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Abstract

The notion of finiteness in the absence of AC has been widely studied. We consider a
minimal criterion for which any class of cardinalities that satisfies it can be considered as a
finiteness class. Fourteen notions of finiteness will be presented and studied in this thesis.
We show how these classes relate to each other, and discuss their closure properties. Some
results can be proved in ZF. Others are consistency results that can be shown by using
the Fraenkel-Mostowski-model construction. Furthermore we investigate the relationship
between Dedekind-finite sets and definability, and try to carry out reconstruction to recover
the original structures used to construct FM-models. Later we establish a connection
between tree structures and sets with their cardinalities in one of the finiteness classes,

written as As.
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Chapter 1

Introduction

The notion of finiteness without the Axiom of Choice (AC) has been widely studied in
[Tar24], [Mos39], [Lév58], [Tru74], [Deg94], and [Gol97]. In those papers, various
notions of finiteness were introduced. With AC, they all coincide, the notion of finiteness
is unique and turns to be just the set w, the set of all natural numbers, i.e. a set is finite if
and only if it has a bijection with a natural number. But this is not necessarily true without
AC. There could be infinite sets which in some respects behave like finite sets. All basic

notations and required backgrounds are provided in Chapter 2.

In Chapter 3, we discuss the relations between notions of finiteness. First we introduce
the notions of infinity which were mentioned in [Deg94], but since this thesis focusses on
finiteness, we work with the dual notion, a notion of finiteness, which is also mentioned
in [Her11]. We say a class of cardinals I is a finiteness class if o C ', Rg ¢ ', and I is
closed under <. We can see that these conditions are very fundamental and it is natural to

take them as minimal criteria for a notion of finiteness.

There are many classes of finiteness that satisfy the above conditions. For instance, the
class of all weakly Dedekind-finite cardinals, denoted by A4 (as from [Tru74]), which is

the class of cardinalities of sets with no countably infinite partitions, the class of Dedekind-
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finite cardinals, denoted by A, which is the class of cardinalities of sets with no countably
infinite subsets, and the set w itself is also a finiteness class. It turns out that w and A are

the boundaries of this notion, i.e. every finiteness class lies between w and A.

We gather together 14 notions of finiteness discussed in this thesis, which were mostly
introduced in the references given above, and study their properties and show how they
are related. We also mention notions from [Lév58] and [Deg94] which we argue should
really not be allowed, on the grounds that any notion of finiteness should not include Ry,
and should be closed downwards. For instance one of Lévy’s notions counts x as ‘finite’
provided that x < x2, but by the use of some standard cardinal arithmetic in the absence

of AC there is some x > R satisfying this, so this property cannot be closed downwards.

Some notions that we study in Chapter 3, for instance, the notions of Russell-finite, weakly
Dedekind’-finite, and dual Dedekind’-finite also turn out to be notions of finiteness. We
study their closure properties under various operations, e.g. closure under +, X, and
examine the relations between these classes. We also remark that there is a proper class

of notions of finiteness, obtained by considering so-called MT-rank from [MTO03].

The second half of Chapter 3 provides consistency results to differentiate these notions
by constructing FM-models. We work in the axiom system ZFA, set theory with atoms,
which was introduced by Fraenkel and Mostowski (and a later version, replacing atoms by
autosingletons by Specker in [Spe57], see also [Fel71]). This is a version of ZF modified
by allowing elements which are not sets, which we call atoms or urelements. A model of
ZFA is called a permutation model or an FM-model. AC can be made to fail in these models
so they provide a good context for studying a variety of notions of finiteness. The results
in these models can be carried over to well-founded (Cohen) models of ZF by using the
Jech-Sochor embedding theorem, see [JS66] or [Pin72]. In most cases the model is based
on a suitable structure 2 in the ground model, which is usually countable, and usually
homogeneous, which is a strong enough condition to guarantee a rich automorphism

group. Again usually the filter used to construct the FM-model is generated by finite



supports. This general method is explained in [Pin72].

In Chapter 4, we investigate the relationship between Dedekind-finite sets and definability.
The latter can have various senses, but it initially is taken as definable in a finite first-order
language, extended to infinite first-order languages or infinitary languages later. This is
inspired by some results in [Pin76], [Tru95], and [WTO05]. Informally, if we drop AC, it
is possible that even a set has some hidden structure, which with AC would have been
destroyed. A typical case is that of amorphous sets, which as shown in [Tru95], and

despite their name, can actually carry a wide variety of structures.

Those FM-models that are constructed from X(-categorical structures using finite supports
have their set of atoms lying in A4, the class of weakly Dedekind-finite cardinals, in the
model. This connection was also studied in [WTO05]. We will try to recover the original
structures used to construct FM-models by studying possible structures that can be put
on the set of atoms in the models. Our work here though based on [WTO0S5] gives further

examples and extensions.

Chapter 5 gives a start to tackling similar questions for Dedekind-finite sets which lie
outside the class of weakly Dedekind-finite sets. This may involve first-order but infinite
languages, or infinitary logic, inspired by Scott’s Isomorphism Theorem for characterizing
a countable structure by a sentence of the infinite language £, ,,. We provide a method
to perform reconstruction on certain sets having countably infinite partitions with every

member being weakly Dedekind-finite.

The main focus of this final chapter is on sets X whose cardinality lies in A5, meaning
that there is no surjection from X onto X U {x} for an extra point * ¢ X. First we
give examples of trees, called weakly 2-transitive, whose cardinalities lie in As but not in
A4. The main difference between the so-called ‘2-transitive’ trees introduced by Droste
in [DHMS89] and the ‘weakly 2-transitive’ ones is that 2-transitive trees have the same
ramification order throughout, but weakly 2-transitive trees need not. Using this we can

form 2%0 distinct subsets of w exhibited as the ramification orders arising in such trees,
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thereby providing many non-¥y-categorical examples. Then we establish a connection
between sets whose cardinalities lie in As and a different type of tree structure. Namely
| X| € As if and only if there is no tree on a subset of X having w levels and no leaves. We
give several examples of how this works out, extending a ‘pruning’ lemma from [FT07]

to the case in which the levels of such a tree are weakly Dedekind-finite.



Chapter 2

Preliminaries

2.1 Basic notations

Two sets have the same size or the same cardinality if there is a bijection between them.
For any sets X and Y, we write X =~ Y if there is a bijection between X and Y, X <Y
if there is an injection from X into Y and X <* Y if X = @ or there is a surjection from
Y onto X. We write |X| for the cardinality of X (the definition of cardinality of a set
without AC will be discussed later in this chapter). Therefore |[X| = |Y|iff X &~ Y. We
say | X| is less than or equal to |Y |, written | X | < |Y |, if X <Y, and we say | X | is less
than |Y |, written | X| < |Y |, if | X| < |Y | and | X| # |Y|. We also write |X| <* |Y| if
X <*Y. We write X C Y for X is a subset or subclass of Y, and we use C for proper
subset or proper subclass, i.e. X C Y if X C Y and X # Y. We write X U Y for the

disjoint union of X and Y and write U X for the disjoint union of a family X.

Let < be a relation on a set X. For any x,y € X, we write x |< y if x and y are not
comparable under < in X, i.e.x # y, x £ y and y £ x, and we may write only x || y if
the relation is clear in the context. For any subsets A, B of X, we write A < Bifx <y

forallx € Aand y € B. We write x < A if {x} < A. Similarly for ||.
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2.2 Finite and infinite

Definition 2.2.1. A set is called finite if it has cardinality in w. Otherwise it is infinite.

With the Axiom of Choice, every set can be well-ordered so we can compare their sizes.

Hence Ry < | X| for every infinite set X. Without AC this might not be true.

Definition 2.2.2. A set X is called Dedekind-finite if Rg £ | X |. Otherwise it is Dedekind-

infinite.

An equivalent definition of a Dedekind-finite set is that it is a set with no injection into a

proper subset. Therefore every injection on a Dedekind-finite set must be surjective.

Clearly if A < B, then A <* B. Therefore 8y < |X| implies Xy <* | X| for any set X.

The converse is not necessarily true without AC.

Definition 2.2.3. A set X is called weakly Dedekind-finite it Rg £* |X|. Otherwise it is
weakly Dedekind-infinite.

Actually it would have been better to call such a weakly Dedekind-finite set a ‘strongly’
Dedekind-finite set but the name is obtained from ‘weakly Dedekind-infinite set’ which

was introduced in [Deg94]. This notion first appeared as I11-finite in [Tar24].

With AC, all finiteness notions in this section are equivalent. We will later introduce more

notions of finiteness in Chapter 3.

2.3 Homogeneous structures

Definition 2.3.1. A countable relational structure 2l is homogeneous (or ultrahomogeneous
in some textbooks) if any finite partial automorphism, that is an isomorphism between

finitely generated substructures, can be extended to an automorphism.
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Definition 2.3.2. The age of a structure 2, written age(2l), is the class of structures (in

the same language as 2[) which are isomorphic to finitely generated substructures of 2.

Definition 2.3.3. Let £ be a countable relational first-order language and let C be a class

of finitely generated L structures.
We call C an amalgamation class if C satisfies the following properties.

1. Hereditary property (HP): If A € C and B is a finitely generated substructure of A4,

then B is isomorphic to some structure in C.

2. Joint embedding property (JEP): If A, B € C, then there is C € C such that both A
and B are embeddable in C.

3. Amalgamation property (AP): If A,B,C € Cand e:A — B, f:A — C are
embeddings, then there are D € C and embeddings g: B — D and h: C — D such
that goe =ho f.
The age of any countable structure has HP and JEP but not necessarily AP.

Theorem 2.3.4 (Fraissé [Fra53]). Let C be an amalgamation class. Then there exists a

unique, up to isomorphism, countable homogeneous structure 2l whose age is C. We call

2 the Fraissé limit of C.
Examples.

1. The Fraissé limit of the class of finite linearly ordered sets is the rationals Q with

the usual ordering,
2. The Fraissé limit of the class of finite graphs is called the random graph,

3. The Fraissé limit of the class of finite partially ordered sets is called the generic

partially ordered set.

We will provide some more details for the following structures.
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2.3.1 The random graph

The Fraissé limit of the class of finite graphs is called the Random Graph. It was originally
constructed by Rado in [Rad64], and Erdds and Rényi proved in [ER63] that it has a crucial
‘randomness’ property . It is most simply characterized by saying that it has a countable
set of vertices I" and for any two finite disjoint subsets U and V, thereis x € '\ (U U V)
joined to all members of U and to none of V. See Section 4.2.2 where we study the

FM-model built from I".

2.3.2 The generic bipartite graph

Let C be the class of finite bipartite graphs with fixed parts 7 and B (thought of as ‘top’
and ‘bottom’). Then C is an amalgamation class, and we call the Fraissé limit of C the

generic bipartite graph. We write B for the generic bipartite graph.

Often it is worth viewing B3 as a partial order of height 2 (in which elements on the lower
level are not necessarily below those on the upper level), and therefore we will treat the

edge relation as a partial order <.

Proposition 2.3.5. The following are properties of B

e For any finite disjoint U,V C T there exists b € B suchthatb < U and b || V.

e For any finite disjoint U,V C B there existst € T suchthatt > U andt || V.
Furthermore, any countable bipartite graph having these two properties is isomorphic to

B.

Note that these properties are a slightly modified version of the characterization of the

random graph. More on the generic bipartite graph will be discussed in Section 3.2.1.
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2.3.3 The generic partially ordered set

Let P be the generic partially ordered set, which is the Fraissé limit of the class of all

finite partially ordered sets (which is easily verified to be an amalgamation class).

Remark. If A, B, C are finite subsets of P suchthat A < B and C £ A and C # B,

then there is x € P suchthat A < x < Band x || C.

Furthermore, any countable partially ordered set fulfilling this condition is isomorphic to

P.

The following lemma follows immediately.

Lemma 2.3.6. Let x € P and let A, B, C be finite subsets of P suchthat A < x < B and
x||C. Thereisy € P suchthaty # x, y || xand A<y < Bandy || C.

2.3.4 Henson digraphs

Definition 2.3.7. A graph (G, E) is called a directed graph, or abbreviated as digraph, if

E is antisymmetric, i.e.if (x, y) € E, then (y,x) ¢ E.

The Fraissé limit of the family of finite digraphs is called the generic digraph.

Definition 2.3.8. A digraph is called a tournament if there is an edge between every pair

of distinct vertices.

Let 7 be a family of finite tournaments. Let Forb(7) be the family of all finite digraphs
D such that D does not embed T for any 7 € 7. Then it can be shown that Forb(7) is
an amalgamation class. To see that Forb(7") has the amalgamation property, let B, C €
Forb(7T) be such that A = B N C € Forb(7). We will show that B U C, without adding
new edges, lies in Forb(7T). Suppose there is 7 € Forb(7) which embeds in B U C.
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Since each of B and C forbids T, TN B~ A# 0 #*#TNC ~A.PickbeTNB~\ A
andc € T N C ~ A. Since T is a tournament, there is an edge between b and ¢, which
contradicts our condition that no new edges were added to B U C. Hence T is not
embeddable in B U C, and so B U C € Forb(7). Therefore by the Fraissé construction

there is a generic digraph associated with it.

Definition 2.3.9. Let 7 be a family of finite tournaments not containing the 1- or 2-element
tournament and such that all members are pairwise non-embeddable. We call the Fraissé

limit of Forb(7") a Henson digraph.

We may write (D, E) for a Henson digraph with age Forb(7). Note that if 7 = ¢
then (D7, E7) is the generic digraph. If Forb(7) contains the 1-element tournament,
then D = 0. And if Forb(7) contains the 2-element tournament, then (D, E7) is the

countable empty graph, so this is why these two cases are excluded.

2.4 Yj-categorical structures

Definition 2.4.1. We say a theory T is 8¢-categorical if is has only one countable model

up to isomorphism. A structure 2( is an Ry-categorical structure if Th(2() is Ro-categorical.

Theorem 2.4.2 (Ryll-Nardzewski). Let T be a complete theory in a countable language.

Then the following are equivalent:

1. T is Ry-categorical,

2. every countable model M of T is atomic, meaning tp (@) is isolated for alla € M™",

3. each S, T is finite, where S, T is the set of all complete n-types p such that p U T
is satisfiable,

4. for some countable model B of T and every n € w, the number of orbits of the
automorphism group of B, acting on the set of n-element subsets of dom(*8), is

finite.



2.5. SET THEORY WITH ATOMS 11

The proof of the above theorem can be found in [Mar02] or [KM94], and the next theorem

follows.

Theorem 2.4.3. Every homogeneous structure over a finite relational language is Ny-

categorical.

2.5 Set theory with atoms

2.5.1 ZFA

Set theory with atoms, denoted by ZFA, is characterised by the fact that it admits objects

other than sets. More details can be found in [Jec73] and [Hall7].

Definition 2.5.1. Afoms or urelements are objects which do not have any elements and

which are distinct from the empty set.

The language of ZFA is Lz = {=, €, A} where € is a binary relation symbol and A is a
constant symbol representing the set of atoms. The axioms of ZFA are like the axioms of

ZF, except the following.

Axiom of Empty Set (for ZFA):

Elx(x ¢AANVZ(z ¢ x)).

Axiom of Extensionality (for ZFA):
VxVy((x¢A/\y§éA)—>(Vz(z EX < Z ey)—>x=y)).

From the above two axioms, the empty set is unique and is denoted by @. A modified
version of the Axiom of Foundation can be stated as follows, though it may not need changes

depending on which version we are using.
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Axiom of Foundation (for ZFA):

Vx(x #0Ax ¢ A—3Ty(y ex Ay Nx =0)).

Axiom of Atoms:

Vx(x €A (x £ @ A—-3z(z € x)))
Theorem 2.5.2. Con(ZF) implies Con(ZFA + A is infinite).

Definition 2.5.3. For any set S and ordinal o, we define

PO(S) = S,
PAS) = P*(S) U P(PY(S)).
P*S)= U PB (S) if @ is a limit ordinal.

B<a

Further let P*°(S) = |J P*(S).

a€ON

Theorem 2.54. If M is a model of ZFA and U is the set of atoms of M, then M =
P>(U). The class P*° (D) which is a subclass of M is a model of ZF.

Notation. Let V denote P (@). We call V the kernel or pure part and call members of

V pure sets.

Note that the class ON of ordinals is contained in V.

2.5.2 Fraenkel-Mostowski models

Now we will construct models for ZFA. In this section, U is the set of atoms in a model

M of ZFA + AC.

Definition 2.5.5. Let G be a group of permutations of U. A set F of subgroups of G is a
normal filter on G if for all subgroups H and K of G:
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() G e F,

(ii) if H € Fand H < K, then K € F,

(iii) if H € Fand K € F,then H N K € F,
(iv) ifr € Gand H € F,then tHn~ ! € F,
(v) foreacha e U,{m € G: n(a) =a} e F.

Throughout this section, G is a group of permutations of U and F is a normal filter on G.

Definition 2.5.6. Let 7 € G. Using the hierarchy of P“(U)’s, we can define 7 (x) for
every x in M by
n(x) =n[x] ={n(y) 1 y € x}.

Remarks.

1. We sometimes write 7 x for 7 (x).
2. It can be proved by transfinite induction that 7 is one-to-one, even in its extended

action on the whole of M.

Lemma 2.5.7. Let 7 € G. Then, for any x and y in M,

1. w{x,y}={nx,ny}and w(x,y) = (mwx, wy).
2. if f is a function, then 7w f is a function and (w f)(7wx) = 7 (f(x)).

3. ix =x forall x € V.

Proof. Let x and y be any elements in M.

1. Clearly 7{x, y} = {mx, wy} by the definition. Therefore
mlx,y) = m{{xh {x, y}} = {mix}, wix, yi} = Haxp {nx, wy}) = (mx,wy).

2. Let f be a function. By 1, nf = {{mx,n(f(x))) : x € dom(f)}. To show

that 7 f is a function, suppose wx = my for x,y € dom(f). Since 7 is one-
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to-one, x = y, and so w(f(x)) = 7w (f(y)). Thus = f is a function and hence

(mf)(x) = 7 (f(x)).
3. This can be proved straightforwardly by transfinite induction on V. [

Definition 2.5.8. For each x in M, we define the setwise stabilizer of x in G
Gy ={m €G:mx =x}.

