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Abstract

The notion of finiteness in the absence of AC has been widely studied. We consider a

minimal criterion for which any class of cardinalities that satisfies it can be considered as a

finiteness class. Fourteen notions of finiteness will be presented and studied in this thesis.

We show how these classes relate to each other, and discuss their closure properties. Some

results can be proved in ZF. Others are consistency results that can be shown by using

the Fraenkel-Mostowski-model construction. Furthermore we investigate the relationship

betweenDedekind-finite sets and definability, and try to carry out reconstruction to recover

the original structures used to construct FM-models. Later we establish a connection

between tree structures and sets with their cardinalities in one of the finiteness classes,

written as �5.
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Chapter 1

Introduction

The notion of finiteness without the Axiom of Choice (AC) has been widely studied in

[Tar24], [Mos39], [Lév58], [Tru74], [Deg94], and [Gol97]. In those papers, various

notions of finiteness were introduced. With AC, they all coincide, the notion of finiteness

is unique and turns to be just the set !, the set of all natural numbers, i.e. a set is finite if

and only if it has a bijection with a natural number. But this is not necessarily true without

AC. There could be infinite sets which in some respects behave like finite sets. All basic

notations and required backgrounds are provided in Chapter 2.

In Chapter 3, we discuss the relations between notions of finiteness. First we introduce

the notions of infinity which were mentioned in [Deg94], but since this thesis focusses on

finiteness, we work with the dual notion, a notion of finiteness, which is also mentioned

in [Her11]. We say a class of cardinals � is a finiteness class if ! � � , @0 … � , and � is

closed under �. We can see that these conditions are very fundamental and it is natural to

take them as minimal criteria for a notion of finiteness.

There are many classes of finiteness that satisfy the above conditions. For instance, the

class of all weakly Dedekind-finite cardinals, denoted by �4 (as from [Tru74]), which is

the class of cardinalities of sets with no countably infinite partitions, the class ofDedekind-
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finite cardinals, denoted by�, which is the class of cardinalities of sets with no countably

infinite subsets, and the set ! itself is also a finiteness class. It turns out that ! and � are

the boundaries of this notion, i.e. every finiteness class lies between ! and �.

We gather together 14 notions of finiteness discussed in this thesis, which were mostly

introduced in the references given above, and study their properties and show how they

are related. We also mention notions from [Lév58] and [Deg94] which we argue should

really not be allowed, on the grounds that any notion of finiteness should not include @0,

and should be closed downwards. For instance one of Lévy’s notions counts x as ‘finite’

provided that x < x2, but by the use of some standard cardinal arithmetic in the absence

of AC there is some x > @0 satisfying this, so this property cannot be closed downwards.

Some notions that we study in Chapter 3, for instance, the notions of Russell-finite, weakly

Dedekind*-finite, and dual Dedekind*-finite also turn out to be notions of finiteness. We

study their closure properties under various operations, e.g. closure under C, �, and

examine the relations between these classes. We also remark that there is a proper class

of notions of finiteness, obtained by considering so-called MT-rank from [MT03].

The second half of Chapter 3 provides consistency results to differentiate these notions

by constructing FM-models. We work in the axiom system ZFA, set theory with atoms,

which was introduced by Fraenkel and Mostowski (and a later version, replacing atoms by

autosingletons by Specker in [Spe57], see also [Fel71]). This is a version of ZF modified

by allowing elements which are not sets, which we call atoms or urelements. A model of

ZFA is called a permutation model or an FM-model. AC can bemade to fail in these models

so they provide a good context for studying a variety of notions of finiteness. The results

in these models can be carried over to well-founded (Cohen) models of ZF by using the

Jech-Sochor embedding theorem, see [JS66] or [Pin72]. In most cases the model is based

on a suitable structure A in the ground model, which is usually countable, and usually

homogeneous, which is a strong enough condition to guarantee a rich automorphism

group. Again usually the filter used to construct the FM-model is generated by finite
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supports. This general method is explained in [Pin72].

In Chapter 4, we investigate the relationship between Dedekind-finite sets and definability.

The latter can have various senses, but it initially is taken as definable in a finite first-order

language, extended to infinite first-order languages or infinitary languages later. This is

inspired by some results in [Pin76], [Tru95], and [WT05]. Informally, if we drop AC, it

is possible that even a set has some hidden structure, which with AC would have been

destroyed. A typical case is that of amorphous sets, which as shown in [Tru95], and

despite their name, can actually carry a wide variety of structures.

Those FM-models that are constructed from@0-categorical structures using finite supports

have their set of atoms lying in �4, the class of weakly Dedekind-finite cardinals, in the

model. This connection was also studied in [WT05]. We will try to recover the original

structures used to construct FM-models by studying possible structures that can be put

on the set of atoms in the models. Our work here though based on [WT05] gives further

examples and extensions.

Chapter 5 gives a start to tackling similar questions for Dedekind-finite sets which lie

outside the class of weakly Dedekind-finite sets. This may involve first-order but infinite

languages, or infinitary logic, inspired by Scott’s Isomorphism Theorem for characterizing

a countable structure by a sentence of the infinite language L!1! . We provide a method

to perform reconstruction on certain sets having countably infinite partitions with every

member being weakly Dedekind-finite.

The main focus of this final chapter is on sets X whose cardinality lies in �5, meaning

that there is no surjection from X onto X [ f�g for an extra point � … X . First we

give examples of trees, called weakly 2-transitive, whose cardinalities lie in �5 but not in

�4. The main difference between the so-called ‘2-transitive’ trees introduced by Droste

in [DHM89] and the ‘weakly 2-transitive’ ones is that 2-transitive trees have the same

ramification order throughout, but weakly 2-transitive trees need not. Using this we can

form 2@0 distinct subsets of ! exhibited as the ramification orders arising in such trees,
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thereby providing many non-@0-categorical examples. Then we establish a connection

between sets whose cardinalities lie in �5 and a different type of tree structure. Namely

jX j 2 �5 if and only if there is no tree on a subset ofX having ! levels and no leaves. We

give several examples of how this works out, extending a ‘pruning’ lemma from [FT07]

to the case in which the levels of such a tree are weakly Dedekind-finite.
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Chapter 2

Preliminaries

2.1 Basic notations

Two sets have the same size or the same cardinality if there is a bijection between them.

For any sets X and Y , we write X � Y if there is a bijection between X and Y , X � Y

if there is an injection from X into Y and X �� Y if X D ; or there is a surjection from

Y onto X . We write jX j for the cardinality of X (the definition of cardinality of a set

without AC will be discussed later in this chapter). Therefore jX j D jY j iff X � Y . We

say jX j is less than or equal to jY j, written jX j � jY j, if X � Y , and we say jX j is less

than jY j, written jX j < jY j, if jX j � jY j and jX j ¤ jY j. We also write jX j �� jY j if

X �� Y . We write X � Y for X is a subset or subclass of Y , and we use � for proper

subset or proper subclass, i.e.X � Y if X � Y and X ¤ Y . We write X P[ Y for the

disjoint union of X and Y and write P
S
X for the disjoint union of a family X .

Let < be a relation on a set X . For any x; y 2 X , we write x k< y if x and y are not

comparable under < in X , i.e. x ¤ y, x 6< y and y 6< x, and we may write only x k y if

the relation is clear in the context. For any subsets A;B of X , we write A < B if x < y

for all x 2 A and y 2 B . We write x < A if fxg < A. Similarly for k.
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2.2 Finite and infinite

Definition 2.2.1. A set is called finite if it has cardinality in !. Otherwise it is infinite.

With the Axiom of Choice, every set can be well-ordered so we can compare their sizes.

Hence @0 � jX j for every infinite set X . Without AC this might not be true.

Definition 2.2.2. A setX is calledDedekind-finite if @0 — jX j. Otherwise it isDedekind-

infinite.

An equivalent definition of a Dedekind-finite set is that it is a set with no injection into a

proper subset. Therefore every injection on a Dedekind-finite set must be surjective.

Clearly if A � B , then A �� B . Therefore @0 � jX j implies @0 �� jX j for any set X .

The converse is not necessarily true without AC.

Definition 2.2.3. A set X is called weakly Dedekind-finite if @0 —� jX j. Otherwise it is

weakly Dedekind-infinite.

Actually it would have been better to call such a weakly Dedekind-finite set a ‘strongly’

Dedekind-finite set but the name is obtained from ‘weakly Dedekind-infinite set’ which

was introduced in [Deg94]. This notion first appeared as III-finite in [Tar24].

With AC, all finiteness notions in this section are equivalent. We will later introduce more

notions of finiteness in Chapter 3.

2.3 Homogeneous structures

Definition 2.3.1. Acountable relational structureA is homogeneous (or ultrahomogeneous

in some textbooks) if any finite partial automorphism, that is an isomorphism between

finitely generated substructures, can be extended to an automorphism.
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Definition 2.3.2. The age of a structure A, written age.A/, is the class of structures (in

the same language as A) which are isomorphic to finitely generated substructures of A.

Definition 2.3.3. Let L be a countable relational first-order language and let C be a class

of finitely generated L structures.

We call C an amalgamation class if C satisfies the following properties.

1. Hereditary property (HP): If A 2 C and B is a finitely generated substructure of A,

then B is isomorphic to some structure in C.

2. Joint embedding property (JEP): If A;B 2 C, then there is C 2 C such that both A

and B are embeddable in C .

3. Amalgamation property (AP): If A;B;C 2 C and eWA ! B , f WA ! C are

embeddings, then there areD 2 C and embeddings gWB ! D and hWC ! D such

that g ı e D h ı f .

The age of any countable structure has HP and JEP but not necessarily AP.

Theorem 2.3.4 (Fraïssé [Fra53]). Let C be an amalgamation class. Then there exists a

unique, up to isomorphism, countable homogeneous structure A whose age is C. We call

A the Fraïssé limit of C.

Examples.

1. The Fraïssé limit of the class of finite linearly ordered sets is the rationals Q with

the usual ordering,

2. The Fraïssé limit of the class of finite graphs is called the random graph,

3. The Fraïssé limit of the class of finite partially ordered sets is called the generic

partially ordered set.

We will provide some more details for the following structures.
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2.3.1 The random graph

The Fraïssé limit of the class of finite graphs is called the RandomGraph. It was originally

constructed by Rado in [Rad64], and Erdős and Rényi proved in [ER63] that it has a crucial

‘randomness’ property . It is most simply characterized by saying that it has a countable

set of vertices � and for any two finite disjoint subsets U and V , there is x 2 �r .U [V /

joined to all members of U and to none of V . See Section 4.2.2 where we study the

FM-model built from � .

2.3.2 The generic bipartite graph

Let C be the class of finite bipartite graphs with fixed parts T and B (thought of as ‘top’

and ‘bottom’). Then C is an amalgamation class, and we call the Fraïssé limit of C the

generic bipartite graph. We write B for the generic bipartite graph.

Often it is worth viewing B as a partial order of height 2 (in which elements on the lower

level are not necessarily below those on the upper level), and therefore we will treat the

edge relation as a partial order <.

Proposition 2.3.5. The following are properties of B

� For any finite disjoint U; V � T there exists b 2 B such that b < U and b k V .

� For any finite disjoint U; V � B there exists t 2 T such that t > U and t k V .

Furthermore, any countable bipartite graph having these two properties is isomorphic to

B.

Note that these properties are a slightly modified version of the characterization of the

random graph. More on the generic bipartite graph will be discussed in Section 3.2.1.
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2.3.3 The generic partially ordered set

Let P be the generic partially ordered set, which is the Fraïssé limit of the class of all

finite partially ordered sets (which is easily verified to be an amalgamation class).

Remark. If A;B;C are finite subsets of P such that A < B and C — A and C � B ,

then there is x 2 P such that A < x < B and x k C .

Furthermore, any countable partially ordered set fulfilling this condition is isomorphic to

P .

The following lemma follows immediately.

Lemma 2.3.6. Let x 2 P and let A;B;C be finite subsets of P such that A < x < B and

x k C . There is y 2 P such that y ¤ x, y k x and A < y < B and y k C .

2.3.4 Henson digraphs

Definition 2.3.7. A graph hG;Ei is called a directed graph, or abbreviated as digraph, if

E is antisymmetric, i.e. if hx; yi 2 E, then hy; xi … E.

The Fraïssé limit of the family of finite digraphs is called the generic digraph.

Definition 2.3.8. A digraph is called a tournament if there is an edge between every pair

of distinct vertices.

Let T be a family of finite tournaments. Let Forb.T / be the family of all finite digraphs

D such that D does not embed T for any T 2 T . Then it can be shown that Forb.T / is

an amalgamation class. To see that Forb.T / has the amalgamation property, let B;C 2

Forb.T / be such that A D B \ C 2 Forb.T /. We will show that B [ C , without adding

new edges, lies in Forb.T /. Suppose there is T 2 Forb.T / which embeds in B [ C .
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Since each of B and C forbids T , T \ B r A ¤ ; ¤ T \ C r A. Pick b 2 T \ B r A

and c 2 T \ C r A. Since T is a tournament, there is an edge between b and c, which

contradicts our condition that no new edges were added to B [ C . Hence T is not

embeddable in B [ C , and so B [ C 2 Forb.T /. Therefore by the Fraïssé construction

there is a generic digraph associated with it.

Definition 2.3.9. Let T be a family of finite tournaments not containing the 1- or 2-element

tournament and such that all members are pairwise non-embeddable. We call the Fraïssé

limit of Forb.T / a Henson digraph.

We may write hDT ; ET i for a Henson digraph with age Forb.T /. Note that if T D ;

then hDT ; ET i is the generic digraph. If Forb.T / contains the 1-element tournament,

then DT D ;. And if Forb.T / contains the 2-element tournament, then hDT ; ET i is the

countable empty graph, so this is why these two cases are excluded.

2.4 @0-categorical structures

Definition 2.4.1. We say a theory T is @0-categorical if is has only one countable model

up to isomorphism. A structureA is an@0-categorical structure if Th.A/ is@0-categorical.

Theorem 2.4.2 (Ryll–Nardzewski). Let T be a complete theory in a countable language.

Then the following are equivalent:

1. T is @0-categorical,

2. every countablemodelM ofT is atomic, meaning tpM.a/ is isolated for alla 2M n,

3. each SnT is finite, where SnT is the set of all complete n-types p such that p [ T

is satisfiable,

4. for some countable model B of T and every n 2 !, the number of orbits of the

automorphism group of B, acting on the set of n-element subsets of dom.B/, is

finite.



2.5. Set theory with atoms 11

The proof of the above theorem can be found in [Mar02] or [KM94], and the next theorem

follows.

Theorem 2.4.3. Every homogeneous structure over a finite relational language is @0-

categorical.

2.5 Set theory with atoms

2.5.1 ZFA

Set theory with atoms, denoted by ZFA, is characterised by the fact that it admits objects

other than sets. More details can be found in [Jec73] and [Hal17].

Definition 2.5.1. Atoms or urelements are objects which do not have any elements and

which are distinct from the empty set.

The language of ZFA is LZFA D fD;2; Ag where 2 is a binary relation symbol and A is a

constant symbol representing the set of atoms. The axioms of ZFA are like the axioms of

ZF, except the following.

Axiom of Empty Set (for ZFA):

9x
�
x … A ^ 8´.´ … x/

�
:

Axiom of Extensionality (for ZFA):

8x8y
�
.x … A ^ y … A/! .8´.´ 2 x $ ´ 2 y/! x D y/

�
:

From the above two axioms, the empty set is unique and is denoted by ;. A modified

version of theAxiom of Foundation can be stated as follows, though it may not need changes

depending on which version we are using.
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Axiom of Foundation (for ZFA):

8x
�
x ¤ ; ^ x … A! 9y.y 2 x ^ y \ x D ;/

�
:

Axiom of Atoms:

8x
�
x 2 A$

�
x ¤ ; ^ :9´.´ 2 x/

��
:

Theorem 2.5.2. Con(ZF) implies Con(ZFAC A is infinite/:

Definition 2.5.3. For any set S and ordinal ˛, we define

P0.S/ D S;

P˛C1.S/ D P˛.S/ [ P.P˛.S//;

P˛.S/ D
S
ˇ<˛

Pˇ .S/ if ˛ is a limit ordinal.

Further let P1.S/ D
S
˛2ON

P˛.S/:

Theorem 2.5.4. If M is a model of ZFA and U is the set of atoms of M, then M D

P1.U /. The class P1.;/ which is a subclass ofM is a model of ZF.

Notation. Let OV denote P1.;/. We call OV the kernel or pure part and call members of
OV pure sets.

Note that the class ON of ordinals is contained in OV.

2.5.2 Fraenkel-Mostowski models

Now we will construct models for ZFA. In this section, U is the set of atoms in a model

M of ZFAC AC.

Definition 2.5.5. Let G be a group of permutations of U . A set F of subgroups of G is a

normal filter on G if for all subgroupsH and K of G:
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(i) G 2 F ,

(ii) ifH 2 F andH � K, then K 2 F ,

(iii) ifH 2 F and K 2 F , thenH \K 2 F ,

(iv) if � 2 G andH 2 F , then �H��1 2 F ,

(v) for each a 2 U , f� 2 G W �.a/ D ag 2 F .

Throughout this section, G is a group of permutations of U and F is a normal filter on G.

Definition 2.5.6. Let � 2 G. Using the hierarchy of P˛.U /’s, we can define �.x/ for

every x in M by

�.x/ D �Œx� D f�.y/ W y 2 xg:

Remarks.

1. We sometimes write �x for �.x/.

2. It can be proved by transfinite induction that � is one-to-one, even in its extended

action on the whole ofM.

Lemma 2.5.7. Let � 2 G. Then, for any x and y in M,

1. �fx; yg D f�x; �yg and �hx; yi D h�x; �yi.

2. if f is a function, then �f is a function and .�f /.�x/ D �.f .x//.

3. �x D x for all x 2 OV.

Proof. Let x and y be any elements inM.

1. Clearly �fx; yg D f�x; �yg by the definition. Therefore

�hx; yi D �ffxg; fx; ygg D f�fxg; �fx; ygg D ff�xg; f�x; �ygg D h�x; �yi:

2. Let f be a function. By 1, �f D fh�x; �.f .x//i W x 2 dom.f /g. To show

that �f is a function, suppose �x D �y for x; y 2 dom.f /. Since � is one-
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to-one, x D y, and so �.f .x// D �.f .y//. Thus �f is a function and hence

.�f /.�x/ D �.f .x//.

3. This can be proved straightforwardly by transfinite induction on OV.

Definition 2.5.8. For each x in M, we define the setwise stabilizer of x in G

G.x/ D f� 2 G W �x D xg:

Then G.x/ is a subgroup of G. We say x is symmetric (with respect to F) if G.x/ 2 F . The

notation is different in some papers or textbooks; some call this the symmetric group of x

in G, written symG.x/. Define a permutation model by

V D fx W x is symmetric and x � Vg:

Theorem 2.5.9. The class V is a transitive model of ZFA, OV � V , and U 2 V .

