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ABSTRACT 

 

As a dynamic element revealing architectural space, daylight not only provides 

substantial illumination but may also influence how occupants interact with the 

space. This thesis investigates one aspect of interaction, whether there is an effect 

of daylight on seat choice behaviour. Previous studies have provided limited 

evidence of an association between daylight and seating preferences of individuals, 

in part because each study employed different methods to measure and quantify 

seating preferences of individuals. This concern is compounded by the fact that 

previous research has tended to use a unique set of daylight metrics in addition to a 

unique set of measurement points in the test space. This raises the discussion as to 

the method by which daylighting conditions were evaluated and the procedure with 

which seating preferences were sought. 

 

This study used two procedures to examine whether daylight affects seating 

preferences in an open plan room. The first was a stated preference approach in 

which individuals were asked to indicate the factors they perceived to influence their 

choice of seat location. Responses were sought from both those who were about to 

enter the room and those who were already seated in the room. Daylight was 

suggested to be the most important factor amongst those respondents already 

seated in the room, but was less important among those people who responded at 

the entrance. 

 

The second was a revealed preference approach which draws inferences on seating 

preferences from the actual choices made by individuals in the test room. The data 

were collected using two methods. One was a snapshot method, recording actual 

seating behaviour of individuals at regular intervals and the other was a walk-

through method, following individuals from the moment they entered the room until 

they chose a seat. The influence of daylight was investigated using a dynamic 

simulation modelling method to predict daylight illuminance in the test space. The 

method was to derive a set of daylight metrics for each individual seat over the 

observation period. Results showed that higher illuminances led to increased seat 

occupancy, but only in close proximity to windows. It was found that using a 

questionnaire to ask people about their seat choice when already seated led to the 

suggestion that daylight had stronger influence than was found in the revealed 

preference approach. 
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CHAPTER 1. INTRODUCTION 

 

This thesis explores association between daylight and occupant behaviour, 

specifically the potential influence of daylight on seating preferences in open-plan 

library workspaces. The approach consists of two phases, the first focusing on 

surveys asking for the reasons for the choice of seat locations (stated preference) 

and the second focusing on direct observation of actual seating behaviour (revealed 

preference). This introductory chapter provides background and context for the 

study, defines its objectives and outlines the structure of the thesis. 

 

1.1 Background 
 
The ability to perceive the visual environment is dependent upon vision. Human 

vision is a complex system which involves the acquisition of information through the 

visual senses and the processing and interpretation of this sensory information into 

a meaningful representation of the visual environment. This first information 

gathering task occurs in the eye, and the resulting visual map is sent to the brain, 

which ultimately processes the image and produces the sense of vision (sight) 

(Boyce, 2014). Light is fundamental to this process, without light there would be no 

vision and the visual environment would not be perceptible. To perceive the visual 

environment a space needs to be lit, whether by daylight delivered through windows 

or artificial light from electric light sources. Daylight is a constant source of light 

provided throughout the daylight hours. When daylight becomes insufficient, it can 

be supplemented by artificial light, which eventually takes over during hours of 

darkness. 

 

Current lighting practice demonstrates a continued emphasis on the issue of how 

much light is required for people to perform a particular visual task (Cuttle, 2015; 

Rea, 2000). The objectives of lighting are widely accepted and recognized by the 

lighting industry, these include to contribute to the safety of those doing the work, 

provide a pleasant visual environment and promote well-being and health (Boyce et 

al., 2003; Boyce, 2014; Hopkinson et al., 1966). The nature of daylight differs from 

artificial light in that it is dynamic, constantly changing with time of day, time of year, 

and with variations in weather conditions. This characteristic variety provides a 

dynamic and appealing appearance, ultimately leading to a visual environment 

which is inspiring and stimulating for the occupants (Ander, 2003; Leslie, 2003; 
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Phillips, 2000). Although electric lighting installations increase the visibility of the 

task, they rarely provide any variation over time or space (Boyce et al., 2003; Boyce, 

2014). The need for daylight stems from these essential dynamic characteristics of 

daylight which electric light cannot replicate. 

 

Daylight was an important design element and remained the primary means of 

lighting in buildings until the early twentieth century, when for various reasons, not 

least the development of reliable artificial light sources, the necessity of daylight was 

beginning to be questioned (Baker and Steemers, 2002; Phillips, 2004; Steane, 

2011). There was in fact substantial evidence to support the use of artificial light in 

contemporary spaces, including scientific innovations, greater lamp efficiency and 

supplementary lighting systems. Daylight was increasingly restricted and 

supplemented with artificial light, which became an important lighting strategy as the 

result of such technological developments and transformations in lighting.  

 

The advancements in lighting technology resulted in a greater dependence on a 

more controlled visual environment where primary illumination was provided by 

artificial light. Since the energy crisis of the 1970s, however, the tendency to use 

artificial lighting has increasingly been criticized for its being one of the major 

contributors to energy consumption in buildings (Fontenelle, 2008; Leslie 2003; 

Reinhart et al., 2006; Ruck et al., 2000). Given the widespread increased sensitivity 

to the environment, currently broadened to the concept of ‘sustainability’, recent 

efforts are directed by designers towards increasing the use of daylight in buildings 

since it is recognized as being one of the passive design tools that could 

significantly reduce dependence on electricity for illumination, thereby reducing the 

overall building energy consumption. As a consequence, together with its functional 

role in providing the necessary practical and appealing visual conditions for interior 

spaces, daylighting has an important role to play in reducing energy consumption in 

buildings. 

 

Given that people in industrialised countries spend a majority of their time indoors 

(Klepeis et al., 2001; Wiley et al., 1991), the provision of sufficient daylight 

illumination is important. By providing a visual link with the natural world outside, 

daylight can potentially improve health, awareness and feelings of wellbeing in a 

space, while also contributing job satisfaction and productivity (Heschong, 2002; 

Rangi and Osterhaus, 1999; Veitch and Gifford, 1996; Veitch et al., 2007). Such 

benefits of daylight are supported by the Workplace (Health, Safety and Welfare) 

https://www.amazon.co.uk/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Derek+Phillips&search-alias=books-uk&field-author=Derek+Phillips&sort=relevancerank
https://www.amazon.co.uk/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Derek+Phillips&search-alias=books-uk&field-author=Derek+Phillips&sort=relevancerank
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Regulations 1992, which require access to daylight for all workers where reasonably 

practicable (TSO, 1992). Daylight has also non-visual effects on the human body, in 

particular with respect to maintaining circadian rhythms (the 'body clock') over a 

daily 24-hour cycle adjusted by external cues in the environment, the most important 

of which is daylight (Burgess et al, 2002; Boyce et al, 2003; Lockley, 2009). 

 

Given its known benefits, people generally have a strong preference for daylight as 

a source of illumination, and when given a choice, they prefer windows in their 

workspaces (Collins, 1975; Cuttle, 1983; Farley and Veitch, 2001; Wotton and 

Barkow, 1983). Increasing window area does not necessarily lead to greater 

satisfaction with the visual environment however. A better view of the outdoor 

natural environment might be accompanied by excessive levels of daylight, leading 

to an increase in discomfort glare and overheating. It is necessary therefore to 

control the admission of daylight into a space by means of window openings, glazing 

as well as the effective use of shading devices. 

 

Satisfaction with the visual environment is largely dependent upon availability of 

individual choice and control over the immediate visual conditions. This is often 

referred to as adaptive opportunity and includes all modifications a person might 

make within their environment to suit their preferences (Baker and Standeven, 

1994). With respect to the physical context, adaptive opportunities range from 

interactions with the building fabric (i.e. adjusting blinds, switching on electric 

lighting) to behavioural responses (i.e. altering position or moving from one place to 

another) (Steemers et al, 2004; Tregenza and Wilson, 2011). Such adaptive 

opportunities provide occupants with means for personally controlling their 

environment in ways that enhance their comfort and satisfaction (Reinhart, 2014; 

Steemers et al, 2004). For example, window blinds can let people create a range of 

visual conditions and counteract possible visual problems. If they cannot modify the 

surroundings themselves in such a way, e.g. shading is not adjustable or not 

installed, then they may decide to change their position or move to another area to 

avoid discomfort. 

 

The extent to which building occupants can control their visual environment depends 

on the adaptive opportunities available to them in particular contexts. Typically, an 

open-plan space provides a variety of seating areas, and the user subsequently has 

the option to sit closer to a window to get more daylight and access to a view of 

outside, or sit farther away from the window when they experience visual discomfort 
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due to glare (Baker and Steemers, 2002). This is particularly evident in public and 

communal spaces in which desks/seats are shared and are not formally allocated to 

one person, such as library reading rooms, cafes/bars or other social settings. 

However, these types of adaptive opportunities are generally limited in spaces that 

impose restrictions on movement or choice of seat, such as offices with fixed 

workstation layout or classrooms where each student has an assigned seat. Much 

the same argument could be made for lighting control systems. On entering a 

space, people may switch on electric lighting manually when indoor illuminance 

levels from daylight are low, or may otherwise have to rely on automatic control 

systems that adjust electric lighting levels. It is thus evident that when users have 

individual choice and control over the amount of daylight, their response is 

constrained by the range of available adaptive opportunities in the space, such as 

the ability to adjust shading devices, individual control of electric lighting, or moving 

from one place to another. 

 

The presence of adaptive opportunities affects how users can interact with the 

building, but little further evidence is available beyond that which has been 

discussed so far, which relates the visual environment with occupant seating 

behaviour. Choosing to be in any one particular space and changing seating 

position and/or location are considered effective ways of responding to the 

environment (Baker, 2000; Nikolopoulou and Steemers, 2003). The process by 

which an occupant locates/orientates themselves depends in large part on the 

sensory information available in the environment, although it may be mediated by 

thoughts and cognitive processes (Gilbert, 2012). While it is plausible that daylight 

could affect this process, either as an enabler or barrier - for example occupants 

may prefer to sit near the window when they need more light to perform specific 

visual tasks, or they may want to sit away from daylight when it causes visual or 

thermal discomfort- these and other issues relating to the potential relationship 

between daylight and occupant behaviour remain to be further explored.  

 

The research presented in this thesis focuses on those behavioural aspects of 

daylight that are often disregarded but in fact are crucial to understand how the 

architectural space can be enhanced and transformed by this dynamic design 

element. In this context, daylight is discussed as a medium that alters the 

information content of the visual field and facilitates the seat selection process. More 

specifically, the research investigates the extent, if any, to which the effect of 

daylight on seating behaviour can be predicted. An important question being 
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addressed is what kinds of visual environments people might aspire to and what 

physical conditions they might seek when given the choice. A library reading room is 

considered as the physical setting for the investigation, although the research 

method is conceptually equally applicable to other social settings such as cafes or 

restaurants as long as physical constraints of space do not exist and people are free 

to move and choose a particular location. Two methods were used to determine 

preferences of individuals: stated and revealed preference methods. The stated 

preference method relies on data from surveys that ask respondents to consider all 

relevant choice attributes and state their preferences directly. The revealed 

preference method relies on the observation of actual choices made by individuals 

to measure preferences. 

 

Understanding the way people position themselves in relation to daylight could 

potentially have implications for the spatial design, the footprint and internal planning 

of buildings. If it were possible to identify behavioural patterns associated with 

daylighting conditions, then designers might be able to make more informed 

decisions regarding daylight performance, ensuring that occupants are located and 

oriented to make the most of the natural light. These could include design 

recommendations for spatial orientation, configuration of window openings, or space 

planning such as placement of furniture in relation to windows. 

  

1.2 Aims and objectives 
 
The aim of this study is to determine whether and how daylight affects behaviour in 

open plan library workspaces, with seating preferences used as a quantitative 

measure for occupant behaviour. The method involves asking participants to provide 

information about the reasons for their seat choice decisions through a 

questionnaire. The proposed approach allows for the examination of the perceptions 

of the participants regarding the conditions that influence their seat choice before 

and after entering the test room. The results contribute to understanding the relative 

importance of daylight to seat choice alongside other factors. The next step is to 

investigate actual seat choice behaviour through observation. This also involves 

estimating daylight illuminance for the observation period using dynamic simulation 

modelling, and comparing results with those obtained from observations. The 

research objectives are summarized as follows: 
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1. Investigate perceived factors that affect seating behaviour by means of 

questionnaires (stated preference surveys) 

2. Investigate actual seating behaviour through observations (revealed 

preference surveys) 

3. Predict daylight illuminance for the precise observation periods through 

computer simulation and evaluate simulation results using a set of daylight 

performance metrics 

4. Evaluate the capability of each metric to predict seating behaviour by 

comparing measures of seat use with daylight performance metrics 

 

The experiments took place in an open-plan reading room in a university library in 

Sheffield. The study addresses four research questions. The first is whether daylight 

is perceived to be important when choosing a seat and how these perceptions vary 

before and after the seat choice is made. The second is whether there is a 

relationship between daylight and actual seat choice behaviour and the third 

question examines whether different observational approaches yield the same 

results. Finally, the fourth question explores the ability of daylight performance 

metrics to predict seat choice behaviour. 

 

1.3 Thesis structure 
 
The thesis comprises seven chapters, a summary of which is given below and is 

illustrated in Figure 1.1 at the end of this section.  

 

Following this introductory chapter, Chapter 2 reviews what is currently known about 

the relationship between daylight and seating behaviour. The first part of Chapter 2 

is intended to provide an overview of basic characteristics of daylight and a 

discussion of the theoretical perspectives on seating behaviour. The second part 

presents a review of previous research to establish the extent to which behavioural 

impacts of daylight have already been validated and to develop research questions 

to be investigated which are presented at the end of Chapter 2. Chapter 3 provides 

a general description of the room where the research is undertaken, and reports the 

findings from stated preference surveys aimed at estimating the relative importance 

of daylight when choosing a seat. 
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Chapter 4 reports on three experiments designed to examine revealed preferences 

of individuals. The methods discussed involve recording seat occupancy at 

predetermined time intervals (snapshot approach) and tracking the seating 

behaviour of individuals over space and time (walk-through approach). Chapter 5 

describes the process for assessing the daylight performance of the test room using 

a simulation-based approach, and compares the results with the corresponding 

occupancy patterns. Chapter 6 summaries the work presented in the previous 

chapters and discusses the findings in relation to previous research. Chapter 7, the 

final chapter, provides the overall conclusions and discusses their implications for 

daylight and seat choice behaviour research, and concludes with suggestions for 

future research. 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Schematic diagram of the thesis structure, showing the organisation of chapters. 

 
 
 

Design and analysis of revealed 
preference surveys to identify 

patterns of seat choice behaviour 

CHAPTER 4 

 

CHAPTER 3 

 
Design and analysis of stated 

preference surveys to identify factors 
influencing seat choice behaviour 

Summary of thesis, conclusions, 
implications of the study and 
directions for future research 

CHAPTER 7 

 

Summary of main findings, 
discussion of research limitations 

and comparison with previous work 

CHAPTER 6 

 

CHAPTER 2 

 Review of previous research about 
daylight and seat choice behaviour, 

identifying the key research 
questions which would address 

research gaps 

CHAPTER 1 

 
Background, context and 

significance of the study: a summary 
of current understanding regarding 
daylight and seat choice behaviour 

Assessment of daylight 
performance in the test space, 
exploring the applicability and 

limitations of daylight metrics in 
measuring seat choice behaviour 

CHAPTER 5 
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1.4 Summary 
 
Research has shown that daylight is an important aspect of visual environment and 

that a good provision of daylight is desirable in terms of occupants’ health and well-

being as well as its potential to create a pleasant and visually stimulating 

environment. Yet, daylight has lost its primary importance due to the development 

and growth in use of artificial light over the last century. The dependence on artificial 

light have receded only recently with rapidly growing context of energy conscious 

design. The increased awareness of its benefits coupled with the desire to improve 

the energy efficiency of buildings has generated the need to incorporate daylight into 

the design process. For these reasons, daylight has often been preferred over 

artificial lighting as a source of illumination. 

 

Daylight not only remains an essential source of illumination to accommodate visual 

demands of occupants, but could potentially influence the way they interact with the 

building. The extent to which individuals interact with their visual environment 

depends in part on the adaptive opportunities that they can use to adjust lighting 

conditions (i.e. using blinds or lighting control systems) or to modify their behaviour 

(i.e. changing seating position or location). Through the use of adaptable 

opportunities available within the environment, an individual has the ability to control 

over the amount of daylight to better suit their needs.  

 

The work described in this thesis focused on the behaviour of building occupants, 

behaviour in this context being how occupants select a seat in an open-plan library 

workspace where there is a free choice of seat location. A critical issue in the 

investigation of behavioural responses to daylight is how to devise methods to 

measure and evaluate behaviour and the daylight conditions. Two methods were 

used to quantify seating preferences: stated and revealed preference methods. To 

understand the relationship between daylight and seat choice behaviour, it is first 

necessary to understand what daylight is and how its characteristics can be 

quantified, these will be discussed in the next chapter. 
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CHAPTER 2. LITERATURE REVIEW 

 

2.1 Introduction 

 
This chapter reviews the existing evidence for the effects of daylight availability on 

seating preference in open-plan spaces. The first part provides background about 

daylighting and an overview of current standards and metrics. The second part 

reviews existing theoretical explanations of how people choose their seat location in 

open-plan spaces and what factors influence their decision making. The third part 

presents a review of studies investigating the influence of daylight on seating 

behaviour of occupants and discusses methods for gathering evidence. The first 

studies reviewed are those in which observational methods were used to investigate 

actual seating behaviour and this is followed by investigations of perceived 

behaviour using questionnaire surveys. Finally, the chapter concludes by 

highlighting potential issues and limitations with the methods employed by previous 

studies. 

 

2.2 Physical principles and characteristics of daylight 

 
The principle characteristic of daylight is that its intensity, spectral content and 

spatial distribution vary as the sky conditions and the position of the sun change 

throughout the day and the year. This section gives a brief description of how 

varying illumination from daylight can be predicted for different sky and sun 

conditions as well as the methods of quantifying the effect of this by means of 

daylight performance metrics.  

 

2.2.1 Sources of daylight 

 
Daylight is a small portion of the entire spectrum of electromagnetic radiation 

originating from the sun, exceptional in that its wavelengths lie within the range 

capable of stimulating the visual system (∼380nm to ∼780nm) (CIE, 1987). The 

radiation outside the visible spectrum, such as those with longer wavelengths 

(infrared) or shorter wavelengths (ultraviolet), is not visible to the human eye and 

thus is not capable of creating a visual sensation. The theory of eye evolution is a 

scientific theory that essentially states that the structure of the human eye is very 

complex and that such complexity could be developed through a naturalistic process 

of evolution. The theory is based on the idea that the human eye has evolved 
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gradually over long periods of time to detect light at wavelengths in the visible 

spectrum. Daylight has meaning only in terms of human vision, and the sensitivity of 

the human eye is a function of wavelength - which is greatest when the 

wavelength is within the visible spectrum (Tregenza and Wilson, 2011). Daylight has 

two components: sunlight and skylight. Sunlight refers to the direct light arriving at a 

point at the earth’s surface directly from the sun. Skylight is diffused light from the 

sun, being scattered by clouds, air molecules, particles of dust or water vapour in 

the atmosphere before reaching the Earth’s surface. The process of scattering of 

light tends to be wavelength dependent and in particular affects the colour of the 

sky. That is, the shorter wavelengths in visible light (violet and blue) are scattered 

stronger than the longer wavelengths toward the red end of the visible spectrum. It 

is these scattered lights that give the sky the blue colour during the day and the 

orange colour during sunrise and sunset (Hopkinson et al., 1966; Tregenza and 

Wilson, 2011). This process of selective scattering is also known as Rayleigh 

scattering. 

 

Determination of sunlight and skylight availability is based on the sky conditions. 

Given that the presence of clouds introduces randomness, sky conditions are 

difficult to predict, although statistical data on cloud cover are available from 

observations at many weather stations (IPCC, 2007). To provide a framework for 

representing the actual sky conditions, the International Commission on Illumination 

(CIE) developed a series of mathematical models of ideal sky luminance distribution, 

of which the three most common are characterised as overcast, partly cloudy and 

clear. The overcast sky is defined as one in which the view of the sun is completely 

impeded due to the presence of dense cloud cover and there is little to no direct 

sunlight, whereas clear sky represents those sky conditions with a primarily direct 

sunlight component. Partly cloudy sky conditions lie between those of clear and 

overcast (Hopkinson et al., 1966; Reinhart, 2014; Tregenza and Wilson, 2011).  

 

The experiments presented in this thesis were carried out in an open-plan space in 

a university library in Sheffield (A detailed description of the test room is given in 

Chapter 3). In Figure 2.1 actual sky conditions that correspond to clear, partly 

cloudy, and overcast skies are shown for the test location, Sheffield (53°22'57" N, 

1°29'18" W).  
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Figure 2.1. Fish-eye photographs of the three typical sky conditions, taken at ground level 

close to the library building, Sheffield, United Kingdom. Left: Clear sky. Middle: Partly cloudy 

sky. Right: Overcast sky. 

 

 
 
As a result of these dynamic sky conditions, the amount of daylight entering a 

building cannot be determined with a high degree of accuracy, and design criteria 

are thus inevitably based on a statistical treatment of meteorological data (Lynes, 

1968). In climates with predominantly clear sky conditions, as in southern Europe, it 

appears particularly important to maximize the penetration of diffuse skylight and 

block the direct sunlight as it causes discomfort through heating and glare. By 

contrast, in climates where overcast sky conditions predominate, as found in 

northern Europe, the design emphasis is usually on maximizing daylight penetration 

in a building. Yet, these are general responses to sunlight and skylight penetration, 

and daylighting design strategies depend on building performance requirements 

(Hyde, 2000).  

 

2.2.2 Solar position 

 
The variations in daylight are primarily due to the change in the relative position of 

the sun in the sky as a function of the time of day and season of year. The position 

of the sun throughout the year is highly predictable for any given location, unlike 

cloud cover which is subjected to calculation only on a statistical basis (Evans, 

1981; Hopkinson et al., 1966). For any particular time, the position of the sun can be 

expressed in terms of its vertical angle above the horizon (altitude) and its horizontal 

angle, typically measured clockwise from north (azimuth).  

 

Given that the angular relationship between the position of the sun and the observer 

constantly changes over the course of a day and through the changing seasons, it is 

important to get an idea of this variety of circumstances during building design. For 

convenience the solar geometry is often represented on a sunpath diagram, which 
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enables projections of the sun's path across the sky. Figure 2.2a shows a 

stereographic sunpath diagram created for Sheffield using an on-line program at the 

web site of the University of Oregon Solar Radiation Monitoring Laboratory. Figure 

2.2b illustrates the geometrical relation between the position of the sun at a given 

point P, the observer and the sky hemisphere. 

 

 

(a) 

 

 
(b) 

 

Figure 2.2. Annual variation of the sun’s path for Sheffield (53°22'57" N, 1°29'17" W).  

(a) Stereographic sunpath diagram, created using University of Oregon Solar Radiation 

Monitoring Laboratory Online Sun Path Calculator (accessed 12 January 2015); (b) Solar 

position angles for the precise location of the sun on 21 June at 10am. 
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The sunpath diagram presented in Figure 2.2a is based on the stereographic 

projection of the sky hemisphere. The concentric circles represent the solar 

elevation at 10 degree intervals, with its centre corresponding to the zenith and the 

outermost circle corresponding to the horizon (British Standards Institution, 2008). 

The path of the sun in the sky during an entire day is indicated by the long curved 

arcs (shown in blue), and the time of day is indicated by the shorter converging lines 

(shown in red). Note that the time indicated by the hour lines is solar time, and 

makes no allowance for daylight savings (when daylight saving is in operation, one 

hour must be added to each of the times indicated). It can be seen from the figure 

that in mid-summer, in Sheffield, the sun rises in the north-east just before 4am, and 

sets in the north-west after 8pm. At noon, the solar elevation is at its maximum of 

about 600. The position of the sun at 10am is represented by the point P on the 

sunpath diagram, and its geometrical relation to the sky hemisphere is illustrated in 

Figure 2.2b. 

 

2.2.3 Basic daylight quantities 

 
This thesis focuses on the amount of light and not on the spectral characteristic of 

that light (e.g. its spectral power distribution or colour properties). The quantitative 

approach to objectively evaluate the amount of light is essentially concerned with 

the two physical quantities, luminance and illuminance. Luminance is defined as the 

amount of light emitted from a source or reflecting surface (cd/m2); and it depends 

on the direction from which the light reaches the surface, the direction from which it 

is viewed, and the material properties of the surface itself.  

 

Once daylight enters a building through an opening, its further penetration depends 

on the material properties of the interior surfaces it passes through or strikes. The 

reflectance of a surface material is indicated by a reflectance factor, within the range 

of 0 to 1. A white surface, for example, has a reflectance factor of about 0.85, while 

a black surface has a value of only 0.05 (Lechner, 2015). It should be noted that the 

manner in which light is reflected by the material is highly dependent upon the 

surface characteristics. A perfectly smooth surface such as a mirror reflects light in a 

single direction (specular reflection), whilst a rough surface scatters light rays in 

different directions (diffuse reflection) (Nayar et al 1991). The transmittance factor 

describes the ratio of light that passes directly through the material (i.e. glass), and 

absorption factor describes the ratio of light absorbed within the material.  
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Illuminance, in contrast to luminance, is the total luminous flux that falls on a surface 

(lux) and is independent of those factors that luminance depends on, such as the 

viewing direction or the characteristics of the surface on which light falls. The 

external illuminance on the ground due to daylight varies depending on sky 

conditions, covering a wide range from 1000 lux on an overcast winter day to 

100.000 lux on a sunny summer day (Boyce, 2014; Tregenza and Wilson, 2011). 

One important difference between illuminance and luminance is that when 

describing illuminance, the surface is considered as a receiver of light. When 

describing luminance, however, the surface is considered as a source of light which 

acts as the stimulus for vision. Illuminance therefore is an indicator of the flow of 

light within a space, whereas luminance is an indicator of the amount of light 

received by the viewer (Cuttle, 1971). 

  

2.2.4 Daylight performance metrics 

 
The dynamic nature of daylight presents a design challenge. In order to understand 

inherent characteristics of daylight and to use its potential benefits and attributes 

effectively within the design practice, a set of daylight performance metrics have 

been proposed (Mardaljevic et al., 2009; Reinhart, 2014). Quantitative evaluations 

by means of metrics enable relative comparisons between design alternatives as 

well as absolute comparisons against a benchmark value (Reinhart, 2014).  

 

Daylight performance metrics are typically assessed for either a single sky condition 

(static) or a series of consecutive sky conditions (dynamic). Current metrics can be 

classified into two major categories, illuminance-based versus luminance-based 

metrics and static versus dynamic metrics. A description of each of these metrics 

classified according to the two categories is given in Table 2.1. 
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Table 2.1 Definition of typical daylight performance metrics and indices.  

 Metric Static or 
Dynamic 

Description References 

Illuminance 
based 

Daylight 
Factor (DF) 

Static The ratio of the daylight 
illuminance at a particular 
point on a horizontal plane to 
the simultaneously occurring 
external illuminance of the 
unobstructed overcast sky 

Moon and 
Spencer (1942) 
 

 Useful 
Daylight 
Illuminance 
(UDI) 

Dynamic The annual occurrence of 
illuminances across the  
work plane that are within a 
range considered useful by 
occupants (100-3000 lux*) 

Mardaljevic 
(2015,2006); 
Mardaljevic et 
al. (2012) 

 Daylight 
Autonomy 
(DA) 

Dynamic The percentage of the year 
when a minimum illuminance 
threshold is met by daylight 
alone 

Association  
Suisse des 
Electriciens 
(1989); 
Reinhart (2002) 

 Continuous 
Daylight 
Autonomy 
(cDA) 

Dynamic Similar to DA but partial 
credit is attributed to time 
steps when the daylight 
illuminance lies below the 
minimum illuminance level 

Rogers (2006); 
Reinhart et al. 
(2006) 

 Spatial 
Daylight 
Autonomy 
(sDA) 

Dynamic The percentage of area that 
meets a minimum 
illuminance level for a 
specified amount of annual 
hours 

IES Daylight 
Metrics 
Committee 
(2012) 

 Annual 
Sunlight 
Exposure 
(ASE) 

Dynamic The percentage of area that 
exceeds a specified direct 
sunlight illuminance level 
more than a specified 
number of hours per year 

IES Daylight 
Metrics 
Committee 
(2012) 

Luminance 
based 

Discomfort 
Glare 
Metrics  

Static 
and 
Dynamic 

The predictions of the 
occurrence of discomfort 
glare within the field of view. 
Metrics include, but are not 
limited to, Daylight Glare 
Probability (DGP) and 
Daylight Glare Index (DGI) 

Wienold and 
Christoffersen 
(2005,2006); 
Jakubiec and 
Reinhart (2012) 

 Metrics for 
Contrast 
and 
Variability 
 

Static 
and  
Dynamic 

Measurements of the 
positive impacts of 
luminosity within the space, 
such as the average 
luminance and luminance 
variation 

Veitch and 
Newsham 
(2000); Loe et 
al. (1994); 
Rockcastle and 
Andersen 
(2013) 

 
*UDI range limits were 100-2000 lux when the UDI scheme first published in 2005. The upper value of 

2000 lux was revised upwards to 3000 lux later when new data from field research became available. 

The UDI range is further subdivided into four ranges: UDI fell-short (below 100 lux), UDI supplementary 

(100-300 lux), UDI autonomous (300-3000 lux) and UDI exceeded (above 3000 lux) (Mardaljevic, 2015). 
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Illuminance is the most widely applied measurement of daylight and is the 

foundation upon which most daylight performance metrics are based. The results of 

daylight analyses using static metrics are usually expressed in the form of 

illuminance values at certain points of interest in a building under a reference sky. 

One such metric is daylight factor, which is calculated under the CIE standard 

overcast sky. Daylight factor is the oldest and the most convenient way of 

expressing the quantity of daylight illuminance, and, as far as lighting practice 

concerned, it is one of the most widely specified metric by standards. It defines a 

constant relationship between the internal and external illuminance under overcast 

sky conditions. The luminance distribution of the sky is assumed to remain constant 

independent of absolute sky luminance. The rationale given for using the daylight 

factor method is that the reference overcast sky represents the worst case sky 

condition and that the method is primarily suited to calculating minimum values. 

Assuming that the total unobstructed illumination of an overcast sky is 5000 lux on 

the horizontal plane, for example, a daylight factor of 2% corresponds to an 

illuminance of 100 lux on interior work plane.  

 

Understanding variations in local weather patterns is critical in determining the 

appropriate approach for daylight calculation. Daylight factor is most useful for 

locations where there are frequent overcast conditions, such as England, and is 

arguably less useful in sunny climates. The main concern associated with 

daylighting in sunny climates is that the direct sunlight make a significant 

contribution to indoor illumination and that the daylight factor approach becomes 

unrealistic for such climates (Tregenza and Wilson, 2011).  

 

The limitations of daylight factor method can be summarized as follows: First, it 

excludes the contribution of direct sunlight. This presents limitations, especially in 

climates with predominantly clear sky conditions, as in southern Europe, where the 

direct sunlight makes a significant contribution to indoor illumination. Second, it 

considers only one sky condition, yet over a year, a building may experience many 

different sky conditions. The calculation of daylight factor is based on a standard 

overcast sky luminance distribution, however, real skies vary. This means the ratio 

of internal to external illuminance is no longer constant but varies as the pattern of 

sky luminance changes. The use of daylight factor is thus restricted in practice due 

to its lack of flexibility to estimate the dynamic variations in daylight illuminance as 

the solar position and sky conditions change. 
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Although the daylight factor method is capable of advancement by incremental 

means using the 'clear sky' evaluations, a more holistic approach is needed to 

evaluate daylight, particularly based on daylight availability determined from 

cumulative diffuse illuminance curves (Nabil and Mardaljevic 2005; 2006). Dynamic 

daylight metrics, also known as climate-based daylight metrics, have been 

introduced to overcome the limitations of the daylight factor method by providing a 

more comprehensive measure for a wide range of sun positions and sky conditions. 

There is considerable evidence to support the use of these metrics, such as the 

capability to predict the luminous quantities founded on standardised meteorological 

files specific to the locale for the building under evaluation. As a result, this 

approach enables a more realistic and location-specific evaluation of daylighting 

potential, and hence the design professionals rely more than ever on dynamic 

daylight performance metrics (Nabil and Mardaljevic 2005; Reinhart, 2011). Several 

dynamic metrics have been developed with the aim of capturing dynamic aspects of 

daylight; each describes different aspects of design. Of these, the two that appear to 

have been received a widespread acceptance are UDI and DA (IESNA, 2000). 

These metrics are typically used to estimate daylight availability over the year and 

throughout the space, and the consequences for the use of electric lighting and air-

conditioning (Reinhart, 2014). 

 

While there appears to be a consensus assigning importance to the implementation 

of illuminance-based metrics, there is also substantial research suggesting 

alternative ways to evaluate daylight performance that are based on luminance-

based metrics. The point has been made that people are relatively insensitive to the 

absolute level of light in a room and that illuminance-based metrics are not capable 

of predicting spatial variations of daylight within an occupant’s field of view. 

Luminance-based metrics are considered more capable than illuminance-based 

metrics in many ways, such as determining discomfort glare (i.e. Daylight Glare 

Probability and Daylight Glare Index) or the compositional impacts of luminance 

diversity within the field of view, the results of which are usually expressed in the 

form of renderings and/or photographs (Newsham et al., 2005; Rockcastle and 

Andersen, 2013). Providing accurate predictions with luminance-based metrics, 

however, is challenging. This is partly due to the wide variations in luminance 

distribution within the - many possible- fields of view, and partly due to limitations 

with the measurement equipment and method. Although it has become possible to 

analyse luminance distributions using high dynamic range (HDR) photography, there 

is still no clear consensus that such measures are capable of differentiating between 
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visual comfort and discomfort as experienced by space occupants (Painter et al., 

2009; Hirning et al., 2013; Van Den Wymelenberg and Inanici, 2014).  

 

As a result, although the importance of daylight metrics is recognised, there is yet 

insufficient knowledge of which metrics are important in a given situation. Different 

metrics are based on different objectives. These include, but are not limited to, 

ensuring sufficient light to maintain wellbeing or productivity of building occupants, 

providing a visual environment that brings satisfaction to users, and reducing energy 

consumption. Boyce (2014) suggested that regardless of how it is predicted and 

quantified, daylight is highly regarded by people, at least in climates where daylight 

is limited for part of the year, and this in turn has an important effect on the design of 

buildings. Tregenza and Wilson (2011) suggested that the average daylight factor 

can be considered as a good indicator of the appearance of a room. Referring to this 

work, Boyce (2014) further argues that although dynamic metrics are important for 

estimating the energy consumption of a building, they tell us little about human 

response. For the human response, when and where sunlight occurs is much more 

important as it can cause discomfort (Boyce, 2014).  

 

There is evidence from previous daylight studies supporting Boyce's idea. One 

study by Nezamdoost and Van Den Wymelenberg (2016) have investigated the 

ability of daylight metrics to predict occupants' subjective responses. They found 

that point-in-time illuminance was a greater predictor of occupants' subjective 

responses than the cumulative measure of daylight (e.g. total annual illuminance). 

Similar results were found in another study by the same authors (Nezamdoost and 

Van Den Wymelenberg, 2015) that looked at the relationship between daylight 

metrics and the qualitative evaluations of daylit spaces. Subjective space 

evaluations correlated well with point-in-time illuminance data. The subjects in these 

studies were in fact expressing a preference for adequate absolute daylight levels 

rather than temporal variations. 

 

This discussion raises questions about how well daylight metrics address issues 

relating to adaptive behaviour (e.g. adjusting blinds, altering seating position). 

Dynamic metrics possess some potential limitations – not least of which is the 

inability to inform about the human response in the space or to predict adaptive 

behaviour of individuals at a particular point in time. This might be explained by the 

fact that dynamic daylight analysis involves predicting a cumulative measure based 

on long-term record of weather conditions. Daylight autonomy, for example, 
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indicates the percentage of time that illuminance exceeds a specified threshold. It 

examines whether there is sufficient daylight in a space so that an occupant can 

work by daylight alone. Such specification might be necessary for energy analysis, 

but as a description of the experience of occupants, it is arguably inadequate. 

Ultimately, the value of any metric depends on how well it informs on the actual 

daylighting performance of the space, not only in terms of objective measurement, 

but also in terms of subjective experience of the space (Tregenza and Mardaljevic, 

2018). 

  

2.2.5 Current lighting standards for libraries 

 
The physical setting considered in this thesis is a library reading room. What 

characterizes this type of setting is, firstly, the need to carry out a range of desk-

based tasks, usually with a focus on reading and writing; and, secondly, that the 

people working in these spaces may remain static for periods of an hour or more 

(Reinhart, 2014; Tregenza and Wilson, 2011). With this in mind, what is good 

reading light, and what particular lighting issues the situation of reading/writing in a 

library environment raises deserve discussion. 

  

The quantity of light required to perform a specific task is typically expressed as 

horizontal illuminance as it is one of the easiest and most relevant lighting terms to 

measure. Lighting standards, codes, and recommended practice documents usually 

specify the task lighting requirements for a workspace in terms of average 

illuminance on a horizontal plane at desk height, this being a surface on which a 

visual task is usually done (Cuttle, 2015; Rea, 2000). These recommendations do 

not identify the source that is required to provide these illuminances so the 

recommended levels may be met using either daylight or electric light. One thing to 

note, however, is that the use of daylight depends on the external daylight 

availability and the required illuminance can be provided by an electric lighting 

system even if the daylight provides sufficient light for most of the time (Boyce, 

2014). 

 

Two organizations for lighting professionals, The Chartered Institution of Building 

Services Engineers (CIBSE) and the Illuminating Engineering Society of North 

America (IESNA), had long been providing standards and guidelines for the lighting 

of indoor work places. Most recently, the Committee for European Standardisation 

(CEN) has produced European standards for lighting of work places, which 
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subsequently have been adopted by the British Standards Institution (BS EN 12464-

1). The recommended range for library reading rooms is between 300 and 500 lux 

(CEN, 2002a; CIBSE, 1999; IESNA, 2000). 

 

Whilst most countries have adopted international standards, some others have 

developed their own national standards such as the Illuminating Engineering Society 

of Australia and New Zealand, and China Illuminating Engineering Society. There 

are, however, variations in these standards. For example, the recommended 

illuminance for library reading areas in Australia and New Zealand is 320 lux 

(Standards Australia, 2008), and in China it is 300 lux (China GB 50034, 2004). The 

process of setting lighting guidelines could possibly have been influenced by cultural 

and environmental considerations as well as political considerations, in addition to 

the state of knowledge of how illuminance affects task performance (Boyce, 1996; 

Lynes; 1968).  

 

There appears to be general agreement that the optimal level of daylight can be 

achieved through the daylight performance metrics and the illuminance thresholds 

established, yet there is limited understanding of how building occupants respond to 

the changing illuminance distributions. The issue of providing 'good lighting' 

necessarily involves understanding peoples’ behavioural responses to, and 

interactions with, buildings they occupy (Steane, 2011). This distinction between the 

human (subjective) aspects and the physical (objective) measure of daylight is 

paramount in much of the discussion and an essential feature of the argument 

presented in the following sections. 

  

2.3 Daylight and spatial behaviour 

 
Daylight gives a sense of place in an otherwise less diverse and more homogenized 

visual environment, as the direction and intensity of illumination changes over time 

and space (Ander, 2003). This information enables the individuals to develop a 

judgement about the luminous environment and may potentially influence the way 

they orientate themselves within that environment (Boyce, 2014; Dubois et al, 2009). 

In a questioning of the circumstances that matter to human spatial behaviour, what 

this section aims to explore is the extent to which daylight informs decision making 

regarding the position of individuals within a given environment. First, the section 

examines the role played by the luminous environment in both guiding movement 

and influencing spatial orientation. Then it focuses on theoretical assumptions 
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underlying current research in the field of seating behaviour and attempts to link 

those assumptions to specific research questions. 

 

 2.3.1 The potential role of daylight in spatial orientation 

 
The way people respond to their environment may differ depending on the individual 

and the particularity of the environment they are exposed to. This is summarised by 

Boyce (2014), who suggests the idea that behavioural response to a physical 

stimulus is not in direct relationship to its magnitude, but depends on the information 

that people have in particular situation. Yet, the interaction of people with the space 

they occupy is a notion that has guided design since its earliest efforts. According to 

Bechtel (1977), who proposed to use a field observation method as a basis for 

architectural design, once the desired behaviour is identified, then design will follow; 

and it is necessary to ask two essential questions about design: “What behaviour 

does it encourage?” and “What behaviour does it inhibit?” (Bechtel, 1977). Similarly, 

Moos (1976) highlighted the importance of congruence and match between the 

behaviour of the people who occupy the space and the purpose of that space; and 

suggested that the physical environment imposes constraints, thereby limiting the 

possible behaviours that could potentially occur in it.  

 

These ideas were elaborated in the study of Barker et al (1978) in which they 

observed that the individual behaviour of people was better explained by their 

current environment at the time of the observation than by their individual 

characteristics. These environments were identified as behaviour settings, each of 

which has an associated set of physical objects arranged (i.e. chairs and desks). 

According to Barker et al (1978), if a given individual enters a behaviour setting, he 

is influenced by it in ways dependent upon the nature of the setting and his position 

in it. This is not to deny the existence of individual differences in behaviour, but the 

variations themselves follow a form dictated by the structure of the setting (Cohen, 

1985).  

 

A typical behavioural response of an individual to the environment is to locate/orient 

themselves through movement. This is generally referred to as spatial orientation, 

and relies on the individual’s ability to use the information received through their 

senses to determine their position in relation to the surrounding environment (Hall, 

1963; Sommer, 1969). Vision is typically the dominant source of sensory 

information, although inputs from other senses such as auditory or tactile senses 
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may contribute (Posner et al., 1976; Rock and Harris, 1967; Rock, 1968). As the 

individual walks through the space, their brain continually interprets the changing 

retinal images, and updates the information of the physical environment, as well as 

their location and movement within it (Cuttle, 2008). This process inherently requires 

a decision to be made by the individuals based on the visual information received 

from the environment. 

  

There are a number of reasons why daylight can be expected to have an effect on 

the spatial orientation of individuals in a given context. First, daylight is an important 

medium through which the individual receives visual information. It can give the 

individual directional information as well as idea of the sort of area they are in and 

hence may form a basis for decision-making when navigating through the space and 

choosing a location. Based on lighting conditions, individuals may either remain in 

some currently occupied location or alternatively move elsewhere, although this may 

depend on familiarity with the space (Flynn et al., 1988; Low and Altman, 1992). 

When the individual moves to another area, their orientation changes; and they may 

become aware of the dominance of a new luminous environment. This transition can 

be developed to provide a sense of continuity, in the sense that luminous influences 

are similar in the two adjacent spaces (i.e. similar amount of illumination), or, the 

transition can be developed to provide a sense of contrast and change (i.e. higher or 

lower amount of illumination) (Flynn et al., 1988). The end result is that on walking 

through the room, it is encountered as a sequence of alternating lighter and darker 

spaces. 

