing scheme with uncertainty. The study considers the battery 

degradation cost not only when used to deliver services to the system but also in terms of the 

EV utilisation for mobility. It was demonstrated that the scheduling of the V2G services is 

sensitive to the price uncertainty and to the degradation costs derived from energy arbitrage. 

In comparison with those previous studies, the focus of this chapter is related to not only energy 

arbitrage, but also the scheduling of grid balancing services such as frequency response for 

additional benefit. Chapter 3 of this thesis presented a DFFR control algorithm that enables 

BESSs to deliver dynamic power in response to deviation in the grid frequency. A SFFRhigh 
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and SFFRlow static frequency response control algorithm is demonstrated to deliver a non-

dynamic power if the grid frequency reaches a certain high and low grid frequency. In this 

chapter, by using the historical electricity price profiles, a new grid balancing service 

scheduling method is developed to achieve maximum energy AR that can be generated from 

the grid balancing services by layering EFR, DFFR, SFFRhigh and SFFRlow throughout the 

day. The proposed approach is not only providing AR but also generating further income 

through balancing service availability payments (SAPs); this maximizes the system’s 

profitability and availability. In this chapter, the UK daily electricity price pattern has been 

forecasted by observing the real electricity price of several week/weekend days and also their 

grid frequency profiles, and then considering this pattern the service scheduling method has 

been improved with 18 different energy arbitrage scenarios by analysing various 

week/weekend days of each season of a year; this provides a robust and reliable sensitivity 

analysis of service layering technique for maximizing energy AR. This chapter also 

demonstrates that arbitrage strategies can be forecasted that do not incur losses whilst 

maximising profits in favourable seasons. 

3.2 Triad Avoidance  

In the UK, the “Triad” refers to the three half-hours settlement periods with the highest system 

demand between the months of November and February, separated by at least ten clear days. 

The timing of these peaks is typically between 16:00 to 18:00. These three periods are not 

known in advance and therefore are determined from the measured data analysed in March of 

every year. HHM electricity customers in the UK pay charges proportional to their 

consumption during the Triad; this is called the Transmission Network Use of Service 

(TNUoS). The HHM customers can minimise their TNUoS charges by reducing their demand 

during Triad periods. Many commercial customers have an ES device or back-up generators to 

ensure the maintenance of critical supplies in case of a failure that can also be engaged to 

decrease Triad demand; this is known as ‘Triad avoidance’ [ONL18l], [MUL14], [GOU17]. It 

is also possible for generating assets such as BESSs to export power to the grid during the Triad, 

this results in a payment from the electricity supplier known as the TAB. It is a complex task 

to predict the Triad periods in advance, however, many electricity suppliers offer Triad 

prediction services based on insufficient system margin (NISM) provided by NG and other 

factors such as the weather forecast. The NG does not predict the Triads and they are not known 
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in advance. Therefore, in order to avoid charges, HHM customers should avoid all potential 

peaks; this smooths the demand across the winter [ONL18u]. 

Triad is not a commercial service, however it does represent a benefit for substantial revenues 

from ESS. The mean energy demand within the three half-hours provide an important 

proportion of the annual network use charges imposed by the NG. By delivering energy during 

the Triad periods, ESS can make revenue by either absorbing the inverse of the charge directly 

or, if metered by an energy supply company, by decreasing the cost to the energy supply 

company and gaining an agreed proportion of the saving [GRE15]. 

The Triad peaks for each year are calculated after the end of February, utilizing system demand 

data for the half-hour settlement periods between November and February. The Triad 

calculation method provided by the NG [ONL18s] is described as following (see Fig. 3.1) using 

the 2014-2015 demand diagram: 

Step 1: Calculate the half hourly system demand between November and February. 

Step 2: From the data attained in Step 1, take the highest half hourly system demand. This 

settlement period is one of the three triad periods. 

Step 3: Set aside 10 clear days on both sides of the settlement period attained in Step 2. 

Step 4: From the rest of half hourly system demand data, take the highest half hourly system 

demand. This settlement period is one of the three triad periods. 

Step 5: Set aside 10 clear days on both sides of the settlement period attained in Step 4. 

Step 6: From the rest of half hourly system demand data, take the highest half hourly system 

demand. This settlement period is one of the three triad periods. 
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Fig. 3.1 Calculating of the Triads using 2014-2015 system demand data [ONL18s]. 

The triads only affect the consumers who have HHM which measure their demand on a half-

hourly basis (normally medium/large commercial and industrial customers). If these customers 

do not consume electricity in the three Triad half-hours, they do not pay TNUoS charges for 

the whole financial year [ONL18s].  

The triads are not known in advance, however, NG issues notice of inadequate system margin 

when the system is likely to be under stress owing to high energy demand and low generation. 

Furthermore, the suppliers may provide a Triad warning service to alert when there is likely to 

be a Triad period. 

Triad management is a complex business. It does not only rely on having access to accurate 

prediction, but also on having a useful strategy to either reduce electricity consumption or 

switch to ES or on-site generation. This chapter considers scheduling a frequency support 

service (i.e EFR service in the UK) with Triad Avoidance in order to maximise the system’s 

availability and profitability. 

Step 6 

Step 5 Step 3 

Step 2 Step 4 
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3.2.1 Triad Avoidance Strategy through EFR service 

In this section, a new Triad Avoidance strategy through EFR service is developed in order to 

increase the BESS availability for maximizing Triad Avoidance benefit revenue. According to 

the proposed Triad Avoidance strategy, the EFR service control algorithm (EFR-A2 and EFR-

A3), described in Chapter 3, is delivered from midnight, whilst managing the SOC of the 

battery to within a typical range of 45-55%. The control algorithm then switches (referring as 

SW in Table 3.1) the SOC target range to 90-95% on receiving Triad warnings to maximize 

the available energy for delivery. Between 16:00 and 19:00 real power is exported using a 

weighted profile based on the statistical likelihood that a Triad would occur in each half-hourly 

period, as shown in Table 3.1. It should be noted that if the BESS discharges to the grid by 

delivering constant power (Table 3.1) during the Triad period, the SOC of the battery may 

decrease sharply and hit to 0%; hence this may reduce the service performance or cause an 

unavailability of the BESS system. Therefore, in the proposed Triad Avoidance scheme, the 

real power (Table 3.1) is discharged as a proportion of the available battery SOC at the Triad 

period in order to avoid the unavailability of the BESS. 

Table 3.1 Power profile used for Triad Avoidance 

Time (hr) 
Service used 

for Triad 

SOC band 

(%) 

Power Delivery 

(kW) 

00:00 – SW EFR 45-55 EFR 

SW – 16:00 EFR 90-95 EFR 

16:00 – 16:30 Discharge - 200 

16:30 – 17:30 Discharge - 500 

17:30 – 18:00 Discharge - 300 

18:00 – 18:30 Discharge - 200 

18:30 – 19:00 Discharge - 100 

19:00 – 00:00 EFR 45-55 EFR 
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3.2.2 Simulation Results of the Triad Avoidance Strategy  

It is known that the real Triad days of 2014-2015 are the 4th December 2014, 19th January 

2015, 2nd February 2015. In this section, both EFR-A2 and EFR-A3 are compared for TAB 

using the real-time frequency dataset for the 4th December 2014, 19th January 2015, 2nd 

February 2015 [ONL18d], [ONL18l], [ONL18r] and 20th December 2015 [ONL18l], 

[ONL18r], these represent the 2014-2015 year actual Triad days, and a high under-frequency 

day in 2015, respectively. This chapter considers that all the triad periods in 2014-15 were 

between 17:30 to 18:00. For the windows that would coincide with a Triad the earliest window 

time for 2014-2015 is 16:00. 

Table 3.2 Starting battery SOC (%) for Triad period at 16:00 

Real/ 

predicted Triad 

days in 2015 

EFR Models 

used for Triad 

Switch (SW) Mode to Triad 

Preparation at 

10am 11am 12pm 1pm 

4
th

 D
ec

 2
0
1
4
 

EFR-A2 91.42 91.5 90.65 78.27 

EFR-A3 91.48 91.98 91.48 79.13 

Recovery 0.06 0.48 0.83 0.86 

1
9

th
 J

an
 2

0
1
5
 

EFR-A2 90 84.84 72.06 64.54 

EFR-A3 92.43 86.48 73.61 66.07 

Recovery 2.43 1.64 1.55 1.53 

2
n

d
 F

eb
 2

0
1
5

 

EFR-A2 99.83 99.83 99.7 98.55 

EFR-A3 99.26 99.26 99.24 97.89 

Recovery 0.57 0.57 0.46 0.66 

2
0

th
 D

ec
 2

0
1
5

 

EFR-A2 70.08 70.08 63.99 56.57 

EFR-A3 87.17 87.08 70.39 60.56 

Recovery 17.09 17 6.4 3.99 
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The analysis in this section considers varying the time that when the system mode is changed 

to prepare for triad, meaning that the SOC target is set to 90-95%, between 10:00 and 13:00. 

The simulation results show the SOC achieved by 16:00, with a higher SOC giving a maximum 

potential revenue through TAB. From Table 3.2 it can be seen that on 20th Dec 2015, preparing 

for Triad later than 12:00 is sub-optimal as seen in Fig. 3.4 and Fig. 3.5; a lower SOC is 

achieved at 1pm compared to earlier times as seen in Table 3.2, providing the SOC of 56.57% 

in EFR-A2 and 60.56% in EFR-A3. This is because it is a particular day which has a large 

period of under-frequency events, as seen in Fig. 3.4 and Fig. 3.5. Preparing for Triad at 10:00, 

there is a considerable improvement, and it can be seen that there are further gains to be made 

using EFR-A3 (87.17%) over EFR-A2 (70.08%), as shown in Fig. 3.2 and Fig. 3.3. It is 

revealed from the simulation results, preparing for Triad at 10am is optimal for 20th Dec 2015. 

Table 3.2 shows that for the real triad day (4th Dec 2015), preparing Triad at 10am, 11am and 

12pm is ideal and at these times the significantly high SOC is achieved (>90%) compared to 

the latest time of 1pm, providing the SOC of 78.27% in EFR-A2 and 79.13% in EFR-A2 at 

10am, as seen in Fig. 3.6 and Fig. 3.7.  

As seen from Table 3.2, for the real Triad day (19th Jan 2015), preparing for Triad at 13 pm is 

sub-optimal and the lowest SOC is achieved at 1pm providing the SOC of 64.54% in EFR-A2 

and 66.07% in EFR-A3, compared to earlier times of 10 am, 11pm and 12pm. However, 

preparing for Triad at 10am, there is a significant recovery in the battery SOC, and it is revealed 

that there are further profits to be generate using EFR-A3 (92.43%) over EFR-A2 (90%), as 

shown in Fig. 3.8 and Fig. 3.9. 
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Fig. 3.2 Simulation results of Triad Avoidance strategy through EFR-A2 for 20th Dec 2015, 

switching mode to triad preparation at 10am. 

 

Fig. 3.3 Simulation results of Triad Avoidance strategy through EFR-A3 for 20th Dec 2015, 

switching mode to triad preparation at 10am. 
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Fig. 3.4 Simulation results of Triad Avoidance strategy through EFR-A2 for 20th Dec 2015, 

switching mode to triad preparation at 1pm. 

 

Fig. 3.5 Simulation results of Triad Avoidance strategy through EFR-A3 for 20th Dec 2015, 

switching mode to triad preparation at 1pm. 
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Fig. 3.6 Simulation results of Triad Avoidance strategy through EFR-A2 for 4th Dec 2015, 

switching mode to triad preparation at 10am. 

 

Fig. 3.7 Simulation results of Triad Avoidance strategy through EFR-A3 for 4th Dec 2015, 

switching mode to triad preparation at 10am. 
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Fig. 3.8 Simulation results of Triad Avoidance strategy through EFR-A2 for 19th Jan 2015, 

switching mode to triad preparation at 10am. 

 

Fig. 3.9 Simulation results of Triad Avoidance strategy through EFR-A3 for 19th Jan 2015, 

switching mode to triad preparation at 10am. 
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Table 3.3 Power and SOC (%) obtained from the starting of Triad time at 17:30 

Triad 

days 

EFR 

Alg. 

Switch (SW) Mode to Triad Preparation at 

10am 11am 12pm 1pm 

Power 

(kW) 

SOC 

(%) 

Power 

(kW) 

SOC 

(%) 

Power 

(kW) 

SOC 

(%) 

Power 

(kW) 

SOC 

(%) 

4
th

 D
ec

 

2
0
1
4
 

EFR-

A2 
153 48.54 153 48.56 153 48.55 131.8 41.84 

EFR-

A3 
154.6 49.9 153.8 48.68 151.5 48.09 130.4 41.36 

1
9

th
 J

an
 

2
0
1
5

 

EFR-

A2 
151.1 47.94 141.9 45.03 120.3 38.2 107.6 34.15 

EFR-

A3 
155.1 49.21 144.8 45.93 123 39.02 110.2 34.97 

2
n

d
 F

eb
 

2
0
1
5
 

EFR-

A2 
165.9 52.66 165.9 52.66 165.8 52.54 163.6 51.93 

EFR-

A3 
166.8 52.95 166.8 52.97 166.6 52.87 164.7 52.25 

2
0

th
 D

ec
 

2
0
1
5
 

EFR-

A2 
114.8 36.42 114.8 36.44 104.6 33.16 91.71 29.11 

EFR-

A3 
143.5 45.51 143.5 45.56 115.3 36.61 98.55 31.28 

For 2014-2015 the triads occurred at 17:30pm-18:00pm. The TAB payment used in this thesis 

is also £45 / kWh [ONL18l], [ONL18m]. Considering these information, total triad revenues 

can be calculated using the equation (3.1). 

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑑 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 (£) =
𝑃𝑜𝑤𝑒𝑟 (𝑘𝑊)𝑎𝑡 17: 30𝑝𝑚

𝐵𝐸𝑆𝑆 𝑃𝑜𝑤𝑒𝑟/𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 𝑥 𝑇𝐴𝐵 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 (£) (3.1) 

Using the equation (3.1) and the power values at 17:30 shown in Table 3.3, the total triad profits 

obtained from EFR-A2 and EFR-A3 for 2014-2015 are calculated as given in Table 3.4.  

On 20th Dec2015 which is an under-frequency event day, total triad revenues of £3229 (143.5 

kW / 2 x £45) and £2583 (114.8 kW / 2 x £45) are obtained for EFR-A2 and EFR-A3 

respectively (Table 3.4). This means that in EFR-A3, the SOC converges faster (17.09%) 

causing the highest triad revenue (£646) as shown in Table 3.4 since the battery has an 

opportunity for charging/discharging during the 30-min rest periods in the EFR-A3, as shown 

by the many 15-minutes events in Fig. 4.3. In comparison, there is no significant SOC recovery 

(<2.5%) between EFR-A2 and EFR-A3 at 10:00 on the real Triad days of the year of 2014-
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2015 because of the low amount of extended under frequency events. This causes less amount 

of Triad profit improvement between EFR-A2 and EFR-A3 at 10am on the Triad days of 4th 

Dec 2014 (£36), 19th Jan 2015 (£90) and 2nd Feb 2015 (£20). 

Table 3.4 Total Triad profit (£) obtained at 17:30-18:00 predicted Triad times 

Real/ 

predicted Triad 

days in 2015 

EFR Alg. 

used for 

Triad 

Switch (SW) Mode to Triad 

Preparation at 

10am 11am 12pm 1pm 

4
th

 D
ec

 2
0
1
4

 

EFR-A2 3442 3442 3409 2934 

EFR-A3 3478 3460 3442 2965 

Recovery 36 18 33 31 

1
9

th
 J

an
 2

0
1
5
 

EFR-A2 3400 3193 2707 2421 

EFR-A3 3490 3258 2767 2479 

Recovery 90 65 60 58 

2
n

d
 F

eb
 2

0
1
5

 

EFR-A2 3733 3733 3730 3681 

EFR-A3 3753 3753 3748 3706 

Recovery 20 20 18 25 

2
0

th
 D

ec
 2

0
1
5
 

EFR-A2 2583 2583 2353 2063 

EFR-A3 3229 3223 2594 2217 

Recovery 646 640 241 154 

As seen from the Triad profit findings in Table 3.4, switching to Triad preparation after 10am 

causes reduced amount of Triad revenues with both EFR-A2 and EFR-A3 for the all considered 

Triad days of 2014-2015.  

It can be seen from Table 3.2, analysing the Triad approach through EFR-A2 and EFR-A3 for 

the real/predicted Triad days of 2014-2015, the BESS provides 100% availability for delivering 

Triad service, however the highest battery SOC is achieved with EFR-A3 at the considered 

Triad preparation starting time of 10am, 11am, 12pm and 1pm. 
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Table 3.5 Energy output (kWh) findings of the EFR-A2 and EFR-A3 with Triad Avoidance for 

the real/predicted triad days of 2014-2015 

Real/pre

dicted 

Triad 

days in 

2015 

Switch 

Mode to 

Triad 

Preparation 

at 

EFR Service 

Algorithm used 

for Triad 

Charge 

(kWh) 

Discharge 

(kWh) 

Import 

(kWh) 

Export 

(kWh) 

4
th
 D

ec
 2

0
1

4
 

10am 
EFR-A2 282.5 65.67 1522 1014 

EFR-A3 286.2 63.98 1522 1025 

11am 
EFR-A2 285.9 64.52 1524 1023 

EFR-A3 315.1 63.98 1521 1048 

12pm 
EFR-A2 282.8 63.69 1519 1026 

EFR-A3 320.2 63.97 1500 1035 

1pm 
EFR-A2 262.8 56.01 1477 1058 

EFR-A3 300.4 56.32 1459 1068 

1
9

th
 J

an
 2

0
1
5
 

10am 
EFR-A2 270 36.02 1331 876.7 

EFR-A3 302 36.41 1317 876.5 

11am 
EFR-A2 261 57.21 1316 887.1 

EFR-A3 296.2 53.44 1297 890.5 

12pm 
EFR-A2 263.4 48.33 1289 944.8 

EFR-A3 300.4 49.38 1266 948.5 

1pm 
EFR-A2 246.2 43.26 1272 964.4 

EFR-A3 276.8 44.3 1254 963.7 

2
n

d
 F

eb
 2

0
1
5
 

10am 
EFR-A2 199.7 44.33 1394 842.6 

EFR-A3 212 61.96 1391 835.7 

11am 
EFR-A2 199.7 44.33 1394 842.6 

EFR-A3 212 61.96 1391 835.7 

12pm 
EFR-A2 202.1 44.3 1387 839.5 

EFR-A3 226.6 61.96 1372 832.7 

1pm 
EFR-A2 204.5 43.99 1376 839.6 

EFR-A3 223.1 67.19 1371 831.9 

2
0

th
 D

ec
 2

0
1

5
 

10am 
EFR-A2 228.2 51.81 962.1 793.6 

EFR-A3 401.3 76.67 923.8 804.5 

11am 
EFR-A2 228.2 51.81 962.1 793.6 

EFR-A3 401.3 76.67 923.8 804.5 

12pm 
EFR-A2 222.1 51.85 926.2 782.9 

EFR-A3 323.8 67.61 885.8 792.5 

1pm 
EFR-A2 228.3 69.06 931 821.8 

EFR-A3 304.2 77.03 901.2 828.3 
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This is because with EFR-A3, the battery SOC converges faster towards the desired band of 

45-55% and this minimises SOC excursions towards the limits. Energy output findings of the 

proposed Triad avoidance strategy through EFR service (EFR-A2 and EFR-A3) for the real 

and predicted triad days of 2014-2015 are summarised in Table 3.5. The difference in 

charge/discharge and import/export energy observed between EFR-A2 and EFR-A3 is because 

of the variation in battery SOC and hence the BESS will not follow the same selection of EFR 

envelopes. It is revealed that using the EFR-A3 for Triad Avoidance provides a substantial 

achievement in terms of maximizing the utilisation of the BESS stored energy; however, 

compared to EFR-A2 this is at the expense of using more energy, solely for battery SOC 

management (charge/discharge) within DB. 

3.3 Energy Arbitrage  

A BESS is capable of charging at off-peak night time hours when there is a low electricity price 

and then discharging at on-peak day time hours when there is a high price in order to make 

arbitrage profit from the price difference. In this chapter, a new service scheduling approach is 

proposed to achieve maximum arbitrage profits whilst layering EFR and FFR services 

throughout the day to maximise revenue. The proposed service scheduling method is developed 

based on the typical daily electricity price pattern, the time of day, grid frequency profile and 

is based on foresight. 

3.3.1 Investigation of the General UK Electricity Price Pattern 

To examine the general pattern of daily (week/weekend) electricity price, the historical UK 

system pricing for the 7th Monday, 7th Thursday and 9th Sunday of each season across 2014-

2015 were extracted as sample electricity price profiles Fig. 3.10 [ONL17]. It is clear from the 

samples of the selected days shown in Fig. 3.10 [ONL17], that daily UK system prices show a 

significant volatility at off-peak and on-peak hours during weekdays and weekend days. It is 

observed that the system price is significantly higher in April, October, January and February 

due to the cold weather conditions causing a high amount of energy demand on the power grid. 