Then Gy is a subgroup of G. We say x is symmetric (with respect to F) if G(x) € F. The
notation is different in some papers or textbooks; some call this the symmetric group of x

in G, written symg(x). Define a permutation model by
Y = {x : x is symmetric and x C V}.
Theorem 2.5.9. The class 'V is a transitive model of ZFA, \Y CV, andU € V.

With AC, every set can be well-ordered and so it has a bijection with some ordinal, and
we define its cardinality to be the least such ordinal. Defining cardinalities of sets without

AC is not as straightforward.

Definition 2.5.10. The cardinality of a set x, denoted by |x|, in the model V, is defined
by
x| =C(x)NPXU)NYV,

where €(x) = {y € V : y &~ x}and « is the least ordinal such that €(x)NP*(U)NY # @.

This method is known as Scott’s trick.

We will work in the theory ZFA + AC (for the consistency, see [Jec73]). Then we have
that AC holds in the kernel V. By the Jech-Sochor Embedding Theorem (see [Jec73] or
[JS66]), we can embed an initial segment of the permutation model into a well-founded

model of ZF, so that every relation between cardinals in the permutation model also holds
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in the well-founded model. Hence, in order to prove that a relation between some cardinals
is consistent with ZF, it is enough to find a permutation model for the statement.
Definition 2.5.11. A set I of subsets of U is a normal ideal if forall E, F C U

(i) Vel,

(i) if Eeland F C E,then F € I,
(iii) if E€ I and F € I, then EU F € I,
(iv)iftreGand E € I, thenn(E) € I,
(v) foreacha e U, {a} € I.

Remark. The set of all finite subsets of U is a normal ideal.

Definition 2.5.12. For each E C U, define the pointwise stabilizer of E under G

g ={meG:n(a) =aforalla € E}.

Then G is a subgroup of G. This is sometimes written as fixg(FE).

Theorem 2.5.13. Given a normal ideal 1, then

F = {H : H is a subgroup of G such that Gg < H for some E € I}

is a normal filter.

Note that given a normal ideal 7, there is a corresponding normal filter F as defined above

and we say V is defined from 7 if V is the permutation model defined from such F.

Definition 2.5.14. Foreach x andeach E € I, we say that E isa supportof x if Gg < G(x).

If 7 is the set of all finite subsets of U and F is the corresponding normal filter, then we

say J is generated by finite supports.
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Remarks.

1. x is symmetric iff there exists £ € [ such that E is a support of x. As a result, we
have that

x € Viff x has a support and x C V.

2. Foreach x and each E, F' € I, if E is a support of x and £ C F', then F is also a

support of x.
Definition 2.5.15. We call the set G(x) := {gx : g € G} the orbit of x under a group G.

Proposition 2.5.16. Let E, X C U where E is finite. If X is supported by E, then X is a

union of orbits of U under Gp.

Proof. Assume X is supported by E. Let a € U be such that Gg(a) N X # @ and
let b € Gg(a) N X. Let ¢ € Gg(a). Then there are 0,7 € Gg such that b = oa
and ¢ = ta. Since G is a subgroup, to~! € G, so as E supports X and b € X,
¢ =1ta =10"'b € X too. Thus Gg(a) € X. Hence X is a union of orbits of U under

OE. O

Examples.

1. The Fraenkel model: Let U be a countable set of atoms. Let G be the group of all
permutations of U and let F be the filter on G generated by finite supports. Then
the permutation model Nz induced from U, G, and F is called the (basic) Fraenkel

model.

2. The Mostowski model: Let (U, <) be a countable set of atoms isomorphic to the
rationals (Q, <g). Let G be the group of order-preserving permutations of U. Let
F be the filter on G generated by finite supports. The permutation model Ny,
determined by U, G and F is called the Mostowski model.
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2.6 Infinitary languages

Definition 2.6.1. Let £ be a language and « be an infinite cardinal. The formulas of the

infinitary logic Ly, are defined inductively as follows.

(i) Every atomic £-formula is a formula of L,,.
(i) If X is a set of formulas of £, such that all of the free variables come from a fixed

finite set and | X| < «, then

/\(pand \/go

peX peX
are formulas of L.

(iii) If ¢ is a formula of L, then so are —¢, Yv¢ and Jvg.

The following results are from [Sco65], though their proofs are not given in the original
reference. The proof of Theorem 2.6.2 can be found in elementary Model Theory textbooks

(e.g. see Theorem 2.4.15 in [Mar02])

Theorem 2.6.2 (Countable Isomorphism Theorem). Let | be a countable L-structure.
Then there is ¢ € Ly, 4 such that B = 2 if and only if *B F ¢. We call ¢ a Scott sentence
of .

The following theorem known as the Scott Countable Definability Theorem (also from
[Sco65]) can be stated as follows.

Theorem 2.6.3 (Countable Definability Theorem). Let 2l be a countable structure and let

P C A" for some n € w. Then the following are equivalent.

1. Forany Q C A", if (], P) = (A, Q), then P = Q.
2. There is some formula ¢(X) of Ly, such that (A, P) E VX(P(X) < ¢(X)).

Proof. (2 = 1) Let ¢ be an L, ,-formula satisfying 2. Let O < A" be such that



18 2. PRELIMINARIES

(A, P) = (A, Q). Then, by applying the isomorphism, (A, Q) F VX(Q(X) < ¢(X)).
Therefore x € P & ¢(X) & X € Q forallx € A", andso P = Q.

(1 = 2) Assume that for any Q C A", if (A, P) =~ (A, Q), then P = Q. For each
a € P, let pz(a) be a Scott sentence of (2, @) and let 9(X) = \/;cp ¢a(X). We will show
that (2, P) F VX(P(X) < ¢(X)).

Leth € A". If b € P, then (2,b) F @5(5), so (2,b) E ¢(b). Suppose (2, b) E ¢(b).
Then (A,b) £ @a(b) for some @ € P. Since ¢g(a) is a Scott sentence of (2, a),
(A, b) = (A,a@). By |, wehaveh =a € P. O
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Chapter 3

Relations between notions of

Dedekind-finiteness

In this chapter, we introduce the main notions of Dedekind-finiteness considered in this
thesis. The object is to combine all notions previously considered in [Tar24], [Mos39],
[Tru74], [Deg94], and [Gol97], and present them and some analogues as systematically
as possible. The notions are presented via their corresponding ‘classes’, here thought of
as ‘notions of finiteness’ (in contrast to a ‘notion of infinity’ studied in [Deg94]). We
formulate what is understood by a ‘notion of finiteness’ for which a minimum requirement
is that it be closed under <. For instance the notion of ‘o-amorphous’ is not as it stands
closed under subset, so for this notion we have to including forming subsets explicitly in
the definition. Other properties of the usual class of finite sets is that a finite union of
finite sets is finite, related to closure under + and x. These will form a central theme, as

well as relations between the different classes, either provably, or consistently.
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3.1 Finiteness without Choice

Recall the definition of a Dedekind-finite set. A set X is Dedekind-finite if 8y £ |X]|.
Otherwise it is Dedekind-infinite. Several people have studied finiteness without the Axiom
of Choice. We attempt to discuss systematically most of the important definitions, see how

they are related and investigate their closure properties.

A notion of infinity was introduced in [Deg94], and a corresponding notion of finiteness
class was introduced in [Her11]. We will follow the latter notion since we mainly focus

on finiteness in this thesis.

Definition 3.1.1. The class of cardinals I' is a finiteness class if it satisfies the following.

(i) wCT,
(i) Ro ¢ T,

(iii) T is closed under <, i.e.if |x| € ' and |y| < |x|, then |y| € T.

It is easy to see that the set w is a finiteness class, and with the Axiom of Choice it will
be the only such class. However without AC, as we mentioned above, there is a model
in which infinite Dedekind-finite sets exist, and the class of Dedekind-finite cardinals,
denoted by A, is also a finiteness class. Furthermore we can show that these two classes
are the boundaries of this notion, i.e. for any finiteness class I', o € I"' € A, as shown in

the following remarks, so every finiteness class is a class of Dedekind-finite cardinals.

Remarks.
1. w is the smallest finiteness class.

2. A is the largest finiteness class.

Proof. 1t is easy to see that both w and A satisfy the criteria for being finiteness classes,

and o is the smallest by the definition. To see that A is the largest such class, let I" be a
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finiteness class and let |X| € I". Since T is closed under < and Ry ¢ I', Ry £ |X], so
|X| € A. O

Without AC, we shall see that it is consistent with ZF that @ C A, and also there might be
other finiteness classes I" lying between @ and A. First we introduce many such classes of
cardinals, some of which have been extensively studied in [Deg94], [Gol97], and [Tru74].

Some notions were introduced earlier than that in [Tar24], [Mos39] and [Lév58].

Throughout this thesis, we use finite meaning the usual finite definition, i.e. sets having

their cardinalities in .

Definition 3.1.2. We introduce the following classes, of which the first fourteen are classes

of Dedekind-finite cardinals, some relying on notions yet to be defined.

(i) o := the set of natural numbers,

(i) A;:={|x|:if x = y Uz, then either y or z is finite},

(iii) A, := {|x| : every linearly ordered partition of x is finite},

(iv) Ajz := {|x| : every linearly ordered subset of x is finite},

(v) Ay := {|x|: x is weakly Dedekind-finite, i.e. ® £* x},

(vi) A} := {|x]| : there are no finite-to-one maps from a subset of x onto w},
(vii) As = {|x]| :x + 1 £* x},
(viii) AZ := {|x| : there are no non-injective finite-to-one maps from x onto x},

(ix) Amr := {|x| : x has MT-rank},

(X) ARrussel := {]x| : every partial ordering on x has a maximal element},

(xi) A, :={|x|: x C y for some y having a linear order so that (y, <) is 0-amorphous},
(xii) A} := {|x| : x has a linear order < so that (x, <) is weakly o-amorphous},
(xiii) Aper 1= {|x]| : every injection on x has finite order},
(xiv) A := {|x| : x is Dedekind-finite, i.e. ® £ x},
(xv) T'Z__ = {|x| : every bijection on x has a finite cycle},

5-per

(xvi) I :={lx| : 2[x| > [x[},
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(xvid) Ty = {lx] : [x[> > [x[},

(xviii) I'{; := {|x| : |x| is not an aleph greater than or equal to NX¢}.

It can be shown that classes from (i)—(xiv) from the above definitions are finiteness
classes, therefore they lie between w and A. We can narrow down these relations further
as illustrated as follows, where ---» means it is provable in ZF that there is a relation C

between the two classes.

L

o
Classes of finiteness

O %

DRl > PR > S
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Moreover we also show their closure properties under various operations, namely +, X,

union, and disjoint union, as can be defined as follows.

Definition 3.1.3. We say a finiteness class I is

e closed under + if |x/|, |y| € I implies |x| + |y| € T,
e closed under x if |x|,|y| € I" implies |x| x |y| € T,
e closed under union if x| € T and |y| € T forall y € x implies = || Jx| € T,

e closed under disjoint union if |x| € I" and |y| € T forall y € x implies | U x| eT.

More details on the relations between these classes together with their closure properties

will be given in the following sections.

3.1.1 The classes A, Ay, A3, Ay, and As;

First we consider the classes A1, A, Az, Ay, and As. Together with w and A, one can
see that their definitions arise naturally from properties of finite sets. In [Lév58], Lévy
introduced eight notions of finiteness, namely from I- to VII-finite together with la-finite,
of which five are equivalent to five of the above seven. In particular, I-, Ia-, II-, III- and V-
finite are equivalent to definition of cardinals lying in w, Ay, A, A4, and A, respectively.
The classes Az and As were introduced in [Tru74], and in this paper, properties of all
these seven classes were studied including the relations between these classes and their

closure properties, along with some consistency results, as we shall recall in what follows.

Note that the latter notions from [Lév58], V-, VI-, and VII-finite, are not really interesting
in this context as they fail to be finiteness classes. We will discuss them at the end of this

section.

We have already remarked that @ and A are finiteness class. Similarly we can show that

this is also true for Ay, A,, Az, Ay, and As, and hence they all lie between w and A.



24 3. RELATIONS BETWEEN NOTIONS OF DEDEKIND-FINITENESS

Proposition 3.1.4. The classes Ay, Ay, Az, Ay, and A5 are finiteness classes.

The above statements can be proved straightforwardly. Further results were shown in

[Tru74] as follows.

Proposition 3.1.5. The following relations can be proved in ZF.

I. o CALTCACALCAsCA

2. A, C A3 CA

‘We note that A, is contained in both Az and A4. Later we will show that it is consistent
that A3 and A4 are incomparable and hence we do not have any relation between them.
In particular, it is consistent that A3 € A4 and Ay € Aj; (see Proposition 3.2.10 and
Proposition 3.2.7, respectively). Furthermore some closure properties of these classes are

also shown in [Tru74], which we quote here.

Theorem 3.1.6.

. w, Ny, A4 are closed under unions,

. Az, A are closed under disjoint unions,

1

2

3. As is closed under +,

4. Ay is closed under + if and only if o = Ay,
5

. w, Ny, Az, Ay, A are closed under + and X.

Some classes however fail to have some of these closure properties, as follows.

Theorem 3.1.7 ([Tru74)).

1. If o # A, then A is not closed under unions.
2. If o # As, then As is not closed under unions.

3. Con(ZF) implies Con(ZF 4+ As is not closed under x).
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Thomas Forster suggested another notion of finiteness: For every function f:ow — X,
there is x € X such that f~![{x}] is infinite. It turns out that this condition is also

equivalent to Dedekind-finiteness.

To see this, for convenience let’s call the above notion of finiteness Forster-finite. Thus, if
X is Forster-finite, by the definition, no function f:® — X is an injection. Conversely,
if X is not Forster-finite, then there is a function f:® — X such that for every x € X,
S {x}] is finite. Since @ = U, cran(r) /' [{x}], ran(f) is infinite. Define a function
g:min f![{x}] — x for all x € ran(f). Then g is a bijection between an infinite subset

of w and ran( f). Hence X is not Dedekind-finite.
The following is due to Kuratowski and the proof can be found in [Tar24] or [Her06].
Theorem 3.1.8. For any set X, < P(X) implies v <* X.

Corollary 3.1.9. If Ay = A, then w = A.

Proof. Assume Ay = A. Let X ¢ w. Then v <* P(X) since we can map the set of
n-element subsets to n foreachn € w, and sow < P(X). By the above theorem, w <* X,

and therefore w < X. Hence X ¢ A. O]

Note that the definition of A5 is also equivalent to the finiteness notion of dual Dedekind-

infinite set defined in [Deg94], which can be stated as follows.

Definition 3.1.10. A set X is dual Dedekind-finite if there is no noninjective surjection

from X onto X, i.e.every surjection on X must be injective.

It is easy to check that this is equivalent to the definition of A5 given in Definition 3.1.2

and can be considered as an alternative definition.
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3.1.2 Notion of MT-rank

Definition 3.1.11. A set X is amorphous if it is infinite and cannot be expressed as a union

of two disjoint infinite sets.

We can see that the class A; is actually the class of cardinalities of amorphous or finite
sets. The existence of amorphous sets is incompatible with the Axiom of Choice. This

idea was extended to higher ranks in [MTO03].
Definition 3.1.12. The MT-rank of a set X, denoted by MT(X), is defined as follows.

(i) MT(X) = —-1if X =4,
(i) MT(X) = a it MT(X) £ « and there is n € @ such that if X = Uosisn X; then
for some i, MT(X;) < .

We say a set X has MT-rank if MT(X) = « for some ordinal o and has MT-degree k if k

is the least n satisfying (ii).

Definition 3.1.13. Let Ayt denote the class of cardinalities of sets which have MT-rank.

For any ordinal o, let Ay, = {|X| € Amr : MT(X) < «}.

We can see that every non-empty n € w has MT-rank 0, and every amorphous set has
MT-rank 1 with MT-degree 1. Hence Ay, = w and Ay, is the class of finite sums of

members of Aj.

Proposition 3.1.14. The classes Ayt and Ay, are finiteness classes for all o € ON.

Proof. Leta € ON. Since Ayr, = w,w € Ayr, € Amr. By using transfinite induction,
the image of any set with MT-rank « under a function has MT-rank < «. Therefore Ay

and Ay, are closed under < and <*.

To see that Ry ¢ Apmr, suppose MT(w) = o with MT-degree n. Then for 0 < i < n,

Xi:={km+1)+1i:k € w}aren + 1 infinite pairwise disjoint subsets of w, so there
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is X; such that MT(X;) < «. But then X; can be mapped onto w, so MT(w) < «, a

contradiction. Hence Rg ¢ Ay, and also Rg ¢ Ay, - O

Therefore Ayr lies between w and A. Since every amorphous set has MT-rank 1 and
since Ay is closed under <* and Xy ¢ Ay, we have a stronger result Ay € Ayt € Ay,
Notice that Ayr, € Ay, for all @ < B. One can build an FM-model containing sets

having arbitrary large rank (see Section 3 in [MTO03]).

Proposition 3.1.15. For any a, it is consistent that Ayir, C Ay, forall B <y < a.

Therefore we have the following containments in which no relation can be reversed.

Ayry =0 CAL S Ay, CSAur, € ... C Ayr, € ... C Aur, € ... € Apr

3.1.3 Russell-finiteness

The notion of Russell-infinite was introduced in [Deg94], and its dual notion of finiteness

can be defined as follows.

Definition 3.1.16. A set X is called Russell-finite if it is empty, or if every partial ordering

on X has a maximal element.

This is different from a Russell-set which is a Dedekind finite set that can be expressed
as a countable union of pairwise disjoint 2-element sets (see [HT06]). A Russell-set will

play some roles later.

Definition 3.1.17. Let Ag,senn denote the class of cardinalities of Russell-finite sets.

Now we check whether Agysserr is a finiteness class and verify its closure properties.

Lemma 3.1.18. The class Arysen IS closed under <.
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Proof. Assume |X| € Agrusenn and Y € X be non-empty. Let < be a partial ordering on
Y. Let y € Y. Extend < to X by letting x < y’ forallx € X N~ Y and ' > yin Y.
Then < is a partial ordering on X and so X has a maximal element, say xq. Since xo £ y,

Xo ¢ X \Y.Thusxp €Y. O

Proposition 3.1.19. The class Aryssen i closed under +.

Proof. Let |X|,|Y| € Arussenn Where X and Y are disjoint. Let < be a partial ordering on
X UY. Then <| (X x X) is a partial ordering on X and so X has a maximal element,

say xg. If x¢ is a maximal element in X U Y, then we’re done.