With AC, every set can be well-ordered and so it has a bijection with some ordinal, and

we define its cardinality to be the least such ordinal. Defining cardinalities of sets without

AC is not as straightforward.

Definition 2.5.10. The cardinality of a set x, denoted by jxj, in the model V , is defined

by

jxj D C.x/ \ P˛.U / \ V ;

whereC.x/ D fy 2 V W y � xg and˛ is the least ordinal such thatC.x/\P˛.U /\V ¤ ;.

This method is known as Scott’s trick.

We will work in the theory ZFA C AC (for the consistency, see [Jec73]). Then we have

that AC holds in the kernel OV. By the Jech-Sochor Embedding Theorem (see [Jec73] or

[JS66]), we can embed an initial segment of the permutation model into a well-founded

model of ZF, so that every relation between cardinals in the permutation model also holds



2.5. Set theory with atoms 15

in the well-founded model. Hence, in order to prove that a relation between some cardinals

is consistent with ZF, it is enough to find a permutation model for the statement.

Definition 2.5.11. A set I of subsets of U is a normal ideal if for all E;F � U :

(i) ; 2 I ,

(ii) if E 2 I and F � E, then F 2 I ,

(iii) if E 2 I and F 2 I , then E [ F 2 I ,

(iv) if � 2 G and E 2 I , then �.E/ 2 I ,

(v) for each a 2 U , fag 2 I .

Remark. The set of all finite subsets of U is a normal ideal.

Definition 2.5.12. For each E � U , define the pointwise stabilizer of E under G

GE D f� 2 G W �.a/ D a for all a 2 Eg:

Then GE is a subgroup of G. This is sometimes written as fixG.E/.

Theorem 2.5.13. Given a normal ideal I , then

F D fH W H is a subgroup of G such that GE � H for some E 2 I g

is a normal filter.

Note that given a normal ideal I , there is a corresponding normal filterF as defined above

and we say V is defined from I if V is the permutation model defined from such F .

Definition 2.5.14. For each x and eachE 2 I , we say thatE is a support of x ifGE � G.x/.

If I is the set of all finite subsets of U and F is the corresponding normal filter, then we

say F is generated by finite supports.
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Remarks.

1. x is symmetric iff there exists E 2 I such that E is a support of x. As a result, we

have that

x 2 V iff x has a support and x � V :

2. For each x and each E;F 2 I , if E is a support of x and E � F , then F is also a

support of x.

Definition 2.5.15. We call the set G.x/ WD fgx W g 2 Gg the orbit of x under a group G.

Proposition 2.5.16. Let E;X � U where E is finite. If X is supported by E, then X is a

union of orbits of U under GE .

Proof. Assume X is supported by E. Let a 2 U be such that GE .a/ \ X ¤ ; and

let b 2 GE .a/ \ X . Let c 2 GE .a/. Then there are �; � 2 GE such that b D �a

and c D �a. Since GE is a subgroup, ���1 2 GE , so as E supports X and b 2 X ,

c D �a D ���1b 2 X too. Thus GE .a/ � X . Hence X is a union of orbits of U under

GE .

Examples.

1. The Fraenkel model: Let U be a countable set of atoms. Let G be the group of all

permutations of U and let F be the filter on G generated by finite supports. Then

the permutation modelNF induced from U , G, and F is called the (basic) Fraenkel

model.

2. The Mostowski model: Let hU;<i be a countable set of atoms isomorphic to the

rationals hQ; <Qi. Let G be the group of order-preserving permutations of U . Let

F be the filter on G generated by finite supports. The permutation model NM

determined by U , G and F is called the Mostowski model.
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2.6 Infinitary languages

Definition 2.6.1. Let L be a language and � be an infinite cardinal. The formulas of the

infinitary logic L�! are defined inductively as follows.

(i) Every atomic L-formula is a formula of L�! .

(ii) If X is a set of formulas of L�! such that all of the free variables come from a fixed

finite set and jX j < �, then ^
'2X

' and
_
'2X

'

are formulas of L�! .

(iii) If ' is a formula of L�! , then so are :', 8v' and 9v'.

The following results are from [Sco65], though their proofs are not given in the original

reference. The proof of Theorem 2:6:2 can be found in elementaryModel Theory textbooks

(e.g. see Theorem 2.4.15 in [Mar02])

Theorem 2.6.2 (Countable Isomorphism Theorem). Let A be a countable L-structure.

Then there is ' 2 L!1! such thatB Š A if and only ifB � '. We call ' a Scott sentence

of A.

The following theorem known as the Scott Countable Definability Theorem (also from

[Sco65]) can be stated as follows.

Theorem 2.6.3 (Countable Definability Theorem). Let A be a countable structure and let

P � An for some n 2 !. Then the following are equivalent.

1. For anyQ � An, if hA; P i Š hA;Qi, then P D Q.

2. There is some formula '.x/ of L!1! such that hA; P i � 8x.P.x/$ '.x//:

Proof. (2 ) 1) Let ' be an L!1!-formula satisfying 2. Let Q � An be such that
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hA; P i Š hA;Qi. Then, by applying the isomorphism, hA;Qi � 8x.Q.x/ $ '.x//.

Therefore x 2 P , '.x/, x 2 Q for all x 2 An, and so P D Q.

(1 ) 2) Assume that for any Q � An, if hA; P i Š hA;Qi, then P D Q. For each

a 2 P , let 'a.a/ be a Scott sentence of hA; ai and let '.x/ D
W
a2P 'a.x/. We will show

that hA; P i � 8x.P.x/$ '.x//.

Let b 2 An. If b 2 P , then hA; bi � 'b.b/, so hA; bi � '.b/. Suppose hA; bi � '.b/.

Then hA; bi � 'a.b/ for some a 2 P . Since 'a.a/ is a Scott sentence of hA; ai,

hA; bi Š hA; ai. By 1, we have b D a 2 P .
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Chapter 3

Relations between notions of

Dedekind-finiteness

In this chapter, we introduce the main notions of Dedekind-finiteness considered in this

thesis. The object is to combine all notions previously considered in [Tar24], [Mos39],

[Tru74], [Deg94], and [Gol97], and present them and some analogues as systematically

as possible. The notions are presented via their corresponding ‘classes’, here thought of

as ‘notions of finiteness’ (in contrast to a ‘notion of infinity’ studied in [Deg94]). We

formulate what is understood by a ‘notion of finiteness’ for which a minimum requirement

is that it be closed under �. For instance the notion of ‘o-amorphous’ is not as it stands

closed under subset, so for this notion we have to including forming subsets explicitly in

the definition. Other properties of the usual class of finite sets is that a finite union of

finite sets is finite, related to closure under C and �. These will form a central theme, as

well as relations between the different classes, either provably, or consistently.
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3.1 Finiteness without Choice

Recall the definition of a Dedekind-finite set. A set X is Dedekind-finite if @0 — jX j.

Otherwise it is Dedekind-infinite. Several people have studied finiteness without theAxiom

of Choice. We attempt to discuss systematically most of the important definitions, see how

they are related and investigate their closure properties.

A notion of infinity was introduced in [Deg94], and a corresponding notion of finiteness

class was introduced in [Her11]. We will follow the latter notion since we mainly focus

on finiteness in this thesis.

Definition 3.1.1. The class of cardinals � is a finiteness class if it satisfies the following.

(i) ! � � ,

(ii) @0 … � ,

(iii) � is closed under �, i.e. if jxj 2 � and jyj � jxj, then jyj 2 � .

It is easy to see that the set ! is a finiteness class, and with the Axiom of Choice it will

be the only such class. However without AC, as we mentioned above, there is a model

in which infinite Dedekind-finite sets exist, and the class of Dedekind-finite cardinals,

denoted by �, is also a finiteness class. Furthermore we can show that these two classes

are the boundaries of this notion, i.e. for any finiteness class � , ! � � � �, as shown in

the following remarks, so every finiteness class is a class of Dedekind-finite cardinals.

Remarks.

1. ! is the smallest finiteness class.

2. � is the largest finiteness class.

Proof. It is easy to see that both ! and � satisfy the criteria for being finiteness classes,

and ! is the smallest by the definition. To see that � is the largest such class, let � be a



3.1. Finiteness without Choice 21

finiteness class and let jX j 2 � . Since � is closed under � and @0 … � , @0 — jX j, so

jX j 2 �.

Without AC, we shall see that it is consistent with ZF that ! � �, and also there might be

other finiteness classes � lying between ! and�. First we introduce many such classes of

cardinals, some of which have been extensively studied in [Deg94], [Gol97], and [Tru74].

Some notions were introduced earlier than that in [Tar24], [Mos39] and [Lév58].

Throughout this thesis, we use finite meaning the usual finite definition, i.e. sets having

their cardinalities in !.

Definition 3.1.2. We introduce the following classes, of which the first fourteen are classes

of Dedekind-finite cardinals, some relying on notions yet to be defined.

(i) ! WD the set of natural numbers,

(ii) �1 WD fjxj W if x D y P[ ´; then either y or ´ is finiteg,

(iii) �2 WD fjxj W every linearly ordered partition of x is finiteg,

(iv) �3 WD fjxj W every linearly ordered subset of x is finiteg,

(v) �4 WD fjxj W x is weakly Dedekind-finite, i.e.! ™� xg,

(vi) ��4 WD fjxj W there are no finite-to-one maps from a subset of x onto !g,

(vii) �5 WD fjxj W x C 1 ™� xg,

(viii) ��5 WD fjxj W there are no non-injective finite-to-one maps from x onto xg,

(ix) �MT WD fjxj W x has MT-rankg,

(x) �Russell WD fjxj W every partial ordering on x has a maximal elementg,

(xi) �o WD fjxj W x � y for some y having a linear order so that hy;<i is o-amorphousg,

(xii) ��o WD fjxj W x has a linear order < so that hx;<i is weakly o-amorphousg,

(xiii) �per WD fjxj W every injection on x has finite orderg,

(xiv) � WD fjxj W x is Dedekind-finite, i.e.! ™ xg,

(xv) � 05-per D fjxj W every bijection on x has a finite cycleg,

(xvi) � 0V WD fjxj W 2jxj > jxjg,
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(xvii) � 0VI WD fjxj W jxj2 > jxjg,

(xviii) � 0VII WD fjxj W jxj is not an aleph greater than or equal to @0g.

It can be shown that classes from (i)–(xiv) from the above definitions are finiteness

classes, therefore they lie between ! and �. We can narrow down these relations further

as illustrated as follows, where means it is provable in ZF that there is a relation �

between the two classes.
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Moreover we also show their closure properties under various operations, namely C, �,

union, and disjoint union, as can be defined as follows.

Definition 3.1.3. We say a finiteness class � is

� closed under C if jxj; jyj 2 � implies jxj C jyj 2 � ,

� closed under � if jxj; jyj 2 � implies jxj � jyj 2 � ,

� closed under union if jxj 2 � and jyj 2 � for all y 2 x impliesD j
S
xj 2 � ,

� closed under disjoint union if jxj 2 � and jyj 2 � for all y 2 x implies j P
S
xj 2 � .

More details on the relations between these classes together with their closure properties

will be given in the following sections.

3.1.1 The classes �1; �2; �3; �4, and �5

First we consider the classes �1; �2; �3; �4, and �5. Together with ! and �, one can

see that their definitions arise naturally from properties of finite sets. In [Lév58], Lévy

introduced eight notions of finiteness, namely from I- to VII-finite together with Ia-finite,

of which five are equivalent to five of the above seven. In particular, I-, Ia-, II-, III- and IV-

finite are equivalent to definition of cardinals lying in !,�1,�2,�4, and�, respectively.

The classes �3 and �5 were introduced in [Tru74], and in this paper, properties of all

these seven classes were studied including the relations between these classes and their

closure properties, along with some consistency results, as we shall recall in what follows.

Note that the latter notions from [Lév58], V-, VI-, and VII-finite, are not really interesting

in this context as they fail to be finiteness classes. We will discuss them at the end of this

section.

We have already remarked that ! and � are finiteness class. Similarly we can show that

this is also true for �1; �2; �3; �4, and �5, and hence they all lie between ! and �.
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Proposition 3.1.4. The classes �1; �2; �3; �4, and �5 are finiteness classes.

The above statements can be proved straightforwardly. Further results were shown in

[Tru74] as follows.

Proposition 3.1.5. The following relations can be proved in ZF.

1. ! � �1 � �2 � �4 � �5 � �

2. �2 � �3 � �

We note that �2 is contained in both �3 and �4. Later we will show that it is consistent

that �3 and �4 are incomparable and hence we do not have any relation between them.

In particular, it is consistent that �3 › �4 and �4 › �3 (see Proposition 3:2:10 and

Proposition 3:2:7, respectively). Furthermore some closure properties of these classes are

also shown in [Tru74], which we quote here.

Theorem 3.1.6.

1. !;�2; �4 are closed under unions,

2. �3; � are closed under disjoint unions,

3. �5 is closed underC,

4. �1 is closed underC if and only if ! D �1,

5. !;�2; �3; �4; � are closed underC and �.

Some classes however fail to have some of these closure properties, as follows.

Theorem 3.1.7 ([Tru74]).

1. If ! ¤ �, then � is not closed under unions.

2. If ! ¤ �3, then �3 is not closed under unions.

3. Con.ZF/ implies Con.ZFC�5 is not closed under �/.
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Thomas Forster suggested another notion of finiteness: For every function f W! ! X ,

there is x 2 X such that f �1Œfxg� is infinite. It turns out that this condition is also

equivalent to Dedekind-finiteness.

To see this, for convenience let’s call the above notion of finiteness Forster-finite. Thus, if

X is Forster-finite, by the definition, no function f W! ! X is an injection. Conversely,

if X is not Forster-finite, then there is a function f W! ! X such that for every x 2 X ,

f �1Œfxg� is finite. Since ! D
S
x2ran.f / f

�1Œfxg�, ran.f / is infinite. Define a function

gWminf �1Œfxg� 7! x for all x 2 ran.f /. Then g is a bijection between an infinite subset

of ! and ran.f /. Hence X is not Dedekind-finite.

The following is due to Kuratowski and the proof can be found in [Tar24] or [Her06].

Theorem 3.1.8. For any set X , ! � P.X/ implies ! �� X .

Corollary 3.1.9. If �4 D �, then ! D �.

Proof. Assume �4 D �. Let X … !. Then ! �� P.X/ since we can map the set of

n-element subsets to n for each n 2 !, and so! � P.X/. By the above theorem, ! �� X ,

and therefore ! � X . Hence X … �.

Note that the definition of�5 is also equivalent to the finiteness notion of dual Dedekind-

infinite set defined in [Deg94], which can be stated as follows.

Definition 3.1.10. A set X is dual Dedekind-finite if there is no noninjective surjection

from X onto X , i.e. every surjection on X must be injective.

It is easy to check that this is equivalent to the definition of �5 given in Definition 3:1:2

and can be considered as an alternative definition.
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3.1.2 Notion of MT-rank

Definition 3.1.11. A setX is amorphous if it is infinite and cannot be expressed as a union

of two disjoint infinite sets.

We can see that the class �1 is actually the class of cardinalities of amorphous or finite

sets. The existence of amorphous sets is incompatible with the Axiom of Choice. This

idea was extended to higher ranks in [MT03].

Definition 3.1.12. The MT-rank of a set X , denoted by MT.X/, is defined as follows.

(i) MT.X/ D �1 if X D ;,

(ii) MT.X/ D ˛ if MT.X/ 6< ˛ and there is n 2 ! such that if X D P
S
0�i�nXi then

for some i , MT.Xi/ < ˛.

We say a set X has MT-rank if MT.X/ D ˛ for some ordinal ˛ and hasMT-degree k if k

is the least n satisfying (ii).

Definition 3.1.13. Let �MT denote the class of cardinalities of sets which have MT-rank.

For any ordinal ˛, let �MT˛ D fjX j 2 �MT W MT.X/ � ˛g.

We can see that every non-empty n 2 ! has MT-rank 0, and every amorphous set has

MT-rank 1 with MT-degree 1. Hence �MT0 D ! and �MT1 is the class of finite sums of

members of �1.

Proposition 3.1.14. The classes �MT and �MT˛ are finiteness classes for all ˛ 2 ON.

Proof. Let ˛ 2 ON. Since�MT0 D !,! � �MT˛ � �MT. By using transfinite induction,

the image of any set with MT-rank ˛ under a function has MT-rank � ˛. Therefore �MT

and �MT˛ are closed under � and ��.

To see that @0 … �MT, suppose MT.!/ D ˛ with MT-degree n. Then for 0 � i � n,

Xi WD fk.nC 1/C i W k 2 !g are nC 1 infinite pairwise disjoint subsets of !, so there
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is Xi such that MT.Xi/ < ˛. But then Xi can be mapped onto !, so MT.!/ < ˛, a

contradiction. Hence @0 … �MT, and also @0 … �MT˛ .

Therefore �MT lies between ! and �. Since every amorphous set has MT-rank 1 and

since�MT is closed under �� and @0 … �MT, we have a stronger result�1 � �MT � �4.

Notice that �MT˛ � �MTˇ for all ˛ < ˇ. One can build an FM-model containing sets

having arbitrary large rank (see Section 3 in [MT03]).

Proposition 3.1.15. For any ˛, it is consistent that �MTˇ � �MT
 for all ˇ < 
 � ˛.

Therefore we have the following containments in which no relation can be reversed.

�MT0 D ! � �1 � �MT1 � �MT2 � : : : � �MT! � : : : � �MT˛ � : : : � �MT

3.1.3 Russell-finiteness

The notion of Russell-infinite was introduced in [Deg94], and its dual notion of finiteness

can be defined as follows.

Definition 3.1.16. A setX is called Russell-finite if it is empty, or if every partial ordering

on X has a maximal element.

This is different from a Russell-set which is a Dedekind finite set that can be expressed

as a countable union of pairwise disjoint 2-element sets (see [HT06]). A Russell-set will

play some roles later.

Definition 3.1.17. Let �Russell denote the class of cardinalities of Russell-finite sets.

Now we check whether �Russell is a finiteness class and verify its closure properties.

Lemma 3.1.18. The class �Russell is closed under �.
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Proof. Assume jX j 2 �Russell and Y � X be non-empty. Let < be a partial ordering on

Y . Let y 2 Y . Extend < to X by letting x < y 0 for all x 2 X r Y and y 0 � y in Y .

Then< is a partial ordering onX and soX has a maximal element, say x0. Since x0 6< y,

x0 … X r Y . Thus x0 2 Y .

Proposition 3.1.19. The class �Russell is closed underC.

Proof. Let jX j; jY j 2 �Russell where X and Y are disjoint. Let < be a partial ordering on

X [ Y . Then <� .X � X/ is a partial ordering on X and so X has a maximal element,

say x0. If x0 is a maximal element in X [ Y , then we’re done.

Suppose x is not a maximal element in X [ Y . Then Y 0 D fy 2 Y W y > x0g is not

empty. Since Y is Russell finite and �Russell is closed under �, Y 0 is also Russell finite

and so it has a maximal element, say y0. Since y0 > x0, y0 is not below any member

of X . Let y 2 Y . If y > y0, then y > x0 and so y 2 Y 0, but y0 is maximal in Y 0, a

contradiction. Hence y 6> y0. Therefore y0 is maximal in X [ Y .