The system price sharply decreases in summer season, especially in July, due to better weather 

conditions and increasingly higher generation from embedded solar sources. It is clear from 

Fig. 3.10, on the 7th Monday of each season of 2014-2015, the system price is low during night 

time hours between 11pm-7am and relatively high during day time hours; where the price peaks 
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between 4pm-11pm. The price shows a similar pattern on the 7th Thursday of each season of 

2014-2015, however the peak price is shifted between 8am-12pm for the 17 July 2014. It is 

observed that in the non-working weekend days, the electricity price deviates from its general 

pattern as seen in Fig. 3.10. On 27 April 2014, the price is generally low during night hours 

and relatively high during daytime hours, where the price reaches its peak between 10am-3pm 

(Fig. 3.10). The price follows the general pattern on 27 July 2014 and on 1 Feb 2015; however 

on 2 Nov 2014, due to the extreme weather the price is relatively high during night time as well 

as day time, but the peak price is observed between 4pm-11pm, again following previous 

patterns. In conclusion, despite some exceptions the UK system electricity buy/sell price 

follows a common pattern that the price is lower during the night time period (11pm-7am) and 

higher during the daytime period, where the price typically peaks between 4pm-11pm with this 

shifting during summer months to 8pm-11pm. 

3.3.2 Scheduling Approach of Grid Tied BESS Participating in Frequency Response for 

Energy Arbitrage 

The aim of the above information is to understand the UK electricity price trends to use in the 

proposed method. The daily electricity pattern is now determined using the selected historical 

UK electricity price profiles Fig. 3.10 [ONL17].  To supplement the potential arbitrate profits, 

the grid services under consideration in this thesis are EFR, DFFR, SFFRlow and SFFRhigh 

services. An existing fast EFR control algorithm, EFR-A3, has been developed in Chapter 3 

and is used in this chapter for EFR service delivery. It is shown in Chapter 3 that the EFR 

service can be delivered whilst generating arbitrage profits, this is achieved by manipulating 

the battery SOC target in the proposed frequency response control algorithms; decreasing the 

SOC target band when electricity prices are high, and increasing the SOC band when the prices 

are low; effectively shaping the BESS energy delivery profile to export at high prices and 

import at low prices. Using UK historical electricity pricing data [ONL17], the proposed SOC 

management strategy selects the appropriate battery SOC profile to maximise the arbitrage 

revenue whilst delivering the EFR service. Detailed analysis of the EFR service design control 

algorithm and the NGET service requirements can be found in Chapter 3 in this thesis. For the 

DFFR and SFFR services, considering the electricity price discrepancy during the day, the 

proposed arbitrage control algorithm selects the appropriate frequency balancing services 

considering the grid frequency conditions of the day and the time to maximize arbitrage. 

SFFRhigh and SFFRlow services are commonly preferred at night time (off-peak) period with 
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cost-effective electricity; however DFFR can be utilised during on-peak as well as off-peak 

time periods due to the dynamic power delivery to the power grid. This thesis does not cover 

any optimisation strategy for maximizing or calculating energy AR. The major aim of this 

chapter is to understand the benefits that can be gained from layering different balancing 

services throughout a day with different off-peak and on-peak service prices. Therefore, any 

existing energy arbitrage optimisation methods or any arbitrage calculation methods in 

literature can be implemented in the proposed balancing service scheduling approach in order 

to generate profits from energy arbitrage as well as frequency response service delivery. The 

arbitrage calculation method used in the proposed approach is described as follows. Stored 

energy in the BESS is expressed in (3.2), (3.3) [GUN18b], [GUN17]. 

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔:  𝑃𝑡 > 0     𝐸𝑡 = ∫
𝑃𝑡

𝜂𝐷
. 𝑑𝑡

𝑡

0

 (3.2) 

𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔:      𝑃𝑡 < 0      𝐸𝑡 = ∫ 𝑃𝑡 . 𝜂𝐶 . 𝑑𝑡
𝑡

0

 (3.3) 

where 𝜂𝐷  is the battery discharging efficiency, 𝜂𝐶   is the battery charging efficiency, 𝐸𝑡   is 

the energy stored in the BESS at hour t, if  𝑃𝑡 > 0 BESS exports power at hour t, if 𝑃𝑡 <

0  BESS imports power at hour t. The cost of the BESS charge/discharge and the total AR can 

be simply calculated using the following equation in (3.4), (3.5) [GUN18b]. 

𝐶𝐶 = ∑ 𝐸𝑡 . 𝐴𝑡_𝑠𝑒𝑙𝑙

24

𝑡=1

    if      𝑃𝑡 < 0 (3.4) 

𝐶𝐷𝐶 = ∑ 𝐸𝑡. 𝐴𝑡_𝑏𝑢𝑦

24

𝑡=1

    if      𝑃𝑡 > 0 (3.5) 

where 𝐶𝐷𝐶  is cost of BESS discharging, 𝐶𝐶   is cost of BESS charging, 𝐴𝑡_𝑠𝑒𝑙𝑙   is system 

electricity sell price in £/MWh at hour t and 𝐴𝑡_𝑏𝑢𝑦 is system electricity buy price in £/MWh 

at hour t. 

𝐴𝑃𝑅𝑑 = 𝐶𝐷𝐶 −  𝐶𝐶 (3.6) 
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𝐴𝑃𝑅𝑦 =
𝑆𝐷𝑇 .  𝑆𝑃

𝑃𝐷 
.  365 (3.7) 

 

7th Monday 7th Thursday 9th Sunday 

 

Fig. 3.10 Real UK Electricity system price of 7th Monday, 7th Thursday and 9th Sunday of 

each season of 2014-2015. 

The charge/discharge energy output of BESS can be calculated for charging cost and 

discharging cost as expressed in (3.4) and (3.5), respectively. In addition, the total arbitrage 

revenue 𝐴𝑃𝑅𝑑 can be calculated by using (3.4) and (3.5) as given in (3.6) [GUN18b]. As seen 

from the Table 3.7, Table 3.8, Table 3.9, 𝐴𝑃𝑅𝑦 is calculated in a year basis (£/kWh.yr) as given 

in (3.7), where 𝑆𝐷𝑇 is the selected balancing service delivery time in hours (hr), 𝑆𝑃 is selected 

service price in £/hr, 𝑃𝐷 is the amount of delivered power by the selected service in kW. It 

should be noted that 𝑃𝐷 is 2000kW for the EFR service [GUN18a] and 1000kW for DFFR and 

SFFR services in this study. 
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3.3.3 Simulation Results of the Scheduling Approach  

The proposed balancing service scheduling control method is developed in 

MATLAB/Simulink and the simulation results are all based on the experimentally validated 

1MWh capacity of BESS delivering 2MW EFR power [GUN18a] and 1MW FFR power 

[GUN18b] to the system. The frequency data of 7th Monday, 7th Thursday and 9th Sunday of 

each season of 2014-2015, containing high/medium/low frequency events, are simulated here 

to compare their ARs. Based on recorded UK system sell/buy electricity price [ONL17], the 

proposed grid balancing service scheduling method has been analysed for 18 different 

scenarios (S) in Table 3.6. The findings of the proposed control algorithm of the 7th Monday, 

7th Thursday and 9th Sunday of each season over the 2014-2015 are shown in Table 3.7, Table 

3.8, Table 3.9, respectively. The arbitrage price revenue (𝐴𝑃𝑅𝑑 ) for the day period was 

summed over the year to attain annual values (𝐴𝑃𝑅𝑦) on a £/kWhr.yr basis. Considering the 

daily electricity price pattern extracted in Section 3.3.1, the sensitivity analysis of service 

scheduling approach with 18 different scenarios for maximizing energy arbitrage is described 

in Table 3.6; and their arbitrage findings and import/export energy outputs for above selected 

days are given in Table 3.7, Table 3.8, Table 3.9. 

According to scenario 2 (S2), the first service selected is the fast EFR service with a SOC band 

of 90-95% to charge the battery until 4am during off-peak period with relatively low electricity 

price. Then, SFFRhigh service is selected until 6am in order to absorb a maximum constant 

active power (-1MW) from the grid at a specified high trigger frequency of 50.3Hz in order to 

respond to this high grid frequency event on the system. The third service selected is again 

EFR with a high SOC band of 90-95% to charge the battery until 8pm during low system costs 

and then its SOC band is decreased to a low band of 15-20% in order to deliver power to the 

grid at on-peak time where the electricity price is high.  Comparing the 𝐴𝑃𝑅 findings of the 

scenario S1, S2, S3, S4 given in Table 3.7, Table 3.8, Table 3.9, these scenarios do not seem 

beneficial for maximizing arbitrage profit because they mostly make arbitrage losses rather 

than profit in a number of considered days (14 July 2014, 17 July 2014, 2 Nov 2014 and 12 Jan 

2015). But, if there is high frequency event (>50.3Hz) on power grid in the considered day (e.g 

14 April 2014), SFFRhigh was successful in charging the battery which benefitted the AR, by 

storing energy from the grid with cheap electricity in order to sell it at on-peak period with 

expensive price; this helps to increase arbitrage gain. For instance, it can be seen from Fig. 

3.12, 14 April 2014 has a high frequency event (>50.3Hz) during the night time because of 
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surplus power on the grid. At this day, SFFRhigh was successful in charging the battery which 

benefitted the AR. The stored low cost energy is then sold to the grid during on-peak hours by 

delivering EFR service by lowering the target SOC of the control algorithm.  It is revealed that 

S1, S2, S3, S4 can be favourable in the spring season in terms of grid balancing as well as 

arbitrage benefit. However, these scenarios, covering SFFRhigh service, are rare as they 

difficult to achieve without foresight. 

Comparing S5 with S1, S2, S3, S4, despite using exactly the same services (SFFRhigh and EFR) 

during the day, when delivering EFR service at on-peak time period, battery SOC will always 

be managed as the control algorithm does this. It is revealed that battery SOC management on 

delivering EFR plays an essential role in making arbitrage profit as well as grid frequency 

support. As seen from Table 3.6, scenario S6, S7, S8, S9 have the same balancing service (only 

EFR) throughout the day; the 𝐴𝑃𝑅 obtained from each scenario is different because of the 

effect of the selected different SOC target profiles in the SOC management control during the 

EFR service delivery. For those scenarios, not only is SOC management essential for the AR, 

but also the electricity price profile of the considered days needs to be favourable to increase 

the amount of AR. For instance, comparing the ARs generated from S7 in the considered days, 

on the 7th Thursday of autumn (16 Oct 2014), S7 provides a significant amount of arbitrage 

profit (£25.02) due to its high electricity price profile, however the 𝐴𝑃𝑅 is less than £1 on the 

7th Monday (14 July 2014), 7th Thursday (17 July 2014) and 9th Sunday (27 July 2014) of the 

summer of 2014-2015.  It can be also seen that S6, S7, S8 do not make arbitrage losses in any 

day of the seasons and actually return a profit. 

In scenario 10 (S10), the only selected service is DFFR with the DB of ±0.015Hz to deliver 

only dynamic active power throughout the day. With S10, which is a common choice for 

maximizing arbitrage profit, the battery can make arbitrage profit or service benefit from only 

DFFR service by importing/exporting power from the grid without having a battery SOC 

management control. This chapter does not consider reducing the DFFR tendered power to 

reserve power for SOC management. According to the scenario 12 (S12) shown in Table 3.6 

the first service selected is DFFR with the DB of ±0.015Hz to deliver dynamic active power 

until 4 am with a relatively low electricity price and then SFFRhigh service is selected until 

7am in order to draw a maximum constant power (-1 MW) from the grid at a high trigger 

frequency of 50.3Hz. The third service selected is EFR with a SOC band of 90-95% to charge 

the battery until 4pm during low costs and then its SOC band is decreased to 15-20% in order 
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to supply power to the grid at peak time with high electricity price. Comparing S10, S11 and 

S12, S10 and S12 do not suffer any arbitrage losses in any considered days, S11 has a ~£5 loss 

in 14 April 2014 as there is a high frequency event (>50.3) in that day; the battery stores energy 

by absorbing 1MW power from the grid with cheap electricity at 4am-7am, but cannot 

adequately resell the power with expensive electricity at 7am-12pm due to the absence of 

battery SOC management in DFFR service. But here S12 makes ~£1 𝐴𝑃𝑅 comparing the ~£4.8 

loss generated by S11. It can be seen that providing a service where the battery SOC can be 

managed is beneficial when there is a frequency excursion. 

According to scenario 17 (S17), the first frequency response service selected is EFR with a 

high SOC band (90-95%) to charge the battery until 4am at off-peak time with low electricity 

price. Then SFFRlow service is selected until 7am to send a constant 1MW active power to the 

grid at the specified low trigger frequency of 49.7Hz in order to respond to this low grid 

frequency event in the power system. The third service is then selected as EFR with the high 

SOC band of 90-95% to charge the battery until 4pm with low-cost electricity and then its SOC 

band is decreased to 15-20% in order to export power to the grid selling at a high price (Fig. 

3.11). The scenarios S13, S14, S15, S16, S17, and S18 use SFFRlow service during off-peak 

time periods at varying times however, there is no low frequency event (<49.7Hz) during night 

time for all the considered days. Therefore, those scenarios cannot generate arbitrage profit 

from SFFRlow service, but as seen from the Table 3.10 the service availability payment is 

generated during the service delivery time with SFFR off-peak price of £4/hr. Comparing the 

𝐴𝑃𝑅 obtained from those scenarios, S13, S14, S16, S18 make a loss at least one time in the 

considered days. But, S15 and S17 do not make any arbitrage losses in any days, hence these 

scenarios are suitable for making arbitrage profit, especially in high electricity price days (e.g 

𝐴𝑃𝑅 in S15=£29.66, S17=£22.94 in 16 Oct 2014). All in all, considering the general UK daily 

electricity pricing pattern, the proposed balancing service method can make the AR as shown 

in Table 3.7, Table 3.8, Table 3.9. It is also revealed that S10 makes the highest arbitrage profit 

through service delivery with no power required for SOC management. In this thesis, the 𝐴𝑃𝑅 

findings from the proposed service scheduling approach are compared with the optimized 

yearly arbitrage profit attained from the 6MW/10MWh Leighton Buzzard battery system in 

[NEW16]. Comparing both 𝐴𝑃𝑅 values in year base (/kWh.yr), the potential AR earned from 

the experimental battery in [NEW16] is higher (£5.91/kWh.yr) than the 𝐴𝑃𝑅 generated from 

many scenarios in this proposed method for several different days Table 3.7, Table 3.8, Table 

3.9; because in the reference study only arbitrage is considered, no other balancing services are 
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delivered simultaneously. Using frequency response service payments (for EFR=£10/hr, 

DFFR=£11/hr and SFFR off peak=£4 and on-peak=£6/hr) [ONL18a], the daily and yearly 

frequency response service availability payment (𝑆𝐴𝑃) generated from each scenario in Table 

3.6 are shown in Table 3.10. It can be seen from Table 3.10, scenario 10 (S10), which delivers 

only DFFR throughout the day, makes the highest 𝑆𝐴𝑃 (£96.36/kWh.yr) due to the highest  

availability price of DFFR service (£11/day.hr) in the balancing service. It should be noted in 

the previous study [GUN18b], in the calculation of yearly based 𝐴𝑃𝑅, the delivered service 

power (𝑃𝐷) was set to 2 MW for all the services considering the 2MW EFR power as a 

reference 𝑃𝐷 power for all the balancing service, roughly.  But the author’s method used in 

[GUN18b] is improved in this thesis as the 𝐴𝑃𝑅 is independently calculated for each delivered 

service by using their own 𝑃𝐷 power (𝑃𝐷 in EFR=2MW and FFR=1MW). Considering this, 

S1 is selected as the best scenario in the previous study [ONL18b], with £2.315/kWh.yr AR. 

This chapter almost doubles the AR (£4.292/kWh.yr)  with scenario 10 (S10), by delivering 

only DFFR service throughout the day; and also around 20% higher revenue with S8, delivering 

only EFR service that has effective SOC management. 

Table 3.6 Proposed service scheduling method for energy arbitrage with 18 scenarios 

Scenario (S) Time (hr) Service SOC band (%) Scenario (S) Time (hr) Service SOC band (%) 

S1 

12am-2am EFR 90-95 

S9 

12am-4pm EFR 90-95 

2am-6am SFFRhigh - 4pm-11pm EFR 15-20 

6am-8pm EFR 90-95 11pm-12am EFR 45-55 

8pm-12am EFR 15-20 S10 12am-12am DFFR - 

S2 

12am-4am EFR 90-95 

S11 

12am-4am DFFR - 

4am-6am SFFRhigh - 4am-7am SFFRhigh - 

6am-8pm EFR 90-95 7am-12pm DFFR - 

8pm-12am EFR 15-20 

S12 

12am-4am DFFR - 

S3 

12am-4am EFR 90-95 4am-7am SFFRhigh - 

4am-7am SFFRhigh - 7am-4pm EFR 90-95 

7am-8pm EFR 90-95 4pm-12am EFR 15-20 

8pm-12am EFR 15-20 

S13 

12am-7am SFFRlow - 

S4 

12am-7am SFFRhigh - 7am-8pm EFR 90-95 

7am-8pm EFR 90-95 8pm-12am EFR 15-20 

8pm-12am EFR 15-20 

S14 

12am-7am SFFRlow - 

S5 

12am-4am EFR 90-95 7am-4pm EFR 90-95 

4am-7am SFFRhigh - 4pm-12am EFR 15-20 

7am-4pm EFR 45-55 
S15 

12am-7am SFFRlow - 

4pm-12am EFR 15-20 7am-12am DFFR - 

S6 

12am-7am EFR 90-95 

S16 

12am-4am DFFR - 

7am-4pm EFR 45-55 4am-7am SFFRlow - 

4pm-12am EFR 15-20 7am-12am DFFR - 

S7 

12am-7am EFR 90-95 

S17 

12am-4am EFR 90-95 

7am-4pm EFR 70-75 4am-7am SFFRlow - 

4pm-12am EFR 15-20 7am-4pm EFR 90-95 

S8 
12am-4pm EFR 90-95 4pm-12am EFR 15-20 

4pm-12am EFR 15-20 

S18 

12am-4am EFR 90-95 

 

4am-7am SFFRlow - 

7am-12am DFFR - 

11pm-12am EFR 45-55 
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Table 3.7 𝐴𝑃𝑅 findings and energy output of 7th Monday of each season of 2014/2015 

7TH MONDAY OF EACH SEASON OF 2014/2015 

Scen. 

(S) 

SPRING (14 April 2014) SUMMER (14 July 2014) AUTUMN (13 Oct 2014) WINTER (12 Jan 2015) 

Energy Output 

(kWh/day) 

APR 

(£/kWh) 

Energy Output 

(kWh/day) 

APR 

(£/kWh) 

Energy Output 

(kWh/day) 

APR 

(£/kWh) 

Energy Output 

(kWh/day) 

APR 

(£/kWh) 

Imp. Exp. Imp. Exp. Imp. Exp. Imp. Exp. 

S1 1528 1287 2.315 1397 1071 -0.414 1529 1299 0.008 1348 845.1 -2.841 

S2 1614 1359 2.455 1434 1102 -0.267 1650 1400 1.594 1382 873.1 -2.555 

S3 1524 1284 2.439 1397 1070 -0.364 1597 1355 1.129 1352 848.2 -2.754 

S4 1355 1142 1.7 1297 986.8 -0.73 1385 1178 -1.462 1199 720.1 -3.429 

S5 1513 1269 0.779 1129 976.1 0.733 1520 1303 5.024 1006 900.7 1.97 

S6 1363 1143 1.606 1482 1272 0.913 1762 1504 6.165 1093 973.6 2.044 

S7 1392 1170 2.146 1525 1307 0.986 1772 1513 7.716 1147 1025 1.723 

S8 1512 1267 2.82 1522 1305 1.149 1757 1500 6.888 1317 1077 0.604 

S9 1546 1267 2.608 1566 1260 0.676 1788 1497 6.682 1350 915.8 -0.558 

S10 901.8 958.2 4.292 830.9 775.7 0.912 1010 1197 15 1016 1476 13.64 

S11 1636 873.5 -4.791 735.9 662.1 0.666 957.5 978 12.46 988.4 1466 13.62 

S12 1619 1270 0.872 1458 1230 0.266 1320 1507 9.158 1312 971.6 1.402 

S13 1237 1044 1.954 1297 986.8 0.73 1385 1178 -1.462 1199 720.1 -3.429 

S14 1232 1033 1.562 1255 1082 0.501 1384 1189 3.721 1077 875.1 -0.16 

S15 698.1 714.7 2.298 607.2 508.3 0.27 790.5 736.1 11.13 772.5 1344 14.61 

S16 830.9 873.5 3.295 735.9 662.1 0.666 957.5 978 -12.46 988.4 1466 13.62 

S17 1338 1122 2.335 1355 1165 0.867 1606 1374 5.969 1229 1003 0.5308 

S18 1305 737.4 2.917 1224 518.1 -3.754 1538 746.7 4.839 1158 1384 12.84 

 

 

Table 3.8 𝐴𝑃𝑅 findings and energy output of 7th Thursday of each season of 2014/2015 

7TH THURSDAY OF EACH SEASON OF 2014/2015 

Scen. 