Suppose x is not a maximal element in X UY. Then Y’ = {y € Y : y > Xx¢} is not
empty. Since Y is Russell finite and Agygen is closed under <, Y is also Russell finite
and so it has a maximal element, say yo. Since yo > Xo, Yo is not below any member
of X. Lety e Y. If y > yo, then y > xg and so y € Y, but y, is maximal in Y’, a

contradiction. Hence y # yo. Therefore yq is maximal in X U Y. [

We could change the definition of Russell-finite by using ‘minimal element’ instead of
‘maximal’ but this doesn’t make any difference. The following are some equivalent

characterizations of Russell-finiteness.

Proposition 3.1.20. The following are equivalent for non-empty X.

L |X| € Arussen,

2. in any partial ordering on X, every member of X is between a maximal and a
minimal element,

3. every partial ordering on X has a bound on the length of its finite chains,

4. every partial ordering on X is well-founded.

Proof. (2 = 1) and (4 = 1) are obvious, in the latter case considering the reverse

ordering.
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(1 = 2) Suppose | X| € Aryssenn- Letx € X andY = {y € X : y > x}. Then Y contains
a maximal element since Agygen is closed under < and it can be showed straightforwardly

that it is also maximal in X.

For minimal, reverse < to >, then we have a >-maximal element above x which is a

<-minimal element below x.

(1 = 4) This follows from the fact that Agygen is closed under < and, from 1 applied to

the reverse ordering, every element is above a minimal element.

(3 = 1) Let < be a partial ordering on X . Then there is a bound on length of finite chains,
say n is the least such bound. Let C be a chain in X with length n. Thus C has a maximal
element, say x. Then x is also maximal in X, otherwise there is y > x and C U {y} has

length n + 1, a contradiction.

(1 = 3) Let | X| € Agussen and < be a partial ordering on X. Define recursively on #,
X, is the set of all maximal elements of X ~ J,;_, X;. It was shown in [Deg94] that
Arussel © Ay (or see Proposition 3.1.26 for the stronger result, Agryen S A»), hence

X;. Let C be a
chainin X. Then |C N X;| < 1foralli < n,so |C| < n. O

|X| € Ay, and so there is n such that X,, = @ and we have X = [

i<n

Proposition 3.1.21. A disjoint Russell-finite union of Russell-finite sets is Russell-finite.

Proof. Let{X; :i € I} be a Russell-finite family of pairwise disjoint Russell-finite sets,

and let < be a strict partial ordering on O{X iciel}.

Let L be a <-chain. Foranyi € I, let L; = L N X;. Then L; is a chain in X; where
| Xi| € ARussen» SO L; must be finite for all i € I. Since the X; are pairwise disjoint, so
arethe L; foralli € I. Let I’ ={i € I : L; # @}. Define a linear ordering <; on I’ by
i1 <y ipifmax L;, < max L;,. Then we have a <;-chainon / andsince |/ | € Agyssen, the
chain is finite. Hence there are finitely many i such that L; # @. Therefore L = Uie 1 L

is a finite union of finite sets, so it is finite. O]
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The following corollary follows immediately.

Corollary 3.1.22. The class Aryssen is closed under x.

Itis easy to see thatn € Agygsen for alln € w and @ with the usual ordering has no maximal

element, therefore Ry ¢ Agysen. Together with Lemma 3.1.18, we have the following.

Proposition 3.1.23. The class Arussen IS a finiteness class.

Therefore Agysen lies between w and A. As remarked above, it was already showed in
[Deg94] that every Russell-finite set is weakly Dedekind-finite, i.e. Arygen S Ag. We will
refine these results and find how Agrygep relates to the other finiteness classes introduced

in Definition 3.1.2. First we have the next result from [MTO03].

Fact 3.1.24. If (X, <) is a non-empty partially ordered set, and X has MT-rank o, then

X has minimal and maximal elements.
Corollary 3.1.25. Ayt € Agussell-

Proposition 3.1.26. Agyien € As.

Proof. Suppose | X| ¢ A,. Then there is an infinite linearly ordered partition (r, <) of
X. If 7 has a <-maximal element, then we can construct a linear ordering on = with no
maximal element. Consider the maximal conversely well-ordered final segment of (7, <).
If it is infinite, then we can reverse the final w*-segment so that we have a new linear
ordering on 7 with no maximal element. Otherwise, the segment is finite, so we can put
it at the beginning of the ordering, resulting in a linear ordering on 7 with no maximal
element. Thus we may assume that (i, <) has no maximal element. Define <y on X by
x <y yiff P < Q wherex € Pandy € Q and P, Q € . Itis easy to see that <y isa

partial ordering on X with no maximal element. So |X| ¢ ARrussel- O

Now we have the following relations.

A1 g AMT g ARussell g AZ
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3.1.4 More on amorphous sets

The notion of amorphous has a close link with the notion of strong minimality in model
theory (see [Tru95]). Another notion which is related to amorphous is ‘o-amorphous’,
which is related in a similar way to ‘o-minimality’ in model theory. First we need the

following definition.

Definition 3.1.27. Let (X, <) be a linear ordering. A subset of X is called an interval if
it has the form (a,b) = {x : a < x < b} or [a, b],[a, b), (a, b] — closed on one or both
sides, where a,b € X U {£o0}. A subset Y of X is convexifa < x <banda,b eY

implies x € Y.

Then we have the following notions.

Definition 3.1.28. We say a linear ordering (X, <) is o-amorphous if it is infinite and
its only subsets (definable or not) are finite unions of intervals, and we call it weakly

o-amorphous if its only subsets are finite unions of convex sets.

More details on o-amorphous sets can be found in [CT00]. We have every o-amorphous
set is weakly o-amorphous, and Creed and Truss show ([CT00, Lemma 2.5]) that every
weakly o-amorphous set is weakly Dedekind-finite. They also show that a union of
two o-amorphous sets need not be o-amorphous, and provide the following easily-proved

lemma.

Lemma 3.1.29 ([CTO00]). Let (X, <) be a linear ordering. If X = AU {x} U B with

A < x < B, then X is o-amorphous if and only if A and B are.

Note that for the converse, we need an extra point x in between the two sets so that X is
o-amorphous, otherwise A cannot be written as a finite union of intervals and so it is not

o-amorphous. Therefore the class of cardinalities of o-amorphous sets is not a finiteness
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class, as we will explain after the next proof. But we can consider a slightly modified

definition as stated in Definition 3.1.2, which we recall in the following.

A, :={|x]| : x € y for some y having a linear order so that (y, <) is 0-amorphous}

A% := {|x| : x has a linear order < so that (x, <) is weakly o-amorphous}

Lemma 3.1.30. A, € A,

Proof. Let |x| € A,. Then x C y for some y with a linear order < such that (y, <) is
o-amorphous. Hence every subset of x is a finite union of intervals whose boundaries

might be in y ~\ x, but they are convex subsets of x. [

Proposition 3.1.31. The classes A, and A are finiteness classes.

Proof. Clearly both A, and A} contain every n € . Next we show that 8y ¢ A*. Let

(X, <) be a countably infinite linearly ordered set.

Case 1. There is a nonempty subset ¥ € X with no <-minimum.
Since X is enumerable, Y contains a <-descending w-sequence, say (V,)neo (note that
this does not require AC). Then the subset {y,, : n € w} of Y cannot be written as a finite

union of convex sets.

Case 2. Every nonempty subset of X has a <-minimum.
Then (X, <) is a well-ordering and hence it contains an w-sequence which is <-increasing
say (X, )new, and again the set {x,, : n € w} cannot be written as a finite union of convex

sets.

From both cases, we can conclude that (X, <) is not weakly o-amorphous. Hence 8¢ ¢ A},

and so Ry ¢ A,.

The class A, is closed under < by its definition. For A}, let | X| € A} and |Y| < |X].

We may assume Y is a subset of X, and so Y inherits a linear ordering < from X where
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(X, <) is weakly o-amorphous. Hence every subset Z C Y is a subset of X, so Z is a
finite union of sets which are convex subsets of X. A convex subset of X contained in Y
is a convex subset of Y, so Z is a finite union of convex subsets of Y. Thus (Y, <[ Y xY)

is also weakly o-amorphous. 0

Note that from the above proof, the difference between the two cases is that a convex subset
of Z which is contained in Y is also a convex subset of Y, but an interval of Z which
is contained in Y need not be an interval in Y, as its endpoints may have been omitted.
Further as both A, and A are finiteness classes, they lie between w and A. We can refine

this result further as follows.

Proposition 3.1.32. A C A,.

Proof. Let |X| € AY and let < be a linear order on X such that (X, <) is weakly o-
amorphous. Suppose |X| ¢ A4. Then X can be written as a countable disjoint union of

nonempty subsets U X,. Since (X, <) is weakly o-amorphous, every X,, is a finite

new

union of convex subsets of X, say X, = U Y, ; for some k, € w for alln € . Note

i<ky,
that the Y, ; are pairwise comparable under <. Hence C := {Y,; : i < k, andn € w} is

countable and (C, <) is a countable linear ordering.

Similarly to the proof of Proposition 3.1.31 where we showed that 8y ¢ AZ, there is
either a <-increasing or a <-decreasing w-sequence of members of C, the union of whose
alternate subsequences cannot be written as a finite union of convex subsets of X. This

contradicts (X, <) being weakly o-amorphous. Hence | X | € A4. [
Therefore we have the following relations.

®C Ay S ALC A,
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3.1.5 Ajand AZ

The notion of weakly Dedekind’-infinite was introduced in [Gol97], which is a stronger

version of weakly Dedekind-infinite set. The dual notion of finiteness is stated as follows.

Definition 3.1.33. A set X is called weakly Dedekind’-finite if there are no finite-to-one

maps from a subset of X onto w.

We let A% be the class of cardinalities of weakly Dedekind”-finite sets. As we can see,
the above definition is slightly different from the notion of weakly Dedekind-finite. The
obvious difference is that the function is required to be finite-to-one, but in the definition
we needed to quantify over all subsets to ensure that the class A} is closed under <. It
can be easily checked that n € A} forall n € w and Ry ¢ Aj. Therefore the following

proposition follows immediately.

Proposition 3.1.34. The class A} is a finiteness class.

Next we study the closure properties of Aj. Showing that A} is closed under + is

straightforward.

Proposition 3.1.35. The class A} is closed under +.

Proof. Let X and Y be sets such that X N'Y = @. Suppose there is a subset S € X UY
with a finite-to-one function f:S — w. Then either S N X or S N Y has infinite image

under f,so |X| ¢ Ajor|Y| ¢ Aj. O

Proposition 3.1.36. A disjoint weakly Dedekind -finite union of weakly Dedekind -finite

sets is weakly Dedekind -finite.

Proof. Let {X; : i € I} be a weakly Dedekind”-finite family of pairwise disjoint weakly

Dedekind”-finite sets.
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Suppose U{X,- : i € I} is not weakly Dedekind"-finite. Then there is a subset S C
U{X,— : 1 € I} with a finite-to-one surjection f: S — w. Foreachi € I,letS; = SN X;.
Then f | S;:S; — w is also finite-to-one. Since each X; is weakly Dedekind -finite,
ran( f [ S;) is finite. Therefore we can associate with each i a finite subset N; C w, where

N; =ran(f | S;). Furthermore S; is finite for alli € I.

Since f is finite-to-one, f~![N] is finite for all finite N C . Therefore there are
finitely many i such that S; € f~![N] since all S; are pairwise disjoint. Hence the map
g:i +— N; is finite-to-one. Since | J;c; Ni =  and all N; are finite, there are infinitely
many different N;. Hence g maps / onto an infinite subset of [w]<N°, the set of all finite
subsets of @, which is countably infinite. Hence ran(g) is infinite, and this contradicts

weakly Dedekind”-finiteness of 1. O

Corollary 3.1.37. The class A} is closed under x.

Both A} and As contain A4 and are contained in A, but it is shown in later sections that
A} and As are not comparable, i.e.it is consistent that A} € As and As € A} (see
Proposition 3.2.22 and Proposition 3.2.10, respectively). A stronger version of As, which
has an alternative definition in Definition 3.1.10, can be obtained in the same fashion as

defining A} from Ay.

Definition 3.1.38. A set X is called dual Dedekind -finite if there are no non-injective
finite-to-one maps from X onto X, or equivalently, there are no finite-to-one maps from

X onto X U {x} where * ¢ X.
Let A be the class of cardinalities of dual Dedekind”-finite sets. Obviously As C AZ.
Furthermore we can show that A} C AZ. First we need the following proposition.

Proposition 3.1.39. Let X be a set. Then |X | ¢ AZ if and only if there is a subset T C X

carrying a finite-branching tree structure with w levels and no leaves.
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Proof. (=) Suppose | X | ¢ A%. Then there is a finite-to-one surjection f: X — X U {x}
where * ¢ X. Define L, forn € w as follows. Let Ly = {*}, L,.1 = f~![L,] for

newandletT = J,., L,. Note that the L, are finite and pairwise disjoint, and since

new
f is a surjection, L, # @ for all n € w. Define < on T to be the transitive closure of the
relation given by x < y if y € f~![{x}]. It can be proved straightforwardly that (T, <) is
a tree with no leaves with * the least element, and since all L, are finite, (7, <) is finite

branching. Therefore 7' ~ {x} is our desired subset of X.

(<) Suppose there is an infinite subset 7 € X with a finite-branching tree structure
satisfying the condition. Let * ¢ X and extend T to T U {x} by letting * be below
all members of 7. Define f:T — T U {x} by f(x) = y where y is the immediate
predecessor of x. Since T has no leaves and branches finitely, f is surjective and finite-
to-one. We extend the domain of f to X by letting f be the identity on X ~ T so we

have a finite-to-one function from X onto X U {x}. [

To see that Ay € AZ. Suppose |X| ¢ AZ, then there is a subset 7 of X as from the above
proposition, so every level of 7' is finite and the map given by x — n where x is on level

n is a finite-to-one map from a subset 7" of X onto w which is also non-injective.

Proposition 3.1.40. The class A% is a finiteness class.

Proof. 1t is easy to see that n € AZ foralln € w, sow € AZ. The map f:wv — o
defined by f(0) = 0and f(n + 1) = n for all n € w is a non-injective finite-to-one map

from w onto w, therefore Ry ¢ AZ.

Let X and Y be sets such that |Y| < |X| and suppose |Y| ¢ AZ. We may assume that ¥’
is a subset of X. Then there is a non-injective finite-to-one g: Y — Y. Extend g to X by

letting g(x) = x for all x € X \\ Y. Then g is a non-injective finite-to-one function from

X onto X, and so | X| ¢ AZ. ]
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Next we study the closure properties of AZ under + and x, which turn out to be a positive

result for + but not for x.

Proposition 3.1.41. The class A% is closed under +.

Proof. Let X and Y be disjoint sets. Suppose |X| 4 |Y| ¢ AZ. Then there is a subset
T € X UY with a finite-branching tree structure satisfying the above proposition. Since
T is infinite, either 7N X or T NY is infinite. Suppose Tx := T N X is infinite. Then T
is a subset of X carrying a tree structure in which every vertex branches finitely and hence
it also has w-levels. If Tx has no leaves, then | X| ¢ AZ and so we’re done. Suppose Ty
has some leaves, say x is one such. Then the set Ty := {y € Y : y > x} is a subset of
Y extending x carrying a finite-branching tree structure. Since 7" has no leaves and x is a
leaf of Ty, Ty has no leaves. Thus 7Yy is an infinite subset of ¥ carrying a finite-branching

tree structure with w-levels and no leaves. Hence |Y'| ¢ AZ. ]

The counter example for showing that AZ is not closed under x is the same as one that
is used to show the similar result for As in [Tru74]. We will give its proof in Section 3.2

where we discuss consistency results obtaining from FM-models.

Proposition 3.1.42. It is consistent with ZF that A% is not closed under x.

Proof. See Subsection 3.2.8. [

We have the following relations.
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3.1.6 Period-finiteness and classes beyond A

The notions of period-infinite of level (i) ([i]-per-inf) for 1 < i < 5 were introduced in

[Deg94]. We can state their dual notions of finiteness as follows.

Definition 3.1.43. A set X is

e [1]-period-finite if every injection on X has finite order,

[2]-period-finite if every permutation of X has finite order,

[3]-period-finite if every function on X has a finite cycle,

[4]-period-finite if every injection on X has a finite cycle,

[5]-period-finite if every permutation of X has a finite cycle.

We have the following relations

weakly Dedekind-finite = [1]-period-finite = [2]-period-finite = Dedekind-finite

= [3]-period-finite = [4]-period-finite = [5]-period-finite

It turns out that some of these notions actually coincide as can be shown as follows.

Proposition 3.1.44.

(i) [1]-period-finite < [2]-period-finite.
(i) Dedekind-finite < [3]-period-finite.
(iii) [4]-period-finite < [5]-period-finite.

Proof. 1t only remains to show the < part for each statement.

(i) Since [2]-period-finite implies Dedekind-finite and a Dedekind-finite set is a set with
no injection into a proper subset, every injection on a Dedekind-finite set must be

surjective.
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(ii) Suppose X is Dedekind-infinite. Then there is a countable subset ¥ < X, say
Y = {x,, : n € w}. Then the function f: X — X defined by f(x) = xoif x ¢ ¥

and f(x,) = x,4 for all n € w has no finite cycle.

(iii) Suppose X is not [4]-period-finite. Then there is an injection f: X — X such that
/ has no finite cycles (including fixed points). Define a relation ~ on X by x ~ y
iff /*(x) = y forsome n € Z. Then ~ is an equivalence relation. We call an
equivalence class [x] an w-orbit if [x] = {f"(y) : n € w} for some y ¢ ran(f),
otherwise [x] is a Z-orbit. Define g on X as follows. For any member of a Z-orbit,

g agrees with f. For an w-orbit { f"(y) : n € w}, let

g/ () = f>2()

S () =0
g Y)) =
f21(y) ifn > 0.

Then g is a permutation on every orbit with no finite cycles and X is the disjoint

union of orbits. Hence X is not [5]-period-finite. ]

Note that it was mentioned in [Deg94] that there is a Dedekind-infinite set which is [3]-
period-finite. This is not accurate as we have just shown that Dedekind-finiteness and

[3]-period-finiteness actually coincide.

