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Abstract 

Shielding is a method to protect electronic devices from electromagnetic interference and the 

protection is usually provided by using an enclosure. This ability of protection is quantified by 

shielding effectiveness (SE). Most of methods to predict SE are about empty enclosures. It has 

been shown that the presence of contents affects the SE and hence they should be 

considered.  

The power balance (PWB) method is widely used for analysing shielding problems of 

populated enclosures. By using this method, the contents are represented by their absorption 

cross sections (ACS). Previous ACS measurements were performed when the contents were 

unpowered. This might be a problem if the contents contain active devices. In order to 

investigate the influence of power states on ACS, we measured the ACS of some computer 

components when they were powered on and off. Comparison suggests that their ACS barely 

change in different power states. Therefore, it can be concluded that power state has little 

effect on ACS measurements. 

The PWB method assumes that in the steady state, the internal field of an enclosure is 

uniform, which is not true when the internal loss is high. In order to overcome this limitation, 

a 2D diffusion model has been proposed. It stems from acoustics and is a generalization of 

the PWB method. In this work, the 2D model has been expanded to a 3D one. The 3D diffusion 

model was verified by using it to predict the power density in a populated enclosure and 

compare the predictions with those obtained by full wave simulation and measurement. The 

result indicates that when the loss in an enclosure is high, the internal field is not uniform and 

the 3D diffusion model is able to describe the variation of field.    
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Chapter 1 

Introduction 

1.1. Backgrounds 

Any electrical or electronic system generates electromagnetic waves when operating. 

Sometimes the waves are intentional such as in radio and radar transmitters, but often they 

are unintentional and can interfere with other components. Those unintentional waves may 

be a source of electromagnetic interference (EMI). EMI causes degradation of the system’s 

performance and therefore needs to be mitigated. Electromagnetic compatibility (EMC) is the 

ability of systems to co-exist without causing electromagnetic interference to each other. It 

provides a fertile area of research in which the improvement of the co-existence of different 

components in a system is studied. By co-existence, we mean the components do not cause 

interference with other components and they are not susceptible to emissions from other 

components. This co-existence is achieved by reducing the EMI coming from either outside 

or other components. EMI can be reduced by: 1. Suppress the EMI at its source; 2. Make the 

propagation paths of EMI as inefficient as possible; 3. Make the potential receiver less 

susceptible to EMI. The transfer of electromagnetic energy can be further divided into two 

groups: radiated emissions and radiated susceptibility. A number of methods have been 

applied to deal with these four basic EMC sub problems, such as shielding, grounding, bonding 

and filtering [1].  

This thesis focuses on shielding technique. The main purposes of shielding technique are: 1. 

To reduce emitted EMI; 2. Prevent external EMI to enter a shielded space. To achieve these 

purposes, a shell is constructed as an enclosure surrounding some or all of a system. The 

ability of an enclosure to protect its contents from EMI is quantified by its shielding 

effectiveness (SE), which is influenced by several factors, such as the material of the 

enclosure, aperture penetrations, the frequency of EMI and the distance between the EMI 

source and the enclosure.  

Two issues are important to shielding problems. One is the effect of apertures. A perfectly 

shielded enclosure should block EMI completely. However, in reality, an equipment enclosure 
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always has holes and/or slots for purposes like ventilation and inspection. Their presence 

allow EMI to penetrate into the enclosure and reduce the shielding effectiveness. In order to 

accurately predict the shielding effectiveness of enclosures, apertures should be considered. 

At low frequencies where there are only a limited number of modes excited in an enclosure, 

circuit approximation can be applied to obtain shielding effectiveness. The work presented in 

this thesis is mostly about the reverberant regime where many modes are excited. Therefore, 

circuit models are not suitable for our study. 

The other issue with the shielding problems of enclosures is that in reality, they always have 

contents. It has been proved that the presence of contents change the internal fields and thus 

affect the shielding effectiveness [2]. In present day, the high packing density of contents in 

an enclosure makes it impossible to ignore their effects on electromagnetic fields. One 

method to analyse the shielding problems of populated enclosures is the power balance 

(PWB) method [3], which is applicable to cases where the loss in an enclosure is low. By using 

the PWB method, the shielding effectiveness of an enclosure can be calculated from the 

absorption cross section (ACS) of the content and the transmission cross section (TCS) of the 

aperture [4]. The advantage of the PWB method is that it does not require the detailed 

geometry of the content. Therefore, it is able to provide fast approximations as well and has 

been applied widely.  

However, one fundamental limitation of the PWB method is that it assumes the field in an 

enclosure is uniform in the steady state. This is only true when the loss in the enclosure is 

small. When the loss in an enclosure is high, the internal field is no longer uniform and the 

PWB method cannot describe this change. The acoustics community has proposed a diffusion 

equation based model that is able to account for the variation of field due to the presence of 

high loss.  The diffusion model is the main subject of the thesis. It can be derived from the 

radiative transport of particles in an enclosure. It is a generalization of the PWB method and 

we have applied it to shielding problems. Initial evaluations have been made with a 2D 

diffusion model, obtaining promising results. In this thesis, extensive investigations are made 

to verify a 3D diffusion model.  
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1.2. Research Scope 

The main objective of this thesis is to explore the estimation of shielding effectiveness of 

populated enclosures in a reverberant environment. A number of methods are reviewed. Two 

particular analytical methods, the power balance method and its generalization, a diffusion 

equation model are investigated in detail. These two methods are of interest because they 

analyse shielding problems from a macroscopic point of view and they do not require the 

details (such as position, shape) of the contents. Hence, they have a wide applicability. In the 

thesis, simulations and physical measurements are given in order to compare with theoretical 

calculations. The research aim can be divided into the following parts: 

 To demonstrate that the contents of an enclosure affect its shielding effectiveness and 

the shielding effectiveness can be predicted by using the absorption cross section of 

the contents and the transmission cross section of apertures. 

 In order to use the power balance method, it is necessary to obtain the absorption 

cross section of contents. When measuring the ACS of electronic components such as 

printed circuit boards, their power states are always ignored in previous research. In 

this thesis, we investigated the influence of power state of contents on their 

absorption cross section and proved that the power state can be ignored. 

 The 2D diffusion model has been studied previously [5]. In this study, we verified the 

usefulness of a 3D diffusion model in predicting electromagnetic fields inside 

enclosures.  

1.3. Outline of thesis  

Chapter 2 provides a general review of the shielding theory as well as several analytical 

methods to predict shielding effectiveness of enclosures. 

Chapter 3 reviews some facilities (open area test site, anechoic chamber and reverberation 

chamber) and methods (one, two and three antenna methods) to perform shielding 

measurements. 

Chapter 4 introduces the power balance method. Examples will be presented to show that it 

is necessary to include the contents when predicting the shielding effectiveness of enclosures. 
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The theory of absorption cross section and its relation with shielding problems is explained. 

The effect of the power state of contents on the absorption cross section is investigated.  

Chapter 5 is all about the diffusion equation based model. Its principles, assumptions and 

relationship with the power balance method are explained. A number of test scenarios will 

be provided to demonstrate  its usefulness, including an enclosure with different content, 

electrically large and small aperture and different dimensional ratios. Full wave simulations 

and physical measurements will be presented as comparison.   

Chapter 6 draws the conclusion of the work presented in the thesis. The advantages and 

limitations of different methods for shielding problems are summarized. Discussions about 

possible extensions of the current research are made.    

  



5 
 

Chapter 2 

Overview of shielding effectiveness 

 
2.1. Outline of thesis  

Shielding is one of the techniques that have been applied to EMC engineering to suppress 

electromagnetic interference. Any interference that transmits through space can be reduced 

by proper shielding. The term shield usually refers to an enclosure that (in an ideal case) 

completely encloses an electronic component [6]. There are two goals of a shield. The first is 

to prevent the emission of an electronic component to reach outside the boundary of the 

shield. This is to prevent the emission to influence other components. The second goal is to 

prevent external emission from coupling to the electronic component, which may cause 

interference in the component’s performance. An illustration of shield can be seen in Figure 

2.1 (a).  

From the introduction above, it can be seen that a shield serves as a barrier to the 

transmission of electromagnetic fields. A shielding enclosure is usually made of conductive or 

magnetic material and it should shield both electric and magnetic fields. The ability of an 

enclosure to protect its contents from electromagnetic interference is quantified by its 

shielding effectiveness (SE). Shielding effectiveness can be defined in terms of field or power. 

From the field point of view, Shielding effectiveness is defined as the ratio of the magnitude 

of the electric or magnetic field that is incident on the enclosure to the magnitude of the 

electric or magnetic field that is penetrated through the enclosure [6]: 

SE = 20log10 |
𝐸𝑖

𝐸0
|                                                          (2.1) 

SE = 20log10 |
𝐻𝑖

𝐻0
|                                                          (2.2) 

where Ei and Hi are the electric and magnetic field that is incident on the enclosure, E0 and H0 

are the electric and magnetic field that is transmitted through the enclosure. It can be noticed 

that shielding effectiveness is usually expressed in decibels. If the media on both sides of the 
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enclosure is the same, then the two definitions are identical. For near fields and/or different 

media on two sides of the enclosure, the two are not equivalent. In reality, the definition in 

terms of electric field in formula (2.1) is usually considered to be the standard [6]. An 

illustration of the definition of shield effectiveness can be seen in Figure 2.1 (b). From the 

power point of view, shielding effectiveness is defined as [2]: 

SE = 10log10
𝑆𝑖

𝑆0
                                                                (2.3) 

where Si is the density of the incident power and S0 is the density of the internal power, both 

in W/m2. 

A number of factors affects shielding effectiveness. For an ideal case where an infinite 

conducting sheet is illuminated by a plane wave, the shielding effectiveness depends on the 

frequency of the plane wave and the properties of the sheet’s material properties 

(conductivity, relative permittivity and relative permeability). If a shielding enclosure is 

applied, then the shielding effectiveness is dependent on the position within the enclosure. 

 

Figure 2. 1. (a). Illustration of the use of a shielding enclosure: (1) to contain radiated 
emissions; (2) to exclude radiated emissions. (b). Illustration of definition of shielding 
effectiveness: (3) field with shielding enclosure; (4) field without shielding enclosure. 
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Furthermore, if an empty enclosure is made of highly conductive material and contains an 

aperture, then the shielding effectiveness is determined mainly by the penetration of energy 

through the aperture. If there are contents, then they have an influence on the shielding 

effectiveness as well. 

2.2. Methods to predict shielding effectiveness 

The prediction of shielding effectiveness can be divided into numerical methods and 

analytical methods. Numerical methods solve Maxwell’s equations directly with certain 

boundary conditions. Theoretically, they can be applied to any enclosure and they are able to 

model complex structures. There are already a number of commercial software for people to 

choose. To solve most real world SE problems full wave numerical electromagnetic solvers 

must be used. However, to reach an exact numerical solution, full wave solvers may take 

hours or days depending on the complexity of the problem. An EMC designer would usually 

like to solve a problem in seconds so that the effects of design changes can be observed 

quickly. This requirement boosts the development of analytical methods, which are usually 

empirical or semi-empirical and uses approximations. They may not be as accurate as 

numerical solutions but they need far less computational resources. There are many analytical 

methods; here we only review a couple of early ones. 

One early analytical method is the circuit model proposed by Schelkunoff, which compares 

the propagation of electromagnetic waves in a shielding enclosure to that of travelling waves 

along a transmission line [7]. According to Schelkunoff’s model, when an electromagnetic 

wave impinges on a sheet with finite thickness, a portion of the wave is reflected and the rest 

of it penetrates into the sheet. When the latter reaches the boundary of the sheet, a part of 

it is reflected again and the rest of it goes to the other side of the sheet. The former part keeps 

reflecting inside the sheet and every time it reaches either boundary, a part of the wave goes 

through it. Therefore, the shielding effectiveness of the sheet is the sum of reflection loss, 

absorption loss and multi-reflection loss. 

Another analytical method is the field theory proposed by Kaden [8].  He developed general 

approaches to calculate eddy currents in certain specific empty enclosures and applied them 

to nonhomogeneous shielding analysis: spiral shields, shields with apertures and multilayer 

shields. According to Kaden’s theory, when an electromagnetic field incidents on a shielding 
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enclosure, eddy currents are induced on the surface of the enclosure and they create opposite 

fields. By using the separation of variables method, we solve Helmholtz's equation in each of 

the three regions: the space outside the enclosure, the space inside the enclosure and in the 

wall of the enclosure (usually metal). Combined with boundary conditions, continuity and 

conservation of the tangent component of the field at each of the enclosure’s surfaces to 

obtain the external and internal field. The shielding effectiveness can be calculated by formula 

2.1. 

Both Schelkunoff and Kaden’s methods lay the foundation of contemporary shielding study. 

However, their models are only suitable to some idealized geometries. Schelkunoff’s method 

can only be applied to infinite sheet and Kaden’s theory is only suitable for some simple 

structures (plan-parallel, spherical, cylindrical, elliptic, parabolic, toroidal, etc.). Therefore, 

they do not address many EMC problems in modern electronic systems, nor do they reflect 

the latest technical advances in shielding study.  

More recently, some analytical methods have been developed for applications that are able 

to be applied to more practical situations. For example, the intermediate level circuit model 

proposed by Robinson et al. is able to predict the shielding effectiveness of an empty 

rectangular enclosure with an aperture [9]. For the case where an enclosure is illuminated by 

a plane wave, the model considers the enclosure as a shorted waveguide and assumes a single 

mode of propagation. The plane wave is represented by a voltage source and an impedance. 

The aperture is represented by a length of coplanar strip transmission line, shorted as each 

end. The shielding effectiveness at a particular point along the central line of the enclosure is 

simply the ratio of electric field in the absence and presence of the enclosure as described in 

formula (2.1). Later, attempts have been made to include higher order modes [10], aperture 

array [11] and apertures on different faces [12] into the circuit model. The intermediate level 

circuit model is able to provide fast approximations and can be used at early stages of EMC 

design. However, most of the proposed models ignored the contents of enclosures, and thus, 

underestimated internal power loss.  

As frequency increases, the enclosure becomes electrically large (electrically large means the 

enclosure supports several modes at the lowest frequency of interest) and over-moded (the 

criterion of over-mode will be presented in section 3.1.3). The internal electromagnetic 

environment can be modelled by probabilistic laws. In this case, we can make the 
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approximation that the enclosure is equivalent to a pseudo-mode stirred reverberation 

chamber. In other words, when an enclosure is electrically large and over-moded, there is no 

privileged direction of energy in it. Therefore, high frequency shielding problems can be 

treated from an average energy point of view.  

In order to predict the shielding effectiveness of populated enclosures at high frequencies, 

the power balance (PWB) method has been introduced [3]. The PWB method assumes that 

the enclosure is electrically large and the internal field is uniform in the steady state. For 

steady state conditions, the power transmitted into the enclosure equals the power 

dissipated inside. Since it only considers average energy, the details of the content’s 

geometry, the shapes of the aperture and the enclosure is no longer important.  

As can been introduced, contents affect the shielding effectiveness of an enclosure by 

absorbing some internal energy. The absorption characteristics of the contents are quantified  

by their absorption cross sections, which are the effective areas of them that absorb energy. 

By using the PWB method, the shielding effectiveness is closely related to the absorption cross 

section of the contents. Besides contents, we also need to consider the influence of apertures. 

Junqua et al extended the original PWB method and proposed a network formulation for 

coupled enclosures [13].The details of the power balance method will be provided in chapter 

4. 

In terms of measurements, absorption cross section is defined as the ratio of absorbed power 

to the power density of illuminating field. Carlberg et al have shown that absorption cross 

section can be measured in a reverberation chamber and pointed out that the overall ACSs of 

densely packed objects are smaller than the sum of individual ACS [14]. In [4], Flintoft et al 

analysed an enclosure filled with packed printed circuit boards and proposed a segmented 

power balance model. They proposed an empirical shadowing factor to account for the 

reduction of ACS due to close proximity of printed circuit boards.  

The power balance method assumes that the energy is uniform throughout an enclosure in 

the steady state. If the loss in the enclosure is high, the energy is no longer uniform and the 

power balance method cannot predict this change. The acoustics community has proposed a 

diffusion model that is able to predict the variation of energy due to the presence of high loss. 

For the first time, Flintoft et al applied the diffusion model to shielding problems and validated 
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a 2D diffusion model [5]. The diffusion model compares the transport of electromagnetic rays 

to particles in a cavity. The main subject of this thesis is to further develop this method and 

verify the usefulness of 3D diffusion model. The details are given in chapter 5.  

2.3. Summary 

This chapter began with some general principles and concepts of shielding effectiveness. Then 

some methods for shielding problems were reviewed. Numerical methods produce accurate 

results but usually require much computing resources. In order to get fast estimations, 

analytical methods become necessary. Schelkunoff’s transmission line model for infinite 

plane shield and Kaden’s analytical methods for symmetrical structures are early attempts to 

analyse shielding problems and are only suitable to idealized situations.  

The intermediate level circuit model stems from the waveguide theory (analogues to EM 

waves in an enclosure). It is able to estimate resonant frequencies of enclosures with 

apertures and most of the study centres on empty enclosures only, limiting its applicability. 

The power balance method has been used to analyse shielding problems of populated 

enclosures from an average energy point of view and it does not require the geometry of the 

contents, but it is accurate only when the loss in the enclosure is low. For moderate or high 

loss cases, the power balance method is unable to predict the variation of power due to the 

presence of loss. 

The diffusion equation based model is a generalization of the power balance method and it is 

able to account for such variation. The diffusion model is derived from a radiative of transport 

theory of particles in an enclosure. A 2D diffusion model has been verified. The main subject 

of this thesis is to verify the usefulness of a 3D diffusion model. 
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Chapter 3 

Measurement of shielding effectiveness 

3.1. Facilities for shielding measurements 

Study of shielding effectiveness relies on measurements. A shielding effectiveness 

measurement usually contains two steps: 1. a reference coupling test; 2. a shielded coupling 

test [15]. The measurement can be performed in either an open-area test site (OATS), an 

anechoic chamber or a reverberation chamber. If we hope to investigate the circumstance 

where there is only a single direction of illumination, then the measurement can be 

performed in open-area test site or anechoic chamber; if we want to study a multi direction 

illumination case, then we could use a reverberation chamber to perform the measurement. 

In this section, we present introductions of all three measurement facilities. It should be noted 

that in actual cases, an electronic/electrical device is more likely to be exposed to 

electromagnetic interferences coming from different directions rather than interferences 

from a single direction. Therefore, all the measurements presented in this thesis were 

performed in a reverberation chamber and the introduction will mainly focus on 

reverberation chamber. 

3.1.1. Open-area test site 

An open-area test site (OATS) is ideally a perfectly flat, infinitely large plane without any 

obstructions. In reality, such a test site is usually built at places where there are as little 

ambient electromagnetic interferences as possible. It is suitable for radiated emission test, 

which measures unintentional release of electromagnetic energy from an 

electronic/electrical device. The size and shape of an open area test site depends on the 

measurement distance and whether the equipment under test will be rotated. If rotation is 

required, the standard ANSI C67.4-2015 recommends an elliptical test site; otherwise a 

circular site is recommended [16]. Figure 3.1 shows the open area test site at the University 

of York.  
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Although shielding effectiveness measurements can be performed in an open area test site, 

in this work, no measurements were performed in it. Therefore, we will not provide more 

details about OATS in this thesis. 

3.1.2. Anechoic chamber 

In actual cases, measurements performed in an open area test site are unavoidably affected 

by electromagnetic interferences coming from sources like mobile phone or TV stations due 

to the open nature of the test site. An anechoic chamber can serve as an alternative of an 

open area test site. Figure 3.2 shows the anechoic chamber at the University of York. It can 

be seen from the photo that an anechoic chamber is a shielded room with absorbing material 

covering the internal walls. There are two types of anechoic chambers: semi-anechoic 

chamber and full anechoic chamber. The difference is that in a semi-anechoic chamber, 

absorbers do not cover the floor while in a full anechoic chamber the floor is covered. 

Therefore, a semi-anechoic chamber simulates open area test sites and a full anechoic 

chamber simulates free space. The cost of building an anechoic chamber is higher than that 

of an open area test site due to the use of absorbing materials. However, it has the advantages 

of free from ambient electromagnetic interference. 

 

Figure 3. 1. The open area test site at the University of York. 
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3.1.3. Reverberation chamber 

The concept of reverberation chamber arises from the idea of using resonant cavities to 

perform radiation measurements, where a small change in boundary condition leads to huge 

field variation [17]. A reverberation chamber is a screen room with highly conductive inner 

walls that minimise the absorption of electromagnetic energy. It operates in over-moded 

region. The most notable difference between a reverberation chamber and an anechoic 

chamber is that a reverberation chamber is able to provide a uniform electromagnetic 

environment. Therefore, it is suitable for radiated emission and radiated susceptibility 

measurements.  

Figure 3.3 shows the reverberation chamber at the University of York. It can be seen that a 

mechanical stirrer is fitted in the chamber. The stirrer can be moved to different orientations 

to achieve different boundary conditions. The method of mechanical stirring holds a constant 

frequency while varying the chamber’s boundary conditions to obtain an adequate number 

of modal contributions to the internal field. In this manner, field homogeneity is achieved by 

averaging the contributions of different modes.    

 

Figure 3. 2. The anechoic chamber at the University of York. 
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The chamber in figure 3.3 has dimensions of 4.7m×3m×2.37m. The walls are made from zinc 

plated galvanised mild steel. The relative permeability of the chamber walls is assumed to be 

unity and a conductivity of 1MS/m was found to give a Q-factor similar to the measured Q-

factor (see figure 3.7) at 1GHz. The conductivity of pure zinc (17MS/m) overestimates the Q-

factor by a factor of about 10. The real conductivity is presumably highly dependent on the 

purity and surface finish of the real walls. Steel has a conductivity ranging from 1-7MS/m, 

depending on the carbon content and production process. In a technical note, Flintoft states 

that the wall loss dominates the antenna loss (if there is an antenna) above 1GHz and hence 

the antenna has little influence on the chamber Q-factor at high frequencies (above 1GHz) 

(see figure 3.7) [18]. 

For chambers or enclosures that are not convenient to install a mechanical stirrer, frequency 

stirring is an alternative way to achieve field uniformity [19]. Frequency stirring does not 

change the boundary condition. Instead, the frequency is allowed to vary over a narrow band 

of frequency. Then frequency stirring is achieved by averaging the contribution of each mode 

in that frequency band.  

By talking field uniformity, we mean there should be sufficient number of uncorrelated 

samples in the chamber. The number of uncorrelated samples can be estimated by 

autocorrelation function (ACF). Later in this chapter, we will show the ACF of S-parameter 

 

Figure 3. 3. The reverberation chamber at the University of York. 
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measured in the reverberation chamber at the University of York as an example. When using 

mechanical stirring, more independent samples can be obtained by properly increasing the 

number of stirrer positions. When using frequency stirring, more independent samples can 

be obtained by an increase the bandwidth to include more samples. Currently the choice of 

the bandwidth for frequency stirring is empirical. In [20], Marvin et al compared several 

bandwidths (5MHz, 10MHz, 20MHz and 50MHz) for frequency stirring in a reverberation 

chamber and concluded that the wider the bandwidth, the result tend to get closer to an 

exact value. This is because broader bandwidth means more independent samples are 

included. However, this does not mean we can choose the bandwidth as wide as we want 

because it might obscure the original features of the results. For example, in shielding 

measurements, the shielding effectiveness of an enclosure decreases dramatically at 

resonant frequencies. If we choose a very wide bandwidth for frequency stirring, then the 

averaged values get too close to an exact number and the reduction in shielding effectiveness 

might not be observed.  