(S) 

SPRING (17 April 2014) SUMMER (17 July 2014) AUTUMN (16 Oct 2014) WINTER (15 Jan 2015) 

Energy Output 

(kWh/day) 

APR 

(£/kWh) 

Energy Output 

(kWh/day) 

APR 

(£/kWh) 

Energy Output 

(kWh/day) 

APR 

(£/kWh) 

Energy Output 

(kWh/day) 

APR 

(£/kWh) 

Imp. Exp. Imp. Exp. Imp. Exp. Imp. Exp. 

S1 1343 1156 5.052 1520 907.1 -2.277 1630 1315 11.6 1546 1124 -0.447 

S2 1464 1257 5.344 1581 958.1 -1.823 1703 1377 12.93 1661 1220 0.583 

S3 1378 1186 5.259 1552 933.2 -2.027 1663 1335 12.78 1593 1163 0.402 

S4 1183 1022 4.574 1408 813.2 -2.334 1441 1158 7.604 1409 1009 -1.118 

S5 1206 1042 2.488 1183 956.1 0.454 1464 1246 23.13 1453 1203 3.567 

S6 1501 1289 3.056 1472 1198 0.737 1731 1470 24.29 1700 1410 4.775 

S7 1495 1284 4.808 1520 1238 0.929 1782 1512 25.02 1718 1424 5.161 

S8 1554 1333 5.751 1563 1274 1.134 1790 1518 24.3 1724 1430 5.024 

S9 1624 1282 4.73 1647 1248 0.493 1967 1464 22.69 1874 1409 4.113 

S10 1066 1057 2.586 746.5 918.5 5.0 1016 1082 31.99 962.7 1017 3.865 

S11 968.2 939.4 2.081 690.8 851.8 4.569 880.8 921.1 30.71 873 913.2 3.0 

S12 1003 1462 11.16 1482 1200 0.2 1559 1266 17.42 1400 1412 4.777 

S13 1183 1022 4.574 1408 813.2 -2.334 1441 1158 7.604 1409 1009 -1.118 

S14 993.3 863.8 2.905 1333 1081 0.31 1399 1191 17.76 1352 1119 2.188 

S15 650.5 559.6 1.316 562.6 716.2 4.37 786.7 808.7 29.66 666.9 663.8 2.562 

S16 968.2 939.4 2.081 690.8 851.8 4.569 880.8 921.1 30.71 873 913.2 2.998 

S17 1357 1168 5.405 1476 1201 0.615 1601 1360 22.94 1537 1273 3.707 

S18 1503 600.4 -6.028 988.7 738.4 2.309 1406 840.7 25.63 1390 668.5 -1.716 
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Table 3.9 𝐴𝑃𝑅 findings and energy output of 9th Sunday of each season of 2014/2015 

9TH SUNDAY OF EACH SEASON OF 2014/2015 

Scen. 

(S) 

SPRING (27 April 2014) SUMMER (27 July 2014) AUTUMN (2 Nov 2014) WINTER (1 Feb 2015) 

Energy Output 

(kWh/day) 

APR 

(£/kWh) 

Energy Output 

(kWh/day) 

APR 

(£/kWh) 

Energy Output 

(kWh/day) 

APR 

(£/kWh) 

Energy Output 

(kWh/day) 

APR 

(£/kWh) 

Imp. Exp. Imp. Exp. Imp. Exp. Imp. Exp. 

S1 1397 1156 4.56 1385 1147 0.3204 1382 1039 -0.47 1417 1195 0.801 

S2 1456 1205 5.347 1440 1194 0.192 1480 1121 -0.004 1554 1310 1.1 

S3 1414 1170 4.621 1417 1174 0.207 1439 1086 -0.19 1523 1284 1.126 

S4 1269 1048 3.62 1209 1000 0.49 1238 918.3 -1.034 1259 1063 0.6 

S5 1160 988.5 3.586 1252 1087 0.043 1283 1076 1.115 1340 1141 1.864 

S6 1411 1199 3.636 1422 1229 0.007 1506 1262 1.635 1544 1312 2.294 

S7 1461 1241 5.599 1433 1238 0.042 1520 1274 1.958 1579 1342 3.038 

S8 1565 1328 7.126 1462 1263 0.062 1510 1266 2.38 1641 1393 3.293 

S9 1667 1299 6.045 1492 1250 -0.18 1623 1246 1.592 1724 1371 2.723 

S10 545.6 494.3 5.572 773.7 705.6 1.148 814.1 907.4 4.401 866.9 824.1 3.273 

S11 521 464.9 5.491 670 581.6 0.752 766 850 3.597 815.6 762.7 2.889 

S12 1620 1120 1.456 1201 1169 1.906 1140 1291 5.181 1561 1197 1.247 

S13 1269 1048 3.62 1209 1000 0.49 1238 918.3 -1.034 1259 1063 0.597 

S14 1297 1104 4.8 1166 1016 0.394 1170 981.8 1.054 1258 1073 2.374 

S15 455.1 386.1 5.189 568.2 459.9 0.08 563.3 607.6 2.513 695.5 619.1 2.247 

S16 521 464.9 5.491 670 581.6 0.752 766 850 3.597 815.6 762.7 2.889 

S17 1442 1225 5.794 1374 1189 0.111 1392 1167 1.879 1522 1294 2.904 

S18 1144 457 1.803 1465 461.3 -6.327 1439 613 -4.3 1461 745.5 -2.043 

 

 

Table 3.10 𝑆𝐴𝑃 obtained from each scenario of the service scheduling approach in Table 3.6 

Scenario 

(S) 

DFFR  SFFR  EFR  
SAP(£/day

) 

SAP(£/kW

h.yr) SDT 
(hr/day) 

SP 
(£/hr) 

SAP 
(£/kWh.yr) 

SDT 
(hr/day) 

SP 
(£/hr) 

SAP 
(£/kWh.yr) 

SDT 
(hr/day) 

SP 
(£/hr) 

SAP 
(£/kWh.yr) 

S1 - - - 4 £4 £5.84 20 £10 £36.50 £216 £42.34 

S2 - - - 2 £4 £2.92 22 £10 £40.15 £228 £43.42 

S3 - - - 3 £4 £4.38 21 £10 £38.32 £222 £42.7 

S4 - - - 7 £4 £10.22 17 £10 £31.02 £198 £41.24 

S5 - - - 3 £4 £4.38 21 £10 £38.32 £222 £42.7 

S6 - - - - - - 24 £10 £43.8 £240 £43.8 

S7 - - - - - - 24 £10 £43.8 £240 £43.8 

S8 - - - - - - 24 £10 £43.8 £240 £43.8 

S9 - - - - - - 24 £10 £43.8 £240 £43.8 

S10 24 £11 £96.36 - - - - - - £264 £96.36 

S11 21 £11 £84.31 3 £4 £4.38 - - - £243 £88.69 

S12 4 £11 £16.06 3 £4 £4.38 17 £10 £31.02 £226 £51.46 

S13 - - - 7 £4 £10.22 17 £10 £31.02 £198 £41.24 

S14 - - - 7 £4 £10.22 17 £10 £31.02 £198 £41.24 

S15 17 £11 £68.25 7 £4 £10.22 - - - £215 £78.47 

S16 21 £11 £84.31 3 £4 £4.38 - - - £243 £88.69 

S17 - - - 3 £4 £4.38 21 £10 £38.32 £222 £42.7 

S18 17 £11 £68.25 3 £4 £4.38 4 £10 £7.3 £239 £79.93 
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Fig. 3.11 Simulation results of the service scheduling algorithm for 1st Feb 2015 for S17. 

 

Fig. 3.12 Simulation results of the service scheduling algorithm for 14th April 2014 for S2. 
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3.4 Conclusion 

In the energy arbitrage section of this chapter, a DFFR, a SFFRhigh and SFFRlow frequency 

response control algorithm based on a model of a 1MW/1MWh BESS has been developed to 

meet the NGET published service requirements. When there is a grid frequency deviation on 

the grid, the BESS supplies a dynamic power according to a specified DFFR envelope. SFFR 

delivers a non-dynamic service where an agreed amount of power is delivered if the grid 

frequency reaches a certain trigger point of 49.7Hz (SFFRlow) or 50.3Hz (SFFRhigh). Therefore, 

a new balancing service scheduling method for maximizing energy arbitrage has been 

presented that uses layering of grid balancing services (DFFR, SFFRhigh, SFFRlow and EFR) 

throughout the day with market pricing foresight. The advantage of this scheduling method is 

that it generates arbitrage profit and combines balancing service availability payment revenue 

through service layering and new SOC management techniques. The EFR control algorithm, 

described in Chapter 3, has been used in the proposed approach; where the battery SOC target 

band is periodically moved according to the electricity pricing profile for the day in order to 

generate arbitrage revenue. Setting the SOC band low has the effect of exporting energy setting 

the SOC band high imports energy. Simulation results of the proposed service scheduling 

approach were carried out using NGET frequency data for 7th Monday, 7th Thursday, 9th 

Sunday of each season of 2014/2015, which contains a mix of frequency profile days. The 

simulations are based on experimentally validated model of the WESS demonstrating that 

arbitrage profits can be made by layering different balancing services throughout the day with 

foresight. The revenue generated by a BESS can be maximized using a suitable scheduling 

scenario that will vary depending on the day/month/season of the year. 

In the triad avoidance section of this chapter, it is revealed from the simulation results with 

proper management of the battery’s SOC during EFR delivery the BESS could be prepared in 

order maximise the available energy to export for TAB. 

Based on the 2016 TAB payment of £45.83 / kWh, it is revealed that in 20th Dec2015 which 

is an under-frequency event day, total triad revenues of £3229 and £2583 are obtained for EFR-

A2 and EFR-A3 respectively. This means that in EFR-A3, the SOC converges faster (17.09%) 

causing the highest triad revenue (£646), since the battery has an opportunity for 

charging/discharging during the 30-min rest periods in the EFR-A3, due to the many 15-

minutes events in 20th Dec 2015. In comparison, there is no significant SOC recovery (<2.5%) 
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between EFR-A2 and EFR-A3 at 10:00 on the real Triad days of the year of 2014-2015 because 

of the low amount of extended under frequency events. This causes less amount of Triad profit 

improvement between EFR-A2 and EFR-A3 at 10am on the real Triad days of 4th Dec 2014 

(£36), 19th Jan 2015 (£90) and 2nd Feb 2015 (£20). 

The results show that the amount of energy available to export would depend greatly on the 

frequency conditions of the day and the time that a decision is made to commit to preparing for 

TAB. 

4 Willenhall Energy Storage System 

The UK’s first largest grid-tied Lithium-titanate (LTO) based 968kWh/2MW BESS, named 

Willenhall Energy Storage System (WESS), was commissioned in 2015 by the University of 

Sheffield (UoS). The WESS facility comprises a 968kWh, 2MW Toshiba LTO battery, 

interfaced to the power grid through 11kV feed at the Willenhall Primary Substation (WPD) in 

the UK. Network connection of proposed and deployed storage in the UK is shown in Fig. 4.1.  

 

Fig. 4.1 Network connection of proposed and deployed storage in the UK. (DNO projects as 

of 1 December 2014). 

WESS
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In addition, the WESS site also houses a 120kW ABB inverter, interfaced through bespoke 

DC/DC converters to a rack containing second life batteries. Moreover, there is a 1MWh DC 

Lead-Acid battery system connected through a 800kVA GE Inverter as part of the storage 

facility. The three systems operate independently with their own G59 control relay. The 

operation of each system being designed so as not to adversely affect the other systems. A 

single line diagram of the site is supplied in Fig. 4.2 [ROY17].  

 

Fig. 4.2 Single line representation of Willenhall Energy Storage System [ROY17]. 

This was an Engineering and Physical Sciences Research Council (EPSRC) capital funded 

project with follow on projects from varying sources examining the characteristics of the LTO 

battery, how various battery chemistries can work together for grid scale energy storage 

applications and the coordination of large storage with second life EV batteries. The WESS 

facility is being managed by the UoS for carrying out research works on LTO cell degradation 

and integrating battery characteristics. Southampton and Aston Universities are also involved 

in the WESS project investigating the optimum use of second life EV batteries and vehicle-to-

grid (V2G) applications. It aims to investigate the characteristics of a LTO type battery, as well 

as different battery chemistries, for delivering grid support functions at scale [ONL18g], 

[ONL18h]. A LTO battery was selected for used in WESS as a new technology offering 
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increased performance in terms of a relatively long cycle life, safety and rapid recharging 

capability. The battery storage is made up of 40 parallel-connected racks, each consisting of 22 

series-connected battery modules, and each module consists of 24 battery cells in a 2P12S 

formation. There are 21,120 cells in the DC battery unit with a total capacity of approximately 

1MWh. The basic structure of the WESS consist of a 968kWh battery (DC storage), PCS100 

ESS Converter (2MW) which allows active/reactive power control based on the system 

requirement, and a transformer (2.1MVA) which connect the power converter to the 11kV AC 

grid [FEE16]. The communication and control between the storage and converter in system is 

implemented using a bespoke control system built by the UoS. An overview schematic of the 

system is illustrated in Fig. 4.3 [FEE16]. In the figure, the control interface between converter 

and BMS is achieved through a ModBus TCP/IP protocol; the outer system control loop rate 

is 100ms with the converter capable of a full power response (-2MW to +2MW) in 2 cycles of 

mains supply (40ms).  

In addition to the BESS, a flexible DC/DC and 100kVA inverter based system is installed for 

interfacing ‘second life’ EV batteries to the utility supply for grid support applications. The 

systems are grid tied to the 11kV utility supply at the WPD Willenhall substation in the West 

Midlands. To facilitate operation, the whole system can be controlled remotely over a dedicated 

VPN connection, over ‘fibre’ or a 3G network. Data from the system is available via a local 

SQL database, updated on a 100ms timescale or via a publicly accessible InfluxDB at 1 second 

intervals. The bespoke nature of the system enables flexible control and rapid response from 

the hardware [FEE16]. 

4.1 WESS Control  

To facilitate WESS operation, the whole system can be controlled remotely using a dedicated 

VPN connection, over ‘fibre’ or a 3G or 4G network Fig 4.3(a). Data from the system is 

available via a local SQL database, updated on a 100ms timescale or via a publicly accessible 

InfluxDB at 1 second intervals. The bespoke nature of the system enables flexible control and 

rapid response from the hardware. In the WESS, the communication and control between the 

storage and converter is implemented using a bespoke control system built by the UoS. An 

overview schematic of the system is illustrated in Fig. 4.3. In the figure, the control interface 

between converter and BMS is achieved through the ModBus TCP/IP protocol; the outer 

system control loop rate is 100ms with the converter capable of a full power response (-2MW 
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to +2MW) in 2 cycles of mains supply (40ms). The CompactRIO sends the power commands 

using ModBus TCP/IP to the ABB PLC that then signals the converter modules over CAN bus. 

The BMS and the converter are monitored by the UoS controller for any fault condition.  

In order to achieve experimental results of EFR-A1 with WESS, the MATLAB coding of EFR-

A1 has been converted to the LabVIEW code as provided in Fig C.1 to Fig C.18 in Appendix 

C. Figure 4.3(c) shows WESS start up procedure by running LabVIEW on host PC.   
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(b) 

 

(c) 

Fig. 4.3 Control scheme of the 2MW/968kWh Willenhall Energy Storage System (a); Photo 

of local controller HMI in the Willenhall control system (b); WESS start up procedure used 

in the local controller (c). 
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4.2 WESS Design 

The BESS design in the Willenhall Project will be explained in this section. Batteries are 

connected to a power conversion system (PCS) which converts a variable battery DC voltage 

to three phase AC voltage of the grid (Fig. 4.4.a). The PCS100 ESS is an energy storage system 

converter product from ABB, it allows active (P) and reactive (Q) power set point control over 

Modbus TCP/IP. The PCS100 ESS converters used in the BESS employ IGBT’s and integral 

sinusoidal filters, as seen in Fig. 4.7. The Δ/Δ coupling transformer (350V/11kV) is used to 

connect the power converter to the grid (Fig. 4.4.b).  

  

(a) 

 

(b) 

Fig. 4.4 Block diagram (a) and photo (b) of the 968kWh//2MW WESS plant. 
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4.2.1 Battery Pack Information 

The SCiB Lithium-Titanate rechargable batteries  provided by Toshiba offer superior 

performance in terms of reliability, relatively long cycle life and rapid recharging capability 

compared to other Li-ion technologies at the time of writing. The specifications of a SCiB 

battery cell and a module used in the project is given in Table 4.1. The Battery section consists 

of 40 parallel connected battery racks, each rack is composed of 22 battery modules series 

connected in order to form a string, each battery module is consisted of 24 cells in a 2P12S (2 

cells in parallel and 12 series strings). Therefore, there are total of 21120 cells (40racks x 

(22modules x 24 cells)) in the battery unit (see Fig. 4.5). The total capacity of BESS is 

~968kWh (40 racks x (22modules x 1.1kWh)).  

Table 4.1 The description of Toshiba SCiB cell and module used in the BESS project 

SCiBTM Cell 

 

Nominal Voltage 2.3V (Range: 1.5V-2.7V) 

Nominal Capacity 20Ah 

Energy Density 176Wh/L 

Dimension 115(W)x22(D)x103H 

Weight 515g 

SCiBTM Module 

 

Nominal Voltage: 27.6V (Range: 18V-32.4V) 

Nominal Capacity 40Ah/1.1kWh 

Dimension 359(W)x187(D)x124(H) 

Weight 14kg 

SCiB Cell 2P12S 

CMU (with CAN I/F) 

 

Fig. 4.5 Battery pack design in WESS. 

3

21,120 

cells in 

2P12S 

formation

Cell level Module level
String level

22 series-

connected 

modules
40 parallel-

connected 

strings



180 

 

Each battery rack consists of 22 battery modules (nominal 1.1kWh/module), for a total of 

24.2kWh/rack, where the nominal DC voltage is 607.2V with its available DC voltage range 

from 475V to 712V. According to the Toshiba battery tender specification provided for UoS, 

the required minimum DC voltage is 550V, this is due to a restriction on the minium voltage 

of the ABB converter. Hence, the batteries are used from the 550V to 712V, which lies in the 

SOC range from 30% to 100%. Since the SOC range has a marginal allowance of around 30%, 

therefore a relatively longer battery life time can be expected. 

4.2.2 Power Converter Control 

In the WESS project, there are total 24 ABB PCS100 converters with 2MW power capability, 

as seen in Fig. 4.6. Phsical and schematic diagram of the power converters used are shown in 

Fig. 4.7. BESS operates in Current Source Inverter (CSI) mode and the operational inverter 

control system with 2MW charge is shown in Fig. 4.8.  

 

Fig. 4.6 Photos of 24 x ABB PCS100 converter in WESS. 

The CSI control mode provides benefits to large grids, whereby only positive sequence current 

is injected into the grid resulting in minimal ripple current in the DC storage. Being a current 

source, faster response is achieved as opposed to the virtual generator Voltage Sourced Inverter 

(VSI) mode.CSI operates in bi-directional P/Q power flow control (P/Q setpoint-fixed power) 

(see Fig. 4.8)  and provides fast sub-cycling current response to a change in P or Q command. 

Demanded power level will be generated or absorbed from the grid with respect to actual 

batteries SOC and batteries power limits. 
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Fig. 4.7 Diagram of power converter used in WESS. 

 

Fig. 4.8 WESS- 2kW charge in converter. 

4.2.3 Transformer 

In the WESS, a 2.1MVA isolated transformer is used to connect the 2MW ABB PCS100 power 

converters (Fig. 4.6) with 350kVac voltage output to the 11kV AC grid [FEE16], as shown in 

Fig. 4.4.a. The picture of 2.1MVA transformer used in WESS is illustrated in Fig. 4.9. 
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Fig. 4.9 A 2.1 MVA transformer used in WESS. 

4.3 WESS Grid Scale Applications  

The WESS facility aims to examine the effects of energy storage on the grid, allowing 

experiments into response times for fast frequency response and other grid support functions. 

WESS provides grid frequency regulation services to the NG, such as SFR and DFR frequency 

response services. Such services help balance the grid and will become increasingly valuable 

as more intermittent renewable generation comes on to the system. WESS facility allows 

research to be conducted at a power levels commensurate with industrial installations thus 

allowing the UK’s power sector to observe the viability of energy storage for peak power 

buffering and grid stability and reinforcement provision at realistic levels and to assess both 

economic and technical potential of such systems [ONL19c]. Possible future grid scale 

applications providing by the WESS can be frequency [GUN17b], [GUN18a], [GUN18b], and 

voltage control [FEE16], energy arbitrage [GUN17b], [GUN19], peak shaving [FEE16], Triad 

Avoidance [GUN18b], and trading in the balancing energy market. 
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4.4 WESS Experimental Results 

In this section, in order to experimentally validate the performance of the proposed EFR and 

DFFR control algorithm implemented in 1MW/1MWh BESS model, the WESS utilized as a 

test bed, described in this chapter. 

4.4.1 Experimental Verification with WESS for EFR-A1 Control Algorithm 

In order to experimentally validate the performance of the standard EFR control algorithm 

implemented in BESS model, WESS was utilised as a test bed. Fig. 4.10 and Fig. 4.11 show a 

comparison of the results obtained from the developed EFR-A1 and the real WESS, responding 

to grid frequency deviations through the EFR service for a 12-hour operation period for 21st 

Oct 2015. The figures show that the model is representative of the real system with a RMSE 

of 0.19% and a MAPE of 0.31% for SOC. The slight variances in power are explained by a 

small difference in SOC at the boundaries of the SOC target band, meaning that each system 

will chose a different EFR envelope line to use.  