As [1]-period-finiteness is below Dedekind-finiteness, we let A, be the class of cardinal-
ities of [1]-period-finite sets. For [5]-period-finite which lies above Dedekind-finiteness,

we let 'L be the class of cardinalities of such sets.

5-per

It can be shown that it is consistent that there is a [5]-period-finite set which is not
Dedekind-finite (see Proposition 3.2.18). Hence these two notions do not coincide and

since A C T/ I'!

5.per> 1 5.per 18 TNOt @ finiteness class.

Proposition 3.1.45. The class A, is a finiteness class.
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Proof. Tt suffices to show that A, is closed under <. Let | X| € Ap; and [Y| < | X|. We
may assume ¥ C X. Then every permutation f on Y extends to a permutation of g on

X by a trivial extension. Since |X| € Ay, there is n € w such that g" = idy. Itis easy

to see that /" = idy. Hence |Y| € Ap,. O

Proposition 3.1.46. The class Ay, is closed under +.

Proof. Let X and Y be sets such that X N'Y = @. Suppose | X |+ Y| ¢ Ap. Then there
is a permutation f on X U Y such that f does not have finite order, i.e. f” # idyyy for

alln € w.

Case 1. f has an infinite cycle. Therefore X U Y is Dedekind-infinite. Hence either X
or Y is Dedekind-infinite and so | X | ¢ Aper o1 [Y| & Ape,.

Case 2. Every cycle of f is finite. Then there are arbitrary long finite cycles of f,
i.e.{|C|: C isacycle of f}is infinite.

For any cycle C under f,let Cxy = C N X and Cy = C NY. Then |C| = |Cx|+ |Cy]|.
Since {|C| : C isacycle of f} is infinite, either {|Cx| : C isacycle of f} or {|Cy]| :
C is acycle of f}isinfinite. Suppose {|Cx| : C is acycle of f} is infinite. Then we can
define g on X by g(x) = f"(x) where n is the least natural number such that f”(x) € X.
This is well-defined since every cycle of f is finite. It is easy to see that a cycle C’

of x under g has the same cardinality as Cx where C is a cycle of x under f. Thus

|X| ¢ Aper- D

The next 3 notions are from [Lév58], namely V-, VI-, and VII-finite, and we let 'y, I'y,,
and I'j; be the corresponding classes of cardinalities, respectively. None of these classes
is a finiteness class as it is not closed downwards. For example, if x is an amorphous set
and y = w U x, then |y| < 2|y, |¥| < |y|? and |y| is not an aleph, but Ry < |y| and R,

does not belong to any finiteness class.
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Note that I'y,; is the boundary of classes of cardinalities without AC, i.e. I'{,;; = w if and
only if AC holds. Whereas showing that @ = A needs a much weaker form of AC. To be
precise, = A is equivalent to ‘Wy,: for every x, either |x| > Ry or |[x| < Ry’ this is
weaker than ACy,,, the Axiom of Countable Choice. More details can be found in [Jec73,

Chapter 8].

3.2 Some consistency results from FM-models

It has been shown that some inclusions stated between the classes of Dedekind-finite

cardinals cannot be reversed.

For instance, since the union of two disjoint amorphous sets has an MT-rank, but is not
amorphous, it is consistent that A; # Ayr. In fact, if @ # Ay, then Ay # Aynr (see
[Tru74]). Now we try to show that the remaining inclusions not settled in the diagram

need not hold by constructing FM-models from various structures.

3.2.1 The generic bipartite graph

Let B= (T U B, T, B, <g) be the generic bipartite graph. Let U = {u, : a € B} be the
set of atoms and let < be the partial ordering on U induced by <p,i.e. up < u;ifb <pt.
Let G be the group of all order-preserving permutations of U, and F be the filter on G
generated by finite supports. Let Nz be the permutation model determined by U, G, and
F.

For convenience we may view U as T U B and we say b < ¢ if up < u,;. We will write b

for a member of B and ¢ for a member of T'.
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Notation.

1. Foreachb € B,letTp, = {t € T :t > b}and Tpy = {t € T : t || b}. Then
T =T, UTy whereb < Ty and b || Ty

2. For by,...,b, € B, let Ty, ..b;b),,...by, denote N T, N ) Ty;. We may
1<k<i i+l<i<n
write Tbl...bibl{+l...b}/1 as T4

3. For finite Yl, Y2 C B, let TY],Y2’ denote ﬂ{Tb b e Yl} N m{Tb/ b e Y2}
Similarly for #,...,%, € T and B;y.
Lemma 3.2.1. Every finite E C U supports only finitely many subsets of U.

In particular, if E = {by,...... bu,t1, ..., tm}, then there are 2" + 2™ 4+ n + m orbits of

U under Gg. Hence there are 2% t2" M sybsets of U supported by E.

To see this, we will show that orbits of members of U . E under G are either of the
form 755 or B; 7. Since there are 2" possible forms of 755/, 2" possible forms of B;y
and every member of E either belongs to or does not belong to a subset of U, there are

22" +2"+nt+m nossible subsets of U supported by E.

Given a finite subset £ C U, say E = {bq,...... bu,t1,...,tn}, the orbit of a member

of U ~. E under Gg is of the form TEZ’ or B;y.

Proposition 3.2.2. Let E = {bq,...... bu,t1,....tm}. Foranyx € T N E, Gg(x) is of
the form Ty, y; where E N B = Y, U Y,. Similarly for x € B \ E.

Proof. Letx € T\ E.Let ENB = E, U E. where x > E, and x || E.. We will show

that QE (.X') = TEx,E)/c'

Let g € Gg. Since g preserves order and fixes E pointwise, g(x) > E and g(x) | E..

Hence g(x) € T, k.
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For the converse, let y € Tg_g;. Theny > E and y || E.. Suppose y # x. Since both x
and y belongto 7', x || y. Then there is a finite partial automorphism p: EU{x} — EU{y}
taking x to y and fixing all members of E, which can be extended to g € Gg. Hence

y =g € Ge(x). O

Proposition 3.2.3. The following statements hold in N3.

1. |U| € ARussell-
2. [U] ¢ Awur.
Proof.

1. Let < be a partial ordering on U supported by a finite £ € U. Suppose x < y
and x, y lie in the same Gg-orbit. Then x ||« y (note that here x and y are
incomparable under <, the original partial ordering on U inherited from <) and
the finite automorphism p: E U {x,y} — E U {x, y} which p fixes E pointwise
and swaps x and y can be extended to an automorphism g € Gg. Therefore
y = g(x) < g(y) = x yields a contradiction. Hence x and y are from different
orbits. Since there are only finitely many orbits of U \. E under Gg, < has a minimal

element.

2. It suffices to show that for any x € 7 and finite £ C B, Gg(x) does not have

MT-rank in Ng.

Suppose there are x € T and E C B such that Gg (x) has MT-rank «. Without loss
of generality we assume x and E are such a pair with Gg (x) having a least rank «.
Then there is a least n such that dividing Gg(x) into n + 1 subsets, one of them

must have rank < «.

Lethy,...,b, € BN Eandlet E' = EU{by,...,b,}. Thenthere are 2" subsets of
G (x) supported by E’, and all of which are of the form Gg-(y) for some y € Gg(x).
Since Gg (x) has degree n, there is y € Gg (x) such that Gg/(y) has rank < «, which

contradicts Gg (x) having least rank.
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Since Ay is closed under <, |U| ¢ Amr. O

Corollary 3.2.4. It is consistent that Ayt C ARrussell-

3.2.2 The generic partially ordered set

Let P be the generic partially ordered set. Let U = {u, : p € P}. We again abuse notion
by letting U = P under the induced ordering. Let G be the group of automorphisms of
U and let F be the filter generated by finite supports. Let N'p be the permutation model
determined by U, G, and F.

Proposition 3.2.5. Arysen C A in Np.

Proof. Since U is generic partially ordered, it contains chains of all finite lengths. There-

fore |U| ¢ ARussell'

Let (IT, <) be a linearly ordered partition of U supported by a finite set E. Let x ¢ E,
say x € X \ E forsome X € I1,andlet E = E; U E, U E5 where E; < x < E, and

E3 ||< x. We will show that forall z € U, if E; <z < Eyand 7 |< E3, then z € X.

Let z € U satisfy the above condition, say z € Z € II. The aim s to show that Z = X and
then we are done. If we are able to find 7 € Gg such that 7(x) = z and 7 (z) = x, then
we have 7(X) = Z and n(Z) = X, which implies X = Z. But since the relationship
between x and z is unknown, it is not obvious whether such 7 exists, so we have to do this

with respect to a third point y as follows.

By the method of Lemma 2.3.6, thereis y € U suchthat E; < y < Eyand y||<E3U{x, z},
say y € Y € II. Let p be the automorphism of £ U {x, y} which fixes all members of
E and swaps x and y. Since U is homogeneous, we can extend p to a full automorphism
monU. Thenm € Gg andso y = n(x) € n(X) € n(I1) = I1. Hence n(X) =Y

and similarly we can show that 7(Y) = X. Suppose X # Y. Since X, Y € II, we may
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assume X < Y, but then we also have Y = g(X) < g(Y) = X which is a contradiction.

Hence X = Y, and similarly we can show that Y = Z. Therefore X = Z andso z € X.

Since the choice of x is arbitrary, we deduce that every z that is related to E in the same
manner as x lies in the same member of the partition as x. Since E is finite, there are
finitely many way to split £ into 3 disjoint sets. Therefore there can only be finitely many

members of IT. This shows that |U| € A,. O]

3.2.3 Mostowski model

Recall the Mostowski model from Chapter 2. Let U be the set of atoms isomorphic to
the rationals (Q, <g) and let < be a linear ordering on U induced by <. Let G be the
group of order-preserving permutations of U. Let F be the filter on G generated by finite
supports. Let NV be the permutation model determined by U, G and F. We call Ny, the

(ordered) Mostowski model.

The following statement is a basic property of U in N, (e.g. see Lemma 8.12 in [Hal17]).
Proposition 3.2.6. Every finite E C U supports only finitely many subsets of U.
Actually the above statement can be strengthened to determine the exact number of subsets

supported by a finite subset E C U. In particular, if | E| = n, then there are 22" *! subsets

of U that are supported by E. But this is irrelevant here.

Proposition 3.2.7. The following statements hold in N ;.

1. |U| (S A4,
2. |U| ¢ As,
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Proof.

1. This was shown in [Tru74], but for ease of reading, we give a proof here. The
result can be obtained straightforwardly from the above proposition. Suppose there
is f:U — o with a support E. Then it can be shown that E is also a support of
f~Y[{n}] for all n € w and since E can support only finitely many subsets of U, f

is not a surjection.

2. Since (U, <) is an infinite chain and the relation < is in Ay since it has empty

support, |U| ¢ As. ]

Corollary 3.2.8. It is consistent that Ay € Az and so Ay C Ay.

In Chapter 4, we will show that the set of atoms of any FM-model constructed from an

No-categorical structure will also lie in A4 in that model.

324 QxQ

Let Q = (Q x Q, <,{P; : g € Q}), where the relation < on P, is such that (P, <) =
(Q, <q) forall g € Q and is extended to Q x Q by x < y if x € P, and y € P, for some
q,r € Qsuch that g <g r, i.e. < is the lexicographic ordering on Q x Q where we treat

P,as{g} x Qforallg € Q.

Let Ug: be the set of atoms indexed by Q. Let G be the group of automorphisms on Uy
induced by Aut(Q), i.e. G preserves < and ({ P, },eq, <), and let F be a normal filter on

G generated by finite supports. Let N2 be the corresponding FM-model.

Proposition 3.2.9. |Upz| € A% A, in Nge.

Proof. First we study orbits of members of U under Gg for any finite E C U. Let E C U

be finite, say £ = {ag,ay,...,a,} where ap < a; < ... < a,. Consider orbits of
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members between a; and a;+; where ag < a; < a;4+1 < a,. We have 2 cases, either a;
and a;4; are from the same P, for some g € Q, or a; € P, and a;4; € P, for some

different ¢, r € Q, for the latter case we also have g <q .

It is easy to see that if a; and a;4, are from the same P,, then the orbits of x where
a;j < x < aj4+ is the interval (a;,a;4+1). Suppose a; € P, and a;1, € P, for some
q.r € Q such that ¢ <@ r. Then Gg fixes both P, and P, setwise. For any member
x such that a; < x < a;4+; we have the following 3 cases , either x € Py, x € P,, or
P, < x < P,. Therefore there are 3 orbits of Ug under Gg lying between a; and a; 11,
namely (a;,00) N Py, (—00,a;+1) N Py, and P,y 1= (P i g <QSs<qr}=1{x¢€
U:P;<x <P}

For ay, say ag € P, for some g € Q, there are 2 orbits of U under G on its left, namely
(—00,a0) N Py and P oo q) i= U{Ps :§ <@ ¢}. Similarly for a, which has 2 orbits of

U under Gg on its right.

We can see that these orbits of U under Gg are convex subsets of U, and there are only
finitely many of them for any given finite £ C U. Therefore any subset S C U is a finite
union of these orbits and so it is a finite union of convex subsets of U. Hence (U, <) is

weakly o-amorphous.

Now let < be a linear ordering on U. We will show that (U, <) is not o-amorphous.
Suppose < is supported by E£. Then, similarly to the proof of Proposition 4.2.1 where we
analyzed all possible linear orderings on the set of atoms of Mostowski model, < is also
built from orbits of U under Gg. Hence there is always an orbit of the form P, ,) where
q and r are either from E or ¢ = —oo or r = oo such that < is either < or > on P, ;).
Furthermore P(,,,) cannot be written as a finite union of intervals. Hence (U, <) is not

o-amorphous. [
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3.2.5 w pairs of socks

Let U = U P, where P, = {a,,b,} forn € w. Let G be the group of permutations

new
of U preserving each pair P,, i.e.w(P,) = P, forallm € Gandn € w. Let F be the
filter on G generated by finite supports. Let NV, » be the permutation model determined
by U, G and F. This model is called the second Fraenkel model in [Jec73], but we will
call it w pairs of socks according to its set of atoms as this name best depicts the model.

We also have modified versions of this model in later sections.

Proposition 3.2.10. The following statements hold in N, ».

1. |U| € A3,

2. |U| ¢ As.

3. |U| ¢ AL

4. |U| S As.
Proof.

1. Suppose there is an infinite linear ordering subset (X, <) of U with a support E.
We may assume that £ = | J,_y P, for some N € w. Since X is infinite, there is
ar € X ~ E, where ay € Py for some k > N and let by € Py ~ {ax}. Then there
is m € Gg such that w(ax) = bg. If by € X, then & swaps the ordering of a; and
by, a contradiction, and if by ¢ X, then m[X] # X, also a contradiction. Hence

such X does not exist. Therefore |U| € As.

2. Since n(P,) = P, for all © € G, the map n — P, has empty support and so
o <*U,ie. |U| ¢ Ay.

3. The function in 2 is also finite-to-one, hence |U| ¢ Aj}.

4. Let f:U — U U {x} where x ¢ U be a surjection with finite support £. We may

assume that £ = |, _y P, forsome N € w.
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Letm > N. Since f is a surjection, f~![P,] # 0. Leta € f~![P,]. Suppose
a ¢ Pp. Then there is 1 € Gg such that swaps members of P, but fixes a.
Thus fr(a) = f(a) # nf(a), which contradicts 7 f = fx. Hence a € P, so
Y Pu] € P, and since P, is finite, f~[P,] = Py,.

Thus f[E] = E U {x}, but E is finite, a contradiction. Therefore f does not exist
and hence |U| € As. O]

Corollary 3.2.11. It is consistent that As € A}, A3 € A4 and so Ay C As.

Note that the set U is a Russell-set which is defined as a countable union of 2-element sets
where the cartesian product of these sets is empty (a more precise definition can be found

in [HT06)).

3.2.6 Rational pairs of socks

Let U = | qge0 Pq where Py = {ugy,v,} for g € Q. Let G be the group of permutations
sending a pair to another pair and preserving the order of pairs, i.e.if n(Py,) = Py,
n(Py) = P, and q; <q r1, then g» <@ 2. Let F be the filter on G generated by finite
supports. Let N be the permutation model determined by U, G and F. Then we have

the following properties.

1. Each P, is in Ng,.
2. The sequence (P, : ¢ € Q) is in Ng».

Proposition 3.2.12. Every finite E C U supports only finitely many subsets of U.

The proof of the above proposition is similar to the proof of the same statement for the

Mostowski model.
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Proposition 3.2.13. The following statements hold in N ».

1 U] ¢ A,
2. |U| € As,
3. |U| € Ag,
4. |U| ¢ A~

Proof.

1. Define a relation < on {P, : ¢ € Q} by P, < P, if ¢ < r. Itis easy to see that <

has empty support and this is an infinite linear ordering on a partition of U. Hence

U] ¢ As.

2. This can be proved in a similar manner as in the Mostowski model, see the proof of

Proposition 3.2.7.

3. Suppose there is amap f:U — o with a support E. Then we have 7| f~1{n}] =
fY[{n}] for all n € w where m € Gg. By Proposition 3.2.12, E supports only

finitely many subsets of U. Therefore f is not onto, and so |U| € A4.

4. Tt follows from 2 that there cannot be any linear ordering on U in Ny, so |U| ¢

Ay O
Corollary 3.2.14. It is consistent that

1. Ay CA3N Ay,
2. AF C A,
3.2.7 The circular increasing socks

Let U = U0<new P, where P, = {a@,) : i < n}foralln € w. Let G be the

group of permutations 7 of U such that for any n € w there exists k, € w such that
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(a(n,i)) = A(n,i+k,) Where addition on suffices is done mod #, and let F be the filter on

G generated by finite supports. Let Ng_,, be the permutation model determined by U, G
and F.

Proposition 3.2.15. The following statements hold in Nr_,.

1
2
3
4
b)

Proof.

1.

\U| ¢ As.
|U| € A.

|U| € As.
|U| € As.
U & Aper.

By sending each member of P, to n, we have a surjection from U onto w ~ {0}. It

can be easily checked that this function has empty support.

Suppose |U| ¢ A. Then there is an injection f:@w — U. Let E be a support of f.
Since E is finite and ran( /) is infinite, there is n > 1 such that P, N E = @ and
P,Nran(f) # @. Letx € P, Nran( f). Then there is m € Gg such that 7(x) # x.

