
Graph Theory and
Molecular Currents

Martha Borg

May 2019

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Department of Chemistry

Faculty of Science

University of Sheffield

Supervised by:

Prof. P.W. Fowler, FRS



ii



Graph theory and molecular currents

iii



iv



To
my family,

with exceptional appreciation
to my mother

and to those special persons
who constantly show

unconditional love and support

v



vi



Acknowledgements

• I sincerely thank Prof. Patrick W. Fowler for continuous and consistent sup-
port in the development of the present thesis, and for the unique opportunity
to work in a highly scientific and united team.

• A very special thanks goes to our collaborators Prof. Barry T. Pickup (Uni-
versity of Sheffield) and Prof. Irene Sciriha (University of Malta) for their very
valuable scientific ideas and suggestions.

• I would like to express my gratitude to the University of Sheffield for providing
me with the chance to carry out this research.

• Lastly, but not in importance, I would also like to thank my wonderful family
and friends for the endless love, patience, support and encouragement that
they gave me.

vii



viii



Abstract

Ballistic transport of electrons through a two–wire device based on a π–conjugated
carbon nanostructure is studied using the tight–binding source–and–sink–potential
(SSP) model (Chapter 2). This is equivalent to solving a purely graph–theoretical
adjacency eigenvalue problem on an augmented molecular graph under scattering
boundary conditions (Chapter 2). From previous work it is known that transmission
of a two–wire device as a function of energy, T (E), can be expressed in terms of
four characteristic polynomials {s, t, u, v}, which are respectively those of graphs G,
G− L̄, G− R̄, G− L̄− R̄, where G is the molecular graph and L̄, R̄ are the vertices
of G that are in contact with left and right wires. The triple {G, L̄, R̄} defines a
device. Selection rules for Fermi–level (E = 0) conduction of two–wire devices are
proved (Chapter 3) using the nullity properties of s, t, u, v and their determinantal
combination j2 = ut−sv. The Interlacing–Theorem–based partition of graph vertex
types as lower, middle and upper, according to the effect ∆gs = –1, 0 or +1 on the
nullity gs of the molecular graph caused by a vertex deletion, is used to give a general
classification of conduction types for arbitrary graphs, identifying the possible types
of omni–conducting and omni–insulating distinct (L̄ 6= R̄) and ipso (L̄ = R̄) two–
wire devices (Chapter 4). In Chapter 5, this is refined for bipartite graphs to a
three–letter acronym for each nullity class (gs(G) = 0, gs(G) = 1, gs(G) > 1); of 81
hypothetically possible combinations with inter, intra and ipso sets of contacts, it is
proved that exactly 14 can be realised by connected simple bipartite graphs. A final
extension (Chapter 6) based on the inter–contact graph–theoretical distance (odd,
even or zero) gives a final three–letter acronym for each nullity class applicable to
all connected simple graphs, bipartite and non–bipartite. All but four of the 81
hypothetical cases are resolved: 35 are realised by examples, (chemical graphs in at
least 28 cases), 42 are provably unrealisable by any connected simple graph, and four
have as yet neither an example nor a proof of unrealisability. Chapter 7 describes
a shift of viewpoint in which the edge–based conduction in the SSP model (an
‘atomic/orbital’ formulation) is replaced by conduction through eigenspace channels
(‘shells of π molecular orbitals’) with applications to conduction of conjugated π
systems in which, selection rules based on active and inert channels are operating.
Finally (Chapter 8), further applications of the mathematical framework are made
to graph–theoretical construction of omni–insulating devices, mathematical results
on factorisation of graph structural polynomials are given to be used in the future to
allow the treatment of the effects of distortivity, and improvements of the theoretical
chemistry treatment to allow for interacting molecular and conduction electrons are
outlined. The thesis concludes with an overview of the main results (Chapter 9).
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Chapter 1

Introduction

Graph theory has long been studied since the 1730s, and has a history of applications
in fields such as chemistry and physics [1]. Many researchers with different graph
theoretical interests in coding theory, bioinformatics, quantum physics, molecular
chemistry, nanotechnology, computer and internet networks and social network anal-
ysis have undertaken research in this area. The appeal of graph theory in chemistry
is as a surprisingly useful qualitative model for the behaviour of molecular systems.

The present introductory chapter includes a review of the applications of spectral
graph theory to carbon nanostructures. The importance of graph theory being
linked to theoretical chemistry is introduced in Section 1.1. Section 1.2 discusses
briefly the main idea behind the investigations discussed, whereas, Section 1.3 lists
the latest improvements of molecular electronic devices. Section 1.4 illustrates some
experimental techniques used to describe the transmission of electrons in molecular
systems. The Hückel molecular orbital theory is tackled in Section 1.5 and Section
1.6 is a remark about the programs used throughout the thesis.

1.1 Graph theory

A science that has benefited significantly from the combination of graph theory and
linear algebra is theoretical chemistry. Since the award of the Nobel Prize to Kroto
from the UK, and Smalley and Curl from the USA in 1996 for their sixty–carbon,
C60, buckminsterfullerene molecule, this area has exploded and bridged over to nan-
otechnology. In the initial graph theoretical molecular model of C60, for instance,
the eigenvalues [2] of this planar graph yielded significant information on physical
and chemical characteristics [3,4]. The keen interest shown by chemists in the sub-
ject is evident from the large number of related papers published not only in purely
chemical journals but also in others, specifically dedicated to the interaction be-
tween chemistry and mathematics, such as The Journal of Mathematical Chemistry,
MATCH, Ars Mathematica Contemporanea and Journal of Chemical Information
and Modelling.

Graph theory is the mathematical theory of the properties and applications of
graphs, whereas spectral graph theory is the study of the properties of a graph
in relation to the characteristic polynomial, eigenvalues and eigenvectors of the ma-
trices associated with the graph. Both are used to interpret and predict physical
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Figure 1.1: Graph–theoretical representation of the benzene molecule.

and structural properties. In Hückel molecular theory for unsaturated hydrocar-
bons, there is a direct relation between the molecule and a graph. The molecule is
stripped of its hydrogen atoms and only its carbon skeleton is used (see Fig. 1.1).
In these terms, the vertices of a graph can represent the atoms of a molecule – their
number defines the order of a graph. Its edges can represent the bonds that exist
between the atoms. The number of edges determines the size of a graph. The ad-
jacency matrix of the graph is an n× n symmetric matrix, where Aij = 1 if vertex
i is adjacent to vertex j, that is, i and j are vertices connected by an edge, and,
otherwise, Aij = 0. The number of edges ij that contain a given vertex i is the
degree of i.

The terminology used in graph theory has a natural relation to chemistry and this
link has proved useful for the understanding of energy levels of molecules and their
electron distributions, in particular, through the spectrum [2] of the graph. The
spectrum of a graph is the set of its eigenvalues or as it is chemically known, the
set of orbital energies (see Table 1.1). This is based on the Hückel molecular orbital
theory which gives an approximation of the π–molecular orbitals of a molecule by ex-
pressing them as linear combinations of atomic pπ–orbitals. Bonding, non–bonding
and anti–bonding orbitals correspond to positive, zero and negative eigenvalues of
Aij, respectively. If the multiplicity of an eigenvalue corresponding to an eigenvector
is greater than one, then we have the case of a degenerate orbital. Hence, the three
main chemical principles (the Aufbau and Pauli principles and Hund’s rule of max-
imum multiplicity) for determination of the ground–state electronic configuration
are:

(i) by the Aufbau principle the orbitals are filled up in order of decreasing eigen-
value;

(ii) the Pauli principle demands that each orbital can contain no more than two
electrons; and

(iii) Hund’s rule defines the way of filling up the degenerate orbitals, that is, each
orbital receives first one electron before any one orbital in the degenerate set
is doubly occupied.

The non–bonding orbital (NBO), associated with the zero energy level, lies at what
in physics is called the Fermi level, that is at the eigenvalue zero. The number of
NBOs and the special properties of molecules at the Fermi level of energy provide

2



an understanding of some important characteristics of nano–structures, as we shall
see in Section 2.4.

Graph theory Chemistry
Eigenvalue Orbital energy
Eigenvector Orbital
Nullity Number of NBOs

Table 1.1: The equivalence of a graph and the skeleton of a molecule.

An important early application of spectral graph theory was to determine the nullity
[2], that is, the dimension of the eigenspace corresponding to the zero eigenvalue
of the graph of a particular molecule that corresponds to the non–bonding orbitals
(NBOs) of the molecule [5,6]. When NBOs are present, they may point to instability
of the molecule through ease of electron transfer to and from the system.

A connected graph [7,8] is a graph which is connected in the sense that there is a path
from any vertex to any other vertex in the graph, that is, starting from any vertex
one can reach any other by walking along edges. A graph that is not connected is
said to be disconnected and to consist of connected components. A chemical graph
is a graph that can act as a molecular graph for π systems that are connected and
have maximum degree ≤ 3. A bipartite graph is a graph whose vertices can be
partitioned into two disjoint sets such that no two graph vertices within the same
set are adjacent. The eigenvalues of a bipartite graph are paired [5]. A graph is
non–bipartite if and only if it contains an odd cycle. A tree is a graph in which any
two vertices are connected by exactly one path. In other words, any connected graph
without cycles is a tree. Two special classes of graphs of interest in chemistry are the
paths Pn and cycles Cn. The path Pn is a sequence of n vertices such that from each
there is an edge to the next vertex in the sequence and no vertex is repeated. The
vertices at the end of a path are of degree two. Both are terminal vertices . Other
vertices in the path are internal vertices of degree two. The size of Pn is m = n− 1.
The cycle Cn is similarly defined, but any vertex may serve as the start and end
vertex. The cycle has size m = n.

1.2 Molecular conduction

The study is motivated by questions that are by no means new and were already
posed many decades ago: how do electrons move through molecules [9, 10]? Can a
molecule mimic the behaviour of an ordinary microelectronics component or maybe
provide new electronic functionality? How might one interconnect molecular devices
and integrate them into complex architectures [11]? Understanding the movement
of electrons to and through a single molecule on the nanoscale is central to the
field of molecular electronics. This realisation of molecular conduction as an im-
portant possibility for applications came about in the 1950’s after the revolution in
electronics due to the invention of the transistor and in view of the difficulties to
radically miniaturise the existent electronic components. Hence, single molecules
might be regarded as the ultimate goal in the miniaturisation of the transistor. As
Cuevas and Scheer report in [11], it was Arthur von Hippel, a German physicist

3



working at MIT, who formulated in 1956 the basis of a bottom–up approach that
he called molecular engineering [12], which led to the first notion of molecular elec-
tronics [13]. He argued that “instead of taking prefabricated materials and trying
to devise engineering applications consistent with their macroscopic properties, one
could build materials from their atoms and molecules for the purpose at hand”.
However, miniaturisation of silicon–based electronic devices is nearing its practical
limit and could soon become prohibitively expensive [14]. If devices are to con-
tinue becoming smaller, rather than reducing the size of macro materials one must
instead consider the possibility of a bottom–up synthetic approach [15]. Not only
does a molecular approach make the position and distance of atoms within devices
easier to control, but also brings in quantum effects, which can give exceptional
properties [16] to some materials. Molecular electronic devices have the potential to
replace traditional solid state devices such as transistors, rectifiers [17] and switches
and also have prospective uses in solar energy harvesting and thermoelectronics [18].

The miniaturisation of electronic devices presents a significant experimental and
theoretical challenge because it includes dependence on the chemical structure of the
molecules, the metal–molecule–metal bonding geometry, the structure of the contact
surface and the influence of the surroundings. This understanding can be traced
back to the 1970s. Even a hundred years ago the atomistic viewpoint was somewhat
controversial and many renowned scientists of the day questioned the utility of
postulating entities called atoms that no one could see [19]. However, now that
the field of molecular electronics has been around for more than 40 years and some
fundamental problems as those listed above have been overcome, researchers are not
only describing charge transport but also exploring numerous intrinsic features of
molecules.

As stated in a commentary by Ratner [20], the movement of electrons through single
molecules can happen either by electron transfer, involving a charge moving from
one end of the molecule to the other, or by molecular charge transport, involving
current passing through a single molecule that is strung between two electrodes [11,
21]. Although it is quite difficult to solve all the problems that surround molecular
electronics, this field has made considerable progress in recent years and a variety of
important mechanistic insights have been obtained, which could have implications
for the development of devices by taking advantage of the small size of the molecules.

Molecular electronics could offer the following major advantages [22]:

(i) The small size of molecules in the nanoscale could lead to a higher packing den-
sity of devices thus being more cost–effective and efficient and with advantages
as regards power dissipation.

(ii) Small size of molecular devices could reduce the time for an operation to occur.

(iii) Apart from forming structures by nanoscale self–assembly, molecular recogni-
tion could be used to modify electronic behaviour.

(iv) Special properties of molecules, such as the existence of distinct stable geomet-
ric structures or isomers, could lead to new electronic functions that are not
possible to implement in conventional solid state devices.
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(v) Transport, binding, optical and structural properties of a molecule can be
varied altering the chemical structure of the device or the way in which it is
connected to the leads.

The disadvantages that come along with use of molecules as components are insta-
bilities at high temperatures, and difficulties in fabrication. Fabrication of reliable
molecular junctions requires the control of matter at the atomic level, which can be
not only difficult, but also slow and costly [22]. Another area which benefits from an
increase in packing density is the realm of computing. The length of a field–effect
transistor was ∼10µm in 1960 but by the year 2000 it was significantly reduced to
∼0.1µm, allowing circuit designers to pack 10 000 times more transistors into a chip
of given surface area. In Ref. [23], Moore noted that the number of transistors in
a dense integrated circuit doubles about every year, and suggested that this could
in fact continue for another decade. However, in 1975, Moore revised this idea and
forecast that the doubling trend could take place every two years [24]. This rate was
true for the initial years but in 2015, Moore comments that this law would die in
about a decade as it would have reached saturation [25]. Advancements in digital
electronics are strongly linked to Moore’s law: to name a few, memory capacity,
sensors and the number and size of pixels in digital cameras [26]. The miniaturisa-
tion of the transistor is also governed by this law. The transistor is currently being
manufactured with a characteristic dimension of around 20nm, a factor of over a
million smaller than originally [27]. As Datta remarks [19], how much longer this
downscaling can continue nobody knows, but, one will in any case have to learn
how to model and describe the electronic properties of device structures that are
engineered on an atomic scale. The ultimate goal in miniaturation is the single
molecule–device and this leads to the topic of this thesis.

1.3 Experiments on MEDs

Molecular electronics has recently seen a huge improvement, especially in the last two
decades, due to the advances made in traditional semiconductor materials [22,28–30].
We would hope that it is possible to find an appropriate molecule for any imaginable
application, but for the many reasons listed in Section 1.2, so far only a few classes of
molecules have been explored in molecular electronics. Such molecules need to mimic
common functional elements in digital electronic circuits. Table 1.2 names a few of
the main elements and their requirements together with possible candidates [11].

Different methods have been developed for the fabrication of metallic atomic–sized
contacts. One of the most versatile and speedy tools for the fabrication of atomic–
size contacts is the scanning tunnelling microscope (STM) [31]. Experimentally, it
was the first technological platform capable of contacting single molecules adsorbed
on metallic surfaces. A fine metallic tip (of about 200µm) is held at a distance or
‘inserted’ into the electrode surface. In the latter way, making use of the exponential
distance dependence of the tunnelling current, the tip can be indented into the
surface and carefully withdrawn until an atomic size contact or short atomic wire
forms. The main drawbacks are its limited stability with respect to the change
of external parameters such as the temperature or magnetic fields and the short
lifetime of the contacts in general because of the sensitivity of STM to vibrations.
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Main element Requirements Possible molecular candidates
Conducting
wires

Low resistance, high ampac-
ity (the maximum current,
in amperes, that a conduc-
tor can carry continuously
under the conditions of use
without exceeding its tem-
perature rating)

Polyenes and alkynes

Insulators High resistivity, high break-
down voltage

Alkanes

Switches High on/off resistance ra-
tio, reliable switching, small
leak current in off position

cis/trans conformation changes of
manifold molecules, the proto-
type being azobenzene

Storage ele-
ments

Long storage time, low loss All kinds of molecules with at
least two states

Diodes High forward/backward
current ratio

Molecules which consist of two
different, and electronically de-
coupled parts

Amplifiers High gain All molecules of which the elec-
tronic levels can be tuned by a
gate electrode

Anchoring
groups

Reliable contact between
functional molecular unit
and electrode

Thiols, amines, nitro–, cyano–
or hetero–substituted cyclic
molecules with the substituent
atoms serving as linkers to the
metal electrodes

Table 1.2: Common functional elements in digital electronic circuits, their requirements
and the possible molecular candidates [11].
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The tight–binding approach has been used to describe a variety of problems related
to the electronic transport in atomic–scale junctions and one of the first was the
analysis of the operation of the STM, and the interpretation of images taken with
this instrument [32–36]. This approach has been very important in elucidating the
role of the tip–substrate distance.

Another scanning probe technique which is considered to be a versatile tool in
surface sciences in various environments and temperature ranges is the atomic force
microscope (AFM). It can work on insulating substrates. Unlike STM, it does not
use the tunnel current but the distance dependence of the force between a fine tip and
a surface. Its working principle is to measure the force by recording the deflection
of a cantilever that carries the tip. The deflection is detected by for example optical
means. When in use with the STM which records the current, the AFM measures
the force to form or break contacts [37].

There are also many methods that can be used to contact molecules with metal
electrodes. Devices including at least one semi–conductor electrode have also been
realised. The molecular junction fabrication is two–fold in the sense of what kind of
electrodes and deposition method of molecules are used. It should follow a precise
contacting scheme based on the way how, the moment when and the conditions
under which the molecules are brought into electric contact with the electrodes [11].
The main problem in the fabrication of single molecular electronic devices is that
the size of the molecule is smaller than the resolution of the lithographic methods.
Thus, there exists no method on its own which allows one to perform systematic
measurements of the electronic transport and to characterise the geometry of a
given junction with atomic precision. Therefore, various methods, such as the STM
and AFM mentioned above, are used and can be divided into two classes. Firstly,
there are those that produce rather stable devices for which the geometry cannot be
varied, and contamination cannot be excluded. Secondly, there are those methods
that enable clean contacts and modification of the junction geometry, but offer only
limited stability.

Unimolecular electronics were first discussed as being a potentially promising subject
in the late 1950s and gave rise to more work in 1974 when Aviram and Ratner
proposed that a single organic molecule can act as a rectifier [29]. A rectifier, or
diode, is a two–terminal in which current flow is allowed for a given polarity of the
voltage applied across its terminals (forward bias), but blocked when the polarity is
inverted (reverse bias). An ideal rectifier is thus a voltage–controlled switch [38]. A
donor π system and an acceptor π system are separated by a σ bonded tunnelling
bridge. When a field is applied rectifier properties appeared. Current passed to the
right and only if the reversed voltage was high enough did current flow through the
π system from anode to cathode. At this stage it is important to note that if single
organic molecules are to be used in devices then materials and synthesis problems
need to be overcome. Note that the original proposal has been subjected to criticism
and refinement by authors such as Metzger [39].

Another interesting paper for those working on carbon nanostructures is that pre-
sented by Park et al. where they discuss the fabrication of single–molecule tran-
sistors based on individual C60 molecules connected to gold electrodes [40]. They
demonstrated that single–electron–tunnelling events can be used to excite and probe
the motion of a molecule. The single C60 transistor behaved as a high–frequency
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Figure 1.2: Schematic of a gated–device used in the Coulomb blockade and Kondo effect
study [41] (based on Figure 1 from that paper). Mo is the [Co(tpy-(CH2)5-SH)2]2+. See [41]
for further details.

nanomechanical oscillator. It is a quantum ‘mechanical’ system since the oscillations
of C60 molecule must be treated in a quantised fashion.

Park et al. also investigate the Coulomb blockade and Kondo effect (defined be-
low) in single–atom transistors [41] see Fig. 1.2. The transistors used incorporated
a transition–metal complex designed such that electron transport occurs through
well–defined charge states of a single atom. Here two molecules attached to insu-
lating tethers of different lengths but both containing a Co ion were used to enable
the fabrication of devices that exhibit either single–electron phenomena, such as
Coulomb blockade, or the Kondo effect. The longer molecule exhibited behaviour as
that of a single–electron transistor [42], which is a device containing a small island,
in this case the single Co ion, which is attached to gold electrodes by tunnel organic
barriers. These are used to control the length, that is, to control the coupling be-
tween the ion and electrodes. Also, the charge state of the transistor can be tuned
using a gate voltage and at most values, the charge state of the ion is stable at
low voltage. The electron does not have enough energy to tunnel onto the Co ion
showing Coulomb blockade. This is a powerful tool to unveil fine details of elec-
tron transport in nanoscopic systems [38]. On the other hand, the shorter molecule
showed the Kondo effect, which is the formation of a bound state between a local
spin on an island and the conduction electrons in the electrodes that enhances the
conductance at low bias. In fact, significantly larger conductances occurred with
the shorter tether length.

Molecular electronics and the study of physics of nanometre–scale systems depend
on the ability to design the electronic states of a molecular device and to measure
individual molecules. The work of Reed et al. [43] investigates the self–assembly of
molecules of benzene onto two–fold electrodes in order to observe the charge trans-
port through the molecules. The study is a quantative measure of the conductance
of a junction containing a single molecule. Metal–molecule–metal junctions are also
dealt with in the study by Kergueris et al. [44]. The electronic transport properties
through the molecules used in this study are investigated through the use of me-
chanically controllable break junctions, such that different types of current–voltage
curves can be obtained. To switch between such curves it is enough to vary the
distance between the two electrodes. The results obtained can be interpreted in two
ways; firstly, as a coherent model which treats the molecule as scattering impurity
between the two metallic wires for the low bias range. In this case the current–
voltage characteristics at room temperature are not always symmetric with respect
to the polarity of the applied bias and show a linear regime. The second interpreta-
tion could be that of a sequential tunnelling model, where the molecule is assumed
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to be weakly coupled through tunnel junctions to each metallic electrode for the
high bias range. Here the current–voltage characteristics are of a highly non–linear
regime.

The work of Cui et al. [45] developed a reliable method for chemically bonding metal
contacts to either end of an isolated molecule and measuring current–voltage char-
acteristics of the resulting circuit. This method avoids the effects of variations in
contact force and other problems encountered with non–bonded contacts. In fact
non–bonded contacts are highly resistive, have different current–voltage character-
istics from those of molecules with bonded contacts, and dominate the electrical
properties. In contrast, molecules with bonded contacts are highly reproducible and
lead to measurements that are in better agreement with first principles simulations
without adjustable parameters.

Another interesting paper about the conductance of single molecules used in field–
effect transistors is that by Schön et al. [46]. The conductance through the field–
effect transistors can be varied by changing the applied gate bias. The conduction
modulation happens through a third electrode. These single–molecule transistors
are shown to be the basis of inverter circuits with gain. Schön et al. remark that the
demonstration of field–effect transistor action with a single electroactive molecule is
an important step toward molecular electronics, and with molecular heterostructures
and molecular wires, it might be possible to combine the insulating and semicon-
ducting properties as well as the contacts within a single molecule or supramolecular
architecture.

As we have seen from the various experimental contributions presented so far, there
are different techniques that can be used to deposit nanoparticles on a surface. A
new technique developed by Bezryadin et al. [47] in 1999 uses electrostatic trapping
that allows for controlled deposition of a single nanoparticle between two metal
electrodes. It is based on the attraction of polarised particles to the point of the
strongest electric field in the gap between the electrodes. This technique of electro-
static trapping can be used for various nanoparticles and it opens the way to explore
the transport properties of single molecules or clusters.

Currently various groups of researchers are studying molecular electronic devices.
In Ref. [48], Chen et al. report on the observation of large reversible switching
behaviour in an electronic device that uses molecules as the active component. The
essential feature of the fabrication process here is the use of a nanoscale device area,
which gives rise to a small number of self–assembled molecules and also eliminates
pinhole and other defect mechanisms that hamper through–monolayer electronic
transport measurements. Chen et al. obtained good control over the device area,
created intrinsic contact stability, and concluded that apart from the obvious size
advantages for scaling, the intrinsic device characteristics may be superior to those of
solid–state devices. A candidate mechanism for the negative differential resistance is
a two–step reduction process that modifies charge transport through the system. As
voltage increases, the molecule initially undergoes a one–electron reduction, thereby
supplying a charge carrier for electron flow through the system. If voltage increases
further, there is a second reduction with subsequent blocking of current.

The work of Collier et al. [49] is an example of another study developing an elec-
tronically singly configurable junction that consists of a molecular monolayer and a
tunnelling barrier sandwiched between lithographically fabricated metal wires. This
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junction can be used as a switch but because it is only singly configurable they
cannot be used for random access memory. However, they scale down to molecular
dimensions without appreciable loss of performance. When the molecular switches
are closed, current flows by resonant tunnelling into the molecular electronic states
leading to good noise immunity in future logic circuits. These switches are robust
with respect to dimension tolerances in manufacturing as they depend on voltage.
For the junctions used in this study only two wires are needed: one voltage is used
to read the device, and a voltage of opposite polarity is applied to configure it. So,
it is easy to design circuits incorporating these switches and it is highly modular.
Their fabrication is also inexpensive. If they are scaled–down enough to integrate
the molecular switches with molecular–scale wires then they can be used with carbon
nanotubes.

Current studies of molecular junctions focus on general methodologies on the one
hand and on detailed studies of specific systems on the other. One main area is
the study of prototypes of molecular wires, which has become the subject of intense
research and development effort [10]. A molecular wire is a structure which can
serve as a conduit for electrons, and can function as an elementary building block
for nanoscale devices [27]. In fact, in particular, one class of such molecular wires is
carbon nanotubes. In 1997, Dekker stated that the long cylindrical fullerenes called
carbon nanotubes are the smallest metallic wires [50] and have exceptional electrical
properties as they can be semiconductors or metals. This depends on their diameter
and chiral angle which determines the angle of the helical strips of hexagons in a
chiral nanotube [51]. They are predicted to be prototype one–dimensional quantum
wires and this makes them unusual, since, as Peierls [52] showed in 1930, one–
dimensional metallic wires are intrinsically unstable and normally turn out to be
semiconducting. The exceptional properties of nanotubes make them exploitable in
molecular electronics, such as, the self–assembly of functionalised nanotubes into
single–molecule devices.

Studying single–molecule electronic devices entails the collaboration of chemists, ma-
terial scientists, physicists and engineers in order to integrate the organic molecular
world with hard electronics, such that molecular electronics from laboratory–based
research evolves into industrial applications [53]. For such devices to exist then
three aspects that have an important role in their performance and stability are
the electrode material, interface and molecular bridge. These can be modified by
investigating the fundamental properties of the materials at the molecular or atomic
level, for example, by precisely controlling the energy gap between the Fermi level
of the electrode and the energy levels of the molecular orbitals [11, 16]. As Xin et
al. report in [53] this would help in the fabrication of electrical nanocircuits with
unexpected functionalities, such as switching, rectification and many others. Theo-
retical models that fully explain experimental phenomena at quantitative level help
in overcoming the challenges in both scientific research and industrial manufacture
as a slight variation at atomic level may influence conductance performance.

1.4 Theoretical techniques

The theory of ballistic conduction deals with the transport of electrons in molecules
having negligible resistivity caused by scattering, through carbon frameworks on
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the nano–scale. This theory analyses the molecular conductivity that many re-
search groups are treating via individual ab initio treatments in order to obtain
detailed information on molecular conduction in particular systems (e.g., [54–59]).
An alternative approach [60–63] is to use qualitative models to focus on generic
types of conduction behaviour. This approach is explored in Chapter 4. A starting
point for theoretical accounts of this type of conduction is the study of molecu-
lar conjugated structures, where electron transmission is known to be a sensitive
function of, amongst others, three major factors, namely, electron energy, contact
position and underlying molecular structure. As mentioned above, this field has
a long history, and methods continue to develop [20]. Carbon frameworks offer
the required versatility to realise most of the common functional elements in dig-
ital electronic circuits that molecules are supposed to mimic, namely, conducting
wires, insulators, switches, storage elements, ... Possible carbon frameworks that
qualify for this realisation include graphite, diamond, graphene, molecules like the
cage–shaped fullerenes and the quasi one–dimensional nanotubes [11].

This section discusses, but not exhaustively, some standard theoretical techniques
that are used to describe the transport in molecular systems. One of these techniques
is the scattering or Landauer approach, which provides an appealing framework to
describe coherent transport in nanostructures. Rolf Landauer put forward this ap-
proach in the late 1950’s [64]: if one can ignore inelastic interactions, a transport
problem can always be viewed as a scattering problem, that is, in practice, transport
properties like the electrical conductance are intimately related to the transmission
probability for an electron to cross the system. Experiments in mesophysics [19]
(systems in the range of 100nm to 1000nm), in the 1980s, showed that contacts
play an important role and should not be considered as minor distractions. Lan-
dauer’s model gained popularity in these years. In this model, the conductor itself
is assumed to be a wire free of all interactions: irreversibility and dissipation arise
from the connection to the contacts. This model seems relevant to the modelling of
electronic devices as they scale down to atomic dimensions [19]. In spite of being
one of the most popular theoretical formalisms to describe the coherent transport
in nanodevices, the scattering approach has limitations [11]:

(i) It gives no hints on how to compute the actual transmission of an atomic con-
tact or a molecular circuit, unless it is combined with simple models, or with
more sophisticated techniques such as random matrix theory [65]. Then the
scattering approach can predict the transport properties of a great variety of
systems such as diffusive wires, chaotic cavities, superconducting nanostruc-
tures, resonant tunnelling systems, tunnel junctions, etc.

(ii) It is a one–electron theory which is valid only as long as inelastic scattering
processes can be neglected.

The theoretical description of transport where inelastic scattering plays an important
role can be achieved through Green’s function techniques, as they can calculate the
elastic transmission of real systems such as atomic and molecular junctions, and,
can generalise the Landauer formula to take into account correlation effects and
inelastic mechanisms. The Green’s function theory is an elegant, formally complete
solution to the non–equilibrium transport problem, and is used widely in theoretical
physics [11,66]. It can be formulated to include explicit electron–electron interaction.
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Ratner, Reuter, Solomon and others based their work on the Green’s function theory
[56,67]. They explored various aspects of multichannel transport by considering the
limit of weak coupling between two single channel molecular conductors based on
the Green’s function approach applied within a tight–binding model. This tight–
binding model is an approach to the calculation of electronic band structure using
an approximate set of wavefunctions based upon superposition of wavefunctions
for isolated atoms located at each atomic state. The Green’s function theory is not
considered any further here but Fowler et al. show in [68] that it becomes equivalent
to the theory that will be used in the present study when electron interactions are
neglected.

The theoretical method that will be exploited in this thesis to describe molecular
electronic devices (MEDs) is the graph theoretical source–and–sink potential (SSP)
model, which is a simple approach devised by Ernzerhof in [69] for dealing with π
systems. The SSP model will be described in detail in Chapter 2, which deals with
both Ernzerhof’s original formulation and the graph–theoretical version that has
been central to the work of the Sheffield group. It can be used to test for ballistic
conduction in single–molecule conductors. It gives information about the influence
of molecular structure and contact position during ballistic conduction. In partic-
ular, the possibility that some molecular structures may display a much reduced
dependence of the predicted transmission on precise positioning of the contacts is
investigated in Chapter 4. Given the difficulties of attaching ‘wires’ with atomic res-
olution, such insensitivity may have some practical advantages, and this motivates
the definitions of omni–conductors and omni–insulators and the search for classes
of chemical graphs that conform to these definitions. As has been discussed in work
by Pickup and Fowler [68,70], a conjugated molecule is a “molecular wire” that con-
nects input and output reservoirs of electrons which are connected by metallic wires,
that is, a semi–infinite linear chain of atoms (see Fig. 1.3). The work of Fowler et
al. [70] classifies molecular devices within Ernzerhof’s [69] SSP model according to
the change in the number of NBOs obtained on deleting the connection vertices from
the graph of the molecule. In the light of the partition of vertices into the three
types according to the change in the number of NBOs on deletion [71], the selection
rules given in [70] take on a new interpretation. For instance, the vertex type of the
connection vertex (see Table 1.3) determines conductivity properties and identifies
structural requirements for conduction or insulation.

Figure 1.3: Schematic representation of a molecule. The circles represent the selection of
two connection vertices to which semi–infinite wires are connected.

1.5 Hückel molecular orbital theory

References [72–74] have been used extensively in order to compile this section.
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Vertex type Graph theory Chemistry
Core vertex A vertex corresponding to a

non–zero entry for some ker-
nel eigenvector [2]

Non–zero charge density
contribution

Core–forbidden vertex A vertex corresponding to
a zero entry in every kernel
eigenvector

Zero charge density contri-
bution

Table 1.3: Partitioning of vertices for singular graphs: graphical and chemical interpre-
tation.

In 1931, Erich Hückel developed a very simple form of molecular orbital theory which
has proved to be extremely valuable for correlating the properties of unsaturated
organic molecules that undergo a wide variety of reactions [73]. We can consider the
construction of π molecular orbital energy level diagrams of conjugated molecules by
formalising the assumptions used by Hückel. The π orbitals are treated separately
from the σ orbitals, where the latter form a rigid framework that determines the
general shape of the molecule. All the C atoms are treated identically, so all the
Coulomb integrals α for the atomic orbitals that contribute to the π orbitals are set
equal. These are negative and represent the energy of the electron. As we shall see
the main key points of the Hückel approximation are the following [72]

(i) The method neglects overlap, such that the negative resonance integral β van-
ishes. It also neglects interactions between atoms that are not neighbours.

(ii) It is expressed in a compact manner by introducing matrices.

(iii) The strength of the π bonding in conjugated systems is expressed by the π–
binding energy, the delocalisation energy and the π–bond formation energy.

In quantum chemistry, a useful method for finding approximations to the ground–
state wavefunction, when the Schrödinger equation cannot be solved exactly, is the
application of the Variation Principle. This principle states that if an arbitrary
wavefunction is used to calculate the energy, the value calculated is never less than
the true energy. This leads to

Ẽ = 〈ψ̃|Ĥ|ψ̃〉 ≥ E0 (1.1)

which is a statement that the expectation value of the Hamiltonian for any nor-
malised trial wavefunction ψ̃ must be greater than or equal to the actual ground
state energy, E0 [75]. We are using Dirac bra–ket notation for wavefunctions, so that
〈ψ̃|Ĥ|ψ̃〉 is shorthand for the integral of the function ψ̃∗Ĥψ̃, taken over all space.
A useful form for the trial wavefunction ψ̃ is often a linear combination of n known
basis functions χr

|ψ̃〉 =
n∑
r=1

cr|χr〉 (1.2)
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In what follows, it will be assumed for simplicity that cr are real numbers and
that all basis functions are real. The first restriction will need to be lifted when
we consider conducting systems. Here r and s are vertex indices. If the basis is
orthonormal 〈χr|χs〉 = δrs, where δrs is the Kronecker delta, equal to one if r = s
and zero otherwise, then normalisation of the trial wavefunction gives

〈ψ̃|ψ̃〉 =
n∑

r,s=1

crcs〈χr|χs〉 =
n∑
r=1

|cr|2 = 1 (1.3)

For a basis of non–orthogonal functions

〈ψ̃|ψ̃〉 =
n∑

r,s=1

crcsSrs (1.4)

where the overlap matrix element is Srs = 〈χr|χs〉, with Srs = Ssr for real functions.

In a similar way, the expectation value can be written in terms of the Hamiltonian
matrix elements, 〈χr|Ĥ|χs〉 = Hrs, as

〈χr|Ĥ|χs〉 = 〈
n∑
r=1

crχr|Ĥ|
n∑
s=1

csχs〉 =
n∑

r,s=1

crcs〈χr|Ĥ|χs〉 =
n∑

r,s=1

crcsHrs (1.5)

Now the utility of the Variation Principle becomes clear. If Ẽ is always greater than
or equal to the exact energy, then it is possible to define the best approximate wave-
function of a given form by minimising Ẽ with respect to all embedded parameters.
In the case of a linear combination Eq. (1.2), this amounts to requiring (∂Ẽ/∂cr)
to vanish for r = 1, . . . , n.

The minimisation is carried out using the method of Lagrange multipliers [76] to
incorporate the normalisation constant.

L =
n∑

r,s=1

crcsHrs − E
n∑

r,s=1

crcsSrs (1.6)

Partial differentiation of the function L(c1 . . . cn, E) with respect to cr, noting that
Ẽ is stationary, gives an equality for every r = 1, 2, . . . , n

∂L
∂cr

=
n∑
s=1

csHrs +
n∑
s=1

csHsr − 2E
n∑
s=1

csSsr = 0 (1.7)

and by the Hermitian property of the Hamiltonian, this reduces to

n∑
s=1

cs(Hrs − ESrs) = 0 (1.8)
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Thus, we have a square array of “secular equations”, which is suitably expressed
as a single matrix equation. By setting up these secular equations and calculating
the secular determinant, the coefficients cs can be found. The secular determinant
is solved for the energies which in turn are used in the secular equations to find
the coefficients of the atomic orbitals for each molecular orbital. In Hückel theory,
the variation method is applied to each molecular orbital. The molecular orbitals
will be labelled ψi, i = 1, . . . , n and the functions used to approximate them will be
labelled χr, r = 1, . . . , n where χr is a pπ orbital on centre r. The equivalent of Eq.
(1.2) is then

ψi =
n∑
r=1

c(i)
r χr (1.9)

where the coefficients c
(i)
r are specific to orbital i.

In this case Ĥ now stands for an effective Hamiltonian operator, applicable to each
orbital in turn, and the energies that emerge will be orbital energies. Thus, for an
n–centre π system, H is the n× n matrix of the Hamiltonian in the basis of atomic
pπ functions, S is the overlap matrix in that basis, E is the orbital energy to be
found and c is the vector of the coefficients for that orbital. From the minimisation
with respect to each coefficient in each molecular orbital ψi, we find n equations

c1(H11 − ES11) + c2(H12 − ES12) + . . .+ cn(H1n − ES1n) = 0
c1(H21 − ES21) + c2(H22 − ES22) + . . .+ cn(H2n − ES2n) = 0

...
c1(Hn1 − ESn1) + c2(Hn2 − ESn2) + . . .+ cn(Hnn − ESnn) = 0

(1.10)

where the superscript (i) is to be understood for each cr, and the subscript i for
each E.

These equations could now be solved numerically, case by case, given a basis of pπ
functions in explicit form and a molecular geometry, but Hückel introduced a set of
simplifying assumptions which allow a qualitative solution of the problem in general.

First, it can be noted that the overlap between parallel pπ functions is a rapidly di-
minishing function of distance between the atomic centres, owing to the exponential
form of the wavefunctions. The assumption made by Hückel is that this overlap can
be ignored, to a first approximation, and hence

Srs = δrs (1.11)

so that, the atomic pπ basis is effectively already orthonormal.

Other assumptions are made for the Hamiltonian in the linear equations (1.10).
The first is for the matrix elements of the form Hrr, which represent the Coulomb
integrals (for example, the energy of a π electron isolated on a carbon atom of the
molecule). Integrals of this type are assigned values αr, and because the carbon
atoms in a π system are similar, all diagonal matrix elements of Ĥ are generally
taken to have αr = α and hence Hrr = α. The second assumption is for the integrals
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of the form Hrs where r and s are not equal. In Hückel theory it is assumed that
if r and s are adjacent the interaction will be non–zero, but otherwise it will be set
equal to zero. These resonance integrals are assigned the value βrs.

Using these assumptions, Eq. (1.10) is reduced to

c1(α1 − E) + c2β12 + . . .+ cnβ1n = 0
c1β21 + c2(α2 − E) + . . .+ cnβ2n = 0

...
cnβn1 + c2βn2 + . . .+ cn(αn − E) = 0

(1.12)

In most cases αr = α for all r and βrs = β for all pairs connected by a σ bond. In
the case of molecular devices, different β values will generally be used to distinguish
the connections within the molecule from those between the molecule and the wire.
The solution to Eqs (1.12) is given by requiring


α1 − E β12 β13 . . . β1n

β21 α2 − E β23 . . . β2n
...

...
...

...
...

βn1 βn2 βn3 . . . αn − E




c1

c2
...
cn

 = 0 (1.13)

and hence

∣∣∣∣∣∣∣∣∣
α1 − E β12 β13 . . . β1n

β21 α2 − E β23 . . . β2n
...

...
...

...
...

βn1 βn2 βn3 . . . αn − E

∣∣∣∣∣∣∣∣∣ = 0 (1.14)

Expanding this determinant leads to a polynomial equation of nth degree, the n
roots of which are the orbital energies. Substituting each orbital energy into the
secular equations leads to the set of coefficients appropriate to each orbital.

The α (Coulomb) and β (resonance) parameters are of negative sign and have the
units of energy. In general, α provides an origin and β provides a unit for the energy
scale, and so for many purposes it is not necessary to assign particular numerical
values. Hückel theory then becomes a purely graph–theoretical model because it
depends only on the patterns of the σ bonds, that is, the positions of the edges in
the molecular graph. Hückel theory can be used to give a qualitative characterisation
of the forms of the π molecular orbitals, their relative energies, the populations and
bond orders in the molecule and to predict trends in stability for different classes of
molecules.

The electron density distribution can be analysed in terms of the molecular orbitals.
Recall that the probability interpretation of the wavefunction leads to the normali-
sation condition for each molecular orbital

∫
ψ2
i dV = 1 (1.15)
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Figure 1.4: The carbon skeleton for butadiene.

Using Eq. (1.2), this becomes

∫ (∑
c(i)
r χr

)2

dV = 1 (1.16)

in terms of the overlap integrals

∑
c(i)
r c

(i)
s Srs =

∑
c(i)
r c

(i)
s δrs =

∑
(c(i)
r )2 = 1 (1.17)

Let us now set up and solve the matrix equations within the Hückel approximation
for the π orbitals of butadiene, which in graph theoretical terms is the path on four
vertices, Fig. 1.4. The adjacency matrix for the graph is

A =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 (1.18)

The secular equations are

xc1 + c2 = 0
c1 + xc2 + c3 = 0
c2 + xc3 + c4 = 0

c3 + xc4 = 0

(1.19)

where x = (α − E)/β, so that the orbital energy E is α − xβ. Note that the
formulation in terms of the variable x, as is traditional in chemical accounts of
Hückel theory, is equivalent to the spectral problem in graph theory. The value of
x for the ith molecular orbital is equal to −λi, where λi is the eigenvalue of the
adjacency matrix that corresponds to the eigenvector (c

(i)
1 . . . c

(i)
n )T . Orbital

energies are then Ei = α + λiβ. Positive values of x correspond to anti–bonding
orbitals, and negative to bonding orbitals. x = 0 corresponds to the non–bonding
level with energy α. To find the solutions of Eq. (1.19) note that either c = 0 or

∣∣∣∣∣∣∣∣
x 1 0 0
1 x 1 0
0 1 x 1
0 0 1 x

∣∣∣∣∣∣∣∣ = 0 (1.20)

Expanding this gives

x4 − 3x2 + 1 = 0 (1.21)
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which has solutions x = ±(1 +
√

5)/2 = ±φ and x = ±(
√

5 − 1)/2 = ±φ−1. If we
take one of the solutions, say x = −φ, and substitute it back into the secular Eqs
(1.19) we have

c2 = φc1

c3 = −c1 + φc2 = φc1

c4 = −c3/x = c1

(1.22)

Normalisation requires

c2
1 + c2

2 + c2
3 + c2

4 = 1 (1.23)

This gives c1 = a = φ−1/2/(
√

2
4√
5) ≈ ±0.37 but since the overall sign of a wavefunc-

tion has no physical significance, we can take the positive solution for c1. Hence,
c2 = b = φ1/2/(

√
2

4√
5) ≈ 0.60, c3 = b and c4 = a. Thus, the orbital energy is

E = α + φβ (1.24)

and the corresponding molecular orbital is

ψ1 = aχ1 + bχ2 + bχ3 + aχ4 (1.25)

In a similar way, the remaining three orbital energies and molecular orbitals can be
obtained to be as follows (see Fig. 1.5):

E2 = α + φ−1β; ψ2 = bχ1 + aχ2 − aχ3 − bχ4

E3 = α− φ−1β; ψ3 = bχ1 − aχ2 − aχ3 + bχ4

E4 = α− φβ; ψ4 = aχ1 − bχ2 + bχ3 − aχ4

(1.26)

The molecular orbitals are mutually orthogonal and, with overlap neglected, nor-
malised.

There are two important points to be noted about the butadiene orbitals. Firstly,
they occur in pairs with energies α±xβ, and secondly, the coefficients of the paired
orbitals are either the same or simply change sign. These are general properties of
so–called alternant hydrocarbons, which are discussed in more detail in Chapter 5.

The sum of orbital energies is not equal to the total electronic energy, since, it does
not take into consideration the details of electronic repulsion, but, there is a rough
correlation between the two. For this reason the total Hückel energy of a molecule
is a useful quantity.