Other methods to achieve field uniformity in a reverberation chamber include source stirring 

[21] and load stirring [22]. 

As has been mentioned, a reverberation chamber operates in over-moded region. In order to 

illustrate what over-moded means, here we briefly review enclosure resonators. The resonant 

frequencies of an enclosure or chamber is given by [23]:  

𝑓(𝑀𝐻𝑧) = 150√(
𝑘

𝑙
)

2

+ (
𝑚

𝑤
)

2

+ (
𝑛

ℎ
)

2

                                          (3.1) 

where l ,w and h are the length, width and height of the chamber respectively, all in meters.  

k, m, and n are positive integers 0, 1, 2…… etc. It should be noted that not more than one of 

them could be zero at the same time. The reverberation chamber at the University of York 

has dimensions of 4.7m×3m×2.37m. Therefore, the first mode, TE110, is at: 

𝑓𝑇𝐸110 = 150√(
1

4.7
)

2

+ (
1

3
)

2

≈ 59.3𝑀𝐻𝑧                                       (3.2) 
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The frequency at which a reverberation chamber can be considered as over-moded is defined 

as the lowest usable frequency (LUF) and there are different ways to determine the LUF. The 

IEC standard 61000-4-21:2011 gives an estimate of the lowest useable frequency as the 

frequency of the 60th mode [24]. The number of modes in a reverberation chamber below 

(and up to) a certain frequency can be estimated by [24]: 

𝑁 =
8𝜋

3
𝑙𝑤ℎ (

𝑓

𝑐
)

3

                                                         (3.3) 

where c is light speed and f is frequency in Hertz. The frequency of the 60th mode (N=60) in 

the reverberation chamber at the University of York is about 178MHz, which means the 

lowest useable frequency of the chamber is 178MHz. The American military standard MIL-

STD-461F proposed a higher standard in which there should be at least 100 modes in a 

reverberation chamber before it can be considered usable [25]. In this case, according to 

formula (3.3), the lowest usable frequency of the chamber is approximately 213MHz. 

In [26], Schroeder proposed a more rigorous criterion of the lowest useable frequency that 

marks the transition from individual resonances to many overlapping modes. The crossover 

frequency, which is called the Schroeder frequency, is the frequency at which the mode 

bandwidth to mode spacing is three. The mode bandwidth, BW, is given by [27]: 

𝐵𝑊 =
𝑓

𝑄
                                                                  (3.4) 

where Q is the quality factor of the chamber. The mode spacing, Δf, is given by:  

 ∆𝑓 =
𝑐3

4𝜋𝑉𝑓2                                                               (3.5)     

where c is the light speed and V is the chamber volume. Figure 3.4 shows the mode bandwidth 

to mode spacing ratio of the empty reverberation chamber at the University of York. It can be 

seen that the Schroeder frequency of the empty chamber is about 1.7GHz.  
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As has been mentioned, one condition to achieve field uniformity in a reverberation chamber, 

is that there must be enough number of independent samples. When mode tuned method is 

applied, it is necessary that a change in stirrer position should result in enough change in 

boundary condition. The number of independent samples, Nms;ind, can be calculated from the 

autocorrelation of the S21 parameter between a transmitting antenna and a receiving antenna 

from a certain frequency and it is given by [28]: 

𝑁𝑚𝑠;𝑖𝑛𝑑 =
𝑁𝑚𝑠;𝑡𝑜𝑡

𝑁𝑚𝑠;𝑐𝑜𝑟
                                                         (3.6) 

 where Nms;tot is the total number of samples and Nms;cor is the number of correlated samples. 

Figure 3.5 shows the autocorrelation function of S21 at different frequencies in the 

reverberation chamber at the University of York. In the measurement, the stepped stirring 

technique was used and there were 100 stirrer positions over a full rotation, which means 

Nms;tot=100. Empirically, when the autocorrelation drops below 1/e, the change in stirrer 

positions is sufficient for the samples to be independent. It can be seen that at 500MHz, 1GHz 

and 2GHz, the number of correlated samples are 20, 5 and 1 respectively. Therefore, 

according to formula (3.6), the number of independent samples at 500MHz, 1GHz and 2GHz 

 

Figure 3. 4. The mode bandwidth to mode spacing ratio of the reverberation chamber at 
the University of York. 
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are 5, 20 and 100. The number of independent samples determines the variance of the 

measurements. In order to reduce measurement uncertainty, there should be sufficient 

independent samples. 

When frequency stirring is applied, the number of independent samples, Nfs;ind, is obtained in 

the similar way as that for mechanical stirring: 

𝑁𝑓𝑠;𝑖𝑛𝑑 =
𝑁𝑓𝑠;𝑡𝑜𝑡

𝑁𝑓𝑠;𝑐𝑜𝑟
                                                              (3.7) 

where Nfs;tot is the total number of samples and Nfs;cor is the number of correlated samples, 

both for frequency stirring. Figure 3.6 shows the autocorrelation of S21 for frequency stirring 

at different centre frequencies in the reverberation chamber at the University of York. The 

autocorrelation function of S21 was calculated by: 

ACF(𝑆21) = IFFT{FFT(𝑆21) ∙ [FFT(𝑆21)]∗}                                        (3.8) 

where FFT and IFFT stand for Fast Fourier Transform and Inverse Fast Fourier Transform 

respectively. The symbol * means conjugate. The normalized autocorrelation function is 

obtained by:  

 

Figure 3. 5. Normalized autocorrelation of S21 for mechanical stirring in the 
reverberation chamber at the University of York. 
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Normalized ACF(𝑆21) =
ACF(𝑆21−〈𝑆21〉)

𝑁[std(𝑆21)]2                                        (3.9) 

where std means standard deviation and N is the total number of S21. 

The S21 was measured from 200MHz to 20GHz with 10001 equally spaced points. Therefore, 

the frequency spacing between measurement points is 1.98MHz. The bandwidth for 

frequency stirring is set to be 50MHz, which means that there are Nfs;tot=25 samples within 

this bandwidth. From the result, it can be seen that at 500MHz, 1GHz and 2GHz, the number 

the number of correlated samples are 3, 1 and 1 respectively.  

If both mechanical stirring and frequency stirring are applied to the same measurement, the 

total number of independent samples is:  

𝑁𝑖𝑛𝑑 = 𝑁𝑚𝑠;𝑖𝑛𝑑𝑁𝑓𝑠;𝑖𝑛𝑑                                                          (3.10) 

The quality factor, Q, in formula (3.4) is a key quantity for a reverberation chamber. It 

describes how fast energy decays in the chamber and is defined as [3]: 

𝑄 = 𝜔
𝑈𝑠

𝑃𝑑
                                                                   (3.11) 

 

Figure 3. 6. Normalized autocorrelation of S21 for frequency stirring in the reverberation 
chamber at the University of York. 
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where ω is the angular frequency, Us is the steady state energy and Pd is the dissipated power. 

The steady state energy, Us, is the product of chamber volume and energy density, w: 

𝑈𝑠 = 𝑊𝑉                                                                  (3.12) 

 

The energy density is calculated from the total (rms) electric field: 

𝑊 = 𝜀0𝐸𝑡𝑜𝑡
2                                                              (3.13) 

where ε0=8.85×10-12F/m is the permittivity of free space.  

In actual measurements, The Q of a reverberation chamber is calculated from the S-

parameters between a transmitting antenna and a receiving antenna [14]: 

𝑄 = 𝜂𝑡𝜂𝑟
16𝜋2𝑉

𝜆3

〈|𝑆21|2〉

(1−|〈𝑆11〉|2)(1−|〈𝑆22〉|2)
                                             (3.14) 

where λ is the wavelength, Sii ( i=1,2) is the reflection coefficient of the antenna, ηt and ηr are 

the efficiency of the transmitting antenna and receiving antenna. The symbol <·> means an 

average over a statistical ensemble of systems, for example, due to mechanical or frequency 

 

Figure 3. 7. Measured quality factor of the empty reverberation chamber at the 
University of York. 
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stirring in a reverberation chamber. Figure 3.7 shows the measured Q of the 4.7m×3m×2.37m 

reverberation chamber at the University of York. It can be seen that the quality factor rises 

gradually with frequency and reaches about 135000 at 20GHz. Here we used two identical 

blade antennas and assume ƞ=1. The photo of the antenna can be seen in chapter 4. 

The K-factor is another important quantity of a reverberation chamber. It quantifies the 

preponderance of non-stochastic energy in the chamber and it is defined as the ratio of 

stochastic energy to non-stochastic energy. In a reverberation chamber, non-stochastic 

energy represents direct coupling between transmitter and receiver. In real measurements, 

in order to get good field uniformity, the K-factor should be kept as low as possible. Currently 

there is no standard about the level of K-factor, empirically if the K-factor in a reverberation 

chamber is less than 0.2, then the field in the chamber is considered to be sufficiently uniform.  

Figure 3.8 shows the configuration of K-factor measurement in the reverberation chamber at 

the University of York. Two measurements were performed. In measurement 1, two antennas 

were put on the floor. In measurement 2, antenna 1 was in the same position while antenna 

2 was fitted on the wall. For both measurements, there were 100 stirrer positions over a full 

 

Figure 3. 8. Diagram of the K-factor measurements in the reverberation chamber at the 
University of York. 
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rotation and a vector network analyser was used to collect S-parameters. The K-factor is given 

by [29]: 

𝐾 =
|〈𝑆21〉|2

〈|𝑆21−〈𝑆21〉|2〉
                                                         (3.15)  

Figure 3.9 shows the measured K-factor in the empty reverberation chamber at the University 

of York. It can be noticed that the two measurement scenarios led to quite different results. 

This suggests that the K-factor is not an intrinsic property of the chamber, but depends on a 

number of factors, such as the position of antennas or the presence of other scattering 

objects.                                                             

3.2. Methods for shielding effectiveness measurements 

The shielding effectiveness of an enclosure can be measured by using one, two or three 

antennas. It should be noted that the resonant frequencies of an enclosure do not change 

with different methods or measurement environments (reverberation chamber, anechoic 

chamber or open area test site). 

 

Figure 3. 9. Measured K-factor in the reverberation chamber of the University of York.  
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3.2.1. One antenna method 

In [30], Xu et al proposed a one-antenna method to measure the shielding effectiveness of 

electrically large enclosures. For an enclosure with an aperture, the shielding effectiveness 

can be estimated by comparing the quality factor (Q) with the aperture covered and 

uncovered: 

𝑆𝐸 =
(𝑄𝑢

−1−𝑄𝑐
−1)

−1

𝑄𝑢
                                                        (3.16) 

where Qu and Qc are the quality factors of the enclosure with the aperture uncovered and 

covered respectively.  

In the time domain, the relationship between the quality factor and the time constant, τ, of 

an enclosure is given by [3]: 

𝑄 = 𝜔𝜏                                                                  (3.17) 

where ω is the angular frequency. Therefore, formula (3.14) can be expressed alternatively 

as: 

𝑆𝐸 =
𝜏𝑐

𝜏𝑐−𝜏𝑢
                                                               (3.18) 

where τu and τc are the time constants of the enclosure with the aperture uncovered and 

covered. 

 

Figure 3. 10. Diagram of SE measurement by using one antenna. (a) An enclosure with 
an aperture uncovered. (b) An enclosure with an aperture covered. 
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Figure 3.10 shows the test configuration. During the measurement, an antenna is installed in 

the enclosure under test. First, it measures the S11;u with the aperture uncovered; then the 

S11;c with the aperture covered. The shielding effectiveness of the enclosure is: 

𝑆𝐸 =
〈|𝑆11;𝑐−〈𝑆11;𝑐〉|

2
〉

〈|𝑆11;𝑐−〈𝑆11;𝑐〉|
2

〉−〈|𝑆11;𝑢−〈𝑆11;𝑢〉|
2

〉
                                          (3.19) 

The advantages of the one antenna method are simple measurement setup and cost 

effectiveness. There is no need to use a chamber for the measurement. Despite the simplicity, 

we did not use this method for our measurements. Because the main subject of this thesis, 

the diffusion model, requires the presence of a diffuse field. The one antenna method does 

not use a chamber, therefore the presence of a diffuse field in not guaranteed. The details of 

the diffusion model will be presented in chapter 5. 

3.2.2. Two-antenna method 

The two-antenna method comes from the definition of shielding effectiveness as has been 

expressed in formula (2.1). Figure 3.11 shows the diagram of two-antenna measurement. One 

antenna is outside the enclosure and the other one is insider it. First, they measure the S21;i 

with the presence of the enclosure; then S21;o with the absence of the enclosure. The shielding 

effectiveness is: 

𝑆𝐸 =
𝑆21;𝑜

𝑆21;𝑖
                                                              (3.20) 

 

Figure 3. 11. Diagram of SE measurement by using two antennas. 
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The measurement can be performed in either reverberation chamber, anechoic chamber or 

open area test site. The disadvantage of this method is that we have to remove the enclosure 

during the measurement and this disturbs the measurement configuration. In addition, if the 

enclosure is heavy, it might not be convenient for its removal. 

3.2.3. Three-antenna method 

The IEEE standard 299.1 introduced a three-antenna method to measure shielding 

effectiveness of enclosure in reverberation chamber [31]. Figure 3.12 shows the diagram of 

the measurement set up. A third antenna is introduced as a reference antenna. During the 

measurement, there is no need to remove the enclosure. The S-parameters between antenna 

1 and antenna 2 are collected first; then those between antenna 1 and antenna 3 are 

collected. The shielding effectiveness is estimated by: 

𝑆𝐸 =
〈|𝑆31|2〉

〈|𝑆21|2〉
 
1−|〈𝑆22〉|2

1−|〈𝑆33〉|2                                                      (3.21) 

The second term of formula (3.21) is the mismatch correction factor. The three-antenna 

method assumes that after correcting for mismatch, the external reference antenna and 

internal probe antenna behave in an identical way. Most of the shielding measurements 

presented in chapter 4 and 5 were performed by using the three-antenna method, because 

during the measurements, the only thing we had to move was a cable. Therefore, this method 

has the least perturbation to the measurement set up. 

 

Figure 3. 12. Diagram of SE measurement by using three antennas. 
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3.3. Summary 

This chapter is about the facilities and methods for shielding effectiveness measurements. 

The shielding effectiveness of an enclosure can be measured in either an open area test site, 

an anechoic chamber or a reverberation chamber. The first two facilities provide a refection 

free environment while a reverberation chamber creates a uniform EM environment by 

multiple reflections from chamber walls and a mechanical stirrer that constantly change 

boundary conditions. Since most of the measurements in this thesis were performed in a 

reverberation chamber, it is introduced with more details. The lowest useable frequency, 

number of independent samples, quality factor and K-factor of the reverberation chamber at 

the University of York were provided. 

The shielding effectiveness of an enclosure with an aperture can be measured by using one, 

two or three antenna methods. The one-antenna method requires the S11 parameter without 

and with the aperture. The two-antenna method measures the S21 parameter in the absence 

and presence of the enclosure. The three-antenna method compares S21 parameter between 

the transmitting antenna and the receiving antenna and that between the transmitting 

antenna and the reference antenna. Most of the shielding measurements presented later in 

this thesis were performed by using the three-antenna method because it has the least 

perturbation to the measurement configuration. 
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Chapter 4 

The power balance method 

4.1. Example of influence of contents on shielding effectiveness 

The earliest models of shielding effectiveness focus mainly on empty enclosures. In reality, an 

enclosure always has contents that affect the internal field. This effect has been studied 

experimentally for many years. For example, Bakker et al used dissipative dielectric blocks to 

suppress resonance problems in shielded semi-anechoic rooms [32]. Thomas et al included 

printed circuit board in a circuit model for enclosure shielding problems by treating the board 

as a slab of dielectric [33]. Wallyn et al included printed circuit board in simulations of 

enclosures by modelling them as thin sheets of perfect electric conductors [34].The annex K 

of the aforementioned IEEE standard 299.1 describes how to use absorbing (dissipative) 

materials in equipment enclosures to measure its shielding effectiveness. More recently, 

Flintoft et al quantified printed circuit boards by their absorption cross sections in high-

frequency shielding assessment [4]. The results presented in these work show that the 

contents in an enclosure absorb some of internal energy; hence, the field in a populated 

enclosure is lower than that in an empty enclosure. According to formula (2.1), when E0 

reduces, SE increases. Therefore, it is important to take contents into account when analysing 

shielding problems. 

As a demonstration to begin with, we measured the shielding effectiveness of a personal 

computer enclosure with and without the contents to show their effect on shielding 

effectiveness. Figure 4.1 shows the personal computer enclosure under test. It has 

dimensions of 370mm×180mm×350mm. The side panel of the enclosure is removable and a 

hole was drilled on it to install a probe antenna. The measurement was performed in the 

reverberation chamber at the University of York by using the two-antenna method described 

in section 3.2.2. Figures 4.2 and 4.3 show the photos of the measurement configuration with 

and without the enclosure. The transmitting antenna, which is a blade antenna [35], and the 

enclosure were at two opposite corners of the chamber. The shielding effectiveness was 

measured from 2GHz to 20GHz with 10001 equally spaced points. We used the stepped 
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stirring technique and the chamber was tuned using a mechanical stirrer with 100 equally 

spaced positions and frequency stirring was also employed with a bandwidth of 50MHz. There 

are 27 points within this bandwidth. By calculating the autocorrelation function, we know 

that the 100 stirrer positions are independent of each other and so do the 27 points within 

50MHz (the autocorrelation function is not presented here). Therefore, according to formula 

(3.10), there are totally 2700 independent samples, which we believe is sufficient for our 

measurement. A network analyser measured the S-parameters between the transmitting 

antenna and the probe antenna and the shielding effectiveness was calculated by using 

formula (3.20).  

 

Figure 4. 1. Photos of the computer enclosure under test. (a) Front view. (b) Side view of 
the empty enclosure. (c) Side view of the loaded enclosure. (d) The front panel showing 

the position of the probe antenna. 

 

 

 

 

 

 

 

Figure 4. 2. Photos of the computer enclosure under test. (a) Front view. (b) Side view of 
the empty enclosure. (c) Side view of the loaded enclosure. (d) The front panel showing 

the position of the probe antenna. 

 

 

 

 

 

 

Figure 4. 2. Photo of the shielding effectiveness measurement configuration with the 
presence of the computer enclosure. 

 

 

 

 

 

 

Figure 4. 1. Photo of the shielding effectiveness measurement configuration with the 
presence of the computer enclosure. 
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Figure 4. 3. Photo of the shielding effectiveness measurement 
configuration with the absence of the computer enclosure. 

 

 

 

 

 

Figure 4. 3. Photo of the shielding effectiveness measurement 
configuration with the absence of the computer enclosure.  

 

 

 

 

Figure 4. 4. Measured shielding effectiveness of the computer enclosure with and 
without the contents. 
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Figure 4.4 shows the measured shielding effectiveness of the computer enclosure with and 

without the contents. It can be seen that with the presence of the contents, the shielding 

effectiveness is approximately 6dB higher than that without the contents. As has been 

mentioned, this is because the contents absorb some energy and thus reduce the internal 

field. The comparison shows that the contents might have a great influence on the shielding 

effectiveness and we must take them into account when analysing shielding problems.   

4.2. The basics of the power balance method 

The aforementioned Robinson’s intermediate level circuit model (ILCM) is able to provide fast 

approximations and predict resonant frequencies of enclosures. Although attempts have 

been made to include higher order modes and off-centre apertures [36], the circuit model 

could be of limited use when it comes to loaded enclosures. Because in reality, it would be 

insurmountable to find circuital alternatives for every content in it. In addition, ILCM is 

designed for non-reverberant regime where only a few modes exist and the field does not 

comply with Gaussian distribution. In reverberant regime where electromagnetic field tends 

to be uniform, shielding problems can be analysed from a power point of view. 

Hill et al have proposed the power balance method that accounts for the contents of an 

enclosure from a macroscopic point of view [3].The main assumptions of the method are:  1. 

in the steady state, the distribution of power in uniform throughout the enclosure; 2. The 

dimension of the enclosure is much larger than the wavelength. The theory stems from 

electromagnetic topology where one large problem is divided into several smaller ones. In 

the steady state, the energy enters an enclosure equals to the energy dissipated inside. If the 

enclosure has an aperture, contents and an antenna inside it, then the dissipated power Pd in 

formula (3.11) can be written as the sum of four terms: 

𝑃𝑑 = 𝑃𝑑1 + 𝑃𝑑2 + 𝑃𝑑3 + 𝑃𝑑4                                                  (4.1) 

where Pd1 is the power dissipated in the enclosure walls, Pd2 is the power absorbed in the 

contents, Pd3 is the power comes out through the aperture and Pd4 is the power lost in the 

loads of the antenna. Accordingly, the quality factor of the enclosure is expressed as: 

𝑄−1 = 𝑄1
−1 + 𝑄2

−1 + 𝑄3
−1 + 𝑄4

−1                                               (4.2) 
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where                                                 𝑄𝑖 = 𝜔
𝑈𝑠

𝑃𝑑𝑖
 , 𝑖 = 1,2,3,4                                                        (4.3)  

Here ω is the angular frequency and Us is the energy in the enclosure. 

It is evident that the smallest Qi is the largest contributor to the overall quality factor. Consider 

formulas (3.11), (3.12) and (3.13), it is useful to write the relationship between power density 

and energy density within the enclosure: 

𝑆0 =
𝐸𝑡𝑜𝑡

2

𝜂0
= 𝑐𝑊                                                           (4.4) 

where η0=377Ω is the free space impedance, Etot is the total (RMS) electric field, c is light 

speed and W is energy density. 

Hill et al determined the expression of wall loss Q1 from the skin depth approximation. In a 

reverberant environment, wall loss is obtained by averaging losses over all plane wave angles 

and polarisations [37]: 

𝑄1 =
3𝑉

2𝜇𝑟𝐴𝛿
                                                                  (4.5) 

where μr, A and δ are the relative permeability, area and skin depth of the enclosure walls 

respectively. V is the volume of the chamber. μr and δ are given by: 

𝜇𝑟 =
𝜇𝑤

𝜇0
                                                                      (4.6) 

𝛿 = √
2

𝜔𝜇𝑤𝜎𝑤
                                                                  (4.7)                                                                       

where μ0=4π×10-7H/m is the vacuum permeability. μw and σw are the permeability and 

conductivity of the enclosure walls. 

The power absorbed by the contents, Pd2, can be expressed as the product of power density 

S0 and the absorption cross section of the contents σa;con: 

𝑃𝑑2 = 𝑆0𝜎𝑎;𝑐𝑜𝑛                                                                (4.8) 

The absorption losses are derived from formulas (3.12), (4.3), (4.4) and (4.8): 

𝑄2 =
2𝜋𝑉

𝜆𝜎𝑎;𝑐𝑜𝑛
                                                                   (4.9) 
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Hill et al pointed out that the absorption cross section of a dissipative object depends on 

incident angles and polarisations of plane waves. The absorption losses are obtained by 

averaging losses over all plane waves. 