 

Fig. 4.10 Comparison of the experimental and simulation results obtained on EFR-A1 for 21st 

Oct 2015 (first 12 hours) frequency data. 
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(a) 

 

(b) 

Fig. 4.11 EFR power versus frequency plot for (a) measured and (b) simulation using EFR-

A1 for 21st Oct 2015 (first 12 hours) frequency data. 

Small deviations can be accounted from the increased losses in the experimental system when 

compared to the model operating at very low power (<100kW). This is due to the operational 

efficiencies of the inverter being outside of its optimised operating range. It should also be 
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noted that WESS is configured with an operational SOC band of 5-95%. Fig. 4.11 presents the 

delivery envelope of the proposed control algorithm for both simulation and experimental using 

EFR-A1. The comparison of experimental and model findings indicates that the proposed EFR 

control algorithm shows a good performance with <4.5% and ~0.3% of MAPE power and 

battery SOC for the 12-hour period in 21st Oct. 

Table 3.23 Energy output findings of EFR-A1 (simulation) and experimental WESS (measured) 

for 21st Oct 2015 (first 12 hours data) 

 Import/Charge 

(kWh) 

Export/Discharge 

(kWh) 

Measured 569.5 741.3 

Simulation 558.5 758 

 

4.4.2 Experimental Verification with WESS for DFFR Control Algorithm 

Fig. 4.12 compares the results attained from the 1MW/1MWh BESS model developed in 

MATLAB/Simulink and the real WESS, responding to grid frequency deviations through the 

DFFR service for 12 Oct 2016 frequency data. The figure shows that the DFFR control 

algorithm is representative of the real system with a RMSE of 0.71% and MAPE of 0.5% for 

battery SOC and a RMSE of 29.5kW and MAPE of 3% for power. 

However, the sampling time set is 25ms in the both real WESS and simulated BESS model, it 

can be observed from  Fig. 4.12 there is a slight shifts between the measured and simulated 

grid frequency due to the sampling time error in the grid frequency (RMSE frequency error= 

0.0136Hz). As a result this unmatched frequency causes a significant error in battery SOC and 

especially in power output. In addition, small deviations can be accounted from the increased 

losses in the WESS experimental system when compared to the BESS MATLAB model 

operating at very low power (<100kW), as especially seen from the night time period of the 

power and SOC plots in Fig. 4.12. This is because of the inverter operation efficiencies being 

outside of its optimised power range. It is also observed that the inverter efficiency of the real 

battery system shows variations in different power ranges during the operation. The inverter 

achieves >97% efficiency when operating above 70% rated power, however this efficiency 

falls with lower power. The comparison of experimental and simulation findings indicates that 
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the proposed DFFR control algorithm shows a good performance with 0.71% and 29.5kW of 

RMSE SOC and power error for 12 Oct 2016 frequency data, respectively.  

The power versus frequency plot of the experimental WESS and simulated BESS model for 12 

Oct 2016 is shown in Fig. 4.13 and Fig. 4.14, respectively. The red line represents the NGET 

required DFFR power line. It can be seen that the FFR power does remain within the envelope 

and hence this does not cause a penalty in SPM.  

As shown in the energy output findings of the DFFR algorithm having no SOC management 

and experimental WESS, there is only a small difference between the measured and simulated 

energy (see Table 4.2); hence the results are like suggest that the model and simulation method 

is appropriate.  

Table 4.2 Energy output findings of DFFR Algorithm with no SOC management (simulation) 

and experimental WESS (measured) for 12 Oct 2016 

 Import/Charge 

(kWh) 

Export/Discharge 

(kWh) 

Measured 1052 792.5 

Simulation 1048 779 
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Fig. 4.12 Comparison of the experimental and simulation results of DFFR control algorithm 

for 12 Oct 2016 frequency data. 

 

Fig. 4.13 Power versus frequency plot of measured DFFR algorithm with no SOC 

management for 12 Oct 2016 frequency data. 
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Fig. 4.14 Power versus frequency plot of simulated DFFR algorithm for 12 Oct 2016. 
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5 Lifetime Analyses of BESS Operating in Grid Frequency Regulation 

In this chapter, a new fast battery cycle counting method (CCM) for grid-tied BESS 

operating in frequency regulation is presented. The methodology provides an approximation 

for the number of battery full charge-discharge cycles based on historical microcycling SOC 

data typical of BESS frequency regulation operation. The proposed basic fast CCM is then 

improved by modifying it to group cycles by current C-rate, SOC and DOD. Using the existing 

Miner Rule’s degradation analysis method, a lifetime analysis using the CCM is carried out to 

provide a comparison between LTO and NMC batteries for grid scale batteries. The FFR and 

EFR control algorithms, developed in Chapter 3 in this thesis, are used for the analysis. Finally, 

it is proposed how the CCM grouped metrics (C-rate & SOC) could be used with experimental 

data to provide a more accurate prediction of SOH. 

5.1 Introduction 

Battery degradation is inevitable during usage and is a significant issue for applications 

requiring long life. Battery ageing leads to a deterioration in battery performance, electrically 

this is observed as an increase in resistance and decrease in capacity. As these are important 

features in any application it is necessary to understand how these change with lifetime of the 

battery. Furthermore, it is essential to identify how a battery management strategy can be 

implemented to minimize battery degradation under varying usage conditions.  

There are several factors affecting battery aging, such as C-rate, temperature, accumulated 

ampere-hour throughput, SOC range and DOD range. To extend battery lifetime by optimising 

its operating conditions, it is important to understand the impacts of these factors on battery 

aging [GAO18]. 

Numerous studies have been carried out for the degradation behaviours of li-ion batteries under 

different conditions. The research studies [GAO17], [MON15] examine the long-term effects 

of C-rate and charging cut-off voltage on battery degradation. The reference studies [OUY15], 

[SOM16] demonstrate that charging at a high C-rate or low temperature induces lithium plating, 

which will cause the rapid deterioration of battery capacity. With respect to the impact of SOC, 

the average SOC and the changes of SOC (ΔSOC) or DOD are the two important aspects 

[SAX16]. Most of the studies agree that the battery aging rate rises with the increasing of DOD 
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[WAT14], [ECK14], [WAN14]. The reference studies [SAX16], [HOK13] demonstrated that 

the capacity degradation range is faster when the battery is cycled around a high mean SOC. 

Research in [GAO18] is beneficial to the optimal usage of SOC range to increase battery 

lifetime, also gives to understanding the degradation inconsistency of batteries in a pack caused 

by the SOC inconsistency. 

Battery lifetime degradation caused by charge/discharge cycles, calendar life, operating 

temperature and DOD is still relatively unknown for different types of power applications 

[EIC13], [NEJ15], [NEJ16]. Similar to other storage applications, BESS cells have a rated life 

that is typically determined by the total number of deep battery charge-discharge cycles before 

reaching 80% of the initial capacity [ALA16]. This percentage of current capacity against 

initial capacity is referred to as the SOH and an estimation of SOH plot against full charge-

discharge cycles is often given by manufacturers (an example given in Fig. 5.11).  The 

difficulty in cycle counting for BESS operation in frequency regulation is the presence of 

irregular charge-discharge cycles of varying SOC. These microcycles (small cycles of <5% 

within a main charge-discharge time history) that exist in a SOC profile for a given period of 

time need to be interpreted to estimate the total battery cycle information, which then can be 

used to approximate the associated degradation of the BESS and provide a battery lifetime 

analysis [ALA16], [LUT15], [CER05]. It should be noted that other factors such as charge-

discharge rate and temperature should also be considered to give an accurate estimation of SOH. 

This chapter only focuses on the cycle count approximation based on battery SOC, C-rate and 

DOD. In literature, an approximation technique, called “Rainflow Cycle Counting Method” 

(RCCM) has been applied to battery cycle counting, it can also be used for fatigue analysis 

[MAT68], lifetime assessment of power semiconductor switches [RED15], BESS life 

degradation analysis for frequency regulation [CHA10] and BESS sizing [TAN13]. A 

comparison of the proposed fast counting method and the conventional RCCM [AMZ94] is 

presented as following; 

1) The RCCM [AMZ94] can only be applied to extreme points (peak and valleys), and hence 

the load data is transformed to a dataset with only peak and valley information, furthermore, it 

cannot be applied to real time data [MUS12]. However, this chapter introduces a fast cycle 

counting method (CCM) that approximates the number of full cycles a battery has endured for 

frequency response delivery. The change in the SOC is measured for each sample point, one 

second in the case of the data presented in this chapter. The CCM algorithm then considers 
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each positive and negative value as up (charge) and down (discharge) indexes, independently. 

The sum of all up and down indexes forms the charging data set and the discharging data set 

respectively. The proposed cycle estimation method processes all of the stored data and can be 

applied to real time data logged from a BESS.  

2) In the RCCM, half-cycles are counted only at the end of data. Therefore, it is difficult to 

calculate remaining useful life in between the load points [MUS12]. In the proposed CCM 

method, as the data is processed, if either the battery charging data set or discharging data set 

reach 100%, the half charge or half discharge cycle counts are incremented, independently. A 

full equivalent cycle is determined as the average of the battery charge and discharge cycles 

for the given period of time. This means that, the number of full equivalent cycles are estimated 

during the analyses rather than at the end of the data set. Therefore, it is simple to approximate 

remaining useful life in between the load points. 

3) In the RCCM, the calculation of mean temperature is independent of the time period 

[GOP15], however this is out of scope for this thesis. 

According to Xu et al. [XU18] electrochemical batteries have limited cycle life due to the 

fading of active materials caused by the battery charging and discharging cycles. This cycle 

aging is mainly caused by the growth of the cracks in the active materials that is a similar 

process with fatigue in materials subjected to cyclic mechanical loading. Heuristic battery 

lifetime models [XU18] assume that battery degradation is caused by various stress factors, 

each of which can be represented by a stress model acquired from experimental data. The effect 

of these stress factors change with the battery degradation type. It is convenient to divide those 

stress factors into two groups based on whether or not they are directly affected by the way a 

grid-tied battery is operated [XU18]: 

1) Operational Factors: Over charge, over discharge, C-rate, cycle depth and SOC. 

2) Non-operational Factors: Ambient temperature, calendar time, battery state of health. 

Cycle Depth: Cycle depth is a key factor in a battery’s degradation, and is the most important 

component in the battery energy storage dispatch market. For instance, a 7Wh NMC battery 

has been demonstrated to perform more than 50,000 cycles at 10% cycle depth, producing a 

lifetime energy throughput (i.e the total amount of energy charged and discharged from the cell) 

of 35kWh. If the same battery cell is cycled at 100% cycle depth, it has only been demonstrated 
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to perform 500 cycles, producing a lifetime energy throughput of only 3.5kWh [ECK14], 

[XU18].  

Over Charge and Over Discharge: In addition to battery cycle depth effect, extreme battery 

SOC levels significantly decrease battery life. However, overcharging and over discharging 

can be avoided by applying lower and upper limits on the SOC either in the dispatch or by the 

BESS management control [XU18]. 

Current Rate (C-rate): C-rate defines how fast a battery is charged or discharged. Charging at 

high C-rate induces lithium plating, which will result in the rapid deterioration of battery 

capacity [GAO18]. 

Average State of Charge: Evaluating the degradation of a battery cycled under various SOC 

ranges is important for the optimal control of operational SOC range. The battery aging rate 

increases with greater changes of SOC (ΔSOC) [GAO18]. 

Temperature: Temperature is a major aspect in battery performance, shelf life, charging and 

voltage control. The rated capacity of a battery is based on an ambient temperature of 25°C 

(77°F); any variation from this operating temperature could alter the performance of the battery 

and shorten its expected lifetime. In this thesis, it is assumed that the battery is always being 

operated at an ambient temperature of 25°C as a BESS maintains the temperature of the cells 

in a controlled environment.  

According to Swierczynski et al. [SWI13a] li-ion based BESS are attractive for stationary 

energy storage applications and in this paper the business case is investigated. In [SWI13a] the 

lifetime of an LFP based BESS, desirable owing to long calendar and cycle lifetime and 

intrinsic safety, was analysed when utilised for PFR service on the Danish electricity market. 

A semi-empirical lifetime model of the LFP battery cells was developed based on the findings 

of laboratory accelerated lifetime testing. The economic viability of the PFR service is studied 

showing it to be profitable with a great Net Present Value (NPV). However, it is shown that a 

significant impact on the NPV of the investment is the BESS lifetime. It is possible to improve 

the BESS lifetime through management of idling SOC and hence increase the NPV, but this 

needs a detailed lifetime model and knowledge about the Li-ion aging behaviour. 

Stroe et al. [STR17] investigated from the Li-ion based BESS lifetime point the sustainability 

of five methods for providing the PFR service and re-establishing the SOC of the BESS. It was 
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demonstrated that the proposed approach has a significant impact on a system’s lifetime; for 

the proposed PFR delivery and system’s SOC re-establishing approaches, the expected lifetime 

of the Li-ion BESS varied between 8.5 and 13.5 years. From the analysis, it was concluded that 

Strategy-A (i.e symmetrical participation in both down- and up-regulation markets and 

system’s SOC re-establish immediately after each grid frequency event passed) is a less 

appropriate method for PFR service delivery. In addition, by analysing the impact of the cycle 

depth and temperature on the expected lifetime of the BESS, the authors concluded that it is 

the temperature and not the cycle depth which shows a greater impact on batteries lifetime 

diminish when delivering the PFR service. 

In [SWI14], a methodology for the selection of the most appropriate ESS technology for 

integration with Wind Power Plants (WPPs) was presented. The methodology relied on the 

selection of ESS technology candidates with the lowest annual accumulated cycle cost for a 

specific ancillary service. PFR was studied in the paper for the presentation of methodology 

and it was revealed that li-ion batteries have the lowest annual accumulated cycle cost. In 

addition, they are advantageous due to their characteristics such as relatively long calendar 

lifetime, low self-discharge rate and decreasing cost. It is known that the Li-ion battery family 

is broad, however, the main focus of the paper is on LTO and NMC battery cells because they 

are suitable choices for grid integration, with both technologies providing high 

charge/discharge rates, relatively long lifetime, and high safety, which are important for 

renewable energy storage applications. In order to investigate the Virtual Power Plant (VPP) 

for different operating conditions, it is important to have accurate information about battery 

cell behaviour at all operating points. Therefore, in the paper, electrochemical impedance 

spectroscopy (EIS) based performance models of the LTO and LFP battery cells were also 

developed. The models are able to forecast the electrical characteristics of battery cells at 

different temperatures, SOCs and SOH. Furthermore, it was revealed that the same 

configuration of the equivalent electrical circuit can be used for LTO and LFP cells, producing 

accurate results.  

[STR16] dealt with the degradation behaviour of LFP battery cells when such batteries are used 

to deliver PFR in the Danish energy market. For achieving a reliable analysis, a lifetime model 

was developed for the considered battery cells and a field measured mission profile 

characteristics to the PFR application was examined. By implementing the PFR mission profile 

to the considered LFP battery cell lifetime model, it was revealed that the capacity is the 
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performance parameter that limited the considered LFP battery cells’ lifetime and not the power 

capability. The major contribution to the estimated capacity fade caused from the calendar 

dimension; the calendar capacity fade was accelerated by the operation conditions that involve 

idling the LFP cell at a high SOC range. Therefore, the lifetime of the considered battery cell 

might be increased by reducing the idling SOC range to values lower than 90%; though this 

reduction in idling SOC range would decrease the revenues generated from the up-regulation 

service, because less power would be bid into the market. However, for the proposed field-

measured PFR mission profile and with the existing PFR energy management method, the LFP 

cell would be able to meet the up-regulation service for a period of about 10 years before the 

EOL criterion would be reached. 

In [THO13], three control methods of the Li-ion based BESS for delivering PFR were analysed 

and compared. All three methods were linked to high economic benefits, and they were 

exposed to the same scenario, regarding frequency profile and market data. The BESS’s SOC 

profile is revealed to have a significant influence on the outcome. An example was 

demonstrated in [THO13], the first control method in the paper had the highest profits in the 

first year, however the NPV for his method was the lowest. This is because the nature of this 

method; i.e larger degradation owing to more substantial DODs. Accordingly, the estimated 

NPV for the second and third method in the paper were greater and associated with lower DOD 

characteristics. The price for PFR up-regulation service are greater than the down-regulation. 

This shows that higher revenue for the PFR service can be generated, by bidding for more PFR 

up-regulation than down-regulation generation; causing the SOC set-point to be increased 

(originally 50% in the paper). The disadvantage by doing so is a shorter battery lifetime, 

because higher SOC intervals accelerate the batteries degradation. Findings from prior study 

[SWI13b] were used to determine the relation between cycles and cell capacity degradation at 

various SOC ranges for the LFP batteries. It was revealed that the benefits were not increased 

by higher SOC ranges, as suggested, conversely, the benefits did increase by decreasing the 

SOC set-point. A lower price value for batteries, and different price relation between up-

regulation and down-regulation, could affect these outcomes. Therefore, SOC management 

should be influenced more from a lifetime point of view than increasing income revenues.  

Aiming to attain a serviceable and economical BESS, a battery sizing strategy was developed 

in [VEN09], focusing on peak demand shaving in a residential power distribution feeder with 

a PV system. However, in the study the lifetime analyses of BESS is considered and estimated 
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in the sizing procedure. Yang et al. [YAN14] presented a novel method to solve the above 

issues. The BESS usage, lifetime and system performance in terms of battery sizing were 

analysed on the developed distribution power system under different PV penetration levels. 

According to Gee et all. [GEE13], combining two or more ESSs provides the beneficial 

attributes from each device to be used. The aim of the study is to utilize the high cycle life of 

supercapacitors in a supercapacitor/battery hybrid ESS to improve battery lifetime. The work 

demonstrated that the active hybridization of supercapacitors and batteries can yield an 

improvement in the overall ESS power handling. It is revealed in [GEE13] that a 

supercapacitor-battery hybrid has higher overall system efficiency, lower battery costs and a 

general increase in battery life. The work also presents a new approach to quantify the potential 

increase in battery cycle lifetime owing to the addition of supercapacitor ES, and presents a 

means of system implementation and analysis.  

This chapter introduces a fast CCM for a grid-tied BESS, operational in grid frequency 

regulation, subjected to microcycles. The proposed CCM is then improved by considering only 

C-rate, then considering both C-rate and SOC and after that considering the DOD effect on the 

battery lifetime. In this chapter, all frequency response control algorithms developed in Chapter 

3 are simulated to produce battery SOC data for a given time period using historical frequency 

data, these are then used to demonstrate the battery cycle counting estimation algorithm. Finally, 

this chapter quantifies the microcycling in terms of full cycles to aid in the approximation of 

the degradation of a battery and the battery lifetime analysis using the Miner’s Rule method. 

5.2 Review on CCMs and Battery Degradation Methodologies 

This section investigates the type of cycle counting methods and the battery degradation 

methodology, called Miners’ Rule Method, used in this thesis. For better understanding, battery 

terminologies and characteristics have been introduced in 1.4.1. 

5.2.1 CCMs 

The lifetime of the battery is strongly affected by the number of charge/discharge cycles 

[TAN13]. The method in this thesis for estimating the battery lifetime is shown in Fig. 5.1. The 

BESS power is characterised by various microcycles with different magnitudes during the 

operation of grid support services such as ancillary services. Some microcycles are not 
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completed full cycles; as discussed in the introduction they can be considered as half cycles by 

using an appropriate method, i.e the RCCM. 

 

Fig. 5.1 Proposed battery lifetime estimation process. 

To estimate the life of a component subjected to a variable amplitude load history, cycle 

counting techniques are applied to reduce the complex load history into a number of events. 

The well-known cycle counting methods are 1) Peak counting, 2) Hayes method, 3) Level 

counting, 4) Simple range counting and 5) Racetrack method. The most common cycle 

counting technique, The RCCM, has gained much interest as it provides the average value and 

has minimal relative error [MAI11]. The conventional RCCM first developed by Matsuishi and 

Endo [MAT68] is derived from the rain flowing (dripping) off the pagoda roofs [GOP15]. 

A BESS operating in grid support applications such as grid frequency regulation, energy 

arbitrage, triad avoidance etc. experiences a SOC evaluation which does not typically have a 

regular cycling pattern. Therefore, a cycle counting algorithm has been used in this chapter to 

identify the equivalent number cycles experienced by the battery for every possible DOD under 
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RCCM algorithm in Matlab to determine the number of cycles experienced by the batteries 

operating as an ESS in the PV power plant. 

According to Nuhic et al [NUH13], the RCCM is also used in the work for SOC cycle counting, 

to count e.g how often the battery SOC jumps from one value to another and vice versa. If the 

time axis in Fig. 5.2 is rotated by 90% in a clockwise direction, then the dotted lines on the left 

side of the curve arise at its maximum (horizontal curve’s view), flow to its next minimum (𝐴𝐵) 

and drop down. Rainflows from a higher maximum source interrupt rainflows from a lower 

maximums (𝐶𝐵′). In addition, a rainflow is stopped when it meets a maximum or minimum 

(horizontal view) that is beneath the stating rainflow source (𝐵𝐶, because the minimum at D is 

beneath the starting minimum). A half cycle is counted between a maximum and minimum of 

one line, 𝐸𝐹 in Fig. 5.2. This has to be done also for the right of the curve, only that now 

sources are the minimums (horizontal curve’s view). The resulting cycle is a combination of 

two half cycles from the left and right side of the curve, with the same maximum and minimum 

values. In Fig. 5.2, these are A-D-G, E-F-E' and B-C-B', and the counter will be increased only 

for the correspondent classes 1-7, 2-5 and 4-6. 

