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Abstract

This thesis focuses on the investigation of partial least squares (PLS) method-
ology to deal with high-dimensional correlated data. Current develop-
ments in technology have enabled experiments to produce data that are
characterised by, first, the number of variables that far exceeds the number
of observations and, second, variables that are substantially correlated be-
tween them. These types of data are common to be found in, first, chemo-
metrics where absorbance levels of chemical samples are recorded across
hundreds of wavelengths in a calibration of near-infrared (NIR) spectrom-
eter. Second, they are also common to be found in genomics where copy
number alterations (CNA) are recorded across thousands of genomic re-
gions from cancer patients. PLS is a well-known method to employ in
the analysis of high-dimensional data as a regression method in chemo-
metric data or as a classification method in genomic data. It deals with
those characteristics of the data by constructing latent variables, called
components, to represent the original variables. However, there are some
challenges in the application of PLS for such analysis and, in this research,
there are several areas of investigation that we have performed to deal with
them. The first one is that there are three main PLS algorithms with po-
tentially different interpretation of relevant quantities. We deal with this
problem by consolidating those three algorithms and identify the case in
which those three algorithms would give the same estimates. The second
one is the unusual negative shrinkage factors (or “filter factors”) that PLS
experiences in the model fitting. One of the main reasons PLS can deal
with high-dimensional data is that the estimates experience a shrinkage.
Unlike ridge regression or principal component regression that experience
shrinkage factors between zero and one, PLS can experience shrinkage



factors more than one or even negative (hence, more appropriate to be
called “filter factors” than “shrinkage factors”). To our knowledge, there
has been no previous meaningful investigation on the negative filter fac-
tors (NFF) in PLS. In this research we present a novel result whereby we
identify the condition for NFF to happen and investigate characteristics of
the data that are associated with NFF to get an insight. Lastly, the main
challenge of the application of PLS is in the interpretation of weights as-
sociated with the predictors. With hundreds and thousands of predictors,
each and every predictor variable has non-zero weight. However, we ex-
pect that only some predictor variables are contributing to the association
with the outcome variable. We therefore resort to the sparse estimation
of predictor weights where some weights are zero estimated and the other
weights are non-zero. A (standard) lasso estimation has a weakness in
dealing with correlated variables as it picks up one variable within a corre-
lation “block” without knowing the reason. A novel approach is needed to
take into account the dependencies between predictor variables in estimat-
ing the weights. We propose a new method where a new penalty function
is introduced in the likelihood function associated with the estimation of
weights. The penalty function is a combination of a lasso penalty that im-
poses sparsity and a penalty based on Cauchy distribution with a smoother
matrix to take into account dependencies between genomic regions. The
results show that the estimates of the weights are sparse: many weights
are zero estimated, and those non-zero estimates are grouped and exhibit
smoothness within them. The interpretation on genomic regions becomes
easy and identification of important regions for each component can be
done simultaneously with prediction in a single modelling framework. We
investigate the relation between PLS and graphical modelling using the in-
formation in the weights to construct the graph with unsuccessful results.
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RR Ridge Regression
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Chapter 1

Introduction

1.1 Overview

A common statistical problem is to find a relationship between a set of predictors and a
dependent variable which is called regression. When the number of predictors is highly
exceeding the number of samples, the classical regression solution cannot be achieved.
High-dimensional data can be found in many application areas such as chemometrics,
bioinformatics, brain mapping or social science. Genomic data in bioinformatics and
spectroscopic data in chemometrics are high-dimensional data because the number of
genes (p) in the genomic data exceeds the number of observations (samples) (n), and
the number of wavelengths (p) is larger than the number of objects (n) in spectroscopic
data. One more feature of these data is that the correlation between the covariates
is very large. For examples, copy number alterations (CNA) data has a very large
number of covariates (genomic regions), and multi-component spectroscopic (NIR)
data has many covariates (wavelengths). These data are high in dimensional such
that p � n and the covariates are highly-correlated. In this case, classical statistical
methods cannot handle these data.

Some methods, which are discussed in Section 1.2.1, called variable selection
where these methods aim to select only a subset of the predictors to be included in
the regression model. Variable selection has two main approaches which are discrete
or shrinkage. Variable selection by shrinkage tries to set some of the coefficients in
the model to zero by penalising their magnitude (e.g. Tibshirani (1996)). On the other
hand, discrete feature selection involves relevant variables from a set of variables that
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have an association with response variable. One more group of approaches, which
are discussed in Section 1.2.2, called feature extraction or dimension reduction. This
approach tries to reduce the high-dimensional (p) genes or wavelengths space to a
lower-dimensional space with a dimension called components (m). This m is cho-
sen usually by cross-validation (Geladi & Kowalski, 1986). There are two common
methods of this approach which are unsupervised method called principal component
regression (PCR) (e.g, Massy (1965)) and the supervised method named partial least
squares (PLS) regression developed by (Wold (1966)).

Ordinary least squares (OLS) is an attempt to maximise the correlation between
the predictor matrix, X , and the response matrix, Y , while PCR tries to maximise the
variances between the predictors in X without taking into account the response matrix
in Y . However, PLS regression is a generalisation of OLS and PCR because it tries to
maximise the covariance between the predictors, X , and responses, Y , and it can also
analyse data with high-collinearity, and numerous X-predictors (Frank & Friedman,
1993). PLS is a multivariate method that can reduce the dimensionality by project-
ing the original data matrix (X) which is high in dimension to a lower dimension by
taking information from both the X and Y matrices. Also, PLS method eliminates
the collinearity between the predictors using the lower dimension which has orthogo-
nal components. With this type of data sets and because our interest is in prediction
and the interpretation of the coefficients in the model, PLS regression is the optimal
method. In spite of that, PLS becomes more reliable for removing the collinearity
which OLS method cannot do that. In addition, PLS regression is preferred than PCR
when prediction is important (Höskuldsson, 1988).

The original work developing the PLS regression method was done by Wold (1966)
in the field of econometrics. PLS method has been used for analyses of high-dimensional
data in many research fields including chemometrics and bioinformatics (see Höskulds-
son (1988), Worsley (1997) and Hulland (1999)). Moreover, the PLS method has been
found to be a useful dimension reduction technique in chemometrics by the groups of
(Wold, 1975) and (Wold et al., 1983). Also, in the gene expression data, Nguyen &
Rocke (2002) showed how PLS regression is a powerful dimension reduction method
for these genomic data. They then used logistic regression or discrimination (LD), lin-
ear discriminant analysis (LDA), and quadratic discriminant analysis (QDA) for classi-
fying human tumor samples. PLS is a useful method for prediction especially when the
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number of predictors in X are huge and the sample size is very small (Höskuldsson,
1988).

With ordinary PLS the number of coefficients is still over thousands in genomic
data as CNA data which makes the interpretation of them hard. A sparse solution is
needed to select the variables that are more relevant to the response variable. Moreover,
NIR and CNA data sets have blocks of correlated covariates which need a method to
tackle this problem.

This chapter is organised as follows. In Section 1.2 we review some methods that
have been used and developed with high-dimensional and highly-correlated data with
normal or binary outcomes. Data sets that are used in this thesis are described in
Section 1.3 with a brief discussion about a biological background. In Section 1.4, we
provide the motivation and contributions for this thesis. Finally, the structure of the
thesis is given in Section 1.5.

1.2 Literature review

There are two main approaches to deal with high-dimensional and highly-correlated
data. The first approach is based on variable selection as described in Section 1.2.1,
and the second one is based on feature extraction described in Section 1.2.2.

1.2.1 Methods based on variable selection

To deal with high-dimensional data in terms of covariates block, choosing a subset of
the variables is one way. It is very important to select the features that are expected
to be predictive and significant for the response variable in the model. Some common
approaches for feature selection involve discrete feature selection and shrinkage.

Univariate selection is a basic approach for variable selection (feature selection). In
this approach, the variables that have a high association with the response variable are
ranked based on a score test. There are several tests that have been used in the literature
such as t statistic (Hedenfalk et al. (2001)) or Wilcoxon’s rank sum statistic ((Dettling
& Bühlmann, 2003)). Then, we include the top variables in the model depending on
their p-values. Using the Bonferroni correction, we can adjust the p-values. But a
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certain error rate can be achieved such as false discovery rate or family-wise error rate
(see (Benjamini & Hochberg, 1995)).

To improve the univariate model described above, we can take into account the
correlation between genes by including the genes sequentially in a multivariate model.
This type of method is called a forward stepwise selection. forward stepwise selection
method starts by having the null model, then adding the genes that have largest score
test value. Finally, we continue until we include the m covariates that are highly as-
sociated with response variable. Huang et al. (2005) compared five statistical methods
which are PLS, penalised partial least squares, Lasso, nearest shrunken centroids and
random forest using a binary response data for classification problem. Using two real
data sets, Huang et al. (2005) found that all proposed methods perform similarly.

Discrete variable selection methods may not well the joint effects of multiple co-
variates which may result in low accuracy of prediction. To overcome such diffi-
culties, another approach of the variable selection is regularisation procedures which
can be called shrinkage methods. These methods aim to maximise the penalised log-
likelihood with a penalty for a mixed model. Several penalties have proposed in the
literature with gene expression data (high-dimensional data) for a classification pur-
pose such as an L2 penalty leading to ridge regression see (Ghosh, 2003).

With L1 penalty which yields to Lasso solution in order to regularise log likeli-
hood, a sparse solution can be achieved (e.g. Tibshirani (1996); Huang et al. (2005);
Kalina (2014)). The problem with the Lasso is that with highly-correlated data, the
Lasso will tend to identify one of the features that are associated with the response
variable. This can be a desirable problem for interpretation and loosing some of im-
portant information from a set of correlated variables. Zou & Hastie (2005) proposed
the EN to the linear regression in order to improve the ability of the Lasso to be able to
identify sets of correlated genes associated with the response variable. Zou & Zhang
(2009) proposed an adaptive EN method with an application on a high-dimensional
data. Algamal & Lee (2015) proposed the adjusted adaptive EN for gene selection in
high-dimensional data for classifying cancer data. The major drawback of the variable
selection methods is the lack of stability (see (Breiman et al., 1996)).
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1.2.2 Methods based on feature extraction

Feature extraction is an alternative way which works as searching for combinations of
variables, without excluding any of the variables. These methods project the original
space p (whole data) to a lower space of dimensionmwherem < p. The most common
feature extraction methods are PCR e.g, (Massy, 1965) and PLS e.g, (Lee et al., 2011)
and (Fort & Lambert-Lacroix, 2005).

PCR is an unsupervised method where its goal is to find orthogonal linear com-
binations of the original variables which have high variance. PCR has been used
by Chiaromonte & Martinelli (2002) with microarray data for binary classification
of leukemia into acute lymphoblastic leukemia (ALL) and acute myeloid leukemia
(AML). Since it is an unsupervised method, it may be inappropriate for predicting the
outcome either a binary or continuous response variable. That is, it might be possi-
ble to have the top PCs capture the variability between the variables but they are not
associated with response variable.

If prediction is desired, an alternative supervised method is PLS. It has been pre-
viously used for linear regression by Wold et al. (1993) whereas for classification by
many researches such as Nguyen & Rocke (2002), Pérez-Enciso & Tenenhaus (2003),
Boulesteix (2004) and Fort & Lambert-Lacroix (2005). For classification, several ap-
plications have been explored; for example Nguyen & Rocke (2002) proposed a novel
procedure for classifying (predicting) human tumor samples using microarray gene ex-
pression data. This procedure involves dimension reduction using PLS and classifica-
tion using Logistic Discrimination (LD) and Quadratic Discriminant Analysis (QDA).
They suggested PLS rather than PCR for prediction purposes. Boulesteix (2004) ap-
plied a classical boosting algorithm (AdaBoost) in the framework of PLS dimension
reduction.

The latent variables can be extracted using one of several algorithms that can be
used for PLS regression such as the kernel algorithm proposed by Höskuldsson (1988),
the SIMPLS algorithm De Jong (1995), and the NIPALS algorithm. The algorithm
given here is one of the most complete and elegant ones if prediction is important
and numerically stable. Also, the NIPALS usually converges in the case of non-
convergence where there may be two or more of the eigenvalues are very close to
each other (Geladi & Kowalski, 1986).
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PLS1 is denoted for PLS with univariate response variable (y), and PLS2 denotes
PLS with multivariate response variables (Y ). Garthwaite (1994) provided an inter-
pretation of PLS1 and PLS2 of forming prediction equations and it can be better than
other methods in prediction.

There are two NIPALS algorithms based on two different views of how the latent
variable (X-weights), denoted as (w), is calculated as described in Chapter 2, Sections
2.4.3 and 2.4.4. For PLS2, there are three different versions of the NIPALS algorithms
that differ in the normalisation of the latent variables as described in Chapter 2, Section
2.5.

Lingjaerde & Christophersen (2000) and Frank & Friedman (1993) investigated
the connection of the shrinkage factors between three shrinkage methods which are
ridge regression (RR), PCR and PLS regression for the case n > p. The properties
of the shrinkage factors of the PLS estimator have been studied in the literature e.g.
Lingjaerde & Christophersen (2000), Butler & Denham (2000) and Rosipal & Krämer
(2006). The shrinkage factors of the PLS estimator oscillating around 1 while for PCR
and RR they are between 0 and 1.

Chun & Keleş (2010) reformulated the sparse PLS (SPLS) criterion by generalising
the regression formulation of SPCA using the elastic net penalty of (Zou et al., 2006).
In Lee et al. (2011), sparse PLS (SPLS) methods with two penalties are proposed.
The first SPLS using the L1 penalty (SPLS-L1), with the same version of the NIPALS
algorithm and different penalty hierarchical likelihood (HL), they proposed (SPLS-
HL) method. Moreover, based on a different NIPALS algorithm with HL penalty, they
proposed second method of SPLS based on the second NIPALS algorithm. Lee et al.

(2011) argued that SPLS proposed by Chun & Keleş (2010) is a two stage procedure,
like the preliminary-test for the estimation of the direction vector. Lee et al. (2011)
compared their three proposed methods to the SPLS by Chun & Keleş (2010) and the
standard PLS, they found that SPLS-HL method outperform than other competitive
methods.

SPLS has been widely used for problems with high-dimensional data in bioinfor-
matics field recently using the L1 penalty such as (Sutton et al., 2018) and (Ajana et al.,
2019). Moreover, Colombani et al. (2012) compared between the standard PLS and
SPLS in genomic selection in French dairy cattle. Using the adaptive Lasso proposed
by Zou (2006), Durif et al. (2017) proposed a method called adaptive sparse PLS.
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However, Lee et al. (2011) did not consider the correlation between neighbouring
genes or variables. Since the data sets, we are using, are high in dimension and highly-
correlated, PLS can deal with high-dimensional data and for variable selection, L1

penalty is one of the best methods. For data sets like CNA which have blocks of cor-
related covariates, SPLS methods identify randomly one covariate out of the block. L1

penalty tends to pick only one variable out of the variables that are associated with the
outcome. This is a well known problem of SPLS methods with Lasso solution. Huang
et al. (2009) considered the smoothed logistic regression model for classification di-
rectly. They assumed that the regression coefficients are correlated random effects that
follow a mixture of two distributions. They assume one of the mixture distributions is
Cauchy to deal with the jumps in the underlying pattern. Gusnanto & Pawitan (2015)
employed Cauchy distribution as a random effect model to obtain a sparse solution.

1.3 Data sets

We have been using two data sets, and they are high in dimension and highly-correlated.
First, the corn spectroscopic data known as near infrared (NIR) data when the response
is on a continuous scale with a univariate normal response and multivariate normal re-
sponses. Second, the tumour subtypes of lung cancer data when the response is binary.
These are described in detail more with a section about a biological background below.

1.3.1 Corn spectroscopic data (NIR Spectra)

This data is available online on eigenvector.com (Blackburn, 2005). It consists of 80
samples of corn measured on 3 different NIR spectrometers. The wavelength range is
1100-2498 nm at 2 nm intervals (700 channels). Using three near infrared (NIR) spec-
trometers called “m5”, “mp5”, and “mp6” to measure these predictors or variables
(wavelengths) represented by the columns in an X matrix, we obtain correspondingly
three predictor matrices called “m5spec”, “mp5spec”, and “mp6spec”, respectively (Fu
et al., 2011). The predictors are generally strongly correlated with each other. For ex-
ample, 93.4% of the variables have correlation coefficients more than 0.92, and 49.4%

of the variables have correlation coefficients more than 0.99 for ”m5spec” data set (Fu
et al., 2011). The moisture, oil, protein and starch values are the response variables
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(Y ) for each of the samples is also included. A number of NBS glass standards were
also measured on instrument mp5. The data was originally taken at Cargill. Thus, the
X matrix has dimension (80× 700) and the response matrix is (80× 4). This data has
been previously used and analysed in Li et al. (2009) and Fu et al. (2011) with PLS
regression method. For sparse PLS this data are used by Lee et al. (2011) with two
methods of SPLS. In our analysis in this thesis we use “mp5spec” data with the first
column in the Y matrix. Thus, we will be dealing with a univariate response variable
which is the moisture.

1.3.2 Genomic CNA data

The genome is made up of deoxyribonucleic acid (DNA) which carries the genetic in-
formation in all cellular form of life (see (Alberts, 2008)). The DNA in the nucleus is
split up into a set of different chromosomes (see (Alberts, 2008)). There are 24 chro-
mosomes in the human genome. There are two copies of DNA in each chromosome
normally and each of these copies has two strands of DNA sequences. The base pairs
are located in these two strands where A is paired with T, and C with G ((Alberts,
2008)). For more details, the reader is referred to (Shendure & Ji, 2008) and (Alberts,
2008).

DNA sequence technology has been widely used for high-dimensional data col-
lection. Parallel DNA sequencing platforms recently have become available in order
to reduce the cost of DNA sequencing. Next Generation Sequencing (NGS) is an in-
credible platform that can accelerate biological and biomedical research potentially,
by utilising different technologies such as SOLiD and 454 sequencing (see (Alberts,
2008)). In order to build a genomic library, the NGS process starts by chopping the
DNA into short fragments. After that, the human reference genome is used to map
and sequence these fragments which called reads. Finally, these reads are counted per
window across the genome. The result, which is a quantitative data set, called read
count. Estimating the optimal number of windows can be done using the NGSoptwin

package proposed by Gusnanto et al. (2014).
Seventy-six lung cancer patients had surgery at the Department of Thoracic Surgery

at Leeds Teaching Hospitals in Leeds(UK). These patients comprise two groups which
are squamous carcinoma for (38 patients), and (38 patients) for adeno carcinoma
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(ADC). The clinical characteristics for the patients such as age and gender as covari-
ates can be found in Gusnanto et al. (2015) with other information, but they are not
used in the analysis of this data in this thesis. We only focus on the CNA genomic
regions excluding the clinical characteristics for the patients.

Gusnanto et al. (2011) performed a normalisation step using their CNAnorm pack-
age to obtain the CNA estimates. Using two segmentation methods to estimate the
CNA yield two different forms of the CNA estimates. The first estimate called smoothed
estimate where CNA is estimated as smooth segmented lines obtained (Huang et al.

(2007)). The second estimate of CNA is DNACopy where CNA is estimated as circu-
lar binary segmented lines (CBS) algorithm (Olshen et al. (2004)). We have more than
20000 windows that cover the whole genome (Gusnanto et al., 2015). In the analysis
of this thesis, we exclude the sex chromosomes. We also remove the genomic win-
dows that have more than two missing values, and for those windows with less than
two missing values, we replace the missing values by the average of that window (col-
umn) for all patients. Therefore, we have CNA estimates for 17694 genomic windows
from the patients which can be summarised in a matrix denoted by X of size 76 by
17694. The binary tumour histological subtype is the response variable and denoted
by y. This response variable is a binary vector where the first 38 take zero values for
those patients who have squamous carcinoma and one values for adeno carcinoma (i.e.
squamous carcinoma = 1, ADC = 0).

In this thesis we consider the smooth segmented CNA data for the analysis in Chap-
ters 3 and 5. We use both data which are smoothed segmented CNA estimates and
DNACopy CNA data in the analysis presented in Chapter 2.

1.4 Motivation and contribution

Predicting the outcome or classifying the subtype of a cancer have been studied widely
in the past 10 years. Several methods have been applied to high-dimensional and
highly-correlated data sets (p � n) as indicated in Sections 1.2.1 and 1.2.2, but they
have some weaknesses. Although the variable selection method is easy to implement,
it is hard to interpret the results, and it does not take advantage of the lower dimensional
structure in the data which can result in a worse prediction performance than using PLS
Lee et al. (2011). On the other hand, PLS regression is a powerful tool that reduces
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the dimension of the predictors block. PLS use an iterative algorithm called nonlinear
iterative partial least square (NIPALS) to calculate the latent variables. There is a
misunderstanding between three different versions of NIPALS algorithm.

The shrinkage of the estimator of three common shrinkage methods such as RR,
PCR and PLS used for low-dimensional data in the literature by Frank & Friedman
(1993), Lingjaerde & Christophersen (2000) towards the OLS solution. When the data
is high-dimensional, shrinkage does not exist and so shrinkage factors are replaced
by filter factors. However, the filter factors of the PLS estimator may have strange
behaviour in that they can take negative values which are referred to as negative filter
factors (NFF). Although NFF in the PLS estimator was mentioned by e.g Lingjaerde
& Christophersen (2000) and Butler & Denham (2000), it has not been investigated
in detail nor the conditions in which it may occur. The structure of the data and the
variance-covariance matrix of the data has a relationship with NFF. It is important to
find this connection.

Moreover, NIR data has high-correlation between variables and CNA data has de-
pendencies between neighbouring genomic windows. If the feature selection or de-
rived variable methods had been used on these data sets, the dependencies would have
been ignored as described for CNA data in (Huang et al., 2009). Therefore, these
methods are unsuitable for NIR and CNA data since they ignore the correlation be-
tween variables or windows. Furthermore, feature extraction method does not include
variable selection which will give a poor prediction if a large number of the irrelevant
variables are included in the model.

PLS method does not automatically perform variable selection for the relative vari-
ables with the outcome because PLS constructs latent variables that are linear combi-
nations of the original covariates. Thus, the performance is expected to be reduced if
a large number of covariates are not in fact related to the outcome Lee et al. (2011).
Sparse PLS (SPLS) methods have been of interest with high-dimensional data in ge-
nomics data and spectroscopic data (see Lê Cao et al. (2008) Chun & Keleş (2010),
Chung & Keles (2010), Fu et al. (2011), Lee et al. (2011), Lee et al. (2013), Sutton
et al. (2018), Ajana et al. (2019)). Since we are dealing with CNA and NIR data where
these data has blocks of covariates and applying SPLS cannot handle this type of data
because in each block L1 penalty tends to pick randomly one covariate of the block that
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is associated with outcome. This problem needs a method that tackle the dependencies
between genomic regions or covariates within each block of covariates.

1.4.1 Contribution

Our contribution in this thesis can be summarised in some points as follows. In Chapter
2, we have proved that three different versions of NIPALS algorithm give the same esti-
mator of PLS regression with discussion about “pls2-nipals” function in chemometrics
package in R. In Chapter 3, we have investigated the filter factors of three common
methods which are RR, PCR and PLS regression methods in the high-dimensional
data case and showed that they have a common formula. In Chapter 4, we have inves-
tigated and proposed some new conditions on the negative filter factors (NFF) occur-
rence followed by showing the NFF using two real data sets with normal and binary
response variables. We also have investigated some of the cases where NFF occurs
with simulation for different structure of the covariance matrix of X . In Chapter 5,
we have proposed the sparse-smoothed PLS with first NIPALS algorithm using the
penalised likelihood approach. Specifically, we assumed the direction vectors (w) to
follow a mixture of two distributions: Cauchy for second-differences of w (to achieve
smoothness), and Laplace (to gain sparseness). Also, we have proposed another sparse-
smoothed PLS based on the second NIPALS algorithm with the penalised likelihood
model. We assumed the same penalty in the sparse-smoothed PLS using the first NI-
PALS algorithm but the change is only in the conditional likelihood part. Furthermore,
the optimal tuning parameters is chosen based on two alternative ways for both meth-
ods of SSPLS. We have a local model which is based on w, and a global model based
on the estimators of PLS (β̂). Moreover, we applied these two proposed methods on
two different data sets with two different response category (real-valued response as in
NIR data) and binary response (CNA data) for classification. Further, we generalised
the gradient algorithm that Goeman (2010) proposed by generalising his idea which
follows the gradient of the likelihood from a given starting value which uses the full
gradient at each step. Finally, in Chapter 6, we investigated the connection between
graphical modelling and PLS in order to get some insights of the graph by interpreting
the direction vectors w in each component.
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1.5 Structure of the thesis

This thesis involves three main aspects of using PLS regression method based on the
characteristic of the data which are high in dimension and highly-correlated. The first
part comprises Chapters 3 and 4which emphasise on the filter factors of PLS and the
negative filter factors (NFF). The second part, to deal with dependences and to provide
a sparse solution, we provide sparse-smoothed PLS model as presented in 5. Finally,
the PLS is combined with the graphical modelling to interpret each component and
how the information in w would correspond to that of the graphical model as described
in Chapter 6. A flow chart of this thesis is presented below.

PLS regression for high-dimensional
and highly-correlated data

Dimension reduction tool:
PLS regression

Filter factors of PLS
regression estimator

Negative filter factors
(NFF)

Sparse-smoothed PLS
First and Second (SSPLS) model

Graphical model
with PLS regression

In Chapter 2 we review PLS regression method and PCR for univariate and mul-
tivariate response variable(s). We also showed how PLS model is built. We have
investigated three different versions of the most common algorithm that has been used
by many researchers which is NIPALS algorithm with normalising the loadings of (X
and y) or not. We provide a proof of the equivalence of their PLS estimators when
the inner regression α is included in the estimator. Moreover, we applied the standard
PLS method to two real data sets one with a real-valued response using NIR spectra
data, and with a binary response using CNA data for classification. We discussed the
variance of the PLS estimator and how it is not linear since it depends on the response
variable y, so a numerical approach is used.
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In Chapter 4 we have modified the results in Frank & Friedman (1993) and Ling-
jaerde & Christophersen (2000) for comparing the most common alternative methods
to the OLS solution in the literature which are RR, PCR and PLS, for high-dimensional
data case. We illustrated the behaviour of the filter factors of the three methods using
both data sets. We discussed in detail more the behaviour of the filter factors of the
PLS estimator.

In Chapter 3 we considered the behaviour of the filter factors of PLS estimator.
Specifically, one of the strange behaviours of the filter factors that some cases negative
values occur and that is discussed deeply in Chapter 4. We started by providing an
example when the NFF occur from a simulated data set. We proposed conditions for
the occurrence of NFF in each component based on the combination of the eigenvalues
of two matrices (XTX andW T

mX
TXWm), where the direction vectors are the columns

in Wm matrix with m components. Furthermore, we presented some reasons of having
NFF by simulating some different settings of the eigenvalues of XTX . Moreover, we
have used a small example to investigate NFF based on different structures of variance-
covariance matrix of X .

In Chapter 5 we propose a model that deals with high-dimensional and highly-
correlated data. We used the first version of NIPALS algorithm by assuming the direc-
tion vector (w) is a random effect. We first assume that w is a random effect follows
a Cauchy distribution because the data is highly-correlated and it is difficult to inter-
pret the significant variables that are associated with the outcome without smoothness.
Then, we added the variable selection to the model by assuming (w) is a random ef-
fect model follows a mixture of two distributions (Cauchy to gain smoothness) and
(Laplace to gain sparseness). We proposed another SSPLS model based on the second
NIPALS algorithm which can be faster than the first one for high-dimensional data
(Lee et al., 2011). The first SSPLS method looks alike sparse principal component
analysis SPCA since w is trying to find the maximum eigenvalue of ZT

mZm, where
Z = Y TX (Lee et al., 2011). The second SSPLS method resembles sparse canonical
covariance analysis since w is trying to find the maximum singular value of Zm (Lee
et al., 2011).

Moreover, we optimised the tuning parameters in both methods by two approaches.
The first approach is based on the local model where each component is similar to be
treated separately which means that each component has the optimal tuning parameter
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that may not be the same for the following component. The second approach is based
on the global model which uses the estimate of the coefficients by PLS estimator (βpls).

In this Chapter, we present a full gradient ascent algorithm for maximising the
penalised likelihood by generalising the idea of Goeman (2010). Furthermore, we
applied the both models for SSPLS with both scenarios of choosing the optimal tuning
parameters on the simulated data, NIR data (where the response is on a continuous
scale), and CNA data (where the response is binary).

Furthermore, we compared our proposed methods first and second sparse-smoothed
PLS (SSPLS) with local and global models with the first and second sparse PLS with
HL penalty presented in Lee et al. (2011). We followed the simulation setting of Lee
et al. (2011).

In Chapter 6 we tried to find one way for interpreting the direction vectors wm
for each component. We used the idea of conditional independence between the pre-
dictors and the outcome (response variable). We combined graphical modelling with
PLS method in order to interpret wm in each component by simulating some graphical
models from the inverse covariance matrix. We applied PLS method using NIPALS
algorithm (first version) on a data that is simulated from the inverse covariance matrix.

Finally, Chapter 7 gives the overall conclusion of the contents of this thesis with
future work for some improvements.
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Chapter 2

Overview on Partial Least Squares
Regression

2.1 Overview

Partial least squares (PLS) is a multivariate method that can reduce the dimensionality
by constructing latent variables where each latent variable is a linear combination of
the original data matrix (X). Also, PLS method deals with the collinearity between the
predictors using the latent variables which are orthogonal.

The genomic data in bioinformatics and the spectroscopic data in chemometrics are
high-dimensional data because the number of genes, (p), in the genomic data exceeds
the number of observations (samples), (n), and the number of wavelengths, (p), is
larger than the number of objects (n) in spectroscopic data. In this situation (i.e. when
n � p), dimension reduction is needed to reduce the high-dimensional (p) genes or
wavelengths space to a lower-dimensional space with dimension m. This m is chosen
usually by cross-validation (Geladi & Kowalski, 1986). Recently, numerous applica-
tions of classification using PLS methods for gene expression data have been done as
in Nguyen & Rocke (2002), Boulesteix (2004) and Fort & Lambert-Lacroix (2005).

Recall, PLS1 is denoted for PLS with univariate response variable (y), and PLS2
denotes PLS with multivariate response variables (Y ). There are two NIPALS algo-
rithms based on two different views of how the latent variable (X-weights), denoted
as (w), is calculated as described in Sections 2.4.3 and 2.4.4. For PLS2, there are
three different versions of the NIPALS algorithms that differ in the normalisation of
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the latent variables as described in Section 2.5. The equivalence between the estima-
tors of βpls2 using these three versions of NIPALS algorithms for PLS2 have not been
investigated in the literature.

Traditional statistical methodology for prediction such as multiple linear regression
(MLR) does not work when there are more variables than samples. For instance, in
genomic data the number of genes is much larger than the number of samples. Thus,
methods that are able to reduce the dimensionality of the data are necessary. Principal
component regression (PCR) and PLS are the most popular methods in this sense,
but they are different in the definition of reducing the dimensionality. PCR tries to
reduce the dimension in theX block without taking any information from the Y block.
However, PLS regression tries to take the information from both blocks.

Although PLS was not designed for classification problems, it has been used by
many researchers. PLS can be used for classification as Barker & Rayens (2003)
showed the connection between PLS and linear discriminant analysis (LDA). The the-
oretical connection between the PLS and traditional classification methods such as
LDA is described in Section 2.9. The reader is referred for more details to (Barker &
Rayens, 2003).

This chapter is organised as follows. Section 2.2 is a brief description of multiple
linear regression (MLR) when the response/s is/are univariate and multivariate. Sec-
tion 2.3 is a brief description of the principal component analysis (PCA) and principal
component regression (PCR). Section 2.4 is a brief description of PLS regression for
PLS1 and PLS2. Section 2.5 is about three different versions algorithms of the NI-
PALS algorithms with some investigation and a theoretical proof of their equivalence
in terms of regression parameters, β̂pls2. Section 2.6 is about the relationship between
(the eigenvalue and eigenvector structure) and PLS regression latent variables. Section
2.7 provides some results based on two real data sets with the criteria to choose the
optimal number of components (m) to be included in the regression model. In Section
2.8, there is a discussion about how the estimated variance of the estimated regression
parameters, β̂pls1 can be calculated numerically but not theoretically. Finally, Section
2.9 provides the connection between PLS and linear discriminant analysis (LDA).
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2.2 Multiple linear regression (MLR)

From Equation (2.1), one can see that there are three cases need to be discussed. First
case, if the number of predictors (p) is larger than the number of observations (n) there
is an infinite number of solutions of β by applying some methods to select variables
or to reduce the dimension. In the second case, the number of observations (n) equals
to the number of predictors (p) there is one unique solution for β by providing that X
has full rank. Third case, the number of predictors (p) is smaller than the number of
observations, n, one can get a solution for β using “least-squares method”. Although
the number of predictors, p, is smaller than the number of observations, n, MLR has a
problem in the inverse of XTX is unstable because of collinearity between predictors
(Geladi & Kowalski, 1986). For data that has continuous response variable(s) and
continuous predictors, the first instance to be considered is linear regression and this
can be done using MLR regression model.

2.2.1 MLR with univariate response

MLR attempts to model the relationship between two or more predictors and a re-
sponse variable by fitting a linear equation to observed data. The model of MLR in the
univariate regression (univariate response) is

y = Xβols + ε, (2.1)

where y is an (n× 1) vector of response variable, X is an (n× p) data matrix, βols is a
(p× 1) vector of parameters, ε is an (n× 1) vector of errors, and randomly distributed
with mean and σ2.

One can get solution for β by minimising the sums of squared errors, ε, using
the most popular method ”least-squares method” (Draper & Smith, 1981) (Gunst &
Mason, 1980) (Mardia et al., 1979). The least-squares solution when (n > p) is

β̂ols = (XTX)−1XTy. (2.2)

Stone & Brooks (1990) showed how the regression procedure as two steps. A subspace
of the original space is defined, then applying the regression on the subspace with the
condition that the regression parameter lies in the subspace. The subspace in ordinary
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least squares (OLS) is defined by the single unit vector that maximises the sample
correlation squared between linear combination of the predictor variables (wTX), and
the response (y) (Frank & Friedman, 1993) and (Stone & Brooks, 1990).

wols = argmax
wTw=1

corr2(y, wTX), (2.3)

where y is an (n× 1) vector of the response variable, X is an (n× p) data matrix, and
w is a (p× 1) vector that spans the prescribed subspace.

When the number of predictor variables, p, is more than the number of observa-
tions, n, in the data matrix, X , the inverse of XTX does not exist. That is because
of collinearity, zero determinant, or singularity are all the reason of non-invertible of
the XTX . So, we should use multivariate methods to solve this problem Geladi &
Kowalski (1986).