The aperture leakage is quantified by: 

𝑄3 =
4𝜋𝑉

𝜆𝜎𝑡
                                                                  (4.10) 

where σt is the transmission cross section of the aperture. The transmission cross section of 

an aperture relies on angles and polarisations of incident plane waves. If there is a plane wave 

of power density Si incident on an enclosure with an aperture, the power Pt transmitted into 

the enclosure is: 

𝑃𝑡 = 𝜎𝑡𝑆𝑖                                                                  (4.11) 

The power dissipated in the load of the antenna is given by: 

𝑃𝑑4 = 𝑆0𝐴𝑒                                                               (4.12) 

where Ae is the effective area of the antenna and it is calculated by [38]: 

𝐴𝑒 =
𝜆2

8𝜋
                                                                  (4.13) 

Assuming there is a matched load, the antenna loss can be derived by formulas (3.12), (4.3), 

(4.4) and (4.13): 

 𝑄4 =
16𝜋2𝑉

𝜆3                                                                (4.14) 

The basic assumption of the power balance method is that, for steady state conditions, the 

power transmitted into the enclosure is equal to the power dissipated inside: 

𝑃𝑡 = 𝑃𝑑                                                                    (4.15) 

Substituting formulas (3.12), (4.3), (4.4) and (4.11) into (4.15) yield the shielding effectiveness 

of the enclosure: 

𝑆𝐸 =
𝑆𝑖

𝑆0
=

2𝜋𝑉

𝜎𝑡𝜆𝑄
                                                              (4.16) 

It can be seen that the shielding effectiveness of an enclosure is related to the absorption 

cross section of the contents and transmission cross section of the aperture.  
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When calculating the power that leaks out through the aperture Pd3, Hill et al assumed that 

the field can be approximated by a superposition of plane waves of all incident angles and 

polarisations, but only planes waves the propagates towards the aperture contribute to the 

transmitted power. Therefore, they introduced a factor ½ in the product: 

𝑃𝑑3 =
𝑆0𝜎𝑡

2
                                                              (4.17) 

In chapter 5, we will present the details of using a superposition of plane waves to simulate a 

reverberant environment. We will show that 36 plane waves coming from a whole sphere is 

sufficient to create such an environment and if we only use the 18 plane waves that 

propagates towards the aperture, there will be a 2dB to 3dB difference in the result (the 

comparison between 36 and 18 plane waves is not presented here). Therefore, the factor ½ 

should be omitted. In accordance with this alteration, formula (4.10) should be: 

𝑄3
′ =

2𝜋𝑉

𝜆𝜎𝑡
                                                               (4.18) 

In [4], Flintoft et al used the absorption cross section of walls σa;wall to calculate wall loss Q1 in 

the same way Hill et al used to obtain content loss: 

𝑄1
′ =

2𝜋𝑉

𝜆𝜎𝑎;𝑤𝑎𝑙𝑙
                                                           (4.19) 

In this case, if the enclosure is empty, substituting formulas (4.18) and (4.19) to (4.16), we 

obtain the shielding effectiveness of the empty enclosure: 

𝑆𝐸𝑒 = 1 +
𝜎𝑎;𝑤𝑎𝑙𝑙

𝜎𝑡
                                                       (4.20) 

Similarly, if the enclosure is populated, substituting formulas (4.9), (4.18) and (4.19) to (4.16), 

the shielding effectiveness SEp is: 

𝑆𝐸𝑝 = 1 +
𝜎𝑎;𝑤𝑎𝑙𝑙+𝜎𝑎;𝑐𝑜𝑛

𝜎𝑡
= 1 +

𝜎𝑎;𝑤𝑎𝑙𝑙

𝜎𝑡
+

𝜎𝑎;𝑐𝑜𝑛

𝜎𝑡
= 𝑆𝐸𝑒 +

𝜎𝑎;𝑐𝑜𝑛

𝜎𝑡
                   (4.21) 
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To demonstrate formula (4.21), we measured the shielding effectiveness of an enclosure 

shown it Figure 4.5. It is made of highly conductive material and has dimensions of 

465mm×430mm×170mm. The measurement point is in the front face. Figure 4.6 is the top 

view of the enclosure. There are a total 14784 circular apertures in the enclosure (7392 on 

the top face and 7392 on bottom face) and they have the same radius of 2mm.  

We put an absorbing cube with dimensions of 55mm×55mm×55mm at the centre of the 

enclosure. The details of the material of this cube will be introduced in chapter 5. 

 

Figure 4. 5. Photo of the enclosure, showing the measurement point. 

 

 

 

 

 

 

 

Figure 4. 6. Photo of the enclosure, showing the measurement point. 

 

 

 

 

 

 

Figure 4. 6. Photo of the top view of the enclosure, showing the absorbing cube inside it. 
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The measurements were performed in the reverberation chamber at the University of York 

by using the three-antenna method described in section 3.2.3. Figure 4.7 shows the 

measurement set up. The blade antenna fitted on the wall was the transmitting antenna. 

Another blade antenna on a piece of polystyrene support was the reference antenna. The  

enclosure was put on another block of polystyrene support and there was a small probe 

antenna in it.  

The stepped stirring technique was applied and the chamber was tuned by the mechanical 

stirrer with 100 equally spaced positions over a full rotation. Frequency stirring with a 

bandwidth of 50MHz was also applied to smooth the results. A network analyser was used to 

collect the S-parameters first between the transmitting antenna and the probe antenna, then 

between the transmitting antenna and the reference antenna. The shielding effectiveness of 

the empty and loaded enclosure was calculated by using formula (3.21) from 2GHz to 20GHz.  

 

 

 

 

 

Figure 4. 7. Photo of the shielding effectiveness measurement configuration in the 
reverberation chamber at the University of York. 

 

 

 

 

 

Figure 4. 7. Photo of the shielding effectiveness measurement configuration in the 
reverberation chamber at the University of York. 
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Figure 4. 8. Measured absorption cross section of the 55mm×55mm×55mm absorbing 
cube. 

 

 

 

 

 

 

 

 

Figure 4. 9. Calculated total transmission cross section of the 14784 r=2mm circular 
apertures on the enclosure. The cut-off frequency of r=2mm circular aperture is above 

20GHz and thus not showing in the figure. 
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The absorption cross section of the cube and the total transmission cross section of the 

apertures have been measured and calculated previously. Here we only show the results. 

Later in this chapter, we will present the methods for measuring absorption cross section and 

calculating transmission cross section.  

Figure 4.8 shows the measured absorption cross section of the 55mm×55mm×55mm 

absorbing cube, which is about 0.006m2. Figure 4.9 shows the total transmission cross section 

of all the apertures on the enclosure. It can be seen that below the cut-off frequency, which 

is about 30.8GHz, the transmission cross section of an aperture is dependent on frequency. 

The method to calculate transmission cross section will presented in the following section. 

By using formula (4.21), we calculated the shielding effectiveness of the 4U enclosure with 

the cube and compared the theoretical calculation with physical measurement. Figure 4.10 

shows the comparison. The theoretical calculation is in good agreement with measurement 

at high frequency, demonstrating the usefulness of formula (4.21). Below 4GHz, the 

agreement is not good. This is because this are limited number of modes in the enclosure at 

 

Figure 4. 10. Comparison between measured shielding effectiveness of the empty 
enclosure, measured shielding effectiveness of the enclosure with a 

55mm×55mm×55mm absorbing cube and calculated shielding effectiveness of the 
enclosure with the same cube. 
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low frequency the internal field is not sufficiently reverberant. The shielding effectiveness of 

the empty enclosure is much lower than that of the loaded one. This fact proves again that 

contents might have a great influence on the shielding effectiveness. 

4.3. Calculation of transmission cross section 

The transmission cross section of an aperture shows its ability to transmit energy and it is 

defined as the ratio of transmitted power to power density. In [3], Hill stated a method to 

calculate the transmission cross section of an aperture of arbitrary shape. The method is 

based on the theory for electromagnetic penetration through apertures on an infinite, 

perfectly conducting plane [39]. He assumed that the thickness of the plane is small. Figure 

4.11 shows a plane wave with power density Si incident on an aperture in a perfectly 

conducting plane. The aperture has an area of A and the incident polar angle is θ. 

If the aperture is electrically small, the polarizability theory yields a transmission cross section 

that is proportional to frequency to the fourth power [40]: 

𝜎𝑡 = 𝐶𝑘4                                                                 (4.22) 

where k is the wave number. C depends on incident angle, the size and shape of the aperture, 

but is independent of frequency.  

If the aperture is electrically large, the geometrical optics approximation yields: 

𝜎𝑡 = 𝐴𝑐𝑜𝑠𝜃                                                              (4.23) 

According to formula (4.22), it is clear that the transmission cross section is independent of 

frequency. For this case, the average transmission cross section is: 

 

Figure 4. 11. Diagram of an external field incident on an aperture of arbitrary shape.  

 

 

 

 

Table 4. 1 Polarizabilities of various apertures in an infinite plane

 

Figure 4. 11. Diagram of an external field incident on an aperture of arbitrary shape.  

 

 

 

 

Table 4. 2. Polarizabilities of various apertures in an infinite plane [39] [42]. 

Aperture  αe αmx αmy 

Circle 

radius=r 

2𝑟3

3
 

4𝑟3

3
 

4𝑟3

3
 

Square 

side=l                            

2𝑙3

3𝜋
3
2

 
4𝑙3

3𝜋
3
2

 
4𝑙3

3𝜋
3
2

 

Rectangle  

length=l 

width=w 

Area A=lw 

𝐴
3
2

3√𝜋𝐸(𝑒)
⋅

𝑤

𝑙
 

𝐴
3
2𝑒2

3√𝜋[𝐾(𝑒) − 𝐸(𝑒)]
⋅ (

𝑙

𝑤
)

3
2

 
𝐴

3
2

3√𝜋
⋅

𝑒2 (
𝑙
𝑤)

3
2

(
𝑙
𝑤)

2

[𝐸(𝑒) − 𝐾(𝑒)]
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𝜎𝑡 =
𝐴

2𝜋
∫ 𝑑𝜑

2𝜋

0
∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃

𝜋/2

0
=

𝐴

2
                                         (4.24) 

where φ is the azimuth angle of the plane wave. Hill restricted θ to π/2 because the plane 

wave is only incident on one side of the plane.  

In [40], Bethe points out that an aperture in a perfectly conducting plane can be approximated 

by the field of an electric and magnetic dipole. The fields of the dipoles are related to their 

respective constants of proportionality that are only the functions of the shape and size of 

the aperture. These constants are known as the electric and magnetic polarizabilities of an 

aperture.  

In a technical report, Junqua et al stated that the constant C in formula (4.22) can be 

calculated from the polarizability of apertures [41]. The polarizability of an aperture is dyadic 

quantity and it represents the moment of the equivalent electric and magnetic dipoles. The 

magnetic dipole is in the plane of the aperture while the electric dipole is in the direction of 

the normal. 

The power transmitted through the aperture depends on its incident angle θ. When electric 

field is parallel to the plane of incidence, the polarisation is called parallel polarisation. When 

magnetic field is parallel to the plane of incidence, the polarisation is named perpendicular 

polarisation. The expressions for parallel polarisation are (in a Cartesian coordinate system): 

𝜎𝑡∕∕
𝑥 =

4𝑘4

3𝜋
(𝛼𝑚𝑥

2 + 𝛼𝑒
2𝑠𝑖𝑛2𝜃)

𝜎𝑡∕∕
𝑦

=
4𝑘4

3𝜋
(𝛼𝑚𝑦

2 + 𝛼𝑒
2𝑠𝑖𝑛2𝜃)

                                              (4.25) 

where αe is the electric polarizability, αmx and αmy are magnetic polarizability along x and y-

axis directions respectively. The expressions for perpendicular polarisation are:  

𝜎𝑡+
𝑥 =

4𝑘4

3𝜋
(𝛼𝑚𝑥

2 𝑐𝑜𝑠2𝜃)

𝜎𝑡+
𝑦

=
4𝑘4

3𝜋
(𝛼𝑚𝑦

2 𝑐𝑜𝑠2𝜃)
                                                   (4.26) 

If the aperture is illuminated by a random plane wave, Junqua et al defined the transmission 

cross section as: 

𝜎𝑡 =
1

2
∙

1

4
∫ (𝜎𝑡∕∕

𝑥 + 𝜎𝑡∕∕
𝑦

+ 𝜎𝑡+
𝑥 + 𝜎𝑡+

𝑦
)𝑠𝑖𝑛𝜃𝑑𝜃

𝜋

2
0

                            (4.27) 
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The equiprobability of polarisations is taken into account through the factor ¼. The factor ½ 

represents the fact that the random plane wave spectrum is only integrated on a half solid  

angle. Substitute formulas (4.25) and (4.26) into (4.27) yield: 

𝜎𝑡 =
2𝑘4

9𝜋
(𝛼𝑒

2 + 𝛼𝑚𝑥
2 + 𝛼𝑚𝑦

2 )                                            (4.28) 

These quantities fully characterized the aperture as a function of its geometrical dimensions. 

Analytical formula are given in Table 4.1 for circular, rectangular and square apertures [39] 

[42]. Note that the rectangular aperture is approximated by an elliptical one with a semi-

major axis of l and a semi-minor axis of w. The K(e) and E(e) are the complete elliptical 

integrals of the first and second kind respectively and they are expressed as: 

𝐾(𝑒) = ∫ (1 − 𝑒2𝑠𝑖𝑛2𝜃)−
1

2 𝑑𝜃
𝜋/2

0
                                           (4.29) 

𝐸(𝑒) = ∫ (1 − 𝑒2𝑠𝑖𝑛2𝜃)
1

2 𝑑𝜃
𝜋/2

0
                                            (4.30) 

The e is the ellipse eccentricity and it is given by: 

𝑒 = √1 − (
𝑤

𝑙
)

2

                                                           (4.31) 

If the aperture is electrically large, the transmission cross section is obtained by formula 

(4.23). However, when calculating the averaged transmission cross section, Junqua et al 

introduced a factor ½ to formula (4.24): 

Table 4. 1. Polarizabilities of various apertures in an infinite plane [39] [42]. 

Aperture  αe αmx αmy 

Circle 

radius=r 

2𝑟3

3
 

4𝑟3

3
 

4𝑟3

3
 

Square 

side=l                            

2𝑙3

3𝜋
3
2

 
4𝑙3

3𝜋
3
2

 
4𝑙3

3𝜋
3
2

 

Rectangle  

length=l 

width=w 

Area A=lw 

𝐴
3
2

3√𝜋𝐸(𝑒)
⋅

𝑤

𝑙
 

𝐴
3
2𝑒2

3√𝜋[𝐾(𝑒) − 𝐸(𝑒)]
⋅ (

𝑙

𝑤
)

3
2

 
𝐴

3
2

3√𝜋
⋅

𝑒2 (
𝑙
𝑤)

3
2

(
𝑙
𝑤

)
2

[𝐸(𝑒) − 𝐾(𝑒)]

 

 

 

Table 4. 18 Polarizability tensors of various apertures in an infinite plane  

Aperture  αe αmx αmy 

Circle 

radius=r 

2𝑟3

3
 

4𝑟3
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4𝑟3

3
 

Square 

side=l                            

2𝑙3

3𝜋
3
2

 
4𝑙3

3𝜋
3
2

 
4𝑙3

3𝜋
3
2

 

Rectangle  

length=l 

width=w 

Area A=lw 

𝐴
3
2

3√𝜋𝐸(𝑒)
⋅

𝑤

𝑙
 

𝐴
3
2𝑒2

3√𝜋[𝐾(𝑒) − 𝐸(𝑒)]
⋅ (

𝑙

𝑤
)

3
2

 
𝐴

3
2

3√𝜋
⋅

𝑒2 (
𝑙
𝑤)

3
2

(
𝑙
𝑤)

2

[𝐸(𝑒) − 𝐾(𝑒)]

 

 

 

Table 4. 19 Polarizabilities of various apertures in an infinite plane [39] [42] 

Aperture  αe αmx αmy 

Circle 

radius=r 

2𝑟3

3
 

4𝑟3

3
 

4𝑟3

3
 

Square 

side=l                            

2𝑙3

3𝜋
3
2

 
4𝑙3

3𝜋
3
2

 
4𝑙3

3𝜋
3
2

 

Rectangle  

length=l 𝐴
3
2

3√𝜋𝐸(𝑒)
⋅

𝑤

𝑙
 

𝐴
3
2𝑒2

3√𝜋[𝐾(𝑒) − 𝐸(𝑒)]
⋅ (

𝑙

𝑤
)

3
2

 
𝐴

3
2

3√𝜋
⋅

𝑒2 (
𝑙
𝑤)

3
2

(
𝑙
𝑤)

2

[𝐸(𝑒) − 𝐾(𝑒)]
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𝜎𝑡 =
1

2
∙

𝐴

2𝜋
∫ 𝑑𝜑

2𝜋

0
∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃

𝜋/2

0
=

𝐴

4
                                (4.32) 

This is because they considered the fact that the aperture is illuminated only from one half 

space. 

The cut-off frequency that marks the transition of an aperture from electrically small to 

electrically large is given by: 

𝑓𝑐 =
𝑐

2𝜋
√

9𝜋𝐴

8(𝛼𝑒
2+𝛼𝑚𝑥

2 +𝛼𝑚𝑦
2 )

4                                                   (4.33) 

4.4. Calculation of absorption cross section 

The example in section 4.2 shows that when using the power balance method, objects can be 

represented by their absorption cross sections. An absorption cross section measurement is 

usually performed in a reverberation chamber and it contains two steps: 1. Measure S-

parameters between the transmitting and receiving antenna when the object under test is in 

the chamber; 2.  Measure S-parameters between the two antennas when the object is not in 

the chamber. The measurement configuration can be seen in figure 3.8. The absorption cross 

section of an object is calculated from the S-parameters by using either frequency or time 

domain method. The result shown in Figure 4.8 was obtained by using the frequency domain 

method. 

4.4.1. Frequency domain method for calculating absorption cross section 

By using the frequency method, the absorption cross section of an object is obtained from 

[14]: 

𝜎𝑎 =
𝜆2

8𝜋
𝜂𝑡𝜂𝑟 (

1

𝐺𝑤𝑜
−

1

𝐺𝑛𝑜
)                                                 (4.34) 

where ηt and ηr are the efficiency of the transmitting antenna and receiving antenna. Gwo 

and Gno are the mean net transfer function with and without the object in the chamber 

respectively. Mean net transfer function is defined as the ratio of received power and 

transmitted power. In real measurements, it is calculated from the S-parameters between the 

transmitting antenna and receiving antenna: 

𝐺 =
〈|𝑆21|2〉

(1−|〈𝑆11〉|2)(1−|〈𝑆22〉|2)
                                                  (4.35) 
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where S11 and S22 are the reflection coefficients of the two antennas respectively. 

The measurement uncertainty of the frequency domain method is: 

𝛼𝑢 =
std(𝜎𝑎)

𝜎𝑎
                                                             (4.36) 

where std stands for standard deviation.  

4.4.2. Time domain method for calculating absorption cross section 

Alternatively, absorption cross section can be measured by using time domain method. The 

time constant, τ, of a reverberation chamber is the time it take for the stored energy to reduce 

to 1/e of the initial value [43]. The absorption cross section of an object can be obtained by 

[3]:  

𝜎𝑎 =
2𝜋𝑉

𝜆
(

1

𝑄𝑤𝑜
−

1

𝑄𝑛𝑜
)                                                     (4.37) 

where Qwo and Qno are the quality factor of the chamber with and without the object. Quality 

factor and chamber time constant are related by [3]: 

𝑄 = 𝜔𝜏                                                                (4.38) 

where ω is the angular frequency. Substitute formula (4.38) to (4.37) and consider the 

following relationships: 

𝜔 =
2𝜋

𝑓
                                                                (4.39) 

and 

𝜆 =
𝑐

𝑓
                                                                  (4.40) 

we obtain: 

𝜎𝑎 =
𝑉

𝑐
(

1

𝜏𝑤𝑜
−

1

𝜏𝑛𝑜
)                                                     (4.41) 

where τwo and τno are the chamber time constant with and without object. Compared with 

the frequency domain method, the time domain method does not require the knowledge of 

antenna efficiency because the time constant is only a function of reverberation chamber 

[44]. 
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The chamber time constant can be extracted from the power delay profile (PDP), which gives 

the intensity of a power received through a multipath channel as a function of time delay, of 

the chamber. The PDP is obtained by applying the invers fast Fourier transform (IFFT) 

technique to the S21 parameter ( the transmission coefficient between two antennas in a 

reverberation chamber, measured in the frequency domain) with a band limited window [45]: 

PDP = 〈|IFFT(𝑆21 ∙ Win)|2〉                                             (4.42) 

where Win is the window function. Since time constant varies with frequency, it is necessary 

to use a window function to select a particular frequency band from a broadband S21 

measurement. The use of window function has the advantage of reducing the amount of data. 

The chamber time constant is extracted from the slope of the PDP. In reality, measured PDP 

is not perfectly straight. Therefore, we need to apply either linear or non-linear curve fitting 

technique to PDP to obtain a straight line. By using the linear curve fitting technique, the time 

constant is the slope of the fitted PDP [46]: 

PDPdB(𝑡) = 10log10 (𝐶0𝑒−
𝑡

𝜏) = (−
10𝑙𝑜𝑔10𝑒

𝜏
) 𝑡 + 10log10𝐶0                   (4.43) 

where e is the natural algorithm, C0 is a constant which gives the power of signal. Both τ and 

C0 are determining by applying the linear curve fitting technique to PDP on a decibel scale. 

The result is affected by the shape of window and the selection of range for the fit. 

PDP is related to the channel impulse response (CIR) in the chamber, which is the reaction of 

a channel to a brief input signal as a function of time. By using the non-linear curve fitting 

technique, it is assumed that the CIR can be modelled as a sum of rays with random phase 

shifts and exponentially decaying magnitudes [46] [47]: 

CIR(𝑡) = ∑ 𝛽𝑖𝑒
𝑗𝜃𝑖𝛿(𝑡 − 𝑇𝑖)

∞
𝑖=0                                             (4.44) 

where βi is the magnitude of ray, 𝑒𝑗𝜃𝑖  is the phase shift of ray, δ(·) is the Dirac function and Ti 

is the propagation delay. According to the central limit theory, the CIR at any time in a 

reverberation chamber complies with complex Gaussian distribution [45]:  

CIR𝑟(𝑡) = 𝑉𝑟𝑒−
𝑡

2𝜏𝑁1(𝑡)                                                  (4.45) 
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where Vr is the voltage of received signal and N1(t) is the standard complex Gaussian random 

process with zero mean and variance of one. 

Adding a window function Win(t) and the effect of noise floor to formula (4.45) gives the 

filtered CIR: 

CIR(𝑡) ⊗ Win(𝑡) = [𝑉𝑟𝑒−
𝑡

2𝜏𝑁1(𝑡) + 𝑉𝑛𝑁2(𝑡)] ⊗ Win(𝑡)                   (4.46) 

where Vn is the noise level of background, N2(t) is another standard complex Gaussian random 

process that is independent of N1(t) and the symbol ⊗ stands for circular convolution. The 

circular convolution of two functions occurs when one of them is convolved in a normal way 

with a periodic summation of the other function. 

In formula (4.46),  

CIR𝑛(𝑡) = 𝑉𝑛𝑁2(𝑡)                                                         (4.47) 

is the CIR of the noise. 

Formulas (4.45) and (4.47) can be written in discrete form that lead to: 

CIR𝑟(𝑚) = 𝑉𝑟𝑒−
−𝑚∆𝑡

2𝜏 𝑁1(𝑚)                                                 (4.48) 

CIR𝑛(𝑚) = 𝑉𝑛𝑁2(𝑚)                                                       (4.49) 

where m is the response index in time domain and ∆𝑡 is time step.  