We could change the definition of Russell-finite by using ‘minimal element’ instead of

‘maximal’ but this doesn’t make any difference. The following are some equivalent

characterizations of Russell-finiteness.

Proposition 3.1.20. The following are equivalent for non-empty X .

1. jX j 2 �Russell,

2. in any partial ordering on X , every member of X is between a maximal and a

minimal element,

3. every partial ordering on X has a bound on the length of its finite chains,

4. every partial ordering on X is well-founded.

Proof. .2 ) 1/ and .4 ) 1/ are obvious, in the latter case considering the reverse

ordering.
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.1) 2/ Suppose jX j 2 �Russell. Let x 2 X and Y D fy 2 X W y � xg. Then Y contains

a maximal element since�Russell is closed under � and it can be showed straightforwardly

that it is also maximal in X .

For minimal, reverse < to >, then we have a >-maximal element above x which is a

<-minimal element below x.

.1) 4/ This follows from the fact that �Russell is closed under � and, from 1 applied to

the reverse ordering, every element is above a minimal element.

.3) 1/ Let< be a partial ordering onX . Then there is a bound on length of finite chains,

say n is the least such bound. Let C be a chain in X with length n. Thus C has a maximal

element, say x. Then x is also maximal in X , otherwise there is y > x and C [ fyg has

length nC 1, a contradiction.

.1 ) 3/ Let jX j 2 �Russell and < be a partial ordering on X . Define recursively on n,

Xn is the set of all maximal elements of X r
S
i<nXi . It was shown in [Deg94] that

�Russell � �4 (or see Proposition 3:1:26 for the stronger result, �Russell � �2), hence

jX j 2 �4, and so there is n such that Xn D ; and we have X D P
S
i<nXi . Let C be a

chain in X . Then jC \Xi j � 1 for all i < n, so jCj � n.

Proposition 3.1.21. A disjoint Russell-finite union of Russell-finite sets is Russell-finite.

Proof. Let fXi W i 2 I g be a Russell-finite family of pairwise disjoint Russell-finite sets,

and let < be a strict partial ordering on P
S
fXi W i 2 I g.

Let L be a <-chain. For any i 2 I , let Li D L \ Xi . Then Li is a chain in Xi where

jXi j 2 �Russell, so Li must be finite for all i 2 I . Since the Xi are pairwise disjoint, so

are the Li for all i 2 I . Let I 0 D fi 2 I W Li ¤ ;g. Define a linear ordering <I on I 0 by

i1 <I i2 if maxLi1 < maxLi2 . Then we have a<I -chain on I and since jI j 2 �Russell, the

chain is finite. Hence there are finitely many i such that Li ¤ ;. Therefore L D P
S
i2I Li

is a finite union of finite sets, so it is finite.
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The following corollary follows immediately.

Corollary 3.1.22. The class �Russell is closed under �.

It is easy to see that n 2 �Russell for all n 2 ! and! with the usual ordering has nomaximal

element, therefore @0 … �Russell. Together with Lemma 3:1:18, we have the following.

Proposition 3.1.23. The class �Russell is a finiteness class.

Therefore �Russell lies between ! and �. As remarked above, it was already showed in

[Deg94] that every Russell-finite set is weakly Dedekind-finite, i.e.�Russell � �4. We will

refine these results and find how �Russell relates to the other finiteness classes introduced

in Definition 3:1:2. First we have the next result from [MT03].

Fact 3.1.24. If hX;<i is a non-empty partially ordered set, and X has MT-rank ˛, then

X has minimal and maximal elements.

Corollary 3.1.25. �MT � �Russell.

Proposition 3.1.26. �Russell � �2.

Proof. Suppose jX j … �2. Then there is an infinite linearly ordered partition h�;<i of

X . If � has a <-maximal element, then we can construct a linear ordering on � with no

maximal element. Consider the maximal conversely well-ordered final segment of h�;<i.

If it is infinite, then we can reverse the final !�-segment so that we have a new linear

ordering on � with no maximal element. Otherwise, the segment is finite, so we can put

it at the beginning of the ordering, resulting in a linear ordering on � with no maximal

element. Thus we may assume that h�;<i has no maximal element. Define <X on X by

x <X y iff P < Q where x 2 P and y 2 Q and P;Q 2 � . It is easy to see that <X is a

partial ordering on X with no maximal element. So jX j … �Russell.

Now we have the following relations.

�1 � �MT � �Russell � �2
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3.1.4 More on amorphous sets

The notion of amorphous has a close link with the notion of strong minimality in model

theory (see [Tru95]). Another notion which is related to amorphous is ‘o-amorphous’,

which is related in a similar way to ‘o-minimality’ in model theory. First we need the

following definition.

Definition 3.1.27. Let hX;�i be a linear ordering. A subset of X is called an interval if

it has the form .a; b/ D fx W a < x < bg or Œa; b�; Œa; b/; .a; b� – closed on one or both

sides, where a; b 2 X [ f˙1g. A subset Y of X is convex if a < x < b and a; b 2 Y

implies x 2 Y .

Then we have the following notions.

Definition 3.1.28. We say a linear ordering hX;�i is o-amorphous if it is infinite and

its only subsets (definable or not) are finite unions of intervals, and we call it weakly

o-amorphous if its only subsets are finite unions of convex sets.

More details on o-amorphous sets can be found in [CT00]. We have every o-amorphous

set is weakly o-amorphous, and Creed and Truss show ([CT00, Lemma 2.5]) that every

weakly o-amorphous set is weakly Dedekind-finite. They also show that a union of

two o-amorphous sets need not be o-amorphous, and provide the following easily-proved

lemma.

Lemma 3.1.29 ([CT00]). Let hX;<i be a linear ordering. If X D A [ fxg [ B with

A < x < B , then X is o-amorphous if and only if A and B are.

Note that for the converse, we need an extra point x in between the two sets so that X is

o-amorphous, otherwise A cannot be written as a finite union of intervals and so it is not

o-amorphous. Therefore the class of cardinalities of o-amorphous sets is not a finiteness
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class, as we will explain after the next proof. But we can consider a slightly modified

definition as stated in Definition 3:1:2, which we recall in the following.

�o WD fjxj W x � y for some y having a linear order so that hy;<i is o-amorphousg

��o WD fjxj W x has a linear order < so that hx;<i is weakly o-amorphousg

Lemma 3.1.30. �o � �
�
o .

Proof. Let jxj 2 �o. Then x � y for some y with a linear order < such that hy;<i is

o-amorphous. Hence every subset of x is a finite union of intervals whose boundaries

might be in y r x, but they are convex subsets of x.

Proposition 3.1.31. The classes �o and ��o are finiteness classes.

Proof. Clearly both �o and ��o contain every n 2 !. Next we show that @0 … ��o . Let

hX;<i be a countably infinite linearly ordered set.

Case 1. There is a nonempty subset Y � X with no <-minimum.

Since X is enumerable, Y contains a <-descending !-sequence, say hynin2! (note that

this does not require AC). Then the subset fy2n W n 2 !g of Y cannot be written as a finite

union of convex sets.

Case 2. Every nonempty subset of X has a <-minimum.

Then hX;<i is a well-ordering and hence it contains an !-sequence which is<-increasing

say hxnin2! , and again the set fx2n W n 2 !g cannot be written as a finite union of convex

sets.

Fromboth cases, we can conclude that hX;<i is notweakly o-amorphous. Hence@0 … ��o ,

and so @0 … �o.

The class �o is closed under � by its definition. For ��o , let jX j 2 ��o and jY j � jX j.

We may assume Y is a subset of X , and so Y inherits a linear ordering < from X where
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hX;<i is weakly o-amorphous. Hence every subset Z � Y is a subset of X , so Z is a

finite union of sets which are convex subsets of X . A convex subset of X contained in Y

is a convex subset of Y , soZ is a finite union of convex subsets of Y . Thus hY;<� Y �Y i

is also weakly o-amorphous.

Note that from the above proof, the difference between the two cases is that a convex subset

of Z which is contained in Y is also a convex subset of Y , but an interval of Z which

is contained in Y need not be an interval in Y , as its endpoints may have been omitted.

Further as both�o and��o are finiteness classes, they lie between ! and�. We can refine

this result further as follows.

Proposition 3.1.32. ��o � �4.

Proof. Let jX j 2 ��o and let < be a linear order on X such that hX;<i is weakly o-

amorphous. Suppose jX j … �4. Then X can be written as a countable disjoint union of

nonempty subsets P
S
n2! Xn. Since hX;<i is weakly o-amorphous, every Xn is a finite

union of convex subsets of X , say Xn D P
S
i<kn

Yn;i for some kn 2 ! for all n 2 !. Note

that the Yn;i are pairwise comparable under <. Hence C WD fYn;i W i < kn and n 2 !g is

countable and hC; <i is a countable linear ordering.

Similarly to the proof of Proposition 3:1:31 where we showed that @0 … ��o , there is

either a <-increasing or a <-decreasing !-sequence of members of C, the union of whose

alternate subsequences cannot be written as a finite union of convex subsets of X . This

contradicts hX;<i being weakly o-amorphous. Hence jX j 2 �4.

Therefore we have the following relations.

! � �o � �
�
o � �4
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3.1.5 ��4 and ��5

The notion of weakly Dedekind*-infinite was introduced in [Gol97], which is a stronger

version of weakly Dedekind-infinite set. The dual notion of finiteness is stated as follows.

Definition 3.1.33. A set X is called weakly Dedekind*-finite if there are no finite-to-one

maps from a subset of X onto !.

We let ��4 be the class of cardinalities of weakly Dedekind*-finite sets. As we can see,

the above definition is slightly different from the notion of weakly Dedekind-finite. The

obvious difference is that the function is required to be finite-to-one, but in the definition

we needed to quantify over all subsets to ensure that the class ��4 is closed under �. It

can be easily checked that n 2 ��4 for all n 2 ! and @0 … ��4 . Therefore the following

proposition follows immediately.

Proposition 3.1.34. The class ��4 is a finiteness class.

Next we study the closure properties of ��4 . Showing that ��4 is closed under C is

straightforward.

Proposition 3.1.35. The class ��4 is closed underC.

Proof. Let X and Y be sets such that X \ Y D ;. Suppose there is a subset S � X [ Y

with a finite-to-one function f WS ! !. Then either S \ X or S \ Y has infinite image

under f , so jX j … ��4 or jY j … ��4 .

Proposition 3.1.36. A disjoint weakly Dedekind*-finite union of weakly Dedekind*-finite

sets is weakly Dedekind*-finite.

Proof. Let fXi W i 2 I g be a weakly Dedekind*-finite family of pairwise disjoint weakly

Dedekind*-finite sets.
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Suppose P
S
fXi W i 2 I g is not weakly Dedekind*-finite. Then there is a subset S �

P
S
fXi W i 2 I gwith a finite-to-one surjection f WS ! !. For each i 2 I , let Si D S\Xi .

Then f � Si WSi ! ! is also finite-to-one. Since each Xi is weakly Dedekind*-finite,

ran.f � Si/ is finite. Therefore we can associate with each i a finite subsetNi � !, where

Ni D ran.f � Si/. Furthermore Si is finite for all i 2 I .

Since f is finite-to-one, f �1ŒN � is finite for all finite N � !. Therefore there are

finitely many i such that Si � f �1ŒN � since all Si are pairwise disjoint. Hence the map

gW i 7! Ni is finite-to-one. Since
S
i2I Ni D ! and all Ni are finite, there are infinitely

many different Ni . Hence g maps I onto an infinite subset of Œ!�<@0 , the set of all finite

subsets of !, which is countably infinite. Hence ran.g/ is infinite, and this contradicts

weakly Dedekind*-finiteness of I .

Corollary 3.1.37. The class ��4 is closed under �.

Both ��4 and �5 contain �4 and are contained in �, but it is shown in later sections that

��4 and �5 are not comparable, i.e. it is consistent that ��4 › �5 and �5 › ��4 (see

Proposition 3:2:22 and Proposition 3:2:10, respectively). A stronger version of�5, which

has an alternative definition in Definition 3:1:10, can be obtained in the same fashion as

defining ��4 from �4.

Definition 3.1.38. A set X is called dual Dedekind*-finite if there are no non-injective

finite-to-one maps from X onto X , or equivalently, there are no finite-to-one maps from

X onto X [ f�g where � … X .

Let ��5 be the class of cardinalities of dual Dedekind*-finite sets. Obviously �5 � ��5 .

Furthermore we can show that ��4 � ��5 . First we need the following proposition.

Proposition 3.1.39. Let X be a set. Then jX j … ��5 if and only if there is a subset T � X

carrying a finite-branching tree structure with ! levels and no leaves.
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Proof. .)/ Suppose jX j … ��5 . Then there is a finite-to-one surjection f WX ! X [f�g

where � … X . Define Ln for n 2 ! as follows. Let L0 D f�g, LnC1 D f �1ŒLn� for

n 2 ! and let T D
S
n2! Ln. Note that the Ln are finite and pairwise disjoint, and since

f is a surjection, Ln ¤ ; for all n 2 !. Define < on T to be the transitive closure of the

relation given by x < y if y 2 f �1Œfxg�. It can be proved straightforwardly that hT;<i is

a tree with no leaves with � the least element, and since all Ln are finite, hT;<i is finite

branching. Therefore T r f�g is our desired subset of X .

.(/ Suppose there is an infinite subset T � X with a finite-branching tree structure

satisfying the condition. Let � … X and extend T to T [ f�g by letting � be below

all members of T . Define f WT ! T [ f�g by f .x/ D y where y is the immediate

predecessor of x. Since T has no leaves and branches finitely, f is surjective and finite-

to-one. We extend the domain of f to X by letting f be the identity on X r T so we

have a finite-to-one function from X onto X [ f�g.

To see that��4 � ��5 . Suppose jX j … ��5 , then there is a subset T of X as from the above

proposition, so every level of T is finite and the map given by x 7! n where x is on level

n is a finite-to-one map from a subset T of X onto ! which is also non-injective.

Proposition 3.1.40. The class ��5 is a finiteness class.

Proof. It is easy to see that n 2 ��5 for all n 2 !, so ! � ��5 . The map f W! ! !

defined by f .0/ D 0 and f .nC 1/ D n for all n 2 ! is a non-injective finite-to-one map

from ! onto !, therefore @0 … ��5 .

Let X and Y be sets such that jY j � jX j and suppose jY j … ��5 . We may assume that Y

is a subset of X . Then there is a non-injective finite-to-one gWY ! Y . Extend g to X by

letting g.x/ D x for all x 2 X r Y . Then g is a non-injective finite-to-one function from

X onto X , and so jX j … ��5 .
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Next we study the closure properties of��5 underC and �, which turn out to be a positive

result forC but not for �.

Proposition 3.1.41. The class ��5 is closed underC.

Proof. Let X and Y be disjoint sets. Suppose jX j C jY j … ��5 . Then there is a subset

T � X [ Y with a finite-branching tree structure satisfying the above proposition. Since

T is infinite, either T \X or T \Y is infinite. Suppose TX WD T \X is infinite. Then TX

is a subset ofX carrying a tree structure in which every vertex branches finitely and hence

it also has !-levels. If TX has no leaves, then jX j … ��5 and so we’re done. Suppose TX

has some leaves, say x is one such. Then the set TY WD fy 2 Y W y > xg is a subset of

Y extending x carrying a finite-branching tree structure. Since T has no leaves and x is a

leaf of TX , TY has no leaves. Thus TY is an infinite subset of Y carrying a finite-branching

tree structure with !-levels and no leaves. Hence jY j … ��5 .

The counter example for showing that ��5 is not closed under � is the same as one that

is used to show the similar result for �5 in [Tru74]. We will give its proof in Section 3.2

where we discuss consistency results obtaining from FM-models.

Proposition 3.1.42. It is consistent with ZF that ��5 is not closed under �.

Proof. See Subsection 3.2.8.

We have the following relations.

�4

��4

�5

��5
�

�

�

�
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3.1.6 Period-finiteness and classes beyond �

The notions of period-infinite of level (i ) ([i ]-per-inf ) for 1 � i � 5 were introduced in

[Deg94]. We can state their dual notions of finiteness as follows.

Definition 3.1.43. A set X is

� Œ1�-period-finite if every injection on X has finite order,

� Œ2�-period-finite if every permutation of X has finite order,

� Œ3�-period-finite if every function on X has a finite cycle,

� Œ4�-period-finite if every injection on X has a finite cycle,

� Œ5�-period-finite if every permutation of X has a finite cycle.

We have the following relations

weakly Dedekind-finite) Œ1�-period-finite) Œ2�-period-finite) Dedekind-finite

) Œ3�-period-finite) Œ4�-period-finite) Œ5�-period-finite

It turns out that some of these notions actually coincide as can be shown as follows.

Proposition 3.1.44.

(i) Œ1�-period-finite, Œ2�-period-finite.

(ii) Dedekind-finite, Œ3�-period-finite.

(iii) Œ4�-period-finite, Œ5�-period-finite.

Proof. It only remains to show the( part for each statement.

(i) Since Œ2�-period-finite implies Dedekind-finite and a Dedekind-finite set is a set with

no injection into a proper subset, every injection on a Dedekind-finite set must be

surjective.
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(ii) Suppose X is Dedekind-infinite. Then there is a countable subset Y � X , say

Y D fxn W n 2 !g. Then the function f WX ! X defined by f .x/ D x0 if x … Y

and f .xn/ D xnC1 for all n 2 ! has no finite cycle.

(iii) Suppose X is not Œ4�-period-finite. Then there is an injection f WX ! X such that

f has no finite cycles (including fixed points). Define a relation � on X by x � y

iff f n.x/ D y for some n 2 Z. Then � is an equivalence relation. We call an

equivalence class Œx� an !-orbit if Œx� D ff n.y/ W n 2 !g for some y … ran.f /,

otherwise Œx� is a Z-orbit. Define g on X as follows. For any member of a Z-orbit,

g agrees with f . For an !-orbit ff n.y/ W n 2 !g, let

g.f 2n.y// D f 2nC2.y/

g.f 2nC1.y// D

8̂<̂
:y if n D 0I

f 2n�1.y/ if n > 0:

Then g is a permutation on every orbit with no finite cycles and X is the disjoint

union of orbits. Hence X is not Œ5�-period-finite.

Note that it was mentioned in [Deg94] that there is a Dedekind-infinite set which is Œ3�-

period-finite. This is not accurate as we have just shown that Dedekind-finiteness and

Œ3�-period-finiteness actually coincide.

As Œ1�-period-finiteness is below Dedekind-finiteness, we let�per be the class of cardinal-

ities of Œ1�-period-finite sets. For Œ5�-period-finite which lies above Dedekind-finiteness,

we let � 05-per be the class of cardinalities of such sets.