 

Another reason for the influence of daylight is that it allows the visual task to be 

performed and this may encourage choosing a particular location and making the 

most of daylight. When engaged in tasks that demand higher mental processes, 

such as reading in a library reading room, for example, the ability to pay attention is 

most important and good lighting enhances the visibility of the task itself (Scherer, 

1999; Steane, 2011; Steffy, 2002). Arguably though, in order to immerse themselves 

in reading, people may need to create a situation where they are focused more on 

the meaning of what they are reading and less on the external environment, which is 

usually expressed as 'being lost in the book'. In this situation a sort of withdrawal 

from the immediate environment may take place in order to achieve mental focus 

(Steane, 2011). When this concentration becomes dominant and individuals become 

less aware of sensory information stemming from their external environment, they 

may become less aware of their orientation in space. 
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Finally, it is important to emphasize that the choice of any particular location may be 

motivated by the desire to avoid visual discomfort. For example, individuals may 

locate themselves away from direct sunlight when it causes visual discomfort 

through glare. Yet, there is also a positive side to daylighting. As discussed earlier in 

this chapter, one aspect of daylighting that can be positive is its dynamic character 

which contributes to the creation of an exciting and attractive environment. Even if 

the most fundamental role of light is to provide the illumination necessary for a visual 

task to be seen, the scope is much broader than that; it can create an environmental 

impression, which in turn may affect the spatial behaviour of individuals. 

 

2.3.2 Theoretical approaches to seating behaviour 

 
The idea that people have ways of evaluating the physical characteristics of the 

environment when choosing a location and that these concepts exist in a form 

capable of being studied more or less systematically and related together to form a 

coherent system, has roots in psychology. Behavioural responses to the 

environment can be either conscious or unconscious. Kahneman (2011) and 

Eagleman (2011) argued that the awareness of our behavioural responses to the 

physical environment is limited and that most of our behaviour is not under our 

conscious control. In the context of people making seat choices, this would equate 

to not knowing what caused a particular action when choosing a seat, not knowing 

that they took a particular path to reach the preferred seat location, or not knowing 

that something they observed was causally linked to a particular action. Upon 

entering a room, for example, an occupant could identify alternative routes in order 

to avoid the crowded area. They may be unaware that they had noticed how 

crowded that area is, unaware that they adjusted their position/location in response 

to it, or unaware that noticing the crowded area caused them to adjust their 

position/location.  

 

When it comes to decision making, Kahneman (2011) suggests the idea that people 

make choices intuitively rather than rationally. According to the argument developed 

by Kahneman (2011), people do not weight environmental variables equally but 

rather they tend to be more focused on one or more specific variables. Since it 

would be a labouring and time consuming process to consider all of those choices 

together and weight the value of choosing one variable over other every time people 

make a decision about where to sit, it is clear that they focus, instead, in those 

variables that respond to their immediate necessities. That being said, whatever is 
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seen as a necessity will be highly weighted and other variables will be lightly 

weighted or disregarded (Kahneman and Tversky, 1979; Kahneman, 2011). 

 

Another argument is based on the theory of rational choice. For example, Stone 

(2002) and Scott (2000) argued that whatever people do, their behaviour is largely 

the result of deliberate choices among alternatives, regardless of whether they make 

conscious or unconscious decisions. Much the same argument could be made 

about seat choice. The choice of being in a particular location may be rational and 

some form of cognitive process may occur prior to the selection of that location. It 

could be further argued that individuals define seating location before they arrive in 

a physical setting based on the experience they previously gained in that place, or 

they may consider the possibilities available upon entering the room. Once 

individuals collect relevant cues available to them either prior to or at the time, they 

may develop a preferred location. 

 

The ability of individuals to choose their location is largely influenced by the degree 

of freedom of choice found in the environment. Hall (1966) explains this by arguing 

that what can be done in a space determines the way we experience it. The 

orientation depends for instance on the individual being able to walk freely from one 

side of the room to the other or move around in the room. What this means for an 

individual making a seat choice is that the process of choice is fixed by the 

accessible and available seats at the time that they enter the room. In other words, 

they can only choose among the seating options available to them. This suggests 

that any seating decision is dependent upon the decisions of other people who are 

already seated in the room, and thus cannot be taken as an absolute. This dynamic 

decision process may impact on individuals’ choices. For example, individuals who 

enter a library reading room early in the morning are more likely to have a seat of 

their choice than those who enter later in the afternoon. Given the inherent 

sequential nature of the seat selection process, it is reasonable to assume that 

those individuals arriving late and desiring a seat near the window withdraw their 

first choice due to unavailability.  

 

Further explanation for the discrepancies among the choices made by individuals 

may be attributable to differences in familiarity and previous experience. Someone 

who is familiar with the physical setting and the sort of activities that occur in it may 

make a very different seating decision to someone who is unfamiliar with the room. 

Likewise, previous experience may influence an individual’s seating behaviour. 
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Human response to the physical environment is highly dependent on previous 

experience that influences expectation and establishes the basis for a response that 

is essentially comparative to what is familiar (Boyce, 2014). For example, choosing 

the same seat repeatedly can become second nature, and the individuals may find 

themselves retracing the same route and/or choosing the same seat out of habit, not 

thinking about how they arrived at that location. This raises the question whether 

there are differences in seating behaviour of first-time and repeat visitors. Repeat 

visitors are more likely to be familiar with the environment and they typically develop 

preferences based on previous experiences, while first-timers may need to rely on 

external sources of information (Kozak, 2001; Oppermann, 1999). Then there is the 

matter of emotional state of the individual. It is usually difficult to determine that a 

specific stimulus in the environment always provides focal information, since that 

depends on mental state, namely arousal, motivation and expectation (Boyce, 

2014). That we have incomplete understanding of how these functions operate is 

not an overriding deficiency however, as we can employ observation to explore 

ways in which variations in the physical environment influence behaviour (Cuttle, 

2008). The movements of individuals, and the subsequent seating decisions that 

occur in between these movements could provide a direct and measurable link to 

underlying processes of seating behaviour in a given environment. 

 

While the early literature on seating behaviour was mainly concerned with theory, 

more recent research has developed methods to investigate the seating behaviours 

of individuals in response to a stimulus such as daylight. It could be argued, 

however, that this relationship between seating behaviour and a particular stimulus 

is a matter of probability rather than certainty, as people integrate multiple sources 

of information when making decisions about where to move and where to sit. Given 

that human behaviour is subject to many influences, the impact of light alone is likely 

to be masked by variations in other factors (Boyce et al, 2003). This implies that the 

importance of daylight is not always enough to override factors that influence seat 

choice behaviour. In fact, daylight is just one of the many factors affecting seating 

behaviour, and in many situations, it may be of minor or even negligible significance 

compared to other factors that influence the decision-making process. This raises 

the question of what evidence there is that daylighting, as currently practiced, can 

influence seating behaviour of occupants in spaces where there is a free choice of 

seat location. The next section reviews previous seating behaviour research, 

outlining what it can and cannot tell us about how daylight affect seat choice and 

what factors are likely to influence the decision making process.  
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2.4 Daylight and seating preference: A review of the evidence 

 
Seating preferences of people can be inferred either from direct observation of their 

actual behaviour (revealed preference), or from their self-reported behaviour (stated 

preference). The former method involves observations of the seating behaviours 

and the physical setting in which the behaviours occur, while the latter method relies 

on individuals to express their preferences directly, i.e. in a survey. The following 

sections first describe how the laboratory and real-world settings are used to 

investigate seating behaviour, then provide a summary of the previous studies, 

these are divided into two categories: revealed preference studies and stated 

preference studies. 

 

2.4.1 Real-world versus laboratory settings 

 
Although laboratory settings offer greater control over the variables of interest, 

studies of seating behaviour are typically undertaken in real-world settings. There 

are several reasons for this. First, there are a wide range of environmental stimuli 

present in the real-world situations and it is difficult to reproduce that dynamic social 

context in laboratory settings (i.e. presence of other people, unpredictable events). 

The behaviours observed in laboratory settings may therefore be artificial and 

unrepresentative. Second, in laboratory settings it is difficult to recreate the tasks 

and goals an occupant is likely to encounter while choosing a seat, such as planning 

their route, searching available seats, walking, engaging in internal thoughts. It is 

thus likely that the behaviours observed in real-world environments differ from those 

laboratory conditions. Further concerns about laboratory studies arise from the fact 

that test participants know they are being observed, which may affect their seating 

behaviour and that the findings are often difficult to generalise to the real world 

(Sundstrom and Altman, 1976). 

 

One important feature of observations in real-world settings is that they do not 

involve changing the environment or interfering with the behaviour of people being 

observed. This prevents people from changing their behaviour (they may behave 

differently when they know they are being observed), thus improves the reliability of 

the observations. The gathering of information (i.e. recording seating behaviour for a 

given period of time), however, requires systematic procedures and replicability. 

Visual methods such as video photography potentially enable more detailed 

information to be collected at the time of observation that would be possible by an 

observer working alone; but these should remain within the bounds of ethical 
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considerations for personal privacy. Arguably, although such technology offers 

effective techniques for data collection, the naked eye provides information in 

'human-sized units' that are at least equally important for the understanding of 

human-environment interaction as are other enhanced measures (Sussman, 2016).  

 

As a result, studies of seating behaviour in real-world settings are required in order 

to develop a more accurate understanding of where people sit and why in normal 

situations. The key difference between the real-world and the laboratory setting is 

that in the second case there is no real environment stimulus and the subjects 

somehow cannot fully understand and be aware of the environmental factors that 

might influence the determination of their seating location. The review of previous 

literature on seating behaviour presented in this chapter did not find any studies 

carried out in laboratory settings. An important concern for the studies in real-world 

settings is the accuracy of data collected. Although video technology would appear 

to provide useful means of recording information on space use over time, the review 

did not identify any studies that have carried out observations using such 

technologies. 

  

2.4.2 Revealed preference studies 

 
The revealed preference method typically involves recording systematically what 

actually occurs in the physical setting, and as such is a measurement of actual 

behaviour rather than the perceived or intended behaviour. There are two 

approaches: record a snapshot of behaviour at certain intervals, or, monitor/observe 

ongoing behaviour. The first approach involves recording the behaviour of people at 

pre-determined intervals, either at fixed intervals (e.g. every 15 minutes) or random 

intervals. This method, also known as snapshot observation (Farbstein et al., 2016), 

allows the recording of peoples’ locations and how they are distributed in an entire 

space at a moment in time, with repeated snapshots (Ittelson et al, 1970; Sommer 

and Sommer, 2002; Bechtel and Zeisel, 1987). However, it does not allow recording 

sequences of behaviours since the observer takes into account only short sample 

intervals. The second approach, walk-through observation, involves continuous 

recordings of behaviour, specifically, tracking people while they choose their seats, 

noting what they do and where they go as they move through the space. 
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For both snapshot and walk-through observation methods, it is important to improve 

the accuracy and validity of data by establishing inter-observer agreement (two or 

more observers could independently record observational data and then compare 

them) (Sussman, 2016). Another way of evaluating the validity might be to use both 

methods jointly. For example, one observer may record individuals’ seat choices at 

predefined intervals and supplement these observations with walk-through 

observation data gathered simultaneously by the second observer. These do not 

appear to have been the approaches taken by previous studies however.  

 

Four studies were carried out using snapshot observation (Organ and Jantti, 1997; 

Kim and Wineman, 2005; Dubois et al., 2009; Wang and Boubekri, 2009) and two 

studies using walk-through observation (Carstensdottir et al., 2011; Othman and 

Mazli, 2012). A summary of the revealed preference studies reviewed is given in 

Table 2.2.
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Table 2.2. Summary of revealed preference studies. 

Study Method Location Interval Duration Time of day Time of year Key Findings 

Organ and 

Jantti (1997) 

Snapshot A library 

building 

 

Three times 

a day: 10am, 

1pm and 

3.30pm 

Daily over 5 

months 

10am to 3.30pm June to 

October 

The most popular areas were quiet, well-lit and 

adjacent to windows. Wall seating was preferred to the 

more exposed areas, with seats located adjacent to 

windows being the most popular. 

Kim and 

Wineman 

(2005) 

Snapshot A university 

cafeteria and 

a library 

study area 

10 min 

(cafeteria) 

30min  

(library) 

6 days 

(cafeteria)  

8 days 

(library) 

9am to 12pm 

and 2.30pm to 

5.30pm (library)  

11.30am to 1pm 

(cafeteria) 

May and June 

(cafeteria) 

October and 

November 

(library) 

Seat occupancy was higher in areas near windows with 

outdoor views. This difference was more pronounced in 

the cafeteria than in the library. 

Dubois et al 

(2009)* 

Snapshot A university 

café 

 

15 min 2 weeks Not reported 

 

October and 

November 

The zones located near windows were noticeably 

preferred by occupants, in spite of the risks for highly 

variable conditions of daylighting. 

Wang and 

Boubekri 

(2009) 

Snapshot A student 

union lounge 

30 min Three 

consecutive 

afternoons 

1pm to 4pm  Mid-April Participants preferred seats in sunlight. Away from 

sunny area, they preferred seats in more open spaces. 

Carstensdottir 

et al (2011) 

Walk 

through 

A café and a 

restaurant 

n.a 2 weeks Not reported Not reported Tables located at the perimeter were more preferable 

than tables located near the middle. 

Othman and 

Mazli (2012)* 

Walk 

through 

A library 

reading 

room 

n.a Not reported 10am to 12pm, 

12pm to 2pm 

and 2pm to 4pm 

Not reported In the morning most people preferred to sit at the centre 

of the room to avoid excessive contrast in the window 

area. In midday there was a tendency to sit near 

windows, whereas in the afternoon when the room 

density becomes higher, there was no specific seating 

pattern observed. 

Gou et al 

(2018)* 

Snapshot A library 

reading 

room 

30 min 2 days 8am to 8pm April A sky view was preferred to a view of high-density 
trees. South-facing workstations had a higher 
occupancy rate on a sunny day while those facing east 
had a higher occupancy rate on a cloudy day. 

 
* The three studies of Dubois et al (2009), Othman and Mazli (2012) and Gou et al (2018) used stated preference method as a complementary method.
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The evidence from these studies is consistent in finding that there is a tendency to 

sit near the window when room density is sufficiently low to allow this choice. 

Examination of the results reported in four studies provides support for an effect of 

daylight on seating preferences (Kim and Wineman, 2005; Dubois et al., 2009; 

Wang and Boubekri, 2009; Othman and Mazli, 2012). Kim and Wineman (2005) 

recorded seat selection patterns of occupants in two types of settings, social (a 

cafeteria) and workplace (a library study area), the aim was to investigate how 

individuals choose their seats in relation to windows and views. For the purpose of 

the analysis, each room was divided into view and no-view zones based on 

proximity to the windows. For cafeteria setting, the first two rows of tables closest to 

the windows formed the view zone, whereas for the library room it was the north 

area which provided access to outdoor views, thus referred to as the view zone. A 

higher occupancy rate was observed in areas near windows (view zone) compared 

to those closer to the interior (no-view zone). For daylight analysis, the distribution of 

illuminance values was estimated through physical measurements in both the library 

and cafeteria. Illuminance levels were higher and more variable in the view zone 

than in the no-view zone, leading Kim and Wineman (2005) to conclude that the 

differences in the amount of daylight may have mediated any observed differences 

in seating occupancy between the two zones. These results suggest that the 

perceived value of daylight is at least in part related to the presence of an outdoor 

view: what is not known is the extent to which the change in daylight levels informed 

seating decisions, rather than the change in the availability of an outdoor view. 

Overall, the work of Kim and Wineman (2005) supports the idea that daylight is 

valued when choosing a seat, but it does not necessarily support the primacy of 

daylight over the provision of a view out. 

 

Dubois et al (2009) observed seating behaviours in a university café and found that 

occupants had a higher preference for areas located near windows, where daylight 

levels experienced a high degree of variation, with fluctuating light conditions 

affecting the brightness of those areas across the observation period. The seating 

area was divided into eleven zones based on a regular grid. Seating locations were 

represented by codes superimposed on the floor plan according to their spatial 

references, that is, the locations of the respective zones (i.e. A2, B5). Occupancy 

was then calculated for each zone in the room. Daylight analysis was based on 

luminance rather than illuminance. In order to capture the luminance of the entire 

scene, digital photographs were taken at 15min intervals during which simultaneous 

occupancy observations were recorded. These photographs also enabled enhanced 
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data collection during observations while also providing permanent visual records. 

The data produced by the seating observations and daylight analysis confirmed that 

the areas located near windows were much brighter than those away from windows 

throughout the observation period and that those brighter areas near windows were 

highly preferred by the occupants. 

 

Wang and Boubekri (2009) observed seating behaviours of occupants in a student 

union lounge over a period of three consecutive sunny days. The results indicated 

that people tended to sit in areas with direct sunlight and that their seating 

behaviours were affected by the level of enclosure. Illuminance levels were 

measured on a regular grid across the room and from these data average 

illuminance values were determined. This corresponds well with the work of Kim and 

Wineman (2005) which has used illuminance as the metric of choice. The space 

was divided into five zones based on average illuminance level and the distance to 

the sun patches, which were defined as the areas where the sunlight directly falls on 

the floor, although the precise method for predicting the positions of sun patches 

was not reported. To analyse the effect of level of enclosure, Wang and Boubekri 

(2009) compared the seats for the presence or absence of enclosures around them, 

these included building elements that provide physical separation such as partitions 

and walls. The levels of enclosure were then categorized according to the number of 

enclosed sides around a seat. Each seat was given a value from 0 to 3, with 3 

indicating that the seat is enclosed by three sides and 0 indicating the seat is fully 

open, that is, it has no enclosures at all. Results showed that among the seats in the 

sunny area, those that provide a high degree of enclosure were more frequently 

occupied, whereas away from the sunny area people preferred seats in relatively 

more open spaces.  The authors concluded that individuals who exposed to high 

levels of sunlight would likely have experienced an increased physiological arousal 

and as a result tended to choose seats with high level of enclosure as a means of 

moderating their level of arousal. However, as noted by Wang and Boubekri (2009), 

further work is required to explore the assumptions about daylight and enclosure 

level. 

 

In another study examining seating preferences in a library reading room, Othman 

and Mazli (2012) found that occupants tended to locate themselves away from 

windows to avoid high contrast caused by direct sunlight in the morning, whereas 

around midday, it was found that they preferred seats near windows. In the 

afternoon when there was not enough daylight and people had little option but to 
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rely on artificial lights, they appeared to be more evenly distributed around the room. 

To estimate the variation of daylight levels, illuminance measurements were taken at 

representative points in the room. The results were reported as ranges rather than 

as absolute values. The highest illuminance range was recorded for areas near 

windows during the morning period. These findings suggest that even though 

occupants presumably sit in areas near windows in part because of the large 

quantities of daylight available, having too much daylight seems nonetheless to 

have reduced their motivation to sit in those areas in the morning. It could be 

concluded that people are willing to give up daylight when it causes discomfort, but 

just for a short period of time. 

 

The importance of a view out is demonstrated by the work of Gou et al (2018). They 

examined whether there is a measurable effect of the information content of a view 

out on seat choice behaviour. The test space was an open-plan library room. The 

windows were identical except that at different seating locations the view content 

varied from views of shading devices to sky and natural scenes. The sky view factor 

was used as a proxy measure of the portion of sky visible from a viewpoint. For 

each seat position, sky view factors were calculated and the results were correlated 

with occupancy rates to test whether there was a relationship. The methods of 

calculating the sky view factor involved analysis of fisheye lens photographs as well 

as image processing. A digital camera fitted with a fisheye lens was used to collect 

data at the points where the occupants were located. The camera was mounted on 

a tripod at seated eye level. The post-processing of the digital images yielded values 

for sky-view factors. The results showed that seating areas overlooking the sky had 

higher occupancy rates than those overlooking dense trees and shading elements. 

The authors concluded that occupants preferred sky views as they contain multiple 

layers compared to other views that include only one or two layers. This research 

suggests that preferences for window seats may be related to the visual content of 

the view through the window, where multi-layered sky views are preferred over 

monotonous views such as those consisting of high-density trees. However, as 

noted by Gou et al (2018), one limitation of the study is that it examined only window 

seating areas, thereby neglecting the effect of occupancy patterns in other seating 

areas in the test room. 
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Conclusions from the above five studies about the effects of daylight on seat choice 

behaviour depend on the room layout. The layout of seating within a room, of which 

there are numerous possibilities, may affect occupants’ experience of choosing 

where to sit. One possible difference between the test rooms is the regularity of the 

seating. If the test room had a different layout, for example the seats were arranged 

in a more regular/irregular pattern, different conclusions may have been drawn. The 

effect of seat regularity has been explored in further work (Keskin et al, 2015). 

Occupancy patterns were observed in two library reading rooms: one consisting of 

regular rows of study desks, while the other consisted of seats arranged in an 

angled configuration. The degree of correlations between daylight and seat use was 

much higher for the former than that for the latter room. This suggested that the 

prediction might be better for regular seating pattern than irregular. A comparison 

was also made between different seating areas in one room. For this data, the 

correlation was higher for regularly-placed seats, further suggesting seating 

regularity may be an important factor. Findings from this other work in relation to 

seating regularity are summarised in Appendix A. 

 

In the studies reviewed so far occupancy has been recorded along with the 

prevailing daylight conditions. Daylight has been examined as a possible predictor of 

seating behaviour and estimated through physical measurements (the methods 

used to measure daylight are described in detail later in this chapter). In the 

remaining two studies (Organ and Jantti, 1997; Carstensdottir et al., 2011), it is not 

possible to draw a clear conclusion regarding whether or not a relationship between 

daylight and seating preference is supported, in part because these studies were not 

specifically designed to investigate such effects of daylight. Organ and Jantti (1997) 

examined space usage in a university library building; the aim was to identify the 

areas in the library that the occupants use heavily and those that they employ 

infrequently. They found that the most popular seats were those located along walls 

and adjacent to windows. The popular seats were reported as being well lit, though 

this impression was not based on any measured data. A similar result was found by 

Carstensdottir et al (2011) who recorded seating behaviour in two different social 

settings, a café and a restaurant. They reported tables located along the perimeter 

of the room were more preferred than those located in the middle. The authors did 

not report data regarding the level of daylight, but what they did indicate is that the 

availability of windows and outdoor views may affect seating preferences. However, 

since these studies do not observe seating behaviour with the specific goal of 

investigating the effect of daylight, it would not seem to be possible either to directly 
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implement their findings nor to consider whether the amount of data collected by 

these studies were sufficient to expect an effect of daylight. 

 

2.4.3 Methodological approaches used in revealed preference studies 
 
An important question that arises from previous revealed preference studies is 

whether there is robust evidence that daylight does indeed affect seating 

preferences. While there is some evidence to suggest that the presence of daylight 

affects seating preferences, it is possible that the procedures used to collect data 

did affect the findings gained from a particular study. The information gathered from 

observations can vary widely depending on the function of the room in which the 

observation takes place, the interval for which observations are recorded, duration 

of the observation, time of the day and time of the year. Each of these will now be 

considered in turn. 

 

Location: The way people locate themselves differs according to the physical 

setting. For example, when studying in a library reading room, an occupant might sit 

in a secluded area where she/he would be less likely to come into contact with 

others, but when encouraged to engage in social interaction in a café, she/he could 

choose more exposed areas. As these factors vary depending on where the 

observations take place, it may be beneficial to extend the research in other type of 

buildings. An example of how different settings influence where people choose to sit 

is highlighted by Kim and Wineman (2005), who recorded seat selection patterns of 

occupants in two types of settings, social (a cafeteria) and workplace (a library study 

area). Kim and Wineman (2005) only provide graphical data, with no summary 

statistics, but it appears higher occupancy rates were found in areas with outdoor 

views, and this difference was much smaller and less drastic in the library than in 

the cafeteria. This discrepancy between the two settings was explained by 

suggesting that view is less important in workspaces where people need a high level 

of concentration without distraction. Another concern is the generalizability of the 

results, so an important question to answer is whether room types of same use but 

in different buildings can be expected to show consistent results (i.e. two reading 

rooms in different library buildings). This was not examined in previous studies 

however.  
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Time interval: The interval for which recordings are made is another important 

factor to be considered when investigating seating behaviour. One limitation with 

periodical recordings is that they ignore seat occupancy changes between two 

observation points. If time interval matters for the snapshot observation approach, 

and if shorter interval duration is better than a longer duration, this might mean that 

while durations of 15 minutes lead to credible data (Dubois et al., 2009) the 2.5 

hours or more adopted by Organ and Jantti (1997) do not. This could potentially 

influence the results of observations, especially those carried out in areas of high 

circulation where occupant density changes rapidly over time. Time interval may be 

a more significant factor for those observations carried out in a café where people 

typically tend to spend shorter periods of time, for example in comparison to those 

carried out in a library reading room where people remain static for longer periods of 

time. As would be expected, previous studies recorded data at shorter time intervals 

in social settings such as cafes and restaurants (Kim and Wineman, 2005; Dubois et 

al., 2009) compared to workplace settings (Kim and Wineman, 2005; Organ and 

Jantti, 1997). Most studies tended to record observations at fixed intervals (Kim and 

Wineman, 2005; Dubois et al., 2009; Wang and Boubekri, 2009), with the exception 

of one study by Organ and Jantti (1997), who recorded data at three times per day, 

with long intervals of time between them (around 2.5-3 hours). 

 

The walk-through approach requires the observer to constantly monitor seating 

behaviour, which potentially overcomes limitations associated with periodical 

recordings, such as the loss of information relating to seat occupancy changes that 

occurs between two observation points. One thing to note, however, is that the use 

of walk-through observation may result in missing data in relatively large samples 

such as those found in areas of higher population density. Few previous studies 

have used this method to record seating behaviour. Two studies that did were 

Carstensdottir et al (2011) and Othman and Mazli (2012).  

 

Duration: The information content of the observation depends on the length of the 

observation period. Observations of seating behaviours for shorter periods may 

introduce bias since the results tend to be more revealing of the random seating 

patterns than of typical patterns. Yet, it may be practically difficult to observe seating 

behaviour continuously over an extended period of time as it requires considerable 

time and effort. Although alternative methods such as video photography may allow 

continuous recording for longer periods, these were not used in previous studies, 

possibly due to the limitations with the recording equipment and method. The 
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shortest observation period in previous studies was that of Wang and Boubekri 

(2009), who recorded data on three consecutive afternoons. The longest 

observation period was five months, and this was for the study of Organ and Jantti 

(1997). 

 

Time of the day: Another factor that may influence the results is the time of the day 

when the observations are carried out. One study which investigated the relationship 

between occupancy patterns and the time of the day was carried out by Othman and 

Mazli (2012). They found that occupants tend to sit farther away from the window in 

the morning due to the excessive contrast in daylight levels, but they choose seating 

near windows to get more daylight in the afternoon. Kim and Wineman (2005) and 

Organ and Jantti (1997) recorded data both in the morning and afternoon, whereas 

Wang and Boubekri (2009) did so only in the afternoon. The other two studies 

(Dubois et al., 2009; Carstensdottir et al., 2011) did not report the time of day when 

the observations were made. There may be an advantage to observing seating 

behaviour also after sunset: if daylight does have significant influence on seat 

choice, and if this influence is greater than that of other factors such as access to 

view out, then seat choices observed after dark would be different from those 

observed during daylight.  

 

An alternative argument of why one might choose to sit near windows is that high 

levels of daylight illuminance may lead to increased levels of thermal comfort, 

particularly in winter. By the same token, however, overheating may occur as a 

result of excessive solar gains in summer. The amount of light as it changes over 

the course of a day and through the changing seasons may directly affect seating 

preferences of individuals by increasing/reducing their thermal comfort. None of the 

previous revealed preference studies have explored these issues however. 

 

Time of the year: The seating behaviour recorded at different times during a year 

may lead to different results. This variation could be caused by a number of factors. 

One possible explanation is that the solar position changes over the course of a year 

(i.e. different maximum altitude and different range of azimuths) and the occupants 

may have higher acceptance for sunlight penetration in the winter than in the 

summer, which may influence resulting seating behaviour. Another explanation 

could be how the space is being used at different times of year. For example, in a 

university library building the undergraduate students are not usually present during 

summer months, which results in a lower number of people encountered during the 
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experiments. These possible effects of season were not explored in previous 

studies. Kim and Wineman (2005) carried out observations at different periods of the 

year (May, June, October and November), but for two different types of settings and 

so no comparison was possible. One study was carried out in autumn (Dubois et al., 

2009) and one study in spring (Wang and Boubekri, 2009).  Whilst the study by 

Organ and Jantti (1997) was carried out mostly during summer, other two studies 

(Carstensdottir et al., 2011; Othman and Mazli, 2012) did not report the time of year 

when the observations were made. 

 

The primary limitation of the revealed preference method is the inability to infer 

individuals’ motivation behind their seating behaviours. The question this raises is 

whether revealed and stated seating preferences lead to the same conclusions 

regarding the effects of daylight. Yet observation is only one of the methods used in 

the studies of seating behaviour, and it is sometimes complemented by other data 

collection methods such as surveys. The next section describes the way that stated 

preference methods were used in previous studies. 

 

2.4.4 Stated preference studies 
 
Another method of determining the seating behaviour of occupants is simply to ask 

them why they choose a particular seat or what factors influence their decision. This 

approach can provide insights into what aspects of the environment may affect their 

perceptions of the seating area they are in and any decision-making processes. 

Stated preference studies depend greatly on respondents’ ability to remember their 

seating behaviour and report it without bias, thus potentially introduce a degree of 

subjectivity which could influence the end results (Wilcox, 2005). Given such 

potential for subjectivity in occupants’ responses, some previous studies have used 

stated preference methods in conjunction with revealed preference methods to form 

more validated conclusions. Three such studies were Dubois et al (2009), Othman 

and Mazli (2012) and Gou et al (2018). In the first study, which employed a multiple 

choice questionnaire in a university cafe, daylight was reported to be the most 

influential factor in choosing a seat location, followed by ambient temperature. The 

next most influential factors reported by respondents were the view outside, the type 

of furniture and the distance from other occupants, which were of almost equal 

importance. The factors of least importance were noise and the odour coming from 

the food service area; and relatively fewer respondents chose the option 'other 

factors'. 
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In the second study, occupants were asked to evaluate daylight conditions and the 

quality of view from their sitting position on a five-point rating scale. The 

questionnaire consisted of two parts. The first aimed to determine whether seating 

preferences of occupants were affected by daylight and the second aimed to 

determine how satisfied occupants were with daylight conditions and the outside 

view. Concerning the effects of daylight, almost three-quarters of respondents 

agreed or strongly agreed that their seating preferences were affected by daylight. 

However, when asked whether daylight affected the amount of time they spent in 

the room, occupants disagreed or tended toward neither agreeing nor disagreeing 

with this statement. Another important consideration relating to daylight was how 

glare was perceived by occupants at different times of the day. Glare from the 

window was more frequently reported in the morning than in the early afternoon, and 

no glare was reported in late afternoon, suggesting that there is a substantive 

influence of time of the day on the level of perceived glare. This supports the finding 

from the same study reported earlier that people tended to sit away from windows to 

avoid high levels of contrast in the morning. As for the outside view, the majority of 

occupants reported that their view was either pleasant or very pleasant, and this 

trend was relatively consistent across different times of the day. The survey report 

concludes that most people agreed with the statements on behavioural effects of 

daylight, with the exception of the question regarding whether daylight was 

important for their length of stay in the room, which had little or no effect. 

 

In the third study by Gou et al (2018), occupants were asked to indicate in their own 

words why they chose a particular seat location. Quietness was the most mentioned 

reason, followed by view out, privacy, less distractions, seclusion and lighting. In 

addition to the open-ended question, participants were also given a list of items and 

asked to rate the importance of each item on a five-point rating scale. In examining 

the reasons given by participants for choosing a particular seat location, the results 

were in agreement with those obtained from the analysis of open-ended survey 

responses, highlighting quietness as being the most important reason. In the latter 

case however, daylighting was the fourth highest rated reason after quietness, 

furniture and privacy. A factor analysis of the responses revealed three main factors. 

The first represented territoriality (furniture, privacy, quietness); the second reflected 

visual aspects (view out, daylighting, orientation) while the third reflected social 

interactions (friends, entrance, circulation). These results emphasize that daylighting 

cannot be examined in isolation and that interaction with other features of the built 

environment it could be an important factor when choosing a seat. 
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The fact that many aspects besides daylighting influence the choice people make 

about seating location is brought out in the three studies of Hygge and Loffberg 

(1999), Christoffersen et al (2000) and Parpairi et al (2000). They used post-

occupancy evaluation surveys, and so measured perceived preference rather than 

the actual preference captured by observations. Although the data on which these 

studies are based was not acquired specifically for the purpose of investigating the 

effects of daylight on seating preferences, they were intended to facilitate an 

exploration of the relative importance of daylight and other factors regarding 

occupants’ perception of the visual environment. The approach taken was to 

evaluate daylight within a wider framework within which respondents were asked a 

series of questions relating to their workplace. The analysis of subjective 

assessments paired with concurrent physical measurements was performed to 

identify the visual conditions preferred by occupants. These studies conclude that 

lighting is one of the most important factors in an occupant’s assessment of physical 

environment (Hygge and Loffberg, 1999), and that it is highly desirable to be close 

to a window with a view, even though high levels of daylight in such areas could 

create glare problems (Christoffersen et al., 2000; Parpairi et al., 2000). A summary 

of the stated preference studies reviewed is given in Table 2.3. 
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Table 2.3. Summary of stated preference studies. 

Study Location Participants  Type of questions Survey Items Key Findings 

Hygge and 

Loffberg (1999) 

5 office 

buildings 

234 participants 

(varying ages) 

Open-ended and 

closed questions 

Daylight, artificial light, windows, view out, 

temperature, noise, ventilation, privacy, 

general environment (colours, carpets, 

decoration) 

Good light was rated as the most 

important feature in a work place. 

Christoffersen et 

al (2000) 

20 Danish 

office 

buildings 

1,823 participants 

(aged 18-34) 

Closed questions Direct sunlight, daylight, windows and view, 

electric light, noise, ventilation, temperature 

Office workers had a strong preference 

for having their workplace near windows 

despite the presence of glare and screen 

reflections. 

Parpairi et al 

(2000) 

 

3 university 

library 

buildings 

26 participants for 

each library  

(aged 20-29) 

 

Open-ended and 

closed questions 

Subjective feelings about daylight 

(Unpleasant–Pleasant, Gloomy–Cheerful, 

Dim–Bright, Tense–Relaxing, Glary–Non-

glary, etc) 

Occupants preferred higher levels of 

daylight even to the extent that too much 

direct sunlight caused discomfort and 

glare, as long as a landscape view was 

present. 

 Dubois et al 

(2009)* 

A university 

café 

 

Not reported Open-ended and 

closed questions 

Ability to choose a seat freely, task 

undertaken, importance of daylight, effect 

of other factors (view out, the type of 

furniture, proximity to other occupants, 

thermal conditions) 

 

Daylight quality and high illumination 

were reported as the most important 

factors for seat choice. 

Othman and 

Mazli (2012)* 

A library 

reading room 

114 participants 

(age not reported) 

Closed questions Daylight (availability, brightness, contrast, 

glare) and view out 

Almost three-quarters of respondents 

agreed that daylight affects their seating 

preference. 

 Gou et al 

(2018)* 

A library 

reading room 

100 participants 

(age not reported) 

 

Open-ended and 

closed questions 

The reason of seat choice, view out, 

daylight, close to toilet/washroom, close to 

friends/mates, close to reference books, 

close to entrance/circulation, privacy, 

quietness, furniture, cleanliness and 

orientation 

Daylighting and views were reported as 

the second most important factors 

influencing seat choice decisions. 

 
* The three studies of Dubois et al (2009), Othman and Mazli (2012) and Gou et al (2018) used revealed preference method as a complementary method. 
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The work of Hygge and Loffberg (1999), undertaken as part of the Daylight Europe 

project, examined preferences for daylighting through a series of post occupancy 

evaluation surveys and reported the analysis of five office buildings. The method 

involved measuring and monitoring various aspects of the physical environment, 

and a parallel programme of subjective assessment to capture the experiences of 

occupants, and in particular the impact of both daylight and artificial light on visual 

comfort. One of the questions of interest in the study was what aspects of the 

physical environment were important. Respondents were asked to rank the three 

most important physical features of the workplace from a given list of ten items. Two 

environmental features were mentioned most frequently, with light (either daylight or 

artificial light) being the most frequent followed by temperature. Among other 

variables that have been identified as important are windows, view out, noise, 

ventilation, privacy and general environment (colours, carpets, decoration). Of 

these, ventilation was rated as relatively more important, and other factors were 

rated similar in importance by the respondents. The high level of importance given 

to light is suggestive of the value of good lighting in a workplace. 

 

Another study carried out in 20 Danish office buildings by Christoffersen et al (2000) 

found a preference for working in the window zone in spite of the problem of glare, a 

result consistent with those reported by other studies reviewed in this chapter. This 

was studied using a post-occupancy evaluation survey of more than 1800 office 

workers. Responses were captured on a 5-point scale ranging from very unsatisfied 

to very satisfied; and on a 4-point scale ranging from never to always. While the 

former scale was used to measure the level of satisfaction with lighting conditions, 

the latter scale was used to measure comfort levels in the workplace. The physical 

measurements were made for representative offices in each office building, and 

included illuminance levels and daylight factors. For comparison purposes each 

room was divided into three zones: window zone, mid-zone and rear-wall zone. 

Results suggested that people working in the window zone had higher levels of 

satisfaction with daylight conditions than those working in the mid-zone or the rear-

wall zone, a finding well correlated with the measured daylight factor. That is, higher 

daylight factor led to higher ratings of satisfaction with daylight. When it came to the 

outside view, the study found that satisfaction with the view from an office was 

greater for natural scenes than for artificial scenes. However, no relationship was 

found between the distance to the window from the work place and satisfaction with 

the view out. 
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Similar results to those found by Christoffersen et al (2000) have been found by 

Parpairi et al (2000). In an extensive study of occupant response to different daylight 

conditions in three Cambridge libraries, Parpairi et al (2000) found that occupants 

preferred areas close to the window where lighting levels were high and 

considerably more variable due to the presence of direct sunlight. They carried out a 

field assessment of a total of seven seating locations in the three libraries by a 

representative group of 26 students. The students were selected randomly from 

those who were using the library regularly and who were thus familiar with the 

spaces. The method involved recordings of subjective feelings of the students 

through a questionnaire and assessments of daylight conditions measuring 

illuminance and luminance levels. Daylight levels were calculated for predefined 

view positions and then compared against the survey data to draw conclusions 

about preferences. Data was collected under a clear sky in summer and winter, and 

under an overcast sky in autumn. The authors concluded that the areas with high 

levels of variable daylight, such as those found near windows, were highly 

appreciated by the occupants in all three library spaces. In addition, the occupants 

seated in these areas reported a high level of satisfaction in spite of glare. The 

reason for the tolerance to discomfort from daylight glare reported by the 

respondents was that the windows of their workspace overlooked a natural scene, 

which caused them to pay more attention to the view. This gives further evidence 

that seating behaviour is likely to be influenced by the outside view. The second 

reason reported was that whilst occupants were likely to suffer the effects of glare 

when they were close by the window, there was opportunity available to them if they 

preferred to move or adjust their position. 

 

2.4.5 Methodological approaches used in stated preference studies 
 
In the stated preference studies examined in the previous section it is apparent that 

daylight was explicitly considered among the set of attributes affecting choice. One 

particular concern raised with stated preference data is related to their trustfulness. 

It is not certain that a subjective response by a participant translates into actual 

behaviour. For example, if daylight conditions do influence the subjective 

assessment of visual environment this may not necessarily be reflected in actual 

behaviour. Objective measures of behaviour in conjunction with questionnaires 

could provide stronger evidence. However, very few studies employ both methods, 

and those that do, have collected data from those people who were seated in the 

test room at the time of observation. One possible criticism of this approach is the 
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location of survey may have influenced the participant’s responses. Once the 

seating decision has been made, the participant may seek to justify their decision by 

rationalization. This rationalizing may stem from a desire to appear more favourable 

to other people (generally known as social desirability bias). One way to reduce 

survey bias is to ask people to state their preferences before entry to the room as 

well as in the room. 

 

2.5 Prediction of daylight: Review of the methods used in previous studies 
 
The studies reviewed in the previous section are distinguished by the daylight 

measurement methods they employ– some determine illuminance levels at 

representative points while others attempt to analyse luminance variations using 

alternative methods such as digital image analysis. Two studies by Organ and Jantti 

(1997) and Carstensdottir et al (2011) did not specifically provide a quantitative 

measure of daylight, but rather presented it as a potential factor that might influence 

seating preference. Much of the evidence from these studies is based on 

observations of individuals seated in close proximity to windows, rather than any 

measured daylight data.  

 

Those studies that did quantify daylight used physical measures rather than 

computer-based simulation techniques. Four studies measured illuminance, either 

on a regular grid across the room (Wang and Boubekri, 2009) or at reference points 

(Christoffersen et al, 2000; Kim and Wineman, 2005; Othman and Mazli, 2012), and 

one study (Dubois et al., 2009) considered luminance alongside illuminance and 

employed a digital image analysis technique to collect luminance data. Parpairi et al 

(2000) carried out a more comprehensive daylight analysis considering both 

illuminance and luminance-based metrics. A summary of daylight prediction 

methods used in these studies is shown in Table 2.4. 
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Table 2.4. Methods and tools employed in past studies of daylight and seating behaviour. 

Study Method  Measurement Tool  Output Metrics/Indices 

Christoffersen  
et al (2000) 

Physical 
measurement 

Not specified Illuminance Daylight Factor 

Parpairi et al (2000) 
 

Physical 
measurement 

Illuminance meter 
and Luminance 
meter 

Illuminance 
and 
luminance 

Luminance 
Difference Index 
and Glare Indices 

Kim and Wineman 
(2005) 

Physical 
measurement 

Hobo data logger Illuminance Average 
illuminance 
 

Wang and Boubekri 
(2009) 

Physical 
measurement 

Not specified Illuminance Average 
illuminance 
 

Dubois et al (2009) Photography 
and digital 
image analysis 

Mirror ball and 
digital camera 

Illuminance 
and 
luminance 

Brightness Ratio 
and Contrast 
Ratio 

Othman and Mazli 
(2012) 

Physical 
measurement 

Illuminance meter Illuminance Average 
illuminance 
 

 

 

Christoffersen et al (2000) measured daylight illuminances in representative offices 

in each building and from these data they calculated daylight factors at a point 2m 

from the window. Kim and Wineman (2005) used HOBO data loggers to collect 

illuminance as well as temperature and relative humidity readings for each test 

space. Three data loggers were placed at three different locations within the space – 

one near the window, the second in the mid-interior area, and the third in the far-

interior area. Wang and Boubekri (2009) measured daylight illuminances across a 

2m x 2m grid and determined average values for each of the five observation zones. 

Othman and Mazli (2012) measured daylight illuminances at representative points 

close to the locations of occupied seats. The measurements were taken during three 

time periods, at the exact hours of simultaneous observations.  

 

Dubois et al (2009) have used luminance as the metric of choice and recorded 

luminance data using a digital camera and image processing. The camera was 

placed on a tripod, facing a mirror ball. A series of images taken at 15min intervals 

enabled a scene of wide luminance range to be recorded, numerical value of the 

pixels then made it possible to derive luminance data. Parpairi et al (2000) 

established a new method for measuring luminance diversity, called the Luminance 

Differences (LD) index. LD was calculated by taking eye-level luminance 

measurements in a 360-degree polar array across a horizontal plane and then 

calculating the difference in luminance levels across a range of angles 

corresponding to eye and head movement. 
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One question that arises is whether the metrics/indices used in previous studies are 

indeed appropriate and reflect what occupants actually need from daylighting when 

choosing a seat. The arguments given in favour of the use of work plane illuminance 

are that it correlates to quite a large extent with other measures of light in a room, 

and that it is consistent with the assumptions on which electric lighting is usually 

calculated (Tregenza and Wilson, 2011). The counter arguments include the view 

that people’s behavioural response to daylight depends on several physical factors 

as well as subjective characteristics, so the information from a single measure of 

light quantity is not likely to provide evidence. Yet, physical parameters such as 

illuminance are important in terms of how people perceive daylight, without of 

course being the sole parameters affecting their perception and behaviour 

(Steemers and Steane, 2004). Rather than provide a quantitative measure for each 

seating location, past studies have tended either to divide the room into zones or to 

define representative points for illuminance measurements. The criteria used to 

define observation zones or representative points for illuminance measurements are 

somewhat arbitrary and the decisions about which daylight calculation parameters 

are met is likely to be subjective. It appears that no empirical evidence exists to 

justify the criteria used. The most common way has been to measure the 

illuminance at specific points and to determine the average illuminance over the 

specified surface. The rationale for averaging the illuminance values might be based 

on the hypothesis that single quantities are not very informative about the dynamic 

effects of daylight across the work plane. 