In a discrete Fourier transform, a signal filtered by a window function in frequency domain 

equals the circular convolution of their CIR in time domain. Therefore, when filtered by a 

window function Win(m) , a CIR can be written as:  

CIR(𝑚) ⊗ Win(𝑚) = CIR𝑟(𝑚) ⊗ Win(𝑚) + CIR𝑛(𝑚) ⊗ Win(𝑚)        (4.50) 

where 

CIR(𝑚) = CIR𝑟(𝑚) + CIR𝑛(𝑚)                                          (4.51) 

In physical measurements, the power response of CIR(𝑚) ⊗ Win(𝑚) is: 
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        |CIR(𝑚) ⊗ Win(𝑚)|2 = |CIR𝑟(𝑚) ⊗ Win(𝑚)|2 + |CIR𝑛(𝑚) ⊗ Win(𝑚)|2 +

                                                        [𝐶𝐼𝑅𝑟(𝑚) ⊗ Win(𝑚)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ [CIR𝑛(𝑚) ⊗ Win(𝑚)] +

                                                        [CIR𝑟(𝑚) ⊗ Win(𝑚)][CIR𝑛(𝑚) ⊗ Win(𝑚)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                   (4.52)   

where �̅� is the complex conjugate of a. Since N1(m) and N2(m) are independent of each other, 

the two rightmost terms in formula (4.52) are eliminated. Therefore, the expectation of 

|CIR(𝑚) ⊗ Win(𝑚)|2 is: 

                            𝐸[|CIR(𝑚) ⊗ Win(𝑚)|2] = 𝐸[|CIR𝑟(𝑚) ⊗ Win(𝑚)|2] +

                                                                                   𝐸[|CIR𝑛(𝑚) ⊗ Win(𝑚)|2]                         (4.53) 

In a Gaussian random process, the random variables of two different moments are 

independent. Therefore, formula (4.53) can be simplified as (written in time domain) [48]: 

𝐸[PDP(𝑡𝑖)] = 𝐸(|ℎ(𝑡𝑖) ⊗ Win(𝑡𝑖)|2) = (𝑉𝑟
2𝑒−

𝑡𝑖
𝜏 + 𝑉𝑛

2) ⊗ |Win(𝑡𝑖)|2        (4.54) 

where E(·) is the expectation and ti is the i th sample of time. Formula (4.54) is the full form 

the non-linear curve fitting model.  

The initial value of time constant τ0 is estimated by linear regression. Then a reference PDP 

signal 𝑒
−

𝑡𝑖
𝜏0 ⊗ |Win(𝑡𝑖)|2 is generated to determine the start value of Vr, denoted as Vr;0 [45]: 

PDP𝑚(𝑡𝑖)

𝑒
−

𝑡𝑖
𝜏0⊗|Win(𝑡𝑖)|2

≈
(𝑉𝑟

2𝑒
−

𝑡𝑖
𝜏 +𝑉𝑛

2)⊗|Win(𝑡𝑖)|2

𝑒
−

𝑡𝑖
𝜏0⊗|Win(𝑡𝑖)|2

= 𝑉𝑟;0
2                                    (4.55) 

where PDPm is the measured power delay profile response. Zhang et al state that the 

assumption PDPm(ti)≈ E[PDP(ti)] holds if PDPm is of good quality. After the estimation of τ0 and 

Vr;0, the initial value of noise Vn;0 can be obtained by using a reference signal 𝐼(𝑡𝑖) ⊗ Win(𝑡𝑖): 

PDP𝑚(𝑡𝑖)−𝑉𝑟;0
2 𝑒

−
𝑡𝑖
𝜏0⊗|Win(𝑡𝑖)|

𝐼(𝑡𝑖)⊗Win(𝑡𝑖)
≈

𝑉𝑛
2⊗Win(𝑡𝑖)

𝐼(𝑡𝑖)⊗Win(𝑡𝑖)
= 𝑉𝑛;0

2                                  (4.56) 

where I(ti) is a constant function whose value is one.  
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Since the non-linear curve fitting technique involves complex algorithms such as convolution 

and Fourier transform, it is difficult to derive analytical formula for measurement uncertainty. 

Zhang et al point out that the uncertainty of the non-linear curve fitting technique can be 

estimated by Monte Carlo method [48]. Figure 4.12 shows the diagram of the procedure. The 

Gaussian processes N1(t) and N2(t) are generated by built-in function of the Matlab 

software[49]. Each generated CIR represents a single measurement of CIR at one stirrer 

position in the reverberation chamber. The N is number of stirrer positions. One value of time 

constant τ is obtained by applying the non-linear curve fitting technique to the PDP that is 

calculated from averaging the power of N CIRs. Such process is repeated N times to get N 

samples of τ, then the distribution of them can be calculated to get the uncertainty.  

In [46], Zhang et al state that the non-linear curve fitting technique is better than the linear 

one because the PDP obtained by using the former method is free from the influence of 

window function. In addition, the non-linear curve fitting technique allows a narrower 

window to be applied, which leads to fewer samples and less measurement time. 

 

Figure 4. 12. Diagram of Monte Carlo method for estimating measurement uncertainty 
in time domain [46]. 

 

[46] 
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4.5. Effect of power state on absorption cross section 

The example in section 4.2 shows that using the absorption cross section of an object is a 

helpful method for estimating the shielding effectiveness of a populated enclosure. In [4], 

Flintoft et al measured the absorption cross sections of stacked printed circuit boards and the 

boards were measured when they were not powered [4]. To the best of our knowledge, we 

have not found any paper that talk about the effect of power state on the absorption cross 

section of electronic components. We expected that the power state (power on or power off) 

might affect the absorption cross sections of electronic components since the active devices 

in the circuit have different behaviours when powered on or powered off. Taking a printed 

circuit board as an example. A printed circuit board has a variety of components. Based on 

the characteristics of port voltage/current, they can be classified as wires, resistors, 

capacitances, inductances and transformers [6]. We are interested in active devices because 

their behaviour is different in different power states. 

Any wire, as long as it is not completely shielded, behaves like an antenna. Therefore, a 

unshielded wire might change the field in the vicinity and affect ACS measurement. 

At low frequencies, resistors on a printed circuit board do not affect the surrounding field. In 

a radio frequency (RF) system, at high frequency, a resistor might be equivalent as a series 

parallel circuit that consists of a resistor, a capacitance and an inductance as shown in figure 

4.13. At certain frequency, series resonances might occur and cause EMI problems. 

In real cases, a capacitance has parasitic inductance and parasitic resistance. At high 

frequency, it can be modelled as a series circuit that consists of a resistor, a capacitance and 

 

Figure 4. 13. Equivalent circuit models of a resistor at high frequency. (a) a resistor with 
high resistance; (b) a resistor with low resistance. 

 

 

 

 

 

Figure 4. 30 Equivalent circuit models of a resistor at high frequency. (a) a resistor with 
high resistance; (b) a resistor with low resistance. 

 

 

 

 

 

Figure 4. 13. Equivalent circuit models of a resistor at high frequency. (a) a resistor with 
high resistance; (b) a resistor with low resistance. 
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an inductance as shown in figure 4.14, where Rp and Rs are the parallel and series resistors 

respectively. The parasitic resistors cause attenuation to the signal that goes through the 

capacitance. The parasitic inductance and the capacitance form a series resonant circuit. 

Therefore, there are self-resonance at certain frequency. 

At high frequency, an inductance can be equivalent as a parallel circuit that consists of a 

resistor and a capacitance. Therefore, it has the damping effect and is able to absorb some 

high frequency energy. In real circuits, especially digital circuits, inductance is used to 

suppress EMI.  

A transformer on a printed circuit board can be modelled as a circuit that consists of a resistor, 

a capacitance and a coil as shown in figure 4.15, where R1 and R2 are the coil impedances; C1 

and C2 are the distributed capacitances. Here we ignore the core loss, the capacitance 

between the core and the leakage inductance. When two circuits on a printed circuit board 

are very close, there is mutual electromagnetic induction and this mechanism is equivalent to 

that of a transformer.  

 

Figure 4. 14. Equivalent circuit model of a capacitance at high frequency. 

 

 

 

 

 

 

 

Figure 4. 53 Equivalent circuit model of a capacitance at high frequency. 

 

 

 

 

 

 

Figure 4. 15. Equivalent circuit of a transformer. 

 

 

 

 

 

Figure 4. 38 Equivalent circuit of a transformer. 
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According to the introduction above, it can be seen that a printed circuit board contains 

components with different natures, among them there are active devices. When the board is 

powered on or powered off, these active devices have different behaviours. In addition, if the 

board is powered on, their behaviours change with frequency. Previously, Flintoft et al have 

proved that the re-emission spectrum of digital hardware under the influence of EMI contains 

information about the interaction of the incident energy with digital circuits in a system [50]. 

We expected a change on power state might result in a change in the power absorbed by the 

components and thus affect the absorption cross section.  

To test this assumption, we measured the absorption cross section of the computer 

components shown in figure 4.1 in both powered and unpowered states to compare the 

difference. Inside the enclosure, there are a printed circuit board, a power supply unit, a CD-

ROM, a hard drive and several wires. The measurements were performed in the reverberation 

chamber at the University of York. Figure 4.16 shows the diagram of the measurement 

configuration. Two blade antennas were used as transmitting and receiving antenna [35]. A 

network analyser collected S-parameters from the two antennas. Figure 4.17 shows the 

photograph of the measurement set up. The blade antennas were at two corners in the 

chamber. The monitor, mouse and keyboard of the computer were removed during the 

measurements. We also took off the side panel of the computer to expose the circuity to the 

electromagnetic energy in the chamber thus enabling the overall absorption cross section to 

 

Figure 4. 16. Diagram of the absorption cross section measurement configuration of the computer in the 

reverberation chamber at the University of York. 

 

 

 

 

 

 

 

 

Figure 4. 61 Diagram of the absorption cross section measurement configuration of the 
computer in the reverberation chamber at the University of York. 
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be measured. The absorption cross section of the powered and unpowered computer was 

measured three times each for comparison.  

When the computer was powered, we turned it on during the measurements so Windows 7 

system was activated. To make the computer operate at full capacity, we used a stress test 

software HeavyLoad to test the central processing unit (CPU), graphics processing unit (GPU) 

and hard drive at the same time [51]. In addition, we activated windows media player to play 

a CD so that the CD-ROM was also in full use. During the measurements, the computer 

remained at the same place and the only thing that changed was its power state. 

The absorption cross section of the powered and unpowered computer was measured from 

1GHz to 18GHz by using both frequency and time domain method. For the former method, 

we used stepped stirring technique. The mechanical stirrer in the reverberation chamber was 

set to move 100 equally spaced positions over a full rotation. The network analyser recorded 

10001 uniformly spaced points over the measurement frequency range. We also applied 

frequency stirring technique with a bandwidth of 50MHz to further reduce measurement 

error. The net transfer function with and without the computer was calculated from S-

parameters by using formula (4.35) and then we used formula (4.34) to obtain the absorption 

cross section. We assumed the efficiency of the blade antennas is one.  

 

Figure 4. 17. Photograph of the absorption cross section measurement configuration of 
the computer in the reverberation chamber at the University of York, showing the two 

blade antennas and the computer without side panel. 

 

 

 

 

 

Figure 4. 76 Photograph of the absorption cross section measurement configuration of 
the computer in the reverberation chamber at the University of York, showing the two 

blade antennas and the computer without side panel. 
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As for the time domain method, due to the robustness of the non-linear curve fitting 

technique, the shape and size of the window function in formula (4.42) can be chosen 

randomly. Here we follow Zhang et al in using a raised cosine window function to obtain 

segmented frequency information [48]. Figure 4.18 shows its shape. One windows contains 

51 points. The rising part on the left and the falling part on the right contain 11 points each 

and are given by: 

𝑊𝑖𝑛𝑟𝑖𝑠𝑒 = 0.5 − 0.5𝑐𝑜𝑠 (
𝜋

10
𝑖)

𝑊𝑖𝑛𝑓𝑎𝑙𝑙 = 0.5 + 0.5𝑐𝑜𝑠 (
𝜋

10
𝑖)

   𝑖 = 0,1,2 … … 10                              (4.57) 

The magnitude of the flat part in the middle is one and it contains 39 points.  

Figure 4.19 shows the diagram of the frequency segments. There are totally 171 segments 

evenly distributed throughout the measurement range with a distance of 100MHz. Each 

segment has a bandwidth of 5MHz and contains 51 points.  

 

Figure 4. 18. Shape of a raised cosine window that is used to obtain segmented S21 
parameter for the calculation of absorption cross section using the time domain 

method. 

 

 

 

 

 

Figure 4. 91 Shape of a raised cosine window that is used to obtain segmented S21 
parameter for the calculation of absorption cross section using the time domain 
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To reduce measurement time, we follow Zhang et al is using the continuous stirring technique 

[45] [52]. In the process of measurement, the network analyser collected data while the 

stirrer was constantly moving. As has been discussed in Section 3.1.3, it requires sufficient 

independent samples to build a uniform electromagnetic environment in a reverberation 

chamber. Zhang et al tested two stirrer speeds to find out the number of independent 

samples that can be generated over a full rotation. The measurement delay of the network 

analyser was set as 65μs to leave sufficient time for data sweep. As an example, Zhang et al 

showed the autocorrelation of S21 parameter of the empty chamber at 1GHz in figure 4.20. It 

can be seen that when the stirrer moves at 0.5625 deg/s, there are three correlated samples; 

when the speed is 1.25 deg/s, there are two correlated samples. The number of independent 

samples were calculated by using formula (3.6) and Zhang et al plotted the results in table 

4.3. Clearly, a speed of 0.5625 deg/s leads to more independent samples. Therefore, in our 

measurements, we used this speed that resulted in 800 stirrer positions over one complete 

rotation. Zhang et al suggest that the stirrer speed can be altered to make a trade-off between 

measurement time and number of independent samples.  

 

Figure 4. 19. Diagram of the frequency segments for the calculation of absorption cross 
section by using the time domain method. 

 

 

 

 

 

Figure 4. 106 Diagram of the frequency segments for the calculation of absorption cross 
section by using the time domain method. 

 

 

 

 

Table 4. 33 Number of independent samples in the reverberation chamber at the 

University of York when using the continuous stirring technique. Taken from [45]

 

Figure 4. 107. Diagram of the frequency segments for the calculation of absorption cross 
section by using the time domain method. 

 

 

Table 4. 2. Number of independent samples in the reverberation chamber at the University 
of York when using the continuous stirring technique. Taken from [45]. 

 Speed=0.5625 deg/s Speed=1.25 deg/s 

Number of independent sample at 1GHz 247 185 

Number of independent sample at 7GHz 370 185 

Number of independent sample at 13GHz 370 185 

Number of independent sample at 18GHz 370 185 

Total number of samples 740 370 

Measurement time (s) 630 312 

 

 

Table 4. 43 Number of independent samples in the reverberation chamber at the 
University of York when using the continuous stirring technique. Taken from [45]. 

 Speed=0.5625 deg/s Speed=1.25 deg/s 

Number of independent sample at 1GHz 247 185 

Number of independent sample at 7GHz 370 185 

Number of independent sample at 13GHz 370 185 

Number of independent sample at 18GHz 370 185 

Total number of samples 740 370 

Measurement time (s) 630 312 
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Figure 4. 20. Normalized autocorrelation of S21 at 1GHz for continuous stirring in the 
empty reverberation chamber at the University of York. Taken from [45]. 

 

 

 

 

 

Figure 4. 122 Normalized autocorrelation of S21 at 1GHz for continuous stirring in the 
empty reverberation chamber at the University of York. Taken from 

 

Figure 4. 21. Power delay profile(PDP) in the reverberation chamber at the University of 
York at 1GHz with the presence of the unpowered computer.  
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The power delay profile (PDP) of the chamber was calculated by using formula (4.42). As an 

example, we show the PDP of the chamber with the unpowered computer at 1GHz at figure 

4.21. It can be seen that the power in the chamber decreases gradually with time. However, 

there is a sudden rise after 9μs. This is an artefact of the inverse fast Fourier transform 

technique. The PDP of a chamber is periodic and the rise in the end of one period is the start 

of another.  

With the power delay profile obtained, the time constant of the chamber can be obtained by 

using the non-linear curve fitting model and the absorption cross section of the computer can 

be calculated by formula (4.41). 

Figures 4.22 and 4.23 show the measured absorption cross section of the powered and 

unpowered computer by using frequency and time domain method. It can be seen that the 

computer has an absorption cross section of about 0.02m2. The frequency domain method 

produces much more variable results than the time domain method. Based on formula (4.36) 

and figure 4.12, the measurement uncertainty of the frequency and time domain method are 

 

Figure 4. 22. Measured absorption cross section of the computer in different power 
states by using the frequency domain method. 
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calculated to be 20% and 1% respectively. For the frequency domain method, one way to 

reduce the measurement uncertainty is to increase the number of stirrer positions, but this 

would also increase the measurement time.  

As has been mentioned, we applied stepped stirring technique when using the frequency 

domain method and it took about 50 minutes for the stirrer to finish one full rotation. When 

using the continuous stirring technique and the time domain method, the measurements 

lasted only about 10 minutes for 800 stirrer positions. 

Figure 4.24 compares the measured absorption cross section by using the two methods. The 

results in figure 4.24 are the averages of the six measurements presented in figures 4.22 and 

4.23. The comparison suggests that both methods led to similar results and that the 

absorption cross section of the computer is independent of power state within the 1% 

measurement variability. Therefore, we can come to the conclusion that the power state has 

little influence on the absorption cross section and this conclusion can be applied to other 

electronic equipment. When performing similar measurements in the future, there will be no 

 

Figure 4. 23. Measured absorption cross section of the computer in different power 
states by using the time domain method. 
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need to consider the power state of the equipment under teat, which will bring convenience 

to the measurements. 

4.6. Effect of measurement position on absorption cross section 

Most of the measurements presented in this thesis were performed in the reverberation 

chamber shown in figure 3.3. As has been discussed in section 3.1.3, a reverberation chamber 

provides a uniform electromagnetic environment. Therefore, when performing 

measurements such as those shown in figures 4.2, 4.7 and 4.17, we did not give particular 

consideration to the positions of the antennas and the equipment under test. In reality, the 

reverberation chamber at the University of York is not ideal. There are bolts and joints on the 

chamber walls. In addition, there is a nested reverberation chamber with dimensions of 

0.6m×0.7m×0.8m as shown in figure 4.25. We suspected that their presence might perturb 

the field uniformity and thus affect the absorption cross section measurements. Therefore, 

we measured the absorption cross section of the powered and unpowered computer at two 

different locations in the reverberation chamber at the University of York.  

 

Figure 4. 24. Comparison between the measured absorption cross section of the 
computer obtained by using the frequency and time domain methods. 
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Figure 4.26 shows the diagram of the two positions and figures 4.27, 4.28 show the 

configuration of the measurement. Due to the fact that the time domain method has much 

 

Figure 4. 25. Photograph of the nested reverberation chamber at the University of York. 

 

 

 

 

 

Figure 4. 129. Photograph of the nested reverberation chamber at the University of York. 

 

 

 

 

Figure 4. 26. Diagram of the top view of the Absorption cross section measurement 
configuration of the computer at different positions in the reverberation chamber at the 

University of York. 
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lower uncertainty than the frequency domain method, for these four measurements we only 

used the former. Besides the difference in measurement location, the rest of the 

measurement procedure are the same as those in section 4.5 and they will not be repeated 

here.  

Figure 4.29 shows the measurement results. It can be seen that all four measurements 

produced similar results. Comparing figures 4.24 and 4.29, it can be concluded that for this 

 

Figure 4. 27. Photograph of the Absorption cross section measurement configuration of 
the computer at position 1 in the reverberation chamber at the University of York.  

 

 

 

 

 

Figure 4. 131. Photograph of the Absorption cross section measurement configuration of 
the computer at position 1 in the reverberation chamber at the University of York.  

 

 

 

 

Figure 4. 28. Photograph of the Absorption cross section measurement configuration of 
the computer at position 2 in the reverberation chamber at the University of York. 
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application, the differences in power state and measurement location has little effect on the 

absorption cross section within the 1% measurement uncertainty. 

4.7. Summary 

This chapter is about the shielding problems of populated enclosures. To begin with, we 

present the shielding measurement of a computer enclosure with and without contents. 

Comparison suggests that the shielding effectiveness of the loaded enclosure is much higher 

than that of the empty one. Therefore, the contents of an enclosure should not be ignored 

when analysing shielding problems.  

We then introduce the widely used power balance (PWB) method. It divides the dissipated 

power to several parts according to their loss mechanisms. In this way, one big complex 

problem is replaced by some smaller and simpler ones. The most distinctive feature of the 

PWB method is that it does not require the detailed geometry of the contents or the enclosure 

since it only considers average energy.  

 

Figure 4. 29. Measured absorption cross section of the powered and unpowered 
computer at different positions in the reverberation chamber at the University of York. 

The time domain method was used to obtain the results. 
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By using the power balance method, the apertures are represented by their transmission 

cross sections (TCS) and the contents by their absorption cross sections (ACS). The 

transmission cross section of an aperture is calculated by its polarizability tensors. The 

absorption cross section of an object can be obtained by using either frequency or time 

domain method. The former obtains ACS from net transfer function and the latter from the 

time constant of the reverberation chamber. Compared with the frequency domain method, 

the time domain method has the advantage of independent of antenna efficiency and lower 

measurement uncertainty.  

Since contents have a great influence on shielding effectiveness, it is important to obtain 

accurate ACS of them when using the power balance method. Previously the absorption cross 

sections of some printed circuit boards have been measured their power state have been 

ignored. To the best of our knowledge, we have not found any reference that centres on the 

influence of power state on ACS. We suspected a change in power state might affect the ACS 

of electronic components due to the difference in the behaviour of active components. 

Therefore, we measured the ACS of a computer that contains a printed circuit board in both 

powered and unpowered states at different locations in a reverberation chamber. The results 

obtained by using both frequency and time domain method indicate that power state has 

little effect on the ACS. In the future, when performing similar measurements, there will be 

no need to consider the power state.  
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Chapter 5 

The diffusion equation based model 

5.1. Limitation of the power balance method 

The previous chapter introduced the power balance method, which has been used for many 

years in high frequency shielding problems. The power balance method takes only a few 

seconds to provide results, which is much faster than full wave solvers, since all we need to 

do is solve a simple equation (4.21). For a populated enclosure, the power balance method 

assumes that reflections of energy from the walls and contents lead to a uniform 

electromagnetic field throughout the enclosure. This assumption only holds when the loss in 

the enclosure is small. For moderate or high loss, while there are still multiple reflections in 

the enclosure, the electromagnetic field is no longer uniform and the power balance method 

cannot describe this non-uniformity [5]. Later in this chapter, we will present examples to 

demonstrate the failure of the power balance method in high loss case.  

This limitation affects some EMC applications. For measurements performed in a 

reverberation chamber with significant loading, such as measuring the absorption cross 

sections of printed circuit boards [4] or using loads to represent a multipath environment [53], 

the absorption of the contents induces inhomogeneity and contributes to systematic error[5]. 

This error is usually dealt with on a statistical basis, for example, measuring average fields at 

different locations in a reverberation chamber and characterizing the non-uniformity 

(proximity effect) from the deviation of the samples [54]. It would be desirable to find a 

method to account for this field non-uniformity directly. 