An important point emerges when we calculate the total π–electron binding energy,
Eπ, the sum of the energies of each π electron, and compare it with that of ethene.
In ethene, the total energy is

Eπ = 2(α + β) = 2α + 2β (1.27)
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Figure 1.5: The Hückel molecular orbital energy levels of butadiene and the corresponding
π orbitals, where the four p electrons (one supplied by each C) occupy the two lowest π
orbitals, that are delocalised. The greater the number of internuclear nodes, the higher
the energy of the orbital.
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In butadiene it is

Eπ = 2(α + φβ) + 2(α + φ−1β) = 4α + 2
√

5β ≈ 4α + 4.48β (1.28)

Therefore, the energy of the butadiene molecule lies lower by ≈ 0.48β than the
sum of the two individual π bonds. This extra stabilisation of a conjugated system
compared with a set of localised π bonds is called the delocalisation energy of the
molecule.

A closely related quantity is the π–bond formation energy, Ebf , the energy released
when a π–bond is formed. Because the contribution of α is the same in the molecule
as in the atoms, we can find the π–bond formation energy from the π–electron
binding energy by writing

Ebf = Eπ −NCα (1.29)

where NC is the number of C atoms in the molecules. The π–bond formation energy
in butadiene is ≈ 4.48β.

Hückel theory provides a method of correlating experimental results for a class of
related compounds such that it provides simplified models for understanding chem-
istry. It is most useful when the class is large, and the parameters involved are
few, otherwise to have a detailed understanding modern ab initio molecular meth-
ods must be used. The assumptions used in the Hückel theory are drastic and its
limitations are that it is very approximate; it cannot calculate energies accurately
(electron–electron repulsion is not calculated), and it typically overestimates pre-
dicted dipole moments. However, despite its utility, it is highly qualitative and can
be extended to address other types of atoms in conjugated molecules. In the con-
text of molecular junctions, at the end of the 1980s Sautet and Joachim pioneered
the use of the tight–binding approach within the extended Hückel approximation to
compute the current and conductance of single–molecule junctions [77, 78]. It can
also be used to treat σ orbitals.

In the physics literature, Hückel theory is often referred to (as the simplest form
of) the tight–binding approximation (TBA) [79]. In TBA, used for molecules and
solids, the molecular or crystal orbitals are represented as linear combinations of
well–localised basis functions. These functions may be represented explicitly and all
integrals calculated, or they may be treated under the Hückel approximations, with
all integrals represented by notional site and hopping parameters (equivalent to the
Hückel α and β).

1.6 A note on programs

Programs in Fortran77 for graph construction and manipulations, and determination
and classification of conduction behaviour were written by Prof. P.W. Fowler and
modified where necessary by M. Borg. These are used throughout the thesis, for
example in Chapters 4, 5 and 6. The program set within the Maple suite giving
algebraic computations were written by Prof. B.T. Pickup and the results have been
used in Chapters 4 and 7.
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1.7 Conclusion

In spite of the different treatments of many research groups, there is still the need
for a simple theory that captures the crucial global features of molecular conduction
processes. This would help us understand whole classes of examples without the need
of repeating experiments and/or calculations; consequently, universal explanations
would be provided as opposed to calculations only. Nonetheless, the understanding
of conduction on the nanoscale is a challenge because it includes, for example, de-
pendence on the chemical structure of the molecules and the metal–molecule–metal
bonding geometry. Thus, the nano–scale poses practical “soldering problems” at
the connection vertices for a molecule. This means that the electronic transport in
single molecules depends crucially on the exact coupling between the molecule and
the metal electrodes, that is, on the precise atomic arrangement of the contacts.
With the identification of omni–conductors and omni–insulators (see Chapter 4)
the problem would be lessened as conduction and insulation, respectively, occurs
independently of the connection vertex–pair on the molecule.
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Chapter 2

Theoretical chemistry background

This chapter presents the theory of ballistic conduction in the form used in the rest
of the thesis. It gives a detailed description of the source–and–sink potential (SSP)
approach as developed in the Ernzerhof group [62], which was then applied at the
Hückel level in the Sheffield group’s graph–theoretical SSP model [63] (Section 2.2).

The SSP approach was devised to treat the steady–state currents created by injecting
ballistic electrons via external contacts into unsaturated π systems. This approach
was then linked to graph–theoretical notions of molecular structure, to allow a fully
analytical expression to be obtained for transmission as a function of electron energy
and the placing of the contacts. The present chapter reviews these developments.

2.1 The Source–and–Sink Potential (SSP) Model

In the work of Ernzerhof et al. [62] an account of ballistic current in molecular
devices is given and they show that the transport between reservoirs and through a
molecule can be modelled by a source and sink potential, which can be implemented
in the form of a tight–binding scattering theory. In this way, the development of a
molecular orbital (MO) theory of MEDs is facilitated. The authors present a model
Hamiltonian for the description of open systems where complex potentials act as
source and sink, respectively, of probability current density. The applied voltage
across a MED is always time dependent but it can be kept constant long enough
such that a stationary current is obtained. The authors of [62] assume that this
state is established by the boundary condition [80] of having an incoming travelling
wave with a normalised amplitude in the left (electron emitting) contact as well as
reflected wave that has been scattered off the molecule, whilst in the right (electron
absorbing) contact, there is only an outgoing travelling wave. The left contact
is assumed to be at a chemical potential µL, above the chemical potential µR of
the right contact [62]. The model is restricted to non–interacting systems and so
correlation effects are excluded. The main interest is to obtain the current (I) versus
voltage (V ) curve for a molecular conductor, or the differential conductance

g =
dI

dV
(2.1)
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In SSP, the transmission probability T (E) is obtained from a direct calculation of
the reflection coefficient r, which is the amplitude of the travelling wave reflected
off the molecular scatterer. The key idea in SSP is that the asymptotic behaviour
of the wavefunction in the left and right contacts (leads) are each specified in terms
of a single parameter [62]. These parameters are the reflection coefficient r and the
transmission coefficient t, respectively.

As mentioned in the previous chapter, Green’s function theory is the usual way that
is used to describe ballistic current in MEDs. The SSP method has some aspects in
common with this theory. Both use a basis set of localised orthonormal functions and
the system is partitioned into three parts: the left ‘contact’ (L), the supermolecule
(M) and the right ‘contact’ (R). The authors of [62] use the term ‘contacts’ for
what we will call ‘leads’ to avoid confusion with ‘contact atoms’ at the junctions of
molecule and leads.

Figure 2.1: The partitioning of the system into three parts: a semi–infinite lead L on the
left, a ‘supermolecule’ including finite clusters of contact atoms, and a semi–infinite lead
R on the right (Figure adapted from [62]).

In SSP, the Hamiltonian matrix Ĥ of the device can be written as

Ĥ =

 HL ML,M 0

M†
L,M HM MM,R

0 M†
M,R HR

 (2.2)

where HL and HR are the Hamiltonian matrices for the contacts L and R, re-
spectively, HM is the Hamiltonian matrix for the supermolecule, and ML,M and
MM,R are the matrices describing the contact between L and M , and R and M ,
respectively. In this equation the adjoint matrix symbol † denotes the Hermitian
conjugate. The leads do not interact directly with each other. The aim is to describe
the steady–state current through the device, and this will be done via construction
of a device vector, with entries CL, CM , CR giving coefficients of the basis functions
in regions L, M and R. These entries will necessarily be complex quantities as if all
are real, current is identically zero. Thus, the eigenvalue equation for the required
vectors is

 HL ML,M 0

M†
L,M HM MM,R

0 M†
M,R HR

 CL

CM

CR

 = E

 CL

CM

CR

 (2.3)

In lead L, the wavefunction CL is a combination of forward (C+
L) and backward

(C−L) travelling waves. The left boundary condition is therefore

CL = C+
L + rC−L (2.4)
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where r is a reflection coefficient that is directly related to the transmission proba-
bility for electrons of energy E,

T (E) = 1− |r(E)|2 (2.5)

The right boundary condition is for an outgoing electron wave

CR = tC+
R (2.6)

where t is the transmission amplitude satisfying T (E) = |t(E)|2.

We can consider the subsystem involving simultaneously CL, CM and CR (from Eq.
(2.3)), which is described by

M†
L,MCL + HMCM + MM,RCR = ECM (2.7)

To solve Eq. (2.7) for CM , the part of the device wavefunction that determines
current inside the molecule, CL and CR must be eliminated. To do this, artificial
source and sink potentials are introduced. Ernzerhof et al. write these as

Σ = ΣL + ΣR (2.8)

and define them so that they can replace CL and CR in Eq. (2.7) with effective
terms depending only on CM

M†
L,MCL = ΣLCM (2.9)

and

MM,RCR = ΣRCM (2.10)

Here ΣL(R) are blocks of a diagonal matrix Σ and their entries can be determined
individually by inserting the last two equations, as

ΣLkk
=

(M†
L,MCL)k

CMk

(2.11)

and

ΣRkk
=

(MM,RCR)k
CMk

(2.12)

With these substitutions, Eq. (2.7) defines the SSP Hamiltonian through
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ĤSSP (E, r)CM = ECM (2.13)

where the dependence of ĤSSP on E and r is made explicit. (In essence, this arises
because Σ depends on CL and CR which in turn depend on r(E).)

ĤSSP (E, r) = HM + ΣL(E, r) + ΣR(E) (2.14)

In general, the unknown r in CL, and so in ΣL(E, r), can be obtained iteratively [62].
In this way the SSP method has built the boundary conditions into the effective
Hamiltonian ĤSSP (E, r). The SSP formalism can be applied to ab initio or density
functional theory (DFT) calculations, and in fact was used in this way by Ernzerhof
and co–workers [55,81] before they gave the formal description in [62]. However, the
main strength of the SSP method is that it can be adapted to the Hückel level, and
hence to a pictorial and essentially graph–theoretical account of conduction, with
all the advantages for interpretation that follow.

The Hückel approximations enter the SSP model of the MED in three places. They
are used in the treatment of the leads, to describe CL and CR in terms of r and E;
they can be used within the molecule, to simplify HM ; they also define the contact
terms ML,M and MM,R.

We imagine the lead L(R) to consist of a chain of atoms where βL is the nearest–
neighbour hopping matrix element (resonance integral) and diagonal Coulomb ma-
trix elements are αL (αR). In each lead βL (βR), the wavefunctions are combinations
of plane waves eiqn and e−iqn, where n indexes the atoms. In [62], the indexing con-
vention is that the rightmost atom of lead L has index n.

The complex potentials in the two leads are therefore defined by their roles in the
secular equations for top and bottom blocks of Eq. (2.3).

These blocks are

HLCL + ML,MCM = ECL (2.15)

and

M†
M,RCM + HRCR = ECR (2.16)

The final row of the block Eq. (2.15) involves the penultimate atom of lead L, the
final atom of lead L and the first atom of the molecule (call it L̄).

From the asymptotic behaviour in the lead we know the ratio of entries on the last
two lead atoms and so we can replace the whole effect of lead L by the complex
potential ΣL, with

ΣL

βL
=

(CL)n−1

(CL)n
=
eiqL(n−1) + re−iqL(n−1)

eiqLn + re−iqLn
=
e−iqL + r̃eiqL

1 + r̃
(2.17)
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where r̃ = e−2iqLnr. As multiplication of r by any complex number of unit modulus
can have no effect on the physical current, Ernzerhof then drops the tilde from r̃
in all further working. This slightly clumsy device can be avoided by numbering
outwards from the molecule (in both leads) [82].

Likewise, the block Eq. (2.16) gives

ΣR

βR
= eiqR (2.18)

In these equations, the wavenumbers qL and qR are related to E, the energy of the
incoming electron by the Hückel dispersion relations

E = αL + 2βL cos(qL) (2.19)

= αR + 2βR cos(qR)

The link between molecule and lead L, and molecule and lead R are both described
at Hückel level with appropriate hopping matrix elements, and within the molecule
itself the usual Hückel Hamiltonian is applied.

In [62], the Hückel version of the SSP Hamiltonian is used to find the reflection
coefficient by an iterative method. In fact, a fully analytical solution is possible, as
is shown by the work of Pickup and Fowler [63] described in the following section.

2.2 The SSP model and characteristic polynomi-

als

The first article by the Sheffield group on the graph theoretical approach to SSP
[63] discusses the derivation of a general formula for a transmission of electrons
through a molecule, as a function of the energy, expressed in terms of purely graph
theoretical quantities. This follows from the Hückel approximations made in the
previous section. Specifically, the authors of [63] consider a molecular π system that
has a carbon skeleton with an adjacency matrix A, where Aij = 1 if i 6= j, and
i bonded to j, and Aij = 0 otherwise. The Hückel Hamiltonian for the isolated
molecule is then

HM = α1 + βA (2.20)

where α and β are the usual Coulomb and resonance integrals. The model device
consists of the molecule with a pair of semi–infinite wires (1–dimensional chains)
attached to it. Molecule and wires will be represented by graphs with vertices for
atoms and edges for σ bonds. The molecular graph has n vertices, and m internal
edges. Left and right wires are then in contact with the molecule through single
distinct wire vertices labelled L and R, and the contacting vertices in the molecule
are labelled L̄ and R̄ (Fig. 2.2 (a)). The ballistic electron is represented by a
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wave (Fig. 2.2 (b)). Hückel parameters for the leads are (αL, βL) and (αR, βR),
respectively, leading to band energies from αL + 2βL to αL − 2βL and αR + 2βR to
αR − 2βR, respectively (Fig. 2.2 (c)). The molecule–lead links are single edges with
parameters βLL̄ and βRR̄, respectively (Fig. 2.2 (c)).

Figure 2.2: A schematic molecular electronic device. (a) Parametrisation of molecule
and leads; (b) wavevectors of incoming, reflected and transmitted waves; (c) energy level
scheme with range of transmission indicated by dotted lines; (d) the graph used in the
SSP method. Adapted from [63].

As noted in the general description given earlier of the SSP model, the leads are
replaced by single source and sink atoms bearing effective (complex) potentials, and
so in this graph–theoretical formulation the MED is represented by a graph with
n+ 2 vertices and m edges (Fig. 2.2 (d)).

2.2.1 The SSP Hamiltonian and solution of the Schrödinger
equation for MEDs

In [63] the SSP Hamiltonian is rewritten in a block form where rows 1 to n refer to
the molecule, row n+ 1 to the source, L, and row n+ 2 to the sink, R:

HSSP =

 A βL̄LeL̄ βR̄ReR̄
βL̄Le+

L̄
aLL 0

βR̄Re+
R̄

0 aRR

 (2.21)

The column vectors in the border are unit vectors given by (eL̄) = δL̄i and (eR̄) = δR̄i
which represent the two single–edge connections between the external and internal
contact vertices.

The contact matrix elements of HSSP are [63]

aRR = αR + βReiqR (2.22)

and
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aLL = αL + βL
e−iqL + reiqL

1 + r
(2.23)

respectively, where r is the reflection coefficient defined in [62].

The SSP Schrödinger equation for the device wavefunction

(E1−HSSP )c = 0 (2.24)

contains a fixed energy (E), and the required eigenvector is c, which depends on
E and r as discussed above. The solution is found by equating the determinant
det(E1−HSSP ) to zero.

The equations of the full SSP method are solved analytically in [63] by expanding
the secular determinant along the rows and columns of the border. Hence, the
determinantal condition is the “quadratic equation”

(E − aLL)(E − aRR)s+ β2
L̄Lβ

2
R̄Rv − β

2
L̄L(E − aRR)t− β2

R̄R(E − aLL)u = 0 (2.25)

where s, t, u and v are minors of the molecular secular determinant

s(E) = det(E1−A)

t(E) = det(E1−A)L̄,L̄

u(E) = det(E1−A)R̄,R̄

v(E) = det(E1−A)L̄R̄,L̄R̄ (2.26)

in a notation [83] where the superscripts define the removed rows and columns. For
example, M[i1...i2,j1...j2] is a matrix M from which rows i1...i2 and columns j1...j2 have
been deleted. The quantities s, t, u, and v, are then the characteristic polynomials
of four graphs: those of the molecule (s), the molecule with vertex L̄ deleted (t),
with vertex R̄ deleted (u) and with both L̄, R̄ deleted (v). The authors of [63]
note that through these four fundamental polynomials, the solutions of Eq. (2.25)
depend on both the internal structure of the molecule, and on the way in which it
is connected to the contact wires. They also define ‘scaled’ polynomials to simplify
the writing of further equations. These are

s̃ = s

t̃ = β̃Lt

ũ = β̃Ru

ṽ = β̃Lβ̃Rv (2.27)

with scaling parameters

β̃L = β2
L̄L/βL

β̃R = β2
R̄R/βR (2.28)
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expressing the relative strengths of bonds within and between the wire and the
molecule (Fig. 2.2 (a)). With the typical parameter choices made in [62], β̃2 is
about 1

2
. It is apparent from the structure of aLL that Eq. (2.25) can be converted

to an equation linear in r, by multiplying throughout by 1 + r. The analytical
solution presented in [63] is

r(E) = − eiqLF −G
e−iqLF −G

(2.29)

where

F = e−iqR s̃− ũ
G = e−iqR t̃− ṽ (2.30)

It follows that r is fully determined by the energy, through qL, qR (where 0 ≤
qL, qR ≤ π) and the four characteristic polynomials s, t, u and v. The transmission
factor is [62,63]

T (E) = 1− |r(E)|2 (2.31)

The expression for T is obtained by substitution of Eq. (2.29) in Eq. (2.31), and
after some algebra, the following expression is obtained

T (E) =
4 sin qL sin qR(ũt̃− s̃ṽ)

|e−i(qL+qR)s̃− e−iqR t̃− e−iqLũ+ ṽ|2
(2.32)

The degenerate (ipso) case L̄ = R̄, where left and right leads are connected to the
same atom L = R, follows by setting v = 0 and u = t.

Eq. (2.32) makes explicit the dependence of transmission on both molecular skele-
ton and its mode of connection. The term 4 sin qL sin qR in the numerator is non–
negative, as the angles satisfy 0 ≤ qL, qR ≤ π, and it acts as what the authors of [63]
call a “band–pass” filter, cutting off transmission at the ends of the range defined
by the intersection of left and right conduction bands.

In another article [69], Ernzerhof defined the wide–band limit (WBL). In the WBL,
the width of the conduction bands in the leads is assumed to be large compared to
the spread of molecular energies, so that effectively all wavevectors q can be taken
to have the constant value of π

2
and then Eq.(2.29) becomes

rWBL(E) =
(s̃+ ṽ)− i(ũ− t̃)
(s̃− ṽ)− i(ũ+ t̃)

(2.33)

and the transmission takes the form [63]

TWBL(E) =
4(ũt̃− s̃ṽ)

(s̃− ṽ)2 + (ũ+ t̃)2
(2.34)
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This expression coincides with the exact Eq. (2.32) for E = 0, the Fermi level
energy, and is often more convenient to use.

2.3 Extreme values of the transmission function

Having achieved an expression for T (E) in Eq. (2.32) which depends on both the
molecular skeleton and its mode of connection, it is now possible to discuss the
properties of such a function for T (E) [63]. Considering the factor (ũt̃− s̃ṽ) within
the numerator, it can be remarked that it is a concealed square, since by apply-
ing the Jacobi/Sylvester determinant identity [83] to the unscaled polynomials (see
Appendix 2, [83]),

ũt̃− s̃ṽ = β̃Lβ̃R(ut− sv) = β̃Lβ̃R(det(E1−A)L̄R̄)2 (2.35)

The right–hand side of Eq. (2.35) is expressed in later work [82, 84] as the square
of a polynomial j̃2 = β̃Lβ̃Rj

2 with j2 called the opacity polynomial, and sometimes
denoted Op. The denominator is also non–negative, and T (E) as defined by Eq.
(2.32) satisfies T (E) ≥ 0. Since |r|2 ≥ 0, it follows that T (E) ≤ 1. The transmission
factor given by Eq. (2.32) is even in E for bipartite graphs (alternant hydrocarbons)
since the vertex–deleted subgraphs of a bipartite graph are bipartite, too. This
aspect is discussed in further detail in Chapter 5.

The transmission factor is typically a strongly varying function of E [63] as it is a
ratio of high–order polynomials. Perfect opacity is achieved when T (E) = 0 and
requires the vanishing of the numerator of Eq. (2.32) and the reflection coefficient, r,
to have unit modulus. This occurs when ũt̃− s̃ṽ vanishes, within the allowed energy
range. The opacity condition has no dependence on the β resonance parameters
that describe the semi–infinite leads. The authors of [63] list six cases for which
T (E) = 0. These depend on which of the characteristic polynomials s, t, u and v
are equal to zero.

For perfect transparency, r = 0 such that T (E) = 1 and the ballistic electron passes
through the molecule π system without any hindrance. In this case, the authors
of [63] note that the conditions are given by the vanishing of real and imaginary
parts of the numerator and this leads to three possible cases for which T (E) = 1.

The authors of [63] also comment on the results of T (E) for linear chains and rings,
which both have characteristic polynomials with very simple analytical expressions,
which are given explicitly for the case of symmetric connections (αL = αR = 0,
βL = βR = βC , and βLL̄ = βRR̄ = β, with βC = γβ where γ is often taken to be
1.4 [63]). Using the characteristic polynomial of a linear chain, it is possible to find
the opacity and transparency points by using the simple form of the combination
ut−sv. The results in [63] show that the opacity points depend only on the positions
of the connection and perfect transparency is determined by both topology of the
molecule and its connections, as well as the parameters of the semi–infinite leads
(see Fig. 2.3). For the case of rings, opacity depends on the number of vertices, or
ring size, and connection topology (see Fig. 2.4).
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Figure 2.3: Transmission curves for six–membered chains. Curves for each connection
pattern are distinguised by colours as given in the key. Molecular eigenvalues are shown
as solid circles. (A similar figure for five–membered chains is given in [63].)

Figure 2.4: Transmission curves for six–membered rings. Curves for each connection
pattern are distinguised by colours as given in the key. Molecular eigenvalues are shown
as solid circles (Figure adapted from [63]).

32



2.4 Selection rules for conduction in MEDs

In further work of Fowler and co–workers [70], an account is given of how Eq. (2.32)
can be used to find the conditions for transmission of a π–conjugated molecular
conductor in terms of numbers of zero adjacency eigenvalues of four graphs: the
molecular graphG and the three vertex–deleted subgraphs obtained by removing one
or both contact vertices. This is equivalent in chemical terms to the counting of non–
bonding orbitals for the corresponding π systems. This gives a simple necessary and
sufficient condition for conduction at the Fermi level, i.e. the conditions under which
the right–hand side of Eq. (2.36) below vanishes. They are expressed entirely in
terms of non–bonding orbitals by analysing the eigenvalue properties of the vertex–
deleted subgraphs. The number of zero eigenvalues of the adjacency matrix of a
graph (the nullity) is an invariant that is easily found without calculation of the
full spectrum [6, 85]. Knowledge of the four nullities is all that is needed to decide
whether T (0) vanishes, except in the case that all four nullities are equal [70].

T (0) =
4(u0t0 − s0v0)β̃2

(s0 − β̃2v0)2 + (u0 + t0)2β̃2
(2.36)

where s0, t0, u0 and v0 are the values of the four characteristic polynomials at E = 0.
In particular, they are the tail coefficients of the characteristic polynomials and each
of them is zero if and only if the respective graph has at least one zero eigenvalue.

The determination of the selection rules works with the transmission function T (E)
in the limit of E → 0. It is necessary to take limits, as the individual polynomials
s, t, u and v may have E = 0 as a root.

Considering a general graph G, the four characteristic polynomials can be factored
to display the zero roots explicitly, as

s(E) = Egss′(E)

t(E) = Egtt′(E)

u(E) = Eguu′(E)

v(E) = Egvv′(E) (2.37)

where gs, gt, gu, gv ≥ 0 are the multiplicities of the zero root and the remaining
polynomials s′, t′, u′, v′ take non–zero values s′0, t′0, u′0, v′0 at E = 0.

By analysing the various combinations of gs, gt, gu, gv together with the vanishing
of the opacity polynomial, the authors of [70] achieved a sufficient condition for the
vanishing of T (0). This leads to three cases at E = 0 depending on whether zero is
a root of all or any of the four characteristic polynomials s, t, u and v. For the case
when zero is a common root of all four of them, further investigation is required by
taking into consideration the multiplicities of gs, gt, gu, gv. As stated in Section 3.1,
Cauchy’s Interlacing Theorem [86] imposes constraints on the range of values for
the multiplicities of the vertex–deleted subgraphs gt, gu and gv. These constraints
and the parity restriction arising from the fact that the opacity polynomial is a
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Case gs gt gu gv T (0)/(4β̃2)
1 g g + 1 g + 1 g + 2 All 0

2 g g + 1 g + 1 g All
−s′0v′0

(s′0−β̃2v′0)2

3 g g + 1 g g + 1 Odd 0

4 g g + 1 g g Non
−s′0v′0

(s′0−β̃2v′0)2+(u′0)2β̃2

5 g g + 1 g − 1 g All 0

6 g g g g + 1 Non
u′0t
′
0

(s′0)2−(u′0+t′0)2β̃2

7 g g g g Non
u′0t
′
0−s′0v′0

(s′0−β̃2v′0)2+(u′0+t′0)2β̃2

8 g g g − 1 g − 1 Odd 0

9 g g − 1 g − 1 g All
u′0t
′
0

(u′0+t′0)2β̃2

10 g g − 1 g − 1 g − 1 Non
u′0t
′
0

((v′0)2β̃2+(u′0+t′0)2)β̃2

11 g g − 1 g − 1 g − 2 All 0

Table 2.1: Transmission and multiplicities of the zero eigenvalue. “Odd” refers to those
cases where u′t′− s′v′ has an odd number of zero roots. “All” refers to both bipartite and
non–bipartite graphs. “Non” refers to non–bipartite graphs only [70].

square, lead to the 11 distinct cases listed by the authors of [70]. These cases
are given in Table 2.1. If furthermore the graph G is bipartite, and we restrict
attention specifically to eigenvalue zero, then the number of allowed combinations
is reduced to five. Hence, as the authors of this study find [70], the general rule
can be divided into four subrules according to whether the device is degenerate or
non–degenerate, whether G is bipartite or non–bipartite, and whether counting is
necessary or necessary and sufficient.

Their statement of the rules is as follows. Rule (i) states that for a bipartite graph,
the system conducts at the Fermi level if and only if gs = gv and gt = gu. If the
graph is non–bipartite where G, G − L̄, G − R̄ and G − L̄ − R̄ do not have the
same number of zero eigenvalues, then the system conducts at the Fermi level if
and only if min{(gs + gv)/2, (gt + gu)/2} = min{gs, gt, gu, gv} – this is Rule (ii).
In Rule (iii), G is non–bipartite with equal numbers of zero eigenvalues for all of
G, G − L̄, G − R̄ and G − L̄ − R̄, i.e., g = gt = gu = gv and the condition of
Rule (ii) is automatically obeyed, and the system conducts at the Fermi level if
and only if the opacity polynomial is non–vanishing, which, for g = 0, where all
four graphs are non–singular, reduces to u0t0 − s0v0 6= 0. Lastly, Rule (iv) states
that for the degenerate ipso device, if G has zero eigenvalues, then T (0) = 0 for
gt = g + 1, 0 < T (0) < 1 for gt = g, and T (0) = 1 for gt = g − 1, i.e. the device
is opaque, conducting or completely transparent at the Fermi level, depending on
whether G− L̄ = G− R̄ has g+ 1, g, or g− 1 zero eigenvalues, respectively. Hence,
for the degenerate ipso device, the system conducts at the Fermi level if and only
if gt ≤ g, which requires the connection vertex not to be an upper core–forbidden
vertex (see Chapter 3).

The authors of [70] note that although the energy E = 0 is of most direct physical
interest, the analysis applies for all roots ε of the Hückel problem, with replacement
of E by (E − ε), and multiplicities gs, ..., gv applying to the eigenvalue ε. Note
that the reduction to five cases for bipartite graphs made in [87] applies only for
eigenvalue zero as it relies on self–pairing of zero eigenvalue, under the Coulson–
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Rushbrooke pairing theorem [5] (PWF personal communication). This helps to
rationalise opacity features of the function T (E) in the regions away from E =
0, although the possibility of accidental extra opacities must then be checked for
any particular graphs. Fowler et al. [70] remark that the explicit expressions for
T (0) given in Table 2.1 can also be used to obtain simple conditions for perfect
transparency at the Fermi level and relate them to counting of zero eigenvalues.
The condition T (0) will be equal to unity, independently of the value of the physical
parameter β̃, if and only if t′0 = u′0 and gt = gu = gs− 1 = gv − 1. Restriction of the
Fermi–level selection rule to bipartite graphs is considered in [87]. Essentially, the
set of 11 distinct and 3 ipso cases reduces to 5 and 2, respectively. This is discussed
in more detail in Chapter 5.

2.5 Conclusion

Ballistic transport of electrons through molecules can be modelled by a version of
the standard tight–binding theory of conjugated hydrocarbons in the SSP model of
MEDs in combination with Hückel approximations. In graph theoretical terms, the
conventional problem is equivalent to determination of the spectrum of the adjacency
matrix of the molecular graph, replaced in the SSP problem by a modified adjacency
matrix that incorporates the scattering–type boundary conditions. This leads to a
full analytic solution to determine r and T in terms of characteristic polynomials.
The determination of T makes possible systematic explanation of the connection
between structure and conduction of molecules. This leads to defining conditions
for opacity and transparency. Moreover, through the selection rules achieved the
approach is more qualitative and potentially useful since the number of zero eigen-
values of a graph is an invariant that is easily found without calculation of the full
spectrum.

The rest of this thesis will deal with extensions and applications of the theory
that exploit the close connections between the Hückel form of the SSP model and
mathematical graph theory.
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Chapter 3

Interlacing–extremal graphs

This chapter presents some of the main results that have been published in
“Interlacing–extremal graphs” Ars. Math. Comp. 6, 261–278, 2013, Sciriha,
Debono, Borg, Fowler and Pickup [88]. This chapter is closely based on this ref-
erence, with some rewriting to incorporate new material and remove unnecessary
repetitions of introductory material. As this was produced for publication in a Math-
ematical journal, the language is more formal than in later ‘chemical’ chapters, but
the conclusions are still relevant to the theory of conduction. The main objective
of this present chapter is to classify devices into different kinds and to identify two
particular classes of graphs that correspond to different kinds: devices that have the
minimum allowed value for the nullity of G− L̄− R̄ relative to that of G for all pairs
of distinct vertices L̄ and R̄ of G, and those devices that have the nullity of G− L̄
that reaches the maximum possible for all vertices L̄ in a graph G. The main focus
is on devices of the latter kind and their implications for molecular conduction.

The structure of the chapter is as follows. Some basic definitions are given in Section
3.1. In Section 3.2 the characteristic polynomial of φ(G− L̄, E) is expressed as the
sum of terms in Egs and Egs−1 with coefficients that are polynomials expanded in
terms of the entries of the eigenvectors of adjacency matrix A. By comparing the
diagonal entries of the adjugate [89] of (EI−A) and of the spectral decomposition
of (EI−A)−1 we obtain, in Section 3.3, an expression for φ(G−L̄−R̄, E) as the sum
of three terms in Egs , Egs−1, Egs−2, respectively, again with polynomial coefficients.
Jacobi’s identity is used to determine which kinds of device are not realised by
any graph G. This gives a useful reformulation of the selection rule approach that
appeared in the chemical literature in [70] and [87].

In Section 3.4, the vertices of a graph are partitioned into three subsets (lower,
middle and upper), according to the vanishing or otherwise of the coefficients in the
expansions of φ(G− L̄) and φ(G− L̄− R̄), according to the vanishing or otherwise
of their polynomial coefficients. By the Interlacing Theorem and Jacobi’s identity,
exactly twelve kinds of device (G− L̄− R̄) exist, and they are partitioned into three
main varieties (Sections 3.5 and 3.6). In Section 3.7 two classes of graphs that have
extremal nullities are identified. These more formal results will be used in the next
chapter, on omni–conduction.
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3.1 The adjacency matrix and cores of singular

graphs

The graphs we consider are simple, that is, without loops or multiple edges. We use
A(G) or just A when the context is clear, to denote the 0–1 adjacency matrix of a
graph G, which is determined, up to isomorphism, by A. If the adjacency matrix A
of a n-vertex graph G satisfies Ax = Ex for some non–zero vector x then x is said to
be an eigenvector belonging to the eigenvalue E. There are n linearly independent
eigenvectors. The eigenvalues of A are said to be the eigenvalues of G and to form
the spectrum of G. They are obtained as the roots of the characteristic polynomial
φ(G,E) of the adjacency matrix of G, defined as the polynomial det(EI−A) in E.

Cauchy’s inequalities for a Hermitian matrix M place restrictions on the multiplicity
of the eigenvalues of principal submatrices relative to those of M . When they are
applied to graphs we have the Interlacing Theorem:

Theorem 3.1.1 Let G be an n-vertex graph and w ∈ V . If the eigenvalues are E1,
E2, ..., En and those of G − w are µ1, µ2, ..., µn−1 both in non–increasing order,
then E1 ≥ µ1 ≥ E2 ≥ µ2 ≥ ... ≥ µn−1 ≥ En.

Thus, by the Interlacing Theorem [86] the eigenvalues of a vertex–deleted subgraph
interlace the eigenvalues of the parent graph. As a consequence, the multiplicity
(number of repetitions) of any one eigenvalue in the spectrum changes by at most
one on deletion of a vertex.

We revise some definitions needed for discussing conduction in the graph theoretical
SSP model. For the linear transformation A, the kernel, or nullspace, ker(A) of A is
defined as the subspace of Rn mapped to the zero vector by A. A graph G is said to
be singular of nullity gs if the dimension of the nullspace ker(A) of A is gs and gs > 0.
If there exists a non–zero vector x in the nullspace of the adjacency matrix A, then
x is said to be a kernel eigenvector of the singular graph G and satisfies Ax = 0. It
is therefore an eigenvector of A for the eigenvalue zero whose multiplicity gs is also
the number of roots of φ(G,E) equal to zero. A vertex corresponding to a non–zero
entry of x is said to be a core vertex CV of G. The core vertices corresponding to x
induce a subgraph of G termed the core of G with respect to x. The core structure
of a singular graph will be the basis of our classification of all graphs relative to gs.

A core graph is a singular graph in which every vertex is a core vertex, for example,
the four cycle is an example of a 4–vertex core graph of nullity two. A core graph
of order at least three and nullity one is known as a nut graph and is connected and
non–bipartite [90].

For singular graphs, the vertices can be partitioned into core–forbidden and core
vertices. A core–forbidden vertex (CFV) corresponds to a zero entry in every kernel
eigenvector. Otherwise, the vertex is a core vertex, CV, such that it lies on some
core of G.

Let L̄ and R̄ be two distinct vertices of a graph G. By interlacing, when a vertex L̄
or R̄ is deleted from G, the nullity gt or gu, that is, the multiplicity of the eigenvalue
zero of G − L̄ or G − R̄, respectively, may take one of three values from gs − 1
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to gs + 1. If the two distinct vertices L̄ and R̄ are deleted, then the nullity gv of
G− L̄−R̄ may take values in the range from gs−2 to gs+2. Let a graph having two
particular distinct vertices L̄ and R̄ be called a device (G, L̄, R̄). The set of devices
can be partitioned into three varieties : variety 1 when both vertices are CV, variety
2 when one vertex is a CFV and one a CV and variety 3 when both vertices are
CFVs. A device (G, L̄, R̄) is said to be of kind (gs, gt, gu, gv). Since gt and gu can
take three values each and gv can take five values, there are potentially 45 kinds of
graphs relative to gs. Interlacing further restricts the values of gv. Moreover, there
are kinds of graphs that exclude certain combinatorial properties, such as that of
being bipartite, as we shall see in Section 3.5.

3.2 Characteristic polynomials

First, some notation needs to be introduced. Associated with the n × n adjacency
matrix A of a n-vertex graph of nullity gs, there is an ordered orthonormal basis xr,
1 ≤ r ≤ n for Rn, consisting of eigenvectors of A, with the gs eigenvectors in the
nullspace being labelled first. Let the n × 1 column vector xr be (xr

L̄
), where for

vertex L̄, 1 ≤ L̄ ≤ n. If

P =


x1

1 x2
1 . . . xn1

x1
2 x2

2 . . . xn2
...

...
...

...
x1
n x2

n . . . xnn

 (3.1)

where the ith column of P is the eigenvector xi belonging to the eigenvalue Ei in the
spectrum of A, diagonalisation of A is given by P−1AP = D[Ei], where D[Ei] is
the diagonal matrix having Ei as the ith entry on the main diagonal. Expressing A
in terms of D and P leads to the spectral decomposition theorem, which can also be
applied to (EI−A)−1. This leads to an expression for the characteristic polynomial
of the adjacency matrix φ(G− L̄, E) of G− L̄ which is given explicitly in terms of
eigenvector entries {x1

L̄
}. Together with Jacobi’s identity, it will serve as a basis for

the characterisation of graphs according to those kinds that can exist.

Lemma 3.2.1

φ(G− L̄, E) =
n∑
i=1

(xi
L̄
)2

(E − Ei)
φ(G,E) (3.2)

Proof: The characteristic polynomial of the adjacency matrix φ(G− L̄, E) of G− L̄
is the L̄th diagonal entry (adj(EI−A))L̄L̄ of the adjugate of (EI−A). For arbitrary
E, the matrix (EI − A) is invertible and φ(G − L̄, E) = ((EI − A)−1)L̄L̄φ(G,E).
Since P−1AP = D[Ei], it follows that adj(EI − A)/φ(G,E) = (EI − A)−1 =
PD[1/(E − Ei)]P−1.

Taking the L̄th diagonal entry
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φ(G− L̄, E)

φ(G,E)
=
(
x1
L̄

x2
L̄

. . . xn
L̄

)
D

[
1

E − Ei

]
x1
L̄

x2
L̄
...
xn
L̄

 =
n∑
i=1

(xi
L̄
)2

(E − Ei)
(3.3)

For a graph G with adjacency matrix A of nullity gs, let s(E) denote φ(G,E). If
the spectrum of A is E1, E2, ..., En, starting with the zero eigenvalues (if any), we
write

s(E) =
n∏
l=1

(E − El) = Egss0(E) (3.4)

with s0(0) 6= 0, where s0(E) is the product over the non–nullspace.

Partitioning the range of summation in Eq. (3.3),

φ(G− L̄, E)

φ(G,E)
=

gs∑
k=1

(xkL̄)2s0(E)Egs−1 +
n∑

k=gs+1

(xk
L̄
)2s0(E)Egs

E − Ek
(3.5)

which we shall express as

φ(G− L̄, E) = fbE
gs−1 + faE

gs (3.6)

3.3 Jacobi’s identity

Relative to (G, L̄, R̄), let us denote by j(E), or j, the entry of the adjugate
adj(EI−A) in the L̄R̄ position, obtained by taking the determinant of the subma-
trix of (EI−A) after deleting row L̄ and column R̄ and multiplying it by (−1)L̄+R̄.
We use the convention that gt ≥ gu. Where the context is clear, s0 may be written
for s0(E), j for j(E), etc.

Let s(E), t(E), u(E), v(E), often referred to simply as s, t, u and v respectively, be
the characteristic polynomials φ(G,E), φ((G − L̄), E), φ((G − R̄), E), φ((G − L̄ −
R̄), E) of the graphs G, G − L̄, G − R̄ and G − L̄ − R̄, respectively, that is, the
determinants listed in Eq. (2.26).

From Lemma 3.2.1,

t(E) =
n∑
k=1

(xk
L̄

)2
∏
`6=k

(E − E`) (3.7)

and
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u(E) =
n∑
k=1

(xk
R̄

)2
∏
`6=k

(E − E`) (3.8)

We shall see that the characteristic polynomial v(E) of G − L̄ − R̄ can also be
expressed in terms of the eigenvector entries {xr

L̄
} and {xr

R̄
} associated with distinct

vertices L̄ and R̄.

Lemma 3.3.1 For L̄ 6= R̄, Jacobi’s identity expresses the entry j of the adjugate of
EI−A in the L̄R̄ position, for a symmetric matrix A, in terms of the characteristic
polynomials s, u, t and v as j2 = ut− sv [83].

Expressing Eqs (3.7) and (3.8) as in (3.6),

t(E) =

gs∑
k=1

(xkL̄)2s0(E)Egs−1 +
n∑

k=gs+1

(xk
L̄
)2s0(E)Egs

E − Ek
= tbE

gs−1 + taE
gs (3.9)

and

u(E) =

gs∑
k=1

(xkR̄)2s0(E)Egs−1 +
n∑

k=gs+1

(xk
R̄

)2s0(E)Egs

E − Ek
= ubE

gs−1 + uaE
gs (3.10)

Now, considering pairs of vertices of G, since adj(EI −A)/φ(G,E) = (EI −A)−1 =
PD[1/(E − Ei)]P−1,

j(E) =
n∑
k=1

(xk
L̄
xk

R̄
)
∏
`6=k

(E − E`) (3.11)

We can write

j(E) =

gs∑
k=1

xkL̄x
k
R̄s0(E)Egs−1 +

n∑
k=gs+1

xk
L̄
xk
R̄
s0(E)Egs

E − Ek
= jbE

gs−1 + jaE
gs (3.12)

The characteristic polynomial v(E) can be written as v(E) = (u(E)t(E) −
j2(E))/s(E), that is v(E) = vaE

gs + vbE
gs−1 + vcE

gs−2, where
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vc =
1

s0

(ubtb − j2
b ) =

1

2
s0

gs∑
i=1

gs∑
`=1

(xiR̄x
`
L̄ − x

`
R̄x

i
L̄)2

vb =
1

s0

(uatb + ubta − 2jajb) = s0

gs∑
i=1

n∑
`=gs+1

(xi
R̄
x`
L̄
− xi

L̄
x`
R̄

)2

E − E`

va =
1

s0

(uata − j2
a) =

1

2
s0

n∑
i=gs+1

n∑
`=gs+1

(xi
L̄
x`
R̄
− x`

L̄
xi
R̄

)2

(E − Ei)(E − E`)
(3.13)

and in particular

j2
a = uata − s0va (3.14)

jajb =
1

2
(uatb + ubta − s0vb) (3.15)

j2
b = ubtb − s0vc (3.16)

3.4 The three vertex types

Figure 3.1: A chemical graph showing the different type of vertices. Core vertices are
indicated with black–filled circles, upper core–forbidden vertices with white–filled circles,
and middle core–forbidden vertices with grey–filled circles.

By interlacing, we can identify three types of vertex according to the effect on the
nullity on deletion (see Fig. 3.1). A necessary and sufficient condition for the nullity
to decrease on deletion of a vertex from a graph is that the deleted vertex is a CV.
Therefore, by interlacing, deletion of a CFV either leaves the nullity unchanged or
increases it by one. We call a vertex L̄ lower, middle or upper if the nullity
of G − L̄ is gs − 1, gs or gs + 1, respectively. Other terms are also used in the
literature: the CFV are referred to as peripheral vertices; upper vertices are variously
termed maximal [91], Parter, or rank–strong vertices [92]; middle vertices are called
intermediate [91] or rank–neutral [92]; and lower vertices are also called downer or
rank–weak vertices [92]. Bipartite graphs do not have middle vertices (see Lemma
3.5.2). We shall distinguish among these three types of vertex (lower, middle and
upper) according to the values of the functions fa and fb in Eq. (3.6).
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hhhhhhhhhhhhhhhhhhvertex entries
eigenvector

x1 . . . xgs xgs+1 . . . xn

x1 ∗ . . . ∗ ∗ . . . ∗
x2 ∗ . . . ∗ ∗ . . . ∗
... ∗ . . . ∗ ∗ . . . ∗
x|CV | ∗ . . . ∗ ∗ . . . ∗
x|CV |+1 0 . . . 0 ∗ . . . ∗
...

...
...

...
...

...
...

xn 0 . . . 0 ∗ . . . ∗

Table 3.1: Ordered orthonormal basis of eigenvectors of A with * representing a possibly
non–zero entry.

In Table 3.1 we show the entries of the orthonormal eigenvectors {xr} in an ordered
basis for Rn as presented in Section 3.2. We choose a vertex labelling such that the
core vertices are labelled first. Note the zero submatrix corresponding to the CFVs.

We consider φ(G− L̄, E)/(s0E
gs) from Eq. (3.5). It has poles at E = µi, 1 ≤ i ≤ h,

where, for 1 ≤ i ≤ h, the µi are the h distinct non–zero eigenvalues of G. Moreover,

the gradient of
n∑

k=gs+1

(xkL̄)2/(E − Ek) is less than 0 for all E 6= µi. It follows that

φ(G − L̄, E)/(s0E
gs) has at most (h − 1) roots strictly interlacing the h distinct

eigenvalues of A.

gs∑
k=1

(xkL̄)2 = 0 if and only if L̄ is a CFV. Thus at E = 0, fb is

non–zero if L̄ is a CV and zero if it is a CFV. For a CFV L̄,
n∑

k=gs+1

(xkL̄)2/(E − Ek)

vanishes at E = 0 when L̄ is upper, and does not vanish when L̄ is middle. When
gs∑
k=1

(xkL̄)2 = 0, one of the (h− 1) interlacing roots may be zero.