 

Fig. 5.2 Demonstration of Rainflow cycle counting in [NUH13]. 
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According to Chawla et al. [CHA10], every charge-discharge cycle causes degradation, 

qualitatively. Fig. 5.11 shows an example plot of the number of cycles as a part of the sub-

cycle DOD amplitude for the LTO battery. For instance, if a battery typically generates 600-

700 cycles at 100% DOD, it will generate many more cycles at a lower DOD. It can be said 

that a battery which has a life of X with 100% DOD cycles and proportionally larger life with 

smaller depth cycles, would generate more than 2X number of cycles of 50% DOD [CHA10].  

A BESS response for grid frequency regulation contains random microcycling of varying C-

rate and DOD making them complex. Therefore, RCCM is used in [CHA10] to transform these 

complex cycles into simple sub-cycles, where two fundamental assumptions were made: 

1) A complex cycle can be decomposed into a set of equivalent, simple sub-cycles of 

different DOD and amplitude; 

2) The aging from the combination of sub-cycles is cumulative and can be summed up 

from the individual sub-cycle effects. 

One cycle is described as a complete charge-discharge from/to the same point, either SOC or 

DOD can be used for this analysis. In [CHA10], both SOC and DOD were used interchangeably. 

More detail about the demonstration of the RCCM algorithm used can be found in [CHA10]. 

Each sub-cycle introduces a certain degradation in the LTO battery, based on the partial DOD 

cycle data in Fig. 5.11 [ONL18y]. Degradations due to the different DOD sub-cycles are added 

and this provides the total degradation of the battery over the considered profile. 

5.2.2 Battery Degradation Analyses Methodology 

As discussed in the introduction, research has been carried out on the degradation analysis of 

the different types of batteries. The contributing factors mostly investigated are: the number of 

cycles experienced, the charge and discharge rates, the operational temperature, the DOD of 

the cycles, the available SOC of the battery, the total processed energy and the end of charge 

voltage. In this chapter, three degradation factors, the number of cycles experienced during 

operation and their DOD, SOC and C-rate, are considered.  

Once the number of cycles is determined using the RCCM, it is compared with the cycling 

capacity curves of the various batteries, for a LTO battery (see Fig. 5.11). These curves 

obtained from the battery manufactures show the number of cycles that a battery can support 
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(before reaching EOL) for different DODs. The ageing experienced by the various batteries 

throughout the simulated year and the ratio of the battery lifetime that has been consumed can 

be estimated according to the Palmgren-Miner’s rule with the equation (5.1).  

𝐵𝑎𝑡𝑡𝑒𝑟 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 = ∑
𝑁𝑐𝑦𝑐(𝐷𝑂𝐷)

𝑁𝑚𝑎𝑥(𝐷𝑂𝐷)

𝐷𝑂𝐷=100

𝐷𝑂𝐷=1

 (5.1) 

Where 𝑁𝑚𝑎𝑥 is the number of cycles that the battery can withstand for each specific DOD, 

according to capacity evolution curves of the various batteries such as PbA and LTO (Fig. 

5.11); and 𝑁𝑐𝑦𝑐 is the number of cycles returned by the RCCM algorithm and experienced for 

each amplitude (defined by the DOD variable).  

In practice, since the batteries are considered to be EOL when the “Battery Degradation” 

parameter given in equation (5.1) reaches a value equal to 1, the battery expected lifetime can 

be estimated, taking into account that the simulated period is equal to one month, as in (5.2): 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑜𝑑

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛
 (5.2) 

Therefore, this calculation can also be performed for the various types of batteries and for the 

different energy capacities considered. 

5.3 A New Fast CCM Considering Various Effects on Battery Lifetime 

A new fast CCM considering various effects, including C-rate, SOC and DOD, on battery 

lifetime for grid-tied BESS operating in grid frequency regulation is presented in this section. 

Firstly, the proposed CCM is described and demonstrated to count generic cycles. Then, the 

proposed CCM is improved by considering only C-rate effect and then considering both C-rate 

and SOC conditions on battery lifetime. Finally, the fast CCM considering DOD in partial 

charge and discharge cycles is developed in the last section. After that, the recovery discharge 

capacity versus number of cycles plot of the Toshiba SCiB LTO battery as shown in Fig. 5.11, 

Fig. 5.12 and the NMC battery (Fig. 5.13) will be used for lifetime analysis. 
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5.3.1 A Basic Fast CCM 

The proposed fast CCM is demonstrated for a BESS delivering frequency response services 

(e.g EFR and FFR) to the grid. This service demands from the BESS irregular charge-discharge 

cycles of varying power caused by the real grid frequency variability as discussed in Chapter 

3.  

 

Fig. 5.3 Flow chart of the basic CCM for a grid-tied BESS subjected to microcycles. 

The proposed basic fast CCM shown in Fig. 5.3 is used to approximate the number of full 

cycles a battery has endured using historical battery SOC data for EFR delivery. The method 

is described as following: 
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• The algorithm loops through the historical SOC data that has been previously obtained 

by simulating the EFR control algorithm over a period of time. In the first step, the 

change in battery SOC (𝑑𝑆𝑂𝐶/𝑑𝑡) is extracted for each second by second. If 𝑑𝑆𝑂𝐶/𝑑𝑡 

is greater than zero, the battery is charging; if it is less than zero, the battery is 

discharging; or if it is equal to zero, the battery is resting. 

• The algorithm considers each positive and negative value of 𝑑𝑆𝑂𝐶/𝑑𝑡 as “Up” and 

“Down” indexes, respectively. In the second step (Fig. 5.3), the sum of all up indexes 

forms the battery SOC charging data set 𝑆𝑂𝐶𝑐ℎ𝑔 and the sum of all down indexes forms 

the battery SOC discharging data set 𝑆𝑂𝐶𝑑𝑖𝑠𝑐ℎ𝑔. 

• In the third, during the simulation when each 𝑆𝑂𝐶𝑐ℎ𝑔 and 𝑆𝑂𝐶𝑑𝑖𝑠𝑐ℎ𝑔 equals to 100%, 

the battery charge 𝐶𝑦𝑐𝑙𝑒𝑐ℎ𝑔  and discharge cycle 𝐶𝑦𝑐𝑙𝑒𝑑𝑖𝑠𝑐ℎ𝑔  are incremented, 

independently. A full battery cycle 𝐶𝑦𝑐𝑙𝑒𝑡𝑜𝑡𝑎𝑙 is calculated as the average of battery 

charge and discharge cycles for the given period of time. 

• The algorithm processes the SOC data recursively providing a total cycle count at the 

end. 

 

Fig. 5.4 Simulation results of EFR-A1 with Service-2 for 21st Oct 2015 frequency. 



202 

 

 

Fig. 5.5 Demonstration of the proposed fast basic CCM on a 24-hour profile of a battery SOC 

data set obtained by simulating the EFR-A1 for 21st Oct 2015 frequency data. 

The operational principle of the proposed basic CCM is demonstrated on the 24-hour profile 

of a battery SOC obtained by simulating the EFR-A1 with Service-2 for the 21st October 2015 

(Fig. 5.4). Using the proposed method in Fig. 5.3, it can be seen that one charging and one 
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discharging half-cycle is counted, hence in total one full battery cycle is obtained from 21st 

October 2015 as shown in Fig. 5.5.  

5.3.2 Simulation Results of the Basic Fast CCM 

In this section the considered frequency response control algorithms from Chapter 3 have been 

simulated in MATLAB/Simulink to achieve the output battery SOC data for use in analysing 

the proposed CCM algorithm. In order to demonstrate the performance of the proposed 

frequency response control algorithm, the real grid frequency data for the October 2015 

[ONL18v] is used herein, which is a particular month that is known to have a large period of 

under frequency.  

A. Simulation Results of the EFR-A1, EFR-A2, EFR-A3, EFR-A4 and DFFR Algorithms 

The simulation results of the EFR–A1 and the DFFR control algorithm are shown in Fig. 5.6 

and Fig. 5.8, respectively. The simulation results of the EFR–A2, EFR–A3 and EFR–A4 with 

different proportional gain values (𝐾𝑝 = 2000, 10000, 100000) are shown in Appendix Fig. 

B.1, Fig. B.3, Fig. B.5, Fig. B.7 and Fig. B.9 in Appendix B. 

According to Fig. 5.6, the EFR–A1 delivers to the EFR specification, whilst managing the 

battery SOC to the specified band of 45-55%. In the EFR algorithm it is possible to define two 

purposes for power flow in and out of the battery; the first is defined as that of 

charging/discharging the battery i.e power is requested in either direction for the sole purpose 

of managing the battery SOC and not for EFR; the second is import/export which defines when 

the BESS is performing a mandatory response to a grid frequency event.  

According to the EFR–A2 simulation findings in Fig. B.1 in Appendix B, the algorithm 

covering the extended grid frequency event controller cuts the EFR power output after 15 

minutes; as a result the BESS is 100% available for delivering power according to the EFR 

specification. According to the EFR–A3 simulation findings in Fig. B.3 in Appendix B, the 

algorithm covering the extended grid frequency event controller allows for the 

charge/discharge of the battery during the 30-minute rest period. The simulation results 

demonstrated that again, the BESS delivers 100% availability as similar with EFR–A2, 

however, the lowest SOC achieved with EFR–A3 (Fig. B.3 in Appendix B) is higher than that 

of EFR–A2 (Fig. B.1 in Appendix B). This is a significant achievement in terms of maximising 

the utilisation of the BESS stored energy. 
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Fig. B.5, Fig. B.7, Fig. B.9 in Appendix B show the simulation results of the EFR–A4 covering 

proportional controller with the proportional gain of ( 𝐾𝑝 = 2000, 10000, 100000) set, 

respectively. It is clear from the simulation results, applying proportional controller in EFR–

A4, the amount of EFR power delivered is relatively reduced without causing a BESS 

availability penalty in EFR service. Since there is no requirement to have full power changes 

as performed in EFR–A1 (Fig. 5.6), implementing proportional controller into the algorithm 

reduces the battery C-rate; hence this will increase the battery lifetime. 

According to the DFFR simulation findings in Fig. 5.8, the algorithm delivers to the DFFR 

specification with the DB of ±15mHz. The DFFR algorithm with no SOC management only 

imports (buy) or only exports (sell) power from/to grid, responding to the grid frequency event. 

This means the DFFR algorithm does not allow the battery managing its SOC in the DB.  

B. Simulation Results of the Basic Fast CCM Algorithm for EFR and DFFR Service Delivery 

In this section, data analysis is carried out using the basic CCM algorithm described in Section 

5.3.1 for a 1MWh capacity of grid-tied BESS in order to quantify the microcycling to the 

equivalent number of full charge-discharge cycles. Using the battery SOC data obtained by 

simulating the EFR–A1 and the DFFR control algorithm for the whole of October 2015, the 

proposed basic CCM algorithm is processed in MATLAB/Simulink with the results shown in 

Fig. 5.7 and Fig. 5.9, respectively. Using the battery SOC data obtained by simulating the EFR–

A2, EFR–A3, and EFR–A4 with different proportional gain values ( 𝐾𝑝 =

2000, 10000, 100000) for the whole of October 2015, the basic CCM algorithm is processed 

with the results shown in Fig. B.2, Fig. B.4, Fig. B.6, Fig. B.8, Fig. B.10 in Appendix B, 

respectively. 

The basic CCM algorithm (Fig. 5.3) approximates the total number of equivalent full charge-

discharge cycles experienced by the grid-tied BESS for EFR delivery in October 2015. As can 

be seen from the simulation results in Fig. 5.7, the average 𝑑𝑆𝑂𝐶/𝑑𝑡 is ≤0.2%, causing many 

microcycles due to the variability in the real grid frequency. The proposed fast basic CCM 

identifies and measures all microcycles for October 2015 as shown in Fig. 5.7. Following the 

next steps in the algorithm, if the changes in SOC are positive (𝑑𝑆𝑂𝐶/𝑑𝑡 > 0), the battery is 

charging or if those changes are negative (𝑑𝑆𝑂𝐶/𝑑𝑡 < 0), the battery is discharging. Therefore, 

by summing the charging (𝑈𝑝) and discharging (𝐷𝑜𝑤𝑛) indexes detected from the considered 

SOC data, 49 battery charging and discharging half-cycles are obtained independently, 
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approximating to a total of 49 battery full cycles. It can be seen from the analysis that this 

algorithm can be applied to larger SOC data sets or even applied in real-time. Comparing this, 

a total of 34 and 35 cycle is obtained by analysing the proposed cycle counting algorithm for 

October 2015; it can be said that based on cycling alone, EFR–A1 (Fig. 5.7) will tend to degrade 

the battery at a higher rate than EFR–A2 (Fig. B.2 in Appendix B) and EFR–A3 (Fig. B.4 in 

Appendix B). It can be seen from Fig. B.6, Fig. B.8, Fig. B.10 in Appendix B, a total of 21, 24 

and 26 cycles are counted from analysing EFR–A4 by setting different gain values of 𝐾𝑝 =

2000, 10000, 100000  respectively. It is revealed that the higher 𝐾𝑝  value set in the 

proportional controller in EFR-A4, the higher degradation rate in the battery because of the 

higher EFR power delivered to the grid responding to the grid frequency events. In addition, 

one year of data analysis is carried out using the basic fast CCM for all the considered 

frequency response control algorithms. Using the battery SOC data obtained by simulating the 

EFR-A1, EFR-A2, EFR-A3 and EFR-A4 with the proportional gain of 𝐾𝑝 = 10000 , and the 

DFFR control algorithm for the whole year of 2015, the basic CCM algorithm is processed for 

LTO and NMC batteries with the results shown in Table 5.1. 

 

Fig. 5.6 Simulation results of the EFR-A1 with Service-2 for October 2015. 
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Fig. 5.7 Demonstration of the basic CCM on 1-month profile of a battery SOC data set 

obtained by simulating the EFR-A1 for whole October 2015 frequency data. 
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Fig. 5.8 Simulation results of the DFFR Algorithm for October 2015. 

In this thesis, utilising the manufacturer cycling (12,000 cycles for LTO and 8,000 cycles for 

NMC battery) and the extracted number of cycles, the Miner Rule’s method, described in 5.2.2 

with the equations (5.1) and (5.2), is used for determining the degradation rate in the batteries.  

As seen from the cycle and degradation findings in Table 5.1, EFR-A1 degrades the LTO and 

NMC battery ~4.6% and ~6.9% in a year on EFR service operation, respectively. EFR –A4 

setting 𝐾𝑝 = 10000 deteriorates the batteries much lower than EFR-A1, without getting a 

system availability penalty on delivering EFR service; this reduces the C-rate and hence 

increases the life time of the batteries. As seen from Table 5.1 and Table 5.2, the EFR-A2 and 

EFR-A3 degrade the LTO and NMC batteries at almost the same rate, but lower than that of 

EFR-A1. 

Comparing with the EFR control algorithms, the DFFR algorithm delivers only half the amount 

(1MW) of dynamic power by the same capacity of battery (1MWh), however it degrades the 

batteries quite fast in a year under dynamic frequency response operation; because the 

algorithm cannot manage the batteries SOC in order to extend the battery lifetime. 
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Fig. 5.9 Demonstration of the basic CCM on 1-month profile of a battery SOC data set 

obtained by simulating the DFFR algorithm for whole October 2015 frequency data. 
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Table 5.1 Cycling findings from the basic CCM and degradation rate findings from the Miner 

Rule’s Method for LTO (manufacturer cycling=12,000 cycles) and NMC (manufacturer 

cycling=8,000 cycles) battery with all the considered frequency response algorithms for 

October 2015 (1 month data) 

Frequency response 

algorithm 

Total no of cycles 

(cycle) 

LTO battery 

degradation (%) 

NMC battery 

degradation (%) 

EFR-A1 49 0.4083 0.6125 

EFR-A2 34 0.2833 0.425 

EFR-A3 35 0.2916 0.4375 

EFR-A4 

(𝐾𝑝 = 10,000) 
24 0.2 0.3 

DFFR 32 0.2666 0.4 

 

Table 5.2 Cycling findings from the basic CCM and degradation rate findings from the Miner 

Rule’s Method for LTO (manufacturer cycling=12,000 cycles) and NMC (manufacturer 

cycling=8,000 cycles) battery with all the considered frequency response algorithms for the 

whole year of 2015 (1 year data) 

Frequency response 

algorithm 

Total no of cycles 

(cycle) 

LTO battery 

degradation (%) 

NMC battery 

degradation (%) 

EFR-A1 553 4.6083 6.9125 

EFR-A2 375.5 3.1292 4.6937 

EFR-A3 383.5 3.1958 4.7937 

EFR-A4 

(𝐾𝑝 = 10,000) 
256 2.1333 3.2 

DFFR 364 3.0333 4.55 
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5.3.3 Fast CCM considering only C-rate Effect on Battery Lifetime 

In this section, the basic CCM described in 5.3.1 is improved by considering the effect of C-

rate on battery lifetime analysis. 

 

Fig. 5.10 Scheme of the fast cycle counting method considering C-rate effect. 

The proposed method in this section as shown in Fig. 5.10 determines the number of charge 

and discharge cycles a battery subjected under different C-rate values grouped by 0.1C, 0.2C, 

0.4C, 0.6C, 0.8C and 1C. The proposed CCM considering C-rate effect on battery lifetime is 

desribed as following: 

• The algorithm  loops through the historical battery SOC data attained by simulating the 

frequency response control algorithm over a period of time. In the first step, the change in 

battery SOC (𝑑𝑆𝑂𝐶/𝑑𝑡) is extracted for each second by second. 

• In second step, battery C-rate is calculated based on 𝑑𝑆𝑂𝐶/𝑑𝑡 (𝛥𝑆𝑂𝐶) as formulized 

in equation from (5.3) to (5.8). At this step, it is possible to calculate C-rate based on the amount 

of battery power, however it is revealed that using 𝛥𝑆𝑂𝐶 for extracting C-rate provides more 

accurate results. At the end of this step, the battery C-rate profile is extracted for each second 

by second. In this chapter, the calculation of C-rate based on 𝛥𝑆𝑂𝐶  is extracted from the 

following equations: 

SOC(t) = SOC(𝑡 − 1) +
1

3600. 𝑄
∫ 𝑃. 𝑑𝑡

𝑡

𝑡−1

 (5.3) 

 

𝑑𝑆𝑂𝐶

𝑑𝑡
(%) = SOC(t) − SOC(𝑡 − 1) (5.4) 

 

Calculate C-rate 

based on ΔSOC
SOC (%) Extract ΔSOC Grouping C-rate

by  0.2C
BLOCK

CYCLE
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𝑑SOC

𝑑𝑡
(%) =

1

3600. 𝑄
∫ 𝑃. 𝑑𝑡

𝑡

𝑡−1

 (5.5) 

 

𝛥SOC(%) =
1

3600. 𝑄. 𝛥𝑡
. 𝑃. 𝛥𝑡 (5.6) 

 

𝐶𝑟𝑎𝑡𝑒 =
𝑃

𝑄
 (5.7) 

 

𝐶𝑟𝑎𝑡𝑒 =
𝛥𝑆𝑂𝐶(%) . 3600

100
 (5.8) 

 

• In third step, the obtained C-rate data is grouped by 0.1C, 0.2C, 0.4C, 0.6C, 0.8C or 1C 

in order to determine the number of cycles at that point of C-rate. It should be noted that the 

C-rate data can be grouped by different scales as desired. 

• In the last step, the algorithm approximates the number of cycles the battery subjected 

at each C-rate value over the period of time. This step has already described in Section 5.3.1 

and its flow diagram (Fig. 5.3) is named as “Block Cycle” in the proposed cycle counting 

method considering C-rate effect in Fig. 5.10 (green block).  

5.3.4 Simulation Results of the Fast CCM considering C-rate Effect  

In this section, data analysis is carried out using the fast CCM algorithm, described in Section 

5.3.3 (Fig. 5.10), for a 1MWh capacity of grid-tied BESS in order to quantify the microcycling 

to the equivalent number of full charge-discharge cycles under different C-rate values. Using 

the battery SOC data obtained by simulating the frequency response algorithms (EFR and 

DFFR) for the whole of October 2015, the proposed fast CCM algorithm (Fig. 5.10) is 

processed in MATLAB/Simulink with the results shown in this section. 
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Fig. 5.11 Cycle characteristics of Toshiba SCiB LTO battery cell [ONL18y]. 

 

 

Fig. 5.12 LTO battery cycle characteristic assumed in this thesis. 

SOC 0-100% Cycle condition

Charge: 20A (1C) CC-CV 2.7V to 1.0A

Discharge: 20A (1C) to 1.5V

Rest: 20 min

Ambient Temp: 25 C

SOC 50-90% Cycle condition

Charge: 20A (1C) to 2.511V

Rest: 20min

Discharge: 20A (1C) to 2.273V

Rest: 20 min

Ambient Temp: 25 C

There is almost no degradation for the partial

charge/discharge (SOC 50-90%)

1C SOC 0-100%

1C SOC 50-90%

0                      2000                    4000                   6000                    8000                  10000    12000

Number of Cycles (cycle)

100

80

60

40

20

120
R

ec
o
v

er
y
 D

is
ch

ar
g

e 
C

ap
ac

it
y
 (

%
)



213 

 

 

Fig. 5.13 NMC battery cycle characteristic assumed in this thesis. 