5.2. The diffusion model 

The acoustics community has developed an approach that is able to account for the variation 

of the diffuse energy density in enclosed spaces due to the presence and distribution of losses 

on the walls and contents (if there are any) of an enclosure. Recent developments of the 

acoustical diffusion model are given in [55] [56]. The diffusion method can be derived from 

the transport theory of rays in an enclosure [57] and can be seen as a natural generalization 
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of the power balance method. The computational burden of the diffusion model, while higher 

than that of the power balance method, is still substantially lower than that of full-wave 

simulation. Later in this chapter, we will give the time required to obtain the power density 

inside an enclosure by using the diffusion model (took minutes) as well as full wave simulation 

(took hours).  

Sound waves are longitudinal while electromagnetic waves are transverse. This difference in 

nature makes it impossible to apply the acoustical diffusion model to electromagnetic 

applications directly. In [5], Flintoft et al put the acoustical formalism into the context of 

electromagnetics. For the initial evaluation, Flintoft et al made use of a dimensional reduction 

technique to construct two-dimensional models for some canonical test cases consisting of 

single and dual cavities loaded with radio absorbing material (RAM). The results compared 

reasonably well with experimental data.  

In this chapter, we follow the work of Flintoft et al and evaluate the usefulness of a three-

dimensional diffusion model, which is clearly more applicable than the two-dimensional one. 

The differences between our research and that of Flintoft et al are: 1. we use an enclosure 

that contains an aperture, which is more realistic since real equipment enclosures have 

apertures; 2. we perform the measurements in a reverberation chamber so that the 

electromagnetic environment around the enclosure is reverberant; 3. we provide full wave 

simulations as a reference. 

5.2.1. Overview of the diffusion model 

The diffusion model assumes the existence of the diffuse electromagnetic field in the space 

under test. The average energy density of the field at position r within the space is:  

𝑤(𝐫) = 〈
1

2
[𝜀0𝐸2(𝐫) + 𝜇0𝐻2(𝐫)]〉                                              (5.1) 

where ε0 and µ0 are the vacuum permittivity and permeability, E(𝐫) and H(𝐫) are the total 

electric and magnetic fields. Here the term total field means the root of the sum of the 

squares of the field components. In terms of Cartesian coordinate system, the components 

of electric and magnetic fields are Ex, Ey, Ez and Hx, Hy, Hz respectively. The symbol <·> denotes 

an average of a statistical ensemble of fields due to, for instance, mechanical stirring in a 



63 
 

reverberation chamber.  The scalar power density S(𝐫) and the energy density w(𝐫) are related 

by: 

𝑆(𝐫) = 𝑐𝑤(𝐫)                                                               (5.2) 

where c is the velocity of light. 

The basic assumptions of the electromagnetic diffusion model are: 1. the propagation of 

electromagnetic waves complies with Geometric optics, which means the wavelength is small 

compared to the size of the space under test and the contents (if there are any) in it; 2. the 

propagation directions of the waves are randomized by the statistical ensemble of fields due 

to, for example, mechanical stirring in a reverberation chamber; 3. within the space reflection 

dominates absorption, so after sufficient reflections the field tends to be uniform. 

Consider the assumptions stated above, the diffuse electromagnetic energy within an 

enclosed space with a volume of V satisfies a diffusion equation [58]:  

(𝐷∇2 + Λ)𝑤(𝐫) = 𝑃𝛿(3)(𝐫 − 𝐫𝑠)     𝐫 ∈ 𝑉                                       (5.3) 

where D is the diffusion coefficient (diffusivity) that measures the degree of scattering 

produced on reflection, Λ is the volumetric loss rate due to content (if there are any) 

absorption in the space, P is the total radiated power and here we assume there is an isotropic 

point source, δ is the Dirac function and rs is the location of the source. 

The diffusion coefficient (diffusivity) accounts for the scattering from the walls and contents 

(if there are any) within the space. It is related to the mean free path, lMFP, which is the average 

distance travelled by a wave between successive impacts [59]: 

𝐷 =
𝑐𝑙𝑀𝐹𝑃

3
                                                                     (5.4) 

For an empty enclosure without a high aspect ratio, the mean free path for scattering from 

the walls is given by [60]: 

𝑙𝑀𝐹𝑃;𝑤𝑎𝑙𝑙 =
4𝑉

𝐴𝑤𝑎𝑙𝑙
                                                             (5.5) 

where Awall is the surface area of the walls and V is the space volume. 

If there are contents in the enclosure, the mean free path for scattering due to the contents 

alone can be estimated as [61]:  
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𝑙𝑀𝐹𝑃;𝑐𝑜𝑛 =
4𝑉

𝐴𝑐𝑜𝑛
                                                             (5.6) 

Where Acon is the surface area of the contents.  

Therefore, for a populated enclosure, the mean free path is calculated by [61]:  

1

𝑙𝑀𝐹𝑃
=

1

𝑙𝑀𝐹𝑃;𝑤𝑎𝑙𝑙
+

1

𝑙𝑀𝐹𝑃;𝑐𝑜𝑛
                                                     (5.7) 

where lMFP;wall and lMFP;con are the contributions to mean free path due to the walls and 

presence of contents. It is obvious the shortest mean free path has the biggest influence on 

the diffusion coefficient.  

If the contents are dissipative and penetrable, then we need to consider the volumetric loss 

rate due to content absorption in formula (5.3), which is given by [62]: 

Λ =
𝑐𝛼𝑐𝑜𝑛

𝑙𝑀𝐹𝑃;𝑐𝑜𝑛
                                                                    (5.8) 

where αcon is the absorption efficiency of the contents. 

Absorption in the boundary area (enclosure walls) is assumed to satisfy a Robin boundary 

condition [5]: 

[𝐷�̂� ∙ ∇ + 𝑐 ∑ (𝐫)𝛼 ]𝑤(𝐫) = 0     𝐫 ∈ 𝜕𝑉                                         (5.9) 

where �̂� is the outward unit normal vector, ∑ (𝐫)𝛼  is the absorption factor of the enclosure 

walls. According to Fick’s first law, energy density and energy density flux are related by [63]: 

𝐽(𝐫) = −𝐷∇𝑤(𝐫)                                                            (5.10) 

which states that the energy density flux is proportional to the gradient of the energy density. 

In any dissipative enclosure, there must be a non-zero energy density flux in order to 

transport the energy from the source to the surrounding space and absorptive objects.  

Various models have used in acoustic literature to estimate the absorption factor of walls and 

the simplest one is Sabine’s formula [64]: 

∑ (𝐫)𝛼 =
𝛼𝑤𝑎𝑙𝑙(𝐫)

4
                                                             (5.11) 

where αwall is the absorption efficiency of the enclosure walls. The method for calculating 

absorption efficiency will be presented in the next section. Flintoft et al point out that formula 
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(5.11) is accurate only when 0˂αwall ˂0.2. A modified form based on the Eyring reverberation 

time has also been applied [65]: 

∑ (𝐫)𝛼 =
log10[1−𝛼𝑤𝑎𝑙𝑙(𝐫)]

4
                                                      (5.12) 

Flintoft et al state that formula (5.12) empirically provides better results for moderate 

absorption 0˂αwall ˂ 0.5, but it becomes singular when αwall=1. More recently, a relation based 

on a radiative transport model has been proposed which appears to be suitable for the full 

range of absorption efficiency [66]: 

∑ (𝐫)𝛼 =
𝛼𝑤𝑎𝑙𝑙(𝐫)

2[2−𝛼𝑤𝑎𝑙𝑙(𝐫)]
                                                     (5.13) 

5.2.2. Calculation of the absorption efficiency of enclosure walls  

For the electromagnetic diffusion model, the absorption efficiency of enclosure walls, αwall, in 

formulas (5.11), (5.12) and (5.13) can be obtained using the standard estimate of wall losses 

in a reverberation chamber [67] [41]. The Fresnel reflection coefficient for the reflection of 

TE and TM plane waves at an infinite large plane between two half space, as shown in figures 

5.1 and 5.2, are given by: 

ΓTE(𝜃) =
𝜇R𝑘Lcos𝜃−𝜇L√𝑘R

2 −𝑘L
2sin2𝜃

𝜇R𝑘Lcos𝜃+𝜇L√𝑘R
2 −𝑘L

2sin2𝜃

                                           (5.14) 

 

Figure 5. 1. Diagram of interfacial transmission of TE waves at Z-normal plane. 
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ΓTM(𝜃) =
𝜇L𝑘Rcos𝜃−𝜇R𝑘𝐿√𝑘L

2−𝑘R
2 sin2𝜃

𝜇L𝑅cos𝜃+𝜇R𝑘𝐿√𝑘L
2−𝑘R

2 sin2𝜃

                                         (5.15) 

where θ is the incident angle, μL, kL and μR, kR are the permeability and complex wave vector 

of the media on the left and right side of the infinite plane respectively. The wave vectors are 

given by: 

𝑘L = 𝜔√𝜇L𝜀L                                                            (5.16) 

𝑘R = 𝜔√𝜇R (𝜀R − 𝑗
𝜎R

𝜔
)                                                   (5.17) 

where ω is the angular frequency, εL and εR are the permittivity of the media on the left and 

right side of the plane respectively, σR is the conductivity on the right side of the plane.  

The power absorbed by an area A of the surface can be obtained by integrating the Poynting 

flux into the walls over the surface: 

𝑃𝑎;𝑤𝑎𝑙𝑙 = ∬ 𝑆�̂�
𝐴

∙ 𝐝𝐒 = 𝐴𝑆(1 − |Γ|2)cos𝜃 ≝ 𝜎𝑎(𝜃)𝑆                      (5.18) 

In a diffuse field, we assume that the power density arriving at the walls from all directions is 

<S>/4π, shared between the two independent polarisations. However, since the walls are 

large and non-convex, the power only arrives from a half space. Therefore, we only integrate 

over 2π steradian. The total power absorbed by the walls in the two polarisations are: 

 

Figure 5. 2. Diagram of interfacial transmission of TM waves at Z-normal plane. 
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𝑃𝑎;𝑤𝑎𝑙𝑙
TE = 𝐴 ∬ [1 − |ΓTE(𝜃)|2] ∙

1

2
∙

〈𝑆〉

4𝜋
∙ cos𝜃𝑑𝑉

𝐴
                                 (5.19) 

𝑃𝑎;𝑤𝑎𝑙𝑙
TM = 𝐴 ∬ [1 − |ΓTM(𝜃)|2] ∙

1

2
∙

〈𝑆〉

4𝜋
∙ cos𝜃𝑑𝑉

𝐴
                                 (5.20) 

The total absorbed power is: 

                        𝑃𝑎;𝑤𝑎𝑙𝑙 = 𝑃𝑎;𝑤𝑎𝑙𝑙
TE + 𝑃𝑎;𝑤𝑎𝑙𝑙

TM  

                               =
𝐴

4𝜋
∫ ∫ {1 −

1

2
[|ΓTE(𝜃)|2 + |ΓTM(𝜃)|2]} cos

𝜋/2

0

2𝜋

0
𝜃𝑑𝜃𝑑𝜑 ∙ 〈𝑆〉       (5.21) 

giving the absorption cross section: 

𝜎𝑎;𝑤𝑎𝑙𝑙 =
𝐴

4𝜋
∫ ∫ {1 −

1

2
[|ΓTE(𝜃)|2 + |ΓTM(𝜃)|2]} cos

𝜋/2

0

2𝜋

0
𝜃𝑑𝜃𝑑𝜑         (5.22) 

where φ is the polar angle. 

Absorption cross section and absorption efficiency are related by: 

𝜎𝑎;𝑤𝑎𝑙𝑙 =
𝛼𝑤𝑎𝑙𝑙𝐴

4
                                                             (5.23) 

Substituting formula (5.22) into (5.23), we obtain the absorption efficiency: 

𝛼𝑤𝑎𝑙𝑙 =
1

𝜋
∫ ∫ {1 −

1

2
[|ΓTE(𝜃)|2 + |ΓTM(𝜃)|2]} cos

𝜋/2

0

2𝜋

0
𝜃𝑑𝜃𝑑𝜑              (5.24) 

5.2.3. Radiation source 

In the electromagnetic diffusion model, either point source or surface source can be used 

[62]. In formula (5.3), we assume there is a point source. The Green’s function for the diffusion 

equation in a bounded space is given by [63]: 

𝐺(𝐫|𝐫𝑠) =
𝑃

4𝜋𝐷|𝐫−𝐫𝑠|
exp (−√

Λ

𝐷
|𝐫 − 𝐫𝑠|)                                   (5.25) 

In [63], Visentin et al state that the energy near such a source contains a spurious term: 

𝑤𝑑(𝐫) =
𝑃

4𝜋𝐷|𝐫−𝐫𝑠|
                                                        (5.26) 

This term arises from the fact that a diffuse field has not been established in the vicinity of 

the source. Therefore, the energy near the source should be subtracted to give the 

reverberant energy density: 
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 𝑤𝑟(𝐫) = 𝑤(𝐫) − 𝑤𝑑(𝐫)                                                   (5.27) 

The spurious effect can also be got rid of by smearing the source out over a volume of space 

using a surface source [62]. 

With the correction in formula (5.27), the corresponding reverberant energy density flux is: 

𝐽𝑟(𝐫) = 𝐽(𝐫) −
𝑃

4𝜋|𝐫−𝐫𝑠|3
(𝐫 − 𝐫𝑠)                                         (5.28) 

If a surface source is used, a source term should be included into the Robin boundary 

condition. Suppose a portion of the domain boundary with an area As is used as a surface 

source, then the boundary condition is: 

𝐷�̂� ∙ ∇𝑤(𝐫) − 𝐽𝑠(𝐫) = 0                                               (5.29) 

The term Js(r) is: 

𝐽𝑠(𝐫) =
𝑃

𝐴𝑠
                                                           (5.30) 

If a volume source (a 3D source of emission) is used, the volume power density is: 

𝑝 =
𝑃

𝑉𝑠
                                                                (5.31) 

where Vs is the volume of the source. 

5.2.4. Coupled enclosures 

In the electromagnetic diffusion model, either single domain or multiple domain model can 

be used. For the latter case, the enclosures are coupled through apertures. We assume that 

the field in the aperture is well diffused, which is only holds for apertures above their cut-off 

frequency. In this thesis, we only use a two domain model.  

Consider two enclosures forming domains V1 and V2 with diffusion coefficients D1 and D2 

coupled by a translucent part of their shared boundary; the domain 1 side of the shared 

boundary is denoted by ∂V12 and the domain 2 side by ∂V21. If the coupled area is not too 

large, we assume each cavity satisfies a diffusion equation: 

(𝐷1∇2 + Λ1)𝑤1(𝐫) = 𝑃1𝛿(3)(𝐫 − 𝐫𝑠1)     𝐫 ∈ 𝑉1                            (5.32) 

(𝐷2∇2 + Λ2)𝑤2(𝐫) = 𝑃2𝛿(3)(𝐫 − 𝐫𝑠2)     𝐫 ∈ 𝑉2                             (5.33) 
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On the non-shared walls, the Robin boundary condition applies: 

[𝐷1�̂�1 ∙ ∇ + 𝑐 ∑ (𝐫)𝛼1 ]𝑤1(𝐫) = 0     𝐫 ∈ 𝜕𝑉1/𝜕𝑉12                            (5.34) 

[𝐷2�̂�2 ∙ ∇ + 𝑐 ∑ (𝐫)𝛼2 ]𝑤2(𝐫) = 0     𝐫 ∈ 𝜕𝑉2/𝜕𝑉21                             (5.35) 

where �̂�1 and �̂�2 are outward normal vectors in their respective domains. On the shared wall, 

the energy exchange boundary condition (EEBC) is applied [68]:  

 �̂�1 ∙ [𝐷1(𝐫)∇𝑤1(𝐫)] + ℎ11(𝐫)𝑤1(𝐫) − ℎ12(𝐫)𝑤2(𝐫) = 0     𝐫 ∈ 𝜕𝑉12               (5.36) 

�̂�2 ∙ [𝐷2(𝐫)∇𝑤2(𝐫)] + ℎ22(𝐫)𝑤2(𝐫) − ℎ21(𝐫)𝑤1(𝐫) = 0     𝐫 ∈ 𝜕𝑉21              (5.37) 

where the exchange coefficients h11(r) and h22(r) describe the power lost on their respectively 

sides of the boundary while h12(r) and h21(r) describe the power coupled in from the other 

side. If the aperture is lossless and reciprocal then: 

ℎ𝑖𝑗 =
𝑐𝛼𝑎𝑝𝑒

4
     𝑖, 𝑗 = 1,2                                                 (5.38) 

where 𝛼𝑎𝑝𝑒  is the transmission efficiency of aperture. In the geometric optics regime the 

energy lost through an aperture is indistinguishable from that absorbed in a perfect absorber 

of the same area. Therefore, Flintoft et al argued that the energy exchange coefficient for an 

aperture should be given by [5]: 

ℎ𝑖𝑗 =
𝑐𝛼𝑎𝑝𝑒

2(2−𝛼𝑎𝑝𝑒)
     𝑖, 𝑗 = 1,2                                             (5.39) 

in order to be consistent with Jing et al’s exchange coefficient for absorption, which is given 

in formula (5.13). 

5.2.5. Relationship between the diffusion model and PWB method 

The electromagnetic diffusion model is a generalization of the power balance (PWB) method. 

In this section, we show their relationship. Integrating the diffusion formula (5.3) over the 

whole volume of the space under test, applying Green’s theorem and the inserting the Robin 

boundary condition on the space boundaries, we obtain the general energy balance 

relationship [69]:   

𝑐 ∯ ∑ (𝐫)𝛼 𝑤(
𝐴

𝐫)𝑑𝐴 + 𝛬𝑈 = 𝑃                                              (5.40) 
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where U is the total energy in the space and A is the boundary of the space. When the energy 

density w(r) is static and homogenous, inserting the Sabine’s formula (5.11) and using formula 

(5.8), the diffusion formula (5.3) reduces to: 

(
1

4
𝛼𝑤𝑎𝑙𝑙𝐴𝑤𝑎𝑙𝑙 +

1

4
𝛼𝑐𝑜𝑛𝐴𝑐𝑜𝑛) 𝑐𝑤 = 𝑃                                      (5.41) 

where αwall and αcon are the absorption efficiencies of the walls and contents; Awall and Acon 

are the surface areas of the walls and contents. Absorption efficiency and absorption cross 

section are related by: 

𝜎𝑎;𝑤𝑎𝑙𝑙 =
𝛼𝑤𝑎𝑙𝑙𝐴𝑤𝑎𝑙𝑙

4
                                                        (5.42) 

𝜎𝑎;𝑐𝑜𝑛 =
𝛼𝑐𝑜𝑛𝐴𝑐𝑜𝑛

4
                                                          (5.43) 

Substituting formulas (5.42) and (5.43) to (5.41), considering formula (5.2), we obtain the 

classic power balance relationship [3]:   

(𝜎𝑎;𝑤𝑎𝑙𝑙 + 𝜎𝑎;𝑐𝑜𝑛)𝑆 = 𝑃                                                   (5.44) 

The diffusion model is thus seen to be a natural generalization of the power balance method 

that treats the distributed nature of losses more accurately when the losses are significant. 

5.3. Finite element solution of the diffusion model 

The diffusion question can be solved numerically using a number of approaches such as the 

finite element method (FEM) and the Finite-Difference Time-Domain (FDTD) method.  In this 

thesis, we follow Flintoft et al in using the FreeFEM++ software that is based on the FEM [70]. 

5.3.1.  Weak form of the diffusion model  

In order to use the finite element method to solve the diffusion formula (5.3), we need to 

derive its weak form. Weak form allows the transfer of the concepts of linear algebra to solve 

problems in other fields such as partial differential equations.  An equation in its weak form 

is not required to hold absolutely and has weak solutions only with respect to certain test 

functions. The weak form of the diffusion equation is achieved by multiplying a test function 

u(r) and then integrating over the whole space to give [71]:   

𝐷 ∭ 𝑢(𝐫)∇2𝑤(𝐫)𝑑𝑉
𝑉

+ 𝛬 ∭ 𝑢(𝐫)𝑤(𝐫)𝑑𝑉
𝑉

= 𝑃 ∭ 𝑢(𝐫)𝑑𝑉
𝑉

                (5.45) 
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Assume the all the functions are sufficiently smooth, we apply the divergence theorem: 

∭ ∇ ∙ 𝐅(𝐫)𝑑𝑉
𝑉

= ∯ 𝐅(𝐫)𝑑𝐴
𝜕𝑉

                                               (5.46) 

First putting F(r)=φ(r)G(r) we obtain: 

∭ [𝜑(𝐫)∇ ∙ 𝐆(𝐫) + 𝐆(𝐫) ∙ ∇𝜑(𝐫)]𝑑𝑉
𝑉

= ∯ 𝜑(𝐫)𝐆(𝐫)𝑑𝐴
𝜕𝑉

                    (5.47) 

Then letting G(r)=γ(r)▽ψ(r) gives: 

∭ {𝜑(𝐫)∇ ∙ [𝛾(𝐫)∇𝜓(𝐫)] + 𝛾(𝐫)∇𝜓(𝐫) ∙ ∇𝜑(𝐫)}𝑑𝑉
𝑉

= ∯ 𝜑(𝐫)𝛾(𝐫)∇𝜓(𝐫)𝑑𝐴
𝜕𝑉

    (5.48) 

where F(r), G(r), φ(r), γ(r) and ψ(r) are all test functions. 

Now letting φ(r)= u(r), γ(r)=D, and ψ(r)=w(r), we have: 

𝐷 ∭ 𝑢(𝐫)∇2𝑤(𝐫)𝑑𝑉
𝑉

= 𝐷 ∯ 𝑢(𝐫)∇
𝜕𝑉

𝑤(𝐫)𝑑𝐴 − 𝐷 ∭ ∇𝑢(𝐫)∇
𝑉

𝑤(𝐫)𝑑𝑉        (5.49) 

Formula (5.49) can be used to reduce the second order derivative term in formula (5.45) to 

obtain: 

𝐷 ∯ 𝑢(𝐫)∇𝑤(𝐫)𝑑𝑆
𝜕𝑉

+ 𝐷 ∭ ∇𝑢(𝐫)∇
𝑉

𝑤(𝐫)𝑑𝑉 + 

                                       𝛬 ∭ 𝑢(𝐫)𝑤(𝐫)𝑑𝑉
𝑉

= 𝑃 ∭ 𝑢(𝐫)𝑑𝑉
𝑉

                                                  (5.50) 

The general form of the Robin boundary condition, which has been given in formula (5.9), is 

now inserted into formula (5.50) to give the weak form of the diffusion problem: 

𝐷 ∭ ∇𝑢(𝐫)∇
𝑉

𝑤(𝐫)𝑑𝑉 + 𝛬 ∭ 𝑢(𝐫)𝑤(𝐫)𝑑𝑉
𝑉

 

                                          +𝑐 ∯ 𝑢(𝐫)
𝜕𝑉

∑ (𝐫)𝛼 𝑑𝐴 = 𝑃 ∭ 𝑢(𝐫)𝑑𝑉
𝑉

                                           (5.51) 

5.3.2. Discretisation and finite element space 

In the FreeFEM++ software, the mesh is a discrete tessellation of the space using n elements 

of Tk: 

𝑉 ≈ ⋃ 𝑇𝑘
𝑛
𝑘=1                                                                (5.52) 
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According to the user’s menu of FreeFEM++, the meshes are typically triangles for 2D models 

and tetrahedral for 3D models [71]. The size of meshes for an accurate approximate solution 

is determined by the mean free path in the diffusion equation instead of frequency. 