2.2.2 MLR with multivariate response

MLR with more than one response variable or multivariate regression is the case when
we have more than one response variable. This can be seen as follows:

Y = Xβols + ε, (2.4)

where Y is an (n× q) matrix of response variables, X is an (n× p) data matrix, βols is
a (p× q) matrix of parameters, ε is an (n× q) matrix of errors, and randomly normally
distributed with mean 0 and Sqq.

The least-squares solution for this case when (n > p) is

β̂ols = (XTX)−1XTY, (2.5)

2.3 Principal Component Regression (PCR)

Technically in principal component analysis (PCA), X is decomposed using its singu-
lar value decomposition as

X = UDV T ,

with:
UTU = V TV = I,
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where U is the left singular vectors and V is the right singular vectors, and D is being
a diagonal matrix with the singular values as diagonal elements. The singular vectors
are ordered according to their corresponding singular values which correspond to the
square root of the variance of X explained by each singular vector. The columns of U
are then used to predict Y using standard regression because the orthogonality of the
singular vectors eliminates the multicollinearity problem (Abdi, 2010).

The PCA model is a method that writes the data matrix X as the product matrix of
a scores matrix T and a loadings matrix P as in Equation (2.6). The components are
calculated using an iteration called NIPALS algorithm Geladi & Kowalski (1986) and
Risvik (2007).

X = TP T , (2.6)

where X is an (n × p) data matrix, T is an (n ×m) scores matrix, P T is an (m × p)
transpose of the loadings matrix, and m is the number of components that should be
used. Ifm = rank(X), then there is no error. Otherwise there is an error in the reduced
dimension model. m is equal the minimum of the rank of X , m ≤ min(n− 1, p).

In Equation (2.6), T , the successive scores are orthogonal, and P , the successive
loadings are orthonormal. These components can be extracted using an iteration al-
gorithm. Here we are going to use the NIPALS algorithm (see appendix A for the
algorithm) (Wold et al., 2001).

The principal components here are trying to maximise the variances in X , without
taking into account the response variable. The component m can be written as follows,
where m = 1, 2, . . . ,M , and M ≤ min(n− 1, p).

δm = tmp
T
m (2.7)

The principal component regression (PCR) uses the X matrix (predictors) without
taking into account the (univariate) response variable (y). The results from PCA, which
are the scores T and the loadings P , can be used to explain the principal component
transformation of the data matrix X . This is a representation of X as its scores matrix
T with a lower dimension, m < p as shown in Equation (2.8).

y = TP Tβpcr + ε, (2.8)
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where ε is the error term with mean 0 and covariance Σ = σ2In and In is the identity
matrix, and the loadings pm are chosen to maximise the variance in X as

ppcrm = argmax
pTmpm=1

var(pTmX), pm ⊥ ph,m > h (2.9)

Since P are orthogonal, the transformation of Equation (2.6) is Geladi & Kowalski
(1986)

T = XP (= TP TP = TIn),

where P is a matrix of X-loadings that maximise the variance between the predictors,
and pmpcr is the X-loading for one component, subject to ||pTmpm|| = 1, ∀m, and <
pm, ph >= 0 for m > h.

So now the univariate regression formula, Equation (2.8) can be written as

y = XPβpcr + ε. (2.10)

The least-squares solution for this case univariate regression (univariate response) is

β̂pcr = (T TT )−1T Ty. (2.11)

The same procedures will be used for multivariate case with multivariate responses.
The multivariate regression formula, Equation (2.10) can be written in terms of the new
few components, X-scores, T as

Y = Tβ + ε. (2.12)

where ε is the error term with mean 0 and covariance Σnn. The least-squares solution
for this case multivariate regression (multivariate responses) is

β̂pcr = (T TT )−1T TY. (2.13)

The variables of X are replaced by new ones that are orthogonal and also span the
space of X . The inversion of T TT should not be a problem anymore because of the
successive scores are orthogonal. To avoid the collinearity problems from influencing
the solution, score vectors corresponding to small eigenvalues should not be used in
the new model in Equation (2.10). PCR handles the collinearity problem and produce
an invertible matrix in the estimation of βpcr (Geladi & Kowalski, 1986).
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2.4 Partial least squares regression (PLS)

Although PCR solves the collinearity problem and produce an invertible matrix
in the estimation of the regression parameters, the problem of choosing an optimum
subset of predictors remains. A possible strategy is to keep only a few of the first
components. But these components are chosen to explain X rather than Y , and so,
nothing guarantees that the principal components, which explain X , are relevant for Y
(Abdi, 2010).

2.4 Partial least squares regression (PLS)

Partial least squares regression (PLS) was constructed to solve the multicollinearity
problem in the regression model. The original work in the PLS method was introduced
by Wold (1966) in the field of econometrics. Then, the use of PLS method has been
found to be a useful dimension reduction technique in the chemometrics field by Wold
et al. (1983) with a new term for PLS which is “projection to latent structures” (Abdi,
2010). PLS method is used to find a linear relation between predictors (X) and the
responses (Y ). PLS model is trying to find the maximum covariance between the
predictors and the responses (Stone & Brooks, 1990). Thus, PLS is preferred to PCR
if prediction is the goal of the analysis (Chin & Frye, 2003). By looking at the second
step of PLS algorithm, we can see that PLS is equivalent to the conjugate gradient
algorithm of forming an inverse of XTX (Wold et al., 1984).

PLS is mostly used in chemometrics and related fields. Recently, it has been used
in bioinformatics and biology. PLS1 is used when the response variable is univariate
for PLS and PLS2 is used when the response variables are multivariate (Garthwaite,
1994).
PLS model introduces X-weights to get orthogonal X-scores, T as can be seen in
Equation (2.14).

X = TW T , (2.14)

where X is an (n × p) data matrix, T is an (n × m) scores matrix, W T is an (m ×
p) transpose of the weights matrix, and m is the number of components that should
be used. If all components are used m = rank(X), then there is nothing left over.
Otherwise there is an error in the reduced dimension model, where m is equal the
minimum of the rank of X (m ≤ min(n− 1, p)).
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2.4 Partial least squares regression (PLS)

2.4.1 PLS with univariate response (PLS1)

PLS1 regression is the PLS regression when the response is univariate. PLS1 can be
done by using an iterative algorithm called NIPALS. This algorithm is used to calculate
the scores, loadings, and weights for X and y, and the parameters. Then, the parame-
ters are used to calculate the predicted values in the future. The PLS regression model
can be written as follows:

y = Tβpls1 + ε, (2.15)

where ε is the error term with mean 0 and covariance Σ = σ2In and In is the identity
matrix, and the direction vectors wm are chosen to maximise the covariance between
X and y as

wplsm = argmax
wT

mwm=1

corr2(y, wTmX)var(wTmX), pm ⊥ ph,m > h. (2.16)

Since the X-weights, W , are orthogonal, the transformation of Equation (2.14) is
shown in Equation (2.17), where W is a matrix of X-weights that maximise the
covariance between the response and the X-score, tm, cov(y, wTmX), and the direc-
tion vectors wm is the X-weight for one component for m = 1, . . . ,M , subject to
||wTmwm|| = 1,∀m, and < wm, wh >= 0 for m > h.

2.4.2 PLS1 regression model building

The variables in X are replaced by new ones that have better properties (orthogonal-
ity), and also span the space ofX . The PLS model is built on properties of the NIPALS
algorithm.
The general form for any multiple linear model with a univariate response is in Equa-
tion (2.2). The linear PLS model finds a few “new” variables, which estimate the
latent variables on their rotations. These new variables are called X-scores and de-
noted by (tm). The X-scores are predictors of y and can model X as in Equation
(2.6). They are estimated as linear combinations of the original variables in X with the
weights (wm) where m is the number of components that should be used in the model,
(M ≤ min(n − 1, p)). Equation (2.17) shows the estimation of the scores matrix (T )
which can represent the original data matrix X as follows Andersson (2009).

T = XW, (2.17)
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2.4 Partial least squares regression (PLS)

where T is an (n×m) scores matrix ofX ,X is an (n×p) data matrix,W is an (m×p)
matrix of X-weights, and m is the number of components that should be used in the
model, (m = min(n− 1, p)).

The X-scores (T ) are good predictors of y, i.e.:

y = TqT + ε, (2.18)

where y is an (n × 1) a response variable, T is an (n ×m) scores matrix of X , qT is
an (m × 1) transpose of the vector of the loadings of y where (m < p) is the number
of components that should be used in the model, and ε is the error term. Since each tm
is a linear combination of the X , and the scores, T , are uncorrelated, the residuals are
uncorrelated. Thus, the regression parameters can be estimated using ordinary least
squares (OLS) Helland (1988) and Wold et al. (1984).

By combining Equation (2.17), and Equation (2.18), it can be seen that

y = XWqT + ε. (2.19)

So, the parameters of the above model is βpls1 which can be written as:

βpls1 = WqT . (2.20)

The residual vector, ε, in Equations (2.1), (2.15), (2.18), and Equation (2.19) are the
same, even though the models are written in different ways. PLS1 is a least squares
method for minimising εT ε, given the characteristic structure of the vectors in W . We
can solve Equation (2.18) for q, as solving Equation (2.15) for β. The solution for q in
Equation (2.18) is Andersson (2009).

qT = (T TT )−1T Ty. (2.21)

By combining Equation (2.17), Equation (2.20), and Equation (2.21), one can write
parameters vector in terms of the X-weights, W Helland (2001). Thus, we have

βpls1 = W (W TXTXW )−1W TXTy. (2.22)

To calculate the regression parameters, we can use the outputs from the NIPALS
algorithm see Section 2.4.3. Using Equation (2.22) with the output matrices from
the NIPALS algorithm, with their orthogonality properties and the relations between
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2.4 Partial least squares regression (PLS)

them, and Because P = XTT , and T = XW , we can substitute W TXTX by P T , and
qT = W TXTy. Therefore, the regression parameters vector in Equation (2.22) can be
written in a totally different-looking but equivalent as Helland (2001).

β̂pls1 = W (P TW )−1qT (2.23)

Given that Z = Y TX for multivariate responses, the optimisation problem Equation
(2.16) can be viewed in two different ways Lee et al. (2011). The first view which
is similar to PCA where we try to find the eigenvector w that corresponding to the
maximum eigenvalue of ZT

mZm. Whereas the second view is similar to CCA where
we try to find a right singular vector w corresponding to the maximum singular value
of Zm. Therefore, we have two different versions of NIPALS algorithm for PLS re-
gression because of these two views. However, both algorithms give the same results
for w when ordinary PLS regression is applied. Both versions of NIPALS algorithm
calculate the parameters from the output of the iteration as in Equation (2.23) after
calculating the W matrix in both NIPALS algorithms Lee et al. (2011). Although the
response is univariate, we still have two different NIPALS algorithms based on the
above two views.

2.4.3 First NIPALS algorithm for PLS1

This version of NIPALS algorithm is suitable for a univariate response as given in Lee
et al. (2011).
X is an (n × p) data matrix, y is an (n × 1) vector of response variable, X and y are
mean centred and scaled.
Initialisation: Set X1 = X , z = yTX , t1 is the first column of X , and m=1.
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2.4 Partial least squares regression (PLS)

Algorithm 1 The first NIPALS algorithm for PLS1

1: wm = zTmy
T
mtm/(t

T
mymy

T
mtm).

2: wm = wm/
√
wTmwm (normalisation)

3: tm = Xmwm

4: X-loadings: pm = XT
mt/(t

T
mtm)

5: y-loadings: qm = yTmtm/(t
T
mtm)

6: X-scores: tm = Xmwm

7: X-weights: wm = Xmym

8: Update Xm+1 = Xm − (tmp
T
m)

9: Update ym+1 = ym − (tmq
T
m)

10: Update zm+1 = yTmXm

The regression parameter: β̂pls1 = WM(P T
MWM)−1qM , where qM is a column

vector.
After first component is calculated, X and y have to be replaced by their residuals.

2.4.4 Second NIPALS algorithm for PLS1

NIPALS algorithm is suitable for a univariate response as given in Wold et al. (1983).
Also, the X-weight vectors, wm form an orthonormal set, and the X-score vectors,
tm are orthogonal to each other, where m is the number of components that should be
used in the model, m = 1, 2, . . . ,M , and M ≤ min(n− 1, p).
Initialisation: Set X1 = X , and m=1.
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2.4 Partial least squares regression (PLS)

Algorithm 2 The Second NIPALS algorithm for PLS1

1: wm = XT
mym/(y

T
mym)

2: wm = wm/
√
wTmwm (normalisation)

3: tm = Xmwm

4: X-loadings: pm = XT
mt/(t

T
mtm)

5: y-loadings: qm = yTmt/(t
T
mtm)

6: X-scores: tm = Xmw

7: X-weights: w = Xmym

8: Update Xm+1 = Xm − (tmp
T
m)

9: Update ym+1 = ym − (tmq
T
m)

The regression parameter: β̂pls1 = WM(P T
MWM)−1qM , where qM is a column vec-

tor.
After first component is calculated, X and y have to be replaced by their residuals.
Note that, in the first version w is the eigenvector corresponding to the largest eigen-
value of ZTZ while in the second version of NIPALS algorithm, the w is the right
singular vector corresponding to the largest singular value of Z. That means the first
version uses the eigenvalue-vector solution while the second version uses the singular
value decomposition. However, both give the same solution for w hence, the same
estimator of β̂.

2.4.5 PLS with multivariate responses (PLS2)

PLS2 regression is a generalisation of MLR and PLS1. PLS2 can handle multivari-
ate responses or univariate response unlike PLS1 which can handle only univariate
response. The NIPALS algorithm is used in PLS2 as well. In PLS2, we will have Y -
scores, U . There are three versions of the NIPALS algorithm of PLS2 case, and they
are discussed in details below in Section 2.5 with a theoretical proof of their equivalent
in the estimated regression parameters, β̂pls2.

2.4.6 PLS2 regression model building

The variables inX are replaced by new ones that have better properties (orthogonality),
and also span the space of X . The PLS model is built on properties of the NIPALS
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2.4 Partial least squares regression (PLS)

algorithm. The general form for any linear model with multivariate responses, MLR is
in Equation (2.4).
PLS decomposes the X and Y matrices into the form Geladi & Kowalski (1986).

X = TP T + F
Y = UQT + ε.

(2.24)

The (n × p) matrix X is the data matrix, and the (n × q) matrix Y is the responses
matrix, and m is the number of components that should be used in the model, (M ≤
min(n − 1, p)). T and U are the (n × m) scores of X and Y respectively. P is an
(m × p) loadings matrix of X , and Q is an (m × q) loadings matrix of Y . ε is an
(n× q) matrix of the X residuals, and F is an (n× p) matrix of the Y residuals.

The main interest is to describe Y as well as is possible to make ε as small as
possible and at the same time, get a useful relation between X and Y . The inner
relation can be made by regressing the Y block score, u, on the X block score, t, for
every component. The simplest model for this relation is a linear one as in Equation
(2.25):

u = αt, (2.25)

where α will be the inner relation, which is a regression of u on t with no intercept.
However, this model is not the best possible because the components are calculated
separately, so they have a weak relation to each other. It would be good to give them
information about each other by swapping the scores of each other Geladi & Kowalski
(1986).

T = XW ∗A, (2.26)

where A is a diagonal matrix of the inner relation (α) with dimension (m × m). As
a result of that, using Equation (2.26), the mixed relation can be given in Equation
(2.27):

Y = XW ∗AQT + ε = Y = Xβpls2 + ε. (2.27)

Using the output matrices from the NIPALS algorithm for PLS2 in Appendix A, W ∗

is computed as
W ∗ = W (P TW )−1.

Therefore, the estimated regression parameters matrix can be written as

β̂pls2 = W (P TW )−1AQT , (2.28)
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2.5 Investigating all three algorithms of PLS2

where (M ≤ min(n − 1, p)) is the number of components that should be used in the
model. Note that A is the identity matrix in the first version of NIPALS algorithm
for PLS2 because of the X-loadings, Q is not normalised. However, A in the second
and third versions of NIPALS algorithms is not the identity matrix. Thus, in the first
version some researchers would write the parameters estimation solution as βpls2 =

W (P TW )−1QT .
The need for the inner regression comes from the normalisation of qm to ||qm|| =

1,∀m as used in the second algorithm Höskuldsson (1988) and third algorithm Geladi
& Kowalski (1986). On the other hand, we believe that Sjöström et al. (1983) made
an error not using the inner regression in the prediction step. These authors make still
another choice of normalisation Manne (1987). In short, either normalisation for the
Y -loadings (Q) or not, we should use the inner regression at the prediction stage. Any
version of the NIPALS algorithm in Appendix A calculates the parameters from the
output of the iteration as in Equation (2.28).

2.5 Investigating all three algorithms of PLS2

We have investigated three versions of the NIPALS algorithm for PLS2. The first
algorithm does not normalise the loadings for X and Y as given in Wold et al. (1984),
so the inner regression between the X-score vector, tm, and the Y -score vector, um for
each component equals one. The second algorithm normalises only Y -loadings, Q as
given in Höskuldsson (1988), (i.e. they are scaled to have unit length, ||q|| = 1), so the
inner regression will not be one as in the first algorithm (simple version of NIPALS
algorithm). The third algorithm normalises X-loadings and Y -loadings as given in
Geladi & Kowalski (1986). We found that all three algorithms estimate the regression
parameters in the same way after including the inner regression, α.

2.5.1 Theoretical proof of equivalence of the parameter estima-
tions

In the first algorithm X-loadings, P and Y -loadings, Q are not normalised as given
in Wold et al. (1984). In the second algorithm X-loadings, P is normalised, but Y -
loadings, Q is not as given in Höskuldsson (1988). In the third algorithm X-loadings,
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2.5 Investigating all three algorithms of PLS2

P and Y -loadings, Q are normalised as given in Geladi & Kowalski (1986). We first
show that β(1)

pls2 = β
(2)
pls2

β
(1)
pls2 = W (1)(P (1)TW (1))−1A(1)Q(1)T ,

and
β
(2)
pls2 = W (2)(P (2)TW (2))−1A(2)Q(2)T .

From the NIPALS algorithms in appendix A, we can see that W (1) = W (2), which
means that the W matrix in the first and the second algorithms are the same. Also,
P (1) = P (2), which means that the P matrix in the first and the second algorithms are
the same. However, A(1) 6= A(2), which means that the A matrix in the first and the
second algorithms are not the same. And, Q(1) 6= Q(2), which means that the Q matrix
in the first and the second algorithms are not the same. Thus, we need to show that
Equation (2.29) is true for one component, then we can prove that β(1)

pls2 = β
(2)
pls2. (see

the proof in appendix B).
α(1)q(1)

T

= α(2)q(2)
T

(2.29)

Nevertheless, β(1)
pls2 = β

(2)
pls2 since α(1)qT

(1)
= α(2)qT

(2) as shown in Equation (2.29) for
one component and for m components. We now show that β(2)

pls2 = β
(3)
pls2

β
(2)
pls2 = W (2)(P (2)TW (2))−1A(2)Q(2)T ,

and
β
(3)
pls2 = W (3)(P (3)TW (3))−1A(3)Q(3)T .

From the NIPALS algorithms in appendix A, we can see that W (2) 6= W (3), which
means that the W matrix in the second and the third algorithms are not the same. Also,
P (2) 6= P (3), which means that the P matrix in the second and the third algorithms
are not the same. However, A(2) 6= A(3), which means that the A matrix in the second
and the third algorithms are not the same. And, Q(2) = Q(3), which means that the Q
matrix in the second and the third algorithm are the same. Thus, if we can show that
w(2)(p(2)

T
w(2))−1α(2) = w(3)(p(3)

T
w(3))−1α(3) for one component, we can prove that

β
(2)
pls2 = β

(3)
pls2. (see the proof in appendix B).
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To show that w(2)(p(2)
T
w(2))−1α(2) = w(3)(p(3)

T
w(3))−1α(3), we need to write w(3)

in terms of w(2), and the same for p(3) and α(3) for one component.
After some substitution and cancelation, we have:

w(3)(p(3)
T

w(3))−1α(3) = w(2)
√

(XTu(2))T (XTu(2))

√
p(2)T p(2)(

p(2)
T√

p(2)T p(2)
w(2)

√
(XTu(2))T (XTu(2))

√
p(2)T p(2)

)−1
α(2)√
p(2)T p(2)

. (2.30)

Some terms will be canceled out. Therefore, we will have that:

w(3)(p(3)
T

w(3))−1α(3) = w(2)(p(2)
T

w(2))−1α(2). (2.31)

Nonetheless, β(2)
pls2 = β

(3)
pls2 since w(2)(p(2)

T
w(2))−1α(2) = w(3)(p(3)

T
w(3))−1α(3) as

shown in Equation (2.31) for one component and form components. Since β(1)
pls2 = β

(2)
pls2

and β(2)
pls2 = β

(3)
pls2, then β(1)

pls2 = β
(3)
pls2. Therefore, βpls2 for all three NIPALS algorithms for

multivariate responses are the same even if they are different in terms of normalisations
or not.

2.5.2 Discussion about (pls2-nipals) function in Chemometrics Pack-
age in R

There is a function “pls2-nipals” in chemometrics package in R. This function is sim-
ilar to the second version of NIPALS algorithm for PLS2 6, which normalises the
Y -loadings (Q). This function is different to the second version of NIPALS algorithm
for PLS2 6 in two ways. First, this function uses one more term which is called the Y -
weights (C). Second, this function calculates the Y -loadings after convergence using
Q. In contrast, the second method uses only one term instead of two terms, namely the
Y -loadings (Q). This Y -loadings, Q is similar and equal to the Y -weights (C), in the
“pls2-nipals” function. The Y -loadings (Q), in the “pls2-nipals” function is not used to
calculate the regression parameters, β̂. By looking at the inner regression in the second
version of NIPALS algorithm for PLS2 6 and in the “pls2-nipals” function, we found
that they are the same. However, the way that “pls2-nipals” calculates β̂ does not take
into account the inner regression. That could be right if the inner regression is equal
to one, which is true in the first version of the NIPALS algorithm for PLS2 5 without
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normalising the Y -loadings (Q) or Y -weights (C), as written in “pls2-nipals” function.
In short, it would be great when the Y -loadings (Q) or Y -weights (C) are normalised
to consider and take into account the inner regression between the Y -scores (U ) and
the X-scores (T ) in the calculation of the parameters estimation.

2.6 NIPALS and Eigenvalues/Eigenvectors Equations

2.6.1 NIPALS and Eigenvalues/Eigenvectors Equations in PLS

Regarding the vectors as determined only up to length allows the NIPALS loop to
be replaced by an Eigen problem. The relation between vector q at step m, (qm)

with that at step m − 1, (qm−1) can be written as (see Appendix A for the NIPALS
algorithm steps). We consider here the first version of the NIPALS algorithm of PLS2
Höskuldsson (1988):

qm = Y T tm/t
T
mtm from (step 5),

= Y TXwm−1/[(t
T
mtm)(wTm−1wm−1)] from (step 4),

= Y TXXTum−1/[(t
T
mtm)(wTm−1wm−1)(u

T
m−1um−1)] from (step 2),

= Y TXXTY qm−1/[(t
T
mtm)(wTm−1wm−1)(u

T
m−1um−1)(q

T
m−1qm−1)] from (step 7).

After convergence, we write:

Y TXXTY q1 = λqq1. (2.32)

This is the eigenvalue-eigenvector equation as used in the classical calculation. Where,
λq is the largest eigenvalue of Y TXXTY , and q1 is the eigenvector corresponding to
the largest eigenvalue, λq.

Similarly, we can do the same way to get the rest vectors, which are u1, w1, t1 as:

Y Y TXXTu1 = λuu1,

XTY Y TXw1 = λww1,

XXTY Y T t1 = λtt1,
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where λu is the largest eigenvalue of Y Y TXXT , and u1 is the eigenvector correspond-
ing to the largest eigenvalue, λu. Also, λw is the largest eigenvalue of XTY Y TX ,
and w1 is the eigenvector corresponding to the largest eigenvalue, λw. Again, λt is the
largest eigenvalue of XXTY Y T , and t1 is the eigenvector corresponding to the largest
eigenvalue, λt. Hence, the latent components can be derived from the eigenvalue-
eigenvector equation (Wold et al., 2001).

2.7 Results: real data sets

Since the structure of the data sets described earlier in Section 1.3 are high in dimen-
sion and highly-correlated, we have applied the PLS method for analysing these data
sets. We applied the ordinary PLS1 using the second NIPALS algorithm 2. For PLS2,
we used all three versions of the NIPALS algorithm for PLS2 (5, 6 and 7 presented in
appendix A) when we have multivariate responses as in spectra NIR data. For DNA-
Copy CNA and smooth CNA data sets, we have applied the ordinary PLS1 where the
response is univariate using the second NIPALS algorithm 2. For the NIR data, the pre-
dicted values is done by splitting the data randomly into two groups; a training set (40
samples) and a validation set (40 samples). Using the training set with 8 components
in the second NIPALS algorithm then using the estimation of β̂ in Figure 2.3 with the
validation set to get the predicted values. For CNA data, the predicted class is done
after splitting the data randomly in two groups: training data (38 samples) and vali-
dation data (38 samples). Applying the PLS1 on the training set to get the estimation
of β̂ in Figures 2.7 and 2.8 with validation set of the predictors to have the predicted
values. Then, we classify the new samples based on their values if it is greater than
zero squamous type, otherwise, class ADC.

2.7.1 Number of components selection

If the relation between X and Y is a linear model, the number of components that
should be used in the PLS regression model is equal to the dimension of the model.
All components should not be used even though it is possible to calculate as many
PLS components as the rank of X matrix. This is because of the collinearity that
components with small eigenvalues might bring collinearity to the regression model.
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Thus, it is suggested that components with small eigenvalues should not be used to
avoid the collinearity Geladi & Kowalski (1986). The number of components (M ≤
min(n− 1, p)).

Nevertheless, there are several methods to decide when to stop choosing the com-
ponents for the model. One possible criterion is cross-validation to decide the number
of components that needed in the model. Stone & Brooks (1990) and Wold et al.

(1984) showed examples of deciding the number of components to be included in the
regression model. One is called the mean squared prediction error (MSPE) when the
responses are normal which can be calculated as follows:

MSPE =
1

n

n∑
i=1

(yi − ŷi)2 =
1

n

n∑
i=1

e2i . (2.33)

We have used the MSPE with five-fold cross-validation to choose the optimal number
of components as

MSPECV(m) =
1

n

5∑
f=1

||y[s] −X[s]β̂
−s
m ||2. (2.34)

Where β̂−sm is the coefficient estimates using the m number of components from the
s-th training sets. The optimal m is chosen that correspond to the minimum value of
the MSPECV.

On the other hand, when the response is binary, one can calculate the misclassifica-
tion error rate using five-fold cross-validation (MERCV). The classification is done by
classifying the sample to class Squamous carcinoma if the predicted value is greater
than zero and to adeno carcinoma if the predicted value is less than zero. We use zero
value as a classifier value because the both X and y are centred.

Figure 2.1 shows the MSPECV using five-fold cross-validation for NIR data with
a univariate real-valued response (moisture).
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Figure 2.1: MSPECV with five-fold cross-validation for PLS1 using NIR data with a
univariate normal response, red point is the optimal number of components (mopt =8).

It can be seen from Figure 2.1 that the optimal number of components is 8 compo-
nents for this data with only one response variable. This is based on five-fold cross-
validation with MSPECV as in Equation (2.34).

Figure 2.2 shows the misclassification error using five-fold cross-validation for
PLS1 using lung cancer for DNACopy CNA and smooth CNA data with a binary re-
sponse.
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Figure 2.2: MERCV for PLS1 using lung cancer. Left panel using DNACopy CNA
and right panel using smooth CNA. The optimal number of components is coloured by
red and for both data is 6 components (mopt=6).
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From Figure 2.2, we can see that using DNACopy CNA data (left panel) the optimal
number of component using MERCV with five-fold is 6 components. Also, using the
smooth CNA data (right panel) the optimal number with the same measurement is 6
components.

2.7.2 NIR data

Figure 2.3 shows the estimated parameters, β̂pls1, for PLS1 using normal response.
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Figure 2.3: β̂pls1 from PLS1 using NIR data with optimal number of components
mopt = 8.

It can be seen from Figure 2.3 that the estimation of the coefficients which is based
on the optimal number of components in the model. Positive values of the estimation
indicate that wavelengths are positively affecting the response variable (moisture). In
contrast, negative values indicate the wavelengths have a negative impact on moisture.

Figure 2.4 shows the estimate of w1 and w2, for PLS1 using normal response.
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Figure 2.4: w1 (top panel) and w2 (bottom panel) from PLS1 using NIR data where the
response is on a continuous scale.

It can be seen from top panel in Figure 2.4 the first component of w1. The estima-
tion of w1 indicate those wavelengths that are highly associated to the moisture more
than the others. The bottom panel of Figure 2.4 illustrates the estimation of w2. w1 and
w2 with others wm are used to calculate the estimation of βpls.

Figure 2.5 shows the predicted values for PLS1 using normal response.
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Figure 2.5: Predicted values for PLS1 for NIR data with real-valued response, the red
line is the fitted line.

It can be seen from Figure 2.5 the predicted values versus the validation values in
the validation set. It can be seen that the predicted values are close to the fitted line.

Figure 2.6 shows the predicted values for all three algorithms of PLS2 for NIR data
with real-valued responses.
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Figure 2.6: Predicted values for all three algorithms of PLS2 for NIR data with real-
valued responses. Predicted values of Moisture (top left panel), Oil (top right panel),
Protein (bottom left panel), and Starch (bottom right panel).

It can be seen from Figure 2.6 using three versions of the NIPALS algorithm for
PLS2 that their predicted values are the same. This is because the inner regression is
taken into account when calculating the estimation of PLS (β̂pls). The optimal number
pf components is 15 components using PLS2. Looking at the predicted values in Figure
2.6, we can confirm that their estimations of β̂ are the same.

2.7.3 CNA data

Figure 2.7 shows the estimated parameters (β̂pls1) using PLS1 for lung cancer DNA-
Copy CNA data.
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Figure 2.7: β̂pls1 for DNACopy CNA data where the response variable is binary using
PLS1 with 6 components (mopt=6). The sex chromosomes are excluded in the analysis.

It can be seen from Figure 2.7 that the positive values of the genomic windows
indicate that these genomic contribute more to the squamous carcinoma class. On the
other hand, negative values of the estimation of β̂ contribute more to ADC class.

Figure 2.8 shows the estimated parameters (β̂pls) using PLS1 for lung cancer smooth
CNA data.
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Figure 2.8: β̂pls1 for PLS1 for lung cancer smoothing data with binary response. The
optimal number of components is 6 components (mopt=6). The sex chromosomes are
excluded in the analysis.

We can see from Figure 2.8 that the estimation of β̂ using PLS1 where the response
is binary. Since X and y are centred, the thresholding for the classification is zero.
Positive values of the estimation of β̂ indicate that these genomic regions contribute
more to the squamous carcinoma. Negative values of the estimation of β̂ indicate that
the negative genomic regions contribute more to ADC class.

Figure 2.9 shows the w1 and w2 using PLS1 for lung cancer DNACopy CNA data
where the response is binary.
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Figure 2.9: w1 (top panel) and w2 (bottom panel) for PLS1 for lung cancer DNACopy
CNA data with a binary response. The sex chromosomes are excluded in the analysis.

It can be seen from the top panel of Figure 2.9, the first component of the X-
weights (w1). We can see that chromosome 3, 7, 10 and 19 have some genomic regions
with large copy number in absolute value indicating these chromosomes may have an
association with the cancer type. In the bottom panel of Figure 2.9, it can be seen that
in chromosomes 1, 5, 7, 13 and 14 with large number of copy in absolute value.

Figure 2.10 shows thew1 andw2 for PLS1 for lung cancer smooth CNA data where
the response variable is binary.
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Figure 2.10: w1 (top panel) and w2 (bottom panel) for PLS1 for Lung cancer smooth
CNA data with binary response. The sex chromosomes are excluded in the analysis.

It can be seen that from the top panel of Figure 2.10 using w1 the genomic regions
in chromosomes 3 and 7 has a large value in absolute value which indicates that these
may be associated with the cancer type. In the bottom panel of Figure 2.10, we can see
that in w2 the genomic regions with large value in absolute values as in chromosomes
14 and 19 for example.

Figure 2.11 shows the predicted values class using PLS1 for lung cancer DNACopy
CNA data (left panel) and smooth CNA data (right panel) with a binary response. The
predicted class are plotted based on the optimal number of components which is 6
components.
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Figure 2.11: Predicted values (class) using PLS1 for lung cancer DNACopy CNA data
(left panel) and smooth CNA data (right panel) with a with binary response. (mopt =6).

It can be seen from the left panel of Figure 2.11 the predicted class using the DNA-
Copy CNA data with only two misclassified samples. Using the smooth CNA data
(right panel) of Figure 2.11 , we can see that only 3 misclassified samples. The pre-
dicted values (class) versus the validation samples in the validation set are plotted.

2.8 The estimated variance of the PLS1 estimator

It is difficult if it is not impossible to calculate the variance of β̂pls1 theoretically be-
cause the distribution of the estimated parameters of PLS1 is unknown. Also, all the
factors that are extracted from NIPALS algorithm such as wm, pm, and tm are unknown
distribution. Therefore, previous researchers have calculated it numerically using com-
putationally intensive procedures like bootstrapping to get the confidence intervals for
predictions. In some cases, interval estimates are not calculated, only point estimates
are calculated. Another way, Phatak et al. (1993) introduced an approach based on the
linearisation of the PLS1 estimator to allow them to construct approximate confidence
intervals for predictions from PLS1.
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2.9 The connection between PLS regression and LDA

The estimator of the univariate PLS (β̂pls1) is a biased estimator, which is not similar
to the estimator in the OLS because the estimator of PLS1 is a non-linear function of
the response variable, y. Thus, it is difficult or impossible to derive the exact distribu-
tion of the estimator. Approximating the distribution of the estimator is a useful way to
construct the confidence intervals instead of only the point estimates Denham (1997).
We have used the numerical approach bootstrapping since the theoretical derivation
and linear approximation is beyond our scope in this research. Interested readers can
refer to Denham (1997), Phatak et al. (1993) and Phatak & de Hoog (2002) for more
details in the approximated distribution of the estimated parameters of PLS1.

2.9 The connection between PLS regression and LDA

PLS was not originally constructed for classification problems. However, recent re-
searches have used PLS for classification problems. Specifically, in genomic data there
have been numerous applications of classification using PLS methods for gene expres-
sion data:

• Discriminating human heart failure etiology using gene expression profiles Huang
et al. (2005).

• Linear regression and two-class classification with gene expression data Huang
& Pan (2003).

• Classification of acute leukemia subtypes based on gene expression data Cho
et al. (2002).

• Prediction of outcome with microarray data: a partial least squares discriminant
analysis (PLS-DA) approach Pérez-Enciso & Tenenhaus (2003).

• Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring Golub et al. (1999).

• Classification of human ovarian tumors using multivariate data analysis of polypep-
tide expression patterns Alaiya et al. (2000).

45



2.9 The connection between PLS regression and LDA

• Potentialities of multivariate approaches in genome-based cancer research: iden-
tification of candidate genes for new diagnostics by PLS discriminant analysis
Musumarra et al. (2004).