 

Finally, it may be argued that, a prediction of luminance would be more appropriate 

than one of illuminance when considering the behavioural impact of daylight. 

Luminance-based metrics were considered by two studies (Dubois et al., 2009; 

Parpairi et al., 2000). One important finding from Parpairi et al’s study was that 

subjects judge their daylighting environment depending on illuminance levels on the 

horizontal and vertical plane, while the daylight glare index was less successful in 

predicting subjects’ responses. When calculations of indoor illuminance are intended 

to be used to asses both seating preferences of occupants and the general 

daylighting environment within the space, then horizontal illuminance, although 

perhaps less representationally accurate when predicting occupant behaviour, may 

have a wider acceptability and relevance. Given the uncertainty as to the 

behavioural effects of daylight, illuminance has been adopted as the most 

appropriate (and calculable) measure of daylighting for the purposes of computer 

modelling described later in this thesis. Luminance-based metrics were not 
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considered in the current study, however, a discussion provided within the thesis 

focuses on motivations for using such metrics in the context of seating behaviour 

research. 

 

2.6 Summary 

 
The review of literature reported in this chapter highlighted that research on the 

seating behaviour of individuals is limited, and few studies have been carried out 

with the specific goal of investigating associations between daylight and seating 

preferences (Kim and Wineman, 2005; Dubois et al., 2009; Wang and Boubekri, 

2009; Othman and Mazli, 2012). Other studies have tended to focus on subjective 

evaluations and overall satisfaction with the visual environment (Christoffersen et al, 

2000; Hygge and Loffberg, 1999; Parpairi et al., 2000), but neither of these focused 

specifically on seating preferences. It is, however, possible to draw certain 

conclusions about the effect of daylight based on the evidence presented in these 

studies. A common finding in the stated preference studies is that daylight is 

perceived to be important when choosing a seat location. The samples included a 

range of different types of spaces and functions, such as offices, cafes and libraries. 

Questionnaires have been used for obtaining information about the reasons for the 

seat choice decisions. Further evidence comes from revealed preference studies, 

which suggest that people tend to sit in areas near windows where daylight levels 

are high, even to the extent that excessive levels produce glare.  

 

Each study has tended to use a unique methodology in addition to a unique set of 

daylight metrics. This raises the discussion as to the method by which an 

individual’s seating behaviour was recorded (for example, snapshot or walk-through 

observation) or the procedure with which responses were sought (for example, 

before or after participants choose their seats). The current study aims to identify the 

effect of daylight availability on seating preference using a range of methods 

developed by identifying gaps in previous research. The questions for this study are 

summarised as follows: 

 

What is the perceived importance of daylight when choosing a seat, and how 

do these perceptions of importance vary before and after the seat choice is 

made? Existing evidence, although limited thus far, suggests that daylight is 

perceived to be an important factor when choosing a seat in a space (Dubois et al., 

2009; Othman and Mazli, 2012). The approach is based on asking people seated in 
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the test space to state whether they think daylight is an important factor, selecting 

reasons for their seat choice from a list. One possible criticism of this approach is 

that the perceived influence of daylight on seat choice may depend on the context in 

which it occurs, for example, before or after the seat decision is made. Asking about 

reasons of seat choice behaviour within the test room may lead respondents to 

rationalize the choices they have already made before entering the room, resulting 

in inconsistent responses across the two situations. However, previous studies have 

neither assessed the relative importance of daylight before the decision is made nor 

provided data as to whether this relative importance varies after the decision. This 

study therefore includes alternative experimental methods that permit the 

comparison of responses of participants on the basis of their location (i.e. outside 

the room and within the room). A door-room survey method, surveying test 

participants before and after they enter the test room, was suggested to be a useful 

way of identifying potential contextual differences.  

 

Do the actual behavioural data provide sufficient evidence to infer that there is 

a relationship between daylight and seat choice behaviour? Revealed 

preference studies have a number of inherent limitations in relation to what they tell 

us about actual seating behaviour in relation to daylight, primarily because there is 

no direct evidence that the daylight condition is actually being paid attention to, or is 

important to seat choice. One common finding in these studies is that people prefer 

to sit in areas near windows where daylight levels are high. However, this is only a 

proxy measure of preference for daylight. It is possible that seat choice is influenced 

by factors other than daylight. The conclusions drawn from the observations of 

actual seat choice behaviour should therefore be interpreted with caution. This study 

explored alternative explanations in a series of field experiments designed to assess 

whether daylight influences actual seat choice behaviour. 

 

Do different observational approaches yield the same results? Previous studies 

of seat choice typically employ one of the two data collection methods, i.e. snapshot 

or walk-through approach. The snapshot approach involved recordings at different 

intervals in different time periods, and the walk-through approach involved 

continuous monitoring of seating behaviour over a specific period of time. Each 

method offers advantages and imposes limitations in terms of the accuracy of the 

data captured. The conclusion drawn from the observation of seating behaviour 

using one of these methods will therefore be more robust if supported by results 
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obtained from the other method. For example, internal validation could be gained by 

employing walk-through approach in parallel to snapshot approach. These 

approaches have not been explored in previous studies. The current study 

evaluates the accuracy of the occupancy data by comparing results obtained with 

the two methods.  

 

How well do daylight performance indicators predict seat choice behaviour? 

Previous studies have relied on physical measurements taken in the test space. 

However, there are discrepancies between these studies in terms of the methods 

used for measurements. The majority of studies considered one characteristic, the 

amount of light, as determined by horizontal illuminances at desk (Christoffersen et 

al, 2000; Kim and Wineman, 2005; Othman and Mazli, 2012; Wang and Boubekri, 

2009). In two studies, luminance was considered alongside illuminance (Dubois et 

al., 2009; Parpairi et al., 2000). However, differences may arise due to errors in 

physical measurement, for example, the precision of measurements used to specify 

illuminances, or by relying on a single metric such as daylight factor. Another 

limitation of these studies is that they have tended to divide the test room into 

somewhat arbitrary zones to determine measurement points, which means the 

measurements may not be reliable predictors of where an individual sit. What may 

be an improvement is to specify a range of metrics corresponding to the precise 

location of each individual seat in the test space. This is a more reliable method of 

collecting data regarding daylight conditions as the assumptions which are made for 

the location of measurements can be avoided. The simulation experiment reported 

in this thesis attempted to improve the accuracy of daylight availability estimates 

compared with previous studies of seat choice by exploring a set of metrics for each 

individual seating location. A comparison was made between the predicted daylight 

values and the results from observations using the snapshot and walk-through 

approaches. In the seat choice studies reported in this chapter, there appears to be 

no quantitative data by which to evaluate whether a relationship exists between 

daylight measurements and the records of occupancy.  

 

The answers to these questions have potentially important implications for research 

on daylight and seat choice behaviour. The review of literature revealed that the 

number of studies on seat choice is limited and more studies are required in order to 

develop a more accurate understanding of where people sit in relation to daylight 

and why in open-plan spaces. The present research was designed to add to the 
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existing body of knowledge in two distinct ways. First, it sought to investigate 

whether people think daylight affects their seat choice behaviour (stated preference 

method). This included an analysis of whether surveying at different contexts lead to 

same conclusions about the relative importance of daylight, by surveying test 

participants before and after they enter the test room. Second, the present research 

sought to determine whether any impact of daylight conditions on seat choice 

behaviour can be inferred from actual seating behaviour (revealed preference 

method). Specifically, seat occupancy was recorded over a certain period of time, 

and the results were subsequently correlated with those obtained from daylight 

simulations. The next chapter presents the first of these methods, stated preference 

method, and describes the approaches taken to conduct questionnaire surveys that 

were designed to address the above research questions. 
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CHAPTER 3. STATED PREFERENCE SURVEYS 

 

3.1 Introduction 

 
The literature review presented in Chapter 2 found a consistent preference to sit 

near windows in open-plan spaces but the lack of consideration given to other 

factors such as the proximity to other people or the view-out of the window means 

we do not know the relative importance of daylight nor how it interacts with these 

factors. This chapter reports an experiment carried out to investigate whether people 

think that daylight is an important factor in seat choice decisions amongst other 

possible factors. The first part of the chapter describes the test room where the 

experiments were carried out. The second part reports an experiment in which the 

participants were asked to indicate the factors they perceive to influence their choice 

of seat location in the test room. Responses from two groups were collected by 

opportunity sampling, one group being approached when they were about to enter 

the room and the other when they were seated within the room. Finally, the chapter 

concludes with a discussion of the results from the experiment. 

 

3.2 Test Environment: Western Bank Library 

 
The experiments were carried out in an open-plan reading room at the Western 

Bank Library (formerly the Main Library), the University of Sheffield (Sheffield, UK). 

The characteristics of the reading room were, first, that it had large double-glazed 

windows overlooking a natural setting of a park (Weston Park), these provided both 

daylight to the interior and a view-out, and, second, that there was a free choice of 

seat location so the occupants had the option to sit closer to the windows or move 

deeper into the room to avoid discomfort from direct sunlight (Figure 3.1). 
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Figure 3.1. Interior view of the reading room from the mezzanine level, Western Bank 

Library, Sheffield. The space is oriented to a view looking west, towards Weston Park and 

the university buildings beyond (Photograph taken August 13, 2016). 

 

 
The room has a rectangular plan measuring 45 metres long and 25 metres wide, 

with book stacks arranged around three sides of a central reading area (Figure 3.2). 

The room has a ceiling height of 5025mm and a window head height of 5000mm. 

The mezzanine floor is situated above the book stacks on the ground floor and 

contains additional book stacks, reading areas and office spaces. There is only one 

entrance to be used by the library users, which is located centrally on the east side 

of the room. Upon entering the room, one first passes between the book stacks and 

then reaches the central reading area, which has ten parallel rows of work desks.  

On the far side of the room from the entrance there are individual working desks 

along the west windows. This arrangement can serve to visually divide the room into 

two areas, a window area with open views through the west windows and a large 

interior area enclosed by mostly book stacks, with the exception of obstructed views 

of the Weston Park through the west windows. The central reading area has 

dimensions of approximately 25 metres long and 10 metres wide. The window area 

has a length of 42 metres and a width of approximately 1.5 metres. 
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(a) 

 

 

 

(b) 

 

Figure 3.2. Reading room geometric properties. (a) Floor plan; (b) Section A-A. Daylight 

enters directly through the double-glazed windows spanning the width of the room at the 

front (west facade) and at the two sides of the room (north and south facades). The seating 

area is separated for convenience into two areas, the window seating area and the central 

seating area. Materials from University of Sheffield Estates and Facilities Management, 

reproduced with permission. 
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The interior had been modified since its original construction and the decision was 

taken to extend the mezzanine to create an enlarged study floor with additional 

seats overlooking the lower level. Figure 3.3 shows how the reading room looked 

prior to refurbishment. Originally the book storage areas were tightly packed and 

devoid of daylight, while the seating areas were more formal with less variety in their 

arrangement (Worpole, 2013).  

 

 

 

 

Figure 3.3. Interior view of the reading room before refurbishment (1959).  

Image source: RIBA British Architectural Library. 

 

 

The increasing number of students led to the expansion of the reading room and 

significant changes in how furniture was arranged. This was done by extending the 

mezzanine floor to create additional seating area above and storage shelving below. 

The emphasis now is on flexibility and a combination of individual and group study 

areas. The periphery of the room is now used for individual seating, with seats along 

the west windows, and the books being concentrated at three sides of the central 

seating area. As shown in Figure 3.4, there is a large variety of ways to sit in the 

room, for either as a single person at a private desk or in a group of people, and the 

total seating capacity is 250. The desks in the window seating area are arranged 

mostly for two facing people, separated by a 450 mm high partition, and with also 

some for individuals and for four people. The window seating area has 32 seats. In 

the central seating area, the desks are arranged both in linear rows and as four-

person work spaces, and this area has 218 seats. The four person desks and the 

central two rows have partitions at 450 mm high.  
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Figure 3.4. View out from different seating areas (Photographs taken August 13, 2016). 

 
 

Artificial lighting, controlled automatically, is provided by single and twin luminaires 

installed at a grid of 120cm x 60cm and 180cm x 60cm, respectively (Figure 3.5). In 

order to evaluate the contribution of artificial lighting to the daylight levels in the 

reading room, horizontal desk top illuminances were measured, this being done 

after dark to ensure the measurements are electric lighting only. Illuminance was 

assessed using a Minolta T-10M illuminance meter, positioned horizontally on the 

surface of each working desk, chosen to enable representative sampling across the 

room. For this data, the mean desktop illuminance from electric lighting was 170 lux 

with a standard deviation of 61 lux, the minimum and maximum desktop 

illuminances being 11 and 264 lux, respectively. A simulation-based method was 

used to determine average daylight factor for the room (see Chapter 5 for the 

simulation method). The analysis has identified that the room complies with the 

benchmarks in terms of average daylight factor achieved: the average factor 
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predicted for the room was 5.05%, which is above the recommended threshold of 

5% for a well-daylit space (CIBSE/SLL, 2012). These data suggest that the room is 

predominantly lit by daylight and that the contribution of electric lighting in daytime is 

small relative to that of daylight.  

 

      
 

     
 

Figure 3.5. Schematic drawing (not to scale) showing the layout of the luminaires (blue 

squares) (upper left), the work plane illuminance from electric lighting (upper right), the views 

of the luminaires during daytime (lower left) and night time (lower right). 

 

 

The shading devices in the reading room are automatically controlled and were fully 

open for every observation in this study. The automated blind control system does 

not enable occupants to adjust blinds to manipulate lighting environment (e.g. 

closing blinds to reduce glare or opening them to admit more daylight), which in this 

case eliminates uncertainty of occupant use of blinds. The system only allows the 

shading position to be either fully closed or fully open (Figure 3.6). 
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Figure 3.6. Shading position is limited to fully open (left) and fully closed (right). Automated 

control system does not allow the occupant to adjust shade positions, thus eliminating the 

uncertainty attributed to occupant control of shading devices. 

 

 

As discussed in Chapter 2, the choice of control system affects how users can interact 

with the building, whether by reconfiguring building elements (i.e. drawing blinds to 

exclude sunlight) or by modifying their behaviour (i.e. moving from one place to 

another). The control systems of the electric lighting and window shading play an 

important role in seating behaviour. Active lighting and shading controls provide 

occupants with means for personally controlling their local visual environment in a 

way that enhances their comfort. An important aspect is that building occupants are 

no longer regarded as passive recipients of the visual environment, but rather play an 

active role in creating their own lighting preferences. In the current study, such active 

adaptive opportunities were not available to the occupants in the test space. That is, 

the automated control system does not allow the occupant to adjust lighting conditions 

through the use of shading devices and/or artificial lighting. What this lighting control 

system offers is the opportunity to explore the potential relationship between daylight 

availability and seat choice. As the occupants are not allowed to take active control of 

their environment, it is reasonable to assume that they respond to their visual 

conditions by changing their spatial behaviour (e.g. choosing a particular seat or 

changing seating position). The next section describes an experiment exploring the 

relative importance of factors perceived to influence seat choice decisions and 

whether response patterns differ across respondents before and after entering the 

test room. 

 

 

 



57 
 

3.3 Door - Room Survey 

 
In the introductory chapters of this thesis, arguments were reviewed suggesting that 

the seating behaviour is essentially rational choice among a set of alternatives and 

that the means of arriving at a decision is by aggregation of preferences (Scott, 

2000; Stone, 2002). In aggregating preferences, one obtains an order over a set of 

possible alternatives based on the degree of utility they provide. There is the counter 

argument, however, that even though people weigh the options rationally when they 

attempt to predict what they will do in a particular context, they tend to respond 

instinctively when they actually make a decision (Eagleman, 2011; Kahneman and 

Tversky, 1979; Kahneman, 2011). This suggests that choices about where to sit in a 

given environment are likely to be affected by the context of decision and therefore 

do not necessarily correlate with the higher-order preference. 

 

The experiment presented in this section aims to provide further evidence in this 

debate by examining the perceived influence of daylight on seating preference in 

two locations, outside the test room and within the test room. The experiment was 

designed as a questionnaire survey, with responses being gathered by opportunity 

sampling – selecting those people who are available at the time – being those 

people about to enter the reading room, or who were already seated in the reading 

room. Surveying at these two locations allows discussion of the context in which the 

survey is conducted: The factors that people think should matter to their seat choice 

decision may not influence their behaviour in reality. This may lead people seated in 

the room to justify (or post-rationalize) the choices they have already made before 

entering the room. 

  

In this section, ‘door survey’ refers to questionnaire responses sought at the 

entrance to the reading room, and ‘room survey’ refers to questionnaire responses 

sought within the reading room.  

 

3.3.1 The questionnaire 

 
Two surveys were designed to record responses, the door and the room surveys, 

each consisting of two parts. The first parts of the surveys were identical but the 

second parts were different: for the room survey the questionnaire was extended to 

record also feelings of importance of different factors affecting seat choice. To 

compare responses in the different locations the survey was designed following that 

used by Bernhoft and Carstensen (2008) in their study of factors which influenced 
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pedestrians’ route choices. Rather than comparing responses from people in two 

locations, Bernhoft and Carstensen compared responses from two different age 

groups. In this method, respondents were presented with a list of ten factors that 

might influence their seat choice and asked to identify up to three of these that they 

consider to be the most important. Bernhoft and Carstensen (2008) asked “Which of 

the following conditions are most important for your route choice when 

walking/cycling in your hometown?” For the current study the questions were: 

 

 
Door survey:  Where do you think you will sit in the reading room? Which of the 

following statements are the most important thing to you when 

choosing where to sit in the reading room? (Select the three most 

important factors) 

 

Room survey:  Why did you choose to sit here? Which of the following statements 

were the most important thing to you when choosing where to sit in 

the reading room? (Select the three most important factors) 

  

 
In addition to daylight, the available responses included nine additional factors, 

presented to participants in a multiple-option format. Previous research has used the 

method of asking respondents to choose options from a pre-selected list (Hygge and 

Loffberg, 1999; Christoffersen et al, 2000; Parpairi et al., 2000; Dubois et al., 2009; 

Othman and Mazli; 2012). The factors examined in the current work were guided by 

those used in previous studies. Though some of the previous studies were not 

necessarily designed with the intention of identifying factors associated with seat 

choice (Hygge and Loffberg, 1999; Christoffersen et al, 2000; Parpairi et al., 2000), 

the survey items have been used for this purpose.  

 

Most of the categories used in the current survey were consistent with that reported 

in previous studies, with some exceptions, such as 'window size', which was 

considered by Hygge and Loffberg (1999) and Christoffersen et al (2000) when 

evaluating preferences for indoor environmental conditions in office spaces with 

different sized windows. As the current study was carried out in one single space 

and the size of the window was constant over the entire facade, this factor was not 

considered relevant to the survey. Items such as being near to power sockets or 

bookshelves were included to give a more specific and relevant context. The 



59 
 

number of questions was restricted in order to ensure that the questionnaire was 

short enough to be completed within a reasonable time.  

 

Although the survey was primarily concerned with daylight, other factors were also 

considered to allow the participant to rate the importance of daylight against other 

qualities of the physical environment when choosing a seat. A total of ten factors 

was included as a means of capturing the participant’s perception of the physical 

and social environmental factors, the importance of which has been raised in 

previous research. The ten factors included in the room and door surveys were: “It is 

near power sockets”, “There is good daylight”, “There is good electric lighting”, “It is 

close to other people”, “It is distant from other people”, “There is a nice view”, “There 

are only a few people passing by”, “It is quieter”, “It was the closest available seat” 

and “It is near to the book shelves”. It should be noted that these factors are specific 

to the test space examined, for other libraries other factors could be important such 

as desks equipped with individual reading lights. There is no specific guidance as to 

what the survey should contain, since each building and lighting design is different. 

For example, the type of furniture may be worth considering when doing the survey 

in a space with a mix of different types of seats such as chairs, sofas, lounge chairs 

and carrels. Some occupants may also consider the availability of individual reading 

lights. In the particular library room investigated, these factors were not included as 

there were no individual reading lamps and the seats were physically identical. 

 

The meanings of the ten factors were not defined to respondents and hence there is 

a risk of variations in interpretation. Of the stated preference studies examined, 

none have defined the meaning of the terms used in a survey. Giving definitions, 

either orally or in writing, extends the time needed for a survey: In the current work 

the aim was to obtain a large sample by using a purposefully brief survey form, and 

hence there were no definitions.  

 

With ten items listed in order, there may also be an order effect, e.g. that the 

apparent importance of a particular factor is affected by the preceding factor(s). This 

may lead to subjective evaluations being misleading (Poulton, 1989; Ward and 

Lockhead, 1970). To counter an order effect five different versions of the list were 

established, each using a different order (see Table B1 and Table B2 in Appendix B 

for the five variations in which the ten seat choice factors were presented).  
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Describing the full description for each of the ten factors would be unnecessarily too 

long, therefore it was decided to use the abbreviated descriptions in the results 

section. The list of the abbreviated form of each of the ten factors used in results 

section is provided in Table 3.1. 

 

 

Table 3.1. Abbreviated description of the ten factors used in door-room surveys.  

Text used in questionnaire Abbreviated 

description Door Survey Room Survey 

A place near power sockets It is near power sockets Power sockets  

A place where there is good daylight There is good daylight Daylight 

A place where there is good electric 
lighting 

There is good electric lighting Electric lighting 

A place close to other people It is close to other people Near other people 

A place distant from other people It is distant from other people  Distance from 
others 

A place where there is a nice outside 
view 

There is a nice outside view View out 

A place where there are only a few 
people passing by 

There are only a few people 
passing by 

Few passers by 

A place which is quieter The noise level is lower  Quieter 

The closest available seat It was the closest available 
seat 

Closest available 
seat 

A place near to the book shelves It is near to the book shelves Near shelves 

 

 

The door survey sought two further responses. The first asked: 

In this room it is likely you will be reading and/or writing. For this task are you 

going to use: (Select as many as appropriate) 

 

Response options were:  paper-based media,  

a laptop/PC,  

other (please specify).  

 

The second question asked: 

If you have any additional comments that you would like to make about your 

seat choice, or general comments, please note them here. 

 

The room survey sought three further responses: 

(1) Is it your preferred seat?  

The responses available were: 
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1. Yes, it is my preferred seat. I tend to sit here whenever possible.  

2. No, I sat here because my preferred seat was not available (e.g. 

someone else was sitting there). 

(2) During your visit to the reading room, did you change your seating location 

(did you move to another seat?)  

The responses available were Yes and No. If yes, a reason was requested.  

(3) In this room it is likely you will be reading and/or writing. For this task are you 

going to use: (Select as many as appropriate) 

The response options were paper-based media, a laptop/PC, and other (please 

specify). 

  

The room survey also included a short questionnaire which asked about importance 

and satisfaction of the ten items. For each item, there were three questions. 

1. Is it important? A yes/no response was sought. 

2. How satisfied are you with it? The response options were very satisfied, 

satisfied, dissatisfied and very dissatisfied.  

3. Why did you express this opinion? Here respondents were invited to give 

their own response.  

 

For the first two questions, participants were given the following instruction: “Please 

indicate (by ticking your preferred option) whether the following factors are important 

when you decide where to sit.” The third question enabled respondents to add 

further comments to their responses. 

 

The two questionnaires (door and room surveys) are shown in Figures 3.7 and 3.8. 

Note that these show only one version of the five which presented the ten factors in 

a different order. 
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Figure 3.7. Questionnaire used in the door survey. 
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Figure 3.8. Questionnaire used in the room survey. 
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Figure 3.8. Questionnaire used in the room survey (continued). 
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3.3.2 Procedure 

 
The two questionnaires were handed out personally in two different locations to 

users for completion. The two experimenters worked separately, with one located at 

the entrance door and the other within the room. For this task the author was 

assisted by an undergraduate student in the School of Architecture. Respondents 

were sought by approaching people either as they approached the reading room 

entrance door or people already sat within the room.  

 

The first step in creating the room survey group was made by asking if any of those 

who had completed the door survey outside the room would be willing to participate 

again. After the respondent had entered and seated himself, the second 

experimenter approached the respondent directly and asked to participate. 

However, this was not always possible because the respondents were not always 

available and/or willing to participate in the room survey. Therefore, the data were 

collected randomly from those who were about to enter the room and those seated 

in the room, however aiming at the same group of respondents on both occasions. 

For those who agreed to respond there was no incentive such as a payment. 

One potential limitation of the experiment is that the stated preference survey may 

have influenced the revealed preference of participants. Asking intentions or self-

predictions regarding behaviour may have led to previously unaware participants 

becoming explicitly aware of their behaviour. This may have resulted in a 

consciousness about where they sat, as people often behave differently when they 

know they are being observed (McCambridge et al, 2012; Parsons, 1974; Sommer, 

1968). This has to be accepted as one of the potential negative aspects of the field 

experiment, in which the role of consciousness in decision-making cannot be 

estimated. 

 

In the previous stated preference studies reviewed in Chapter 2, few used more 

than 300 participants, with many using less than 200. The current survey was 

completed by 400 participants, this being 200 each for the door and room surveys. 

This sample size was larger than most other stated preference research and was 

estimated to be sufficient for the purpose of the study. Approximately equal 

proportions of male and female participants participated in the survey, but the age 

distribution was skewed towards younger people reflecting that young students were 

the primary users of the reading room. A detailed description of participants can be 

found in Table D1 in Appendix D. The survey was carried out in December 2015, 
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over 3 days, with participants sought by opportunity sampling typically between 

09:00 and 15:00. Ethical approval for this survey was confirmed by the school of 

architecture research committee on 06/08/2015. The full ethics application form can 

be found in Appendix C. 

 

Weather observations were also recorded during the survey period. The 

instrumentation used included a SPN1 Sunshine Pyranometer. An algorithm was 

applied to the solar radiation data for classification of sky conditions (the basis for 

this is given in Chapter 5). The sky conditions ranged from partly cloudy to overcast, 

with the greater proportion of the data (97%) representing overcast sky conditions. 

Differences in data by the time of survey administration can therefore be 

hypothesized, simply by given differences in the weather conditions during the 

survey. It should be noted that the survey was carried out in winter when the 

exposure to daylight was limited. This raises a further question: How would the 

conclusions be affected if the weather conditions were different? Would we find a 

similar distribution of responses if the survey was conducted under different weather 

conditions, for example in summer instead of winter? It would be interesting to 

repeat the survey using the same methods but under different weather conditions. 

Future research could explore whether and the extent to which weather conditions 

can influence perceptions of respondents regarding the importance of daylight when 

making seat choice decision.  

 

3.3.3 Results 

 
This section presents and discusses the results of the door and room surveys. 

Analyses of the survey data did not suggest they were drawn from a normally 

distributed population and therefore non-parametric statistical tests were applied. 

Response data from two surveys were compared and a series of Pearson’s chi-

square statistics was calculated to test for significant relationships between 

response rates. An alpha level (level of significance) of 0.05 was used throughout 

data analysis, unless otherwise noted. The results revealed no statistically 

significant difference between the two groups of respondents with respect to gender 

and age (see Appendix D for the test applied), thus eliminating the effects of such 

demographic differences among respondents. 
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Multiple-option data: what factors matter? 

 
Figure 3.9 shows the frequencies by which each of the ten factors were chosen as 

the most important reasons for seat choice. This was determined by summing the 

number of times each factor was ticked, without applying any weighting or rank 

order to these ticks. When people were questioned at the door it can be seen that 

the availability of power sockets, low noise, daylight and view out were the four most 

important factors whilst electric lighting, closeness of seat and shelving and being 

able to sit close to others were the least important. A chi-square goodness-of-fit test 

was used (Coolican, 1994, p.453) and this suggested that the ten factors were 

chosen with significant differences in frequency (² = 259.56, df = 9, p < 0.001). 

 

Consider next when people were questioned within the room (specifically, when 

seated at a desk). The availability of power sockets was now of lesser importance; 

low noise, daylight and view out were still the more important factors along with 

being able to sit away from other people; the four least important factors were the 

same as found with the door survey, i.e. electric lighting, closeness of seat and 

shelving and being able to sit close to others. The ten factors were again chosen 

with significant differences in frequency (² = 211.85, df = 9, p < 0.001). 

 

 

Figure 3.9. Frequency by which each factor was picked as being an important factor for seat 

choice. Asterisks (∗) denote statistically significant difference between door and room survey 

data. 
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What this analysis shows is that there were significant differences in the frequency 

by which a factor was considered to be important: it does not reveal a rank order or 

the difference between two specific factors. According to the trends shown in Figure 

3.6 it is suggested that six factors were generally considered important: 

  

  power sockets  

  quieter 

  daylight 

  view out 

  few passers by 

  distance from others  

 

Four factors do not appear to be important, these being electric lighting, closest 

available seat, near shelves and near other people. When choosing a seat, both 

groups found being close to other people the least important factor, this may be 

because most of the respondents were individuals rather than groups and they 

preferred not to sit next to other people.  

 

The results suggest that daylight is either the joint third (door survey) or the most 

important (room survey) factor affecting seat choice. This supports previous studies 

that suggested daylight to be perceived as one of the most important factors that 

affects user satisfaction (Christoffersen et al, 2000; Hygge and Loffberg, 1999; 

Parpairi et al., 2000) and seat choice decisions (Dubois et al., 2009; Othman and 

Mazli; 2012). Further analysis was carried out to determine whether there were any 

statistically significant differences in responses between the two groups of 

respondents, as described below. 

 

Multiple-option data: does survey location matter? 

 
The survey was completed in two locations, door and room, and Figure 3.6 suggests 

some differences in perceived importance of the factors. Specifically, when asked at 

the desk, there was a decrease in importance of power sockets and an increase in 

importance of passers-by and distance from others. A chi-square test suggested 

that there were significant differences between the two groups for some of the 

statements, these being power sockets (² = 35.5, df = 1, p < 0.001) and distance 

from others (² = 4.37, df = 1, p < 0.05) (Coolican, 1994, p.453). The test results did 

not suggest a significant difference between rooms for the other factors: quietness, 



69 
 

daylight, view out, electric lighting, distance from other people, near to shelves, few 

passers-by and near other people. Table 3.2 shows the results of the chi-square 

two-tailed test. 

 

Table 3.2. Differences in responses between door and room surveys. 

Factor  Observed 

Frequency 

(O) 

Expected 

Frequency 

(E) 

X² 

∑(O-E)²/E 

 

df Level of 

Sig. 

  Door Room Door Room 

Power 
sockets 

Ticked 118 36 77 77 35.50 1 p<0.001 

Did not tick 82 164 123 123 

Quieter Ticked 108 95 102 102 0.85 1 n.s 

Did not tick 92 105 99 99 

Daylight Ticked 81 101 91 91 2.02 1 n.s 

Did not tick 119 99 109 109 

View out Ticked 80 77 79 79 0.05 1 n.s 

Did not tick 120 123 122 122 

Few passers 
by 

Ticked 54 82 68 68 4.37 1 n.s 

Did not tick 146 118 132 132 

Distance 
from others 

Ticked 55 76 66 66 2.50 1 p<0.05 

Did not tick 145 124 135 135 

Electric 
lighting 

Ticked 24 21 23 23 0.11 1 n.s 

Did not tick 176 179 178 178 

Closest 
available 
seat 

Ticked 19 34 27 27 2.45 1 n.s 

Did not tick 181 166 174 174 

Near shelves Ticked 12 10 11 11 0.10 1 n.s 

Did not tick 188 190 189 189 

Near other 
people 

Ticked 7 9 8 8 0.13 1 n.s 

Did not tick 193 191 192 192 

 

 

Chi-square analysis comparing the response data from the two surveys revealed 

that a significantly larger percentage of respondents found the presence of a power 

socket important for their seat choice in door survey than those in the room survey. 

It may also be a sampling bias of this procedure: if people were asked for their 

opinion at a desk without a socket it was probably not important to them. The 

following sections expands these results by examining whether significant 

differences exist in survey responses as a function of different types of tasks. 

 

Multiple-option data: effects of task 
 
Respondents were grouped into two categories in order to explore the effects of task 

being undertaken: laptop users and non-laptop users. This involved breaking down 

the responses by the task group and analysing the data for only those respondents 
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who had access to power sockets (i.e. that were sat at a desk with a power socket in 

immediate proximity). Power sockets for laptop computers are provided only on 

some of the desks located in window seating area (see Chapter 4 and Appendix G). 

Figure 3.10 shows the frequency by which each factor was picked as being an 

important factor for seat choice, with respondents being those having access to 

power sockets. From this figure it appears that seating preferences of laptop-users 

was influenced by two factors other than daylight, these being availability of power 

sockets and the view-out. For non-laptop users who chose to sit by the window, 

however, seating preference was not stated to be affected by the availability of 

power sockets but instead by daylight, view out and few passers-by. It is apparent 

that if people want to use their laptop then power sockets is an important factor, but 

if they do not wish to use a laptop then power sockets plays no role.  

 

 

 

Figure 3.10. Room survey: Differences between laptop users and non-laptop users in their 

preferences for the ten factors (analysed for seats having access to power sockets). 

 

 

Seating changes 

The room survey was expanded to include a set of questions aimed at collecting 

data from the respondents who changed their seats during their visit. A majority of 

respondents (89%) reported that they did not change their seats during their visit to 

the room. For the remainder who did change seats (11%), the reasons of seat 

change included to be close to power sockets (40%), to avoid noise distraction 

(25%), favourite seat was not available (20%), to have a nice view and different 
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environment (10%), and to be close to the shelves (5%). These results provide 

some support for the importance of power sockets, although it should be noted that 

the data were obtained from a small number of respondents (n = 22). 

 

The survey also included questions to determine whether the seat was chosen as a 

preferred and/or favourite seat. Almost half of the respondents (44%) reported that 

they don't have any preferred seat, while more than a third of the respondents (35%) 

reported that they were sat in their preferred seats. The remaining respondents 

(21%) stated that their preferred seat was not available. 

 
Factor importance  

 
Respondents in the room survey were next asked to state whether they think the ten 

factors were important for their seat choice. This provided an alternative to multiple-

option approach and allowed robust conclusions to be made based on the results of 

both approaches. In this section respondents were offered a Yes/No response option, 

followed by an additional question asking them to explain why they answered the way 

they did (e.g. why did you express this opinion?). The results of both importance and 

multiple-option analysis are shown in Table 3.3. 

 

 

Table 3.3. Room survey: Importance analysis and multiple-option analysis 

results. Factors listed in order of importance. 

Factor Is it important? Multiple-option results 

Yes No 

Power sockets 56.5 % 39.5 % 6.7 % 

Quieter 88.5 % 8.0 % 17.6 % 

Daylight 70.0 % 17.0 % 18.7 % 

View out 55.0 % 40.5 % 14.2 % 

Few passers by 52.5 % 38.0 % 14.1 % 

Distance from others 57.5 % 36.0 % 15.2 % 

Electric Lighting 56.0 % 36.5 % 3.9 % 

Closest available seat 58.5 % 39.0 % 6.3 % 

Near shelves 9.0 % 84.5 % 1.8 % 

Near other people 8.5 % 76.0 % 1.7 % 
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A comparison of responses to two survey questions indicated that the three items 

(daylight, quieter and distance from others) were chosen as most important in both 

questions. Figure 3.11 shows a scatterplot of the relationship between two datasets. 

Similar conclusions were drawn using both procedures, with increases in multiple-

option scores tending to be associated with increases in the importance scores. 

Pearson’s test suggests the correlation to be significant (r=0.76, p = 0.01). This 

association between results from the two approaches to examining the importance 

of the ten factors means the conclusions can be considered as more robust.  

 

 

Figure 3.11. Room survey: Importance analysis results plotted against multiple-option 
analysis results.  

 

 

The survey also asked respondents to comment on their answers, giving reasons 

why they chose a particular response option. The reasons that participants gave for 

the importance of each factor were divided into a set of categories, defined by the 

researcher. This was done by highlighting reasons given by participants, sorting 

them into clusters of the same fundamental concerns. For example, "I like a lot of 

desk space" was put into the increased desk space category, and "I prefer to be 

able to spread my stuff out" was also placed in the same category as it addresses 

the same underlying concern. Similarly, "reminds me of outside world" was included 

in the connection to the outside world category, and so was "I like to see the real 

world". The categories were defined based on words and phrases that appear in the 

text and that refer to a certain theme.  
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The categorization process is important because bias may occur when subjectively 

interpreting responses given to each factor. To increase the validity, the analysis 

was performed separately by two researchers and then the results were compared 

(Burnard, 1991). For this task the author was assisted by a postgraduate research 

student in the School of Architecture, whose background was outside the field of 

lighting. The ten factors and the categories into which reasons were sorted are given 

in Table 3.4. 

 

 

Table 3.4. Room survey: The reasons given by participants for why they think each factor is 

important, categorized into common themes. 

Factor  Reason given by the participant 

Power sockets  
 

Laptop charging 

Daylight Improved task visibility (reading and writing), preference for 
natural light rather than electric light, relaxation and good feeling 

Electric lighting Improved task visibility (reading and writing), provision of 
sufficient lighting when it gets dark  

Near other people Preference for sitting close to a friend, working with friends 

Distance from others Reduced distractions and interruptions, improved concentration 
and focus on work, preference for working alone, increased desk 
space View out Relaxation, reduced stress, connection to the outside world, nice 
view of the park 

Few passers-by and 
Quieter 

Reduced distractions and interruptions, improved concentration 
and focus on work 

Closest available seat Preference of sitting near the door, avoiding walking past people 

Near shelves Convenience and easy access to books 

 

 

Respondents were also asked to indicate how satisfied they were with the ten items 

on a 4-point scale ranging from very satisfied to very dissatisfied. The data from this 

part of the survey dealing with the occupant satisfaction were excluded from the 

analysis as they do not directly contribute to the aim of investigating whether people 

think that daylight is an important factor in seat choice decisions. The method was 

however identified as an alternative method of investigation that could be used in 

further research. At the end of the questionnaires, respondents were given the 

opportunity to mention the issues which they felt were not covered by the options 

given. Most respondents used this section as an opportunity to reinforce the views 

they had stated for their seating preference in the earlier sections of the questionnaire. 

Some also raised issues that were not included in the survey, including temperature 

and the habit of choosing the same seat. 
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3.4 Summary 

The experiment described in this chapter investigated the perceived importance of 

daylight when choosing a seat location. An approach similar to that used by 

Bernhoft and Carstensen (2008) was taken, asking respondents to identify the three 

most important reasons for their choice from a given list of factors. The aim was to 

explore differences in the perceived importance of daylight across two groups of 

participants, those about to enter the room and those seated in the room. The door 

survey, which asked participants outside the test room to indicate factors that 

influence their seat choice, found that daylight was the third most important factor 

after the availability of power socket and quietness. When asked the same 

questions about the seat choices they made in the room, the importance of daylight 

increased, and it was the most important factor in this latter case. One possible 

explanation for this difference is that at the entrance respondents are likely to state 

what they perceive to be important, whereas in the room they may seek to post-

rationalise their seat choice. The data collected with the survey questions were the 

frequencies of the responses to each pre-defined category. Differences in 

responses between the two groups of respondents were tested for statistical 

significance. Significant differences were found between the two groups in their 

responses to two items, these being the availability of power sockets and the 

distance from others. Although the perceived importance of daylight differed 

between the two groups, this difference was not statistically significant.  

 

In door survey, two approaches were used to test importance of various factors 

including daylight: multiple-option and importance analysis. The former approach 

asked participants to pick the three most important factors from a list of ten. The 

latter asked for each of ten items to be defined as important or not important in 

terms of seat choice. Results from the multiple-option and importance analysis both 

suggested daylight to be perceived as one of the important factors. The two 

approaches are different: the first may encourage three factors to be picked when 

fewer were considered relevant, and also prevents more than three from being 

picked. The latter approach allows any number of factors to be highlighted as 

important. That the results of these two approaches agree suggests the findings are 

important. Age and gender did not influence stated preferences in this investigation. 
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The overall aim of the survey was to determine what factors are likely to influence 

where an individual sits in the test room. A comparative method was discussed for 

producing this evidence, based on the perceptions of respondents regarding the 

importance of daylight before and after making seat choice decision. From the 

evidence provided by door-room survey, it can be concluded that daylight is an 

important reason for choosing a particular seat. The survey also raised other factors 

that may affect seat choice, including noise, proximity to power sockets, and the 

preference to sit apart from others for privacy. The study relied on self-report 

measures instead of actual seating choices. Further research is needed to 

determine how space is actually being used and occupied. This is what the revealed 

preference study, described in the next chapter, addresses. 
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CHAPTER 4. REVEALED PREFERENCE SURVEYS 

 

4.1 Introduction 

 
This chapter describes four experiments carried out to examine actual seating 

behaviour in the test room. The aim of these experiments was to quantify the 

probability of a seat being occupied, this being assumed as an expression of 

preference. Following a review of previous research presented in Chapter 2, this 

was done by recording which seats were occupied at a series of regular intervals 

(the snapshot approach). To validate the findings, the experiment was repeated at 

different observation intervals, at different times of year, and at different times of day 

to permit a night versus day analysis. A second procedure was developed to provide 

some measure of the robustness of the conclusions drawn using snapshot 

observation. This latter procedure included tracking individuals’ movement as they 

choose a seat, and was included as ‘walk through approach’. The observations were 

compared against daylight metrics and the simulations carried out to determine 

these are described in Chapter 5. 

 

4.2 Methodological approaches to the experiments 

 
The observations were carried out in a large open plan, hot-desking space in 

Western Bank Library at the University of Sheffield (see Chapter 3 for a detailed 

description of the room). Seating behaviours were mostly recorded with the 

experimenter standing on the mezzanine floor overlooking the reading area on the 

ground floor. Two data collection methods were used, recording actual seating 

occupancy at fixed intervals (snapshot observation) and monitoring the behaviour of 

a single person over a period of time (walk-through observation).  

 

Snapshot observations means that at specific instances, a record was made of 

which seats were occupied. This is essentially a detailed snapshot of who is where 

in the entire space at a point in time, with repeated snapshots captured over a 

number of days. Observations were recorded at hourly and sub-hourly intervals. A 

limitation of any given observation interval is that it fails to capture temporal 

variations in seating behaviour between the two successive observation points. The 

snapshot method may thus be considered weaker if conditions are not controlled 

and favourable for recording occupant movements, with data loss between two 

successive observation points sometimes being considerable. This can be due to 
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differences in length of stay among occupants. For example, an occupant may tend 

to choose a seat and then remain at the same location over long periods of time; or 

they may be displaced from their prior seat of choice. A further limitation is that for 

any observation interval, there is a possibility of excluding the seat choices of those 

people who arrive and leave between successive observation points. To overcome 

such limitations associated with the snapshot recordings, walk-through observations 

were carried out simultaneously (Experiment 3b). Table 4.1 shows a summary of the 

data collection methods used in the four experiments. 

 

Table 4.1. Summary of data collection methods for four experiments (EX: Experiment). 