Therefore, coarser meshes can be used in the diffusion model than in the full wave model. 

The boundary of the discrete space in denoted by ∂V and the finite element space on Tk is 

denoted by: 

𝑉𝑘(𝑇𝑘, 𝑋) = {𝑤(𝐫) = ∑ 𝑤𝑘𝜙𝑘(𝐫)𝑀
𝑘=1 }                                       (5.53) 

where X is the type of finite elements. In the version 3.6.1 of FreeFEM++, there are 

discontinuous, piecewise continuous, quadratic Lagrangian, Raviart-Thomas and a few other 

elements [71]. In this thesis, we follow Flintoft et al and use the piecewise continuous 

elements. M is the dimension of Vk. For example, M could be the total number of vertices, 

which is the number of elements times the number of matching points on each element. The 

term wk is the degree of freedom of w. The basis function 𝜙𝑘(𝐫) is usually defined in terms of 

barycentric coordinates. For a point r∈Tk, the barycentric coordinates ζi are: 

𝐫 = ∑ 𝜁𝑖𝐫𝑖
𝐿
𝑖=1                                                               (5.54) 

with 

∑ 𝜁𝑖
𝐿
𝑖=1 = 1                                                               (5.55) 

where ri is the Lth vertices of Tk. The restriction of 𝜙𝑖  on Tk is then ζi. 

Now using the Galerkin method we approximate both the energy density w(r) and the test 

function u(r) using the same finite element space: 

𝑤(𝐫) ≈ ∑ 𝑤𝑚𝜙𝑚(𝐫)𝐿
𝑚=1                                                   (5.56) 

𝑢(𝐫) ≈ ∑ 𝑢𝑛𝜙𝑛(𝐫)𝐿
𝑛=1                                                     (5.57) 

where wm and un are the degree of freedoms of w and u. Substituting formulas (5.56) and 

(5.57) to (5.51) to obtain: 

𝐷 ∑ ∑ 𝑢𝑛𝑤𝑚 ∭ ∇𝜙𝑛(𝐫)∇𝜙𝑚(𝐫)𝑑𝑉
𝑉

𝐿
𝑚=1

𝐿
𝑛=1 + 𝛬 ∑ ∑ 𝑢𝑛𝑤𝑚 ∭ 𝜙𝑛(𝐫)𝜙𝑚(𝐫)𝑑𝑉

𝑉
𝐿
𝑚=1

𝐿
𝑛=1 +

𝑐 ∑ ∑ 𝑢𝑛𝑤𝑚 ∯ ∑ (𝐫)𝜙𝑛(𝐫)𝜙𝑚(𝐫)𝑑𝐴𝛼𝜕𝑉
𝐿
𝑚=1

𝐿
𝑛=1 = 𝑃 ∑ 𝑢𝑛

𝐿
𝑛=1 ∭ 𝜙𝑛(𝐫)𝑑𝑉

𝑉
                      (5.58) 

Denoting the discrete matrix operators by: 
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𝐷𝑛𝑚 = 𝐷 ∭ ∇𝜙𝑛(𝐫)∇𝜙𝑚(𝐫)𝑑𝑉
𝑉

                                         (5.59) 

𝑀𝑛𝑚 = 𝛬 ∭ 𝜙𝑛(𝐫)𝜙𝑚(𝐫)𝑑𝑉
𝑉

                                            (5.60) 

𝐻𝑛𝑚 = 𝑐 ∯ ∑ (𝐫)𝜙𝑛(𝐫)𝜙𝑚(𝐫)𝑑𝐴𝛼𝜕𝑉
                                      (5.61) 

𝑃𝑛 = 𝑃 ∭ 𝜙𝑛(𝐫)𝑑𝑉
𝑉

                                                  (5.62) 

where Dnm is the stiffness matrix, Mnm+Hnm is the dissipation matrix and Pn is the source 

matrix. Formula (5.58) can then be written as: 

∑ ∑ 𝐷𝑖𝑗
𝐿
𝑚=1 𝑢𝑛𝑤𝑚

𝐿
𝑛=1 + ∑ ∑ 𝑀𝑖𝑗

𝐿
𝑚=1 𝑢𝑛𝑤𝑚

𝐿
𝑛=1 + ∑ ∑ 𝐻𝑖𝑗

𝐿
𝑚=1 𝑢𝑛𝑤𝑚

𝐿
𝑛=1 = ∑ 𝑢𝑛

𝐿
𝑛=1 𝑃𝑛  (5.63) 

Formula (5.63), when written in matrix form, is: 

𝐮T𝐷𝐰 + 𝐮T𝑀𝐰 + 𝐮T𝐻𝐰 = 𝐮T𝑃                                       (5.64) 

where u and w are column vectors containing the degree of freedoms and the superscript T 

denotes the transpose. Since the system is linear, formula (5.64) can be solved by testing each 

basis function separately. Therefore, it is equivalent to the linear system of ordinary 

differential equations: 

(𝐷 + 𝑀 + 𝐻)𝐰 = 𝑃                                                 (5.65) 

5.3.3. Iterative methods for coupled domains 

As has been mentioned, either single or dual domain model can be used in the diffusion 

approach. For the case of two domains coupled through a shared boundary where the energy 

exchange boundary condition (EEBC) is applied, the weak forms in each domain are: 

𝐷1 ∭ ∇𝑤1(𝐫)
𝑉

∇𝑢1(𝐫)𝑑𝑉 + Λ1 ∭ 𝑤1(𝐫)𝑢1(𝐫)𝑑𝑉
𝑉

+  𝑐 ∯ ∑ (𝐫)𝛼1 𝑤1(𝐫)𝑢1(𝐫)
𝜕𝑉1/𝜕𝑉12

𝑑𝑆 +

∯ ℎ11(𝐫)
𝜕𝑉12

𝑤1(𝐫)𝑢1(𝐫)𝑑𝑆 − ∯ 𝐽12(𝐫)𝑢1(𝐫)𝑑𝑆
𝜕𝑉12

= 𝑃 ∭ 𝑢1(𝐫)𝑑𝑉
𝑉

                              (5.66) 

𝐷2 ∭ ∇𝑤2(𝐫)
𝑉

∇𝑢2(𝐫)𝑑𝑉 + Λ2 ∭ 𝑤2(𝐫)𝑢2(𝐫)𝑑𝑉
𝑉

+  𝑐 ∯ ∑ (𝐫)𝛼2 𝑤2(𝐫)𝑢2(𝐫)
𝜕𝑉2/𝜕𝑉21

𝑑𝑆 +

∯ ℎ22(𝐫)
𝜕𝑉21

𝑤2(𝐫)𝑢2(𝐫)𝑑𝑆 − ∯ 𝐽21(𝐫)𝑢2(𝐫)𝑑𝑆
𝜕𝑉21

= 𝑃 ∭ 𝑢2(𝐫)𝑑𝑉
𝑉

                             (5.67) 

The energy density flux coupled between the domains are: 

𝐽12(𝐫) = ℎ12(𝐫)𝑤2(𝐫)     𝐫 ∈ 𝜕𝑉12                                            (5.68) 
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𝐽21(𝐫) = ℎ21(𝐫)𝑤1(𝐫)     𝐫 ∈ 𝜕𝑉21                                            (5.69) 

The system can be solved by using a Robin-Robin iterative algorithm [72]. We first initialise 

J12(r) using the power balance solution, w2;PWB, in V2: 

𝐽12(𝐫) = ℎ12(𝐫)𝑤2;PWB     𝐫 ∈ 𝜕𝑉12                                           (5.70) 

Then solve formula (5.66) in domain V1 using this solution to give w1(r). J21(r) can then be 

calculated from formula (5.69). In the same way, formula (5.67) in domain V2 can be solved 

for w2(r). The process is repeated until the solution has converged. This typically requires a 

small number of iterations, for our case usually less than 10. 

5.4. Test case specifications 

In order to verify the usefulness of the diffusion model, we estimated the power density in a 

loaded enclosure by using the diffusion model and compared the estimation with those of full 

wave simulation and physical measurement. Figure 5.3 shows the photo of the enclosure 

under test. The length, width and height are 300mm, 300mm and 120mm respectively. We 

assume that the enclosure walls have a homogenous absorption efficiency αwall. In [5], Flintoft 

 

Figure 5. 3. Photograph of the 300mm×300mm×120mm enclosure under test with the 
75mm×75mm square aperture. 
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et al calculated the absorption efficiency of another enclosure by using the method detailed 

in section 5.2.2. Since the two enclosures are made from the same brass sheet, we consider 

them to have the same absorption efficiency αwall=0.0027. The front face of the enclosure is 

removable to allow different apertures to be installed. In this work, we tested two scenarios, 

a 75mm×75mm square aperture and an r=6mm circular aperture which are shown in figure 

5.4. The lid of the enclosure is removable as well to allow access and it is fitted with gaskets 

to ensure good electrical contact. There are seven measurement points with an interval of 

 

Figure 5. 4. Photograph of the 75mm×75mm square aperture and r=6mm circular 
aperture on removable planes. 

 

 

 

 

Figure 5. 5. Diagram of measurement points on the lid of the enclosure lid. 
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40mm along the central line of the lid in which a monopole probe can be installed. Figure 5.5 

shows the diagram of the measurement points.  

The transmission cross sections of the two apertures were calculated by the method 

presented in section 4.3 and the results are shown in figures 5.6 and 5.7. It can be seen that 

the cut-off frequencies of the 75mm×75mm square aperture and r=6mm circular aperture 

are about 1GHz and 10.2GHz respectively. Below the cut-off frequencies, their transmission 

cross sections increases with frequency; above the cut-off frequencies, the transmission cross 

sections become a constant, which is a quarter of their areas. For simplicity, the resonances 

around the cut-off frequency are neglected. 

A series of absorbing cubes were placed the centre of the enclosure to introduce loss. Figure 

5.8 shows the photograph of the three cubes used in this thesis. Their side lengths are 55mm, 

70mm and 90mm respectively. Figure 5.9 shows the photograph of the enclosure that 

contains an absorbing cube. The cubes are made from the same LS22 radio absorbing material 

as the cylinder in [5] and hence we assume them to have the same absorption efficiency 

αcon=0.95. More details about the LS22 radio absorbing material will be given in section 5.6. 

 

Figure 5. 6. Transmission cross section of the 75mm×75mm square aperture, showing the 
cut-off frequency at about 1GHz. 
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5.5. 3D Diffusion model of the enclosure under test 

For the diffusion model, we tried both single and dual domain models and compared the 

results. The models were built by using the previously mentioned FreeFEM++ software [70].  

 

Figure 5. 7. Transmission cross section of the r=6mm circular aperture. 

 

 

 

 

Figure 5. 8. Photograph of the absorbing cubes used in this thesis. Their side lengths are 
(from left to right) 55mm, 70mm and 90mm. 
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5.5.1. Single domain model 

Figures 5.10 and 5.11 show the single domain model of the enclosure under test with the 

75mm×75mm square aperture. The 3D mesh is created by a built-in generator TetGen [73]. 

The walls and the cube are modelled by including their surfaces in the mesh and applying the 

Robin boundary condition, with a proper absorption efficiency. Since there is only surface loss 

 

Figure 5. 9. Photograph of the top view of the 300mm×300mm×120mm enclosure 
without lid, showing the absorbing cube. 

 

 

 

 

Figure 5. 10. Single domain diffusion model of the 300mm×300mm×120mm enclosure 
under test, showing the 75mm×75mm aperture, which serves as a surface source. 

 

 

 



79 
 

in the model, the volumetric loss rate Λ in formula (5.3) is zero. The aperture area serves as a 

surface source and the exitance is determined by formula (5.30), where the power P can be 

manually set. In both single and dual domain diffusion models, the mesh size is between 

10mm and 30mm.  

As has been mentioned in formula (5.53), FreeFEM++ offers a variety of finite elements. Here 

we follow Flintoft et al and use the piecewise P1 type continuous elements. In addition, 

FreeFEM++ contains several linear direct and iterative solvers such as lower-upper (LU), 

Crout, Cholesky, conjugate gradient (CG) and so on. Since the problem is linear, we choose 

the CG solver with the stopping criteria of 0.001 on the residual. The simulation took less than 

10 iterations and only a few seconds to finish on a desktop computer ( Windows 7, Intel Core 

i7-870 @ 2.93GHz, 8GB RAM).  

5.5.2. Dual domain model 

Figure 5.12 shows the diagram of the top view of the dual domain model. Domain B 

represents the enclosure under test and domain A represents a reverberation chamber. Both 

domains are modelled as continuous while the diffusivity in formula (5.3) is inhomogeneous 

in order to assign appropriate values in each domain: 

𝐷 = {
𝐷1   𝑥 < 0
𝐷2    𝑥 ≥ 0

                                                           (5.71) 

 

Figure 5. 11. Cross sectional view of the single domain diffusion model of the 
300mm×300mm×120mm enclosure under test with the 75mm×75mm aperture, showing 
the absorbing cube inside it. 
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The two domains are not connected, only coupled through a shared boundary (the aperture) 

to which the energy exchange boundary condition (EEBC) is applied with a unity transmission 

efficiency. The dimension of domain A is not significant as long as the aperture is an adequate 

distance (at least a quarter wavelength) away from the source. Here we use a small domain 

to represent a reverberation chamber to reduce the computational effort and we let the two 

domains have the same dimension only for convenience. Figures 5.13 and 5.14 show different 

cross sectional views of the dual domain model. 

 

Figure 5. 12. Diagram of the top view of the dual domain diffusion model of the 
300mm×300mm×120mm enclosure with the 75mm×75mm square aperture. Domain A 

represents a reverberation chamber that contains a point source while domain B 
represents the enclosure under test. The two domains are coupled through a shared 

boundary that represents the aperture. 

 

 

 

 

Figure 5. 13. Cross section view along y-axis of the dual domain diffusion model of the 
300mm×300mm×120mm enclosure with: (a) the 75mm×75mm square aperture and (b) 
r=6mm circular aperture. Domains A and B are in accordance with those shown in figure 

5.12. 
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In domain A, an ideal point source is set at half height. According to formula (5.27), the energy 

density in the vicinity of the source should be discarded. To the best of our knowledge, we 

have not found any guidance on choosing the distance to discard. Therefore, we decided to 

get rid of the energy density within 50mm, which is about half the mean free path of the 

domain, of the point source.  

5.6. Full wave model of the enclosure under test 

In this thesis, full wave simulations are presented as a reference and they were performed by 

using the CST Microwave Studio 2016 software [74]. 

5.6.1. CST model of the enclosure and the cube 

Figure 5.15 shows the full wave model of the enclosure with the cube. A number of probes 

was defined along the central line of the lid. They record both electric and magnetic fields in 

x, y and z directions. The power density can be calculated by using formulas (5.1) and (5.2). 

Figure 5.16 shows a diagram of the top view of the CST model, which provides a better view 

 

Figure 5. 14. Cross section view along x-axis of the dual domain diffusion model of the 
300mm×300mm×120mm enclosure with: (a) the 75mm×75mm square aperture and (b) 

r=6mm circular aperture, showing only domain B and the shared boundary.  

 

 

 

 

Figure 5. 15. Full wave model of the 300mm×300mm×120mm enclosure with: (a) the 
75mm×75mm square aperture and (b) r=6mm circular aperture, showing the absorbing 

cube and the probes. 
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of the probe positions. It can be noticed that there are more probes in the full wave model 

than in the actual enclosure. This is because in CST, it takes no extra effort to define a probe 

and we put more probes in order to get results with better resolution. 

The absorbing cubes were modelled by using a three-pole Debye dispersion model [75]: 

𝜀̂ = 𝜀∞ + ∑
∆𝜀𝑖

1+𝑗𝜔𝜏𝑖

3
𝑖=1 +

𝜎𝐷𝐶

𝑗𝜔𝜀0
                                                  (5.72) 

where ω is the angular frequency, ε0=8.85×10-12 F/m is the vacuum permittivity, ε∞=1.1725, 

Δε1=1.04×10-3, Δε2=17.9, Δε3=0.49, time constants τ1=55.3ms, τ2=0.188ns, τ3=6.2ps and the 

 

Figure 5. 16. Diagram of the top view of the full wave model of the 
300mm×300mm×120mm enclosure, showing the probe positions. 

 

 

 

 

Figure 5. 17. Cross sectional view of the mesh lines for the full wave model of the 
absorbing cube. 
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conductivity σDC=0.1mS/m. The CST software has built-in support for calculating the ACS of 

an object illuminated by plane waves using a far-field monitor. This also supports parametric 

sweeps. The absorption cross section for each plane wave can be exported for post-

processing. Figure 5.17 shows the full wave model of the absorbing cube. Previously, Zhang 

has measured the absorption cross sections of the absorbing cubes by using the time domain 

method detailed in section 4.4.2 [76]. In order to validate the full wave models of the cubes, 

we compared the simulated ACSs of them to those of physical measurements. The results will 

be presented later in this chapter. 

Considering the computation time and memory requirement, we only simulated the field 

from 1GHz to 10GHz. We used the time domain solver and hexahedral mesh. The mesh 

density was set as 15 mesh cells per wavelength at central frequency, which is the default 

setting. For the empty enclosure and the enclosure loaded with the 55mm×55mm×55mm, 

70mm×70mm×70mm and 90mm×90mm×90mm absorbing cube, the total number of mesh 

cells are 2.8 million, 3.4 million, 3.7 million and 4 million respectively.  

Because a computer can only calculate problems that have a finite expansion, it is necessary 

to specify the boundary. Here we use the default open boundary as the boundary condition 

of the CST model. According to the user’s manual, open boundary behaves like free space 

with minimal reflections and the default reflection coefficient is 0.0001. The minimum 

distance from the boundary to the enclosure is a quarter wavelength, which is the default 

setting. Here the wavelength is determined by the centre frequency and for this case is 

5.5GHz. 

The energy convergence criterion was set as -60dB. It is a value for the accuracy of the 

frequency domain signals that are calculated by Fourier Transformation of the time signals. 

Every simulation stops at some time. This means that the signals that are calculated are 

truncated at this point, regardless of their values. If these values are non-zero, the Fourier 

Transformation will produce an error because only a part of the "whole" signal with all of its 

non-zero values has been used for the transformation.  Apparently, the "smaller" the signals 

are, the more accurate the frequency domain values will be. Currently there is no standard or 

guidance on choosing the accuracy for a specific type of simulation, but empirically a 30dB 

energy decay would provide acceptable results in most cases. Figure 5.18 shows an example 

of the energy convergence criterion in CST simulation.  
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In this work, all the full wave simulations were performed on the York Advanced Research 

Computing Cluster (YARCC), which has a variety of processor types, typically Intel E5-2760 v2 

@ 2.5GHz with 16 cores [ 77]. For the enclosure loaded with the 55mm×55mm×55mm, 

70mm×70mm×70mm and 90mm×90mm×90mm absorbing cube, the CST simulations took 10, 

25 and 42 hours to finish respectively.  

5.6.2. Creation of a reverberant electromagnetic environment in CST 

As has been mentioned, the use of the diffusion model requires the presence of a diffuse 

field. There are two methods to meet this requirement in CST: 1. Put a mechanical stirrer in 

the enclosure under test; 2. Use a superposition of a finite number of plane waves to 

illuminate the enclosure under test from different positions. The first method would greatly 

increase the number of mesh cells and thus the simulation time because a stirrer is a complex 

structure. Therefore, we adopted the second method.  

In [78], Hill introduced a plane wave integral representation that satisfies Maxwell’s equations 

for fields in a well-stirred reverberation chamber. Figure 5.19 shows an illustration of 

 

Figure 5. 18. Example of energy convergence criterion in full wave simulation. The 
simulation stops when the defined accuracy level is reached. 
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spherical coordinate. The electric field at a certain location r within a chamber can be 

represented as an integral of plane waves over all solid angles: 

𝐸(𝐫) = ∬ 𝐅
4𝜋

(Ω)𝑒𝑗𝐤∙𝐫sin𝜃𝑑𝜃𝑑𝜑                                           (5.73) 

where the solid angle Ω is the shorthand for θ and φ and dΩ=sinθdθdφ. The vector 

wavenumber k is given by (in Cartesian coordinate): 

𝐤 = 𝑘(�̂�sin𝜃cos𝜑 + �̂�sin𝜃sin𝜑 + �̂�cos𝜃)                                 (5.74) 

where k is scalar wave number.  

The angular spectrum F(Ω) is given by: 

𝐅(Ω) = �̂�𝐹𝜃(Ω) + �̂�𝐹𝜑(Ω)                                                (5.75) 

where �̂� and �̂� are unit vectors that are mutually orthogonal and they both are orthogonal 

to k. Fθ(Ω) and Fφ(Ω) are complex field amplitudes that can be expressed by their real and 

imaginary parts: 

𝐹𝜃(Ω) = 𝐹𝜃𝑟(Ω) + 𝑗𝐹𝜃𝑖(Ω)                                               (5.76) 

𝐹𝜑(Ω) = 𝐹𝜑𝑟(Ω) + 𝑗𝐹𝜑𝑖(Ω)                                               (5.77) 

 

Figure 5. 19. Illustration of spherical coordinate. θ and φ are polar and azimuthal angles 
respectively. 
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Hill pointed out that in an ideal reverberation chamber, the mean value of angular spectrum 

should be zero since the phase of the spectrum is random due to multiple bounces from 

chamber walls [78]: 

〈𝐹𝜽(Ω)〉 = 〈𝐹𝜑(Ω)〉 = 0                                                 (5.78) 

where the symbol <·> denotes ensemble average such as mechanical stirring or frequency 

stirring. In addition, the bounces change the polarization as well. Therefore, angular spectrum 

with orthogonal polarizations or quadrature phases should be uncorrelated: 

     〈𝐹𝜽𝒓(Ω1)𝐹𝜽𝒊(Ω2)〉 = 〈𝐹𝜑𝒓(Ω1)𝐹𝜑𝒊(Ω2)〉 = 〈𝐹𝜽𝒓(Ω1)𝐹𝜑𝒓(Ω2)〉 = 〈𝐹𝜽𝒊(Ω1)𝐹𝜑𝒊(Ω2)〉 =

     〈𝐹𝜽𝒓(Ω1)𝐹𝜑𝒊(Ω2)〉 = 〈𝐹𝜽𝒊(Ω1)𝐹𝜑𝒓(Ω2)〉 = 0                                                                         (5.79) 

In a numerical simulation, electric field E(r) in formula (5.73) is discretised by using the 

Legendre/uniform sampling method [79]: 

𝐸(𝐫) = ∑ ∑ 𝐅𝑙𝑚𝑒𝑗𝐤𝑙𝑚∙𝐫𝐿𝐺𝐿
𝑚=1

𝐿𝐺𝐿
𝑙=1                                           (5.80) 

Here the polar angle θ is sampled at the LGL zeros of the Legendre polynomial PL(cosθ) and 

the azimuthal angle φ is sampled at 2LGL uniformly spaces points. The discretized 

wavenumber klm is given by: 

𝐤𝑙𝑚 = 𝑘(�̂�sin𝜃𝑙cos𝜑𝑚 + �̂�sin𝜃𝑙sin𝜑𝑚 + �̂�cos𝜃𝑙)                        (5.81) 

where cosθl and φm are given by: 

𝑃𝐿(cos𝜃𝑙) = 0  (𝑙 = 1,2, … … , 𝐿𝐺𝐿)                                      (5.82) 

𝜑𝑚 =
𝑚𝜋

𝐿𝐺𝐿
   (𝑚 = 1,2, … … , 2𝐿𝐺𝐿)                                       (5.83) 

The Legendre polynomial is given by (in terms of Rodriguez’s formula) [80]: 

𝑃𝑛(𝑥) =
1

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
(𝑥2 − 1)𝑛                                                  (5.84) 

where n=LGL that is the order of the polynomial and x=cosθl. 