• Evaluating methods for classifying expression data Man et al. (2004).

• Tumor classification by partial least squares using microarray gene expression
data Nguyen & Rocke (2002).

• Classification using partial least squares with penalised logistic regression Fort
& Lambert-Lacroix (2005).

Nguyen & Rocke (2002) introduced an approach that needs two steps to use PLS in
classification. To use this approach one needs to choose the number of components to
be used in the model in the first step, and choose the classification method for the sec-
ond step. The steps are: First, using PLS as a dimension reduction method. Secondly,
the PLS components or latent structures are used as predictors in a classical discrimina-
tion method such as logistic regression, linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA). Boulesteix (2004) used only LDA for the further studied
using the same approach that Nguyen & Rocke (2002) used with a comparison to other
dimension reduction. PLS-LDA was the best classification method among all the other
classification methods with nearest centroids approach by Tibshirani et al. (2002) and
the support vector machines (SVM) for all eight studied cancer data sets.

In LDA, Fisher was interested in the following optimisation problem as in Equation
(2.35):

argmax
wTw=1

{
(wTHw)

wTEw

}
, (2.35)

where H denotes the among-groups sums-of-squares and cross-products matrix and E
the pooled within-groups sums-of-squares and cross-products matrix.

PLS components are defined as follows, with the constraint that the components
are orthogonal in the X block Barker & Rayens (2003).

It is well known that the CCA directions are the Fisher LDA directions when CCA
is performed on the data matrix X and the coded matrix representing the response
variable y as below Barker & Rayens (2003).
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2.9 The connection between PLS regression and LDA

In the binary case where we have two groups or classes, we can write the response
variable (Y ) in two ways as in Barker & Rayens (2003):

Y ∗ =

(
1n1 0n1

0n2 1n2

)
n×2

or
Y ∗∗ =

(
1n1

0n2

)
n×1

,

where 1 is a vector of ones, 0 is a vector zeros, n1 and n2 are the number of observations
in each group, and n1 + n2 = n the sample size.

Given Sxx of size (p×p) the variance-covariance matrix ofX and Sxy of size (p×1)
the covariance vector between X and y.
Frank & Friedman (1993) suggested that PLS regression can be viewed as a canonical
correlation analysis (CCA) where we would like to maximise

wTSxySyxw, (2.36)

with constraints wTmwm = 1,∀m, and wTmwh for m > h.
PLS and LDA can be derived as the eigensolutions of

SxySyxwm = ψwm, (2.37)

where Sxy is the sample covariance vector of X and y.
The connection between PLS and LDA can be shown as in Barker & Rayens (2003)

SxySyx =
1

(n− 1)2

g∑
i=1

n2
i (x̄i − x̄)(x̄i − x̄)T , (2.38)

With one component for PLS model, maximising wTSxySyxw with the constraint
wTmwm = 1 is the same as the eigensolution in Equation (2.37) Gusnanto et al. (2015).
Therefore, PLS solution is similar to LDA solution.
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Chapter 3

Filter Factors in High Dimensional
Data

3.1 Overview

In the presence of nearly collinear data, ordinary least squares regression (OLS) so-
lution fails to work due to the singularity and XTX is not invertible when (p > n).
Therefore, other biased methods or so-called shrinkage methods have been introduced
such as Lasso Tibshirani (1996), ridge regression (RR) (Hoerl & Kennard, 1970), prin-
cipal components regression (PCR) (Massy, 1965) and partial least squares (PLS) re-
gression (Wold, 1975). We will consider only those methods that have been used in
practice as provided in (Frank & Friedman, 1993), (Rosipal & Krämer, 2006) and
Lingjaerde & Christophersen (2000).

Shrinkage is how much the estimators of the shrinkage methods are “shrunk” from
the OLS solution by some amount or a scale that shrinks the OLS estimator. This
amount reduces the variance of the estimator where those methods shrink some of the
parameters towards zero (Frank & Friedman, 1993).

Since the OLS solution is not applicable in high dimensional data or multicollinear-
ity occurs, the “shrinkage factors” term could be replaced by “filter factors” more ap-
propriately. That means the shrinkage is particularly used if there is a comparison
between the estimators of biased methods and the OLS method. In this chapter, we
focus on filtering in high dimensional data by comparing three popular methods of
shrinkage methods: RR, PCR and PLS regression, writing their estimators in a unified
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3.2 Shrinkage in low dimensional data

approach. The relationship between these three methods has been discussed by many
researchers e.g. Naes & Martens (1985), Helland (1988) and Stone & Brooks (1990).

Frank & Friedman (1993) compared the shrinkage estimators of RR, PCR and PLS
regression by considering their properties. Lingjaerde & Christophersen (2000) pro-
vide some theoretical results regarding PLS shrinkage and some of their properties in a
low-dimensional case. Moreover, Butler & Denham (2000) derived an alternative rep-
resentation of the shrinkage of PLS regression relative to OLS. Here, we have modified
those results of shrinkage factors and the properties when p > n.

The organisation of this chapter is as follows. Section 3.2 provides an explanation
of shrinkage in some of the shrinkage methods for low dimension data with simulated
examples before moving to the high dimensional data. Section 3.3 explains the filtering
concept in high dimensional data for those three methods. Section 3.4 shows some
examples for those filter factors in high dimensional data using two real data sets where
the response variable is normal or binary. Moreover, we have deeply examined filter
factors of PLS in particular by interpreting them and trying to link the eigenvalues
of two different matrices as described in Section 3.5. Some general properties of the
filter factors of the PLS estimator are provided in Section 3.6. Finally, some discussion
regarding shrinkage in high dimensional data is found in Section 3.7.

3.2 Shrinkage in low dimensional data

In this section we focus on the low-dimensional case (n ≥ p). Let X denote the n× p
predictor matrix, and y denote the response vector, where both X and y are centred
and scaled to have a unit variance. We consider the general linear regression model

y = Xβ + ε, (3.1)

where β is an unknown p× 1 parameter vector and ε is an n× 1 vector of errors which
we assume are independently distributed with ε ∼ Np(µ, σ

2I). The OLS estimator for
β̂ in Equation (3.1) is

β̂ols = (XTX)−1XTy. (3.2)

Assuming that X has a full rank p, the singular value decomposition (SVD) of X
will be used mainly in showing the amount of shrinkage of the shrinkage estimators of
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3.2 Shrinkage in low dimensional data

β̂. The X matrix can be written using SVD as

X
n×p

= U
n×p

D
p×p

V T

p×p
. (3.3)

whereUTU = V TV = V V T = Ip (the p×p identity matrix) and whereD is a diagonal
matrix with the singular values d1 ≥ d2 ≥ · · · ≥ dp on the diagonal. The columns
u1, . . . , up of matrix U are denoted left singular vectors, and the columns v1, . . . , vp of
matrix V are denoted the right singular vectors. Using Equation (3.2) and Equation
(3.3), the ordinary least square estimator for the parameter vector β in Equation (3.1)
can be written in a matrix notation using SVD as

β̂ols = V D−1UTy, (3.4)

which can be written as a sum of column vectors of the matrices in Equation (3.4) as

β̂ols =

p∑
i=1

uTi y

di
vi. (3.5)

3.2.1 Ridge regression

One popular estimator of shrinkage estimators for the vector β in Equation (3.1) is the
ridge regression estimator,

β̂rr = (XTX + δIp)
−1XTy, (3.6)

where δ ≥ 0 is known as the ridge parameter. Writing Equation (3.6) as a linear
combination of the right and left singular vectors of X , V and U respectively, using
Equation (3.3), β̂rr can be written as

β̂rr = (V DUTUDV T + δIp)
−1V DUTy.

Since UTU = V TV = V V T = Ip and D is a diagonal matrix of singular values, we
have that

β̂rr = V (D2 + δIp)
−1V TV DUTy.

Therefore,
β̂rr = V (D2 + δIp)

−1DUTy, (3.7)
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3.2 Shrinkage in low dimensional data

where D2 is a diagonal matrix of the eigenvalues of XTX or the square values of the
singular values (di) in Equation (3.5). We can rewrite equation (3.7) as

β̂rr = V D2(D2 + δIp)
−1D−1UTy. (3.8)

Also, Equation (3.8) can be written in sum of vectors notation as

β̂rr =

p∑
i=1

d2i
d2i + δ

uTi y

di
vi. (3.9)

By comparing Equation (3.9) to the OLS solution in Equation (3.5), we can identify
the shrinkage factors in RR estimator as

ωrr
i =

d2i
d2i + δ

, i = 1, 2, . . . , p, (3.10)

where ωrr
i is the shrinkage factor of the RR estimator.

3.2.2 Principal components regression

Principal component analysis (PCA) is a method that can write the data matrix X as
outer products of two matrices called scores (T ) and loadings (P ) Geladi & Kowalski
(1986) as

X = TP T , (3.11)

where T is a matrix of size n×m, and P of size p×m, where m = 1, 2, . . . ,M is the
number of components used in both matrices. Since the columns of P is an orthogonal
matrix, Equation (3.11) can be written as

T = XP. (3.12)

Another popular shrinkage estimators for β̂ in Equation (3.1) is the principal com-
ponents regression estimator (β̂pcr). It can be written using the latent variables as a
linear combination of T and P matrices as

β̂pcr = P (T TT )−1T Ty. (3.13)

Using the fact that the loadings in PCR estimator (P ) are the eigenvectors of XTX

which are represented by V in Equation (3.14). P and V have the same number of
columns which is equivalent to m. If m = M is equal to the rank of X . Therefore,

T ∗ = XV ∗. (3.14)
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3.2 Shrinkage in low dimensional data

The superscript ∗ on V and T is to clarify that these matrices do not use all compo-
nents. If all components are included, V ∗ becomes V including all eigenvalues and the
corresponding eigenvectors, and T ∗ becomes T with all components which means the
number of components is equal to p (M = p). Using Equation (3.3), Equation (3.14),
and the property that V ∗TV ∗ = U∗

T
U∗ = Im, we have

T ∗ = U∗D∗, (3.15)

where U∗ is a n × m matrix, D∗ is the a diagonal matrix of m × m of the singular
values of X in a descending order and V ∗ is the p×m matrix of right singular vectors
of X . These matrices are called reduced rank matrices.
Substituting Equation (3.15) in Equation (3.12) and using that U∗TU∗ = Im and D∗ =

D∗
T , Equation (3.13) can be expressed using the eigenvectors of XTX (P = V ∗) as

β̂pcr = V ∗ΩpcrD∗
−1

U∗
T

y, (3.16)

where Ωpcr is an m × m diagonal matrix of values either zero or one as defined in
Equation (3.18). It should be noted that in PCR, the T ∗, V ∗, U∗ andD∗ are the reduced
sized matrices of the above ones in the OLS solution depending on the number of
components, (m). If m = M = p, then the above matrices with ∗ become exactly as
the ones in the OLS solution in section 3.2.
Also, we can write the estimator of PCR in Equation (3.16) in the univariate notation
as

β̂pcr =
m∑
i=1

ωpcr
i

uTi y

di
vi. (3.17)

From Equation (3.17), the shrinkage factor in the PCR estimator is

ωpcr
i =

{
1, if ith component is included
0, otherwise,

(3.18)

where ωpcr
i is the shrinkage factor of the estimator of PCR.

3.2.3 Partial least squares regression

The last estimate we consider from the shrinkage methods discussed in this chapter
for the parameter β̂ in Equation (3.1) is the partial least square estimator (β̂pls). Recall
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3.2 Shrinkage in low dimensional data

that W is regressing the data matrix X on y which s called X-weights. From NIPALS
algorithm in Chapter 2, one can write the PLS estimator in terms of theX weights (W )
as

β̂pls = W (W TXTXW )−1W TXTy. (3.19)

The PLS regression estimator in terms of the eigenvectors of XTX can be written
also in terms of the eigenvectors of XTX as (Lingjaerde & Christophersen, 2000)

β̂pls = W (W TV D2V TW )−1W TV DUTy, (3.20)

where V , D, and U have the dimensions of p×p, p×p, and n×p respectively, and W
is the X-weights p×m matrix, where m is the number of component m ∈ 1, 2, . . . , p.
Equation (3.20) is the same as Equation (3.19).

The PLS regression estimator can have another expansion of Equation (3.20) as
in Equation (3.21) which is written in the same format of the OLS solution in matrix
notation.

β̂pls = V ΩplsD−1UTy, (3.21)

where Ωpls a diagonal matrix with dimension (p × p) and it is called the shrinkage
factor of PLS estimator.
Equation (3.22) is an element notation of β̂pls as

β̂pls =

p∑
i=1

ωpls
i

uTi y

di
vi, (3.22)

where ωpls
i are the diagonal elements of Ωpls.

Looking at Equation (3.22) and comparing it to Equation (3.5), Phatak & de Hoog
(2002), Butler & Denham (2000) and Lingjaerde & Christophersen (2000) have showed
that the shrinkage factors of PLS regression estimator can be written as

ωpls
i = 1−

m∏
j=1

(1− d2i
µ2
j

), i = 1, 2, . . . , p, (3.23)

where µ1 ≥ µ2 ≥ · · · ≥ µm are the eigenvalues of W T
mX

TXWm where Wm is the X
weight matrix with orthonormal columns, and m is the number of components (Ling-
jaerde & Christophersen, 2000). The proof can be found in Lingjaerde & Christo-
phersen (2000), Frank & Friedman (1993) and Butler & Denham (2000).
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3.2 Shrinkage in low dimensional data

3.2.4 Common structure of shrinkage estimators in RR, PCR and
PLS

All the previous shrinkage estimators in Equations (3.10), (3.17) and (3.22) can be
written in a common approach as a linear combination of the singular vectors and
values of X as Lingjaerde & Christophersen (2000)

β̂shrink =

p∑
i=1

ωi
uTi y

di
vi, (3.24)

where ωi in Equation (3.24) are called the shrinkage factors whereas ωi = 1 in β̂ols. The
shrinkage factor in the PCR and PLS regression estimator will be equal to one if we
include all the m components which then yields to the OLS estimator, where m = p.
Also, if the RR parameter δ = 0, the RR estimator is equal to the OLS estimator.

If the shrinkage factors (ωi) are not equal to one, the estimator is biased. However,
when ωi < 1, the variance of β̂ will be small. Therefore, shrinkage is useful if the bias
is small comparing to the reduction in the variance of the estimator, so the mean square
error (MSE) of β̂ is reduced. On the other hand, if ωi > 1, the MSE of β̂ is increased
because the bias and the variance will be increased simultaneously (Butler & Denham,
2000).

3.2.5 Examples

To illustrate the shrinkage behaviour of all methods (RR, PCR and PLS) and when they
become equal to one where their estimated is equivalent to the OLS solution, we use
two artificial example. In the first example we use a normal response whereas in the
second example we use a binary response. We have generated X matrix from normal
distribution with mean zero and variance one, with the number of samples n = 80

and the number of predictors p = 10. β is assigned to be for β1 = β2 = 2 and
the β6 = β7 = −2 and for the other βj = 0, j = 3, 4, 5, 8, 9, 10. The errors (ε) are
generated from normal distribution with mean zero and variance equals to 1.

In the first simulation the response is on a continuous scale as in Figure 3.1 while
Figure 3.2 for the second simulation when the response is binary. The shrinkage factors
ω
(m)
i for all values of i are plotted for the first six components for the PLS model

since the shrinkage factor is equal to one within the first six components. Also, the
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3.2 Shrinkage in low dimensional data

shrinkage factors for RR and PCR plotted along with the PLS shrinkage factors where
the shrinkage should be the same which is calculated as (s = ||β̂shr||

||β̂ols|| ). For choosing
the value of the ridge parameter (δ) which is described in Section 3.2.1, we use this
equality (||β̂rr|| = ||β̂pls||). The number of components in PCR was chosen when the
lengths were approximately close to the PLS solution (||β̂pcr|| ∼= ||β̂pls||). In each plot
there are three values for showing the ridge parameter (δ), the number of components
using PCR (mpcr) and the number of PLS components (mpls), which are the number
of the latent variables as described in Sections 3.2.2 and 3.2.3 respectively, and the
shrinkage value using this formula (s = ||β̂shr||

||β̂ols|| ) Frank & Friedman (1993).
For the binary response, we generate two groups of X with n = 40 and p = 10 for

each group. The first group is generated from normal with zero mean and σ2
1 = 1, and

the second group is generated with mean equals 3 and σ2
2 = 1. The response vector (y)

is generated by making the first 40 values equal to one, and the second 40 values equal
to zero. Also, X and y are centred, so there is no intercept.

55



3.2 Shrinkage in low dimensional data
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Figure 3.1: Shrinkage factors ωi for RR, PCR, PLS for simulated data where n ≥ p

with a normal response for the first six components.
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3.2 Shrinkage in low dimensional data

In Figure 3.1, first row left panel, we can see that the first shrinkage factor (ω1)
for the PLS regression estimator using the first component (m is odd) is expanded
and larger than one, and that is because the largest eigenvalue of XTX is larger than
all eigenvalues of W TXTXW which produces a negative product in Equation (3.23),
so ω1 will be larger than one in this case which is why we use “filter” in place of
“shrinkage”. In the first row right panel of Figure 3.1, it can be seen that the ω1 is
less than one for m = 2 Lingjaerde & Christophersen (2000), and the reason is the
product in Equation (3.22) will be positive. Hence, ω1 will be less than one. For RR,
the shrinkage is always between 0 and 1 Lingjaerde & Christophersen (2000) and for
PCR is either zero or one. Also, we need a large number of components for PCR in
order to make the norm of both estimators as close as possible. Using 1 component
of PLS results in a shrinkage s = 0.88 from the OLS solution where the data has low
correlation. Looking at the shrinkage factors in the second row left panel of Figure
3.1 for RR almost equals to one because the ridge parameter (δ) is 0.1523 which is
small, and the norm of the PCR using 10 components roughly equals to the norm of
PLS using three components (mpls

∼= 3mpcr). In the second row right panel of Figure
3.1, the shrinkage (s) equals to 1 which means that using 4 components of the PLS
estimator is very close to the OLS solution while 10 components for the PCR and δ =
0.0211 for RR are needed to have the same overall shrinkage. Moreover, it can be seen
in the last row of Figure 3.1 that all three shrinkage methods are the same and equal to
one meaning that using 6 components for the PLS regression, 10 components for PCR
and δ =0.0005 in order to have the norm of β̂pls ∼= β̂pcr = β̂rr also those all equals to the
OLS solution. Therefore, the shrinkage to the OLS solution is decreased as the number
of PLS and PCR components is increased until the number of components equals to
the rank of X .

We show the shrinkage in PCR, which depends on the number of components, in
Table 3.1 for simulated data when the response is on a continuous scale.

Number of
components

1 2 5 10
OLS
estimator

Norm of vector 0.0424 0.3871 0.6361 0.9799 0.9799

Table 3.1: the norm of PCR using some components for n ≥ p when the response is
on a continuous scale.
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3.2 Shrinkage in low dimensional data

Table 3.2 shows the shrinkage in PLS, which depends on the number of compo-
nents that are included, for simulated data when the response is on a continuous scale.

Number of
components

1 2 5 10
OLS
estimator

Norm of vector 0.8627 0.9675 0.9798 0.9797 0.9799

Table 3.2: the norm of PLS using some components for n ≥ p when the response is on
a continuous scale.

From Table 3.1, we can see that as the number of components increased, the norm
is increased until the norm of the β̂pcr using all components and β̂ols are equal. Also,
from Table 3.2, the norm of the vector of β̂pls gets larger as we add more components.
De Jong (1995) has showed theoretically that the PLS solution shrinks from the OLS
solution and as the number of components increased the norm of the PLS solution
increased till the rank of X is reached. From a geometrical point of view, Goutis et al.

(1996) give a geometric proof to show that the coefficients derived by the OLS are
shrunk by the estimates of PLS regression.

In the case where the response variable (y) is binary with values 0 and 1, the overall
results are similar in terms of the behaviour of the shrinkage factors in all three methods
to the normal response case. Figure 3.2 shows the shrinkage of all three methods where
the response in binary.
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Figure 3.2: Scaled shrinkage factors for RR, PCR, PLS for simulated data where n ≥ p

with a binary response using 1-6 components.

Figure 3.2 first row left panel provides a comparison of the shrinkage factors for
three methods, and it can be seen that the overall shrinkage is 0.94 with δ = 14.801
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3.3 Filtering in high dimensional data

and one component for PCR and PLS. In the first row right panel of Figure 3.2, the
shrinkage factor of PLS is expanded larger than one for some ωpls

i using two com-
ponents while for PCR using 7 components, and the ridge parameter δ = 2.0366 and
the overall shrinkage is 0.98. In the second row of Figure 3.2 right panel, the overall
shrinkage is 1 which means that RR, PCR and PLS solutions are getting closer to the
OLS solution for mpls = 4, mpcr = 10 and δ = 0.0355. Figure 3.2 last row left panel
shows that roughly 5 components of PLS is almost no shrinkage from the OLS solution
with overall shrinkage equals to 1 and a very small value for δ = 0.0001 and using all
component for PCR, mpcr = 10.

The shrinkage in PCR which depends on the number of components in Equation
(3.16), is in Table 3.3 for the simulated data when the response is binary.

Number of
components

1 2 5 10
OLS
estimator

Norm of vector 0.1829 0.1865 0.1875 0.1948 0.1948

Table 3.3: the norm of PCR using some components for n ≥ p when the response is
binary.

Also, showing how the shrinkage in PLS depends on the number of components is
found in Table 3.4 for the simulated data when the response is binary.

Number of
components

1 2 5 10
OLS
estimator

Norm of vector 0.1830 0.1923 0.1948 0.1948 0.1948

Table 3.4: the norm of PLS using some components for n ≥ p when the response is
binary.

3.3 Filtering in high dimensional data

Assuming that X is a high-dimensional data set where p > n and it is centred to
mean zero and scaled to have variance equals to one for all variables, the rank of X is
n − 1 in this case. Due to failure of the OLS for these data sets, the SVD of X can
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3.3 Filtering in high dimensional data

be used instead. The SVD of X is different in terms of dimensions for each right and
left singular vectors and singular values of X from the low dimension and is given in
Equation (3.25) as

X
n×p

= U
n×n−1

D
n−1×n−1

V T

n−1×p
. (3.25)

Where UTU = V TV = In−1, andD is the diagonal with the singular values d1 ≥ d2 ≥
· · · ≥ dn−1 on the diagonal. The columns u1, . . . , un−1 of U are denoted left singular
vectors, and the columns v1, . . . , vn−1 of V are denoted the right singular vectors.

3.3.1 Ridge regression

For RR estimator we can modify Equation (3.9) for the high dimensional case with
different dimension sizes for all matrices as shown in Equation (3.26).

β̂rr = V ΩrrD−1UTy, (3.26)

where Ωrr = D2(D2 + δIp)
−1 is a diagonal matrix of size ((n − 1) × (n − 1)) and

δ ≥ 0.
The filter factors are the diagonal values of the Ωrr in Equation (3.26) which are

given by

ωrr
i =

d2i
d2i + δ

i = 1, 2, . . . , n− 1. (3.27)

It should be noted that D2 in this case is different from the case where p < n is a
diagonal matrix of the n− 1 eigenvalues of XTX , and D is a diagonal matrix of n− 1

singular values of X in a descending order. Also, that V and U with n − 1 singular
vectors columns of X , and d2i are the eigenvalues of XTX . The difference between
this case and the case p < n is the dimension of matrices and apart from that everything
remains the same for the filtering factors.

3.3.2 Principal components regression

Writing the PCR estimator for the first components in a high dimensional case as in
Equation (3.28):

β̂pcr = V ∗ΩpcrD∗
−1

U∗
T

y, (3.28)
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3.3 Filtering in high dimensional data

where D∗ is a diagonal matrix of singular values of SVD of X in descending order
with size m×m, and the columns u1, . . . , um of U are denoted left singular vectors of
X , and the columns v1, . . . , vm of V are denoted the right singular vectors.

Note that in PCR, these V ∗, U∗, and D∗ are the first m columns of V , U , and the
first m values of the diagonal values of D respectively. Moreover, these matrices are
the reduced sized matrices of the original ones in the SVD solutions of the original
data matrix, X , depending the number of components (m). If m = n − 1, then the
above matrices with ∗ become exactly as the ones in the SVD solution (Lingjaerde &
Christophersen, 2000).

The filter factors in PCR are diagonal values of Ωpcr in Equation (3.28), which has
values of one if the ith principal component is included, or zero if it is not included
(Lingjaerde & Christophersen, 2000). Mathematically:

ωpcr
i =

{
1, if i ≤ m

0, if i > m.
(3.29)

Therefore, the filtering in the PCR estimator in Equation (3.29) depends on the
number of components, and the number of components depends on the number of
eigenvectors and eigenvalues that are included in the solution (Lingjaerde & Christo-
phersen, 2000).

3.3.3 Finding the filter factors for PLS estimator

Let Θ denote the (n − 1) × (n − 1) diagonal matrix with elements of UTy on the
diagonal, and define Ωpls = (ω1, ω2, . . . , ωn−1)

T . The parameter vector β in Equation
(3.1) can be expressed as a shrinkage estimator for many estimators as

β̂pls = V D−1ΘΩpls.

Given that UTU = V TV = In−1, and using Equation (3.21), we have

ΘΩpls = DV T β̂pls = UT (UDV T β̂pls) = UTΛy,

where Λ = XWm(W T
mX

TXWm)−1W T
mX

T , and Λ is an orthogonal projection into the
subspace XWm. These filter factors Ω depend non linearly on y which results in a
difficult interpretation for them (Lingjaerde & Christophersen, 2000).
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3.3 Filtering in high dimensional data

3.3.4 Partial least squares regression

Since the OLS solution is not applicable for high dimensional data, we will try to write
the PLS regression estimator in terms of eigenvectors of X in another representation
of Equation (3.21) in order to have similar form to RR and PCR as

β̂pls = V ΩplsD−1UTy. (3.30)

The Ωpls in Equation (3.30) is a diagonal matrix of ωpls
i with dimension ((n−1)× (n−

1)), and it is called the filter factors of PLS regression estimator as below

ωpls
i = 1−

m∏
j=1

(1− d2i
µ2
j

), i = 1, 2, . . . , n− 1, (3.31)

where d21 ≥ d22 ≥ · · · ≥ d2n−1 are the eigenvalues of XTX , and µ1 ≥ µ2 ≥ · · · ≥ µm

are the eigenvalues of W T
mX

TXWm, where Wm is the X weight matrix with orthonor-
mal columns, and m is the number of components (Lingjaerde & Christophersen,
2000).
Because of the n-th eigenvalue of X after centring and scaling is zero, we need that
V , U and D with (n − 1) singular vectors and singular values of X . The filtering in
the PLS regression estimator depends on the number of components of W T

mX
TXWm.

The eigenvalues of W T
mX

TXWm and XTX are identical when m=rank(X).

3.3.5 Common structure of filtering in RR, PCR and PLS

We can write all these three methods in a uniform formula as in Equation (3.32) (Frank
& Friedman, 1993). All of the previous filtering estimators in Equations (3.27), (3.29)
and (3.31) can have a common form using the singular vectors and values of X as in
Equation (3.24) for low dimensional case as

β̂filter =
n−1∑
i=1

ωi
uTi y

di
vi, (3.32)

where ωi is called the filter factors, and the rank of the X is n − 1 (Lingjaerde &
Christophersen, 2000). The filter factors for those three methods in Equations (3.27),
(3.29) and (3.31) remains the same whether the response variable (y) is normal or
binary and in high or low-dimensional case with a difference in the upper number of
filter factors we can have.
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3.4 Examples

3.4.1 Results using NIR data

To illustrate the filter factors behaviour of all three methods in high dimensional data,
we use two different examples based on real data. The first example is where the re-
sponse variable is normal as (NIR data) while the second example is when the response
variable is binary as (CNA data). Using one of the real data sets from chemistry field
which is NIR spectropscopic data where the response is on a continuous scale and here
we use only the first variable of the four response variables. The filter factors (ω(m)

i )
where i = 1, 2, . . . , n − 1 are plotted for the first six components in Figure 3.3, also
for m = 9 and 26 components in Figure 3.4 to show the some interesting behaviour of
the filter factors for the PLS estimator. The filter factors for RR and PCR are also plot-
ted along with the PLS filter factors where the overall shrinkage should be the same
(f = ||β̂filter||

||β̂pls∗ || ). For choosing the value of the ridge parameter (δ), we use this equality

(||β̂rr|| = ||β̂pls||). The number of components in PCR was chosen when the lengths
were approximately close to the PLS solution (||β̂pcr|| ∼= ||β̂pls||) because we would
like to make the shrinkage for all methods are equivalent. In each plot there are three
values for showing the ridge parameter (δ) the number of PLS components, and lastly
the overall shrinkage value using this formula (f = ||β̂filter||

||β̂pls∗ || ). The ||β̂pls∗ || is the ||β̂pls||
using the rank of X , which is (n − 1), in this case where p > n. Thus, in this data
(NIR data) the rank will be (n − 1 = 79) which means that ||β̂pls∗|| is the same as the
||β̂pls|| using m = 79 components.
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Figure 3.3: filter factors for RR, PCR, PLS for NIR data where p > n with a normal
using 1-6 components.

In the first row left panel of Figure 3.3 where the number of components is one
using PLS and PCR estimator, we can see that the overall filtering is very small which

65



3.4 Examples

is because the X data is highly-correlated and we need more components for PCR and
PLS and a huge value of δ = 7726.143. In the first row right panel of Figure 3.3, we
still have a small value of the overall filtering with an expansion of the filter factors of
PLS estimator while for PCR and RR the filter factors are between zero and one.
In the second row left panel, the number of components of PCR and PLS are the same.
With 3 components, the norm of the estimator using PCR and PLS approximately is
equal to each other. But, the filter factor of PLS are expanded sometimes and get below
one. For the right panel of the same figure, we can see that some of the filter factors of
PLS is larger than one and some below as well where the overall filtering is 0.008 and
δ = 4.9886.
The last left panel shows the filtering between RR, PCR and PLS where the number
of components is mpls = 5, mpcr = 8, δ = 2.239, and the overall filtering equals to
0.012. Again, this number of components is enough to make the overall filtering close
to one, but in this data is not because of high collinearity. It can be seen that the filter
factors of the PLS estimator are oscillating around one in all panels of Figure 3.3.
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Figure 3.4: filter factors for RR, PCR, PLS for NIR data where p > n with a normal
response using 9 and 26 components.

In Figure 3.4, top plot, we can see something interesting where some filter factors
take negative values. The number of components of PCR is 13 and for PLS is 9 and δ is
0.0888. It is really difficult to tell how the filter factors behave because of the estimator
depends non linearly on the response variable (y) (Lingjaerde & Christophersen, 2000).
It can be seen also in the bottom plot of Figure 3.4 that filter factors of RR and PCR
are always between 0 and 1 while in PLS, they are varying around one either larger or
smaller than one and even they become negative in some cases. This finding will be
discussed in more detail in Chapter 4.

3.4.2 Results using CNA lung cancer data

In Figures 3.5 and 3.6 using the CNA lung cancer data when the response is binary,
the filter factors ω(m)

i are plotted for the first six components and the 8th component
for the PLS model. The filter factors for RR and PCR also plotted along with the PLS
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filter factors where the overall filtering should be the same and it is calculated as in
Section 3.4.1. The value of the ridge parameter (δ) and the number of components in
PCR were chosen as the same criteria also in Section 3.4.1. In each plot there are three
values as the ones in Figure 3.5 as well. The rank is (n − 1 = 75) for this data, so
||β̂pls∗|| is the same as the norm of the ||β̂pls|| using m = 75 components.
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Figure 3.5: filter factors for RR, PCR, PLS for smooth CNA lung cancer data where
p > n with a binary response for the first six components.

Looking at the left panel of the first row of Figure 3.5, it can be seen that δ has a
very large value (61935.75), mpcr = 2 and mpls = 1 with the overall filtering equals to
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0.197. Lingjaerde & Christophersen (2000) showed that ωpls
1 > 1 if m is odd and it is

less than one if m is even. According to this property of the filter factors for the PLS
estimator, we can see that ωpls

1 is larger than one because the number of components is
odd (m = 1). In the same row right panel, we can see that ωpls

1 is less than 1 since the
mpls is 2 which is even.
In the second row left and right panels of Figure 3.5 show the filter factor (ωpls

i ) of the
PLS estimator where they are expanded in the first largest eigenvalues of XTX (for
large values of d2i ), and they are contracted for small eigenvalues of XTX as d2i gets
smaller.
It can be seen in the third row left panel of Figure 3.5, ωpls

i are oscillating around one
with expanding in some filter factors for PLS and shrinking in others. Moreover, in
the right panel of Figure 3.5 there is an interesting event where one of the filter factors
of the PLS estimator is negative which does not affect the PLS estimator but it assures
that the filter factors of PLS are very strange and complicated to be interpreted because
the PLS estimator is a non linear estimator of the response variable.
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Figure 3.6: filter factors for RR, PCR, PLS for smooth CNA lung cancer data where
p > n with a binary response using 8 components.

Figure 3.6 shows another case where ωpls
6 using 8 components of the PLS estima-

tor is negative. This is also an interesting phenomena in the filter factors in the PLS
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3.5 Interpretation of the filter factors in the PLS estimator

estimator that needs more investigation deeply as we will do in Chapter 4.

3.5 Interpretation of the filter factors in the PLS esti-
mator

In order to start thinking about the filter factors in the PLS estimator, we will try to
interpret them by writing each component of the filter factor in terms of each others.
In particular, we try to find the connection between d2i and µ2

j . After centring X , we
can write the XTX using eigenvalue decomposition as shown in Equation (3.33).

XTX = V D2V T . (3.33)

Also, since X is centred, we can write XTX in terms of the variance of X as

XTX = (n− 1)Sxx, (3.34)

where Sxx is the variance-covariance matrix for X variables. By combining Equations
(3.33) and (3.34), we will have that the eigenvalues of XTX can be calculated in
another way as a function of the variance-covariance matrix of the X variables, and
since the eigenvectors (the columns of matrix V ) are orthogonal, then V TV = In−1.
Thus, the eigenvalues, of XTX , can be written as

D2 = (n− 1)V TSxxV, (3.35)

On the other hand, we can write W T
mX

TXWm using eigenvalue decomposition by
putting XWm = B, so W TXTXW = BTB. By applying the eigenvalue decomposi-
tion on BTB, we will have

W T
mX

TXWm = BTB = KmN
2
(m)K

T
m, (3.36)

where KT
mKm = KmK

T
m = Im, and N2

(m) is a diagonal matrix with the eigenvalues
µ2
1 ≥ µ2

2 ≥ · · · ≥ µ2
m on the diagonal. The columns k1, . . . , km of Km are denoted

the left and right eigenvectors. Using Equation (3.36), we can write W T
mX

TXWm as a
function of the eigenvalues of XTX as

W T
mX

TXWm = W T
mV D

2V TWm. (3.37)
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3.6 Filter factors of PLS estimator

By combining Equations (3.36) and (3.37), we can see that N2
(m) is a function of D2,

which means that the eigenvalues ofW T
mX

TXWm are just functions of the eigenvalues
of XTX as in Equation (3.34), and since columns of Km are orthogonal, then K−1m =

KT
m, and

N2
(m) = KT

mW
T
mV D

2V TWmKm. (3.38)

Therefore, since that D2 = (n − 1)V TSxxV , we can write the eigenvalues of
W T
mX

TXWm, N2
(m), in terms of the variance of X , as in Equation (3.39).