In this section, using the battery SOC data attained by simulating the EFR-A1 for a ‘Service-

2’ EFR for the whole of October 2015, the proposed CCM algorithm is simulated in 

MATLAB/Simulink in this section with the results in Table 5.3 and Table 5.4. The proposed 

algorithm determines the number of charge-discharge cycles experienced by the BESS 

operating in EFR service at each C-rate levels grouped by 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, and 

1% in October 2015. As previously mentioned in Section 5.3.2 (Fig. 5.7 and Table 5.1), the 

battery is subjected to 49 full charge-discharge cycles on delivering EFR service with the EFR-

A1 in October 2015. Comparing this, in this section as seen from Table 5.3, the highest number 

of charge-discharge cycle occurs at the C-rate value of 0.2C to 0.4C with 20.23 cycles, and the 

second great number of cycle is obtained at 0.1-0.2C with 17.42 cycles. Therefore, it can be 

said that the battery spends most of its time in this operating region, therefore one could 

consider degradation rates associated with 0.1C-0.4C range (Table 5.3 and Table 5.4). The 

table shows that the number of cycle at higher than 0.8C is almost zero; this means that the 

battery rarely operates at higher C-rate (>0.8C) in October 2015; causing close to zero percent 

degradation in the battery during EFR service operation. 
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This chapter has two assumptions on the LTO and NMC battery manufacturer cycling data: in 

Data-1 it is assumed that the battery lifetime is 12,000 and 8,000 cycles for LTO and NMC 

battery for all the C-rate values; however in Data-2 it is assumed that the LTO and NMC battery 

lifetimes show variations for each grouped C-rate value, as shown in Fig. 5.12 and Fig. 5.13, 

respectively. The higher C-rate level, the lower battery cycling. Therefore, using the battery 

manufacturer’s data and the extracted number of cycle at each C-rate grouped, the total battery 

degradation rate caused by BESS cycling under different C-rate values can be formulized as in 

equations (5.9) and (5.10) utilizing the Miner’s Rule aging analysis method described in 

Section 5.2.2.  

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑒𝑎𝑐ℎ 𝐶 (%) =
𝑁𝑜 𝑜𝑓 𝐶𝑦𝑐𝑙𝑒𝑠 𝑎𝑡 𝑒𝑎𝑐ℎ 𝐶

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑁𝑜 𝑜𝑓 𝐶𝑦𝑐𝑙𝑒𝑠
 (5.9) 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 (%) = 𝑆𝑢𝑚 𝑜𝑓 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑒𝑎𝑐ℎ 𝐶 (%) (5.10) 

Table 5.3 Degradation findings obtained from the fast cycle counting method under different 

C-rate values for LTO and NMC battery with EFR -A1 for October 2015 frequency 

C-rate (C) 
No of Cycles 

(cycle) 

LTO degradation at 

each C-rate (%) 

NMC degradation at 

each C-rate (%) 

C≤0.1 6.03 0.05 0.0754 

0.1C< C-rate ≤0.2C 17.42 0.1452 0.2177 

0.2C< C-rate ≤0.4C 20.23 0.1686 0.2529 

0.4C< C-rate ≤0.6C 5.266 0.0439 0.0658 

0.6C<C-rate≤0.8 0.432 0.0036 0.0054 

0.8C< C-rate ≤1C 0.02511 0.0002 0.0003 

                                                                                              Total LTO battery degradation (%): 0.4115 

Total NMC battery degradation (%): 0.6175 
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Table 5.4 Degradation findings obtained from the fast cycle counting method under different 

C-rate values for LTO and NMC battery with EFR -A1 for October 2015 frequency 

C-rate (C) 
No of Cycles 

(cycle) 

LTO degradation at 

each C-rate (%) 

NMC degradation at 

each C-rate (%) 

C≤0.1 6.03 0.0274 0.0335 

0.1C< C-rate ≤0.2C 17.42 0.0871 0.1089 

0.2C< C-rate ≤0.4C 20.23 0.1124 0.1445 

0.4C< C-rate ≤0.6C 5.266 0.0329 0.0439 

0.6C<C-rate≤0.8 0.432 0.0031 0.0043 

0.8C< C-rate ≤1C 0.02511 0.0002 0.0003 

                                                                                              Total LTO battery degradation (%): 0.2631 

Total NMC battery degradation (%): 0.3354 

Using the constant battery cycling Data-1 for LTO (Fig. 5.12) and NMC (Fig. 5.13) battery, 

Table 5.3 shows that the total degradation rate caused by BESS cycling is determined as around 

0.41% for LTO battery and 0.62% for NMC battery per month (October 2015). On the other 

hand, using battery cycling Data-2 which considers the cycling variable for each group C-rate 

level as seen from Fig. 5.12 and Fig. 5.13, the total degradation rate caused by BESS cycling 

is calculated as 0.26% for LTO battery and 0.34% for NMC battery per month. Comparing the 

results, there is a significant difference on the total degradation findings of the LTO and NMC 

battery in Table 5.3 and Table 5.4, this shows that the effect of C-rate on battery lifetime 

analysis should be considered for more accurate and sensitive lifetime analysis. Table 5.4 

shows that the BESS participating in EFR service delivery is mostly operated at 0.2-0.4C with 

20.23 cycles, causing 0.17% and 0.25% degradation in LTO and NMC battery respectively. 

5.3.5 Fast CCM considering both C-rate and SOC Effect on Battery Lifetime 

In this section, the CCM described in Section 5.3.3 is improved by considering the effect of C-

rate and SOC on battery lifetime. The proposed CCM in this section approximates the number 

of complete battery charge-discharge cycles experienced by the grid-tied BESS under different 
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C-rate values grouped by 0.1C, 0.2C, 0.4C, 0.6C, 0.8C, 1C for each SOC range grouped by 

10%, as shown in Fig. 5.14 .  

 

Fig. 5.14 Scheme of the fast CCM considering both C-rate and SOC effect on battery lifetime. 

In this section, the proposed fast CCM considering C-rate and SOC effect on battery lifetime 

is described as following:  

• The algorithm  loops through the historical battery SOC data attained by simulating the 

frequency response control algorithm over a period of time. In the first step, the change in 

battery SOC (𝑑𝑆𝑂𝐶/𝑑𝑡) is extracted for each second by second. 

• In second step, battery C-rate is extracted for each second. In this section, the C-rate is 

calculated using 𝛥𝑆𝑂𝐶, as derived from the equations from (5.3) to (5.8). At this step, it is 

possible to calculate C-rate based on the amount of battery power, however it is revealed that 

using 𝛥𝑆𝑂𝐶 for extracting C-rate provides more accurate results.  

• In third step, the battery SOC is grouped by 10% to create a state for extracting the C-

rate values at that point of the SOC; this step is shown in the blue block in Fig. 5.14.  

• In the forth step, the obtained C-rate data is grouped into groupings of 0.1C, 0.2C, 0.4C, 

0.6C, 0.8C or 1C in order to determine the number of cycles at that point of C-rate.  

• In the last step, the basic CCM algorithm, presented in Fig. 5.5 in Section 5.3.1, 

approximates the number of cycles the battery is subjected to at each C-rate value for each 

SOC range grouped by 10%. This basic cycle counting step is shown in the green ‘BLOCK 

CYCLE’ in Fig. 5.14.  

Calculate C-rate 

based on ΔSOCSOC (%) Extract ΔSOC

Grouping SOC

by 10% based 

on ΔSOC

Grouping C-rate

by 0.2C

BLOCK

CYCLE

State

C-rate
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5.3.6 Simulation Results of the Fast CCM considering both C-rate and SOC effect  

For the battery lifetime analysis, it is assumed in this section that the LTO and NMC battery 

cycling data for each C-rate for each grouped SOC range is given in Table 5.5 and Table 5.6, 

respectively. Therefore, using the battery’s manufacturer cycling data and the extracted number 

of cycle at each C-rate for each SOC grouped, the total battery degradation rate caused by 

BESS cycling can be calculated as in (5.11) and (5.12) utilizing the Miner Rule’s aging 

analyses method described in 5.2.2. 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑒𝑎𝑐ℎ 𝐶 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑆𝑂𝐶 (%)

=
𝑁𝑜 𝑜𝑓 𝐶𝑦𝑐𝑙𝑒𝑠 𝑎𝑡 𝑒𝑎𝑐ℎ 𝐶 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑆𝑂𝐶

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑁𝑜 𝑜𝑓 𝐶𝑦𝑐𝑙𝑒𝑠
 

(5.11) 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 (%)

= 𝑆𝑢𝑚 𝑜𝑓 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑒𝑎𝑐ℎ 𝐶 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑆𝑂𝐶 (%) 
(5.12) 

Table 5.5 Cycling data assumed for LTO battery for each C-rate for each SOC range grouped. 

(for LTO battery) 

 
C-rate 

0.1 0.2 0.4 0.6 0.8 1 

S
O

C
 (

%
) 

10 26,500 24,500 22,500 20,500 18,500 16,500 

20 26,000 24,000 22,000 20,000 18,000 16,000 

30 25,500 23,500 21,500 19,500 17,500 15,500 

40 25,000 23,000 21,000 19,000 17,000 15,000 

50 24,500 22,500 20,500 18,500 16,500 14,500 

60 24,000 22,000 20,000 18,000 16,000 14,000 

70 23,500 21,500 19,500 17,500 15,500 13,500 

80 23,000 21,000 19,000 17,000 15,000 13,000 

90 22,500 20,500 18,500 16,500 14,500 12,500 

100 22,000 20,000 18,000 16,000 14,000 12,000 
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Table 5.6 Cycling data assumed for NMC battery for each C-rate for each SOC range grouped. 

(for NMC battery) 

 
C-rate 

0.1 0.2 0.4 0.6 0.8 1 

S
O

C
 (

%
) 

10 22,500 20,500 18,500 16,500 14,500 12,500 

20 22,000 20,000 18,000 16,000 14,000 12,000 

30 21,500 19,500 17,500 15,500 13,500 11,500 

40 21,000 19,000 17,000 15,000 13,000 11,000 

50 20,500 18,500 16,500 14,500 12,500 10,500 

60 20,000 18,000 16,000 14,000 12,000 10,000 

70 19,500 17,500 15,500 13,500 11,500 9,500 

80 19,000 17,000 15,000 13,000 11,000 9,000 

90 18,500 16,500 14,500 12,500 10,500 8,500 

100 18,000 16,000 14,000 12,000 10,000 8,000 

 

Table 5.7 Number of cycles obtained from the fast cycle counting method considering SOC 

and C-rate effect for EFR-A1 for October 2015 frequency data. (for LTO and NMC battery) 

 
C-rate 

0.1 0.2 0.4 0.6 0.8 1 

S
O

C
 (

%
) 

10 0.03176 0.08897 0.05415 0.003499 0 0 

20 0.009354 0.02281 0.0738 0.00559 0 0 

30 0.07636 0.2257 0.2241 0.06883 0.00216 0 

40 0.1782 0.6087 0.723 0.2022 0.01163 0.0005625 

50 3.186 8.626 9.047 2.23 0.1693 0.003902 

60 2.409 7.226 9.249 2.508 0.2179 0.01754 

70 0.1026 0.4928 0.665 0.2053 0.02576 0.003105 

80 0.01563 0.04898 0.1061 0.02974 0 0 

90 0.009212 0.04938 0.03559 0.01201 0.005155 0 

100 0.0114 0.02604 0.0555 0 0 0 
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Table 5.8 Degradation analysis using the fast cycle counting method considering SOC and C-

rate effect for EFR-A1 for October 2015 frequency data. (for LTO battery) 

 
C-rate 

0.1 0.2 0.4 0.6 0.8 1 

S
O

C
 (

%
) 

10 0.00011985 0.000363 0.000241 0.0000171 0 0 

20 0.0000359 0.000095 0.000335 0.000028 0 0 

30 0.00029945 0.00096 0.001042 0.000353 0.000012 0 

40 0.0007128 0.002647 0.003443 0.001064 0.000068 0.000004 

50 0.01300408 0.038338 0.044132 0.012054 0.001026 0.000027 

60 0.0100375 0.032845 0.046245 0.013933 0.001362 0.000125 

70 0.0004366 0.002292 0.00341 0.001173 0.000166 0.000023 

80 0.0000679 0.000233 0.000558 0.000175 0 0 

90 0.00004094 0.000241 0.000192 0.0000728 0.000035 0 

100 0.00005181 0.00013 0.000308 0 0 0 
Total LTO battery degradation (%): 0.2346 

Table 5.9 Degradation analysis using the fast cycle counting method considering SOC and C-

rate effect for EFR-A1 for October 2015 frequency data. (for NMC battery) 

 
C-rate 

0.1 0.2 0.4 0.6 0.8 1 

S
O

C
 (

%
) 

10 0.000141 0.000434 0.000293 0.000021 0 0 

20 0.000042 0.000114 0.00041 0.000035 0 0 

30 0.000355 0.001157 0.001281 0.000444 0.000016 0 

40 0.000849 0.003204 0.004253 0.001348 0.000089 0.0000051 

50 0.015541 0.046627 0.05483 0.015379 0.001354 0.0000372 

60 0.012045 0.040144 0.057806 0.017914 0.001816 0.000175 

70 0.000526 0.002816 0.00429 0.001521 0.000224 0.0000327 

80 0.000082 0.000288 0.000707 0.000229 0 0 

90 0.00005 0.000299 0.000245 0.000096 0.000049 0 

100 0.000063 0.000163 0.000396 0 0 0 

Total LTO battery degradation (%): 0.2902 
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Using the number of cycles obtained from the fast CCM algorithm considering SOC and C-

rate effect for EFR-A1 (Table 5.7) and also using the LTO and NMC battery cycling data 

assumed as in Table 5.5 and Table 5.6, the total degradation rate caused by BESS cycling is 

calculated as 0.23% for LTO battery and 0.29% for NMC battery per month (October 2015). 

Comparing the results, there is a significant difference on the total degradation findings of the 

LTO and NMC battery in Table 5.3 and Table 5.8; as well as Table 5.4 and Table 5.9. This 

shows that considering the effect of both C-rate and SOC on battery lifetime analysis provides 

more accurate degradation results than that of considering only C-rate; because higher C-rate 

level and SOC range cause a higher degradation rate in the battery. 

A. Simulation Results of the Fast CCM Considering SOC and C-rate Effect on Battery Lifetime 

for EFR –A1, EFR –A2, EFR –A3 for October 2015 

Using the battery SOC data attained by simulating the EFR –A1 for the whole of October 2015 

(Fig. 5.6), the proposed CCM algorithm is processed with the results in Fig. 5.15. The algorithm 

determines the number of full charge-discharge cycles experienced by the BESS at each C-rate 

value grouped by 0.2C for each SOC range grouped by 10% during EFR service operation for 

October 2015.  

As seen from Fig. 5.15, the CCM algorithm counts to ~9.2 cycles at 0.2-0.4C for 60% SOC, 

and to ~9 cycles at the same C-rate but for 50% SOC. It is revealed that greater number of full 

charge-discharge cycles are obtained at 0.2-0.4C for 50% to 60% SOC level, because the 

battery SOC is managed at 45-55% in all EFR algorithms thanks to the existing SOC control 

management. 

As seen from Fig. 5.15, the third and fourth highest number of cycles are obtained at 0.1-0.2C 

for 50% SOC with ~8.6 cycles, and at 0.1-0.2C for 60% SOC with ~7.2 cycles. Therefore, it 

can be said that the BESS participating in EFR service operation with the EFR-A1 is mostly 

operated between 0.1C to 0.4C for 50-60% SOC level; the battery spends most of its time in 

this operating region, therefore one could consider degradation rates associated with the 0.1-

0.4C range. Fig. 5.15 shows that the battery cycling at higher than 0.8C and at higher than 80% 

SOC or at lower than 40% SOC is almost zero; this means that the battery rarely operates at 

higher C-rate and at higher and lower SOC range on delivering EFR service with EFR-A1 in 

October 2015, due to the existing SOC management.  
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Fig. 5.15 Simulation results of the fast CCM under different C-rate for each grouped SOC for 

EFR-A1 for October 2015. (Maximum scale is 9.2 cycles). 

As seen from Fig. 5.16, the BESS operating in EFR service with EFR-A2 having 15-min 

frequency event controller is mostly operated at 0.2-0.4C for 50-60% SOC level with the 

highest number of battery cycling in October 2015. The battery is subjected to ~7 full cycles 

at 0.2-0.4C for 50% SOC range, and to ~6.9 full cycles at 0.2-0.4C for 60% SOC, and also to 

~6.4 full cycles at 0.1-0.2C for 50% SOC. The battery spends most of its time in this operating 

region, therefore one could consider degradation rates associated with the 0.1-0.4C range for 

50-60%. 

As seen from Fig. 5.17, the BESS operating EFR service with EFR-A3 having 15-min 

frequency event controller is mostly operated at less than 0.4C for 50% to 60% SOC level in 

October 2015. The battery is subjected to 7.149 cycles at 0.4C for 50% SOC, and to ~7 cycles 

at 0.2C for 50% SOC. It is demonstrated that the battery spends most of its time in this operating 

region, therefore one could consider degradation rates associated with ≤0.4C range for 50-60% 

SOC level per month (October 2015), due to the SOC management in EFR-A3 (Fig. 5.17), as 

similar in EFR-A1 (Fig. 5.15) and EFR-A2 (Fig. 5.16). 
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Fig. 5.16 Simulation results of the fast CCM under different C-rate for each grouped SOC for 

EFR-A2 for October 2015. (Maximum scale is 7 cycles). 

 

Fig. 5.17 Simulation results of the fast CCM under different C-rate for each grouped SOC for 

EFR-A3 for October 2015. (Maximum scale is 7.1 cycles). 
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Comparing the number of battery full charge-discharge cycles obtained from analyzing EFR-

A1 (Fig. 5.15), EFR-A2 (Fig. 5.16) and EFR-A3 (Fig. 5.17), the proposed CCM algorithm 

determines the highest number of cycle at each considered C-rate for each grouped SOC level, 

with the EFR-A1. The EFR-A1 causes the greatest amount of degradation in the battery per 

month, comparing to those in EFR-A2 and EFR-A3. This also can be seen from Table B.1, 

Table B.2, Table B.3 in Appendix B.1. 

B. Simulation Results of the Fast CCM considering SOC and C-rate Effect on Battery Lifetime 

for EFR Algoritjm-4 for October 2015 

As discussed in Chapter 3, the aim of the proportional controller in the EFR-A4 is to reduce 

battery C-rate, and hence reduce the battery degradation rate in order to increase battery 

lifetime. Therefore, comparing the cycle findings in Fig. 5.15 with Fig. 5.18, it can be seen that 

EFR-A1 degrades the battery higher than EFR-A4 due to the higher cycles occurred at that 

point of C-rate for each grouped SOC range per month during EFR service delivery. Because, 

applying a proportional controller in the EFR-A4, the number of cycles the BESS endured is 

reduced without getting a reduction in the BESS availability; hence battery lifetime will be 

increased.  

 

Fig. 5.18 Simulation results of the fast CCM under different C-rate for each grouped SOC for 

EFR-A4 (𝐾𝑝 =  2000) for October 2015. (Maximum scale is 2.22 cycles). 
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Fig. 5.19 Simulation results of the fast CCM under different C-rate for each grouped SOC for 

EFR-A4 (𝐾𝑝 =  10,000) for October 2015. (Maximum scale is 3 cycles). 

 

Fig. 5.20 Simulation results of the fast CCM under different C-rate for each grouped SOC for 

EFR-A4 (𝐾𝑝 =  100,000) for October 2015. (Maximum scale is 4.5 cycles). 
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It is also revealed that, increasing the gain value (𝐾𝑝) set in the proportional controller in EFR-

A4, the number of battery charge-discharge cycles experienced by the BESS at each C-rate for 

each SOC range grouped increases relatively (Fig. 5.18, Fig. 5.19, Fig. 5.20); this causes 

increasing amount of degradation in the battery. This also can be seen from Table B.4, Table 

B.5 and Table B.6 in Appendix B.1. 

C. Simulation Results of the Fast CCM with SOC and C-rate Effect on Battery Lifetime for 

DFFR Algorithm October 2015 

As seen from Fig. 5.21 and Table B.7 in Appendix B.1, the battery is subjected to highest 

number of cycles (~2.5 cycles) at 0.1C to 0.2C for 50% SOC range; and to second highest 

number of cycles (~2.38 cycles) at 0.1C to 0.2C for 60% SOC on delivering dynamic frequency 

response service. Therefore, it is revealed that the battery spends most of its time in this 

operating region, therefore one could consider degradation rates associated with 0.1-0.2C. 

 

Fig. 5.21 Simulation results of the fast CCM under different C-rate for each grouped SOC for 

DFFR control algorithm for October 2015. (Maximum scale is 2.52 cycles). 
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Fig. 5.21 and Table B.7 show that the battery cycling at higher than 0.4C for each SOC range 

grouped is almost zero; this means that the battery mostly does not operate at ≥0.4C for each 

grouped SOC range, because the 1MWh capacity of BESS delivers only 1MW power to the 

grid under DFFR service operation; hence this reduces the battery C-rate. It is clear from Fig. 