Different cases occur depending on the vanishing or otherwise of the real constant
gs∑
k=1

(xkL̄)2 and
n∑

k=gs+1

(xkL̄)2/(E−Ek) at E = 0. Eq. (3.5) and the above analysis lead

to the result that gs − 1 ≤ gt ≤ gs + 1. This can be generalized for the multiplicity
of any eigenvalue of G other than zero by replacing the cores and the nullspace of
G by the µi–cores and µi–eigenspace of G (concepts introduced in [93]).

Proposition 3.4.1 The values of fb and fa of Expression (3.6) for φ(G− L̄, E) at
E = 0 distinguish the three types of vertex as follows:

Vertex L̄ Status of L̄ The values of fb and fa
Lower CV fb(0) 6= 0
Middle CFV fb(0) = 0 and fa(0) 6= 0
Upper CFV fb(0) = 0 and fa(0) = 0

Proof: Let L̄ be a core vertex of a graph of nullity gs > 0. There exists xk
L̄
6= 0 for

some k, 1 ≤ k ≤ gs. Then fb(0) 6= 0, which is a necessary and sufficient condition
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for the multiplicity of the eigenvalue zero to be gs − 1 for G − L̄. It follows that a
vertex is lower if and only if it is a CV.

If v is a CFV, then fb(0) = 0. For G − L̄, the multiplicity of the eigenvalue zero

is at least gs. If one of the roots of
n∑

k=gs+1

(xkL̄)2/(E − Ek) is zero, then E divides

n∑
k=gs+1

(xkL̄)2/(E − Ek), the multiplicity of the eigenvalue zero is exactly gs + 1 for

G− L̄ and the vertex L̄ is upper. Otherwise, the multiplicity of the eigenvalue zero
remains gs for G− L̄ and the vertex L̄ is middle.

We consider three varieties of devices (G, L̄, R̄) with pairs (L̄, R̄) of vertices, namely
variety 1 with both L̄ and R̄ being CVs, variety 2 with R̄ being a CV and L̄ a CFV
and variety 3 with both L̄ and R̄ being CFVs. Since a CFV can be upper or middle,
varieties 2 and 3 are subdivided further, as seen in Table 3.2.

From Proposition 3.4.1,

for variety 1, ub 6= 0; tb 6= 0;

for variety 2, ub 6= 0; jb = tb = vc = 0;

for variety 3: ub = jb = tb = vb = vc = 0.

Some of these varieties can be further subdivided according to the values at E = 0
of vc, vb and va or ja. From Proposition 3.4.1, tb(0) 6= 0 if and only if L̄ is a core
vertex. Similarly ub 6= 0 if and only if R̄ is a core vertex. If at least one of R̄ or L̄
is core–forbidden, then jb(0) = 0. However, there are ‘accidental’ cases where jb(0)
vanishes when both R̄ and L̄ are CVs, if the vertices L̄ and R̄ are connected by an
edge.

3.5 Restrictions on the nullity of G− L̄− R̄

It is possible to classify all graphs according to their kind defined by the quadruple
(gs, gt, gu, gv). This classification is given in Table 3.2.

3.5.1 Restrictions arising from interlacing

In a device (G, L̄, R̄) of kind (gs, gt, gu, gv), interlacing restricts the values that gv can
take. The following result shows an instance when gv is determined by interlacing
alone.

Lemma 3.5.1 For (gs, gt, gu, gv) = (gs, gs + 1, gs− 1, gv), the nullity gv of (G, L̄, R̄)
is gs.

Hence, (gs, gs + 1, gs − 1, gs) is the only kind where the nullities gt and gu differ by
two. We say that it belongs to variety 2a.
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In kinds where the nullities gt and gu differ by one, interlacing allows gv to take
either the value gt or gu. All three possible values of gv are allowed by interlacing
when gt = gu.

The symmetry about zero of the spectrum of a bipartite graph G [94] requires that
the number of zero eigenvalues is 2k, if G has an even number of vertices and 2k+ 1
if G has an odd number of vertices, for some k ≥ 0. This implies that on deleting
a vertex from a bipartite graph, the nullity changes parity. Therefore, if the nullity
of a graph G and of its vertex–deleted subgraph G− L̄ are the same, then G is not
bipartite. Since on deleting a vertex a bipartite graph remains bipartite, it follows
that a graph G of a kind where gs = gt or gt = gv cannot be bipartite.

Lemma 3.5.2 If a vertex of a graph is middle, then the graph is not bipartite.

Proof: By the Pairing Theorem [95], if the graph has an odd number of vertices,
then its nullity is odd, whilst if the graph has an even number of vertices, then its
nullity is even. Hence, on deleting a vertex there is a change of parity in both the
number of vertices and nullity. Thus, the nullity does not remain the same as would
be the case imposed by a middle CFV.

Fig. 3.2 shows a device (G, L̄, R̄) with a middle vertex R̄ which becomes upper in
G− L̄.

Figure 3.2: A graph with two middle vertices L̄ and R̄.

3.5.2 Restrictions arising from Jacobi’s identity

Lemma 3.3.1 requires that j2 = ut − sv has 2k, k ∈ Z+, zero roots. Let gf denote
the number of zero roots of the real function f . Therefore, for kinds of graph that
imply gut = gsv−1 and gu 6= gt, or, gut = gsv+1 and gu = gt, there is a contradiction
and those kinds of graphs do not exist.

Lemma 3.5.3 The following kinds of graphs do not exist:
(i) (gs, gs, gs − 1, gs)
(ii) (gs, gs + 1, gs + 1, gs + 1)
(iii) (gs, gs, gs, gs − 1)

Furthermore, if gut = gsv and gut is odd, then a graph of that kind exists if ut− sv
is zero at E = 0, otherwise j2 would have an odd number of zeroes. Therefore, if
gut = gsv and gut is odd, jb = 0 at E = 0.
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Kind Characterisation Variety G bipartite

Two CVs 1
(gs, gt, gu) = (gs, gs − 1, gs − 1)

gv = gs − 2 vc 6= 0 & tb 6= 0 & ub 6= 0

& gs ≥ 2

1(i) Allowed

gv = gs vc = 0 & tb 6= 0 & ub 6= 0

& vb(0) = 0 & gs ≥ 1

1(ii) Allowed

gv = gs − 1 vc = 0 & tb 6= 0 & ub 6= 0

& vb(0) 6= 0 & gs ≥ 1

1(iii) Forbidden

CV and CFV 2
(gs, gt, gu) = (gs, gs + 1, gs − 1)

gv = gs

vc = 0 & tb = 0 & ub 6= 0

& vb(0) = 0 & gs ≥ 1

2a Allowed

(gs, gt, gu, gv) = (gs, gs, gs − 1)

gv = gs − 1

vc = 0 & tb = 0 & ub 6= 0

& vb(0) 6= 0 & gs ≥ 1

2b Forbidden

Two CFVs 3
(gs, gt, gu) = (gs, gs + 1, gs + 1) 3a
gv = gs vc = 0 & tb = 0 & ub = 0

& vb(0) = 0 & ta(0) = 0 &

ua(0) = 0 & va(0) 6= 0

3a(i) Allowed

gv = gs + 2 vc = 0 & tb = 0 & ub = 0

& vb(0) = 0 & ta(0) = 0 &

ua(0) = 0 & va(0) = 0

3a(ii) Allowed

(gs, gt, gu) = (gs, gs + 1, gs) 3b
gv = gs + 1 vc = 0 & tb = 0 & ub = 0

& vb(0) = 0 & ta(0) = 0 &

ua(0) 6= 0 & va(0) = 0

3b(i) Forbidden

gv = gs vc = 0 & tb = 0 & ub = 0

& vb(0) = 0 & ta(0) = 0 &

ua(0) 6= 0 & va(0) 6= 0

3b(ii) Forbidden

(gs, gt, gu) = (gs, gs, gs) 3c
gv = gs + 1 vc = 0 & tb = 0 & ub = 0

& vb(0) = 0 & ta(0) 6= 0 &

ua(0) 6= 0 & va(0) = 0

3c(i) Forbidden

gv = gs vc = 0 & tb = 0 & ub = 0

& vb(0) = 0 & ta(0) 6= 0 &

ua(0) 6= 0 & va(0) 6= 0

3c(ii) Forbidden

gv = gs & ja(0) 6= 0 vc = 0 & tb = 0 & ub = 0

& vb(0) = 0 & ta(0) 6= 0 &

ua(0) 6= 0 & va(0) 6= 0 &

ja(0) 6= 0

3c(iiA) Forbidden

gv = gs & ja(0) = 0 vc = 0 & tb = 0 & ub = 0

& vb(0) = 0 & ta(0) 6= 0 &

ua(0) 6= 0 & va(0) 6= 0 &

ja(0) = 0

3c(iiB) Forbidden

Table 3.2: A characterisation of all devices (G, L̄, R̄) according to their variety and
kind [88].
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Lemma 3.5.4 Graphs with gut = gsv and gut odd exist provided jb = 0 at E = 0.
They are non–bipartite and of one of the following kinds:
(i) (gs, gs, gs − 1, gs − 1) (variety 2b)
(ii) (gs, gs + 1, gs, gs + 1) (variety 3b(i))

Lemma 3.5.5 If (G, L̄, R̄) is a singular graph with gut < gsv and gsv odd, then
(G, L̄, R̄) is non–bipartite and of kind (gs, gs − 1, gs − 1, gs − 1) (variety 1(iii)).

Proof: If L̄ and R̄ are CVs, gut < gsv, then (gs, gt, gu, gv) is
(i) (gs, gs − 1, gs − 1, gs) or
(ii) (gs, gs − 1, gs − 1, gs − 1).

Now if furthermore, gsv is given to be odd, then gv = gs− 1. It follows that gt = gu.
Therefore, G is not bipartite.

3.6 Kinds of graphs

In this section we determine the properties of a kind (gs, gt, gu, gv) within each of
the three varieties.

3.6.1 Graphs of variety 1

Graphs of variety 1, are necessarily singular and therefore have at least one core.
There are at least two vertices in a core (see for example Lemma 6.8.2 in Chapter
6).

Lemma 3.6.1 For a device (G, L̄, R̄) of variety 1 and nullity one, jb(0) 6= 0 for
core vertices L̄ and R̄.

Proof: For gs = 1, a non–zero column of the adjugate adj(A) is a kernel eigenvector
of G [96]. The non–zero entries occur only at core vertices. Therefore, jb(0) 6= 0.

There are three types of pairs of vertices (CV,CV) for graphs of variety 1, depending
on the nullity of G− L− R. Since gs ≥ 1 and gu = gt = gs − 1, then the nullity gv
of G− L̄− R̄ can take any of the three values gs − 2, gs and gs − 1, corresponding
to variety 1(i), 1(ii) and 1(iii), respectively.

Theorem 3.6.1 For a device (G, L̄, R̄) of variety 1(iii), j(0) 6= 0 for core vertices
L̄ and R̄.

Proof: For nullity one the result follows from Lemma 3.6.1. Consider a graph with
gs > 1 of variety 1(iii), that is when gv = gs − 1. The number of zeroes gut of ut
is 2gs − 2 and less than that of sv which is odd. If j2, which is ut − sv, is not to
have an odd number of zeroes, it follows, from j = jbE

gs−1 + jaE
gs , that jb 6= 0 at

E = 0.

For variety 1(i), the vertices L̄ and R̄ are CVs. Moreover, without loss of generality,
the vertex R̄ is a CV of the subgraph G− L̄. Only for variety 1(i) is vc 6= 0.
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Definition 3.6.1 The connected graphs G in the devices (G, L̄, R̄) with all pairs
of vertices (L̄, R̄) being of variety 1(i) are said to form the class of uniform–core
graphs.

Equivalently, gv = gs − 2, that is R̄ is a CV of G− L̄ for all vertex pairs (L̄, R̄). It
is clear that all vertices of a uniform–core graph are CVs, and that they remain so
even in a vertex–deleted subgraph G− L̄ for any vertex L̄ of G, but this is not the
case in general; if L̄ and R̄ are two distinct core vertices of a graph G, then R̄ need
not remain a core vertex of G− L̄.

3.6.2 Graphs of variety 2

In a device (G, L̄, R̄) of variety 2, (L̄, R̄) is a mixed vertex pair, that is exactly one
vertex R̄ of the pair (L̄, R̄) is a CV.

From Lemmas 3.5.1 and 3.5.3, the following result follows immediately:

Proposition 3.6.2 In a device (G, L̄, R̄) of variety 2,
(i) there is only one kind when L̄ is upper, namely kind (gs, gs + 1, gs − 1, gs − 1) in
variety 2a, and
(ii) only one kind when L̄ is middle, namely kind (gs, gs, gs−1, gs−1) in variety 2b.

From Lemma 3.5.2, the graphs of variety 2b are non–bipartite.

Theorem 3.6.2 In a device (G, L̄, R̄) of variety 2b, the term in E2gs−1 of j2 is
identically equal to zero.

Proof: In variety 2b, a graph is of kind (gs, gs, gs − 1, gs − 1). The parameter vc
vanishes and vb(E) = ubta/s0 6= 0. The number of zeroes of ut is the same as that
of sv. Therefore, j2 = ut − sv has at least 2gs − 1 zeroes. In variety 2b, the term
in E2gs−1 in its expansion is ubta − s0vb. Also vc vanishes and vb(E) = ubta/s0 6= 0.
Hence, s0vb = ubta and the term in E2gs−1 in the expansion of j2 is identically equal
to zero, as expected from the fact that j2 is a perfect square.

The parameter vb distinguishes between a graph in variety 2a and one in variety 2b.

Theorem 3.6.3 For a graph in variety 2a, vb vanishes at E = 0. For a graph in
variety 2b, vb 6= 0 at E = 0.

Proof: For both kinds in variety 2, ub 6= 0. For an upper vertex, ta = 0 at E = 0
and for a middle vertex ta 6= 0 at E = 0. Since s0 6= 0, it follows that for a graph in
variety 2a vb = 0 at E = 0 and, for a graph in variety 2b, vb 6= 0 at E = 0.
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3.6.3 Graphs of variety 3

We now consider variety 3 for (CFV, CFV) pairs, when tb, ub, jb, vb and vc all vanish.

Interlacing provides three types of vertex pairs depending on whether a CFV in
the pair (L̄, R̄) is upper or middle. When both vertices are upper (variety 3a), by
Lemma 3.5.3 only variety 3a(i) for gv = gs and variety 3a(ii), when gv = gs + 2 are
allowed. The values at E = 0 of va or ja suffice to distinguish between graphs of
variety 3(i) and 3(ii).

Theorem 3.6.4 For variety 3a(i), both va and ja are non–zero at E = 0. For
variety 3a(ii), both va and ja vanish at E = 0.

Proof: For variety 3, vb = 0. Variety 3a(i) is (gs, gs + 1, gs + 1, gs). Since v = vaE
gs

and gv = gs, va 6= 0 at E = 0. Also gj2 = 2gs so that ja 6= 0 at E = 0. Variety 3a(ii)
is (gs, gs + 1, gs + 1, gs + 2). Since gv = gs + 2, E2 divides va and E divides all of the
functions ta, ua and ja.

For variety 3b, one vertex is upper and one is middle. Interlacing allows only
gv = gs + 1 and gs, corresponding to variety 3b(i) and variety 3b(ii), respectively.
Both vb and jb vanish at E = 0. The value of ja at E = 0 distinguishes between
variety 3b(i) and variety 3b(ii).

Theorem 3.6.5 For variety 3b(i), ja vanishes at E = 0. For variety 3a(ii), ja is
non–zero at E = 0.

Proof: For variety 3b(i), E divides ja, as otherwise ut−sv is not the perfect square
j2. Variety 3b(ii) gv = gs requires ja 6= 0 at E = 0.

For variety 3c, both vertices are middle. The values at E = 0 of ta and ua are
non–zero. By Lemma 3.5.3, gv = gs + 1 or gs, corresponding to variety 3c(i) and
variety 3c(ii), respectively.

For variety 3c(ii), when gv = gs, va is non–zero at E = 0. Two cases may occur.
Either ja 6= 0 at E = 0 or the number of zeroes of ja is at least one. The former
case is denoted by variety 3c(iiA). The latter case is variety 3c(iiB) for which the
terms in E2gs−2 and in E2gs−1 of j2 vanish.

The remaining case is for variety 3c(i) when gv = gs + 1 and E divides va.

3.7 Graphs with analogous vertex pairs

In general, vertex pairs in a graph may be of different varieties and kinds. We can
consider two classes of graphs with the same extremal nullity (allowed by interlacing)
for all vertex–deleted subgraphs, where the classification of devices (G, L̄, R̄) depends
on their kind (gs, gt, gu, gv). A pair of vertices L̄ and R̄ for which gt = gu is said to
be an analogous vertex pair.
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The first of these two classes consists of graphs G with the minimum possible nullity
gv for all pairs of distinct vertices L̄ and R̄, (i.e., gs − 2) and therefore also the
minimum possible nullities gt and gu (i.e., gs− 1). By Definition 3.6.1, these graphs
form precisely the class of uniform–core graphs. The second of the two classes
consists of graphs with the maximum possible nullity gv, that is gs + 2, for some
pair of distinct vertices L̄ and R̄, and therefore also the maximum possible nullities
gt and gu (i.e., gs + 1).

3.7.1 Uniform–core graphs

By Definition 3.6.1, each vertex pair in a uniform–core graph corresponds to a graph
of variety 1(i). Since the nullity of a graph is non–negative, and gv = gs − 2 for
all vertex pairs L̄, R̄ of a uniform–core graph G, then the nullity of G is at least
two. To understand better the core–structure of uniform–core graphs and be able to
characterise them as a subclass of singular graphs, it is necessary to use their core
structure with respect to a basis for their nullspace.

Let B be a basis for the gs–dimensional nullspace of A of a singular graph G (with
no isolated vertices) of nullity gs ≥ 1. As seen in [97], Hall’s Marriage problem for
sets guarantees a vertex–subset S of distinct vertex representatives to represent a
system SCores of cores corresponding to the vectors of B. This implies that deleting
a vertex v representing a core F eliminates the core F from G− v, which will now
have a new system of gs − 1 cores. Also any k ≥ 1 cores in a system SCores of gs
cores cover at least k + 1 vertices.

Theorem 3.7.1 A device (G, L̄, R̄) is of variety 1(i) if and only if the two vertices
L̄ and R̄ do not lie in one core only, i.e. at least two cores are needed to cover the
vertices L̄ and R̄.

Proof: Consider a basis B for the nullspace of A. The vertices L̄ and R̄ lie on
at least one core of G. There are two possibilities. Firstly, B has exactly one
vector with non–zero entries at positions associated with L̄ and R̄. In this case
gv = gt = gs − 1, which does not correspond to variety 1(i). Secondly, B has at
least two vectors with non–zero entries at positions associated with L̄ or R̄, when
gv = gt − 1 = gs − 2, which corresponds to variety 1(i). The two core vertices must
represent two distinct cores in a system SCores of gs cores corresponding to a basis
B for the nullspace [97].

A subclass U of uniform–core graphs can be constructed from nut graphs. A graph
G ∈ U is obtained from a nut graph H on n vertices and m edges by duplicating
each of the n vertices of H. Then G has 2n vertices and 4m edges. Fig. 3.3 shows
the uniform–core graph G ∈ U obtained from the smallest nut graph H. The nullity
of G is |V(G)|/2 + 1. Deletion of any |V(G)|/2 + 1 vertices reduces the graph to a
non–singular graph.

Let the vertices of G be labelled 1, 2, ..., n, 1′, 2′, ...n′ where {1, 2, ..., n} are the ver-
tices of the nut graph H and {1′, 2′, ..., n′} are the duplicate vertices of {1, 2, ..., n}
in that order in G. Note that a vertex labelled r for 1 ≤ r ≤ n is adjacent to the
original neighbours in H and also to precisely those primed vertices with the same
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Figure 3.3: The smallest nut graph H and the uniform–core graph G derived from H.
This construction is called the lexicographic product with empty graph on two vertices [98].

numeric label. The following result, expressing the adjacency matrix of G ∈ U in
terms of the adjacency matrix of H, is immediate.

Theorem 3.7.2 If H is the adjacency matrix of the nut graph H, then the adjacency

matrix of the uniform–core graph G ∈ U is

(
H H
H H

)
. The spectrum of G consists

of n eigenvalues equal in value to double the eigenvalues of H and an additional n
zero eigenvalues corresponding to the n duplicate vertex pairs. If (x1, x2, · · · , xn)T

is an eigenvector of H for an eigenvalue µ, then (x1, x2, · · · , xn, x1, x2, · · · , xn)T is
an eigenvector of G for an eigenvalue 2µ.

We shall now characterise uniform–core graphs by requiring that a set of vertex
representatives of a system SCores of cores be an arbitrary subset of the vertices for
all systems of cores.

Theorem 3.7.3 A graph of nullity gs is a uniform–core graph if and only if it is
a singular graph such that the deletion of any subset of gs vertices produces a non–
singular graph.

Proof: Let us relate the nullspace of A to the vertices of a uniform–core graph G of
nullity gs. Let S be any subset of gs vertices of G labelled {1, 2, · · · , gs} and let B be
an ordered basis for the nullspace of A. If all pairs of vertices give a graph of variety
1(i), then no two vertices lie in only one core of SCores. Therefore, it is possible to
obtain a new ordered basis B′ for the nullspace of A, by linear combination of the
vectors in B, such that, for 1 ≤ i ≤ gs, only the vector i of B′ has a non–zero entry
at position i [97]. Removal of any vertex in S destroys precisely one eigenvector
of B′ reducing the nullity by one. Deletion of all the vertices in S destroys all the
kernel eigenvectors and leaves a non–singular graph.
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3.7.2 Non–singular graphs with a complete weighted inverse

We shall now look into the second class of devices where a graph G is a device
(G, L̄, R̄), of variety 3a(ii), for some pair of distinct vertices L̄ and R̄. Can a graph
G be a device (G, L̄, R̄), of variety 3a(ii), for all vertex pairs {L̄, R̄}? The question
amounts to determining whether it is possible to have gv equal to the maximum
allowed nullity relative to gs, that is gs + 2, for all vertex pairs {L̄, R̄}. The answer
is in the negative.

Lemma 3.7.1 It is impossible that a graph G is a device (G, L̄, R̄) of variety 3a(ii)
for all pairs of distinct vertices L̄ and R̄.

Proof: Suppose G is a graph which is a device (G, L̄, R̄) of variety 3a(ii) for all
pairs of distinct vertices L̄ and R̄. This requires that each of the graphs G− L̄ and
G− R̄ is singular and therefore has CVs. Deletion of a CV from G− L̄, restores the
nullity back to gs. Hence it is impossible to achieve gv = gs + 2, for all vertex pairs
{L̄, R̄}.

By Lemma 3.5.3, the kind (gs, gt, gu, gv) = (gs, gs+ 1, gs, gs+ 1) is impossible. Hence
the only devices (G, L̄, R̄) within the second class that have the maximum value of
gt relative to gs, for all vertices L̄, are of kind (gs, gs + 1, gs + 1, gs). The focus is on
the non–singular graphs of this kind having the inverse A−1 equal to the adjacency
matrix of the complete graph with real non–zero weighted edges and no loops.

The smallest candidate is K2. Indeed A(K2) = (A(K2))−1 =

(
0 1
1 0

)
.

Definition 3.7.1 Let G be a non–singular graph G with the off–diagonal entries
of the inverse A−1 of its adjacency matrix A being non–zero and real, and all the
diagonal entries of A−1 being zero. Then G is said to be a nuciferous graph (meaning
a nut-producing graph).

Theorem 3.7.4 G is a nuciferous graph if and only if G is either K2 or each
vertex–deleted subgraph G− v is a nut graph.

Proof: Let Q be the n − 1 × n matrix obtained from A−1 by suppressing the
diagonal entry from each column. Therefore each entry of Q is non–zero.

Let the ith column of Q be qi := (q(1)i, q(2)i, ..., q(i−1)i, q(i+1)i, q(i+2)i, ..., q(n)i)
T for

2 ≤ i ≤ n − 1. The first and last columns are q1 := (q(2)1, q(3)1, ..., q(n)1)T and
qn := (q(1)n, q(2)n, ..., q(n−1)n)T , respectively.

Since AA−1 is the identity matrix I, then A(G − i)qi = 0 for all 1 ≤ i ≤ n.
Therefore, qi is a kernel eigenvector (with non–zero entries) of G − i for all the
vertices i. Hence G− i is a core graph. By interlacing, it has nullity one. It follows
that each vertex–deleted subgraph is a nut graph.

From Lemma 3.7.1, nuciferous devices (G, L̄, R̄) are not of type of variety 3a(ii) for
all pairs of distinct vertices L̄ and R̄. Moreover, from Theorem 3.7.4, for G 6= K2,
each vertex–deleted subgraph is a nut graph and therefore has nullity one. On
deleting a vertex from a nut graph, the nullity becomes zero. Hence a candidate
graph G cannot be of variety 3a(ii) for any pair of vertices L̄ and R̄.
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Theorem 3.7.5 Let G be a nuciferous graph. If G is not K2, then
(i) it has order at least eight;
(ii) the device (G, L̄, R̄) is of variety 3a(i) for all pairs of distinct vertices L̄ and R̄;
(iii) the graph G is not bipartite.

Proof: (i) Since nut graphs exist for order at least seven [90], it follows, from
Theorem 3.7.4, that a nuciferous graph G that is not a K2, of order at least three,
has at least eight vertices.

(ii) From the proof of Lemma 3.7.1, a nuciferous graph G is of kind (gs, gs + 1, gs +
1, gs). Thus G is a device (G, L̄, R̄) of variety 3a(i) for all pairs of distinct vertices
L̄ and R̄.

(iii) From Theorem 3.7.4, G− L̄ and G− R̄ are nut graphs and therefore cannot be
bipartite [90]. Hence G has odd cycles and cannot be bipartite.

There exists no graph on up to 10 vertices and no chemical graph on up to 16 vertices
that satisfies Theorem 3.7.4, except K2. As a result, in [88], the following appeared:

Conjecture 3.7.2 There are no graphs for which every vertex–deleted subgraph is
a nut graph.

Ghorbani disproves this conjecture in [99]. However, Sciriha and Farrugia show
in [100] that there are no chemical graphs for which every vertex–deleted subgraph
is a nut graph; that is the conjecture is true for chemical graphs, the graphs with
vertex degree at most three. By calling K2 the trivial case, Ghorbani conjectures
that there are infinitely many non–trivial cases. Vertex transitive graphs on up to
31 vertices were investigated and 21 nuciferous graphs were found: 6 on 24, 3 on 28
and 12 on 30 vertices [99].

3.8 Chemical implications

In the graph theoretical version of the SSP model, the variation of electron transmis-
sion with energy is qualitatively modelled in terms of the characteristic polynomials
of G, G − L̄, G − R̄, G − L̄ − R̄, where G is the molecular graph and vertices L̄
and R̄ are in contact with wires. This motivated the definition of a device used in
this chapter. As a consequence, the transmission at the Fermi level (corresponding
here to E = 0) obeys selection rules couched in terms of the nullities gs, gt, gu, and
gv [63]. Thus, the classification of devices into kinds and varieties is used to identify
molecules (with carbon atoms, in particular) that conduct or else bar conduction
at the Fermi level. In [70], conductors and insulators are classified into eleven cases
that are essentially the twelve kinds of Table 3.2, with case 7 in [70] corresponding
to kinds (gs, gs, gs, gs) in variety 3c(iiA) and (gs, gs, gs, gs) in variety 3c(iiB).
These two varieties are distinguishable by the non–vanishing or otherwise of ja(0).
In terms of the varieties defined here, prediction of conduction at the Fermi level
for connection across the vertex pair (L̄, R̄) gives varieties 1(ii), 1(iii), 3a(i), 3b(ii),
3c(i) and 3c(iiA), and insulation occurs for varieties 1(i), 2a, 2b, 3a(ii), 3b(i) and
3c(iiB).
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As regards the two interesting classes of graphs with the same extremal nullity,
we can say that the first class, the uniform–core graphs, corresponds to insulation
at the Fermi level for all two–vertex connections. On the other hand, the second
class, the nuciferous graphs, corresponds to Fermi–level conducting devices (G, L̄,
R̄) for all pairs of distinct vertices L̄ and R̄, and it consists of devices corresponding
to non–singular graphs that are Fermi–level insulators when L̄ = R̄. Therefore,
nuciferous graphs have no non–bonding orbital and are conductors for all distinct
vertex connection pairs and insulators for all one vertex connections. In the language
to be developed further in Chapters 4 and 5 uniform–core graphs are IC with gs > 1
and nuciferous graphs are CI with gs = 0.

3.9 Conclusion

We have shown how the concepts of variety and kind can give an interpretation
of the selection rules governing conduction in the SSP model and in particular the
utility of the core/core–forbidden and upper/middle/lower classification of vertices.
Two limiting cases, in terms of the kind (gs, gt, gu, gv), the uniform–core graphs
and nuciferous graphs turn out to have clear connections to extremal conduction
behaviour in the SSP model.
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Chapter 4

Omni–conducting and
omni–insulating molecules

The main results in this chapter have been published in “Omni–conducting and
omni–insulating molecules” The Journal of Chemical Physics 140, 054115, 2014,
Fowler, Pickup, Todorova, Borg and Sciriha [84]. This chapter is closely based on this
reference, with some rewriting to incorporate new material and remove unnecessary
repetitions of introductory material. Work on the topic of omni–conduction began
in late 2009 as a collaboration between the Sheffield and Malta groups, and some
mathematical results were presented in a Master’s Thesis by the author [101]. Some
of these are re–stated and/or rederived in this chapter, as noted below.

As already pointed out in Section 2.3, the Source and Sink Potential (SSP) model
can be used to predict the existence of conduction/insulation. Here we take the
idea further and look for molecular conjugated π systems that respectively sup-
port ballistic conduction or show insulation at the Fermi level, irrespective of the
centres chosen as connections. These will be called omni–conductors and omni–
insulators, respectively. Distinct, ipso and strong omni–conductors/omni–insulators
show Fermi–level conduction/insulation for all distinct pairs of connections, for all
connections via a single centre, and for both, respectively.

It will turn out that the class of conduction behaviour depends critically on the
number of non–bonding orbitals (NBO) of the molecular system (corresponding to
the nullity of the graph). Distinct omni–conductors have at most one NBO; distinct
omni–insulators have at least two NBO; strong omni–insulators do not exist for any
number of NBO. Distinct omni–conductors with a single NBO are all also strong
and correspond exactly to the class of graphs known as nut graphs. Families of
conjugated hydrocarbons corresponding to chemical graphs with predicted omni–
conducting/insulating behaviour are identified. For example, most fullerenes are
predicted to be strong omni–conductors [102].

4.1 Introduction

A molecule will be modelled by its molecular graph G, which represents the carbon
skeleton of a conjugated π system. Chemical graphs are defined as graphs that
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Omni–conductor Omni–insulator
A molecular graph is said to be a dis-
tinct omni–conductor if T (0) 6= 0 for all
distinct pairs of connecting vertices, L̄
and R̄.

A molecular graph is said to be a dis-
tinct omni–insulator if T (0) = 0 for
all distinct pairs of connecting vertices
(terminals), L̄ and R̄.

A molecular graph is said to be an
ipso omni–conductor if T (0) 6= 0 for
all choices of single–vertex connection,
L̄ = R̄.

A molecular graph is said to be an
ipso omni–insulator if T (0) = 0 for
all choices of single–vertex connection
L̄ = R̄.

A molecular graph is said to be a strong
omni–conductor if it is both a distinct
and an ipso omni–conductor.

A molecular graph is said to be a strong
omni–insulator if it is both a distinct
and an ipso omni–insulator.

Table 4.1: The six classes of molecular graphs and the devices related to them.

are connected and have maximum degree at most three; their vertices represent
unsaturated carbon centres and their edges represent the σ–bond framework. Setting
aside the dependence of transmission on energy by considering conduction to take
place at the Fermi level (corresponding to the zero of energy in the Hückel/SSP
model) and considering the molecule to be connected to similar left and right wires
via its atoms L̄ and R̄, the question asked is whether conjugated molecular structures
exist for which there is conduction (non–zero transmission) at the Fermi level for
all choices of connections L̄ and R̄, and similarly, for the case of insulation (zero
transmission).

There can be two types of connection of the wires to ‘terminal’ vertices L̄ and R̄ in
the molecular graph: either the connecting vertices are distinct, which is the relevant
case for most applications, or they coincide, which is the so–called ‘ipso’ case. The
fractional transmission of a ballistic electron at the Fermi level for a given connection
pair (L̄, R̄), which is here calculated within the SSP model, will be denoted T (0).
As mentioned in Chapter 3, the combination of a graph G and a pair of contact
vertices, not necessarily distinct, is called a device. Thus, there are in principle six
classes of molecular graphs and the devices related to them (Table 4.1).

It will be proved that the class of strong omni–insulators is empty. All the other
classes include molecular graphs of chemical interest.

A molecule with non–bonding orbitals corresponds to a singular graph, and the
number of non–bonding orbitals is equal to the nullity, the number of zero eigen-
values of the adjacency matrix of the graph. It has already been shown that the
numbers of non–bonding levels of molecular graphs and subgraphs are important
in defining selection rules for Fermi–level conduction of given connection pairs in
general [70], and for graphene–related molecular graphs in particular [87]. The nul-
lity is also a crucial factor in characterising omni–conductors and omni–insulators.
Specifically, it will be proved here that all distinct omni–conductors have at most
one non–bonding orbital whereas all distinct omni–insulators have at least two, and
will give a complete characterisation of the nullity–one distinct omni–conductors.

A brief summary of the SSP model and graph theoretical background is given in
Section 4.2. A unified treatment of the selection rules for Fermi–level conduc-
tion/insulation of individual devices in terms of characteristic polynomials, nullity
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of graphs and vertex types is given by Sections 4.3 and 4.4. It leads to existence and
characterisation results for the six classes of omni–conductors and insulators (Sec-
tion 4.4). In Section 4.5, explicit calculations for large numbers of graphs in various
chemically interesting classes and infinite families are presented, with statistical in-
formation about the distribution of the different classes, leading to the conclusion
(Section 4.6) that omni–conduction at the Fermi level could be a widely occurring
phenomenon.

4.2 Background

4.2.1 The SSP model

The SSP model, already discussed thoroughly in Chapter 2, can be used, as a simple
model of ballistic conduction of electrons through a conjugated molecule [62, 69,
103]. In the tight–binding approximation, calculation of the fractional transmission
of an electron with given energy reduces to the solution of the Hückel problem
under scattering boundary conditions, and hence to an essentially graph theoretical
question, as conduction is determined by functions of the characteristic polynomials
of four graphs [63,70,87,104,105].

To recapitulate, in the SSP model, the transmission function for a molecule that
has a carbon skeleton with graph G connected to similar left and right wires via
molecular vertices L̄ and R̄, is given by [63]

T (E) =
4 sin2 q (ut− sv) β̃2∣∣∣e−2iqs− e−iq(u+ t)β̃ + vβ̃2

∣∣∣2 (4.1)

where E is the reduced electron energy, defined as a scale factor where the unit is
the molecular resonance integral |β|, and the zero is the molecular Coulomb integral
α, which is taken here as the Fermi level. Coulomb integrals are assumed to be equal
throughout the device, and the parameter β̃ is defined by the values of resonance
integrals within wires (βL = βR) and between molecule and wire (βLL̄ = βRR̄),
in units of the molecular resonance integral β, (which is the unit for all energies
occurring in the model): β̃ = β2

LL̄
/βL = β2

RR̄
/βR. Typically, β̃2 ' 1/2 [63, 69].

The 4 sin2q factor in Eq. (4.1) acts to confine transmission to the conduction band
of the wires. In Eq. (4.1) q is the wavenumber of the electron wave (defined by
E = 2 cos q, with energy in units of |β|). The quantities s, t, u, v are the characteristic
polynomials φ(G,E), φ(G− L̄, E), φ(G− R̄, E), φ(G− L̄− R̄, E) of the graphs G,
G−L̄, G−R̄ and G−L̄−R̄, respectively, i.e., they are the determinants (refer to Eq.
(2.26)). G must be a connected graph if it is to represent a conjugated π system;
deletion of vertices as in G− L̄, G− R̄, and G− L̄− R̄ may result in a disconnected
graph. Another quantity that is important in the determination of transmission is
the combination ut− sv, which is equal to a squared polynomial [106]

j2(E) = u(E)t(E)− s(E)v(E) = (|EI−A(G)|L̄,R̄)2. (4.2)
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It can be shown that j(E) is the entry at position L̄, R̄ of the adjugate matrix
adj(EI−A) and, if the matrix (EI−A) is invertible, then at any energy E, j(E) is
proportional to the L̄, R̄ entry in the inverse (EI−A)−1, with constant of propor-
tionality equal to the determinant of the matrix (Appendix 2 in [83]). The usual
distinct case for a molecular device has L̄ 6= R̄. In the ipso case, where both wires
contact a single atom, L̄ = R̄, polynomials t and u are identical, and v is deleted
from the equations.

As E = 2 cos q [69], expanding the denominator and making trigonometric substi-
tutions, to give the full energy dependence of the transmission (4.1)

T (E) =
(4− E2)j2β̃2

[(s− vβ̃2)2 + (u+ t)2β̃2]− E(s+ vβ̃2)(u+ t)β̃ + E2svβ̃2
(4.3)

and for transmission of electrons at the Fermi level, the limit is taken according to:

T (0) = lim
E→0

T (E).

In the analysis that follows, we assume that β̃2 6= 0 and that (s− vβ̃2)2 6= 0 at the
energy of interest. Thus, effectively, questions about the vanishing of (s− vβ̃2)2 can
be answered by inspection of s2 + v2. Physically, the claim is that even if β̃ happens
to take one of the special values, there will always be a ‘nearby’ device where it does
not, and to which our generic conclusions will apply.

It is straightforward to show that the zero–energy limit of Eq. (4.3) is equivalent to
the simpler expression

T (0) = lim
E→0

4j2β̃2

[(s− vβ̃2)2 + (u+ t)2β̃2]
(4.4)

The question for a qualitative treatment is whether T (0) is zero, or not. It has
been shown [70] that the answer to this question for a given connection pattern
can be decided in almost all cases simply by counting the zero eigenvalues of the
graph and of its vertex–deleted subgraphs, which leads to a set of ‘selection–rules’
for conduction. In order to exploit this insight further, and make a systematic
investigation of the questions of omni–conduction and insulation, it is necessary to
understand how the outcome depends on the intrinsic properties of the connecting
vertices relative to the nullspace vectors.

4.2.2 Characteristic polynomials

An expression for T (E) can now be assembled, and its limit taken using the nu-
merator and denominator terms from Eq. (4.4). As in Chapter 3, we expand the
structural polynomials:
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t(E) = tbE
gs−1 + taE

gs

u(E) = ubE
gs−1 + uaE

gs

j(E) = jbE
gs−1 + jaE

gs

v(E) = vcE
gs−2 + vbE

gs−1 + vaE
gs (4.5)

Explicit expressions are given in Chapter 3 Section 3.3. The numerator of Eq. (4.4)
is then expressed as

4β̃2j2 = 4β̃2(j2
aE

2 + 2jajbE + j2
b )E

2gs−2 (4.6)

and the denominator of Eq. (4.4) is

(s− β̃2v)2+(u+ t)2β̃2 =

{E4[(s0 − β̃2va)
2 + (ua + ta)

2β̃2]

+E3[−2vb(s0 − vaβ̃2) + 2(ua + ta)(ub + tb)]β̃
2

+E2[v2
b β̃

2 − 2vc(s0 − vaβ̃2) + (ub + tb)
2]β̃2

+E[2vbvc]β̃
4 + v2

c β̃
4}E2gs−4 (4.7)

(This corrects a minor typo in Eq. (23) of [84].)

As both numerator and denominator may vanish at E = 0, it is not sufficient simply
to examine whether j vanishes to determine the conduction or insulation behaviour
of a device with a given pair of contacts. In general, it is necessary to delve more
deeply into the cancellation behaviour of the numerator and denominator as E
approaches zero.

The advantage of the present formulation for T (E) is that the conductive properties
of all devices based on a given molecular graph can be determined from a simple
calculation of the eigenvectors and eigenvalues of G alone. No separate calculations
on the n vertex–deleted graphs G − w or the n(n − 1)/2 double–deleted graphs
G− w − z are required. This gives the basis for an efficient computational scheme
for identifying omni–conductors and omni–insulators. Conditions for insulation or
conduction for a distinct pair of contact vertices in a graph with a particular nullity
are easily deduced (Tables 4.2 and 4.3); analogous conditions for ipso connections
are derived by setting va = vb = vc = 0, ua = ta and ub = tb. (These versions
follow [107], where a misprint in [84] is corrected.)

4.3 Devices and varieties

In principle, there are 64 types of device, depending on which of the six parameters
ub, tb, vb, vc, ja and jb vanish at E = 0, but not all combinations are possible,
because of the Interlacing Theorem, and not all are independent, as L̄ and R̄ play
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gs = 0 ja = 0

gs = 1



jb = 0 and ja = 0

or

jb = 0 and ja 6= 0


ub + tb 6= 0

or

vb 6= 0

gs > 1



vc 6= 0

or

vc = 0


jb = 0 and ja 6= 0 and vb 6= 0 or ub + tb 6= 0

or

jb = 0 and ja = 0

Table 4.2: The seven conditions for insulation.

gs = 0 ja 6= 0

gs = 1


jb 6= 0


ub + tb 6= 0

or

vb 6= 0

or

jb = 0 and ja 6= 0 and ub + tb = 0 and vb = 0

gs > 1


vc = 0 and jb 6= 0


ub + tb 6= 0

or

vb 6= 0

or

vc = 0 and jb = 0 and ja 6= 0 and ub + tb = 0 and vb = 0

Table 4.3: The seven conditions for conduction.

symmetrical roles. A device with distinct connections (L̄ 6= R̄) falls under one of
three categories leading to the definition of six main varieties of connection pairs,
as mentioned in Section 3.4:

Variety 1: two CV connections,
Variety 2a: one CV connection and one CFV middle,
Variety 2b: one CV connection and one CFV upper,
Variety 3a: two CFV upper connections,
Variety 3b: one CFV middle connection and one CFV upper,
Variety 3c: two CFV middle connections.

Varieties 1 and 2 are characterised by tb(0) 6= 0 and/or ub(0) 6= 0. Recall that
tb(0) 6= 0 if and only if L̄ is a CV, and ub(0) 6= 0 if and only if R̄ is a CV. The
varieties can be further subdivided into types distinguished by the behaviour at
E = 0 of t, u, v or j. A further subdivision of varieties can be based on the relative
nullities of G, G − L̄, G − R̄, and G − L̄ − R̄, which in turn are restricted by the
operation of the Interlacing Theorem.

The final set of twelve device varieties is summarised in Table 4.4 (a reformulation
of Table 3.2), where details of the properties of the characteristic polynomials at
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E = 0, and the conclusions that can be drawn about their conduction/insulation
behaviour, are also listed.

Kind (gs, gt, gu, gv) Variety Case [70] Conduction?
Two CVs 1

(gs, gs − 1, gs − 1, gs − 2) 1(i) D11 Insulation
(gs, gs − 1, gs − 1, gs) 1(ii) D9 Conduction
(gs, gs − 1, gs − 1, gs − 1) 1(iii) D10 Conduction

CV and CFV 2
(gs, gs + 1, gs − 1, gs) 2a D5 Insulation
(gs, gs, gs − 1, gs − 1) 2b D8 Insulation

Two CFVs 3
(gs, gs + 1, gs + 1, gs) 3a(i) D2 Conduction
(gs, gs + 1, gs + 1, gs + 2) 3a(ii) D1 Insulation
(gs, gs + 1, gs, gs + 1) 3b(i) D3 Insulation
(gs, gs + 1, gs, gs) 3b(ii) D4 Conduction
(gs, gs, gs, gs + 1) 3c(i) D6 Conduction
(gs, gs, gs, gs) and ja(0) 6= 0 3c(iiA) D7 Conduction
(gs, gs, gs, gs) and ja(0) = 0 3c(iiB) D?7 Insulation

Table 4.4: A characterisation of distinct devices (G, L̄, R̄). The nullity signature
(gs, gt, gu, gv) lists the numbers of zero eigenvalues of the graphs G, G − L̄, G − R̄ and
G − L̄ − R̄. The 12 varieties defined from the nullity signature in the present chapter
are correlated with the 11 cases defined in the earlier treatment of the nullity selection
rules [70]; the variety/case marked 3c(iiB) and D?7 corresponds to the so–called accidental
situation, where all four graphs have equal nullity and ja(0)2 = ua(0)ta(0)−s0(0)va(0) = 0,
but the terms ua(0)ta(0) and s0(0)va(0) are individually non–zero.

Every variety is realised in some chemical graph, and a single molecular graph may
have connection pairs of several varieties. The table also gives the correspondence
with the 11 cases previously used to derive the nullity–based selection rules for
molecular conduction [70]. Devices with distinct connections conduct or not, de-
pending on four selection rules based on the quantities gs, gt, gu, gv, which are the
numbers of zero roots of the four characteristic polynomials s, t, u and v, respec-
tively. We write s(0) = s0E

gs , t(0) = t0E
gt , u(0) = u0E

gu and v(0) = v0E
gv , where

s0, t0, u0 and v0 are all non–zero. The selection rules are then those as mentioned
in Section 2.4 [70].