N2
(m) = (n− 1)KT

mW
T
mV V

TSxxV V
TWmKm, (3.39)

since V V T = Ip, then we can rewrite Equation (3.39) as

N2
(m) = (n− 1)KT

mW
T
mSxxWmKm. (3.40)

Hence, we can see that rank(W T
mX

TXWm) ≤ rank(XTX) ≡ m ≤ n− 1.

3.6 Filter factors of PLS estimator

The shrinkage structure of PLS estimator has been investigated and proved by re-
searchers such as Lingjaerde & Christophersen (2000) and Butler & Denham (2000) in
low-dimensional data (n ≥ p). Here, we investigate the filter structure of PLS in high
dimensional data (p > n). We add one more structure which introduces negative filter
factors (NFF). Denote the filter factors as before by ωi (Lingjaerde & Christophersen,
2000). Below are some results that Lingjaerde & Christophersen (2000) showed in the
low-dimensional case and these properties are applied for the high-dimensional case
as well.

• ω(m)
r ≤ 1 for all number of components m, where r is the rank of the X matrix,

which is r = (n− 1) in the high dimensional case.

• ω(m)
1 ≥ 1 for m = 1, 3, 5, . . . odd number because it is like a telescoping series

or alternatively.

• ω(m)
1 ≤ 1 for m = 2, 4, 6, . . . even number because it is like a telescoping series

or alternatively.
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3.7 Discussion

• For the other filter factors ω(m)
i , i = 2, 3, . . . ,m − 1, one may have either

ω
(m)
i ≤ 1 or ω(m)

i ≥ 1. Looking at Equation (3.31), we can see that if d2i ≤ µ
2(m)
j ,

then 0 ≤ ω
(m)
i ≤ 1 (Lingjaerde & Christophersen, 2000).

• Some filter factors can be negative (ω(m)
i < 0). This occurs when

m∏
j=1

(1− d2i

µ
2(m)
j

) > 1, i = 1, 2, . . . , (n− 1).

The filter factors of PLS estimator are negative and can be seen in the NIR data in
some components and some ωi as follows: ω(9)

8 , ω(15)
15 , ω(16)

15 , ω(16)
(16) , ω

(16)
17 , ω(19)

16 , ω(20)
17 ,

ω
(26)
21 . Also, in CNA lung cancer data, we have ω(6)

3 , ω(8)
3 are negative.

As can be seen from Figures 3.4 and 3.6, some of the filter factors can be negative
for the PLS filter factors for specific components in both data sets. We will investigate
more deeply about the negative filter factors of the PLS estimator (NFF) along with the
reasons in Chapter 4.

3.7 Discussion

In this chapter, we investigate the shrinkage factors for three popular methods RR,
PCR and PLS where the response variable is normal and binary. We have shown
these shrinkage factors for all three methods depend on the number of components (m)
for PCR and PLS estimators, and the ridge parameter (δ) for RR estimator. We also
showed that based on two artificial examples for low-dimensional data by comparing
their shrinkage factors to each other.

We have been able to modify the results of the “shrinkage factors” in the low-
dimensional case to “filter factors” in the high-dimensional case. We write all three
methods (RR, PCR and PLS) in a common form, and showed how they are derived in
every method. We have also investigated the key changes in the filtering comparing
to the shrinkage for the high dimensional data. Then, we interpret the filter factors of
the PLS regression estimator particularly. We write the eigenvalues of XTX (d2i ) and
W T
mX

TXWm (µ2
j ) for each component (m) in terms of each others.

Finally, we have modified some of the shrinkage structure of PLS to the filter fac-
tors of PLS regression estimator. We provided the filter structure of PLS estimator
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3.7 Discussion

for high dimensional data and showed that from a real data with different types of the
response variable y. Most of the properties for the shrinkage factors for PLS in low-
dimensional case are still available in the high-dimensional case. The filter factors in
the high-dimensional case for RR and PCR are still between zero and one whereas in
PLS oscillate around one and may have negative values. It is interesting that filter fac-
tors of PLS regression estimator can be negative and we will discuss and explore that
in detail more in Chapter 4.
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Chapter 4

Negative Filter or Shrinkage Factors
in the PLS Estimator

4.1 Overview

In Chapter 3, we introduced filter factors for three popular methods of shrinkage meth-
ods. For each of the low and high dimensional data cases, we provided a common
formula. Looking at the filter factors of high dimensional data with real data exam-
ples, some of the filter factors of the PLS estimator have negative values. Therefore, it
is very important to study the filter factors of the PLS estimator in more depth, espe-
cially trying to determine or describe when this may occur.

LetX be the data matrix, n be the number of samples, p be the number of variables,
y be the response vector, W be the matrix representing the covariance between X and
y, and let m be the number of components. Lingjaerde & Christophersen (2000) have
proposed theoretical results to describe the shrinkage structure of the PLS estimator
where n ≥ p.

So far there has been little attention given to explaining the circumstances leading
to negative filter factors. Our attention is drawn to more investigation on the NFF. The
causes of having NFF in each component for different settings of the structure of the
data, will be of focus. The shrinkage structure of PLS was discussed in detail more
by Lingjaerde & Christophersen (2000), Butler & Denham (2000) Rosipal & Krämer
(2006) with some properties of the shrinkage factors of PLS estimator. Moreover, it has
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been mentioned that NFF may exist without any further investigation e.g Lingjaerde &
Christophersen (2000) and Butler & Denham (2000).

In this chapter we investigate the potential occurrence of NFF. Furthermore, we
illustrate NFF using simulations for both high and low-dimensional data with consid-
eration of various conditions on the eigenvalues ofXTX . These simulations confirmed
some of the potential causes of NFF. Moreover, we use a small example for different
structures of XTX , and different settings of the eigenvalues of XTX to show when
NFF may occur.

This chapter is organised as follows. Section 4.2 presents the relationship between
the eigenvalues of W T

mX
TXWm and XTX , where Wm is the X-weight matrix used

in the NIPALS algorithm in Chapter 2, and some properties of these eigenvalues. Ex-
plaining when NFF of PLS estimator occur in some components is discussed in Sec-
tion 4.3. Giving some simulation to show the reasons of having NFF will be in Sec-
tion 4.4 for the low and high dimensional cases. In Section 4.5 there are some exam-
ples to give wider understanding where the NFF might occur, for different structures
of the variance-covariance matrix of X . Finally, in Section 4.6 some discussion on this
chapter is summarised with highlighted points for the NFF.

4.2 Relationship between the eigenvalues of two matri-
ces

Let d2i be the eigenvalues of XTX , and µ
2(m)
j be the eigenvalues of W T

mX
TXWm.

Note that µ2(m)
j represents the j-th eigenvalue of W T

mX
TXWm for m = 1, 2, . . .M ,

where M ≤ r, and r = min(n − 1, p). It is important to know the type of the both
matrices where XTX is a symmetric matrix, and W T

mX
TXWm is a tridiagonal matrix

(Krämer, 2007). The vectors in the matrix Wm are orthogonal and every vector in Wm

has magnitude of one which means they are orthonormal. This matrix is tridiagonal
because it is the transformation of a symmetric matrix with orthogonal vectors, as
W T
mWm = Im. We can see that each d2i is just a value on the diagonal of the matrix in

Equation (3.31) as
d2i = (n− 1)V T

i SxxVi, (4.1)
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4.2 Relationship between the eigenvalues of two matrices

where i is the i-th column eigenvector of matrix V . Also, for that each µ2
j is a single

value of the diagonal matrix, N2
(m), in Equation (3.32):

µ
2(m)
j = KT

j W
T
mSxxWmKj, (4.2)

where j represents the j-th column of matrix K. Hence, ω(m)
i is just the relation

between Equations (4.1) and (4.2). The eigenvalues, µ2
j , are going to be the same as

the eigenvalues, d2i , if all the subspaces of the space are spanned by Wm. Furthermore,
looking at Equations (4.1) and (4.2), it can be seen that if m = min(n − 1, p), then
d2i = µ2

j for all i, j = 1, 2, . . . , r, where r is the rank of X . That means V T
i SxxVi =

KT
j W

T
mSxxWmKj . The investigation for the NFF of the PLS estimator is based on the

relation between the covariance vector between X and y, and the variance-covariance
matrix of X variables.

4.2.1 Simulation study

To see the relation between the eigenvalues of W T
mX

TXWm (µ2
j ) and the eigenvalues

XTX (d2i ), we simulate a data set with n = 20 and p = 50. We use the general
regression model for the simulation.
X is generated independently from a normal distribution with zero mean and a constant
variance is equal to one, then X and y are centred in order to not have an intercept,
β ∼ N(0, σ2 = 1), and ε ∼ N(0, σ2 = 1).

Figure 4.1 shows that the µ2
j and d2i values are getting close to each other as the

number of components of PLS estimator is increased, and as the rank of X reaches
m = n − 1 = 19 components. Looking at the top left panel, for 5 components there
are only 5 eigenvalues of W T

mX
TXWm. Furthermore, only the first eigenvalue in both

matrices are the same and as the number of components is increased, the number of
equivalent eigenvalues of those matrices is increased. Reaching the rank of X as in the
bottom right panel we can see that all the µ2

j are equal to d2i .
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Figure 4.1: The relation between d2i in Equation (4.1) and µ2
j in Equation (4.2) using a

simulated data where p > n.

4.2.2 Some properties of the µ2(m)
j eigenvalues

Letm = 1, 2, . . . ,M represent the number of components. The eigenvalues ofW T
mX

TXWm,
µ2
1 ≥ µ2

2 ≥ · · · ≥ µ2
M , are commonly called Ritz values (Saad, 1992). Some important

properties for those Ritz values are given by Lingjaerde & Christophersen (2000):

1. d21 ≥ µ
2(m)
1 > µ

2(m)
2 > · · · > µ

2(m)
m ≥ d2(n−1).

In other words, the largest eigenvalue of XTX is larger than the largest eigen-
value if m is not equal to the rank of X , but if the rank of X equals m then those
eigenvalues are equivalent, and the same for the last smallest eigenvalues. µ2(m)

m

means the smallest eigenvalue of the matrix W T
mX

TXWm.
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4.3 Example showing NFF in the PLS estimator

2. d2p−m+i ≤ µ
2(m)
i < d2i , i = 1, 2, . . . ,m.

3. Between any two of the eigenvalues µ2(m)
j+1 , µ2(m)

j , there is at least one of d2i .

4. The Ritz values {µ2(m)
j }mj=1 and {µ2(m+1)

j }m+1
j=1 separate each other.

µ
2(m+1)
1 > µ

2(m)
1 > µ

2(m+1)
2 > µ

2(m)
2 > · · · > µ

2(m)
m > µ

2(m+1)
m+1

4.3 Example showing NFF in the PLS estimator

Recall that Equation (3.30), Ωpls is a diagonal matrix of ωpls
i , with dimension ((n −

1) × (n − 1)), and the values on the diagonal are called filter factors, ωpls
i , as given

in Equation (3.31). For a given number of component say m, we may have negative
values of the filter factors ω(m)

i , because
∏m

j=1(1−
d2i

µ
2(m)
j

) > 1, i = 1, 2, . . . , n−1.

Thus, we have ω(m)
i < 0, where m = 2, 3, . . . , n−1, if and only if

∑m
j=1 I[d2i > µ

2(m)
j ]

for even number of the j = 1, . . . ,m occurrences, and that d2i 6≈ µ
2(m)
j , or d2i � µ

2(m)
m .

From the figures of the filter factors for the NIR and CNA data sets in Chapter 3, it was
found that there are some cases where NFF exist. Some plots of NFF for NIR data and
CNA data are illustrated to show the potential causes as in the Figures 4.2 and 4.3.
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Figure 4.2: The ratio between d28 and µ2(9)
j=1,...,9 values using (NIR data), using 9 com-

ponents, (m = 9).

It can be seen from Figure 4.2 that there are two ratios of the d28/µ
2(9)
j , for j = 8, 9

are greater than one, and none of these ratios is close to one or on the red horizontal
line. Thus, NFF occurs, since the product is greater than one because of the number of
those ratios is even (and none of them are close to one).

Figure 4.3 shows another example using 20 components in which ω(m=20)
17 < 0,

because there are four ratios, between d217 and µ2(20)
j=1,...,20 which are greater than one.

That means, there is even number of occurrences of j = 17, 18, 19, 20, where they are
less than d217.
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Figure 4.3: The ratio between d217 and µ
2(20)
j=1,...,20 values using (NIR data), using 20

components, (m = 20).

To illustrate this is one of the cases (that was found when calculating the filter
factors for the NIR data) has NFF. The idea behind this can be seen from Figure 4.4.

It has been observed from the investigation of NFF for different cases that the d2i
is larger than µ2(m)

j for even number of occurrences of j is enough to have NFF. There
are some cases in the filter factors that have even number of occurrences of j, but
they are not NFF. In these cases, we do not have NFF because they do not satisfy this
d2i 6≈ µ

2(m)
j , or d2i � µ

2(m)
m for that i, j and for a given an m component. In the

following figures we utilise an example to explain this observation.
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Figure 4.4: log(d2i ) and log(µ2(9)
j ) values using (NIR data), using 9 components, (m =

9).

Figure 4.4 shows the log of d2i and µ2(9)
j values for i = j = 3, . . . , 9 using the

(NIR data) where the number of components m = 9. Plotted on the X axis are the
µ
2(9)
j for j = 4, 5, 6, 7, 8, 9, just to clarify the picture, and on the Y axis are the d2i for
i = 4, 5, 6, 7, 8, 9, again in order to give a clear picture of the target. It can be seen that
the two red dots are corresponding to the d28, µ2(9)

8 and µ2(9)
9 , where they are located

above the identity line which indicates d28 > µ
2(9)
8 and d28 > µ

2(9)
9 . None of the rest of

µ2(9)

j for j = 4, 5, 6, 7 is equal to d28. Thus, ω(9)
8 < 0.

On the other hand, looking at the other d2i for i = 4, 5, 6, 7 there are some cases
where the d2i > µ

2(9)
j for even number of the j occurrences, but there is at least one

of the d2i is equal to µ2(9)
j as i and j vary. Therefore, in this case the filter factors are

positive.
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4.3 Example showing NFF in the PLS estimator

4.3.1 Conditions for NFF occurrence

Let r br the rank of X , so r = n − 1. If m = 1, there is only one component and
since the number of components must be even, it is not possible to have any NFF. For
components larger than one, there are some conditions which are based on the relation
between the eigenvalues ofW T

mX
TXWm andXTX matrices. We have proposed those

conditions to show when NFF occurs in each component. We report the conditions
for NFF for small components, and for larger components, it can be shown, but the
calculations are long.

• for m=2, ωi < 0 if and only if

d2i >
2∑
j=1

µ2
j = µ2

1 + µ2
2, for any i = 1, 2, . . . , r.

• for m=3, ωi < 0 if and only if

d
2(3−1)
i < d

2(3−2)
i

3∑
j=1

µ2
j −

∑
1≤j<s≤3

µ2
jµ

2
s, for any i = 1, 2, . . . , r.

• for m=4, ωi < 0 if and only if

d
2(4−1)
i > d

2(4−2)
i

4∑
j=1

µ2
j − d

2(4−3)
i

∑
1≤j<s≤4

µ2
jµ

2
s +

∑
1≤j<s<l≤4

µ2
jµ

2
sµ

2
l ,

for any i = 1, 2, . . . , r.

• for m=5, ωi < 0 if and only if

d
2(5−1)
i < d

2(5−2)
i

5∑
j=1

µ2
j − d

2(5−3)
i

∑
1≤j<s≤5

µ2
jµ

2
s + d

2(5−4)
i

∑
1≤j<s<l≤5

µ2
jµ

2
sµ

2
l

−
∑

1≤j<s<l<q≤5

µ2
jµ

2
sµ

2
l µ

2
q,

for any i = 1, 2, . . . , r.
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4.3 Example showing NFF in the PLS estimator

• for m=6, ωi < 0 if and only if

d
2(6−1)
i > d

2(6−2)
i

6∑
j=1

µ2
j − d

2(6−3)
i

∑
1≤j<s≤6

µ2
jµ

2
s + d

2(6−4)
i

∑
1≤j<s<l≤6

µ2
jµ

2
sµ

2
l

−d2(6−5)i

∑
1≤j<s<l<q≤6

µ2
jµ

2
sµ

2
l µ

2
q

+
∑

1≤j<s<l<q<r≤6

µ2
jµ

2
sµ

2
l µ

2
qµ

2
r,

for any i = 1, 2, . . . , r.

From the above itemisation and the condition in each component, we can say that if
m is even, then d2(m−1)i has the greater sign of the inequality. When m is odd d2(m−1)i

occurs as a lower bound which means it is smaller than the right hand side of the
inequality. Also, we can see that the condition is based on d2(m−1)i and some combina-
tions of µ2

j . They are separated with the inequality, which represents the difficulty of
the PLS regression filter factors to be interpreted. Otherwise, we could be able to say
something about the relation between the covariance between X and y vector, and the
variance-covariance matrix of X , in which NFF will (may) occur.

For m = 2, and any i = 1, 2, . . . , r, ωi < 0 if and only if d2i >
2∑
j=1

µ2
j = µ

2(2)
1 +

µ
2(2)
2 .

To show the proof of the condition for two components, m = 2, recall the filter
factors in the PLS estimator ω(m)

i in Chapter 3. Substituting m = 2 in ω(m)
i = 1 −∏m

j=1(1−
d2i

µ
2(m)
j

), we have

1− [1− d2i
µ2
1

− d2i
µ2
2

+
d4i
µ2
1µ

2
2

]. (4.3)

Solving and simplifying Equation (4.3) and using the inequality for ω(m)
i < 0, we get

d2i
µ2
1

+
d2i
µ2
2

− d4i
µ2
1µ

2
2

< 0.

After simplifying the inequality above with respect to the power of di, we get

d2i
µ2
1µ

2
2

>
µ2
1 + µ2

2

µ2
1µ

2
2

.
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4.4 Some examples with a normal response

Then,
d2i > µ2

1 + µ2
2

Also, for three components we use the same approach and starting point. For the
condition and the inequality to have NFF, we substitutem = 3 in ω(m)

i = 1−
∏m

j=1(1−
d2i

µ
2(m)
j

). Thus, we have

ω
(2)
i = 1− [1− d2i

µ2
1

− d2i
µ2
2

− d2i
µ2
3

+
d4i
µ2
1µ

2
2

+
d4i
µ2
1µ

2
3

+
d4i
µ2
2µ

2
3

− d6i
µ2
1µ

2
2µ

2
3

]. (4.4)

Solving Equation (4.4). Say, if ω(m)
i < 0, we obtain

d2i
µ2
1

+
d2i
µ2
2

+
d2i
µ2
3

− d4i
µ2
1µ

2
2

− d4i
µ2
1µ

2
3

− d4i
µ2
2µ

2
3

+
d6i

µ2
1µ

2
2µ

2
3

< 0.

With some simplification of the inequality above, we get

d4i

(
µ2
1 + µ2

2 + µ2
3

µ2
1µ

2
2µ

2
3

)
> d2i

(
µ2
1µ

2
2 + µ2

1µ
2
3 + µ2

2µ
2
3

µ2
1µ

2
2µ

2
3

)
+ d6i

(
1

µ2
1µ

2
2µ

2
3

)
.

Finally with some arrangements in the inequality and some terms cancel out, we shall
have

d4i < d2i
(
µ2
1 + µ2

2 + µ2
3

)
−
(
µ2
1µ

2
2 + µ2

1µ
2
3 + µ2

2µ
2
3

)
.

Therefore, we can simplify that as

d
2(3−1)
i < d

2(3−2)
i

3∑
j=1

µ2
j −

∑
1≤j<s≤3

µ2
jµ

2
s

4.4 Some examples with a normal response

Although the motivation of investigating NFF more deeply comes from high dimen-
sional and real data sets as NIR and CNA lung cancer, it is worth to look at the NFF
in the low dimension through a simulation and the results are shown in Section 4.4.1.
Also, for the high dimensional case, some results are presented in Section 4.4.2.
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4.4 Some examples with a normal response

4.4.1 Simulations for low dimensional data

The general model for this simulation can be seen as a univariate multiple linear re-
gression model as

y = Xβ + εy. (4.5)

We generate theX data from a multivariate normal distribution with mean zero, and
a variance-covariance matrix Σx, with ρ = 0.999 between all variables, with n = 100

and p = 6. The X matrix is then decomposed using singular values decomposition
(SVD) into X = UDV T , then the singular values in the diagonal of the matrix D are
replaced by the square roots of new sets of eigenvalues, such that the sum of the eigen-
values are equal to the sum of the eigenvalues of (NIR data) since NFF was seen firstly
in that data as in Chapter 3. The new sets of the eigenvalues are utilised to create 5 dif-
ferent sets, called settings. The first setting of d2 = (27649, 27648, 0.9, 0.8, 0.7, 0.6),
the second setting of d2 = (28649, 26648, 0.9, 0.8, 0.7, 0.6), the third setting of d2 =

(47649, 7648, 0.9, 0.8, 0.7, 0.6), the fourth setting of d2 = (55296, 1, 0.9, 0.8, 0.7, 0.6),
and the fifth setting of d2 = (11716.67, 10716.67, 9716.67, 8716.67, 7716.66, 6716.66).
Figure 4.5 shows the replaced eigenvalues that will be used to get the X matrix. The
five settings of d2 where divided based on the average correlation between the xi and
xj for i 6= j, where xi and xj are variables in X . The average correlation is very low
as in the fifth setting, which means the data is independent as can be seen in the eigen-
values plot Figure 4.5, and it is around 0.6 as in the first and the second settings. The
third setting has a high average correlation, and a very high average correlation equals
to 0.9999 in the fourth setting.

Replacing the eigenvalues by all five different settings allow us to control the eigen-
values of XTX , d2i . Since ω(m)

i is a function of both d2i and µ
2(m)
j , then NFF de-

pends on those eigenvalues. The eigenvalues of W T
mX

TXWm, µ2(m)
j , are calculated

based on Wm which is the covariance of X and y for m components. The covari-
ance of X and y can be controlled from the σ2

β . We generate β from a normal dis-
tribution with mean zero and σ2

β which can take any value of different ranges of σ2
β

as (100, 5, 1, 10−1, 10−3, 10−5). We investigate how σ2
β can affect the proportion of

datasets which have at least one NFF over all components over the simulation settings
since the covariance between X and y can be controlled by σ2

β . As a result, σ2
β have

been chosen to have different range of values in order to vary the covariance of X and
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4.4 Some examples with a normal response

y. The error term εy is generated from a normal distribution with mean zero and vari-
ance equals to 1. We simulate X data matrix 10000 times where the singular values,
on the diagonal of the matrix D are fixed over all simulation, but the left and right
singular vectors, U and V respectively, are changed as X is simulated.

The NIPALS algorithm is applied to calculate the Wm. These are used to calculate
µ
2(m)
j as in Equation (4.2). The filter factors of the PLS regression estimator, ω(m)

i , are
calculated using Equation (3.20).

Figures 4.6, 4.7, and 4.8 are reported for our approach to show when NFF may
happen more and highlight a key finding for having more proportion of NFF in simu-
lations. The proportion of NFF is the number of simulated data that have at least one
NFF in all components divided by the total number of simulated data. NFF may occur
starting from the second component, at least two components needed (m ≥ 2), and
NFF cannot happen if m = i = min(n − 1, p). This is because the eigenvalues d2i
and µ2(m)

j are the same since m = min(n − 1, p) Section 4.2. Under some specific
circumstances and some settings of d2 and σ2

β values, NFF exists over all components
and in some components, especially, at the largest eigenvalues of XTX . This can be
seen in Figures 4.7 and 4.8 for small and large σ2

β respectively.
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Figure 4.5: The replaced nonzero eigenvalues of XTX for the different settings.
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Looking at Figure 4.6, it can be seen that as the log of σ2
β gets smaller, the pro-

portion of NFF in all components gets larger. Moreover, the average of all the values
below the diagonal of the correlation matrix of X is around 0.6 when using the first
setting of d2. It is very small when using the fifth setting of d2 which means the vari-
ables are independent as can be seen from the eigenvalues plot in Figure 4.5. From
the correlation point of view, It is more likely to have NFF for those data sets that are
correlated.
Furthermore, in the first four settings of the d2, where only the first and second largest
eigenvalues are the only different and the rest are the same, the first setting has a higher
proportion of NFF comparing to the others. As a result, since the first eigenvalue must
be larger than the second eigenvalue, the ratio between the first and the second eigen-
values is very small close to one, then this setting of d2 is associated to have higher
proportion of having at least one NFF over all components.
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4.4 Some examples with a normal response

Moreover, Figure 4.7 shows the proportion in each possible component that may have
NFF for small σ2

β = 10−5. Figure 4.8 shows the proportion of NFF in every possible
component for large σ2

β = 5. Although these two figures do not have clear and enough
information to identify the reason in each component why the we have high proportion
of NFF, most of the occurrences of NFF over all components comes from the second
component. This can be seen in Figure 4.7 and Figure 4.8 where the first setting is
used to construct X matrix.

In summary, there is a connection between the structure of the data and the propor-
tion of datasets which have at least one NFF over all components as seen in the fifth
setting (where all predictors are independent) compared to other settings (where the
predictors are correlated). If the data is correlated, then there is a potential occurrence
of NFF as seen above in Figure 4.6. In contrast, if the data is independent as given by
the fifth setting, there is no chance to have NFF at all regardless of the value of σ2

β as
can be seen in Figure 4.6.

4.4.2 Simulations for high dimensional data

In this subsection, we are investigating NFF using the general model for the simulation
as in Equation (4.5). The generation for the X , β, y and the error term εy is also the
same as in Section 4.4.1 with changes in the dimension of X where n = 20 and p =
50. The X matrix is also decomposed here using SVD and the singular values were
changed to the square roots of new different settings of d2i . They were chosen so that
the sum of each of them is equal to the sum of the eigenvalues of the (NIR data) just to
have similar structure of the eigenvalues of the (NIR data) where NFF occurs in some
components using the (NIR data). Since p > n, the rank ofX is n−1 which is equal to
the number of those proposed eigenvalues. These different settings of d2 were divided
into five sets where the first four settings are the same except for the first two largest
eigenvalues are different in order to follow Section 4.4.1. The first setting of d2 =

(27648.03, 27647.03, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05,

0.04, 0.03, 0.02), the second setting of d2 = (28648.03, 26647.03, . . . ), the third set-
ting of d2 = (47648.03, 7647.03, . . . ), the fourth setting of d2(55294.06, 1, . . . ), and
the fifth setting of d2i = (3810.6, 3710.6, 3610.6, 3510.6, 3410.6, 3310.5, 3210.5,

3110.5, 3010.5, 2910.5, 2810.5, 2710.5, 2610.5, 2510.5, 2410.5, 2310.5, 2210.5, 2110.5,
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4.4 Some examples with a normal response

2010.5).

Figure 4.9 shows the five different settings of d2i , where i = 1, . . . , 7, the rest were
omitted because they are the same for the first four settings. From the correlation
point of view using these different settings, the average of the values that are below the
diagonal of the correlation matrix of X are varied to have high around 0.9, medium
around 0.6, low around 0.3 and independent. They are varied from moderate to high
respectively for the first four settings, and the fifth setting of d2 has a very small average
correlation.
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Figure 4.9: The first seven eigenvalues of the replaced nonzero eigenvalues of XTX

for the different settings.

Figure 4.10 illustrates the proportion of datasets which have at least one NFF over
all components for each dataset after replacing their singular values by the new setting
of d2 using the simulated data for high dimensional case.
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Figure 4.10: The proportion of datasets which have at least one NFF over all compo-
nents for different σ2

β for different datasets.

The proportion of NFF occurrence for all different settings of d2 is decreased as
the log of σ2

β is increased as seen in Figure 4.10. The first setting of d2 has the largest
proportion of NFF as the σ2

β gets smaller comparing to the other settings and that
confirms the same finding in the low-dimensional case. The second, third and fourth
settings of d2 have similar proportion of NFF as σ2

β gets smaller. All settings of d2 have
quite similar of the proportion of NFF for large values of σ2

β . In terms of whether the
data matrix X is correlated or independent as in the fifth setting of the d2, it is more
likely to have NFF in the correlated data set but not for the independent one.
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Figure 4.11: The proportion of datasets which have at least one NFF in every compo-
nent for different datasets using a small value of σ2

β = 10−5.

Figure 4.11 shows the proportion of datasets which have at least one NFF in every
possible component for small σ2

β = 10−5. The proportion of the NFF in the first,
second and third settings of d2 is high in the even components and low in the odd
components and that is because the difference between the first two largest eigenvalues
is not very huge, but it is very large between the second and the third eigenvalues.
However, in the fourth setting, the difference between the first two eigenvalues is large
but it is not large between the second and the third eigenvalues. The proportion of NFF
is the same in each component for the data using the first, second and third settings of
d2. The proportion of NFF becomes more similar for the data using all settings of d2 at
the latest components. Once the rank of X is reached, there are no NFF for any setting
of d2 even for small σ2

β = 10−5 because the eigenvalues of XTX and W T
mX

TXWm

are the same, as seen in Section 4.2.

95



4.4 Some examples with a normal response

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

5 10 15

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

proportion of NFF in each component for different settings of di
2 and σβ

2=5, p>n

number of components

pr
op

ot
io

n 
of

 N
F

F

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●●

●

●

●

●

●

●

●

●
● ●

●

●

●
● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

the first setting of di
2

the second setting of di
2

the third setting of di
2

the fourth setting of di
2

the fifth setting of di
2

Figure 4.12: The proportion of datasets which have at least one NFF in every compo-
nent for different datasets using a large value of σ2

β = 5.

On the other hand, Figure 4.12 shows that the proportion of datasets which have at
least one NFF in every possible component for large σ2

β = 5. The proportion of NFF
in the first, second and third settings of d2 is very low in all components though it is
small in the even components, and in the odd components is very low in the first seven
components. However, the proportion of NFF in the fourth setting is low in the odd
components and it is very low in the even components in the first seven components.
In the last components where m = n− 1, the proportion of NFF is exactly zero.

Based on the simulation results above. It was seen that the occurrence of NFF
depends on the relation between d2i and µ2(m)

j for m components. We have been trying
to have a control and deal with µ2(m)

j and get some insights by doing simulations. It is
also important to look at the structure of the XTX matrix since d2i are the eigenvalues
of this matrix. In the following Section 4.5 we have done more through investigation
when the NFF may happened based on some examples to show and get some more
insights of the causes of the NFF using a small matrix of X and only 2 components
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4.5 Investigating NFF based on different structures of variance-covariance
matrix of X

(m = 2). In these sections, we have been trying to find any link between the initial
suspected reasons for causing the NFF which simply are the covariance between X
and y and the variance-covariance matrix of X .

To summarise, the structure of the data plays a role to have NFF which can be
seen when comparing the proportion of the datasets that have at least one NFF over
all components using the fifth setting to other settings of d2. It is more likely to have
NFF if the data is correlated which can be seen in Figure 4.6. By contrast, it is almost
impossible to have NFF with data that has structure as in the fifth setting where the
variables are independent, regardless of the value of σ2

β .

4.5 Investigating NFF based on different structures of
variance-covariance matrix of X

In the previous sections we were investigating NFF based on the relationship between
the eigenvalues of XTX and W T

mX
TXWm matrices. In this section we are going to

deal with the elements of those matrices by combining between the condition of NFF
and (the eigenvalues d2i and µ

2(m)
j ) for two components (m = 2). The simulation

setting for all subsections below are the same except for the structure of the variance-
covariance matrix of X . Using the general regression model for the simulation as in
Equation (4.5).
X is a matrix of size (n × p), with n = 100 and p = 3. The response variable (y) is a
univariate vector of length n = 100. Setting β = (β1, β2, 0) where the values of β1 and
β2 are being chosen from a sequence ranges from -1000 to 1000 for 100 values of each
of β1 and β2, but β3 is set to be equal to zero for simplicity and to concentrate on the
first two values of the vector β. The error term is a vector of length n generated from
a normal distribution with mean zero and variance equals to one. Generating X from
a multivariate normal distribution with mean zero, and a variance-covariance matrix to
be different in each structure of XTX . Given only 2 components, m = 2, denote

W2 =

 w11 w12

w21 w22

w31 w32

 .
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4.5 Investigating NFF based on different structures of variance-covariance
matrix of X

4.5.1 Two parameter model of XTX

In this structure of XTX , the goal is to understand when NFF occurs by investigating
a direct relation between the eigenvalues of XTX and the eigenvalues of W T

2 X
TXW2

through a simulation. Having the structure of the variance-covariance matrix of X as

XTX =

 a b b
b a b
b b a

 ,
where the values on the diagonal are equal and the off-diagonal values are all the
same. Because W matrix is the covariance vector of X and y, and from the linear
regression model, β vector can be considered as a cause of having NFF. This might give
an intuitive reason for having NFF for some values of β. Considering two components

and recall that NFF occurs if and only if d2i >
2∑
j=1

µ2
j = µ2

1 +µ2
2 for any i = 1, 2, . . . , r.

The sum of µ2
j is equal to the sum of the diagonal of W T

2 X
TXW2. Substituting the

condition for having NFF using two components by
2∑
j=1

µ2
j , and the largest eigenvalue

of XTX using this structure. Mostly for two components NFF occurs at ω(2)
1 which

corresponds to the largest eigenvalue of XTX , d21. Therefore, the largest eigenvalue of
XTX is a+ 2b if a > b > 0. Thus,

ωi < 0 ⇔ a+ 2b > 2a+ 2b((w11w21) + (w11w31) + (w21w31) + (w12w22) + (w12w32)

+(w22w32)).

Since the columns in W2 are orthonormal, the right hand side of the inequality can be
written as

((w11w21) + (w11w31) + (w21w31) + (w12w22) + (w12w32) + (w22w32))

=
((w11 + w21 + w31)

2 + (w12 + w22 + w32)
2 − 2)

2
.

Hence, the condition can be rewritten as

ωi < 0 ⇔ a+ 2b > 2a+ b((w11 + w21 + w31)
2 + (w12 + w22 + w32)

2 − 2).