It can be shown that it is consistent that there is a Œ5�-period-finite set which is not

Dedekind-finite (see Proposition 3:2:18). Hence these two notions do not coincide and

since � � � 05-per, � 05-per is not a finiteness class.

Proposition 3.1.45. The class �per is a finiteness class.
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Proof. It suffices to show that �per is closed under �. Let jX j 2 �per and jY j � jX j. We

may assume Y � X . Then every permutation f on Y extends to a permutation of g on

X by a trivial extension. Since jX j 2 �per, there is n 2 ! such that gn D idX . It is easy

to see that f n D idY . Hence jY j 2 �per.

Proposition 3.1.46. The class �per is closed underC.

Proof. Let X and Y be sets such that X \Y D ;. Suppose jX j C jY j … �per. Then there

is a permutation f on X [ Y such that f does not have finite order, i.e. f n ¤ idX[Y for

all n 2 !.

Case 1. f has an infinite cycle. Therefore X [ Y is Dedekind-infinite. Hence either X

or Y is Dedekind-infinite and so jX j … �per or jY j … �per.

Case 2. Every cycle of f is finite. Then there are arbitrary long finite cycles of f ,

i.e. fjC j W C is a cycle of f g is infinite.

For any cycle C under f , let CX D C \X and CY D C \ Y . Then jC j D jCX j C jCY j.

Since fjC j W C is a cycle of f g is infinite, either fjCX j W C is a cycle of f g or fjCY j W

C is a cycle of f g is infinite. Suppose fjCX j W C is a cycle of f g is infinite. Then we can

define g onX by g.x/ D f n.x/where n is the least natural number such that f n.x/ 2 X .

This is well-defined since every cycle of f is finite. It is easy to see that a cycle C 0

of x under g has the same cardinality as CX where C is a cycle of x under f . Thus

jX j … �per.

The next 3 notions are from [Lév58], namely V-, VI-, and VII-finite, and we let � 0V; � 0VI,

and � 0VII be the corresponding classes of cardinalities, respectively. None of these classes

is a finiteness class as it is not closed downwards. For example, if x is an amorphous set

and y D ! P[ x, then jyj < 2jyj, jyj < jyj2 and jyj is not an aleph, but @0 < jyj and @0

does not belong to any finiteness class.
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Note that � 0VII is the boundary of classes of cardinalities without AC, i.e.� 0VII D ! if and

only if AC holds. Whereas showing that ! D � needs a much weaker form of AC. To be

precise, ! D � is equivalent to ‘W@0: for every x, either jxj � @0 or jxj � @0’, this is

weaker than AC@0 , the Axiom of Countable Choice. More details can be found in [Jec73,

Chapter 8].

3.2 Some consistency results from FM-models

It has been shown that some inclusions stated between the classes of Dedekind-finite

cardinals cannot be reversed.

For instance, since the union of two disjoint amorphous sets has an MT-rank, but is not

amorphous, it is consistent that �1 ¤ �MT. In fact, if ! ¤ �1, then �1 ¤ �MT (see

[Tru74]). Now we try to show that the remaining inclusions not settled in the diagram

need not hold by constructing FM-models from various structures.

3.2.1 The generic bipartite graph

Let B D hT P[ B; T;B;<Bi be the generic bipartite graph. Let U D fua W a 2 Bg be the

set of atoms and let< be the partial ordering on U induced by<B, i.e. ub < ut if b <B t .

Let G be the group of all order-preserving permutations of U , and F be the filter on G

generated by finite supports. Let NB be the permutation model determined by U , G, and

F .

For convenience we may view U as T P[ B and we say b < t if ub < ut . We will write b

for a member of B and t for a member of T .
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Notation.

1. For each b 2 B , let Tb D ft 2 T W t > bg and Tb0 D ft 2 T W t k bg. Then

T D Tb P[ Tb0 where b < Tb and b k Tb0 .

2. For b1; : : : ; bn 2 B , let Tb1:::bib0iC1:::b0n denote
T

1�k�i

Tbk \
T

iC1�l�n

Tb0
l
. We may

write Tb1:::bib0iC1:::b0n as Tb b0 .

3. For finite Y1; Y2 � B , let TY1;Y 02 denote
T
fTb W b 2 Y1g \

T
fTb0 W b 2 Y2g.

Similarly for t1; : : : ; tm 2 T and Bt t 0 .

Lemma 3.2.1. Every finite E � U supports only finitely many subsets of U .

In particular, if E D fb1; : : : : : : bn; t1; : : : ; tmg, then there are 2nC 2mC nCm orbits of

U under GE . Hence there are 22
nC2mCnCm subsets of U supported by E.

To see this, we will show that orbits of members of U r E under GE are either of the

form T
b b
0 or Bt ;t 0 . Since there are 2n possible forms of T

b b
0 , 2m possible forms of Bt t 0

and every member of E either belongs to or does not belong to a subset of U , there are

22
nC2mCnCm possible subsets of U supported by E.

Given a finite subset E � U , say E D fb1; : : : : : : bn; t1; : : : ; tmg, the orbit of a member

of U rE under GE is of the form T
b b
0 or Bt t 0 .

Proposition 3.2.2. Let E D fb1; : : : : : : bn; t1; : : : ; tmg. For any x 2 T r E, GE .x/ is of

the form TYx ;Y 0x where E \ B D Yx P[ Y
0
x. Similarly for x 2 B rE.

Proof. Let x 2 T rE. Let E \B D Ex P[E 0x where x > Ex and x kE 0x. We will show

that GE .x/ D TEx ;E 0x .

Let g 2 GE . Since g preserves order and fixes E pointwise, g.x/ > Ex and g.x/ k E 0x.

Hence g.x/ 2 TEx ;E 0x .
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For the converse, let y 2 TEx ;E 0x . Then y > Ex and y kE
0
x. Suppose y ¤ x. Since both x

and y belong to T , xky. Then there is a finite partial automorphismpWE[fxg ! E[fyg

taking x to y and fixing all members of E, which can be extended to g 2 GE . Hence

y D g.x/ 2 GE .x/.

Proposition 3.2.3. The following statements hold in NB.

1. jU j 2 �Russell.

2. jU j … �MT.

Proof.

1. Let � be a partial ordering on U supported by a finite E � U . Suppose x � y

and x; y lie in the same GE -orbit. Then x k< y (note that here x and y are

incomparable under <, the original partial ordering on U inherited from <B) and

the finite automorphism pWE [ fx; yg ! E [ fx; yg which p fixes E pointwise

and swaps x and y can be extended to an automorphism g 2 GE . Therefore

y D g.x/ � g.y/ D x yields a contradiction. Hence x and y are from different

orbits. Since there are only finitely many orbits ofU rE under GE ,� has a minimal

element.

2. It suffices to show that for any x 2 T and finite E � B , GE .x/ does not have

MT-rank in NB.

Suppose there are x 2 T and E � B such that GE .x/ has MT-rank ˛. Without loss

of generality we assume x and E are such a pair with GE .x/ having a least rank ˛.

Then there is a least n such that dividing GE .x/ into n C 1 subsets, one of them

must have rank < ˛.

Let b1; : : : ; bn 2 BrE and letE 0 D E[fb1; : : : ; bng. Then there are 2n subsets of

GE .x/ supported byE 0, and all of which are of the formGE 0.y/ for some y 2 GE .x/.

Since GE .x/ has degree n, there is y 2 GE .x/ such that GE 0.y/ has rank< ˛, which

contradicts GE .x/ having least rank.
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Since �MT is closed under �, jU j … �MT.

Corollary 3.2.4. It is consistent that �MT � �Russell.

3.2.2 The generic partially ordered set

Let P be the generic partially ordered set. LetU D fup W p 2 P g. We again abuse notion

by letting U D P under the induced ordering. Let G be the group of automorphisms of

U and let F be the filter generated by finite supports. Let NP be the permutation model

determined by U , G, and F .

Proposition 3.2.5. �Russell � �2 in NP .

Proof. Since U is generic partially ordered, it contains chains of all finite lengths. There-

fore jU j … �Russell.

Let h…;�i be a linearly ordered partition of U supported by a finite set E. Let x … E,

say x 2 X r E for some X 2 …, and let E D E1 P[ E2 P[ E3 where E1 < x < E2 and

E3 k< x. We will show that for all ´ 2 U , if E1 < ´ < E2 and ´ k< E3, then ´ 2 X .

Let ´ 2 U satisfy the above condition, say ´ 2 Z 2 …. The aim is to show thatZ D X and

then we are done. If we are able to find � 2 GE such that �.x/ D ´ and �.´/ D x, then

we have �.X/ D Z and �.Z/ D X , which implies X D Z. But since the relationship

between x and ´ is unknown, it is not obvious whether such � exists, so we have to do this

with respect to a third point y as follows.

By themethod ofLemma 2:3:6, there isy 2 U such thatE1 < y < E2 andyk<E3[fx; ´g,

say y 2 Y 2 …. Let p be the automorphism of E [ fx; yg which fixes all members of

E and swaps x and y. Since U is homogeneous, we can extend p to a full automorphism

� on U . Then � 2 GE and so y D �.x/ 2 �.X/ 2 �.…/ D …. Hence �.X/ D Y

and similarly we can show that �.Y / D X . Suppose X ¤ Y . Since X; Y 2 …, we may
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assume X � Y , but then we also have Y D g.X/ � g.Y / D X which is a contradiction.

Hence X D Y , and similarly we can show that Y D Z. Therefore X D Z and so ´ 2 X .

Since the choice of x is arbitrary, we deduce that every ´ that is related to E in the same

manner as x lies in the same member of the partition as x. Since E is finite, there are

finitely many way to split E into 3 disjoint sets. Therefore there can only be finitely many

members of…. This shows that jU j 2 �2.

3.2.3 Mostowski model

Recall the Mostowski model from Chapter 2. Let U be the set of atoms isomorphic to

the rationals hQ; <Qi and let < be a linear ordering on U induced by <Q. Let G be the

group of order-preserving permutations of U . Let F be the filter on G generated by finite

supports. LetNM be the permutation model determined by U , G and F . We callNM the

(ordered) Mostowski model.

The following statement is a basic property of U inNM (e.g. see Lemma 8.12 in [Hal17]).

Proposition 3.2.6. Every finite E � U supports only finitely many subsets of U .

Actually the above statement can be strengthened to determine the exact number of subsets

supported by a finite subsetE � U . In particular, if jEj D n, then there are 22nC1 subsets

of U that are supported by E. But this is irrelevant here.

Proposition 3.2.7. The following statements hold in NM .

1. jU j 2 �4,

2. jU j … �3.
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Proof.

1. This was shown in [Tru74], but for ease of reading, we give a proof here. The

result can be obtained straightforwardly from the above proposition. Suppose there

is f WU ! ! with a support E. Then it can be shown that E is also a support of

f �1Œfng� for all n 2 ! and since E can support only finitely many subsets of U , f

is not a surjection.

2. Since hU;<i is an infinite chain and the relation < is in NM since it has empty

support, jU j … �3.

Corollary 3.2.8. It is consistent that �4 › �3 and so �2 � �4.

In Chapter 4, we will show that the set of atoms of any FM-model constructed from an

@0-categorical structure will also lie in �4 in that model.

3.2.4 Q �Q

Let Q D hQ � Q; <; fPq W q 2 Qgi, where the relation < on Pq is such that hPq; <i Š

hQ; <Qi for all q 2 Q and is extended to Q �Q by x < y if x 2 Pq and y 2 Pr for some

q; r 2 Q such that q <Q r , i.e.< is the lexicographic ordering on Q � Q where we treat

Pq as fqg �Q for all q 2 Q.

Let UQ2 be the set of atoms indexed by Q. Let G be the group of automorphisms on UQ2

induced by Aut.Q/, i.e.G preserves < and hfPqgq2Q; <i, and let F be a normal filter on

G generated by finite supports. Let NQ2 be the corresponding FM-model.

Proposition 3.2.9. jUQ2j 2 ��o r�o in NQ2 .

Proof. First we study orbits of members of U under GE for any finiteE � U . LetE � U

be finite, say E D fa0; a1; : : : ; ang where a0 < a1 < : : : < an. Consider orbits of
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members between ai and aiC1 where a0 � ai < aiC1 � an. We have 2 cases, either ai

and aiC1 are from the same Pq for some q 2 Q, or ai 2 Pq and aiC1 2 Pr for some

different q; r 2 Q, for the latter case we also have q <Q r .

It is easy to see that if ai and aiC1 are from the same Pq, then the orbits of x where

ai < x < aiC1 is the interval .ai ; aiC1/. Suppose ai 2 Pq and aiC1 2 Pr for some

q; r 2 Q such that q <Q r . Then GE fixes both Pq and Pr setwise. For any member

x such that ai < x < aiC1 we have the following 3 cases , either x 2 Pq, x 2 Pr , or

Pq < x < Pr . Therefore there are 3 orbits of UE under GE lying between ai and aiC1,

namely .ai ;1/ \ Pq, .�1; aiC1/ \ Pr , and P.q;r/ WD P
S
fPs W q <Q s <Q rg D fx 2

U W Pq < x < Prg.

For a0, say a0 2 Pq for some q 2 Q, there are 2 orbits of U under GE on its left, namely

.�1; a0/ \ Pq and P.�1;q/ WD P
S
fPs W s <Q qg. Similarly for an which has 2 orbits of

U under GE on its right.

We can see that these orbits of U under GE are convex subsets of U , and there are only

finitely many of them for any given finite E � U . Therefore any subset S � U is a finite

union of these orbits and so it is a finite union of convex subsets of U . Hence hU;<i is

weakly o-amorphous.

Now let � be a linear ordering on U . We will show that hU;�i is not o-amorphous.

Suppose � is supported by E. Then, similarly to the proof of Proposition 4:2:1 where we

analyzed all possible linear orderings on the set of atoms of Mostowski model, � is also

built from orbits of U under GE . Hence there is always an orbit of the form P.q;r/ where

q and r are either from E or q D �1 or r D 1 such that � is either < or > on P.q;r/.

Furthermore P.q;r/ cannot be written as a finite union of intervals. Hence hU;�i is not

o-amorphous.
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3.2.5 ω pairs of socks

Let U D P
S
n2! Pn where Pn D fan; bng for n 2 !. Let G be the group of permutations

of U preserving each pair Pn, i.e.�.Pn/ D Pn for all � 2 G and n 2 !. Let F be the

filter on G generated by finite supports. Let N!;2 be the permutation model determined

by U , G and F . This model is called the second Fraenkel model in [Jec73], but we will

call it ! pairs of socks according to its set of atoms as this name best depicts the model.

We also have modified versions of this model in later sections.

Proposition 3.2.10. The following statements hold in N!;2.

1. jU j 2 �3,

2. jU j … �4.

3. jU j … ��4 .

4. jU j 2 �5.

Proof.

1. Suppose there is an infinite linear ordering subset hX;<i of U with a support E.

We may assume that E D
S
n<N Pn for some N 2 !. Since X is infinite, there is

ak 2 X r E, where ak 2 Pk for some k > N and let bk 2 Pk r fakg. Then there

is � 2 GE such that �.ak/ D bk . If bk 2 X , then � swaps the ordering of ak and

bk , a contradiction, and if bk … X , then �ŒX� ¤ X , also a contradiction. Hence

such X does not exist. Therefore jU j 2 �3.

2. Since �.Pn/ D Pn for all � 2 G, the map n 7! Pn has empty support and so

! �� U , i.e. jU j … �4.

3. The function in 2 is also finite-to-one, hence jU j … ��4 .

4. Let f WU ! U [ f�g where � … U be a surjection with finite support E. We may

assume that E D
S
n�N Pn for some N 2 !.
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Let m > N . Since f is a surjection, f �1ŒPm� ¤ ;. Let a 2 f �1ŒPm�. Suppose

a … Pm. Then there is � 2 GE such that swaps members of Pm but fixes a.

Thus f�.a/ D f .a/ ¤ �f .a/, which contradicts �f D f� . Hence a 2 Pm so

f �1ŒPm� � Pm, and since Pm is finite, f �1ŒPm� D Pm.

Thus f ŒE� D E [ f�g, but E is finite, a contradiction. Therefore f does not exist

and hence jU j 2 �5.

Corollary 3.2.11. It is consistent that �5 › ��4 , �3 › �4 and so �2 � �3.

Note that the set U is a Russell-set which is defined as a countable union of 2-element sets

where the cartesian product of these sets is empty (a more precise definition can be found

in [HT06]).

3.2.6 Rational pairs of socks

Let U D P
S
q2Q Pq where Pq D fuq; vqg for q 2 Q. Let G be the group of permutations

sending a pair to another pair and preserving the order of pairs, i.e. if �.Pq1/ D Pq2 ,

�.Pr1/ D Pr2 and q1 <Q r1, then q2 <Q r2. Let F be the filter on G generated by finite

supports. Let NQ;2 be the permutation model determined by U , G and F . Then we have

the following properties.

1. Each Pq is in NQ;2.

2. The sequence hPq W q 2 Qi is in NQ;2.

Proposition 3.2.12. Every finite E � U supports only finitely many subsets of U .

The proof of the above proposition is similar to the proof of the same statement for the

Mostowski model.
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Proposition 3.2.13. The following statements hold in NQ;2.

1. jU j … �2,

2. jU j 2 �3,

3. jU j 2 �4,

4. jU j … ��o .

Proof.

1. Define a relation < on fPq W q 2 Qg by Pq < Pr if q <Q r . It is easy to see that <

has empty support and this is an infinite linear ordering on a partition of U . Hence

jU j … �2.

2. This can be proved in a similar manner as in the Mostowski model, see the proof of

Proposition 3:2:7.

3. Suppose there is a map f WU ! ! with a support E. Then we have �Œf �1fng� D

f �1Œfng� for all n 2 ! where � 2 GE . By Proposition 3:2:12, E supports only

finitely many subsets of U . Therefore f is not onto, and so jU j 2 �4.

4. It follows from 2 that there cannot be any linear ordering on U in NQ;2, so jU j …

��o .

Corollary 3.2.14. It is consistent that

1. �2 � �3 \�4,

2. ��o � �4.

3.2.7 The circular increasing socks

Let U D P
S
0<n2! Pn where Pn D fa.n;i/ W i < ng for all n 2 !. Let G be the

group of permutations � of U such that for any n 2 ! there exists kn 2 ! such that
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�.a.n;i// D a.n;iCkn/ where addition on suffices is done mod n, and let F be the filter on

G generated by finite supports. Let NF<! be the permutation model determined by U , G

and F .

Proposition 3.2.15. The following statements hold in NF<! .

1. jU j … �4.

2. jU j 2 �.

3. jU j 2 �3.

4. jU j 2 �5.

5. jU j … �per.

Proof.

1. By sending each member of Pn to n, we have a surjection from U onto ! r f0g. It

can be easily checked that this function has empty support.

2. Suppose jU j … �. Then there is an injection f W! ! U . Let E be a support of f .

Since E is finite and ran.f / is infinite, there is n > 1 such that Pn \ E D ; and

Pn\ ran.f / ¤ ;. Let x 2 Pn\ ran.f /. Then there is � 2 GE such that �.x/ ¤ x.