EX Method Season Duration Start Date End Date Time period Interval 

1 Snapshot Summer 2 weeks 11-08-2014 22-08-2014 09:00-17:00 60 min 

2 Snapshot Autumn 2 weeks 10-11-2014 21-11-2014 
09:00-15:00 

18:00-21:00 
60 min 

3a Snapshot Summer 1 week 10-08-2015 14-08-2015 09:00-17:00 15 min 

3b 
Walk-

through  
Summer 1 week 10-08-2015 14-08-2015 09:00-17:00 n/a 

 
Note: Data collection for Experiment 3a was carried out by Victoria Spencer, an undergraduate 

architecture student at the University of Sheffield for the purposes of a final-year dissertation. The 
student was advised by the author.  

 

 

4.3 Snapshot approach 

 
This section presents an overview of the procedures used in collecting snapshot 

observation data and this is followed by an explanation of key findings. The main 

approach to analysis is correlation, e.g. regression of seat occupancy on daylight 

factor, the latter being obtained from the simulations reported in Chapter 5.  Further 

analyses are presented to explore questions of methodology, i.e. the effect of 

observation interval and season.  

 

4.3.1 Procedure 

 
To record seat occupancy, the experimenter held a numbered seating plan and 

ticked those seats that were occupied at that instant. The proportion of observations 

in which a seat was noted to be occupied was used to estimate the probability of a 

person choosing that seat. This is the method that was used by Dubois et al (2009), 

Kim and Wineman (2005), Organ and Jantti (1997) and Wang and Boubekri (2009). 

In these studies, the observation intervals were 10 min (Kim and Wineman, 2005), 



78 
 

15 min (Dubois et al 2009), 30 min (Kim and Wineman, 2005; Wang and Boubekri 

2009) to over one hour (Organ and Jantti, 1997).  The question of observation 

interval has not been raised in any of these studies. Observations recorded at 15 

min intervals, for example, may give a more precise measure of occupancy than 

hourly observations. In experiments 1 and 2, a 60 min interval was used; in 

experiment 3a, a 15 min interval was used to enable analysis of the influence of time 

interval.  

 

Another question being addressed by this study was whether there were any 

differences in seat choice behaviour at different times of the year. There are at least 

two reasons why the time of year can be expected to influence the seat choice 

behaviour. First, the intensity and duration of daylight changes throughout the year. 

Second, the number of students and their activity changes throughout the year. 

Therefore, observations were carried out in two different seasons of the year when 

daylight and student attendance would vary: summer (experiment 1 and 3a) and 

autumn (experiment 2). In summer it is expected that daylight intensity would be 

higher and there would be fewer students; in autumn it is expected that there would 

be a lower daylight intensity but more students.  

 

Regarding the time of day for which observations were recorded, this was chosen to 

cover the period for which daylight was expected (Table 4.2). Daily surveys of seat 

occupancy were carried out between 09:00-17:00 for experiment 1, 3a and 3b; and 

between 09:00-15:00 for experiment 2; these being well within the period of daylight 

availability. In experiment 2, further observations were recorded between 18:00 and 

21:00, for which time it was dark outside. It is assumed that if observations in the 

period 09:00 to 15:00 suggest different seat choices to those in 18:00 to 21:00, the 

cause is more likely to be daylight. 

 

 
Table 4.2. Seasonal variations in the length of the daytime period. 

Season Experiment 
Length of the daytime period* Observation period 

Sunrise Sunset Start End 

Summer 1, 3a and 3b 05:39 20:45 09:00 17:00 

Autumn 2 07:22 16:19 
09:00 15:00 

 18:00 21:00 
 
* Length of the daytime period was calculated using online sun position calculator 

at http://suncalc.net, accessed at 15/06/2014. Sunrise and sunset times are given for each of the 

observation period: the earliest sunset and latest sunrise times are reported. 

 

http://suncalc.net/
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The primary data gathered were frequencies of seat occupancy; specifically, the 

proportion of observation points for which a particular seat was occupied. Each seat 

was scored as either occupied (1) or unoccupied (0), and for each seat these scores 

were summed and the sum was expressed as a percentage of the total number of 

observations, with a rating of 100% indicating that the seat was occupied for every 

observation carried out. This value is called the occupancy rate, and is defined by 

the National Audit Office (NAO) in the UK as “the number of hours a room is in use 

as a proportion of total availability” (NAO, 1996). For the current work, which 

investigates seats rather than rooms, the definition was amended to: 

 
 

The proportion of observations for which a seat was occupied 

at the instant of a given observation point. 

 
 

The method of calculation, illustrated in an example calculating occupancy rate for 

seat 1 (experiment 1) is shown in Table 4.3. 

 
Table 4.3. Example calculation of occupancy rate for seat 1.  

Time 
Interval 

Time 
period 

Duration Number of 
observations 

Number of 
observation points 
when seat was 
occupied 

Occupancy rate (%) 

60 min 09:00 

17:00 

10 days 9 times a day 

(Total=90) 

78 (78/90) x 10= 86.66              

 

4.3.2 Overall results of snapshot observations 

 
The results and analyses presented in this section are based on individual seats 

(see Appendix E for occupancy rate values for each individual seat); however, for 

the purpose of graphical presentation of data and for ease of interpretation, the data 

were separated into groups. This explanation makes use of daylight factor, which is 

a simpler measure of daylight, used in the study of Christoffersen et al (2000), and 

further explored in this study. The range of variation in daylight factor over the plan 

area of the room under consideration is divided into five bands; then the area is 

divided into five zones, defined by the band of daylight factor exhibited; and the 

seats in each zone are grouped together and collectively identified by zone number 

(Figure 4.1). 
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Figure 4.1. Seating plan with zones colour-coded according to values of daylight factors. 

 

 

Having defined the zones within the reading room, average occupancy rates of each 

individual seat within each zone were calculated over the course of the observation 

period (typically one-week or two-week periods). This process was repeated for 

each experiment: EX 1, EX 2 and EX 3a. For EX 3a, which explored the effects of 

different observation time intervals, only the hourly data were used to assure data 

values are consistent with the data obtained from other two experiments. Table 4.4 

gives a range of daylight factor values defined for each zone, the corresponding 

seat numbers and the average occupancy rates. Figure 4.2 shows average 

occupancy rates calculated for the five zones and makes comparison between the 

three experiments.  
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Table 4.4. Average occupancy rates for the three experiments (EX 1= Experiment 1, EX 2= 

Experiment 2, EX 3= Experiment 3a). Data were separated into five zones according to the 

range of daylight factors. 

 

Zone DF (%) Seat no Total 

number 

of seats 

Average occupancy 

rate (%) 

   EX 1 EX 2 EX 3 

1 > 8 1-32 32 37 69 24 

2 4 - 8 33-38, 43-48, 63-66, 85-88,  

107-110,129-132,151-156, 

175-180,199-202, 219-224 

50 2 24 3 

3 2 - 4 39-42, 49-52, 67-72, 89-94,  

111-116, 133-138, 157-163, 

181-185, 203-208, 225-229 

55 3 22 2 

4 1 - 2 53-56, 73-78, 95-100, 117-124, 

139-145, 164-169, 186-192, 

209-212, 230-235 

54 3 24 2 

5 < 1 57-62, 79-84, 101-106, 125-128, 

146-150, 170-174, 193-198, 

213-218, 236-250 

59 2 18 1 

 

 

 

 
  

 

 

Figure 4.2. Average occupancy rates of each zone for the three experiments  

(EX 1= Experiment 1, EX 2= Experiment 2, EX 3= Experiment 3). 
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The results suggest that average occupancy rate varies over a similar range for all 

three experiments: the average occupancy rate is relatively high for Zone 1 (window 

seating area), where seats are placed individually, compared to the other four zones 

(central seating area), where seats are placed in groups. It can be concluded that 

occupancy rate decreases from Zone 1 to Zone 2 where there is a significant 

decrease in daylight factors, and then remains relatively stable across the remaining 

three zones, suggesting that further decrease in daylight factor does not have a 

significant effect. There is a significant difference, in both the daylight character and 

the physical environment, between Zone 1 and the other four zones. This should be 

in mind when interpreting data. Given that daylight varies substantially from Zone 1 

to Zone 2, the interior can be treated as two separate spaces – a window area 

where daylight factors exceed 15%, and a central area where the daylight factor 

drops below 8% (A contour map of daylight factor is given in Chapter 5). The result 

is that, daylight factor varies dramatically between Zone 1 and Zone 2, then it tends 

to vary relatively little across the central area. Data for the two areas are therefore 

treated separately in the following chapters. 

 

The findings suggest an effect of distance to windows on occupancy rates but do not 

demonstrate the effects of daylight alone due to the lack of control of other 

variables, although the analysis allows to see at a glance the way that daylight 

factors and occupancy rates are distributed throughout the room (a detailed 

daylight-occupancy rate analysis based on individual seats is presented in Chapter 

5).  

 

A limitation of overall analysis of snapshot observations is that the total number of 

people observed in the reading room is not the same in each experiment. One 

possible reason why average occupancy rates calculated for Experiment 2 (EX 2) 

differ greatly from those for other two experiments is that more people were 

observed during autumn period (EX 2) compared to summer period (EX 1 and EX 

3).  

 

To demonstrate avoidance of the influence of occupant density, a method should 

show little or no correlation between its measure and the number of occupants 

observed during the experiment. Therefore, to make comparison between the three 

experiments more explicable, average occupancy rates calculated for each 

experiment were transformed into standardized average rates. This was done by the 

method of adjustment based on weighted averages in which the weights were 
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chosen to provide an appropriate basis for the comparison (i.e., a standard) (Fleiss, 

1981). The overall occupancy rate (the total number of observations when a seat 

was occupied divided by the total number of observations) was considered as a 

robust measure of scale for this analysis since it takes into account the duration of 

the observation (total number of observations) and the total number of people 

observed (total number of observations when a seat was occupied). To determine 

the weights for each dataset (EX1, EX2 and EX3), an overall occupancy rate was 

calculated for each experiment and then the proportion to the lowest value across all 

three datasets (4.8%) was specified (Table 4.5). The standardized occupancy rate 

was then computed by multiplying each data value by its weight (e.g. 37 x 0.7 = 26 

for Zone 1 in EX1 dataset) and the results are presented in Table 4.6.  

 
 

Table 4.5. Overall occupancy rates for each experiment and the corresponding weights. 
  
 Total number of 

observations 

Total number of 

observations when 

seat was occupied 

Overall 

occupancy 

rate (%) 

Weight 

EX 1 22500 (90 hour x 250 seat) 1540 6.8 0.7  

(4.8/6.8) 

EX 2 12500 (50 hour x 250 seat) 3464 27.7 0.17 

(4.8/27.7) 

EX 3 11250 (45 hour x 250 seat) 537 4.8 1 

 

 

 

 

Table 4.6. Weighted occupancy rates for the five zones, each calculated by multiplying by its 

relevant weight. Each dataset was normalized based on the minimum value in the dataset. 
 

Zone DF (%) Seat no Total 

number 

of seats 

Weighted average 

occupancy rate (%) 

   EX 1 EX 2 EX 3 

1 > 8 1-32 32 26 12 24 

2 4 - 8 33-38, 43-48, 63-66, 85-88,  

107-110,129-132,151-156, 

175-180,199-202, 219-224 

50 1 4 3 

3 2 - 4 39-42, 49-52, 67-72, 89-94,  

111-116, 133-138, 157-163, 

181-185, 203-208, 225-229 

55 2 4 2 

4 1 - 2 53-56, 73-78, 95-100, 117-124, 

139-145, 164-169, 186-192, 

209-212, 230-235 

54 2 4 2 

5 < 1 57-62, 79-84, 101-106, 125-128, 

146-150, 170-174, 193-198, 

213-218, 236-250 

59 1 3 1 
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Transformation to standardized average occupancy rates results in the data from all 

three experiments weighted proportionally to the lowest overall average occupancy 

rate (4.8%). In other words, the average occupancy rates are scaled so that 

the values in the EX3 dataset remain constant with the rest expressed as a 

proportion of this dataset. This approach eliminates the amount of variability that 

exists between the three datasets due to difference in occupant density (total 

number of people observed during the experiment). The effect of the standardization 

procedure is shown in Figure 4.3. 

 

 

 

 

Figure 4.3. The effect of the standardization procedure as applied to the occupancy data. 

Average occupancy rates of each zone for the three experiments after standardization  

(EX 1= Experiment 1, EX 2= Experiment 2, EX 3= Experiment 3a).  

  

 

These results confirm to some extent the tendency to sit near windows as reported 

in previous studies (Carstensdottir et al., 2011; Dubois et al., 2009; Kim and 

Wineman, 2005; Organ and Jantti, 1997; Wang and Boubekri, 2009). Observation 

period (i.e summer or autumn) seems to be informative about the occupant seating 

behaviour as it is indicative that the occupants choose their seats on the basis of 

other factors, one identified is related to the number of other occupants in the room.  
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4.3.3 Visualization of snapshot data using heat maps 

 
One approach to visualising the occupancy rate variance between individual seats is 

to use heat maps. This approach was used by Khoo et al (2014; 2016) to visualise 

seat occupancy in an academic library. The resulting heat map generated by the 

researchers was a graphical representation of data from 112 observations, where 

the average occupancy rates of each predefined zone in the room were 

differentiated by colour. In the current study, occupancy data obtained from the 

snapshot observations captured the number and location of occupied seats in the 

reading room at regular intervals. These were represented in a heat map format, 

with a colour range from blue (lowest data values), through green, yellow and 

orange, to red (the highest data values) (Figure 4.4). The heat map format has the 

advantage of allowing a reader to see at a glance the distribution of occupancy rates 

throughout the room and is derived from data representing the observation period 

(see Appendix E for numeric data).  

 

The data visualized through heat maps indicate that occupancy rates decreased 

sharply from the window seating area to the central seating area, and the decrement 

was greater for the summer period when occupancy rates are close to zero in the 

central seating area (EX1 and EX3), compared with the autumn period when 

occupancy in the central seating area was higher (EX 2). Representative heat maps 

of occupancy during autumn and summer periods revealed no significant pattern of 

change in occupancy rates across the central seating area, indicating that the 

occupancy variation was random. A possible explanation for the observed patterns 

of occupancy is that the proximity to the window plays an important role in the 

choice of a place to sit, but becomes less influential as the number of occupants 

increases and fewer seats are available in the window seating area and occupants 

are thus ‘forced’ to sit in the central seating area.  
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Experiment Heat map based on individual seat occupancy 

 

EX 1 

Summer 

09:00-17:00 

 

 
 

EX 2 

Autumn 

10:00-14:00 

  
 

EX 3 

Summer 

09:00-17:00 

 

  

 
Figure 4.4. Heat maps for the three experiments, with colour scale representing average 

occupancy rate data. 
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When entering the room, occupants tend to sit in the window seating area, possibly 

due to daylight, the unobstructed view, and the relatively high level of privacy 

provided by individual seating. However, when most or all of the seats in the window 

area are filled and occupants have to choose the remaining available seats in the 

central area, these factors appear to be less important, and other contextual factors 

such as physical proximity to other occupants may become a determining factor, 

which results in an occupant distribution more evenly spread throughout the central 

seating area.  

 

These data seem to support the hypothesis that people prefer to sit near windows, 

since higher occupancy rates were observed for the window seating area. It is, 

however, important to note that the influence of proximity to a window and its related 

attributes (i.e. admission of daylight and a view out) varies across the two seating 

areas. Occupancy rates would have been expected to decrease from Zone 2 to 

Zone 5, either continuously or discontinuously, if proximity to windows had equal 

importance for the occupants seated in window and central seating areas but this 

was not the case. In other words, occupants have a strong preference for window 

seating over central seating, but little or no preference for central seating nearer the 

windows over central seating further from the windows. This suggests further 

investigation may be required.  

 

Observations recorded at different time intervals over different seasons may indicate 

experimental variations in the data. This was tested through a series of correlation 

analyses, described in the next section. 

 

 

4.3.4 Analysis of experimental variations 

 
This section investigates the effect of two experimental variables: (1) different 

observation intervals (i.e. 15min, 30min and 60min); (2) different months of a year 

(i.e. autumn and summer). The possible existence of a significant relationship 

between the variables was evaluated through a series of correlation tests conducted 

at different levels. Each of these experimental variations will be considered in turn. 

 

To investigate the possible effect of time interval, observation periods in experiment 

3a were divided into short time intervals during which the occupancy was recorded 

using a numbered seating plan. Whilst observations were made every hour during 
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the observation period in experiments 1 and 2, in experiment 3a, a shorter interval 

was used (15 min) to allow two types of analyses: (1) If hourly and 15 min 

observations lead to the same results; (2) If hourly observations taken at different 

points lead to same results (e.g. 1000, 1100, 1200… vs. 1015, 1115, 1215 etc).   

 

Three intervals were considered: 15, 30 and 60 minutes. For the 15-min data, these 

are the average occupancy rates for each seat. For the 30-min data these are the 

observations recorded on the hour and half past each hour. For the 60-min data 

these are the hourly observations. There does not appear to be any significance 

difference between the three intervals at which occupancy observations were 

recorded (Figure 4.5). This was confirmed by Pearson’s correlation comparing 

occupancy rates at the 15, 30 and 60 min time intervals, each gives a p-value less 

than 0.001 (n= 250, p < 0.001). It was therefore concluded that observations 

recorded at hourly intervals lead to similar assessments of occupancy rate as those 

captured at 15 min intervals. 

 

     
    

(a)                                             (b)                                                (c) 

 
Figure 4.5. Comparison of the three intervals (a) 15min versus 30min dataset, (b) 30min 

versus 60min dataset, (c) 15min versus 60min dataset. Only data from experiment 3a are 

used. 

 

 

Next consider different approaches to selecting the hourly interval. An analysis was 

carried out comparing the four different approaches to establishing 60min intervals: 

on the hour, at quarter past, at half past and at quarter to. These comparisons are 

shown in Figure 4.6. In all six comparisons the high degree of correlation is 

suggested to be statistically significant (p < 0.001). It was therefore concluded that 

observations taken at hourly intervals on the hour provide satisfactory 

representation of hourly observations taken at other points.  
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(a)                                               (b)                                               (c) 

  

(d)                                               (e)                                               (f) 
 
Figure 4.6. Comparison of the four versions of 60min dataset (a) observations on the hour 

versus observations at quarter past, (b) observations at quarter past versus observations at 

half past, (c) observations at half past versus observations at quarter to, (d) observations on 

the hour versus observations at half past, (e) observations on the hour versus observations 

at quarter to, (f) observations at quarter past versus observations at quarter to. 

 

 

Considering the movement of occupants between two observation points, the time 

interval for which recordings are made is expected to be an important factor when 

recording seating behaviour. Yet, comparison of results from the observations made 

at intervals of 15min, 30min and 60min showed that occupancy rates vary within a 

very small range among the three time intervals. This could be explained by the 

duration of time an occupant spends in a seat. Though the time interval during which 

seating observations are carried out may be important in areas of high circulation or 

social areas where people spend shorter periods of time such as restaurants or 

cafes, it is less of an issue in library reading rooms where people may remain static 

for long periods of time. Therefore, this conclusion should be validated in surveys of 

spaces where occupancy tends to be for shorter periods, such as restaurants or 

cafes. 

 

Another source of experimental variation could be the season during which 

observations were recorded. Two distinct different seasons were selected, autumn 

(EX2) and summer (EX1 and EX3a), each enables different conditions of 
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observation such as daylight levels and occupant density. Note that the hourly data 

were used to assure data values are consistent among the three experiments. 

Figure 4.7 shows scatter plots of the relationship between the occupancy rates 

calculated for the summer and winter observation periods. A second order 

(quadratic) model has been used to create the best-fit curve for the data from the 

three experiments. As expected, the plots show similar relationships for EX1-EX2 

and EX2-EX3a. Although the two summer experiments (EX1 and EX3a) were not 

identical in sample size (EX1 was carried out over a two-week period and EX3a over 

a one-week period), there is enough similarity between the two scatter plots (Figure 

4.7a and Figure 4.7b) to expect reasonable similarity of changes in occupancy rates 

in summer and winter observation periods. 

 

    

          
(a)                                                         (b) 

 
Figure 4.7. Comparison of the occupancy rates in summer (EX1 and EX3a) and winter 

(EX2) periods. (a) EX1 and EX2, (b) EX2 and EX3a.  

 

4.3.5 Daytime-night time analysis 

 
In experiment 2 (EX 2), observations were drawn before and after dusk to enable 

comparison of seat choice in periods when daylight could, and could not, have a 

direct effect. Observations during hours of daylight were done between 09:00 and 

14:00, whilst after-dark observations were done between 18:00 and 21:00 (see 

Section 4.2.1 for sunrise and sunset times for the observation period). It is assumed 

that if daylight has a significant direct influence on seat choice, then observations in 

these two periods would lead to different occupancy patterns. Figure 4.8 shows 

occupancy rates from the night-time observations plotted against the daytime 

observations.  Pearson correlation suggests this degree of correlation is significant 

(n=250, p<0.001). This indicates that occupancy rates are similar in daytime and 

after dark, and hence that daylight has very little if any effect on seat choice. One 
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confound to this analysis is that the occupants tended to arrive whilst it was still light, 

and were influenced by this, and then remained at the same location into the after-

dark period.  

 

 

 

Figure 4.8. Occupancy rate observed at night time plotted against occupancy rate observed 

at daytime. 

 

 
4.4 Walk-through approach 

 
The experiments reported in this section attempt to measure the robustness of the 

results obtained from the snapshot data. This was developed in a second method in 

which the movement of individual people was recorded as they choose a seat. This 

procedure was employed in experiment 3 (EX 3) alongside the snapshot 

observations. 

 

4.4.1 Procedure 

 
Snapshot observations did not allow recording sequences of behaviours since the 

observer considered only short sample intervals and recorded behaviours at sample 

points in time. In the walk-through method, movements of occupants were recorded 

from when they enter the reading room until they choose a seat. This procedure 

involved tracking, rather than producing a static picture, and following the movement 

of one occupant at a time. As the tracks of multiple library users are overlaid a 

pattern may emerge that indicates desired seats and pathways. 

  

One potential problem with the walk-through approach is that it might be impractical 

or unreliable as whilst the observer is recording one behaviour some other 

information is likely to be missed (Mills and Nankervis, 1999). One step towards 

addressing this problem is to use technologies that allow for automatically tracking 
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the movement of occupants, thereby capturing things not noticed at the time of 

being present. Clips of occupant movements in the room could be recorded, either 

as a continuous motion video or as a sequence of still images taken and displayed 

in sequential order. These approaches have not been used in previous research 

(see Chapter 2). For the current study, audio or video recordings were not allowed 

due to privacy reasons. To overcome this limitation, walk-through observation was 

carried out during the summer period when room occupancy was low, allowing the 

researcher to record the behaviour of a single occupant and be available to observe 

the next occupant who arrives. The observed seat choices were then compared with 

the snapshot record for that same moment of time to ensure consistency between 

two datasets (note that the walk-through observation was carried out in parallel to 

the snapshot observation).  

 

The pattern and direction of movement were traced on the floor plan and the seat 

number chosen was recorded. Visually overlaying the routes followed by occupants 

could help identify those paths/areas which are predominantly used when entering 

the room. A method of notation was developed using identification numbers and 

lines for locating recorded seating behaviours on the seat map (Figure 4.9). 

 

 

Figure 4.9. Seat map showing the direction and movement of each occupant (a single line 

with an arrow head) through the reading room. Each occupant was given an identification 

number to indicate the order of entrance into the room. Note that these data are for only one 

day (day 1). 
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Once the occupant had entered the reading room, the experimenter followed a short 

distance behind. As in the snapshot experiments, the occupants being observed 

were not made aware of the research being undertaken to avoid any influence this 

may have had on their movements and behaviour. For each observation, the route 

taken by the occupant was tracked and the amount of time they spent in the seating 

area was recorded. The activity they displayed while in the seating area was noted, 

including their use of power sockets. Additional data were also captured on each 

occupant, such as being or not being in a group, as these were expected to have an 

effect on outcomes. A total of 203 users’ seat choice and walking path were 

recorded. The raw data was gathered using observation record sheets (see 

Appendix F). 

 

4.4.2 Results: Group settings 

 
There may be differences between seat choices made by individuals (people 

working alone) and by groups (people actively engaged with one or more people for 

a common purpose). When people are in groups, they may behave differently than 

they do when they are alone. For example, whilst individuals may prefer to sit away 

from others for privacy, a group of people may tend to sit in close proximity to each 

other, either next to each other or opposite each other to increase social interaction, 

this being some form of verbal or nonverbal communication among group members.  

This was analyzed at two levels: individual and group. The latter can be further 

broken down into two sub-levels: groups actively collaborating and groups sitting 

together but working alone. Because the experiment was carried out in a 

supposedly quiet area where social interactions among occupants are less likely to 

occur, however, these aspects were not considered and the analysis of group 

seating behaviour was intentionally kept fairly simple. 

 

The data indicate that occupants sat individually (77%) more often than they sat in 

groups (23%). It should be noted that one-eighth of the room was designed for 

individual use (the window seating area), while seven-eighths of the room was 

designed to be more collaborative in nature (central seating area). The majority of 

observed group work (81%) was two people working together; only 19% of groups 

comprised three or more people. Often, two or more people occupied a table in the 

central seating area as it can accommodate larger groups. However, this doesn’t 

entirely account for the very low number of groups working together in the window 
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seating area since sometimes there were two people sitting opposite each other and 

there were tables that groups could use. 

  

The results suggest that any preference for daylight may have been overridden by 

group settings. Seating behaviour cannot be explained only by daylight. A high level 

of privacy offered by individual seating in the window seating area or the presence 

of large tables for group work in the central seating area may also be influential, so 

an important question is whether there are any privacy considerations that might 

affect individuals’ seating preferences. One approach might be to quantify the ratio 

of people in close proximity to determine local density. Further discussion of this is 

given in the next section. 

 

4.4.3 Results: The local occupancy density 

 
The density of individuals in the seating area, and thus how crowded people feel, 

could have an impact on their seating preferences. Occupants’ seating decisions 

might differ when the seat next to theirs is already occupied by another person than 

when it is unoccupied.  The theory of proxemics, originally proposed by Hall (1966), 

describes what interpersonal relationships are mediated by distance. The idea is 

that there is an optimal personal distance from others at which people feel 

comfortable, although this varies according to culture and social context (Hall, 1966; 

Patterson, 1976). Choosing a seat adjacent to already occupied seats means 

narrowing down personal distance. As discussed in the previous section, people 

may adjust their spatial relationships with others according to the activity they are 

engaged in, either individual work or group work. It was assumed that the distance 

sought from others is likely to be larger for those working alone than for those 

working in groups. 

 

Considering proxemics interactions in a library room setting that accommodates 

fixed seating and tables, each seated person has a definite position and personal 

space, and their seating preferences are likely to have been affected by the 

presence of others. In the current experiment, sitting on two neighbouring seats 

places occupants at less than 75 cm apart, which apparently remains below the 

minimum public distance proposed by Hall (1966), a distance of 3.7 m (12 feet) at 

which an occupant would be able to take evasive or defensive action if threatened 

(Hall, 1966).  
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With the exception of Wang and Boubekri (2009), none of the previous seat choice 

studies have investigated the effect of presence of enclosures. In their experiments, 

Wang and Boubekri (2009) compared individual seats according to the number of 

enclosed sides around them, but did not provide any measure of proximity or 

occupancy density. The aim of this experiment is to take one step towards a more 

comprehensive approach which may lead to a more convincing conclusions 

regarding whether proximity to other people affects seat choice. The approach used 

in the current experiment is based on the conception of neighbourhood to determine 

the local occupancy density. This is expressed as the percentage of occupied 

neighbouring seats on arrival. The number of neighbour in the example presented in 

Figure 4.10 is set at eight (Coates, 2010). 

 
 

 

Figure 4.10. The eight different ways of having a single neighbour. Note that dark grey 

shading indicates the cell being updated and light grey shading indicates the neighbour of 

that cell. 

 

 

Two common neighbourhood patterns are the Von Neumann and the Moore. Whilst 

the von Neumann neighbourhood comprises of four cells orthogonally surrounding a 

central cell, the Moore neighbourhood takes into account eight cells on a two-

dimensional square lattice (Maignan and Yunes, 2013) (Figure 4.11). 

 

 
 
Figure 4.11. The von Neumann neighbourhood (left) and the Moore neighbourhood (right). 

Note that dark grey shading indicates the cell being updated and light grey shading indicates 

neighbours of that cell. 

 
 

The definition of neighbourhood is somewhat arbitrary and in theory modifiable 

depending on the context. With regard to the layout of the room where the 

experiment was undertaken, it seems reasonable to assume that the seating 
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preferences may not be influenced by the presence of other people outside the 

visual field, which extends up to about 100° laterally (Boyce, 2014). Hence, in the 

current experiment, the Moore neighbourhood concept has been extended to 

incorporate other factors rather than just possible neighbours in the area, such as 

the seating position and the inclusion of visual view angle. The number of 

neighbours of a seated occupant was calculated on the extent to which another 

occupant would intrude into the 100° field of vision. Along with the seats on both 

sides, this approach takes into consideration those seats directly opposite and 

diagonally opposite the person (Figure 4.12). 

 

     

 
Figure 4.12. Around each seated occupant there exists a neighbourhood within occupant's 

field of view (Adapted from the neighbourhood concept proposed by Moore). 

 

 

The local density was calculated for each seated individual by dividing the number 

of people in the modified Moore neighbourhood by the number of seats in that 

neighbourhood. Each individual was then assigned a value ranging between 0 and 

1, with 0 indicating that there is no one sitting in neighbouring seats on arrival, and 1 

indicating all neighbouring seats are occupied. The total number of seats surveyed 

was 250, of which 38.4% were partitioned and 61.6% were non-partitioned. The 

partitions were of 450mm height, providing visual separation between the seats. The 

occupants seated behind the partitions were not taken into account as they were 

outside the visual field of view. The example shown in Table 4.7 illustrates the 

calculation method for a partitioned and non-partitioned seat. 
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Table 4.7. Example calculation of the local density for the two occupants (day 3) (see 

Appendix F for the locations of the occupants). Note that the occupied neighbouring seat is 

not taken into account if there is a partition between the seats. 

 
 
Occupant 

id no 

Seat 

no 

Partitioned/Non-

partitioned 

Number of 

occupied seats in 

the neighbourhood 

Total number of 

seats in the 

neighbourhood 

Local 

density 

42 27 Non-partitioned 1 3 0.3           

47 207 Partitioned 1 3 0 

 

 

It was assumed that if physical proximity matters, people would tend to sit in a seat 

with a low local density score. Figure 4.13 shows the number of people for each 

density category. As expected, the plot shows that most people chose to place 

themselves in areas with a local density score of 0. For those people who sought 

privacy (i.e. local density score of 0), there was no apparent trend in seat location. In 

other words, people tended to sit some distance apart from others, regardless of 

whether they preferred window or central seating area. 

 

 

 
 
Figure 4.13. Local density in window seating area (Zone 1) and central seating area (Zone 

2-5). 
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A potential alternative explanation for these results would be that seat availability may 

have limited occupants' choices. For example, occupants whose preferred seat is not 

available may be forced to sit next to an already occupied seat. In such cases, 

occupants may have little or no control over their proximity to others. That is to say, 

the close proximity of occupants to others may result from circumstances beyond their 

control, and it may be this difference in individual control that is responsible for the 

effects observed in the current experiment. 

 

This section has explored a method that uses a modified Moore neighbourhood 

concept to determine the effect of local occupancy density on actual seat choice. 

Local density was estimated by the number of people seated within the visual field in 

the modified Moore neighbourhood. The results from this investigation suggested 

that occupants tended to sit apart from others, as the local density was low in most 

cases. The proposed method provided insight as to how occupants place 

themselves in relation to those already present. It should be noted however that the 

method provided only a proxy measure of individuals' proximity to others and 

different approaches can be taken. 

 

4.4.4 Results: Length of stay 

 
The snapshot approach used in previous experiments attempted to provide static 

pictures of seating behaviour of occupants at specified time intervals. Although no 

significant difference was found between the three time intervals used (15min, 

30min and 60min), it is possible that this approach could still have been influenced 

by differences in the length of stay among occupants. Longer length of stay in the 

window seating area may have resulted in a higher occupancy rate while shorter 

length of stay in the central seating area may have resulted in a lower occupancy 

rate. Both these assumptions would in theory account for the higher occupancy rate 

observed in the window seating area compared to the central seating area and thus 

likely to influence resulting outcomes and bias the comparison. An alternative 

analytical approach that could address this limitation or confirm/refute conclusions 

drawn from the snapshot observations data is to examine the trends in length of stay 

among occupants.  

 

Length of stay (duration) was defined as the amount of time a given desk is 

occupied, determined by the arrival and departure times as recorded by the 

experimenter. It should be noted that this record may not be a completely accurate 
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measure of the exact number minutes spent at the desk (i.e. occupants may leave 

their desks temporarily), but it can provide a reasonable estimate of the time a desk 

is occupied. A series of arrival and departure times recorded for each occupant, with 

the difference between the two times being calculated to determine the length of 

stay. The overall mean length of stay across five zones was 2 hours and 35 minutes 

with a standard deviation of 1 hour and 57 minutes. The longest length of stay 

among occupants was 8 hours and 36 minutes and the shortest length of stay was 2 

minutes. 

 

The mean length of stay in each zone is shown in Figure 4.14, and was compared 

using one-way ANOVA. This suggested that the mean length of stay differed 

significantly between all five zones (F(4,198) = 11.114, p <0.001). A Tukey post hoc 

test revealed that Zone 1 (window area) produced significantly higher length of stay 

than Zone 2 (p <0.001), Zone 3 (p <0.05), Zone 4 (p <0.001) and Zone 5 (p <0.001). 

There was no statistically significant difference between the zones in the central 

area (Zone 2-5) (p-values range between 0.961 and 0.999).  

 

 

Figure 4.14. Mean length of stay by zone. Error bars show Standard Error of the Mean. 

(Zone 1= window seating area, Zone 2-5= central seating area) 

 

 

These results suggest that the length of stay had an effect on the occupancy results: 

The amount of time spent at a desk was significantly longer in the window area 

(Zone1) than in the central area (Zone 2-5). This confirms the assumption that high 

occupancy rates can be due to longer lengths of stay rather than higher number of 

occupants occupied. This presents a limitation in the snapshot approach. 
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4.4.5 Results: Type of activity 

 
An alternative explanation for the differences in occupancy rates observed in the 

reading room is the probability of an individual being focused on a particular task 

whilst limiting attentional capture by other stimuli such as daylight. That is, the 

difference in occupancy rates between seating areas could be attributed to the fact 

that some occupants were engaged in a computer-based task, which demanded 

greater attention to be paid to the presence of power sockets, and give evidence 

that seating behaviour is influenced by the task being undertaken. To examine how 

task and the availability of power socket influence seating preferences, occupants 

were classified in terms of the tasks they perform, these included computer and 

paper-based tasks. It was assumed that those who carry out computer-based tasks 

would need access to a power socket, while those who carry out paper-based tasks 

do not. Then there might be a third group, for which it is unclear whether the access 

to power sockets matters or not, such as those carrying out computer-based tasks 

but do not require external power supply. Table 4.8 presents a summary of power 

socket availability and usage for the two task groups. 

 

 
Table 4.8. Availability and usage of power sockets for computer-based and paper-based 

task groups (n=203). 
 
 Computer-based 

task 

Paper-based 

task 

Total 

Power socket available and being used 40 n.a. 40 

Power socket available but not being used 2 23 25 

Power socket not available 46 92 138 

Total 88 115 203 

n.a. (not applicable) 

 

 

The need for access to power sockets may have altered occupants seating 

behaviour and increased their tendency to sit close to a power socket if they were 

carrying out computer-based tasks. It should be noted that power sockets are not 

provided on all desks but only on some of those located in window seating area 

(Zone 1) (see Appendix G for power socket availability on each seat). The window 

seating area thus begins to represent a workspace that is designed to enable 

occupants to perform certain tasks (computer-based tasks), which may explain part 

of the differences in occupancy rates between seating areas.  
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When activity is examined separately for the two seating areas, findings have shown 

that occupants seated in the window seating area in which all power sockets are 

located include not only those who carry out computer-based tasks, but also those 

who carry out paper-based tasks (55% and 45% respectively). Likewise, occupants 

seated in the central seating area include those who carry out paper-based tasks 

(69%) as well as computer-based tasks (31%) (Figure 4.15). 

 

 

 

 

Figure 4.15. Type of activities and availability/usage of power sockets in window seating area 

(Zone 1) and central seating area (Zone 2-5). 
 

 

The number of people performing a computer-based task observed in the central 

seating area with no available power sockets suggests that the sequential process 

of seat choice may have introduced bias and that the seat choices may have 

resulted from the absence of available seats with power sockets in the window 

seating area, though these are difficult to confirm with observational data. These do 

not undermine the implications of the results however, as regardless of whether the 

decisions about seating location were task-relevant or task-irrelevant, the point is 

that there was no clear evidence of an association between availability of power 

sockets and seat choice. 
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4.5 Summary 

 

This chapter has described the methods used to investigate actual seat choice 

behaviour in the test room. Three experiments were carried out, one in the autumn 

and two in the summer, to account for seasonal variations in daylight and 

occupancy. Seat choice behaviour was assessed using two methods: snapshot and 

walk-through. While the reliability of data collected with one particular method may 

be questioned, confidence can be drawn from the convergence of results obtained 

with both snapshot and walk-through methods. Snapshot approach included 

recording data at regular intervals, with each record representing a snapshot of the 

use of the seats at a particular time. In this approach occupancy rates were 

calculated using a formula adopted from National Audit Office (NAO) to provide a 

quantitative basis for seating preferences. The results showed a general preference 

in all experiments to sit near windows: occupancy rates were higher in window area 

compared to central area. In the central area where occupancy was low, there was 

no significant change in the occupancy as a function of the distance from the 

windows. It appears that proximity to windows has little effect on those who sit in the 

central area. 

 

One potential problem with carrying out field observation studies in natural 

conditions as in this case is the difficulty in controlling the environmental conditions 

so that specific variables such as daylight can be isolated for investigation. An 

attempt to address this was done by recording seating behaviour of occupants 

during the daytime and after dark. A comparative analysis of data revealed that a 

relationship existed between daytime and after-dark occupancy rates, suggesting 

that the effect of daylight may be small.  However, these data should be interpreted 

with caution because of the effect of length of stay: Occupants arriving during 

daytime may have remained in their seats after dark. This may have resulted in 

overestimation of occupancy rates after dark. 

 

Walk-through experiment explored seat choice behaviour not as a snapshot of 

specific occupancy patterns captured at a particular instant but in terms of 

sequential movement. Observations were made by a second experimenter in 

parallel to snapshot observations. The experimenter kept watch over the room from 

some distance away and recorded the movement of people entering, where they 

sat, what they do, and how long they remained at their seats. The collected data 

suggested that there is a tendency for the individuals seated in window seating area 



103 
 

to remain in their seats for longer periods of time, a preference for individuals to sit 

apart from others for privacy, and a preference for groups to sit in close proximity to 

each other. These findings support the conclusion that occupants prefer to sit near 

windows and raise issues of privacy and the length of stay.  

 

Next chapter describes and discusses a simulation framework that quantifies 

daylight levels in the test room. The first part provides a description of the simulation 

model and the second part presents an analysis of the ability of a range of 

illuminance-based metrics to predict seat choice behaviour. 
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CHAPTER 5. SEAT OCCUPANCY AND DAYLIGHT 

 

5.1 Introduction 

 
This chapter examines methods for prediction of daylight performance metrics by 

means of simulation. The first part of the chapter describes the simulation 

framework devised to investigate these metrics, and summarizes the results. The 

second part presents the statistical analysis used to correlate the metrics derived 

from the simulations with the results from revealed preference surveys presented in 

Chapter 4. Finally, the chapter concludes with a discussion of the limitations of the 

simulation method and suggestions for future research. 

 

5.2 Daylighting analysis: A simulation-based approach 

 
Daylight performance was evaluated through simulation to gain a reasonable 

estimate of the variation in daylight illuminance in the test space. This section 

describes the steps taken in the simulation process, the weather data used for the 

simulations and the parameters and indicators considered for the analysis. Finally, a 

discussion on the validation of the simulation method and the results of simulations 

are presented.  

 

5.2.1 Simulation method 

 
Simulations were carried out for the test room using the RADIANCE-based 

daylighting analysis tool DAYSIM within Autodesk ECOTECT. This method resulted 

in the following simulation procedure (shown schematically in Figure 5.1) being 

made in the sequence outlined below: 

 

1. Setting up a three-dimensional model of the building in ECOTECT. 

2. Importing this model to DAYSIM which determines the illuminance due to 

daylight at a series of grid points.  

3. Calculation of daylight metrics from these illuminances using a spreadsheet.  
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1.  ECOTECT Model  2.  DAYSIM Analysis  
3.  Post-Processing  
     Output 

 

 

 

 

 

 

   

 
Figure 5.1. Simulation process flow chart. ECOTECT (2011) was used as the modelling 

interface from which the DAYSIM (version 3.1) program was launched; the subsequent 

output was then modified in EXCEL to extract data of interest and to match recommended 

simulation parameters (i.e. 3000 lux upper threshold of UDI). 
 

 

A similar procedure was used by Pechacek et al (2008) who combined annual 

daylight simulation with photobiology data to evaluate circadian efficacy of daylight 

in interior spaces. They built a three dimensional model of the space in ECOTECT 

and then exported to DAYSIM to then have the files necessary to carry out post-

processing using a MATLAB-based script. For the current study, the numerical data 

obtained from the simulations were post-processed in Microsoft’s EXCEL and the 

resulting data were subsequently imported into MATLAB for visualization purposes. 

 

The RADIANCE calculation engine used in DAYSIM applies backward raytracing 

simulation method, where rays are emitted from the point of interest and traced 

backwardly until they either hit a light source or another object (Larson and 

Shakespeare, 1998). DAYSIM uses the RADIANCE algorithm combined with the 

daylight coefficient approach (Tregenza and Waters, 1983) and the Perez sky model 

(Perez et al., 1990, 1993) to predict the annual time series of interior illuminance 

values at each sensor point over a specified area (Larson and Shakespeare, 1998; 

Reinhart and Walkenhorst, 2001). The daylight coefficient method, originally 

proposed by Tregenza and Waters (1983), divides the sky into 145 sky segments 

and calculates coefficients using backwards ray tracing methods to relate the 

luminance of each sky segment to a point inside the space. It describes how much 

light a point on a surface receives from a certain sky segment compared to all the 

other segments, and a complete set of daylight coefficients for all sky segments then 

defines the relationship between a point within scene and celestial hemisphere. 
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The computed daylight coefficients are then coupled with the weather data, the 

results of which serve as input to calculate the annual time series of interior 

illuminances. DAYSIM uses the Perez all-weather sky model, which extends beyond 

the relative distributions of the standard CIE sky models to provide customized 

luminance distributions based on direct and diffuse irradiances taken from the 

weather file. (Perez et al., 1990, 1993; Reinhart and Walkenhorst, 2001). In other 

words, Perez all-weather sky model uses irradiance values as inputs to generate the 

sky luminance distribution patterns for all sky conditions from overcast to clear, 

through partly cloudy. In doing this, a representative sky for each time step in the 

weather file is created and sampled over the same sky discretization pattern as 

used for the daylight coefficient generation. Then a matrix multiplication operation is 

performed to compute the daylight illuminance (Reinhart and Walkenhorst, 2001).  

 

Daylight illuminances were determined for a set of pre-defined sensor points at 

specified intervals across the given time period. The resulting time series of 

illuminances were post-processed with custom algorithms that determined the 

performance metrics for each sensor point. The entire simulation process, as 

illustrated in Figure 5.2, implies a series of stages. 

 

 

           

           

           

           

           

           

           

           

           

           

           

           

         

Figure 5.2. Schematic diagram of simulation process. 
 