Therefore,

ωi < 0 ⇔ ((w11 + w21 + w31)
2 + (w12 + w22 + w32)

2 − 2) < 2− a

b
. (4.6)
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As an example of this two parameter model structure of XTX , it is created where
the diagonal values are the same. So, a = 10 and b = 9. Now, β1 and β2 are in a
grid search between -1000 and 1000 such that ((w11w21) + (w11w31) + (w21w31) +

(w12w22) + (w12w32) + (w22w32)) < 2 − a
b
. However, the condition is not satisfied

in this structure of XTX due to the left hand side of the inequality of Equation(4.6)
is equal to 1. But, the maximum value that 2 − a

b
can have is 0.88, for a > b > 0

where a, b are positive integers. That means, it is impossible to have NFF in this two
parameter model structure of XTX with the constraints on a, b.

4.5.2 Three parameter diagonal structure of XTX

In this section, the structure of XTX as follow

XTX =

 a b c
b a b
c b a

 .
The same approach is going to be used here in order to link the largest eigenvalue
of XTX to the sum of µ2

j(2)
. If min(b, c) > 0, the largest eigenvalue of XTX is

1
2
(2a+

√
8b2 + c2 + c). The trace of W T

2 X
TXW2 is equivalent to the sum of µ2

j which
are the eigenvalues of W T

2 X
TXW2. Recall, the condition for two components to have

NFF is d2i >
a∑
j=1

µ2
j , for any i = 1, 2, . . . , r. This condition can be rewritten in terms of

the eigenvalues of XTX and the trace of W T
2 X

TXW2 as

ωi < 0 ⇔ 1

2
(2a+

√
8b2 + c2 + c) > 2a+ 2b((w11w21) + (w21w31) + (w12w22)

+(w22w32)) + 2c((w11w31) + (w12w32)).

which can be written as

ωi < 0 ⇔ ((w11w21) + (w21w31) + (w12w22) + (w22w32)) +
c

b
((w11w31)

+(w12w32)) <
−a
2b

+

√
8b2 + c2

4b
+

c

4b
. (4.7)

We investigate three examples with different values for the variance-covariance
matrix of X .
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matrix of X

First example

Recall the simulation in Section 4.5 for εy, β, and the variance-covariance matrix of X
is structured as in Section 4.5.2 where a = 10, b = 1, c = 9. β1 and β2 are chosen
from a sequence as in Section 4.5. Optimising β1 and β2 such that the left hand side of
the condition in Equation (4.7) is satisfied. All β values including those satisfied the
condition in Equation (4.7) for m = 2 are shown in Figure 4.13.
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Figure 4.13: The values of the left hand side of the inequality in Equation (4.7). By
subtracting the right hand side in Equation (4.7) from both sides, so the threshold here
is zero. If those values are less than zero, the condition is satisfied, and we consider
the combinations between (β1 and β2) to contribute to result in NFF. The colours show
that when the colour gets red, the value of (β1 and β2) are away from contributing to
the occurrence of NFF whereas as when the colour gets blue, those values of (β1 and
β2) contribute more for NFF.

Figure 4.13 shows a large range of both β1 and β2. The optimal values of β1 and β2
that are potentially to result in NFF are those which their corresponding value of the
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left hand side subtracted from the right hand side of the inequality in Equation (4.7) is
below zero as it is being the threshold.
It can be seen from Figure 4.13 that the NFF occurs for a specific combination of β1
and β2. For a combination of β1 and β2, β1 takes some positive values while β2 take
negative values that are less than the values of β1. Also, for the other direction of the
sign between β1 and β2. As both β1 and β2 go to zero, NFF does not occur. Moreover,
the NFF lay on a straight line all the way from top left to the end right as a diagonal,
and there are some others that lay on another line coming from the other side, top
middle, going down to the middle where both values for β1 and β2 are zeroes, but not
crossing the first line. The occurrence of NFF is stopped before the two regression
lines (between β1 and β2) reach zero. To illustrate, it could be imagined that those two
lines are like a valley where there are some humps and areas that NFF appear while in
some other areas do not. The NFF are roughly lay within that valley passing through
the zero.
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Figure 4.14: The slope between β1 and β2, and the minimum values of the left hand
side of Equation (4.7) that correspond to β2, where the one satisfied the condition is
coloured by red for any combination of β1 and β2.

Figure 4.14 shows the equation line between (β1 and β2) or the slope of all the
minimum values of the left hand side of Equation (4.7) including the optimal β values
that satisfied the condition using the first example of the three parameter diagonal
structure of XTX . Looking at Figure 4.14 where the slope between β1 and β2 where
it is discontinuous along that line, and there is a specific combination of β1 and β2 are
more likely to results in NFF which are coloured by red. It is clear that there are some
areas do not have NFF though the areas next to them have NFF, and that is because
when making the sequence for β1 is made to be like a grid and that specific value of β1
may not locate on the grid that produces NFF. Because of time limitation , we consider
only 100 values of the sequence of β1 and β2.
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Second example

In this example, the variance-covariance matrix of X is changed to have a strong two
blocks diagonal matrices in one matrix to see how that correlation might affect on
having NFF as in Section 4.5.2 where a = 10, b = 7, c = 1.
In this example, we have done the same simulation settings as in Section 4.5.2 for εy,
β, and X with another variance-covariance matrix of X as above. In order to find at
what values of β the NFF is more promised to happen, β1 and β2 are being optimised
and the condition in Equation (4.7) has been checked. All of the candidate values for
β1 and β2 including the optimal combinations of them are shown in Figure 4.15
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Figure 4.15: The values of the left hand side of the inequality in Equation (4.7). By
subtracting the right hand side in Equation (4.7) from both sides, so the threshold here
is zero. If those values are less than zero, the condition is satisfied, and we consider
the combinations between (β1 and β2) to contribute to result in NFF. The colours show
that when the colour gets red, the value of (β1 and β2) are away from contributing to
the occurrence of NFF whereas as when the colour gets blue, those values of (β1 and
β2) contribute more for NFF.

It can be seen that on the along the line from the top left going to the origin of β1
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and β2 where the line is discontinuous. The values of β1 are all negative and β2 are
positive in order to have NFF where the colour is blue and light blue. NFF is more
likely to occur if β1 and β2 are alternating the sign between them negative and positive
for different values. As β1 and β2 have very small values, NFF does not occur and that
confirms the findings in Section 4.4 where if σ2

β is small, NFF is more likely to happen.
Figure 4.16 illustrates the slope between β1 and β2 using the second example of

three parameter diagonal structure of XTX including the one satisfied the condition.

● ● ● ● ● ● ● ● ● ● ●

● ● ●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

● ●
● ●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

● ● ●

● ● ● ● ● ● ● ● ● ● ●

−1000 −500 0 500 1000

−
10

00
−

50
0

0
50

0
10

00

Minimum value of β1 and β2 including NFF,  second example of three diagonal parameters

β1

β 2
 s

at
is

fie
d 

th
e 

co
nd

iti
on

 to
 h

av
e 

N
F

F

Figure 4.16: The slope between β1 and β2, and the minimum values of the left hand
side of Equation (4.7) that correspond to β2, where the one satisfied the condition is
coloured by red for any combination of β1 and β2.

Looking at Figure 4.16 where the slope between β1 and β2 is plotted along all of
the candidate values for both β1 and β1. The minimum values of the left hand side of
Equation (4.7) corresponding to β2 is being plotted. The red circles are those satisfied
the condition out of the minimum values. The number of NFF cases in this example
is more and the reason probably is the structure of XTX where there are two strong
block diagonal matrices in XTX matrix.
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Third example

In this example, the variance-covariance matrix of X is structured as in Section 4.5.2
where a = 10, b = 9, c = 8.
The simulation settings in this section have followed those in Section 4.5.2 for εy and
β, but the variance-covariance matrix of X is different where the covariance between
all variables is high. Figure 4.17 shows 100 values of the left hand side of Equation
(4.7) based on 100 values of β1 and β2 including the optimal values of β1 and β2 those
satisfied the condition in Equation (4.7) for m = 2.
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Figure 4.17: The values of the left hand side of the inequality in Equation (4.7). By
subtracting the right hand side in Equation (4.7) from both sides, so the threshold here
is zero. If those values are less than zero, the condition is satisfied, and we consider
the combinations between (β1 and β2) to contribute to result in NFF. The colours show
that when the colour gets red, the value of (β1 and β2) are away from contributing to
the occurrence of NFF whereas as when the colour gets blue, those values of (β1 and
β2) contribute more for NFF.

As can be seen from Figure 4.17, the cases of NFF are less where the colours
starting from the reddish is considered as NFF. The combination of β1 and β2 as seen
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from the first and second example the sign of β1 is the opposite sign of β2 regardless
to the value.

Figure 4.18 shows the slope between β1 and β2 for those minimum values of the left
hand side of the inequality in Equation (4.7) using the third example of three diagonal
parameter structure of XTX . The minimum values of the amount of the left hand side
in Equation (4.7) including the optimal β values that satisfied the condition in order to
have NFF.

● ●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

● ●

−1000 −500 0 500 1000

−
10

00
−

50
0

0
50

0
10

00

Minimum value of β1 and β2 including NFF,  third example of three diagonal parameters

β1

β 2
 s

at
is

fie
d 

th
e 

co
nd

iti
on

 to
 h

av
e 

N
F

F

Figure 4.18: The slope between β1 and β2, and the minimum values of the left hand
side of Equation (4.7) that correspond to β2, where the one satisfied the condition is
coloured by red for any combination of β1 and β2.

The optimal values of β, which their combination produces NFF are those where
their corresponding amount of the left hand side of Equation (4.7) is below zero in
Figure 4.18. To illustrate, both sides of the inequality in Equation (4.7) are subtracted
by the right hand side amount in order to make the threshold equals to zero instead of
the amount of the right hand side of the inequality. The amount of the left hand side
of the inequality after subtracting the amount of the right hand side is coloured by red
where those have met the condition in Equation (4.7), which means NFF is appeared.
Those corresponding β1 and β2 are being used to calculate the amount of the left hand
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side since it depends on a complicated mathematical operations of multiplication and
additional between all elements in the w2 matrix for m = 2.

In summary, from Section 4.4, we found that there is a connection between NFF
and the σ2

β . This connection can be also seen here if we consider that as the radius
squared is increased as the σ2

β increased. This is why we can still have NFF at large
values of β.

4.5.3 Finding the connection between the correlation of data ma-
trices

Fitting the slope between (β1 and β2) over (b and c)

Having investigated the connection between the eigenvalues ofXTX andW T
2 X

TXW2

matrices in order to find the causes of NFF, it has been found that there is a compli-
cated relationship between those eigenvalues. It is very difficult to get the insights of
NFF and how (the covariance between X and y and the variance-covariance matrix
of X) contribute to likely result in NFF. Thus, the direct connection between the vari-
ance covariance of X matrix and the covariance between X and y vector should be
investigated. One way is to see how the relation between the slope between (β1 and
β2, γ) and (the values of b and c) in the variance-covariance matrix of X . This can
be done using the same simulation in Section 4.5.1 for β, εy, and X where for the
variance-covariance matrix of X , we let the elements, b, c in the variance-covariance
matrix vary and take different values such that the variance-covariance matrix is semi-
positive definite. Letting both b and c vary, this might give more insights for the relation
between this covariance matrix of X and γ.
The slope between β1 and β2 represented by γ which is the minimum values of the left
hand side of Equation (4.7) including those satisfied the condition for the inequality in
Equation (4.7).

Figure 4.19 shows the relation between γ over possible different values of b for
each value of c of the variance-covariance matrix of X .
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Figure 4.19: The slope between β1 and β2, (γ), and (b and c) of the variance-covariance
matrix of X .

It can be seen that from Figure 4.19 as the cov(x1, x3), c, gets larger, γ gets larger
in magnitude. Also, as the cov(x1, x2) and cov(x2, x3), b, gets larger as γ gets smaller
in magnitude for a given fixed value of the cov(x1, x3), c.

Looking at Figure 4.19, it can be seen that the relation between γ and (b, c) is
not linear. Thus, we use the transformation by squaring the γ in order to get better
model because it does not look linear. However, the other transformed models did not
improve the fitted values, and the more simpler model, the better is, so we will use the
linear model.

Assuming the linear model for the relation between γ and (b, c) as follows:

γ = κ0 + κ1b+ κ2c+ εγ, (4.8)

where b = cov(x1, x2) = cov(x2, x3) and c = cov(x1, x3), and εγ is the error term of γ.
The fitted values are κ0 = −0.838, κ1 = −0.091, κ2 = 0.068. For some diagnostics on
the fitted model, the residuals plot for the chosen fitted model along with QQ normal
plot are shown in Figure 4.20.
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Figure 4.20: Residuals plot and QQ plot, without transformation.

Finding relationship between (the correlation matrix of X) and (the correlation
between X and y)

Instead of using γ, the correlation vector between X and y is used to give a clearer
picture and direct connection between the correlation of X and y and the covariance
between X variables in order to seek for the reasons of having NFF from the variance-
covariance ofX matrix and the correlation vector betweenX and y. Here, we are going
to find any pattern that gives any connection between the correlation of X matrix and
the values of γ. It has been observed from the simulation that the values of γ does not
change across every single simulation and that is because of β1 and β2 are chosen from
a wide sequence ranges from -1000 to 1000, and for small σ2

e equals to one.
In order to find a theoretical relationship for the correlation of X and y, we assume

that X and y variables are centred. We will find the connection for each xj variable
separately. We have that for a linear model using three variables

y = β1x1 + β2x2 + β3x3 + ε,

where y is the response vector, β1, β2, and β3 are the coefficients, x1, x2, and x3 are
the predictors, ε is the residual term. We also fix β2 = γβ1 for some γ. Therefore,

y = β1x1 + γβ1x2 + β3x3 + ε.
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The correlation between X1 and y can be calculated as in Equation (4.9)

cor(x1, y) =
cov(x1, y)√

var(x1)
√
var(y)

. (4.9)

SinceX and y are centred, E(x1) = E(x2) = E(x3) = E(y) = 0. Thus, cov(x1, y) = E(x1y)
Calculating the E(x1y), we have

E(x1y) = E(x1(β1x1 + γβ1x2 + β3x3 + ε)).

Then,
E(x1y) = β1E(x21) + γβ1E(x1x2) + β3E(x1x3). (4.10)

Looking at the second structure matrix, we can find the expectation for each term in
Equation (4.10). Thus,

cov(x1, y) = E(x1y) = β1[a+ γb] + β3c.

For the variance of x1 and y, we can compute that using the property of centring for
both. Therefore,

var(y) = E(y2) = E((β1x1 + γβ1x2 + β3x3 + ε)2),

var(y) = E(y2) = β2
1 [a+ γ2a+ 2γb] + β2

3a+ 2β1β3[c+ γb],

and
var(x1) = E(x21) = a.

Going back to the formula for the correlation between x1 and y, we have the correlation
between x1 and y in Equation (4.11).

cor(x1, y) =
[a+ γb] + β3c√

a
√

[a+ γ2a+ 2γb] + β2
3a+ 2β1β3[c+ γb]

. (4.11)

Similarly finding the cor(x2, y) and cor(x3, y) as in Equations (4.12) and (4.13), re-
spectively.

cor(x2, y) =
[b+ γa] + β3b√

a
√

[a+ γ2a+ 2γb] + β2
3a+ 2β1β3[c+ γb]

. (4.12)

For the correlation between x3 and y, we have that in Equation (4.9)

cor(x3, y) =
[c+ γb] + β3a√

a
√

[a+ γ2a+ 2γb] + β2
3a+ 2β1β3[c+ γb]

. (4.13)
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Using the above theoretical calculations for the correlations in Equations (4.11),
(4.12) and (4.13) between X variables and y as a function of a, b, c, and γ to see if
there is a relationship between the correlation of X variables and y and the γ values.
We set β3 = 0, a = 10, b and c ∈ {1, 2, . . . , 9} where (b, c < a).

Figure 4.21 shows the relation between cor(x1, y) and different values of b for each
value of c.
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Figure 4.21: cor(x1, y), b and c (the off-diagonal values of three parameter model
structure of XTX).

It can be seen that in this figure as cor(x1, x3), c, gets larger, cor(x1, y) gets larger
in magnitude. As cor(x1, x2) and cor(x2, x3), b, gets larger cor(x1, y) gets smaller in
magnitude for a given fixed value of cor(x1, x3), c.

Figure 4.22 shows the relation between the cor(x2, y) over a different values of b
and c.
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Figure 4.22: cor(x2, y), b and c (the off-diagonal values of three parameter model
structure of XTX).

It can be seen from Figure 4.22 that as the cor(x1, x3), c, gets larger, the cor(x2, y)

gets smaller in magnitude. As the cor(x1, x2) and cor(x2, x3), b, gets larger the
cor(x2, y) gets larger in magnitude up to the half of the value of cor(x1, x2) and
cor(x2, x3), b, then the cor(x2, y) gets smaller in magnitude for a given fixed value
of the cor(x1, x3), c. Also, as cor(x1, x2) and cor(x2, x3), b, gets larger, and if (b > c),
then the cor(x2, y) gets smaller in magnitude.

Figure 4.23 shows the relation between the cor(x3, y) and sequence values of b for
each value of c.

112



4.5 Investigating NFF based on different structures of variance-covariance
matrix of X

2 4 6 8

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

the relation between the corr(x3, y) and b in X'X, 2nd structure

b in X'X

co
rr

(x
3,

 y
)

c=9
c=8
c=7
c=6

c=5
c=4
c=3
c=2
c=1

Figure 4.23: cor(x3, y), b and c (the off-diagonal values of three parameter model
structure of XTX).

It can be seen that in this figure as the cor(x1, x3), c, gets larger, the cor(x3, y) gets
larger in magnitude. As the cor(x1, x2) and cor(x2, x3), b, gets larger and if (b < c),
then the cor(x3, y) gets smaller in magnitude until the (b > c), then the cor(x3, y) gets
larger in magnitude for a given fixed value of the cor(x1, x3), c.

Using the correlation between x1 and y by the observed γ from the slope between
(β1 and β2), and the estimated γ̂ after using the values of κ0, κ1 and κ2 from the linear
model in Equation (4.8). Figure 4.24 shows cor(x1, y) from using the exact value of γ
and the estimated γ̂.
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Figure 4.24: cor(x1, y) using the observed and estimated values of γ, (the observed
γ is calculated for different values of b and c in the XTX matrix and the γ̂ using the
fitted model in Equation (4.8)), to calculate the correlation using Equation (4.11).

Figure 4.25 shows the relation between the cor(x2, y) and the observed γ.
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Figure 4.25: cor(x2, y) using the observed and estimated values of γ, (the observed
γ is calculated for different values of b and c in the XTX matrix and the γ̂ using the
fitted model in Equation (4.8)), to calculate the correlation using Equation (4.12).
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Figure 4.26 shows the relation between the cor(x3, y) and the observed γ.
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Figure 4.26: cor(x3, y) using the observed and estimated values of γ (the observed γ is
calculated for different values of b and c in the XTX matrix and the γ̂ using the fitted
model in Equation (4.8)), to calculate the correlation using Equation (4.13).

As it can be seen from Figure 4.24 that the correlation between x1 and y using the
exact γ and the estimated γ̂ are quite similar. That indicates the linear model that has
been chosen to fit the relation between γ and b and c is an appropriate model. It can
be seen in Figures 4.24, 4.25 and 4.26 that even the correlation between X and y is
large, we still may have NFF. The above results aim to find any connection between
the covariance between X and y and the variance-covariance matrix of X .

4.5.4 Four parameter model structure of XTX

In this section, we consider a four parameter model structure of XTX . The main gaol
of this structure is the same as in the previous structures which is to get some insights
of when NFF occurs when the structure of XTX changes. Simulating β and εy as in
Section 4.5, but the variance-covariance matrix of X between variables are different as

XTX =

 a b c
b a d
c d a

 .
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For m = 2 components, the sum of the eigenvalues of W T
2 X

TXW2 is 2a +

2b((w11w21) + (w12w22)) + 2c((w11w31) + (w12w32)) + 2d((w21w31) + (w22w32)).
If min(b, c, d) > 0, the largest eigenvalue for XTX is represented as d21. Note that d
here is an element in XTX matrix which is not the square root of first eigenvalues of
XTX represented by d21. The sum of the eigenvalues of W T

2 X
TXW2 is equal to trace

of W T
2 X

TXW2. Having seen that for m = 2, ωi < 0 if and only if d2i >
m∑
j=1

µ2
j , for

any i = 1, 2, . . . , r from Section 4.3.1. Substituting the sum of the eigenvalues by the
trace of W T

2 X
TXW2, and the condition where NFF occurs for 2 components can be

rewritten as

ωi < 0 ⇔ d21 > 2a+ 2b((w11w21) + (w12w22)) + 2c((w11w31) + (w12w32))

+2d((w21w31) + (w22w32)).

Letting the covariance between X variables in one side of the inequality as much as it
could be leads to

ωi < 0 ⇔ b((w11w21) + (w12w22)) + c((w11w31) + (w12w32)) +

d((w21w31) + (w22w32)) <
d21
2
− a. (4.14)

Example

In this example the variance-covariance matrix of X is structured as

XTX =

 10 1 2
1 10 9
2 9 10

 ,
100 values of β1 and β2 are chosen from the sequence ranges from -1000 to 1000.

The left hand side of the inequality in Equation (4.14) is illustrated for all combination
of β1 and β2 in Figure 4.27.
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Figure 4.27: The values of the left hand side of the inequality in Equation (4.14). By
subtracting the right hand side in Equation (4.7) from both sides, so the threshold here
is zero. If those values are less than zero, the condition is satisfied, and we consider
the combinations between (β1 and β2) to contribute to result in NFF. The colours show
that when the colour gets red, the value of (β1 and β2) are away from contributing to
the occurrence of NFF whereas as when the colour gets blue, those values of (β1 and
β2) contribute more for NFF.

As it can be noticed from Figure 4.27 that NFF occurs for some combination of
small positive values of β1 and large negative values for β2 and vice-versa. However,
there is no NFF as the value of both β1 and β2 go to the origin, and as they both get
larger as well.

Figure 4.28 illustrates the equation line which is the slope between β1 and β2, γ.
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Figure 4.28: The slope between β1 and β2, γ.

From Figure 4.28, it can seen that the combination of β1 and β2 that gives the
minimum value of the left hand side of Equation (4.14) including the optimal β values
which satisfied the condition in Equation (4.14). These combinations between β1 and
β2 can be seen for smaller positive values for β1 and larger negative values of β2.
Using these values for the variance-covariance matrix of X for that specific example
and letting β1 and β2 to have some values between -1000 and 1000. Then, the slope
between β1 and β2, γ is equal to -3.13.

4.5.5 Six parameter model structure of XTX

In this section, the structure of XTX is very complicated where all the values on the
diagonal and off-diagonal are different. This structure will show the condition for 2
components in Section 4.3.1 can be written in terms of those elements of the variance-
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covariance matrix of X . The variance-covariance matrix is structured as

XTX =

 a b c
b e d
c d f

 .
It is difficult to write the largest eigenvalue of the above matrix explicitly. Thus, the
largest eigenvalue of XXX is represented as d21. Note that d here is an element in
XTX matrix which is not the square root of first eigenvalues of XTX represented by
d21. The sum of the eigenvalues ofW TXTXW is a(w2

11+w2
12)+e(w2

21+w2
22)+f(w2

31+

w2
32)+2b((w11w21)+(w12w22))+2c((w11w31)+(w12w32))+2d((w21w31)+(w22w32)).

Writing the condition for 2 components in Section 4.3.1 in terms of the elements of
XTX as

ωi < 0 ⇔ a(w2
11 + w2

12) + e(w2
21 + w2

22) + f(w2
31 + w2

32) + 2b((w11w21) + (w12w22))

+2c((w11w31) + (w12w32)) + 2d((w21w31) + (w22w32)) < d21.

Making the covariance between X variables with the largest eigenvalue of XTX in
one side of the inequality leads to

ωi < 0 ⇔ ((a− f)(w2
11 + w2

21)) + ((e− f)(w2
12 + w2

22))

+ 2b((w11w21) + (w12w22)) + 2c((w11w31) + (w12w32))

+ 2d((w21w31) + (w22w32)) < d21 − 2f. (4.15)

Example

This example is to identify at which combination of β1 and β2 that produces NFF. The
variance-covariance matrix of X is given by

XTX =

 10 3 1.5
3 2 1

1.5 1 9

 ,
where the variance of x2 = e = 2 is smaller than the variance for the other variables
x1 and x3 are large.
β1 and β2 have been optimised over 100 chosen values from a sequence from -1000 to
1000 using the left hand side of the inequality in Equation (4.15). The values of left
hand side for all combination of β1 and β2 values are plotted as in Figure 4.29.
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Figure 4.29: The values of the left hand side of the inequality in Equation (4.15). By
subtracting the right hand side in Equation (4.7) from both sides, so the threshold here
is zero. If those values are less than zero, the condition is satisfied, and we consider
the combinations between (β1 and β2) to contribute to result in NFF. The colours show
that when the colour gets red, the value of (β1 and β2) are away from contributing to
the occurrence of NFF whereas as when the colour gets blue, those values of (β1 and
β2) contribute more for NFF.

It can be noticed from Figure 4.29 that there are more possible combinations be-
tween β1 and β2 that are more likely to result in NFF. For small and large negative
values of β1 and the values of β2 are positive and less than β1 are more likely to result
in NFF. Also, the vice-versa for the signs for both β1 and β2 can be observed from this
figure. However, as going closer to the origin of β1 and β2, NFF does not exist.

Figure 4.30 shows the slope between β1 and β2, γ, using an example of six param-
eter model structure of XTX .
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Figure 4.30: The slope between β1 and β2, γ.

As it can be seen from Figure 4.30 that along the slope between β1 and β2 the red
circles represent the values of the left hand side of the inequality in Equation (4.15)
that are below the right hand side in the same equation. Consequently, those red circles
represent NFF using the corresponding combinations between β1 and β2. The slope
between β1 and β2, γ, for this example of the six parameter model structure of XTX

is equal to -0.3623.

4.6 Discussion

Having introduced the shrinkage of three popular methods in RR, PCR and PLS re-
gression estimators in Chapter 3 for high dimensional data, we have been exploring
the challenges of identifying the circumstances in which NFF are more likely (or even
guaranteed) to occur in each component for the normal response data sets.

Although the results have not covered particularly the main causes of having NFF
in each component and how that is related either the covariance of X and y or the
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variance-covariance matrix ofX , we have proposed very clear conditions in each com-
ponent based on the relation between the eigenvalues of XTX , d2i , and the eigenvalues
of W T

mX
TXWm, µ2(m)

j . We have also confirmed through some simulations for a nor-
mal response that as σ2

β gets smaller, the proportion of datasets which have at least one
NFF over all components is larger for low and high dimensional cases.

Furthermore, we have showed that NFF is more likely happen using a correlated
data matrix,X . However, using an independent matrix does not have NFF whatever the
σ2
β . We have been looking for some intuitive reasons by applying different investigation

using small examples with different structures of XTX . This concludes that the NFF
is promised to occur at a specific combination of β1 and β2 along with the values of b
and c in XTX .

It should be noted that if there is a combination of β1 and β2 that gives NFF, there
is a another combination which is very close to it, but does not give NFF. That means,
the covariance of X and y only is not the key to result in NFF, but also the structure
of XTX . Since both the covariance of X and y, which is represented by Wm, and the
variance-covariance matrix of X , represented by XTX are used to calculate µ2(m)

j . It
is almost impossible to distinguish and find an exact direct condition or connection on
either the covariance of X and y or the variance-covariance matrix of X .

Finally, the connection between NFF and the structure of the data is very impor-
tant. For instance, NFF cannot be seen for data with independent variables. For the
connection between the structure of data and (the correlation betweenX and y), the re-
sults from a simulated data with limited values given for the elements in XTX matrix.
They are positive with a < b < c and they ranges between 1 and 10. Although this can
be seen as a limitation of our simulation, we still find that the structure of XTX has a
huge impact of NFF in the PLS estimator.
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Chapter 5

Sparse Smoothed Partial Least
Squares Regression

5.1 Overview

In Chapter 2, we introduced the ordinary PLS for high-dimensional and highly-correlated
data sets. The results of using the ordinary PLS on (NIR data) and (CNA data) in Chap-
ter 2, are difficult to interpret in the estimation of β̂ and the subsequent components of
the direction vectors Wm. This is because these types of data sets have two main prob-
lems which are: finding a method to deal with the dimension which takes account of
the dependencies between covariates; avoiding the impact of irrelevant covariates (ge-
nomic regions or wavelengths) which may result in a poor prediction. Thus, a sparse
solution may help to interpret the estimates of β̂ and wm.

Some sparse methods have been widely studied for the NIR data (e.g. Gusnanto &
Pawitan (2015) and Lee et al. (2011)). Chun & Keleş (2010) proposed a sparse partial
least square (SPLS) method where they impose the sparsity at the dimension reduction
step. This leads to dimension reduction and variable selection simultaneously. Lee
et al. (2011) developed a new formulation of SPLS by imposing the sparsity at the
regression step using two versions of NIPALS algorithm for a normal response. Lee
et al. (2013) proposed L1 and hierarchical likelihood (HL) penalties on the survival
data using SPLS-L1 and SPLS-HL.

However, a sparse solution can be achieved using an L1 penalty which is known to
select only one covariate out of a group of predictors that are highly-correlated. This
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5.2 Sparse PLS

is a problem that needs a method to tackle the high correlation between covariates.
Moreover, Huang et al. (2009) proposed a procedure for classification of array CGH
data using a smoothed logistic regression model. To our knowledge, previous methods
of SPLS in the literature have not considered the dependencies between the covariates.

Since the data sets are highly-correlated, in order to tackle the dependencies be-
tween the genomic regions for (CNA data) or wavelengths for (NIR data), smooth-
ness is needed. We extend the SPLS formulation that Lee et al. (2011) proposed by
considering a different penalty, where we assume the penalty function to be a mix-
ture that controls sparseness and smoothness. We consider the second differences of
adjacent values of w to follow a Cauchy distribution to achieve smoothness, and to
achieve sparseness we use the Laplace distribution. The model is based on assuming
the penalty function to follow a mixture of two distributions which control smoothness
and sparseness.

The organisation of this chapter is as follows. Section 5.2 provides the SPLS
method. In Section 5.3 we develop the smoothed PLS method with the first NIPALS
algorithm. Using the first NIPALS algorithm 1, enables us to develop the sparse-
smoothed PLS (SSPLS) solution which is provided in Section 5.4. In Section 5.5 we
provide another smoothed PLS based on the second NIPALS algorithm. In Section 5.6
we develop another SSPLS with the second NIPALS algorithm 2. Simulation results
are discussed in Section 5.7 for both methods of SSPLS based on the first and sec-
ond NIPALS algorithms. Applying these methods of SSPLS on NIR with real-valued
response variable is provided in Section 5.8 using (NIR data). In Section 5.9, we ap-
plied both methods of SSPLS on the (CNA data) where the response variable is binary.
Finally, some discussion is given in Section 5.10.

5.2 Sparse PLS

A sparse PLS (SPLS) method for wavelength selection in spectroscopic data has been
proposed by Chun & Keleş (2010) who considered imposing the sparsity at the dimen-
sion reduction step using an L1 penalty. For classification with microarray data Chung
& Keles (2010) proposed two methods of SPLS to classification problems. The first
is SPLS discriminant analysis (SPLSDA) and the second is sparse generalised PLS

124



5.2 Sparse PLS

(Chung & Keles, 2010). Both of these methods aim to improve the model by employ-
ing variable selection and dimension reduction simultaneously (Chung & Keles, 2010).
Moreover, Lee et al. (2011) proposed a new SPLS method by the use of an unbounded
penalty called hierarchical likelihood (HL) proposed by Lee & Oh (2009) to achieve
sparsity.

Recall the first NIPALS algorithm (1) where in the first step, the solution vector
wm is written as

wm = zTmy
T
mtm.

Lee et al. (2011) considered writing the direction vector (w) for a component as the
OLS estimator in the multivariate regression model. However, since our model is based
on a univariate response variable, we will consider writing w for a component in the
following univariate regression model

z = cwT + εz, (5.1)

where the univariate response variable z = yTX is a raw vector of length p, the co-
variate c = yT t is a scalar and the regression coefficient is a p vector. Let εz represent
the error term, and it is normally distributed.

To impose sparseness on the PLS direction vectors (w), Lee et al. (2011) considered
the penalised least squares estimation of the regression model in Equation (5.1) by
minimising Equation (5.2)

Qθ(w, z) =

p∑
j=1

{1

2
(zj − cwj)T (zj − cwj) + pθ(|wj|)

}
. (5.2)

Where pθ(.) is a penalty function. Here, given the tuning parameter θ, the solution of
w can be obtained. With pθ(w) = 1

θ
w, SPLS-L1 is found.

Following the random effect model approach, we assume that the random error (εz)
in Equation (5.1) to follow a normal distribution with mean 0 and covariance Σz. We
also assume that w is p vector of random effects to follow a Laplace distribution with
location 0 and scale

√
θ. We assume that w and εz are independent of each other. The

penalised log-likelihood L(w) can be written as

logL(w, θ) = −1

2
(z − cwT )Σ−1z (z − cwT )T − 1√

θ

p∑
j=1

|wj|,
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5.3 Smoothed PLS with first NIPALS algorithm

where the second term of Equation (5.3) is the penalty function. This penalty is not
well behaved because it is not differentiable at w = 0 though it is concave and con-
tinuous. Thus, to derive an estimation of w, we could use one of the standard convex
optimisers for instance convex GLM optimisations as the proposed IWLS algorithm
by Lee et al. (2006). However they give an approximate solution. We will use gra-
dient ascent, as proposed by Goeman (2010). Because our focus is on the mixture of
smoothness and sparseness, we provide the description of the gradient ascent algorithm
in Section 5.4.1 more specifically Algorithm 3.

Lee et al. (2011) used the unbounded penalty proposed by Lee & Oh (2009) as well
as the L1 penalty as a special case of their (HL) penalty in order to have sparsity. With
pλ(|wj|) = λ|wj| we shall have the SPLS-L1, where λ ≡ 1

θ
. The HL penalty is based

on the use of the random-effect models to generate penalty functions for variable selec-
tion (Lee & Oh, 2009). Using the double hierarchical generalised models (DHGLMs)
proposed by Lee & Nelder (2006), Lee & Oh (2009) suggested the use of a gamma
mixture for β as a penalty function for β. The normal-type (L2) and LASSO-type (L1)
penalties are special cases of the unbounded penalty Lee & Oh (2009).

SPLS-L1 and SPLS-HL do not consider the correlation between covariates espe-
cially for highly-correlated data as NIR and CNA data sets. The correlation between
covariates can be tackled by assuming the second differences of the direction vectors
(w) to follow a Cauchy distribution to achieve smoothness. The smoothness considers
the correlation between variables in order to interpret the estimation easily since the
SPLS-L1 and SPLS-HL may improve the prediction accuracy but with sacrificing the
interpretation.

5.3 Smoothed PLS with first NIPALS algorithm

SPLS methods in Section 5.2 for highly-correlated data may have difficulties in the
interpretation of the estimation of β̂. For example, when a group of predictors that are
associated with the outcome, are highly-correlated, but SPLS identify only one or some
of those predictors that are associated with outcome. Here, we consider the correlation
between predictors and tackle this problem with Cauchy penalty. This penalty allows
for the neighbouring predictors to be taken into account since we have dependencies
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5.3 Smoothed PLS with first NIPALS algorithm

between predictors as the windows in the CNA data and wavelengths in NIR data.
Thus, we need to have smoothness to tackle the dependencies between covariates.