The full set of 11 selection rules is relevant in molecular conduction, as examples of
all cases occur for small molecular graphs. Fig. 4.1 shows the smallest examples of
devices based on chemical graphs that require invocation of each selection rule.

The extra utility of thinking about classification of vertices by CV and CFV types
is that it gives a different way of detecting when and why certain cases can occur.
It also leads to the possibility of deriving ‘super selection rules’ for omni–conductors
and omni–insulators that deal simultaneously with all devices based on given graphs,
as will be demonstrated in Section 4.4. Some relationships that link the types of
the connection vertices with the conduction behaviour of the device and are easily
proved include the following:

Proposition 4.3.1 A device with two core vertices as connections (Variety 1) is an
insulator at E = 0 if and only if it is of Variety 1(i), i.e., has gv = gs − 2.
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I1(0) I2(0) I3(1)

D1(0) D2(0) D3(0)

D4(0) D5(1) D6(0)

D7.1(0) D7.2(0) D8(1)

D9(1) D10(1) D11.1(2)

D11.2(2)

Figure 4.1: Smallest examples of the 11 selection rules for ipso and distinct devices based
on chemical graphs, named by case and nullity listed in brackets. The subcases of Cases 7
and 11 are distinguished by values of gj , the number of roots of the j polynomial, which will
turn out to be of significance later. White–filled circles show the pair of connection vertices
satisfying the case. Where there are possibilities that are not equivalent by symmetry, a
device satisfying the case is found by taking the metallic–shaded vertex with any one of
the white–filled circles.

Proposition 4.3.2 For Variety 2 connections, i.e., with one CV and one CFV,
there is no conduction at E = 0.

Connections of Variety 3, where both are CFV, yield more mixed results. In Variety
3c(ii), gv = gs, va is non–zero at E = 0, and two cases may occur: either ja 6= 0
at E = 0, or ja has more than one zero. The first case is Variety 3c(iiA), and the
device conducts. The second is Variety 3c(iiB), and the device is an insulator. Both
varieties are included under a single ‘Case 7’ in the classification by nullity signature
that was used in the previous treatment [70]; in the present case, 3c(iiB) corresponds
to the ‘accidental’ subcase of Case 7, where u0t0 − s0v0 vanishes. This ‘accident’
occurs often in practice (see Fig. 4.2).
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D7.1(0) D7.1(1) D7.1(2)

D7.1(3) D7.1(4)*

D7.2(0) D7.2(1) D7.2(2)

D7.2(3) D7.2(4) D7.2(4)

Figure 4.2: Examples of Case 7 selection rules for devices based on chemical graphs,
named by case and nullity, gs 6= 0. The labelling convention is as in Fig. 4.1. In the graph
labelled * the central pair of cut–vertices also satisfy the case, and thus there are in total
four non–isomorphic devices of type D7.1(4) for this graph.

4.4 Implications for omni–conductors and omni–

insulators

The considerations of Section 4.3 lead to some general conclusions based on the types
of connection vertex. These can be assembled to give a global picture of the classes of
omni–conductors and omni–insulators. The existence of omni–conductors could be
expected, as the systems under study are conjugated, with extensive delocalisation
of electrons, but the fact that omni–insulators exist is more surprising, as an omni–
insulator has mobile, delocalised electrons and yet by definition it does not conduct
at the Fermi level, no matter which connection vertices are chosen.

4.4.1 Deductions by device type: distinct connections

4.4.1.1 Graphs of nullity gs = 0

A simple criterion emerges for non–singular graphs, namely that Fermi insulation
or conduction across L̄ and R̄ depends only on whether ja vanishes at E = 0, since
the denominator in Eq. (4.4) does not vanish for gs = 0. Furthermore, for nullity
gs = 0, the entry in position L̄, R̄ of (EI−A)−1 is equal to ja(E) divided by the
determinant |EI−A| [83]. Therefore:
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Theorem 4.4.1 A necessary and sufficient condition for conduction at E = 0 of a
non–singular graph with connection vertices L̄, R̄ is that (A−1)L̄,R̄ 6= 0.

As the determinant |A| is non–zero for a non–singular graph, we could equally well
test the corresponding element of the adjugate adj(A).

Some deductions follow:

Corollary 4.4.2 A non–singular graph (gs = 0) is a strong omni–conductor if and
only if the inverse matrix A−1 is full (i.e., has no zero elements) (See also [101]
Theorem 7.2.4).

The isolated–pentagon C60 is one of many fullerene examples of strong omni–
conductors of this type.

Corollary 4.4.3 A non–singular graph (gs = 0) is a distinct omni–conductor if
and only if the off–diagonal part of the inverse matrix A−1 is full (See also [101]
Theorem 7.2.3).

Families of non–singular graphs that are distinct omni–conductors include the com-
plete graphs Kr, r ≥ 2 and the cycles C2k+1, k ≥ 1.

Corollary 4.4.4 A non–singular graph (gs = 0) is an ipso omni–conductor if and
only if the inverse matrix A−1 has a full diagonal.

Corollaries 4.4.2 and 4.4.4 can be interpreted as saying that for a non–singular graph
to be an ipso omni–conductor, each vertex must be a middle CFV (a core–forbidden
vertex whose deletion does not change the nullity).

Corollary 4.4.5 There are no non–singular distinct omni–insulators (and hence
no non–singular strong omni–insulators) (See also [101] Theorem 7.3.1).

This last corollary follows since, as if A−1 is diagonal, then A is diagonal too, imply-
ing that the graph G has no edges and hence is not connected. Non–singular ipso
omni–insulators exist, and in fact all ipso omni–insulators are non–singular, with
each vertex being an upper CFV (a core–forbidden vertex whose deletion increases
the nullity). For example, any non–singular bipartite graph consists entirely of upper
core–forbidden vertices and hence is an ipso omni–insulator: this class includes all
Kekulean benzenoids (a benzenoid is Kekulean if it has a perfect matching (Kekulé
structure)). A curious observation is that a graph may be ipso omni–insulating but
distinct omni–conducting (a so–called nuciferous graph [88]).
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4.4.1.2 Graphs of nullity gs = 1

For graphs of nullity one, there is an analogous but weaker condition for conductivity,
based on the adjugate matrix:

Theorem 4.4.6 A sufficient condition for conduction at E = 0 of a device based
on a graph of nullity one with connection vertices L̄ and R̄ is that L̄ and R̄ are core
vertices and adj(A)L̄,R̄ 6= 0 (See also [101] Theorem 7.2.7).

As the entry in adj(A) is non–zero for every core–core pair in a graph with nullity
one, this implies that all core–core pairs are conducting for graphs with gs = 1.
Moreover, it is straightforward to show from Table 4.4 that, for gs = 1, when the
pair L̄, R̄ consists of one core and one core–forbidden vertex (hence gt = gs − 1
and gv = gs or gv = gs − 2), the device is insulating. This case can be recognised
from the adjugate, since for a CV/CFV pair the off–diagonal entry adj(A)L̄R̄ is zero
and exactly one of adj(A)L̄L̄ and adj(A)R̄R̄ is non–zero, with the non–zero entry
corresponding to the core vertex [96]. Behaviour of devices where both L̄ and R̄ are
core–forbidden depends on the combinations of upper and middle types, as detailed
by the selection rules (Table 4.4).

From Theorem 4.4.6, we have the following corollaries:

Corollary 4.4.7 The distinct omni–conductors with gs = 1 are exactly the nut
graphs.

This follows easily from the fact that a singular graph has core vertices. If the graph
has any core–forbidden vertex, there is at least one insulating device. Hence, any
distinct omni–conductor must contain only core vertices. A graph that has only
core vertices and nullity 1 is a nut graph by definition. Nut graphs are also ipso
omni–conductors.

Corollary 4.4.8 The strong omni–conductors with gs = 1 are exactly the nut graphs
(See also [101] Theorem 7.2.15).

The nut graphs are only a subset of the ipso omni–conductors with nullity 1. For
example, the isolated–pentagon fullerene C70 has gs = 1, is not a nut graph, but is
an ipso omni–conductor [102].

Corollary 4.4.9 There are no strong omni–insulators with gs = 1 (See also [101]
Theorem 7.3.2).

This follows from the fact that any graph with gs = 1 has at least two core vertices,
but clearly cannot have gv = gs − 2; there is at least one conducting device with
distinct connections, and at least two with ipso connections, all based on the same
graph.
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4.4.1.3 Graphs of nullity gs > 1

When the nullity is larger, the situation for core–core pairs is more complicated, but
we do have one useful statement:

Theorem 4.4.10 A device where both L̄ and R̄ are core vertices and gs ≥ 2 is
insulating if the nullity of G − L̄ − R̄ is gs − 2, i.e., if L̄ is a core vertex of G − R̄
and R̄ is a core vertex of G− L̄.

The significance of this technical statement derives from the fact that all graphs
with gs > 1 have at least one such core–core pair. The existence of this pair is easily
proved using the idea of vertex representatives of the nullspace of a graph [97, 108].
The essential idea is that for gs > 1 it is always possible to construct gs independent
(not necessarily orthogonal or normalised) kernel eigenvectors such that when these
vectors are written out as rows with core vertices occurring first, the entries for the
first gs vertices form a gs × gs identity matrix. A consequence of taking this special
form of the vectors is that removal of any two of the chosen core vertices leads to a
graph with nullity gv = gs− 2. Hence, every graph with gs > 1 gives rise to at least
one device with distinct connections that is insulating at the Fermi level.

It is possible to find graphs with gs > 1 where every vertex is a CV and hence every
pair of connections L̄ and R̄ leads to insulation. Graphs of this type have been
called uniform–core graphs. They are extremal in the opposite way to nuciferous
graphs [88].

From Theorem 4.4.10:

Corollary 4.4.11 There are no distinct (and no strong) omni–conductors of nullity
gs > 1.

We can remark that ipso omni–conductors with gs > 1 exist: they may contain core
vertices only, or consist of a mixture of core and middle vertices. An example is the
‘carbon cylinder’ isolated–pentagon isomer of fullerene C84, 84:24 [109], which has
gs = 3.

Corollary 4.4.12 There are no ipso (and hence no strong) omni–insulators of nul-
lity gs > 1.

The proof is the same as for gs = 1. Taken with Corollary 4.4.9, this implies that all
ipso omni–insulators are non–singular. However, singular distinct omni–insulators
exist. They must contain only core vertices and each of the pairs of core vertices
must give gv = gs − 2, implying gs > 1.
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4.4.2 Deductions by device type: ipso connections

For ipso connections, the formula for transmission, Eq. (4.4), reduces to a single
form, irrespective of the nullity of the graph:

T (E) =
4β̃2t2

s0
2 + 4β̃2t2

. (4.8)

If tb 6= 0 the device conducts. If tb = 0 then either ta 6= 0, giving conduction, or
ta = 0, giving insulation. Ipso devices follow a set of selection rules embodied in
Table 4.5. The equivalents for ipso devices of the various statements made in the
Section 4.4.1 about distinct devices are as follows.

Kind (gs, gt) Case [70] Conduction?
CFV upper (gs, gs + 1) I1 Insulation
CFV middle (gs, gs) I2 Conduction
CV (gs, gs − 1) I3 Conduction

Table 4.5: A characterisation of ipso devices (G, y, z). The nullity signature (gs, gt) lists
the numbers of zero eigenvalues of the graphs G, G− L̄.

Theorem 4.4.13 A necessary and sufficient condition for conduction at E = 0 of
a non–singular graph with connection vertices L̄ = R̄ is that (A−1)L̄,L̄ 6= 0.

For non–singular graphs t = ta, so the device conducts at the Fermi level if and only
if ta 6= 0. For singular graphs, the CVs and CFVs are distinguished by the value of
tb. Moreover, the value of ta distinguishes between ipso connections at middle and
upper vertices, for which there is conduction and insulation, respectively.

Theorem 4.4.14 For an ipso connection in a singular graph, there is conduction
at E = 0 when the connecting vertex v is a CV or a middle CFV, and conversely,
insulation when the connecting vertex is an upper CFV.

4.4.3 Deductions by conduction class

The results listed in this section so far show that nullity one is an important dividing
line between conducting and insulating regimes. Four global statements emphasising
this special role of non–bonding orbitals in conduction, all of which follow from the
above, are as follows:

Corollary 4.4.15 All distinct and strong omni–conductors have nullity gs ≤ 1.

Corollary 4.4.16 For nullity gs = 1, all distinct or strong omni–conductors are
nut graphs.

Corollary 4.4.17 All distinct omni–insulators have nullity gs > 1.
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Corollary 4.4.18 There are no strong omni–insulators.

Table 4.6 reports the main theoretical conclusions as a summary of the distribution of
conduction and insulation behaviour across the six classes and three nullity regimes.
It can be seen that nine of the 18 combinations are impossible and nine are realisable,
of which two are characterised exactly as the nut graphs. This classification is
explored further in Chapter 5, where it is illustrated by a Venn–like diagram showing
how the classes may combine (Fig. 5.1). Significantly, we have examples of chemical
graphs for all of the realisable combinations. Conjugated π systems with the various
predicted omni–conduction or omni–insulation properties are in fact very common
in chemistry.

Non–singular Nullity one Nullity ≥ two
Distinct omni–conductor SOME NUT NONE
Ipso omni–conductor SOME SOME SOME
Strong omni–conductor SOME NUT NONE

Distinct omni–insulator NONE NONE SOME
Ipso omni–insulator SOME NONE NONE
Strong omni–insulator NONE NONE NONE

Table 4.6: Classification of omni–conductors and omni–insulators by class and nullity.
NONE indicates classes unrealisable by connected graphs. Of the nine realisable classes,
two are precisely the class of nut graphs (denoted NUT). Other realisable classes are simply
marked SOME.

4.5 Results

4.5.1 Statistics of conduction of molecular graphs

Calculations implementing the rules embodied in Tables 4.2 and 4.3 were carried out
for various sets of graphs in order to check for the abundance of omni–conductors
and omni–insulators amongst conjugated systems, and identify families that show
these properties. Generators geng (part of the nauty software written by B. D.
McKay and available at http://cs.anu.edu.au/~bdm/), plantri [110], CaGe [111],
fullgen [112], and our own in–house programs were used to construct general families
of graphs.

The generated datasets include chemical graphs (connected graphs with maximum
degree ≤ 3), chemical trees (acyclic chemical graphs), benzenoids (subgraphs of the
hexagonal tessellation of the plane with all internal faces hexagonal and without
holes or handles), cubic polyhedra (planar, 3–connected graphs), fullerenes (cubic
polyhedra with face sizes restricted to 5 and 6), general graphs (connected graphs
without limitation of maximum degree), and general trees (acyclic general graphs).
Note that our definition of a chemical tree is that it is a tree with maximum degree
≤ 3, i.e. it is a chemical graph in our case. Some authors [113] allow degree 4 for
chemical trees, for the purpose of counting alkanes. Here we are concerned with
unsaturated carbon frameworks.
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For all sets, conductors and insulators were enumerated. Summaries of the results
are given in Tables 4.7 to 4.11. In the tables, we count ‘pure’ cases of each type;
pure ipso or distinct omni–insulators/conductors are respectively ipso or distinct
but not strong.

Insulators Conductors
n N(n) N i

ipso N i
distinct N c

ipso N c
distinct N c

strong Nnut

2 1 1 0 0 1 0 0
3 2 0 0 0 0 1 0
4 6 1 1 2 0 1 0
5 10 0 0 1 0 1 0
6 29 6 1 4 0 2 0
7 64 0 1 2 0 5 0
8 194 24 0 15 0 8 0
9 531 0 1 26 0 14 1

10 1733 132 2 88 5 48 0
11 5524 0 2 210 0 85 8
12 19430 902 3 665 9 342 9
13 69322 0 6 2034 0 885 27
14 262044 7669 10 7055 151 3744 23
15 1016740 0 22 26946 73 10788 414
16 4101318 77056 45 95539 2311 50770 389

Table 4.7: Distribution of omni–insulators and omni–conductors amongst chemical graphs
with n ≤ 16. N(n) is the total number of chemical graphs, N i

ipso is the number of pure

ipso omni–insulators, N i
distinct is the number of pure distinct omni–insulators. N c

ipso is
the number of pure ipso omni–conductors, N c

distinct is the number of pure distinct omni–
conductors and N c

strong is the number of strong (ipso + distinct) omni–conductors. Nnut

counts the chemical graphs that are also nut graphs.

Insulators Conductors
n N(n) N i

ipso N i
distinct N c

ipso N c
distinct N c

strong Nnut

2 1 1 0 0 1 0 0
3 2 0 0 0 0 1 0
4 6 1 1 2 0 1 0
5 21 0 1 4 0 3 0
6 112 7 2 21 0 7 0
7 853 0 7 136 0 38 3
8 11117 129 20 1352 0 496 13
9 261080 0 107 32575 31 10132 560

10 11989762 15356 938 1429875 406 783928 12551

Table 4.8: Distribution of omni–insulators and omni–conductors amongst general graphs
with n ≤ 10. N(n) is the total number of connected graphs, N i

ipso is the number of pure

ipso omni–insulators, N i
distinct is the number of pure distinct omni–insulators. N c

ipso is
the number of pure ipso omni–conductors, N c

distinct is the number of pure distinct omni–
conductors and N c

strong is the number of strong (ipso + distinct) omni–conductors. Nnut

counts the general graphs that are also nut graphs. This is a corrected version of a table
that appeared in the published paper [84]; Mr Aidan Birkinshaw is thanked for pointing
out some misplaced entries.

69



n N(n) N i
ipso N i

distinct (η) n N(n) N i
ipso N i

distinct (η)

2 1 1 0 14 552 96 0
3 1 0 0 15 1132 0 0
4 2 1 1 (2) 16 2410 319 6 (6)
5 2 0 0 17 5098 0 0
6 4 2 0 18 11020 1135 0
7 6 0 1 (3) 19 23846 0 13 (7)
8 11 4 0 20 52233 4150 0
9 18 0 0 21 114796 0 0

10 37 11 2 (4) 22 254371 15690 31 (8)
11 661 0 0 23 565734 0 0
12 135 30 0 24 1265579 60506 0
13 265 0 3 (5) 25 2841632 0 73 (9)

Table 4.9: Distribution of omni–insulators amongst chemical trees with n ≤ 25. N(n) is
the total number of chemical trees with n vertices N i

ipso is the number of pure ipso omni–

insulators, N i
distinct is the number of pure distinct omni–insulators and η is the nullity of

(all) the distinct omni–insulating chemical trees on n vertices.

n N(n) N i
ipso N i

distinct (η)

2 1 1 0
3 1 0 0
4 2 1 1 (2)
5 3 0 1 (3)
6 6 2 1 (4)
7 11 0 2 (5,3)
8 23 5 3 (6,4)
9 47 0 4 (7,5)

10 106 39 7 (8,6,4)

Table 4.10: Distribution of omni–insulators amongst all trees with n ≤ 10. N(n) is the
total number of trees with n vertices, N i

ipso is the number of pure ipso omni–insulators,

N i
distinct is the number of pure distinct omni–insulators and η is the set of nullities achieved

by distinct omni–insulating trees on n vertices, e.g., nullities 8, 6 and 4 for the 7 distinct
omni–insulators with 10 vertices.

If extrapolation from small numbers can be trusted, omni–conductors and omni–
insulators, though numerous, constitute only a small fraction of the rapidly increas-
ing numbers of chemical graphs and general graphs. In chemical graphs, the propor-
tion appears to oscillate around a relative decrease with increasing n. Subject to the
caveat about small numbers, pure ipso omni–conductors are more numerous than
strong omni–conductors, which in turn are more numerous than pure distinct omni–
conductors. For insulators, strong omni–insulators do not exist (Corollary 4.4.18),
and pure ipso omni–insulators appear to outnumber pure distinct omni–insulators.
All nut graphs are strong omni–conductors (Corollary 4.4.8), but constitute only
a small fraction of the total set of strong omni–conductors. Fig. 4.3 shows the
smallest chemical nut graph.

Tables 4.7 and 4.8 suggest that ipso omni–insulators with odd n are either rare or
do not exist. The question is open, but, it is apparent (Corollaries 4.4.9 and 4.4.12)
that all ipso omni–insulators are non–singular, with all vertices of CFV (upper)

70



n N(n) N i
ipso N c

ipso N c
distinct N c

nut

4 1 0 0 1 0
6 1 0 1 0 0
8 2 1 0 0 0

10 5 0 1 4 0
12 14 0 9 4 2
14 50 1 8 17 0
16 233 2 80 125 0
18 1249 0 327 708 285
20 7595 7 1343 3925 0

Table 4.11: Distribution of omni–insulators and omni–conductors amongst the cubic
polyhedra with n ≤ 20. N(n) is the total number of cubic polyhedra, N i

ipso is the number
of pure ipso omni–insulators, N c

ipso is the number of pure ipso omni–conductors, N c
strong

is the number of strong omni–conductors, and N c
nut is the number of cubic polyhedra that

are also nut graphs. In the range, there are neither pure distinct omni–insulators nor pure
distinct omni–conductors, but the fullerenes provide examples of larger cubic polyhedra
that are pure distinct omni–conductors [102].

Figure 4.3: The smallest nut graph that is also a chemical graph. Relative values of the
entries in the unique nullspace eigenvector are shown on the diagram.

type (Theorem 4.4.14). Thus, if ipso omni–insulators with odd n exist, they are
non–bipartite (odd bipartite graphs have odd η ≥ 1) and must have at least two
disjoint odd cycles, since deletion of any vertex leaves a graph with even order but
η = 1, implying a non–bipartite graph. Furthermore, a construction for reducing
ipso omni–insulators [114] (Algorithm 36 in that paper) implies that the smallest
such graph has no pendant edge.

Tables 4.9 and 4.10 deal with chemical and general trees. From the results, it appears
that there are no ipso (and hence no strong) omni–conducting trees, that there are
no ipso omni–insulating trees with odd numbers of vertices, and that K2 is the only
distinct omni–conducting tree. These three observations are all general, as shown
by the following arguments. For the first observation, note that every tree has at
least one CFV (upper) vertex. Hence by Theorems 4.4.13 and 4.4.14 there is at least
one ipso–insulating vertex in every tree. For the second, note that an ipso omni–
insulator is non–singular, but trees with odd numbers of vertices are all singular.
For the third observation the chain of reasoning is longer. Distinct omni–conductors
are either nut graphs or non–singular. No tree on n > 1 vertices is a nut graph. For
non–singular distinct omni–conductors, off–diagonal entries in the inverse matrix
A−1 are all non–zero (Theorem 4.4.1). Hence each vertex–deleted subgraph arising
from a putative distinct omni–conducting tree would have to be a nut graph [88]
and also a tree, yielding a contradiction unless the starting tree is K2. Hence, we
have the following theorem:
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Theorem 4.5.1
(i) No tree is an ipso omni–conductor;
(ii) no tree with an odd number of vertices is an ipso omni–insulator; and
(iii) the only tree that is a distinct omni–conductor is K2.

In the range 2 ≤ n ≤ 25 distinct omni–insulating chemical trees are rare, appearing
only at n = 3k + 4, and interestingly these examples also have gs = k + 2. There is
a structural explanation for this observation, in terms of vertex fusion of S3 graphs
(stars with 3 peripheral vertices), which in turn suggests an explanation for the
counts for general trees and a conjecture for all chemical graphs. Amongst chemical
trees, the trend appears to be towards a smaller fraction of pure distinct omni–
conductors with increasing n.

Benzenoid graphs give results that do not need a table: Kekulean (non–singular)
benzenoids are all ipso omni–insulators (all vertices of a non–singular bipartite graph
are CFV upper). In the range 1 ≤ h ≤ 12, where h is the number of hexagonal
faces, no Kekulean benzenoids belong to any other class of omni–conductors or
omni–insulators, and no non–Kekulean benzenoids have any omni–conducting or
omni–insulating properties.

Cubic (3–regular) polyhedral graphs (which are good candidates for carbon cages)
(Table 4.11) show a bias to strong omni–conduction: for example, of the 7595 cubic
polyhedra with n = 20 vertices, 3925 are strong omni–conductors. Interestingly,
these graphs appear to include neither distinct omni–insulators nor pure distinct
omni–conductors. Restriction to the fullerene subclass of cubic polyhedra gives
an even greater pre–dominance of strong omni–conductors [102]. The data for the
small cases in Table 4.11 might be taken to suggest that no cubic polyhedra are pure
distinct omni–conductors, but this is disproved by the counterexample of fullerenes
on, e.g., n = 54 vertices [102].

4.5.2 Some families of omni–conductors

Observations from constructions suggest several general families of omni–conductors:
all complete graphs Kn with n > 2 are strong omni–conductors, as are all nut
graphs, all cycles C4N+1 and C4N+3, bi–cycles formed by fusion of an odd cycle and
an aromatic (4N + 2) cycle, bowtie graphs consisting of two odd cycles linked by a
chain of any length, and all [p] prisms with odd p 6= 0 mod 3 (see Fig. 4.4).

Pure ipso omni–conductors include the anti–aromatic cycles C4N , bi–cycles formed
by fusion of odd cycles Cp and Cq with p− q 6= 0 mod 4, and [p] prisms for all odd
p and all p = 0 mod 6.

The preceding observations can be proved using theorems given earlier (e.g., Theo-
rem 4.4.14). For example, the complete graph Kn (n > 1) has all vertices of CFV
(middle) type, and hence the graph is an ipso omni–conductor. Also, for n > 2, two
deletions of vertices in Kn lead to a smaller complete graph, Kn−2, and we therefore
have case 3c(iiA)/7 of Table 4.4, with gs = 0 and j2 = ut− sv = E + 1, and hence
a strong omni–conductor.
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Figure 4.4: Families of chemical graphs with interesting conduction and insulation be-
haviour. Those illustrated are: (i) paths (n = p, m = p−1, p ≥ 2); (ii) cycles (n = m = p,
p ≥ 3); (iii) complete graphs (n = p, m = p(p − 1)/2, p ≥ 2); (iv) radialenes (n = p;
m = 2p, p ≥ 3); (v) semi–radialenes (n = m = 3p/2, p ≥ 4); (vi) bi–cycles (n = p+ q − 2,
m = p + q − 1, p, q ≥ 3); (vii) tadpoles (n = m = p + x, p ≥ 3, x ≥ 1); (viii) bowties
(n = p+ q + x, m = n+ 1, p, q ≥ 3, x ≥ 0); (ix) prisms (n = 2p, m = 3p, p ≥ 3).

4.5.3 Some families of omni–insulators

Construction of families of graphs leads to a number of observations about omni–
insulators that can be proved from the theorems in the Section 4.4. For example,
ipso omni–insulators are common in some families.

Examples of families of ipso omni–insulators include even paths P2N , aromatic cycles
C4N+2, all radialenes, tadpoles with an aromatic cycle and an even number of vertices
in the tail, bi–cycles formed by fusion of two even rings, bowties with two aromatic
rings and an even number of vertices in the intervening chain, [p] prisms with p
even and 6= 0 mod 6 (see Fig. 4.4 for the definitions of these commonly used names
for families of conjugated systems). As for the omni–conductors, all the above
observations about insulators can be proved straightforwardly.

Families of distinct omni–insulators are also found amongst the chemical graphs: for
example, all semi–radialenes with more than 6 vertices, belong to this class, as do the
subset of chemical trees mentioned in Section 4.5. A common substructure appears
in these and other examples. A construction that often but not invariably leads
from a parent chemical graph to a chemical graph that is a distinct omni–insulator
is an operation we call ‘starification’. In this construction each vertex of a parent
graph G is replaced by a three–pointed star S3, and pairs of stars corresponding to
edges of G are fused by superposition of a terminal vertex of each (see Fig. 4.5).
In other words, Star(G) is obtained from G by first forming the subdivision of G
(obtained from G by inserting a vertex in every edge) and then adding two pendant
edges to original end vertices (of degree one) and one pendant edge to each original
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vertex of degree two. Given that S3 has three peripheral vertices, as the starting
graph is chemical (i.e., connected and with maximum degree ≤ 3) with n vertices
and m edges, the derived graph Star(G) has 4n−m vertices, and 3n edges, of which
3n − 2m are leaves connecting central vertices of stars to vertices of degree 1. If
G has adjacency eigenvalues {µi}, the graph Star(G) has 2n eigenvalues given by
±
√

3 + µi, with all other eigenvalues equal to zero. Precisely in the case that G is
cubic and bipartite, Star(G) has two zero eigenvalues arising from µn = −3 of G.
Hence, the total number of zero eigenvalues of Star(G) is 2n−m+2 zeroes for cubic
bipartite G and 2n−m for all other chemical graphs.

Figure 4.5: The starification construction. Starting from a parent G, (i) each vertex is
replaced by a star graph S3; (ii) stars that are neighbours along an original edge of G are
fused at a peripheral vertex, leaving (3−d) pendant vertices per star replacing the original
vertex of degree d.

The eigenvalues of the star of the graph can be deduced to be ±
√

3 + µi by taking
a local view on the three possible degrees that a vertex of a chemical graph can
have. Fig. 4.6 shows the original vertices of the parent graph G labelled with
capital letters and indicated with black–filled circles, whereas the inserted vertices
are labelled with small letters and indicated with white–filled circles. Considering
Fig. 4.6 (i), if A is an entry of an eigenvector corresponding to an end vertex and
B is associated with its unique neighbour in the same eigenvector for the parent
graph, then

µA = B (4.9)

Similarly if the entries of an eigenvector are a, b and c, then
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λa = A
λb = A
λc = A+B
λA = a+ b+ c

(4.10)

Substituting for a, b and c from the first three equations of Eq. 4.10 in the last
equation gives

(λ2 − 3)A = B (4.11)

Hence, by matching the multipliers in Eqs (4.9) and (4.11), the relationship between
the eigenvalues of the parent graph G and its star is

µ = λ2 − 3⇒ λ = ±
√

3 + µ (4.12)

The same process may be applied to vertices of degree 2 and 3 in the parent graph G
as shown in Fig. 4.6 (ii) and (iii), yielding the same relation in Eq. (4.12). Thus, the
set of equations of the form given in Eq. (4.9), of which there are n in all, whatever
the degree of the vertex, Eq. (4.12) holds. Note that Eq. (4.12) suffices to give all
the eigenvalues of Star(G) from the eigenvalues of G. (See also the discussion about
Fig. 8.4 in Subsection 8.1.2.)

Figure 4.6: A local starification construction. Original vertices are indicated with black–
filled circles, and inserted vertices with white–filled circles where the original vertex has
degree 1 in (i), degree 2 in (ii) and degree 3 in (iii).

Application of the starification operation to all chemical graphs with 2 ≤
n ≤ 14 indicates that ‘nearly all’ Star(G) for chemical parents G are dis-
tinct omni–insulators. The ‘exceptions’ (Star(G) that are not distinct omni–
insulators) are comparatively rare: for parents with n = 2, . . . 14, there are only
0, 0, 1, 1, 4, 4, 14, 23, 73, 166, 533, 1504, 5061, . . . exceptions (to be compared with the
much larger total numbers of chemical graphs listed in Table 4.7). Features common
to the exceptions are under investigation and some conjectures are listed in Section
8.1. For example, some but not all cubic graphs G lead to exceptions, whereas all
chemical trees G on n vertices lead to distinct omni–insulators Star(G) with 3n+ 1
vertices (see also the further discussion in Section 8.1).

It is intriguing to ask exactly ‘why’ the omni–insulating chemical trees have their
characteristic property, and ‘why’ in general insulation should be associated with
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high nullity. A hint comes from observations on calculated transmission in so–
called cross–conjugated systems [61,67,81]: a connection across a cross–conjugated
junction in model systems leads to strong reduction in transmission [67] at energies
that are associated with the eigenvalues of the intervening side chain [81]. Within
the graph–theoretical version of the SSP model [63], this corresponds to a theorem
that can be derived straightforwardly from the previous work on composite systems
presented in [105].

Figure 4.7: Three fragments A, B and C connected via a single three–coordinate vertex
D to form a Y–junction.

Theorem 4.5.2 Let three fragments A, B and C be connected via a single three–
coordinate vertex D to form a Y–junction (see Fig. 4.7). The vertices adjacent to
D in A, B, C are wA, wB and wC, respectively. If a device is constructed with L̄ in
A and R̄ in B, the opacity polynomial of the device, j2 = ut − sv, is j2(ABC) =
j2(A)j2(B)φ2(C), where j2(A) is the opacity polynomial for a device consisting of
A alone with connections L̄ and wA, j2(B) is the opacity polynomial for a device
consisting of B alone with connections R̄ and wB, and φ(C) is the characteristic
polynomial of the whole graph C.

Proof is by combination of Theorems 6 and 7 from the earlier paper “Fragment
analysis of single–molecule conduction” [105]. Our omni–conducting trees include
multiple copies of such Y –junctions, and the denominator of the transmission T (E)
will therefore contain zeroes at E = 0 arising from the many leaves on these particu-
lar trees, as will the characteristic polynomial of the tree itself. This is suggestive of
a more general connection between nullity, cross conjugation, and omni–insulation.

4.6 Conclusion

In this chapter it has been shown that the graph theoretical SSP model leads nat-
urally to the definition of omni–conductors and omni–insulators, that membership
of the various categories is crucially dependent on graph nullity (number of non–
bonding orbitals) and is governed by a number of general theorems, and that many
families of chemically relevant molecular graphs omni–conduct. For example, many
bicyclic π–systems, and almost all fullerenes [102] are strong omni–conductors.

In the following two chapters, the global classification of molecular devices into
omni–conductors, omni–insulators and others will be further refined, to cover the
case of devices that have ‘limited’ omni–conduction and insulation.
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Chapter 5

Near omni–conductors and
insulators in the SSP model

The results presented here have been published in “Near omni–conductors and in-
sulators: alternant hydrocarbons in the SSP model of ballistic conduction” The
Journal of Chemical Physics 147, 164115, 2017, Fowler, Sciriha, Borg, Seville and
Pickup [107]. This chapter is closely based on this reference, with some rewriting to
incorporate new material and remove unnecessary repetitions of introductory mate-
rial. This chapter takes forward the classification of omni–conduction from the last
chapter, showing how an extended version can cover a chemically relevant (although
not omni–conducting) class of molecules. This chapter will show that: a complete
characterisation can be obtained within the source–and–sink–potential model for
the conduction behaviour of alternant π–conjugated hydrocarbons (conjugated hy-
drocarbons without odd cycles). Alternant hydrocarbons, molecular graphs that
are bipartite, cannot be full omni–conductors or full omni–insulators, but may con-
duct or insulate within well–defined subsets of vertices (unsaturated carbon centres).
This leads to the definition of ‘near omni–conductors’ and ‘near omni–insulators’.
We show that of 81 conceivable classes of conduction behaviour for alternants, only
14 are realisable. Of these, nine are realised by more than one chemical graph. Con-
duction of all Kekulean benzenoids (nanographenes) is described by two classes. In
particular, the catafused benzenoids (benzenoids in which no carbon atom belongs
to three hexagons) conduct when connected to leads via one starred and one un-
starred atom, but otherwise insulate, corresponding overall to conduction type CII
in the near–omni classification scheme.

5.1 Introduction

The simple ‘empty–molecule’ version of the SSP approach, in which the ballistic
electron has no interaction with the molecular electrons, has already given rise to
useful generalisations such as derivations of classes of equi–conductors [104], omni–
conductors and omni–insulators [84], and the construction of selection rules for con-
duction/insulation at the Fermi level that depend on counting zero roots of the
structural polynomials [70, 87]. Many conjugated π systems are alternant hydro-
carbons, and hence have bipartite molecular graphs (graphs for which the vertices
fall into two disjoint sets such that any edges include a vertex from each set). It
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Kind Rule gt gu gv gj T (0)

CFV+CFV D1 gs+1 gs+1 gs+2 ≥ gs+1 = 0

D2 gs+1 gs+1 gs gs 6= 0

CFV+CV D5 gs+1 gs−1 gs ≥ gs = 0

CV+CV D9 gs−1 gs−1 gs gs−1 6= 0

D11.1 gs−1 gs−1 gs−2 gs−1 = 0

D11.2 gs−1 gs−1 gs−2 ≥ gs = 0

CFV I1 gs+1 gs + 1 = 0

CV I3 gs−1 gs − 1 6= 0

Table 5.1: Selection rules for Fermi–level conduction of distinct and ipso molecular
devices based on bipartite graphs with nullity gs. Combinations of CV and CFV describe
the (L̄, R̄) pair in terms of core and core–forbidden vertices. Each signature {gt, gu, gv, g}
leads to a prediction about transmission at the Fermi level, T (0), as either 6= 0 (conduc-
tion), or 0 (insulation). Rules are labelled D for distinct devices (L̄ 6= R̄) and I for ipso
devices (L̄ = R̄).

follows, for example, that significant classes of conjugated hydrocarbons, such as the
Kekulean benzenoids, cannot be distinct omni–conductors [84]. Hence, it is natural
to ask how closely an alternant hydrocarbon can approach omni–conductor or omni–
insulator status. The present chapter gives a systematic answer to this question by
defining near omni–conduction and insulation and showing that there are only a
very few possible cases needed to describe real π systems.

So far, two approaches have been used for obtaining information about systematics
of conduction in the SSP model. One is suitable for formal algebraic proofs, and
the other for numerical calculation. The first approach is via selection rules, where
conduction at the Fermi level is defined by a set of selection rules based on the
numbers of zero roots of the five polynomials s, t, u, v and , denoted by gs, gt,
gu, gv and gj. The second is through spectral expansions. Devices fall into 14
cases, which reduce to the eight possibilities listed in Table 5.1 when the graph G is
bipartite [84,87]. Assignment of cases to conduction or insulation at the Fermi level
according to Table 5.1 can be made through computation of terms in the expansions
at E = 0.

The structure of this chapter is as follows. Section 5.2 defines a two–letter code
classification of omni–conductors and omni–insulators, in which every alternant or
non–alternant graph appears in exactly one of eight categories. This is refined in
Section 5.3 to give a systematic classification of conduction/insulation behaviour
of alternants in terms of a three–letter acronym (TLA) for ‘near–omni’ systems.
We prove that of 81 conceivable cases, only 14 are realisable. Sections 5.4 – 5.7,
supported by Section 5.10, show how this reduction is achieved, and give families
of chemical examples (Fig. 5.4 and Table 5.4). Section 5.8 describes the startingly
simple restriction of the full classification for benzenoids, and Section 5.9 states the
overall conclusions. The end result is a complete description of ballistic conduction
at the Fermi level as predicted within the ‘empty–molecule’ SSP model.
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5.2 Classification of distinct and ipso devices

A systematic typology of omni–conductors and omni–insulators by nullity can be
derived [84] and is illustrated in Table 4.6. This classification has some useful fea-
tures and some limitations. The terminology of distinct/ipso conduction/insulation
patterns allows identification of families of molecular graphs with specific conduction
behaviour [84]. However, the categories are not mutually exclusive. For example,
K2, the molecular graph of ethene, is both a distinct omni–conductor and an ipso
omni–insulator. A more extensive scheme in which every molecular graph has ex-
actly one home is illustrated by a Venn–like diagram (see Fig. 5.1). (This is not
a true Venn diagram as it does not contain all possible intersections. Diagrams of
this type are often called Euler diagrams [115].) The idea is to employ a two–letter
code for each possible combination of distinct and ipso behaviour. The alphabet of
possibilities, {C, I, X}, denotes omni–conduction, omni–insulation, or mixed con-
duction/insulation within a specified set; the first letter of the code describes the
set of distinct devices associated with a given graph, and the second the set of ipso
devices. X is taken to mean ‘not C or I’ in the unique case of K1, the isolated
π centre, where there are no distinct pairs. Of the nine combinations, all but II
(strong omni–insulators) have examples amongst chemical graphs ( [84], see Section
4.4.1). Combination of the codes with the separation into three nullity types gives
the 27 categories listed in Table 5.2, of which 14 are empty and the remaining 13 are
realised by small chemical graphs (see Fig. 5.2). This enlarged classification gives a
template for the treatment of bipartite molecular graphs.

Figure 5.1: Venn–like diagram showing the relationship between the overlapping classes
of conductors and insulators shown in Table 4.6 and the new disjoint classification given in
Table 5.2. The cross for category II indicates the impossibility of strong omni–insulators.

Not all cases listed in Tables 4.6 and 5.2 are realisable for bipartite graphs and in
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CC0 CC1 CI0

CX0 IC4 IX2

XC0 XC1 XC2

XI0 XX0 XX1

XX2

Figure 5.2: Smallest non–trivial chemical graph for each region in the Venn–like diagram
(Fig. 5.1). In each case the two–letter code is given followed by the nullity. Only 13 cases
are possible (refer to Section 5.5).

Code Nullity

0 1 > 1

CC Some Nut None

CI Some None None

CX Some None None

IC None None Some

II None None None

IX None None Some

XC Some Some Some

XI Some None None

XX Some Some Some

Table 5.2: Full classification of conduction behaviour by nullity for general connected
graphs. Conventions as in Table 4.6.

fact, as will be proved later, only five two–letter codes apply to bipartite graphs (XI
(gs = 0), XC, XX (gs ≥ 1), IC, IX (gs > 1)). The main aim here is to work out how
to translate the restrictions imposed by bipartivity into a full classification of Fermi–
level conduction behaviour of bipartite molecular graphs (alternant π systems).
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5.3 A classification scheme for alternant hydro-

carbons

Evidently, a more refined classification is needed to capture the conduction behaviour
of devices based on alternant hydrocarbons. The molecular graph of an alternant
hydrocarbon is bipartite. By definition, the vertices of a bipartite graph can be
split into two disjoint partite sets, which we may call starred and unstarred, and
denote by V1 and V2, respectively, with |V1| ≥ |V2|. K1 is trivially bipartite, with V2

empty. Each edge of the graph connects a starred and an unstarred vertex. Bipartite
graphs are precisely those graphs that contain no odd cycles. Conduction behaviour
is affected by these properties.

The classification adopted here concentrates on behaviour within and between par-
tite sets. The distinct/ipso/strong classification for general graphs is replaced by a
set of three–letter acronyms (TLA). The alphabet is {C, I, X}, as with the two–letter
codes, and the three sets of interest for bipartite graphs are indicated by position:
the first letter refers to inter devices (one starred and one unstarred connection ver-
tex), the second to intra (two starred or two unstarred connection vertices) and the
third to ipso (connection via a single vertex). X is interpreted as ‘neither C nor I’,
so that it can also be used when the set in question is empty, as for intra and inter
sets for K1, and the intra set for K2.

Thus, for example, a TLA of IXC would imply omni–insulation for all distinct pairs
L̄ 6= R̄ from opposite sets, mixed conduction/insulation for distinct devices L̄ 6= R̄
in the same set, and omni–conduction for all ipso devices.

There are 27 three–letter codes to be considered, from CCC to XXX. Guided again
by the significance of nullity in classification for general graphs, we distinguish cases
with nullities gs = 0, 1, > 1, leading to a total of 81 combinations of TLA code and
nullity. We check each of these to decide whether a given combination of TLA and
nullity is possible (by finding a small bipartite graph example), or can be proved to
be impossible.

5.4 Calculations

As a preliminary, assessments were carried out for sets of graphs using the numer-
ical approach for calculation of spectral expansions of the structural polynomials.
Complete sets of bipartite graphs on up to 10 vertices, bipartite chemical graphs
(connected bipartite graphs with maximum degree 3) on up to 12 vertices, and ben-
zenoids on up to 12 hexagons, all available from previous work [84], were tested.
These calculations provided examples for 14 of the 81 TLA/nullity combinations.
Fig. 5.3 shows the smallest graphs for each of the 14 combinations. In all but one
case these are chemical graphs (skeletons of possible alternant hydrocarbons). This
approach was used systematically to obtain the results described in the rest of this
chapter.
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CII0 CXI0 XII0

ICX1 IXX1 XXC1

XXX1 ICC2 IIC4

IIX2 IXC3 IXX2

XIX2 XXX2

Figure 5.3: Smallest examples of the 14 conduction types for devices based on bipartite
graphs, named by three–letter acronym and nullity. Vertices in the partite sets V1 and
V2 are shown as starred and unstarred, respectively. Core vertices are indicated with
black–filled circles, and core–forbidden vertices with white–filled circles. Case XIX2 is the
non–chemical Latin cross graph.

5.5 Elimination of remaining cases

The grid of 81 combinations is shown in Table 5.3. We begin by populating the table
with the cases where we have an example from exhaustive search of small graphs.
These cells are filled with the string ‘Some’. The focus of the theoretical work is
then to eliminate as many as possible of the remaining cells. The conjecture is that
all other cells correspond to combinations that are impossible for bipartite graphs.

We can immediately eliminate some combinations using the old broad classification
of possible and impossible cases for general graphs. Strong omni–insulators are not
possible [84]. Hence type III can be ruled out for bipartite graphs. Similarly, as
distinct and strong omni–conductors for nullity one are identical with the class of
nut graphs [90] (graphs with n > 1 and gs = 1 in which the eigenvector of zero
eigenvalue has no zero entries), and as nut graphs are not bipartite [90], types CCC
and CCI are ruled out for nullity one. Knowing that a distinct omni–conductor
exists if the graph has a nullity less than 2, that is, either 1 or 0 [84], then the
remaining possible case for CCC is that the graph is a distinct omni–conductor
having a nullity of 0. In this case, we can divide the distinct pairs into inter and
intra sets.
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1. Since the graph is bipartite, its nullity and number of vertices have the same
parity by the Pairing Theorem [95] and the graph has an even number of
vertices.