Hence �.f / ¤ f , a contradiction.

3. Let hC;�i be a linearly ordered subset of U . Suppose C is infinite. If there are

infinitely many n such that jPn \ Cj D 1, then there is an injection from an infinite

subset of ! into U which contradicts jU j 2 � from 2. Hence there are infinitely

many n such that jPn \ Cj > 1.

LetE be a support of hC;�i. Then there is n such thatPn\E D ; and jPn\Cj > 1.

If jPn\Cj < n, then there are x 2 Pn\C and � 2 GE such that �.x/ … Pn\C, and

so�.C/ ¤ C. SupposePn � C . LetPn D fx1; x2; : : : ; xngwhere x1 � x2 � : : : �

xn. Then there is � 2 GE such that �.xn/ D x1. Hence �.xn/ D x1 � �.x1/.

Therefore � does not preserves �.
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Hence C must be finite and so jU j 2 �3.

4. Let f be a surjection on U . We will show that f must be injective and therefore

jU j 2 �5. Let E be a support of f . We may assume E D
S
i<N Pi for some

N 2 !.

Claim. f ŒPn� D Pn for all n � N .

Let n � N . Clearly jf ŒPn�j � jPnj. Next we show that if f .a/ 2 Pn, then a 2 Pn.

Suppose f .a/ 2 Pn but a … Pn. Then there is � 2 GE such that �.a/ D a and

�.f .a// ¤ f .a/, which contradicts �.f / D f . Hence f �1ŒPn� � Pn and so

Pn � f ŒPn�. Thus jPnj � jf ŒPn�j � jPnj, and since Pn is finite, Pn D f ŒPn�.

This implies f ŒE� D E and since all Pn and E are finite, f is an injection on them

and hence on U .

5. Let f 2 G be such that kn D 1 for all n > 1. Since f� D �f for all � 2 G , it has

empty support and so we have f 2 NF<! (note that it is not necessarily true that an

FM-model contains members of the group of automorphisms used to construct it).

Then for all n � 1, f n is not the identity.

3.2.8 The binary tree

Let U be the set of atoms isomorphic to the binary tree, say U D fu� W � 2 2<!g with the

relation< onU defined by u� < u� if � extends � . Let G be the group of order-preserving

permutations of U and let F be the filter on G generated by finite supports. Let NT2 be

the permutation model determined by U , G, and F .

Proposition 3.2.16. Every permutation f on U has ‘nearly’ order 1 or 2, meaning that

there is a finite set E � U such that f 2 D id on U rE.

Proof. Let f be a permutation of U with finite support E (not assumed to preserve <).
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We may assume that E is a finite union of levels of U until level k for some k 2 !. Let

x … E. Then we verify all possibilities for f .x/.

Let � 2 GE be such that �.x/ D x0, where x0 is the sibling of x, and � fixes everything

not greater than x or x0. Then hx; f .x/i 2 f and so h�.x/; �.f .x//i 2 �.f / D f .

Since f is an injection and x ¤ x0 D f .x/, f .x/ ¤ �.f .x//. By the choice of � , either

x � f .x/ or x0 � f .x/.

Suppose f .x/ > x. Then there is � 2 GE fixing x but interchanging f .x/ and its sibling.

Hence hx; f .x/i 2 f and hx; �.f .x//i 2 �.f / D f , contradicting f is a function.

Similarly for the case f .x/ > x0. Hence either f .x/ D x or f .x/ D x0, and therefore f

has order 2 on U rE.

Proposition 3.2.17. The following statements hold in NT2 .

1. jU j 2 �3,

2. jU j … ��5 ,

3. jU j 2 �per.

Proof.

1. Suppose there is an infinite chain hC;<i in U with finite support E which is the

union of the first k levels. Since E is finite and C is infinite, there is u� 2 C r E

such that u� 0 … E, where � 0 agrees with � except on its final entry. Let � 2 GE
swap u� and u� 0 . If u� 0 … C , then � does not preserve the chain C . If u� 0 2 C ,

then u� and u� 0 are comparable under<, and so � does not preserve<. Hence such

an infinite chain doesn’t belong to NT2 .

2. This follows from Proposition 3:1:39.

3. Let f WU ! U be a bijection in NT2 and let E be a support of f . By Proposi-

tion 3:2:16, f has at most order 2 on U rE and sinceE is finite, f has finite order

on U .
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We also get results above � in this model.

Proposition 3.2.18. j! [ U j 2 � 05-per in NT2 .

Proof. Let f be a bijection on ! [ U with finite support E. Similarly to the proof of

Proposition 3:2:16, we may assume that E \U is a finite union of levels of U until some

level k 2 !, and we can show that f has order 2 on U r E. Hence f has a finite cycle,

so j! [Ej 2 � 05-per.

Obviously j! [ U j … �. We conclude consistency results holding in NT2 as follows.

Corollary 3.2.19. It is consistent that

1. �4 � �per,

2. �3; �per › �5; �
�
5 ,

3. � � � 05-per.

More on trees

First we remark that Proposition 3:2:16 does not necessarily hold in the same fashion

for any n-ary tree. In particular, an FM-model built from an n-ary tree need not have a

permutation on its set of atoms having ‘nearly’ order n. The precise value depends on

the choice of structure that we put on the set of successors of each vertex. Consider the

following examples for the case n D 3, both of which are based on a ternary tree but with

different results.

Examples.

1. Ternary tree: Let T3 be a ternary tree. Construct an FM-model with the set of

atomsUT3 indexed by T3, G the group of automorphisms ofUT3 induced by Aut.T3/.

Let NT3 be the corresponding FM-model with finite supports.
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Fact 3.2.20. Every permutation on UT3 in NT3 is ‘nearly’ the identity.

Proof. Let f WUT3 ! UT3 be a permutation with finite support E, which we may

assume to be a finite union of levels up to level k 2 !. Let x … E and let x0 and

x00 be its siblings. Similarly to the proof of Proposition 3:2:16, we will verify all

possibilities for f .x/, and by using the same argument, we ended up with 3 cases,

f .x/ D x, f .x/ D x0, or f .x/ D x00.

Suppose f .x/ ¤ x. Then there is � 2 GE which fixes x but swaps x0 and x00.

Hence �f .x/ ¤ f .x/ D f�.x/, contradicting thatE supports f . Thus f .x/ D x.

Similarly for x0 and x00. Therefore f is the identity on UT3 rE.

2. Circular ternary tree: A circular ternary tree TC3 D hT;<;Ri. This is a ternary

tree with an extra ternary relation R defined on each succ.x/, the set of successors

of a vertex x, so that hsucc.x/; Ri Š C3 for all x 2 T , so if succ.x/ D fy; y 0; y 00g

we have for example R.y; y 0; y 00/ and R.y 0; y 00; y/ and R.y 00; y; y 0/.

We construct an FM-model with the set of atoms UTC3 indexed by TC3 , and G

the group of automorphisms of UTC3 induced by Aut.hT;<;Ri/. Let NTC3 be the

corresponding FM-model with finite supports.

Fact 3.2.21. Every permutation of UTC3 in NTC3 has ‘nearly’ order 3.

Proof. Similar to the proof of the ternary tree case. Let f WUTC3 ! UTC3 be a

permutation with finite support E, which we may assume to be a finite union of

levels up to level k 2 !. Let x … E and let x0 and x00 be its siblings. We have

f .x/ D x, f .x/ D x0, or f .x/ D x00.

Let � 2 GE be such that �.x/ D x0. As � preserves R, we have �.x0/ D x00 and

�.x00/ D x. If f .x/ D x, then f .x0/ D f�.x/ D �f .x/ D �.x/ D x0, and

also f .x00/ D x00. If f .x/ D x0, then f .x0/ D f�.x/ D �f .x/ D �.x0/ D x00,
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and f .x00/ D x. Similarly if f .x/ D x00, then we can show that f .x0/ D x and

f .x00/ D x0.

Now let � 2 GE be such that �.x/ D x00. Then �.x0/ D x and �.x00/ D x0. We also

get the same results for f .x/ as in the case for � .

Therefore if f .x/ ¤ x, f either coincides with � or � on fx; x0; x00g, and hence it

has order 3 on UTC3 rE.

Next we outline the idea for proving Proposition 3:1:42, taken from [Tru74]. We construct

an FM-model from a binary tree but this time with an extra function f . The choice of the

group of automorphisms G is not the same as the usual construction that we introduced

earlier in the section, as instead G must preserve f .

Let U be the set of atoms indexed by the binary tree T2. Let V;W � U be subsets of U

defined as follows.

V D fu� W � 2 2
<! begins with a 0g and W D fu� W � 2 2

<! begins with a 1g

Define a function f WV �W ! V �W [ f�g by

f .hu0˛1; u1ˇ1i/ D �;

f .hu0˛1˛2:::˛iC1˛iC2; u1ˇ1ˇ2:::ˇiC1ˇiC2i/ D hu0˛1˛2:::˛iˇiC1; u1ˇ1ˇ2:::ˇi˛iC1i;

and f .hu�1; u�2i/ D hu�1; u�2i otherwise.

In particular, for u0a�1 and u1a�2 with their indices having equal length > 2, f removes

the last digits and swaps the second to last. It is easy to see that f is finite-to-one and

surjective.

Now we want to implement f in this FM-model construction. Let G be the group of

automorphisms on U preserving the length of the sequences, fixing V andW setwise, and
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further preserving f . Let N be the corresponding FM-model with finite supports. Then

f belongs to N and hence we have jV j � jU j … ��5 in N .

By the choice of G, it preserves only length of the sequences and the function f , but not

the structure of the tree as far as is apparent. Also since f swaps the second to last digits

of the sequences after removed the last digits, it does not create a new function that can

induce a tree structure on either V or W . We can see that both V and W are treated

as increasing socks where their nth pairs having size 2n, and hence, by using the same

argument as the ! pairs of socks in Proposition 3:2:10, their cardinalities lie in �5 and

hence ��5 . For full details see [Tru74].

3.2.9 Infinitely branching tree

Let U be the set of atoms isomorphic to Baire space, say U D fu� W � 2 !<!g with the

relation < on U defined by u� < u� if � extends � . Let G be the group of permutations

of U preserving order and let F be the filter on G generated by finite supports. LetN!<!

be the permutation model determined by U , G, and F .

Let E be a finite subtree of U which we assume to be closed downwards. Now we study

the orbits of members of U rE under GE . Let u� 2 U rE. Then there is uE 2 E such

that uE � u� , and we may assume that uE is the greatest such. The orbit of u� under GE ,

written GE .u�/ is of the form fu� 2 U rE W u� � uE and j� j D j�jg, i.e. the orbit of u�

under GE is the set of members of U rE related to E the same manner and on the same

level as u� .

Proposition 3.2.22. The following statements hold in N!<! .

1. jU j 2 ��4 .

2. jU j 2 ��5 .

3. jU j … �5.
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Proof.

1. Suppose there is a finite-to-one map f from a subset X � U onto !. Let E

be a support of f . Then we may assume E to be a subtree of U and E also

supports X . Let x 2 X rE. Then GE .x/ is infinite and f �1Œff .x/g� is finite. Let

y 2 GE .x/ r f �1Œff .x/g�. Then there is � 2 GE mapping x to y. Thus � does

not preserve f , contradicting E supporting f .

2. Follows from 1 since ��4 � ��5 .

3. Let gWU ! U defined by g.u;/ D u; and g.u�an/ D u� for all � 2 !<! and

n 2 !. Then g is an infinite-to-one surjection on U .

Proposition 3.2.23. It is consistent that �5 � ��5 and ��4 › �5.

3.2.10 Summary

Section 3.2 shows that it is consistent with ZF that none of the relation � between

finiteness classes in the diagram after Definition 3:1:2 can be replaced byD. Furthermore

we showed that in some cases classes that have no relation indicated between them are not

comparable, by using various FM-models. We gather and present all these results in the

following diagram.
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!

�o

��o

�1

�MT

�Russell

�2

�3 �4

�5

��5

�

��4 �per

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(viii)

(ix)

(x)

(xi)

(xii)

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(vii)

(xviii)

(xix)

(xx) (xix)

(xxi)
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The results involving the relations in dashed lines are listed as follows. First we note that

means there is, provable in ZF, a relation� between the two classes, but means

that it is consistent that two such classes are incomparable under �.

(i) an amorphous set X has its cardinality jX j 2 �1 r !.

(ii) the disjoint union of two amorphous sets X and Y has jX P[ Y j 2 �MT r�1.

(iii) jU j 2 �Russell r�MT in NB (Proposition 3:2:3).

(iv) �Russell � �2 in NP (Proposition 3:2:5).

(v) �2 � �3 in N!;2 (Corollary 3:2:11), and also in NQ;2 (Proposition 3:2:13).

(vi) Since jU j 2 �4 r�3, �3 � � in NM (Proposition 3:2:7).

(vii) �2 � �4 in NM (Proposition 3:2:7), and also in NQ;2 (Proposition 3:2:13).

(viii) jU j 2 �o r ! in NM .

(ix) jUQ2j 2 ��o r��o in NQ2 (Proposition 3:2:9).

(x) jU j 2 �4 r��o in NQ;2 (Proposition 3:2:13).

(xi) Since jU j 2 ��4 r�5 where �4 � �5, �4 � ��4 in N!<! (Proposition 3:2:22).

(xii) Since jU j 2 �5 r��4 where �5 � ��5 , ��4 � �5 in N!;2 (Proposition 3:2:10).

(xiii) Since jU j 2 �3 � � and jU j … ��5 , ��5 � � in NT2 (Proposition 3:2:17).

(xiv) jU j 2 �5 r�4 in N!;2 (Proposition 3:2:10).

(xv) jU j 2 ��5 r�5 in N!<! (Proposition 3:2:22).

(xvi) Since jU j 2 �per r��5 where �4 � ��5 , �4 � �per in NT2 (Proposition 3:2:17).

(xvii) jU j 2 ��5 r�per, so �per � � in NF<! (Proposition 3:2:15).

(xviii) �3 and�4 are incomparable as�3 › �4 inN!;2 (Proposition 3:2:10) and�4 › �3

in NM (Proposition 3:2:7).

(xix) �per and�5; ��5 are incomparable as�5 › �per inNF<! (Proposition 3:2:15), and

�per › �
�
5 in NT2 (Proposition 3:2:17).

(xx) ��4 and �5 are incomparable as ��4 › �5 in N!<! (Proposition 3:2:22) and

�5 › �
�
4 in N!;2 (Proposition 3:2:10).

(xxi) �3 and�5 are incomparable as�3 › �5 inNT2 (Proposition 3:2:17) and�5 › �3

since �4 › �3 in NM (Proposition 3:2:7).
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Chapter 4

Dedekind-finiteness and definability

In this chapter, we will study relationships between Dedekind-finite sets and definability.

This is inspired by some results from [Pin76], [Tru95], and [WT05] where the connections

between various Dedekind-finite sets with model theoretical structures are studied. For

instance, there is a very close connection between weakly Dedekind-finite sets and @0-

categorical structures. This chapter develops a theme from [WT05], going over some of

the same ground but also giving more examples. We show that structures which may exist

on weakly Dedekind-finite sets are definable from the original structures used in their

FM-model constructions. Definability here may have various meanings, ranging from

definable in a finite first-order language to an infinite first-order language or an infinitary

language.

Throughout this chapter, unless otherwise stated, let A be a structure and let UA be the set

of atoms indexed by the domain of A, i.e.UA D fua W a 2 Ag where A D jAj. The group

G is the group of automorphisms of UA induced by Aut.A/. Let NA be the FM-model

constructed from A with finite supports. We may write UA andNA as just U andN if the

structure A is clear in the context.
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4.1 Weak Dedekind-finiteness and @0-categoricity

We first look at the following result from [WT05] in which the author studied the relations

between weakly Dedekind-finite sets and @0-categorical structures.

Theorem 4.1.1 ([WT05]). Let X be a set admitting a structure A axiomatizable in a

countable language and T D Th.A/. If X is weakly Dedekind-finite, then T is @0-

categorical.

The converse result for the set of atoms of an FM-model constructed from an@0-categorical

structure also holds.

Proposition 4.1.2. If A is @0-categorical, then UA is weakly Dedekind-finite in NA.

Proof. Let f WUA ! ! be inNA, say f is supported byE. Let � 2 GE . Then �f D f� ,

and so it can be proved straightforwardly that �.f �1Œfng�/ D f �1Œfng� for all n 2 !.

Since � is arbitrary, E supports f �1Œfng� for all n 2 !. By Theorem 2:4:2 (the Ryll–

Nardzewski theorem), there are only finitely many orbits of UA under GE . Since every

subset of UA supported by E is a union of orbits, there are finitely many such subsets,

i.e. there are only finitely many distinct f �1Œfng�. Therefore f is not onto, and so UA is

weakly Dedekind-finite.

This leads us to more questions. Given a weakly Dedekind-finite set U and a first-order

structure B on U , what else do we know about B? Furthermore, if U is the set of atoms

of an FM-model constructed from some structureA, how areA andB related? These will

be discussed in the next section.
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4.2 Definability in permutation models

The goal of this section is to find a connection between definability and structures existing

on the set of atoms. Firstly we consider the following three examples of structures

constructed by the Fraïssé method and their corresponding FM-models. We will analyse

relations that can be put on the set of atoms in each model.

4.2.1 The rationals: hQ; <Qi

Recall theMostowskimodelNQwith the set of atomsUQ D fuq W q 2 Qg, a linear ordering

< on UQ induced from <Q on Q, and the group of automorphisms G D Aut.UQ; </ with

finite supports. We now study possible linear orderings on UQ in the model NQ.

Proposition 4.2.1. For a finite subset E � UQ, there are finitely many linear orderings

on UQ in NQ supported by E.

Proof. Let E � UQ be a finite set and let � be a strict linear ordering on UQ in NQ

supported by E, say E D fa0; a1; : : : ; an�1g where a0 < a1 < : : : < an�1.

Then there are nC 1 orbits of UQ rE under GE where each of them is an interval, either

.ai ; aiC1/ where 0 � i < n � 1 or .�1; a0/ or .an�1;1/. Also there are n singleton

orbits of E under GE which are fag where a 2 E.

Let I be an interval orbit, say I D .a; b/ where a; b 2 E [ f˙1g. The claim is that

� is either < or > on I . It is easy to check that if there are x; y 2 I such that x < y

and x � y, then for all ´;w 2 I such that ´ < w, we also have ´ � w. Therefore � is

the same as < on I . Also if there are x; y 2 I such that x < y and x � y, then for all

´;w 2 I such that ´ < w, we have ´ � w, so � is > on I . We also note that I is an

interval under the ordering � as well. For if x � y � ´ where x; ´ 2 I and y … I , then

there is � 2 GE taking x to ´ but fixing y which violates preservation of �.
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Hence there are 2nC1 possible values of � on these interval orbits. And there are 2nC 1

orbits, which can be arranged in .2n C 1/Š possible ways. Therefore the total possible

number of � supported by E on UQ is 22nC1.2nC 1/Š.