To impose smoothness on the PLS direction vectors (w), we consider the penalised
least squares estimation of the regression model in Equation (5.1) by minimising Equa-
tion (5.2) where pθ(.) is a penalty function as in Lee et al. (2011) for sparseness.

To impose smoothness, we assume that

∆wj = wj − wj−1,

second differences
∆2wj = wj − 2wj−1 + wj−2,

to follow a specific distribution such as normal (Pawitan, 2001). However, since we
are dealing with CNA data, Huang et al. (2009) suggest to assume the random effects
to follow Cauchy distribution instead of a normal distribution. Cauchy distribution
is a heavy-tailed distribution which allows for the sudden jumps. We will consider
the second differences because in CNA data has many jumps as well as strong serial
correlations which needs smoothing.

Therefore, we assume the second differences of the direction vector (w) i.e.

∆2w ≡


w3 − 2w2 + w1

w4 − 2w3 + w2
...

wp − 2wp−1 + wp−2

 ,

to follow Cauchy distribution with location zero and scaleK(θ1) ≡ θ1Ip−2, where θ1 =

σ2. Assuming that w ∼ Cauchy(0, θ1Ip−2) is equivalent to assuming w is Cauchy
distribution with location 0 and inverse scale matrix K(θ1)

−1 ≡ θ−11 R−12 , where

R−12 ≡ ∆2T ∆2 =



1 −2 1 0 . . . . . . 0
−2 5 −4 1 0 . . . 0
1 −4 6 −4 1 . . . 0

0
. . . . . . . . . . . . 0 0

...
...

...
...

...
...

...
0 . . . 1 −4 6 −4 1
0 . . . 0 1 −4 5 −2
0 . . . . . . 0 −1 −2 1


,
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5.3 Smoothed PLS with first NIPALS algorithm

and ∆2 is (p− 2)× p in dimension which is defined as the generalised inverse of R−12 ;
in practice we never need to compute it (Pawitan, 2001).

We follow Gusnanto & Pawitan (2015) when they assume β in the general linear
regression model as random effects and follow a Cauchy distribution, but in our case,
we assume that the second differences of the direction vectors (w) have a penalty func-
tion which is the Cauchy distribution.
Assuming that the random error, εz, in Equation (5.1) to follow a normal distribution.
This means that the conditional distribution f(z|w) is assumed to follow a normal dis-
tribution with mean cwT and variance Σz = σ2

zIp. Thus, the conditional distribution of
z given w is

f(z|w) = (2π)−
p
2 |Σz|−

1
2 exp

[
− 1

2

(
(z − cwT )Σ−1z (z − cwT )T

)]
. (5.3)

Let f(w) be the probability density function (PDF) of the multivariate Cauchy distri-
bution for the parameter w as

f(w) = Γ

(
1 + p

2

)
Γ

(
1

2

)−1
π−

p
2 |K(θ1)|−

1
2 (1 + wTK(θ1)

−1w)−
p+1
2 . (5.4)

We assume that w and εz are independent of each other. The log-likelihood of the
parameters can be written as

logL(w, θ) = log f(z|w) + log f(w). (5.5)

Where log f(w) is the penalty function following the second-difference of the Cauchy
distribution in order to achieve the smoothness.
The first term in Equation (5.5) is given by

log f(z|w) = −1

2
log |Σz| −

1

2

(
(z − cwT )Σ−1z (z − cwT )T

)
. (5.6)

The second term of Equation (5.5) is the penalty function which assume the second
differences of adjacent values of w to follow a Cauchy distribution.
Combining the conditional log-likelihood with the log of penalty (log f(w)) with omit-
ting the terms that do not depend on w we have

logL(w, θ1) = −1

2
log |Σz| −

1

2
(z − cwT )Σ−1z (z − cwT )T

−1

2
log |K(θ1)| −

p+ 1

2
log
(

1 + wTK(θ1)
−1w

)
. (5.7)
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5.4 Sparse-smoothed PLS with first NIPALS algorithm

To derive an estimation of w at fixed values of θ1 for each m components, we take
the first derivative of the log-likelihood in Equation (5.7) with respect to w, and setting
this to zero and solve for w. This gives the estimation of w as

ŵc =

(
Σ−1z cT c+

[ (p+ 1)K(θ1)
−1

1 + wTK(θ1)−1w

])−1
Σ−1z zT c, (5.8)

where the estimation of the second differences of ŵc under the Cauchy distribution
assumption. With a starting value w0

c , the estimation of wc is done alternatively at a
fixed value of θ1 by first computing w in the right hand side of Equation (5.8).

Σ−1z is a diagonal matrix of σ2
z where the estimation of σ2

z can be done robustly as
Gusnanto & Pawitan (2015) by

σ̂2
z = median(z − cŵc)2.

For m and θ1, we estimate them using five-fold cross-validation. For each θ1 and m,
we compute the mean square error of cross-validation (MSECV) as proposed by Lee
et al. (2011), and is given by

MSECV(θ1,m) =
1

n

5∑
f=1

||y[s] −X[s]β̂
−s
m,θ1
||2. (5.9)

Where β̂−sm,θ1 is the coefficient estimates using the m number of components and θ1 the
s-th test set. We use the s-th validation sets for y[s] and X[s] to calculate the prediction
values of y. Then, m and θ1 are chosen such that minimise MSECV(m, θ1).

5.4 Sparse-smoothed PLS with first NIPALS algorithm

In this section, we consider the first NIPALS algorithm 1 as in Lee et al. (2011), but
with different approaches or penalty functions. There are mainly two problems: deal-
ing with the dependencies between neighbouring variables; and selecting a set of sig-
nificant variables among a large number of variables. Consequently, we will impose
smoothness and sparseness simultaneously on the PLS direction vectors by assuming
w as random effects. In our proposed sparse smoothed partial least squares regression
method SSPLS, we will be using the mixture of two distributions as a penalty term.
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5.4 Sparse-smoothed PLS with first NIPALS algorithm

We initially considered a mixture of three distributions: normal, Cauchy (second-
differences) and Laplace. The main goal of choosing the normal distribution is in order
to shrink large values of w. However, there is no shrinking of the extreme values of w
for our model since we are using the NIPALS algorithm. This algorithm maximises the
covariance betweenX and y such that the norm ofw equals to one. Therefore, although
we assume that the random effectsw to follow a normal distribution, the extreme values
of w will not be shrunk. The proof of this penalty function normal-type (L2) can be
found in Zou et al. (2006) for sparse PCA, but with changing to the direction vectors
w which are independent to θ. Therefore, we consider a mixture of only two penalties
(Cauchy to achieve smoothness) and (Laplace to achieve sparseness).

5.4.1 Mixture of the products of Cauchy and Laplace distributions

In this section, we assume that the w follows a mixture model of two distributions:
the first one is the second differences of adjacent values of w to follow a Cauchy
distribution with location 0 and a scale matrix K(θ1); the second one is a Laplace
distribution with location 0 and scale

√
θ2 as seen in Equation (5.13). A similar idea

was first discussed in Tibshirani et al. (2005) for penalised regression perspective, and
later in Huang et al. (2009) for smoothed logistic regression.

The penalised log-likelihood based on the observation z and the random effect w
is given in Equation (5.5) where the first term given in Equation 5.6 is the conditional
distribution of z givenw. The penalty function (log f(w)) is called the sparse smoothed
penalty that assumes the random effects follow a mixture of two distributions: Cauchy
(for the second-order differences) and Laplace distributions. The second-difference of
the Cauchy distribution in order to achieve the smoothness. The combined density is
Huang et al. (2009)

log f(w) = τ log f1(w) + (1− τ) log f2(w), (5.10)

where
log f1(w) = −(p+ 1)

2
log(1 + wTK(θ1)

−1w), (5.11)

and

log f2(w) = − 1√
θ2

p∑
j=1

|wj|. (5.12)
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5.4 Sparse-smoothed PLS with first NIPALS algorithm

We introduce the tuning parameter in order to control the penalty type. For exam-
ple, if the smoothness is only desired, we set τ to be equal to 1. If the sparseness is
only desired, we set τ to be zero. For simplicity, we set θ1 = θ2 = θ so that we would
only have to look for one tuning parameter θ instead of two different values for θs.
Thus, the log-likelihood with respect to the tuning parameters is

logL(w, θ, τ) = −1

2
(z − cwT )Σ−1z (z − cwT )T

−

[
τ

(p+ 1)

2
log(1 + wTK(θ)−1w)

+
(1− τ)√

θ

p∑
j=1

|wj|

]
, (5.13)

where the second and third terms correspond to the penalty function. This penalty
function is a mixture of second order difference Cauchy and Laplace assumptions for
w. The τ is the weight for both distributions. If τ = 0.5, then the penalty is divided
into half for smoothness and the other half is for sparseness. If τ = 0, then the penalty
is an L1 penalty sparsity. But, if τ = 1, then we are considering only smoothing with
no sparsity on the estimation of w.

The estimation of the model parameterw given the tuning parametersH = (m, θ, τ)

is done by estimating w at fixed value of H . We first differentiate the log-likelihood
logL(w) in Equation (5.13) partially with respect to w.

To derive an estimation of w, we could use one of the standard convex optimisers
as discussed earlier in Section 5.2. However they give an approximate solution. We
will use gradient ascent, as proposed by Goeman (2010), with some modifications.
In our model assumption, we include the penalty of the Cauchy distribution in the
log-likelihood whereas Goeman (2010) chose to use only the log partial likelihood
because he used only a Laplace distribution for the random effects assumption. The
combination of the likelihood and the Cauchy distribution is still well behaved because
it is continuous and twice differentiable everywhere.

Gradient ascent was chosen as a method for estimating our model parameter w
because it can be understood by looking more closely into the penalised log-likelihood
function that is to be optimised. The penalised log-likelihood in Equation (5.13) can
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5.4 Sparse-smoothed PLS with first NIPALS algorithm

be rewritten as a sum of two terms:

logL(w, τ) = lc −
(1− τ)√

θ

p∑
j=1

|wj|. (5.14)

The first term of Equation (5.14), lc, is the combination of the first two terms on the
right hand side of Equation (5.13), is log-likelihood of w plus the penalty from the
Cauchy distribution. This is a highly regular function: everywhere at least twice dif-
ferentiable in the target model given in Equation (5.13).
The second term of Equation (5.14), the penalty of Laplace, f(w) = (1−τ)√

θ

∑p
j=1 |wj|,

is not well behaved: it is concave and continuous, but is only differentiable at points
with wj 6= 0 for all j.
A gradient ascent algorithm for the optimisation of one coefficient after taking the
derivative at that point, it takes a step in that direction. it estimates this coefficient
when the derivative is zero.
There are two issues that should be noted: the penalised likelihood function may show
weak concavity near the optimum, especially if θ is large, this can be a major con-
vergence problem for Lasso algorithms in general; the penalised likelihood is not dif-
ferentiable everywhere due to the lack of differentiability of Lasso penalty (Goeman,
2010). Although of these issues, Goeman (2010) defined a directional derivative

l′p(w; v) = lim
t→0

1

t
{l(w + tv)− l(w)}

for every point w and every direction v ∈ <p. The gradient can then be defined for
every w as the scaled direction of steepest ascent. The algorithm follows the gradient
in the direction vopt which maximises l′p(w; v) among all v such that ||v|| = 1

Therefore, we can calculate the gradient as follows:

gj(w) =


hj(w)− 1−τ√

θ
sign(wj) if wj 6= 0

hj(w)− 1−τ√
θ

sign(hj(w)) if wj = 0 and |hj(w)| > 1−τ√
θ

0 otherwise

(5.15)

where

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0,
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5.4 Sparse-smoothed PLS with first NIPALS algorithm

and hj(w) is the first derivative of the log-likelihood and the Cauchy penalty in Equa-
tion (5.13).

The gradient ascent algorithm is calculated in an iterative way until convergence,
using update,

wnew = wold + tg(wold),

where t is the step size.
The penalised likelihood is approximated locally at each step from w in the di-

rection of the gradient by a directional second order Taylor approximation. There is
no meaning of this approximation if it is not within a single subdomain of gradient
continuity, i.e. for 0 < t < tedge, with

tedge = minj

{
− wj
g(wj)

:sign(wj) = −sign{g(wj)} 6= 0

}
,

where the optimum of the Taylor approximation in the subdomain is at

topt = − l
′(w; g(w))

l′′(w; g(w))
.

For every w and g(w), l′(w; g(w)) and l′′(w; g(w)) are the directional first and second
derivative, respectively.

l
′
(w; g(w)) = g(w)Tg(w)/||g(w)||

l
′′
(w; g(w)) = g(w)T

∂2lc
∂w∂w′

g(w).

It is difficult to calculate the full p × p Hessian matrix of lc to obtain the direc-
tional second derivative in practice because the direction g(w) of interest, which is the
direction of the gradient, will have many zeros. Therefore, the algorithm is shown
below

Algorithm 3 A simple modified gradient ascent algorithm for the penalised log-
likelihood of SSPLS

1: Start with some w(0).
2: For steps s = 0, 1, 2, . . . : iterate w(s+1) = w(s) + min{topt, tedge}g(w(s))

3: End if it converges (g(w) = 0).

The modification to the first NIPALS algorithm (1) is only in the first step where
the estimation of w is replaced by an iterative estimate of w as in Algorithm (3).
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5.5 Smoothed PLS with second NIPALS algorithm

5.4.2 Tuning parameter selection

For σ̂2
z , we estimate it as described in Section 5.3.

There is a global model for PLS which uses the regression coefficients vector using
the PLS model (βpls). In this global model, we choose the optimal values for the tuning
parameters, which are θ, τ and m, via five-fold cross-validation. For each θ, τ , and m,
we compute the (MSECV) for a normal response as

MSECV(m, θ, τ) =
1

n

5∑
f=1

||y[s] −X[s]β̂
−s
m,θ,τ ||

2. (5.16)

The optimal θ, τ and m are chosen that correspond to the minimum value of the
MSECV.

For a binary response we use the same procedure as in the normal case except we
calculate the misclassification error rate of cross-validation (MERCV) as proposed by
Gusnanto et al. (2015) instead of the MSECV.

Considering that there is a local model in each component which is represented by
Equation (5.1), this model used to choose the optimal θ and τ for each component.
The optimal values of θ and τ can be chosen in each component by maximising the
marginal of the log-likelihood in the penalised log-likelihood in Equation (5.13). We
use five-fold cross-validation with the maximum of the marginal log-likelihood. After
we choose the optimal θ and τ in each component, we compute using these optimal
θ and τ the global model’s coefficients vector (βpls). Now, the MSECV is calculated
using βpls to choose the optimal m for the normal response as given in Equation (5.16).

For the binary response, we do the same procedure for choosing the optimal θ and
τ locally, but instead of using MSECV, we use MERCV.

5.5 Smoothed PLS with second NIPALS algorithm

In this section, we consider smoothed PLS based on the second NIPALS algorithm 2.
Consider SPLS2 proposed by Lee et al. (2011), where the direction vector w in the
first step of the second NIPALS algorithm was regarded as the OLS estimator in the
following regression problem

X = ywT + εx, (5.17)
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5.5 Smoothed PLS with second NIPALS algorithm

where εx is a random error matrix. Given y, the OLS estimator for w minimises

trace
(

(X − ywT )T (X − ywT )
)
, (5.18)

where the trace of a matrix is the sum of the diagonal values.
Lee et al. (2011) imposed sparseness on the PLS direction vector w, with the ob-

jective function

trace
(

(X − ywT )T (X − ywT )
)

+ pθ

(
|w|
)
, (5.19)

where pθ(.) is a penalty function. Lee et al. (2011) argued that the unbounded HL
penalty is needed for more sparseness when the number of predictors is very large as
in genomic data applications.

In this section, we consider again the dependencies between variables since NIR
and CNA data sets are highly-correlated. The second proposed method SPLS2 with
HL penalty proposed by Lee et al. (2011) does not take into account the dependency
between the variables. First, we assume that the second differences of adjacent values
of w to follow a Cauchy distribution with location 0 and inverse scale matrix K(θ)−1

as defined in Section 5.3.
We assume that the random error matrix, εx, in Equation (5.15) to follow a mul-

tivariate normal distribution. Thus, the conditional distribution of X given w is a
multivariate normal distribution with mean ywT and variance-covariance matrix Σx.
The conditional distribution of X given w can be written for one component as

f(X|w) = (2π)−
p
2 |Σx|−

1
2 exp

[
− 1

2

(
(X − ywT )Σ−1x (X − ywT )T

)]
. (5.20)

To impose the smoothness, we assume that w as a random effect and the second differ-
ences of adjacent values of w to follow a Cauchy distribution.
We assume also that w is independent of εx. Combining the conditional log-likelihood
with log p(w), we have

logL(w, θ) = −1

2
log |Σx| −

1

2

n∑
i=1

trace
(

Σ−1x (Xi − yiwT )(Xi − yiwT )T
)

−(p+ 1)

2
log(1 + wTK(θ)−1w). (5.21)
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5.6 Sparse-smoothed PLS with second NIPALS algorithm

At fixed values of θ andm, we take the first derivative of the log-likelihood with respect
to w, and setting this derivative to zero and solving it for w, we will have the estimate
of w as

ŵc =

(
Σ−1x yTy +

[ (p+ 1)K(θ)−1

1 + wTK(θ)−1w

])−1
Σ−1x XTy, (5.22)

where wc, is the second difference of w estimates, are under the Cauchy distribution
assumption on w, and K(θ)−1 is defined in Section 5.3.

The estimation of Σx of the model in Equation (5.16) can be done by calculating
the median of the mean of each row of Σx. Then σ2

x can be estimated as proposed by
the median of the mean of each row as (Gusnanto & Pawitan, 2015)

σ̂2
x = median{meani(Xi − yiŵ)2}. (5.23)

We estimate m and θ using five-fold cross-validation as described in Section 5.3.

5.6 Sparse-smoothed PLS with second NIPALS algo-
rithm

In this section we follow the same characteristics of the penalty in Section 5.4 with
only changing the conditional likelihood depending on the NIPALS algorithms that
used here is the second NIPALS algorithm 2.

5.6.1 Mixture of smoothed Cauchy and Laplace distributions

In this section, we follow the same approach in SSPLS with first NIPALS algorithm
for the penalty functions by assuming the mixture of Cauchy and Laplace distributions.
We assume also thatw is independent of εx. We combine the conditional log-likelihood
with

(
τ log fc(w;K(θ1)) and (1− τ) log fl(w;

√
θ2)
)
. Assuming that θ1 = θ2 = θ, and

omitting the terms that do not depend on w, we have the same penalty function in
Section 5.4.1 but different conditional likelihood. Thus, Equation (5.13) becomes as

logL(w, θ, τ) = −1

2

n∑
i=1

trace
(

Σ−1x (Xi − wTyi)(Xi − wTyi)T
)

−

[
τ

(
(p+ 1)

2
log(1 + wTK(θ)−1w)

)
+

(
(1− τ)√

θ

p∑
j=1

|wj|

)]
. (5.24)
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Where the last two terms of the log-likelihood that correspond to the penalty function,
which is a mixture of Cauchy and Laplace distributions. The τ is the weight for each
distribution. The penalty function has the same characteristics as in the SSPLS with
the first NIPALS algorithm described in Section 5.4.
The estimation of the model parameter w and the tuning parameter H = (m, θ, τ) is
done by estimating w at fixed H . Selecting the tuning parameter is done via five-fold
cross-validation. We compute the mean squared error prediction of cross-validation
(MSECV) for H .
We will use gradient ascent since the penalised likelihood in Equation (5.24) is not
differentiable everywhere when j = 0 for |wj|. Therefore, we follow the estimation
of w as in the first method of SSPLS with changing the marginal log-likelihood to
be as in Equation (5.24). The modified gradient ascent algorithm is the same as the
Algorithm 3, but the hj(w) which is used in the calculation of the gradient gj(w) is
based on the log-likelihood defined in Equation (5.24). That means hj(w) is going to
be a combination of the first two terms in the right hand side of Equation (5.24) which
are the log likelihood plus the penalty from the Cauchy distribution. The rest remains
the same as in Section 5.4.1.

The modification to the second NIPALS algorithm (2) is only in the first step where
the estimation of w is replaced by an iterative estimate of w as in Algorithm 3.

5.6.2 Tuning parameter selection

For selecting the tuning parameters H = (m, θ, τ) we use the same measures in Sec-
tion 5.4.2 for the local and global models and for the normal and binary responses via
MSECV and MERCV respectively.
We compute the estimation of σ2

x as in Equation (5.23).

5.7 Simulation results

5.7.1 Simulation setting

To understand the working characteristics of the model, we follow the simulation set-
ting of Bøvelstad et al. (2007) , Nygård et al. (2008), and Lee et al. (2011). The details
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and procedures are explained in the following paragraph.
We generate a matrix of predictors of size n × p where n = 100 and p = 200 as

X ∼ MVN(0,Ψ) where MVN is the multivariate normal distribution density and Ψ

is 200 × 200 block diagonal covariance matrix. For a given L, it is defined as

Ψ =


Ψ11 0 . . . 0
0 Ψ22 . . . 0
...

... . . . ...
0 0 . . . ΨLL

 ,

and, for l = 1, 2, . . . , L, Ψll is of size L× L, LT= (200/L), and defined as

Ψll =


1 ρ . . . ρ
ρ 1 . . . ρ
...

... . . . ...
ρ ρ . . . 1

 ,

In this simulation, we set ρ equals to 0.9, because it is close to our real data and Lee
et al. (2011) argued that their methods work better with higher correlation.
For i = 1, 2, . . . , n, we assumed

yi =
40∑
j=1

xijβj + εi,

where yi is the element of a response vector of length n, xij is the (i, j) element of
X . βj = exp (−α(j − 1)) and βj+20 = βj for j = 1, . . . , 20. This setting indicated
that only the first 40 covariates are associated with response among 200 covariates.
The error term εi is the element of the error vector and it is randomly distributed from
normal distribution with mean zero and standard variation equals one.
The regression parameters were exponentially decaying, and the speed of the decay
was controlled by the parameter α. We used a slow decay, where α = 0.0141, such that
exp (−49α) = 0.5 as proposed by Lee et al. (2011).

5.7.2 Simulation results: one simulation using the first method of
SSPLS

Figure 5.1 shows the estimated β̂ with mixture of Cauchy and Laplace distributions
using the first method of SSPLS. In this simulation, one component (m = 1) is used
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5.7 Simulation results

because the main reason of this figure is to show how the model changes over different
values of τ . The left panel uses the first method of SSPLS with τ = 0 to show the
sparseness penalty only, and the middle panel uses the same method with τ = 0.5 to
show the effect of sparseness and smoothness together. The right panel uses the same
method with τ = 1 to show the smoothness effect only.
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Figure 5.1: β̂ with mixture of Cauchy and Laplace distributions penalty using the first
method of SSPLS. The left panel uses τ = 0, middle panel τ = 0.5, and right panel
uses τ = 1, where m = 1, the red lines are to show the first 20 covariates are positive
and the second 20 covariates are negative.

It can be seen from Figure 5.1 how the model using the first method of SSPLS is
changed by changing the value of τ which is the relative weight for Cauchy (smooth-
ness) and Laplace (sparseness). In the left panel, we can see there is no smoothing at
all because the weight for Cauchy distribution is zero. It is clear that Lasso tends to
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detect only 6 covariates among the second 20 correlated covariates which are associ-
ated with the response. This is a well known potential problem with Lasso penalty (L1

penalty)
In the middle panel of Figure 5.1, we set the weight of Cauchy and Laplace to be

equal to 0.5 (τ = 0.5). We can see the effect of smoothness and sparseness clearly.
Moreover, in our simulation’s setting, the first 20 covariates are positively and the
second 20 covariates are negatively associated with response variable among 200 co-
variates. The first 26 covariates detect a signal only, and the rest covariates (41-200)
are not equal to zero in the left panel.

In the right panel of Figure 5.1, τ = 1, our model reduces to Cauchy only with no
contribution for Laplace. Thus, none of the coefficients of β has been set to zero. This
model can be called smoothed partial least squares (smoothed PLS).

5.7.3 Simulation results: one simulation using the second method
of SSPLS

Figure 5.2 shows the estimated β̂ with mixture of Cauchy and Laplace distributions
using the second method of SSPLS. The results are based on one component since the
importance of this figure is to show how the model changes over different values of
τ . The left panel uses τ = 0 to achieve the sparsity only, and the middle panel uses
τ = 0.5 to show the effect of the mixture of sparseness and smoothness with equal
effect. The right panel uses τ = 1 to show the smoothness effect without sparseness.
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Figure 5.2: β̂ with mixture of Cauchy and Laplace distributions penalty using the
second method of SSPLS. The left panel uses τ = 0, middle panel τ = 0.5, and right
panel uses τ = 1, where m = 1.

We can see that by setting the weight to be equal to zero (τ = 0), Laplace dis-
tribution is only used and our proposed second method of SSPLS reduces to Lasso
solution. As we can see from the left panel of Figure 5.2, there are only 4 covari-
ates reveal among the second 20 covariates. This is again a possible problem in Lasso
penalty.

In the middle panel, setting the τ = 0.5 every distribution will contribute to the
model by 50 percent. This means that, we can see the sparseness and smoothness in
the estimation of β̂. Furthermore, among 200 covariates, the first 40 covariates are
associated with the response variables in the setting of our simulation. The first 40
covariates are significant as we anticipated, and the rest covariates (41-200) are equal
to zero in the left panel.
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In the right panel by setting τ = 1 indicates that only Cauchy distribution is being
used in the second method of SSPLS. It can be seen non of the estimation of β̂ has
been set to be equal to zero because the weight for Laplace is zero. This model can be
called the second method of smoothed PLS.

Looking at the results above in Figures 5.1 and 5.2, the first and second method of
SSPLS tend to have similar results with different values of τ .

5.7.4 Simulation results: the first method of SSPLS for local and
global models

In this section, we focus more on the first method of SSPLS with two different ways
to select the optimal tuning parameters as discussed in Section 5.4.2. These two ways
are called local and global models.

Figure 5.3 shows the plot for log of the MSECV over various number of compo-
nents using five-fold cross-validation on simulated data with the first method of SSPLS
for global and local models.
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Figure 5.3: The log of MSPE over various number of components using five-fold
MSECV on simulated data with the first method of SSPLS for global (left panel) and
local (right panel) models. The red point gives the optimal number of components in
each model.

As can be seen from Figure 5.3, left panel shows the log of the MSECV over
different components and the optimal m is 5. This can be seen as large number of
components compared to the optimal number of components for the local model (right
panel), where m = 2, which can be seen from the right panel in the same figure.

Figure 5.4 shows the plot for the MSECV values using five-fold cross-validation
with the first method of SSPLS globally for the optimal number of components (m)
between various values of τ and θ.
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CV MSPE Plot using SSPLS globally for 5th component
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Figure 5.4: MSPE values using five-fold CV with first SSPLS globally for the optimal
component between various values of τ and θ, where the optimal values for θopt =

0.00035, τopt = 1 and mopt = 5.

In Figure 5.4, we consider the global model which is used the coefficients estima-
tion βpls. In this model, we select the optimal tuning parameters that give the minimum
MSECV. Therefore, in all components, we use the same optimal values of τ and θ

without considering each component independently. It can be seen that in this case,
the optimal number of components mopt = 5 and there is only one optimal value for
each τ and θ since we use the global model.

Figure 5.5 shows plot for the maximum log-likelihood (MLL) values using five-
fold CV with the first method of SSPLS locally for the first component between various
values of τ and θ.
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CV MLL Plot using SSPLS locally for 1st component
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Figure 5.5: The maximum log likelihood (MLL) values using five-fold CV with first
SSPLS locally for the first component between various values of τ and θ, where opti-
mal θopt = 10−4 and τopt = 0.8 for m = 1.

Figure 5.6 shows plot for the maximum log-likelihood (MLL) values using five-
fold CV with the first method of SSPLS locally for the second component between
various values of τ and θ.
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CV MLL Plot using SSPLS locally for 2nd component
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Figure 5.6: The maximum log-likelihood (MLL) values using five-fold CV with first
SSPLS locally for the second component between various values of τ and θ, where
optimal θopt = 5× 10−5 and τopt = 0.9 for m = 2.

It can be seen from Figures 5.5 and 5.6 that the optimal values of the tuning pa-
rameters τ and θ in each component are different. This is because in each component,
the optimal τ and θ are chosen based on the local model that maximises the marginal
log-likelihood in Equation (5.13) without the penalty function.

Figure 5.7 shows the estimation of β̂ using the mixture model of Cauchy and
Laplace distributions with the optimal tuning parameters above. The left panel us-
ing the first SSPLS with the global model, and the right panel using the local model of
the first method of SSPLS.
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Figure 5.7: β̂ with mixture of Cauchy and Laplace distributions penalty using the
first SSPLS. The tuning parameters for the global model (left panel) are τopt = 1,
θopt = 0.00035, mopt = 5, and for the local model (right panel) are τopt = 0.8, 0.9,
θopt = 10−4, 5× 10−5, mopt = 2.

It can be seen from Figure 5.7 that the first 20 covariates should be positive and the
covariates from 21 to 40 are negative as it has been set for the true β in the simulation.
For the rest 160 covariates have been set equal to zero for true β in the simulation.
These covariates are not equal to zero using the optimal tuning parameters based on
the global model as seen in the left panel. Also, as the number of components is larger,
none of the estimation of β̂ are equal to zero. Since the optimal τ for the global model
is 1, this means that there is only Cauchy effect and no sparse effect from the penalty
function. However, in the right panel using the tuning parameters based on the local
model, almost all of the covariates are zero for the non zero covariates. The first 40
covariates are associated with the outcome.
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Figure 5.8 shows w1 using the mixture model of Cauchy and Laplace distributions
with the optimal tuning parameters above. The left panel using the first method of
SSPLS with the global model, and the local model (right panel).
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Figure 5.8: w1 with mixture of Cauchy and Laplace distributions penalty using the
first SSPLS. The tuning parameters for the global model are τopt = 1, θopt = 0.00035,
m = 2, and for the local model are τopt = 0.8, θopt = 10−4, m = 2.

It can be seen from the left panel of Figure 5.8 w1 using the first method of SSPLS
with the global model with no sparseness effect. This is because the τopt = 1 which
reduces our model to only smoothed PLS. On the other hand, it can be seen that the
first 44 covariates only have signals and they are smoothed and not equal to zero while
covariates from 45 to 200 are equal to zero. This indicates that our proposed model
has provided sparseness and smoothness together.

Figure 5.9 shows w2 with mixture of Cauchy and Laplace distributions using the
optimal tuning parameters above. The left panel using the first SSPLS with the global
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model, and the right panel using the local model of the first SSPLS.
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Figure 5.9: w2 with mixture of Cauchy and Laplace distributions penalty using the
first SSPLS. The tuning parameters for the global model are τopt = 1, θopt = 0.00035,
m = 2, and for the local model are τopt = 0.9, θopt = 5× 10−5, m = 2.

Looking at the left panel of Figure 5.9, it can be seen the effect of the sparseness
is not appeared using the optimal tuning parameters globally because τopt is equal to
1. However, in the right panel, using the optimal tuning parameters in the second
component, where τopt = 0.9, the is some sparsity in the second component because
weight for the Laplace distribution is 0.1 as the wight for Cauchy is 0.9. Moreover,
as the number of components is large as in the global model which is 5 components,
there is no sparsity effect for the first method of SSPLS.

In summary, it can be seen from this simulation and comparing the global and local
models using the first method of SSPLS that there is a difference in the results of the
values of the selected tuning parameters. The selection of the tuning parameters make
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changes in the estimation of β̂ and the wm for each component. Utilising the global
model, we do not see any effect from the Laplace penalty which means our SSPLS
model is reduced to only smoothed PLS model. In contrast, using the local model give
more chance for the impact of Laplace distribution and Cauchy to contribute together
in the model. Moreover, looking at the optimal number of components m with the
global model, we need more number of components that in the local model. The
reason could be that we treated all components with the same optimal values of τ and
θ for the global model. However, in the local model we select the optimal τ and θ
for each component independently, then we use them to select the optimal number of
components m.

5.7.5 Simulation results: the second method of SSPLS for local
and global models

Figure 5.10 shows the plot for the log of MSPE over various number of components
using five-fold CVMSPE on a simulated data with the second method of SSPLS for
global and local models.
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Figure 5.10: The log of MSPE over various number of components using five-fold CV
on a simulated data with second method of SSPLS for global (left panel) and local
(right panel) models, the red colour is referred to the optimal number of components
(m).

It can be seen from the left panel of Figure 5.10, the optimal number of components
is 5 using the global model for the second method of SSPLS. In the right panel, the
optimal number of components is 2 using the local model for the second SSPLS.

Figure 5.11 shows plot for the log of MSPE using five-fold MSECV with second
SSPLS globally for the optimal number of components (mopt = 5) between various
values of τ and θ.
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CV MSPE Plot using SSPLS2 globally for 5th component
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Figure 5.11: log of MSPE values using five-fold CV with second SSPLS globally for
the optimal component between various values of τ and θ, where the optimal θopt =

4× 10−6, τopt = 1 for mopt = 5.

It can be seen from Figure 5.11 the optimal θopt = 4× 10−6 and τopt = 1 using the
global model for the second SSPLS in the optimal number of components (mopt = 5).

Figure 5.12 shows plot for the maximum log-likelihood (MLL) values using five-
fold CV with the second SSPLS locally for the first component between various values
of τ and θ, where optimal θopt = 7× 10−6 and τopt = 0.3 for m = 1.
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CV MLL Plot using SSPLS2 locally for 1st component
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Figure 5.12: The maximum log-likelihood (MLL) values using five-fold CV with sec-
ond SSPLS locally for the first component between various values of τ and θ, where
optimal θopt = 7× 10−6 and τopt = 0.3 for m = 1.

For the local model using second SSPLS, it can be seen from Figure 5.12 that the
optimal τopt = 0.3 and θopt = 7× 10−6 for the first component.

Figure 5.13 shows plot for the maximum log-likelihood (MLL) values using five-
fold CV with the second method of SSPLS locally for the second component between
various values of τ and θ, where optimal θ = 10−5 and τopt = 0.9 for m = 2.
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CV MLL Plot using SSPLS2 locally for 2nd component
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Figure 5.13: The maximum log-likelihood (MLL) values using five-fold CV with sec-
ond SSPLS locally for the second component between various values of τopt and θopt,
where the optimal θopt = 10−5 and τopt = 0.9 for m = 2.