2. A bipartite graph without a perfect matching has a nullity which is not 0 and
so is singular. This is a consequence of a result of Frobenius [7] and the Hall
Marriage Theorem [8].

3. Let G be a non–singular bipartite graph. Removal of an intra pair L̄, R̄ gives
G− L̄− R̄ with no perfect matching. Hence, the two vertex–deleted subgraph
has a nullity which is not 0, and is in fact 2.

This is Variety 3a (ii) Case D1 of the selection rules [70], which gives insulation.
Hence, no bipartite graph having a nullity of 0 is a distinct omni–conductor.

Impossibility proofs for all those combinations left open by the computer search are
briefly indicated in Section 5.10. The results of the proof procedure are summarised
in Table 5.3, from which it is evident that the conjecture was correct: we do now
have the complete classification of possibilities.

As an essentially graph–theoretical approach, the SSP model gives predictions for
general classes of alternant hydrocarbons. Fig. 5.4 illustrates representative families
of bipartite molecular graphs. Table 5.4 lists the SSP predictions for their conduction
behaviour.

5.6 Rare cases

Some cases in Table 5.3 correspond to a very small number of graphs.

5.6.1 Cases XXC, CXI and ICX

Types XXC, CXI and ICX have only one example each within the test sets; the
only graph found for XXC is K1, the molecular graph of a single unsaturated carbon
centre; CXI is K2, the complete graph on two vertices and the molecular graph of
ethene; the only graph found for ICX is P3, the path on three vertices, the molecular
graph of the allyl radical. As shown in Section 5.10, these three graphs are the unique
examples of their respective conduction types.

5.6.2 Case IIC

The search found only one example amongst chemical graphs for type IIC, although
it found others amongst non–chemical graphs. The sole chemical graph is K3,3. This
is a complete bipartite graph. It has three starred and three unstarred vertices, and
all starred are joined to all unstarred vertices; it appears in mathematical puzzles
as the ‘Utility Graph’. In a complete bipartite graph, Kp,q, each of the p vertices in
V1 is joined by an edge to each of the q vertices in V2. K3,3 is famously non–planar
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Case Nullity, gs

0 1 > 1

CCC 1, 2 4, 6 10, 11

CCI 2 4, 6 8, 10

CCX 1, 2 6, 7 9, 10

CIC 1 4, 5, 6 10, 11

CII Some 4, 5, 6 8, 10

CIX 1 5, 6 10

CXC 1, 2 4, 6 10, 11

CXI K2 4, 6 8, 10

CXX 1, 2 3 10

ICC 1, 2 4 Some

ICI 2 4 1, 8

ICX 1, 2 P3 9

IIC 1 4, 5 Some

III 3 4, 5 8

IIX 1 5 Some

IXC 1, 2 4 Some

IXI 2 4 8

IXX 1, 2 Some Some

XCC 1, 2 4 11

XCI 2 4 8

XCX 1, 2 7 9

XIC 1 4, 5 11

XII Some 4, 5 8

XIX 1 5 Some

XXC 1, 2 K1 11

XXI 2 4 8

XXX 1, 2 Some Some

Table 5.3: Conduction behaviour of alternant π–conjugated hydrocarbons, showing the
existence status of all 81 conceivable combinations of inter–intra–ipso device behaviour
with nullity of the molecular graph. Entries ‘Some’ indicate that at least one example has
been found. Entries x with x = 1 to 11 refer to the theorems 5.10.x that can be used to rule
out a given case. Cases CXI (gs = 0), XXC and ICX (gs = 1) and IIC (gs > 1) are each
realised by only one chemical graph. These are the stars K2 ≡ K1,1, K1, P3 ≡ K2,1 and
K3,3, respectively. Case IIC also has non–chemical realisations; no chemical realisation
has been found so far for case XIX.

(cannot be drawn in the plane without edges crossing). Molecular realisation of
this graph seems unlikely. In chemistry it appears as the graph of the discarded
Claus proposal for the structure for benzene, where antipodal carbon atoms were
connected by extra single bonds [116].

The small examples of non–chemical graphs in IIC are also complete bipartite
graphs, Kp,q with p ≥ 3, q ≥ 3. It is easy to show that all such Kp,q are of type IIC.
Kp,q (p, q > 0) has nullity p + q − 2 and consists entirely of core vertices. Deletion
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(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

Figure 5.4: Families of bipartite graphs with systematic conduction behaviour in the SSP
model. The families are: (i) paths (linear polyenes); (ii) cycles (annulenes); (iii) radialenes;
(iv) semi–radialenes; (v) bi–cycles (fused annulenes); (vi) tadpoles; (vii) bowties; (viii)
ladders; (ix) prisms. Cycle sizes in bipartite graphs are even, and denoted here by 2p
or 2q; x is the number of atoms in a chain connected to a cycle, not counting vertices
common to the chain and a cycle; y is the number of squares in the ladder. See Table 5.4
for the results.

of one vertex in Kp,q (p, q ≥ 3) yields Kp−1,q or Kp,q−1 and deletion of two vertices
gives Kp−2,q, Kp−1,q−1 or Kp,q−2. These combinations correspond to rule D11 (gs,
gs − 1, gs − 1, gs − 2), and hence insulation.

However, the graphs Kp,q do not exhaust the type IIC. A family of IIC graphs can
be constructed by using the adjacency matrix of a uniform core graph, as introduced
in [88]. A uniform core graph is a core graph such that removal of any vertex leaves
a core graph. A uniform core graph satisfies rule D11 for every distinct device.
As all vertices are CV, all ipso devices based on uniform core graphs satisfy rule
I3. A bipartite graph G can be constructed from any uniform core graph H, with
adjacency matrix

A(G) =

(
0 A(H)

A(H) 0

)
,

where A(H) is the adjacency matrix of H. One construction that yields a uniform
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Family Sub-family gs TLA

Path K1 1 XXC

K2 0 CXI

P3 1 ICX → ICci

Even path, n > 2 0 XII

Odd path, n > 3 1 IXX → Icici

Cycle 2p = 4N + 2 0 CII

2p = 4N 2 ICC

Radialene all p 0 XII

Semi-radialene 2p = 4 2 IXX → Iixci

2p > 4 p IIX → IIci

Bi-cycle 2p = 4N + 2, 2q = 4N ′ + 2 0 CII

all others 0 XII

Tadpole 2p = 4N + 2, x = 2N ′ 0 XII

2p = 4N + 2, x = 2N ′ + 1 1 IXX → Icici

2p = 4N, x = 2N ′ 2 IXX → Icxcx

2p = 4N, x = 2N ′ + 1 1 XXX → Xixix

Bowtie 2p = 4N + 2, 2q = 4N ′ + 2, x = 2N ′′ 0 XII

2p = 4N + 2, 2q = 4N ′ + 2, x = 2N ′′ + 1 1 IXX → Icici

2p = 4N + 2, 2q = 4N ′, x = 2N ′′ 2 IXX → Icxcx

2p = 4N + 2, 2q = 4N ′, x = 2N ′′ + 1 1 XXX → Xixix

2p = 4N, 2q = 4N ′, x = 2N ′′ 2 XXX

2p = 4N, 2q = 4N ′, x = 2N ′′ + 1 3 IXX → Icxcx

Ladder y = 3N + 1, N > 1 2 IXX

y 6= 3N + 1 0 XII

Prism 2p = 6N 4 IXC

2p 6= 6N 0 CII

Table 5.4: Conduction behaviour for families of bipartite molecular graphs. n is the
number of vertices; p, q and x are as defined in Fig. 5.4, where 2p and 2q are the cycle
sizes and x is the length of a chain of vertices that are not in any cycle. Three–letter
acronyms are defined in Section 5.3; expanded five–letter acronyms in Section 5.7.

core graph [88] gives A(H) as

A(H) =

(
A(N) A(N)
A(N) A(N)

)
,

where A(N) is the adjacency matrix of a nut graph, N .

The graph H constructed in this way has N as a subgraph, and therefore is not
bipartite [90]. The construction doubles the vertex degrees of the starting nut graph
(which were all greater than 1 [90]) and so cannot generate a chemical graph. When
a vertex is deleted from G the subgraph obtained remains a core graph. The graphs
G are therefore examples of IIC bipartite graphs that are neither chemical graphs
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nor complete bipartite.

5.6.3 Case XIX

Another rare case is XIX. In the computer search, no chemical graph was found
for this type, although non–chemical graphs such as the six–vertex Latin cross are
found in this class (See the entry for XIX in Fig. 5.3).

5.7 Refining the TLA description

The three–letter classification can be further refined in some cases. In the intra and
ipso positions of the TLA, a letter X could signify conduction within one partite set
and insulation within the other, or conduction or insulation in one set and mixed
possibilities in the other, and so on. In some cases, further reasoning allows the
letter X to be replaced by a more detailed specification, and we use two lower–case
letters such as ci, cx, ix to indicate the behaviour within V1 and V2. The core and
core–forbidden classification of vertices used earlier is also useful here.

For graphs with nullity zero, all vertices are CFV, inter and intra pairs (if any) are
all of kind CFV–CFV, and no new interesting cases arise from distinguishing V1 and
V2.

5.7.1 Singular bipartite graphs with gs = 1

For graphs with nullity one, all core vertices are in the larger partite set V1, and
the interesting case is when V1 is ‘full’, i.e. when every member of V1 is CV. V2 is
‘empty’ in the sense that every vertex in V2 is CFV. A graph with this distribution
of CV and CFV is a half–core. If G is a half–core with gs = 1, the intra pairs
in V1 are CV/CV and satisfy D9. For intra pairs in V2 we have CFV/CFV, and
potentially Rule D1 or D2. However, repeated removal of vertices raises the nullity
at each step, as the difference ||V1| − |V2|| increases by one at each step. Hence, the
CFV/CFV pairs are insulating, by Rule D1. Therefore, the expanded code has ci
instead of X in the intra position. The ipso entry is also ci (by I1 and I3), whereas
the inter pairs are all insulating, by D5. Hence, all half–cores with gs = 1 have TLA
IXX and expanded code Icici.

5.7.2 Singular bipartite graphs with gs > 1

For graphs with nullity greater than one, the potentially interesting cases are half–
cores, defined as above, and cores, in which all vertices are CV so that both V1 and
V2 are full.

If the graph is a half–core with gs > 1, the ipso entry X is equivalent to ci. The
inter entry is I (all inter pairs fall under Rule D5). Therefore the conduction types
of interest are IIX or IXX. The type IIX is simply expanded to IIci, and hence is
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resolved. However, experimentation shows that graphs in IXX can be Ixici, so this
type is not fully resolved.

If the graph is a core with gs > 1, the ipso entry is C (all vertices are CV), and hence
the only unresolved entry is IXC. Some small graphs can be found that correspond
to IxxC, so this case is unresolved.

In summary, the expanded codes give complete resolution for gs = 1 but only partial
resolution for gs > 1.

5.8 Benzenoids

Calculations on all benzenoids on up to twelve hexagonal rings are summarised in
Table 5.5. Here, benzenoids are taken to be simply–connected subgraphs of the
graphene plane composed of hexagonal rings only. In a catafused benzenoid all
vertices are in the perimeter, i.e. no vertices belong to three hexagons. Conversely,
all perifused benzenoids have at least one such ‘internal’ vertex. The table reveals
some interesting patterns of predicted conduction behaviour between these classes of
benzenoids. It turns out that only four TLA are needed to describe the conduction
behaviour of all benzenoids in the range that we searched, two for those with Kekulé
structures, and two for those without.

Nhex gs = 0 gs = 1 gs > 1 Ntot

CII CII XII IXX XXX IXX XXX

1 1 1

2 1 1

3 2 1 3

4 5 1 1 7

5 12 1 2 5 2 22

6 36 7 8 27 1 2 81

7 118 33 39 121 13 7 331

8 411 160 193 586 33 52 1435

9 1489 787 947 2776 181 322 3 6505

10 5572 3756 4779 13097 927 1931 24 30086

11 21115 17557 24207 61627 5419 11096 208 141229

12 81121 81314 122483 290133 30726 62247 1560 669584

Table 5.5: Conduction behaviour of benzenoids, classified by nullity. For the non–singular
benzenoids (gs = 0), the first CII column corresponds to catafused benzenoids; the second
CII and first XII columns correspond to Kekulean perifused benzenoids. All benzenoids
with gs > 0 are perifused. Ntot is the total number of benzenoids with Nhex rings.

Table 5.5 lists the conduction behaviour of benzenoids classified by nullity. The
class CII at gs = 0 is more populated than that of XII. Also, such benzenoids at
this nullity are ipso omni–insulators. The smallest examples of a non–catafused
Kekulean benzenoid is shown in Fig. 5.5, which also shows the smallest perifused
non–Kekulean benzenoid. At gs = 1, the IXX class is more populated than that of
the XXX class. The same is true for gs > 1, but the XXX class is even more empty
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for smaller Nhex, the number of hexagonal rings. We do not exclude the possibility
that for gs > 1 there might exist some other larger benzenoid that gives a different
TLA code. However, up to now there has been found no benzenoid that is a core
graph. This is seen from Table 5.5 since none of the TLA codes have a C in the ipso
position.

Figure 5.5: (a) The smallest perifused Kekulean benzenoid for the CII code. (b) Pyrene
is the smallest perifused Kekulean benzenoid for the XII code.

5.8.1 Kekulean benzenoids

A benzenoid is Kekulean if it has a perfect matching (Kekulé structure). A ben-
zenoid is Kekulean if and only if it is non–singular (gs = 0) [117]. The perimeter of a
catafused benzenoid is a Hamiltonian circuit (a circuit of edges that visits every ver-
tex exactly once) and therefore every catafusene has at least two perfect matchings.
Hence, all catafused benzenoids are Kekulean. In contrast, perifused benzenoids
may be either Kekulean or non–Kekulean.

Kekulean benzenoids fall into conduction types CII and XII (Table 5.3), as they are
non–singular bipartite graphs G 6= K2. However, the numbers in Table 5.5 suggest
a further conjecture, that all catafused benzenoids correspond to type CII, whereas
perifused Kekulean benzenoids may belong to either CII or XII.

This conjecture is straightforwardly proved. First, ipso and intra entries in the TLA
for a catafused benzenoid G are both I, by Theorems 5.10.1 and 5.10.2 (Section
5.10). The inter entry of the TLA is fixed by the analysis illustrated in Fig. 5.6.
An inter pair of connection vertices has one vertex in V1, say L̄, and one, say R̄ in
V2 (Fig. 5.6(a)). The two vertices are connected along the perimeter by two paths
that consist of an odd number of edges (Fig. 5.6(b)). Choose one of the paths and
call it P1. Now choose the matching of the perimeter circuit in which P1 has two
terminal double bonds, and call that matching M1. The complementary perimeter
matching is M2, with terminal double bonds in the other path, P2 (Fig. 5.6(c)).
Now delete vertices L̄ and R̄. The path P1− L̄− R̄ has a perfect matching when its
edges are chosen as in M2, as does path P2 − L̄− R̄ when its edges are chosen as in
M1 (see Fig. 5.6(d)). Hence the graph G− L̄− R̄ has a perfect matching in which
any remaining chordal edges carry single bonds. As any internal face remaining in
this two–vertex–deleted graph is still of size 4N + 2, the existence of this perfect
matching implies nullity zero [117–119]. Therefore, all inter pairs of a catafused
benzenoid obey Rule D2, and the conduction type is CII. This proof also applies to
catafused helicenes. In contrast, non–singular perifused benzenoids may be either
CII or XII; the smallest examples of each type are illustrated in Fig. 5.7(a) and (b).
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Figure 5.6: Pictorial proof that catafused benzenoids all belong to conduction type CII.
(a) A catafusene G with an intra pair of connections L̄ and R̄; (b) Two perimeter paths
P1 and P2 connecting L̄ and R̄; (c) The pairs of perimeter perfect matchings M1 and M2,
chosen to given terminal double bonds in paths P1 and P2, respectively; (d) Matching of
the vertex–deleted graph G− L̄− R̄, proving that the device is a conductor by Rule D2.

Figure 5.7: Smallest perifused benzenoids of each conduction type identified in the search.
They are: (a) perylene (CII), (b) pyrene (XII), (c) benzophenalenyl radical (IXX), (d)
phenalenyl radical(XXX). The two marked vertices in pyrene are a conducting inter pair;
apart from symmetry images of this pair, all inter pairs are insulating.
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5.8.2 Non–Kekulean benzenoids

The remaining columns of Table 5.5 deal with non–Kekulean benzenoids. Ben-
zenoids with gs ≥ 1 are found in conduction types IXX and XXX, as they must be,
since P3 is not a benzenoid. However, the same two TLAs apparently suffice also
for benzenoids with gs > 1: specifically, the five other types available to general bi-
partite graphs (ICC, IIC, IIX, IXC, XIX) are not found for benzenoids in the range
of the search. This may be an effect of small numbers; we are not aware of a proof
of the sufficiency of the two classes for benzenoids with gs > 1.

We note that a half–core benzenoid is of type Icici (hence also IXX). All IXX entries
in the table for gs = 1 and for gs > 1 correspond to half–cores; it would be interesting
to know if this observation generalises.

Fig. 5.7(c) and (d) show the smallest examples of benzenoids with gs = 1. The
smallest benzenoid with gs = 1 is the radical derived from benzophenalene (Fig.
5.7(c)); the central vertex carries entry zero in the NBO, leading to conduction type
XXX (Xixix). The smallest half–core with gs = 1 is phenalene (Fig. 5.7(d)).

Phenalene is also the smallest of the triangulenes, which as the name suggests consist
of a triangular array of hexagons and hence of 1, 3, 6, · · · a(a+ 1)/2 hexagons, where
a is the number of rows and a(a+ 1)/2 is the total number of hexagons. As neutral
molecules, and in a high–spin ground state, the triangulenes with a > 1 would
have gs unpaired spins distributed over vertices of set V1. For a > 2, gs > 1
the system is a half–core, and hence of type IXX (in fact, Iixix). The case a = 2,
gs = 1 (phenalene) is special in having a CFV in the V1 set: the unique non–bonding
orbital is antisymmetric with respect to each of the three σv mirror planes of the D3h

group, and hence must have zero entry on the central vertex of the molecular graph;
as there are no other non–bonding orbitals, this zero entry cannot be compensated
by a mirror–symmetric partner orbital, as it would be in similar cases for gs > 1. In
spite of the difficulties of conventional synthesis [38, 120, 121], the triangulenes are
of great interest as possible examples of giant organic molecular magnets and for
applications in quantum electronic devices [38, 122, 123]. In a recent development,
individual molecules of triangulene itself (a = 3) have been assembled on Xe, NaCl
and Cu surfaces [124].

5.9 Conclusion

The SSP model allows a complete classification of conduction devices based on
bipartite and non–bipartite graphs.

A general scheme for distinct–ipso–strong omni–conduction of devices based on bi-
partite or non–bipartite graphs has been constructed. All types except strong omni–
insulators have some chemical representatives.

For bipartite graphs, the available types in the general scheme are fewer, but can be
classified more finely. The result is: for devices based on a bipartite graph G with
n ≥ 4 vertices and nullity gs, the possible inter–intra–ipso omni–conduction types
are: (gs = 0) CII, XII; (gs = 1) IXX, XXX; (gs > 1) ICC, IIC, IIX, IXC, IXX, XIX,
XXX.
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The three connected bipartite graphs with n < 4 each uniquely realise a conduction
type: XXC is apparently possible only for K1 (isolated vertex); CXI only for K2

(ethene); ICX only for P3 (allyl).

Of the nine types possible for n ≥ 4, two appear to be sparsely represented amongst
chemical graphs: so far, only one chemical graph has been found for IIC (non–planar
K3,3), and no chemical graph for XIX.

This global picture of conduction behaviour can be used to make predictions that
can be tested against more sophisticated calculations for specific devices based on
systems of chemical interest, such as the benzenoids or ‘nanographenes’ [125].

For the most important set of bipartite chemical graphs, the benzenoids, the SSP
model gives an even simpler conclusion: all catafused benzenoids belong to type
CII (they conduct for all distinct inter pairs of vertices, and otherwise insulate) and
perifused Kekulean benzenoids are either CII or XII (they conduct for some distinct
inter pairs). Benzenoids with nullity one also fit into two conduction types, IXX
and XXX.

The theme of conduction in bipartite systems will be taken up again in Chapter 7
Section 7.6.

5.10 Appendix: Theorems for case–by–case

proofs

We list some theorems that are useful in eliminating cases from the grand list of 81
TLA. We note that for a bipartite graph, all vertices are either core (CV), in which
case deletion lowers gs by 1, or core–forbidden (CFV) and upper, in which case dele-
tion raises gs by 1; i.e. a bipartite graph has no middle vertices (for which deletion
would leave nullity unchanged). The two disjoint vertex subsets of a bipartite graph
are V1 and V2, with |V1| ≥ |V2|, and the adjacency matrix may be written in block
form (with the vertex sets ordered (V1, V2)) as

A =

(
0 B

BT 0

)
.

5.10.1 Non–singular molecular graphs (gs = 0)

Theorem 5.10.1 For a bipartite graph G with gs = 0, the ipso entry of the TLA
is I.

Proof: No vertices of G are CV, so all are CFV upper, and all ipso devices insulate
(Rule I1).

Theorem 5.10.2 For a bipartite graph G with gs = 0 either the intra entry of the
TLA is I or the class of intra pairs is empty (and then G = K2, with intra entry X).
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Proof: For gs = 0, |V1| = |V2| = n/2. Let L̄ be in V2. Then G− L̄ has gs = 1 and
since deletion of all V2 vertices gives gs = n/2, G − L̄ − R̄ (with L̄ and R̄ in V2 of
G) must have gs = 2. Therefore there is no conduction for intra pairs (Rule D1):
either the intra entry in the TLA is I or there are no intra pairs. The only graph
with n > 1 vertices but no intra pairs is K2, consisting of two vertices joined by a
single edge.

Application of Theorems 5.10.1 and 5.10.2 leaves only the TLA III undecided for
gs = 0. This case is settled by:

Theorem 5.10.3 There are no strong omni–insulators with gs = 0.

Proof: For a device with gs = 0, a distinct L̄, R̄ is conducting if and only if the
entry in the inverse, (A−1)L̄,R̄ is non–zero [84]. For a distinct omni–insulator G,
A−1 is a diagonal matrix, hence A is also a diagonal matrix, implying that G is
not connected. As distinct omni–insulators with gs = 0 are impossible, then strong
omni–insulators with gs = 0 are also impossible. (In fact, strong omni–insulators
with gs 6= 0 are impossible too [84].)

5.10.2 Singular molecular graphs with gs = 1

Theorem 5.10.4 For a bipartite graph G with gs = 1, the ipso entry of the TLA
is X.

Proof: As G has some CV, some cases of ipso conduction occur by Rule I3. Assume
that G has n > 1 vertices: since G is bipartite it is not a nut graph and hence has
some CFV, which give ipso insulation by Rule I1. (N.B. If instead G has n = 1,
the ipso entry is C and the whole TLA is XXC as both sets of distinct pairs are
empty.)

Theorem 5.10.5 For a bipartite graph G with gs = 1, the intra entry of the TLA
is not I.

Proof: For a bipartite graph with gs = 1, all CV are in the larger subset of
vertices, V1 (the unique NBO is concentrated on the starred vertices of the molecular
graph [6]). As G is connected, A is not empty but has a zero eigenvalue, so contains
at least two CV in V1. A CV/CV pair is either D9 or D11, but D11 is impossible
for gs < 2 and hence the CV pair conducts, by D9.

Theorem 5.10.6 For a bipartite graph G with gs = 1, the inter entry of the TLA
is not C.

Proof: At least one CV/CFV inter pair exists, as all CV are in V1, and this is
insulating, by D5, so the inter entry is I or X.

Application of theorems 5.10.4 to 5.10.6 leaves only case XCX undecided. This is
settled by:
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Theorem 5.10.7 For a bipartite graph G with gs = 1, an intra entry of C in the
TLA implies entries I for inter and X for ipso.

Proof: For gs = 1, all CV are in V1. If the intra entry is C then V1 must consist
entirely of CV as a CV/CFV pair would insulate. Then ipso is X by I1 and I3 and
inter is I by D5.

Theorems 5.10.4 to 5.10.7 rule out XCX. A singular bipartite graph with gs = 1
belongs to one of three types: ICX, IXX or XXX. Furthermore, the TLA ICX is
realised by exactly one graph, which is P3. To see this, observe that gs = 1 implies
|V1| − |V2| = 1 and since all vertices in V2 are CFV, we cannot have more than one
CFV in V2 (otherwise it would give an insulating pair by D1). Hence G has one
CFV and is a star. The only star with gs = 1 and n > 1 is P3.

5.10.3 Singular molecular graphs with gs > 1

Theorem 5.10.8 For a bipartite graph G with gs > 1, the ipso entry of the TLA
is not I.

Proof: Since G has at least one CV, at least one ipso device is conducting.

Theorem 5.10.9 For a bipartite graph G with gs > 1 if the intra entry in the TLA
is C, then the ipso entry is not X.

Proof: Suppose the intra entry is C and the ipso entry is X. G must have at least
one CFV and at least one CV. If they form an intra pair we have insulation by D5
and the intra entry is not C. If there is no CV/CFV intra pair, then V1 is all CV and
V2 is all CFV and the intra V2 pairs are insulating by D1, giving a contradiction.

Theorem 5.10.10 For a bipartite graph G with gs > 1, the inter entry is not C.

Proof: Choose L̄ as a CV in V1. Choose R̄ in V2. Either we have a CV/CFV pair
and insulation by D5 or we have a CV/CV pair. In that case, R̄ remains a core
vertex in G− L̄ and we have gs− 2 for the nullity of G− L̄− R̄, hence insulation by
D11. To see that R̄ is CV in G − L̄, observe that the CV in each vector in a basis
for the nullspace of G can be concentrated in one or other of V1 and V2; removal of
L̄ in V1 reduces nullity by 1 but all restricted vectors corresponding to CVs in V2

remain in the nullspace of G− L̄.

Theorem 5.10.11 For a bipartite graph G with gs > 1, with ipso entry C in the
TLA, the inter entry is I.

Proof: If the ipso entry is C, all vertices are CV by I3. For inter pairs, we have
either D9 or D11, but by the argument used in the proof of Theorem 5.10.10, if L̄ is
in V1 and R̄ is in V2, then R̄ is a CV in G− L̄ and we have rule D11, and insulation
for all inter pairs.

A corollary to Theorems 5.10.6 and 5.10.10 could be:

Corollary 5.10.1 C in the inter position implies that the nullity is zero where ben-
zenoids are some examples within this class.
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Chapter 6

A complete classification: the
d–omni–conductors

This chapter contains a manuscript that has been prepared for publication by the
author of this thesis in collaboration with Prof. P.W. Fowler, Prof. B.T. Pickup
and Prof. I. Sciriha. The title of the intended publication is “Molecular graphs and
molecular conduction: the d–omni–conductors”.

6.1 Abstract

Ernzerhof’s source–and–sink–potential (SSP) model for ballistic conduction in con-
jugated π systems predicts transmission of electrons in a two–wire device in terms of
the characteristic polynomials of the molecular graph and three subgraphs based on
the pattern of connections. We present here a complete classification of conduction
properties of all molecular graphs within the SSP model. An omni–conductor/omni–
insulator is a molecular graph that conducts/insulates at the Fermi level (zero of
energy) for all connection patterns. We define d–omni–conduction/insulation in
terms of Fermi conduction/insulation for all devices with graph distance d between
connections. This gives a natural generalisation to all graphs of the concept of
near–omni–conduction/insulation previously defined only for bipartite graphs. Ev-
ery molecular graph can be assigned a nullity class and a compact three–letter code
defining conduction behaviour: there are three nullity classes, as each graph has 0,
1, >1 zero eigenvalues (non–bonding molecular orbitals), and three letters drawn
from {C, I,X} indicating conducting, insulating or mixed behaviour within the sets
of devices with connection vertices at odd, even and zero distances d. Examples of
graphs, in 28 cases chemical, are given for 35 out of 81 possible combinations of nul-
lity and three–letter code, and proofs of non–existence are given for 42 combinations,
leaving four cases unresolved.

6.2 Introduction

The SSP (source–and–sink–potential) model was introduced by Ernzerhof et al. [55,
58,62,69,81,103,126–133] as a simple but effective description of ballistic molecular
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conduction. In its graph theoretical (Hückel) incarnation [63, 68, 70, 82, 84, 87, 102,
104,105,107,134], it predicts the transmission as a function of energy for a two–wire
device from an expression involving a functional of four characteristic polynomials:
those of the molecular graph and three subgraphs. Devices are either distinct, with
leads connected to a pair of graph vertices, or ipso, with both leads connected to
a single vertex. The graph theoretical SSP formulation leads to ‘selection rules’ for
conduction at the Fermi level, couched in terms of nullities of the molecular graph
and the subgraphs (i.e., the numbers of non–bonding π orbitals of the corresponding
molecules) [70, 88]. Response of the molecular device is thereby specified in terms
of the underlying molecule and the pattern of connections to the leads.

A natural question relates to omni–conduction and omni–insulation: are there
molecular graphs that are predicted in the ‘empty–molecule’ SSP picture to
conduct/insulate at the Fermi level for all connection patterns? Such graphs
would be respectively omni–conductors or omni–insulators [84]. Various types of
omni–behaviour can be defined in terms of consistent behaviour within distinct,
ipso or all devices: these lead to definition of distinct, ipso and strong omni–
conductors/insulators. Nullity again plays a key role [84].

This variety of behaviour can be captured using a simple classification system. Di-
vision into nullity classes 0, 1, and >1, combined with conduction (C), insulation
(I) or mixed (X) behaviour for distinct and ipso devices leads to a classification of
molecular devices into at most 27 categories, each labelled by a two–letter acronym
and nullity class, which can be proved to reduce to only 13 that are realisable by
general graphs [107].

Bipartite molecular graphs cannot have full omni–conduction, for well understood
mathematical reasons [107], but we can still ask how closely they approach it. Near–
omni systems support as many conducting devices as mathematically possible within
some imposed restriction. Restriction to bipartite graphs (graphs of alternant hy-
drocarbons) allows a three–letter acronym (TLA) for each nullity class. In the
three–letter formulation, devices are characterised by their intra, inter and ipso be-
haviour, further distinguished by nullity. Intra and inter devices are those that have
distinct connection vertices belonging respectively to the same or different partite
sets (i.e. the sets of starred and unstarred atoms of alternant hydrocarbons [6]).
It can be proved that the 81 conceivable classes reduce to just 14 [107]. This per-
spective gives richer detail for possible near–omni–conduction patterns for families
of graphs. In the present context, it also points to a generalisation for non–bipartite
graphs.

The central idea used to realise this final generalisation is a partitioning of con-
duction, insulation and mixed behaviour according to graph–theoretical distance, d,
between the connection vertices. This leads to the definition of d–omni–conductors
and insulators and a new interpretation of the three–letter acronyms used in the
near–omni conduction formalism [107] that applies to all graphs, whether bipartite
or not, and hence now covers all conjugated hydrocarbons.

Specifically, we imagine incorporation of a molecular graph into a circuit through
connections chosen via a pair of calipers with a fixed–jaw opening (see Fig. 6.1).
For simplicity, we suppose that the calipers span a fixed graph–theoretical distance:
the calipers touch contact vertices separated by a fixed distance d (length in edges
of a shortest path between connection vertices L̄ and R̄ in the molecular graph, G)
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Figure 6.1: Schematic of the d–conductor: here, connection vertices at fixed distance d
= 3 are chosen for attachment to wires in a set of devices.

drawn from the set {d} = {0, 1, . . ., D} (where D is the diameter of the graph). We
can then ask the omni–conduction/insulation question for each d, leading to a (D +
1)–dimensional code for each graph. Condensation to three categories (odd–d, non–
zero even–d, and zero–d) then gives a three–letter short code that maps smoothly
onto the inter (odd d), intra (even d 6= 0) and ipso (d = 0) cases for bipartite
graphs, so that all bipartite graphs keep the same label as before. The classification
again gives a maximum of 81 cases when C, I, X are combined with nullity classes
gs = 0, 1, >1, of which some will turn out to be empty.

In the present chapter, we explore the possibilities for d–omni and near–d–omni
conductors and insulators, show that the 81 cases reduce to a significantly smaller
number, and we discuss systematics for long and short codes in various families of
bipartite and non–bipartite graphs of interest in chemistry.

We therefore arrive at a compact, universal scheme for classification of Fermi–level
conduction within the graph theoretical SSP approach.

6.3 Background

6.3.1 The SSP model

In the graph–theoretical version of the SSP approach [63], a device is represented as
a molecular graph G attached by internal vertices (atoms) L̄ and R̄ to source (L) and
sink (R) vertices that represent the effect of semi–infinite wires, which respectively
deliver and remove a fraction T of an electron in steady–state ballistic conduction.
The transmission is a function of electron energy, E. The (n + 2)–vertex device
incorporating molecular and distinct source and sink vertices is illustrated in Fig.
6.2.

Usefully, it turns out that T (E) depends on E through s, t, u and v, the characteristic
polynomials of the four graphs G, G − L̄, G − R̄ and G − L̄ − R̄. At energy E =
0 (the Fermi energy) the transmission is given by the limit of a ratio of high–order
polynomials [84]:

T (0) = lim
E→0

42β̃2

[(s− vβ̃2)2 + (u+ t)2β̃2]
. (6.1)
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Figure 6.2: A molecular device in the SSP model. M is a molecule with a conjugated
π system and its molecular graph has n vertices, of which L̄ and R̄ are connected to
semi–infinite leads. (L̄ and R̄ coincide in an ipso device.) Each lead is replaced by a
non–molecular vertex: source (L) or sink (R), respectively. The whole device {G, L̄, R̄} is
modelled by an (n+2)–vertex graph, with complex weights on source and sink vertices, and
real weights representing Hückel Coulomb and resonance integrals, α and β, on internal
vertices and edges.

where 2 is the determinantal combination ut − sv, and β̃ is a device parameter
determined by relative magnitudes of resonance integrals for wire–to–molecule and
intra–molecule contacts [105].

6.3.2 Selection rules

Selection rules [70, 88] for Fermi–level conduction of devices {G, L̄, R̄} follow from
Eq. (6.1) by considering the nullities of the graphs G, G− L̄, G− R̄ and G− L̄− R̄,
or equivalently the numbers of zero roots of the characteristic polynomials s, t, u
and v. The Cauchy Interlacing Theorem [86] leads to a small set of possibilities,
as listed in Table 6.1, predicting Fermi–level conduction or insulation of a device
according to 11 distinct and 3 ipso cases.

6.3.3 Vertex types

The Interlacing Theorem allows partition of the vertices of the molecular graph into
three subsets: lower, or core vertices (CV) and two types of core–forbidden vertices
(CFV), middle and upper [84,91,92]. Deletion of a CV lowers nullity by 1, deletion
of a middle CFV leaves it unchanged, and deletion of an upper CFV increases the
nullity by 1. Bipartite graphs have no middle vertices. The CV/CFV notation comes
about because the vertices that lower the nullity on deletion are exactly those that
have a non–zero entry in some vector within the graph nullspace, i.e. are ‘within
the core’ of the graph. In chemical terms, core vertices are those with a non–zero
contribution to the charge/spin density resulting from half/full occupation of the
set of non–bonding orbitals in the π system. Conversely, the core–forbidden vertices
all make zero contribution in these cases.

One simple consequence of these definitions is that if a vertex has one CV neighbour,
then it must have at least two, as the neighbourhood of every vertex i in a kernel
vector obeys a zero–sum rule for entries on the neighbours j of i.

Furthermore, it is useful to note that the distance between a pair of CV neighbours
of a middle CFV might be 1 or 2 if G contains triangles. This awkward fact can
complicate the construction of non–existence proofs.
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Rule gs gt gu gv gj T (0)

D1 gs gs+1 gs+1 gs+2 ≥ gs+1 = 0

D2 gs gs+1 gs+1 gs gs 6= 0

D3 gs gs+1 gs gs+1 ≥ gs+1 = 0

D4 gs gs+1 gs gs gs 6= 0

D5 gs gs+1 gs−1 gs ≥ gs = 0

D6 gs gs gs gs+1 gs 6= 0

D7.1 gs gs gs gs gs 6= 0

D7.2 gs gs gs gs ≥ gs+1 = 0

D8 gs gs gs−1 gs−1 ≥ gs = 0

D9 gs gs−1 gs−1 gs gs−1 6= 0

D10 gs gs−1 gs−1 gs−1 gs−1 6= 0

D11 gs gs−1 gs−1 gs−2 ≥ gs−1 = 0

I1 gs gs+1 = 0

I2 gs gs 6= 0

I3 gs gs−1 6= 0

Table 6.1: Selection rules for Fermi–level conduction of molecular devices based on graphs
with nullity gs. Each signature {gt, gu, gv, g} for nullities of the subgraphs and zero roots
of the combination || =

√
ut− sv leads to a prediction of T (0) 6= 0 (conduction), or

T (0) = 0 (insulation). Devices are labelled D for distinct (L̄ 6= R̄) and I for ipso (L̄ = R̄).
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6.3.4 Calculations

Use of a spectral representation and the corresponding Laurent expansion allows
calculation of all the various required nullities needed for the selection rules directly
from the eigenvectors and eigenvalues of the adjacency matrix of G alone [84, 107],
and hence assignment of cases D1 to D11 and I1 to I3 and prediction of conduction
or insulation, device by device. This is readily turned into a method for detection of
omni–conduction/insulation behaviour across the whole family of devices based on a
particular graph. This is the toolkit that was used to find two–letter and three–letter
acronyms, and is employed here again to make the d–omni classification.

6.4 Classification of conduction behaviour

6.4.1 Two–letter codes (all graphs)

We take devices based on a given graph G (chemical or not) to be either distinct or
ipso. For each class of devices we assign a letter from {C, I, X} to denote respectively
a class for which all devices conduct at the Fermi level, a class where all insulate,
or a class that is empty or has mixed behaviour. We further label the classes by
nullity of G, gs, with gs = 0, gs = 1 and gs > 1.

Of the 27 class labels consisting of two letters and a nullity, it can be proved [107]
that 13 correspond to realisable devices {G, L̄, R̄} and the others are labels for empty
classes (impossible devices). A special case is the acronym II, which is unrealisable
for all nullities (see Table IV of [84] and Table 4.6). Fig. 6.3 shows the realisable
combinations of two–letter labels and nullities. Another way of representing these
data is as eight two–letter pairs, with four nullity restrictions. This is illustrated by
the shading scheme in the figure, each colour of which is common to all regions of
the diagram that have the same nullity class.

6.4.2 Three–letter codes (bipartite graphs)

At the next level of classification we treat only bipartite graphs, and partition the
distinct devices into inter and intra, according to whether connections L̄ and R̄
belong to different or identical partite sets. Again, we use an alphabet of three
letters {C, I, X} for omni–conducting, omni–insulating, and mixed or non–existent
sets. The nine two–letter combinations then split into 27 three–letter combinations,
as shown in Table 6.2.

If G is bipartite, it can be proved [107] that only 14 out of the 27 × 3 combinations
of letters and nullities are possible. The allowed classes of bipartite devices having
inter–intra–ipso omni–conduction types, for graphs with n ≥ 4 vertices and nullity
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Figure 6.3: Venn–like diagram showing the two–letter (distinct/ipso) classification of
conduction behaviour in the SSP model of all possible molecular graphs where C, I and X
stand for conduction, insulation and mixed, and subscripts denote the nullity classes (0,
0 and 1, >1, none, all) for which the two–letter code applies.

gs are:

gs = 0 CII,XII;

gs = 1 IXX,XXX;

gs > 1 ICC, IIC, IIX, IXC, IXX,XIX,XXX.

The three connected bipartite graphs with n < 4 each uniquely realise a conduction
type: K1 (isolated vertex) is apparently the only bipartite graph with type XXC,
though other non–bipartite examples exist (see below); CXI appears only for K2

(ethene); ICX only for P3 (allyl).

The main types are well populated: for example, the class CII (gs = 0) covers all
catafused benzenoids [107]. For further details, see the statistical Tables 6.3 to 6.8.

6.4.3 Three–letter codes (all graphs)

What happens if we use an alternative subdivision of distinct devices? Distinct
devices have L̄ and R̄ at non–zero graph theoretical distance, d. We make a sub-
division into distinct devices with odd–d, and even–d, respectively. For brevity, we
will sometimes call these odd and even devices, respectively. For bipartite graphs G,
the odd/even dichotomy maps exactly onto the inter, intra subdivision, so bipartite
graphs retain their old codes, but now non–bipartite graphs G are also included in
the same scheme. In the following section we investigate how many of the 27 × 3

101



Nullity 2–LA → TLA

0, 1 CC → CCC

0 CI → CCI

0, 1 CX → CCX

>1 IC → IIC

none II → III

>1 IX → IIX

0, 1, >1 XC → CIC, CXC, ICC, IXC, XCC, XIC, XXC

0 XI → CII, CXI, ICI, IXI, XCI, XII, XXI

0, 1, >1 XX → CIX, CXX, ICX, IXX, XCX, XIX, XXX

Table 6.2: Conversion of two– to three–letter acronyms. Each two–letter combination
is labelled with allowed nullity values from the set {0, 1, >1} [107]. Note that II → III
would be a strong omni–insulator, a combination that is not possible for any graph [84].

= 81 combinations of three letters and nullity type are possible for chemical and
general, bipartite and non–bipartite graphs.

6.5 Method

As in previous work we adopt a two–pronged approach. First, we check large sets of
examples to find which classes (combinations of a three–letter acronym and nullity
type) have examples amongst small graphs. Then we attempt to prove the emptiness
of the remaining classes.

Assignment of conduction behaviour was carried out by taking sets of graphs
from various graph generators, and using the previously developed [84] conduc-
tion/insulation decision–tree screens based on the selection rules. The screens use
numerical eigenvectors of the adjacency matrix of G to compute coefficients in Lau-
rent expansions of scaled structural polynomials t̂ = t/s, û = u/s, v̂ = v/s and
̂ = /s, and use them to assign conduction or insulation.

The datasets of graphs were generated with nauty [135] (general and chemical
graphs), plantri [110] (cubic polyhedra), fullgen [112] and CaGe [111] (for fullerenes
and benzenoids). We also searched databases of larger vertex–transitive and two–
orbit graphs, kindly provided by Gordon Royle (personal communication to P.W.
Fowler). All graphs considered here are simple (with no loops or multiple edges)
and connected.
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Case gs Vertex count

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CC 0 1 1 1 2 5 8 13 48 77 333 858 3721
CI 0 1
CX 0 5 9 151
XC 0 1 4 11 25 108 270 1178 3553
XI 0 1 6 24 132 902 7669
XX 0 1 2 7 17 71 177 707 1904 8762 25469 126365
CC 1 1 8 9 27 23
XC 1 1 1 2 10 7 42 54 285 539 2773
XX 1 1 6 3 35 27 261 322 2660 3963 32252 55733
IC >1 1
IX >1 1 1 1 2 2 3 6 10
XC >1 1 1 1 1 1 8 21 48 110 317 729
XX >1 7 4 49 52 429 663 4784 8676 61317

Total count 1 1 2 6 10 29 64 194 531 1733 5524 19430 69322 262044

Table 6.3: Distribution over allowed classes (defined by the alphabet C, I, X and nullity)
for two–letter codes of chemical graphs on n ≤ 14 vertices.

6.6 Results

6.6.1 Allowed d–omni codes

A search of chemical graphs (connected graphs with maximum degree ≤ 3) with
vertex counts n ≤ 14, general graphs with n ≤ 11, and vertex–transitive and two–
orbit graphs with n ≤ 24 already supplies examples of 35 of the 81 conceivable
combinations of TLA and nullity class.

Tables 6.3 to 6.8 show some statistics on occurrence of two and three–letter codes
derived from these searches. Throughout the tables, cases not listed are forbidden,
or have smallest examples outside the range of n (CCI, gs = 0, CIC gs = 0, IXC
gs > 1), or are unresolved (CIC gs = 0, ICC gs = 1, IXC gs = 1, ICX gs > 1). An
exhaustive search of all 1,006,700,565 graphs on 11 vertices adds only IXC gs > 1
to the list of exemplified cases obtained for n ≤ 10.

One interesting case is that of the nuciferous graphs (or nucifers), which are non–
singular graphs that are conducting for all distinct devices but insulating for all ipso
devices, i.e. with code CCI for graphs where inter, intra and ipso classes of device
are all non–empty. K2 is the trivial nucifer with no intra devices, and unique TLA
CXI. All non–trivial nucifers are non–chemical [100]; vertex–transitive examples are
known with n ≥ 24 [99], and we were able to find smaller examples, with n ≥ 18,
by considering graphs with two orbits of vertices. Hence, the class CCI with gs = 0
is in fact populated, though not by chemical graphs.

Figs 6.4 – 6.6 show small examples for the 35 cases (chemical where we have one,
and in other cases, bipartite and non–bipartite where we have both).