Hence 7 (f) # f, a contradiction.

. Let (C, <) be a linearly ordered subset of U. Suppose C is infinite. If there are

infinitely many » such that | P, N C| = 1, then there is an injection from an infinite
subset of w into U which contradicts |U| € A from 2. Hence there are infinitely

many # such that | P, N C| > 1.

Let E be a support of (C, <). Then there is n suchthat P, NE = @ and |P,NC| > 1.
If|P,NC| < n, then there are x € P, NC and & € Gg such that 7(x) ¢ P,NC, and
son(C) # C. Suppose P, € C. Let P, = {x1,X3,..., X,y Where x; < x5 < ... <
X,. Then there is 7 € Gg such that 7(x,) = x;. Hence n(x,) = x1 < 7w(xy).

Therefore 7 does not preserves <.
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Hence C must be finite and so |U| € Aj.

4. Let f be a surjection on U. We will show that f must be injective and therefore
|U| € As. Let E be a support of f. We may assume E = | J;_y P; for some

N € w.
Claim. f[P,] = P,foralln > N.

Letn > N. Clearly | f[P,]| < | Pu|. Next we show that if f(a) € P,,thena € P,.
Suppose f(a) € P, buta ¢ P,. Then there is # € Gg such that 7(a) = a and
7(f(a)) # f(a), which contradicts w(f) = f. Hence f~![P,] € P, and so
P, € f[P,]. Thus | P,| < | f[Pn]| < |Pnl|, and since P, is finite, P, = f[P,].

This implies f[E] = E and since all P, and E are finite, f is an injection on them

and hence on U.

5. Let f € Gbesuchthatk, = 1foralln > 1. Since fr = nf forall w € G, it has
empty support and so we have f € Np__ (note that it is not necessarily true that an
FM-model contains members of the group of automorphisms used to construct it).

Then for all n > 1, f" is not the identity. ]

3.2.8 The binary tree

Let U be the set of atoms isomorphic to the binary tree, say U = {u, : 0 € 2=?} with the
relation < on U defined by u, < u, if p extends o. Let G be the group of order-preserving
permutations of U and let F be the filter on G generated by finite supports. Let N7; be

the permutation model determined by U, G, and F.

Proposition 3.2.16. Every permutation f on U has ‘nearly’ order 1 or 2, meaning that

there is a finite set E C U such that f?> =idon U \ E.

Proof. Let f be a permutation of U with finite support E (not assumed to preserve <).
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We may assume that E is a finite union of levels of U until level k for some k € w. Let

x ¢ E. Then we verify all possibilities for f(x).

Let w € Gg be such that 7(x) = x’, where x’ is the sibling of x, and 7 fixes everything
not greater than x or x’. Then (x, f(x)) € f and so (n(x),7(f(x))) € n(f) = f.
Since f is an injection and x # x" = f(x), f(x) # 7w (f(x)). By the choice of =, either
x < f(x)orx’ < f(x).

Suppose f(x) > x. Then there is p € G fixing x but interchanging f(x) and its sibling.
Hence (x, f(x)) € f and (x,p(f(x))) € p(f) = f, contradicting f is a function.

Similarly for the case f(x) > x’. Hence either f(x) = x or f(x) = x/, and therefore f

hasorder2on U \ E. O]

Proposition 3.2.17. The following statements hold in Nr;.

1. |U| € A3,

2. |U| ¢ AL,

3. |U| € Aper.
Proof.

1. Suppose there is an infinite chain (C, <) in U with finite support £ which is the
union of the first k levels. Since E is finite and C is infinite, there is uy, € C \ E
such that u,» ¢ E, where o’ agrees with o except on its final entry. Let 7 € Gg
swap Uy and uyr. If uyr ¢ C, then w does not preserve the chain C. If uy € C,
then u, and u, are comparable under <, and so 7 does not preserve <. Hence such

an infinite chain doesn’t belong to N7, .
2. This follows from Proposition 3.1.39.

3. Let f:U — U be a bijection in N7; and let E be a support of f. By Proposi-
tion 3.2.16, f has at most order 2 on U ~ E and since F is finite, f has finite order
onU. O
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We also get results above A in this model.

Proposition 3.2.18. [w U U| € I's ., in Np.

Proof. Let f be a bijection on w U U with finite support E. Similarly to the proof of
Proposition 3.2.16, we may assume that £ N U is a finite union of levels of U until some
level kK € w, and we can show that f has order 2 on U ~\. E. Hence f has a finite cycle,

so|w U E| € T'g .. O

Obviously | U U| ¢ A. We conclude consistency results holding in N7, as follows.

Corollary 3.2.19. It is consistent that

1. Ay C Apery
2- A?n Aper z As, A;
3. ACTL.

5-per*

More on trees

First we remark that Proposition 3.2.16 does not necessarily hold in the same fashion
for any n-ary tree. In particular, an FM-model built from an n-ary tree need not have a
permutation on its set of atoms having ‘nearly’ order n. The precise value depends on
the choice of structure that we put on the set of successors of each vertex. Consider the
following examples for the case n = 3, both of which are based on a ternary tree but with

different results.

Examples.

1. Ternary tree: Let 73 be a ternary tree. Construct an FM-model with the set of
atoms U, indexed by 73, G the group of automorphisms of Ur; induced by Aut(73).

Let N7; be the corresponding FM-model with finite supports.
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Fact 3.2.20. Every permutation on Uz, in N7, is ‘nearly’ the identity.

Proof. Let f:Up — Ugp be a permutation with finite support E, which we may
assume to be a finite union of levels up to level k € w. Let x ¢ E and let x" and
x" be its siblings. Similarly to the proof of Proposition 3.2.16, we will verify all

possibilities for f(x), and by using the same argument, we ended up with 3 cases,
f(x)=x, f(x) =x",0r f(x) =x".
Suppose f(x) # x. Then there is 7 € Gg which fixes x but swaps x" and x”.

Hence 7w f(x) # f(x) = fm(x), contradicting that E supports f. Thus f(x) = x.

Similarly for x” and x”. Therefore f is the identity on Ur, \ E. O]

2. Circular ternary tree: A circular ternary tree 7¢, = (7, <, R). This is a ternary
tree with an extra ternary relation R defined on each succ(x), the set of successors
of a vertex x, so that (succ(x), R) = Cj for all x € T, so if succ(x) = {y,y’, y"}

we have for example R(y, y’,y”) and R(y’,y”,y)and R(y", y,’).

We construct an FM-model with the set of atoms Uz, indexed by 7Tc,, and G
the group of automorphisms of Uz, induced by Aut((7, <, R)). Let NTC3 be the

corresponding FM-model with finite supports.

Fact 3.2.21. Every permutation of Ut in NTC3 has ‘nearly’ order 3.

Proof. Similar to the proof of the ternary tree case. Let f: Ure, = Urc, be a
permutation with finite support £, which we may assume to be a finite union of

levels up to level k € w. Let x ¢ E and let x” and x” be its siblings. We have
f(x)=x, f(x) =x",or f(x) =x".

Let m € Gg be such that 7(x) = x’. As & preserves R, we have 7(x’) = x” and
7(x")y = x. If f(x) = x, then f(x') = fn(x) = 7nf(x) = n(x) = x/, and
also f(x”) = x". If f(x) = x/, then f(x') = frn(x) = nf(x) = 7 (x') = x”,
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and f(x”) = x. Similarly if f(x) = x”, then we can show that f(x’) = x and
f(x") =x".
Now let p € Gg be such that p(x) = x”. Then p(x") = x and p(x”) = x’. We also

get the same results for f(x) as in the case for 7.

Therefore if f(x) # x, f either coincides with 7= or p on {x, x", x”}, and hence it

has order 3 on Uz, \ E. [

Next we outline the idea for proving Proposition 3.1.42, taken from [Tru74]. We construct
an FM-model from a binary tree but this time with an extra function f. The choice of the
group of automorphisms G is not the same as the usual construction that we introduced

earlier in the section, as instead G must preserve f.

Let U be the set of atoms indexed by the binary tree 75. Let V, W C U be subsets of U

defined as follows.
V ={u, :0 € 2= begins witha0} and W = {u, : 0 € 2~ begins with a 1}
Define a function f:V x W — V x W U {x} by

S (uoa,  u1p,)) = *,

f(<u0a1a2~.-oti+106i+2’ ulﬂlﬂz---ﬁi-i-lﬂi-s-z)) = (uoalaz'-«aiﬁi-i-l s U1B1B2...Bicti 41 ),

and  f((Ug,,Us,)) = (Uo,, Us,) Otherwise.

In particular, for u¢~,, and u;~,, with their indices having equal length > 2, f removes
the last digits and swaps the second to last. It is easy to see that f is finite-to-one and

surjective.

Now we want to implement f in this FM-model construction. Let G be the group of

automorphisms on U preserving the length of the sequences, fixing I and W setwise, and
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further preserving f. Let A/ be the corresponding FM-model with finite supports. Then
f belongs to N and hence we have |V |- |U| ¢ AZ in V.

By the choice of G, it preserves only length of the sequences and the function f, but not
the structure of the tree as far as is apparent. Also since f swaps the second to last digits
of the sequences after removed the last digits, it does not create a new function that can
induce a tree structure on either IV or W. We can see that both 1V and W are treated
as increasing socks where their n'" pairs having size 2", and hence, by using the same
argument as the @ pairs of socks in Proposition 3.2.10, their cardinalities lie in As and

hence AZ. For full details see [Tru74].

3.2.9 Infinitely branching tree

Let U be the set of atoms isomorphic to Baire space, say U = {u, : 0 € w=?} with the
relation < on U defined by u, < u, if p extends o. Let G be the group of permutations
of U preserving order and let F be the filter on G generated by finite supports. Let Ny<w

be the permutation model determined by U, G, and F.

Let E be a finite subtree of U which we assume to be closed downwards. Now we study
the orbits of members of U ~ E under Gg. Letu, € U ~ E. Then there is ug € E such
that ug < u,, and we may assume that u g is the greatest such. The orbit of u, under G,
written Gg (us) is of the form {u, € U \ E : u, > ug and |o| = |pl}, i.e. the orbit of u,
under G is the set of members of U . E related to E the same manner and on the same

level as u,-.

Proposition 3.2.22. The following statements hold in N y<o.
1. |U| € A}.

2. |U| € AL
31Ul ¢ As.



58 3. RELATIONS BETWEEN NOTIONS OF DEDEKIND-FINITENESS

Proof.

1. Suppose there is a finite-to-one map f from a subset X C U onto w. Let E
be a support of f. Then we may assume E to be a subtree of U and E also
supports X. Let x € X \. E. Then Gg (x) is infinite and f~![{ f(x)}] is finite. Let
y € Ge(x) ~ f7H{f(x)}]. Then there is 7 € G mapping x to y. Thus 7 does

not preserve f, contradicting E supporting f.

2. Follows from 1 since A} € AZ.

3. Let g:U — U defined by g(ug) = ug and g(uys~,) = u, for all 0 € =% and
n € w. Then g is an infinite-to-one surjection on U. [

Proposition 3.2.23. It is consistent that As C A; and A} € As.

3.2.10 Summary

Section 3.2 shows that it is consistent with ZF that none of the relation C between
finiteness classes in the diagram after Definition 3.1.2 can be replaced by =. Furthermore
we showed that in some cases classes that have no relation indicated between them are not
comparable, by using various FM-models. We gather and present all these results in the

following diagram.
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The results involving the relations in dashed lines are listed as follows. First we note that
---» means there is, provable in ZF, a relation C between the two classes, but ---- means

that it is consistent that two such classes are incomparable under C.

(i) an amorphous set X has its cardinality | X| € A} \ w.

(i) the disjoint union of two amorphous sets X and Y has |[X U Y| € Ayr \ Aj.

(iii) |U| € Agussel ~ Ayt in N (Proposition 3.2.3).

(iv) ARrussell € Ay in Np (Proposition 3.2.5).

(V) A, C Az in N, (Corollary 3.2.11), and also in Ng > (Proposition 3.2.13).

(vi) Since |[U| € Aq4 ~ Az, A3 C A in Ny (Proposition 3.2.7).

(vii) A, C A4 in Ny (Proposition 3.2.7), and also in Ng,» (Proposition 3.2.13).

(viii) |U| € Ay \ @ in Ny.

(ix) |Ugz| € A}~ A} in N2 (Proposition 3.2.9).

(x) |U| € Aq ~ A¥ in Ny (Proposition 3.2.13).

(xi) Since |U| € A} ~ As where Ay € As, Ay C A} in N,<o (Proposition 3.2.22).
(xii) Since |U| € As \ A} where As C A%, A} C As in N, > (Proposition 3.2.10).
(xiii) Since [U| € A; € Aand |U| ¢ A%, A C A in N7, (Proposition 3.2.17).

(xiv) |U| € As ~ Ay in N, 5 (Proposition 3.2.10).
(xv) |U| € A%\ As in Ny<o (Proposition 3.2.22).
(xvi) Since |U| € Aper \ A% where Ay C AZ, Ay C Ay in N7 (Proposition 3.2.17).
(xvil) |U| € A%\ Aper, 50 Aper C A in N (Proposition 3.2.15).
(xviii) Az and A4 areincomparableas Az € Agin N, (Proposition3.2.10)and Ay € A3
in Ny (Proposition 3.2.7).
(xix) Aper and As, AZ are incomparable as As € A, in NF_,, (Proposition 3.2.15), and
Aper € A% in Ny (Proposition 3.2.17).
(xx) A} and As are incomparable as A} Z As in Ny<o (Proposition 3.2.22) and
As & A} in N, » (Proposition 3.2.10).
(xxi) Ajand As are incomparable as A3 € As in N7, (Proposition 3.2.17) and As € A;
since Ay € As in Ny (Proposition 3.2.7).
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Chapter 4

Dedekind-finiteness and definability

In this chapter, we will study relationships between Dedekind-finite sets and definability.
This is inspired by some results from [Pin76], [Tru95], and [WTO0S5] where the connections
between various Dedekind-finite sets with model theoretical structures are studied. For
instance, there is a very close connection between weakly Dedekind-finite sets and No-
categorical structures. This chapter develops a theme from [WTO05], going over some of
the same ground but also giving more examples. We show that structures which may exist
on weakly Dedekind-finite sets are definable from the original structures used in their
FM-model constructions. Definability here may have various meanings, ranging from
definable in a finite first-order language to an infinite first-order language or an infinitary

language.

Throughout this chapter, unless otherwise stated, let 2 be a structure and let Uy be the set
of atoms indexed by the domain of 2, i.e. Uy = {u, : a € A} where A = |2{|. The group
G is the group of automorphisms of Uy induced by Aut(2(). Let Ny be the FM-model
constructed from 2 with finite supports. We may write Uy and Ny as just U and N if the

structure 2( is clear in the context.
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4.1 Weak Dedekind-finiteness and RX,-categoricity

We first look at the following result from [WTO0S5] in which the author studied the relations

between weakly Dedekind-finite sets and NX-categorical structures.

Theorem 4.1.1 ([WTO05]). Let X be a set admitting a structure 2 axiomatizable in a
countable language and T = Th(Rl). If X is weakly Dedekind-finite, then T is Ry-

categorical.

The converse result for the set of atoms of an FM-model constructed from an Xy-categorical

structure also holds.

Proposition 4.1.2. If 2 is Ro-categorical, then Uy is weakly Dedekind-finite in Ny.

Proof. Let f: Uy — w bein Ny, say f is supportedby E. Letw € Gg. Thennf = f,
and so it can be proved straightforwardly that 7 ( f~![{n}]) = f~![{n}] for all n € w.
Since 7 is arbitrary, E supports f~![{n}] for all n € w. By Theorem 2.4.2 (the Ryll-
Nardzewski theorem), there are only finitely many orbits of Uy under Gg. Since every
subset of Uy supported by E is a union of orbits, there are finitely many such subsets,
i.e. there are only finitely many distinct f~![{n}]. Therefore f is not onto, and so Uy is

weakly Dedekind-finite. [

This leads us to more questions. Given a weakly Dedekind-finite set U and a first-order
structure B on U, what else do we know about ‘8? Furthermore, if U is the set of atoms
of an FM-model constructed from some structure 2, how are 2l and ‘B related? These will

be discussed in the next section.
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4.2 Definability in permutation models

The goal of this section is to find a connection between definability and structures existing
on the set of atoms. Firstly we consider the following three examples of structures
constructed by the Fraissé method and their corresponding FM-models. We will analyse

relations that can be put on the set of atoms in each model.

4.2.1 The rationals: (Q, <q)

Recall the Mostowski model N with the set of atoms Uy = {u, : g € Q}, alinear ordering
< on Uy induced from <g on @, and the group of automorphisms G = Aut(Up, <) with

finite supports. We now study possible linear orderings on Ug in the model N.

Proposition 4.2.1. For a finite subset E C Uy, there are finitely many linear orderings

on Ug in Ny supported by E.

Proof. Let E C Ug be a finite set and let < be a strict linear ordering on Uy in Ny

supported by E, say £ = {ag,ay,...,a,—1} Whereag < a; < ... < da,_1.

Then there are n + 1 orbits of Uy . E under Gg where each of them is an interval, either
(aj,aj4+1) where 0 < i <n —1 or (—00,ay) or (a,—1,00). Also there are n singleton

orbits of E under Gg which are {a} where a € E.

Let / be an interval orbit, say I = (a,b) where a,b € E U {xo0}. The claim is that
< is either < or > on /. It is easy to check that if there are x, y € [ such that x < y
and x < y, then for all z, w € I such that z < w, we also have z < w. Therefore < is
the same as < on /. Also if there are x, y € I such that x < y and x > y, then for all
z,w € I such that z < w, we have z > w, so < is > on /. We also note that / is an
interval under the ordering < as well. Forif x < y < z where x,z € [ and y ¢ I, then

there is 7 € Gg taking x to z but fixing y which violates preservation of <.
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Hence there are 2”1 possible values of < on these interval orbits. And there are 2n + 1
orbits, which can be arranged in (2n + 1)! possible ways. Therefore the total possible

number of < supported by E on Ug is 2*"*1(2n + 1)!. O

4.2.2 The random graph

Let (I', ~r) be the random graph. Construct an FM-model by letting Ur = {u, : y € I'}
be the set of atoms with the graph relation ~ induced from ~r, G = Aut(Ur, ~), F be
the filter on G generated by finite supports, and let N1 be the corresponding FM-model.