It can be seen from Figure 5.12 the optimal τopt = 0.9 and θopt = 10−5 for the
second component using using second SSPLS locally. It can be noticed that the op-
timal θ and τ are different from the optimal ones in the first component unlike the
global model. In the global model the optimal θ and τ are the same for all candidate
components

Figure 5.14 shows the estimation of β̂ using second SSPLS with global model (left
panel), and locally (right panel).
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Figure 5.14: The estimation of β̂ using second SSPLS globally (left panel) with (τopt =

1, θopt = 4 × 10−6, mopt = 5), and locally (right panel) with (τopt = 0.9, θopt =

1× 10−5, mopt = 2).

It can be seen from the left panel of Figure 5.14, there is no sparsity effect because
optimal τ (τopt) equals to one using the global model of the second SSPLS. In the
right panel of Figure 5.14, the sparseness and smoothness can be seen because there
is contribution from both Cauchy (smoothness) and Laplace (sparseness) distributions
penalty.

Figure 5.15 shows the estimation of w1 using second SSPLS when using the global
model (left panel), and the estimation of w1 using second SSPLS locally (right panel)
for the first component.
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Figure 5.15: The estimation of w1 using the second method of SSPLS globally with
(τopt = 1, θopt = 4 × 10−6, m = 1), and locally with (τopt = 0.3, θopt = 7 × 10−6,
m = 1).

We can see from the left panel of Figure 5.15, w1 in the first component using the
optimal tuning parameters of the global model. Because of τopt = 1 meaning the whole
model is only Cauchy with no Laplace contribution, it can be seen there is non of the
estimation of w1 are equal to zero. Using the tuning parameters of the local model with
τopt = 0.3, the model has 0.3 of Cauchy distribution to achieve smoothing and 0.7 for
sparseness to achieve sparsity for w1 in the first component as can be seen in the right
panel of the same figure.

Figure 5.16 shows the estimation of w2 using the second proposed SSPLS globally
(left panel), and local model (right panel) for the second component.
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Figure 5.16: The estimation of w2 for the second component using the second method
of SSPLS globally with (τopt = 1, θopt = 4× 10−6, m = 2), and second SSPLS locally
with (τopt = 0.9, θopt = 1× 10−5, m = 2).

Looking at the second component of w (w2), the left panel used the optimal τ =

1 and θ = 4 × 10−6 that have been chosen for the first component. These tuning
parameters uses the weight for Cauchy distribution equals to 1 with zero weight for
Laplace distribution. Hence, no of the estimation of w2 in the left panel are zeroes. In
contrast, looking at the right panel where the optimal tuning parameters are used with
considering every component is treated independently. Since τopt = 0.9, this means
that weight on the Laplace distribution is 0.1 and this still gives some sparsity on the
estimation of w2.

To summarise, we have investigated two methods of SSPLS and their results do
not show critical difference on the simulated data in terms of the estimation of β̂ and
wm for different components. Both methods of SSPLS have two ways of selecting
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their tuning parameters which are globally and locally. In the global model we lose
the sparsity due to the choice of τopt, and for the local model we can see the effect of
both penalties which are Laplace (sparseness) and Cauchy (smoothness). Furthermore,
using the global model needs more number of components than using the local model
for the first and second methods of SSPLS.

5.7.6 Simulation results: comparative study

For each data set, we evaluated the following methods:

• SPLS-HL: sparse PLS with HL penalty Lee et al. (2011)

• SPLS2-HL: sparse PLS2 with HL penalty Lee et al. (2011)

• Our proposed first method SSPLS: first sparse-smoothed PLS with mixture of
Cauchy and Laplace distributions.

• Our proposed second method SSPLS: second sparse-smoothed PLS with mixture
of Cauchy and Laplace distributions.

These methods have been evaluated with respect to the square root of the mean
square prediction error (

√
MSPE) after the tuning parameters have been chosen. The√

MSPE is done using the formula in Equation (5.15), and it is calculated using an
unseen simulated data sets with the same simulation settings in Section 5.7.1.

It is important to see how the estimation of β̂ looks like for one simulation for the
candidates methods. Figure 5.17 shows β from one simulated data set with the optimal
tuning parameters λ and m for SPLS-HL, and H = (τ, θ,m) for the first SSPLS using
the local model.
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Figure 5.17: The estimation of β̂ using SPLS-HL method (left panel) with optimal
tuning parameters (λ = 0.001, mopt = 3). The estimation of β̂ using the first SSPLS
with local model (right panel) with optimal parameters (τopt = 0.9, θopt = 5 × 10−5,
mopt = 2).

It is clear from looking to Figure 5.17 that the SPLS-HL (left panel) does not have
smoothing and there are sudden spikes without considering the correlation between the
variables. There is no sparsity also using the optimal (m and λ). On the other hand, our
proposed SSPLS using the local model (right panel) has smoothness and sparseness to
deal with the dependencies between variables and the irrelevant variables respectively.
The red lines are for the first 40 covariates that are associated with the response. In our
simulations settings, the fist 20 are positively associated and covariates from 21-40 are
negatively associated with the response variable. Using the SPLS1-HL, we can see the
first 40 covariates reveal the signals in the estimation of β̂. However, the smoothness
is not found and there are are other covariates reveal signals which should be equal
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to zero. In contrast, the estimation of β̂ using the first SSPLS reveal signals as we
expected and they are smoothed. The rest of covariates are set to be equal to zero.

Figure 5.18 shows β̂ from one simulated data set with the optimal tuning param-
eters λ and m for SPLS-HL, and H = (τ, θ,m) for the first SSPLS using the local
model.
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Figure 5.18: The estimation of β̂ using SPLS2-HL method (left panel) with optimal
tuning parameters (λ = 50, mopt = 5). The estimation of β̂ based on the second
method of SSPLS with local model (right panel) with tuning parameters (τopt = 0.9,
θopt = 10−5, mopt = 2).

As can be seen from Figure 5.18 that the SPLS2-HL (left panel) does not have
smoothness which does not consider the dependencies between the variables. There
is sparsity based on the optimal m and λ. Our proposed second method of SSPLS
based on the optimal tuning parameters using the local model (right panel) shows the
estimation of β̂ has obvious smoothness and sparsity. The red lines to show that in
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our setting for the simulation, we set the first 20 covariates to be positively correlated
to the response variable and the second 20 covariates are negatively associated. The
estimation of β̂ using SPLS2-HL reveal the signals and more other covariates with
almost no sparsity. On the other hand, the estimation of β̂ using the second SSPLS
reveal the first 40 covariates and very little number of the rest covariates with a very
clear smoothness.

Figure 5.19 shows a box plot of the (
√

MSPE) using five-fold cross-validation for
six methods which are SPLS-HL, SPLS2-HL (from Lee et al. (2011)), first SSPLS
global, second SSPLS global, first SSPLS local and second SSPLS local.
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Figure 5.19: Box plot of the log of
√

MSPE using five-fold cross-validation for six
methods which are SPLS-HL, SPLS2-HL (from Lee et al. (2011)), first SSPLS using
global model, second SSPLS using global model, first SSPLS using local model and
second SSPLS using local model.
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Although that the difference of
√

MSPE between our proposed first and second
methods of SSPLS using the optimal tuning parameters based on the global model and
the local model is quite small, the achievements of the sparseness may not be likely
happened since the optimal τ might be one. Having said that, the user can change the
weight of each distribution as needed for more sparseness or smoothness. It can be
said that the difference of

√
MSPE between (SPLS-HL, SPLS2-HL) and (first SSPLS,

second SSPLS) might be quite small as well with an outperformance of SPLS-HL and
SPLS2-HL, but these two methods do not consider the dependencies between variables
which first SSPLS and second SSPLS do.

5.8 NIR data results

5.8.1 SSPLS with first NIPALS algorithm

The optimal θ and τ here for the local model are (τopt = 0.1 and θopt = 26.1) in the
first component m = 1. Using the global model, the optimal values are (τopt = 1 and
θopt = 26).

Figure 5.20 shows the plot for the MSPE over various number of components using
five-fold MSECV using NIR data with the first SSPLS for global and local models.
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Figure 5.20: MSPE using five-fold CV with NIR data using the first SSPLS for global
(left panel) and local (right panel) models.

It can be seen from Figure 5.20 that the optimal number of components using the
global model for the first method of SSPLS (left panel) is 9 components. Using the
local model for the first method of SSPLS for the θ and τ for each component then
compute the optimal number of components based on those chosen θopt and τopt (right
panel), the optimal number of components is 8.

Figure 5.21 shows the estimation of β̂ using the first SSPLS based on the global
model (left panel), and locally (right panel).
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Figure 5.21: The estimation of β̂ using the first SSPLS with global model (left panel)
with (τopt = 1, θopt = 26,mopt = 9), and the first SSPLS with local model (right panel)
with (τopt = 0.5, θopt = 26, mopt = 8).

Looking at Figure 5.21, the estimation of β̂ using the optimal tuning parameters
using the global model for the first method of SSPLS (left panel) does not show any
sparsity. This is because the number of components is large (mopt = 9) and the optimal
τ = 1 which means the weight for Laplace distribution is zero. In other words, our first
proposed model of SSPLS is reduced to the smoothed PLS model. In the right panel of
Figure 5.21, β is plotted using the optimal tuning parameters based on the local model
for the first method of SSPLS for each component for θ and τ . Although τopt = 0.5,
there is also no sparsity using the local model for the estimation of β̂. The reason is
because the value of θopt is too large for the model to have sparseness. There might be
some sparsity on the estimation of β̂ with small θopt. However, using the small values
of θ from a range of different θ cannot be used because the smallest value of θ that
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5.8 NIR data results

NIR data may have is θ = 26 for the first component. If θ gets smaller value less
than 26, the estimation of β̂ (all covariates) in the first component will be zero (over
sparseness). The other components could have had some sparseness if the θopt was
less than 26 which means there is no residuals from the first component to be used to
calculate the second component and the rest of the components. Positive estimates of
β̂ indicate that the relevant wavelengths are significant with increases in the moisture.
On the other hand, the negative estimates of β̂ indicate that the relevant wavelengths
covariates are associated with decreases in the moisture.

Figure 5.22 shows the estimation of w1 using the first SSPLS based on the global
model (left panel), and local model (right panel).
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Figure 5.22: The estimation of w1 in the first component using the first SSPLS with
global model (left panel) with (τopt = 1, θopt = 26, m = 1), and the first SSPLS with
local model with (τopt = 0.1, θopt = 26.1, m = 1).

Because τopt = 1, there is no sparsity in the first component. Looking at the right
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panel of Figure 5.22 using the local model for the first SSPLS, the estimation of w1 has
some variables are set to be equal to zero since τopt = 0.5. Having τopt = 0.5 balances
the weight on both distributions (Cauchy for smoothness and Laplace for sparseness)
which results in smoothness and sparseness.

In deed, the estimation of β̂ using the first method of SSPLS with global model and
local model does not have sparseness due to large number of components as an optimal
(mopt = 9 or 8) for the NIR data. Because of the optimal number of components is
large, we lost the effect of Laplace distribution. Although the local model might have
some sparseness on some components because the selected θopt and τopt differ in each
component unlike the global model we do not select θopt and τopt over each component.
Both models with the first method of SSPLS do not guarantee sparseness for the NIR
data.

5.8.2 SSPLS with the second NIPALS algorithm

Here, the optimal θ and τ here for the local model are (τopt = 0.5 and θopt = 6× 10−7)
in the first component m = 1. Using the global model, the optimal values are (τopt =

0.7 and θopt = 6× 10−7).
Figure 5.23 shows the plot for the MSPE over various number of components using

5 fold MSECV using NIR data with the second SSPLS for global and local models.
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Figure 5.23: MSPE using five-fold CV with NIR data using the second SSPLS for
global (left panel) with 11 components and local (right panel) models with 10 compo-
nents.

It can be seen from Figure 5.23 the optimal number of components using the global
model for the second SSPLS is 11 components based on five-fold cross-validation with
minimum of MSECV. The optimal number of components using local model for the
second SSPLS can be seen in the right panel of Figure 5.23 which is 10 components
based on five-fold cross-validation with the minimum of MSECV.

Figure 5.24 shows the estimation of β̂ using the second SSPLS based on the global
model (left panel), and locally (right panel).
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Figure 5.24: The estimation of β̂ using the second method of SSPLS with the global
model (τopt = 0.7, θopt = 6 × 10−7, mopt = 11), and local model with (τopt = 0.5,
θopt = 7× 10−7, mopt = 10).

Estimation of β̂ can be seen in Figure 5.24 using the second SSPLS based on global
model (left panel) with optimal tuning parameters (τopt = 0.7, θopt = 6×10−7, mopt =

11). Looking at the estimation of β̂, there is no sparsity though τopt = 0.7 because
the optimal number of components is 11 which is large. As the number of component
is increased, sparseness is less common. Although if some covariates of wm in each
component are set to be equal zero, wm and β become dense. Hence, with small
number of components, the chance is more to have sparseness of β Lee et al. (2011).
Similarly, looking at the right panel of Figure 5.24, the estimation of β̂ using the second
SSPLS with local model does not have sparsity though τopt = 0.5, since (mopt =

10) is large. We interpret the estimates of β̂ as the positive estimates are associated
with increase in the moisture. In contrast, the negative estimates are associated with
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decrease in the moisture.
Figure 5.25 shows the estimation ofw1 using the second SSPLS based on the global

model (left panel), and locally (right panel).
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Figure 5.25: The estimation of w1 using the second SSPLS globally with (τopt = 0.7,
θopt = 6× 10−7, m = 1), and locally with (τopt = 0.5, θopt = 6× 10−7, m = 1).

It can be seen from Figure 5.25 that there is some sparseness on the estimation of
w1 using the second SSPLS based on the global (left panel) and local models (right
panel). We can see that more elements are set to be equal to zero using the local model
because the optimal τopt = 0.5 whereas for the global model τopt = 0.7. This means
that the weight for Laplace distribution is 0.3 for the global model while it is 0.5 for
the local model.

In summary, both methods of SSPLS with local and global models are similar with
a little difference in the optimal number of components where the second methods
need more number of components than the first method of SSPLS here. However, in
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the second method, we can see some sparseness in each component wm when using
the local model.

5.8.3 Comparisons

Figure 5.26 shows a box plot of the root mean squares prediction error (
√

MSPE) for
six methods which are SPLS-HL, SPLS2-HL (from Lee et al. (2011)), first SSPLS
global, second SSPLS global, first SSPLS local and second SSPLS local.
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Figure 5.26: Box plot of the root mean squares prediction error
√

MSPE for six meth-
ods which are SPLS-HL, SPLS2-HL (from Lee et al. (2011)), first SSPLS global,
second SSPLS global, first SSPLS local and second SSPLS local.

Looking at Figure 5.26, we can see that the second SSPLS using the global model
has the lowest median equals to 0.1332 of the five-fold cross-validation. Because the
response variable of the NIR data is normal, we use RMSPE in the calculation. The
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second SSPLS using the local model has the second lowest median equals to 0.1334
of five-fold cross-validation of RMSPE. SSPLS using the global is the third lowest
median equals to 0.1392. Then, the first SSPLS using the local model is the fourth
lowest among the six methods. SPLS-HL and SPLS2-HL proposed by Lee et al. (2011)
have median of RMSPE equal to 0.1577 and 0.1573 respectively. Although the first
and second methods of SSPLS using the local model have RMSPE larger than using
the global model, there is no sparseness in the first component using the global model
for both methods of SSPLS as can be seen in Figures 5.22 and 5.25.

5.9 CNA data results

5.9.1 SSPLS with first NIPALS algorithm

Here, we use the same criteria for choosing θ and τ as in Section 5.4.2 with the first
SSPLS for local and global model.

Applying sparse PLS solutions on high dimensional data (n � p) where the re-
sponse variable is binary, have been widely applied as in Chung & Keles (2010). Fig-
ure 5.27 shows the plot for the (MERCV) using five-fold cross-validation over various
number of components for CNA data with the first SSPLS for global and local models.
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Figure 5.27: MERCV over various number of components using five-fold cross-
validation for CNA data with the first SSPLS for global and local models.

It can be seen that from Figure 5.27 left panel using the global model where all
components have the same optimal θ and τ with optimal tuning parameters (mopt = 2,
θopt = 4 × 10−4 and τopt = 0.9). When the local model is used as can be seen in the
right panel with mopt = 2, every component will have different optimal values of θ
and τ . These values using the local model with the first SSPLS for the first component
are θopt = 0.01 and τopt = 0.4. For the second component, the optimal values are
θopt = 0.007 and τopt = 0.7.

Figure 5.28 shows the estimation of β̂ using the first SSPLS based on 2 compo-
nents.
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Figure 5.28: The estimation of β̂ using the first SSPLS with the global model for CNA
profiles. Those genomic windows with missing values (for example in the centromere
regions) were not plotted since they were not used in the analysis. A more detailed
view of the random effects estimates in each chromosome is presented in Figure 5.29.

Figure 5.29 shows a more detailed view of estimation of β̂.
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Figure 5.29: The estimation of β̂ using the first SSPLS with the global model for CNA
profiles. Those genomic windows with missing values (for example in the centromere
regions) were not plotted since they were not used in the analysis.

It can be seen from Figure 5.29 in chromosomes 2, 3, 12, 14 and 15 have positive
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signals in the genomic regions. Because the response variable is binary and centred,
so the large positive values contribute to squamous carcinoma (SCC), and the large
absolute values of the negative estimates contribute more to adenocarcinoma (ADC).
The negative estimates appeared in chromosomes 7, 10 and 19.

Figure 5.30 shows the X-weights in the first component w1 using the first SSPLS
with global model.
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Figure 5.30: w1 with mixture of smoothed Cauchy and Laplace distributions penalty
using first SSPLS globally (τopt = 0.9, θopt = 4× 10−4, m = 1).

It can be seen from Figure 5.30 there are some chromosomes (e.g. 4, 11 and 13)
that do not have significant signals for the genomic regions. This means that these
chromosomes have an association with cancer type either SCC or ADC.

Figure 5.31 shows the X-weights in the second component w2 using the first SS-
PLS with global model.
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Figure 5.31: w2 with mixture of smoothed Cauchy and Laplace distributions penalty
using SSPLS globally (τopt = 0.9, θopt = 4× 10−4, m = 2).

Looking at the estimation of w2 in Figure 5.31, we can see that some genomic
regions in chromosomes 7 and 19 have signals. These signals are associated with the
cancer type.

Figure 5.32 shows the estimation of β̂ using the first SSPLS based on 2 compo-
nents.
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Figure 5.32: The estimation of β̂ using the first SSPLS with the local model for CNA
profiles. A more detailed view of the random effects estimates in each chromosome is
presented in Figure 5.33.

Figure 5.33 shows a more detailed view of estimation of β̂ using the first SSPLS
based on 2 components.
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Figure 5.33: The estimation of β̂ using the first SSPLS with the local model for CNA
profiles. Those genomic windows with missing values (for example in the centromere
regions) were not plotted since they were not used in the analysis.

Looking at Figure 5.33, we can see the genomic regions in chromosomes 3, 12 and
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14 which have large positive estimates of β̂ contribute more to SCC class. Genomic
regions in chromosomes 7, 14 and 19, which have large absolute value of the negative
estimates of β̂, contribute to ADC class.

Figure 5.34 shows w1 with mixture of smoothed Cauchy and Laplace distributions
using the first SSPLS locally.
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Figure 5.34: w1 with mixture of smoothed Cauchy and Laplace distributions penalty
using the first SSPLS globally (τopt = 0.4, θopt = 0.01, m = 1).

It can be seen from Figure 5.34 that the genomic regions in chromosomes (3,19
and 20) have signals which indicate that they have an association with the cancer type.

Figure 5.35 shows w2 with mixture of smoothed Cauchy and Laplace distributions
using the first SSPLS locally.
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Figure 5.35: w2 with mixture of smoothed Cauchy and Laplace distributions penalty
using the first SSPLS locally (τopt = 0.7, θopt = 0.007, m = 2).

Positive estimates of w2 of the genomic regions in the chromosomes (7, 14, 16, 17,
19) which can be seen in Figure 5.35. This means that these regions have an association
with the cancer type.

To compare the estimation of β̂ using the global and local models, we can see that
both models are similar in the estimation of β̂ for some chromosomes. However, in
some chromosomes (16 and 17), they are associated with the ADC using the local
model, but they are not with the global model. Moreover, from time point of view
the local model is faster than global model to select the optimal tuning parameters via
five-fold cross-validation.
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5.9.2 SSPLS with second NIPALS algorithm

Here, we use the same criteria for choosing the optimal θ and τ in Section 5.4.2 for the
global and local model.

Figure 5.36 shows the plot for the misclassification error rate (MERCV) using five-
fold cross-validation over various number of components for CNA data with the second
SSPLS for global and local models.
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Figure 5.36: MERCV over various number of components using five-fold cross-
validation for CNA data with the second SSPLS for global (left panel) and local (right
panel) models.

It can be seen that from Figure 5.36 left panel using the global model where all
components have the same optimal θ and τ with optimal tuning parameters (mopt = 3,
θopt = 6 × 10−5 and τopt = 0.8). When the local model is used as can be seen in
the right panel, every component will have different optimal values of θ and τ . Having
identified the optimalmopt = 2 using the local model of the second SSPLS, the optimal
θopt = 9 × 10−5 and τopt = 0.4 in the first component. In the second component, the
optimal θopt = 3× 10−4 and τopt = 0.3 using the same method and model.
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Figure 5.37 shows the estimation of β̂ using the second SSPLS with global model
optimal values for CNA data based on 3 components.
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Figure 5.37: The estimation of β̂ using the second SSPLS with the global model for
CNA profiles. A more detailed view of the random effects estimates in each chromo-
some is presented in Figure 5.38.

Figure 5.38 shows a more detailed view of estimation of β̂ using SSPLS method
with optimal values of the tuning parameters using the global model for CNA data
based on 2 components.
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Figure 5.38: The estimation of β̂ using the second SSPLS with the global model for
CNA profiles. Those genomic windows with missing values (for example in the cen-
tromere regions) were not plotted since they were not used in the analysis.

It can be seen from Figure 5.38 that the large positive estimates of β̂ which are in
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chromosomes 3, 5, 20 and 22 contribute more to SCC class. Large absolute value of
the negative estimates of β̂ in chromosomes 1, 7, 9, 10, 12, 14, 16, 17 and 19 contribute
to ADC class.

Figure 5.39 shows w1 with mixture of smoothed Cauchy and Laplace distributions
using the second SSPLS globally.
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Figure 5.39: w1 with mixture of smoothed Cauchy and Laplace distributions penalty
using the second SSPLS globally (τopt = 0.8, θopt = 6× 10−5, m = 1).

Looking at the estimation of w1, we can see that the genomic regions that have
signals indicate that they have an association to the cancer type.

Figure 5.40 shows w2 with mixture of smoothed Cauchy and Laplace distributions
using the second SSPLS globally.
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Figure 5.40: w2 with mixture of smoothed Cauchy and Laplace distributions penalty
using the second SSPLS globally (τopt = 0.8, θopt = 6× 10−5, m = 2).

It can be seen from Figure 5.40 that all the chromosomes that have signals in their
genomic regions are associated with the cancer type.

Figure 5.41 shows w3 with mixture of smoothed Cauchy and Laplace distributions
using the second SSPLS globally.
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Figure 5.41: w3 with mixture of smoothed Cauchy and Laplace distributions penalty
using the second SSPLS globally (τopt = 0.8, θopt = 6× 10−5, m = 3).

We can see from Figure 5.41, the signals that chromosomes that are associated with
the type of the cancer.

Figure 5.42 shows the estimation of β̂ using the second SSPLS with global model
optimal values for CNA data based on 2 components.
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Figure 5.42: The estimation of β̂ using the second SSPLS with the full local model for
CNA profiles. A more detailed view of the random effects estimates in each chromo-
some is presented in Figure 5.43.

Figure 5.43 shows a more detailed view of estimation of β̂ using the second SSPLS
with optimal values of the tuning parameters using the local model for CNA data based
on 2 components.
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Figure 5.43: The estimation of β̂ using the second SSPLS with the full local model
for CNA profiles. Those genomic windows with missing values (for example in the
centromere regions) were not plotted since they were not used in the analysis.

We can see from Figure 5.43 that some of the genomic regions in chromosome
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3 have large positive estimates of β̂. This indicate that they contribute to SCC class.
In contrast, large absolute values of negative estimates of β̂ as can be seen in some
genomic regions in chromosomes 7, 14, 16, 17 and 19 contribute more to ADC class.

Figure 5.44 shows w1 with mixture of smoothed Cauchy and Laplace distributions
using the second proposed SSPLS locally.
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Figure 5.44: w1 with mixture of smoothed Cauchy and Laplace distributions penalty
using the second SSPLS locally (τopt = 0.4, θopt = 9× 10−5, m = 1).

It can be seen from Figure 5.44 the genomic regions that have signals are associated
with the cancer type.

Figure 5.45 shows w2 with mixture of smoothed Cauchy and Laplace distributions
using the second proposed SSPLS locally.
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Figure 5.45: w2 with mixture of smoothed Cauchy and Laplace distributions penalty
using the second SSPLS locally (τopt = 0.3, θopt = 3× 10−4, m = 2).

Looking at the estimates of w2, we can see from Figure 5.45 that the genomic
regions in chromosomes (7, 14, 16, 17, 19) have signals associated with cancer type.

Over all, to compare between the first and second methods of SSPLS, we can see
that they are similar in detecting the genomic regions and chromosomes that are asso-
ciated with either SCC or ADC. Both methods have provided sparseness and smooth-
ness. From time computation point of view using the second method is recommended
with local model.

5.9.3 Comparisons

Figure 5.46 shows a box plot of the root misclassification error rate (RMERCV) using
five-fold cross-validation for six methods which are SPLS-HL, SPLS2-HL proposed
by Lee et al. (2011), first SSPLS global, second SSPLS global, first SSPLS local and
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second SSPLS local using CNA data. We split the data into five folds, then we applied
the candidates methods above using the optimal tuning parameters for each method on
the training sets then we calculate the RMERCV for each fold. Therefore, the result of
this procedure is being plotted as in Figure 5.46.
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Figure 5.46: Box plot of MER for six methods which are SPLS-HL, SPLS2-HL, first
SSPLS global, second SSPLS global, first SSPLS local and second SSPLS local using
CNA data.

Looking at Figure 5.46, we can see that all six methods have a comparable mis-
classification error rate (MER) using five-fold cross-validation. However, SPLS2-HL
has the lowest median of MER compared to other five methods.
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5.10 Discussion

In this chapter, we have proposed two methods with the same penalty which is a mix-
ture of two distributions (Cauchy and Laplace). In terms of choosing the tuning param-
eters, we propose two different solutions using the global PLS model and local model
for each method (first SSPLS and second SSPLS). These two methods are based on two
different versions of NIPALS algorithm for calculating the direction vectors. Those di-
rection vectors were used to impose smoothness and sparseness. Applying both meth-
ods with global and local models using the simulated data where the response is on a
continuous scale. The results show that the first SSPLS and the second SSPLS with
local model give more sparseness since the weight for Laplace distribution (1 - τ ) is
not equal to zero.

Comparing all candidate methods (first SSPLS and second SSPLS) with global and
local models to SPLS-HL and SPLS2-HL on simulation data, we found that SPLS-HL
and SPLS2-HL slightly outperform our proposed methods. However, first SSPLS and
second SSPLS might be preferred when dealing with highly-correlated data where
SPLS-HL and SPLS2-HL would be difficult to interpret the results. If there are some
sudden jumps for one variable without considering the correlation to the neighbouring
variables.

Applying the same methods on the real data as NIR for a real-valued response, it
can be seen that the first SSPLS and the second SSPLS globally and locally outperform
over SPLS-HL and SPLS2-HL. For genomic profiles data (CNA data), we can see that
all six methods are close to each other in terms of MER. However, using the first
SSPLS and the second SSPLS local model give more sparse solutions. In contrast,
first SSPLS and second SSPLS using the global model do not give sparsity as much
as the local model. We think it might be appropriate to use the local model for both
methods of SSPLS because the residuals from the component before is like a new data
which should be treated independently with it optimal tuning parameters of θ and τ .
We recommend the user to apply all methods and then choose one for the analysis.

Finally, our new method automatically selects relevant variables without sacrificing
prediction performance. Not only that, we also imposed smoothness to deal with the
spatial structure of CNA genomic regions.
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Chapter 6

Graphical Modelling and Partial Least
Square Regression

6.1 Overview

In Chapter 2 we introduced the ordinary PLS and from both NIPALS algorithms 1 and
2, we can see that the direction vectors wm have a direct connection between the (X)
predictors and the response variable (y). In this chapter we focus more on thew in each
component m by trying to interpret them. To interpret w in component m, we combine
the idea of the graphical modelling and PLS first. After that, the latent variables of
PLS regression model can be used to interpret w in component m.

Wold (1966) developed the PLS approach to structural equation modelling (PLS
path modelling) which is used as an alternative to the covariance based model (CB-
SEM) proposed by Jöreskog (1978). PLS path models maximise the explained vari-
ance of the latent variables whereas CBSEM estimates model parameters so that the
discrepancy between the estimated and sample covariance is minimised. PLS path
models in path analysis have been discussed by many researchers e.g. Monecke &
Leisch (2012) and F. Hair Jr et al. (2014). In PLS path models, the most interest of the
latent variables is only the coefficient parameters without interpreting the wm where m
is the number of components that are used in the PLS model.

In graphical modelling we are interested in interpreting wm such that we can find
the relationships between the predictors before affecting y. Since graphical modelling
depends on the principle of conditional independence, it might be helpful to interpret
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w in component m in order to find the layers before reaching the response. For ex-
ample, we are interested in interpreting the subsequent components by identifying the
variables that are conditionally independent. Moreover, we are investigating if there
are some variables that are affecting the response variable through other variables.

As a result, combining graphical modelling with PLS might help us to interpret
the subsequent components (wm). More specifically, using graphical Gaussian model
to model the data and applying PLS methods to interpret the output components and
get some insight of how the explanatory variables are connected to the response either
directly or indirectly through each other.

This chapter is organised as follows. In Section 6.2, we introduce the graphical
Gaussian model and the role of the inverse covariance matrix (S−1). In Section 6.3,
there is some discussion about the principle of the connection between PLS and graph-
ical Gaussian model. Section 6.4 provides some examples of different graphs to get
insight of the effect of PLS model. In Section 6.5, we discuss the idea of a graphical
Gaussian model using PLS regression.

6.2 Graphical Gaussian models

Recall the general univariate regression model has an equation of the form

y = Xβ + ε, (6.1)

where y is the response variable, X is the predictors matrix, β is the coefficients vector
of length p, and ε is the error term normally distributed with mean 0 and constant
variance equals to one. X and y are centred to have no intercept in the model 6.1.

Graphical Gaussian models are based on the multivariate distribution. Whittaker
(2009) was the first who introduces continuous models and called them graphical Gaus-
sian models. Suppose that X = (x1, . . . , xp) is a p-dimensional random variable, with
a multivariate normal distribution with mean

µ =


0
0
...
0

 ,
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and covariance matrix

S =

σ11 . . . σ1p
... . . . ...
σp1 . . . σpp

 ,

The importance of the graphical Gaussian model comes from the inverse covari-
ance matrix, S−1, written as

S−1 =

σ
−1
11 . . . σ−11p
... . . . ...

σ−1p1 . . . σ−1pp

 .

This is sometimes called the precision matrix.
For p = 3, we say that X1 and X2 are independent given X3 if the σ−112 = 0 and
σ−113 6= 0 and σ−123 6= 0. In other words, X1 and X2 are conditionally independent given
X3. For more details about graphical Gaussian models see e.g. Edwards (2012).

We simulate the data from a multivariate normal distribution where the number of
samples (n) and the number of explanatory variables (p) are changed for each graph
as in Section 6.4. The regression vector β is set to have different values where the
covariance between X and the response variable y to be high around 0.7 and some of
them medium around 0.5 and low around 0.1. The response y is created according to
the general regression model in Equation (6.1). The mean vector for predictors is set
to be a vector of zero values. The inverse covariance matrix is generated where that
those variables are connected with each other, their σ−1ij 6= 0 for (i 6= j). Those are not
linked with each other, their σ−1ij = 0 for (i 6= j).

6.3 Connection between PLS latent variables and the
covariance matrix

From the second NIPALS algorithm 2, we have that w = XTy/yTy for component
m. It is important to look at the w1, . . . , wm as they span the same space of Krylov
sequence (Helland, 2001):

XTy, (XTX)XTy, . . . , (XTX)m−1XTy.
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In order to see the connection between Gaussian graphical model and PLS, we can find
there is a connection in terms of the covariance matrix of X and the covariance vector
between X and y. In graphical Gaussian modelling, we create the inverse covariance
matrix where σ−1ij = 0, for i 6= j, for those which are not connected between each
other. Since w1 is just the covariance vector between X and y (Sxy = 1

n−1X
Ty), the

first component will show those variables that are connected directly to y.
By looking at w, we can get some information regarding the covariances between

X and y. Moreover, if we need to find some information and relations within X

variables (predictors) only, it can be found in the multiplication of some of the latent
variables. We have from the PLS model building and NIPALS algorithm that:

X = TP T (6.2)

Multiplying X by its transpose, we will have:

XTX = PT TTP T , (6.3)

and if X is a column centred, we have that

XTX = (n− 1)Sxx. (6.4)

Since the left hand side of Equation (6.3) and (6.4) are the same, we can equate the
right hand sides i.e.

Sxx =
1

(n− 1)
PT TTP T . (6.5)

In order to identify the explanatory variables (X variables) that are connected or
affecting the response variable (y) directly, we may get them by looking at the sig-
nificant variables of the first component of X-weights, w1. Also, in order to identify
the connection between the explanatory variables to each other, it might be done by
looking at the combination of some latent variables. This can be seen in Equation
(6.5) PT TTP T where T is the matrix of the X-scores, and P is the matrix of the
X-loadings. The principle is that if there are two explanatory variables say x1 and x2
are dependent and x1 and y are dependent, x1 is expected to be significant in w1, and
x2 may appear in the second component (w2) indicating that x2 and y are independent
given that x1. That means, x2 is connected to y through x1. From W matrix of PLS,
we expect that identifying the covariates that are connected to y indirect by looking
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at the significant covariates in the second component w2. To gain some insight about
how PLS and graphical Gaussian model are related, some examples and graphs are
provided below with discussion.

6.4 Applying PLS models on different simulated graphs

6.4.1 First graph

Let the regression model can be written as

y = Xβ + ε, (6.6)

where y is the response variable with size n × 1, n is the sample size which can take
three different values as 100, 1000 and 10000. The coefficient β is of length p = 8,
and ε is the error term normally distributed with mean 0 and constant variance equals
to one. X matrix of size n × p is generated from a multivariate normal distribution
with mean zero, and an inverse covariance matrix as

S−1 =

σ
−1
11 . . . σ−11p
... . . . ...