4.2.2 The random graph

Let h�;��i be the random graph. Construct an FM-model by letting U� D fu
 W 
 2 �g

be the set of atoms with the graph relation � induced from �� , G D Aut.U� ;�/, F be

the filter on G generated by finite supports, and let N� be the corresponding FM-model.

Now we try to list all possible graph relations on U� in N� .

Let E be a graph relation on U� in N� . Then there is a finite A � U� supporting E.

Since U� is constructed from a homogeneous structure (and so it is @0-categorical), there

are finitely many orbits of U� r A under GA.

Note that for any orbit X of U� r A under GA, there is a formula '.a; x/ where a 2 AjAj

such that X D fb 2 U� W U� � '.a; b/g, i.e.' tells us how the members of X relate

to members of A. Therefore, for any x; y 2 X , there is � 2 GA such that �.x/ D y

since a map A [ fxg ! A [ fyg fixing all members of A and sending x to y is a partial

automorphism on U� and so it can be extended to an automorphism on U� .

We study the relation E by looking at all the possible forms E can take between orbits.

Since every permutation in GA fixes all members of A, E can be any graph relation on A.

Next we investigate all possible E between orbits of U� r A under GA and A.

Case 1. Inter-orbits.

Let X and Y be orbits of U� r A under GA. Consider the following statements,

(i) 9x 2 X; 9y 2 Y; .x � y ^ xEy/,

(ii) 9x 2 X; 9y 2 Y; .x � y ^ x 6Ey/,

(iii) 9x 2 X; 9y 2 Y; .x � y ^ xEy/,
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(iv) 9x 2 X; 9y 2 Y; .x � y ^ x 6Ey/.

We will show that, in X , (i)) 8x 2 X;8y 2 Y; .x � y ! xEy/, and similar results

also hold for (ii)–(iv). With these results, we can conclude that there are 4 possibilities for

E on X

� (i)C (iv)) E D � between X and Y .

� (ii)C (iii)) E D � between X and Y (where � is the complement of �).

� (i)C (iii)) E is complete between X and Y .

� (ii)C (iv)) E is empty between X and Y .

Here (i) and (ii) cannot be true at the same time, and similarly for (iii) and (iv).

To see that (i) ) 8x 2 X;8y 2 Y; .x � y ! xEy/, suppose there are x 2 X and

y 2 Y such that x � y and xEy. Let ´ 2 X and w 2 Y be such that ´ � w. Then

the map from A [ fx; yg ! A [ f´;wg fixing all members of A, x 7! ´ and y 7! w is

a partial automorphism and so it can be extended to an automorphism � 2 GA. Since �

preserves E, �.x/E�.y/, i.e. ´Ew.

Note that this also tells us how E behaves on X by replacing Y by X .

Case 2. Between an orbit and A.

Let X and be an orbit of U� rA under GA. Let a 2 A and x 2 X . If aEx, then aEy for

all y 2 X , since for any y 2 X , there is � 2 GA such that �.x/ D y and so �.a/E�.x/,

i.e. aEy. Similarly if a 6Ex, then a 6Ey for all y 2 X .

If jAj D n, there are 2n orbits of U� r A under GA. There are 2
.n�1/n
2 possible E on A.

There are 2n possible E between A and an orbit, so there are .2n/2
n

possible E between

A and orbits. There are 2
n.2nC1/

2
pairs of orbits (including pairing with itself), so there are

4
2n.2nC1/

2 possibleE between orbits supported byA. Hence there are 2
.n�1/n
2
Cn2nC2n.2nC1/

possible E that are supported by A.

Proposition 4.2.2. Let E be a graph relation on U� with a support A. Let X be an orbit
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of U� under GA. Then either .X;E/ is empty, complete, or Th.X;E/ D Th.�;��/.

We can obtain a similar result for any binary relation on U� in N� . In particular, there

will be no linear ordering on U� in N� . Actually we cannot have asymmetric relations

on any orbit of U� . In the ‘Inter-orbits’ case in the above proof, we can replace Y by X

to study how members in each orbit are related with respect to the relation E, and since

cases (i) and (ii) cannot both hold at the same time, E cannot be asymmetric.

4.2.3 Henson digraphs

Let T be a family of finite tournaments such that every tournament T 2 T has cardinality

� 3 and every pair of members in T are non-embeddable. Let hDT ; ET i be the Henson

digraph with age Forb.T / (see [Hen72]).

Construct an FM-model from hDT ; ET i. Let UT be the set of atoms indexed byDT with

the digraph relation E induced from ET , G D Aut.UT ; E/, F be the filter on G generated

by finite supports, and let NT be the corresponding FM-model.

Let; be a digraph relation on UT inNT with finite support A. Let X and Y be orbits of

UT r A under GA. Then we have the following possibilities.

(i) 9x 2 X; 9y 2 Y; .xEy ^ x ; y/,

(ii) 9x 2 X; 9y 2 Y; .xEy ^ y ; x/,

(iii) 9x 2 X; 9y 2 Y; .xEy ^ xk;y/,

(iv) 9x 2 X; 9y 2 Y; .yEx ^ x ; y/,

(v) 9x 2 X; 9y 2 Y; .yEx ^ y ; x/,

(vi) 9x 2 X; 9y 2 Y; .yEx ^ xk;y/,

(vii) 9x 2 X; 9y 2 Y; .xkEy ^ x ; y/,

(viii) 9x 2 X; 9y 2 Y; .xkEy ^ y ; x/,

(ix) 9x 2 X; 9y 2 Y; .xkEy ^ xk;y/.
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Similarly to the proof for the random graph, (i) implies 8x 2 X;8y 2 Y; .xEy ! x ;

y/, and similarly for (ii)–(ix). Furthermore only one case from (i)–(iii) can happen at a

time, similarly for (iv)–(vi) and (vii)–(ix). Therefore, there are 27 possible forms of ;

between X and Y .

Note that if X D Y , i.e. considering ; on X , (i) and (ii) cannot both hold since we can

find � 2 GA such that �.x/ D y and �.y/ D x so we cannot decide whether x ; y

or y ; x and ; is asymmetric. Hence there are 3 possible forms of ; on X , either

; D E,; D E�1 or; is empty there.

For relations between A and X , if a 2 A, we have either a ; X or X ; a or there are

no edges between a and X .

Therefore there are only finitely many possible digraph relations on U that are supported

by A.

Now consider the following specific choice of T . Let T D fIn W 6 � n < !g where Ln is

the linear ordering of length n viewed as a digraph and In is obtained fromLn by reversing

edges on adjacent vertices and between the source node and the sink node. For example,

see the following diagram for the case n D 6 where the reversed arrows are highlighted in

red.

1 2 3 4 5 6 1 2 3 4 5 6

L6 I6

Then T is an infinite family of finite digraphs of cardinalities � 6 such that all members

are pairwise non-embeddable and have different cardinalities. More details on this con-

struction can be found in [Che98] page 8. Furthermore, it is easy to see that In Š .In/�1
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for every n 2 !. Consider again the case n D 6. The function i 7! 7 � i , for all i such

that 1 � i � 6, is the desired isomorphism.

1 2 3 4 5 6 1 2 3 4 5 6

I6 I�16

Š

Therefore for any I 2 T , we can view I�1 as I (up to isomorphism) and hence we have

I�1 2 T as well.

Proposition 4.2.3. Let T1; T2 � T be such that T1 ¤ T2. Let NT1 and NT2 be the FM-

models constructed from the Henson digraphs hDT1; E1i and hDT2; E2i with the groups

of automorphisms G1 and G2, respectively. Then there is a digraph relation R on UT1 in

NT1 such that hUT1; Ri � hDT1; E1i, but there is no such digraph relation on UT2 inNT2 .

Proof. Let R be a digraph relation on UT1 induced by E1. Since the group G1 on UT1 is

induced by Aut.hDT1; E1i/, it preserves R and hence R exists in NT1 . It is easy to see

that hUT1; Ri � hDT1; E1i.

Now we show that there is no digraph relation; on UT2 such that hUT2;;i � hDT1; E1i.

Without loss of generality, let I 2 T1 r T2. Let ; be a digraph relation on UT2 with

support A. If; is the empty relation, then we’re done. Suppose; is not empty.

Case 1. ; is empty on all orbits of UT2 under .G2/A.

Then ; is non-empty only between orbits. Since there are only finitely many orbits, say

there are k orbits, we cannot embed any tournament of size > k. As hDT1; E1i admits all

finite tournaments which do not embed any member of T1, hUT2;;i ¥ hDT1; E1i.

Case 2. There is an orbit X of UT2 under GA such that ; is non-empty on X .
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As we analyzed all the possibilities of ; in the early part of this section, either ; D E2

or ; D E�12 on X . If ; D E2, then ; admits T . Suppose ; D E�12 . Then ; admits

I�1. Since I Š I�1, E�12 also admits I . Hence hUT2;;i ¥ hDT1; E1i.

Therefore UT2 does not carry a digraph structure that satisfies Th.UT1; E1/ in NT2 .

Corollary 4.2.4. There are 2@0 first-order theories of digraphs such that for each of them,

there is a corresponding weakly Dedekind-finite set. In particular, there are at least 2@0

non-equivalent (in the sense of Definition 5:3:5) weakly Dedekind-finite sets.

Proof. Since T is countably infinite, this follows directly from the above proposition.

From those three examples from Sections 4.2.1–4.2.3, we can see that a relation on UA in

each model is related to the original relation on UA which is inherited from A and carried

over to NA by G.

Theorem 4.2.5. Let A be a countable structure. Then every relation on UA in NA

is (infinitary) definable from AN , where AN is the structure in NA inherited from A.

More precisely, if A is @0-categorical, then every relation on UA in NA is definable by

a first-order sentence (with finitely many parameters). Otherwise, it is definable by an

L!1!-sentence.

First we need the following lemma, which is a basic result for any FM-model.

Lemma 4.2.6. For all n 2 !, every subset of U n with support E is a union of orbits of

U n under GE .

This is true since every subset of U n with support E is invariant under GE . It remains

to show that every orbit of U n is definable for all n 2 !. For @0-categorical structures,

we have the following corollary of the Ryll-Nardzewski theorem (Theorem 2:4:2), whose

proof can be found in [Eva13].
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Corollary 4.2.7. Let A be an @0-categorical structure and let G D Aut.A/.

1. Two n-tuples are in the same G orbit iff they have the same type over ; in A.

2. The ;-definable subsets of An are unions of orbits of An under G

3. If X � A is finite, then the X -definable subsets of An are unions of orbits of An

under GX .

Hence, for any relation R on UA with finite support E, R is a union of orbits of U n

under GE for some n 2 !, where each orbit is E-definable, therefore R is defined by the

conjunction of those formulae defining each orbit contained inR. However these methods

cannot be applied for the case that A is not @0-categorical. It is immediately true that if

two tuples are in the same orbit, then they have the same type but the converse might not

be true for a non-@0-categorical structure. There could be infinitely many orbits of U n

under G and a formula with finitary symbols might not able to distinguish two different

orbits.

Proof of Theorem 4:2:5. Let R be a relation on UA with finite support E.

Case 1. A is @0-categorical. Then every orbit of UA is E-definable and there are only

finitely many such orbits. By Lemma 4:2:6, R is a union of orbits of UA under E.

Therefore R is also E-definable.

Case 2. A is not @0-categorical. Extend the language L to L0 by adding every a 2 E

as a variable symbol and let A0 be an L0 structure extending A with the same underlying

set. Let Q � A. Assume hA0; Ri Š hA0;Qi and let f be such an automorphism. Then

f 2 GE and so f fixes R setwise. Hence R D f .R/ D Q. By Theorem 2:6:3, there

is an L0!1!-formula ' defining R, where ' can be viewed as L!1!-formula with finitely

many parameters from E.

This can be applied for any function and constant on UA. Therefore every structure on UA

is definable by either first-order sentences or L!1!-sentences.
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4.3 Reconstruction

We have learned from the previous section that given a homogeneous structure A in a

finite relational language, then it is @0-categorical and therefore the set of atoms UA is

weakly Dedekind-finite in the corresponding FM-model NA. In this section, we try to

retrieve the original structure that is used to construct a given FM-model. Also we ask

if we are given two ‘different’ homogeneous structures, will they give rise to different

weakly Dedekind-finite sets?

Proposition 4.3.1. Let A be an @0-categorical structure and let UA be the set of atoms

of the corresponding FM-model. Then for every countable B � hUA; Ri where R is any

n-ary relation on UA, B is @0-categorical.

We can see that the above statement can be obtained immediately from Theorem 4:1:1

and Proposition 4:1:2.

Proposition 4.3.2. LetA be an @0-categorical structure and letE be a finite subset ofUA.

Then for all n 2 ! there are finitely many possible n-ary relations on UA inNA supported

by E.

Proof. Let R be an n-ary relation on U with support E. We will show that R is a union

of orbits of U n under GE and by the Ryll–Nardzewski Theorem (Theorem 2:4:2), there

are only finitely many such orbits. Hence there are only finitely many possible R.

Let X be an orbit of U n under GE . Suppose R \X ¤ ;. Let a 2 R \X ¤ ;. Then for

any b 2 X , there is � 2 GE such that b D �.a/ 2 �.R\X/ D �.R/\�.X/ D R\X .

Therefore b 2 R and so X � R.

Proposition 4.3.3. Let A be an @0-categorical structure. Let B � Th.hU;Ri/ where B

is countable and R is a relation on U in NA. Then there is a structure C Š B which is

definable from A. In particular, we may take B D A, where A and B are the underlying

sets of A andB, respectively, and B D hA;R0i where R0 is defined from R.
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Proof. Let R be a relation on U in NA. Define R0 on A as follows. For any a D

.a1; : : : ; an/ 2 A
n, we say R0.a1; : : : ; an/ iff R.ua1; : : : ; uan/. Then, by induction on the

length of ', hA;R0i � ' iff hU;Ri � '. Hence Th.hA;R0i/ D Th.hU;Ri/ and therefore

hA;R0i is a model of Th.hU;Ri/. By Proposition 4:1:2, U is weakly Dedekind-finite,

therefore, by Theorem 4:1:1, Th.hU;Ri/ is @0-categorical. Hence hA;R0i is the unique

model (up to isomorphism) and this is definable from A.

4.4 Above �4

We now move beyond weak Dedekind-finiteness. We learned in the previous section that

there is a relation between @0-categoricity and weak Dedekind-finiteness. Now we would

like to find some property .�/ so that if a structure A satisfies .�/, then UA is Dedekind-

finite in NA. Also we want to obtain a similar result for the converse, i.e. for any given

Dedekind-finite set U , what can we say about each structure A that U can be equipped

with?

To obtain the first result, let A be a structure and let UA and NA be the corresponding set

of atoms and the FM-model induced from A with finite supports, respectively.

If UA is Dedekind-infinite in NA, then there is an injection f W! ! UA in NA. Let X

be a support of f . Then for any � 2 GX , �.f / D f . Since �.n/ D n for all n 2 !,

�hn; f .n/i D h�.n/; �.f .n//i D hn; �.f .n//i, so as f is a function �.f .n// D f .n/.

Since f is an injection, all f .n/’s are distinct. Hence � fixes infinitely many members

of UA for all � 2 GX . Therefore if we want UA to be Dedekind-finite in NA, we need

fa 2 UA W �.a/ D a for all � 2 GXg to be finite for all finite X � UA.

Notation. For any set X � UA, let ŒX� D fa 2 UA W �.a/ D a for all � 2 GXg

A precise statement is as follows.
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Proposition 4.4.1. If ŒX� is finite for all finite X � UA, then UA is Dedekind-finite inNA.

Let A be a structure. For a formula '.x/, we write '.A/ for the set of all a 2 A such that

A � '.a/.

Definition 4.4.2.

� Let A be an L-structure andX be a subset of jAj. A formula '.x/ 2 L.X/ is called

algebraic if '.A/ is finite.

� An element a 2 A is algebraic over X if it realises an algebraic L.X/-formula. We

call an element algebraic if it is algebraic over the empty set.

� The algebraic closure of X , written acl.X/, is the set of all elements of A algebraic

over X .

� The definable closure of X , written dcl.X/, is the set of all elements a such that

there is an L.X/-formula '.x/ such that a is the unique element satisfying ',

i.e. fag D '.A/.

� For a structure A, we say acl is locally finite if acl.X/ is finite for all finite X � A.

Similarly for dcl is locally finite.

It is easy to see that dcl.X/ � acl.X/ but they are not necessarily equal, for example,

recall the ! pairs of socks S!;2 withU D P
S
n2! Pn. We have acl.;/ D U but dcl.;/ D ;.

Furthermore we have the following fact, which is a consequence of the Ryll-Nardzewski

theorem.

Fact 4.4.3. If A is @0-categorical, then the algebraic closure of a finite set is finite. In

particular A is locally finite, i.e. any substructure generated by a finite subset is finite.

Therefore

@0-categoricity) acl is locally finite) dcl is locally finite.
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Proposition 4.4.4. Let M be an L-structure and let A � jMj be finite. If X � M n

is A-definable, then every L-automorphism of M that fixes A pointwise fixes X setwise,

i.e.�.X/ D X for all � 2 GA.

Proof. See Proposition 1.3.5 in [Mar02].

The converse of the above proposition is not necessarily true in general but it holds for

@0-categorical structures as follows from the Ryll-Nardzewski Theorem (Theorem 2:4:2).

For example, there is a rigid uncountable dense subset X of R (meaning that it has no

non-identity automorphism) so that every fag is fixed by Aut.X/ but is not ;-definable.

In the countable case, a countable model A is rigid iff each element of A is definable in A

by a formula of L!1;! (see [Sco65]).

Let A be a structure and consider the following statement.

ŒX� is finite for all finite X � A: (�)

Notice that

@0-categoricity) .�/) dcl locally finite.

Lemma 4.4.5. If A is countable, then ŒX� D dcl!1!.X/ for all finite X � A.

Proof. It is easy to see that dcl!1!.X/ � ŒX�. Showing that every a 2 ŒX� is definable

by some L!1!-formula (with parameters from X ) can be done in a similar manner as in

the proof of Theorem 4:2:5 by using Theorem 2:6:3. Hence a 2 dcl!1!.X/.

Let A be a countable structure. If A is dcl!1! locally finite, then UA is Dedekind-finite.

Proposition 4.4.6. If UA is Dedekind-finite in NA, then dcl!1! is locally finite in A.
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Proof. Suppose dcl!1! is not locally finite in A. Then there is a finite subset X � A

such that dcl!1!.X/ is infinite. Since dcl!1!.X/ � A and A is countable, then there is a

bijection f W! ! dcl!1!.X/. Next we will show that f is in NA.

For each a 2 dcl!1!.X/ there is anL!1!-formula 'a with parameters fromX such that a is

the unique point such that .A; X [fag/ � 'a.a/. Hence for any � 2 GX , �.a/ D a. Since

�.n/ D n for all n 2 !, we have �.f / D f . Thus f 2 NA. ThusUA is Dedekind-infinite

in NA.
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Chapter 5

Beyond �4

In this chapter we try to perform reconstruction on sets that lie outside �4, weakly

Dedekind-infinite sets. First we investigate FM-model constructions in which their set of

atoms are not weakly Dedekind-infinite. Chapter 4 shows us there is a connection between

@0-categorical structures and FM-models with their set of atoms weakly Dedekind-finite.