Now we try to list all possible graph relations on Ur in Nr.

Let E be a graph relation on Ur in Nr. Then there is a finitte A C Ur supporting E.
Since Ur is constructed from a homogeneous structure (and so it is Ry-categorical), there

are finitely many orbits of Ur ~. A under G4.

Note that for any orbit X of Ur . A under G4, there is a formula ¢(a, x) where a € Al
such that X = {b € Ur : Ur F ¢(a,b)}, i.e. ¢ tells us how the members of X relate
to members of A. Therefore, for any x,y € X, there is w1 € G4 such that 7(x) = y
since amap A U {x} — A U {y} fixing all members of A and sending x to y is a partial

automorphism on Ur and so it can be extended to an automorphism on Ur.

We study the relation £ by looking at all the possible forms E can take between orbits.
Since every permutation in G4 fixes all members of A, E can be any graph relation on A.

Next we investigate all possible E between orbits of Ur ~. A under G4 and A.

Case 1. Inter-orbits.

Let X and Y be orbits of Ur . 4 under G4. Consider the following statements,

() Ixe X,y eY, (x ~yAxEy),
() Ixe X,y €Y, (x ~y AxEY),
(iii) Ix € X,y € Y, (x » y AXEY),
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(iv) Ixe X,y e Y, (x » y AxEYy).

We will show that, in X, (i) = Vx € X,Vy € Y,(x ~ y = xEYy), and similar results
also hold for (ii)—(iv). With these results, we can conclude that there are 4 possibilities for

EonX

e (i) + (iv) = E = ~Dbetween X and Y.

e (ii) 4 (iii) = E = ~ between X and Y (where ~ is the complement of ~).
e (i) + (iii) = E is complete between X and Y.

e (ii) 4+ (iv) = E is empty between X and Y.

Here (i) and (ii) cannot be true at the same time, and similarly for (iii) and (iv).

To see that (i) = Vx € X,Vy € Y, (x ~ y — xEYy), suppose there are x € X and
y € Y suchthat x ~ yand xEy. Letz € X and w € Y be such that z ~ w. Then
the map from A U {x, y} — A U {z, w} fixing all members of A, x + z and y +> w is
a partial automorphism and so it can be extended to an automorphism 7w € G4. Since

preserves E, m(x)En(y),i.e.zEw.
Note that this also tells us how E behaves on X by replacing Y by X.

Case 2. Between an orbit and A.
Let X and be an orbit of Ur . Aunder G4. Leta € Aand x € X. If aEx, thenaEy for
all y € X, since for any y € X, there is 7 € G4 such that 7(x) = y and so 7w (a) En(x),

iie.aEy. Similarly ifa £ x, thena Fy forall y € X.

If |A| = n, there are 2" orbits of Ur ~. A under G4. There are 243 possible £ on A.
There are 2" possible £ between A and an orbit, so there are (2”)2” possible E between

A and orbits. There are w

pairs of orbits (including pairing with itself), so there are

212" 41) . . (n—Dn n n(~r
4=2  possible E between orbits supported by A. Hence there are 2~ 2 172"+2"2"+1D

possible E that are supported by A.

Proposition 4.2.2. Let E be a graph relation on Ur with a support A. Let X be an orbit
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of Ur under G 4. Then either (X, E) is empty, complete, or Th(X, E) = Th(I', ~).

We can obtain a similar result for any binary relation on Ur in Nr. In particular, there
will be no linear ordering on Ur in Nr. Actually we cannot have asymmetric relations
on any orbit of Ur. In the ‘Inter-orbits’ case in the above proof, we can replace ¥ by X
to study how members in each orbit are related with respect to the relation E, and since

cases (i) and (ii) cannot both hold at the same time, £ cannot be asymmetric.

4.2.3 Henson digraphs

Let 7 be a family of finite tournaments such that every tournament 7 € 7 has cardinality
> 3 and every pair of members in 7 are non-embeddable. Let (D, E7) be the Henson

digraph with age Forb(7) (see [Hen72]).

Construct an FM-model from (D, E7). Let Ur be the set of atoms indexed by D+ with
the digraph relation E induced from E+, G = Aut(Ur, E), F be the filter on G generated
by finite supports, and let N be the corresponding FM-model.

Let ~ be a digraph relation on U in N7 with finite support A. Let X and Y be orbits of

Uz ~ A under G4. Then we have the following possibilities.

(i) Ixe X,y eY, (xEy Ax ~y),
(i) Ixe X,y e Y, (xEy Ay ~ Xx),
(iii) Ix e X,y € Y, (xEy A x||y),
(iv) Ixe X, Iy e Y, (yEx Ax~Y),
v) Ixe X, Iy eY,YExX Ay~ X),
(vi) Ix e X,Iy € Y, (yEx A x| ),

(vii) Ix € X,y € Y, (x||[gy Ax ~ y),
(viii) Ix € X,y € Y, (x||[gy Ay ~ X),
(ix) Ix € X,y € Y, (x||[gy A x|~ p).
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Similarly to the proof for the random graph, (i) implies Vx € X,Vy € Y, (xEy — x ~
y), and similarly for (ii)—(ix). Furthermore only one case from (i)—(iii) can happen at a
time, similarly for (iv)—(vi) and (vii)—(ix). Therefore, there are 27 possible forms of ~»

between X and Y.

Note that if X = Y, i.e. considering ~» on X, (i) and (ii) cannot both hold since we can
find 7 € G4 such that 7(x) = y and 7w (y) = x so we cannot decide whether x ~» y
or y ~ x and ~ is asymmetric. Hence there are 3 possible forms of ~» on X, either

~ = E,~ = E~! or ~ is empty there.

For relations between A and X, if a € A, we have either a ~ X or X ~» a or there are

no edges between a and X.

Therefore there are only finitely many possible digraph relations on U that are supported

by A.

Now consider the following specific choice of 7. Let 7 = {I,, : 6 < n < w} where L, is
the linear ordering of length n viewed as a digraph and /,, is obtained from L, by reversing
edges on adjacent vertices and between the source node and the sink node. For example,
see the following diagram for the case n = 6 where the reversed arrows are highlighted in

red.

Then 7 is an infinite family of finite digraphs of cardinalities > 6 such that all members
are pairwise non-embeddable and have different cardinalities. More details on this con-

struction can be found in [Che98] page 8. Furthermore, it is easy to see that I, = (1)~}
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for every n € w. Consider again the case n = 6. The function i — 7 — i, for all i such

that 1 <i < 6, is the desired isomorphism.

W

I 2 3 4 5 6 1 2 3 4 5 6
Is It

Therefore for any I € T, we can view I ! as I (up to isomorphism) and hence we have

171 €T as well.

Proposition 4.2.3. Let T1,T, C T be such that Ty # T>. Let N7, and N7, be the FM-
models constructed from the Henson digraphs (Dr,, E1) and (Dr,, E») with the groups
of automorphisms G, and G,, respectively. Then there is a digraph relation R on U, in

N7 such that (Ur,, R) = (D7, E1), but there is no such digraph relation on Ur; in N7;.

Proof. Let R be a digraph relation on Uy, induced by E;. Since the group G; on Uy, is
induced by Aut((D7,, E1)), it preserves R and hence R exists in N;. It is easy to see
that (Ur,, R) = (D7, Eq).

Now we show that there is no digraph relation ~» on Uy, such that (Uz,,~) = (D7, E1).
Without loss of generality, let / € 7; ~. 7. Let ~ be a digraph relation on Uy, with

support A. If ~» is the empty relation, then we’re done. Suppose ~+ is not empty.
Case 1. ~ is empty on all orbits of Uz, under (G>) 4.

Then ~~ is non-empty only between orbits. Since there are only finitely many orbits, say
there are k orbits, we cannot embed any tournament of size > k. As (D7;, E1) admits all

finite tournaments which do not embed any member of 71, (Up,~) # (D7, Ey).

Case 2. There is an orbit X of Uz, under G4 such that ~ is non-empty on X.
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As we analyzed all the possibilities of ~ in the early part of this section, either ~ = E,
or~ = E;'on X. If ~ = E,, then ~» admits 7. Suppose ~» = E;'. Then ~» admits

I7'. Since I = I, E;! also admits /. Hence (Up;,~) # (D, E1).
Therefore U, does not carry a digraph structure that satisfies Th(Ur;, E1) in N7;. [l

Corollary 4.2.4. There are 2% first-order theories of digraphs such that for each of them,
there is a corresponding weakly Dedekind-finite set. In particular, there are at least 2%

non-equivalent (in the sense of Definition 5.3.5) weakly Dedekind-finite sets.
Proof. Since T is countably infinite, this follows directly from the above proposition. [

From those three examples from Sections 4.2.1-4.2.3, we can see that a relation on Uy in
each model is related to the original relation on Uy which is inherited from 2l and carried

over to Ny by G.

Theorem 4.2.5. Let 2 be a countable structure. Then every relation on Uy in Ny
is (infinitary) definable from AV, where AN is the structure in Ny inherited from 2.
More precisely, if 2 is Ro-categorical, then every relation on Uy in Ny is definable by
a first-order sentence (with finitely many parameters). Otherwise, it is definable by an

Ly, -sentence.

First we need the following lemma, which is a basic result for any FM-model.

Lemma 4.2.6. For all n € w, every subset of U" with support E is a union of orbits of

U™ under Gg.

This is true since every subset of U” with support E is invariant under Gg. It remains
to show that every orbit of U" is definable for all n € w. For Ry-categorical structures,
we have the following corollary of the Ryll-Nardzewski theorem (Theorem 2.4.2), whose

proof can be found in [Eval3].
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Corollary 4.2.7. Let 2 be an Ry-categorical structure and let G = Aut(2l).

1. Two n-tuples are in the same G orbit iff they have the same type over @ in 2.
2. The Q-definable subsets of A" are unions of orbits of A" under G
3. If X C A is finite, then the X -definable subsets of A" are unions of orbits of A"

under Gyx.

Hence, for any relation R on Uy with finite support £, R is a union of orbits of U”
under Gg for some n € w, where each orbit is E-definable, therefore R is defined by the
conjunction of those formulae defining each orbit contained in R. However these methods
cannot be applied for the case that 2 is not 8¥y-categorical. It is immediately true that if
two tuples are in the same orbit, then they have the same type but the converse might not
be true for a non-R-categorical structure. There could be infinitely many orbits of U"
under G and a formula with finitary symbols might not able to distinguish two different

orbits.

Proof of Theorem 4.2.5. Let R be a relation on Uy with finite support E.

Case 1. 2 is Ry-categorical. Then every orbit of Uy is E-definable and there are only
finitely many such orbits. By Lemma 4.2.6, R is a union of orbits of Uy under E.

Therefore R is also E-definable.

Case 2. 2l is not Ny-categorical. Extend the language £ to £’ by adding every a € E
as a variable symbol and let 2’ be an L’ structure extending 2 with the same underlying
set. Let 0 € A. Assume (2, R) =~ (2, Q) and let f be such an automorphism. Then
f € Gg and so f fixes R setwise. Hence R = f(R) = Q. By Theorem 2.6.3, there
is an £, ,-formula ¢ defining R, where ¢ can be viewed as L, ,-formula with finitely

many parameters from E.

This can be applied for any function and constant on Uy. Therefore every structure on Uy

is definable by either first-order sentences or L, ,-sentences. L]
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4.3 Reconstruction

We have learned from the previous section that given a homogeneous structure 2{ in a
finite relational language, then it is Ry-categorical and therefore the set of atoms Uy is
weakly Dedekind-finite in the corresponding FM-model Ny. In this section, we try to
retrieve the original structure that is used to construct a given FM-model. Also we ask
if we are given two ‘different’ homogeneous structures, will they give rise to different

weakly Dedekind-finite sets?

Proposition 4.3.1. Let 2 be an Ry-categorical structure and let Uy be the set of atoms
of the corresponding FM-model. Then for every countable B = (Uy, R) where R is any

n-ary relation on Uy, *B is Ry-categorical.

We can see that the above statement can be obtained immediately from Theorem 4.1.1

and Proposition 4.1.2.

Proposition 4.3.2. Let 2 be an Ry-categorical structure and let E be a finite subset of Uy,.
Then for all n € w there are finitely many possible n-ary relations on Uy in Ny supported

by E.

Proof. Let R be an n-ary relation on U with support £. We will show that R is a union
of orbits of U” under G and by the Ryll-Nardzewski Theorem (Theorem 2.4.2), there

are only finitely many such orbits. Hence there are only finitely many possible R.

Let X be an orbit of U” under Gg. Suppose RN X # @. Leta € RN X # (. Then for
any b € X, thereis 7 € Gg suchthath = n(@) € n(RNX) = n(R) Nn(X) = RN X.
Therefore b € R and so X C R. OJ
Proposition 4.3.3. Let 2 be an Ry-categorical structure. Let B F Th({U, R)) where 5
is countable and R is a relation on U in Ny. Then there is a structure ¢ == B which is

definable from 2. In particular, we may take B = A, where A and B are the underlying
sets of U and B, respectively, and B = (A, R') where R’ is defined from R.
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Proof. Let R be a relation on U in Ny. Define R’ on A as follows. For any a =
(ay,...,ay) € A", wesay R'(ay,...,ap) iff R(ug,,...,uq,). Then, by induction on the
length of ¢, (A, R') E ¢ iff (U, R) F ¢. Hence Th({A, R’)) = Th({U, R)) and therefore
(A, R’) is a model of Th((U, R)). By Proposition 4.1.2, U is weakly Dedekind-finite,
therefore, by Theorem 4.1.1, Th((U, R)) is Ro-categorical. Hence (A, R’} is the unique

model (up to isomorphism) and this is definable from 2. [

4.4 Above A,

We now move beyond weak Dedekind-finiteness. We learned in the previous section that
there is a relation between Ry-categoricity and weak Dedekind-finiteness. Now we would
like to find some property (%) so that if a structure 2 satisfies (), then Uy is Dedekind-
finite in Ny. Also we want to obtain a similar result for the converse, i.e. for any given
Dedekind-finite set U, what can we say about each structure 2l that U can be equipped

with?

To obtain the first result, let 2 be a structure and let Uy and Ny be the corresponding set

of atoms and the FM-model induced from 2 with finite supports, respectively.

If Uy is Dedekind-infinite in ANy, then there is an injection f:w — Uy in Ny. Let X

be a support of f. Then for any & € Gy, n(f) = f. Since n(n) = n forall n € w,
min, f(n)) = (w(n),n(f(n)) = (n,7(f(n))), soas f is afunction 7 (f(n)) = f(n).

Since f is an injection, all f(n)’s are distinct. Hence 7 fixes infinitely many members
of Uy for all # € Gy. Therefore if we want Uy to be Dedekind-finite in Ny, we need

{a € Uy : w(a) = a forall m € Gx} to be finite for all finite X C Usy,.

Notation. For any set X C Uy, let [X] = {a € Uy : n(a) = a forall m € Gx}

A precise statement is as follows.
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Proposition 4.4.1. If [X] is finite for all finite X C Uy, then Uy is Dedekind-finite in Ny.

Let 2 be a structure. For a formula ¢(x), we write ¢ (2() for the set of all a € A such that
AFE ¢(a).

Definition 4.4.2.

e Let 2 be an L-structure and X be a subset of |2{|. A formula ¢(x) € £(X) is called
algebraic if () is finite.

e Anelement a € A is algebraic over X if it realises an algebraic £(X)-formula. We

call an element algebraic if it is algebraic over the empty set.

e The algebraic closure of X, written acl(X), is the set of all elements of 2 algebraic

over X.

e The definable closure of X, written dcl(X), is the set of all elements a such that

there is an L£(X)-formula ¢(x) such that a is the unique element satisfying ¢,

ie.{a} = ().

e For a structure A, we say acl is locally finite if acl(X) is finite for all finite X C A.

Similarly for dcl is locally finite.

It is easy to see that dcl(X) C acl(X) but they are not necessarily equal, for example,

recall the o pairs of socks S, » with U = U P,. We have acl(@) = U butdcl(d) = 9.

new

Furthermore we have the following fact, which is a consequence of the Ryll-Nardzewski

theorem.

Fact 4.4.3. If 2 is Ry-categorical, then the algebraic closure of a finite set is finite. In

particular A is locally finite, i.e. any substructure generated by a finite subset is finite.

Therefore

No-categoricity = aclis locally finite = dclis locally finite.
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Proposition 4.4.4. Let M be an L-structure and let A C | M| be finite. If X € M"
is A-definable, then every L-automorphism of M that fixes A pointwise fixes X setwise,
le.m(X) =X forall m € Gg4.

Proof. See Proposition 1.3.5 in [Mar02]. ]

The converse of the above proposition is not necessarily true in general but it holds for
Ro-categorical structures as follows from the Ryll-Nardzewski Theorem (Theorem 2.4.2).
For example, there is a rigid uncountable dense subset X of R (meaning that it has no
non-identity automorphism) so that every {a} is fixed by Aut(X) but is not #-definable.
In the countable case, a countable model 2l is rigid iff each element of 2 is definable in A

by a formula of L,,, ., (see [Sco65]).

Let 2l be a structure and consider the following statement.

[X] is finite for all finite X C A. (*)

Notice that

Ro-categoricity = (x) = dcl locally finite.

Lemma 4.4.5. If 2 is countable, then [X]| = dcly,»(X) for all finite X < A.

Proof. 1t is easy to see that dcl,,,(X) € [X]. Showing that every a € [X] is definable
by some L, ,-formula (with parameters from X') can be done in a similar manner as in

the proof of Theorem 4.2.5 by using Theorem 2.6.3. Hence a € dcly,,»(X). ]

Let 2 be a countable structure. If 2( is dcl,,, locally finite, then Uy is Dedekind-finite.

Proposition 4.4.6. If Uy is Dedekind-finite in Ny, then dcly,, is locally finite in 2.
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Proof. Suppose dcl,,, is not locally finite in (. Then there is a finite subset X C A
such that dcl,, (X)) is infinite. Since dcl,,,»(X) € A and A is countable, then there is a

bijection f: @ — dcly,»(X). Next we will show that 1 is in Ng.