σ−1p1 . . . σ−1pp

 ,

where σ−1ij = 0 for those are not connected with each other, and σ−1ij = −0.1 for i 6= j

as in the first graph 6.1.
In this graph, we simulate 100 data sets based on the covariance matrix as in the

first graph Figure 6.1. The coefficients vector β is set where x1 is connected directly
to y with a large value of β1 equals to 0.7, x2 and x3 are connected directly to y with
a medium value for β2 and β3 equal 0.5 while x4 is connected to y directly with a low
value for β4 equals to 0.1. For the other variables x5, x6, x7 and x8 have β values equal
to zero.
We set the connection between the covariates and the response variable as above in
order to check if the results of the PLS methods still can identify the variables that are
connected to the response variable or not.
We use the general regression model Equation (6.6) to generate y.
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y

x1

x2

x3

x4

x5

x6

x7

x8

Figure 6.1: The first graph where for the nodes that have an edge, the σ−1xixj = −0.1 for
i 6= j, and for the nodes that do not an edge, the σ−1xixj = 0. For i = j, σ−1xixi = 1. The
coefficients are set as β1 = 0.7, β2 = 0.5, β3 = 0.5, β4 = 0.1, βj = 0, for j = 5, 6, 7, 8.

Figure 6.2 shows the box plot of 100 simulated data sets of β̂ using the standard
PLS1 model as described in Chapter 2 for the generated data using the first graph
Figure 6.1.
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Figure 6.2: Box plot of 100 simulated data sets of β̂ using PLS1 model with different
number of samples n = 100 (top panel) n = 1000 (middle panel) n = 10000 (bottom
panel) where (p = 8) for first graph. The red horizontal line is to identify significant
variables that are above the red line and non-significant if they are below the red line.
The number of components used in the PLS1 model for this graph graph is 2.

It can be seen from top panel of Figure 6.2 the first four variables from x1 to x4 are
above the red line. This means they are not equal to zero which indicates that these
variables are associated to the response variable (outcome) (y) as we anticipated where
the number of samples (n = 100). Although the correlation between x4 and the y is
very low and close to the correlation between x5 and y, we still can see that x4 is not
exactly equal to zero because it is connected directly to y. The rest variables from x5

to x8 are not significant since they are not connected to y in the constructed first graph
Figure 6.1. In the middle panel of Figure 6.2 where the number of samples is 1000,
we can see the first four variables from x1 to x4 are clearly, over 100 simulations,
their estimations of β̂ are not equal to zero. The estimation of β̂ for variables from
x5 to x8 are equal to zero because they are not connected to y directly. In the bottom
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6.4 Applying PLS models on different simulated graphs

panel of Figure 6.2, it can be seen when the number of samples increased to 10000,
the estimation of β̂ for covariates from x1 to x4 are clearly not equal to zero over all
100 simulated data sets. The estimation of β̂ for the covariates from x5 to x8 are set
to be equal zero which indicates that they are not associated with y. Indeed, it can be
seen from Figure 6.2 the estimation of β̂ using PLS method can help to identify the
covariates that are directly connected to the response variable (y) and as we increase
the number of samples, the estimation of β̂ for the covariates that are connected to y
are not equal to zero.

Figure 6.3 shows the box plot of 100 simulated data sets of w1 using the standard
PLS1 model as described in Chapter 2 for the generated data using the first graph
Figure 6.1.

●●

●

●

●

●

●

1 2 3 4 5 6 7 8

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

n=100

variables

w
1

●

●●

●

●● ●

●●●

1 2 3 4 5 6 7 8

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

n=1000

variables

w
1

●

●●
●
●●●
●●

●●
●●

1 2 3 4 5 6 7 8

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

n=10000

variables

w
1

Figure 6.3: Box plot of 100 simulated data sets of the first component w1 using PLS1
model with different number of samples n = 100 (top panel) n = 1000 (middle panel)
n = 10000 (bottom panel) where (p = 8) for first graph. The red horizontal line is to
identify significant variables that are above the red line and non-significant if they are
below the red line.

200



6.4 Applying PLS models on different simulated graphs

It can be seen from the top panel of Figure 6.3 the X-weights for the first com-
ponent (w1) when the number of samples is 100 overall 100 simulated datasets. In
this component we can see that the first three variables (x1, x2 and x3) are not equal
to zero. The median of 100 simulated data sets for the estimation of w1 of the x4 is
above the red line but some simulated data sets have the estimation of w1 equal to zero
because the covariance between x4 and y is very small. The estimation of w1 of the
covariates from x5 to x8 is equal to zero because they are not connected to y directly
as we anticipated. We expect the estimation of w1 for x4 may not be equal to zero, but
that does not hold because the covariance between x4 and y is very small. Looking at
the middle panel of Figure 6.3, we can see the estimation of w1 for the covariates from
x1 to x4 is not equal to zero when the number of samples is increased to be 1000. The
estimation of w1 for the covariates from x5 to x8 is close to zero (red horizontal line)
which indicates that they are not equal to zero. In the bottom panel of Figure 6.3, we
can see the estimation of w1 for the first four variables from x1 to x4 is not equal to
zero when the number of samples is 10000. The estimation of w1 for the covariates
from x5 to x8 is less than 0.1 because these covariates are not connected directly to y.
It can be seen from Figure 6.3 as the number of samples increased the estimation of
100 simulated data sets for x4 becomes more clear to be not equal to zero in the first
component. This means that the first component has x1, x2, x3 and x4 not to be equal
zero since they are connected to y directly as can be seen in the first graph 6.1.

Figure 6.4 shows the box plot of 100 simulated data sets of w2 using the standard
PLS1 model as described in Chapter 2 for the generated data using the first graph
Figure 6.1.
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Figure 6.4: Box plot of 100 simulated data sets of the second component w2 using
PLS1 model with different number of samples n = 100 (top panel) n = 1000 (middle
panel) n = 10000 (bottom panel) where (p = 8) for first graph. The red horizontal line
is to identify significant variables that are above the red line and non-significant if they
are below the red line.

It can be seen from the top panel of Figure 6.4 theX-weights for the second compo-
nent (w2) when the number of samples is 100. The estimation of w2 for the covariates
from x5 to x8 for some simulated data sets is not equal to zero in absolute values, but
for the other simulated data sets they are equal to zero. Looking at the middle panel of
Figure 6.4, we can see that when the number of samples is increased to be 10000, the
estimation of w2 for covariates from x5 to x8 are not equal to zero as we anticipated
since they are connected to y through x1. The bottom panel of Figure 6.4 illustrates
that as the number of samples to be 10000, we can see that the estimation of w2 for
covariates from x5 to x8 are not equal to zero over all 100 simulated data sets. In short,
we could conclude that as the number of samples increased, the estimation of w2 for
the covariates that are connected to y indirectly or conditionally independent to y are
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not equal zero. We are anticipating this to be achieved from combining the graphi-
cal modelling with w2 which is the second component of W from the latent variables
constructed from using the standard PLS regression method.

6.4.2 Second graph

In this graph, we use the same simulation settings as in Section 6.4.1 to generate y
and ε. For X matrix of predictors, we simulate it from multivariate normal distribution
with mean 0 and inverse covariance matrix as in Section 6.4.1. However, we use the
second graph as shown in Figure 6.5 to construct the inverse-covariance matrix where
p = 20.
The coefficients vector β is set where x1 is connected to y with a high value of β1 equals
to 0.7, x2 and x3 are connected to y with medium values for β2 and β3 respectively with
values equal to 0.5. x4 is connected to y directly with a low value equals to 0.1 for β4.
For the variables that are not connected with y directly as in the second graph Figure
6.5, β is set to be zero.
Any two nodes that have an edge as in the second graph Figure 6.5, their inverse
covariance values have σ−1ij = −0.1 for i 6= j. For any two nodes that do not have
an edge, they have σ−1ij = 0 for i 6= j. We simulate 100 data sets based on the graph
below as shown in Figure 6.5.
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Figure 6.5: The first graph where for the nodes that have an edge, the σ−1xixj = −0.1

for i 6= j, and for the nodes that do not an edge, the σ−1xixj = 0. For i = j, σ−1xixi = 1.
The coefficients are set as β1 = 0.7, β2 = 0.5, β3 = 0.5, β4 = 0.1, βj = 0, for
j = 5, 6, . . . , 20.

Figure 6.6 shows the box plot of 100 simulated data sets of β̂ using the standard
PLS1 model as described in Chapter 2 for the generated data using the second graph
Figure 6.5.
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Figure 6.6: Box plot of 100 simulated data sets of β̂ using PLS1 model with different
number of samples n = 100 (top panel) n = 1000 (middle panel) n = 10000 (bottom
panel) where (p = 20) for the second graph. The red horizontal line is to identify
significant variables that are above the red line and not significant if they are below the
red line.The number of components used in the PLS1 model is 5.

It can be seen from the top panel of Figure 6.6 using n = 100 that the estimation
of β̂ for the covariates x1, x2, x3 and x4 is not equal to zero which indicates that
those variables are associated with the response variable. The estimation of β̂ for the
covariates from x5 to x20 is equal to zero since they are on the red horizontal line.
This indicates that they have no association with the outcome directly. In the middle
panel of Figure 6.6 we can see that by increasing the number of samples to be 1000,
the estimation of β̂ for the covariates that are connected to the outcome directly more
clearer than with n = 100. It can be seen from the bottom panel of Figure 6.6 the
estimation of β̂ where the first four covariates (x1, x2, x3 and x4) are not equal to zero
whereas for the covariates from x5 to x20 are equal to zero. The estimation of β̂ for
the covariates that are not equal to zero indicates that they have an association with the
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outcome directly as seen in the second graph 6.5. As the number of samples increased
the estimation of β̂ for the covariates that is associated with the outcome (y) become
more clearer as it can be seen from the estimation plot of β̂ in Figure 6.6.

Figure 6.7 shows the box plot of 100 simulated data sets of w1 using the standard
PLS1 model as described in Chapter 2 using the generated data using the second graph
Figure 6.5.
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Figure 6.7: Box plot of 100 simulated data sets of the first component w1 using PLS1
model with different number of samples n = 100 (top panel) n = 1000 (middle panel)
n = 10000 (bottom panel) where (p = 20) for the second graph. The red horizontal
line is to identify significant variables that are above the red line and not significant if
they are below the red line.

It can be seen from the top panel of Figure 6.7 the estimation of w1 for the covari-
ates x1, x2, x3 are not equal to zero when the number of samples is 100. This means
they are associated with y as anticipated from the second graph 6.5. However, the
estimation of w1 for x4 in some of the 100 simulated data sets are equal to zero. We
would expect that the estimation of the first four covariates from x1 to x4 is not equal to
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zero. This indicates the from the estimation of w1 (the first component of w), only the
covariates that are related to y directly to have their estimation not equal to zero. The
estimation of the covariates from x5 to x20 is not equal to zero. In the middle panel of
Figure 6.7 we can see that by increasing the number of samples to be 1000, x4 becomes
significant for all simulated 100 data sets. Looking at the bottom panel of Figure 6.7,
it can be seen the estimation of w1 when the number samples is increased, x1, x2, x3
and x4 are directly connected to y as constructed in the second graph. Furthermore,
x5, x6 and x7 have values of the 100 simulated data sets less than 0.1 and close to zero.
These covariates are being identified in the first component which we did not expect
that though their estimations of w1 are close to zero. We think the reason is that these
covariates are connected to other x covariates which have large covariances with the
outcome (y). In short, we can still get some insights from interpreting the estimation
of w1 which may be used to identify the covariates that are connected directly to y.

Figure 6.8 shows the box plot of 100 simulated data sets of w2 using the standard
PLS1 model as described in Chapter 2 for the generated data using the second graph
Figure 6.5.
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Figure 6.8: Box plot of 100 simulated data sets of the second component w2 using
PLS1 model with different number of samples n = 100 (top panel) n = 1000 (middle
panel) n = 10000 (bottom panel) where (p = 20) for the second graph. The red
horizontal line is to identify significant variables that are above the red line and not
significant if they are below the red line.

It can be seen from the top panel of Figure 6.8 that it is difficult to identify which
covariates that have the estimation of w2 not equal zero easily because the number of
samples is 100. In the middle panel of Figure 6.8 where the number of samples is
1000, we can see the median of the estimation of w2 for the covariates x5, x6 and x7
is below the red line which we anticipate to see in the second component w2. This
means that the second component w2 may identify the covariates that are connected to
the response through another covariate as constructed in the second graph Figure 6.5.
The median of the estimation of x8, x9 and x10 is below the red line, but there are some
of the simulated data sets above the red line. Therefore, it is difficult to tell which
of these covariates may are connected to y within two steps. In the bottom panel of
Figure 6.8, it can be seen that we the number of samples is increased it becomes more
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clear for all simulated data sets of the estimation of w2 for x5, x6, x7 are not equal to
zero as we constructed in the second graph Figure 6.5. Indeed, our hypothesis is that
the covariates x5, x6, x7 and x8 are located in what called second layer which means
they are linked to y indirectly. We expect that the second component w2 can be able to
identify their signals.

Figure 6.9 shows the box plot of 100 simulated data sets of w3 using the standard
PLS1 model as described in Chapter 2 for the generated data from the second graph
Figure 6.5.
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Figure 6.9: Box plot of 100 simulated data sets of the third component w3 using PLS1
model with different number of samples n = 100 (top panel) n = 1000 (middle panel)
n = 10000 (bottom panel) where (p = 20) for the second graph. The red horizontal
line is to identify significant variables that are above the red line and not significant if
they are below the red line.

It can be illustrated from the top panel of Figure 6.9 that the median of the esti-
mation of w3 for all covariates are close to zero which indicates it is difficult to have
some insights with small number of sample with 100. Looking at the middle panel of
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Figure 6.9, we can see the median of 100 simulated data sets of the estimation of w3 is
not equal to zero for covariates x9, x10 and x11 when the number of samples is 1000.
This indicates that w3 might be able to identify the covariates that are connected in
three steps to y (third layer). In other words, connected to y through other covariates
as constructed in the second graph 6.5. It can be seen very clearly from the bottom
panel of Figure 6.9 as the number of samples is increased, the estimation of w3 for
covariates x9, x10, x11 are not equal to zero for most of the 100 simulations. x12 is not
very clear that it can be considered as in the third layer because it is connected to y
through x4 and x8. But x4 has a very small covariance with y (β4 = 0.1).

Figure 6.10 shows the box plot of 100 simulated data sets of w4 using the standard
PLS1 model as described in Chapter 2 for the generated data from the second graph
Figure 6.5.
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Figure 6.10: Box plot of 100 simulated data sets of the 4-th component w4 using PLS1
model with different number of samples n = 100 (top panel) n = 1000 (middle panel)
n = 10000 (bottom panel) where (p = 20) for the second graph. The red horizontal
line is to identify significant variables that are above the red line and not significant if
they are below the red line.

It can be seen from the top panel of Figure 6.10 when the number of samples is
100 and when the number of components is increased, it is very difficult to get some
insights from the estimation ofw4. In the middle panel of Figure 6.10 when the number
of samples is increased to be 1000, the estimation of w4 for all covariates is close to
zero. In the bottom panel of Figure 6.10 when the number of samples is increased
to be 10000, we can see that the median of 100 simulated data sets for x13, x14 and
x15 is not equal to zero. This indicates that w4 may have some information about the
covariates that are connected to y in four steps (fourth layer). The covariates from x17

to x20 have a very small value of the median. In short, as the number of components is
increased, the signals of the covariates become weak. Thus, it may be difficult to see
the covariates that have signals in w4.
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Figure 6.11 shows the box plot of 100 simulated data sets of w5 using the standard
PLS1 model as described in Chapter 2 for the generated data from the second graph
Figure 6.5.
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Figure 6.11: Box plot of 100 simulated data sets of the 5-th component w5 using PLS1
model with different number of samples n = 100 (top panel) n = 1000 (middle panel)
n = 10000 (bottom panel) where (p = 20) for the second graph. The red horizontal
line is to identify significant variables that are above the red line and not significant if
they are below the red line.

It can be seen that from the top panel of Figure 6.11 when the number of samples
in 100, the estimation of w5 for all covariates is close to zero. In the middle panel
of Figure 6.11 when the number of samples is 1000, the estimation of w5 also close
to zero for all covariates. From the bottom panel of Figure 6.11 we can see that by
increasing the number of samples to be 10000, the estimation of x17 is not equal to
zero for all 100 simulations. The median of the estimation of w5 for x18, x19 and x20 is
not equal to zero. This may indicate that w5 can show the covariates that have signals
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and connected to y in five steps (fifth layer) as constructed in the second graph Figure
6.5.

6.5 Discussion

In this chapter, we have investigated the graphical Gaussian modelling using PLS
where we focus more on the latent variables specifically the X-weights matrix Wm. It
was hoped that the information in w would correspond to that of the graphical model.
Unfortunately, for large number of components (m), wm failed to detect which co-
variates that lay in the m layer and they are connected to y indirectly through other
covariates. However, it could be seen from the simulated graphs results that w1 in the
first component for sure will show the explanatory variables that strongly correlated or
directly connected to y while in the second component w2 would have covariates that
are less connected to y. To interpret wm, we might see that as the number of compo-
nents is increased, there is no more strong relationship between the covariates and the
response variable y. We anticipate that the estimation of wm may have the covariates
that have signals in each component m as constructed in the graph. Finally, as the
number of components is increased, small sample size, and for complicated graphs, it
is very difficult to interpret wm in each component as we anticipated.
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Chapter 7

Conclusion and Future Work

7.1 Overview

In this short chapter we provide a summary of the work done in this thesis in Section
7.2 and discuss some open problems in Section 7.3.

7.2 Summary of work done

Recall that the objective of our thesis is to deal with high-dimensional and highly-
correlated data by various applications of the PLS method.

In Chapter 2 we provided an overview of the standard partial least squares regres-
sion for univariate response variable (PLS1) and for multivariate response variables
(PLS2) with an investigation of three apparently different versions of the NIPALS al-
gorithm for PLS2. We provided a proof of the equivalent of the estimation parameter
βpls2 of using any of the three different versions of the NIPALS algorithms for PLS2
when the regression between X-scores and Y -scores (α) is included in the calculation
of βpls2. Using the NIR data with univariate and multivariate response variables, the
standard PLS1 was applied as in Chapter 2. Although PLS was not designed for clas-
sification problems, we applied the standard PLS1 using CNA data where the response
variable is binary.

In Chapter 3 we reviewed the shrinkage factors of the estimation of β̂ for three
common shrinkage methods in the literature which are RR, PCR and PLS when n > p.
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7.2 Summary of work done

We modified the idea of the estimation of β̂ of these methods in the high-dimension
case where p > n using the reduced rank of the singular value decomposition. Since
the OLS solution is not applicable in the high-dimension case, we replace the shrink-
age factors term by filter factors. Moreover, we investigated the filter factors of the
estimator of the three methods using NIR and CNA data sets. From the results of the
filter factors, we observed that some of the filter factors values are negative with few
references which have explored this more in detail.

In Chapter 4 we investigated more deeply the negative filter factors (NFF) using
simulations. We provided conditions to show when the NFF occurs in each compo-
nent (m) based on the relationship between the eigenvalues of two matrices (XTX and
W T
mX

TXWm), where Wm is the X-weights matrix with m components. We found
that when the covariance between X and y is small, we may have more chances to
have NFF. Further, for data that has independent variables, there is no chance to have
NFF. We investigated more by simulating a small example to control the coefficients
and explore the β values that are not likely to result in NFF and a more discussion
is provided in Chapter 4. Looking at the results for the standard PLS1 on NIR and
CNA data sets, we noted two problems: first, the length of the estimation of β̂ which
may results in a poor prediction if the irrelevant variables are included in the predic-
tion model. Second, the dependencies between wavelengths in NIR data and genomic
regions in CNA data.

To tackle these two problems, in Chapter 5 we proposed two methods of sparse
smoothed partial least squares (SSPLS) (based on two different of the NIPALS algo-
rithms) to achieve variable selection and smoothness. We achieve the sparseness by
assuming the direction vectors w as random effects that follow a Laplace distribution,
and to achieve smoothness we assume the second differences of adjacent values of
w to follow a Cauchy distribution. We combined both distributions to solve the two
problems simultaneously using a mixture of penalties derived from the two distribu-
tions, which are Laplace and Cauchy. Moreover, to estimate the tuning parameters, we
considered two approaches which are based on the local model maximising the log-
likelihood and a global model which minimises the regression model when β of PLS
is used.

In Chapter 6 we explored a new view of interpreting the direction vectors w in each
component by combining graphical Gaussian model and PLS. It was a hope that the
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7.3 Future work

information in w would correspond to that of the graphical model. In other words,
we were trying to find the covariates that are correlated to each other before they are
affecting the response variable. Unfortunately, we found that this idea is not valid and
it may need more consideration in the future.

7.3 Future work

In this thesis we consider two types of response variable which are real-valued as in
NIR data and binary as in CNA data. We mainly consider only a univariate response
in the analysis except Chapter 2. We can extend the use of SSPLS method to deal
with multivariate response variables by considering the response variable y which is
a matrix of size n × q where q is the number of response variables. SSPLS is one of
the most interested methods to deal with multivariate response variables since PLS2 is
designed for that.

In some biological data sets we can include clinical information about patients such
as age at surgery, sex, stage of disease, and grade of cancer by adding them in a matrix
as fixed covariates. Inclusion of these variables would be straightforward, but they
would be subject to different penalties (for example, no smoothness) to the genomic
data. In this thesis we consider only the genomic regions (CNA profiles) as random
effects in the original model.

In epidemiological research, the response variable (outcome) can be a non-normal
distribution such as time to event data (survival data) or the Poisson distribution. For
instance, it is important to extract the relevant information in the genomic regions in the
CNA data (ultra-high dimensional data) in the prediction of cancer patients survival.

In order to deal with survival data, it could be interesting to adapt the idea of as-
suming the direction vectors w as random effects as in Lee et al. (2013) but we use our
sparse smoothed penalty which is a mixture of two distributions (Laplace for sparse-
ness and Cauchy for smoothness). The only part will change from this thesis is the
way that w is calculated in the iterative reweighed partial least squares algorithm for
Cox regression instead of the first step in both NIPALS algorithms (1 and 2) provided
in this thesis earlier.

216



Appendix A

Additional of NIPALS Algorithms for
PCA and PLS2

The NIPALS algorithm for PCA

This algorithm is given in (Geladi & Kowalski, 1986). Say X is an (n × p) data ma-
trix, X is mean centred. The X-loading vectors, pm form an orthonormal set, and the
X-score vectors, tm are orthogonal to each other.
t will be the scores vector for X
p will be the loadings vector for X
Initialisation: Set X1 = X , t1 is the first column of X , and m=1, where m =

1, 2, . . . ,M and M ≤ min(n− 1, p).

Algorithm 4 The NIPALS algorithm for PCA
1: Take tm vector is set to a column in X , tm = X1

2: pm = (XT tm)/(tTmtm)

3: pm = pm/
√
pTmpm (normalisation)

4: tm = Xmpm

5: Check for convergence by comparing between tm used in step 2 with the one
obtained in step 4. If they are the same, stop iterations and got to step 6, otherwise,
go to step 2.

6: Update Xm = Xm − (tmp
T )
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After the first component is calculated, X in steps 2 and 4 has to be replaced by its
residual, Xm = Xm−1 − (tm−1p

T
m−1).

The NIPALS algorithm for PLS2

There are three versions of the NIPALS algorithm for PLS2 where they differ from
each other based on the normalisation step for the loadings of X (P ) and Y (Q)

The first version of the NIPALS algorithm for PLS2

This algorithm (5) is given in (Wold et al., 1984). In this algorithmX-loadings (P ) and
Y -loadings (Q) are not normalised. The inner relation, α, is equal to one. It is called
the simple NIPALS algorithm. Also, the X-weight vectors, wm form an orthonormal
set, and the X-score vectors, tm are orthogonal to each other.

X is an (n × p) data matrix, Y is an (n × q) matrix of response variables, X and
Y are mean centred.
tm will be the scores vector for X
pm will be the loadings vector for X
wm will be the weights vector for X
um will be the scores vector for Y
qm will be the loadings vector for Y
αm will be the inner relation, which is a regression of um on tm with no intercept.
Initialisation: Set X1 = X , Y1 = Y , and m=1, where m = 1, 2, . . . ,M and M ≤
min(n− 1, p).
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Algorithm 5 The first version of the NIPALS algorithm for PLS2
1: Take u vector is set to a column in Y , um = Y1

2: wm = XT
mu

T
m/
√
uTmum

3: wm = wm/
√
wTmwm (normalisation)

4: tm = Xmwm

5: qm = Y T
m tm/(t

T
mtm)

6: um = Ymqm/(q
T
mqm)

7: Check for convergence by comparing between current tm with the previous tm. If
they are the same, stop iterations, then got to step 8, otherwise go to step 2.

8: pm = XT
mtm/(t

T
mtm)

9: The inner relation: αm = uTmtm/(t
T
mtm)

10: Save: X-loadings: pm, X-weights: wm, X-scores: tm, Y-loadings: qm, Y-scores:
um, The inner relation: αm

11: Update: Xm = Xm−1 − (tm−1p
T
m−1)

12: Update: Ym = Ym−1 − (αm−1tm−1q
T
m−1)

The regression parameters: β̂pls = W (P TW )−1AQT .
After first component is calculated, X in steps 2, 4, and 8 has to be replaced by its
residual. Also, Y in steps 5 and 6 has to be replaced by its residual, ε0 = X , F0 = Y .

The second version of the NIPALS algorithm for PLS2

This algorithm (6) is given (Höskuldsson, 1988). In this algorithm Y -loadings, Q is
normalised, but X-loadings, P is not. The inner relation, α, is not equal to one. Also,
the X-weight vectors, wm form an orthonormal set, and the X-score vectors, tm are
orthogonal to each other.

X is an (n × p) data matrix, Y is an (n × q) matrix of response variables, X and
Y are mean centred.
tm will be the scores vector for X
pm will be the loadings vector for X
wm will be the weights vector for X
um will be the scores vector for Y
qm will be the loadings vector for Y
αm will be the inner relation, which is a regression of um on tm with no intercept.
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Initialisation: Set X1 = X , Y1 = Y , and m=1, where m = 1, 2, . . . ,M and M ≤
min(n− 1, p).

Algorithm 6 The second version of the NIPALS algorithm for PLS2
1: Take um vector is set to a column in Y , um = Y1

2: wm = XT
mum/(u

T
mum)

3: wm = wm/
√
wTmwm (normalisation)

4: tm = Xmwm

5: qm = Y T
m tm/(t

T
mtm)

6: qm = qm/
√
qTmqm (normalisation)

7: um = Ymqm

8: Check for convergence by comparing between current tm with the previous tm. If
they are the same, stop iterations, then got to step 9, otherwise go to step 2.

9: pm = XT
mtm/(t

T
mtm)

10: The inner relation: αm = uTmtm/(t
T
mtm)

11: Save: X-loadings: pm, X-weights: wm, X-scores: tm, Y-loadings: qm, Y-scores:
um, The inner relation: αm

12: Update: Xm = Xm−1 − (tm−1p
T
m−1)

13: Update: Ym = Ym−1 − (αm−1tm−1q
T
m−1)

The regression parameters: β̂pls = W (P TW )−1AQT .
After first component is calculated, X in steps 2, 4, and 9 has to be replaced by its
residual. Also, Y in steps 5 and 7 has to be replaced by its residual, ε0 = X , F0 = Y

The third version of the NIPALS algorithm for PLS2

This algorithm (7) is given in (Geladi & Kowalski, 1986). In this algorithmX-loadings,
P and Y -loadings, Q are normalised. The inner relation, αm, is not equal to one. Also,
the X-weight vectors, wm are not form an orthonormal set, but they are orthogonal,
and the X-score vectors, tm are orthogonal to each other.

X is an (n × p) data matrix, Y is an (n × q) matrix of response variables, X and
Y are mean centred.
tm will be the scores vector for X
pm will be the loadings vector for X
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wm will be the weights vector for X
um will be the scores vector for Y
qm will be the loadings vector for Y
αm will be the inner relation, which is a regression of um on tm with no intercept.
Initialisation: Set X1 = X , Y1 = Y , and m=1, where m = 1, 2, . . . ,M and M ≤
min(n− 1, p).

Algorithm 7 The third version of the NIPALS algorithm for PLS2
1: Take um vector is set to a column in Y , um = Y1

2: wm = XT
mum/(u

T
mum)

3: wm = wm/
√
wTmwm (normalisation)

4: tm = Xmwm

5: qm = Y T
m tm/(t

T
mtm)

6: qm = qm/
√
qTmqm (normalisation)

7: um = Ymqm

8: Check for convergence by comparing between current tm with the previous tm. If
they are the same, stop iterations, then got to step 9, otherwise go to step 2.

9: pm = XT
mtm/(t

T
mtm)

10: pm = pm/
√
pTmpm (normalisation)

11: tm = tm(
√
pTmpm)

12: wm = wm(
√
pTmpm)

13: The inner relation: αm = uTmtm/(t
T
mtm)

14: Save: X-loadings: pm, X-weights: wm, X-scores: tm, Y-loadings: qm, Y-scores:
um, The inner relation: αm

15: Update: Xm = Xm−1 − (tm−1p
T
m−1)

16: Update: Ym = Ym−1 − (αm−1tm−1q
T
m−1)

The regression parameters: β̂pls = W (P TW )−1AQT .
After first component is calculated, X in steps 2, 4, and 9 has to be replaced by its
residual. Also, Y in steps 5 and 7 has to be replaced by its residual, ε0 = X , F0 = Y
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Appendix B

Theoretical proof of parameters
estimation for all three versions of the
NIPALS algorithm for PLS2

In the first version of the second NIPALS algorithm where X-loadings (P ) and Y -
loadings (Q) are not normalised as given in S. Wold (1984). In the second version of
the second NIPALS algorithm algorithm where X-loadings (P ) are normalised, but
Y -loadings (Q) are not as given in Hoskuldsson (1988). In the third version of the
second NIPALS algorithm where X-loadings (P ) and Y -loadings (Q) are normalised
as given in Geladi and Kowalski (1986).

β̂
(1)
pls2 = W (1)(P (1)TW (1))−1A(1)Q(1)T ,

β̂
(2)
pls2 = W (2)(P (2)TW (2))−1A(2)Q(2)T .

From the above NIPALS algorithms, we can see that W (1) = W (2), which means
that the W matrix in the first and the second algorithms are the same. Also, P (1)T =

P (2)T , which means that the P matrix in the first and the second algorithms are the
same. However, A(1) 6= A(2), which means that the A matrix in the first and the second
algorithms are not the same. And, Q(1) 6= Q(2), which means that the Q matrix in the
first and the second algorithms are not the same. Thus, we need to show that Equation
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(B.1) is true for the first component, then we can prove that β̂(1)
pls2 = β̂

(2)
pls2.

α(1)q(1)
T

= α(2)q(2)
T

. (B.1)

From the second algorithm step 6, we can write

q(2)
T

=
q(1)

T√
q(1)1q(1)

. (B.2)

By combining Equation (B.1) and Equation (B.2), we have

α(2) = α(1)

√
q(1)T q(1).

Also, using the values of a(2) and q(2)T , we have

α(2)q(2)
T

= α(1)

√
q(1)T q(1)

q(1)
T√

q(1)T q(1)
.

Some terms will be canceled out. Therefore, we will have that:

α(2)q(2)
T

= α(1)q(1)
T

. (B.3)

Nevertheless, β̂(1)
pls2 = β̂

(2)
pls2 since α(1)q(1)

T
= α(2)q(2)T as shown in Equation (B.3) for

one component, and for m components.

β̂
(2)
pls2 = W (2)(P (2)TW (2))−1A(2)Q(2)T ,

β̂
(3)
pls2 = W (3)(P (3)TW (3))−1A(3)Q(3)T .

From the above NIPALS algorithms, we can see that W (2) 6= W (3), which means
that the W matrix in the second and the third algorithms are not the same. Also,
P (2)T 6= P (3)T , which means that the P matrix in the second and the third algorithms
are the not same. However, A(2) 6= A(3), which means that the A matrix in the second
and the third algorithm are not the same. And, Q(2) = Q(3), which means that the Q
matrix in the second and the third algorithm are the same. Thus, if we can show that
w(2)(p(2)

T
w(2))−1α(2) = w(3)(p(3)

T
w(3))−1α(3) for one component, we can prove that

β̂
(2)
pls2 = β̂

(3)
pls2.
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To show that w(2)(p(2)
T
w(2))−1α(2) = w(3)(p(3)

T
w(3))−1α(3), we need to write w(3)

in terms of w(2), and the same for p(3) and α(3) for one component.

w(2) =
XTu(2)√

(XTu(2))T (XTu(2))
.

Since u(3) = u(2), we can write w(3) as

w(3) = XTu2

√
pT2 p2.

We can write that w(3) as an equation of w(2) as in Equation (B.4)

w(3) = w(2)
√

(XTu(2))T (XTu(2))

√
p(2)T p(2). (B.4)

Also, we can write p(3) as an equation of p(2) as in Equation (B.5)

p(3)
T

=
p(2)

T√
p(2)T p(2)

. (B.5)

Also, we can write t(3) as an equation of t(2) in order to calculate α(3) as in Equation
(B.6)

t(3) = t(2)
√
p(2)T p(2). (B.6)

Then, α(3) can be written as an equation of α(2) as in Equation (B.7)

α(3) =
α(2)√
p(2)T p(2)

. (B.7)

By combining the equations (B.4), (B.5), and (B.7) and after some calculations, we
have:

w(3)(p(3)
T

w(3))−1α(3) = w(2)
√

(XTu(2))T (XTu(2))

√
p(2)T p(2)(

p(2)
T√

p(2)T p(2)
w(2)

√
(XTu(2))T (XTu(2))

√
p(2)T p(2)

)−1
α(2)√
p(2)T p(2)

. (B.8)

Some terms will be canceled out. Therefore, we will have that:

w(3)(p(3)
T

w(3))−1α(3) = w(2)(p(2)
T

w(2))−1α(2). (B.9)

Nonetheless, β̂(2)
pls2 = β̂

(3)
pls2 since w(2)(p(2)

T
w(2))−1α(2) = w(3)(p(3)

T
w(3))−1α(3) as

shown in Equation (B.9) for one component and for m components.
Since β̂(1)

pls2 = β̂
(2)
pls2 and β̂(2)

pls2 = β̂
(3)
pls2, then β̂(1)

pls2 = β̂
(2)
pls2 = β̂

(3)
pls2. Therefore, all β̂pls2

for all three versions of the NIPALS algorithm for multivariate responses (for PLS2)
are the same even if they are different in terms of normalisations or not.
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LÊ CAO, K.A., ROSSOUW, D., ROBERT-GRANIÉ, C. & BESSE, P. (2008). A sparse
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NYGÅRD, S., BORGAN, Ø., LINGJÆRDE, O.C. & STØRVOLD, H.L. (2008). Partial
least squares cox regression for genome-wide data. Lifetime Data Analysis, 14, 179–
195. 137

OLSHEN, A.B., VENKATRAMAN, E., LUCITO, R. & WIGLER, M. (2004). Circular
binary segmentation for the analysis of array-based dna copy number data. Biostatis-

tics, 5, 557–572. 9

PAWITAN, Y. (2001). In all Likelihood: Statistical Modelling and Inference using Like-

lihood. Oxford University Press. 127, 128
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