Hence to find FM-models with their sets of atoms lying above �4 we should start with

non-@0-categorical structures, for example, structures with a countably infinite partition,

which we will study in the first section.

The rest of this chapter studies trees in this context. In the first case, we consider trees

whose branches are densely ordered, in particular the so-called ‘weakly 2-transitive trees’

from [DHM89], which we show give rise to 2@0 essentially distinct members of�5r�4.

The main part of this final section however considers well-founded trees of height !,

which have a close connection with sets which lie outside �5. We concentrate on trees

of this kind that are balanced, where all points on any particular level behave in the same

way, and show how an arbitrary tree of height ! and no leaves can be suitably ‘pruned’ to

give a balanced tree (subject to some conditions).
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5.1 Sets with countably infinite partitions

Let A be a structure with its domain A having a countably infinite partition … D fAi W

i 2 !g whose group of automorphisms Aut.A/ preserves each member of … setwise,

i.e.�ŒAi � D ŒAi � for all � 2 Aut.A/ and i 2 !. Now construct an FM-model NA from A

with the set of atoms UA induced by A and the group of automorphisms G on UA induced

by Aut.A/ with finite supports. Since each member of … is fixed setwise by Aut.A/, its

corresponding set lies in NA and so jUAj … �4 in NA.

Since we are studying Dedekind-finite sets, the choice of A must be made carefully so

that there will not be infinitely many singleton orbits under its automorphism group (to be

precise we want A to have dcl!1;! locally finite), otherwise UA will be Dedekind-infinite

in NA, as in the following example.

Example. Let fAi W i 2 !g be a family of countable structures Ai such that Ai Š

hŒ0; 1/ \ Q; <Qi for all i 2 ! and the Ai , the domains of Ai , are pairwise disjoint. Let

A D P
S
i2! Ai and A D hA; fAigi2!; f<igi2!i where Ai is a unary relation and <i is the

relation on Ai from Ai for all i 2 !. Note that for all i 2 !, Ai is @0-categorical but not

homogeneous.

Construct an FM-model model from the above A as follows. Let UA be the set of atoms

induced from A, say UA D fua W a 2 Ag. We write Ui for fua W a 2 Aig. Let G be the

group of automorphisms on UA induced from Aut.A/, and let NA be the corresponding

FM-model with finite supports.

Since G fixes each member of…, the sequence hUi W i 2 !i has empty support, and so it

is in the model NA. Therefore jUAj … �4 in NA. Furthermore we can define a function

f W i 7! ui where ui is the <i -least member of Ui for all i 2 !. This function also has

empty support and so it lies in NA. Hence jUAj … � in NA.

The structureA in the above example is not suitable for our study. Even if each member of
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the partition carries an @0-categorical structure, its corresponding set of atoms may turn

out to be Dedekind-infinite in the FM-model. So having each member of the partition

@0-categorical is not sufficient for making the cardinality of the set of atoms lie in � in

the FM-model.

This can be fixed by requiring that the group of automorphisms acts transitively on all but

finitely many members of the partition. The next example is a modified version of the !

pairs of socks, changing the size of each member of the partition.

Example. Recall the ! pairs of socks S!;2 D h P
S
i2! Pi ; <i where each jPi j D 2 for all

i 2 ! and< is defined on P
S
i2! Pi by Pi < Pj if i < j for all i; j 2 !. Instead of having

each jPi j D 2 for all i 2 !, we can alter jPi j to be other cardinals. Start with the finite

case where each Pi is finite and carries no structure (we will deal with the case that jPi j

is weakly Dedekind-finite later). Let n 2 ! and let S!;n D h P
S
i2! Pi ; <i where jPi j D n

for all i 2 ! and let the relation < be defined on P
S
i2! Pi by Pi < Pj if i < j . Then

Aut.S!;n/ � Pi Š Sym.Pi/ for all i 2 !.

Obviously jUS!;nj … �4 inNS!;n , but this timewe have jUS!;nj 2 � inNS!;n provided that

n � 2 which can be verified in a similar way as ! pairs of socks (see Proposition 3:2:10).

Notice that we assumed that no Pi carries any structure. This requirement is not necessary

in general for an FM-model construction. For instance the Mostowski modelNQ, which is

constructed by letting the set of atoms UQ be induced from the structure on rationals with

its usual ordering hQ; <Qi and letting the group G to be the group of automorphisms on

UQ induced from Aut.hQ; <Qi/. We can see that the group Aut.hQ; <Qi/ is a subgroup

of Sym.Q/, the symmetric group on Q, or even can be considered as a subgroup of

the symmetric group on !, Sym.!/, if Q is enumerated as fqn W n 2 !g. Instead of

constructing the model NQ from hQ; <Qi, we can do it by letting U be induced by !, as

in the Fraenkel modelN! , but choose the group of automorphisms G on U be induced by

Aut.hQ; <Qi/ as a subgroup of Sym.!/, via the enumeration.
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To summarize the above paragraph, the above FM-model construction with the set of

atoms induced from h P
S
i2! Pi ; <i can be varied by the choice of the group G.

5.1.1 Reconstruction for sets with a countably infinite partition

Now we try to do a reconstruction for weakly Dedekind-infinite sets by dividing it into

countably infinite parts as we discussed in the previous section.

LetN be an FM-model with the set of atomsU such that jU j … �4 inN . Let L be a finite

relational language. Then we extend L by adding countably infinitely many relational

symbols. Let L0 D L [ fPigi2! where each Pi is a unary relation symbol, and let A be

an L0 structure on U in N . As jU j … �4, U has a countably infinite partition, and we

interpret these relational symbols Pi to correlate to each member of the partition. Then

we have

A �
^
i2!

9x .Pi.x// ^ 8x

0@_
i2!

Pi.x/ ^
^
i¤j

:
�
Pi.x/ ^ Pj .x/

�1A :
Note that the above sentence is an L0!1!-sentence. This allows us to study properties of

each member of the partition as we can let Ui D fa 2 U W A � Pi.a/g. For example, let

n; i 2 ! and let 'n.Pi/ be the following sentence.

'n.Pi/ � 9x09x1 : : : 9xn�1

0@^
k¤l

xk ¤ xl ^
^
k<n

Pi.xk/ ^ 8x

 
Pi.x/!

_
k<n

x D xk

!1A
Then if we have A � 'n.Pi/, we know that jUi j D n. This gives us a rough idea that the

structure we used to construct this model might be similar to S!;n that we have discussed

before.

In the case that every member of a partition is weakly Dedekind-finite, we can use a result

from the previous chapter where we performed the reconstruction on weakly Dedekind-
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finite sets. We perform reconstruction on this weakly Dedekind-infinite set by considering

possible structures that can be put on each member of a partition in N . Therefore, the

following result on reconstruction of weakly Dedekind-infinite sets that we would like is

as follows.

Conjecture 5.1.1. LetN be an FM-model with the set of atomsU . LetA be anL-structure

on U in N , where L is a finite relational language. If there is a countable partition …

of U such that every member of … lies in �4, then there is a unique minimal countable

modelB in the ground modelM such that Th.B/ D Th.A/.

The idea of the proof should be as follows.

Expand the language L to L0 by adding countably infinitely many unary relation symbols

fPi W i 2 !g. Then L0 is still a countable language. Let A0 be the L0-structure extending

A. Enumerate… as fUi W i 2 !g. For any i 2 !, we say A0 � Pi.a/ if a 2 Ui .

Let An be the restriction of A0 to the structure on
S
i<n Ui . Since each Ui is weakly

Dedekind-finite for all i 2 !, Un is also weakly Dedekind-finite and so Th.An/ is @0-

categorical for all n 2 !. Then by using results fromChapter 4, there is a unique countable

L0-structureBn such that Th.An/ D Th.Bn/. We wish to show thatBn is a substructure

of BnC1 and form B WD
S
n2!Bn. This would be the desired structure. Some details

still remain to be verified.

We make some further remarks about the above in the special case of ! pairs of socks. We

may describe this in (at least) two different languages. Most commonly, A D P
S
i2! Pi ,

jPi j D 2, and here language is infinite first-order. Note that this structure is homogeneous.

We can build the FM-modelN!;2 and jU!;2j 2 �5r�4. If we try to recover the structure

hA; fPi W i 2 !gi, then we expect to obtain the original structure, but notice this is not

unique model of its theory because it is not @0-categorical (there are infinitely many

1-types). What are the other models? The type f:Pi W i 2 !g is realized, but all these
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‘infinite’ points are unrelated. A reconstruction result would say that we find a unique

‘minimal’ countable model.

An alternative way of axiomatizing ! pairs of socks is via a partial order. But now non-

standard models are very different since any ‘infinite’ point must lie in a copy of Z�f0; 1g

under hm; ii < hn; j i iff m < n. However the unique ‘minimal’ model is essentially the

same as before.

Note that we have just considered the case where each member of the partition is weakly

Dedekind-finite. Unfortunately it is not necessarily true that every weakly Dedekind-

infinite set can be written as a countably union of weakly Dedekind-finite sets, see an

example in the next section.

5.1.2 Quasi-amorphous sets

First we introduce quasi-amorphous sets, which were defined and studied in [CT01].

Definition 5.1.2. A set X is called quasi-amorphous if

(i) X is uncountable,

(ii) every subset of X is either countable or co-countable (complement of countable),

(iii) every uncountable subset contains a countably infinite subset.

An FM-model containing a quasi-amorphous set can be constructed in the same manner

as the construction of the Fraenkel-model, apart from the set of atoms, which now will be

indexed by !1, and the choice of supports which are now allowed to be countably infinite.

A more detailed construction is as follows.

Let U!1 be the set of atoms indexed by !1, i.e.U!1 D fu˛ W ˛ < !1g. Let G be the

symmetric group on U and let F be the filter on G generated by countable supports. Let

N!1 be the corresponding FM-model.
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Fact 5.1.3. The set of atoms U!1 is quasi-amorphous in N!1 .

Proof. We check that U!1 satisfies the three properties for being quasi-amorphous.

(i) Since the modelN!1 �M, whereM is the ground model, and U!1 is uncountable

in M, U!1 is also uncountable in N!1 .

(ii) This part is similar to the proof that every subset of the set of atoms of the Fraenkel

model is either finite or co-finite.

Let X be a subset of U!1 . Then there is a countable subset E of U!1 supporting X .

We will show that either X � E or U!1 r X � E, hence X is either countable or

co-countable.

SupposeX › E. Then there is x 2 XrE. Let y 2 U!1rE. Then there is� 2 GE
such that �.x/ D y. Hence y D �.x/ 2 �.X/ D X . Therefore U!1 r E � X ,

i.e.U!1 rX � E.

(iii) The fact that every uncountable subsetX of U!1 contains a countably infinite subset

follows from the fact that every countably infinite subset of U!1 is supported by

itself, therefore they all lie in N!1 .

By property (iii) of quasi-amorphous sets, we have the following fact.

Fact 5.1.4. jU!1j … � in N!1 .

Quasi-amorphous family of pairs of socks

Now we will modify this construction so that the set of atoms U is Dedekind-finite but

weakly Dedekind-infinite, i.e. jU j 2 �r�4, but so that every countably infinite partition

of U contains a weakly Dedekind-infinite set.
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The idea is to construct a quasi-amorphous family of pairs of socks, where the group of

automorphisms G can permute the pairs. Let U!1;2 D P
S
˛<!1

P˛ where P˛ D fu˛; v˛g

are pairwise disjoint and let … D fP˛ W ˛ < !1g. Let G be the group of automorphisms

of U!1;2 preserving … setwise, i.e. G D f� 2 Sym.U!1;2/ W �.…/ D …g. Let

I D fE [ƒ W E � U!1;2 is finite and ƒ � … is countableg. It is easy to see that I is a

normal ideal. Let F be the filter generated by fGE[ƒ W E [ƒ 2 I g. Then F is a normal

filter of G. Let N!1;2 be the corresponding FM-model.

Proposition 5.1.5. jU!1;2j 2 �r�4 in N!1;2.

Proof. First we show that jU j … �4. By the construction ofN!1;2, every countable subset

ƒ � … supports itself and hence it stays countable in N!1;2. Thus given any countably

infinite ƒ � …, we have ! � ƒ � P.U / and so ! �� U .

Showing jU j 2 � is done by a standard argument. Let f W! ! U be a function supported

by E [ ƒ for some finite E � U and countable ƒ � …. Suppose ran.f / is infinite.

Since E is finite, there is x 2 ran.f /rE, say x D f .n/ for some n 2 !. Let � 2 GE[ƒ
be such that �.x/ ¤ x. Then �.n/ D n and so hn; �.x/i D h�.n/; �.x/i 2 �.f / D f .

Since hn; xi is also in f , this contradicts f is a function. Thus ran.f / is finite and so f

is not injective.

Proposition 5.1.6. The set of atoms U!1;2 cannot be written as a countable union of

weakly Dedekind-finite sets inN!1;2, i.e. every countable partition of U!1;2 inN!1;2 must

contain a weakly Dedekind-infinite set.

Proof. Let ‚ be a countable partition of U!1;2 in N!1;2 with support E [ ƒ, where

E � U!1;2 is finite and ƒ � … is countable. We may assume that E is a finite union of

some P˛’s. Then for all � 2 GE[ƒ and X 2 ‚, �.X/ D X . Since E [ƒ is countable,

there are uncountably many 
 < ˛ such that P
 \ E D ; and P
 … ƒ, let 
1 and 
2

be any such 
 . Let Y 2 ‚ be such that P
1 \ Y ¤ ;, say u
1 2 P
1 \ Y . Let �
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interchange the two members of P
1 and fix all other points. Then � 2 GE[ƒ so it fixes

Y . Hence v
1 D �.u
1/ 2 �ŒP
1 \ Y � D P
1 \ Y , so P
1 � Y . Furthermore there will

be � 2 GE[ƒ such that �ŒP
1� D P
2 . Hence P
2 D �ŒP
1� � �ŒY � D Y . Since 
1 and


2 are arbitrary, Y contains uncountably many P
 . In fact it contains all but countably

many P
 .

Let � be a countably infinite set of 
 ’s such that P
 � Y . Then f WP
 7! 
 maps a subset

of Y onto a countably infinite set, and is supported by � , hence it lies inN!1;2. Therefore

Y is weakly Dedekind-infinite in N!1;2.

Corollary 5.1.7. It is consistent that there is a Dedekind-infinite set that cannot be written

as a countable union of weakly Dedekind-finite sets.

Therefore the method introduced in Conjecture 5:1:1 cannot be applied for all weakly

Dedekind-infinite sets. So far we can therefore only perform reconstruction for weakly

Dedekind-infinite sets that can be written as a countable union of weakly Dedekind-finite

sets.

5.2 Weakly 2-transitive trees and �5

Definition 5.2.1. A poset hT;�i is called a tree if the following four conditions are

satisfied:

(i) for each a 2 T , the set fx 2 T W x � ag is linearly ordered,

(ii) for all a; b 2 T there is c 2 T with c � a and c � b,

(iii) there are a; b 2 T with a — b and b — a, i.e. a k b,

(iv) hT;�i contains an infinite chain.

Definition 5.2.2. Let T be a tree. We say T is
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� k-homogeneous if every isomorphism between k-element subsets extends to an

automorphism of T ,

� k-transitive if whenever two k-subsets of T are isomorphic, then there is an auto-

morphism of T taking one to the other,

� weakly k-transitive if any isomorphism between chains of T of length k extends to

an automorphism of T .

Remark. Let T be a tree. Then T C is the smallest tree which contains T and is a meet-

semilattice (every nonempty finite subset has a meet or a greatest lower bound). It can be

proved that T C exists and is unique up to isomorphism (see [Dro85]).

Definition 5.2.3. The set of ramification points of a tree T is defined by

ram.T / D fa 2 T C W a D inffb; cg for some b; c 2 T with b k cg:

Remark. T C D T [ ram.T /.

Definition 5.2.4. Let x 2 T . A relation E on fy 2 T W y > xg defined by y1Ey2 if there

is ´ 2 T C such that x < ´ � fy1; y2g is an equivalence relation. We call the equivalence

classes of E cones at x.

1. If a 2 ram.T /, we let C.a/ be the set of all cones at a.

2. If a 2 ram.T /, we say that a is special ramification point of T if a has a cone which

has a smallest element, that is, if a is covered in T C by some b 2 T (meaning that

there is no point c with a < c < b).

Let rams.T / denote the set of all special ramification points of T . If a 2 rams.T /,

we let Cs.a/ (respectively Cn.a/) denote the set of all cones at a with (respectively

without) a smallest element.
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3. For each finite or infinite cardinal k � 2, let

ramk.T / D fa 2 ram.T /r rams.T / W jC.a/j D kg; and

ram1.T / D fa 2 ram.T /r rams.T / W C.a/ is infiniteg:

It has been shown in [DHM89] that if T has infinitely many distinct ramification orders,

then it is not @0-categorical, so in the FM-model built from such T , jUT j … �4, and this

can happen in 2@0 ways. Hence we have the following theorem.

Theorem 5.2.5 ([DHM89]). There are 2@0 pairwise non-isomorphic countable weakly

2-transitive trees.

Let T be a countable weakly 2-transitive tree. For notational ease, we enlarge T by

adjoining a minimum point �1 (though strictly speaking, �1 … T ). For any X � T ,

let
V
X D f´ 2 T W ´ D x ^ y for some x; y 2 X [ f�1gg. Recall that ŒX� denotes the

set of all members of T which are fixed by Aut.T /X . It is easy to see that �1 2 ŒX� for

all X � T .

Lemma 5.2.6. For every finite X � T ,
V
X D ŒX�.

Proof. .�/ Let x 2
V
X . Then x D y ^ ´ for some y; ´ 2 X [ f�1g. If � 2 Aut.T /X ,

then � fixes y and ´ and since � is an automorphism, � also fixes x. Hence x 2 ŒX�.

.�/ Suppose x …
V
X . Then x > a for some a 2

V
X . Let a be the greatest such

element. Consider the following two cases. If for every b 2
V
X , b 6> x, then let y > x,

so y 6< b for all b 2
V
X . If there exists b 2

V
X such that b > x, then let y be such that

a < x < y < b. In both cases, y has the same relation as x to all members of
V
X , and

we can find � 2 Aut.T /X such that �.x/ D y. Thus x … ŒX�.

Since the two notations above coincide, we can write
V
X as ŒX� and consider them as the

same thing. Now consider an FM-model induced by a weakly 2-transitive tree. Let UT



88 5. Beyond �4

be the set of atoms indexed by a weakly 2-transitive tree T D hT;�i. Let G be the group

of automorphisms of UT induced by Aut.T /, and letNT be the corresponding FM-model

with finite supports.