Foreacha € dcl,,,(X) thereis an L, ,-formula ¢, with parameters from X such thata is
the unique point such that (2, X U{a}) F ¢,(a). Hence for any 7 € Gy, w(a) = a. Since
m(n) =nforalln € w,wehave w(f) = f. Thus f € Ny. Thus Uy is Dedekind-infinite
in NVy. O
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Chapter 5

Beyond A4

In this chapter we try to perform reconstruction on sets that lie outside A4, weakly
Dedekind-infinite sets. First we investigate FM-model constructions in which their set of
atoms are not weakly Dedekind-infinite. Chapter 4 shows us there is a connection between
R-categorical structures and FM-models with their set of atoms weakly Dedekind-finite.
Hence to find FM-models with their sets of atoms lying above A4 we should start with
non-R-categorical structures, for example, structures with a countably infinite partition,

which we will study in the first section.

The rest of this chapter studies trees in this context. In the first case, we consider trees
whose branches are densely ordered, in particular the so-called ‘weakly 2-transitive trees’
from [DHM&9], which we show give rise to 2%o essentially distinct members of A5~ Ay.
The main part of this final section however considers well-founded trees of height w,
which have a close connection with sets which lie outside As. We concentrate on trees
of this kind that are balanced, where all points on any particular level behave in the same
way, and show how an arbitrary tree of height @ and no leaves can be suitably ‘pruned’ to

give a balanced tree (subject to some conditions).
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5.1 Sets with countably infinite partitions

Let 2 be a structure with its domain A having a countably infinite partition IT = {A; :
i € w} whose group of automorphisms Aut(2() preserves each member of IT setwise,
i.e.w[A;] = [A;] forall m € Aut(2A) and i € w. Now construct an FM-model Ny from A
with the set of atoms Uy induced by 2( and the group of automorphisms G on Uy induced
by Aut(2() with finite supports. Since each member of IT is fixed setwise by Aut(2l), its

corresponding set lies in Ny and so |Uy| ¢ Ay in Ny

Since we are studying Dedekind-finite sets, the choice of 2l must be made carefully so
that there will not be infinitely many singleton orbits under its automorphism group (to be
precise we want 2{ to have dcl,, ,, locally finite), otherwise Uy will be Dedekind-infinite

in NV, as in the following example.

Example. Let {; : i € w} be a family of countable structures 2(; such that 2; =~
([0,1) N Q, <) for all i € w and the A;, the domains of 2;, are pairwise disjoint. Let
A= Uiew A; and A = (A, {A;}icw, {<i}icw) Where A; is a unary relation and <; is the
relation on A; from 2; for all i € w. Note that for all i € w, 2; is Ry-categorical but not

homogeneous.

Construct an FM-model model from the above 2l as follows. Let Uy be the set of atoms
induced from %A, say Uy = {u, : a € A}. We write U; for {u, : a € A;}. Let G be the
group of automorphisms on Uy induced from Aut(2(), and let Ny be the corresponding

FM-model with finite supports.

Since G fixes each member of I1, the sequence (U; : i € w) has empty support, and so it
is in the model Ny. Therefore |Uy| ¢ A4 in Ny. Furthermore we can define a function
f:i +— u; where u; is the <;-least member of U; for all i € w. This function also has

empty support and so it lies in MVy. Hence |Uy| ¢ A in Ny.

The structure 2( in the above example is not suitable for our study. Even if each member of
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the partition carries an 8q-categorical structure, its corresponding set of atoms may turn
out to be Dedekind-infinite in the FM-model. So having each member of the partition
R-categorical is not sufficient for making the cardinality of the set of atoms lie in A in

the FM-model.

This can be fixed by requiring that the group of automorphisms acts transitively on all but
finitely many members of the partition. The next example is a modified version of the w

pairs of socks, changing the size of each member of the partition.

Example. Recall the w pairs of socks S, 2 = (|;¢,, Pi» <) where each |P;| = 2 for all

I€w

I € wand < is defined on U P;by P; < P;ifi < jforalli, j € . Instead of having

i€w
each | P;| = 2 for all i € w, we can alter | P;| to be other cardinals. Start with the finite

case where each P; is finite and carries no structure (we will deal with the case that | P; |

is weakly Dedekind-finite later). Letn € w and let S, , = (U, ¢, Pi, <) where |P;| = n
for all i € w and let the relation < be defined on U P by P, < P;itfi < j. Then

Aut(S, ) | Pi = Sym(P;) foralli € w.

i€w

Obviously |Us,, | ¢ AsinNg, ,, but this time we have |Us, ,| € AinN, , provided that

n > 2 which can be verified in a similar way as w pairs of socks (see Proposition 3.2.10).

Notice that we assumed that no P; carries any structure. This requirement is not necessary
in general for an FM-model construction. For instance the Mostowski model N@, which is
constructed by letting the set of atoms Ug be induced from the structure on rationals with
its usual ordering (Q, <g) and letting the group G to be the group of automorphisms on
Up induced from Aut({Q, <@)). We can see that the group Aut({Q, <q)) is a subgroup
of Sym(Q), the symmetric group on Q, or even can be considered as a subgroup of
the symmetric group on w, Sym(w), if Q is enumerated as {g, : n € w}. Instead of
constructing the model Ny from (Q, <g), we can do it by letting U be induced by w, as
in the Fraenkel model V,,, but choose the group of automorphisms G on U be induced by

Aut((Q, <@)) as a subgroup of Sym(w), via the enumeration.
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To summarize the above paragraph, the above FM-model construction with the set of

atoms induced from (|, Pi, <) can be varied by the choice of the group G.

i€w

5.1.1 Reconstruction for sets with a countably infinite partition

Now we try to do a reconstruction for weakly Dedekind-infinite sets by dividing it into

countably infinite parts as we discussed in the previous section.

Let AV be an FM-model with the set of atoms U such that |U| ¢ A4 in N. Let £ be a finite
relational language. Then we extend £ by adding countably infinitely many relational
symbols. Let £ = L U {P;};e, Where each P; is a unary relation symbol, and let 2 be
an £’ structure on U in N. As |U| ¢ A4, U has a countably infinite partition, and we
interpret these relational symbols P; to correlate to each member of the partition. Then

we have

AE N\ I (Pix) AVx [\ Pix) A N = (Pi(x) A Pj(x))
iew icw i#j
Note that the above sentence is an £, ,-sentence. This allows us to study properties of
each member of the partition as we can let U; = {a € U : 2L F P;(a)}. For example, let

n,i € w and let ¢, (P;) be the following sentence.

©n(P;) = 3xo3xy ... Axy— /\ Xk # X1 A /\ Pi(x) ANVx (P,-(x) — \/ X = xk)

k#l k<n k<n

Then if we have 2 E ¢, (P;), we know that |U;| = n. This gives us a rough idea that the
structure we used to construct this model might be similar to S, ,, that we have discussed

before.

In the case that every member of a partition is weakly Dedekind-finite, we can use a result

from the previous chapter where we performed the reconstruction on weakly Dedekind-
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finite sets. We perform reconstruction on this weakly Dedekind-infinite set by considering
possible structures that can be put on each member of a partition in . Therefore, the
following result on reconstruction of weakly Dedekind-infinite sets that we would like is

as follows.

Conjecture 5.1.1. Let N be an FM-model with the set of atoms U. Let 2| be an L-structure
on U in N, where L is a finite relational language. If there is a countable partition T1

of U such that every member of T lies in A4, then there is a unique minimal countable

model ‘B in the ground model M such that Th(®B) = Th(%l).

The idea of the proof should be as follows.

Expand the language £ to £’ by adding countably infinitely many unary relation symbols
{P; :i € w}. Then L’ is still a countable language. Let 2’ be the £'-structure extending

2(. Enumerate IT as {U; : i € w}. Foranyi € w, we say ' E P;(a) ifa € U;.

Let 2, be the restriction of 2 to the structure on [ J,_, U;. Since each U; is weakly

i<n
Dedekind-finite for all i € w, U, is also weakly Dedekind-finite and so Th(2(,) is Ro-
categorical for all n € w. Then by using results from Chapter 4, there is a unique countable
L'-structure B,, such that Th(2(,,) = Th(B,). We wish to show that B,, is a substructure

of B,+1 and form B = B,,. This would be the desired structure. Some details

new

still remain to be verified.

We make some further remarks about the above in the special case of w pairs of socks. We

may describe this in (at least) two different languages. Most commonly, A = Oie » Pi

| P;| = 2, and here language is infinite first-order. Note that this structure is homogeneous.
We can build the FM-model N, » and |U,, »| € As . A4. If we try to recover the structure
(A,{P; : i € w}), then we expect to obtain the original structure, but notice this is not
unique model of its theory because it is not Ny-categorical (there are infinitely many

1-types). What are the other models? The type {—P; : i € w} is realized, but all these
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‘infinite’ points are unrelated. A reconstruction result would say that we find a unique

‘minimal’ countable model.

An alternative way of axiomatizing w pairs of socks is via a partial order. But now non-
standard models are very different since any ‘infinite’ point must lie in a copy of Z x {0, 1}
under (m,i) < (n, j) iff m < n. However the unique ‘minimal’ model is essentially the

same as before.

Note that we have just considered the case where each member of the partition is weakly
Dedekind-finite. Unfortunately it is not necessarily true that every weakly Dedekind-
infinite set can be written as a countably union of weakly Dedekind-finite sets, see an

example in the next section.

5.1.2 Quasi-amorphous sets

First we introduce quasi-amorphous sets, which were defined and studied in [CTO1].

Definition 5.1.2. A set X is called quasi-amorphous if

(i) X is uncountable,
(ii) every subset of X is either countable or co-countable (complement of countable),

(iii) every uncountable subset contains a countably infinite subset.

An FM-model containing a quasi-amorphous set can be constructed in the same manner
as the construction of the Fraenkel-model, apart from the set of atoms, which now will be
indexed by w;, and the choice of supports which are now allowed to be countably infinite.

A more detailed construction is as follows.

Let U,, be the set of atoms indexed by wy, i.e. Uy, = {uy : ¢ < w1}. Let G be the
symmetric group on U and let F be the filter on G generated by countable supports. Let

N, be the corresponding FM-model.
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Fact 5.1.3. The set of atoms U,, is quasi-amorphous in N,,,.

Proof. We check that U,,, satisfies the three properties for being quasi-amorphous.

(i) Since the model ,, € M, where M is the ground model, and U, is uncountable

in M, U, is also uncountable in N\, .

(ii) This part is similar to the proof that every subset of the set of atoms of the Fraenkel

model is either finite or co-finite.

Let X be a subset of U,,,. Then there is a countable subset £ of U,,, supporting X.
We will show that either X € E or U,, ~ X C E, hence X is either countable or

co-countable.

Suppose X € E. Thenthereisx € X \E. Lety € U,, \ E. Thenthereis 7 € Gg
such that w(x) = y. Hence y = n(x) € n(X) = X. Therefore U,, ~ E C X,
ie.Uy, N X CE.

(iii) The fact that every uncountable subset X of U,,, contains a countably infinite subset
follows from the fact that every countably infinite subset of U,, is supported by
itself, therefore they all lie in N, . O

By property (iii) of quasi-amorphous sets, we have the following fact.

Fact5.1.4. |U,, | ¢ A in N,,.

Quasi-amorphous family of pairs of socks

Now we will modify this construction so that the set of atoms U is Dedekind-finite but
weakly Dedekind-infinite, i.e. |[U| € A ~. A4, but so that every countably infinite partition

of U contains a weakly Dedekind-infinite set.
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The idea is to construct a quasi-amorphous family of pairs of socks, where the group of

automorphisms G can permute the pairs. Let U,, » = Ua<w1 P, where P, = {Ugy, Vo)
are pairwise disjoint and let [T = {P, : ¢ < w1}. Let G be the group of automorphisms
of Uy, » preserving I setwise, i.e. G = {w € Sym(U,,,) : n(Il) = II}. Let
I ={EUA: E CU,,_isfinite and A C II is countable}. It is easy to see that / is a
normal ideal. Let F be the filter generated by {Grua : E U A € I}. Then F is a normal

filter of G. Let NV, » be the corresponding FM-model.

Proposition 5.1.5. |U,, 2| € A \ Ay in Ny, ».

Proof. First we show that |[U| ¢ Ay4. By the construction of AV, », every countable subset
A C TI supports itself and hence it stays countable in N,,, . Thus given any countably

infinite A C IT, wehave w < A C P(U)andsow <* U.

Showing |U| € A is done by a standard argument. Let f:w — U be a function supported
by E U A for some finite £ € U and countable A € II. Suppose ran(f) is infinite.
Since E is finite, there is x € ran(f) \ E, say x = f(n) forsomen € w. Let w € Ggua
be such that w(x) # x. Then w(n) = n and so (n, w(x)) = (w(n), 7w (x)) € n(f) = f.
Since (n, x) is also in f, this contradicts f is a function. Thus ran( f) is finite and so f

is not injective. 0

Proposition 5.1.6. The set of atoms U,, » cannot be written as a countable union of
weakly Dedekind-finite sets in N, », i.e. every countable partition of U, » in Ny, » must

contain a weakly Dedekind-infinite set.

Proof. Let ® be a countable partition of Uy, » in Ny, » with support E U A, where
E C Uy, » is finite and A C II is countable. We may assume that E is a finite union of
some P,’s. Then for all m € Ggua and X € O, 7(X) = X. Since E U A is countable,
there are uncountably many y < o such that P, N E = @ and P, ¢ A, let y; and y,
be any such y. Let Y € © be such that P, NY # @, say u,, € P,, NY. Letnw
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interchange the two members of P, and fix all other points. Then 7 € Ggyua so it fixes
Y. Hence vy, = n(uy,) € [P, NY] = P, NY,so P, C Y. Furthermore there will
be p € Ggua such that p[P,,] = P,,. Hence P,, = p[P,,] C p[Y] =Y. Since y; and
y2 are arbitrary, ¥ contains uncountably many P,. In fact it contains all but countably

many P,.

Let I' be a countably infinite set of y’s such that P, € Y. Then f: P, — y maps a subset
of Y onto a countably infinite set, and is supported by I, hence it lies in N, ». Therefore

Y is weakly Dedekind-infinite in NV, ». O

Corollary 5.1.7. It is consistent that there is a Dedekind-infinite set that cannot be written

as a countable union of weakly Dedekind-finite sets.

Therefore the method introduced in Conjecture 5.1.1 cannot be applied for all weakly
Dedekind-infinite sets. So far we can therefore only perform reconstruction for weakly
Dedekind-infinite sets that can be written as a countable union of weakly Dedekind-finite

sets.

5.2 Weakly 2-transitive trees and A;

Definition 5.2.1. A poset (7, <) is called a tree if the following four conditions are

satisfied:

(i) foreacha € T, theset {x € T : x < a} is linearly ordered,
(ii) foralla,b € T thereisc € T withc <aandc < b,
(iii) there are a,b € T witha £band b £ a,i.e.a || b,

(iv) (T, <) contains an infinite chain.

Definition 5.2.2. Let 7" be a tree. We say T is
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e k-homogeneous if every isomorphism between k-element subsets extends to an

automorphism of T,

e k-transitive if whenever two k-subsets of 7" are isomorphic, then there is an auto-

morphism of T taking one to the other,

e weakly k-transitive if any isomorphism between chains of 7" of length k extends to

an automorphism of 7.

Remark. Let T be a tree. Then T is the smallest tree which contains T and is a meet-
semilattice (every nonempty finite subset has a meet or a greatest lower bound). It can be

proved that 77 exists and is unique up to isomorphism (see [Dro85]).

Definition 5.2.3. The set of ramification points of a tree T is defined by
ram(T) ={a € T" :a = inf{h,c} forsome b,c € T with b | c}.

Remark. 7% = T U ram(T).

Definition 5.2.4. Let x € 7. Arelation E on{y € T : y > x} defined by y, Ey, if there
is z € T such that x < z < {y1, y»} is an equivalence relation. We call the equivalence

classes of E cones at x.

1. If a € ram(T), we let C(a) be the set of all cones at a.

2. Ifa € ram(T), we say that a is special ramification point of T if a has a cone which
has a smallest element, that is, if @ is covered in T by some b € T (meaning that

there is no point ¢ witha < ¢ < b).

Let ramg(7") denote the set of all special ramification points of 7. If a € ramy(T),
we let Cs(a) (respectively C,(a)) denote the set of all cones at a with (respectively

without) a smallest element.
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3. For each finite or infinite cardinal k > 2, let

ramg(7T) = {a € ram(T) ~ ramy(7T) : |C(a)| = k}, and

ramey, (7)) = {a € ram(T) \ ramy(7T) : C(a) is infinite}.

It has been shown in [DHMS89] that if 7 has infinitely many distinct ramification orders,
then it is not Ry-categorical, so in the FM-model built from such T, |Ur| ¢ A4, and this

can happen in 2%° ways. Hence we have the following theorem.

Theorem 5.2.5 ((DHMS89]). There are 28 pairwise non-isomorphic countable weakly

2-transitive trees.

Let 7 be a countable weakly 2-transitive tree. For notational ease, we enlarge 7 by
adjoining a minimum point —oo (though strictly speaking, —oo ¢ 7). Forany X C T,
let A\ X ={z€T:z=xAyforsomex,y e X U{—oo}}. Recall that [X] denotes the
set of all members of 7" which are fixed by Aut(7)x. It is easy to see that —oo € [X] for
al X CT.

Lemma 5.2.6. For every finite X € T, AX = [X].

Proof. (C)Letx € AX. Thenx = y Az forsome y,z € X U{—o0}. If 7 € Aut(7)y,

then 7 fixes y and z and since 7 is an automorphism, 7 also fixes x. Hence x € [X].

(2) Suppose x ¢ A\X. Then x > a for some ¢ € \X. Let a be the greatest such
element. Consider the following two cases. If forevery b € A X, b # x, thenlet y > x,
soy £ bforallb € \X. If there exists b € /A X such that b > x, then let y be such that
a < x <y < b. Inboth cases, y has the same relation as x to all members of /\ X, and

we can find 7 € Aut(7)x such that 7(x) = y. Thus x ¢ [X]. ]

Since the two notations above coincide, we can write /\ X as [X] and consider them as the

same thing. Now consider an FM-model induced by a weakly 2-transitive tree. Let Ur
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be the set of atoms indexed by a weakly 2-transitive tree 7 = (7, <). Let G be the group
of automorphisms of U7 induced by Aut(7"), and let N'- be the corresponding FM-model

with finite supports.

Proposition 5.2.7. |Ur| € As in N7.