5.21 the number of cycles the battery is subjected to are generally less than 0.4C for each SOC 

ranges grouped by 10% with less than 2 cycles. On the other hand, implementing a proper SOC 

management into the DFFR algorithm, the lifetime of the BESS can be significantly increased 

by decreasing the number of cycles the BESS endured at different C-rate for each SOC value 

under DFFR service operation. 

5.3.7 Fast CCM considering Effect of DOD in Partial Charge/Discharge Cycling 

The proposed CCM method in this section approximates the number of partial charge and 

discharge cycles a battery subjected under different DOD ranges. The operational principle of 

the proposed technique considering effect of DOD in battery partial charge and discharge 

cycling is demonstrated on the 23-second profile of a battery SOC given in Fig. 5.22 and Table 

5.10. The proposed method is described as following: 

• The algorithm  loops through the considered battery SOC data over a period of time, as 

an example in Fig. 5.22. In the first step, the change in battery SOC (𝑑𝑆𝑂𝐶/𝑑𝑡) is 

extracted for each second, as seen from the second colomn in Table 5.10. 

• In second step, adding up 𝑑𝑆𝑂𝐶/𝑑𝑡 values until change in sign, the depth of charge (+) 

and discharge (-) ranges are extracted and listed over the period of time. Counting DOD 

ranges in the method performs like a hill climbing, adding up 𝑑𝑆𝑂𝐶/𝑑𝑡 rates until 

change in sign, as shown on the red line in  Fig. 5.22. This step is shown in the third 

colomn in Table 5.10. 

• In third step, the algorithm extracts each partial charge (+) and discharge (-) cycle at 

each DOD range independently over the list of DOD extracted, as seen from the forth 

colomn in Table 5.10. 

• In the last step, total number of partial charge-discharge cycles at each DOD range is 

obtained by summing up each partial charge and discharge cycle at same DOD range, 

as given in the last colomn in Table 5.10. 
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Fig. 5.22 Demonstration of the performance of the new fast CCM considering effect of DOD 

in battery charge-discharge cycling over the 23-second period of battery SOC. 

Using the proposed method, it can be seen from Table 5.10 and Fig. 5.23, at each DOD range 

of 0.01%, 0.02%, 0.06%, 0.1%, 0.15%,0.16% and 0.21%, a total of 1 partial cycle is counted 

individually; and at each DOD range of 0.04% and 0.08%, 2 partial cycles are also counted 

individually. The partial cycles at each DOD ranges counted in the CCM algorithm affect the 

degradation rate in a battery and thus its battery lifetime, as described in the battery aging 

analysis methodology in Section 5.2.2. Therefore, the effects of DOD in battery cycling should 

be examined in the battery lifetime analysis. 
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Table 5.10 Demonstration of the operational principle of the fast CCM considering effect of 

DOD in battery partial charge and discharge cycling over the 23-second period of battery SOC 

SOC (%) 
dSOC/dt 

(%) 

List of 

DOD 

Partial charge/discharge 

cycles 

Total no of partial charge 

discharge cycles at each 

DOD 

DOD                Cycle 

50.01 0 0  0.01% 1 cycle 

50.02 0.01 
+0.04 

1 partial charge cycle @ 

0.04% DOD 

0.02% 1 cycle 

50.05 0.03 0.03% - 

49.99 -0.06 
-0.08 

1 partial discharge cycle @ 

0.08% DOD 

0.04% 2 cycle 

49.97 -0.02 0.05% - 

49.97 0 
0  

0.06% 1 cycle 

49.97 0 0.07% - 

49.99 0.02 
+0.06 

1 partial charge cycle @ 

0.06% DOD 

0.08% 2 cycle 

50.03 0.04 0.09% - 

50.02 -0.01 -0.01 
1 partial discharge cycle @ 

0.01% DOD 
0.10% 1 cycle 

50.05 0.03 
+0.04 

1 partial charge cycle @ 

0.04% DOD 

0.11% - 

50.06 0.01 0.12% - 

49.96 -0.1 -0.10 
1 partial discharge cycle @ 

0.1% DOD 
0.13% - 

49.98 0.02 
+0.08 

1 partial charge cycle @ 

0.08% DOD 

0.14% - 

50.04 0.06 0.15% 1 cycle 

49.89 -0.15 -0.15 
1 partial discharge cycle @ 

0.15% DOD 
0.16% 1 cycle 

49.90 0.01 

+0.21 
1 partial charge cycle @ 

0.21% DOD 

0.17% - 

49.96 0.06 0.18% - 

50 0.04 0.19% - 

50 0 0.20% - 

50.1 0.1 0.21% 1 cycle 

49.94 -0.16 -0.16 
1 partial discharge cycle @ 

0.16% DOD 
0.22% - 

49.96 0.02 +0.02 
1 partial charge cycle @ 

0.02% DOD 
0.23% - 
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Fig. 5.23 Number of partial charge and discharge cycles at each DOD obtained from analysing 

the CCM in Table 5.10 over the 23-second period of SOC. 

A. Simulation Results of the Fast CCM considering the effect of DOD in Battery Partial Charge 

and Discharge Cycling for EFR-A1 

Using the battery SOC data attained by simulating EFR-A1 (Fig. 5.6), the proposed CCM 

algorithm considering DOD effect on battery SOH (Section 5.3.7) is processed with the results 

in Fig. 5.24. The algorithm approximates the number of partial charge-discharge cycles 

experienced by the BESS at each DOD range.  

As seen from the simulation results, the changes in battery SOC are mostly less than 0.1%, 

therefore, the proposed CCM algorithm identifies and detects all microcycles; and following 

the steps in the algorithm; if the changes in SOC are positive (𝑑𝑆𝑂𝐶/𝑑𝑡 >0), the battery is 

charging or if those change is negative (𝑑𝑆𝑂𝐶/𝑑𝑡 <0), the battery is discharging. Therefore, 

adding up 𝑑𝑆𝑂𝐶/𝑑𝑡 values until a change in sign (positive to negative or negative to positive), 

partial charge discharge cycles at different DOD ranges are obtained, independently, 

approximating to a total of partial cycles at each different DOD value.  
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As seen from the Fig. 5.24, the BESS is subjected to 1978 partial cycles at 0.001% DOD; to 

1195 partial cycles at 0.002% DOD; to 891 partial cycles at 0.003% DOD; to 621 partial cycles 

at 0.005% DOD, respectively for the whole of the October 2015. 

Analysing the proposed CCM algorithm using the EFR-A1 for October 2015, it is revealed that, 

the number of partial charge discharge cycles experienced by the BESS at each DOD range 

decreases at each increasing DOD ranges. Total partial cycles at ≥2% DOD obtained is mostly 

less than 5 cycles for the whole Oct 2015 (Fig. 5.24). It can been seen from the analysis that 

this algorithm can be applied to larger SOC data sets; causing increasing number of partial 

charge-discharge cycles at different DOD ranges; hence the increase of DOD effect in the 

battery cycling will increase the rate of battery degradation in the battery.  

 

Fig. 5.24 Total number of partial charge discharge cycles at each DOD range extracted from 

the fast cycle CCM considering effect of DOD in battery cycling for EFR-A1 for October 2015 

B. Simulation Results of the Fast CCM considering the effect of DOD in Battery Partial Charge 

and Discharge Cycling for EFR-A2 and EFR-A3 
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Using the battery SOC data attained by simulating EFR-A2 and EFR-A3 for the whole of 

October 2015 as shown in Fig. B.1 and Fig. B.3 in Appendix B, respectively, the proposed 

CCM algorithm considering DOD effect on battery SOH (Section 5.3.7) is processed with the 

results in Fig. 5.25 and Fig. 5.26.  

As seen from the Fig. 5.25, the BESS are subjected to 1247 partial cycles at 0.001% DOD; to 

791 partial cycles at 0.002% DOD; to 581 partial cycles at 0.003% DOD; to 438 partial cycles 

at 0.005% DOD for the whole of the October 2015.  Comparing the number of cycles the BESS 

endured at each DOD range obtained by simulating EFR-A1, EFR-A2, EFR-A3 for a month, 

the EFR-A1 produces the highest number of partial charge discharge cycles at each DOD range. 

This demonstrates that EFR-A1 degrades the battery higher than EFR-A2 and EFR-A3 due to 

the greatest range of DOD effect on the battery SOH. Comparing the cycling results of EFR-

A2 and EFR-A3, both algorithms generate quite similar number of partial cycles experienced 

by the BESS at each DOD; hence the battery degradation rate caused by EFR-A2 and EFR-A3 

does not show a big difference in terms of DOD effect on battery SOH. 

 

Fig. 5.25 Total number of partial charge discharge cycles at each DOD range extracted from 

the new fast CCM considering effect of DOD in battery cycling for EFR-A2 for October 2015 
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Fig. 5.26 Total number of charge-discharge cycles at each DOD range extracted from the new 

fast CCM considering effect of DOD in battery cycling for EFR-A3 for October 2015 

C. Simulation Results of the Fast CCM considering the effect of DOD in Battery Partial Charge 

and Discharge Cycling for EFR-A4 

Using the battery SOC data sets attained by simulating EFR-A4 with the proportional gains of 

𝐾𝑝 = 2000 for the whole of October 2015, the proposed CCM algorithm considering DOD 

effect on battery SOH is processed with the results in Fig. 5.27.  

As seen from Table 5.11, analysing the proposed CCM algorithm using the EFR-A4 with 

different Kp values for October 2015, it is revealed that increasing Kp gain set in the 

proportional controller in EFR-A4, the number of partial charge discharge cycles experienced 

by the BESS increases at each DOD ranges.  

Comparing the number of cycles experienced by the BESS at each DOD range obtained by 

simulating EFR-A1 (Fig. 5.24) with those from EFR-A4 with 𝐾𝑝 = 2000 for a month, the 

partial charge discharge cycles are mostly shifted to lower DOD ranges with EFR-A4 as seen 
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from Fig. 5.27. This demonstrates that the EFR-A1 degrades the battery higher than the EFR-

A4 due to the higher range of DOD effect on the battery SOH.  

 

Fig. 5.27 Total number of charge-discharge cycles at each DOD range extracted from the new 

fast CCM considering effect of DOD in battery cycling for EFR-A4 (𝐾𝑝 = 2,000) for October 

2015 

Table 5.11 Total partial charge discharge cycles at each DOD range extracted from the fast 

CCM considering DOD effect in battery cycling for EFR-A4 with different Kp values set. 

EFR Control Algorithm 

for October 2015 

Total no of partial charge discharge cycles at each DOD 

Cycles @ 

0.001% 

DOD 

Cycles @ 

0.002% 

DOD 

Cycles @ 

0.003% 

DOD 

Cycles @ 

0.004% 

DOD 

Cycles @ 

0.005% 

DOD 

EFR-A4(𝐾𝑝 = 2000) 2114 1141 841 661 572 

EFR-A4(𝐾𝑝 = 10000) 7130 1700 1129 738 572 

EFR-A4(𝐾𝑝 = 100000) 18880 7404 4665 2666 1764 
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D. Simulation Results of the Fast CCM Algorithm considering the effect of DOD in Battery 

Partial Charge and Discharge Cycling for DFFR Algorithm 

Using the battery SOC data attained by simulating DFFR algorithm for the whole of October 

2015 (Fig. 5.8), the proposed CCM algorithm is processed with the results in Fig. 5.28.  

As seen from the Fig. 5.28, the BESS is subjected to 2168 partial charge discharge cycles at 

0.001% DOD; to 786 partial cycles at 0.002% DOD; to 547 partial cycles at 0.003% DOD; and 

to 475 partial cycles at 0.005% DOD for the whole of the October 2015. 

 

Fig. 5.28 Total number of charge discharge cycles at each DOD range extracted from the new 

fast CCM considering effect of DOD in battery cycling for DFFR algorithm for October 2015 

Analysing the proposed CCM algorithm using the DFFR algorithm for October 2015, it is 

revealed that, the number of partial charge discharge cycles experienced by the BESS shows a 

variety at each DOD range. Total partial cycles at ≥0.1% DOD obtained is mostly less than 5 

cycles for the whole Oct 2015 (Fig. 5.28). It is clear from the results, the partial charge 

discharge cycles the BESS experienced at each DOD does not follow a certain pattern; because 
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there is no battery SOC management in the DFFR algorithm, and hence the battery SOC 

obtained is exposed to sharp increases (charging) and decreases (discharging) pattern; this 

degrades the battery quickly. However, changes could be introduced to the NGET provided 

DFFR service specification to add SOC management in DB. 

5.4 Conclusion 

#1) A basic fast CCM algorithm, for grid-connected BESS, operating in frequency regulation, 

subjected to microcycles has been developed to achieve an approximation of equivalent battery 

charge-discharge full cycles. The basic CCM algorithm detects the number of complete charge-

discharge cycles endured by the BESS in a given period of time. To demonstrate the 

performance of the basic CCM algorithm, the EFR and DFFR control algorithms, based on a 

model of 2MW/1MWh BESS and 1MW/1MWh BESS respectively, have been simulated to 

obtain a historical SOC data set which is then used by the proposed fast CCM algorithm as an 

input source. It is revealed that cycle counting for BESS operation in grid frequency regulation 

is challenging due to the presence of irregular charge and discharge cycles of varying SOC 

caused by the real grid frequency variability. The battery cycle life varies for different SOC 

ranges, therefore all microcycles existing in the SOC profile are extracted to estimate the total 

battery cycle information. Analysis of the results show that the proposed basic fast CCM 

algorithm detects numerous microcycles existing in the considered SOC profile for October 

2015 and extracts them to approximate the total complete battery charge-discharge cycles. It is 

revealed that the microcycling for the whole of 2015 approximated 553, 375.5, 383.5, 256 and 

364 battery charge-discharge cycles, by analysing the EFR-A1, EFR-A2, EFR-A3 and EFR-

A4 (𝐾𝑝 = 10000) and DFFR algorithm, respectively.  

In addition, using the SOC data obtained from simulating the EFR-A1, EFR-A2, EFR-A3 and 

the DFFR algorithm in analysing the CCM algorithm, microcycling for October 2015 

approximates to 49, 34, 35 and 32 full charge-discharge cycles, respectively. Using the SOC 

data obtained from simulating the EFR-A4 having P controller with different proportional gain 

values of 𝐾𝑝 = 2000, 10000, 100000  in analysing the CCM algorithm, microcycling for 

October 2015 approximates to 21, 24, 26 full charge-discharge cycles, respectively. These 

cycles have also been compared to the manufacturer provided degradation data for full cycles 

to estimate to aid in the prediction of the BESS lifetime. As a results of this, it is revealed that 

the EFR-A1 degrades the battery much more than EFR-A2 and EFR-A3. It is also revealed that 
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the higher Kp value set in the proportional controller in EFR-A4, the higher battery degradation 

rate because of the higher amount of EFR power delivered to the grid responding to the grid 

frequency events. Using the existing Miner Rule’s aging analysis method, these cycles can also 

be compared to the LTO and NMC battery’s’ manufacturer provided degradation data for full 

cycles to estimate to aid in the prediction of the BESS SOH. 

Comparing with the EFR control algorithms, the DFFR algorithm delivers only half amount of 

dynamic power (1MW) by the same capacity of battery (1MWh), however it degrades the 

batteries quite fast in a year under dynamic frequency response operation. 

#2) Secondly, the basic CCM algorithm is improved by considering only C-rate effect on 

battery SOH; and then analysed for the whole of October 2015 data. The proposed algorithm 

determines the number of charge-discharge cycles experienced by the BESS operating in EFR 

service at different C-rate values grouped as 0.1C, 0.2C, 0.4C, 0.6C, 0.8C, 1C in October 2015.  

Using the constant battery cycling Data-1 which considers same cycling for each C-rate for 

LTO and NMC battery, the total degradation rate caused by BESS cycling is determined as 

around 0.4115% for LTO battery and 0.6175% for NMC battery per month (October 2015). 

However, using battery cycling Data-2 which considers the cycling variable for each group C-

rate level, the total degradation rate caused by BESS cycling is calculated as 0.2631% for LTO 

battery and 0.3354% for NMC battery per month. It is revealed that the effect of C-rate on 

battery lifetime analysis should be considered for more accurate battery lifetime analysis. In 

addition, it is also revealed that, the EFR-A1 degrades the LTO battery less than the NMC 

battery due to the higher LTO cells having lower degradation rates for cycle. Using the Data-2 

in the battery degradation analysis, it is demonstrated that the BESS participating in EFR 

service delivery is mostly operated at 0.2-0.4C with 20.23 cycles, causing 0.1686% and 0.2529% 

degradation in LTO and NMC battery respectively. 

#3) Thirdly, the basic CCM algorithm is improved by considering both C-rate and SOC effect 

on battery SOH; and then analysed for the whole of October 2015 data. Using the assumed 

battery cycling data of LTO and NMC batteries for each C-rate for SOC range grouped in the 

battery degradation analyses, it is revealed that considering the effect of both C-rate and SOC 

on battery lifetime analysis provides much more accurate degradation analysis rather than that 

of considering only C-rate. 
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The proposed algorithm determines the number of charge-discharge cycles experienced by the 

BESS operating in EFR service at different C-rate values grouped as 0.1C, 0.2C, 0.4C, 0.6C, 

0.8C, 1C for each SOC range grouped by 10% in October 2015. It is revealed from the 

simulation results that thanks to the 15-minute frequency event controller applied into the EFR-

A2 and EFR-A3 for increasing BESS availability, the EFR-A1 degrades the battery much 

higher than the EFR-A2 and EFR-A3, with higher number of battery cycling. However, both 

EFR-A2 and EFR-A3 have similar controller; the EFR-A3 allows the battery to manage its 

SOC during the 30-minutes period by charging/discharging itself; therefore EFR-A3 degrades 

the battery higher than EFR-A2 with the higher number of cycles the battery endured on 

delivering EFR service to the grid. 

Implementing proportional controller into the EFR-A4 which is based on EFR-A1, the amount 

of EFR power delivered can be decreased without hitting a reduction in the BESS availability. 

Therefore, using EFR-A4, the number of battery charge-discharge cycles experienced by the 

BESS and the battery C-rate can be decreased; this will help to extend the lifetime of the battery; 

however may lead to a reduction in the BESS efficiency.  

Comparing the performance of the EFR and DFFR algorithms, it is revealed that the amplitude 

of second by second battery C-rate obtained from simulating DFFR algorithm is much lower 

than that of EFR, because only 1MW DFFR power is delivered by the 1MWh BESS to the grid; 

however 2MW EFR power is delivered with the EFR algorithms. In addition, analysing the 

EFR algorithms, greater number of cycles experienced by the BESS are mostly obtained at less 

than 0.4C for 50-60% SOC range; however with the DFFR algorithm, higher number of cycles 

are attained at ≤0.2C for any range of SOC. It is also observed that there is no significant 

difference in the number of cycle at different C-rate for each grouped SOC range; because 

DFFR algorithm does not cover a SOC management strategy for maintaining battery SOC. 

Applying a proper SOC management into the DFFR algorithm, the BESS lifetime can be 

extended.  

#4) The last part of the chapter presents a new fast CCM considering effect of DOD in partial 

charge and discharge cycling. The proposed method approximates the number of partial charge 

and discharge cycles a battery subjected under different DOD ranges. Analysing the proposed 

CCM using the EFR and DFFR control algorithms for October 2015, it is revealed that, because 

the changes in battery SOC are mostly less than 0.1%, causing microcycles due to the 

variability in the grid frequency, the number of partial charge and discharge cycles experienced 
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by the BESS is mostly occurred at less than 0.1% DOD ranges. Therefore, the battery 

degradation is mostly caused by low DOD ranges. 

Comparing the number of cycles the BESS endured at each DOD range obtained by simulating 

EFR-A1, EFR-A3, EFR-A3 for October 2015, the EFR-A1 produces the highest number of 

partial charge-discharge cycles at each DOD range; this shows that EFR-A1 degrades the 

battery much higher than the EFR-A2 and EFR-A3 due to the greatest range of DOD effect on 

the battery SOH. Comparing the battery cycling results of EFR-A2 and EFR-A3, both 

algorithms generate quite similar number of partial charge discharge cycles experienced by the 

BESS at each DOD; therefore the battery degradation rate caused by EFR-A2 and EFR-A3 

does not show a big difference in terms of DOD effect on battery SOH. In addition, comparing 

the battery cycling finding of EFR-A1 and EFR-A4, implementing the proper proportional 

controller into the EFR-A4, the number of partial cycles at each DOD can be decreased without 

getting a reduction on BESS availability; this helps to reduce the degradation rate on the battery 

during the EFR service operation. 
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6 Conclusions and Future Work 

This Chapter presents a summary of the work carried out in this thesis, examining the role 

of each chapter in achieving the major objective of the thesis and the contributions made to the 

body of knowledge as a whole. An overall conclusion is then provided and the scope for the 

future work which expand on this thesis is also presented. 