By using the Legendre/uniform sampling method, the mean squared of electric field is given 

by: 

〈|𝐸(𝐫)|2〉 = ∑ ∑ ∑ ∑ 〈𝐅𝑙𝑚 ∙ 𝐅𝑙′𝑚′
∗ 〉2𝐿𝐺𝐿

𝑚′=1

𝐿𝐺𝐿

𝑙′=1

2𝐿𝐺𝐿
𝑚=1

𝐿𝐺𝐿
𝑙=1 𝑒𝑗(𝐤𝑙𝑚−𝐤

𝑙′𝑚′ ) = ∑ ∑ 〈|𝐅𝑙𝑚|2〉2𝐿𝐺𝐿
𝑚=1

𝐿𝐺𝐿
𝑙=1   (5.85) 
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According to formulas (5.78) and (5.79), Flm are mutually independent and therefore: 

〈𝐅𝑙𝑚 ∙ 𝐅𝑙′𝑚′
∗ 〉 = 0  when 𝑙 ≠ 𝑙′ or 𝑚 ≠ 𝑚′                                (5.86) 

Same as formulas (5.75), (5.76) and (5.77), discretized spectrum Flm in formula (5.80) can be 

expressed by their real and imaginary parts as well [79]: 

𝐅𝑙𝑚 = �̂�𝐹𝑙𝑚;𝜃 + �̂�𝐹𝑙𝑚;𝜑 = �̂�(𝐹𝑙𝑚;𝜃𝑟 + 𝐹𝑙𝑚;𝜃𝑖) + �̂�(𝐹𝑙𝑚;𝜑𝑟 + 𝐹𝑙𝑚;𝜑𝑖)           (5.87) 

Applying uniform sampling method to azimuthal angle φ and Legendre/uniform sampling 

method to polar angle θ, formula (5.85) is satisfied when: 

〈|𝐅𝑙𝑚|2〉 = 𝑤𝑙
𝐸0

2

4𝐿𝐺𝐿
                                                         (5.88) 

where wl is Gauss-Legendre quadrature weighting factor on interval [-1, 1] and 

 𝐸0
2 = 〈|𝐸(𝐫)|2〉                                                           (5.89) 

West et al state that formula (5.88) is satisfied when all terms in formula (5.87) follow normal 

distribution N (mean, standard deviation): 

 𝐹𝑙𝑚;𝜃𝑟 , 𝐹𝑙𝑚;𝜃𝑖 , 𝐹𝑙𝑚;𝜑𝑟 , 𝐹𝑙𝑚;𝜑𝑖~𝒩 (0, 𝑤𝑙
𝐸0

2

16𝐿𝐺𝐿
)                               (5.90) 

The spatial bandwidth of the field in a reverberation chamber needs to be adequately 

sampled by the discretisation of the plane-wave expansion. West et al showed an empirical 

formula to determine the order LGL required [79]: 

𝐿𝐺𝐿 ≥ 𝜋 + 10𝐷max𝑓max                                                 (5.91) 

where Dmax is the maximum dimension of the working volume in metre and fmax is the upper 

frequency limit of the simulation in gigahertz.  

The workload required to simulate a reverberant electromagnetic environment is related to 

a linear operator [79]: 

𝑂(𝐫) = �̂�[𝐸(𝐫)]                                                         (5.92) 

Substitute formulas (5.80) and (5.87) into (5.92) gives: 

𝑂(𝐫) = ∑ ∑ (𝐹𝑙𝑚;𝜃𝑂𝑙𝑚;𝜃 + 𝐹𝑙𝑚;𝜑𝑂𝑙𝑚;𝜑)
2𝐿𝐺𝐿
𝑚=1

𝐿𝐺𝐿
𝑙=1                              (5.93) 
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where 

𝑂𝑙𝑚;𝜃 = �̂�(�̂�𝑒𝑗𝐤𝑙𝑚 ∙𝐫)                                                     (5.94) 

𝑂𝑙𝑚;𝜑 = �̂�(�̂�𝑒𝑗𝐤𝑙𝑚∙𝐫)                                                     (5.95) 

are the values of the operator due to a single unit amplitude plane wave. Formula (5.93) 

indicates that 4 𝐿𝐺𝐿
2  simulations are required to replicate a diffuse environment (two 

orthogonal field polarizations from 2𝐿𝐺𝐿
2  directions).  

The implication of the analysis above is that an accurate simulation of a diffuse field could be 

computationally expensive. For example, for an upper frequency of 10GHz and working 

volume of a cube with side length of 0.09m, we find LGL≥12.14. Let LGL=13, then 4𝐿𝐺𝐿
2 =676. 

This is beyond our practical simulation resources. Consideration of the theoretical derivation 

of the spatial sampling in [ 81] suggests that it is defined to make the truncation error 

negligible. In [75], Flintoft et al used 64 plane waves (which means LGL=4) to illuminate 

dissipative objects in full wave simulations in order to obtain their absorption cross sections. 

They stated that using 64 plane waves achieved an absorption cross section within 1 dB 

accuracy. 

In the CST software, electric and magnetic fields are parameterized as: 

𝐄 = 𝐸0(−cos𝜓�̂� + sin𝜓�̂�)                                                (5.96) 

𝐇 = 𝜂0
−1𝐤 × 𝐄 = 𝜂0

−1𝐸0(cos𝜓�̂� + sin𝜓�̂�)                               (5.97) 

where ƞ0≈377Ω is the free space impedance and ψ is the polarization angle of the incident 

waves. ψ=0 and ψ=π/2 correspond to horizontal and vertical polarizations. The Cartesian 

components of the incident electric and magnetic fields are given by: 

𝐄 = −𝐸0cos𝜓 (
cos𝜃cos𝜑
cos𝜃sin𝜑

−sin𝜃

) + 𝐸0sin𝜓 (
−sin𝜑
cos𝜑

0
)                                    (5.98) 

𝐇 = 𝜂0
−1𝐸0cos𝜓 (

−sin𝜑
cos𝜑

0
) + 𝜂0

−1𝐸0sin𝜓 (
cos𝜃cos𝜑
cos𝜃sin𝜑

−sin𝜃

)                              (5.99) 

The CST software uses formulas (5.74) and (5.98) to determine the plane wave directions. The 

angles θ and φ are chosen by using formulas (5.82) and (5.83). During the full wave simulation, 
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we used the parametric sweep function over plane waves’ directions. The directions of the 

64 plane waves are listed in table 5.1.  

Table 5. 1. Incident angles of the 64 plane waves in full wave simulation in order to create a 
reverberant electromagnetic environment. θ, ϕ and ψ are polar, azimuthal and polarization 

angles respectively. 

θ φ ψ  

0.8π 0.25π 0 

0.8π 0.5π 0 

0.8π 0.75π 0 

0.8π π 0 

0.8π 1.25π 0 

0.8π 1.5π 0 

0.8π 1.75π 0 

0.8π 2π 0 

0.6π 0.25π 0 

0.6π 0.5π 0 

0.6π 0.75π 0 

0.6π π 0 

0.6π 1.25π 0 

0.6π 1.5π 0 

0.6π 1.75π 0 

0.6π 2π 0 

0.4π 0.25π 0 

0.4π 0.5π 0 

0.4π 0.75π 0 

0.4π π 0 

0.4π 1.25π 0 

0.4π 1.5π 0 

0.4π 1.75π 0 

0.4π 2π 0 

0.2π 0.25π 0 
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0.2π 0.5π 0 

0.2π 0.75π 0 

0.2π π 0 

0.2π 1.25π 0 

0.2π 1.5π 0 

0.2π 1.75π 0 

0.2π 2π 0 

0.8π 0.25π 0.5π 

0.8π 0.5π 0.5π 

0.8π 0.75π 0.5π 

0.8π π 0.5π 

0.8π 1.25π 0.5π 

0.8π 1.5π 0.5π 

0.8π 1.75π 0.5π 

0.8π 2π 0.5π 

0.6π 0.25π 0.5π 

0.6π 0.5π 0.5π 

0.6π 0.75π 0.5π 

0.6π π 0.5π 

0.6π 1.25π 0.5π 

0.6π 1.5π 0.5π 

0.6π 1.75π 0.5π 

0.6π 2π 0.5π 

0.4π 0.25π 0.5π 

0.4π 0.5π 0.5π 

0.4π 0.75π 0.5π 

0.4π π 0.5π 

0.4π 1.25π 0.5π 

0.4π 1.5π 0.5π 

0.4π 1.75π 0.5π 

0.4π 2π 0.5π 
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0.2π 0.25π 0.5π 

0.2π 0.5π 0.5π 

0.2π 0.75π 0.5π 

0.2π π 0.5π 

0.2π 1.25π 0.5π 

0.2π 1.5π 0.5π 

0.2π 1.75π 0.5π 

0.2π 2π 0.5π 

Figure 5.20 shows a diagram of the incident angles of the 64 plane waves. It can be seen that 

there are 32 incident positions and at each position, there are two polarizations. In this thesis, 

in order to further save time, we used LGL=3 that leads to 36 plane waves. Later in this chapter, 

we will present examples to show that 36 plane waves and 64 plane waves produce very 

similar results. Table 5.2 lists the incident angles of the 36 plane waves. 

 

Figure 5. 20. Diagram of the incident angles of the 64 plane waves in full wave simulation 
in order to create a reverberant electromagnetic environment. There are 32 positions 

and at each position, there are two polarizations. 
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Table 5. 2. Incident angles of the 36 plane waves in full wave simulation in order to create a 
reverberant electromagnetic environment. θ, ϕ and ψ are polar, azimuthal and polarization 

angles respectively. 

θ φ ψ  

0.8π π/3 0 

0.8π 2π/3 0 

0.8π π 0 

0.8π 4π/3 0 

0.8π 5π/3 0 

0.8π 2π 0 

0.5π π/3 0 

0.5π 2π/3 0 

0.5π π 0 

0.5π 4π/3 0 

0.5π 5π/3 0 

0.5π 2π 0 

0.2π π/3 0 

0.2π 2π/3 0 

0.2π π 0 

0.2π 4π/3 0 

0.2π 5π/3 0 

0.2π 2π 0 

0.8π π/3 0.5π 

0.8π 2π/3 0.5π 

0.8π π 0.5π 

0.8π 4π/3 0.5π 

0.8π 5π/3 0.5π 

0.8π 2π 0.5π 

0.5π π/3 0.5π 

0.5π 2π/3 0.5π 

0.5π π 0.5π 
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0.5π 4π/3 0.5π 

0.5π 5π/3 0.5π 

0.5π 2π 0.5π 

0.2π π/3 0.5π 

0.2π 2π/3 0.5π 

0.2π π 0.5π 

0.2π 4π/3 0.5π 

0.2π 5π/3 0.5π 

0.2π 2π 0.5π 

Figure 5.21 shows a diagram of the incident angles of the 36 plane waves. It can be seen that 

there are 18 incident positions and at each position, there are two polarizations.  

 

Figure 5. 21. Diagram of the incident angles of the 36 plane waves in full wave simulation 
in order to create a reverberant electromagnetic environment. There are 18 positions 

and at each position, there are two polarizations. 
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5.7. Validation measurements 

Beside the full wave simulations, the predictions of the diffusion model were also validated 

against physical measurements. The measurements were performed in the reverberation 

chamber at the University of York that has been presented in figure 3.3. Figure 5.22 and 5.23 

show a diagram and a photograph of the measurement configuration. A blade antenna 

(antenna 1) served as the radiation source. A monopole with a length of 10mm was fitted 

 

Figure 5. 22. Diagram of the validation measurements set up. The measurements were 
performed in the reverberation chamber at the University of York. Antenna 1 is the 

radiation source. Antennas 2 and 3 are two monopoles that are fitted in the enclosure 
and a metal plane respectively. 

 

 

 

 

Figure 5. 23. Photograph of the validation measurements set up. The antennas 1, 2 and 3 
are in accordance with those shown in figure 5.22. 
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through each hole in the removable lid (see figures 5.3 and 5.5) of the enclosure in turn to 

measure the internal field. Another similar monopole (antenna 3), which can be seen in figure 

5.24, was fitted at the centre of a 480mm×480mm metal plane to measure the external field.  

The reverberation chamber was mode-tuned by a mechanical stirrer using 100 equally spaced 

positions over one complete rotation. A network analyser was used to collect the 

measurement data. First, we measured the S-parameters between antenna 1 and antenna 2; 

then between antenna 1 and antenna 3. The measurement range was 1GHz to 10GHz with 

10001 equally spaced points. During the measurements, the unused holes on the enclosure 

lid were covered and the unused monopole (either antenna 2 or antenna 3) was attached to 

a 50Ω load. 

The mismatch corrected insertion gain, IG, between antenna 1 and antenna 2 or 3 was 

calculated from the S-parameters [5]: 

IG1𝑖 =
〈|𝑆𝑖1|2〉

(1−|〈𝑆11〉|2)(1−|〈𝑆𝑖𝑖〉|2)
   𝑖 = 2, 3                                          (5.100) 

where S11, S22 and S33 are the refection coefficients of antenna 1, 2 and 3 respectively. S21 and 

S31 are the transmission coefficients between the transmitting antenna 1 and receiving 

antennas 2 and 3. The power densities in the chamber and in the enclosure are proportional 

to the insertion gain: 

 

Figure 5. 24. Close up look at the monopole, which is antenna 3 shown in figures 5.22 and 
5.23. 
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IG13

IG12
=

𝑆𝑐ℎ

𝑆𝑒𝑛
                                                                (5.101) 

where Sch and Sen are the power densities in the reverberation chamber and in the enclosure 

respectively. Sch can be set as any value in order to in accordance with that in the diffusion 

model and the full wave simulations.  

5.8. Results and discussions 

5.8.1. Comparison between the PWB method and diffusion model 

In order to show the limitation of the power balance method, we built a diffusion model of 

the enclosure with the 75mm×75mm square aperture and the 90mm×90mm×90mm 

absorbing cube (see figures 5.12, 5.13 and 5.14). The radiated power, P in formula (5.3), was 

set as 1W. Figure 5.25 shows the power density along the central line of the enclosure lid for 

different values of the cube’s absorption efficiency, comparing the predictions of the power 

balance method and the diffusion model. It can be seen that the power balance method 

assumes a constant power density regardless of positions. This assumption is true when the 

cube’s absorption efficiency is 0.01, which suggests this is a low loss case, where the power 

 

Figure 5. 25. Power density along the central line of the enclosure lid with the 
75mm×75mm square aperture and 90mm×90mm×90mm absorbing cube as a function of 

the cube’s absorption efficiency, comparing predictions of the diffusion model (solid 
lines) and the power balance model (dashed lines). 
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balance method and the diffusion model lead to very similar results. As the absorption 

efficiency increases, the difference between the two methods becomes more and more 

obvious. This comparison indicates that the power balance method is unable to accurately 

predict the uniform field caused by high losses.  

5.8.2. Comparison between the single and dual domain diffusion models 

As has been mentioned, either single or dual domain models can be used for our test case. 

Figure 5.26 shows the power density along the central line of the enclosure lid with the 

75mm×75mm square aperture and the 90mm×90mm×90mm absorbing cube, comparing the 

two models (see figures 5.10 and 5.11 for the single domain model; figures 5.12, 5.13 and 

5.14 for the dual domain model). It can be noticed that they produce almost identical results. 

This suggests that the number of domain has little influence on the diffusion mode. Therefore, 

for simplicity, we will presented result obtained by the dual domain model for the rest of the 

thesis. 

 

 

Figure 5. 26. Power density, normalized to 1W input power, along the central line of the 
enclosure lid with the 75mm×75mm square aperture and 90mm×90mm×90mm 

absorbing cube, comparing single and dual domain diffusion models. 
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Figure 5. 27. Simulated absorption cross section of the 90mm×90mm×90mm cube, 
comparing the illumination of 36 and 64 plane waves. 

 

 

 

 

Figure 5. 28. Absorption cross sections of the three absorbing cubes, comparing full wave 
simulations (dashed lines) and measurement data (solid lines). The measurement were 

performed by X. Zhang [76]. 
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5.8.3. The absorption cross sections of the cubes 

Figure 5.8 shows the three cubes used in this thesis. In order to verify their full wave models, 

we compare the simulated absorption cross sections against measurement data. First we 

used 36 and 64 plane waves (see tables 1 and 2) to illuminate the 90mm×90mm×90mm cube 

and figure 5.27 shows the simulated absorption cross section. It can be seen that the two 

scenarios lead to almost identical results, which suggests that that 36 plane waves are 

sufficient to create a reverberant electromagnetic environment. Therefore, in order to save 

time, we used 36 plane waves in all the following simulations.  

Figure 5.28 shows the simulated and measured absorption cross sections of the three cubes. 

The measurements were performed in the reverberation chamber at the University of York 

by X. Zhang [76]. It can be seen that simulations are in good agreement with the 

measurements. The absorption cross sections of the 90mm×90mm×90mm, 

70mm×70mm×70mm and 55mm×55mm×55mm cubes are 0.012m2, 0.008m2 and 0.005m2 

respectively. The comparisons indicate that the full wave models of the cubes are reliable. 

 

Figure 5. 29. Normalized autocorrelation function of Ex field component at point 3 at 
5.5GHz in the enclosure with the 90mm×90mm×90mm cube and the 75mm×75mm 

square aperture. 
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Figure 5. 30. Normalized autocorrelation function of Ey field component at point 3 at 
5.5GHz in the enclosure with the 90mm×90mm×90mm cube and the 75mm×75mm 

square aperture. 

 

 

 

 

 

Figure 5. 31. Normalized autocorrelation function of Ez field component at point 3 at 
5.5GHz in the enclosure with the 90mm×90mm×90mm cube and the 75mm×75mm 

square aperture. 
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5.8.4. The field statistics of the full wave models 

The use of the diffusion model requires the presence of a diffuse field and it is necessary to 

make sure that the field in the enclosure meets this condition. In both full wave simulations 

and measurements, autocorrelation function and probability density function are two key 

quantities to represent field statistics. According to Hill [43], in a reverberant electromagnetic 

environment, the field complies with normal distribution (also called Gaussian distribution) 

and this can be shown by plotting its probability density function (PDF). In order to plot PDF, 

there should be sufficient independent samples in the data and the number of independent 

samples can be estimated by autocorrelation function.  

Figures 5.29, 5.30 and 5.31 show the normalized autocorrelation function (ACF) of the real 

and imaginary part of the electric field (which consists of Ex, Ey and Ez components) in the full 

wave model of the enclosure with the 90mm×90mm×90mm cube and the 75mm×75mm 

square aperture. We used the aforementioned 36 plane waves to illuminate the enclosure. 

The autocorrelation function was calculated by using formulas (3.8) and (3.9). The full wave 

simulation was performed  from 1GHz to 10GHz and there are 5001 equally spaced points.  

 

Figure 5. 32. Normalized ACF of the real part of the Ex field component at point 3 in the 
enclosure with the 90mm×90mm×90mm cube and 75mm×75mm square aperture. The 
four plane waves are randomly chosen and for each plane wave we pick 55 frequency 

points centred at 5.5GHz. 

 

 

 



102 
 

There are several probes in the model (see figure 5.16) and for simplicity, we only show the 

ACF at probe 3 at 5.5GHz. It can be seen that for all the three field components, there is only 

one correlated sample. According to formula 3.6, all the 36 samples are independent, which 

suggests that the 36 plane waves we use are independent of each other.  

Only 36 independent samples are not sufficient to plot probability density function. We need 

to include some results from frequency points that are close to 5.5GHz. Therefore, we chose 

a frequency band of 100 MHz that is centred at 5.5GHz. The band contains 55 points. We 

randomly picked four plane waves and calculated the ACF of the 55 points within the 100MHz 

frequency band. Figures 5.32 and 5.33 show the ACF of the real and imaginary part of the Ex 

field component at point 3 in the enclosure with the 90mm×90mm×90mm cube and 

75mm×75mm square aperture. It can be seen that the Ex field components are highly 

correlated, which means that even if we include the 55 points in the vicinity of 5.5GHz, we 

will not get more independent samples. The Ey and Ez field components are also highly 

correlated and for simplicity, we do not present them in this thesis. 

 

Figure 5. 33. Normalized ACF of the imaginary part of the Ex field component at point 3 in 
the enclosure with the 90mm cube and 75mm square aperture. The four plane waves are 

randomly chosen and for each wave, we pick 55 frequency points centred at 5.5GHz. 
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In order to get adequate independent samples, we randomized the phase of the field 

components. As can be seen form figures 5.29 to 5.33, in CST, the field components are 

complex numbers and they can be expressed as E=E0ejθ, where E0 is the amplitude and θ is 

the phase angle. The randomization is achieved by multiplying the original field with a random 

angle: 

𝐸𝑟 = 𝐸0𝑒𝑗𝜃 ∙ 𝑒𝑗𝜃𝑟                                                        (5.102) 

where θr is a random angle between 0 and 2π. In Matlab, we use the command 2π×rand(M,N) 

to generate the angles, where the function rand(M,N) returns M×N different random 

numbers between 0 and 1. As an example, we show the real part of Ex field component of 

plane wave 1 at point 3 in the enclosure with the 90mm×90mm×90mm cube and 

75mm×75mm square aperture in figure 5.34. It can be seen that after the randomization, all 

55 points within the bandwidth of 100MHz centred at 5.5GHz become independent. Applying 

the same method to all 36 plane waves, we now have 55×36=1980 independent samples, 

which we believe is sufficient to plot the probability density function.  

 

Figure 5. 34. Normalized ACF of the real part of the Ex field component of plane wave 1 
at point 3 in the enclosure with the 90mm cube and 75mm square aperture, comparing 

the ACF before and after randomization. The frequency points centred at 5.5GHz. 
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We plot the probability density function by using histogram in Matlab. First, we obtain the 

length of each bin (this is the number of samples), then divide them by the total number of 

samples to get the probability. Finally, we divide the probability by the width of each bin to 

get the probability density.  

Figures 5.35-5.40 show the probability density function of the real and imaginary part of Ex, 

Ey and Ez field component at 5.5GHz at point 3 (see figure 5.16) in the enclosure with the 

90mm×90mm×90mm cube and 75mm×75mm square aperture. It can be seen that all field 

components comply with normal distribution with means very close to zero.  

We applied the same randomization process to the field in the enclosure with the r=6mm 

circular aperture and figures 5.41-5.46 show the results. Again, for simplicity we only 

present the PDF of the field at point 3 at 5.5GHz. The field components at point 3 comply 

with normal distribution. Therefore, we can conclude that the randomized field in the CST 

model of the enclosure is reverberant for both scenarios.  

 

Figure 5. 35. Probability density function of the real part of Ex field component at 5.5GHz 
at point 3 in the enclosure with the 90mm×90mm×90mm cube and 75mm×75mm square 

aperture. 
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Figure 5. 36. Probability density function of the imaginary part of Ex field component at 
5.5GHz at point 3 in the enclosure with the 90mm×90mm×90mm cube and 

75mm×75mm square aperture. 

 

 

 

 

Figure 5. 37. Probability density function of the real part of Ey field component at 5.5GHz 
at point 3 in the enclosure with the 90mm×90mm×90mm cube and 75mm×75mm square 

aperture. 