Proposition 5.2.7. jUT j 2 �5 in NT .

Proof. Let f WUT ! UT [ f�g , where � … UT , be surjective in NT with finite support

X . We assume that X contains �1.

We remark that for any x; y, if f .x/ D y, then y 2 ŒX [ fxg�. For since X supports

f , �.f / D f for all � 2 GX . Then hx; yi 2 f and so h�x; �yi 2 �.f / D f for

all � 2 GX . Hence if �y ¤ y, then �x ¤ x since f is a function. If y … ŒX [ fxg�,

then there is � 2 GX[fxg � GX such that �.y/ ¤ y but �.x/ D x, which contradicts

f .x/ D y. Hence y 2 ŒX[fxg�. Also note that ŒX[fxg� D ŒX�[fxg[fx^a W a 2 Xg.

Let y … ŒX� and let x be such that f .x/ D y. Then y 2 ŒX [fxg�r ŒX� � fxg[ fx^a W

a 2 Xg.

Case 1. y — a for all a 2 ŒX�.

Then y … fx ^ a W a 2 Xg. Hence y 2 fxg, i.e.y D x and so f .y/ D y.

Case 2. y � b for some b 2 ŒX�.

If x 2 ŒX�, then ŒX� D ŒX [ fxg� 3 y, which contradicts y … ŒX�. Hence x … ŒX�.

Suppose x — a for all a 2 ŒX�. Then by case 1, we can show that f .x/ D x and since

f .x/ D y, x D y � b where b 2 ŒX�, a contradiction.

Therefore x � c for some c 2 ŒX�. Then for any a 2 X , either x ^ a D x or x ^ a 2 ŒX�.

Thus ŒX [ fxg� D ŒX� [ fxg [ fx ^ a W a 2 Xg D ŒX� [ fxg. Since y … ŒX�, y D x.

Hence f .y/ D y.

From both cases, we have f .y/ D y for all y … ŒX�. Hence f ŒŒX�� D ŒX� [ f�g which

is a contradiction since f is surjective but ŒX� is finite. Therefore such f does not exist

in NT and so jUT j 2 �5 in NT .
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Hence we get an example of sets with their cardinalities lying in �5 r �4. Notice that

these weakly 2-transitive trees have densely ordered branches, whereas the binary tree has

! levels, hence all branches are finite or of length !. There is an intimate relationship

between tree structures of this kind, and sets with cardinality not lying in�5, explained in

the next section. We shall give a wide variety of examples of tree structures of this kind.

5.3 Trees and beyond �5

As the method we used in the first section cannot be applied to every weakly Dedekind-

infinite set, we may need more information from the structure, other than the fact that it

can be divided into countably infinite sets. First consider the following example.

Example. The binary tree vs. ! pairs of socks

Consider the binary tree T2 D h2<!;�i and the ! pairs of socks S!;2 D h P
S
n2! Pn; <i.

We can see that these two structures share some similar properties, for instance every

member has two immediate successors, and both structures have ! levels where each level

is finite. A major difference is that two members of the socks structure might share the

same immediate successors, i.e. even though there is a linear ordering on the partition

fPi W i 2 !g, there is no specific link between members of each consecutive pair of socks,

whereas each member of the tree has its own immediate successors; more specifically the

ordering on T is semi-linear (the downward closure of every member is well-ordered) but

this is not true for the socks S!;2.

Both the binary tree and the ! pairs of socks have their corresponding set of atoms not

lying in �4 in the corresponding FM-models, but the binary tree ends up above �5,

unlike the pairs of socks. In particular, jUS!;2j 2 �5 r �4 but jUT2j 2 � r �5 in their

corresponding FM-models.

As the above example shows there is a link between sets carrying tree structures and�5 as
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we have already seen in Proposition 3:1:39 (and later in Proposition 5:3:1). In this section,

FM-models constructed from tree structures which have ! levels will be studied.

Proposition 5.3.1. Let X be a set. Then jX j … �5 if and only if there is a subset T � X

carrying a tree structure with ! levels and no leaves.

Proof. The proof is the same as the proof of Proposition 3:1:39 just dropping the ‘finite-

ness’ parts.

Corollary 5.3.2. LetM be a model for ZFAC AC with set of atoms UT where T is a tree

structure on UT with ! levels and no leaves. Let G be any group of permutations of UT

which preserves the tree structure and letNT be the FM-model built from UT and G using

finite supports. Then jUT j … �5 in NT .

Proof. SinceG preserves the tree structure,UT carries the tree structure inherited fromT in

NT . Therefore, as in the proof of Proposition 5:3:1, there is a surjectivef WUT ! UT [f�g,

where � … UT . The function f then has empty support sinceG preserves the tree structure.

Hence f 2 NT and so jUT j … �5.

Therefore, to study FM-models in which the set of atoms does not lie in �5, we can start

by studying tree structures with ! levels instead.

The general scenario is as follows. We start with a tree T with ! levels and no leaves in

a model M of ZFAC AC for which there is a sequence hAn W n 2 !i of non-empty finite

or countable @0-categorical structures such that if x lies in the nth level of T , succ.x/

is identified with domAn. For the group G of automorphisms of T we take the group

of tree automorphisms f which for each x in the nth level also induce an isomorphism

from succ.x/ to succ.f .x//, where they are both view as copies of An under the chosen

indexation. In what comes next, we shall consider such cases in which succ.x/ is finite or

more generally @0-categorical.
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5.3.1 Balanced trees

To study sets not lying in �5 by using FM-models constructions, in view of what we

have just shown, we are naturally led to consider possible tree structures with ! levels

and no leaves, and it is more convenient to insist that the group of automorphisms act

transitively on each level of the tree. This is captured by the idea of ‘balanced tree’, which

was introduced in [FT07], and can be extended as follows.

Definition 5.3.3. A tree T is called a balanced tree if the sets of immediate successors of

each vertex x, denoted by succ.x/, in the same level are equivalent.

In the presence of AC, ‘equivalent’ just means ‘isomorphic’ but in the absence of AC, we

mean that any first-order structure which the first can be equipped with is elementarily

equivalent to some first-order structure which can be put on the other (this will be defined

and discussed later for the case succ.x/ is infinite).

For example, if T is finitely branching, then T is balanced if every vertex in the same level

has the same degree, i.e. j succ.x/j is constant for all x in the same level. The case that T

branches infinitely is more complicated so we will deal with this in the later part of this

section.

Note that balanced finitely branching trees were used to study versions of König’s Lemma

in [FT07], and our work here can be viewed as generalizing that.

We remark that if a tree is balanced, then its group of automorphisms acts transitively on

each level of the tree. We now show how an arbitrary tree with ! levels and no leaves can

be pruned to a form a balanced one, starting with the finitely branching case.

Theorem 5.3.4. For any tree T D hT;<i with ! levels and no leaves where each level is

finite, there is a balanced subtree T � fulfilling the same things.

The following method appears to work easily in this case. The idea is to equalize the

branching degree of every vertex in each level. On level 1, prune branches on level 2
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corresponding to any vertices on level 1 whose degree is not equal to the minimum, so

that all vertices on level 1 have same degree. Repeat this on level 2; 3; : : : and so on.

Notice that each level is fixed beyond a finite stage, so this method terminates. Also, at all

stages, the pruned tree still has no leaves and ! levels and this is also true for the subtree

eventually formed after ! steps. However this method appears to use the Axiom of Choice,

since we may have to choose which branches to remove infinitely many times. Indeed we

now show by means of an FM-model that this use of AC is unavoidable.

Example. Let T2 be the binary tree and T3 be the ternary tree, i.e. T2 D f2<!;�g and

T3 D f3<!;�g. Let T2C3 be the tree constructed by joining T2 and T3 and adding a

minimum point �. By the above method, we keep removing branches from vertices in

each level from the T3-side so that every vertex has degree 2, and at the end we should

end up with having the subtree T � � T isomorphic to the binary tree T2. To see that

this cannot be done without AC, construct the FM-model NT2C3 from T2C3 by the usual

construction with finite supports, and let UT2C3 be the set of atoms in the model. We write

UT2 , UT3 , and u�, to correspond to T2, T3 and �, respectively. Suppose there is UT � , the

set of atoms corresponding to T �, which lies inNT2C3 with finite supportE containing the

root. We can see that UT � D UT2 [ UT �2 [ fu�g, where UT �2 � UT3 . Let x be a maximal

member of E \ .UT3 [ fu�g/. Then there are y; ´ in UT �2 extending x on the same level.

But then we can find � 2 GE such that �Œfy; ´g� D fy;wg where w is another vertex

extending x in UT3 that gets removed in the pruning process. Hence �.UT �2 / ¤ UT �2 ,

i.e. the subset UT �2 does not exist in the model NT2C3 .

Therefore pruning a tree must be done more carefully. We will show that there is another

method to prune finite branching trees without using the Axiom of Choice as follows.

Proof of Theorem 5:3:4. Let S be a sequence of natural numbers such that every number

occurs infinitely often, say S D hknin2! . We will construct a decreasing sequence of

subtrees of T such that for each n, TnC1 is pruned on level kn so every member has the

same degree. Let Ln be the nth level of T .
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First let T0 D T . For n 2 !, suppose Tn has been constructed. Let Xn be the set of

members of height kn in Tn with minimum degree, i.e.Xn D fx 2 Lkn \ Tn W x is of

least degreeg. Let TnC1 D
S
x2Xn
fy 2 T W y � x or y > xg. It can be easily checked

that TnC1 is a subtree of Tn and has no leaves. Let T � D
T
n2! Tn. It remains to show

that T � is balanced and contains no leaves.

Let x 2 T �. Then succ.x/ \ T � D
T
n2!.succ.x/ \ Tn/, where hsucc.x/ \ Tnin2!

is a decreasing chain and succ.x/ \ Tn is finite and non-empty for all n 2 !. HenceT
n2!.succ.x/ \ Tn/ ¤ ;, so x is not a leaf.

For each n, let In D fi 2 ! W ki D ng. Then hXiii2In is a decreasing sequence of subsets

of Ln. Note that In is infinite since we chose S so that every n occurs infinitely often.

Since Ln is finite, the sequence Xi must terminate at some least in. Hence the level nth of

T �, Ln \ T �, must equal Xin , where each member of Xin has the same degree. Therefore

T � is balanced.

With the method introduced in the previous proof, pruning the tree T2C3 leaves only the

T2 part and in addition the minimum vertex �. This pruning method can also make a

finite branching tree whose corresponding set of atoms is Dedekind-infinite give rise to a

pruned subtree which is Dedekind-finite. For instance, there is a finite branching tree T

such that jUT j … � inNT , but having a balanced T 0 � T such that jUT 0j 2 � inNT . We

give such an example here.

Example. We construct a tree T as a countable disjoint union of binary trees with addition

relations on their roots.

Let fBi W i 2 !g be a countable family of pairwise disjoint binary trees, say Bi D hBi ; <ii

Š T2 for all i 2 !. Let bi be the root of Bi . Let T D P
S
i2! Bi , partially ordered by < the

union of all the <i and the relation on fbi W i 2 !g induced from the usual ordering on !.

It is easy to see that T is finite branching without leaves, and every vertex in each Bi has

its level in T increased by i from what it is in Bi . Furthermore there is a unique vertex
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in each level with ramification order 3. Thus the set R WD fx 2 T W j succ.x/j D 3g is

countable.

Construct an FM-model NT from T with set of atoms UT indexed by T , G induced by

Aut.T /, and finite supports. It is easy to see that G fixes every member of fux W x 2 Rg

so it lies in and is countable in NT . Thus jUT j … � in NT . Next we prune T according

to the method introduced in Theorem 5:3:4. This gives us a finite branching subtree

T 0 D B0 Š T2, which by the method of Section 3.2.8 one shows that jUT 0j 2 � in NT .

Now we will discuss the case in which succ.x/ is infinite for some x. We already have

given some discussion of this above We always assume that T and succ.x/ are countably

infinite for all x 2 T , e.g. let T D !<! be equipped with the relation �. Construct the

FM-model NT by the usual construction so that the set of atoms UT carries the original

tree structure T WD hT;�i, and furthermore we will have succ.ux/, the corresponding

set of atoms of succ.x/ (which we may write only as succ.x/ in the future proof), being

weakly Dedekind-finite in NT for all x 2 T . In short, UT admits a tree structure with

each vertex branching weakly Dedekind-finitely.

Since each vertex branches weakly Dedekind-finitely, we can no longer use the method in

the proof of the finite branching case because we still have no method to distinguish two

weakly Dedekind-finite sets. Consider the following equivalence relation between two

sets.

Definition 5.3.5. For any sets A and B , we write A � B if for any first-order structure A

that can be put onto A in a countable language, there exists a first-order structureB on B

over the same language such that A � B.

Nowwewill try to make sense of the definition of balanced tree in the case that T branches

weakly Dedekind-finitely. It seems reasonable to say that two weakly Dedekind-finite sets,

that are constructed from countable sets, are ‘the same’ if they are equivalent under the

relation� defined above.
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Suppose we have two weakly Dedekind-finite sets X and Y such that X 6� Y . Then there

must be some structure A that we can put on X and a sentence ' which is true in A, but

not in any first-order structure B on Y . Since the set of sentences is countable, we can

choose such a least sentence ' such that, under the same interpretation, ' distinguishes X

and Y , i.e. without loss of generality, ' holds in a structure on X but not in any structure

that can be put on Y , which we write X < Y .

This method can be applied to every pair of weakly Dedekind-finite sets, but then if there

are infinitely many pairs of such sets we still need to choose which language will be used

to distinguish sets from each pair. Since we are dealing with trees having ! levels, it

suffices to fix a language L D fR;F ; Cg where the set of relation symbols R, the set of

function symbols F , and the set of constant symbols C are all countable. Hence the set of

L-sentences is countable, and we enumerate them as f'n W n 2 !g. Now letX be a weakly

Dedekind-finite family of weakly Dedekind-finite sets. The method will successively cut

down X to nonempty subfamilies Yn. This give a descending sequence of Yn’s, and since

X is weakly Dedekind-finite, this sequence terminates at some n 2 !.

These remarks lead to a version of Theorem 5:3:4 for the case that the tree T has each

level weakly Dedekind-finite.

Theorem 5.3.6. For any tree T D hT;<i with ! levels and no leaves where each level is

weakly Dedekind-finite, there is a balanced subtree T � fulfilling the same properties.

Proof. Modify the proof of the finite branching case in Theorem 5:3:4 as follows.

If allmembers ofLkn\Tn are�-equivalent, thenXn D Lkn\Tn is unchanged. Otherwise,

choose the least formula ' such that some but not all members ofLkn\Tn satisfy ' and let

Xn D fx 2 Lkn \Tn W x � 'g. This ensures that for each k, fXn W kn D kg decreases and

becauseLk is weakly Dedekind-finite, this terminates. The rest of the proof is similar.

Therefore, given an FM-model N with the set of atoms U equipped with an !-level tree
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structure where each level is (infinite) weakly Dedekind-finite, we may assume that U is

balanced, and at the nth level we can associate with it a unique countable structure An. Let

T be a tree of height ! where each vertex branches according to those structures, i.e. if

x is in level n, then succ.x/ Š An. Then the FM-model NT constructed from T by the

construction given above has the set of atoms UT equivalent to U .

The following are example of balanced trees.

5.3.2 succ.x/ is finite

Let � D h�k W k 2 !i be a sequence of positive integers greater than 1 and let T� be a

tree in which all elements on the kth level have exactly �k immediate successors, i.e. if x

is on the kth level, then j succ.x/j D �k. This construction is due to [FT07]. Then T� is

balanced, and there are 2@0 different trees that can be constructed by this method. One

can see that all balanced finite branching trees are isomorphic to one of these trees.

Construct an FM-model from T� by letting UT� be the set of atoms indexed by T� , G be

the group of automorphisms of UT� induced by Aut.T�/, and NT� be the corresponding

FM-model with finite supports.

We illustrate how this notion can be described in L!1!-sentences. First we give examples

of first-order sentences telling properties of each member x of UT� as follows.

� x is a root of UT� :

'0.x/ � 8y.x � y/:

� x has level n > 0:

'n.x/ � 9y09y1 : : : 9yn�1

 
y0 < y1 < : : : < yn�1 < x

^8´08´1 : : :8´n�1

 
´0 < ´1 < : : : < ´n�1 < x !

^
i<n

.´i D yi/

!!
:
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� x has ramification order �n:

��n.x/ � 9y09y1 : : : 9y�n�1

0@^
i¤j

.yi ¤ yj / ^
^
i<�n

.x < yi/

^ 8´

 
x < ´!

_
i<�n

.yi � ´/

!1A :
Hence we have

hUT� ; <i � 8x

 
.8y.x � y/ ^ ��0.x// _

_
n2!

'n.x/ ^
_
n2!

.'n.x/! ��n.x//

!
:

Furthermore, for any set X , if there is a partial ordering < on X such that hX;<i satisfies

the above L!1!-sentence, then we know that hX;<i carries the tree structure T� .

5.3.3 No structure on succ.x/

This construction is the same as in Section 3.2.9. Let T D h!<!;�i. Then we can see

that for each x 2 !<! , succ.x/ is infinite. We put no structure on succ.x/, therefore

Aut.T / � succ.x/ Š Sym.succ.x// for all x.

Construct an FM-model NT from T with the set of atoms UT induced from T . Then we

have jUT j … �5. By the same argument as the proof for the similar result for the binary

tree in Proposition 3:2:17, we have jUT j 2 �3 in NT .

Proposition 5.3.7. Let Ln be the nth level of UT . Then MT.Ln/ D n for all n 2 !.

Proof. Prove by induction on n, using the fact that an MT-rank n union of amorphous sets

have MT-rank nC 1.
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5.3.4 succ.x/ Š hQ; <Qi

Now we consider the case that succ.x/ carries some structure, starting from a simple one,

the rationals hQ; <Qi.

Let TQ be a tree such that each vertex x branches into Q successors. We may view T as

Q<! equipped with two binary relations �T and <Q which are defined as follows. The

relation �T is the usual tree ordering on T , say x �T y if x � y, while the relation

<Q focuses on each succ.x/, say y <Q ´ if y D xar and ´ D xas for some x 2 Q<! ,

r; s 2 Q and r < s. We can see that hsucc.x/; <Qi Š hQ; <Qi. Let TQ D hQ<!;�T ; <Qi.

Construct an FM-model by letting the set of atoms UTQ be induced from TQ, G the group

of automorphisms ofUT be induced from Aut.TQ/, andNTQ the corresponding FM-model

be constructed by finite supports. We will refer to a member uq 2 UTQ as only q and UTQ

as only U .

We can see that succ.0/ is the same (equivalent) as the set of atoms UQ of the Mostowski

model, i.e. it is o-amorphous. Hence we have the following proposition.

Proposition 5.3.8. jUTQj … �3 in NTQ .

However the higher levels are weakly o-amorphous. For example, at level 2, L2 is the

same as the FM-model that was built from Q �Q, which is weakly o-amorphous, but not

o-amorphous, see Section 3.2.4.
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