* DAYSIM uses the Radiance algorithm combined with a validated daylight coefficient 

approach and the Perez sky model to simulate time series of indoor illuminances 

(Reinhart and Walkenhorst, 2001). 

 

INPUT 

 

 

 

 

 

 

 

OUTPUT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCENE 

Geometry 

Materials 

Sensor Points 

SKY MODEL 

Date 

Time 

Location 

Sky condition 

Weather data 

 

 

 

 

 

 

 

MODEL PROCESSING 

RADIANCE/DAYSIM* 

 

 

 

 

 

 

 

DAYLIGHT 

SIMULATION ENGINE 

Backward Raytracing 

 

 

 

 

 

 

 



107 
 

The simulation procedure shown in Figure 5.2 is summarized below: 

 

1. A three-dimensional model of the test space was generated in Autodesk 

ECOTECT. The model contains information on the geometry of the building 

with immediate surroundings as well as the surface material properties (The 

building geometry for the simulations was provided by the Department of 

Estates and Facilities Management in an AutoCAD format). A survey of the 

reading room was also carried out to obtain all relevant information relating to 

the interior space, to be inserted into the three-dimensional model produced 

by software, as described in IES LM 83 (IES Daylight Metrics Committee, 

2012). A grid of sensor points was specified in the horizontal plane on the 

surfaces of individual desks where illuminances were to be determined. 

 

2. A weather file for the building was imported that includes irradiation data (As 

described previously, DAYSIM uses the Perez all-weather sky model, which 

require direct and diffuse irradiances as input for each time step). These data 

were obtained from the solar radiation measurement station located on a 

nearby building (see Section 5.2.2). The weather file was generated based on 

the irradiation data for the period of observation, this was done by extracting 

the corresponding data from the database, the details of which are discussed 

later in this chapter. 

 

3. Model geometry and simulation settings were then exported into 

Radiance/DAYSIM format. The output from DAYSIM was a data file containing 

the illuminance values for pre-defined sensor points in the space, located at 

work plane level (0.75m from the floor). Some of these sensors were singled 

out as ‘core work plane sensors’, that is, sensors close to where the 

occupants are located (Nabil and Mardaljevic, 2005). This approach makes it 

possible to calculate the illuminance profile for those individual sensor points 

on the horizontal grid that corresponded with the location of each individual 

seat in the model. 

 

4. Simulation results were post-processed in Microsoft’s EXCEL in order to 

determine daylight metrics for each seat separately, these included horizontal 

work plane illuminance as well as dynamic performance metrics such as 

daylight autonomy and useful daylight illuminance. This step 

involved identifying which times of the year to consider as a time basis for 
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daylight performance metrics (i.e. two-week period in August for Experiment 

1), extracting data of interest from the annual indoor illuminance data sets, 

and, finally, setting the ranges with which the results will be evaluated (i.e. 

100-3000 lux range for UDI). 

 

5. The illuminance profiles determined separately for the two observation periods 

were coupled with the occupancy pattern. Note that the choice of using 

illuminance-based metrics as opposed to luminance-based metrics is linked to 

the decision under Chapter 2 to use work plane illuminances as a basis to 

judge whether the daylighting is ‘adequate’, which is assumed to be an 

important factor when choosing a seat. Further investigation with regard to 

using luminance-based metrics is proposed for future study (see Chapter 7). 

 
 
 
5.2.2 Weather data 

 
The study is based on instantaneous measurements of irradiance data collected at 

the solar radiation measurement station located on the roof of the Hicks Building, 

within 200m of the test building (53°22'52" N, 1°29'11" W) (Figure 5.3). The station 

was put into operation in 2010 and has been in use ever since. The data is being 

collected as part of the Sheffield Solar Project, which is funded by the EPSRC (Solar 

Energy for Future Societies: EP/I032541/1; Wise PV: EP/K022229/1) and the 

University of Sheffield.  

 

The weather station is equipped with a SPN1 Sunshine Pyranometer from Delta-T 

Devices, which measures both direct and diffuse radiation (W/m2), and a data logger 

(Delta-T Logger), which initiates the readings, controls the sensors and stores data 

related to 2 minutes range. The manufacturer specifies an overall accuracy for both 

the direct and diffuse radiation of ±8% (±10 W/m2) for individual readings (Delta-T 

Devices, 2007). Performance classifications of pyranometers are defined by the 

International Standard ISO 9060/1990, which are also adopted by the World 

Meteorological Organization (WMO, 2008). According to the specified standards, the 

SPN1 Sunshine Pyranometer matches or exceeds the ISO First Class standard and 

the WMO Good Quality standard for a solar pyranometer in all respects apart from 

the spectral response, which is accurate to ±10% over 400 x 10-9 m to 2700 x 10-9 m 

(exceeds the standard accuracy limit of ±8%) (Delta-T Devices, 2007). 

 

http://www.delta-t.co.uk/product-display.asp?id=SPN1%20Product&div=Meteorology%20and%20Solar
http://www.delta-t.co.uk/
http://www.delta-t.co.uk/
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Figure 5.3. Solar radiation measurement station. Left: Location of the library building 

(marked with a red dot) and the solar radiation measurement station (marked with a blue 

dot). Right: Measurement equipment (Pyranometer, type SPN1).  

 

 

The pyranometer uses multiple sensors and a computer-generated shading pattern 

that ensures some sensors are exposed to direct sunlight and some are in the 

shade. This allows inferring the global horizontal irradiance (GHI) and diffuse 

horizontal irradiance (DHI); and subsequently the output enables calculation of 

direct normal irradiance (DNI) using Equation 5.1 (Delta-T Devices Ltd, 2007). 

 

 

DNI = (GHI − DHI)/cos(SZA)  Equation 5.1 

 

where SZA is the solar zenith angle calculated at a given time. 

 

 

The method was to select daily courses of instantaneous illuminances collected over 

the observation periods from the Sheffield Solar database, where instantaneous 

illuminances are 1-second recordings taken at 2-minute intervals, programmed in 

MATLAB with MySQL database storing data. The instruments are regularly 

calibrated by comparison against a Kipp CM 21 secondary standard pyranometer, 
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which is traceable to the World Radiometric Reference (WRR) – the accepted 

worldwide standard for solar radiation (Delta-T Devices, 2007; Gueymard and 

Myers, 2008). A description of the dataset used in simulations is given in Table 5.1. 

 

 

Table 5.1. Weather dataset used in simulations. The data were generated based on a 

measurement period from 2014 to 2015. Separate datasets were created for each year. 

Station Period of 

measurement  

Latitude Longitude Time Step Calibration 

Reference 

Standards 

Sheffield 2010-present 53.38 N 1.48 W Two minute 

instantaneous 

World 

Radiometric 

Reference 

(WRR) 
 

 

The final dataset contains time series of direct normal and diffuse horizontal 

irradiance at 2 minute intervals. It should be noted that daylight simulation studies 

generally use hourly irradiation data and thus tend to neglect the short-term 

dynamics of daylight, which eventually lead to underestimation of indoor illuminance 

(Walkenhorst et al, 2002). For the current study, the measured weather data from 

the solar radiation measurement station compromise irradiation data at intervals less 

than one hour - a typical time step between records for standard weather files such 

as Test Reference Year (TRY) - thus enabling the observation of typical changes in 

shorter intervals. By using the weather data for the precise periods of the 

observation with a shorter time step removes one source of uncertainty in the 

analysis that might have been present if instead a standardised or averaged hourly 

weather data set had been used.  

 

Global horizontal irradiance data recorded at the weather station for the year 2014 

are plotted in a temporal map using MATLAB, as shown in Figure 5.4. The shading 

in the figure represents the magnitude of the irradiance with zero values shaded in 

dark blue, indicating the hours of darkness. Figure 5.5 illustrates the mean daily 

global and diffuse solar radiation data for the two observation periods, summer and 

autumn. These figures reveal daily/seasonal variations of irradiance, with shorter 

periods of daylight in the winter months and longer in summer.  
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Figure 5.4. Temporal map of the global radiation recorded with the SPN1 pyranometer. 

The graph shows the 2014 dataset. 

 
 

 

 
 
Figure 5.5. SPN1 readings at 2 minute intervals as recorded over the two observation 

periods: Summer (EX1 and EX3) and Autumn (EX2).  For the summer period, the mean 

values of the two data sets are displayed. 

 

 

To create a weather file to be used with the simulation model, an approach similar to 

that used by Matterson et al (2013) was taken, using the standard weather data 

integrated into ECOTECT as the baseline. The baseline dataset consisted of hourly 

values of solar radiation data for Sheffield. The study then applied the modified 

Skartveit-Olseth method implemented in DAYSIM to create 2-minute irradiance data 

from the hourly data (Skartveit and Olseth, 1992; Walkenhorst et al., 2002). The 

stochastically generated short time-step solar irradiance data file was adjusted 

manually by modifying the values of direct and diffuse horizontal radiation according 

to data obtained from the weather station. 
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5.2.3 Simulation parameters 

 
The surface reflectance properties were determined through physical 

measurements. The measurements were taken for the surface under investigation 

and for a reference surface with a known reflectance (a grey test card of 18% 

reflectance) using a handheld LS-110 luminance meter. The reflectance of the test 

surface was then determined by comparison with the reflectance standard available 

in the form of the 18% grey card, as in Equation 5.2 (SLL and NPL, 2001; Tregenza 

and Loe, 2014). 

 

 pt = ps
Lt

Ls
                    Equation 5.2 

 

 

where pt is the reflectance of the target, i.e. the unknown surface  

ps is the reflectance of the standard (in this case the grey test card) 

Lt is the luminance of the target surface  

Ls is the luminance of the standard surface 

 

 

The method was to measure the luminance of the material (target surface, Lt) and 

then the luminance of the sample card (standard surface, Ls) placed immediately 

beside it. The paired measurements were repeated ten times for each surface (floor, 

walls and ceiling), changing the target spot around the room each time. Table 5.2 

reports the measured reflectance values corresponding to each element.  

 

 

Table 5.2. Measured reflectance values. Mean and standard deviation 

determined from 10 individual measurements. 
  
Surface Description Measured value  

  Mean Standard deviation 

Floor 80/20 carpet tile 0.08 0.01 

Wall Plaster 0.72 0.04 

Ceiling Metal tile 0.59 0.02 

Bookshelves Metal 0.04 0.01 
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Measurements to determine the transmission of the existing low-emissivity double 

glazing were carried out using two illuminance meters (Minolta T-10M). The method 

involved measuring the percentage reduction between the incident light levels under 

the same target spot. In order to minimize errors due to temporal variations, the 

measurements were taken under overcast sky conditions where the luminance 

distribution of the sky is relatively stable. The glass dirtiness was not taken into 

account, assuming that the cleansing effect at regular rainfalls in the area was 

adequate to keep the reduction in transmission due to dirt within acceptable limits 

(less than 10%) (Sharples et al, 2001). Five paired readings were taken, changing 

the target spot on the glass surface each time. The meters were interchanged 

during each sequence of measurements to eliminate inaccuracy from meter error, 

as was done by Tregenza (1998) when investigating calibration methods. The mean 

transmittance was 0.58 with a standard deviation of 0.06. This measure of 

transmittance appears relatively low compared with the typical transmittance value 

of low-emissivity double glazing, which is given as 0.69 in CIBSE guidance (CIBSE, 

2006b). This lower transmittance of glazing may be due to the type of coating 

applied. A special coating may have been applied to improve thermal performance 

of existing windows. This may have decreased light transmittance. The reflectance 

value of the grass outside of the library building was estimated to be 0.25 (CIBSE, 

1999). 

 

The Radiance simulation parameters that determine the accuracy and precision of 

the predictions were presented in Table 5.3. These parameters were chosen based 

on recommended values from earlier DAYSIM validation studies and correspond to 

‘scene complexity 1’ as defined in the DAYSIM tutorial (Reinhart, 2006) (i.e. the 

model does not have any dynamic facade elements) (Larson and Shakespeare, 

1998; Reinhart, 2006). For example, the simulation considered up to 5 ambient 

reflections from the environment (ambient bounces, ab); and, for each sensor point 

1000 rays were cast to sample the ambient environmental conditions (ambient 

divisions, ad) (Larson and Shakespeare, 1998; Reinhart, 2006). 
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Table 5.3. Radiance simulation parameters. 

Parameter Description  Value 

ab  ambient bounces The number of diffuse interreflections which will 
be calculated before a ray path is discarded 

 5 

ad  ambient divisions the number of sample rays that are sent out from 
a surface point during an ambient calculation 

 1000 

as  ambient super-
samples 

the number of extra rays that are sent in sample 
areas with a high brightness gradient 

 20 

ar  ambient resolution the density of ambient values used in interpolation  300 

aa  ambient accuracy the error from indirect illuminance interpolation  0.1 

 

There were no system dynamics such as electric lighting or shading control 

considered in the simulations. The two options ‘Blind Use’ and ‘Blind Control’ were 

not changed (assumed as ‘Passive’ and ‘Static’ respectively) as there was no 

shading device taken into consideration in the calculations. It was recorded that the 

electric lighting was switched on for the entire period investigated. However, the 

contribution of electric lighting to the overall illuminance was small relative to that of 

daylight, and therefore not considered in the analysis. 

 
5.2.4 Performance indicators  
 
Daylight performance was assessed by considering horizontal illuminance on the 

work plane, following the approach taken in previous research (Christoffersen et al, 

2000; Kim and Wineman, 2005; Othman and Mazli, 2012; Wang and Boubekri, 

2009). The locations of the core work plane sensors were defined according to the 

precise seating configuration such that each sensor point corresponds to the 

position of each individual seat (Figure 5.6). 

 
 

  

 
Figure 5.6. Section through the test room showing sensor points for which daylight 

indicators are calculated (left); seating plans with marked positions of sensor points (right). 

Each sensor point corresponds to the geometrical centre of the desk (or desk portion) 

surface. 

Partitioned Non-partitioned 
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Given the measured solar irradiation data within the observation time period, a 

representative illuminance value was determined for each sensor point at each 2-

minute time interval. It should be emphasized that dynamic daylight simulations are 

generally performed for the entire year to analyse daily or seasonal variations in 

daylight (Mardaljevic, 2006; Walkenhorst et al, 2002). Such cumulative methods are 

typically used for calculation of energy consumptions or the determination of 

seasonal dynamics of daylight at the early design stage (Mardaljevic, 2006; 

Reinhart, 2001). When the purpose of the simulations is to investigate the finer 

dynamics of daylight over a specific period of time, as in the simulations carried out 

in this study, the use of average illuminance is recommended instead of point-in-

time illuminance (Athalye and Eckerlin, 2009; Ibarra and Reinhart, 2013; Matterson 

et al, 2013). This is because DAYSIM calculates solar contributions using an 

interpolation approach, which relies on a predefined set of sun positions (65 sun 

positions at 10° angular separation in azimuth and altitude). In doing this, each 

actual solar contribution is determined by averaging the results from four 

neighbouring predefined positions. Such an interpolation algorithm used by the 

DAYSIM simulation engine leads to uncertainty of the sun’s position, which in turn 

leads to discrepancies in the instantaneous results at any single point in time 

(Bourgeois and Reinhart, 2006; Reinhart and Walkenhorst 2001). A comparison was 

therefore made for the average values of illuminance rather than point-in-time 

illuminance, as was done by Athalye and Eckerlin (2009) and Matterson et al (2013) 

when investigating the relationship between measured and simulated illuminance 

data.  

 

Daylight levels within the test space were evaluated using daylight factor (DF), and a 

further investigation was carried out in order to determine dynamic daylight 

performance metrics, these were generated from large sets of illuminance results 

with different reduction techniques with respect to the observation period. Among 

the several dynamic metrics which have emerged, the Daylight Autonomy (DA) and 

the Useful Daylight Illuminance (UDI) as defined by the Illuminating Engineering 

Society of North America (IESNA) have received a widespread acceptance, and 

thus were chosen for this study (see Chapter 2 for a description of daylight 

performance metrics). Both DA and UDI profiles were generated through post-

processing illuminance datasets derived from the simulations. Records that contain 

null values were excluded from the analysis. The three approaches to quantifying 

daylight used in this thesis are summarized as below. 
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 Horizontal illuminance on the desk (as used by Kim and Wineman, 2005; 

Othman and Mazli, 2012; Wang and Boubekri, 2009) 

 Daylight factor at the desk (as used by Christoffersen et al, 2000) 

 Dynamic daylight metrics at the desk (these have not been previously used 

in seat choice studies). Two metrics were considered: DA with a threshold at 

300 lux, and UDI with thresholds at 100 lux, 300 lux and 3000 lux. The 

thresholds were derived from current guidelines (see Chapter 2). 

 
 

5.2.5 Validation of the simulation method 

 
Previous validation studies demonstrate that the RADIANCE-based DAYSIM 

simulation method achieves a high accuracy (Reinhart and Herkel, 2000; Reinhart 

and Walkenhorst, 2001; Reinhart and Andersen, 2006). The approach taken by 

these studies is to compare computer predictions with measurements taken 

simultaneously in the test space. The two validation metrics employed by these 

studies are mean bias error (MBE) and root mean square error (RMSE). These 

metrics provide a quantitative estimate of the differences between two data series. 

The former measures the tendency of one data series to be larger or smaller than 

the other, and the latter represents the standard deviation of the differences 

between the two data series (Burkholder, 1978; Marriott, 1990; Steiger and Lind, 

1980). It is shown by comparing simulated and measured data that the RADIANCE-

based DAYSIM simulation method provide valid results that accurately replicate real 

world conditions with a relative MBE below 20% and a relative RMSE below 32%, 

and these values were considered sufficient to produce reliable simulation results 

(Reinhart and Andersen, 2006; Reinhart and Breton 2009). 

 

One potential source of error could come from the underlying simulation algorithm of 

DAYSIM. As noted in the previous section, DAYSIM uses interpolated sun positions 

and this interpolation could cause a large deviation for a single time step. In its 

original form, RADIANCE simulates indoor illuminance under one sky condition and 

at one point in time. This approach gives a more precise accounting of the sun’s 

position at a given time, thus capable of achieving a higher degree of accuracy. 

When time-series of illuminance values are considered, however, this approach 

becomes inefficient, or requires enormous computation time. DAYSIM tends to 

produce very similar results to RADIANCE under overcast sky conditions, but 

divergence can occur under sunny sky conditions (Reinhart and Breton 2009). 

Although the absolute error in a single time step was determined to have minimal 
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influence on annual simulation results (Reinhart and Breton 2009), it may have 

substantial effects when considering variation of illuminance within shorter time 

periods. In an attempt to reduce such errors caused by the interpolation algorithm, 

average values were used for comparative evaluation rather than absolute values. 

Other sources of error could result from the inaccurate input parameters in the 

simulation model. It is also worth noting that there is some uncertainty inherent in 

any daylight prediction, as they are data samples taken from a field of energy which 

varies continuously over time and space (Tregenza, 2017). 

 

It is worth noting that other methods for determining daylight availability exist, such 

as point-in-time simulations or physical measurements, rather than dynamic 

simulation. Dynamic simulation is essentially a process of constructing a 

mathematical model at every given time interval. One criticism is that as the study 

relied on computer simulation rather than physical measurements, it is not known 

whether the daylight performance predictions are related to real conditions. Future 

research efforts could be directed at providing evidence to support the reliability of 

data produced by the simulation. A more precise approach might be to compare 

daylight performance predictions with physical measurements taken in the test 

space. This may ultimately provide insights into what degree the simulated dataset 

is representative of the naturally occurring daylight conditions in the test space. 

 
5.2.6 Simulation results 

 
This section presents simulation results of indoor illuminance distributions for the 

test room, calculated with the simulation method described in previous sections. The 

large body of results calculated by DAYSIM was aggregated in order to provide an 

overall view of the daylight availability within the space. For this purpose, contour 

maps were created with MATLAB using the data points calculated by DAYSIM - one 

for every 2-minute interval during the observation period. Two sets of plots were 

generated for the three experiments. The first is based on displaying data from two 

summer experiments, with each data point representing the mean value from EX1 

and EX3. The second displays data collected from autumn experiment (EX2). The 

data contained within the plots throughout this section are intended simply for 

illustration purposes. The numerical results for each individual seat are presented in 

Appendix I and the graphical output of the produced data in the form of contour 

maps is shown in Figure 5.7 – Figure 5.11, these are described in turn below.  
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Figure 5.7 illustrates the distribution of daylight factor (DF) across the entire room. 

The results show an increasing DF distribution in the central seating area varying 

from 0.5% to 6%, whilst in the window area the values exceed 20%. The DF levels 

appear to be fairly high in the window seating area compared to those found in the 

central seating area and the circulation areas that do not have direct access to 

daylight due to the rows of bookshelves. It is evident from the data that with 

increasing distance from the windows, daylight factors decrease rapidly to 6% over 

a distance 0 to 4m from the windows, then more gradually reaching a minimum at 

around 0.5%.  

 

 

 
 

 

 
Figure 5.7. Contour map of DF levels overlaid onto the floor plan (upper) and the section 

through seating area showing variation of DF with distance from west facade (lower). Mean 

values of DF are shown for each investigated area (WSA: window seating area, CSA: central 

seating area).  
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The illuminance availability curves from raw data obtained for summer and autumn 

observation periods are plotted in Figure 5.8. The data revealed seasonal variations 

in daylight conditions, i.e. indoor illuminances tend to scatter around rather low 

values (<500 lux) in autumn and around rather high values (>1000 lux) in summer. It 

should be noted that these are the horizontal illuminance data at 2-minute intervals 

in aggregate over a specified period of time. That is, the contour lines are based 

only on values derived from the raw data representing the observation period. The 

mean work plane illuminance over the seating area was 3129 lux during summer 

and 704 lux during autumn, with the standard deviations being 2721 and 552, 

respectively. 

 

 

   
     

 

 

Figure 5.8. Contour maps for the reading room displaying mean horizontal illuminance on 

the work plane, based on 2-minute interval illuminance data calculated with DAYSIM. 

Summer observation period (upper left), autumn observation period (upper right), the 

comparison of the illuminance profiles for the two observation periods (lower) (WSA: window 

seating area, CSA: central seating area). 
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Several illuminance threshold values were observed and cumulated over the 

observation period and subsequently evaluated by daylight autonomy (DA) and 

useful daylight illuminance (UDI) matrix. This step involves the breakdown of each of 

the metrics with the corresponding observation period (the DA and UDI both imply a 

data reduction to one value each). The calculation proceeds in much the same way 

as the annual metrics, with the only difference that all thresholds were interpreted 

relative to the timestamp count of observation period (i.e. 2-minute illuminance data 

for a period of two weeks). This process involves the use of a two-step evaluation 

algorithm, which takes illuminance values on a sensor point grid as input, with 

defined threshold limits.  

 

The new equivalents to the annual DA and UDI metrics are denoted as mDA for the 

modified daylight autonomy, and mUDI for the modified useful daylight illuminance. 

Assuming that the number of timesteps in a given period represented by Np and a 

function defined by D(t), which is 1 for each timestep t in which a given threshold is 

exceeded, otherwise 0, the mDA at a sensor point can be expressed as: 

 

𝑚𝐷𝐴 =
∑ 𝐷(𝑡)𝑁

𝑡=1

𝑁𝑝
          𝐷(𝑡)  = {

1,    𝐷(𝑡) ≥ 𝐸
0,    𝐷(𝑡) < 𝐸

}       Equation 5.3 

 

 

where  

D(t) = occurrence count of exceeding the DA illuminance threshold at time step t 

Np = timestep count for period p 

E = illuminance threshold  

 

 

Similar to mDA, the mUDI metric also operates with illuminance and threshold 

values, with the only difference being that the mUDI includes an upper illuminance 

threshold. The mUDI can then be expressed by a similar mathematical expression: 

 

𝑚𝑈𝐷𝐼 =
∑ 𝑈(𝑡)𝑁

𝑡=1

𝑁𝑝
       𝑈(𝑡)  = {

1,    𝐸𝑚𝑖𝑛 ≤ 𝑈(𝑡) ≤ 𝐸𝑚𝑎𝑥
0,    𝑈(𝑡) < 𝐸𝑚𝑖𝑛 < 𝐸𝑚𝑎𝑥
0,    𝑈(𝑡) > 𝐸𝑚𝑎𝑥 < 𝐸𝑚𝑎𝑥

}     Equation 5.4 
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where 

U(t) = occurrence count of values in UDI range at time step t 

Np = timestep count for period p 

Emin = minimum illuminance threshold 

Emax = maximum illuminance threshold 

 

 

Each metric reveals certain characteristics of the illuminance data set: For DA, it is 

how often the illuminance at an individual sensor point is above a threshold, 

whereas for UDI, it is how often the illuminance is between two thresholds. It should 

be noted that these are abstract quantities that aggregate values from the 

illuminance time-series across space and over the observation period. For 

illustrative purposes, the plots in the remaining part of this section cover only those 

sensor points that fall within the seating area. 

 

The illuminance data were processed to generate plots showing the distribution of 

DA across the seating area. The resulting distributions were visualized in a 

condensed format as done in the plots shown in Figure 5.9. The top of the figure 

shows the seating area with contour lines representing percentage of the total 

observation period that daylight illuminance at the sensor point exceeded the DA 

threshold at 2-min intervals. Assuming a work that requires a minimum desktop 

illuminance of 300 lux on the desk, the occupants seated in the window seating area 

(WSA) can potentially work by daylight alone throughout the entire observation 

period. In the central seating area (CSA), there appears to be a decrease in the 

percentage of time that daylight illuminance exceeded the threshold value of 300 

lux. However, this difference between the two seating areas seems to be 

negligible during summer period.  
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Figure 5.9. Distribution of DA on the work plane during summer observation period (upper 

left) and autumn observation period (upper right), and the comparison of the DA profiles for 

the two observation periods (lower). Contour maps show the DA distributions for the seating 

areas only (WSA: window seating area, CSA: central seating area). 

 

 

The last plots for this section are those showing the UDI distribution across the work 

plane. As with the plots of DA distribution, a condensed visualization format is used. 

Following the approach proposed by Mardaljevic (2015), the UDI scheme was applied 

by determining at each sensor point the occurrence of daylight levels where the 

illuminance is: 

 

 less than 100 lux: UDI not achieved (UDI-n) 

 greater than 100 lux and less than 300 lux: UDI supplementary (UDI-s) 

 greater than 300 lux and less than 3000 lux: UDI autonomous (UDI-a) 

 greater than 3000 lux: UDI exceeded (UDIx) 

 

Figure 5.10 shows occurrence of the four UDI metrics averaged across the seating 

area for the two observation periods, summer and autumn. 
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Figure 5.10. Distribution of UDI on the work plane during summer observation period (left) 

and autumn observation period (right). Note that contour maps show the UDI distributions for 

the seating areas only (WSA: window seating area, CSA: central seating area). UDI-x: UDI 

exceeded, UDI-a: UDI autonomous, UDI-s: UDI supplementary, and UDI-n: UDI not 

achieved. 

 

 

The results show that the useful range of 300 to 3000 lux (UDI-a) was mostly found 

in the central seating area during summer period, whereas during autumn period, 

the distribution of these levels of illuminance was found to be shifted towards the 

window seating area. This suggests that occupants seated in these areas were most 

likely able to work comfortably without artificial light. Another range that is 

considered useful for the occupants is UDI supplementary (UDI-s), which gives the 

occurrence of daylight illuminances in the range 100 to 300 lux. Reading from the 

contour plots, the criteria for UDI-s were met in the central seating area during 

autumn period, whereas illuminances during summer period only occasionally fall 

within the UDI-s range. These data indicate that supplementary artificial light was 

likely to be needed by the occupants seated in the central seating area during 
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autumn period. Taken with the results from the UDI-a plots, this suggests that a 

much greater proportion of the central seating area remains in the useful range of 

100 to 3000 lux in summer than in autumn. 

 

An examination of the data outside the useful range did not show any noticeable 

differences in occurrence of UDI not achieved (UDI-n). The values for both 

observation periods were very low (close to zero), indicating that the illumination 

level was never less than 100 lux, where the light would be considered insufficient 

without electric lighting. Given the upper threshold value of 3000 lux, a high 

occurrence of UDI exceeded (UDI-x) was found in summer, whereas in autumn the 

values were close to zero. This is to be expected given the higher illuminance levels 

in the summer dataset, with significantly more data points exceeding 3000 lux. Note 

that the DA value for an illuminance of 300 lux is very similar to UDI-a, with the only 

difference being that the UDI-a includes the occurrence of exceedances of an upper 

illuminance limit (3000 lux). The data were further processed and reduced in the plot 

presented in Figure 5.11 by taking the mean value of the four sets of UDI metrics in 

an attempt to summarize the overall changes in daylight performance during the two 

observation periods. 

 

 

 

 
Figure 5.11. Stacked bar plot showing the distribution of UDI, with results averaged over the 

seating area for the two datasets: Summer (S) and Autumn (A). (WSA: window seating area, 

CSA: central seating area) (UDI-x: UDI exceeded, UDI-a: UDI autonomous, UDI-s: UDI 

supplementary, and UDI-n: UDI not achieved). Based on Figure 5.10, UDI contour plots. 
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While each of the metrics has been discussed separately, it is important to note that 

they may produce similar distribution patterns. For example, the DF and DA plots 

share a similar character in the overall form of the distributions, with higher values in 

the window area and lower values in the central area. However, the form of the 

distribution of UDI changes seasonally, in response to the availability of daylight. It 

can be seen in the respective plots (Figure 5.10 and 5.11) that the UDI distribution 

(100-3000 lux) follows a pattern that is almost the inverse of the DF or DA patterns 

in summer: lower UDI values in the window area and higher UDI values in the 

central area.  

 

The UDI exceedance plot for the summer dataset reveals that illuminances greater 

than 3000 lux are expected for at least 40% of the observation period for window 

seating area. These levels of illumination are likely to be indicative of visual 

discomfort through glare. In autumn, however, the UDI range is split between the 

two seating areas, with increased occurrence of UDI-s in the central area and 

decreased occurrence of UDI-a in the window area. It can be seen that the increase 

in UDI-s in central area is due mostly to the reduced occurrence in UDI 

exceedances (i.e. lower occurrence of illuminances greater than 3000 lux). 

 

On a final note, the contour plots presented in this section produce an estimate of 

the daylight availability, and thus should not be regarded as definitive. Given the 

inherent variability of daylight, it is not possible to state precisely how much light falls 

on a given surface at a given point in time, although, based on data obtained in 

previous validation studies, the simulation approach seems to produce fairly robust 

estimates of daylight availability for the given time period. The metrics are relatively 

straightforward measures to derive from simulated data. It should be noted, 

however, that different conclusions may have been drawn if a different set of 

thresholds was used. Thus, investigations at this stage are, necessarily, exploratory 

in nature. 

 

5.3 Comparative analysis of simulation results and occupancy data 

 
This section presents the results of a comparative analysis between simulation 

results and the occupancy data. In order to provide a relevant basis of comparison 

between the simulations and the conditions present when the occupancy 

observations were carried out, the simulated data were extracted for each core work 

plane sensor representing the period of observation; and these were subsequently 
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correlated with corresponding occupancy data. Two approaches were used to 

determine the occupancy (see Chapter 4); it was therefore decided to split the 

analysis into two parts, dealing first with the snapshot data and then with the walk-

through data. 

 

5.3.1 Analysis of snapshot data 

 
This section analyses occupancy rates recorded for each individual seat during 

snapshot observations. The data were examined to determine whether they 

appeared to be drawn from a normal distribution by inspecting the Shapiro - Wilk 

test and the residual distributions (see Appendix J). Three separate tests of 

normality were performed on the data for each experiment, but also for each seating 

area, these being the window and central seating areas.  

 

The Shapiro - Wilk test indicated that the data are not drawn from a normally 

distributed population in most cases (p < 0.05), however this is to be expected as 

the two seating areas are different from each other in terms of daylight and 

occupancy distribution. The linear models assume that errors, also called residuals 

or deviations from the fitted model, are normally distributed (Altman, 1991). It is 

important to examine the normality of the residuals because it describes how the 

variation, which is not explained as part of the linear predictor, is distributed. An 

examination of the distribution of residuals revealed normality for some of the 

datasets, and parametric statistical tests have been applied in such cases. For non-

normal data distributions, median values are reported and nonparametric tests have 

been used as a means of comparison. The occupancy rate calculated for each 

individual seat was used as a metric. A series of comparisons were then made 

between occupancy rates and daylight metrics in each experiment. The analysis 

was confirmed through comparison of correlation coefficients for each pair of 

variables as in Table 5.4.  
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Table 5.4. Correlation coefficient and significance level for the relationship each daylight 

metric has with occupancy rate (OR). DF: Daylight Factor, Eh: Horizontal Illuminance, DA: 

Daylight Autonomy, UDI: Useful Daylight Illuminance. 

 
Dataset 

 
Variables 

EX1 EX2 EX3a 

Correlation 

coefficient 

Sig. 

level 

Correlation 

coefficient 

Sig. 

level 

Correlation 

coefficient 

Sig. 

level 

Whole 

dataset 

n=250 

 

DF - OR 0.78 < 0.001 0.69 < 0.001 0.79 < 0.001 

Eh - OR 0.74 < 0.001 0.65 < 0.001 0.73 < 0.001 

DA - OR 0.15 

 

0.019 0.39 < 0.001 0.20 

 

0.011 

UDI - OR - 0.64 < 0.001 0.29 < 0.001 - 0.54 < 0.001 

 

WSA 

n=32 

 

 

 

DF - OR 0.65 < 0.001 0.76 < 0.001 0.67 < 0.001 

Eh - OR 0.50 0.003 0.38 0.033 0.54 0.001 

DA - OR - - 0.06 0.740 - - 

UDI - OR - 0.34 0.060 - 0.35 0.051 - 0.36 0.077 

 

CSA 

n=218 

 

 

DF - OR 0.01 0.917 0.12 0.077 0.07 0.252 

Eh - OR 0.01 0.915 0.13 0.059 0.08 0.215 

DA - OR 0.02 0.822 0.15 0.022 0.10 0.130 

UDI - OR - 0.01 0.879 0.16 0.020 - 0.02 0.795 

 

Note: Values in bold are those where p < 0.05 (two-tailed). 

 

 

A graphical representation of the most highly correlated measures (DF – OR in the 

whole dataset) is shown in Figure 5.12, with each line representing a separate set of 

data (EX1, EX2, EX3). Visual inspection of this plot reveals the expected pattern of 

occupancy rate increasing with daylight factor in the three experiments. However, 

the data points at the higher levels of DF appear to be influential (see the rightmost 

data points), affecting regression lines. These trends were verified using Pearson's 

correlation tests as shown in Table 5.4. The correlation between daylight factor and 

occupancy rate was found to be statistically significant in all three experiments 

(n=250, p < 0.05). However, applying correlation analysis that excludes those data 

points at the higher levels of DF (>10%) decreases the strength of correlation 

experienced (DF – OR in the CSA dataset).  The correlations are far from 

significance in this case (n=218, p-values range between 0.077 and 0.917). For this 

latter case, note that data are not normally distributed in EX1 and EX3 so the 

Spearman’s rank correlation test has been used to confirm the trends. 

  

What these findings show is that the data points at the higher levels of DF, which 

are found in the window seating area (n=32), greatly influences correlation analysis, 

including the correlation coefficient (r) and the statistical significance of correlations 

(p). This explains the finding discussed earlier in Chapter 4, that any influence of 
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daylight on occupancy rate is far less clear in the central seating area, but there is a 

suggestion that a higher daylight factor near the window may result in a higher 

occupancy rate. 

 

 

 
 

Figure 5.12. Occupancy rate plotted against daylight factor. Data for the entire seating area 

are shown. (a) EX1, (b) EX2 and (c) EX3. 

 

 

Figure 5.13 shows a scatterplot of the relationship between the mean horizontal 

illuminance across each observation period and occupancy rate for that same 

period. Applying the same procedure to the data demonstrated similar patterns to 

those displayed for the daylight factor. As might be expected, the occupancy rate 

tends to increase as the horizontal illuminance increases, and the effect is 

influenced by the data points found in the window seating area. There also appears 

to be seasonal patterns in these data: the summer data tend to follow a similar 

pattern (EX1 and EX3), whereas the autumn data (EX2) deviate from that pattern. 

These findings were supported by a Pearson’s correlation test between the mean 

horizontal illuminance and the occupancy rate which showed the correlation to be 

significant in all three experiments (n=250, p < 0.05). The correlation coefficients for 

these data were found to be very nearly the same as those reported for daylight 

factor data (see Table 5.5). When data for the two seating areas are considered 

separately, the results again demonstrate that the correlations are not statistically 

significant in the central seating area dataset. 
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Figure 5.13. Occupancy rate plotted against mean horizontal illuminance. Data for the 

entire seating area are shown. (a) EX1, (b) EX2 and (c) EX3. 

 

 

A further comparison was made with dynamic metrics to evaluate the cumulative 

effects of daylight on occupancy over time. The evaluation founded on the 

cumulative approach does not appear to have as strong of an association with the 

occupancy rate as does daylight factor or horizontal illuminance. If the illuminance 

preferred by occupants was within the useful range of 300–3000 lux, for example, a 

positive correlation would be found between UDI and occupancy rate in each 

experiment. The results presented in Table 5.5 suggest that this is not always the 

case, and that for the summer period (EX1 and EX3), there is a negative correlation 

between UDI and occupancy rate, which is statistically significant (n=250, p < 0.05). 

This is to be expected because the distribution of useful range of 300–3000 lux 

across the room is widely scattered in autumn, unlike in summer in which the data 

tends to be clustered around the central seating area (see Section 5.2.6 for UDI 

distribution). What is evident in these data is that the distribution of UDI inversely 

correlates with that of occupancy in the summer experiments. This means that the 

seating preferences of the majority of occupants do not correspond to the UDI levels 

and that the illuminance levels in the preferred areas fall outside the useful range 

(i.e. more than 3000 lux). This supports previous findings that the occupants 

preferred seats with high daylight despite the risk of glare.  
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When considering the central seating area dataset, the findings fail to support a 

statistically significant correlation of UDI with occupancy rate, with the exception of 

the correlation found in EX2 which is significant (n=218, p < 0.05). The lowest 

correlations were found for daylight autonomy, suggesting that daylight autonomy 

distributions do not necessarily correspond to the preferred seating areas. With 

regard to the significance of correlation, daylight autonomy gives similar results to 

those obtained with UDI. Note that for the WSA dataset the test failed to produce 

any results for daylight autonomy in EX1 and EX3, because data values were 

constant in these two experiments. When drawing conclusions from the simulation 

model, the effect of electric lighting should be noted as the findings relate only to 

daylight conditions. The simulations did not consider the illuminance data generated 

from the electric lighting system, which might partially account for the association 

between daylight autonomy and the occupancy rate. When electric lighting 

illuminance is added to the daylight data, there is a slight tendency for the strength 

of daylight autonomy-occupancy rate correlations to decrease in all datasets, with 

the exception of window seating area. This may have been because the window 

seating area is predominantly lit by daylight and under such conditions electric 

lighting is unlikely to have an effect. The fact that electric lighting contributes little to 

horizontal illuminance in the window area is also informative about the seat choice 

behaviour as it is indicative that the occupants chose window seats on a basis other 

than that of electric lighting. The electric lighting system does not allow light levels to 

fall below the minimum illuminance threshold of 300 lux at certain points in the 

central seating area. This will be examined further in Section 5.3.2. 

 

Although correlations were significant for most of the comparisons (less than 0.05), 

the nature and context of the experiments should be taken into account when 

interpreting these results. If, in the present study, those data points at higher levels 

of daylight (window seating area) had been excluded from the analysis, there would 

have been no statistically significant correlations. This suggests that the results 

should be interpreted alongside other information about seating behaviour. As 

discussed in Chapter 2, seat choice may also be affected by other factors not 

examined in this thesis, such as the outside view. Based on the snapshot data, the 

analysis provided some evidence of the link between daylight availability and where 

people sit. However, results from this analysis should be interpreted with caution, 

because as evident by examining the relationship between the variables, variations 

in occupancy rates cannot be explained by daylight alone. That is, the 

correlation between daylight metrics and occupancy rate does not imply causation, 
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as there are other dimensions of behaviour that could partly account for the 

correlation. For example, sitting by the window may often have an association with 

being able to see nature outside the window, and it may be this connection to the 

outside that influences the seat choice behaviour rather than the daylight itself. 

 

5.3.2 Analysis of the contribution of electric lighting 

 
The simulation approach might cause loss of accuracy as the impact of electric 

lighting is ignored. The results from daylight analysis suggest that there is a 

nonlinear gradient of daylight across the workplane and that the amount 

of daylight drops sharply as the occupants move away from window area through 

the central area. The results revealed seasonal variations of daylight, with higher 

values of illuminance in summer and lower in autumn. Notable findings included 

lower levels of daylight illuminance in the parts of the room distant from the window 

in autumn. While the illuminance profiles varied between the two seasons, the 

occupancy patterns were similar. One explanation could be that electric lighting 

provides additional task light during autumn when daylight is insufficient, and 

therefore allow occupants to carry out tasks or sit in locations they perhaps would 

not otherwise have done. It may be that the illuminance from daylight and electric 

lighting together achieved the recommended light levels. To create a better 

understanding of how electric lighting and daylight are distributed in the space 

further analysis was carried out on the horizontal illuminance values.  

 

A simple calculation was performed to estimate the potential contribution of electric 

lighting system to total illuminance. The total illuminance level of a sensor point is 

equal to the sum of the illuminance levels created by daylight and all contributing 

electric light sources at this point. The total illuminance at a sensor point (P) can 

then be expressed as: 

 

 

𝐸𝑇(𝑃) = 𝐸𝐷(𝑃) + 𝐸𝐸(𝑃) 

 

      Equation 5.5 

 

where  

𝐸𝑇(𝑃) = total illuminance 

𝐸𝐷(𝑃) = daylight contribution to total illuminance 

𝐸𝐸(𝑃) = illuminance when the electric lights are switched on and there is no  

   daylight  
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The lighting system in the room consisted of ceiling-recessed luminaires controlled 

by an automatic lighting control system. The illuminance from electric lighting was 

determined for each sensor point after dark (see Section 5.2.4 for the location of 

sensor points at which illuminance measurements were taken). The mean work 

plane illuminance from electric light was 170 lux with a standard deviation of 61 lux. 

Figure 5.14 shows the relative contributions of daylight and electric lighting to total 

illuminance. 

 

 

 

 

Figure 5.14. Contribution of electric light to the total illuminance on the work plane. Mean 

values are displayed. (WSA: window seating area, CSA: central seating area). 

 

 

As shown in Figure 5.14 the presence of electric light during daytime had very little 

effect on illuminance levels in the room. The mean illuminance on the work plane 

from electric light sources ranged between 11 and 264 lux. There seems to be little 

difference in the electric lighting levels between window area and central area. As 

daylight illumination decreases, electric lighting appears to contribute more to the 

total illumination. For example, in parts of window area where the mean desktop 

illuminance from daylight was 1800 lux in autumn, the mean electric light 

contribution was 60 lux. In the central area, where mean desktop illuminance from 

daylight was 350 lux, the mean electric light contribution was 190 lux. This suggest 

that electric lighting had the largest effect on total illumination during autumn when 

daylight illumination levels were low in the central area. 
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Electric lighting increases light levels but does not change the shape of the 

distribution, meaning that the effect on total illuminance is due to the variations in 

daylight availability. The luminaires are arranged in such a way that the daylight 

character of the room is retained. The results from this investigation suggest that the 

illuminance from daylight was enough to provide the required illuminance for the 

task during the observation period and that the electric lighting provided additional 

illuminance in autumn where daylight illuminance was low in the parts of the room 

distant from the windows.  

 

5.3.3 Classification of snapshot data based on sky conditions 

 
As described in Section 5.5, DAYSIM uses Perez all-weather sky model for the 

generation of sky luminance distributions based on measured irradiance data. 