 

 

 



106 
 

 

 

Figure 5. 38. Probability density function of the imaginary part of Ey field component at 
5.5GHz at point 3 in the enclosure with the 90mm×90mm×90mm cube and 

75mm×75mm square aperture. 

 

 

 

 

Figure 5. 39. Probability density function of the real part of Ez field component at 5.5GHz 
at point 3 in the enclosure with the 90mm×90mm×90mm cube and 75mm×75mm square 

aperture. 
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Figure 5. 40. Probability density function of the imaginary part of Ez field component at 
5.5GHz at point 3 in the enclosure with the 90mm×90mm×90mm cube and 

75mm×75mm square aperture. 

 

 

 

 

Figure 5. 41. Probability density function of the real part of Ex field component at 5.5GHz 
at point 3 in the enclosure with the 90mm×90mm×90mm cube and r=6mm circular 

aperture. 
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Figure 5. 42. Probability density function of the imaginary part of Ex field component at 
5.5GHz at point 3 in the enclosure with the 90mm×90mm×90mm cube and r=6mm 

circular aperture. 

 

 

 

 

Figure 5. 43. Probability density function of the real part of Ey field component at 5.5GHz 
at point 3 in the enclosure with the 90mm×90mm×90mm cube and r=6mm circular 

aperture. 

 

 

 



109 
 

 

 

Figure 5. 44. Probability density function of the imaginary part of Ey field component at 
5.5GHz at point 3 in the enclosure with the 90mm×90mm×90mm cube and r=6mm 

circular aperture. 

 

 

 

 

Figure 5. 45. Probability density function of the real part of Ez field component at 
5.5GHz at point 3 in the enclosure with the 90mm×90mm×90mm cube and r=6mm 

circular aperture. 
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Figure 5. 46. Probability density function of the imaginary part of Ez field component at 
5.5GHz at point 3 in the enclosure with the 90mm×90mm×90mm cube and r=6mm 

circular aperture. 

 

 

 

 

Figure 5. 47. Normalized autocorrelation function of S21 at point 2 at 5.5GHz in the 
enclosure with the 90mm×90mm×90mm cube and 75mm×75mm square aperture.  

 

 

 



111 
 

5.8.5. The field statistics of the measurements 

In this section, we present the statistics of the field in the physical measurements. In the 

measurements, the antennas do not record electric field like the probes in the full wave 

model. Instead, the network analyser collected S-parameters. Hence, we calculated the 

autocorrelation function and probability density function of S21, which is the transmission 

coefficient between the transmitting antenna and the receiving antenna (see figures 5.22 and 

5.23). There are seven measurement positions on the lid of the enclosure (see figure 5.5), we 

only present the field statistics at point 2 for brevity.  

Figure 5.47 shows the normalized autocorrelation function of S21 at point 2 at 5.5GHz in the 

enclosure with the 90mm×90mm×90mm cube and the 75mm×75mm square aperture. It can 

be seen that for both real and imaginary part, all 100 samples are independent of each other, 

which suggests that the 100 stirrer positions are independent. We then picked four stirrer 

positions and for each position, we chose a frequency band of 20MHz, which contains 11 

points.  

 

Figure 5. 48 Normalized ACF of the real part of S21 at point 2 at 5.5GHz in the enclosure 
with the 90mm×90mm×90mm cube and 75mm×75mm square aperture. The four stirrer 

positions were randomly chosen and for each position we picked a frequency band of 
10MHz that is centred at 5.5GHz.  The band contains 11 points. 

 

 

 



112 
 

Figures 5.48 and 5.49 show the normalized autocorrelation of real and imaginary part of the 

11 points respectively. It can be seen that they are independent. Therefore, we do not need 

to use the randomization process as we did to the data of full wave simulations. 

Figures 5.50 and 5.51 show the probability density function of real and imaginary part of S21 

at 5.5GHz at point 2 in the enclosure with the 90mm×90mm×90mm cube and the 

75mm×75mm square aperture. Figure 5.52 and 5.53 show the probability density function at 

the same point at the same frequency in the enclosure with the same cube and the r=6mm 

circular aperture. There are totally 11×100=1100 samples in each figure. It can be seen that 

for both scenarios, the S21 complies with normal distribution with a mean of nearly zero. This 

indicates that at 5.5GHz, the field in the enclosure is sufficiently reverberant.  

 

Figure 5. 49. Normalized ACF of the imaginary part of S21 at point 2 at 5.5GHz in the 
enclosure with the 90mm×90mm×90mm cube and 75mm×75mm square aperture. The 

four stirrer positions were randomly chosen and for each position we picked a frequency 
band of 10MHz that is centred at 5.5GHz.  The band contains 11 points. 
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Figure 5. 50. Probability density function of the real part of S21 at 5.5GHz at point 2 in the 
enclosure with the 90mm×90mm×90mm cube and 75mm×75mm square aperture. 

 

 

 

 

Figure 5. 51. Probability density function of the imaginary part of S21 at 5.5GHz at point 2 
in the enclosure with the 90mm×90mm×90mm cube and 75mm×75mm square aperture.  
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Figure 5. 52. Probability density function of the real part of S21 at 5.5GHz at point 2 in 
the enclosure with the 90mm×90mm×90mm cube and r=6mm circular aperture. 

 

 

 

 

 

Figure 5. 53. Probability density function of the imaginary part of S21 at 5.5GHz at point 2 
in the enclosure with the 90mm×90mm×90mm cube and r=6mm circular aperture. 
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5.8.6. Power density in the enclosure 

In the previous two sections, we have demonstrated that for both full wave simulation and 

physical measurement, the field in the enclosure is reverberant. In this section, we provide 

the power density in the enclosure, comparing the diffusion model, full wave simulation and 

measurement. It should be noted that the results obtained by full wave simulation and 

measurement were normalized to 1W input power in order to compare with that obtained 

by the diffusion model.  

Figure 5.54 shows the simulated power density along the central line of the lid of the 

enclosure loaded with the 90mm×90mm×90mm cube and the 75mm×75mm square aperture 

at 5.5GHz. We used 36 and 64 plane waves (see figures 5.20 and 5.21) to illuminate the 

enclosure respectively. It can be seen that the test scenarios produced very similar results 

with less than 1dB difference. This shows again that 36 plane waves detailed in section 5.6.2 

are sufficient to create a reverberant electromagnetic environment. In addition, it can be 

noticed that the power density is apparently not uniform throughout the enclosure. 

 

Figure 5. 54. Simulated power density, normalized to 1W input power, along the central 
line of the lid of the enclosure with the 90mm×90mm×90mm cube and 75mm×75mm 

square aperture at 5.5GHz, comparing different number of plane waves. 
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Figure 5.55 shows the simulated power density along the central line of the lid of the 

enclosure loaded with the 90mm×90mm×90mm cube and the 75mm×75mm square aperture 

at 5.5GHz, 7GHz, 8GHz and 9GHz respectively. We can see that the results are generally in 

agreement with less than 3dB difference. This suggests that in the steady state, the field in 

the enclosure does not change a lot as frequency increases. Therefore, for brevity, in the 

following results we only show the power density at 5.5GHz. 

Figures 5.56, 5.57 and 5.58 show the power density along the central line of the lid of the 

enclosure loaded with different cubes (see figure 5.8) and the 75mm×75mm square aperture 

at 5.5GHz, comparing the predictions of the diffusion mode, full wave simulation and 

measurement. It can be seen that the results obtained by the diffusion model agree with 

those by full wave simulation and measurement with less than 3dB difference. When the 

enclosure is loaded with the 90mm×90mm×90mm cube, the power density drops rapidly 

towards the centre and reaches the minimum value at around x=150mm. This is because the 

cube is at the centre (see figure 5.7). As the cube becomes smaller, this drop becomes less 

obvious. 

 

Figure 5. 55. Simulated power density, normalized to 1W input power, along the central 
line of the lid of the enclosure with the 90mm×90mm×90mm cube and 75mm×75mm 

square aperture at different frequencies. 
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Figure 5. 56. Power density, normalized to 1W input power, along the central line of the 
lid of the enclosure with the 90mm×90mm×90mm cube and 75mm×75mm square 

aperture at 5.5GHz, comparing diffusion model, full wave simulation and measurement.  

 

 

 

 

Figure 5. 57. Power density, normalized to 1W input power, along the central line of the 
lid of the enclosure with the 70mm×70mm×70mm cube and 75mm×75mm square 

aperture at 5.5GHz, comparing diffusion model, full wave simulation and measurement.  
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As has been mentioned, the 75mm×75mm square aperture has a constant transmission 

cross section from 1GHz to 10GHz and the r=6mm circular aperture has a frequency-

dependent transmission cross section below 10GHz. For the enclosure with the circular 

aperture, we are interested in how the power density changes with frequency. Therefore, 

we picked point 2 (see figure 5.5) and plotted the power density as a function of frequency 

in figure 5.59. For simplicity, we only present the results when the enclosure is loaded with 

90mm×90mm×90mm cube. It can be seen that the power density increases with frequency. 

This is because the transmission cross section of the r=6mm aperture increases with 

frequency (see figure 5.7). The diffusion model is in good agreement with the full wave 

simulation. The measurement, however, only shows good agreement above 5GHz.  

In order to investigate the cause of this discrepancy, we covered the aperture and measured 

the power density again by using the method detailed in section 5.7. In this way, we obtained 

the noise floor of the measurement. The result is presented in figure 5.59 with the legend “no 

aperture”. It can be seen that the noise floor is less than -20dB W/m2 and the measured power 

 

Figure 5. 58. Power density, normalized to 1W input power, along the central line of the 
lid of the enclosure with the 55mm×55mm×55mm cube and 75mm×75mm square 

aperture at 5.5GHz, comparing diffusion model, full wave simulation and measurement.  

 

 

 



119 
 

density is well above it. Hence, we can rule out the effect of the leakage through the seam 

and joint of the enclosure on the measurement. 

Another possible reason for the discrepancy is that below 5GHz, the field in the enclosure is 

not sufficiently reverberant. We calculated the probability density function of S21 of point 2 

at 2GHz and 3GHz respectively. The results are presented in figures 5.60-5.63. It can be seen 

that at 2GHz and 3GHz, the S21 at point 2 complies with a normal distribution, which indicates 

that the field in the enclosure is reverberant at these frequencies. Currently we are still 

uncertain about the cause of the difference between measurement and full wave simulation 

below 5GHz. 

 

 

 

 

 

 

Figure 5. 59. Power density, normalized to 1W input power, along the central line of the 
lid of the enclosure with the 90mm×90mm×90mm cube and r=6mm circular aperture at 

5.5GHz, comparing diffusion model, full wave simulation and measurement. 
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Figure 5. 60. Probability density function of the real part of S21 at 2GHz at point 2 in the 
enclosure with the 90mm×90mm×90mm cube and r=6mm circular aperture. 

 

 

 

 

Figure 5. 61. Probability density function of the imaginary part of S21 at 2GHz at point 2 in 
the enclosure with the 90mm×90mm×90mm cube and r=6mm circular aperture. 
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Figure 5. 62. Probability density function of the real part of S21 at 3GHz at point 2 in the 
enclosure with the 90mm×90mm×90mm cube and r=6mm circular aperture. 

 

 

 

 

Figure 5. 63. Probability density function of the imaginary part of S21 at 3GHz at point 2 in 
the enclosure with the 90mm×90mm×90mm cube and r=6mm circular aperture. 
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5.9. Summary 

In this chapter, we present a new method to predict electromagnetic field in populated 

enclosures, the diffusion model. The diffusion model has been used in acoustics for many 

years. In this thesis, for the first time, we applied the method to shielding problems.  

The shielding effectiveness of an enclosure is defined as the ratio of field without and with 

the enclosure. In order to accurately predict the shielding effectiveness, it is necessary to 

obtain the precise internal field. The widely used power balance method calculates shielding 

effectiveness by using the absorption cross section of contents and transmission cross section 

of apertures. The basic assumption of the method is that the field in the enclosure is uniform 

in the steady state and it only holds when the loss in the enclosure is low. For moderate or 

high loss cases, the internal field in no longer uniform and the power balance method cannot 

describe this uniformity.  

The diffusion model overcomes this limitation and it can be considered as a generalization of 

the power balance method. It compares the transmission of electromagnetic waves to 

radiative transport of particles in an enclosure and it is able to predict the variation of 

electromagnetic field in a cavity due to the presence of high losses. A 2D diffusion model has 

been tested previously, obtaining promising results. Here we demonstrated the usefulness of 

3D diffusion model by using it to predict the power density of a populated enclosure and 

compare the results with full wave simulation and physical measurements. The comparisons 

indicated that with the presence of high loss, the energy in the enclosure is not uniform and 

the 3D diffusion model is able to show this change. For the enclosure with a 75mm×75mm 

square aperture, the predictions of the diffusion model are in agreement with those of full 

wave simulation and measurements, proving its availability. For the enclosure with an r=6mm 

circular aperture, the measurement is not in agreement with the diffusion model and full 

wave simulation at low frequencies. We have ruled out the influence of seam leakage and 

measurement noise floor. Currently we are still uncertain about the reason. 
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Chapter 6 

Conclusions and future work 

This work presented in this thesis centres on the prediction of shielding effectiveness. The 

shielding effectiveness of an enclosure quantifies its ability to protect its contents from 

electromagnetic interference. It is defined as the ratio of field/power density without and 

with the enclosure. In real applications, an enclosure is always populated and it has been 

proven that the contents have an effect on shielding effectiveness. Therefore, we need to 

consider contents when analysing shielding problems. 

The first contribution of this thesis is that we demonstrated the absorption cross section of 

electronic components is hardly affected by their power states. The power balance method 

is widely used in the analysis of shielding problems of loaded enclosure. It treats shielding 

problems from an average energy point of view, assuming that in the steady state, the energy 

in the enclosure is uniform. By using the power balance method, the contents and the 

aperture are characterised by their absorption cross sections and transmission cross sections 

respectively. In this way, the shielding effectiveness is calculated from the absorption cross 

sections and transmission cross sections. The transmission cross section of an aperture is 

calculated from its polarizability tensors and the absorption cross section of content is 

obtained by physical measurements. 

To the best of our knowledge, we have not found any reference that focus on the influence 

of power state on the absorption cross section. If the content contains active components, 

then behaviour of these components varies with power states and we assume that this 

change might affect its absorption cross section. In order to verify this assumption, we 

measured the absorption cross section of some computer components when they were both 

power on and powered off. A stress test software was used to make sure that all components 

(CPU, hard drive etc.) were in operation when powered on. The measurements were 

performed in a reverberation chamber and both frequency and time domain methods were 

used to obtain the absorption cross section. The results suggest that the power states have 

little influence on the absorption cross section within 1% measurement uncertainty. Since the 
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reverberation chamber we used is not perfect, we measured the absorption cross section of 

the powered on/off computer components at different locations in the chamber and did not 

observe obvious change in the results. Hence, we conclude that power state has little effect 

on the absorption cross section. When performing similar measurements in the future, there 

will be no need to consider power state, which brings convenience to the measurements. 

The second contribution of this thesis is that we proved the usefulness of 3D diffusion model. 

A fundamental limitation of the power balance method is that it assumes in the steady state, 

the energy is uniform in the enclosure, which is only true when the loss in the enclosure is 

low. The diffusion equation based model stems from acoustics community and it is able 

account for the variation of electromagnetic energy in an enclosure due to the presence of 

moderate or high losses. Previously 2D diffusion model has tested, obtaining promising 

results. However, the 2D model can be only applied to symmetrical structures and thus has 

limited applicability.  

In this thesis, we developed a 3D diffusion model. The 3D model enables more complex 

applications to be investigated. For instance, it is able to predict the non-uniform field in a 

populated equipment enclosure, informing the optimal positioning of sensitive components 

to reduce the influence of electromagnetic interference on them. In order to verify it, we used 

it to predict the power density in an enclosure and compared the results to those obtained 

by full wave simulation and measurement. The enclosure has a removable front face to allow 

different apertures to be installed. Therefore, we made two test scenarios, one with a 

75mm×75mm square aperture and the other one with a r=6mm circular aperture. For each 

scenario, in order to introduce high loss, we put an absorbing cube in the enclosure. 

The use of the 3D diffusion model requires the presence of a diffuse field. In the full wave 

simulation, this requirement is achieved by using a number of plane waves to illuminate the 

enclosure from different positions. As for the physical measurements, we preformed them in 

a reverberation chamber and used a mechanical stirrer to create a diffuse field. 

Comparison between the diffusion model and the power balance method suggests that when 

the loss in the enclosure is low, the energy in the enclosure varies little with positions and the 

two methods leads to almost identical results. As the loss in the enclosure increases, the 

energy in the enclosure is not uniform and the power balance method cannot describe this 
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change. Comparisons between the diffusion model, full wave simulation and measurements 

indicate that for the enclosure with 75mm×75mm aperture, the predictions of the diffusion 

model is in agreement with those of the full wave simulation and measurements, with less 

than 3dB difference. For the r=6mm circular aperture, the predictions of the diffusion model 

agrees well the that of full wave simulation. The measurements, however, is not in agreement 

with them at low frequencies. We have ruled out the effects of seam leakage and insufficient 

diffuse field. Currently the reason for the discrepancy is still to be investigated.  

Although we have shown the usefulness of the diffusion model, it requires further 

development. An extension of this work is to apply the diffusion model to enclosures with 

large dimensional ratios (one side is much longer than the other two). Diffusivity is a key 

parameter in the 3D diffusion model. In this thesis, we assume that for this application (the 

300mm×300mm×120mm enclosure), the diffusivity is a constant. It has been pointed out the 

in an enclosure with a large dimensional ratio, the diffusivity along the long side is no longer 

a constant [82]. Although some empirical solutions have been proposed, more research is 

required to verify them. Solving this problem would allow the diffusion model to be applied 

to more complex problems. 
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List of Symbols 

f Frequency 

E0  Electric field with enclosure 

Ei Electric field without enclosure 

k Positive integer; wave number 

m Positive integer 

n Positive integer 

l Length 

w Width 

h Height 

Q Quality factor 

c Light speed 

V Volume 

e Natural logarithm; elliptical eccentricity 

Nms;ind  
Number of independent samples  

of mechanical stirring 

Nms;tot 
Number of total samples  

of mechanical stirring 

Nms;cor 
Number of correlated samples  

of mechanical stirring 

Nfs;ind  
Number of independent samples  

of frequency stirring 

Nfs;tot 
Number of total samples  

of frequency stirring 

Nfs;cor 
Number of correlated samples  

of frequency stirring 

Nind Number of independent samples 

ω Angular frequency 

Us Steady state energy  

W Energy density 
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Pd Dissipated power  

Etot Total (rms) electric field 

ε Permittivity 

λ Wavelength 

K Rician K-factor 

Qu 
Quality factor of an enclosure  

with aperture uncovered 

Qc 
Quality factor of an enclosure  

with aperture covered 

τ Time constant 

τu 
Time constant of an enclosure  

with aperture uncovered 

τc 
Time constant of an enclosure  

with aperture covered 

μ Permeability 

δ Skin depth 

A Surface area 

σ Conductivity 

Ae Effective area of antenna 

σa Absorption cross section 

σt Transmission cross section 

θ Polar angle 

φ Azimuth angle 

C0 constant 

𝜎𝑡∕∕
𝑥   Parallel polarisation in x axis 

𝜎𝑡∕∕
𝑦

 Parallel polarisation in y axis 

𝜎𝑡+
𝑥    Perpendicular polarisation in x axis 

𝜎𝑡+
𝑦

 Perpendicular polarisation in y axis 

αe Electric polarizability tensor 

αmx  Magnetic polarizability tensors in x axis 

αmy Magnetic polarizability tensors in y axis 
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r Radius 

fc Cut-off frequency of aperture 

G Net transfer function 

αu Uncertainty 

ηt  Efficiency of transmitting antenna 

ηr Efficiency of reviving antenna 

τwo 
Reverberation chamber time constant  

with dissipative object 

τno 
Reverberation chamber time constant  

without dissipative object 

β Ray magnitude 

T Propagation delay 

Vr Received signal voltage 

Ni(t) i=1, 2 
Standard complex  

Gaussian random process 

Vn Background noise level 

R Resistance 

C Capacitance 

Rp  Parallel resistor  

Rs Series resistor 

L Inductance 

�̅� Complex conjugate of a 

w(r) Energy density at position r 

S(r) Power density at position r 

D Diffusion coefficient 

Λ 
volumetric loss rate  

due to content absorption 

P Total radiated power 

δ Dirac function 

lMFP Overall mean free path 

lMFP;wall Contribution to mean free path  
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by walls 

lMFP;con 
Contribution to mean free path  

by contents 

αcon Absorption efficiency of contents 

�̂� Outward unit normal vector 

αwall Absorption efficiency of walls 

∑ (𝐫)
𝛼

 Absorption factor of walls 

ΓTE(θ) 
Fresnel reflection coefficient  

for the reflection of TE plane wave 

ΓTM(θ) 
Fresnel reflection coefficient  

for the reflection of TM plane wave 

p Volume power density 

wr(r) 
Reverberant energy density  

at position r 

Vs Volume of volume source 

G(·) Green’s function 

J(r) Energy density flux at position r 

hij(r) i,j=1,2 Energy exchange coefficient 

U Total energy in the space 

αcon Absorption factor of contents 

Awall Surface area of enclosure walls 

Acon Surface area of enclosure contents 

σa;wall Absorption cross section of walls 

σa;con Absorption cross section of contents 

u(r), F(r), G(r),  

φ(r), γ(r), ψ(r) 
Test functions used in FEM 

Tk Discrete elements in FEM 

Vk Finite element space on Tk 

X Type of finite elements in FEM 

M Dimension of finite element space Vk 

F(Ω) Angular spectrum 
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Ω Solid angle 

�̂� , �̂� Mutually orthogonal unit vectors 

Fθ(Ω) , Fφ(Ω) Complex field amplitudes  

Fθr(Ω), Fθi(Ω) Real and imaginary parts of Fθ(Ω) 

Fφr(Ω), Fφi(Ω) Real and imaginary parts of Fφ(Ω) 

Pn(x) Lengendre polynomial of order n 

wl 

Gauss-Legendre quadrature  

weighting factor 

N (mean, 

standard 

deviation) 

Normal distribution 

Dmax 

Maximum dimension  

of the object under test 

O(r) Linear operator  

LGL Order of Legendre polynomial 

ƞ0 Free space impedance 

ψ Polarization angle in CST 

IG Mismatch corrected insertion gain 

Sch 

Power density  

in reverberation chamber 

Sen Power density in enclosure 

Er Randomized electric field  

θr Random angle between 0 and 2π 
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List of Abbreviations 

ACF Autocorrelation Function 

ACS Absorption Cross Section 

CIR Channel Impulse Response 

CPU Central Processing Unit 

EEBC Energy Exchange Boundary Condition 

EMC Electromagnetic Compatibility 

EMI Electromagnetic Interference 

FDTD Finite-Difference Time-Domain 

FEM Finite Element Method 

GPU Graphics Processing Unit 

IFFT Inverse Fast Fourier Transform 

ILCM Intermediate Level Circuit Model 

LUF Lowest Useable Frequency 

OATS Open Area Test Site 

PCB Printed Circuit Board 

PDF Probability Density Function 

PDP Power Delay Profile 

PWB Power Balance Method 

RAM Radio Absorbing Material 

RF Radio Frequency 

RMS Root Mean Square 

SE Shielding Effectiveness 

TCS Transmission Cross Section 

TE Transverse Electric  

TM Transverse Magnetic 
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