Next we concentrate on eliminating impossible combinations. Limitations imposed
by the unrealisable subset of two–letter/nullity codes [84] can be used to rule out
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Case gs Vertex count

1 2 3 4 5 6 7 8 9 10

CC 0 1 1 3 7 35 483 9572 771377
CI 0 1
CX 0 31 406 46839
XC 0 4 39 388 16341 795546
XI 0 1 7 129 15356
XX 0 1 5 34 268 4693 114744 6231077
CC 1 3 13 560 12551
XC 1 1 1 1 8 46 591 10663 499908
XX 1 1 7 34 291 3090 80431 2300210
IC >1 1 2 3 7 24
IX >1 1 1 1 5 17 100 914
XC >1 1 3 8 49 370 5564 134397
XX >1 22 101 1823 22178 908372

Total count 1 1 2 6 20 126 839 11631 260566 11716571

Table 6.4: Distribution over allowed classes (defined by the alphabet C, I, X and nullity)
for two–letter codes of general graphs on n ≤ 10 vertices.

Case gs Vertex count

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CII 0 1 2 4 11 47
CXI 0 1
XII 0 1 4 18 96 605 4691
ICX 1 1
IXX 1 1 4 12 62 366
XXC 1 1
XXX 1 2 10 61 413 3311
ICC >1 1 1 2 2
IIC >1 1
IIX >1 1 1 1 2 2 3 6 10
IXC >1 1 1 3 3 5 5 13
IXX >1 4 3 17 21 85 141 530 1014 3904
XXX >1 2 14 5 105 80 918 934 8585

Total count 1 1 1 3 4 12 18 52 101 295 701 2074 5636 17252

Table 6.5: Distribution over allowed classes (defined by the alphabet C, I, X and nullity)
for three–letter codes of chemical bipartite graphs on n ≤ 14 vertices.
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Case gs Vertex count

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CCC 0 1 2 5 8 13 48 77 333 858 3721
CCX 0 5 9 151
CII 0 1 2 4 11 47

CXC 0 1 1 1 2 1 11 9 65 87
CXI 0 1
CXX 0 1 1 6 7 33 49 157
XCC 0 3 4 29 20 214 205
XCX 0 1 1 8 18 14 59 291
XII 0 1 5 19 105 658 5079
XIX 0 1 1 1 5 1 23 5 153 21
XXC 0 4 6 20 68 241 899 3261
XXI 0 3 23 233 2543
XXX 0 1 7 15 68 166 698 1856 8710 25208 125896
CCC 1 1 8 9 27 23
ICX 1 1
IXX 1 1 5 18 93 552
XCC 1 1 1 2
XCX 1 1 1 1
XXC 1 1 2 10 7 41 54 285 539 2771
XXX 1 4 3 30 27 242 322 2567 3963 31699 55733
ICC >1 1 1 2 2
IIC >1 1
IIX >1 1 1 1 2 2 3 6 10
IXC >1 1 1 3 4 6 6 15
IXX >1 5 3 22 26 118 200 807 1643 6709
XIC >1 1 7
XXC >1 1 7 18 44 95 311 712
XXX >1 2 1 27 26 311 463 3977 7033 54608

Total count 1 1 2 6 10 29 64 194 531 1733 5524 19430 69322 262044

Table 6.6: Distribution over allowed classes (defined by the alphabet C, I, X and nullity)
for three–letter codes of chemical graphs on n ≤ 14 vertices.
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Case gs Vertex count

1 2 3 4 5 6 7 8 9 10

CII 0 1 3 16
CXI 0 1
XII 0 1 4 32 597
ICX 1 1
IXX 1 1 5 40
XXC 1 1
XXX 1 2 17 823
ICC >1 1 1 2
IIC >1 1 1 2 2 3
IIX >1 1 1 1 3 7 19 73
IXC >1 1 1 2 5 15 47
IXX >1 5 11 56 198 1204
XIX >1 2 2 17 29 249
XXX >1 2 3 59 144 841

Total count 1 1 1 3 5 17 44 182 730 4032

Table 6.7: Distribution over allowed classes (defined by the alphabet C, I, X and
nullity) for three-letter codes of bipartite graphs on n ≤ 10 vertices.

some three–letter/nullity codes. This removes 25 of the 81 cases.

A further simple argument about non–zero entries in the inverse adjacency matrix
removes all codes of type I** with gs = 0, hence eliminating a further six cases.

Appendix 6.8 lists these and other theorems that can be used to prune the pos-
sibilities still further. Table 6.10 shows the state of play, where 35 classes have
examples and 42 are provably empty. At present, we have 4 stubborn classes that
are undecided, with neither an example nor a proof that there can be no example.

The populations of the various classes for small numbers of vertices vary consider-
ably. As might be expected, type XXX, where there is no regularity in conduction
behaviour, predominates. Other types have very few representatives, e.g. IC gs > 1
apparently contains only K3,3 amongst the chemical graphs. Chemical graphs are
well represented, occurring in nearly all (at least 28) of the 35 resolved classes.

Incidentally, Table 6.10 in its present form constitutes an alternative proof of the
sufficiency of 13 2–letter codes to describe all graphs. Theorem 6.8.1 rules out 13
cases, and another, CX with gs = 1, is ruled out by theorem 6.8.3 or by the simpler
argument that for this nullity, C* implies a nut graph, but a nut graph implies *C.

6.6.2 Expanded d–omni codes

Useful though the short three–letter acronyms are in labelling families of bipartite
and non–bipartite graphs, it is interesting to explore the more detailed information
afforded by the full d–omni approach.

We can define the long code for a molecular graph as a string of (D + 1) letters drawn
from the alphabet {C, I, X}, where each letter refers to the conduction behaviour of
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Case gs Vertex count

1 2 3 4 5 6 7 8 9 10

CCC 0 2 6 34 482 9571 771376
CCX 0 31 406 46839
CII 0 1 3 16

CXC 0 1 1 1 1 12 19 2141 50904
CXI 0 1
CXX 0 4 28 966 51389
XCC 0 1 13 55 2874 78503
XCX 0 1 2 5 16 101 1766 88254
XIC 0 1 1 2 5 8
XII 0 1 5 38 700
XIX 0 1 1 8 15 94 190
XXC 0 2 14 313 11322 666132
XXI 0 1 88 14640
XXX 0 2 28 240 4549 111918 6091244
CCC 1 3 13 560 12551
ICX 1 1
IXX 1 1 14 514
XCC 1 1 1 3 6 20 115 1178
XCX 1 1 1 2 6 30 184
XXC 1 1 5 40 571 10548 498730
XXX 1 6 19 289 2570 80401 2300026
ICC >1 1 1 1 1 2 1 3
IIC >1 1 2 3 7 24
IIX >1 1 1 1 5 17 100 914
IXC >1 1 2 6 27 142 1076
IXX >1 9 29 281 2211 51805
XCC >1 1 1 4 7 37
XCX >1 1 1 3 7
XIC >1 1 3 6 30 142 980
XIX >1 4 18 112 864 10789
XXC >1 1 35 307 5272 132301
XXX >1 9 53 1429 19100 845771

Total count 1 1 2 7 20 126 839 11631 260566 11716571

Table 6.8: Distribution over allowed classes (defined by the alphabet C, I, X and nullity)
for three–letter codes of graphs on n ≤ 10 vertices.
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Nucifer

CCC CCI CCX CIC

CII CXC CXI CXX

XCC XCI XCX XIC

XII XII XIX XXC

XXI XXX

Figure 6.4: Realisation of d–omni–conduction types classified by three–letter acronym
showing the cases for gs = 0, and the entry ‘Nucifer’ is a placeholder for the smallest
example of class CCI. The graph for category CIC is the skeleton of the icosahedron.
In each case, a chemical example is given if we have one, and otherwise bipartite and
non–bipartite examples are given, where we have both.

devices with a fixed value of d, drawn from the available range d = 0, 1, ..., D, where
D is the diameter of the graph. Notice that the entries in the long code are ordered
strictly by increasing d, with alternating even and odd devices starting from ipso
d = 0. The TLA has ipso at the final position, for consistency with the previous
usage [107].

Some long codes are obvious, determined entirely by a three–letter acronym that
contains no X in the first two positions. Table 6.9 analyses long codes for the graph
families defined in Fig. 6.7.

6.7 Conclusions

An important advantage of the SSP (Source and Sink Potential) model for ballistic
conduction is its essentially graph theoretical nature, which enables qualitative pre-
dictions (selection rules) for conduction or insulation at the Fermi level. These allow
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Family Short code Long code Notes

Paths, Pn n even XII (IX)aIC a = (n− 2)/2 CXI
for n = 2

n odd IXX (XI)aC a = (n− 1)/2 ICX
for n = 3

Cycles, Cn n = 4N + 2 CII (IC)a a = (n− 2)/2
n = 4N ICC (CI)aC a = n/4
n odd CCC (C)a a = (n+ 1)/2 CXC

for n = 3

Radialenes, Rn n = 2N XII IXIX(I)a a = bN/2c − 1 IXIC
for N = 3

Semiradialenes, 2p = 4N + 2 XII (XI)a a = (N + 2)/2 XIIIC
n = 3p for n = 4

2p = 4N XII (XI)a a = (N + 4)/2

Bi-cycles, p, q p = 4N + 2, CII (IC)a a = N +N ′ + 1
q = 4N ′ + 2

p = 4N , XII (IX)a(IC)b a = N ,
q = 4N ′, p ≥ q b = N ′

p = 4N + 2, CCC (C)a a = (p+ q − 1)/2
q odd = (n+ 1)/2

p = 4N , XXX (X)a a = (p+ q − 1)/2
q odd = (n+ 1)/2

p, q odd, XXC C(X)aC a = (p+ q − 4)/2 XCC for
p+ q = 4N + 2 = 2N − 1 p = q = 3

p, q odd, XXX (X)aC a = (p+ q − 2)/2
p+ q = 4N = 2N − 1

Table 6.9: Full d–omni codes for Fermi–level conduction of chemical families of molecular
devices, defined in Fig. 6.7.
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CCC ICX IXX IXX

XCC XCX XXC XXC

XXX XXX

Figure 6.5: Realisation of d–omni–conduction types classified by three–letter acronym
showing the cases for gs = 1. In each case, a chemical example is given if we have one,
and otherwise bipartite and non–bipartite examples are given, where we have both.

classification of the whole to a set of devices associated with different patterns of
connection of wires to a given molecular structure. The concepts of omni–conduction
and omni–insulation have been successively refined to describe systematics of con-
duction within chemically significant subsets of these devices. This chapter has
presented a new classification scheme based on graph distance that can deal with
the molecular graph of any conjugated π system. Seventy seven of the 81 hypothet-
ical conduction types have been resolved: 35 are realised by some small graph; 42
are unrealisable by any graph, leaving 4 cases open. Of the 35 realised cases, at
least 28 are exemplified by a chemical graph representative of conjugated π system.
The new scheme is compatible with the previous classification of bipartite graphs
but now applies to all π systems, alternant and non–alternant.

6.8 Appendix: Theorems for d–omni codes

The tripartite classification of vertices into lower, middle and upper types will be
used repeatedly in this section. Also, in this section, wildcard characters are used to
stand for arbitrary letters drawn from the {C, I, X} alphabet. Hence, A*B indicates
a code with behaviour A at odd d, B at zero d and any of C, I or X at even d.

A remark on notation may be useful. The dual use of the letter X to signify either
the absence of devices in a class or the presence of mixed conduction/insulation for
device in a class requires some care when comparing two– and three–letter acronyms.
For example, the complete graph Kn for n > 2 is a strong omni–conductor. The
two–letter acronym for Kn>2 is CC but the TLA is CXC, as d ≤ 1 for any complete
graph on n > 1 vertices, so the class of devices with even distance d ≥ 2 is empty.
For 2 ≤ n ≤ 6 the code CXC applies in this sense to complete graphs; from n ≥ 7
there are graphs with the same TLA code, but now with the X standing for mixed
behaviour for distinct devices with even distance between the connections. This
distinction is obvious from the long code, or just from the graph diameter, but
needs to be kept in mind when looking at how two– and three–letter acronyms are
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ICC ICC IIC IIC

IIX IIX IXC IXC

IXX IXX XCC XCX

XIC XIX XIX XXC

XXX XXX

Figure 6.6: Realisation of d–omni–conduction types classified by three–letter acronym
showing the cases for gs > 1, and case IIC is the ‘Utility Graph’, K3,3 and appears to be
the only chemical in this class. In each case, a chemical example is given if we have one,
and otherwise bipartite and non–bipartite examples are given, where we have both.

correlated.

In deriving rules for exclusion of cases, we begin by noting the combinations forbid-
den by previous results. From the set of theorems proved in [84], 25 of the 81 TLA
can be ruled out immediately.

Theorem 6.8.1 The following 25 cases are not realisable by any graph.

gs = 0 IIC, III, IIX

gs = 1 CCI,CII,CXI, ICI, IIC, III, IIX, IXI,XCI,XII,XXI

gs > 1 CCC,CCI,CCX,CII,CXI, ICI, III, IXI,XCI,XII,XXI

Furthermore, a simple argument based on linear algebra eliminates more classes for
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Figure 6.7: Families of graphs with interesting long codes describing their conduction
behaviour: (a) paths, (b) cycles, (c) radialenes, (d) semiradialenes, (e) bi–cycles. The
parameters [p] and [q] in (a) to (e) may take both odd and even values.

gs = 0. The key result is [84]:

Theorem 6.8.2 For gs = 0, a device with connections L̄ and R̄ is conductive at
the Fermi level if and only if the corresponding off–diagonal element in the inverse
of the adjacency matrix of the graph is non–zero.

Proof: The letter I in the first position implies that all devices with odd d insulate,
and hence that all devices with L̄ and R̄ adjacent insulate. However, definition of
the inverse requires

∑
j

(A)ij(A
−1)ji = Iii = 1 (6.2)

for all i. The only non–zero entries in the adjacency matrix, A, are for pairs i, j
connected by an edge, but the corresponding entries in the inverse, A−1, are zero,
by hypothesis. Hence we have a contradiction.

The consequence is that all codes I** for gs = 0 are unrealisable. This adds a further
six to the list of unrealisable cases listed in Theorem 6.8.1

Corollary 6.8.1 TLA I** is not realisable by any non–singular connected graph.

An easy consequence of Eq. (6.2) is that every vertex L̄ of a non–singular connected
graph G is part of at least one conducting device where R̄ is a neighbour of L̄. There
are at least dn/2e such edgewise–conducting devices. All leaves u−w in G define a
conducting device (G, u, w).

Another straightforward observation is:
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Case Nullity, gs

0 1 > 1

CCC Some Some 6.8.1

CCI Some 6.8.1 6.8.1

CCX Some 6.8.3 6.8.1

CIC Some 6.8.4 6.8.5

CII Some 6.8.1 6.8.1

CIX * 6.8.3 6.8.3

CXC Some 6.8.4 6.8.5

CXI Some 6.8.1 6.8.1

CXX Some 6.8.3 6.8.3

ICC 6.8.2 * Some

ICI 6.8.2 6.8.1 6.8.1

ICX 6.8.2 Some *

IIC 6.8.1 6.8.1 Some

III 6.8.1 6.8.1 6.8.1

IIX 6.8.1 6.8.1 Some

IXC 6.8.2 * Some

IXI 6.8.2 6.8.1 6.8.1

IXX 6.8.2 Some Some

XCC Some Some Some

XCI Some 6.8.1 6.8.1

XCX Some Some Some

XIC Some 6.8.6 Some

XII Some 6.8.1 6.8.1

XIX Some 6.8.6 Some

XXC Some Some Some

XXI Some 6.8.1 6.8.1

XXX Some Some Some

Table 6.10: Conduction behaviour of π–conjugated hydrocarbons, i.e molecules that have
molecular graphs which are chemical, showing the existence status of the 81 conceivable
combinations of odd–even–ipso device behaviour with nullity of the molecular graph. En-
tries ‘Some’ indicate that at least one example has been found. An entry in the form
6.8.number refers to the first theorem that can be used to rule out a given case (see
Section 6.8 for details). Cases marked with a star are unresolved.

Lemma 6.8.1 X in the ipso position implies that both middle and upper vertices are
present (for gs = 0), and at least upper and lower vertices are present (for gs ≥ 1).

This is used to prove:

Theorem 6.8.3 C*X with gs ≥ 1 is not realisable.

Proof: By Lemma 6.8.1, X in the ipso position implies vertices CV and upper
CFV are present in G. Middle CFV vertices may also be present. As the graph is
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connected it must have at least one edge (d = 1) connecting a CV and either an
upper or a middle CFV, which are Cases D5 and D8, respectively, and insulating,
contradicting the claimed conduction for all devices with odd d.

This eliminates a further five cases.

Lemma 6.8.2 All graphs with gs ≥ 1 on n > 2 vertices have at least two core
vertices.

Proof: For gs = 1, the nullspace contains a unique eigenvector. Either the graph
has only core vertices and |CV| = n and by hypothesis n > 1, or there is a core–
forbidden vertex v adjacent to a core vertex u and the zero–sum rule for entries in the
eigenvector on the neighbourhood of v demands at least one additional neighbour
of v to be a core vertex.

For gs > 1, the nullspace contains gs independent eigenvectors and a given core
vertex u can be assigned a zero entry in at least one vector by taking a linear
combination, but again by the zero–sum rule for the neighbourhood of each vertex,
this vector must contain at least one non–zero entry, and so |CV| ≥ 2.

Lemma 6.8.3 If gs ≥ 1 then there exist at least two CVs therefore some ipso
conduction exists, and **I is impossible.

Lemma 6.8.4 If gs ≥ 1 and the TLA code is **C, then the graph has no upper
CFV vertices.

Theorem 6.8.4 CIC and CXC with gs = 1 are not realisable.

Proof: The TLA code with C in the ipso position can mean two things: either the
graph G has only core vertices and it is a nut graph with the TLA code CCC. Or
else, G must have core vertices and middle CFV. Since G is connected, there exists
an insulating CV–CFV edge (Case 8) contradicting the C in the first position of the
TLA codes CIC and CXC.

Hence, two further combinations are eliminated.

Theorem 6.8.5 CIC and CXC with gs > 1 are not realisable.

Proof: C in the ipso position implies that G has CV and possibly middle vertices.
However, there can be no CV–middle edge, as this would imply insulation for at
least one device with d = 1 device, and in the TLA we have C for all odd d. Hence
there are no middle vertices, and G is a core.

Consider a CV–CV edge pair u, v. Choose a kernel vector that has non–zero entries
at positions u and v. The device {G, u, v} is not Case 11, because this would be an
insulator, in contradiction of the C entry in the first position of the TLA. Hence, all
other vectors in the kernel space must have zero entries at position u and position
v, as otherwise we would have a Case 11 (insulating edge). G is connected, so
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by induction on edge pairs it is possible to choose a kernel eigenvector with all
entries non–zero, forcing all other kernel vectors to be filled by zeroes. This is a
contradiction of the claim that G has gs > 1.

Note that CCC is already proved impossible for gs > 1 by Theorem 6.8.2, which
follows from Theorem 4.3 of [84], so in fact we have that C*C is impossible for
gs > 1.

Theorem 6.8.6 XIC and XIX with gs = 1 are not realisable.

Proof: First note that G is not a nut graph (as the TLA code is not CCC). Taking
the first part of the theorem, the TLA code XIC implies that G has at least 2 CVs
and at least one middle CFV, because it is an ipso omni–conductor that is not a
nut. Therefore, there exists Case 8 insulation for a CV–middle CFV pair that are
either at odd or even distance apart. XIC allows both.

All CV–CV pairs give conduction since Case 11 cannot occur (owing to gs = 1). As
the TLA implies that all pairs with d even must give insulation, it follows that all
CV–CV pairs are odd distances apart.

Case 1: All CVs induce a core which is the union of cliques (Kp, p > 1). This gives
a contradiction since the core has to induce a singular graph. (Note that complete
graphs are not singular, for p > 1.)

Case 2: There exist CVs that form an independent set such that each pair is at
distance 3, 5, etc. apart. Each middle CFV adjacent to a CV must be adjacent to
at least 2 CVs, by the zero–sum rule. Hence, either there exists an edge between
the two CVs and so a middle CFV and its two adjacent CVs are on a triangle, or
else, there is no edge between the 2 CVs that are adjacent to the middle CFV. In
the former case where there is an edge between the 2 CVs, then the CVs are not
independent and so give rise to a clique that is non–singular. In the latter case
where there is no edge between the 2 CVs, these 2 CVs are an even distance apart
and these can only give rise to conduction by Case 9 or 10. Thus, in either of these
two cases, a contradiction results for XIC.

For the second part of the proof, the reasoning for XIC can be adapted to exclude
XIX also. The TLA code XIX implies that with X in the ipso position the vertices
of G are CV and CFV, with upper CFV for sure and possibly middle CFV. G also
has at least 2 CVs. The argument follows the same course as listed for Case 1 and
Case 2, but now uses a general CFV instead of a middle CFV.

The combination of Theorems 6.8.1 and 6.8.6, shows that XI* with gs = 1 is not
realisable. Thus, the codes CIX with gs = 0, ICC and IXC with gs = 1 and ICX
with gs > 1 are the only codes left either to be proved unrealisable or furnished with
an example.

115



116



Chapter 7

A molecular orbital view of the
SSP method

The main results described here have been published in “A new approach to the
method of source–sink potentials for molecular conduction” The Journal of Chemi-
cal Physics 143, 191405, (2015), Pickup, Fowler, Borg and Sciriha [82]. This chapter
is closely based on this reference, with some rewriting to incorporate new material
and remove unnecessary repetitions of introductory material. In earlier work, both
in the literature [55,58,62,69,81,103,126–133] and reported in this thesis it has been
shown that the graph–theoretical formulation of the SSP model can lead to general
qualitative conclusions about molecular conduction. This work was based on an
atomic–orbital formalism. In the present chapter the tight–binding SSP equations
for ballistic conduction through conjugated molecular structures are re–derived in
an inhomogeneous form that avoids singularities. The re–derivation gives new re-
sults for families of molecular devices in terms of eigenvectors and eigenvalues of the
adjacency matrix of the molecular graph, i.e., molecular orbitals and orbital ener-
gies. The present chapter defines the transmission of electrons through individual
molecular orbitals (MO) and through MO shells. Conduction near eigenvalues is
dominated by the transmission curves of nearby shells of orbitals, which may be
inert or active. An inert shell does not conduct at any energy, not even at its own
eigenvalue. Conduction may occur at the eigenvalue of an inert shell, but is then
carried entirely by other shells. If a shell is active, it carries all of the conduction at
its own eigenvalue.

7.1 A rederivation of the SSP equations

Our starting point is the SSP device defined with general (unsymmetrical) leads.
The SSP expression for the transmission of such a device is

T (E) = B(qL, qR)
j2

|D|2
(7.1)

where
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B(qL, qR) = (2βL sin qL)(2βR sin qR)β2
L̄Lβ

2
R̄R (7.2)

is a ‘bandpass’ function ensuring that the electron energy is within the conduction
band of each lead, j2 = ut− sv, and

D(E) = βLe
−iqLβRe

−iqRs− βRe−iqRβ2
L̄Lt− βLe

−iqLβ2
R̄Ru+ β2

L̄Lβ
2
R̄Rv (7.3)

This expression applies equally to systems for which weighted graphs are appropri-
ate, such as systems displaying π–distortivity [136,137], or doped with hetero–atoms.
All applications of the SSP model in the present chapter are based on devices with
one–dimensional leads attached to single atoms of the molecule. More complicated
leads and connection patterns can be accommodated by modification of the con-
tents of the blocks of the device matrix (see Eqs (7.22) and (7.29)). Examples of
SSP treatments of multichannel devices are given in [138] and [133].

The new feature of the approach used here is that it is based on qualitative
molecular–orbital theory as we believe that such models allow ‘for a transparent
interpretation of molecular conductance in terms of discrete eigenstates’ [69]. The
use of orbitals and orbital densities gives an opportunity for using familiar chemical
concepts to give insight [103,130,139,140].

Figure 7.1: (a) An SSP molecular device comprising a molecule attached to source and
sink atoms L and R via contacts L̄ and R̄, respectively. (b) A molecule attached to infinite
left– and right–hand wires, showing the numbering scheme adopted for the atoms in the
wires.

Fig. 7.1 replicates the SSP device and consists of the molecule with two attached
infinite wires. The normalisation of the wavefunctions for the full device connected
to infinite wires, where the numbering scheme for atoms in Fig. 7.1(b) is designed
to simplify the algebra that follows by elimination of the unnecessary phase factors
that have confused previous derivations [62, 63,103].

In what follows, p, q, . . . will be used for atoms, labels k, k′, . . . for molecular
orbitals, and K for shells.
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7.1.1 Flux normalisation

The target in an SSP theory is the device wavefunction. This consists of lead
and molecule parts. The wavefunctions ψleft, ψright in left– and right–hand wires,
respectively, are written in the tight–binding (Hückel) approximation as linear com-
binations

ψleft =
0∑

p=−∞

cleft
p φp

ψright =
∞∑

p=1

cright
p φp (7.4)

where the φp are basis functions on the atoms of left and right wires, and the
Hückel Coulomb and resonance parameters for each wire are αL, βL, and αR, βR,
respectively. As in Chapter 2, coefficients for the left and right wires are given by

cleft
p =

1

NL

(
eiqLp + re−iqLp

)
cright

p =
1

NR

τeiqRp (7.5)

for the specified boundary conditions, where the left–hand wavefunction is a com-
bination of a forward–travelling wave (eiqL) and a backward–travelling component
(e−iqL) with a reflection coefficient, r. The molecule acts as a potential barrier that
produces a reflected wave in the left wire and a forward transmitted wave (eiqR) in
the right wire, with a transmission coefficient, τ . This corresponds to a flux of elec-
trons with energy E, satisfying both the dispersion relations below and the Hückel
Schrödinger equation for infinite wires, in terms of the wavevectors qL and qR.

E = αL + 2βL cos qL = αR + 2βR cos qR (7.6)

The normalisation factors NL and NR have been introduced in Eq. (7.5) to obtain
the requisite unit electron flux. Hence, the current density [141] from atom (p− 1)
to atom p in the left wire, using the standard Hückel formulation is

J left
(p−1)→p =

1

i

(〈
φp−1|Ĥ|φp

〉
cleft∗

p−1c
left
p − c.c.

)
=

2βL sin qL
N2
L

(
1− |r|2

)
(7.7)

where we have used < φp−1|Ĥ|φp >= βL. This expression is independent of the
index p, showing that a constant current flows down the wire. This current is
required to be equal to the transmission probability, T (E). Hence, we deduce that
the correct flux normalisation is achieved by setting

N2
L = 2βL sin qL (7.8)

and using an analogous derivation for the right–hand wire

N2
R = 2βR sin qR (7.9)
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7.1.2 The SSP equations in the atomic orbital basis

We now look for the portion of the wavefunction that lies within the molecule and
represent it in AO form. The secular equations of the device shown in Fig. 7.1(b)
for atom 0 in the left–hand wire and for atom 1 in the right–hand wire are

βLc
left
−1 + (αL − E) cleft

0 + βL̄LcL̄ = 0

βR̄RcR̄ + (αR − E) cright
1 + βRc

right
2 = 0 (7.10)

where βL̄L, βR̄R are resonance parameters for the connections from the wires to the
molecule. We wish to replace the left wire by a single source atom, L, sited at atom
0 and creating a flux of electrons corresponding to the wavefunction ψleft in Eqs
(7.4) and (7.5). Similarly, we wish to replace the right wire by a single sink atom,
R sited at atom 1 and removing the transmitted flux. This requires the definition
of complex potentials, ΘL,ΘR, on these source and sink atoms to replace the effects
of atoms to the left of atom 0, and to the right of atom 1, respectively [62].

Hence, we define

βLc
left
−1 = ΘLc

left
0

βRc
right
2 = ΘRc

right
1 (7.11)

These complex potentials, ΘL, ΘR, are the same as the quantities denoted by Σ in
Ernzerhof’s original derivation of the SSP equations [62]. The potentials can now
be derived by using the expressions from Eq. (7.5) for the orbital coefficients

ΘL = βL
cleft
−1

cleft
0

= βL
(e−iqL + reiqL)

(1 + r)

ΘR = βR
cright

2

cright
1

= βRe
iqR (7.12)

In the standard SSP formalism [63,103,126] these potentials are used directly in the
SSP secular equations. However, when the reflection coefficient, r, becomes equal
to −1, the potential ΘL becomes infinite. A more satisfactory approach, avoiding
this singularity, is obtained by substituting the explicit form of cleft

−1 into Eq. (7.10)
to give

βL
NL

(
e−iqL + reiqL

)
+ (αL − E) cL + βL̄LcL̄ = 0 (7.13)

and noting from Eq. (7.5) that

cL ≡ cleft
0 =

1 + r

NL

(7.14)

we deduce that
r = NLcL − 1 (7.15)

Substituting for r in Eq. (7.13), we obtain

(
βLe

iqL + αL − E
)
cL + βL̄LcL̄ =

2iβL sin qL
NL

= iNL (7.16)
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where we have placed the inhomogeneity on the right–hand side. We can carry out
the same procedure using cright

1 from Eq. (7.5) in Eq. (7.10) to give

cR ≡ cright
1 =

τ

NR

eiqR (7.17)

and hence
cright

2 = e2iqR
τ

NR

= eiqRcR (7.18)

Substitution of this expression into Eq. (7.10) gives

βR̄RcR̄ +
(
αR − E + βRe

iqR
)
cR = 0 (7.19)

which does not contain an inhomogeneity.

With these modifications to the boundary conditions, the wavefunction for
the model device can be found. The wavefunction

ψSSP =
n∑

p=1

cAO
p φp + cLφL + cRφR (7.20)

is the solution to the SSP equations in the AO formalism. The φp here are basis
functions on the atomic centres, and φL, φR are basis functions on source and sink
atoms. The (n+ 2)–dimensional SSP equations for the SSP device depicted in Fig.
7.1(a) can now be written in matrix form as

PAO

cAO

cL
cR

 =

 0
−iNL

0

 (7.21)

where the device matrix is

PAO =

E1−A −bL −bR
−b̃L E − αL − βLeiqL 0

−b̃R 0 E − αR − βReiqR

 (7.22)

and where for our single–atom–contact configurations the connection matrix ele-
ments are

(bL)p = δpL̄βL̄L

(bR)p = δpR̄βR̄R (7.23)

and the source and sink matrix elements are

E − αL − βLeiqL = βLe
−iqL

E − αR − βReiqR = βRe
−iqR (7.24)

Here the dispersion relations Eq. (7.6) were used to remove E from source and sink
matrix elements.
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7.1.3 The SSP equations in the MO basis

The form of the SSP matrix equations in the molecular orbital (MO) representation
is useful for analysing the behaviour of the solution at the eigenvalues of the isolated
molecule. The Hückel MOs

ψk =
n∑

p=1

φpUpk (7.25)

diagonalise the secular matrix of the isolated molecule, i.e.,

n∑
q=1

ApqUqk = Upkεk for p = 1, 2, . . . , n, (7.26)

Assuming the n × n–dimensional adjacency matrix A is real and symmetric, the
matrix U can be considered to be orthogonal. Hence, we can define an augmented
(n+ 2)× (n+ 2)–dimensional orthogonal matrixU 0 0

0 1 0
0 0 1

 (7.27)

which can be used to transform the AO–based SSP secular equations (Eq. (7.10))
to give the MO–based version

PMO

cMO

cL
cR

 =

 0
−iNL

0

 (7.28)

where the SSP device matrix in the MO basis is

PMO =

 p −uL −uR
−ũL βLe

−iqL 0
−ũR 0 βRe

−iqR

 (7.29)

and the diagonal MO–MO block has

pkk′ = δkk′pk = (E − εk) (7.30)

The connection matrix in the MO basis is more complicated than in the AO form,
i.e.,

(uL)k =
(
ŨbL

)
k

= βL̄LUL̄k

(uR)k =
(
ŨbR

)
k

= βR̄RUR̄k (7.31)

and the MO expansion coefficients are related to those in the AO basis by

cMO = ŨcAO (7.32)
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The SSP wavefunction, the solution to Eq. (7.28), is then

ψSSP =
n∑

k=1

cMO
k ψk + cLφL + cRφR (7.33)

where now the ψk are MOs of the molecule, the coefficients cL, cR are identical in
Eqs (7.20) and (7.33), and the MO and AO coefficients are related as in Eq. (7.32).

The two mathematically equivalent expansions of the wavefunction ψSSP, i.e., Eqs
(7.20) and (7.33), correspond to physically different models of the conduction pro-
cess, as illustrated in Fig. 7.2 for the example of an end–to–end connected allyl
chain. In one, the electron hops from AO to AO along edges of the molecular graph;
in the other, the MOs act as parallel channels for conduction of electrons.

Figure 7.2: Alternative schematic representations of ballistic conduction in a source–sink
model device: (a) in the AO basis, where conduction between source and sink takes place
via bonds between atoms carrying single basis functions; (b) in the MO basis, where the
molecular orbitals act as parallel conducting channels between source and sink.

All coefficients cL, cR, cMO and cAO are in general complex, but the transformation
matrix U refers to the unperturbed molecule and can always be chosen to be real.
It may sometimes be convenient to use complex U for degenerate eigenvalues, but
it is never necessary.

7.2 A mathematical toolkit

This section is a mathematical investigation of the structural polynomials and re-
lated quantities used for derivation and analysis of the solutions of the SSP equa-
tions.
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7.2.1 Structural polynomials in the MO basis

The aim here is to re–express the structural polynomials that have been discussed
in earlier chapters (Chapters 3 and 4) in terms of the eigenvectors and eigenvalues
of the adjacency matrix defined in Eq.(7.26). Hence,

s(E) = det (E1−A) =
∏

k

(E − εk) =
∏

k

pk (7.34)

using the notation of Eq. (7.30), and the product runs over the whole molecular
spectrum. We shall consider the general structural polynomials

rs = (−1)r+s det (E1−A)[r,s]

vpqrs = (−1)p+q+r+s det (E1−A)[pq,rs] (7.35)

which subsumes all the definitions in Eq. (2.26), namely,

t = L̄L̄, u = R̄R̄,  = L̄R̄, v = vL̄R̄L̄R̄ (7.36)

It can be shown that [142]
svpqrs = {prqs}− (7.37)

which has been defined using the notation for the anti–symmetrised product

{XprXqs}− = XprXqs −XpsXqr (7.38)

Eq. (7.37) is a more general form of the Jacobi–Sylvester relation given in Eq. (4.2).

The ‘hat’ symbol will indicate that a quantity is divided by the polynomial s, and
will be referred to as a ‘reduced’ structural polynomial.

X̂ =
X

s
(7.39)

These can be shown to be matrix elements of the inverse of the characteristic matrix
by using the well-known Cramer’s rule [76] result

̂rs = (−1)r+s det (E1−A)[r,s]

det (E1−A)
= (E1−A)−1

rs (7.40)

The spectral representation of the polynomial follows directly as

̂rs =
∑

k

UrkUsk

E − εk
(7.41)

Defining the quantities

sk =
s

pk

skk′ =
s

pkpk′
(7.42)

we see that all the (real) characteristic polynomials of the device, Eq. (2.26), can
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be expressed in terms of these factors as

rs(E) =
∑

k

UrkUsksk

vpqrs(E) =
∑
k>k′

{UpkUqk′}− {UrkUsk′}− skk′ (7.43)

where Eqs (7.37) and (7.40) have been used to deduce the formula for v.

7.2.2 Expansion of the reduced structural polynomials

It will prove useful to expand solutions of the SSP equations as a series around
molecular eigenvalues. The degeneracy, g, of such eigenvalues needs to be taken
into account. The degenerate space is referred to as a ‘shell’, and capital Roman
indices are used to label such shells. The individual MOs in the shell space, K, will
then be ψk for k ∈ K. (Strictly, g is gK, but the K dependence will be suppressed
when there is no ambiguity.) To understand more fully what happens when the
electron energy is at a shell eigenvalue, εK, we need to explore the behaviour of the
reduced structural polynomials near that eigenvalue. For the most general reduced
structural polynomial shown in Eq. (7.35), we have

̂rs(E) =
∑
k∈K

UrkUsk

E − εK
+
∑
a/∈K

UraUsa

E − εa

=
∑

k

UrkUsk

pK

+
∑

a

UraUsa

εK − εa + pK

(7.44)

The summation indices k, k′, . . . , label MOs inside the degenerate shell K, and in-
dices a, b, . . . , label MOs that are ‘off–shell’, without explicitly indicating the sum-
mation ranges. Within the radius of convergence, each reduced structural poly-
nomial can be expanded in a Laurent series around the point E = εK. We use
pK = E − εK as the expansion parameter. It is easy to deduce that

̂rs(E) =
̂rs,−1

pK

+ ̂rs,0 + ̂rs,1pK + O(p2
K) (7.45)

where all dependence upon E is through powers of pK, and the expansion coefficients
are

̂rs,−1 =
∑

k

UrkUsk

̂rs,0 =
∑

a

UraUsa

(εK − εa)

̂rs,1 = −
∑

a

UraUsa

(εK − εa)2
(7.46)

A similar derivation, using Eq. (7.37) in the form v̂pqrs = {̂pr̂qs}−, produces

v̂pqrs(E) = p−2
K v̂pqrs,−2 + p−1

K v̂pqrs,−1

+ v̂pqrs,0 + v̂pqrs,1pK + O(p2
K) (7.47)
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where

v̂pqrs,−2 =
∑
k>k′

{UpkUqk′}−{UrkUsk′}−

v̂pqrs,−1 =
∑
k,a

{UpkUqa}−{UrkUsa}−
(εK − εa)

v̂pqrs,0 =
∑
a>b

{UpaUqb}−{UraUsb}−
(εK − εa)(εK − εb)

−
∑
k,a

{UpkUqa}−{UrkUsa}−
(εK − εa)2

(7.48)

The terms ̂rs,−1 (and hence t̂−1, û−1, and ̂−1) and v̂pqrs,−2, v̂pqrs,−1 (and hence
v̂−2, v̂−1), are all traces over the degenerate shell. These are therefore invariant
to unitary transformations amongst the MOs within the shell subspace.

In later parts of this chapter we will need definitions of restricted structural poly-
nomials that depend only upon ‘off–shell’ orbitals, i.e.,

sA(E) =
∏

a

pa

̂A,rs(E) =
∑

a

UraUsa

E − εa

v̂pqrs,A(E) =
∑
a>b

{UpaUqb}−{UraUsb}−
(E − εa)(E − εb)

(7.49)

where ‘A’ denotes all eigenvectors associated with eigenvalues εa 6= εK. These defini-
tions are exactly analogous to those in Section 7.2.1. It can be seen from Eqs (7.44,
7.45, 7.47, 7.48), that the whole energy–dependence of the structural polynomials
can be expressed as

pK̂rs(E) = ̂rs,−1 + pK̂A,rs(E)

p2
Kv̂pqrs(E) = v̂pqrs,−2 + pKv̂pqrs,−1 + p2

Kv̂A,pqrs(E) (7.50)

In earlier work [70, 84] (see Chapter 4) conduction and insulation properties have
been linked to the interlacing properties of the eigenvalues of a graph. Since

s(E) = pgKsA(E) (7.51)

we deduce that the polynomials are written exactly in terms of the degeneracy as

rs(E) = pg−1
K sA(E) [̂rs,−1 + pK̂A,rs(E)]

vpqrs(E) = pg−2
K sA(E)

[
v̂pqrs,−2 + pKv̂pqrs,−1 + p2

Kv̂A,pqrs(E)
]

(7.52)

The Laurent expansion about the shell eigenvalue equivalent to these expressions is

rs(E) = pg−1
K sA(E)

(
̂rs,−1 + ̂rs,0pK + ̂rs,1p

2
K + . . .

)
vpqrs(E) = pg−2

K sA(E)
(
v̂pqrs,−2 + v̂pqrs,−1pK + v̂pqrs,0p

2
K + v̂pqrs,1p

3
K + . . .

)
(7.53)

The structural polynomial t = L̄L̄, is the characteristic polynomial for the (n− 1)–
vertex graph derived by removing vertex L̄ from the original molecular graph. We
can read the degeneracy, gt, for eigenvalue εK in the spectrum of this vertex–deleted
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graph directly from the lowest non–vanishing coefficient of the expansion of t in Eq.
(7.53). Hence, if t̂−1 6= 0, then gt = g − 1, etc. Similar deductions can be made for
the graphs corresponding to polynomials u and v.

This machinery can be applied (see Section 7.5.4) to the case of transmission at
E = εK, to give a simple link to previous results deduced using interlacing [70] and
reported in Chapter 4.

7.2.3 The expansion of D(E)

We can also use the expansion of the structural polynomials in Eq. (7.50) together
with an expansion of the denominator from Eq. (7.3) to give

D̂ =
D

s
= p−2

K D̂−2 + p−1
K D̂−1 + D̂0 + O(pK) (7.54)

where the expansion terms

D̂−2 = β2
L̄Lβ

2
R̄Rv̂−2

D̂−1 = β2
L̄Lβ

2
R̄Rv̂−1

− βLe−iqLβ2
R̄Rû−1 − βRe−iqRβ2

L̄Lt̂−1

D̂0 = βLe
−iqLβRe

−iqR + β2
L̄Lβ

2
R̄Rv̂0

− βLe−iqLβ2
R̄Rû0 − βRe−iqRβ2

L̄Lt̂0 (7.55)

are deduced directly from Eq. (7.3). The values of the wire momenta, qL and
qR in Eq. (7.55), are to be evaluated at the eigenvalue εK and should also be
expanded in powers of pK. The leading term in this expansion is O(1), and is
just the momentum evaluated at the eigenvalue. The higher terms in pK do not
contribute to any expressions we derive. Of course, the D̂0 term in Eq. (7.55) will
contain a contribution arising from the expansion of the momenta in D̂−1. These
extra terms are unimportant for our purposes, since they vanish in all the cases
where D̂0 is the leading term in the expansion of D̂.

We can also use Eqs (7.51) and (7.54) to write D(E) in the form of Eq. (7.50) as

D(E) = pg−2
K sA(E)

{
D̂−2 + pKD̂−1 + p2

KD̂A(E)
}

(7.56)

This expression can be used to deduce the values of E at which D(E) vanishes. In
particular, it is clear that D(E) may have a root at E = εK, with a multiplicity
that depends on which (if any) of the terms D̂−2, or D̂−1 is non–zero, and on the
degeneracy g. The ‘off–shell’ quantity D̂A is defined as

D̂A = βLβRe
−i(qL+qR) − βRβ2

L̄Le
−iqR t̂A(E)− βLβ2

R̄Re
−iqLûA(E) + β2

L̄Lβ
2
R̄Rv̂A(E)

(7.57)

127



7.3 Solution of the SSP model in the AO basis

Eq. (7.21) has a unique solution provided the (n+2)–dimensional SSP characteristic
matrix, PAO, on the left–hand side of Eq. (7.21) has an inverse, i.e., iff

det PAO = det PMO = D(E) 6= 0 (7.58)

where D(E) is given by Eq. (7.3). The matrix may be singular in cases where
E matches an eigenvalue of the isolated molecule, depending on fulfilment of some
conditions on the rank of a related matrix (see Section 7.5.3 and Eq. (7.56)). It is
useful, however, first to assume that the inverse exists, and only later to examine
separately the cases where it does not. The first line of the AO SSP matrix equation,
Eq. (7.21), can then be rearranged to give

cAO = (E1−A)−1 (bLcL + bRcR) (7.59)

provided E is not an eigenvalue of A. In components, this is the two–term formula

cAO
p = (E1−A)−1

pL̄ βL̄LcL + (E1−A)−1
pR̄ βR̄RcR

= ̂pL̄βL̄LcL + ̂pR̄βR̄RcR (7.60)

The source–and–sink equations from Eqs (7.21) and (7.22) are

−b̃LcAO + βLe
−iqLcL = −iNL

−b̃RcAO + βRe
−iqRcR = 0 (7.61)

The secular equations, Eq. (7.61), can be simplified by substituting for cAO from

Eq. (7.59), and noting that the products b̃ (E1−A)−1 reduce to single entries in
the inverse, which can in turn be expressed as ratios of determinants by Cramer’s
Rule, giving

F̂LcL − βL̄LβR̄R̂cR = −iNL

−βL̄LβR̄R̂cL + F̂RcR = 0 (7.62)

as a 2× 2 matrix equation for cL and cR. The new quantities used in Eq. (7.62) are
F̂L and F̂R,

F̂L = βLe
−iqL − β2

L̄Lt̂

F̂R = βRe
−iqR − β2

R̄Rû (7.63)

given in terms of the reduced structural polynomials defined previously. The solution
to Eq. (7.62) gives the source and sink coefficients in the wavefunction as

cL = −iNL
F̂R

D̂
= −iNL

FR
D

cR = −iNLβL̄LβR̄R
̂

D̂
= −iNLβL̄LβR̄R



D
(7.64)

where D = D(E) = sD̂(E) is given by Eq. (7.3).
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7.3.1 Transmission

We are now in a position to derive the expression Eq. (7.1) for the total transmission,
using Eqs (7.17) and (7.64), as

T = |τ |2 = (βL̄LβR̄RNLNR)2 2

|D|2
= B(qL, qR)

2

|D|2
(7.65)

which is, of course, identical to that derived previously [63].