Dynamic metrics are calculated based on customized luminance distributions 

predicted by the Perez all-weather sky model, while the daylight factor is calculated 

with the standard overcast sky. The daylight factor approach is therefore only 

applicable in overcast sky conditions and takes no account of variations in the sky 

luminance distribution.  

 

The daylight factor data derived from the simulations is valid only in cases where the 

actual weather conditions during the observation period match those of the overcast 

sky conditions. What needs to be considered is how well the overcast sky represents 

the actual weather conditions. This may ultimately provide justification for the use of 

daylight factor metric, but it may also suggest that alternative metrics should be used. 

One method for identifying overcast sky conditions is to compare the clearness index 

based on the solar radiation data recorded at the weather station. The clearness index 

is defined as the ratio between the global horizontal irradiance and its extraterrestrial 

value (Li and Lam, 2001; Liu and Jordan, 1960). The extraterrestrial radiation is the 

solar radiation incident at the top of the atmosphere, and it can be determined based 

on solar geometry and a knowledge of the solar constant (1367 W/m²) (Muneer, 

2004). Given that the earth has an elliptical orbit around the sun, the extraterrestrial 

radiation varies by ±3.3% around the mean, reaching maximum values in January 

and minimum values in July. The extraterrestrial normal radiation is defined as follows: 

 

𝐺𝑜𝑛 = 𝐼𝑠𝑐 (1 + 0.033 cos
360𝑛

365
) 

 

      Equation 5.6 
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where  

𝐺𝑜𝑛 = the extraterrestrial normal radiation 

𝐼𝑠𝑐   = the solar constant of 1367 W/m² 

𝑛 = the day of the year (a number between 1 and 365)  

 

 

The extraterrestrial horizontal radiation can be described using Equation 5.7. 

 

𝐺𝑜 = 𝐺𝑜𝑛  cos(SZA)          Equation 5.7 

 

where  

𝐺𝑜   = the extraterrestrial horizontal radiation 

𝐺𝑜𝑛 = the extraterrestrial normal radiation 

SZA = the solar zenith angle calculated at a given time 

 

 

The time series of measured global horizontal irradiance in combination with 

information on extraterrestrial horizontal radiation at each time step were used as the 

basis for prediction of the clearness indices. The clearness index is essentially a 

measure of the relative clearness of the atmosphere, and is scaled to range from 0 to 

1 with lower values indicating overcast skies. Following the work of Alves et al (2013) 

and Gueymard (2011), solar radiation data for the observation period were analyzed 

separately for three different Kt ranges: clear (0.65 < Kt ≤ 1), partly cloudy (0.3 < Kt ≤ 

0.65) and overcast sky conditions (0 < Kt ≤ 0.3). The results are reported in Table 5.5.  

 

 
Table 5.5. Definition of the three sky ranges as defined by clearness index (Kt)  
(EX 1= Experiment 1, EX 2= Experiment 2, EX 3= Experiment 3). 

Sky clearness 

range 

Description Number of records 

 EX1 EX2 EX3 

0.65 < Kt ≤ 1 Clear sky 
52 

(3%) 

0 

(0%) 

37 

(3%) 

0.3 < Kt ≤ 0.65 Partly cloudy sky 
783 

(43%) 

63 

(3%) 

426 

(35%) 

0 < Kt ≤ 0.3 Overcast sky 
975 

(54%) 

1747 

(97%) 

742 

(62%) 
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A histogram of the clearness index recorded during the observation period is given 

in Figure 5.15. The plots provide a graphical representation of the frequency 

distribution of clearness index for the two observation periods, autumn and summer, 

and led to the identification of periods with overcast sky conditions. While autumn 

period is characterized by the lowest clearness indices, the summer period shows in 

general the highest values. The long tail of the distribution observed in the autumn 

dataset suggests that the majority of clearness index values fall within the range of 0 

to 0.3, which is representative of overcast sky conditions. In the autumn period there 

were only a few instances when the sky was partly cloudy, and there was no record 

found for clear sky conditions.  

 

 

 

    (a) 

 

 

    (b) 

 

Figure 5.15. Histogram of the clearness index for the two observation period. (a) Autumn; 

(b) Summer. 
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The results suggest that a seasonal variation in the frequency distribution of 

clearness index exists: the percentage of overcast skies range from 58% in summer 

to 97% in autumn, reflecting clearer sky conditions in summer. The percentage of 

partly cloudy skies range from 3% in winter to 39% in summer. Clear sky was only 

observed in summer which is about 3%. In the summer period, it seems to be less 

cloudy than that in the autumn period when the overcast sky conditions tend to 

predominate for much more of the time.  

 

As far as the daylight factor method is concerned, these findings suggest that the 

simulation model tended to underestimate daylight illumination levels in the test room, 

particularly in summer when sky conditions were characterized as predominantly 

clear. As a result, the daylight factor method is likely to produce accurate results for 

the periods of overcast skies but underestimates interior illumination under clear and 

partly overcast conditions. 

 

5.3.4 Analysis of walk-through data 

 
The data produced by the snapshot observation approach and daylight analysis 

confirmed that the occupants preferred seats with high levels of daylight in spite of 

increased risk of glare, particularly during summer period when illuminances 

exceeded the upper limit of 3000 lux. The finding that occupants were likely to 

tolerate potential glare when they were seated near windows is consistent with what 

previous studies have found (Christoffersen et al, 2000; Parpairi et al, 2000; Kim 

and Wineman, 2005; Dubois et al, 2009; Othman and Mazli, 2012; Wang and 

Boubekri, 2009). It should also be noted that other research has produced results 

that question the relatively high tolerance to glare, particularly when the window 

offers an interesting view. For example, Tuaycharoen and Tregenza (2005; 2007) 

investigated the effects of window views on perceived discomfort glare, and found 

that a window with an interesting view is associated with less glare than a window 

with a view of less interest. These results were interpreted as demonstrating how 

the visual content of the view through the window extended subjects’ tolerance level 

of discomfort glare.  

 

Given the potential role of outside view as a mediating or an enhancing factor, the 

glare tolerance found in the current study could be attributed to the view of a natural 

setting seen through the windows. That is, the view of Weston Park may have 

increased the tolerance to high illuminances near windows. An interesting issue to 
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be examined would be whether the choices made and their evaluations would differ 

depending on how they were experienced with a different view (i.e. man-made 

rather than natural setting). It remains, therefore, an open question whether seat 

choice depends on the visual content of the view through the window. This is likely 

to be an important area for future research on daylight and seat choice. 

 

Since the choice of seating is inherently a dynamic process, it could be argued that 

the preference of an individual is influenced by the conditions of sequential choice. 

As people enter the room they are seated sequentially; and each individual can 

choose only from among the available seats. In this section, further analysis of 

occupancy data was carried out to compare results from the walk-through approach 

to determining the impact of this dynamic process on individuals’ choices. The 

question examined is whether there was any available seat in the area with high 

levels of daylight (the window seating area) when people chose their seats. 

 

Comparison of datasets using statistical tests was not possible for the occupancy 

rates as these values were already a summary statistic based on the occupancy 

data over a time period. Therefore, an alternative approach to analysing occupancy 

was adopted that would allow statistical analysis to be carried out. In this approach 

an availability ratio was calculated for each occupant, based on the 

percentage of seats occupied in the window seating area, and this was used as a 

metric. For example, if an occupant chose a seat in the central seating area, and 

there were 25 seats available seats (out of 32) in the window area at the time of 

decision making, then the availability ratio would be 78% for that occupant. In this 

example, the occupant had the option of choosing a seat with better daylight if that 

was a critical factor in seat choice, but chose not to do so. If the sequential process 

had an effect on seat choice, it was expected that the availability ratio would be low 

(the window seats were full therefore people were forced to sit in the central area).  

 

The analysis has been extended where each day was divided into sub-periods to 

distinguish between the effects of time of day. In doing this, the daily dataset was 

split into three, covering the periods 09:00-12:00 (morning), 12:00-14:00 (midday), 

and 14:00-17:00 (afternoon). For the full set of data in both seating areas, Table 5.6 

displays the mean and standard deviation for the availability ratios calculated for 

each occupant. Data for the three time periods are considered separately and for 

each the values given represent the means of the entire observation period. 

 

https://www.sciencedirect.com/science/article/pii/S0360132316303444#tbl2
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Table 5.6. Mean and standard deviation for the availability ratios calculated for 

CSA (n=102) and WSA (n=101). 

Time of day CSA WSA 

Mean Standard deviation Mean Standard deviation 

Morning 82.08 9.39 98.61 1.23 

Midday 58.27 13.84 96.51 1.19 

Afternoon 44.03 11.38 93.57 3.14 

Total 57.59 20.08 96.64 3.01 

 

 

A distribution of availability ratios calculated for each occupant seated in the central 

seating area is presented in Figure 5.16, with each line representing the data for 

each day of the observation period. The figure highlights three different times of the 

day and what may be observed at these times during the observation period. The 

number of occupants can be determined by the number of data points in the graph. 

When there were many available seats in the window seating area (i.e. higher 

availability ratios), for example, in the morning, fewer occupants were seated in the 

central seating area (19%). When the window seating area had a limited amount of 

seating available (i.e. lower availability ratios), for example, in the afternoon, the 

number of occupants seated in the central area was much higher (64%).  

 

 

 

 

Figure 5.16. Availability ratios as a function of time of day. Each data point represents one 

participant’s availability ratio (n=102). Data for window seating area (WSA) are shown.  
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These data show that during the morning period, there were a few seating locations 

in the central seating area identified as preferred even though the availability ratios 

were high during this period (there were seats available in the window seating area). 

However, differences were found in the number of occupants in each time period, 

with a notably higher number of people in the afternoon than in the morning. These 

results suggested that the availability may have distorted seating preferences of 

occupants: lower availability ratios late in the afternoon may deter occupants from 

using the window seats that they otherwise would prefer. 

 

The next stage of analysis was to compare the data obtained from window seating 

area to determine whether availability ratios were different than those found in the 

central seating area. In doing this, availability ratios were calculated for each 

occupant seated in the window area based on proportions of available seats in the 

central area at the time of seating. The resulting values are plotted against time of 

day as in Figure 5.17. Each data point represents one occupant for which an 

availability ratio was calculated. 

 

 

 

 

Figure 5.17. Availability ratios as a function of time of day. Each data point represents one 

participant’s availability ratio (n=101). Data for central seating area (CSA) are shown.  
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There does not appear to be any noticeable difference between the three time 

periods in terms of seat availability in central seating area. In contrast to the case in 

the first analysis, availability ratios generally seem higher. This is as would be 

expected given that occupants tend to sit in the window seating area regardless of 

the amount of seating available in the central seating area at any given time. As far 

as the window area is concerned, seat availability in the central area appears to 

have had a negligible effect on the seat choice.  

 

The results produced by the analysis of walk-through data demonstrated that 

availability of window seats is likely to have an influence on seating decision. 

Preferences for each seating areas and availability ratios were determined to test if 

seat use was associated with availability (i.e. if seats were used or avoided at a level 

commensurate with their availability). To check whether any such effects occurred 

during the observation period the calculations were repeated for the two seating 

areas (CSA and WSA). This allowed direct comparison of the availability ratios 

between the two seating areas. The experiment found an effect of availability but 

only in the central seating area, with a lower availability ratio in the afternoon (i.e. 

low amount of seating available in the window area) resulting in increased number 

of people seated in the central area.  

 

5.4 Summary 

 
The goal of the work described in this chapter was the accurate simulation of the 

quantity and distribution of daylight in the test space. The methods of modelling and 

simulation were described along with their limitations and restrictions. RADIANCE-

based DAYSIM simulation method was used to predict sub-hourly time series of 

daylight illuminance based on direct and diffuse irradiances taken from the weather 

file. To determine daylight levels for the observation period, a modified version of 

climate-based daylight simulation approach was adopted. The approach included a 

breakdown of each established daylight metrics with the corresponding time period 

and the illuminance threshold. This enabled the evaluation of indoor daylight 

availability over a specific period of time, including the occurrence of excessive or 

insufficient illuminances.  

 

In the second part of the chapter occupancy data were analysed to explore the 

relationship between seat choice and daylight performance metrics. A range of 

metrics were analysed to find out if any daylighting characteristics mattered more 
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than others to seat choice. Daylight levels considered 'useful' were mostly found in 

the central seating area. Nevertheless, occupants tended to prefer window seating 

area where they were exposed to greater amounts of daylight and potential glare, 

particularly in summer. Consistent with the findings of the previous studies, this work 

revealed that individuals who sit near windows tend to be tolerant towards 

discomfort glare, and this is assumed to be related to the interesting content of the 

window view in which the natural environment is dominant. 

 

One limitation of previous research is it is unable to confirm whether seat availability 

is of significance or relevance to the seat choice. This limitation makes it difficult to 

interpret results from previous research on seating behaviour in terms of the effects 

of seat availability. In the current study, this was investigated using walk through 

data which enabled the availability ratio to be calculated for each individual 

occupant. Results from the two seating areas were compared. It was found that the 

availability of seats in the window seating area decreased rapidly over time, 

resulting in an increase in the number of occupants seated in the central seating 

area in the afternoon. This suggests that seat choice behaviour is driven by prior 

states of the room such as the number of occupants in the window seating area. 

The next chapter discusses the implications of the findings from these experiments 

and future areas of research required. 
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CHAPTER 6. DISCUSSION 

 

6.1 Introduction 

 
The research reported in this thesis has investigated the relationship between 

daylight and seat choice in an open-plan library reading room. An examination of the 

literature revealed an overall tendency for people to sit near windows where they 

were exposed to high levels of daylight. A series of experiments was designed to 

provide further evidence about the relationship of daylight and seat choice; and two 

approaches were taken to provide such evidence. The first, the stated preference 

approach, was to ask individuals how daylight conditions affect their seat choices. 

The data were collected by means of questionnaires, the aim was to understand the 

relative importance of daylight to seat choice alongside other factors. The second, 

the revealed preference approach, was to record actual seating behaviour over a 

period of time. The frequency of seat use was then quantified as an indicator of 

preference by occupants. Predictions of illuminance distributions within the room 

were made using a RADIANCE-based DAYSIM simulation tool, and a set of 

performance metrics were explored with respect to their potential in predicting 

occupancy patterns found in the test room. This chapter provides a discussion of the 

main findings from the experiments and their implications in relation to previous 

research. 

 

6.2 Stated preference surveys 

 
Stated preference method provided respondents with a set of response options in a 

randomised order and asked them to express their preferences by selecting among 

the given options. The door-room survey explored differences in the perceived 

importance of daylight across two groups, with participants in one group being those 

who were about to enter the room while participants in the other group being those 

seated in the room. When asked to select three most important factors out of the 

listed ten factors that potentially influence their decision on where to sit, the majority 

of respondents in the door survey stated that the availability of power socket was the 

most important factor, followed by noise and daylight. Those who were seated in the 

room tended to state that daylight was the most important factor for their seat 

choice, followed by noise and distance from others. 
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Statistical tests suggested that room survey responses differed significantly from the 

door survey for the two items, the one being availability of power sockets and the 

other being distance from others. The availability of power sockets was significantly 

less important to the participants in the room survey than those in the door survey, 

whereas distance from others showed opposite patterns of change between two 

groups of participants. One possible explanation for this discrepancy is that although 

the availability of power sockets was considered to be an important factor before 

entering the room, when seated at a desk without a power socket it was not stated 

to be important. What this suggests is that the item concerning power sockets is less 

likely to be chosen in the room survey simply because power sockets are often not 

accessible, regardless of how important the participant perceives it to be. This gives 

an indication that the perceptions actually experienced as a result of the outcome of 

a seat choice may not concur with earlier expectations, leading people to look for 

justifications for their choice. Likewise, being distant from others was perceived to 

be more important by respondents of room survey than those of door survey, 

possibly reflecting the individuals' tendency to sit away from each other upon 

entering the room.  

 

As a means of validating the method of questioning, the room survey asked 

respondents to define each of the ten items as important or not important. By having 

responses from both multiple-option and importance questions, it was possible to 

compare the responses to each item. Multiple-option data was in good agreement 

with that obtained from importance analysis, as indicated by a Pearson correlation 

value of 0.76 for the two datasets. These data indicate that participants think 

daylight has an effect on their seat choice without the questioning method having led 

them in this direction. The close agreement of the two sets of results thus 

contributes to validating the findings. The importance questions consisted of two 

parts, asking participants to give more details about their response. The objective of 

the second part was for participants to give reasons to support their answers. The 

room survey also sought to explore whether, and if so why, participants changed 

their seat locations. The reason most frequently mentioned was the availability of 

power sockets. This is as would be expected given that some participants were able 

to access to power sockets, whereas others were not, and this may have played a 

part in changing seat locations. Participants were also asked to make comments at 

the end of the survey. This provided parallel support for the investigations that may 

have biased respondents to indicate the importance of daylight; for example, by 

choosing from the rather limited set of options. 
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To summarize, the stated preference study provided evidence on the perceptions of 

the participants regarding the conditions that influenced their choice of seating 

location. The experiment aimed to explore the perceived influence of daylight using 

different types of response scales. The findings suggest that daylight is perceived to 

be important as it was mentioned with high frequency as a reason for seat choice. 

This is indicated by the fact that, in door and room surveys, daylight was the third 

and the most frequently chosen category of response respectively. The room survey 

used two different methods of questioning, one which required participants to 

choose three items out of ten, and another which required to define each item as 

important or not. The experiment found that participants think daylight matters to 

their seat choice in the test room using all methods tested. 

 

6.2.1 Comparison with previous research 

 
A review of literature revealed that research on seating preference is limited, and 

few studies have been carried out in library settings. Of the few studies that have 

been carried out with the specific goal of investigating seating preferences, none 

has analysed the differences in the perceived importance of daylight before and 

after the seating decision is made. A door-room survey method was suggested to be 

a useful way of identifying the perceived importance of daylight before and after 

making a decision about where to sit. Participants were presented with a list of 

statements and asked to select three that they think are the most important. This 

type of measurement was used in previous research for evaluating occupant 

preferences and satisfaction with the visual environment (Hygge and Loffberg, 1999; 

Christoffersen et al, 2000; Parpairi et al., 2000) and for examining seating 

preferences (Dubois et al., 2009; Othman and Mazli, 2012). The current study aimed 

to further extend previous research by examining alternative methods of measuring 

the perceived importance of daylight in seat choice decisions. 

 

The results of surveys demonstrated that daylight has a consistent role to play in 

influencing perceived seating behaviour: although the frequency by which daylight 

was considered to be important differed between the two surveys, this difference 

was not statistically significant. However, significant differences were observed for 

the relative importance of some factors (availability of power sockets and the 

distance from others), suggesting that the context in which surveys take place 

matters. Daylight was found to be the one of the most important factors perceived by 

respondents, a result similar to that produced in previous stated preference studies. 
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6.2.2 Limitations 

 
A number of limitations exist with the stated preference method that limit what it can 

tell us about which perceived influences are the most important when choosing a 

seat location. First, participants were presented with a set of predefined items and 

asked to evaluate them by expressing their preferences on the measurement scale 

being used.  This method can lead to misleading conclusions for a variety of 

reasons. For example, the survey format may force participants to evaluate an item 

they otherwise would not have considered relevant. Likewise, the response options 

provided by the researcher do not necessarily represent those of the participants 

either. These issues need to be considered when constructing a measurement 

scale, including the number of categories and the procedure being used to account 

for response order effects. 

 

One step towards addressing the limitations with the current survey format is to give 

the respondents an opportunity to express their personal opinion, thus reducing the 

constraints on responding. Other survey methods such as interviews could allow for 

that flexibility by giving respondents the opportunity to state the reasons applied to 

their seat choice without being restricted to the given set of options. In this case, 

however, the analysis and interpretation of data can be challenging and less 

straightforward than for instance that obtained by the door-room survey method.  

 

A further limitation is that the opportunity sampling can produce a biased sample as 

only certain types of people were selected from a limited area, in this case a library 

reading room. The sample taken may not be representative of the entire population. 

The findings are therefore not generalizable beyond the sample surveyed, but 

researchers may identify survey elements that are transferable to other similar 

settings (i.e. other library reading areas).  

 

Finally, stated preference surveys provided only indirect reports of seating behaviour 

and therefore may not be a reliable source of evidence about actual seating 

behaviour. Evidence from the surveys has the potential to be misleading if the data 

is interpreted as representing seating behaviours that are actually occurring inside 

the reading room.  
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6.3 Revealed preference surveys 

 
Further evidence for the association of daylight with seating preference has been 

provided from direct observations on actual behaviour of individuals in the test room. 

Three experiments were designed to provide a series of snapshots of seat use at 

specific times (snapshot approach), and one of these included an additional 

investigation in which the seating behaviour of an individual was recorded from the 

time of entering until the time of leaving the room (walkthrough approach). A 

summary of the results from the experiments is given in Table 6.1, and are 

discussed below in terms of the variables that were being examined. 

 

Table 6.1. Summary of findings from revealed seating preference surveys. 
 

Snapshot 

observation 

Main findings: 

 Occupancy rates decreased sharply from window seating area to 

central seating area, then stayed fairly evenly distributed throughout 

the central seating area. 

 Comparison between daytime and night-time frequencies revealed 

some similarities of seating pattern, suggesting the effect of daylight 

may be small (R2= 0.57, p<0.001). However, length of stay appears to 

have confounded the analysis. 

Experimental variations: 

 Observation data is not affected by the interval for which observations 

were recorded (R2= 0.99, p<0.001). 

Walk-

through 

observation 

Main findings: 

 Possible effect of physical proximity: Occupants were usually seated 

individually rather than in groups, and preferred seats with low local 

occupancy density. 

 Possible effect of length of stay: The mean length of stay differed 

significantly between seating areas, with higher proportion in window 

area than that in central area. 

 There was no clear evidence of an association between availability of 

power sockets and seat choice.  

 Occupants who arrived later in the afternoon preferred to sit in the 

central seating area when the availability ratio in window seating area 

was low. 

Experimental variations: 

 Analyses of the inter-observer reliability for the recording of seating 

behaviour with the two approaches (snapshot and walk-through) 

indicate that the observations were reliable (R2= 0.99, p<0.001). 

 

 



147 
 

Whilst the three experiments were carried out at different times, during summer and 

autumn, the overall occupancy patterns were similar: the occupancy rates were 

relatively high for window seating area compared to central seating area, but there 

was no apparent pattern in the distribution of occupancy rates across central seating 

area. The analysis did not reveal any significant difference between the observation 

intervals, meaning that occupancy rates are not dependent upon the time interval 

over which they are measured. This should perhaps be expected as people are 

more likely to stay for longer periods of time in library workspaces compared to other 

physical settings such as restaurants or cafes.  

 

Another question being addressed by this study was whether there were any 

differences between the daytime and after-dark occupancy rates. The occupancy 

rates observed during daylight hours were compared with those observed during 

hours of darkness. The pattern of results obtained in the two datasets was 

somewhat similar, suggesting that the effect of daylight may be small. However, 

these data should be interpreted with caution given the differences in length of stay 

observed in two periods: people arriving during daylight hours may have remained 

at their seats during hours of darkness, leading to overestimation of occupancy 

after-dark. 

 

The third experiment used walk-through approach in an attempt to improve the 

accuracy and validity of snapshot data by establishing inter-observer reliability. In 

order to obtain inter-observer reliability, another experimenter recorded the seating 

behaviours of individuals as they choose a seat.  This was done in parallel to the 

snapshot experiment, thereby enabling direct comparison between the two datasets. 

An analysis of the occupancy was then performed to identify relevant contextual 

factors in the physical setting and to control, at least to some extent, potential 

differences that might arise from different physical characteristics of seating areas. 

The following information was recorded: (a) group settings, (b) time seated, (c) time 

departed, (d) the type of activity, and (e) the availability of power socket at desk. 

Group settings were identified as instances when individuals interact with each other 

for a common purpose (i.e. a group of individuals working together).  

 

Results from the walk-through observation data indicated that the room was 

predominantly used by individuals rather than groups. This is as would be expected 

considering the room is a silent study area where social interactions are less likely to 

occur. The data collected on group settings suggested that those working in groups 
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tended to sit in the central seating area, possibly because of its high seat capacity 

(i.e. presence of large tables that groups could use). A further examination of the 

effects of local occupancy density on seating behaviour suggested that occupants 

preferred to sit in areas where the local density was low. This latter analysis is 

based on the concept of modified Moore neighbourhood, which takes into account 

the immediate surrounding seats within the occupant’s field of vision. Local 

occupancy density was then calculated as the ratio of occupied seats within the 

neighbourhood. 

 

To examine potential differences that might arise from different periods of seat 

occupation, length of stay was determined for each individual from their arrival and 

departure records. This was assumed to be a reasonable estimate of how long 

individuals remained in their seat during the observation period. The results 

revealed differences in mean lengths of stay among seating areas, with window 

seating area having the highest values compared with the other areas. What this 

means is that the high occupancy rates found in window seating area during 

snapshot experiments may be due to the longer lengths of stay rather than high 

number of occupants seated in that area. On the one hand, this suggests that 

snapshot experiments may have produced misleading results because of inherent 

bias in the estimates of occupancy. On the other hand, if a longer length of stay 

indicates a predominantly strong preference for one particular seat, then the results 

might indicate that those who prefer window seating area tend to stay longer in their 

seats. Longer length of stay may thus be interpreted as being an indicator of 

preference for a particular seating location. 

 

As far as computer and paper-based tasks are concerned results indicated only 

slight differences in seating preferences of these two task groups. In the window 

seating area where the power sockets are located, the proportion of occupants who 

carry out computer-based tasks was slightly higher than those who carry out paper-

based tasks, whereas the opposite pattern was found in the central seating area. 

However, the availability of power sockets itself may not be the most important 

factor for those who carry out computer-based tasks: more than a third preferred to 

sit in the central seating area with no power socket available, the opposite to what 

might be expected considering the need for a power supply. This means that seating 

preferences may be related to the tasks being undertaken in the reading room (i.e. 

higher proportion of computer-based task group seated in the window seating area), 

but not necessarily to the availability of power sockets. 
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The daylight availability predictions provided a quantitative basis for explaining seat 

choice behaviour in relation to daylight. An approach based on simulation modelling 

was proposed to estimate the daylight illuminance levels at the work plane with an 

acceptable level of accuracy and precision. For each sensor point, a representative 

illuminance value was determined for each time interval over the observation period. 

The resulting time series of illuminances were then analysed using a set of metrics, 

which served as indicators of actual daylight illumination throughout the room. This 

procedure allowed evaluating the way that seasonal changes affect the availability 

of daylight within the room and is derived from data representing the observation 

period. The illuminance level produced at the sensor points that fall within the 

window seating area reached 2000 lux in the autumn and as high as around 10000 

lux in the summer. These results suggested that occupants seated in the window 

seating area were exposed to considerably higher levels of illuminance in summer 

than in winter. This outcome is notable, as it indicates that the high levels of daylight 

in window seating area may have led to increased level of discomfort glare in 

summer as opposed to in the winter when discomfort glare appears to be less of an 

issue. During both periods, the illuminance decreased rapidly from window to central 

seating area, but did not fall below the minimum illuminance threshold of 100 lux, 

meaning that daylight by itself did provide sufficient illuminance to carry out visual 

tasks.  

 

The occupancy rate calculated for each individual seat was correlated with the 

corresponding daylight metric to test whether there was a relationship. For the entire 

seating area, horizontal illuminance and daylight factor produced similar results, 

both having positive correlations with the occupancy rate. Useful daylight 

illuminance showed negative correlations in summer experiments, indicating that 

people preferred areas with illuminances outside the useful range, even to the 

extent they produce discomfort glare. The results suggest daylight autonomy does 

not have a relationship with the occupancy rate, unlike the other metrics examined. 

This confirmed that daylight autonomy distributions are of limited use for the 

purpose of this study. Examination of each seating area separately revealed that the 

relationships between daylight metrics and the occupancy rate are strongly 

influenced by the data points obtained from window seating area. Excluding these 

data points from the analysis resulted in negligible correlation values, or more often, 

no correlation at all. 
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A final approach to the analysis of revealed preference data was to consider 

sequential choices made by occupants over time. If the seating behaviour depends 

upon the previous decisions, then it may be useful to consider the factors that might 

account for such dependence. One factor that is likely to be important is the seat 

availability at the time of making a seat choice. This was investigated using data 

from walk-through observation, and an availability ratio was calculated for each 

individual based on the ratio of available seats in the window seating area. As might 

be expected, individuals who arrived early in the morning tended to sit in the window 

seating area when the availability ratio was high, whereas those who arrived later in 

the afternoon preferred to sit in the central seating area when the availability ratio 

was low. What these results suggest is that occupants seated in window seating 

area might feel more responsible for their choices given the potential opportunity of 

finding the very best seating option, but those arrived later may have limited options 

and as a result tended to defer decision and search for alternative locations in the 

central seating area. 

 

6.3.1 Comparisons with previous research 

 
The literature review presented in Chapter 2 provided an overview of previous 

revealed preference studies that sought to determine the effect of daylight on 

seating preference (Kim and Wineman, 2005; Dubois et al., 2009; Wang and 

Boubekri, 2009; Othman and Mazli, 2012). Although some common findings 

emerged, such as the tendency of people to choose seats near windows where the 

high level of daylight is likely to cause glare, there are major limitations with previous 

research. First, previous studies do not provide insights into how procedural aspects 

such as the observation interval, the time of day or season influence the occupancy 

patterns observed and the conclusions drawn. Second, although evidence is 

provided that people preferred to sit in areas with high levels of daylight, much of 

this evidence comes from measurement of illuminance for some representative 

points in the test room rather than for each seating location. There has been no 

further attempt to explore any correlation that might exist between the measured 

light levels and the observed seat choices. Third, observations were carried out in 

dynamic environments where seat availability could change with time and previous 

seat choice decisions, yet none of the reported studies included data on such 

dynamic aspects of seating behaviour and had no method of measuring seat 

availability.  
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The revealed preference experiments reported in this thesis built on previous 

research by testing the effects of data collection methods. Occupancy observations 

were recorded at different time intervals in different times of the year, and using a 

second approach which provided additional insights into seating behaviour, such as 

how occupants positioned themselves in relation to others or whether the presence 

of power sockets affected their seat choice. Further analysis of the occupancy was 

carried out to compare results from the daytime and night-time datasets. It was 

noted that factors associated with extended length of stay might have influenced the 

results. A simulation-based framework was proposed which allowed dynamic 

assessment of daylight in the test space. The occupancy rates and the estimates of 

daylight illuminance levels generated by simulations have enabled comparisons to 

be made between the datasets. Finally, to account for the differences in the 

availability of seats during the observation period, availability ratios were calculated 

by the percentage of seats that were unoccupied at a given moment, with variations 

with time of day being examined. 

 

6.3.2 Limitations 

 
The advantage of revealed preference method is the reliance on actual choices, 

avoiding the potential problems associated with responses in stated preference 

surveys, such as the tendency to give answers that the respondent considers to be 

socially acceptable or a failure to properly consider physical constraints imposed by 

the layout of the workplace. On the contrary, the snapshot approach provided 

information about seating behaviours but did not generate insight into associated 

meanings necessary to understand dynamic interactions between seating behaviour 

and the physical environment. Walk-through approach was proposed as an 

alternative and complementary approach, providing contextual information relating 

to seating behaviours and interactions, including the type of activity undertaken and 

physical proximity between the groups or individuals. By relying on such 

observations, however, analysis was restricted to include only those aspects of the 

behaviour that could be directly observed and measured.  

 

Another concern is that occupants may have different levels of ability to behave in 

accordance to their preferences, depending on the context in which the seating 

decision is made. For example, occupants may be forced to choose a seat they may 

otherwise have not chosen. This effect has been noted from the availability analysis. 

An analysis of walk-through data suggested that the evaluation and selection of a 
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particular location may be affected by the number of seating options available at the 

time of seating decision is being made. It is thus evident that when occupants 

choose a seat their behavioural response is biased and constrained by the range of 

available seats and therefore the outcome should not be interpreted as evidence of 

a preferred seat. Occupancy observations provided information regarding common 

patterns of seating behaviour but not absolute preferences. Since the actual seat 

choices reflect the joint influences of preference and availability, estimates derived 

from revealed preference approach require careful interpretation. 

 

The lighting characteristic that was of interest was the illuminance on the horizontal 

work plane, predicted through the use of computer simulations with validated 

software (see Chapter 5). This perhaps has to be accepted as a limitation, for at 

least two reasons. First, the analysis was entirely carried out through simulation and 

should thus be appreciated as a function of the limitations of the simulation tool and 

of the simulation framework proposed. Second, the analysis relied on daylight 

metrics on the photometric quantity of illuminance, rather than luminance. Given that 

the human visual system is frequently oriented vertically, seating preferences may 

be better predicted by patterns of luminance in the vertical visual field than by 

absolute illuminances on horizontal work plane. It should be noted however that the 

luminance method requires knowledge of the relative positions of the observer and 

the light source as well as the reflection properties of the surface material. This type 

of evaluation method is thus limited to being applicable only in situations where such 

assumptions about the observation point and the view direction can be made. As the 

test room in the current study was a large open-plan room where multiple directions 

of view are likely, horizontal illuminance is assumed to be sufficiently reliable to 

compare daylighting conditions in different seating areas. The assumption was that 

the measurement of luminance would involve an effort inappropriate for the 

exploratory nature of this investigation. 

 

Finally, it is worth noting that, while revealed preference surveys provided insights 

into real-world, naturally occurring behaviour; they did illustrate some common 

problems in field studies. For instance, a finding of high occupancy rate in areas in 

close proximity to windows might be due to the daylight coming in through the 

window or the view of a natural setting seen out of it. It is possible that some people 

who prefer to sit near windows may actually be as much concerned about the visual 

access to the natural environment as they are about daylight. This could have a 
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confounding effect and may compromise conclusions drawn from revealed 

preference surveys.  

 

6.4 Summary 

 
The research presented in this thesis has described the different, yet 

complementary, nature of the two approaches used to investigate the behavioural 

effects of daylight in a library working environment. The evaluation was based on 

the data obtained by direct observation of behaviour (revealed preference) and that 

obtained in surveys asking individuals about their seating behaviour (stated 

preference). In this chapter research findings from these two approaches have been 

summarised and compared with those reported in previous studies. From the stated 

preference survey results it is evident that daylight is perceived as one of the 

important factors when choosing a seat. Among other factors likely to be important 

are noise, availability of power sockets, distance from other people, and the outside 

view.  

 

The revealed preference surveys confirmed the preference for seats in close 

proximity to windows observed in previous research and provided further evidence 

that seat choice reflects the joint influences of preferences and other contextual 

factors such as seat availability. It is also important to appreciate that the results 

discussed in this chapter are a small sample of those that could be obtained through 

observations. Future research might attempt to replicate these findings using a large 

sample. The next chapter discusses implications of research findings and potential 

areas for future research. 
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CHAPTER 7. CONCLUSION 

 

 

7.1 Introduction 

 
The previous chapter presented a discussion of the results and a review of the 

potential limitations of the study. This final chapter describes conclusions drawn 

from the research and discusses their implications for daylight research and 

practice. The chapter begins with a summary of the research carried out and then 

outlines the conclusions and implications of findings. Finally, the chapter highlights 

potential areas for future research that would further improve the fields of occupant 

seating behaviour and daylighting.  

 

7.2 Summary of thesis 

 
The research presented in this thesis has sought to identify how seating preferences 

would be affected by daylight in an open-plan library workspace. An examination of 

the literature revealed that research on the relationship of daylight and the seat 

choice behaviour of individuals is limited. The stated preference studies reviewed in 

Chapter 2 provide evidence on the perceptions of occupants regarding the 

importance of daylight in their seat choice decisions. Specifically, the surveys 

explored which perceived influences were the most important when choosing where 

to sit. The data collected with the survey questions were the frequencies of the 

responses to each pre-defined factor. However, these surveys tend to provide only 

limited information about the perceived influence of daylight as the respondents 

were sought only from those already sat within the test room. Perception of the 

importance of daylight may be influenced by expectations and experiences of 

choosing a seat location. If this is the case, then the information obtained from 

outside the test room would be different from the information in the room. The stated 

preference study described in Chapter 3 therefore aimed to explore differences in 

the perceived importance of daylight across two groups of participants, those about 

to enter the test room (door survey) and those seated in the room (room survey). 

This allowed direct comparison of responses from the two surveys, to test the 

differences in responses before and after making the seat choice decision. 

Respondents were given a series of statements about their seat choice and asked 

to choose three of these statements that they think are the most important. The 

results were consistent with those of previous research that identified daylight as 
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perceived to be one of the most important factors when choosing a seat location. 

For the room survey group, it was the most important out of the options presented 

and for the door survey group it was the third most important after the availability of 

power sockets and quietness. The limitation of the stated preference surveys is that 

they rely on data from survey questions asking people about their seating 

preferences and are therefore should not be regarded as a source of direct evidence 

about actual behaviour. The expression of preferences is an action, in this case 

making a seat choice, which presumably is guided by these very same preferences. 

 

An objective way to identify seating preferences is through observation of actual 

behaviour. The second chapter reviewed previous revealed preference studies and 

what they tell us about where people sit in relation to daylight. Findings from these 

studies suggest that people prefer to sit in areas near windows where daylight levels 

are high. However, one limitation of previous research is the tendency to record seat 

occupancy at some predefined intervals. An alternative method is to use walk-

through approach that could withstand potential loss of data between two 

successive intervals. However, few if any studies of seat choice have used walk-

through approach to record seat choice behaviour. Another important consideration 

is the time period in which the experiments are carried out, particularly because 

these experiments take place in dynamic conditions, where occupancy and daylight 

could vary significantly at different times of day and season. Such variation may limit 

the conclusions that can be drawn from a particular study. The revealed preference 

experiments reported in Chapter 4 attempted to address these limitations by 

examining the effects of different methods of recording occupancy data. Walk-

through method was suggested as an alternative method to be used in parallel to 

snapshot approach. The results from these two methods applied to the same set of 

occupancy data converge toward similar conclusions, so it was possible to place 

more confidence in those conclusions.  

 

The revealed preference experiments were extended to include summer as well as 

autumn conditions so that the effect of the seasonal variations in lighting conditions 

and occupancy could be investigated. A relatively high proportion of occupants 

seated in the window seating area has suggested a possible link between daylight 

and seat choice. It should be noted that these results did indicate sitting near 

windows but did not tell what might be behind the behaviours observed in the test 

room.  
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Previous seat choice studies employed physical measurement techniques to 

determine the distribution of daylight in the test space. The approaches taken in 

these studies ranged from illuminance measurements at representative points on 

the work plane to the predictions of the luminance distributions in the vertical visual 

field. Given the methodological differences across the studies, the question arises 

whether a prediction of illuminance or luminance for a particular location in the test 

space is sufficiently representative to allow comparison with occupancy data. This 

study applied a dynamic simulation modelling method to perform prediction of 

daylight illuminance for each individual seat in the test room, and Chapter 5 

presented simulation method. The illuminance data set were experimentally 

acquired from respective illuminance sensors specified on the work plane, 

corresponding to each seat location. A set of metrics were then analysed to 

determine whether they correlate with the occupancy data derived from revealed 

preference observations. On the basis of simulation results, it is possible to 

conclude with a reasonable degree of certainty that the level of daylight received 

into the window area was higher in the central area, even to the extent of causing 

discomfort glare in summer. It should be noted that the study does not involve any 

physical measurement of daylight and should thus be appreciated as a function of 

this limitation. Although these findings are tentative, based upon a rather limited 

computer simulation analysis, they do provide reasonable estimates of daylight 

availability in the test room over the observation period. This concluding chapter 

draws together the conclusions from the research and suggests potential research 

areas for further investigation. 

 

7.3 Conclusions 

 
7.3.1 Comparison of methods 

 
Previous studies have provided limited evidence of an association between daylight 

and seat choice behaviour, in part because each study employed different methods 

to measure and quantify daylight and seating preferences of individuals. What is 

lacking is an evaluation of the reliability of the data; for example, by a critical review 

of the observation procedures and the metrics used for measuring daylight. In 

evaluating the question of the reliability of the data reported in previous seat choice 

studies, some methodological limitations are evident. Table 7.1 presents a summary 

of procedures used in previous studies. Note that these are the studies specifically 

focused on seat choice behaviour. 
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Table 7.1. Summary of procedures and results from past studies of daylight and seat choice. 

Study 

Stated Preference Revealed Preference 

Method Key Findings 

Method 

Key Findings Snapshot/ 
Walk through 

Daytime/ 
Night time 

Interval Duration Season 
Daylight 
metrics 

Kim and 

Wineman 

(2005) 

n/a n/a Snapshot Daytime 10 min 

30 min  

 

6 days   

8 days  

Spring 

Autumn 

Horizontal 
illuminance 

Higher occupancy in areas near 
windows with outdoor views 

Dubois et 

al (2009) 

Room 

survey 

Daylight was reported 

to be the most 

influential factor on 

seat choice 

Snapshot Daytime 15 min 2 weeks Autumn 

 

Luminance 
based 
metrics 

Higher occupancy in window zones 
in spite of high variability in daylight 
conditions 

Wang and 

Boubekri 

(2009) 

n/a n/a Snapshot Daytime 30 min 3 days Spring  Horizontal 
illuminance 

Higher occupancy in sunny areas 
and a general preference for open 
areas when sitting away from sunny 
areas 

Othman 

and Mazli 

(2012) 

Room 

survey 

The majority of 

respondents agreed 

that daylight affects 

their seat choice 

Walk 

through 

Daytime n.a Not 

reported 

Not 

reported 

Horizontal 
illuminance 

Variations in occupancy during the 
day: lower occupancy near windows 
due to excessive contrast in light 
levels in the morning 

Gou et al 

(2018) 

Room 

survey 

Daylight was the 

fourth highest rated 

reason of seat choice 

after quietness, 

furniture and privacy 

Snapshot Daytime 30 min 2 days Spring Horizontal 
illuminance 

Variations in occupancy in different 
weather conditions: higher 
occupancy rate in south-facing 
workstations on a sunny day than 
on a cloudy day; and a preference 
for the sky view over the view of 
high-density trees 
 Current 

study 

Door 
survey  
 
Room 
survey 

Daylight was the third 

and the most 

frequently chosen 

category of response 

in door and room 

surveys respectively 

 

Snapshot  
 
Walk through 

 

 

Daytime 

Night time 

15 min 

30 min 

60 min 

10 days 

5 days 

10 days 

Autumn 

Summer 

Horizontal 
illuminance 
 
Daylight 
factor  
 
Dynamic 
metrics 

Substantial differences in 
occupancy and daylight levels 
between window and central area: 
occupancy rates decreased 
dramatically from window to central 
area, possibly reflecting the impact 
of two different environments on 
seat occupancy 
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The relationship between daylight and seat choice found in the experiments 

presented in this thesis is consistent with a number of other seat choice studies. 

Most of the studies presented in Table 7.1 demonstrated the tendency of occupants 

to sit near windows despite exposure to high levels of daylight and potential glare, 

with the exception of Othman and Mazli (2012) who reported that the occupants 

avoided daylight when it caused excessive contrast in the morning. The results from 

the current study confirmed the high levels of occupancy near windows and the 

presence of excessive amount of daylight in these areas, thus supporting the 

conclusions drawn from previous studies (Kim and Wineman, 2005; Dubois et al., 

2009; Wang and Boubekri, 2009; Gou et al., 2018). High occupancy rates were only 

found in those areas located in close proximity to windows, and occupancy rates 

decreased drastically from window to central area. In the central area however, 

occupancy rates did not follow the same pattern, but rather formed a pattern that 

appears random. Previous studies reported higher occupancy in areas near 

windows, but did not provide information regarding occupancy patterns in the 

remaining seating areas (i.e. areas away from windows). 