Proof. Let f:Ur — Uy U {x}, where *x ¢ Uy, be surjective in N with finite support

X. We assume that X contains —oo.

We remark that for any x, y, if f(x) = y, then y € [X U {x}]. For since X supports
f,n(f) = f forall r € Gx. Then (x,y) € f and so (nwx,7wy) € n(f) = f for
all m € Gx. Hence if 7y # y, then mx # x since f is a function. If y ¢ [X U {x}],
then there is m € Gxugxy € Gx such that w(y) # y but w(x) = x, which contradicts
f(x) = y. Hence y € [X U{x}]. Alsonote that [X U{x}] = [X]U{x}U{xAa :a € X}.

Let y ¢ [X]and let x be such that f(x) = y. Theny € [X U{x}]\[X] C {x}U{xAa:
aeX}.

Casel. y £ aforalla € [X].
Then y ¢ {x ANa:a € X}. Hence y € {x},i.e.y = xandso f(y) = y.

Case 2. y < b for some b € [X].
If x € [X], then [X] = [X U {x}] > y, which contradicts y ¢ [X]. Hence x ¢ [X].
Suppose x £ a for all @ € [X]. Then by case 1, we can show that f(x) = x and since

f(x) =y,x =y < b where b € [X], a contradiction.

Therefore x < ¢ for some ¢ € [X]. Then for any a € X, either x Aa = xorx Aa € [X].
Thus [X U{x}] = [X]U{x}U{x Aa:a € X} =[X]U{x}. Since y ¢ [X],y = x.
Hence f(y) = y.

From both cases, we have f(y) = y forall y ¢ [X]. Hence f[[X]] = [X] U {*} which
is a contradiction since f is surjective but [X] is finite. Therefore such f does not exist

in N and so |U7| € As in N7 N
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Hence we get an example of sets with their cardinalities lying in As ~. A4. Notice that
these weakly 2-transitive trees have densely ordered branches, whereas the binary tree has
o levels, hence all branches are finite or of length w. There is an intimate relationship
between tree structures of this kind, and sets with cardinality not lying in As, explained in

the next section. We shall give a wide variety of examples of tree structures of this kind.

5.3 'Trees and beyond A;

As the method we used in the first section cannot be applied to every weakly Dedekind-
infinite set, we may need more information from the structure, other than the fact that it

can be divided into countably infinite sets. First consider the following example.

Example. The binary tree vs. w pairs of socks

Consider the binary tree 7, = (2=, C) and the w pairs of socks Sy = (U, cp Pr» <)-

new
We can see that these two structures share some similar properties, for instance every
member has two immediate successors, and both structures have w levels where each level
is finite. A major difference is that two members of the socks structure might share the
same immediate successors, i.e.even though there is a linear ordering on the partition
{P; : i € w}, there is no specific link between members of each consecutive pair of socks,
whereas each member of the tree has its own immediate successors; more specifically the

ordering on 7 is semi-linear (the downward closure of every member is well-ordered) but

this is not true for the socks S, ».

Both the binary tree and the w pairs of socks have their corresponding set of atoms not
lying in A4 in the corresponding FM-models, but the binary tree ends up above As,
unlike the pairs of socks. In particular, |Us, ,| € As . A4 but [Uz,| € A \ As in their

corresponding FM-models.

As the above example shows there is a link between sets carrying tree structures and As as
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we have already seen in Proposition 3.1.39 (and later in Proposition 5.3.1). In this section,

FM-models constructed from tree structures which have w levels will be studied.

Proposition 5.3.1. Let X be a set. Then | X| ¢ As if and only if there is a subset T C X

carrying a tree structure with w levels and no leaves.

Proof. The proof is the same as the proof of Proposition 3.1.39 just dropping the ‘finite-

ness’ parts. [

Corollary 5.3.2. Let M be a model for ZFA + AC with set of atoms Ur where T is a tree
structure on U with w levels and no leaves. Let G be any group of permutations of Ur
which preserves the tree structure and let N be the FM-model built from Ur and G using

finite supports. Then |Ur| ¢ As in N7.

Proof. Since G preserves the tree structure, U7 carries the tree structure inherited from 7 in
N7. Therefore, as in the proof of Proposition 5.3.1, there is a surjective f: Uy — UrU{x},
where x ¢ Uz. The function f then has empty support since G preserves the tree structure.

Hence f € N7 and so |[Ur| ¢ As. O

Therefore, to study FM-models in which the set of atoms does not lie in A5, we can start

by studying tree structures with w levels instead.

The general scenario is as follows. We start with a tree 7 with @ levels and no leaves in
a model M of ZFA 4 AC for which there is a sequence (2, : n € w) of non-empty finite
or countable Ny-categorical structures such that if x lies in the n™ level of 7, succ(x)
is identified with dom%(,,. For the group G of automorphisms of 7 we take the group
of tree automorphisms f which for each x in the n™ level also induce an isomorphism
from succ(x) to succ( f(x)), where they are both view as copies of 2, under the chosen
indexation. In what comes next, we shall consider such cases in which succ(x) is finite or

more generally R-categorical.
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5.3.1 Balanced trees

To study sets not lying in As by using FM-models constructions, in view of what we
have just shown, we are naturally led to consider possible tree structures with @ levels
and no leaves, and it is more convenient to insist that the group of automorphisms act
transitively on each level of the tree. This is captured by the idea of ‘balanced tree’, which

was introduced in [FT07], and can be extended as follows.

Definition 5.3.3. A tree T is called a balanced tree if the sets of immediate successors of

each vertex x, denoted by succ(x), in the same level are equivalent.

In the presence of AC, ‘equivalent’ just means ‘isomorphic’ but in the absence of AC, we
mean that any first-order structure which the first can be equipped with is elementarily
equivalent to some first-order structure which can be put on the other (this will be defined

and discussed later for the case succ(x) is infinite).

For example, if 7 is finitely branching, then 7 is balanced if every vertex in the same level
has the same degree, i.e. | succ(x)| is constant for all x in the same level. The case that T
branches infinitely is more complicated so we will deal with this in the later part of this

section.

Note that balanced finitely branching trees were used to study versions of Konig’s Lemma

in [FT07], and our work here can be viewed as generalizing that.

We remark that if a tree is balanced, then its group of automorphisms acts transitively on
each level of the tree. We now show how an arbitrary tree with w levels and no leaves can

be pruned to a form a balanced one, starting with the finitely branching case.

Theorem 5.3.4. For any tree T = (T, <) with w levels and no leaves where each level is

finite, there is a balanced subtree T* fulfilling the same things.

The following method appears to work easily in this case. The idea is to equalize the

branching degree of every vertex in each level. On level 1, prune branches on level 2
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corresponding to any vertices on level 1 whose degree is not equal to the minimum, so
that all vertices on level 1 have same degree. Repeat this on level 2,3, ... and so on.
Notice that each level is fixed beyond a finite stage, so this method terminates. Also, at all
stages, the pruned tree still has no leaves and w levels and this is also true for the subtree
eventually formed after w steps. However this method appears to use the Axiom of Choice,
since we may have to choose which branches to remove infinitely many times. Indeed we

now show by means of an FM-model that this use of AC is unavoidable.

Example. Let 7, be the binary tree and 73 be the ternary tree, i.e. 7, = {2, C} and
Tz = {3=“,C}. Let Tr43 be the tree constructed by joining 7, and 73 and adding a
minimum point *. By the above method, we keep removing branches from vertices in
each level from the 73-side so that every vertex has degree 2, and at the end we should
end up with having the subtree 7* C 7 isomorphic to the binary tree 7,. To see that
this cannot be done without AC, construct the FM-model N7, , from 7543 by the usual
construction with finite supports, and let U7, , ; be the set of atoms in the model. We write
Uz, Ur,, and u,, to correspond to 7, 73 and *, respectively. Suppose there is U=, the
set of atoms corresponding to 7 *, which lies in N7 , with finite support E containing the
root. We can see that Uy~ = Up, U U7—2>»< U {u.}, where U7-2* C Up,. Let x be a maximal
member of £ N (Uz; U {ux}). Then there are y, z in Uz extending x on the same level.
But then we can find 7 € Gg such that 7[{y, z}] = {y, w} where w is another vertex
extending x in Uz, that gets removed in the pruning process. Hence w(Ury) # Urr,

i.e. the subset Urx does not exist in the model N ;.

Therefore pruning a tree must be done more carefully. We will show that there is another

method to prune finite branching trees without using the Axiom of Choice as follows.

Proof of Theorem 5.3.4. Let S be a sequence of natural numbers such that every number
occurs infinitely often, say S = (k,)new. We will construct a decreasing sequence of
subtrees of T such that for each n, T, is pruned on level k,, so every member has the

same degree. Let L, be the n'" level of T.
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First let To = T. For n € w, suppose T, has been constructed. Let X, be the set of
members of height k, in 7, with minimum degree, i.e. X, = {x € Ly, N T, : x is of
least degree}. Let Tpy1 = U,ex, 4y € T :y < xory > x}. It can be easily checked
that 7, is a subtree of 7}, and has no leaves. Let T* = ("), ., T». It remains to show

that 7* is balanced and contains no leaves.

Let x € T*. Then succ(x) N T* = (), ., (sSucc(x) N T,), where (succ(x) N Ty)new

new
is a decreasing chain and succ(x) N 7, is finite and non-empty for all n € w. Hence

(Nyeo (Succ(x) N T,) # B, so x is not a leaf.

Foreachn,let I, = {i € w : k; = n}. Then (X;),es, is a decreasing sequence of subsets
of L,. Note that [, is infinite since we chose S so that every n occurs infinitely often.
Since L, is finite, the sequence X; must terminate at some least i,,. Hence the level n'" of
T*, L, NT*, mustequal X;, , where each member of X; has the same degree. Therefore

T* is balanced. O

With the method introduced in the previous proof, pruning the tree 7,3 leaves only the
T part and in addition the minimum vertex . This pruning method can also make a
finite branching tree whose corresponding set of atoms is Dedekind-infinite give rise to a
pruned subtree which is Dedekind-finite. For instance, there is a finite branching tree T
such that |Ur| ¢ A in N7, but having a balanced 7’ € T such that |U7| € A in N7-. We

give such an example here.

Example. We construct a tree 7 as a countable disjoint union of binary trees with addition

relations on their roots.

Let{B; : i € w} be acountable family of pairwise disjoint binary trees, say 5; = (B;, <;)

~ T, forall i € w. Let b; be the root of B;. Let T = U B;, partially ordered by < the

i€w
union of all the <; and the relation on {b; : i € w} induced from the usual ordering on w.
It is easy to see that 7 is finite branching without leaves, and every vertex in each B; has

its level in 7 increased by i from what it is in BB;. Furthermore there is a unique vertex
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in each level with ramification order 3. Thus the set R := {x € T : |succ(x)| = 3} is

countable.

Construct an FM-model N7 from 7 with set of atoms U7 indexed by 7, G induced by
Aut(7), and finite supports. It is easy to see that G fixes every member of {u, : x € R}
so it lies in and is countable in N7-. Thus |Ur| ¢ A in N7. Next we prune 7 according
to the method introduced in Theorem 5.3.4. This gives us a finite branching subtree

T' = By = T, which by the method of Section 3.2.8 one shows that |U7| € A in N7.

Now we will discuss the case in which succ(x) is infinite for some x. We already have
given some discussion of this above We always assume that 7" and succ(x) are countably
infinite for all x € T, e.g.let T = w=“ be equipped with the relation C. Construct the
FM-model N7 by the usual construction so that the set of atoms U7 carries the original
tree structure 7 := (7, C), and furthermore we will have succ(u,), the corresponding
set of atoms of succ(x) (which we may write only as succ(x) in the future proof), being
weakly Dedekind-finite in A7 for all x € T. In short, Us admits a tree structure with

each vertex branching weakly Dedekind-finitely.

Since each vertex branches weakly Dedekind-finitely, we can no longer use the method in
the proof of the finite branching case because we still have no method to distinguish two
weakly Dedekind-finite sets. Consider the following equivalence relation between two

sets.

Definition 5.3.5. For any sets A and B, we write A = B if for any first-order structure 2{
that can be put onto A in a countable language, there exists a first-order structure 8 on B

over the same language such that 2 = ‘B.

Now we will try to make sense of the definition of balanced tree in the case that 7 branches
weakly Dedekind-finitely. It seems reasonable to say that two weakly Dedekind-finite sets,
that are constructed from countable sets, are ‘the same’ if they are equivalent under the

relation = defined above.
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Suppose we have two weakly Dedekind-finite sets X and Y such that X # Y. Then there
must be some structure 2l that we can put on X and a sentence ¢ which is true in 2, but
not in any first-order structure 8 on Y. Since the set of sentences is countable, we can
choose such a least sentence ¢ such that, under the same interpretation, ¢ distinguishes X
and Y, i.e. without loss of generality, ¢ holds in a structure on X but not in any structure

that can be put on Y, which we write X < Y.

This method can be applied to every pair of weakly Dedekind-finite sets, but then if there
are infinitely many pairs of such sets we still need to choose which language will be used
to distinguish sets from each pair. Since we are dealing with trees having o levels, it
suffices to fix a language £ = {R, F, C} where the set of relation symbols R, the set of
function symbols F, and the set of constant symbols C are all countable. Hence the set of
L-sentences is countable, and we enumerate them as {¢, : n € w}. Now let X’ be a weakly
Dedekind-finite family of weakly Dedekind-finite sets. The method will successively cut
down X’ to nonempty subfamilies ),,. This give a descending sequence of )/,’s, and since

X is weakly Dedekind-finite, this sequence terminates at some n € .

These remarks lead to a version of Theorem 5.3.4 for the case that the tree 7 has each

level weakly Dedekind-finite.

Theorem 5.3.6. For any tree T = (T, <) with w levels and no leaves where each level is

weakly Dedekind-finite, there is a balanced subtree T* fulfilling the same properties.

Proof. Modify the proof of the finite branching case in Theorem 5.3.4 as follows.

If all members of Ly, NT, are =-equivalent, then X,, = L, N7, isunchanged. Otherwise,
choose the least formula ¢ such that some but not all members of Ly, N T, satisfy ¢ and let
X, ={x € Ly, NT, : x E ¢}. This ensures that for each k, { X}, : k,, = k} decreases and

because Ly is weakly Dedekind-finite, this terminates. The rest of the proof is similar. [

Therefore, given an FM-model N with the set of atoms U equipped with an w-level tree
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structure where each level is (infinite) weakly Dedekind-finite, we may assume that U is
balanced, and at the n™ level we can associate with it a unique countable structure 2. Let
T be a tree of height @ where each vertex branches according to those structures, i.e. if
x is in level n, then succ(x) = 2A,,. Then the FM-model N7 constructed from 7 by the

construction given above has the set of atoms U7 equivalent to U'.

The following are example of balanced trees.

5.3.2 succ(x) is finite

Let 0 = (ox : k € w) be a sequence of positive integers greater than 1 and let 7, be a
tree in which all elements on the k' level have exactly oy immediate successors, i.e. if x
is on the k™ level, then | succ(x)| = ox. This construction is due to [FT07]. Then 7, is
balanced, and there are 2%¢ different trees that can be constructed by this method. One

can see that all balanced finite branching trees are isomorphic to one of these trees.

Construct an FM-model from 7, by letting U7, be the set of atoms indexed by 75, G be
the group of automorphisms of Uy, induced by Aut(7;), and N7, be the corresponding
FM-model with finite supports.

We illustrate how this notion can be described in £, ,-sentences. First we give examples

of first-order sentences telling properties of each member x of Uy, as follows.

e x isarootof Uy, :

@o(x) =Vy(x < y).

e x hasleveln > O:

@n(x) = JyoIy1...Iyn—1 (yo <Y1 <. <Y1 <X

i<n

AYZoVZ1...YZp—1 (zo <21 <. <Zp1<x— /\(z,- = y,-))) )
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e x has ramification order o,,:

Xow®) = Ayodyr . Fyo, 1 | NG £y A\ (x < 30)

i#]j i<op

/\Vz<x<z—> \/(yifz))

i<op

Hence we have

(Ur,.<) F Vx <<Vy(x <) A XNV en(0) A\ (@n(x) = 1o, (x))) :

new new

Furthermore, for any set X, if there is a partial ordering < on X such that (X, <) satisfies

the above L, ,-sentence, then we know that (X, <) carries the tree structure 7.

5.3.3 No structure on succ(x)

This construction is the same as in Section 3.2.9. Let 7 = (w~%, €). Then we can see
that for each x € =, succ(x) is infinite. We put no structure on succ(x), therefore

Aut(T') | succ(x) = Sym(succ(x)) for all x.

Construct an FM-model N7 from 7 with the set of atoms U7 induced from 7. Then we
have |Ur| ¢ As. By the same argument as the proof for the similar result for the binary

tree in Proposition 3.2.17, we have |Ur| € Aj in N7.

Proposition 5.3.7. Let L,, be the n™ level of Ur. Then MT(L,) = n for all n € w.

Proof. Prove by induction on n, using the fact that an MT-rank n union of amorphous sets

have MT-rank n + 1. O]
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5.3.4 succ(x) = (Q, <q)

Now we consider the case that succ(x) carries some structure, starting from a simple one,

the rationals (Q, <g).

Let 7 be a tree such that each vertex x branches into QQ successors. We may view 7' as
Q=® equipped with two binary relations <7 and <g which are defined as follows. The
relation <7 is the usual tree ordering on 7', say x <7 y if x C y, while the relation
<@ focuses on each succ(x), say y <g z if y = x7r and z = x"s for some x € Q~¢,
r,s € Qandr < s. We can see that (succ(x), <g) = (Q, <q). Let Tg = (Q=%, <r. <q)-
Construct an FM-model by letting the set of atoms Uy, be induced from 7q, G the group
of automorphisms of U7 be induced from Aut(7g), and N7, the corresponding FM-model
be constructed by finite supports. We will refer to a member u,; € Ur, as only ¢ and Ur,

asonly U.

We can see that succ(0) is the same (equivalent) as the set of atoms Ug of the Mostowski

model, i.e. it is o-amorphous. Hence we have the following proposition.
Proposition 5.3.8. |Ur,| ¢ As in N7,
However the higher levels are weakly o-amorphous. For example, at level 2, L, is the

same as the FM-model that was built from Q x QQ, which is weakly o-amorphous, but not

o-amorphous, see Section 3.2.4.
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