The current from the source to the left contact in the molecule is

JAO
L→L̄ =

1

i

(
〈φL|Ĥ|φL̄〉c∗LcAO

L̄ − c.c.
)

= −iβL̄L
(
c∗Lc

AO
L̄ − c.c.

)
(7.66)

and since from Eq. (7.60)

cAO
L̄ = βL̄Lt̂cL + βR̄R̂cR (7.67)

it follows that (
c∗Lc

AO
L̄ − c.c.

)
=
(
βL̄Lt̂|cL|2 + βR̄R̂c

∗
LcR − c.c.

)
= ̂βR̄R (c∗LcR − cLc∗R) (7.68)

Substitution of Eq. (7.68) into Eq. (7.66) gives

JAO
L→L̄ = −iβ2

L̄Lβ
2
R̄R

N2
L

|D|2
2

s
(F ∗R − FR)

= −iβRβ2
L̄Lβ

2
R̄RN

2
L

2

|D|2
(
eiqR − e−iqR

)
= B(qL, qR)

2

|D|2
(7.69)

which is the same expression as that given for the gross transmission T (E) in Eqs
(7.1) and previously [63], as it must be, since there is a single edge connection
between L̄ and L through which all current must pass. It is easy to derive the
analogous expression for the current in the right–hand link, and to show that likewise

JAO
R̄→R(E) = JAO

L→L̄(E) = T (E) (7.70)

In the next section we shall partition these expressions for total current.

7.3.2 Bond currents

Currents between atoms within the molecule will be referred to as bond or edge
currents. They are

JAO
p→q =

1

i

(
〈φp|Ĥ|φq〉cAO∗

p cAO
q − c.c.

)
= −iβpq

(
cAO∗

p cAO
q − c.c.

)
(7.71)
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Using Eqs (7.60) and (7.64), we can deduce that

JAO
p→q = B(qL, qR)βpq



|D|2
{pL̄qR̄}

s

= B(qL, qR)βpq


|D|2
vpqL̄R̄ (7.72)

where the final equality uses the definition Eq. (7.37).

The bond current, JAO
p→q, vanishes when cL = cR = 0. This is implied by Eq. (7.60)

and Eq. (7.71). This fact will be used in the discussion of behaviour of transmission
quantities at molecular eigenvalues.

The bond currents satisfy a sum rule. Hence, using the first line of Eq. (7.71) and
the pth secular equation from Eq. (7.21)∑

q

JAO
p→q(E) = δpL̄

βL̄L
i

(
cAO

p c∗L − cAO∗
p cL

)
+ δpR̄

βR̄R
i

(
cAO

p c∗R − cAO∗
p cR

)
(7.73)

and substitution of Eq. (7.60) in Eq. (7.73) gives∑
q

JAO
p→q(E) =

βL̄LβR̄R
i

(c∗LcR − c∗RcL)

×
(
δpL̄̂pR̄ − δpR̄̂pL̄

)
(7.74)

After substitution of Eq. (7.64) we obtain the final result∑
q

JAO
p→q(E) = T (E)

(
δpL̄ − δpR̄

)
(7.75)

Eq. (7.75) says that the sum of currents out of any vertex is zero. The term δpL̄ on
the right–hand side of Eq. (7.75) arises because the vertex L̄ has a current in from
the source L to balance its outward currents. A similar remark can be made for the
vertex R̄.

7.3.3 A physical corollary for ipso devices

An important result follows from Eq. (7.72). It is clear from the structure of the
equation that

JAO
p→q = 0 when L̄ = R̄ (7.76)

because the term in vpqrs vanishes when r = s (see Eqs (7.37) and (7.38)), i.e., in
the case of an ipso connection there are no internal molecular currents. Conduction
can only take place for ipso devices, if at all, through the directly connected links
LL̄ and L̄R.

The physical interpretation of this mathematical fact is also clear. In an ipso device
the net flow into the rest of the molecule from the single contact atom L̄ = R̄ is
JAO
L→L̄(E) = JAO

L̄→R(E) = T (E), so any putative flow of current within the molecule
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would consist of a set of self–cancelling closed circulations of arbitrary direction. It
makes physical sense that these should have zero amplitude.

7.4 General solutions of the SSP equations in the

MO basis

For solution of the SSP equations in the MO basis, we first study the equations for
energies away from molecular eigenvalues.

7.4.1 Solutions away from eigenvalues

The solution of the SSP equations, assuming that E is not an eigenvalue, proceeds
in the same way as for the AO case. For the SSP coefficients, cMO

k , we find, from
Eq. (7.28) with E 6= εK and hence pK 6= 0,

cMO
k = p−1

K (cLβL̄LUL̄k + cRβR̄RUR̄k) (7.77)

The equations for cL and cR are identical in MO and AO representations. However,
the interpretations of the solutions in the two cases are different.

A new possibility arises from Eq. (7.77), of obtaining an expression for the current
from φL into a given MO ψk, via

JMO
L→k =

1

i

[
〈φL|Ĥ|ψk〉c∗LcMO

k − c.c.
]

(7.78)

and, since
〈φL|Ĥ|ψk〉 = βL̄LUL̄k (7.79)

it follows that

JMO
L→k = −iβL̄LβR̄R

UL̄kUR̄k

pk

(c∗LcR − cLc∗R)

= B(qL, qR)UL̄kUR̄ksk


|D|2
(7.80)

Using Eq. (7.43) we can see that there is a simple sum rule∑
k

JMO
L→k(E) = T (E) (7.81)

as we would expect, and of course the sum over all orbitals ψk of contributions
JMO
L→k recovers the total current. The n molecular orbitals in the molecule provide n

channels over which the total current is distributed (c.f. Fig. 7.2).

If the spectrum of the molecular graph has degeneracies, the choice of orthonormal
MOs within each eigenspace (shell) is arbitrary, and it is sensible to sum currents
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over degenerate sets to give

JMO
L→K = B(qL, qR)̂−1

̂

|D̂|2
(7.82)

where we have divided numerator and denominator by s2, and used the shell invari-
ant ̂−1 = ̂L̄R̄,−1 defined in Eq. (7.46). The shell current is a fraction of the total
current, given formally by

JMO
L→K =

̂−1

̂
T (7.83)

This ‘fraction’ may be positive or negative, and indeed may be greater than 1.

A similar derivation for the current from ψk to the sink atom, R can be derived.
This gives a simple conservation law,

JMO
k→R(E) = JMO

L→k(E). (7.84)

as there can be no current between MOs, since

〈φk|Ĥ|ψk′〉 = 0

when k 6= k′.

7.4.2 Active and inert orbitals and shells

A final feature revealed by Eq. (7.80) is that some MOs may be insulating at all
electron energies, i.e., they can be inert. This property occurs when either or both of
UL̄k or UR̄k are zero for the particular choice of the MO and the device connections.
Hence, it is a joint property of the molecule (construction of the eigenspaces) and the
device (placement of the connections relative to possible nodes in the eigenvectors).
Orbitals that are not inert are active.

Inert orbitals or shells are merely bystanders in the conduction of the molecular
device. Rules for prediction of the occurence of inert shells can be deduced from
case–by–case analysis (refer to Sections 7.5.4 and 7.5.5).

7.5 Solutions of the SSP equations in the MO ba-

sis at molecular eigenvalues

In this section we study the nature of solutions of the SSP equations at a particular
eigenvalue εK which we assume to have degeneracy, g = gK ≥ 1.

7.5.1 Shell partitioning of the SSP equations

We can partition the SSP equations into three parts: ‘on–shell’ (g equations with
block label K), ‘off–shell’ (n − g equations with block label A), and ‘source–sink’
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(two equations). The SSP matrix in Eq. (7.29) is then given more explicitly by

PMO =


pK1 0 −uKL −uKR

0 pA −uAL −uAR
−ũKL −ũAL βLe

−iqL 0
−ũKR −ũAR 0 βRe

−iqR

 (7.85)

so that the SSP equations become

PMO


cMO

K

cMO
A

cL
cR

 =


0
0
−iNL

0

 (7.86)

As E → εK, then (pA)ab → δab(εK − εa) 6= 0. Since pa 6= 0, we have

cMO
a = p−1

a (cLβL̄LUL̄a + cRβR̄RUR̄a) (7.87)

for the off–shell block. This step cannot in itself be used to solve the equations for
the shell orbitals because pK vanishes at the shell eigenvalue.

However, the SSP equations derived from the matrix in Eq. (7.85) can now
be used in exactly the same way as in the previous derivation (cf. Eqs (7.59–7.62)),
by substituting Eq. (7.87) into L and R equations in Eq. (7.85) to produce a set
of (g + 2) SSP equations with the ‘off–shell’ components folded into the L,R block,
and the degenerate shell handled explicitly. The result is

P′MO =

 pK1 −uKL −uKR

−ũKL F̂AL −βL̄LβR̄R̂A
−ũKR −βL̄LβR̄R̂A F̂AR

 (7.88)

for the device matrix and

P′MO

cMO
K

cL
cR

 =

 0
−iNL

0

 (7.89)

for the SSP equation. The 2× 2 source–sink terms are defined by analogy with Eq.
(7.63), viz.,

F̂AL(E) = βLe
−iqL − β2

L̄Lt̂A

F̂AR(E) = βRe
−iqR − β2

R̄RûA (7.90)

The ‘off–shell’ polynomials appearing in Eq. (7.90) were defined in Eqs (7.49).

133



7.5.2 The shell connection matrix, rank and the echelon
representation

A key to understanding Eqs (7.90) is the (g×2)–dimensional shell connection matrix
between the source–sink and degenerate shell, K, blocks

Bcon
K =

(
uKL uKR

)
=


βL̄LUL̄1 βR̄RUR̄1

βL̄LUL̄2 βR̄RUR̄2
...

...
βL̄LUL̄g βR̄RUR̄g

 (7.91)

As the first diagonal block of Eq. (7.88) is proportional to the unit matrix, we are
free to make any suitable orthogonal transformation amongst the orbitals within the
shell, K. In particular, we can use a sequence of 2× 2 rotations to bring the matrix
Bcon

K to row echelon form

Bcon
K =


a b
0 d
0 0
...

...

 (7.92)

where a = βL̄LU
′
L̄1

, b = βR̄RU
′
R̄1

, and d = βL̄LU
′
R̄2

, are expressed in terms of the only
non–zero L̄ and R̄ components of the orbitals after the operation of the sequence of
orthogonal transformations leading to this echelon representation of the degenerate
shell. The echelon representation is different, in principle, for each possible device,
i.e., for each possible choice of L̄, R̄.

We can use the fact that the coefficients t̂−1, û−1, ̂−1, and v̂−2 defined in Eqs (7.46)
and (7.48) are invariant to orthogonal transformations amongst the shell orbitals
to obtain simple expressions for the coefficients a, b, and d. These are

a2 = β2
L̄Lt̂−1

b2 + d2 = β2
R̄Rû−1

ab = βL̄LβR̄R̂−1

a2d2 = β2
L̄Lβ

2
R̄Rv̂−2 (7.93)

Treatment of these equations depends on the rank of the shell connection matrix.
The rank of a square matrix is the difference between the order of the matrix and
its nullity. The necessary and sufficient conditions for the connection matrix to be
of rank 0 are that a = b = d = 0, which imply that t̂−1 = û−1 = v̂−2 = 0, and hence
that

UL̄k = UR̄k = 0, for k = 1, . . . , g (7.94)

in which case the quantities ̂−1, v̂−1 also vanish.

Necessary and sufficient conditions for the shell connection matrix to have rank 1
are now obvious, i.e., that either d = 0, or a = 0. In each case it follows that

v̂−2 = 0 ⇐⇒ {UL̄kUR̄k′} = 0∀ k, k′ ∈ K (7.95)

In all other cases, the rank is 2. The rank, rK, of the transformed Bcon
K matrix must
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be rK ≤ min(g, 2), and hence

pKck = 0 for k = rK + 1, . . . , g (7.96)

We now turn to the dependence of the solutions to the SSP equations, i.e. the set
of coefficients of molecular orbitals ck, on the energy in the region of an eigenvalue,
i.e. where pK is small. We concentrate on the case where the orbitals within shell
K have been put in Echelon form, as above.

These g − rK equations have solution cMO
k = 0 when E 6= εK. When the energy is

equal to the eigenvalue, εK, we have a case where the SSP matrix in Eq. (7.85) has
no inverse, and the solution in the (g − rK)–dimensional manifold is undetermined.
We can use continuity, however, to argue that it makes no physical sense for an
insulating orbital suddenly to become conducting at its own eigenvalue. We can,
therefore, take cMO

k = 0 for all values of E. Hence, as shown in Subsection 7.5.4,
we need to consider only solutions of the SSP equations in the (rK + 2)–dimensional
manifold determined by the first r molecular orbitals and the source and sink atoms.

7.5.3 Shell and bond currents in the echelon representation

An advantage of the Echelon representation is that it makes it easy to show that the
whole of the shell current JMO

L→K, from the source L to shell K, if any, passes through
the first orbital of the shell. This follows from the association of parameters a, b
and d with the scaled coefficients βL̄LU

′
L̄1, βR̄RU

′
R̄1 and βR̄RU

′
R̄2. By the definition

of an inert orbital orbitals 2, . . ., k are already inert and orbital 1 is active if and
only if the product ab is non–zero.

From Eq. (7.80), we have

JMO
L→1(E) = B(qL, qR)U ′L̄1U

′
R̄1

̂

|D̂|2

= B(qL, qR)̂−1
̂

|D̂|2
= JL→K(E) (7.97)

We can also examine the behaviour of currents along bonds (graph edges) by looking
at the quantity JAO

p→q(εK) (cf. Eq. (7.72)) in the ‘hatted’ form

JAO
p→q = B(qL, qR)βpq

̂

|D̂|2
v̂pqL̄R̄ (7.98)

To explore the behaviour of the bond currents at the shell eigenvalue we have to
expand the antisymmetric quantity in Eq. (7.98) using Eq. (7.50). The expansion
of v̂ contains the coefficients v̂pqrs,−2, v̂pqrs,−1 and v̂pqrs,0 defined in Eq. (7.48). Note
that the quantity v̂pqL̄R̄,−2 contains factors {UL̄kUR̄k′}. The leading term in the
expansion of JAO

p→q, therefore, is determined by the rank of the connection matrix,
Bcon

K . Ranks 2, 1, and 0 give, in principle, leading terms v̂pqL̄R̄,−2, v̂pqL̄R̄,−1, and
v̂pqL̄R̄,−0, respectively.

135



7.5.4 The eleven canonical molecular conduction cases for
a shell with eigenvalue εK

rK Case gt gu gv gj T (εK) JAO
p→q(εK) JMO

L→K(E)

0 1 g+1 g+1 g+2 ≥ g+1 0 0 0

2 g+1 g+1 g g Ta Tb 0

3 g+1 g g+1 ≥ g+1 0 0 0

4 g+1 g g g Ta Tb 0

6 g g g+1 g Ta Tb 0

7.1 g g g g Ta Tb 0

7.2 g g g ≥ g+1 0 0 0

1 5 g+1 g−1 g ≥ g 0 0 0

8 g g−1 g−1 ≥ g 0 0 0

9 g−1 g−1 g g−1 Tc Td 6= 0

10 g−1 g−1 g−1 g−1 Tc Td 6= 0

2 11.1 g−1 g−1 g−2 g−1 0 0 6= 0

11.2 g−1 g−1 g−2 ≥ g 0 0 0

Table 7.1: Patterns of conduction for non–ipso molecular devices, showing the to-
tal transmission, T (εK), the bond currents JAO

p→q(εK) calculated at the shell eigen-

value εK, and the shell current JMO
L→K(E) at any energy. The non–zero quantities

Ta = B(qL, qR)̂20/|D̂0|2, Tb = B(qL, qR)βpq̂0v̂pqL̄R̄,0/|D̂0|2, Tc = B(qL, qR)̂2−1/|D̂−1|2,

and Td = B(qL, qR)βpq̂−1v̂pqL̄R̄,−1/|D̂−1|2, are evaluated using Eq. (7.55), subject to
conditions implied by gt, gu, and gv in the particular case.

Here we make a connection with the previous work [70, 84] which uses graph theo-
retical concepts, where the Interlacing Theorem was used to show the transmission
at the Fermi level in molecular devices. However, the Interlacing Theorem alone
does not give access to full information about gj but the table included here does
so, enabling some new sub–cases to be distinguished. The cases (11 in all) were
previously stated in terms of the Fermi energy, but the analysis can be extended to
the whole eigenvalue spectrum of G [93].

By re–examining these eleven canonical cases in detail in Section 7.10 Appendix
according to the rank of the connection matrix, Bcon

K , it can be shown that the eight
possibilities for the construction of Bcon

K in the echelon representation map onto the
eleven cases for distinct–device conduction determined by interlacing. The results of
this process are given in Table 7.1, showing total transmission, T , and bond currents
JAO

p→q, both evaluated at the shell eigenvalue, εK, and the shell current, JMO
L→K, for

any energy. The property of inertness or activity of the shell can be read off from
the final column of the table. An entry ‘ 6= 0’ means that the shell is active, and ‘0’
means that it is inert. Overall conduction or insulation of the device is given by the
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entry in column 7 of the table.

The rank–0 cases in Table 7.1 possess the important property that for all these cases
the shell is insulating at all energies, i.e., is inert. As far as conduction is concerned,
it is as if the shell were not present. Any conduction at the eigenvalue predicted
in that rank–0 case must, therefore, be carried through ‘off–shell’ orbitals. This
is very different from the normal behaviour, where an ‘active’ shell carries all the
transmission at its own shell eigenvalue.

The property of inertness is not particularly unusual nor is it restricted to degenerate
shells. Indeed, Table 7.1 shows that all cases but three (9, 10, and 11.1) of the
possible eigenvalue combinations imply an inert shell.

Two further remarks can be made about the applicability of this extended table,
compared to that of Tables I in [70] and [84] and Table 4.6 which were limited to
describing behaviour at the Fermi level for devices based on general and bipartite
graphs, respectively. The first is about the interpretation of the present table for
the case when all quantities are evaluated at a value, E, that is not an eigenvalue
of G, i.e., when g = 0. The formally allowed cases in Table 7.1 are then those
with min{gt − g, gu − g, gv − g} ≥ 0, i.e., the cases of rank rK = 0. In such cases
the generic statements about overall transmission (column 7) and bond currents
(column 8) hold, provided all the quantities are evaluated by taking the structural
polynomials at E. The shell current, JMO

L→K(E) (column 9), has no meaning in this
case.

The second remark is about the use of the extended table for devices based on
bipartite graphs. When the table referred only to εK = 0, it was possible to use the
special property that the nullity and order of a bipartite graph have the same parity
to reduce the number of cases from 11 to 5 (or from 13 to 6 in the finer classification
used in the present chapter). When εK is a general eigenvalue, the link between
nullity and order is broken; deletion of a vertex of a bipartite graph may leave the
degeneracy of a given eigenvalue unchanged or increased or decreased by one, and
hence, any of the cases in Table 7.1 may apply.

7.5.5 Conduction in ipso devices

rK Case gt T (εK) JAO
p→q(εK) JMO

L→K(E)

0 I1 g+1 0 0 0

I2 g Ta 0 0

1 I3 g−1 Tb 0 6= 0

Table 7.2: Patterns of conduction for ipso molecular devices, showing the total trans-
mission T (εK), the bond currents JAO

p→q(εK) calculated at the shell eigenvalue εK, and the

shell current JMO
L→K(E) at any energy. The non–zero quantities Ta = B(qL, qR)t̂20/|D̂0|2

and Tb = B(qL, qR)t̂2−1/|D̂−1|2 are evaluated using Eq. (7.99) for the particular case.

Devices where the external links are connected to the same internal atom are termed
ipso devices, where t = u = j, and v ≡ 0, and the connection matrix can have rank 0
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or 1 only. The parameters βL, βL̄L, and βR, βR̄R have the same values as for non–ipso
devices. The expansion of D̂ becomes

D̂−2 = 0

D̂−1 = −
(
βLe

−iqLβ2
R̄R + βRe

−iqRβ2
L̄L

)
t̂−1

D̂0 = βLe
−iqLβRe

−iqR −
(
βLe

−iqLβ2
R̄R + βRe

−iqRβ2
L̄L

)
t̂0 (7.99)

D̂−2 vanishes because v ≡ 0 .

There are only three possible cases (cf. Table 7.2) depending on the allowed gt
values for the graph with vertex L̄ removed. There is no restriction on the value of
g. The cases exhibit all possible combinations of device conduction/insulation and
shell character.

1. Case I1 (gt = g+1)

This case has a rank–0 connection matrix because t̂−1 = t̂0 = 0. The
numerator in cR is O(pK), whereas D̂0 is the leading term in the denominator.
Hence cR = 0 at the eigenvalue; there is device insulation and the shell is inert.

2. Case I2 (gt = g)

This case also has rank 0 because t̂−1 = 0. As t̂0 6= 0, and D̂0 is the leading
term in the denominator, there is device conduction at the eigenvalue.
However, the shell is inert, so conduction at this eigenvalue is carried entirely
by orbitals from other shells.

3. Case I3 (gt = g−1)

This case has a rank–1 connection matrix, and is the equivalent of the non–ipso
case 11. We have t̂−1 6= 0, and so D̂−1 6= 0. The numerator and denominator
have the same order in pK, and device conduction occurs at the eigenvalue.
The shell is active and carries all the current at the shell eigenvalue.

7.5.6 A difference between conduction of ipso– and non–
ipso devices

The remaining feature of ipso devices is that the expressions for currents and total
transmission depend upon the behaviour of a single structural polynomial. For this
reason, the transmission T (E) has zeroes every time that t̂(E) vanishes. From the
definition, Eq. (7.40), it is easy to see that t̂(E) is a piecewise continuous curve
with asymptotes at the molecular eigenvalues, and the gradient is always negative.
It follows that there will be a zero of t̂(E) between each molecular eigenvalue (cf.
Fig. 7.3). Consequently, ipso transmission curves typically look very different from
the curves for non–ipso devices based on the same molecule, c.f. Section 7.7.
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Figure 7.3: Anthracene shell currents and transmission for a symmetrical ipso device
connected to atom 4, as shown on the graph of the molecule on the left. The structural
polynomial t̂ = t/s is also shown.

7.6 Conduction in molecules with bipartite

graphs

An alternant molecule has a bipartite molecular graph containing two disjoint sets
of nodes (atoms) and in which edges (bonds) connect only members of the two sets.
We shall call these two sets S◦ and S∗. If we number the members of the sets
contiguously, then we can write the adjacency matrix in the form

A =

(
0 B

B̃ 0

)
(7.100)

where we have placed the n◦ un–starred vertices in the first block, and the n∗ starred
vertices in the second, and we assume that n◦ ≤ n∗. The dimension of the matrix
B is, therefore, n◦ × n∗.

A simple two–component SSP approach to conductivity in bipartite molecules has
been developed [103, 143] for the case E = 0. In this section we derive rules that
apply to such molecules at general values of E.

7.6.1 The Coulson–Rushbrooke theorem

For convenience, we present a compact derivation of this well–known [144] theorem
in a formalism that is useful for our study of conduction.

We can solve the eigenvector problem for the positive semi–definite matrix BB̃ of
dimension n◦ × n◦ and of rank r ≤ n◦, in the form [89]

BB̃Vk = Vkσ
2
k for k = 1, . . . , r (7.101)

BB̃Vk = 0 for k = r + 1, . . . , n◦
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where the n◦ × n◦ matrix, V, formed from the n◦ columns Vk is an orthogonal
transformation with n◦ − r null–space eigenvectors. We can also consider the n∗–
dimensional eigenvalue problem

B̃BWk = Wkσ
2
k for k = 1, . . . , r (7.102)

B̃BWk = 0 for k = r + 1, . . . , n∗

which has r identical positive eigenvalues, a null–space of dimension n∗− r, and the
matrix W is orthogonal. We can write the singular value decomposition [89] of B
as

BW = VΣ

or

B̃V = WΣ̃ (7.103)

where the n◦× n∗ matrix, Σ, is in principle rectangular, with a diagonal containing
the positive numbers σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

We can now construct an (n◦ + n∗)–dimensional orthogonal transformation(
V 0
0 W

)
(7.104)

that when applied to the adjacency matrix of Eq. (7.100) gives rise, for each of the
r terms having σk > 0, to a series of 2× 2 interacting blocks of the form(

0 σk

σk 0

)
(7.105)

These blocks are each diagonalised by the same 2–dimensional orthogonal transfor-
mation (

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)
(7.106)

The appropriate combination of Eqs (7.104) and (7.106) solves the original eigen-
value problem by providing r paired solutions ψk, ψk̄ having eigenvalues +σk and
−σk, respectively, and constructed from columns of the orthogonal matrices V and
W. They are

ψk =
1√
2

(∑
p∈S◦

Vpkφp +
∑
p∈S∗

Wpkφp

)

ψk̄ =
1√
2

(∑
p∈S◦

Vpkφp −
∑
p∈S∗

Wpkφp

)
(7.107)

for k = 1, . . . r, and the nullspace is

ψk =
∑
p∈S◦

Vpkφp for k = r + 1, . . . , n◦

ψk̄∗ =
∑
p∈S∗

Wpkφp for k∗ = r + 1, . . . , n∗ (7.108)
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Hence, there are 2r eigenvalues in pairs related to each other by a change of sign,
and a nullspace of dimension n◦ + n∗ − 2r. This is the content of the Coulson–
Rushbrooke pairing theorem [5, 145, 146], which is usually derived in an ad hoc
way from the Hückel secular equation. We now derive an extension for conduction
properties.

7.6.2 Structural polynomials for bipartite graphs

For bipartite graphs (alternant molecules), we can obtain structural polynomials
from the above formulae for the eigenvectors and eigenvalues, together with the
spectral expansions given earlier. Hence, after some algebra,

t̂ = E
r∑

k=1

V 2
L̄k

E2 − σ2
k

+
1

E

n◦∑
k=r+1

V 2
L̄k for L̄ ∈ S◦

t̂ = E

r∑
k=1

W 2
L̄k

E2 − σ2
k

+
1

E

n∗∑
k=r+1

W 2
L̄k for L̄ ∈ S∗ (7.109)

The formulae for û are easily obtained by analogy. It is seen that

t̂(−E) = −t̂(E)

û(−E) = −û(E) (7.110)

so that both functions are odd, as expected from parity arguments. The equations
for ̂ are more complicated, as there are two cases, depending on whether indices
L̄, R̄ belong to the same or different sets. When L̄ ∈ S◦ and R̄ ∈ S◦,

̂ = E
r∑

k=1

VL̄kVR̄k

E2 − σ2
k

+
1

E

n◦∑
k=r+1

VL̄kVR̄k (7.111)

which is an odd function of E. When L̄ ∈ S◦ and R̄ ∈ S∗,

̂ =
r∑

k=1

σk
VL̄kWR̄k

E2 − σ2
k

(7.112)

which is even. From the formula v̂ = ût̂−̂2, it is clear that v̂(E) = v̂(−E), regardless
of the nature of L̄ and R̄.

7.6.3 Conduction properties of alternant molecules

We now consider the transmission properties of molecules with bipartite graphs for
unbiased devices, i.e., those for which αL = αR = 0, under the transformation
E → −E. This transformation affects the momenta (cf. Eq. (7.6)) through qL →
π − qL and qR → π − qR. It follows that exp(−iqL) → − exp(iqL), and sin qL →
− sin qL. The terms in qR behave in an identical manner. From the discussion of
the transformation properties of these quantities, it is obvious from Eq. (7.3) that

D(−E) = D(E)∗ (7.113)
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and hence
T (−E) = T (E) (7.114)

so that the total transmission is symmetric about E = 0 for unbiased devices.

We can also look at the symmetry properties of the MO currents by writing Eq.
(7.80) in terms of the hatted polynomials

JMO
L→k(E) = B(qL, qR)

UL̄kUR̄k

E − εk
̂(E)

|D̂(E)|2
(7.115)

Putting this equation into the context of the current section: for the paired orbitals,
ψk, ψk̄, we recognise that the eigenvectors for the paired MOs satisfy

Upk = Upk̄ for p ∈ S◦
Upk = −Upk̄ for p ∈ S∗ (7.116)

and
JMO
L→k(E) = JMO

L→k̄(−E) (7.117)

The paired orbitals have currents that are reflections of each other about the line
E = 0. It is also obvious that Eq. (7.117) for g ≥ 2 extends also to shells, so that

JMO
L→K(E) = JMO

L→K̄(−E) (7.118)

It can be shown that bond currents in bipartite molecules also display the same
symmetry

JAO
p→q(E) = JAO

p→q̄(−E) (7.119)

7.6.4 Conduction at the Fermi level for bipartite graphs

The conduction properties of the shell at εk = 0 can be discussed in a very simple
manner using the eigenspaces listed in Eqs (7.107) and (7.108), and the connection
matrix in Eqs (7.28) and (7.31).

For molecular graphs that possess a nullspace, we have a single shell with εK = 0
and degeneracy g = n◦ + n∗ − 2r. There are two possibilities:

1. Contact atoms in different sets, e.g. L̄ ∈ S◦ and R̄ ∈ S∗.
In this case the structure of the null–space connection vector is

uL = βL̄L



VL̄r+1
...

VL̄n◦
0
...
0


,uR = βR̄R



0
...
0

WR̄r+1
...

WR̄n∗


(7.120)

The formula for MO currents, Eq. (7.80), shows that current is proportional
to a product of L̄ and R̄ MO coefficients from the connection vectors. The
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structure of the vectors in Eq. (7.120) implies that this product is identically
zero. The shell carries no current and is inert regardless of the rank of the
connection matrix.

2. Contact atoms in the same set, e.g. L̄ ∈ S◦ and R̄ ∈ S◦.

In this case the structure of the null–space connection vector is

uL = βL̄L



VL̄r+1
...

VL̄n◦
0
...
0


,uR = βR̄R



VR̄r+1
...

VR̄n◦
0
...
0


(7.121)

The n∗−r molecular orbitals from the starred space are all inert, but the MOs
from the un–starred space are not necesssarily inert. The shell may therefore
still be active, depending on the case to which the shell belongs (cf. Table
7.1).

For cases where E = 0 is not an eigenvalue, the present reasoning makes a connection
with a ‘symmetry rule’ (actually a graph–theoretical rule) for non–ipso conduction
at the Fermi level for closed–shell alternant molecules [140,147]. It was observed that
the predicted Fermi–level conduction of a molecule with bipartite molecular graph
and a non–zero HOMO–LUMO gap (specifically a Kekulean benzenoid) is large
when both HOMO and LUMO have entries of large magnitude on both connection
vertices (our L̄ and R̄) and the product of entries is of opposite sign for HOMO and
LUMO. By the Pairing theorem this latter requirement implies that the connection
vertices are in different partite sets.

This rule has a straightforward interpretation in terms of shell contributions. HOMO
and LUMO shells of a bipartite graph have mirror conduction curves, so are either
both active or both inert. For active shells, both shell conduction curves will be close
to local maxima in the vicinity of the Fermi level. If the connection vertices are in
opposite sets, the curves will contribute equal amounts to the total conduction at the
Fermi level. (Other active shells will typically also contribute. Such contributions
may be positve or negative.) If the connection vertices belong to the same partite
set, however, we have nullity signature g = 0, gt = gu = 1, gv = 2 and insulation at
the Fermi level [70].

7.7 Some illustrative examples

In this section we shall see that every molecular graph has at least one active shell
and give some analytical examples for chains and rings and some examples of nu-
merical calculations. The algebraic computations reported in this paper were all
performed by using Maple 18 [148] written by Prof. B.T. Pickup. Computations for
the figures were carried out using unbiased (αL = αR = 0), and symmetric devices
(βL = βR), with specific values βL = 1.4β and βL̄L = βR̄R = β.
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7.7.1 Molecular conduction of LOMO and HUMO shells

Every π system with a connected molecular graph G has a non–degenerate lowest–
lying π level. Mathematically, the eigenvector corresponding to the largest positive
eigenvalue of G, εmax, i.e., the lowest occupied π molecular orbital (LOMO), has
specific implications for the conduction properties. This maximum eigenvalue is
known in mathematics as the Perron eigenvalue [2]; it has multiplicity one for a
connected graph, and the associated eigenvector has a non–zero entry of the same
sign on every vertex [149]. Deletion of any vertex in a connected graph leads to
a decrease in the maximum eigenvalue; deletion of a second vertex may lead to a
further decrease or may leave the maximum eigenvalue unchanged (only if removal
of the first vertex had disconnected the graph).

Hence, the LOMO always constitutes an active shell, belonging to case 10. A proof
based on interlacing is straightforward. Whilst the Perron eigenvalue of graph G has
degeneracy g = 1, degeneracies gt and gu are both 0, as the maximum eigenvalue
falls on vertex deletion. Whether the graph G − L̄ − R̄ is disconnected or not, the
maximum eigenvalue of this graph is strictly less than εmax, and so gv = 0, and we
have case 10, which is active (c.f. Table 7.1).

The LOMO typically contributes some conduction at all energies that are not eigen-
values, and so will have a (small) contribution at the Fermi level if G is non–singular.
If G is connected and bipartite, then it has a unique eigenvalue εmin, and the con-
duction properties of the corresponding ‘anti–Perron’ eigenvector (the highest unoc-
cupied molecular orbital, or HUMO) also follow case 10, and in particular will have
a conduction peak near the eigenvalue. For a non–singular molecular graph this will
reinforce the contribution of the LOMO at the Fermi level.

7.7.2 Conduction in chains

We gave explicit analytical formulae for the total transmission in chains and rings,
based on full electron delocalisation, in earlier work [63]. Here we concentrate on
the conditions for inert orbitals and shells.

The molecular graph of the general linear polyene CnH2n+2 is the path on n vertices,
Pn. All eigenvalues of Pn are non–degenerate, and so the set of cases for exploration
is 1 to 10 (connection matrix of rank 1 or 0), and shells are active if they belong to
cases 9 or 10. Both of these cases occur.

An orbital is inert whenever L̄ or R̄, or both, is at a node. The kth vector (k =
1, . . . , n) has entry [83]

Upk =
√

2/(n+ 1) sin(pkπ/(n+ 1)) (7.122)

on vertex p, such that p = 1, . . . , n. Hence, there are nodes at kp = P(n+1), where
P is a non–zero integer and shell k is inert, therefore, if kL̄ = P(n + 1) and/or
kR̄ = P(n + 1). For example, all odd chains connected via their central vertex
(p = (n+ 1)/2) have inert orbitals at all even k (implying P = k).

Given that both k and p are less than n+ 1, a small general observation follows for
even chains: if n+ 1 is prime, the chain has no inert shells, since kp cannot contain
n+ 1 as a factor. Hence, chains with n = 2, 4, 6, 10, 12, 16, . . . have no inert shells.
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7.7.3 Conduction in rings

A device based on a CnHn ring has connections L̄ = 1, R̄− L̄ = p (0 ≤ p ≤ n− 1).
The spectrum of the cycle is [83]

εk = 2 cos(2πk/n) (7.123)

with k = 0, 1, . . . bn/2c and degeneracies g = 1 for k = 0 (Perron) and k = n/2
(anti–Perron, for even n only), but g = 2 for all other values of k. The shells with
εk = +2 (and −2 for even n) are active, by the arguments given above for the Perron
eigenvalue.

Deletion of any vertex of the cycle Cn yields the path Pn−1, and so gt = gu = 1
for all shells with g = 2. Therefore, all ipso devices based on the cycle are of type
I3 (Table 7.2) and all shells are active. For non–ipso devices, the possible cases
for inertness/activity are limited to 9, 10, 11.1 and 11.2 of Table 7.1, and hence all
shells are active except those that fall under case 11.2 (gv = 0, gj ≥ 2). Detection
of inert shells can be done in several ways. One route is via the connection matrix.
For a degenerate shell of the cycle, the matrix Bcon

K is

Bcon
K =

(
βL̄LUL̄1 βR̄RUR̄1

βL̄LUL̄2 βR̄RUR̄2

)

=

√ 2
n
βL̄L cos(2πkL̄

n
)
√

2
n
βR̄R cos(2πkR̄

n
)√

2
n
βL̄L sin(2πkL̄

n
)
√

2
n
βR̄R sin(2πkR̄

n
)

 (7.124)

in the sine/cosine representation of the eigenspace and with k = 1, . . . , bn/2c.

For case 11.2 we must have v̂−2 6= 0 and ̂−1 = 0 (to give gv = g− 2 and gj = g− 1).
Now, with our definition of R̄− L̄ = p, by Eq. (7.43),

v̂−2 =
4β2

L̄L
β2
R̄R

n2
sin2(2πkp/n),

̂−1 =
2βL̄LβR̄R

n
cos(2πkp/n). (7.125)

The expression for ̂−1 vanishes for 4kp = (2q + 1)n, with integer q. This condition
is sufficient to ensure that v̂−2 6= 0, and hence that we are in case 11.2.

Clearly, if n is odd, 4kp cannot be the product of two odd integers, and so no shells
of an odd cycle are inert.

Equally, if n is of the form 4N + 2, 2kp cannot be the product of two odd integers,
and so no shells of a (4N + 2) cycle are inert.

The remaining case is where n is of the form 4N . Devices based on C4N cycles have
inert shells whenever the shell index k and the pathlength p between connection
vertices obey kp = (2q + 1)N . For example, C8 has inert shells with k = 1, 3 for
p = 2, but k = 2 for p = 1 and p = 3. Likewise, C20 has inert shells at k = 5 for
p = 1, 3, 5, 7, 9 and at k = 1, 3, 5, 7, 9 for p = 5.

There is a particular implication for conduction at the Fermi level through devices
based on 4N cycles. Note that even/odd values of p correspond to devices with L̄
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and R̄ in the same/opposite partite sets. Therefore, the shell at ε = 0 (k = 2N), is
active (case 9) when L̄ and R̄ are in the same partite set, and inert (case 11.2) when
they are in opposite sets. The cycles C4N+2 are also bipartite, but do not have ε = 0
as an eigenvalue.

7.7.4 An alternant molecule with a space of non–bonding
orbitals

Figure 7.4: The shell currents for a device connected to atoms 1 and 8 of the molecule
depicted on the left showing the labelling schemes of the atom.

Fig. 7.4 has 9 conjugated centres with n∗ = 3, and n◦ = 6. The device treated in
this example has connections via atoms 1 and 8. The (3× 6)–dimensional matrix
B in Eq. (7.100) has rank 3, and there are three nullspace vectors, concentrated
on the unstarred set of atoms. Shells 1 and 5 are case 10, whilst shells 2 and 4 are
case 11.2. It can be seen from Fig. 7.4 that the triply–degenerate nullspace (shell
3) is inert. This shell is an example of case 5, which is also insulating. The inert
character of the null shell arises from the special eigenvector structure for a bipartite
molecule, as outlined in Section 7.6.

7.8 Inertness/activity and core/core–forbidden

vertex sets

The inertness/activity property has a simple interpretation in terms of nodal char-
acter. This is nicely expressed in terms of the notation of core and core–forbidden
vertex sets [108], which is usually used for the nullspace of a graph, but has a nat-
ural extension for any shell [93]. In this extended sense, the vertices in the core
set for a given shell are those with a non–zero sum of amplitudes of entries when
summed over the shell. In chemical terms, they have non–zero partial π charges for
occupation of the shell. Vertices outside the core are core–forbidden vertices (CFV):
they are nodal points in all possible representations of the degenerate set of orbitals.
A shell is inert in a given device if one (or both) of the connection atoms L̄ and R̄
corresponds to vertices in the core–forbidden set for that shell.
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CFV can in some cases be identified by symmetry arguments. If vertex r is a CFV
for the eigenspace K, the eigenvector entry Urk vanishes and the local adjacency
condition

∑
s∼r Usk = 0 applies for all k ∈ K. If r is at a special point of the

point group, the vanishing of Urk may be enforced by the symmetry spanned by the
eigenspace (the set of degenerate orbitals). For example, if r lies in a mirror plane
and all vectors in the eigenspace are antisymmetric with respect to reflection in that
plane, r must be a CFV for shell K. Thus, for example, the central vertex of an odd
path is always CFV for even k (c.f. Section 7.7.2). More typical is the situation for
a doubly degenerate shell where it will often be possible to choose one symmetric
and one antisymmetric vector with respect to a given plane, and r is therefore not
a CFV. This is the case for all degenerate shells of the cycle.

The language of CFVs also gives an alternative view of the effects of side–chains
on conduction, more usually expressed in terms of quantum interference [54, 61,
81, 150, 151]. In this analysis, quantisation conditions for side–chains force a node
at the junction with the backbone, i.e. a CFV that kills conduction [105]. Nodal
positions are robust to improvements in the level of theory if they are determined by
symmetry; if instead they result from a cancellation within the Hückel model, they
may shift with improvements, but the qualitative prediction of zero shell conduction
may still be an indicator of a low contribution to conduction.

7.9 Conclusions

A new analysis of the SSP model has been presented. The strengths (and the
limitations) of the model stem from its graph–theoretical form. The connection
with spectral graph theory gives a new and chemically informative way to think
about ballistic conduction in terms of orbital contributions. To do this, first a re–
derivation of the SSP equations was presented in a manner that gives easier access
to quantities of interest and elucidates behaviour in special circumstances.

Current through molecules can be discussed in terms of transmission through a series
of bonds, i.e., bond currents. These bond currents can go with or against the main
direction of current flow, and strong cancellation occurs frequently near energies at
which there is overall insulation. There is not always an obvious interpretation of
these currents [55]. In the bond current picture, intramolecular interference effects
are inevitable [20].

Current through molecules can also be discussed in terms of parallel channels corre-
sponding to molecular orbitals and shells of molecular orbitals. These currents can
be negative, but typically behave in a more stable fashion than do bond currents,
and at every energy they add up to the total transmission, T (E).

Transmission has been partitioned into orbital contributions in other computational
schemes, using projection techniques [152–155]. The scheme followed here gives shell
contributions naturally and uniquely within the tight–binding approach.

Shell currents turn out to have some interesting general properties governing their
contributions to transmission across the range of accessible energies. It has been
shown previously that total transmission at eigenvalues can be classified in terms of
11 cases derived by use of the Interlacing Theorem. The new SSP equations give a
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finer classification, splitting two cases to give a total of 13 possibilities for behaviour
in terms of insulation and conduction both at and between eigenvalues.

Shell currents are classified in terms of the same set of cases, which reveal specific
behaviour at eigenvalues and a global property of activity/inertness. It turns out
that some shells are inert. That is to say, they are insulating at all values of E.
Shells that conduct at some energy E are active.

Only three cases (9, 10, and 11.1) out of the 13 represent active shells. A practical
application of this classification scheme is that transmission near the Fermi energy
is dominated by frontier–shell contributions. If any of these shells are inert, the
conductivity of the molecule will be greatly decreased.

Finally, the viewpoint based on orbital rather than bond current contributions
should be especially useful when further refinements of the SSP model beyond the
scope of this thesis are considered. Molecular–orbital contributions to transmission
could be derived by similar methods for more complex, multi–channel devices such
as those treated in the extended SSP model by Dumont [138]. They will be at their
most useful when considering the proper inclusion of electron repulsion.

7.10 Appendix: Detailed analysis of the 11

canonical cases

We shall assume that the rank of the SSP equations, (cf. Eqs (7.88) and (7.89)),
in the echelon representation is 2. The general solution in the linearly independent
space to the SSP equations for any energy, E 6= εK, in this case of rank 2 is given by


cMO

1

cMO
2

cL

cR

 = −iNL

∆̂


−ad2 + pK

(
aF̂AR + bβL̄LβR̄R̂A

)
d (ab+ pKβL̄LβR̄R̂A)

pK

(
−b2 − d2 + pKF̂AR

)
pK (ab+ pKβL̄LβR̄R̂A)

 (7.126)

where

∆̂(E) = a2d2 − pK

[
a2F̂AR + (b2 + d2)F̂AL

+ 2abβL̄LβR̄R̂A
]

+ p2
K

(
F̂ARF̂AL − β2

L̄Lβ
2
R̄R̂

2
A

)
(7.127)

When pK 6= 0, the solutions given for cL and cR in Eq. (7.126) reduce to those already
shown in Section 7.4, as they must, and it can be shown that cL, cR are identical
to those in Eq. (7.64). The expressions for cMO

1 and cMO
2 are not those derived

previously, since they refer particularly to orbitals in the echelon representation.

We shall consider the eight possibilities arising from Eq. (7.92), depending upon
whether the constants, a, b, and d are zero or non–zero. Eqs (7.126) and (7.127) are
in a form which is robust enough to cover each of the eight cases, so long as pK 6= 0.

We have shown that it is possible to use Eq. (7.64) for a derivation of SSP solutions
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at an eigenvalue. We now need to take these solutions for quantities such as cR, T ,
etc., and then take the limit E −→ εK.

The leading term in the expansion (cf. Eqs (7.54) and (7.55)) of D̂ is determined
entirely by the rank of the connection matrix, Bcon

K . Hence, rank 2, gives D̂−2 as the
leading term. Ranks 1 and 0 have D̂−1, and D̂−0, as leading terms, respectively.

We now consider the different ranks in turn.