 

The stated preference experiment used the door-room survey approach to 

determine the perceived importance of daylight in seat choice decisions. Asking 

participants to choose from a predefined list of response options was used as a 

means of identifying which perceived influences are the most important for seat 

choice. The analysis of the data suggested that daylight is an important 

consideration for occupants when choosing a seat, supporting previous research 

that has found similar results (Dubois et al., 2009; Othman and Mazli, 2012; Gou et 

al., 2018). The quietness of the seating area was also an important factor, a result 

that is supported by the two studies of Dubois et al (2009) and Gou et al (2018). 

Alongside daylight and quietness, a third consideration for seat choice that was 

stated as being important is the availability of power sockets. The effect of presence 

of power sockets on seat choice was not examined in previous studies. As regards 

the data from door and room surveys, there is an indication that daylight appear to 

have had some behavioural influence, mostly on those already seated in the test 

room rather than on participants outside the room. One limitation of previous studies 

was that they did not identify differences in perceived importance of daylight before 

and after the seat choice is made, hence the effect of this is unknown. 
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From a methodological perspective, previous studies relied on physical 

measurements to analyse daylight performance of the test space. Although there 

have been similarities in the way in which daylight is measured, for example, using 

horizontal illuminance as the metric of choice, relatively little attention has been 

given to the methodological issues, nor to understanding the relationship between 

daylight metrics and occupancy rates. While it is not common in previous studies to 

question the procedures used to derive the daylight metrics, the current study 

demonstrated a need for further investigation to determine the validity of the chosen 

metric in predicting seat choice behaviour. Unlike previous studies in which the 

illuminance level was measured at some arbitrary points across the work plane (Kim 

and Wineman, 2005; Wang and Boubekri, 2009; Othman and Mazli, 2012), this 

study used a range of metrics to determine daylight availability in each seat location, 

and attempted to establish a correlation between the metrics and the occupancy 

rates. 

 

The research reported in this thesis extends previous work in two ways. First, 

neither of the previous seat choice studies focused on exploring differences in the 

perceived influences of daylight inside and outside the test room. The comparison of 

survey responses between the two locations is important, as the perceptions of the 

participants regarding the conditions that influence their seat choice at least partly 

depends on the context in which they receive information and make decisions. This 

was examined in the stated preference study, in which participants completed two 

questionnaires, one before and one after entering the test room. 

 

Second, this study investigated the impact that using different daylight metrics and 

different methods of recording seat choice behaviour has on the results. Seat 

occupancy was recorded at different time intervals in different time periods, and using 

a second procedure which expanded the study to include individual tracking of 

occupants in the test room. One aspect missing from previous studies is that whilst 

they have reported a tendency to sit near windows, they did not correlate seating 

preference with daylight metrics or other quantitative measure. This study 

investigated the association between daylight and seat choice behaviour, with 

occupancy rates used as a quantitative measure for seat choice behaviour, and 

subsequently which daylight metric best predicted this behaviour.  
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7.3.2 Daylight and seat choice: Evidence from field experiments 

 

As with the findings of the previous studies, the experiments reported in this thesis 

have found some evidence of an association between daylight and seat choice. The 

first conclusion to be drawn from the stated preference experiments presented in 

Chapter 3 is that daylight was only one, and apparently a major factor among many 

that affected seating preferences of people. The door-room survey, which asked 

respondents what mattered to them when choosing a seat found that they think 

daylight matters. Daylight was suggested to be the most important factor amongst 

those respondents already seated in the room, but was less important among those 

people who responded at the entrance. The availability of power sockets, noise and 

the distance from others were also found to be important factors.  

 

The revealed preference experiments reported in Chapter 4 provided data on actual 

seating behaviour and allowed the occupancy of different seating areas to be 

compared. It was found that higher illuminances led to increased occupancy rates, 

though this was only in close proximity to windows. In particular, the results showed 

high levels of illuminance near the windows with a rapid reduction in illuminance as 

the occupants move away from the windows through the central seating area. In the 

central seating area, the illuminance decreased to a lower level, below which a 

further decrease in illuminance had negligible influence upon seat choices, rather 

than leading toward a decline in occupancy rates across the central seating area. 

The analysis revealed a similar pattern of occupancy in summer and autumn 

periods, although the illuminance levels differed. Simulation results indicated 

considerably higher work plane illuminances in the window seating area in summer 

compared to autumn, with illuminance values being well above the upper limit for 

preferred daylight illuminance (3000 lux) in summer. This may have resulted in 

higher daylight levels experienced by the occupants seated in that area, increasing 

their disability and discomfort glare. Yet, occupants seemed to have tolerance to 

discomfort glare as evidenced by their preference for window seating area over 

central seating area.  

 

The snapshot experiments employing the day-dark approach tend to draw the 

somewhat controversial conclusion that the effect of daylight may be small. A 

significant bias noted in the comparison of snapshot data captured during daytime 

and night-time is suggested to be associated with the length of stay of occupants. 

This is because the data does not include information about the possibility that one 
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might be able to choose a sit in the daytime and remain in the same seat through 

the night. This means that the results are likely to be biased towards the conclusion 

that the occupancy rates are similar between the two observation periods. The 

snapshot data are supported by the results of the availability analysis which also 

found that the occupants preferred to sit in the window seating area when room 

density was sufficiently low to allow this choice. This was investigated by the walk-

through experiment using alternative procedures. One conclusion that could be 

drawn from this experiment is that occupants avoided sitting in close proximity to 

one another and those who preferred to sit in the window seating area tended to 

remain in their seats for longer periods of time. These factors provided alternative 

explanations of actual seating behaviour, although it is important to note that the 

analysis was restricted to include the observable and measurable aspects of 

behaviour and that the results should be interpreted along with the other dimensions 

of behaviour. 

 

Given the empirical evidence from stated and revealed preference surveys, daylight 

appears to have had some influences on seating behaviour. While no actual 

recommendations can - or should - yet be made because of our limited 

understanding of the effects of daylight on human behaviour, especially when 

choosing a seat location, the relevance of some critical factors in perceived and 

actual seating behaviour is certainly a topic worth further investigation. The next 

section discusses the implications of the findings from the research, in particular 

what they may mean for seating behaviour research and daylighting design 

guidelines. 

 

7.4 Implications 

 
The insights gained in this research have potentially important implications for 

daylighting design of library buildings as well as for understanding the relationship 

between daylight and human behaviour. This research focused on one particular 

type of behaviour, seat choice behaviour, and used a library reading room as the 

physical setting to investigate the potential role of daylight in choosing a seat 

location. Daylight availability is likely to be an important reason for choosing a 

particular seat location and it is therefore important to know how daylight influences 

seat choice behaviour. Given that the desire to sit in close proximity to windows has 

been established by previous studies and that the results of this field study appear 

to indicate that this may be influenced by the amount of daylight available in the 
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space, improvements could be made in current design standards. Daylighting codes 

and standards were developed based primarily on considerations of visual task 

requirements but only on a limited scientific understanding of the important role 

daylight plays in seat choice behaviour. This thesis presented an experimental 

investigation of seat choice behaviour, and the evidence from this research can be 

used to develop daylighting design guidelines that are better based on seating 

preference data. With regard to design process, understanding seat choice 

behaviour can potentially contribute to an awareness of human dimensions, spatial 

organization and the management of space. 

 

The study also offers some implications in the field of daylight-seating behaviour 

research with regard to the methodological approach taken. Probably the most 

significant implication can be found in data collection methods used in this study. 

The method of previous work exploring perceived importance of daylight by the use 

of questionnaire surveys was extended to include the effect of the survey location 

which has not previously been done. This allowed to explore users’ expectations 

and experiences of choosing a seat location. Another contribution that this study has 

made to the methods of previous research is the way that revealed-preference 

surveys were conducted. Seat choice behaviours were observed at different time 

intervals for different time periods. These data collection methods worked well for 

this research by identifying potential sources of variation in the data captured during 

direct observations, while also providing a basis for the replicability of the 

experiments. Most of the literature showed effects of daylight on seating 

preferences, but no attempt has been made to examine these experimental 

variations. Following individuals as they choose a seat, rather than relying on 

snapshot recordings was also suggested to be useful as an alternative method for 

recording seat occupancy. This allowed data from these two methods to be 

compared and more robust conclusions to be made about the actual seating 

behaviour. 

 

This study was essentially exploratory in nature, given that the purpose of the 

experiments was to examine the effects of daylight on occupant behaviour, with a 

particular focus on seating preferences. Yet clearly the methods used in this 

research provide only a partial understanding of the role that the daylight plays in 

seat choice behaviour. Further research is needed to validate the findings and to 

overcome some of the limitations which are inherent in the experiments. These are 

discussed in the next section. 
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7.5 Recommendations for future research 

 
The literature review presented in Chapter 2 has highlighted a number of areas 

where further research is needed to better understand whether and how daylight 

influences seat choice behaviour. Whilst some of these were addressed by the 

research in this thesis, others remain. First, preferences for window seats are to 

some degree dependant on the presence of outside view. The stated preference 

surveys revealed the importance that library users place on the outside view, 

however, no data within the revealed preference experiments exists to confirm this. 

A potentially important work that might shed some more light on this issue is the 

examination of the link between seat choice and the view content using alternative 

methods. An alternative explanation for the study findings would be that the 

occupants seated in the window area were seeking additional stimulation, 

something that was provided by the view of the natural setting seen through their 

windows, and their seat choice had nothing to do with daylight. One way to test this 

possibility would be to repeat the experiments in a space lit solely by skylights, in 

which case the differences in seating behaviour due to the presence of outside view 

would be expected to disappear. This approach would remove outside view as a 

variable factor. 

 

Second, future studies could use different methods for recording seating behavior of 

individuals, such as photography or video recording. These methods could be used 

to enhance the data collected during observations while also providing permanent 

visual records. This would enable to record seating behavior over longer periods, 

and would enhance what we know about how people choose their seating positions.  

 

Third, the study has relied upon illuminance-based metrics to assess the daylight 

conditions in the test room. It would also be useful to explore through evaluation of 

luminance-based metrics other aspects of visual environment not covered by the 

present study, such as those related to visual discomfort. It is important to 

appreciate that illuminance-based metrics such as UDI do not deal with discomfort 

glare apart from limiting the illuminances received to less than 3000 lux. Alternative 

evaluation metrics could provide more comprehensive measures of discomfort glare 

from windows, and these could be used to support findings from the current study. 

Particularly useful in this regard are high dynamic range (HDR) imaging techniques 

that allow a larger luminance range to be captured. While luminance provides a 

better measure of what people see, it is a function of surface reflectance, often 
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unknown at design stage, and is valid for only one direction of view. Visual scenes 

can be very complex, comprising a range of surface types (size, location and 

reflectance) that can vary with factors such as time and viewing direction. While 

illuminance has limitations, it is insensitive to these variations, and thus may provide 

a better metric. 

 

Finally, it is worth noting that the study is inevitably limited in that the results are 

applicable to the specific context in which they were obtained, and cannot be 

generalized to other contexts. Research on seat choice behaviour is generally 

based on single case studies and has lacked empirical evidence on a large number 

of observations. As with all such field studies, the current findings are a snapshot 

particular to time and place. What deserves attention in the future is the extent to 

which the proposed methods can be used for different contexts, that is, for different 

types of buildings and different groups of people. It is only by accumulating the 

results of many such evaluations made using the same methods that any general 

understanding about daylight and seat choice behaviour can be developed. 
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APPENDIX A. CASE STUDY RESULTS 
 

This appendix presents the results from a study carried out parallel to the work 

presented in this thesis (Keskin et al, 2015). The observations were made in another 

university library, Information Commons (IC), and the results were compared with 

those obtained in Western Bank Library (WB). The reading area in WB were divided 

into subareas, defined as observation zones, which can be used for ease of 

interpretation. As for IC, it was decided to calculate occupancy for each individual 

seat due to the irregularity of desk configuration. 

 

Figure A.1 shows the comparison of occupancy rates between daytime (10:00-

14:00) and night time (18:00-21:00) for both WB and IC. This suggests a strong 

relationship, a tendency for a seating to be used with equal frequency at daytime 

and after dark, and thus the influence of daylight is small. 

 
 

        

 

Figure A.1. Comparison of occupancy rates between daytime and night time - Western Bank 

Library (left) and Information Commons (right). 

 

 

Figure A.2 shows occupancy rate plotted against the three daylight metrics for 

daytime seating behaviour. While the IC data suggest negligible correlation between 

daylight and seat choice, the WB data exhibit a much stronger association. For both 

buildings, DF gives a higher degree of correlation with space use than does UDI 

or DA.One difference between the two spaces is the regularity of the seating: in WB 

the seats are arranged largely in uniform rows whereas in IC they are arranged in an 

irregular pattern. There are a group of seats in IC that are more regular in layout. 

For this group of seats the correlation between DF and seat choices increases 

(Figure A.3). This suggests seating regularity may be an important factor. 
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Figure A.2. Comparison of daylight performance metrics and seat choice - Western Bank 

Library (left) and Information Commons (right). 

 

 

     

 

Figure A.3. Comparison of daylight performance measures and seat choice for regular 

seats. 
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APPENDIX B. DOOR-ROOM SURVEY 
 

This appendix presents the variations in which the ten seat choice factors were 

presented in door and room surveys. Five variations were created as a way to 

minimize question order bias (Table B.1 and Table B.2). 

 

Table B.1. Door Survey: The five variations in which the ten seat choice factors were 
presented. 
  

Order Version 1 Version 2 Version 3 Version 4 Version 5 

1 A place near 
power 
sockets 

The closest 
available seat 

A place where 
there is good 
electric 
lighting 

It is near to 
the book 
shelves 

It is distant 
from other 
people 

2 A place 
where there is 
good daylight 

A place which 
is quieter 

It is distant 
from other 
people 

A place near 
power 
sockets 

A place which 
is quieter 

3 A place 
where there is 
good electric 
lighting 

A place where 
there is good 
electric 
lighting 

The closest 
available seat 

The closest 
available seat 

The closest 
available seat 

4 A place close 
to other 
people 

It is close to 
other people 

It is close to 
other people 

A place where 
there are only 
a few people 
passing by 

A place where 
there is a nice 
view 

5 A place 
distant from 
other people 

There is good 
daylight 

A place which 
is quieter 

There is good 
daylight 

There is good 
daylight 

6 A place 
where there is 
a nice view 

A place where 
there are only 
a few people 
passing by 

A place near 
power 
sockets 

A place where 
there is a nice 
view 

A place where 
there are only 
a few people 
passing by 

7 A place 
where there 
are only a few 
people 
passing by 

A place near 
power 
sockets 

A place where 
there are only 
a few people 
passing by 

It is distant 
from other 
people 

It is near to 
the book 
shelves 

8 A place which 
is quieter 

A place where 
there is a nice 
view 

There is good 
daylight 

A place where 
there is good 
electric 
lighting 

It is close to 
other people 

9 The closest 
available seat 

It is distant 
from other 
people 

It is near to 
the book 
shelves 

It is close to 
other people 

A place where 
there is good 
electric 
lighting 

10 A place near 
to the book 
shelves 

It is near to 
the book 
shelves 

A place where 
there is a nice 
view 

A place which 
is quieter 

A place near 
power sockets 
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Table B.2. Room Survey: The five variations in which the ten seat choice factors were 

presented. 

 

Order Version 1 Version 2 Version 3 Version 4 Version 5 

1 It is near 
power 
sockets 

It was the 
closest 
available seat 

There is good 
electric 
lighting 

It is near to 
the book 
shelves 

It is distant 
from other 
people 

2 There is good 
daylight 

The noise 
level is lower 

It is distant 
from other 
people 

It is near 
power 
sockets 

The noise 
level is lower 

3 There is good 
electric 
lighting 

There is good 
electric 
lighting 

It was the 
closest 
available seat 

It was the 
closest 
available seat 

It was the 
closest 
available seat 

4 It is close to 
other people 

It is close to 
other people 

It is close to 
other people 

There are 
only a few 
people 
passing by 

There is a 
nice view 

5 It is distant 
from other 
people  

There is good 
daylight 

The noise 
level is lower 

There is good 
daylight 

There is good 
daylight 

6 There is a 
nice view 

There are 
only a few 
people 
passing by 

It is near 
power 
sockets 

There is a 
nice view 

There are 
only a few 
people 
passing by 

7 There are 
only a few 
people 
passing by 

It is near 
power 
sockets 

There are 
only a few 
people 
passing by 

It is distant 
from other 
people 

It is near to 
the book 
shelves 

8 The noise 
level is lower 

There is a 
nice view 

There is good 
daylight 

There is good 
electric 
lighting 

It is close to 
other people 

9 It was the 
closest 
available seat 

It is distant 
from other 
people 

It is near to 
the book 
shelves 

It is close to 
other people 

There is good 
electric 
lighting 

10 It is near to 
the book 
shelves 

It is near to 
the book 
shelves 

There is a 
nice view 

The noise 
level is lower 

It is near 
power 
sockets 
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APPENDIX C. RESEARCH ETHICS APPROVAL 
 

Table C.1. University Research Ethics Application. 

Section A: Applicant details 

First name Zeynep 

Last name Keskin 

Email zkeskin1@sheffield.ac.uk 

Programme name Architecture 

Module name PhD Research Project 

Department School of Architecture 

Applying as Postgraduate research 

Research project title 
Daylight and Seating Preference in Open-Plan 
Spaces 

Section B: Basic Information 

Supervisor 

Name Steve Fotios 

Email steve.fotios@sheffield.ac.uk 

Proposed project duration 

Start date (of data collection) Mon 10 August 2015 

Anticipated end date (of project) Thu 31 December 2015 

Suitability 

Takes place outside UK? No 

Involves NHS? No 

Human-interventional study? No 

ESRC funded? No 

Likely to lead to a publication in a 
peer-reviewed journal? 

No 

Led by another UK institution? No 

Involves human tissue? No 

Clinical trial? No 

Social care research? No 

Involves adults who lack the 
capacity to consent? 

No 

Vulnerability 

Involves potentially vulnerable 
participants? 

No 

Involves potentially highly 
sensitive topics? 

No 

Section C: Summary of research 

1. Aims & Objectives 

Does daylight affect where you choose to sit? This project investigates the extent to which 
the influence of daylight on behaviour can be predicted, and for this the behaviour 
investigated is seating preferences of occupants in an open plan, hot-desking space in a 
university library. 
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2. Methodology 

There are two parts to this experiment: observation of behaviour and a questionnaire. 
 
The observation study will be conducted in the reading room in Western Bank Library. The 
investigators will note where people choose to sit, but will not otherwise interact with them. 
This procedure does not require personal data to be recorded. In one approach, seat 
occupancy across the whole space will be recorded every 15 minutes: A seat map will be 
used for taking notes. In a second approach, individual people will be observed from their 
entrance to the room to their chosen seat. This will be carried out continuously. Both 
observations will be carried out visually, and cameras or other recording devices will not 
be used. The observations will be recorded for one week (5 days) from 10:00 to 18:00. 
Subsequently these data will be correlated with daylight metrics. 
 
The questionnaire will investigate perceived influences on seat choice. In one approach, 
visitors to the library will be targeted as they approach the building: in the second 
approach, occupants of the reading room will be targeted. These questionnaires seek to 
identify the most important factors for seat choice. The aim is to seek responses from 200 
people, half for each approach. These will be chosen randomly from those people entering 
the library room and will a mixture of age and gender. They will be asked to give their age 
and gender but will not be asked for their names or other identification. They will be shown 
the possible options on a sheet of paper and the experimenter will record their response. 

3. Personal Safety 

Raises personal safety issues?  No 

Section D: About the participants 

1. Potential Participants 

In the observations we do not record any details about people. 
In the questionnaire we record gender and age: this is to ensure a representative sample, 
as we do not expect these factors to influence the response. 

2. Recruiting Potential Participants 

Questionnaire respondents will be approached as they enter the library (approach 1) or 
when they are sat in the reading room (approach 2). 

2.1. Advertising methods 

Will the study be advertised using 
the volunteer lists for staff or 
students maintained by CICS? 

No 

3. Consent 

Will informed consent be obtained from the participants? (i.e. the proposed process) No 
 
The observation data are gathered anonymously: no personal data are captured and the 
observation does not expose people to risks that are greater than, or additional to, those 
they encounter in their normal lifestyles. Therefore, consent is not appropriate. 
 
The questionnaire data requires active participation, and the age/gender (but not identity) 
of respondents will be recorded (to ensure a representative sample). Agreement to 
provide a response to the brief questionnaire will be assumed if they provide a response. 
The experimenter will inform potential participants that their participation is voluntary, brief, 
and that they are able to withdraw from, or refuse to take part in the engagement at any 
time. 

4. Payment 

Will financial/in kind payments be 
offered to participants? 

 No 
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5. Potential Harm to Participants 

What is the potential for physical and/or psychological harm/distress to the participants? 
 
There is no potential for harm.  
The data gathering is not invasive and does not raise significant personal issues. The 
questionnaire is purposefully brief to minimise disruption. They will not be exposed to risks 
that are greater than, or additional to, those they encounter in their normal lifestyles. 
 
How will this be managed to ensure appropriate protection and well-being of the 
participants? 
n/a 

Section E: About the data 

1. Data Confidentiality Measures 

n/a 

2. Data Storage 

The observation study does not capture any personal data. The questionnaire study 
captures participants' age, gender and seating preferences and there is no means of 
connecting a response to an individual person. These data will be summarised in the 
students' theses and the data sheets will be stored by the supervisor after use. 

Section F: Supporting documentation 

Information & Consent 

Participant information sheets 
relevant to project? 

 No 

Consent forms relevant to project? No 

Additional Documentation 

n/a 

External Documentation 

n/a 

Section G: Declaration 

Signed by: Steve Fotios 

Date signed: Fri 17 July 2015 

Signed by: Zeynep Keskin 

Date signed: Fri 17 July 2015 

Official notes 

n/a 
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Figure C.1. Ethics Committee Approval Letter 
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APPENDIX D. MULTIPLE-OPTION DATA: EFFECTS OF 
GENDER AND AGE 

 

This Appendix reports analyses designed to determine whether there were any 

gender and age differences in the preferences for the ten factors. Table D.1 lists 

characteristics of all the participants. Figure D.1 shows the differences between 

males and females in their preferences for the ten factors. 

 

 

Table D.1. Participants completing the door and the room surveys. 

Test 
 

n Gender Age distribution 

Door Survey 200 Male (109) 52% 18 to 24 (166) 83.0 % 

  Female (91) 48% 25 to 40 (32) 16.0 % 

    40 to 65 (1) 0.5 % 

    65 and over (1) 0.5 % 

Room Survey 200 Male (101) 50.5% 18 to 24 (167) 83.5 % 

  Female (99) 49.5% 25 to 40 (29)        14.5 % 
     40 to 65 (4) 2.0 % 
     65 and over (0) 0 % 
  

 

  Door                    Room 

          

Figure D.1. Differences between males and females in their preferences for the ten factors. 

 

A chi-square test showed that the frequencies by which each factor was picked as 

being an important factor for seat choice were not significantly different for males 

and females in door survey (Table D.2) and in room survey (Table D.3) (df = 1,  

p< 0.05) (Coolican, 1994, p.453). The data revealed no significant difference 

between male and female responses, thus eliminating the effects of gender 

differences. 
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Table D.2. Door Survey: Statistical analysis of difference in responses of males and females. 

Factor  Observed 

Frequency (O) 

Expected 

Frequency (E) 

X² 

∑(O-E)²/E 

 

df Level of 

Sig. 

  Male Female Male Female 

Power sockets Ticked 62 56 64.31 53.69 0.20 1 n.s 

Did not tick 47 35 44.69 37.31 

Quieter Ticked 68 40 58.86 49.14 3.09 1 n.s 

Did not tick 41 51 50.14 41.86 

Daylight Ticked 35 46 44.15 36.86 3.18 1 n.s 

Did not tick 74 45 64.86 54.15 

View Ticked 48 32 43.60 36.40 0.74 1 n.s 

Did not tick 61 59 65.40 54.60 

Few passers 
by 

Ticked 26 29 29.98 25.03 0.73 1 n.s 

Did not tick 83 62 79.03 65.98 

Distance from 
others 

Ticked 29 25 29.43 24.57 0.01 1 n.s 

Did not tick 80 66 79.57 66.43 

Electric 
lighting 

Ticked 12 12 13.08 10.92 0.10 1 n.s 

Did not tick 97 79 95.92 80.08 

Closest 
available seat 

Ticked 12 7 10.36 8.65 0.29 1 n.s 

Did not tick 97 84 98.65 82.36 

Near shelves Ticked 9 3 6.54 5.46 0.98 1 n.s 

Did not tick 100 88 102.4

66 

85.54 

Near other 
people 

Ticked 6 1 3.82 3.19 1.30 1 n.s 

Did not tick 103 90 105.1

9 

87.82 

 

 

Table D.3. Room Survey: Statistical analysis of difference in responses of males and females. 

Factor  Observed 

Frequency (O) 

Expected 

Frequency (E) 

X² 

∑(O-E)²/E 

 

df Level of 

Sig. 

  Male Female Male Female 

Power sockets Ticked 20 16 19.62 16.38 0.01 

 

1 n.s 

Did not tick 89 75 89.38 74.62 

Quieter Ticked 55 40 51.78 43.23 0.38 

 

1 n.s 

Did not tick 54 51 57.23 47.78 

Daylight Ticked 56 45 55.05 45.96 0.03 

 

1 n.s 

Did not tick 53 46 53.96 45.05 

View Ticked 51 26 41.97 35.04 3.16 

 

1 n.s 

Did not tick 58 65 67.04 55.97 

Few passers 
by 

Ticked 37 39 41.42 34.58 0.76 

 

1 n.s 

Did not tick 72 52 67.58 56.42 

Distance from 
others 

Ticked 43 39 44.69 37.31 0.11 

 

1 n.s 

Did not tick 66 52 64.31 53.69 

Electric 
lighting 

Ticked 13 8 11.45 9.56 0.24 

 

1 n.s 

Did not tick 96 83 97.56 81.45 

Closest 
available seat 

Ticked 18 16 18.53 15.47 0.02 

 

1 n.s 

Did not tick 91 75 90.47 75.53 

Near shelves Ticked 3 7 5.45 4.55 1.16 

 

1 n.s 

Did not tick 106 84 103.5

5 

86.45 

Near other 
people 

Ticked 4 5 4.91 4.10 0.17 1 n.s 

Did not tick 105 86 104.1

0 

86.91 
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For analysis of the age variable, participants were grouped into four age categories: 

18-24, 25-40, 40-65, and 65+. There were only four people aged "40-65" in room 

survey and only 1 person aged "40-65" in door survey. As for older age groups, 

there were only 1 person aged "65 and over" that participated in room survey, and 

nobody in door survey was aged "65 and over". Thus, age was analysed for the first 

two groups only ("18-24" and "25-40") to satisfy the assumptions of the chi-square 

test. Figure D.2 shows the differences between the younger (aged 18-24) and the 

older (aged 25-40) respondents in their preferences for the ten factors.  

 

 

     Door          Room 

         

Figure D.2. Differences between younger people (aged 18-24) and older people (aged 25-

40) in their preferences for the ten factors. 

 

 

 

A chi-square test showed that the frequencies by which each factor was picked as 

being an important factor for seat choice were not significantly different for younger 

and older respondents in door survey (Table D.4) and in room survey (Table D.5)  

(df = 1, p < 0.05) (Coolican, 1994, p.453). The data do not suggest that there is an 

effect of age on factors perceived to affect seat choice.  

 

 

 

 

 



176 
 

Table D.4. Door Survey: Statistical analysis of difference in responses of younger (aged 18-
24) and older (aged 25-40) participants. 

Factor  Observed 

Frequency (O) 

Expected 

Frequency (E) 

X² 

∑(O-E)²/E 

 

df Level of 

Sig. 

  Young Old Young Old 

Power sockets Ticked 99 19 98.93 19.07 0.00 1 n.s 

Did not tick 67 13 67.07 12.93 

Quieter Ticked 91 16 89.71 17.29 0.04 1 n.s 

Did not tick 75 16 76.29 14.71 

Daylight Ticked 67 13 67.07 12.93 0.00 1 n.s 

Did not tick 99 19 98.93 19.07 

View Ticked 63 16 66.23 12.77 0.26 1 n.s 

Did not tick 103 16 99.77 19.23 

Few passers 
by 

Ticked 46 9 46.11 8.89 0.00 1 n.s 

Did not tick 120 23 119.89 23.11 

Distance from 
others 

Ticked 47 6 44.43 8.57 0.20 1 n.s 

Did not tick 119 26 121.57 23.43 

Electric 
lighting 

Ticked 19 5 20.12 3.88 0.07 1 n.s 

Did not tick 147 27 145.88 28.12 

Closest 
available seat 

Ticked 19 0 15.93 3.07 0.65 1 n.s 

Did not tick 147 32 150.07 28.93 

Near shelves Ticked 9 2 9.22 1.78 0.01 1 n.s 

Did not tick 157 30 156.78 30.22 

Near other 
people 

Ticked 6 1 5.87 1.13 0.00 1 n.s 

Did not tick 160 31 160.13 30.87 

 
 

Table D.5. Room Survey: Statistical analysis of difference in responses of younger (aged 18-
24) and older (aged 25-40) participants. 

Factor  Observed 

Frequency (O) 

Expected 

Frequency (E) 

X² 

∑(O-E)²/E 

 

df Level of 

Sig. 

  Young Old Young Old 

Power sockets Ticked 26 8 28.97 5.03 0.37 1 n.s 

Did not tick 141 21 138.03 23.97 

Quieter Ticked 75 18 79.24 13.76 0.43 1 n.s 

Did not tick 92 11 87.76 15.24 

Daylight Ticked 82 16 83.50 14.50 0.05 1 n.s 

Did not tick 85 13 83.50 14.50 

View Ticked 54 20 63.05 10.95 2.09 1 n.s 

Did not tick 113 9 103.95 18.05 

Few passers 
by 

Ticked 72 4 64.76 11.24 1.32 1 n.s 

Did not tick 95 25 102.24 17.76 

Distance from 
others 

Ticked 74 8 69.87 12.13 0.42 1 n.s 

Did not tick 93 21 97.13 16.87 

Electric 
lighting 

Ticked 18 2 17.04 2.96 0.06 1 n.s 

Did not tick 149 27 149.96 26.04 

Closest 
available seat 

Ticked 32 2 28.97 5.03 0.38 1 n.s 

Did not tick 135 27 138.03 23.97 

Near shelves Ticked 8 2 8.52 1.48 0.03 1 n.s 

Did not tick 159 27 158.48 27.52 

Near other 
people 

Ticked 8 1 7.67 1.33 0.02 1 n.s 

Did not tick 159 28 159.33 27.67 
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APPENDIX E.  SNAPSHOT OBSERVATION RAW DATA 
 
Table E.1. Occupancy rate (%) calculated for each individual seat. 

Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 

1 45.5 94.0 43.3 45 3.3 26.0 0.0 89 0.0 12.0 0.0 

2 66.7 98.0 50.0 46 2.2 2.0 0.0 90 1.1 18.0 0.0 

3 22.2 30.0 12.0 47 10.0 34.0 6.4 91 6.7 32.0 4.4 

4 22.2 22.0 11.2 48 0.0 20.0 2.2 92 3.3 8.0 4.4 

5 32.2 82.0 31.1 49 0.0 36.0 0.0 93 0.0 2.0 0.0 

6 21.1 28.0 21.0 50 0.0 14.0 0.0 94 2.2 16.0 2.2 

7 78.9 98.0 66.0 51 7.8 14.0 4.4 95 0.0 18.0 0.0 

8 17.8 86.0 14.0 52 0.0 2.0 2.2 96 2.2 14.0 0.0 

9 56.7 94.0 47.8 53 0.0 14.0 0.0 97 4.4 16.0 4.4 

10 41.1 92.0 37.0 54 3.3 4.0 2.2 98 0.0 12.0 0.0 

11 74.4 96.0 58.0 55 2.2 12.0 2.2 99 0.0 12.0 4.4 

12 33.3 92.0 22.2 56 2.2 10.0 0.0 100 1.1 36.0 0.0 

13 58.9 90.0 45.6 57 4.4 20.0 2.2 101 0.0 18.0 0.0 

14 47.8 96.0 35.6 58 2.2 4.0 2.2 102 0.0 8.0 0.0 

15 58.9 96.0 66.7 59 0.0 32.0 0.0 103 3.3 12.0 1.1 

16 48.9 90.0 47.8 60 4.4 24.0 4.4 104 1.1 18.0 1.1 

17 24.4 96.0 26.7 61 0.0 18.0 2.2 105 0.0 32.0 0.0 

18 76.7 92.0 75.6 62 0.0 10.0 0.0 106 0.0 24.0 0.0 

19 71.1 94.0 66.7 63 0.0 40.0 1.1 107 0.0 12.0 2.2 

20 31.1 82.0 44.4 64 4.4 44.0 2.2 108 3.3 34.0 2.2 

21 22.2 86.0 20.0 65 2.2 44.0 2.2 109 0.0 24.0 2.2 

22 56.7 88.0 43.3 66 10.0 34.0 8.7 110 0.0 46.0 0.0 

23 64.4 100.0 48.9 67 1.1 34.0 1.1 111 8.9 18.0 6.2 

24 53.3 96.0 53.3 68 0.0 22.0 1.1 112 1.1 16.0 0.0 

25 5.6 12.0 15.6 69 3.3 34.0 0.0 113 2.2 8.0 0.0 

26 33.3 48.0 24.4 70 1.1 54.0 1.1 114 0.0 22.0 2.2 

27 22.2 40.0 15.6 71 1.1 42.0 2.2 115 0.0 34.0 2.2 

28 0.0 4.0 2.2 72 0.0 22.0 0.0 116 0.0 42.0 0.0 

29 0.0 2.0 2.2 73 1.1 52.0 0.0 117 1.1 14.0 0.0 

30 0.0 10.0 2.2 74 4.4 46.0 4.4 118 0.0 12.0 0.0 

31 25.6 60.0 17.8 75 0.0 26.0 2.2 119 3.3 22.0 0.0 

32 8.9 10.0 6.7 76 1.1 28.0 0.0 120 0.0 38.0 0.0 

33 0.0 4.0 0.0 77 3.3 50.0 2.2 121 1.1 24.0 0.0 

34 0.0 20.0 0.0 78 0.0 54.0 0.0 122 0.0 28.0 2.2 

35 0.0 28.0 0.0 79 5.6 2.0 4.4 123 10.0 10.0 6.7 

36 3.3 10.0 0.0 80 3.3 2.0 4.4 124 0.0 30.0 0.0 

37 3.3 16.0 2.2 81 3.3 2.0 0.0 125 3.3 38.0 0.0 

38 3.3 0.0 0.0 82 3.3 0.0 0.0 126 0.0 34.0 0.0 

39 2.2 8.0 4.4 83 1.1 8.0 0.0 127 1.1 0.0 0.0 

40 0.0 14.0 0.0 84 7.8 0.0 4.4 128 2.2 0.0 0.0 

41 5.6 32.0 4.2 85 2.2 8.0 2.2 129 4.4 48.0 4.4 

42 0.0 24.0 0.0 86 0.0 34.0 2.2 130 5.6 48.0 4.4 

43 2.2 16.0 4.7 87 3.3 24.0 0.0 131 2.2 30.0 2.2 

44 2.2 12.0 4.4 88 0.0 18.0 2.2 132 2.2 40.0 0.0 
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Table E.1. Occupancy rate (%) calculated for each individual seat (continued). 

Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 

133 0.0 14.0 0.0 173 2.2 36.0 0.0 213 1.1 30.0 0.0 

134 0.0 12.0 0.0 174 0.0 18.0 0.0 214 7.8 36.0 0.0 

135 0.0 50.0 0.0 175 2.2 10.0 2.9 215 0.0 26.0 0.0 

136 0.0 14.0 0.0 176 0.0 30.0 2.2 216 2.2 54.0 2.2 

137 0.0 18.0 2.2 177 0.0 6.0 4.4 217 5.6 44.0 2.0 

138 0.0 32.0 0.0 178 0.0 16.0 0.0 218 6.7 48.0 0.0 

139 0.0 40.0 0.0 179 6.7 18.0 4.4 219 0.0 18.0 0.0 

140 2.2 14.0 0.0 180 8.9 10.0 4.4 220 0.0 24.0 0.0 

141 0.0 28.0 2.2 181 6.7 16.0 4.4 221 0.0 14.0 0.0 

142 2.2 26.0 0.0 182 3.3 22.0 3.3 222 2.2 8.0 4.4 

143 1.1 44.0 1.1 183 0.0 22.0 6.7 223 0.0 34.0 0.0 

144 0.0 28.0 0.0 184 10.2 12.0 8.4 224 5.6 24.0 2.2 

145 2.2 18.0 0.0 185 0.0 6.0 0.0 225 5.6 10.0 6.7 

146 0.0 22.0 0.0 186 10.6 22.0 14.4 226 13.3 18.0 11.1 

147 1.1 52.0 1.1 187 0.0 6.0 0.0 227 0.0 4.0 0.0 

148 0.0 28.0 0.0 188 1.1 14.0 2.2 228 1.1 14.0 0.0 

149 1.1 0.0 1.1 189 0.0 12.0 4.4 229 1.1 18.0 0.0 

150 0.0 0.0 0.0 190 7.8 30.0 6.4 230 7.8 44.0 6.7 

151 0.0 32.0 6.1 191 2.2 10.0 2.2 231 0.0 14.0 0.0 

152 0.0 28.0 2.2 192 2.2 24.0 2.2 232 1.1 10.0 1.1 

153 13.3 16.0 10.3 193 0.0 20.0 2.2 233 1.1 10.0 1.1 

154 2.2 18.0 0.0 194 0.0 22.0 0.0 234 5.6 26.0 4.4 

155 0.0 8.0 0.0 195 3.3 8.0 0.0 235 2.2 8.0 2.2 

156 2.2 10.0 4.4 196 2.2 16.0 0.0 236 0.0 34.0 0.0 

157 0.0 46.0 4.4 197 0.0 14.0 0.0 237 0.0 14.0 0.0 

158 0.0 12.0 2.2 198 0.0 24.0 0.0 238 3.3 26.0 4.4 

159 2.2 10.0 0.0 199 0.0 38.0 4.4 239 0.0 14.0 2.2 

160 0.0 12.0 0.0 200 1.1 32.0 1.9 240 4.4 32.0 4.4 

161 4.4 18.0 0.0 201 3.3 40.0 4.4 241 0.0 14.0 0.0 

162 2.2 14.0 2.2 202 0.0 36.0 0.0 242 0.0 32.0 0.0 

163 2.2 10.0 0.0 203 0.0 14.0 0.0 243 1.1 16.0 1.9 

164 0.0 20.0 2.2 204 18.8 38.0 12.2 244 6.7 4.0 6.2 

165 0.0 24.0 0.0 205 0.0 32.0 0.0 245 7.8 22.0 8.2 

166 0.0 24.0 2.2 206 1.1 48.0 6.7 246 11.1 24.0 14.4 

167 10.9 22.0 8.2 207 0.0 26.0 0.0 247 0.0 0.0 0.00 

168 0.0 18.0 2.2 208 15.6 42.0 12.2 248 0.0 0.0 0.00 

169 0.0 30.0 2.2 209 1.1 24.0 0.0 249 0.0 2.0 0.00 

170 0.0 16.0 2.2 210 4.4 14.0 0.0 250 0.0 0.0 0.00 

171 0.0 10.0 0.0 211 4.4 36.0 0.0     

172 1.1 16.0 0.0 212 12.2 52.0 1.1     
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APPENDIX F.  WALK-THROUGH OBSERVATION RAW DATA 
 

Table F.1. Raw data for walk-through experiment (day 1). S=Single, G=Group, P=Paper-

based, C=Computer-based. 

DATE: 10.08.2015 

 
 
 Occupant 

ID Number 
Intended 
Use (S/G) 

Time 
Seated 

Time 
Departed 

Activity 
(P/C) 

Power Socket at Desk 

Availability 
(Yes/No) 

Usage 
(Yes/No) 

1 S 09:08 17:05 P Y N 

2 S 09:11 10:00 P N N 

3 S 09:14 09:52 P Y N 

4 S 09:15 12:04 C N N 

5 S 09:21 16:00 C Y Y 

6 S 09:22 10:25 P N N 

7 S 09:27 10:44 P N N 

8 S 09:34 10:13 C N N 

9 S 09:43 11:07 C Y Y 

10 S 09:52 15:17 C Y Y 

11 S 09:54 16:34 C Y Y 

12 S 10:07 16:12 C Y Y 

13 S 10:22 16:14 P N N 

14 S 10:23 12:22 P N N 

15 S 10:42 10:44 P N N 

16 S 10:49 18:00 P Y N 

17 S 11:01 11:04 P N N 

18 S 11:03 14:46 C N N 

19 S 11:14 18:00 C Y Y 

20 S 11:31 16:26 P N N 
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Table F.1. Continued. 

Occupant 
ID Number 

Intended 
Use (S/G) 

Time 
Seated 

Time 
Departed 

Activity 
(P/C) 

Power Socket at Desk 

Availability 
(Yes/No) 

Usage 
(Yes/No) 

21 G (22)  11:33 14:56 C N N 

22 G (21) 11:33 14:56 P N N 

23 S 11:35 14:23 C N N 

24 S 11:48 12:05 P Y N 

25 S 11:57 18:00 P Y N 

26 S 12:10 12:28 P N N 

27 S 12:46 15:27 C N N 

28 S 13:08 14:21 C Y Y 

29 S 13:09 17:00 P N N 

30 S 13:18 16:14 P N N 

31 S 13:21 14:28 P N N 

32 S 13:25 13:42 P Y N 

33 S 13:46 13:52 C N N 

34 S 14:03 15:00 P Y N 

35 S 14:05 14:15 C N N 

36 S 14:17 15:13 P N N 

37 S 14:27 18:00 P N N 

38 S 14:55 15:01 C N N 

39 S 15:12 17:15 P N N 

40 S 15:20 16:15 P N N 

41 S 15:24 17:45 C N N 

42 S 15:35 18:00 P Y N 

43 S 15:37 16:22 C N N 

44 S  15:37 17:07 P Y N 

45 G (46) 15:38 17:00 P N N 

46 G (45) 15:38 17:00 P N N 

47 S 15:49 17:15 C N N 

48 S 15:55 18:00 P Y N 

49 G (50,51) 15:57 17:45 P N N 

50 G (49,51) 15:57 17:45 P N N 

51 G (49,51) 15:57 17:45 P N N 

52 G (53) 15:58 17:10 P N N 

53 G (52) 15:58 17:10 P N N 

54 S 16:48 17:45 C N N 
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Table F.2. Raw data for walk-through experiment (day 2). S=Single, G=Group, P=Paper-

based, C=Computer-based. 