6.1 Conclusion 

The primary objective of this thesis was to investigate a control scheme for a large-scale 

grid-tied battery energy storage system (BESS) for delivery of frequency response services as 

defined by NGET and to explore ways to maximise its service potential and analyse the effects 

on degradation. The management of the state-of-charge (SOC) of the BESS is studied to 

optimize the availability of the system under different scenarios. In addition to releasing and 

absorbing regulation power during frequency excursion events, the BESS recovers its SOC to 

a proper level during time when the system frequency is within the nominal range in order to 

avoid regulation failures in upcoming frequency excursion events. In other words, the BESS is 

operated in two alternating phases, namely frequency regulation and SOC management (SOC 

recovery), as shown in Fig. 6.1.  

 

Fig. 6.1 System frequency and proposed control phases in this thesis. 

This thesis considers an optimal control of the BESS that maximizes revenue for providing UK 

frequency response service in the ancillary service market. Regarding the frequency regulation 
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phase, the control aims to minimize the penalty cost assessed for regulation failure. For the 

SOC management phase, this thesis aims to maintain the SOC of the BESS at the desired SOC 

target level. By adjusting the SOCs to the target during SOC management phase, the expected 

regulation failure penalty is minimized for the upcoming frequency failure events. The primary 

metrics for estimating battery degradation have been explored and an algorithm that can 

potentially provide an accurate estimate of a BESS under frequency regulation is presented. 

6.1.1 BESS Control for Dynamic and Static Firm Frequency Response Services  

A dynamic (DFFR) and a static high (SFFRhigh) and low (SFFRlow) firm frequency response 

control algorithm based on a model of a 1MW/1MWh BESS was developed to meet the NGET 

published service requirements. When there is a grid frequency on the grid, the BESS supplies 

a dynamic power according to a specified DFFR envelope, without managing the battery’s 

SOC. It was shown that the BESS achieved full availability and met the service requirements.  

The NGET then updated the DFFR service specifications in April 2018 by requesting a SOC 

management from the energy storage providers. Therefore, a proportional controller was 

implemented into the DFFR control algorithm to charge/discharge battery in order to manage 

the battery’s SOC; hence this SOC management will allow the providers reduce the likelihood 

of unavailability of the BESS on delivering dynamic response service. Applying the SOC-

based proportional controller into the DFFR control design will also help to extend the lifetime 

of the BESS. 

It was also demonstrated that, the SFFR control algorithm successfully delivered a non-

dynamic service where an agreed amount of power is delivered if the grid frequency reaches a 

defined trigger point of 49.7Hz (SFFRlow) or 50.3Hz (SFFRhigh). 

Finally, Chapter 3 provided an experimental validation of the DFFR control algorithm without 

having SOC management with a 2MW/1MWh lithium-titanate based BESS, Willenhall Energy 

Storage System. 

6.1.2 BESS Control for Pre Enhanced Frequency Response Services  

In 2015, the NGET prepared a pre enhanced frequency response (pre-EFR) specification to 

facilitate a tender competition between potential energy storage providers. Using the pre-
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published EFR specification, a generalised UK frequency response control algorithm (Pre-EFR) 

was developed to evaluate control strategies for delivering a real-time response to deviations 

in the grid frequency. At the time of this work BESS focused frequency response services were 

still being developed and charge/discharge power constraints in DB were not defined. 

Therefore, a sensitivity analysis of battery SOC management and a battery charge/discharge 

management methods were developed in order to maximise BESS availability. It was shown 

that the best SOC band forecasted is 50-60% with 60kW and 350kW battery charge/discharge 

powers for a DB range of 0.1Hz and 0.05Hz, respectively. It was demonstrated that the Pre-

EFR algorithm met the UK’s NGET frequency response specification and successfully manage 

the BESS’s SOC whilst achieving a battery service performance measurement (SPM) 

requirement (>95%). 

6.1.3 BESS Control for Enhanced Frequency Response Services  

In Chapter 3, four  EFR control algorithms, named EFR-A1, EFR-A2, EFR-A3, EFR-A4, based 

on a model of a 2MW/1MWh BESS were developed to meet the NGET published EFR 

requirements and compared. It was shown that the EFR algorithms meet the UK’s NGET EFR 

specifications and successfully managed the SOC by converging towards a desired band of 45-

55%. It was shown that for the basic algorithm, EFR-A1, with Service-1, the BESS was 

available to deliver EFR service on critical days; however, with Service-2, the BESS could not 

provide 100% availability in the under/over frequency event days, resulting in a service 

performance penalty.  The advanced algorithms EFR-A2 and EFR-A3 which have the 15-

minutes frequency event controller provided full BESS availability, meaning no service penalty 

to the BESS. It also demonstrated that implementing a proportional controller (EFR-A4), the 

EFR power delivery range is relatively reduced based on the SOC error, without causing a BESS 

availability penalty in EFR service operation. The EFR-A4 provides an effective performance by 

decreasing the peak C-rates since there is no requirement to have full power changes, and 

reduces the rate at which the SOC target band is returned to. Thanks to the SOC-based 

proportional controller in the EFR-A4 algorithm, working the BESS over long periods of time 

with lower C-rates will prolong the BESS lifetime, with no performance penalty on EFR 

service operation; however, this may cause additional efficiency losses on the BESS system 

depending on the converter design. In Chapter 3, the performance of EFR-A1 was validated 

experimentally on a 2MW/1MWh BESS with some small variances accounted for. 
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6.1.4 Triad Avoidance Strategy through Enhanced Frequency Response  

This thesis introduced a strategy to generate additional revenues from other ancillary services 

such as triad avoidance in the winter season. Chapter 4 investigated using the BESS in order to 

maximize the system’s availability and triad avoidance benefit revenues while layering the UK 

grid balancing service, EFR. It was demonstrated that with strategic management of the 

battery’s SOC during EFR delivery the BESS could be prepared in order to maximize the 

available energy to export for Triad Avoidance Benefit (TAB). It was demonstrated that the 

amount of energy available to export would depend greatly on the grid frequency conditions 

of the day and the time that a decision is made to commit to preparing for TAB. 

6.1.5 Scheduling of Grid Tied BESS Participating in UK Frequency Response Services 

and Energy Arbitrage 

Using historical UK electricity prices, a balancing service scheduling approach was developed 

to maximize energy arbitrage revenue by layering different types of UK grid balancing services, 

FFR and EFR, throughout the day. It was shown that the algorithm delivers both dynamic and 

non-dynamic FFR and also EFR services to NGET specifications while generating energy 

arbitrage revenue as well as service availability payments. The advantages of this scheduling 

method is that it generates arbitrage profit and combines balancing service availability payment 

revenue through service layering and new SOC management techniques. The revenue 

generated by the BESS can be maximised using a suitable scheduling scenario that will vary 

depending on the day/month/season of the year. 

6.1.6 Battery State of Health Analysis  

This thesis provided a battery state of health (SOH) analysis based on BESS cycling. In Chapter 

5, firstly a basic fast cycle counting method (CCM) for grid-tied BESS operating in frequency 

response services was developed to achieve an approximation of complete charge-discharge 

cycles based on microcycling SOC history. Secondly, the basic CCM algorithm was improved 

by considering the effect of C-rate on battery SOH. Thirdly, the CCM is improved again by 

considering both C-rate and SOC effects on battery SOH.  It was demonstrated that for the 

EFR-A1, from the basic CCM, the degradation for lithium titanate (LTO) and lithium nickel 

manganese cobalt (NMC) battery was shown to be 0.4115% and 0.6175% for a month (October 

2015); and approximately 4.6% and 6.9% for a year (2015), respectively. However the CCM 
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grouped by C-rate, this was decreased to 0.26% and 0.34% for a month; and approximately 

~3.1% and 4% for the year, respectively. In addition, the CCM with both C-rate and SOC 

analysis, this was significantly decreased to 0.23% and 0.29% for a month, and approximately 

~2.8% and ~3.5% for the year, respectively. It was revealed from the results considering the 

effect of both C-rate and SOC on battery SOH potentially provides a more useful BESS lifetime 

analysis and better reflects the degradation for frequency response services compared to 

standard cycling. 

Finally, in this thesis, a new fast CCM considering the effect of depth of discharge (DOD) on 

battery SOH was developed. The algorithm approximates the number of partial charge and 

discharge cycles a battery subjected under different DOD ranges. It was demonstrated that, the 

degradation in battery was mostly caused by low DOD ranges (≤0.1%), especially at 0.001%, 

during frequency regulation operation due to the existence of microcycling on battery SOC. 

Therefore, the effect of DOD in partial charge discharge cycling must also be considered for 

an accurate battery SOH analysis. 

6.2 Scope for Future Works 

Although a conclusive body of work has been presented herein, there are areas which this thesis 

can expand on. The list below summarises the scope for future work which can lead on from 

this thesis. 

• Applications of the developed frequency response control algorithms to other energy 

storage systems, e.g flywheel; or to hybrid energy storage system (with battery and 

supercapacitor). 

• Developing new BESS control algorithms for future grid balancing services such as 

reactive power, voltage control and black start service. 

• Efficiency analysis for large scale grid-tied battery energy storage system operating in 

frequency regulation. 

• Improving the proposed battery lifetime analysis technique by having experimental 

validation of LTO and NMC battery cycling on frequency response operation.  
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Appendix A   General Definitions  

A.1 Important Components of the UK Electricity System 

Generators produces electricity and then sell it in the wholesale market. In 2017, 40% of UK 

electricity provided from gas, 29.5% from renewables and 21% from nuclear. In winter, peak 

power demand is approximately 50 gigawatts (GW) [ONL19a]. 

The transmission network is the network of high voltage lines which carries power over long 

distances, from large generators (e.g gas power stations) to large industrial consumers and 

distribution networks [ONL19a]. 

The distribution networks is the low voltage network which has traditionally carried power 

from the transmission network to consumers. 14 distribution networks cover separate areas of 

UK. 6 distribution network operators (DNOs) own and they are responsible for operating and 

maintaining these [ONL19a]. 

Suppliers buy electricity in the wholesale market and sell it to consumers. They provide and 

fit smart electricity meters*. 

*Smart electricity meters: According to UK Government rollout programme, all UK 

householders are being offered a smart electricity meter by 2020. The smart meters provide 

consumers with real time information on their electricity usage and enable more accurate 

electricity billing and energy saving. Smart electricity meters could aid to facilitate automated 

residential demand side management (DSM) and allow suppliers to make more precise demand 

forecasts and provide time-of-use pricing that is more responsive to demand [ONL19a]. 

Aggregators are companies that have contracts with several users who can increase/decrease 

their demand. They can adjust the demand of these users to sell grid balancing services. Some 

existing suppliers perform as aggregators [ONL19a]. 

A.2 Definition of Demand Side Sources 

Turn-down demand side response (DSR): Users decrease power consumption, reducing the 

power system demand. 
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Turn-up demand side response (DSR): Users increase demand at times of excess supply. 

Demand Side Response (DSR) by on-site Generation: Many consumers use on-site 

generates such as combined heat, storage and power systems to provide for their own needs, 

reducing the system demand. 

Demand Side Management (DSM): Users adjust the timing of the energy using to shift 

demand away from peak times [WAR14], [ONL19a], [ONL19b]. 

A.3 Definition of Distribution Network Operator (DNO) and Distribution System 

Operator (DSO)  

DNOs have traditionally held a passive role in maintaining the distribution network. Currently, 

they are undergoing a transition towards a DSO role. DSOs will take a more active role in 

monitoring network and are improving a plan for using flexibility services to manage power 

flows over their networks [ONL19c], [ONL19d]. 
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Appendix B    Simulation Findings of Fast CCM 

B.1 Fast Battery CCM Considering No Other Effect 

 

Fig. B.1 Simulation results of the EFR-A2 with Service-2 for October 2015. 
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Fig. B.2 Demonstration of the basic CCM on 1-month profile of a battery SOC data set obtained 

by simulating the EFR-A2 for whole October 2015 frequency data. 
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Fig. B.3 Simulation results of the EFR-A3 with Service-2 for October 2015. 
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Fig. B.4 Demonstration of the basic CCM on 1-month profile of a battery SOC data set obtained 

by simulating the EFR-A3 for whole October 2015 frequency data. 
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Fig. B.5 Simulation results of the EFR-A4 (𝐾𝑝 = 2000) with Service-2 for October 2015. 
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Fig. B.6 Demonstration of the basic CCM on 1-month profile of a battery SOC data set obtained 

by simulating the EFR-A4 (𝐾𝑝 = 2000) for whole October 2015 frequency data. 
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Fig. B.7 Simulation results of the EFR-A4 (𝐾𝑝 = 10000) with Service-2 for October 2015. 
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Fig. B.8 Demonstration of the basic CCM on 1-month profile of a battery SOC data set obtained 

by simulating the EFR-A4 (𝐾𝑝 = 10000) for whole October 2015 frequency data. 
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Fig. B.9 Simulation results of the EFR-A4 (𝐾𝑝 = 100000) with Service-2 for October 2015. 
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Fig. B.10 Demonstration of the basic CCM on 1-month profile of a battery SOC data set 

obtained by simulating the EFR-A4 (𝐾𝑝 = 100000) for whole October 2015 frequency data. 
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B.1 Fast Battery CCM Considering SOC and C-rate effect on Battery Lifetime 

A. EFR-A1 Results for October 2015 

Table B.1 Number of cycles obtained from the fast cycle counting method considering SOC 

and C-rate effect for EFR-A1 for October 2015 frequency data 

 
C-rate 

0.1 0.2 0.4 0.6 0.8 1 

S
O

C
 (

%
) 

10 0.03176 0.08897 0.05415 0.003499 0 0 

20 0.009354 0.02281 0.0738 0.00559 0 0 

30 0.07636 0.2257 0.2241 0.06883 0.00216 0 

40 0.1782 0.6087 0.723 0.2022 0.01163 0.0005625 

50 3.186 8.626 9.047 2.23 0.1693 0.003902 

60 2.409 7.226 9.249 2.508 0.2179 0.01754 

70 0.1026 0.4928 0.665 0.2053 0.02576 0.003105 

80 0.01563 0.04898 0.1061 0.02974 0 0 

90 0.009212 0.04938 0.03559 0.01201 0.005155 0 

100 0.0114 0.02604 0.0555 0 0 0 

 

B. EFR-A2 Results for October 2015 

Table B.2 Number of cycles obtained from the fast cycle counting method considering SOC 

and C-rate effect for EFR-A2 for October 2015 frequency data 

 
C-rate 

0.1 0.2 0.4 0.6 0.8 1 

S
O

C
 (

%
) 

10 0 0 0 0 0 0 

20 0 0 0 0 0 0 

30 0 0 0 0 0 0 

40 0.07812 0.2915 0.3179 0.09971 0.003971 0 

50 2.321 6.439 7.114 1.773 0.1569 0.00729 

60 1.739 4.943 6.891 2.015 0.1798 0.01164 

70 0.03111 0.1356 0.1763 0.03994 0.009931 0.003105 

80 0 0 0 0 0 0 

90 0 0 0 0 0 0 

100 0 0 0 0 0 0 
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C. EFR-A3 Results for October 2015 

Table B.3 Number of cycles obtained from the fast cycle counting method considering SOC 

and C-rate effect for EFR-A3 for October 2015 frequency data 

 
C-rate 

0.1 0.2 0.4 0.6 0.8 1 

S
O

C
 (

%
) 

10 0 0 0 0 0 0 

20 0 0 0 0 0 0 

30 0 0 0 0 0 0 

40 0.05715 0.2567 0.201 0.07425 0.003886 0 

50 2.374 7.006 7.149 1.8 0.151 0.005948 

60 1.799 5.624 6.739 1.891 0.1637 0.01152 

70 0.008685 0.07292 0.04351 0.01832 0.01006 0.003105 

80 0 0 0 0 0 0 

90 0 0 0 0 0 0 

100 0 0 0 0 0 0 

 

D. EFR-A4 Results for October 2015 

Table B.4 Number of cycles obtained from the fast cycle counting method considering SOC 

and C-rate effect for EFR-A4 (𝐾𝑝 = 2000) for October 2015 frequency data 

 
C-rate 

0.1 0.2 0.4 0.6 0.8 1 

S
O

C
 (

%
) 

10 0.2043 0.07024 0.09051 0.01362 0 0 

20 0.1452 0.08897 0.1765 0.05661 0.00546 0 

30 0.3135 0.2092 0.3616 0.06746 0 0 

40 0.7645 0.6639 1.064 0.3093 0.02765 0.001137 

50 0.9541 1.523 2.199 0.5923 0.07313 0.0006767 

60 1.067 1.564 2.238 0.5408 0.05314 0.002857 

70 1.31 0.9027 1.374 0.4065 0.04811 0.004883 

80 0.6628 0.2893 0.5515 0.1617 0.04635 0.004157 

90 0.172 0.05476 0.135 0.04978 0.009987 0 

100 0.009928 0.001223 0.006523 0 0 0 
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Table B.5 Number of cycles obtained from the fast cycle counting method considering SOC 

and C-rate effect for EFR-A4 (𝐾𝑝 = 10000) for October 2015 frequency data 

 
C-rate 

0.1 0.2 0.4 0.6 0.8 1 

S
O

C
 (

%
) 

10 0.03026 0.08572 0.05565 0.006381 0 0 

20 0.0436 0.1072 0.1458 0.0198 0.001908 0 

30 0.09054 0.3691 0.185 0.06464 0.002418 0.0005625 

40 0.9854 0.6803 0.7674 0.234 0.009956 0 

50 1.915 1.962 2.967 0.7287 0.1016 0.002049 

60 2.428 2.214 3.049 0.7792 0.06264 0.003147 

70 1.213 1.076 1.031 0.3479 0.08531 0.007951 

80 0.02155 0.08788 0.07411 0.01284 0 0 

90 0.006609 0.04343 0.05115 0.004684 0 0 

100 0.01039 0.02119 0.03217 0 0 0 

 

Table B.6 Number of cycles obtained from the fast cycle counting method considering SOC 

and C-rate effect for EFR-A4 (𝐾𝑝 = 100000) for October 2015 frequency data 

 
C-rate 

0.1 0.2 0.4 0.6 0.8 1 

S
O

C
 (

%
) 

10 0.03299 0.08907 0.04997 0.006381 0 0 

20 0.01071 0.02924 0.09107 0.004952 0 0 

30 0.07966 0.2282 0.2215 0.06652 0.002332 0 

40 0.1313 0.4996 0.6424 0.1509 0.004221 0.0005625 

50 2.434 3.121 3.31 0.8153 0.1014 0.001827 

60 2.781 4.104 4.532 1.048 0.1351 0.00903 

70 0.09885 0.4343 0.6156 0.2037 0.02345 0.002291 

80 0.006182 0.03111 0.07945 0.01462 0 0 

90 0.009212 0.0489 0.03588 0.01221 0.005155 0 

100 0.0114 0.02653 0.05643 0.0009971 0 0 
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E. DFFR Algorithm Results for October 2015 

Table B.7 Number of cycles obtained from the fast cycle counting method considering SOC 

and C-rate effect for DFFR Algorithm for October 2015 frequency data 

 
C-rate 

0.1 0.2 0.4 0.6 0.8 1 

S
O

C
 (

%
) 

10 0.4621 0.7223 0.3843 0.001698 0 0 

20 0.6574 1.278 0.5824 0.004454 0 0 

30 0.9776 1.854 0.7466 0.001886 0 0 

40 1.097 1.766 0.8723 0.003599 0 0 

50 1.491 2.522 1.207 0.01542 0 0 

60 1.411 2.383 0.9675 0.006787 0 0 

70 1.043 1.613 0.5797 0.001308 0 0 

80 0.9255 1.507 0.5563 0.007388 0 0 

90 0.9291 1.372 0.6237 0.006254 0 0 

100 0.6695 0.9592 0.4217 0.002303 0 0 
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Appendix C   LabVIEW Software Coding of EFR-A1 used in WESS 

 

 Fig. C.1 Demonstration of LabVIEW code of EFR-A1 (oneA) 
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Fig. C.2 Demonstration of LabVIEW code of EFR-A1 (oneB) 
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Fig. C.3 Demonstration of LabVIEW code of EFR-A1 (two) 
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Fig. C.4 Demonstration of LabVIEW code of EFR-A1 (threeA) 
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Fig. C.5 Demonstration of LabVIEW code of EFR-A1 (threeB) 
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Fig. C.6 Demonstration of LabVIEW code of EFR-A1 (threeC) 
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Fig. C.7 Demonstration of LabVIEW code of EFR-A1 (threeD) 

 

Fig. C.8 Demonstration of LabVIEW code of EFR-A1 (fourA) 
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Fig. C.9 Demonstration of LabVIEW code of EFR-A1 (fourB) 
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Fig. C.10 Demonstration of LabVIEW code of EFR-A1 (fourC) 
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Fig. C.11 Demonstration of LabVIEW code of EFR-A1 (fourD) 
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Fig. C.12 Demonstration of LabVIEW code of EFR-A1 (fourE) 
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Fig. C.13 Demonstration of LabVIEW code of EFR-A1 (fourF) 
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Fig. C.14 Demonstration of LabVIEW code of EFR-A1 (fourG) 
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Fig. C.15 Demonstration of LabVIEW code of EFR-A1 (fourH) 
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Fig. C.16 Demonstration of LabVIEW code of EFR-A1 (fourI). 
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Fig. C.17 Demonstration of LabVIEW code of EFR-A1 (fourJ). 
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Fig. C.18 Demonstration of LabVIEW code of EFR-A1 (five). 