7.10.1 Devices with rank–2 connection matrices

We note that this is only possible when g ≥ 2. In such a case, a rank–2 connection
matrix can be achieved in just two different ways out of the eight possibilities for
the choice of a, b, and d.

(i) a 6= 0, b 6= 0, d 6= 0

In this case it is evident from Eq. (7.93) that t̂−1 6= 0, û−1 6= 0, v̂−2 6= 0, and
̂−1 6= 0, so that gt = gu = gj = g−1, and gv = g−2. This corresponds with
case 11 of our previous work in [70, 84]. Solution of the linear equations at
pK = 0 gives a unique SSP vector

cMO
1

cMO
2

cL
cR

 =
iNL

a


1

−b/d
0

0

 (7.128)

The vanishing of cL and cR, implies that r = −1, and τ = 0, and hence
T (εK) = 0. This particular value of the reflection factor (cf. Eq. (7.15)) is an
explicit example of the singularity sometimes present in the original version
of the SSP formalism [62,63]. This case is labelled 11.1 in Table 7.1.

We can also see, from Eq. (7.97), that the shell is active, i.e., the current
through shell K at general values of E is non–zero for case 11.1, because of
the non–vanishing L̄– and R̄–components of the first echelon orbital.

The bond currents, JAO
p→q, vanish at εK because cL = cR = 0 , as noted in

section 7.3.2.

(ii) a 6= 0, b = 0, d 6= 0

We also have t̂−1 6= 0, û−1 6= 0, and v̂−2 6= 0, so that gt = gu = g−1, and
gv = g−2. This also conforms with the specification of case 11 [70, 84]. The
unique solution to the SSP equations at pK = 0 is

cMO
1

cMO
2

cL

cR

 =
iNL

a


1

0

0

0

 (7.129)

and implies that T (εK) = 0, as before.
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The sole change between this and the previous type occurs because ̂−1 =
ab = 0, which means that gj ≥ g, and hence the shell is inert. We distinguish
this as case 11.2.

The bond currents also all vanish, as cL = cR = 0.

7.10.2 Devices with rank–1 connection matrices

There is no restriction on degeneracy for a rank–1 connection matrix, the necessary
and sufficient condition for which is that v̂−2 = 0. This can occur in five ways out
of the eight possibilities for the choices of a, b, and d. These are:

(iii) a = 0, b 6= 0, d 6= 0 This does not lead to a real example, since an additional
2× 2 rotation of the first two orbitals would lead to possibility (v).

(iv) a = 0, b = 0, d 6= 0

Thus, t̂−1 = ̂−1 = v̂−2 = 0, and û−1 6= 0. This implies that gt ≥ g, gu = g−1,
gj ≥ g, and gv ≥ g−1, so that this corresponds to cases 5 and 8.

The solution to the SSP equations iscMO
2

cL
cR

 = − iNL

F̂AL

βL̄LβR̄R̂A/d−1
0

 (7.130)

where we have left out the undetermined coefficient, cMO
1 , which can be con-

sidered to be zero by continuity with the solution at pK 6= 0. We note also
that cR = 0 implies that T (εK) = 0. The condition v̂−2 = 0 implies, from Eq.
(7.95), that the bond currents also vanish. The condition ̂−1 = 0 implies that
the shell must be inert.

(v) a = 0, b 6= 0, d = 0

Again gt ≥ g, gu = g−1, gj ≥ g, and gv ≥ g−1, which is another example of
cases 5 and 8. The (non–unique) solution for the SSP vectorcMO

1

cL
cR

 = − iNL

F̂AL

−βL̄LβR̄R̂A/b1
0

 (7.131)

where the arbitrary cMO
2 component has been left out of the equations. Analysis

of the conduction properties is identical to (iv).

(vi) a 6= 0, b = 0, d = 0

This requires gt = g−1, gu ≥ g, gj ≥ g, and gv ≥ g−1, which is another
example of cases 5 and 8 in which the rôles of gt and gu have been swapped.
The solution is cMO

1

cL
cR

 =
iNL

a

1
0
0

 (7.132)

with cMO
2 again arbitrary, and conduction properties as described in (iv).
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(vii) a 6= 0, b 6= 0, d = 0

The values of the constants imply that t̂−1 6= 0, û−1 6= 0, and v̂−2 = 0, but
̂−1 6= 0, so that gt = gu = gj = g−1, and gv ≥ g−1. Hence, this corresponds
to cases 9 and 10. The SSP solution iscMO

1

cL
cR

 =
iNL

D̂−1

aF̂AR + bβL̄LβR̄R̂A
−b2

ab

 (7.133)

where
D̂−1 = a2F̂AR + 2abβL̄LβR̄R̂A + b2F̂AL

The coefficient cMO
2 is not determined by the equations, but no current can be

carried by this MO as d = 0. The values of cL and cR are, however, uniquely
determined, and the total transmission is

T (εK) = B(qL, qR)
̂2−1

|D̂−1|2
(7.134)

At least some bond currents will be non–zero, and the shell is active.

It is clear from their entries in Table 7.1 that cases 5 and 8 share the feature that
̂−1 = 0, which implies that both lead to inert shells. This same feature ensures that
the –factor in the numerator of the expression for cR is O(1) in the series expansion
in powers of pK. The denominator is clearly O(p−1

K ) for both cases because of the

presence of non–zero terms in D̂−1 in Eq. (7.55). It follows that cR = 0, and hence
T (εK) = 0.

Cases 9 and 10 have a non–zero value of ̂−1. This leads to an active shell, and
T (εK) 6= 0.

It is not possible to distinguish between cases 5 and 8, or between 9 and 10, on the
basis of the quantities a, b, and d, and indeed because of the similarity of behaviour
of these pairs, it does not seem necessary to do so.

7.10.3 Devices with rank–0 connection matrices

This is the last of the eight choices of the quantities a, b, and d.

(viii) a = 0, b = 0, d = 0

The quantities t̂−1 = û−1 = ̂−1 = 0. This implies that gt ≥ g, gu ≥ g, gj ≥ g,
and gv ≥ g. The vanishing of t̂−1 and û−1 means, that all L̄ and R̄ components
of the shell wavefunctions vanish, and hence v̂−1 = 0. The SSP solution is(

cL
cR

)
=

iNL

F̂ALF̂AR − β2
L̄L
β2
R̄R
̂2A

(
F̂AR

βL̄LβR̄R̂AL

)
(7.135)

with cL and cR uniquely determined, and both MO coefficients, cMO
1 and cMO

2

arbitrary, but set to zero using continuity.

151



The various cases in Table 7.1 cannot be distinguished on the basis of the behaviour
of the orbitals of the echelon representation. We can conclude immediately, however,
that the shell is inert in all of these cases because ̂−1 = 0.

Table 7.1 indicates that four of the cases conduct at the eigenvalue. It is obvious
that such conduction can only occur through other shells. All of these cases have
values of gt, gu, and gv that are greater than or equal to g, so that each of the
‘hatted’ structural polynomials has an expansion with a leading term in pK of O(1)
or greater. It follows directly that the leading term in the expansion of D̂ is D̂0.
(cf. Eq. (7.55)). The decision as to whether or not the various cases conduct at the
eigenvalue hinges on the expansion of ̂. We will make a few remarks about each
case.

Case 1 (gt = g+1, gu = g+1, gv = g+2)

The leading terms in the û, t̂ and v̂ expansions are t̂1, û1 and v̂2, respectively.
Since the 0’th term in the -expansion, when ̂−1 = 0, can be expressed as

̂20 = û0t̂0 − v̂0 + t̂−1û1 + t̂1û−1 (7.136)

the leading term in ̂ is ̂1. The numerator in the expression for cR is O(pK)
whilst D̂ is O(1). We conclude that T (εK) = 0.

Case 2 (gt = g+1, gu = g+1, gv = g)

The fact that v̂0 6= 0 implies that the leading term in ̂ is ̂0. This implies
conduction at the eigenvalue.

Case 3 (gt = g+1, gu = g, gv = g+1)

It is possible to deduce that ̂0 = 0, so that

̂21 = û1t̂1 − v̂2 (7.137)

and hence ̂1 would be the lowest possible leading term in the ̂ expansion. We
conclude that T (εK) = 0. It is possible, however, for

û1t̂1 = v̂2 (7.138)

in which case ̂2 is the leading term. This makes no difference to the insulation
properties.

Case 4 (gt = g+1, gu = g, gv = g)

The leading terms in t̂, û and v̂ series are O(pK), O(1) and O(1), respectively,
and hence

̂20 = −v̂0 (7.139)

So the order in pK in numerator and denominator of the expression for cR are
the same. This leads to conduction at the eigenvalue.

Case 6 (gt = g, gu = g, gv = g+1)

The leading terms in the t̂, û and v̂ series are O(1), O(1) and O(pK), respec-
tively. Hence,

̂20 = û0t̂0 (7.140)

and there is conduction at the eigenvalue.
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Case 7 (gt = g, gu = g, gv = g)

The leading terms in the û and t̂ series are û0 and t̂0, respectively, whilst the
v̂ expansion also leads with v̂0. We conclude that

̂20 = û0t̂0 − v̂0, (7.141)

with implication that, in general, conduction occurs. However, as in case 3,
there can be a cancellation inside Eq. (7.141) that would lead to the leading
term in ̂ being ̂1. This would be non–conducting. For case 7, there are
conducting (7.1) and non–conducting (7.2) variants, as noted previously [70],
depending on the value of gj. Case (7.2) was described as an accident in the
sense that is is not predicted from gt, gu, and gv alone.
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Chapter 8

New developments in applications
of graph theory to MEDs

This thesis has presented a development of the SSP approach using general graph
theoretical arguments to devise chemical conclusions about MEDs, such as that
omni–conduction occurs for molecular graphs with no NBOs or only one, and omni–
insulation occurs for molecular graphs that have a large number of NBOs. It in-
cludes energy dependence of transmission, the rules for conduction or insulation at
the Fermi level, the classification of the MEDs by conduction classes, from simple
division into omni–conductors and omni–insulators of various types, to the compre-
hensive division by odd, even and zero distance between connection points. The
initial AO–basis formulation of the SSP model has been extended to a singularity–
free MO formulation, implying a graph–theoretical model of eigenvector channels
for conduction.

The present chapter summarises some more recent activity in the field and points
out some directions for both mathematical and chemical exploration. Three prelim-
inary accounts of research projects within the group are given. These are a further
investigation of the starification construction that was proposed in Chapter 4; the
first stage of an investigation of the effects of distortivity and non–trivial topology
on conduction of carbon nano–frameworks; a discussion of the effects of Pauli spin
statistics on ballistic conduction, which again turns out to have a graph theoretical
dimension. Some indications are given of directions for future research.

8.1 The starification construction

Starification is a process in which vertices of a graph are formally replaced by stars,
with increasing consequences for conduction properties. In Section 4.5.3, it was
mentioned that when chemical graphs with 2 ≤ n ≤ 14 are starified “nearly” all
stars of the parent chemical graphs are distinct omni–insulators. However, there
exist cases where the star of the parent chemical graph is not a distinct omni–
insulator. These cases seem to be rare and are counted in Table 8.1 for n ≤ 10.

A vertex of degree one or two of the original graph corresponds to a core–forbidden
vertex in the star. This is because a pendant vertex on a leaf puts a zero on its
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n(Parent) 2 3 4 5 6 7 8 9 10
N(Parent) 1 2 6 10 29 64 194 531 1733
N(distinct omni–insulator) 1 2 5 9 25 60 180 508 1660
N(other) 0 0 1 1 4 4 14 28 73

Table 8.1: A count for the stars of a parent graph that lead to distinct omni–insulators
(N(distinct omni–insulator) and other cases (N(other)), where n(Parent) is the number of
vertices in the parent chemical graph and N(Parent) is the number of graphs on n(Parent)
vertices.

neighbouring vertex. Then this vertex puts a zero on all vertices connected to it in
the parent graph. As the parent graph is a connected graph, then all original vertices
are core–forbidden. On the other hand, if one original vertex in the star is core, then
all are, by the same connectedness argument. We may also remark the following. A
well known result often used when determining the nullity of a given graph is that
the nullity remains unchanged when deleting an end–vertex and its neighbour. Here
we give our proof. Moreover, when an end vertex together with its neighbour is
removed, the type of vertex remains unchanged within the vertex–deleted subgraph.

Lemma 8.1.1 Let G be a graph with an end vertex L̄ and neighbour R̄. Then the
nullity of G− L̄− R̄ is equal to the nullity of G. Also, the core vertices in G− L̄− R̄
are exactly the same as in G.

Proof: Let the adjacency matrix be labelled such that the end vertex and its
neighbour are labelled last.

∗ 0

G− L̄− R̄ ...
...

∗ 0
∗ . . . ∗ 0 1
0 . . . 0 1 0




x

y
z

 =


0
...
0
0
0

 (8.1)

IfG is a graph that has an end vertex then removing this end vertex and its neighbour
leaves G−L̄−R̄. From Eq. (8.1) y is 0 and (G−L̄−R̄)x = 0. Moreover the nullity of
G− L̄− R̄ is equal to the nullity of G. This is because there is a 1–1 correspondence
between the kernel eigenvectors in G− L̄− R̄ and the kernel eigenvectors in G, and
whatever z is, this 1–1 correspondence holds. So the number of linearly independent
vectors in the nullspace of G is equal to the number of linearly independent vectors
x in the nullspace of G− L̄−R̄. Also, on removing the end vertex and its neighbour,
the non–zero entries of x for G − L̄ − R̄ will be the same as in G. Hence, the core
and core–forbidden vertices in G− L̄− R̄ are the same as those in G.

8.1.1 The rare cases

In all examples found so far the rare cases where the star of a parent chemical graph
is not a distinct omni–insulator results from the parent chemical graph belonging
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to the family of the cubic graphs and their decorations by subdivision of a triangle
edge, addition of paths on a triangle edge, and subdivision of disjoint triangle edges
on addition of some other motifs on edges. These graphs have conduction taking
place when the selected vertices L̄ and R̄ of a device are non–adjacent in the star
and both are inserted vertices of the star (Fig. 8.1).

Figure 8.1: A selection of parent chemical graphs that have stars which are not distinct
omni–insulators.

However, further investigation via computational tests showed that there are 19
cubic graphs on 10 vertices and only 14 of these give exceptions, that is, five of them
follow the general conjecture that their star is a distinct omni–insulator. These are
shown in Fig. 8.2.

It also results that K3,3, the complete bipartite graph on 6 vertices, is an insulator
and its star is not a distinct omni–insulator. This means that some of its devices
conduct. This conduction takes place when selecting the device in such a way that
both L̄ and R̄ are original vertices in the star of K3,3. This also happens for the
stars of the graphs shown in Fig. 8.3.

These sporadic observations do not immediately lend themselves to formal proof,
but one area where it has been possible to find mathematical proofs is in the study
of starified trees.

8.1.2 Trees and their stars

In graph theory, a tree is an undirected graph in which any two vertices are connected
by exactly one path. Is a tree an omni–conductor or an omni–insulator? From
Theorem 4.5.1, we have that no tree is an ipso omni–conductor, and no tree with an
odd number of vertices is an ipso omni–insulator. The only tree that is a distinct
omni–conductor is K2. Other quantitative results are presented in Tables 4.9 and
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Figure 8.2: The five cubic parent chemical graphs that give distinct omni–insulators when
starified.

Figure 8.3: Some other examples of graphs that do not have a distinct omni–insulator
star.
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4.10 in Section 4.5.1. Trees have pendant edges and so Lemma 8.1.1 proves to be
very useful.

If a tree has n vertices of which p are pendant vertices, then the number of vertices
of the star of a tree is 3n + 1, and the number of duplicate pendant vertex pairs
is p. What is interesting is that the star of a tree is a distinct omni–insulator, but
a mixed ipso device, i.e. 2LA IX. The latter case can easily be proved, since the
star of a tree is a bipartite graph whose vertices are core vertices or upper core–
forbidden vertices, that is, no vertex is a middle core–forbidden vertex (proof of this
is given in Section 3.5.1). The star of a tree has both of these types of vertices, and
core vertices give rise to conduction and upper core–forbidden vertices give rise to
insulation in an ipso device. Hence, in the TLA code introduced in Section 5.3 this
will be **X. We can also prove the following for a star of a tree.

Theorem 8.1.1 The original vertices of a star of a tree are all upper core–forbidden
vertices.

Proof: In a star, there are two leaves adjacent to each original leaf. Thus, at the
position of an original leaf there exists an upper core–forbidden vertex as obtained
by considering the zero–sum rule for each row of Ax = 0. A subdivided edge exits
between a pair of original vertices. Thus, both original vertices are upper core–
forbidden vertices. By propagation and using the zero–sum rule, all original vertices
are upper core–forbidden.

Theorem 8.1.2 The inserted vertices of a star of a tree are all core vertices.

Proof: We claim that the nullity of the star of a tree decreases when an inserted
vertex is removed. There are fewer original vertices than inserted ones. Each of
the pendant vertices is adjacent to a neighbour which is an original vertex of the
tree. Deleting both vertices of a pendant edge successively as they appear in the
resulting subgraph, creates n + 1 isolated vertices, all of which were core vertices
in the star. Indeed, when deleting pendant vertices and their neighbours, as they
appear in this process, all original vertices are removed, leaving (3n+1)–(2n) which
gives the nullity.

To obtain the signature of a device for all possible pairs of distinct vertices from
a star of a tree results in the following possibilities, taking into consideration the
allowed cases for bipartite graphs:

1. An edge where the vertices are a pendant inserted vertex (CV) and a neigh-
bouring original vertex (CFVupp): Case D5 Insulation

2. An edge where the vertices are a non–pendant inserted vertex (CV) and a
neighbouring original vertex (CFVupp): Case D5 Insulation

3. A non–edge where the vertices are a pendant inserted vertex (CV) and a non–
neighbouring original vertex (CFVupp): Case D5 Insulation

4. A non–edge where the vertices are a non–pendant inserted vertex (CV) and a
non–neighbouring original vertex (CFVupp): Case D5 Insulation
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5. A non–edge where the vertices are an original vertex (CFVupp) and a non–
neighbouring original vertex (CFVupp): Case D1 Insulation or Case D2 Con-
duction

6. A non–edge where the vertices are an inserted vertex (CV) and a non–
neighbouring inserted vertex (CV): Case D11 Insulation or Case D9 Conduc-
tion

Hence, it remains to show that for the stars of trees to follow the TLA code IIX
and qualify as distinct omni–insulators but mixed ipso devices, Cases D2 and D9
are non–realisable, as we now show. First we need to present a simple way of
determining a basis for the nullspace of A.

Proposition 8.1.2 For a degree one vertex v adjacent to a unique neighbour i,
αi = 0, where αi is the ith entry of the kernel eigenvector.

Proof: From Ax = 0, select the row corresponding to vertex v which has degree
one and is adjacent to a unique neighbour i. Then

eTvAx = 0⇒
(

0 . . . 0 1 0 . . . 0
) α1

...
αn

 =

 0
...
0

 (8.2)

Hence,

αi = 0 (8.3)

where the neighbourhood of v is N(v) = {i}.

Figure 8.4: A general tree on 15 vertices. The black labelling refers to the vertices. The
red labelling refers to the weighting set on each vertex which are the entries of a generalised
eigenvector.

The zero–sum rule is a technique used to generate the generalised kernel eigenvector.
This gives the basis for the nullspace, ker A, and yields the nullity as well. For gs, a
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generalised eigenvector is a linear combination of gs parameters (degrees of freedom)
obtained using Ax = 0. The gs linearly independent eigenvectors can be obtained by
setting one parameter equal to one and the rest zero. Fig. 8.4 shows a graph on 15
vertices. Vertices 11, 12, 13, 14 and 15 are given a zero entry as they are adjacent to
a pendant vertex (vertices 1, 2, 3, 4, 5 and 6). Each of the pendant vertices, except
vertex 2, is given a weighting a, b, c, d and e, respectively. The labels on the other
vertices are listed in such a way that the zero–sum rule is obeyed. For example,
vertex 10 has a labelling of −c since vertex 4 is labelled with c. When combined
together, they give zero as a sum on vertex 12. With this labelling, the generalised
eigenvector of the graph in Fig. 8.4 is:



a
c+ d− a− b− e

e
c
b
d

b+ e− c− d
c− b
−e
−c
0
0
0
0
0


This means that the graph has a nullity of five and so has five linearly independent
eigenvectors, one of which is:



1
−1
0
0
0
0
0
0
0
0
0
0
0
0
0


by setting a = 1 and b = c = d = e = 0. The other four eigenvectors can be
generated in a similar way.

We can now show that cases D2 and D9 are not realisable.
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Theorem 8.1.3 Case D2 is non–realisable for a pair of upper CFVs of a star of a
tree.

Proof: Let the pair of vertices selected for the device be L̄ = CFVupp and R̄ =
CFVupp. R̄ remains an upper core–forbidden vertex in G−L̄, where G is the star of a
tree, because the neighbours of L̄ become end–vertices and remain core vertices. So,
the nullity of G−L̄−R̄ is gs+2. This is Case D1 that gives rise to insulation. Hence,
any CFV–CFV pair in a device of a tree gives rise to insulation, not conduction.

Theorem 8.1.4 Case D9 is non–realisable for a pair of CVs of a star of a tree.

Proof: Whenever a CV is removed, the nullity of the graph decreases by one, and
it leaves all other inserted vertices as CVs. This is because by the zero–sum rule,
around any original vertex there are two parameters (or degrees of freedom) in the
generalised kernel eigenvector. This means that the second inserted vertex removed
is also a CV and so the nullity decreases further by one. This is Case D11 and
not D9. Hence, any CV–CV pair in a device of a tree gives rise to insulation, not
conduction.

As mentioned in the proof of Theorem 8.1.2, the nullity of a star of a tree is n+ 1.
Here we give another proof:

Theorem 8.1.5 The nullity of a star of a tree is n+1, where n is the number of
vertices of the tree.

Proof: The degree of an original vertex in a star of a tree is three. This gives rise
to a new parameter in the generalised kernel eigenvector when using the zero–sum
rule. Now, when a pendant edge of a star is removed, the nullity remains unchanged
(Case D5). Repeating the process, leaves gs isolated vertices that were inserted
(core) vertices in the star. Thus, the star of a tree is left with n+1 isolated vertices
and its nullity is n+1.

In future work it would be interesting to extend this formal mathematical analysis
to wider families of graphs and their stars, for example, general bipartite graphs
and regular graphs. It is also possible that other constructions with tendencies to
influence conduction behaviour in particular ways will emerge.

8.2 Conduction in distortive and topologically ex-

otic carbon frameworks

So far, unweighted graphs with all β equal have been considered and the predictions
for T (E) are independent of the choice of β̃2 parameters. However, weighted graphs
can be used to describe important phenomena in chemistry such as Jahn–Teller and
Peierls distortion. Also unweighted graphs give physically incorrect results in certain
limiting cases, for example, as n → ∞, the Hückel model for the even path Pn has
a HOMO-LUMO gap that tends to zero, but in fact a gap remains in real systems.
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Hence, this gives an incorrect picture of the electronic structure and by implication
even of the conduction.

We did some work to address this issue and the main results have been published in
“Spectra and structural polynomials of graphs of relevance to the theory of molecular
conduction” Ars Math. Comp. 13, 379–408, 2017, Fowler, Pickup, Sciriha and
Borg [156]. This work is too long for inclusion in this thesis and so the present
section just summarises the main points and indicates the future use of this toolkit.
The published paper is an archive of exact results on which to base an elaboration
of the theory of molecular conduction, where the new formulae will allow us to treat
π distortivity and its effect on ballistic conduction through conjugated molecular
frameworks of increasing size [63, 82], as predicted within the source–sink potential
(SSP) approach of Ernzerhof et al. [55, 81,127,143].

In graph theoretical terms, we can mimic geometric distortion of a molecular frame-
work by studying weighted graphs [157]. The starting point is cycles and paths with
alternating edges and/or vertex weights. We obtain all their structural polynomials
(s, t, u, v, j) and eigenvectors and use the ‘factorisation’ of larger graphs (finite
and practically infinite) as a powerful tool to treat the interpretation of spectra and
conduction properties of various families of graphs, such as, ladders and treadmills.
We also allow negative edge weights to give access to Möbius graphs [158].

Figure 8.5: Families of graphs treated in [156]: (a) ladders; (b) treadmills; (c) linear
polyacenes; (d) cyclic polyacenes.

The graphs shown in Fig. 8.5 possess three common features, which are the follow-
ing:

1. The graphs are bipartite.

2. They possess an involution that allows the graph to be expressed as a product
of simpler graphs with known spectra. This means that the characteristic
polynomials can be written neatly in terms of products of the characteristic
polynomials of certain ‘half’ graphs, comprising vertex–weighted backbones
with some in a slightly more complicated form and hence all relevant structural
polynomials can be obtained. Note that in Fig. 8.5 the graphs depicted in (c)
and (d) are not formally products of graphs, but are derived by subdivision of
a subset of original edges in the Cartesian product of paths.

3. The spectrum changes with edge weights, and this is of prime importance in
theories of electronic structure, where molecular structures are modelled by
graphs. Alternation of edge weights may stabilise a π system. This feature is
termed ‘distortivity’ by physical scientists.
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It is well known to physicists and chemists that extended overlapping π–electron
systems may achieve greater stability by distorting in such a way that bond lengths
alternate, and the sharing of electron density across the π–system is reduced. This
is known in the physics literature as Peierls distortion [159], and in the chemical
literature as Jahn–Teller distortion [160]. It typically affects π–electron systems
in such a way as to reduce their conductivity because it opens up a gap in the
middle of the spectrum. In order to assess the importance of distortivity for the
specific phenomenon of ballistic molecular conduction, we need explicit characteristic
polynomials and spectra for families of weighted graphs representing molecules of
chemical interest. For all cases we can then get s, t, u, v and j and so have all the
tools for calculation of T (E) as a function of connections and relative weights.

As reported in [161], a simple guess for distortion modes of a π system, when com-
bined with symmetry arguments, gives a powerful tool for the qualitative analysis
of distortive tendencies of conjugated molecules. This can be achieved by varying
Hückel bond parameters subject to the zero–sum rule around each non–pendant
graph vertex. The geometries of many conjugated systems result from a compro-
mise between the tendency of a σ framework to produce symmetrical arrangements
with equal and near–equal bond lengths, and the opposing tendency of π electrons
to favour bond alternation. For example, pentalene (Fig. 8.6) has its π–localised
Kekulé structure lower in total energy than the σ–favourable delocalised transition
state [162]. The treatment of π distortivity finds its threshold in the eigenvectors of
the bond–bond polarisability matrix, by considering its eigenvalue spectrum, in par-
ticular the largest eigenvalue. The authors of [137] obtained a critical value where
the maximum eigenvalue is 1.8β−1. They conclude that if the system has eigen-
values of larger magnitude, the distortive tendency of the π system will be strong
enough to tip the balance between Eπ and Eσ, and loss of symmetry will result. In
this way, Hückel theory itself provides an internal prediction for when the potential
distortions of the molecular framework will in fact happen. As mentioned above,
pentalene is an example. Because we have the above criterion, we can then apply
our equations to give conduction as a function of the gap in the distorted molecule
and observe trends in T (E). The expectation is that distortivity will increase the
HOMO–LUMO gap and reduce transmission at the Fermi level, T (0).

Figure 8.6: Graph representation of pentalene.

8.2.1 Graphs derived from alternating ladders and tread-
mills

A series of chemically interesting graphs can be derived from our alternating ladders
and treadmills by putting one of the two edge (rung) weights to zero, either a = 0,
or b = 0 (see Fig. 8.7).

Some of the graphs that can be derived from ladders are shown in Fig. 8.8. Ladders
with backbone chains with odd numbers of vertices lead to polyacenes with arms
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Figure 8.7: Linear ladder showing rung weights a and b and riser weights c and d.

and legs, or to polyacenes themselves (Fig. 8.8(a) and 8.8(b)), by putting the first
rung edge parameter or the second to zero. Even–vertex backbones give polyacenes
with a single arm and leg, as shown in Fig. 8.8(c), whichever rung weight is set to
zero. In the case of treadmills, it does not matter which rung weight is set to zero.
In either case one obtains cyclic polyacenes. The appropriate formulae obtained
for alternating ladders and alternating treadmills for eigenvalues, eigenvectors and
structural polynomials can be used in these cases.

Figure 8.8: Graphs derived from ladders by zeroing rung parameters to zero: (a) L14(0, 1 |
1, 1), with two 7–vertex backbone chains, a = 0; (b) L14(0, 1 | 1, 1), with two 7–vertex
backbone chains, b = 0; (c) L12(1, 0 | 1, 1), with two 6–vertex backbone chains, b = 0.

Certain graphs with edge weights having flipped signs, and/or with a pair of crossed
backbone edges can be included (see Figs. 8.9 and 8.10). These flipped and crossed
graphs are sometime called Möbius graphs [158].

Representation of the various structural polynomials in the ‘factorised’ form has
advantages for understanding the structure of the spectrum and has implications
for the physics of the transmission as a function of the energy of the incoming
electrons. In certain cases, for example, conduction is switched off for the whole
range of accessible energies, E [156].

Figure 8.9: A treadmill with 4N vertices and alternating rung (a; b) and ring edge weights
(c; d).
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Figure 8.10: A Möbius treadmill with 4N vertices and alternating rung (a; b) and ring
edge weights (c; d).

8.3 Including the Pauli exclusion principle in the

SSP model for MEDs

Throughout this thesis, the classification of conduction types is carried out within an
‘empty–molecule’ description. In order to achieve a more realistic, many–electron
ground–state picture, theoretical and computational adaptations should be made
to the Hückel SSP model of ballistic conduction in single molecules to include the
effects of the Pauli exclusion principle. This would imply that an incoming electron
cannot occupy an orbital in the molecule that is already occupied by an electron
of the same spin. Hence, there can be different transmission functions T (E) for
incoming spin–up and spin–down electrons.

Work within the group has started to deal with this effect of spin statistics on
conduction. The first application is to systems with a fixed molecular electronic
configuration that are then attached to the leads in an MED. This case is relevant
to situations in which the system is subjected to a bias potential that traps electrons
on the molecular bridge. Here we note the work already carried out, and suggest
some possible extensions. This section relies heavily on “A Hückel source–sink–
potential theory of Pauli spin blockade in molecular electronic devices” J. Chem.
Phys. 145, 204113, 2016, Pickup, Fowler and Sciriha [134], and discusses some
results described in “Inclusion of Pauli effects in a simple graph theoretical model
of ballistic molecular conduction”, which is a thesis by Seville presented in partial
fulfilment of the requirements for the degree of MChem at the University of Sheffield
[163].

8.3.1 From the ‘empty–molecule’ to the many–electron pic-
ture

The main result of the work on the Pauli–SSP model in [134] is that the SSP
formulation for the ‘empty–molecule’ can be carried over to the ‘occupied molecule’
by retaining the four–polynomial formalism, keeping the spectral expansions, but
removing terms corresponding to spin–orbitals occupied by electrons of the same
spin as the incoming ballistic electron. The restricted structural polynomials obey
the interlacing properties of the full polynomials and hence preserve a case/selection
rule structure.

These important subcases for Fermi–level conduction are identified in [163]. These
are Empty (all E available for transmission), Fermi–Empty (E ≤ 0 available, all the
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bonding orbitals are occupied), and Fermi–Full (E < 0 available, all the bonding
and non–bonding orbitals are occupied) (see Fig. 8.11). An interesting feature of
the new model is that it allows ‘Pauli Blockade’ where conduction of electrons of
spin σ is reduced in the region of the eigenvalues for all molecular orbitals that
already contain an electron of spin σ.

The authors of [134] comment that the new restricted structural polynomials are
no longer the characteristic polynomials of specific vertex–deleted graphs, but their
forms as sums over states of the molecular eigenvalues (see for example Eq. (3.2)
in Chapter 3 and Eqs (7.34) and (7.41) in Chapter 7) are retained. Fermi–Empty
molecules lose half of the terms in the non–nullspace part of the expansion owing
to occupation of orbitals with E > 0. Consequently, cases that had zero transmis-
sion, produced by cancellation of sums over bonding and antibonding shells (pre-
dominantly bipartite graphs), will typically now give non–zero conduction. The
Fermi–full cases also lose these terms in the non–nullspace part of the expansion,
but additionally, all of the nullspace (non–bonding) terms are lost [163].

Figure 8.11: ‘Empty’, ‘Fermi–Empty’ and ‘Fermi–Full’ molecules (figure adapted from
[163]).

In the Fermi–Empty case, the ballistic electron is free to move through all the non–
bonding and antibonding channels, thus effectively giving the same set of nullities
for the graph as the ‘empty’ molecule. In the Fermi–Full case, conduction is only
possible through antibonding orbitals, changing the effective nullity of the graph to
zero, as the NBOs are no longer available.

Within the empty molecule picture, all molecular–orbital channels are left open to
the incoming electron, whereas real molecules, have occupied molecular orbitals, and
therefore some closed channels. It is clear that modification is required to build up
a more realistic, many–electron picture that does not overlook Coulomb [164, 165]
and Pauli [166] Blockade effects, i.e., increased resistance caused by either electronic
repulsion or occupied spin–orbitals within the device, respectively. The work by
Pickup et al. [134] was a first step, retaining the advantages of the previously defined
formalism whilst including the molecular electrons. As the authors of [134] point out,
there is no explicit electron–electron interaction in the Hückel tight–binding model,
and so all many–electron effects within the model arise from the Fermi statistics.
In this treatment, the many–electron part of the wavefunction is localised on the
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molecule, and the N electrons inside the molecule, apart from their statistical effect,
are passive spectators to ballistic conduction.

As reported in [134], Pauli Spin Blockade (PSB) has been identified as an experi-
mental effect in [167]. As Perron et al. note, PSB has played a role in investigations
of the physics of spin–to–charge conversion [168]. PSB has implications for spin-
tronics [169–171]. The PSB effect has also been noted by Ernzerhof et al. [128,132]
who applied the SSP method to molecular conduction, introducing electron interac-
tions by means of the Hubbard potential [172]. Pickup et al. [134] do not consider
electron–electron repulsion directly, but instead focus on the effects of fermion statis-
tics on non–interacting many–electron states: these lead to the closing down of con-
duction channels associated with energies below the Fermi level. Further effects, in
which Pauli Spin Blockade may be lifted, or even reversed, depend on the application
of external magnetic fields, were not yet included in their treatment [168,173–176].
Work on including electron correlations within the molecule and variable electron
count on the molecular bridge is ongoing (B.T. Pickup and P.W. Fowler, personal
communication).

8.3.2 Some mathematical consequences of the Pauli SSP
model

In the context of the present thesis, it is interesting to consider the mathemati-
cal differences between Pauli and empty molecule SSP models. In particular, ref-
erence [134] includes a discussion of how the selection rules and classification of
conduction/insulation cases will be affected.

One major result of the work reported in [134] is that the selection rule approach
can still be applied, with necessary changes. Table 8.2 lists the new selection rule
cases, and for the most part follows previously published tables such as Tables III
and I in [84] and [82], respectively, and the Tables 4.4 and 7.1 in Chapters 4 and 7,
respectively. As before the table classifies cases as conducting or insulating, based
on multiplicities of the energy E as a root εA of polynomials s, t, u, v and j,
and as in [82], shows active and inert channels (in the table, active channels have
JL→A(ε) 6= 0). For most lines in the table, the only difference from previous versions
is that the structural polynomials are restricted spectral expansions; the extra lines
PSB and PPR refer to Pauli Spin Blockade (where the shell A has its full complement
of electrons of the same spin as the ballistic electron) and Pauli Perfect Reflection
(when the restricted j polynomial sum vanishes at all energies, i.e. when at least
one terminal vertex is core–forbidden for all included shells). As an aside, we note
that the diagram (Fig. 2) given in [134] to illustrate an excited state of pentalene
appears to have a typo, in that the occupied anti–bonding molecular orbital should
be number 7 not number 6 to achieve PPR.

8.3.3 What survives under the Pauli Effect

The work presented by Seville in [163] shows that many properties presented in
earlier work, such as [84] and [104], survive under the inclusion of the Pauli Effect but
omni–insulation is not as common as before. The molecules become more conductive
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Kind rA Case gt gu gv gj T (εA) Jbond
p→q (εA) JL→A(ε)

Two CFVs 0 D1 g+1 g+1 g+2 ≥ g+1 0 0 0

0 D2 g+1 g+1 g g 6= 0 6= 0 0

0 D3 g+1 g g+1 ≥ g+1 0 0 0

0 D4 g+1 g g g 6= 0 6= 0 0

0 D6 g g g+1 g 6= 0 6= 0 0

0 D7.1 g g g g 6= 0 6= 0 0

0 D7.2 g g g ≥ g+1 0 0 0

CV and CFV 1 D5 g+1 g−1 g ≥ g 0 0 0

1 D8 g g−1 g−1 ≥ g 0 0 0

Two CVs 1 D9 g−1 g−1 g g−1 6= 0 6= 0 6= 0

1 D10 g−1 g−1 g−1 g−1 6= 0 6= 0 6= 0

2 D11.1 g−1 g−1 g−2 g−1 0 0 6= 0

2 D11.2 g−1 g−1 g−2 ≥ g 0 0 0

CFV 0 I1 g+1 − − − 0 0 0

I2 g − − − 6= 0 0 0

CV 1 I3 g−1 − − − 6= 0 0 6= 0

− − PSB − − − − 0 0 0

≥ 1 CFV 0/1 PPR − − − − 0 0 0

Table 8.2: Conduction cases for distinct and ipso molecular devices in the Pauli regime,
showing the kind of the vertex pair for the device, the rank of the connection matrix rA

for shell A with eigenvalue εA and degeneracy g, the total transmission T (εA), and the
bond currents JAO

p→q(εA). The numbers of repeated roots in structural polynomials, t, u,
v, and j are gt, gu, gv, and gj , respectively. The shell current JL→A(ε) applies for any
energy. CV and CFV stand respectively for core and core–forbidden vertices (defined with
respect to the eigenspace A). Case PSB is Pauli Spin Blockade. Case PPR (Pauli Perfect
Reflector) occurs when the structural polynomial (ε) is zero for all values of ε [134].
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as they progress from Empty to Fermi–Empty to Fermi–Full states. These results
are derived from computations based on the decision–trees given in Tables 4.2 and
4.3, rather than on the pure nullity arguments of the selection–rule approach.

An interesting feature arising from the presence of molecular electrons is that there
shall be no shell currents that involve spin–orbitals occupied by electrons with a
spin opposite to that of the incoming electron. This Pauli Blockade removes the
energy levels of occupied spin–orbitals from the structural polynomials and so the
transmission peaks at energies below the Fermi level are removed [134] (see Fig.
8.12).

Figure 8.12: A five–membered chain with terminal connections to source and sink.
The diagrams show transmission and shell currents for the device with 0 and 3 molecular
electrons having the same spin as the incoming electron. Orbital energies are shown for
reference as black circles above the curves [134].

The report by Seville [163] gives calculations on large samples of graphs showing how
the TLA classifications (Chapter 5) change with inclusion of the Pauli Effect. In
other words, a variable TLA profile as we go from Empty to Fermi–Empty to Fermi–
Full. Families show specific profiles. For example, Seville found that antiaromatic
(4N)-cycles change from ICC to ICC to CCC for Empty to Fermi–Empty to Fermi–
Full, whereas aromatic (4N+2)–cycles change from CII to CCC to CCC. Also,
bi–cycles with 2p = 4N + 2, 2q = 4N ′ + 2 and prisms with 2p 6= 6N are strong
omni–conductors for the Fermi–Empty and Fermi–Full states.

For bipartite graphs, examples of 19 distinct profiles were found. For all of these
cases, except Case 5, the number of Is and Xs in the TLA never increase and the
number of Cs never decreases. All devices become ipso omni–conductors for both the
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Fermi–Empty and Fermi–Full cases, except Case 5 Fermi–Full which still remains
an ipso omni–insulator.

The Seville project was also the first place in which the Venn–like diagram of the
2LA appeared, and this was taken up in the work on which Chapter 5 of this thesis
is based. Seville gives the smallest example of each of the 2LA cases in order to
eliminate the need for formal existence proofs. However, it would be interesting
in future work to check the completeness of this observation using more formal
methods, analogous to those used in Chapters 5 and 6.

8.4 Conclusion

In conclusion, it has been shown that the techniques available in spectral graph
theory continue to open new avenues in the understanding of electron behaviour
in π–molecules. Through the exploration of mathematical results, one can predict
hitherto unknown electron behaviour in molecules and in turn to establish a sound
theoretical base for the yet unknown mechanisms in this area of nanotechnology.
As Ratner states in [20], “there are so many possible molecular structures (that)
the understanding of molecular transport is still in its infancy ... but molecular
electronics is a vibrant and dynamic area of science and technology, and numerous
challenges and opportunities lie ahead”. Graph theory has a role as one of the tools
for solving these challenges.
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Chapter 9

Overview

The point of view taken in this thesis is that the SSP (source–and–sink potential)
model developed initially by the Ernzerhof group provides a useful qualitative de-
scription of elastic (ballistic) conduction at low bias through a single–molecule empty
device. Furthermore, the inspiration for the mathematical treatment described here
is that the main conclusions of SSP for conduction in π systems appear to arise from
its close correspondence to the purely graph–theoretical treatment of an adjacency
problem with scattering boundary conditions.

The starting point is the previously derived expression for transmission of a two–
wire device as a function of energy and placement of connections. Transmission
of a device {G, L̄, R̄} of energy E depends on four polynomials s, t, u, v and in
particular on their combination j2 = ut − sv. The polynomials are respectively
the characteristic polynomials of G, G − L̄, G − R̄ and G − L̄ − R̄ where G is the
molecular graph and L̄, R̄ are the connection vertices in G.

Chapter 3 shows how the classification of vertices of a graph based on the Interlacing
Theorem leads to predictive selection rules for conduction at the zero of energy
(physically, the Fermi level). Conduction depends critically on the number of non–
bonding orbitals of the four π systems corresponding to G, G − L̄, G − R̄ and
G− L̄− R̄, with the key feature being the nullity class of G (where gs(G) = 0, 1 or
> 1).

The idea of omni–conduction and omni–insulation were introduced in Chapter 4,
as descriptions of generic conduction behaviour for classes of devices based on a
given molecular graph. This led to observations of systematic conduction behaviour
within families of chemical graphs. It is proved that all combinations of distinct and
ipso behaviour are mathematically possible (and physically realised), apart from the
‘strong insulators’ combination of insulation for all devices.

Chapter 5 extends this classification to bipartite graphs, using a finer level of detail
where inter, intra and ipso devices are defined for L̄ 6= R̄ in different partite sets,
L̄ 6= R̄ in the same partite set, and L̄ = R̄. It is proved that of the 81 hypothetically
possible classes of devices, only 14 are realisable by a connected simple graph, with
at least 13 realisable by chemical graphs.

Chapter 6 makes a final extension of this three–letter acronym system to cover all
graphs, bipartite and non–bipartite. The key is to redefine the inter and intra classes
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of device as those with odd and even (non–zero) graph theoretical distance between
connections. Of the 81 hypothetically possible classes of device, 42 are proved to be
unrealisable by any graph, 35 are realised by small example graphs (in at least 28
cases chemical), leaving four ‘stubborn’ unresolved cases.

Chapter 7 shows how the SSP model can be reformulated in terms of transmission
through eigenchannels based on shells of molecular orbitals (eigenvectors) corre-
sponding to degenerate eigenvalues of the adjacency matrix of the molecular graph.
The reformulation has mathematical advantages in that it avoids singularities at
extreme values of reflection coefficient, and chemical advantages of interpretibility
in terms of active and inert channels.

Chapter 8 shows that a construction for omni–insulators described earlier (Chapter
4) can be proved. It is shown that the star of a tree is an omni–insulator for only
distinct pair of vertices. To construct a star, each vertex of a parent graph G is
replaced by a three–pointed star S3, such that pairs of stars corresponding to edges
of G are fused by superposition of a terminal vertex of each. The vertices of a star of
a tree fall into two classes: the original vertices are all upper core–forbidden vertices,
whereas the inserted vertices from the starification construction are all core vertices.
This allows partial rationalisation of the observations from extensive calculations.
A brief description was also given of mathematical results on factorisation of graph
structural polynomials that will allow the treatment in future work of the effects of
distortivity of π systems on conduction. The representation of the various structural
polynomials in the ‘factorised’ form has advantages for understanding the structure
of the spectrum and has implications for the physics of the transmission as a function
of the energy of the incoming electrons. This chapter also includes some discussion
of recent work from the Sheffield group that deals with improvements of the SSP
picture to deal with electron interaction between the electrons on the molecular
bridge and the incoming ballistic conduction electron. So far the only interactions
included are those described by the Pauli Exclusion Principle. Further refinement to
deal with electrostatic repulsion and ultimately electron correlation on the molecular
bridge are in progress within the group, though they do not form part of the work
carried out by the author of this thesis.

In conclusion, the work in this thesis has shown the power of combining a physical
model of conduction with graph–theoretical reasoning. A number of new results have
been obtained and will hopefully lead to new and unforeseen technological applica-
tions to consolidate molecular electronics as a solid pillar of emerging nanoscience.
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[117] I. Gutman and B. Borovićanin. Nullity of graphs: An updated survey. In D.M.
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