DATE: 11.08.2015 

 
 
 Occupant 

ID Number 
Intended 
Use (S/G) 

Time 
Seated 

Time 
Departed 

Activity 
(P/C) 

Power Socket at Desk 

Availability 
(Yes/No) 

Usage 
(Yes/No) 

1 S 09:00 11:05 P N N 

2 S 09:24 18:00 C Y Y 

3 S 09:28 12:37 C Y Y 

4 S 09:37 12:58 P N N 

5 S 09:48 16:07 P Y N 

6 S 09:59 15:23 P N N 

7 S 10:01 15:12 C Y Y 

8 S 10:09 10:41 P N N 

9 S 10:43 18:00 P N N 

10 S 10:50 12:15 C N N 

11 S 11:15 15:27 P N N 

12 S 11:28 16:45 C N N 

13 S 11:30 15:02 C N N 

14 S 11:43 15:45 P N N 

15 S 12:02 18:00 C Y Y 

16 S 12:14 16:01 C N N 

17 S 12:22 12:24 P N N 

18 S 12:36 15:22 P N N 

19 S 12:38 18:00 C Y Y 

20 S 13:15 13:30 P N N 

21 G (21,22) 13:20 18:00 C Y Y 

22 G (21,22) 13:20 18:00 C N N 
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Table F.2. Continued. 

Occupant 
ID Number 

Intended 
Use (S/G) 

Time 
Seated 

Time 
Departed 

Activity 
(P/C) 

Power Socket at Desk 

Availability 
(Yes/No) 

Usage 
(Yes/No) 

23 S 14:05 18:00 C N N 

24 S 14:36 18:00 C N N 

25 S 15:07 16:00 P N N 

26 G (26,27) 15:31 18:00 C Y Y 

27 G (26,27) 15:31 18:00 C Y Y 

28 G (28-30) 15:38 18:00 C N N 

29 G (28-30) 15:38 18:00 C N N 

30 G (28-30) 15:38 18:00 C N N 

31 S 15:38 16:30 P N N 

32 S 15:45 15:52 P N N 

33 S 16:02 17:00 C N N 

34 S 16:07 18:00 P N N 

35 S 16:08 18:00 C N N 

36 S 16:10 18:00 C Y Y 

37 S 16:48 17:30 C N N 
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Table F.3. Raw data for walk-through experiment (day 3). S=Single, G=Group, P=Paper-

based, C=Computer-based. 

DATE: 12.08.2015 

 
 

Occupant 
ID Number 

Intended 
Use (S/G) 

Time 
Seated 

Time 
Departed 

Activity 
(P/C) 

Power Socket at Desk 

Availability 
(Yes/No) 

Usage 
(Yes/No) 

1 S 09:00 18:00 P Y N 

2 S 09:03 14:06 P N N 

3 S 09:16 12:17 P Y N 

4 S 09:36 15:00 C N N 

5 S 09:41 17:00 C Y Y 

6 S 09:43 14:10 P N N 

7 S 09:46 10:59 P N N 

8 S 09:47 13:10 C N N 

9 S 09:52 13:56 C Y Y 

10 S 10:06 16:40 C Y Y 

11 S 10:21 11:15 C Y Y 

12 S 10:22 13:00 C Y Y 

13 S 10:26 12:26 P N N 

14 S 10:33 12:43 P N N 

15 S 10:35 13:15 P N N 

16 S 11:02 16:44 P Y N 

17 S 11:21 13:10 P N N 

18 S 11:57 13:26 C N N 

19 S 12:50 18:00 C Y Y 

20 S 12:56 13:00 P N N 

21 G (22)  12:58 16:00 C N N 

22 G (21) 12:58 14:06 P N N 

23 S 09:00 17:00 P N N 
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Table F.3. Continued. 

Occupant 
ID Number 

Intended 
Use (S/G) 

Time 
Seated 

Time 
Departed 

Activity 
(P/C) 

Power Socket at Desk 

Availability 
(Yes/No) 

Usage 
(Yes/No) 

24 S 13:00 13:24 P N N 

25 S 13:30 13:58 P N N 

26 S 13:38 14:00 P N N 

27 S 13:49 14:42 P N N 

28 G (29,30) 13:52 17:45 P N N 

29 G (28,30) 14:23 14:15 P N N 

30 G (28,29) 14:23 14:51 P N N 

31 S 14:23 15:15 P N N 

32 S 14:30 15:30 C N N 

33 G (34) 14:36 14:30 C N N 

34 G (33) 14:47 14:30 P N N 

35 S 14:47 14:30 P N N 

36 G (37,38) 14:48 14:46 C N N 

37 G (36,38) 15:02 17:15 P N N 

38 G (36,37) 15:02 16:41 P N N 

39 S 15:02 16:41 C N N 

40 S 15:13 15:00 P Y N 

41 G (42) 15:37 18:00 C Y Y 

42 G (41) 16:03 18:00 P N N 

43 S 16:03 18:00 P Y N 

44 G (45) 16:08 17:30 C N N 

45 G (44) 16:17 17:15 P N N 

46 G (47) 16:17 18:00 C N N 

47 G (46) 16:39 16:10 P N N 

48 G (49) 16:39 18:00 P N N 

49 G (48) 16:47 17:15 P Y N 
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Table F.4. Raw data for walk-through experiment (day 4). S=Single, G=Group, P=Paper-

based, C=Computer-based.  

DATE: 13.08.2015 

 
 

Occupant 
ID Number 

Intended 
Use (S/G) 

Time 
Seated 

Time 
Departed 

Activity 
(P/C) 

Power Socket at Desk 

Availability 
(Yes/No) 

Usage 
(Yes/No) 

1 S 09:09 17:05 P Y N 

2 S 09:30 14:56 C Y Y 

3 S 10:15 17:13 C Y Y 

4 S 10:29 15:58 C N N 

5 S 10:34 14:26 C N N 

6 S 10:34 13:31 P N N 

7 S 10:38 16:31 P N N 

8 S 10:49 12:26 C Y Y 

9 S 11:00 12:30 P N N 

10 S 11:10 12:34 C Y Y 

11 S 11:37 14:23 P N N 

12 S 12:11 13:22 P N N 

13 S 12:14 18:00 C Y Y 

14 S 12:49 15:45 P N N 

15 S 13:05 15:30 C Y Y 

16 S 13:41 15:23 C N N 

17 G (18) 14:08 18:00 P N N 

18 G (17) 14:08 18:00 P N N 

19 S 14:20 15:45 P N N 

20 S 14:56 18:00 P Y N 

21 S 15:10 15:37 P N N 

22 S 15:14 18:00 C N N 
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Table F.4. Continued. 

Occupant 
ID Number 

Intended 
Use (S/G) 

Time 
Seated 

Time 
Departed 

Activity 
(P/C) 

Power Socket at Desk 

Availability 
(Yes/No) 

Usage 
(Yes/No) 

23 S 15:23 15:46 C N N 

24 G (25) 15:35 15:46 P N N 

25 G (24) 15:35 15:46 P N N 

26 S 15:35 15:41 P N N 

27 S 15:58 18:00 P Y N 

28 G (29) 16:07 18:00 C N N 

29 G (28) 16:07 18:00 P N N 

30 G (31) 16:15 18:00 P N N 

31 G (30) 16:15 18:00 P N N 

32 S 16:15 18:00 P N N 

33 S 16:22 18:00 P Y N 

34 S 16:23 18:00 P N N 

35 S 16:47 18:00 P N N 
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Table F.5. Raw data for walk-through experiment (day 5). S=Single, G=Group, P=Paper-

based, C=Computer-based.  

DATE: 14.08.2015 

 

Occupant ID 
Number 

Intended 
Use 
(S/G) 

Time 
Seated 

Time 
Departed 

Activity 
(P/C) 

Power Socket at Desk 

Availability 
(Yes/No) 

Usage 
(Yes/No) 

1 S 09:32 14:57 C Y Y 

2 S 09:42 14:42 C Y Y 

3 G (4) 10:12 14:20 C Y Y 

4 G (3) 10:12 14:20 C N N 

5 S 10:21 15:52 C N N 

6 S  10:23 10:35 P N N 

7 S 10:27 13:03 P N N 

8 S 10:54 16:43 C Y Y 

9 S  10:56 14:24 P N N 

10 S  10:58 11:04 P N N 

11 S 11:05 14:38 P N N 

12 S 11:13 12:36 C Y Y 

13 S  11:55 14:28 P N N 

14 S  12:04 12:57 P N N 

15 S 12:58 14:14 P Y N 

16 G (17) 13:10 13:32 C Y Y 

17 G (16) 13:10 13:32 C N N 

18 S 13:13 17:15 P Y N 

19 S 14:30 17:53 P Y N 

20 S 14:47 18:00 C Y Y 

21 S 14:47 17:55 C Y Y 

22 S 14:50 18:00 P Y N 

23 S 14:55 17:13 C Y Y 
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Table F.5. Continued.  

Occupant 
ID Number 

Intended 
Use (S/G) 

Time 
Seated 

Time 
Departed 

Activity 
(P/C) 

Power Socket at Desk 

Availability 
(Yes/No) 

Usage 
(Yes/No) 

24 S 14:57 18:00 C Y Y 

25 S 15:11 17:29 P N N 

26 S 15:34 18:00 P N N 

27 S 15:39 17:47 C N N 

28 S 16:33 17:35 P N N 
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APPENDIX G.  AVAILABILITY OF POWER SOCKETS 
 

Table G.1. Availability of power socket for each individual seat. AV= Availability, Y=Yes, 

N=No. 

Seat AV Seat AV Seat AV Seat AV Seat AV Seat AV 

1 Y 46 N 91 N 136 N 181 N 226 N 

2 Y 47 N 92 N 137 N 182 N 227 N 

3 Y 48 N 93 N 138 N 183 N 228 N 

4 Y 49 N 94 N 139 N 184 N 229 N 

5 Y 50 N 95 N 140 N 185 N 230 N 

6 Y 51 N 96 N 141 N 186 N 231 N 

7 Y 52 N 97 N 142 N 187 N 232 N 

8 N 53 N 98 N 143 N 188 N 233 N 

9 N 54 N 99 N 144 N 189 N 234 N 

10 Y 55 N 100 N 145 N 190 N 235 N 

11 Y 56 N 101 N 146 N 191 N 236 N 

12 N 57 N 102 N 147 N 192 N 237 N 

13 N 58 N 103 N 148 N 193 N 238 N 

14 Y 59 N 104 N 149 N 194 N 239 N 

15 Y 60 N 105 N 150 N 195 N 240 N 

16 N 61 N 106 N 151 N 196 N 241 N 

17 N 62 N 107 N 152 N 197 N 242 N 

18 Y 63 N 108 N 153 N 198 N 243 N 

19 Y 64 N 109 N 154 N 199 N 244 N 

20 N 65 N 110 N 155 N 200 N 245 N 

21 N 66 N 111 N 156 N 201 N 246 N 

22 Y 67 N 112 N 157 N 202 N 247 N 

23 Y 68 N 113 N 158 N 203 N 248 N 

24 Y 69 N 114 N 159 N 204 N 249 N 

25 Y 70 N 115 N 160 N 205 N 250 N 

26 Y 71 N 116 N 161 N 206 N   

27 Y 72 N 117 N 162 N 207 N   

28 Y 73 N 118 N 163 N 208 N   

29 N 74 N 119 N 164 N 209 N   

30 N 75 N 120 N 165 N 210 N   

31 N 76 N 121 N 166 N 211 N   

32 N 77 N 122 N 167 N 212 N   

33 N 78 N 123 N 168 N 213 N   

34 N 79 N 124 N 169 N 214 N   

35 N 80 N 125 N 170 N 215 N   

36 N 81 N 126 N 171 N 216 N   

37 N 82 N 127 N 172 N 217 N   

38 N 83 N 128 N 173 N 218 N   

39 N 84 N 129 N 174 N 219 N   

40 N 85 N 130 N 175 N 220 N   

41 N 86 N 131 N 176 N 221 N   

42 N 87 N 132 N 177 N 222 N   

43 N 88 N 133 N 178 N 223 N   

44 N 89 N 134 N 179 N 224 N   

45 N 90 N 135 N 180 N 225 N   
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APPENDIX H.  THE LOCAL OCCUPANCY DENSITY 
 
Table H.1. Local occupancy density calculated for each occupant. ON=Occupant number, 

LOD=Local occupancy density. 
 

Day 1 Day 2 Day 3 Day 4 Day 5 

ON LOD ON LOD ON LOD ON LOD ON LOD 

1 0 1 0 1 0 1 0 1 0 
2 0 2 0 2 0 2 0 2 0 
3 0 3 0 3 0 3 0 3 0 
4 0 4 0 4 0 4 0 4 0 
5 0 5 0 5 0 5 0 5 0 
6 0 6 0 6 0 6 0 6 0 
7 0 7 0 7 0 7 0 7 0 
8 0 8 0 8 0 8 0 8 0 
9 0 9 0 9 0 9 0 9 0 

10 0 10 0 10 0 10 0 10 0 
11 0 11 0 11 0 11 0 11 0 
12 0 12 0 12 0 12 0 12 0 
13 0 13 0 13 0 13 0 13 0 
14 0 14 0 14 0 14 0 14 0 
15 0 15 0 15 0 15 0 15 0 
16 0 16 0 16 0 16 0 16 0 
17 0 17 0 17 0 17 0 17 0 
18 0 18 0 18 0 18 0 18 0 
19 0 19 0 19 0 19 0 19 0 
20 0 20 0 20 0 20 0 20 0 
21 0 21 0 21 0 21 0 21 0 
22 0 22 0 22 0 22 0 22 0 
23 0 23 0 23 0 23 0 23 0 
24 0 24 0 24 0 24 0 24 0 
25 0 25 0 25 0 25 0 25 0 
26 0 26 0 26 0 26 0 26 0 
27 0 27 0 27 0 27 0 27 0 
28 0 28 0.2 28 0.2 28 0.3 28 0 
29 0 29 0.4 29 0.4 29 0.2   
30 0 30 0.2 30 0.4 30 0   
31 0 31 0 31 0 31 1   
32 0 32 0 32 0 32 0   
33 0 33 0 33 0.2 33 0   
34 0 34 0 34 0.2 34 0   
35 0 35 0 35 0 35 0   
36 0 36 0 36 0.2     
37 0 37 0 37 0.2     
38 0   38 0     
39 0   39 0     
40 0   40 0     
41 0   41 0.3     
42 0   42 0.3     
43 0   43 0     
44 0   44 0.2     
45 0.2   45 0.2     
46 0.2   46 0     
47 0   47 0     
48 0   48 1     
49 0.2   49 1     
50 0.4         
51 0.2         
52 0.2         
53 0.2         
54 0         
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APPENDIX I.  SIMULATION RESULTS 
 
Table I.1. Mean horizontal illuminance (lux) for each individual seat. 

Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 

1 14334 2723 10487 45 4732 945 3717 89 3247 649 2754 

2 9828 2441 7623 46 4787 922 3827 90 3252 661 2754 

3 9602 2432 7431 47 2446 678 2052 91 2282 573 2024 

4 8173 2229 6367 48 3320 712 2763 92 2859 573 2537 

5 8984 2229 6792 49 2161 574 1845 93 1991 466 1667 

6 9207 2717 7265 50 3128 556 2653 94 2000 483 1675 

7 9102 1926 7389 51 1855 412 1542 95 1785 357 1512 

8 8533 1949 6840 52 1905 433 1538 96 1796 360 1516 

9 8820 1975 6991 53 1488 373 1215 97 1323 354 1192 

10 8900 1927 7075 54 1692 388 1492 98 1561 355 1441 

11 8759 1788 7078 55 1383 289 1190 99 1151 296 917 

12 8045 1818 6256 56 1381 307 1198 100 1389 297 1170 

13 8662 1833 6976 57 1245 235 1064 101 1094 281 925 

14 8697 1902 6807 58 1305 275 1134 102 1336 284 1176 

15 8742 1725 7191 59 848 213 660 103 913 262 832 

16 7923 1803 6213 60 891 249 722 104 952 266 762 

17 8606 1822 6882 61 744 202 599 105 882 234 726 

18 8669 1861 6902 62 854 217 665 106 943 235 754 

19 8683 1768 7198 63 4380 986 3967 107 4566 827 3445 

20 8171 1824 6382 64 5088 1025 4052 108 4362 836 3480 

21 8951 1971 7131 65 3054 822 2623 109 2679 768 2358 

22 8005 1983 6522 66 3581 769 3143 110 3496 757 3126 

23 10125 2022 7838 67 2609 658 2224 111 2939 634 2520 

24 10323 2302 7958 68 2370 663 1992 112 3171 637 2775 

25 7454 1730 6085 69 2804 547 2506 113 2569 550 2285 

26 7392 1753 5868 70 2002 549 1750 114 2230 564 2026 

27 7014 1582 5673 71 1964 449 1586 115 1734 483 1408 

28 7237 1587 5973 72 1733 452 1345 116 1969 485 1657 

29 5926 1373 4974 73 1688 411 1396 117 1865 389 1391 

30 5903 1378 5326 74 1701 413 1403 118 1869 390 1395 

31 6249 1342 5022 75 1510 359 1252 119 1615 364 1341 

32 5508 1361 4798 76 1521 361 1258 120 1386 365 1100 

33 5712 1166 4628 77 1392 311 1217 121 1498 339 1220 

34 5533 1095 4509 78 1401 313 1226 122 1268 339 978 

35 3779 879 3340 79 1198 277 1121 123 1343 286 1120 

36 3756 825 3367 80 1207 280 1132 124 1109 288 873 

37 3299 680 2876 81 912 247 717 125 981 258 789 

38 3101 675 2771 82 915 264 780 126 990 265 777 

39 2933 521 2512 83 844 235 687 127 945 256 766 

40 2644 580 2460 84 904 228 725 128 907 230 747 

41 3027 535 2683 85 4522 1009 4098 129 4567 885 3750 

42 3091 556 2687 86 5254 958 4302 130 4750 864 3830 

43 5371 1087 4223 87 3455 786 3035 131 3210 722 2853 

44 4818 1089 3805 88 3712 841 3206 132 3372 718 2984 
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Table I.1. Continued. 

Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 

133 2290 625 2033 173 958 262 772 213 1320 307 1059 

134 3053 630 2658 174 906 251 722 214 1073 285 897 

135 2869 506 2598 175 5443 1009 4154 215 959 240 712 

136 2826 509 2467 176 4892 967 3783 216 880 253 723 

137 2004 460 1605 177 4865 846 3894 217 869 238 649 

138 2009 476 1605 178 4861 842 3814 218 822 221 608 

139 1708 434 1550 179 3554 742 3013 219 4704 1125 4264 

140 1706 448 1551 180 3514 743 2879 220 5652 1171 4586 

141 1627 366 1363 181 2306 589 1957 221 4148 906 4093 

142 1631 382 1365 182 3056 587 2574 222 3488 936 3630 

143 1415 331 1212 183 2615 518 2183 223 3395 742 2860 

144 1418 316 1213 184 2791 517 2279 224 3427 701 2945 

145 1386 285 1178 185 1791 443 1361 225 3097 632 2350 

146 1156 271 932 186 2016 445 1608 226 3061 612 2351 

147 1003 262 859 187 1694 366 1452 227 2183 494 2015 

148 947 254 817 188 1690 381 1451 228 2705 560 1845 

149 962 259 770 189 1550 350 1242 229 1776 447 1112 

150 886 243 730 190 1552 350 1238 230 1752 425 1090 

151 4571 1002 3274 191 1399 326 1186 231 1325 381 974 

152 4155 1030 3709 192 1395 325 1176 232 1615 353 986 

153 3307 857 2925 193 1257 295 1115 233 1247 331 670 

154 3743 872 3388 194 1252 295 1107 234 1465 335 825 

155 2896 731 2256 195 946 258 752 235 1049 302 526 

156 2721 730 2157 196 928 245 738 236 1383 330 723 

157 3204 623 2747 197 874 234 700 237 1177 245 433 

158 2635 626 2246 198 903 248 697 238 1267 303 616 

159 2856 534 2450 199 5243 1040 4309 239 911 237 348 

160 2267 519 1942 200 4751 1075 3891 240 861 257 373 

161 1933 455 1662 201 4374 922 3633 241 836 228 340 

162 1941 455 1658 202 4418 906 3420 242 826 232 306 

163 1746 396 1551 203 3227 678 2669 243 189 62 209 

164 1749 397 1551 204 3000 687 2597 244 175 56 181 

165 1655 399 1371 205 2995 587 2441 245 173 58 154 

166 1651 399 1368 206 2938 552 2554 246 154 52 136 

167 1398 315 1249 207 1886 463 1505 247 203 65 214 

168 1390 314 1245 208 1626 477 1274 248 172 54 164 

169 1297 275 1140 209 1705 386 1357 249 175 61 157 

170 1291 275 1133 210 1547 414 1184 250 157 56 136 

171 974 250 805 211 1435 312 1145     

172 973 268 803 212 1129 312 965     
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Table I.2. Daylight factor (DF, %) for each individual seat. 

Seat DF Seat DF Seat DF Seat DF Seat DF Seat DF 

1 20.83 46 6.50 91 3.98 136 4.22 181 4.47 226 3.50 

2 18.21 47 4.83 92 3.99 137 3.22 182 4.45 227 2.64 

3 14.30 48 5.11 93 3.38 138 3.22 183 3.66 228 2.43 

4 12.79 49 4.81 94 3.40 139 3.05 184 3.62 229 1.95 

5 12.68 50 4.43 95 2.97 140 3.06 185 3.24 230 1.84 

6 14.34 51 3.11 96 2.98 141 2.55 186 3.24 231 1.59 

7 17.29 52 3.07 97 2.79 142 2.56 187 2.82 232 1.58 

8 17.18 53 2.90 98 2.79 143 2.18 188 2.81 233 1.47 

9 16.35 54 2.95 99 2.09 144 2.19 189 2.26 234 1.23 

10 17.20 55 2.24 100 2.11 145 2.10 190 2.25 235 1.15 

11 16.60 56 2.23 101 2.10 146 2.10 191 2.12 236 1.02 

12 16.28 57 1.92 102 2.12 147 1.91 192 2.10 237 0.95 

13 16.24 58 2.08 103 1.86 148 1.82 193 1.95 238 0.78 

14 16.44 59 1.52 104 1.69 149 1.73 194 1.93 239 0.77 

15 16.95 60 1.65 105 1.64 150 1.60 195 1.68 240 0.80 

16 16.01 61 1.37 106 1.67 151 7.93 196 1.62 241 0.76 

17 16.08 62 1.53 107 6.64 152 8.04 197 1.56 242 0.68 

18 16.40 63 8.01 108 6.72 153 6.59 198 1.53 243 0.53 

19 16.99 64 8.03 109 5.82 154 6.70 199 8.33 244 0.51 

20 16.71 65 5.94 110 5.85 155 5.23 200 8.45 245 0.49 

21 16.95 66 5.97 111 4.77 156 5.27 201 7.07 246 0.44 

22 17.47 67 4.72 112 4.80 157 4.61 202 7.15 247 0.55 

23 18.74 68 4.77 113 4.02 158 4.64 203 4.74 248 0.48 

24 20.74 69 3.91 114 4.04 159 3.73 204 4.68 249 0.50 

25 15.12 70 3.92 115 3.87 160 3.74 205 3.68 250 0.45 

26 14.87 71 3.20 116 3.88 161 3.36 206 3.88   

27 13.87 72 3.22 117 2.66 162 3.35 207 2.88   

28 13.94 73 2.68 118 2.67 163 3.04 208 2.92   

29 11.48 74 2.71 119 2.52 164 3.04 209 2.49   

30 11.46 75 2.33 120 2.54 165 2.57 210 2.67   

31 10.40 76 2.35 121 2.23 166 2.56 211 2.00   

32 10.44 77 2.28 122 2.24 167 2.26 212 2.14   

33 8.64 78 2.30 123 1.98 168 2.25 213 1.80   

34 8.27 79 2.00 124 1.97 169 2.01 214 1.96   

35 6.34 80 2.03 125 1.74 170 2.00 215 1.56   

36 6.43 81 1.61 126 1.71 171 1.80 216 1.58   

37 5.05 82 1.78 127 1.73 172 1.80 217 1.41   

38 5.46 83 1.54 128 1.64 173 1.72 218 1.31   

39 3.95 84 1.63 129 6.57 174 1.60 219 8.72   

40 4.52 85 8.10 130 6.48 175 8.18 220 8.42   

41 4.13 86 7.58 131 5.73 176 7.98 221 7.01   

42 4.11 87 6.26 132 5.79 177 6.25 222 6.92   

43 8.20 88 5.86 133 4.79 178 6.31 223 5.05   

44 8.08 89 4.65 134 4.80 179 5.41 224 5.15   

45 6.56 90 4.65 135 4.20 180 5.41 225 3.53   

 



194 
 

Table I.3. Daylight autonomy (DA300, %) for each individual seat. 

Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 

1 100 100 100 46 100 88 100 91 100 72 100 

2 100 98 100 47 100 84 100 92 100 72 100 

3 100 98 100 48 100 86 100 93 100 68 100 

4 100 98 100 49 100 74 100 94 100 68 100 

5 100 98 100 50 100 72 100 95 100 60 100 

6 100 100 100 51 100 60 100 96 100 60 100 

7 100 98 100 52 100 64 100 97 100 54 100 

8 100 98 100 53 100 60 100 98 100 54 100 

9 100 98 100 54 100 60 100 99 100 44 100 

10 100 98 100 55 100 42 100 100 100 44 100 

11 100 94 100 56 100 44 100 101 100 42 100 

12 100 94 100 57 100 26 100 102 100 42 100 

13 100 94 100 58 100 36 100 103 99 32 99 

14 100 94 100 59 99 22 100 104 99 32 99 

15 100 94 100 60 99 28 100 105 99 24 99 

16 100 94 100 61 99 20 100 106 99 24 99 

17 100 94 100 62 99 22 100 107 100 88 98 

18 100 94 100 63 100 92 100 108 100 90 100 

19 100 94 100 64 100 92 100 109 100 86 100 

20 100 94 100 65 100 86 100 110 100 86 100 

21 100 96 100 66 100 86 100 111 100 78 100 

22 100 96 100 67 100 78 100 112 100 78 100 

23 100 98 100 68 100 78 100 113 100 72 100 

24 100 98 100 69 100 72 100 114 100 72 100 

25 100 96 100 70 100 72 100 115 100 68 100 

26 100 98 100 71 100 66 100 116 100 68 100 

27 100 96 100 72 100 66 100 117 100 60 100 

28 100 96 100 73 100 60 100 118 100 60 100 

29 100 94 100 74 100 60 100 119 100 60 100 

30 100 94 100 75 100 58 100 120 100 60 100 

31 100 94 100 76 100 58 100 121 100 52 100 

32 100 94 100 77 100 44 100 122 100 52 100 

33 100 92 100 78 100 44 100 123 100 42 100 

34 100 92 100 79 100 38 100 124 100 42 100 

35 100 90 100 80 100 40 100 125 100 32 100 

36 100 88 100 81 99 28 99 126 100 32 100 

37 100 86 100 82 99 34 99 127 99 28 99 

38 100 86 100 83 99 26 99 128 99 24 99 

39 100 72 100 84 99 22 99 129 100 90 98 

40 100 74 100 85 100 92 100 130 100 90 98 

41 100 72 100 86 100 92 100 131 100 86 98 

42 100 74 100 87 100 86 100 132 100 86 98 

43 100 92 100 88 100 86 100 133 100 78 98 

44 100 92 100 89 100 80 100 134 100 78 98 

45 100 88 100 90 100 80 100 135 100 72 98 
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Table I.3. Continued. 

Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 

136 100 72 98 175 100 92 100 214 100 40 100 

137 100 66 98 176 100 92 100 215 99 24 99 

138 100 66 98 177 100 90 100 216 99 26 99 

139 100 60 96 178 100 88 100 217 99 24 99 

140 100 62 96 179 100 86 100 218 99 22 99 

141 100 58 96 180 100 86 100 219 100 92 100 

142 100 60 96 181 100 74 100 220 100 92 100 

143 100 46 96 182 100 74 100 221 100 90 100 

144 100 44 96 183 100 70 100 222 100 90 100 

145 100 32 96 184 100 70 100 223 100 86 100 

146 100 32 96 185 100 64 100 224 100 86 100 

147 100 32 96 186 100 64 100 225 100 74 100 

148 99 28 96 187 100 60 100 226 100 74 100 

149 100 28 96 188 100 60 100 227 100 68 100 

150 99 26 96 189 100 52 100 228 100 70 100 

151 100 92 100 190 100 52 100 229 100 60 100 

152 100 92 100 191 100 46 100 230 100 60 100 

153 100 88 100 192 100 46 100 231 100 58 100 

154 100 88 100 193 100 38 100 232 100 50 100 

155 100 86 100 194 100 38 100 233 100 46 100 

156 100 86 100 195 99 26 99 234 100 46 100 

157 100 78 100 196 99 24 99 235 100 40 100 

158 100 78 100 197 99 24 99 236 100 46 100 

159 100 70 100 198 99 26 99 237 99 24 99 

160 100 70 100 199 100 92 100 238 100 34 98 

161 100 66 100 200 100 92 100 239 99 24 98 

162 100 66 100 201 100 90 100 240 99 26 98 

163 100 60 100 202 100 90 100 241 99 22 98 

164 100 60 100 203 100 84 100 242 99 22 98 

165 100 60 100 204 100 86 100 243 6 0 18 

166 100 60 100 205 100 74 100 244 2 0 9 

167 100 46 100 206 100 74 100 245 0 0 4 

168 100 46 100 207 100 62 100 246 0 0 4 

169 100 32 100 208 100 66 100 247 11 0 20 

170 100 32 100 209 100 60 100 248 2 0 4 

171 100 26 100 210 100 60 100 249 0 0 4 

172 100 32 100 211 100 44 100 250 0 0 4 

173 99 28 99 212 100 44 100     

174 99 26 99 213 100 40 100     
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Table I.4. Useful daylight illuminance (UDI300-3000, %) for each individual seat. 

Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 

1 0 64 24 46 63 86 69 91 80 72 82 

2 1 70 29 47 76 84 73 92 78 72 82 

3 3 68 29 48 72 86 71 93 84 68 80 

4 3 76 36 49 81 74 82 94 84 68 80 

5 3 72 33 50 74 72 80 95 89 60 80 

6 3 70 29 51 89 60 82 96 89 60 82 

7 4 82 31 52 87 64 82 97 96 54 82 

8 6 82 33 53 92 60 82 98 91 54 80 

9 7 80 36 54 90 60 80 99 97 44 73 

10 7 82 36 55 93 42 76 100 93 44 71 

11 12 86 36 56 93 44 76 101 98 42 73 

12 12 82 36 57 93 26 73 102 93 42 71 

13 12 82 36 58 93 36 71 103 99 32 73 

14 12 82 36 59 99 22 76 104 99 32 73 

15 11 88 36 60 99 28 76 105 99 24 76 

16 13 84 38 61 99 20 71 106 99 24 76 

17 12 82 38 62 99 22 76 107 63 88 71 

18 12 84 36 63 53 90 64 108 63 90 71 

19 13 86 36 64 52 90 64 109 69 86 73 

20 7 84 36 65 66 86 73 110 69 86 73 

21 6 82 36 66 67 86 73 111 74 78 73 

22 6 82 36 67 76 78 80 112 74 78 73 

23 3 84 33 68 77 78 78 113 78 72 82 

24 0 74 31 69 78 72 82 114 80 72 82 

25 7 88 36 70 82 72 82 115 84 68 82 

26 8 86 36 71 86 66 82 116 84 68 80 

27 9 90 42 72 86 66 84 117 88 60 80 

28 9 90 42 73 90 60 80 118 87 60 80 

29 22 88 47 74 90 60 80 119 91 60 80 

30 27 88 47 75 92 58 78 120 92 60 80 

31 29 88 51 76 92 58 78 121 92 52 73 

32 29 88 51 77 93 44 78 122 97 52 78 

33 41 84 64 78 93 44 78 123 93 42 71 

34 46 90 64 79 93 38 71 124 99 42 73 

35 63 90 71 80 93 38 71 125 100 32 73 

36 66 88 71 81 99 28 76 126 100 32 73 

37 74 86 73 82 99 34 73 127 99 28 76 

38 74 86 73 83 99 26 76 128 99 24 76 

39 78 72 82 84 99 22 76 129 66 88 69 

40 78 74 80 85 50 90 64 130 64 90 71 

41 78 72 82 86 52 92 67 131 69 86 73 

42 78 74 82 87 66 86 71 132 69 86 73 

43 47 86 64 88 66 86 73 133 77 78 73 

44 47 86 64 89 74 80 76 134 74 78 73 

45 63 84 69 90 74 80 76 135 78 70 80 
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Table I.4. Continued. 

Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 Seat EX1 EX2 EX3 

136 78 72 80 175 47 90 64 214 100 40 73 

137 83 66 82 176 47 92 64 215 99 24 76 

138 83 66 82 177 64 88 71 216 99 26 76 

139 89 60 82 178 64 86 71 217 99 24 73 

140 89 62 82 179 67 86 71 218 99 22 71 

141 90 58 80 180 67 86 71 219 48 86 64 

142 90 58 80 181 77 74 80 220 46 86 64 

143 93 46 73 182 74 74 80 221 63 88 73 

144 92 44 73 183 78 70 82 222 64 88 73 

145 93 32 71 184 78 70 82 223 71 86 73 

146 98 32 73 185 83 62 82 224 72 86 73 

147 100 32 73 186 83 64 82 225 74 74 80 

148 99 26 73 187 90 60 78 226 77 74 80 

149 100 28 76 188 90 60 78 227 80 68 76 

150 99 26 76 189 91 52 78 228 78 70 73 

151 53 90 67 190 91 52 76 229 89 60 71 

152 53 90 67 191 93 46 71 230 89 60 71 

153 66 88 71 192 93 46 71 231 96 58 71 

154 66 86 71 193 93 34 71 232 90 50 71 

155 68 86 71 194 93 34 71 233 97 46 73 

156 68 86 71 195 99 26 76 234 92 46 62 

157 74 78 73 196 99 24 76 235 100 40 67 

158 74 78 73 197 99 24 47 236 93 46 58 

159 78 70 82 198 99 26 47 237 92 24 53 

160 80 70 82 199 49 90 64 238 93 34 36 

161 86 66 80 200 50 88 64 239 99 24 40 

162 86 66 80 201 63 90 67 240 99 26 40 

163 89 60 82 202 57 88 67 241 99 22 25 

164 89 60 82 203 74 84 73 242 99 22 21 

165 90 60 78 204 74 86 71 243 6 0 18 

166 90 60 78 205 77 74 82 244 2 0 9 

167 92 46 78 206 77 72 80 245 0 0 4 

168 93 46 78 207 87 62 80 246 0 0 4 

169 93 32 71 208 87 66 82 247 11 0 20 

170 93 32 71 209 90 58 78 248 2 0 4 

171 100 26 73 210 89 60 78 249 0 0 4 

172 100 32 71 211 92 44 71 250 0 0 4 

173 99 28 46 212 98 42 73     

174 99 26 47 213 93 40 71     
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APPENDIX J. NORMALITY TEST FOR SNAPSHOT DATA 
 
The purpose of this appendix is to statistically test the snapshot data to determine 

whether they can be reasonably assumed to come from a normal distribution. The 

null hypothesis for this test is that the data are normally distributed, and the 

confidence interval selected in the test is 95%. Table J.1 presents the results from 

the Shapiro-Wilk test of normality. 

 

Table J.1 Results of Shapiro-Wilk tests for normality of variables (df: degrees of freedom, 

WSA: window seating area, CSA: central seating area). 

Dataset Variables 
EX1 EX2 EX3 

Statistic  Sig. Statistic  Sig. Statistic  Sig. 

Whole 
dataset 

 
df=250 

Daylight Factor 0.77 0.00 0.77 0.00 0.77 0.00 

Horizontal Illuminance 0.82 0.00 0.79 0.00 0.85 0.00 

Daylight Autonomy (300) 0.18 0.00 0.93 0.00 0.19 0.00 

UDI (300-3000) 0.80 0.00 0.91 0.00 0.75 0.00 

Occupancy rate 0.50 0.00 0.82 0.00 0.49 0.00 

WSA 
 

df=32 

Daylight Factor 0.95 0.117 0.95 0.117 0.95 0.117 

Horizontal Illuminance 0.87 0.002 0.94 0.058 0.90 0.008 

Daylight Autonomy (300) - - 0.80 0.00 - - 

UDI (300-3000) 0.85 0.00 0.87 0.001 0.88 0.002 

Occupancy rate 0.95 0.169 0.76 0.00 0.95 0.165 

CSA 
 

df=218 

Daylight Factor 0.92 0.00 0.92 0.00 0.92 0.00 

Horizontal Illuminance 0.92 0.00 0.93 0.00 0.93 0.00 

Daylight Autonomy (300) 0.19 0.00 0.94 0.00 0.22 0.00 

UDI (300-3000) 0.80 0.00 0.93 0.00 0.61 0.00 

Occupancy rate 0.72 0.00 0.96 0.00 0.72 0.00 

 

From Table J.1, it can be seen that the data failed the Shapiro-Wilk test on the 

whole dataset which means significant evidence against normality (significance 

levels less than 0.05). The tests performed on the data broken down by two seating 

areas (WSA and CSA) revealed that the samples are normally distributed in some 

cases (significance levels greater than 0.05), these are presented in bold in Table 

J.1. Note that for WSA dataset the test failed to produce any evidence about 

normality of Daylight Autonomy in EX1 and EX3, as the data values were found to 

be constant across these two datasets. 
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Next, residuals from all datasets were examined to determine normality. The 

residuals are defined as the difference between observed and expected values; and 

standardized residuals are generally preferred to raw residuals (Andrews and 

Pregibon, 1978; Cook and Weisberg, 1982). By converting residuals into standard 

units (i.e. values distributed around a mean of 0 with a standard deviation of 1), it 

was possible to compare residuals from different models. The normality assumption 

was checked through visual inspection of histograms and P-P plots of standardized 

residuals, as presented in Table J.2-Table J.4.  

 

Table J.2. Plots showing histograms and distribution of residuals (whole dataset) OR: 

Occupancy rate. 
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Table J.2. Continued. 
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Table J.3. Plots showing histograms and distribution of residuals (WSA dataset) OR: 
Occupancy rate. 
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Table J.3. Continued. 
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Table J.4. Plots showing histograms and distribution of residuals (CSA dataset) OR: 
Occupancy rate. 
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Table J.4. Continued.  
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The normality assumption is that residuals follow a normal distribution, which means 

the histogram of the values forms a bell-shaped curve and the corresponding normal 

probability plot is approximately linear (Field, 2005). It can be seen in Table J.1 that 

the residuals for the whole dataset are either normally distributed or very close to it, 

with the exception of the daylight autonomy plots where the distributions depart 

substantially from the normal distribution (EX1 and EX3). When the whole dataset is 

split into WSA and CSA subsets, however, the plots reveal variations in the 

distribution of residuals. From Table J.2, it can be seen that the histograms of 

horizontal illuminance, daylight autonomy and useful daylight illuminance do not 

produce a bell-shaped curve for EX2 dataset, indicating non-normality. The normal 

probability plots seem to confirm this since there are deviations from the ideal 

straight line, corresponding to discrepancies between the observed and expected 

values. From the plots presented in Table J.3, it appears that the residuals follow a 

normal distribution for EX2, whereas for EX1 and EX3 the distribution is highly 

skewed, indicating the residuals are far from normally distributed. 

 

From the evidence issued in this section it is possible to conclude with a reasonable 

degree of certainty that the residuals from some of the datasets are normally 

distributed. Therefore, statistical tests chosen for these datasets assume normality. 

In other cases, the assumption of normality is rejected and non-parametric tests are 

used as a means of comparison. 
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APPENDIX K. GLOSSARY OF TERMS 
 
This appendix provides definitions and explanations of technical terms used in this 

thesis. The following glossary of terms has been produced from the lighting 

standards and guidelines (CIBSE/SLL, 2012; IESNA, 2000), and the CIE 

International Lighting Vocabulary (CIE 17.4:1987). Other sources included the 

following: Baker and Standeven (1994), Larson and Shakespeare (1998), Perez et 

al (1990) and Tregenza and Sharples (1993). 

 

Adaptive opportunity: The opportunities provided by a building for occupants to 

make themselves comfortable. Examples of actions which people might take to 

make themselves comfortable are the use of controls (windows, blinds) or 

movement within a space or between spaces to find the conditions that suit their 

needs. 

 

Daylight coefficient: Daylight coefficients embody the geometric relationships that 

determine daylight illuminance. Each coefficient is the ratio between the luminance 

of a patch of sky, and the illuminance in the building due to the light from that patch. 

The sky can be divided into zones of altitude and azimuth, and the daylight 

coefficient found for each zone. The total daylight illuminance at a point is then the 

sum of the products of the mean luminance of each sky zone, the subtended area of 

the zone, and the corresponding daylight coefficient: 

 

Diffuse radiation: Solar radiation which reaches the Earth as a result of being 

scattered by the air molecules, aerosol particles, cloud and other particles of the 

atmosphere. If not stated otherwise, diffuse sky radiation refers to radiation received 

on a horizontal plane from the whole hemisphere. 

 

Direct radiation: That part of extra-terrestrial solar radiation (solar radiation incident 

at the outer limit of the Earth's atmosphere) which as a single collimated beam 

reaches the Earth's surface after selective attenuation by the atmosphere. If not 

stated otherwise, direct beam radiation refers to radiation incident on a plane normal 

to the direction of incidence. 

 

Glare: Condition of vision in which there is discomfort or a reduction in the ability to 

see details or objects, caused by an unsuitable distribution or range of luminance, or 

by extreme contrasts. 

 

Global radiation: The sum of direct and diffuse radiation. If not stated otherwise 

global radiation refers to radiation incident on a horizontal plane. 

 

Illuminance: The amount of light that reaches a point on a given plane in an 

interior, or the flow of light, that strikes a unit surface area of one square metre. 

Standard unit for illuminance is Lux (lx) which is lumens per square meter (lm/m2). 

 

Irradiance: A measure of the amount of light energy incident on a unit area of 
surface per unit time. The unit of measurement of irradiance is watts per square 
meter. 
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Luminance: The amount of light reflected from a surface in a given direction. 

Standard unit for luminance is candela per square meter (cd/m2). 

 

Perez all-weather sky model: A mathematical model used to describe the sky 

luminance distribution. The model is derived from the CIE Clear Sky, but includes 

the facility to control the luminance distribution through a set of three parameters to 

reflect the local insolation conditions (solar zenith angle, sky clearness, and 

brightness). These are influenced by the ratio of normal to diffuse incident radiation. 

 

Pyranometer: An instrument for measuring solar irradiance upon a surface; if 

mounted horizontally, it measures global irradiance. The instrument is usually used 

to measure global irradiance but by suitably shading the sensor from the direct solar 

beam it may be used to measure diffuse radiation. 

 

Ray tracing: A method based on following one-dimensional rays, where each ray is 

defined by an origin point and a vector direction. In a rendering algorithm, each ray 

is followed until it intersects a visible surface, where new rays may be spawned in a 

recursive process. In forwards ray tracing, light is followed from the light sources to 

the final measurement areas. In backwards ray tracing (as in Radiance), each view 

ray is traced from the point of measurement to the contributing light sources. 

 

Solar altitude: Solar altitude describes the elevation of the sun in the sky (celestial 

sphere) relative to an observer, as the angle between the plane of the observer`s 

celestial horizon and a line from the observer to centre of the sun. Solar altitude and 

solar zenith angles are complementary and have a sum of 90 degrees. 

 

Solar azimuth: Solar azimuth describes the position of the sun in the sky (celestial 

sphere) relative to the observer`s location, in terms of its angle east or west of a line 

running north-south on the celestial horizon. 

 

Solar zenith angle: The angle between the zenith and the line joining the observer 

and centre of the sun. Solar altitude and solar zenith angles are complementary and 

have a sum of 90 degrees. 

 

Test Reference Year (TRY): Typical year of weather reference. The TRY is 

composed of a sequence of meteorological data schedules, measured in reality and 

selected within a historical series of at least ten years, through a method of selection 

of a statistical nature. This leads to the creation of a vast amount of hourly data that 

merge into a year-type, used for models of analysis and the dynamic simulation of 

the distribution of daylight. 

 
Work plane: The level at which work is done and at which illuminance is specified 

and measured. This is typically a horizontal plane located at desk height. 

 

Zenith: The point on the celestial sphere directly above the observer. 
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